

Kurosh Madani,António Dourado Correia,Agostinho Rosa, and Joaquim Filipe (Eds.)

Computational Intelligence

Studies in Computational Intelligence,Volume 399

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage:
springer.com

Vol. 379. Ferrante Neri, Carlos Cotta, and
Pablo Moscato (Eds.)
Handbook of Memetic Algorithms, 2011
ISBN 978-3-642-23246-6

Vol. 380. Anthony Brabazon, Michael O’Neill, and
Dietmar Maringer (Eds.)
Natural Computing in Computational Finance, 2011
ISBN 978-3-642-23335-7

Vol. 381. Rados�law Katarzyniak, Tzu-Fu Chiu,
Chao-Fu Hong, and Ngoc Thanh Nguyen (Eds.)
Semantic Methods for Knowledge Management and
Communication, 2011
ISBN 978-3-642-23417-0

Vol. 382. F.M.T. Brazier, Kees Nieuwenhuis, Gregor Pavlin,
Martijn Warnier, and Costin Badica (Eds.)
Intelligent Distributed Computing V, 2011
ISBN 978-3-642-24012-6

Vol. 383. Takayuki Ito, Minjie Zhang, Valentin Robu,
Shaheen Fatima, and Tokuro Matsuo (Eds.)
New Trends in Agent-Based Complex Automated Negotiations,
2012
ISBN 978-3-642-24695-1

Vol. 384. Daphna Weinshall, Jörn Anemüller,
and Luc van Gool (Eds.)
Detection and Identification of Rare Audiovisual Cues, 2012
ISBN 978-3-642-24033-1

Vol. 385. Alex Graves
Supervised Sequence Labelling with Recurrent Neural Networks,
2012
ISBN 978-3-642-24796-5

Vol. 386. Marek R. Ogiela and Lakhmi C. Jain (Eds.)
Computational Intelligence Paradigms in Advanced Pattern
Classification, 2012
ISBN 978-3-642-24048-5

Vol. 387. David Alejandro Pelta, Natalio Krasnogor,
Dan Dumitrescu, Camelia Chira, and Rodica Lung (Eds.)
Nature Inspired Cooperative Strategies for Optimization (NICSO
2011), 2011
ISBN 978-3-642-24093-5

Vol. 388. Tiansi Dong
Recognizing Variable Environments, 2012
ISBN 978-3-642-24057-7

Vol. 389. Patricia Melin
Modular Neural Networks and Type-2 Fuzzy Systems for Pattern
Recognition, 2012
ISBN 978-3-642-24138-3

Vol. 390. Robert Bembenik, Lukasz Skonieczny,
Henryk Rybiński, and Marek Niezgódka (Eds.)
Intelligent Tools for Building a Scientific Information Platform,
2012
ISBN 978-3-642-24808-5

Vol. 391. Herwig Unger, Kyandoghere Kyamaky,
and Janusz Kacprzyk (Eds.)
Autonomous Systems: Developments and Trends, 2012
ISBN 978-3-642-24805-4

Vol. 392. Narendra Chauhan, Machavaram Kartikeyan,
and Ankush Mittal
Soft Computing Methods for Microwave and Millimeter-Wave
Design Problems, 2012
ISBN 978-3-642-25562-5

Vol. 393. Hung T. Nguyen, Vladik Kreinovich, Berlin Wu,
and Gang Xiang
Computing Statistics under Interval and Fuzzy
Uncertainty, 2012
ISBN 978-3-642-24904-4

Vol. 394. David A. Elizondo, Agusti Solanas,
and Antoni Mart́ınez-Ballesté (Eds.)
Computational Intelligence for Privacy
and Security, 2012
ISBN 978-3-642-25236-5

Vol. 395. Srikanta Patnaik and Yeon-Mo Yang (Eds.)
Soft Computing Techniques in Vision Science, 2012
ISBN 978-3-642-25506-9

Vol. 396. Marielba Zacarias and
José Valente de Oliveira (Eds.)
Human-Computer Interaction: The Agency Perspective, 2012
ISBN 978-3-642-25690-5

Vol. 397. Elena Nikolaevskaya, Alexandr Khimich,
and Tamara Chistyakova
Programming with Multiple Precision, 2012
ISBN 978-3-642-25672-1

Vol. 398. Fabrice Guillet, Gilbert Ritschard,
and Djamel Abdelkader Zighed (Eds.)
Advances in Knowledge Discovery and Management, 2012
ISBN 978-3-642-25837-4

Vol. 399. Kurosh Madani, António Dourado Correia,
Agostinho Rosa, and Joaquim Filipe (Eds.)
Computational Intelligence, 2012
ISBN 978-3-642-27533-3

Kurosh Madani, António Dourado Correia,
Agostinho Rosa, and Joaquim Filipe (Eds.)

Computational Intelligence

Revised and Selected Papers of the International Joint
Conference, IJCCI 2010,Valencia, Spain, October 2010

123

Editors
Prof. Kurosh Madani
University PARIS-EST Creteil (UPEC)
Images, Signals and Intelligence

Systems Laboratory
Paris
France

Prof. António Dourado Correia
University of Coimbra
Departamento de Engenharia

Informatica
Coimbra
Portugal

Prof. Agostinho Rosa
Instituto Superior Tecnico IST
Systems and Robotics Institute

Evolutionary Systems and
Biomedical Engineering Lab

Lisboa
Portugal

Prof. Joaquim Filipe
Polytechnic Institute of

Setúbal / INSTICC
Setubal
Portugal

ISSN 1860-949X e-ISSN 1860-9503
ISBN 978-3-642-27533-3 e-ISBN 978-3-642-27534-0
DOI 10.1007/978-3-642-27534-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012930483

c© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval,electronic adaptation,computer software,or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center.Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The present book includes extended and revised versions of a set of selected papers
from the Second International Joint Conference on Computational Intelligence (IJCCI
2010), held in Valencia, Spain, from 24 to 26 October, 2010.

The purpose of IJCCI is to bring together researchers, engineers and practitioners
in computational technologies, especially those related to the areas of fuzzy compu-
tation, evolutionary computation and neural computation. IJCCI is composed of three
co-located conferences, each one specialized in one of the aforementioned - knowledge
areas. Namely:

– International Conference on Fuzzy Computation
– International Conference on Evolutionary Computation
– International Conference on Neural Computation

Their aim is to provide major forums for scientists, engineers and practitioners inter-
ested in the study, analysis, design and application of systems.

In the International Conference on Fuzzy Computation (ICFC), modelling and
implementation of fuzzy systems, both theoretically and in a broad range of application
fields is the main concern. Fuzzy computation is a field that encompasses the theory and
application of fuzzy sets and fuzzy logic to the solution of information processing and
system analysis problems. Bolstered by information technology developments, the ex-
traordinary growth of fuzzy computation in recent years has led to major applications in
fields ranging from medical diagnosis and automated learning to image understanding
and systems control.

In the International Conference on Evolutionary Computation (ICEC) modelling and
implementation of bioinspired systems namely on the evolutionary premises, both the-
oretically and in a broad range of application fields, is the central scope. Considered a
subfield of computational intelligence focused on combinatorial optimization problems,
evolutionary computation is associated with systems that use computational models of
evolutionary processes as the key elements in design and implementation, i.e. compu-
tational techniques which are inspired by the evolution of biological life in the natural
world. A number of evolutionary computational models have been proposed, includ-
ing evolutionary algorithms, genetic algorithms, the evolution strategy, evolutionary
programming, swarm optimization and artificial life.

VI Preface

The International Conference on Neural Computation (ICNC) is focused on mod-
elling and implementation of neural computing systems, both theoretically and also in
a broad range of application fields. Neural computation and artificial neural networks
have seen an explosion of interest over the last few years, and are being successfully ap-
plied across an extraordinary range of problem domains, in areas as diverse as finance,
medicine, engineering, geology and physics, in problems of prediction, classification or
control. Several architectures, learning strategies and algorithms have been introduced
in this highly dynamic field in the last couple of decades.

IJCCI has received 236 paper submissions from 49 countries in all continents. 30
papers were published and presented as full papers, i.e. completed work, 53 papers
reflecting work-in-progress or position papers were accepted for short presentation, and
another 30 contributions were accepted for poster presentation. These numbers, leading
to a “full-paper” acceptance close to 13% and a total oral paper presentations acceptance
ratio of about 35%, show the high quality of this forum, to be preserved in the next
editions of this conference. This book includes revised and extended versions of a strict
selection of the best papers presented at the conference.

Furthermore, IJCCI 2010 included 4 plenary keynote lectures given by James Bezdek,
Antonio Sala, Simon M. Lucas and Panos Pardalos. We would like to express our ap-
preciation to all of them and in particular to those who took the time to contribute with
a paper to this book.

On behalf of the Conference Organizing Committee, we would like to thank all par-
ticipants. First of all to the authors, whose quality work is the essence of the conference
and to the members of the Program Committee, who helped us with their expertise
and diligence in reviewing the papers. As we all know, producing a post-conference
book, within the high technical level exigency, requires the effort of many individuals.
We wish to thank also all the members of our Organizing Committee, whose work and
commitment were invaluable.

September 2011 Kurosh Madani
António Dourado Correia

Agostinho Rosa
Joaquim Filipe

Conference Committee

Conference Co-chairs

Joaquim Filipe Polytechnic Institute of Setúbal / INSTICC,
Portugal

Janusz Kacprzyk Polish Academy of Sciences, Poland

Program Co-chairs

ICEC
Agostinho Rosa IST, Portugal

ICFC
António Dourado Correia University of Coimbra, Portugal

ICNC
Kurosh Madani University PARIS-EST Creteil (UPEC), France

Organizing Committee

Sérgio Brissos INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
Vera Coelho INSTICC, Portugal
Andreia Costa INSTICC, Portugal
Patrı́cia Duarte INSTICC, Portugal
Bruno Encarnação INSTICC, Portugal
Liliana Medina INSTICC, Portugal
Elton Mendes INSTICC, Portugal
Carla Mota INSTICC, Portugal
Raquel Pedrosa INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Daniel Pereira INSTICC, Portugal
Filipa Rosa INSTICC, Portugal
José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

VIII Conference Committee

ICEC Program Committee

Christos Ampatzis, Belgium
Mikhail Prokopenko, Australia
Alice Smith, USA
Michal Bidlo, Czech Republic
Maria J. Blesa, Spain
Christian Blum, Spain
Indranil Bose, China
David Cairns, UK
Rachel Cavill, UK
Ying-ping Chen, Taiwan
Hui Cheng, UK
Chi Kin Chow, China
Leandro dos Santos Coelho, Brazil
Fernando Almeida e Costa, UK
Bernabé Dorronsoro Dı́az, Luxembourg
Liliana Dobrica, Romania
Benjamin Doerr, Germany
Jan Drugowitsch, USA
Peter Duerr, Switzerland
Marc Ebner, Germany
Bruce Edmonds, UK
Fabio Fassetti, Italy
Stefka Fidanova, Bulgaria
Dalila Fontes, Portugal
Fabricio Olivetti de França, Brazil
Ozlem Garibay, USA
Carlos Gershenson, Mexico
Narzisi Giuseppe, USA
Daniel Große, Germany
Jörg Hähner, Germany
Christian Haubelt, Germany
Andreas Herkersdorf, Germany
J. Ignacio Hidalgo, Spain
Jeffrey Horn, USA
Enda Howley, Ireland
Jinglu Hu, Japan
Colin Johnson, UK
Mark Johnston, USA
Tatiana Kalganova, UK

Marta Kasprzak, Poland
Ed Keedwell, UK
Mario Köppen, Japan
Karl-Heinz Krempels, Germany
Antonio J. Fernández Leiva, Spain
Piotr Lipinski, Poland
Francisco Luna, Spain
Evelyne Lutton, France
Barry McMullin, Ireland
Jörn Mehnen, UK
Zbigniew Michalewicz, Australia
Luiza de Macedo Mourelle, Brazil
Giuseppe Nicosia, Italy
Schütze Oliver, Mexico
Pietro S. Oliveto, UK
Beatrice Ombuki-Berman, Canada
Ender Özcan, UK
Gary Parker, USA
Petrica Pop, Romania
Aurora Pozo, Brazil
Joaquim Reis, Portugal
Andri Riid, Estonia
Mateen Rizki, USA
Emmanuel Sapin, France
Lukáš Sekanina, Czech Republic
Adam Slowik, Poland
Giandomenico Spezzano, Italy
Sergiu Stan, Romania
Giovanni Straquadanio, Italy
Emilia Tantar, France
Jonathan Thompson, UK
Vito Trianni, Italy
Krzysztof Trojanowski, Poland
Yuan-Jye Tseng, Taiwan
Elio Tuci, Italy
Neal Wagner, Australia
Peter Whigham, New Zealand
Bart Wyns, Belgium
Shiu Yin Yuen, China

Conference Committee IX

ICEC Auxiliary Reviewers

Arjun Chandra, UK
Matthias Hoffacker, Germany
Jiri Jaros, Czech Republic
Pedro Faria Lopes, Portugal

Monica Lora, Germany
Eddy Parkinson, Australia
Alexandru-Adrian Tantar, Luxembourg
Walter Unger, Germany

ICFC Program Committee

Valentina E. Balas, Romania
Sansanee Auephanwiriyakul, Thailand
Ulrich Bodenhofer, Austria
Jinhai Cai, Australia
Heloisa Camargo, Brazil
Martina Dankova, Czech Republic
Bijan Davvaz, Iran, Islamic Republic of
Kudret Demirli, Canada
Ioan Despi, Australia
Nauck Detlef, UK
Girolamo Fornarelli, Italy
Jonathan Garibaldi, UK
Alexander Gegov, UK
Susana Muñoz Hernández, Spain
Zeng-Guang Hou, China
Angel A. Juan, Spain
Donald H. Kraft, USA
Piotr Kulczycki, Poland
Anne Laurent, France
Chin-Teng Lin, Taiwan
Tsung-Chih Lin, Taiwan
Feilong Liu, USA
Francesco Marcelloni, Italy
Francesco Masulli, Italy
Radko Mesiar, Slovak Republic

Javier Montero, Spain
Hiroshi Nakajima, Japan
Mirko Navara, Czech Republic
Yusuke Nojima, Japan
Sanja Petrovic, UK
David Picado, Austria
Valentina Plekhanova, UK
Antonello Rizzi, Italy
Julio Rojas-Mora, Spain
Mehdi Roopaei, Iran,

Islamic Republic of
Alessandra Russo, UK
Steven Schockaert, Belgium
Woei Wan Tan, Singapore
Dat Tran, Australia
Eiji Uchino, Japan
José Luis Verdegay, Spain
Christian Wagner, UK
Thomas Whalen, USA
Dongrui Wu, USA
Chung-Hsing Yeh, Australia
Jianqiang Yi, China
Tina Yu, Canada
Xiao-Jun Zeng, UK
Hans-Jürgen Zimmermann, Germany

ICFC Auxiliary Reviewer

Luke Dickens, UK

ICNC Program Committee

Veronique Amarger, France
Ammar Belatreche, UK
Daniel Berrar, Japan
Samia Bouchafa, France

Ivo Bukovsky, Czech Republic
Marı́a JoséCastro-Bleda, Spain
João Catalão, Portugal
Ning Chen, Portugal

X Conference Committee

Amine Chohra, France
Catalina Cocianu, Romania
José Alfredo Ferreira Costa, Brazil
Khalifa Djemal, France
Péter Érdi, USA
Jose M. Ferrandez, Spain
Marcos Gestal, Spain
Vladimir Golovko, Russian Federation
Maria Del Carmen Hernandez Gomez,

Spain
Manuel Grana, Spain
Randa Herzallah, Jordan
Tom Heskes, The Netherlands
Chris Hinde, UK
Robert Hiromoto, USA
Magnus Johnsson, Sweden
Juha Karhunen, Finland
Christel Kemke, Canada
DaeEun Kim, Korea, Republic of
Ekaterina Komendantskaya, UK
Dalia Kriksciuniene, Lithuania
Adam Krzyzak, Canada
Noel Lopes, Portugal
Jinhu Lu, China
Hichem Maaref, France
Kurosh Madani, France
Mitsuharu Matsumoto, Japan
Ali Minai, USA

Adnan Abou Nabout, Germany
João Neto, Portugal
Seiichi Ozawa, Japan
Eliano Pessa, Italy
Manuel Roveri, Italy
Christophe Sabourin, France
Abdel-badeeh Salem, Egypt
Gerald Schaefer, UK
Alon Schclar, Israel
Christoph Schommer, Luxembourg
Marı́a Teresa Garcı́a Sebastián, Spain
Moustapha Séne, Senegal
Shiliang Sun, China
Norikazu Takahashi, Japan
Yi Tang, China
Jim Torresen, Norway
Carlos M. Travieso, Spain
Andrei Utkin, Portugal
Brijesh Verma, Australia
Ricardo Vigario, Finland
Eva Volna, Czech Republic
Fei Wang, USA
Shandong Wu, USA
Pingkun Yan, USA
Cleber Zanchettin, Brazil
Huiyu Zhou, UK

ICNC Auxiliary Reviewers

Moustapha Séne, Senegal
Shiliang Sun, China
Norikazu Takahashi, Japan
Yi Tang, China
Jim Torresen, Norway
Carlos M. Travieso, Spain
Andrei Utkin, Portugal
Brijesh Verma, Australia

Ricardo Vigario, Finland
Eva Volna, Czech Republic
Fei Wang, USA
Shandong Wu, USA
Pingkun Yan, USA
Cleber Zanchettin, Brazil
Huiyu Zhou, UK

Invited Speakers
James Bezdek University of Melbourne, Australia
Antonio Sala Technical University Valencia, Spain
Simon M. Lucas University of Essex, UK
Panos Pardalos University of Florida, USA

Contents

Invited Paper

Incremental Kernel Fuzzy c-Means . 3
Timothy C. Havens, James C. Bezdek, Marimuthu Palaniswami

Part I: Evolutionary Computation

Ant Algorithm for Optimal Sensor Deployment . 21
Stefka Fidanova, Pencho Marinov, Enrique Alba

Countering Evolutionary Forgetting in No-Limit Texas Hold’em Poker
Agents . 31
Garrett Nicolai, Robert Hilderman

Model Regularization in Coevolutionary Architectures Evolving Straight
Line Code . 49
César L. Alonso, José Luis Montaña, Cruz Enrique Borges,
Marina de la Cruz Echeandı́a, Alfonso Ortega de la Puente

Evolution of Collective Perception in a Group of Autonomous Robots 67
Giuseppe Morlino, Vito Trianni, Elio Tuci

Solving SONET Problems Using a Hybrid Scatter Search Algorithm 81
Anabela Moreira Bernardino, Eugénia Moreira Bernardino,
Juan Manuel Sánchez-Pérez, Juan Antonio Gómez-Pulido,
Miguel Angel Vega-Rodrı́guez

Investigating a Measure of the Recombinational Distance Traversed by
the Genetic Algorithm . 99
Robert Collier, Mark Wineberg

XII Contents

Enhancing the Adaptive Dissortative Mating Genetic Algorithm in Fast
Non-stationary Fitness Functions . 115
Carlos M. Fernandes, Juan Julián Merelo, Agostinho C. Rosa

A Receding Horizon Genetic Algorithm for Dynamic Resource
Allocation: A Case Study on Optimal Positioning of Tugs 131
Robin T. Bye

Part II: Fuzzy Computation

Generating Optimized Fuzzy Partitions to Classification and
Considerations to Management Imprecise Data . 151
J.M. Cadenas, M.C. Garrido, R. Martı́nez

A Fuzzy Logic Based Approach to Expressing and Reasoning with
Uncertain Knowledge on the Semantic Web . 167
Jidi Zhao, Harold Boley, Weichang Du

Portfolio Investment Decision Support System Based on a Fuzzy
Inference System . 183
Isidoro J. Casanova

Fuzzy Analytical Network Models for Metasearch . 197
Arijit De, Elizaebeth Diaz

On the Satisfiability and Validity Problems in the Propositional Gödel
Logic . 211
Dušan Guller

A Fuzzy Approach to Resource Aware Automatic Parallelization 229
T. Trigo de la Vega, P. Lopez-Garcia, S. Muñoz-Hernández

Fuzzy and Fractal Technology in Market Analysis . 247
Petr Kroha, Marcus Lauschke

The Banach Contraction Principle in Fuzzy Quasi-metric Spaces and
in Product Complexity Spaces: Two Approaches to Study the Cost of
Algorithms with a Finite System of Recurrence Equations 261
Francisco Castro-Company, Salvador Romaguera, Pedro Tirado

Part III: Neural Computation

SVM-Based Object Detection Using Self-quotient ε-Filter and
Histograms of Oriented Gradients . 277
Mitsuharu Matsumoto

Contents XIII

Adaptive Control of Robot Systems with Simple Rules Using Chaotic
Dynamics in Quasi-layered Recurrent Neural Networks 287
Ryosuke Yoshinaka, Masato Kawashima, Yuta Takamura, Hitoshi Yamaguchi,
Naoya Miyahara, Kei-ichiro Nabeta, Yongtao Li, Shigetoshi Nara

Mathematical Modeling of Human Thermoregulation:
A Neurophysiological Approach to Vasoconstriction . 307
Boris R.M. Kingma, Arjan J.H. Frijns, Wim H. Saris, Anton A. van Steenhoven,
Wouter D. van Marken Lichtenbelt

Visual Target Selection Emerges from a Bio-inspired Network Topology . . . 317
Wahiba Taouali, Nicolas Rougier, Frédéric Alexandre

Use of Swarm Intelligence for the Identification of a Class of Nonlinear
Dynamical Systems . 331
Syed Z. Rizvi, Hussain N. Al-Duwaish

Practical Graph Isomorphism for Graphlet Data Mining in Protein
Structures . 345
Carsten Henneges, Christoph Behle, Andreas Zell

Learning from Data as an Optimization and Inverse Problem 361
Věra Kůrková

A Cortically Inspired Learning Model . 373
Atif Hashmi, Mikko Lipasti

Computational Study of Rhythm Propagation Induced by TMS Stimuli
in Different Brain Regions . 389
Filippo Cona, Melissa Zavaglia, Marcello Massimini, Mario Rosanova,
Mauro Ursino

Smart Growing Cells: Supervising Unsupervised Learning 405
Hendrik Annuth, Christian-A. Bohn

Author Index . 421

Invited Paper

Incremental Kernel Fuzzy c-Means

Timothy C. Havens1, James C. Bezdek2, and Marimuthu Palaniswami2

1 Michigan State University, East Lansing, MI 48824, U.S.A.
2 University of Melbourne, Parkville, Victoria 3010, Australia

havenst@gmail.com, jcbezdek@gmail.com, palani@unimelb.edu.au

Abstract. The size of everyday data sets is outpacing the capability of compu-
tational hardware to analyze these data sets. Social networking and mobile com-
puting alone are producing data sets that are growing by terabytes every day.
Because these data often cannot be loaded into a computer’s working memory,
most literal algorithms (algorithms that require access to the full data set) cannot
be used. One type of pattern recognition and data mining method that is used
to analyze databases is clustering; thus, clustering algorithms that can be used
on large data sets are important and useful. We focus on a specific type of clus-
tering: kernelized fuzzy c-means (KFCM). The literal KFCM algorithm has a
memory requirement of O(n2), where n is the number objects in the data set.
Thus, even data sets that have nearly 1,000,000 objects require terabytes of work-
ing memory—infeasible for most computers. One way to attack this problem is
by using incremental algorithms; these algorithms sequentially process chunks
or samples of the data, combining the results from each chunk. Here we propose
three new incremental KFCM algorithms: rseKFCM, spKFCM, and oKFCM. We
assess the performance of these algorithms by, first, comparing their clustering re-
sults to that of the literal KFCM and, second, by showing that these algorithms
can produce reasonable partitions of large data sets. In summary, the rseKFCM
is the most efficient of the three, exhibiting significant speedup at low sampling
rates. The oKFCM algorithm seems to produce the most accurate approximation
of KFCM, but at a cost of low efficiency. Our recommendation is to use rseKFCM
at the highest sample rate allowable for your computational and problem needs.

1 Introduction

The ubiquity of personal computing technology, especially mobile computing, has pro-
duced an abundance of staggeringly large data sets—Facebook alone logs over 25 ter-
abytes (TB) of data per day. Hence, there is a great need for algorithms that can address
these gigantic data sets. In 1996, Huber [24] classified data set size as in Table 1. Bezdek
and Hathaway [17] added the Very Large (VL) category to this table in 2006. Interest-
ingly, data with 10>12 objects is still unloadable on most current (circa 2011) comput-
ers. For example, a data set composed of 1012 objects, each with 10 features, stored in
short integer (4 byte) format would require 40 TB of storage (most high-performance
computers have < 1 TB of working memory). Hence, we believe that Table 1 will
continue to be pertinent for many years.

Clustering, also called unsupervised learning, numerical taxonomy, typology, and
partitioning [41], is an integral part of computational intelligence and machine learn-
ing. Often researchers are mired in data sets that are large and unlabeled. There are

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 3–18.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

4 T.C. Havens, J.C. Bezdek, and M. Palaniswami

Table 1. Huber’s Description of Data Set Sizes [24,17]

Bytes 102 104 106 108 1010 1012 10>12 ∞
“size” tiny small medium large huge monster VL infinite

many methods by which researchers can elucidate these data, including projection and
statistical methods. Clustering provides another tool for deducing the nature of the data
by providing labels that describe how the data separates into groups. These labels can
be used to examine the similarity and dissimilarity among and between the grouped ob-
jects. Clustering has also been shown to improve the performance of other algorithms
or systems by separating the problem-domain into manageable sub-groups—a different
algorithm or system is tuned to each cluster [14,6]. Clustering has also been used to
infer the properties of unlabeled objects by clustering these objects together with a set
of labeled objects (of which the properties are well understood) [29,40].

The problem domains and applications of clustering are innumerable. Virtually every
field, including biology, engineering, medicine, finance, mathematics, and the arts, have
used clustering. Its function—grouping objects according to context—is a basic part of
intelligence and is ubiquitous to the scientific endeavor. There are many algorithms that
extract groups from unlabeled object sets: k-means [33,34,35] and c-means [3], and hi-
erarchical clustering [28] being, arguably, the most popular. We will examine a specific,
but general, form of clustering: incremental kernel fuzzy c-means (KFCM). Specifically,
we will develop three new kernel fuzzy clustering algorithms, random sample and ex-
tend KFCM (rseKFCM), single-pass KFCM (spKFCM), and online KFCM (oKFCM).
The spKFCM and oKFCM algorithms are based on an extension of the weighted FCM
and weighted kernel k-means models proposed in [22,23,13] and [10], respectively.

1.1 The Clustering Problem

Consider a set of objects O = {o1, . . . , on}. These objects can represent virtually
anything—vintage bass guitars, pure-bred cats, cancer genes expressed in a microar-
ray experiment, cake recipes, or web-pages. The object set O is unlabeled data; that is,
each object has no associated class label. However, it is assumed that there are subsets
of similar objects in O. These subsets are called clusters.

Numerical object data is represented as X = {x1, . . . ,xn} ⊂ IRp, where each di-
mension of the vectorxi is a feature value of the associated object oi. These features can
be a veritable cornucopia of numerical descriptions, i.e., RGB values, gene expression,
year of manufacture, number of stripes, et cetera.

A wide array of algorithms exists for clustering unlabeled object data O. Descrip-
tions of many of these algorithms can be found in the following general references on
clustering: [12,41,3,5,15,44,27,26]. Clustering in unlabeled data X is defined as the
assignment of labels to groups of similar (unlabeled) objects O. In other words, ob-
jects are sorted or partitioned into groups such that each group is composed of objects
with similar traits. There are two important factors that all clustering algorithms must
consider: 1) the number (and, perhaps, type) of clusters to seek and, 2) a mathemat-
ical way to determine the similarity between various objects (or groups of objects).

Incremental Kernel Fuzzy c-Means 5

Let c denote the integer number of clusters. The number of clusters can take the values
c = 1, 2, . . . , n, where c = 1 results in the universal cluster (every object is in one
cluster) and c = n results in single-object clusters.

A partition of the objects is defined as the set of cn values, where each value {uij}
represents the degree to which an object oi is in (or represented by) the jth cluster. The
c-partition is often arrayed as a n× c matrix U = [uij], where each column represents
a cluster and each row represents an object. There are three types of partitions (to date),
crisp, fuzzy (or probabilistic), and possibilistic [3,31] (we do not address possibilistic
clustering here).

Crisp partitions of the unlabeled objects are non-empty mutually-disjoint subsets of
O such that the union of the subsets cover O. The set of all non-degenerate (no zero
columns) crisp c-partition matrices for the object set O is:

Mhcn = {U ∈ IRcn|uij ∈ {0, 1} ∀i, j;
c∑

j=1

uij = 1 ∀i;
n∑

i=1

uij > 0 ∀j}, (1)

where uij is the membership of object oi in cluster j; the partition element uij = 1 if
oi is labeled j and is 0 otherwise.

Fuzzy (or probabilistic) partitions are more flexible than crisp partitions in that each
object can have membership in more than one cluster. Note, if U is probabilistic, the
partition values are interpreted as the posterior probability p(j|oi) that oi is in the j-th
class. We assume that fuzzy and probabilistic partitions are essentially equivalent from
the point of view of clustering algorithm development. The set of all fuzzy c-partitions
is:

Mfcn = {U ∈ IRcn|0 ≤ uij ≤ 1 ∀i, j;
c∑

j=1

uij = 1 ∀i;
n∑

i=1

uij > 0 ∀j}. (2)

Each row of the fuzzy partition U must sum to 1, thus ensuring that every object is
completely partitioned (

∑
i uij = 1).

Notice that all crisp partitions are fuzzy partitions, Mhcn ⊂Mfcn. Hence, the meth-
ods applied here can be easily generalized to kernel HCM.

1.2 FCM

The FCM model is defined as the constrained minimization of

Jm(U, V) =

c∑
j=1

n∑
i=1

um
ij ||xi − vj ||2A (3)

where m ≥ 1 is a fixed fuzzifier and || · ||A is any inner product A-induced norm on
IRd, i.e., ||x||A = xTAx. Optimal c-partitions U are most popularly sought by using
alternating optimization (AO) [3,4], but other methods have also been proposed. The
literal FCM/AO (LFCM/AO) algorithm is outlined in Algorithm 1. There are many
ways to initialize LFCM/AO; any method that covers the object space and does not
produce identical initial cluster centers would work. We initialize by randomly selecting
c feature vectors from the data to serve as initial centers.

6 T.C. Havens, J.C. Bezdek, and M. Palaniswami

Algorithm 1. LFCM/AO to minimize Jm(U, V) [3]

Input: X , c, m
Output: U , V
Initialize V
while max{||Vnew − Vold||2} > ε do

uij =

[
c∑

k=1

(
||xj − vi||
||xj − vk||

) 2
m−1

]−1

, ∀i, j (4)

vi =

∑n
j=1(uij)

mxj∑n
j=1(uij)m

, ∀i (5)

The alternating steps of LFCM in Eqs. (4) and (5) are iterated until the algorithm
terminates, where termination is declared when there are only negligible changes in
the cluster center locations: more explicitly, max{||V − Vold||2} < ε, where ε is a
pre-determined constant (we use ε = 10−3 in our experiments).

It was shown in [2,42,18] that minimizing (3) produces the same result as minimizing
the reformulation,

Jm(U) =

c∑
j=1

(
n∑

i=1

n∑
k=1

(
um
iju

m
kjd

2
A(xi,xk)

)
/2

n∑
l=1

um
lj

)
, (6)

where d2A(xi,xk) = ||xi − xk||2A. This reformulation led to relational algorithms,
such as RFCM [19] and NERFCM [16], where the data take the relational form RA =
[||xi − xj ||2A] ∈ IRn×n. Later, we will use (6) to define the KFCM model.

1.3 Related Work on FCM for VL Data

There has been a bevy of research done on clustering in VL data, but only a small por-
tion of this research addresses the fuzzy clustering problem. Algorithms fall in three
main categories: i) Sample and Extend schemes apply clustering to a (manageably-
sized) sample of the full data set, and then non-iteratively extend the sample results to
approximate the clustering solution for the remaining data. These algorithms have also
been called extensible algorithms [36]. An extensible FCM algorithm includes the geF-
FCM [17]. ii) Incremental algorithms sequentially load small groups or singletons of the
data, clustering each chunk in a single pass, and then combining the results from each
chunk. The SPFCM [22] algorithm runs weighted FCM (WFCM) on sequential chunks
of the data, passing the clustering solution from each chunk onto the next. SPFCM is
truly scalable as its space complexity is only based on the size of the sample. A simi-
lar algorithm, OFCM [23], performs a similar process as SPFCM; however, rather than
passing the clustering solution from one chunk to the next, OFCM clusters the centers
from each chunk in one final run. Because of this final run, OFCM is not truly scalable
and is not recommended for truly VL data. Another algorithm that is incremental in
spirit is brFCM [13], which first bins the data and then clusters the bin centers. How-
ever, the efficiency and accuracy results of brFCM are very dependent on the binning

Incremental Kernel Fuzzy c-Means 7

strategy; brFCM has been shown to be very effective on image data, which can be
binned very efficiently.

Although not technically an incremental algorithm, but more in the spirit of acceler-
ation, the FFCM algorithm [39] applies FCM to larger and larger nested samples of the
data set until there is little change in the solution. Another acceleration algorithm that is
incremental in spirit is mrFCM [8], which combines the FFCM with a final literal run
of FCM on the full data set. These algorithms are not scalable, however, as they both
contain final runs on nearly full-size data set, with one last run on the full data set. iii)
Approximation algorithms use numerical tricks to approximate the clustering solution
using manageable size chunks of the data. Many of these algorithms utilize some sort
of data transformation to achieve this goal. The algorithms described in [30,7] fit this
description.

None of these algorithms address kernel fuzzy clustering, which we describe next.

1.4 KFCM

Consider some non-linear mapping function φ : x → φ(x) ∈ IRDK , where DK is
the dimensionality of the transformed feature vector x. Most, if not all, kernel-based
methods do not explicitly transform x and then operate in the higher-dimensional space
of φ(x); instead, they use a kernel function κ that represents the inner product of the
transformed feature vectors, κ(x1,x2) = 〈φ(x1), φ(x1)〉. This kernel function can take
may forms, with the polynomial, κ(x1,x2) = (xT

1 x2 + 1)p, and radial-basis-function
(RBF), κ(x1,x2) = exp(σ||x1 − x2||2), being two of the most popular forms.

The KFCM algorithm can be generally defined as the constrained minimization of

Jm(U ;κ) =

c∑
j=1

(
n∑

i=1

n∑
k=1

(
um
iju

m
kjdκ(xi,xk)

)
/2

n∑
l=1

um
lj

)
, (7)

where U ∈ Mfcn, m > 1 is the fuzzification parameter, and dκ(xi,xk) = κ(xi,xi) +
κ(xk,xk) − 2κ(xi,xk) is the kernel-based distance between the ith and kth feature
vectors.

The KFCM/AO algorithm solves the optimization problem min{Jm(U ;κ} by com-
puting iterated updates of

uij =

(
c∑

k=1

(
dκ(i, j)

dκ(i, k)

) 1
m−1

)−1

, ∀i, j, (8)

where, for simplicity, we denote the cluster center to object distance dκ(xi,vj) as
dκ(i, j). This kernel distance is computed as

dκ(i, j) = ||φ(xi)− φ(vi)||2, (9)

where, like LFCM, the cluster centers are linear combinations of the feature vectors,

φ(vj) =

∑n
l=1 u

m
ljφ(xl)∑n

l=1 u
m
lj

. (10)

8 T.C. Havens, J.C. Bezdek, and M. Palaniswami

Equation (9) cannot by explicitly solved, but by using the identity Kij = κ(xi,xj) =
〈φ(xi), φ(xj)〉, denoting ũj = um

j /||um
j ||1 (uj is the jth column of U), and substitut-

ing (10) into (9) we get

dκ(j, i) =

∑n
l=1

∑n
s=1 u

m
lju

m
sj 〈φ(xl), φ(xs)〉∑n

l=1 u
2m
lj

+ 〈φ(xi), φ(xi)〉 − 2

∑n
l=1 u

m
lj 〈φ(xl), φ(xi)〉∑n

l=1 u
m
lj

= ũT
j Kũj + eTi Kei − 2ũT

j Kei

= ũT
j Kũj +Kii − 2(ũT

j K)i, (11)

where ei is the n-length unit vector with the ith element equal to 1. Algorithm 2 outlines
the KFCM/AO procedure.

Algorithm 2. KFCM/AO to minimize Jm(U ;κ)

Input: K, c, m
Output: U
Initialize U
while max{||Unew − Uold||2} > ε do

dκ(j, i) = ũT
j Kũj +Kii − 2(ũT

j K)i ∀i, j

uij =

(
c∑

k=1

(
dκ(i, j)

dκ(i, k)

) 1
m−1

)−1

∀i, j

This formulation of KFCM is equivalent to that proposed in [43] and, furthermore, is
identical to relational FCM (RFCM) [19] if the kernelκ(xi,xj) = 〈xi,xj〉A = xT

i Axj

is used [20]. If one replaces the relational matrix R in RFCM with R = −γK , for any
γ > 0, then RFCM will produce the same partition as KFCM run on K (assuming
the same initialization). Likewise, KFCM will produce the same partition as RFCM if
K = −γR, for any γ > 0.

1.5 Weighted KFCM

In the KFCM model, each object is considered equally important in the clustering solu-
tion. The weighted KFCM (wKFCM) model introduces weights that define the relative
importance of each object in the clustering solution, similar to the wFCM in [22,23,13]
and weighted kernel k-means in [10]. The wKFCM model is the constrained minimiza-
tion of

Jmw(U ;κ) =
c∑

j=1

(
n∑

i=1

n∑
k=1

(
wiwku

m
iju

m
kjdκ(xi,xk)

)
/2

n∑
l=1

wlu
m
lj

)
, (12)

where w ∈ IRn, wi ≥ 0 ∀i, is a set of weights, one element for each feature vector.

Incremental Kernel Fuzzy c-Means 9

The cluster center φ(vj) is a weighted sum of the feature vectors, as shown in (10).
Now assume that each object φ(xi) has a different predetermined influence, given by a
respective weight wi. This leads to the definition of the center as

φ(vj) =

∑n
l=1 wlu

m
ljφ(xl)∑n

l=1 wlum
lj

. (13)

Substituting (13) into (11) gives

dwκ (i, j) =

∑n
l=1

∑n
r=1 wlwru

m
lj u

m
rj 〈φ(xl), φ(xr)〉∑n

l=1 w
2
l u

2m
lj

+ 〈φ(xi), φ(xi)〉 − 2

∑n
l=1 wlu

m
lj 〈φ(xl), φ(xi)〉∑n
l=1 wlum

lj

=
1

||w ◦ uj ||2
(w ◦ uj)

TK(w ◦ uj) +Kii

− 2

||w ◦ uj ||
(
(w ◦ uj)

TK
)
i
, (14)

where w is the vector of predetermined weights and ◦ indicates the Hadamard product
(.* in MATLAB). This leads to the weighted KFCM (wKFCM) shown in Algorithm 3.
Notice that wKFCM also outputs the index of the nearest object to each cluster center,
called the cluster prototype. The vector of indicesP is important in the VL data schemes
now proposed.

Algorithm 3. wKFCM/AO to minimize Jmw(U,κ)

Input: K, c, m, w
Output: U ,P
Initialize U ∈ Mfcns

while max{||Unew − Uold||2} > ε do
dwκ (i, j) = 1

||w◦uj ||2 (w ◦uj)
TK(w ◦uj)+Kii − 2

||w◦uj ||
(
(w ◦ uj)

TK
)
i

∀i, j

uij =

[
c∑

k=1

(
dwκ (i, j)

dwκ (i, k)

) 1
m−1

]−1

∀i, j

pj = argmini{dκ(i, j)}, ∀j

2 Incremental Algorithms

The problem with KFCM and wKFCM is that they require working memory to store the
full n×n kernel matrixK . For large n, the memory requirement can be very significant;
e.g., with n = 1, 000, 000, 4 TB of working memory are required. This is infeasible
for even most high-performance computers. Hence, even Huber’s “medium” data sets
(on the order of 106) are impossible to cluster on moderately powerful computers. For
this reason, kernel clustering of large-scale data is infeasible without some method that
scales well.

10 T.C. Havens, J.C. Bezdek, and M. Palaniswami

2.1 rseKFCM

The most basic, and perhaps obvious, way to address kernel fuzzy clustering in VL
data is to sample the dataset and then use KFCM to compute partitions of the sampled
data. This is similar to the approach of geFFCM (geFFCM uses literal FCM instead of
KFCM); however, geFFCM uses a progressive sampling1 approach to draw a sample
that is representative (enough) of the full data set. However, for VL data, this repre-
sentative sample may be large itself. Thus, we use randomly draw without replacement
a predetermined sub-sample of X . We believe that random sampling is sufficient for
VL data and is, of course, computationally less expensive than a progressive approach.
There are other sampling schemes addressed in [11,32,1]; these papers also support our
claim that uniform random sampling is preferred. Another issue with directly applying
the sample and extend approach of geFFCM is that it first computes cluster centers V
and then uses (4) to extend the partition to the remaining data. In constrast, KFCM
does not return a cluster center (per se); hence, one cannot directly use (4) to extend the
partition to the remaining data. However, recall that wKFCM, in Algorithm 3, returns
a set of cluster prototypes P , which are the indices of the c objects that are closest to
the cluster centers (in the RKHS). Thus follows our rseKFCM algorithm, outlined in
Algorithm 4.

Algorithm 4. rseKFCM to approximately minimize Jm(U ;κ)

Input: Kernel function κ, X , c, m, ns

Output: U
Sample ns vectors from X , denoted Xs1

K = [κ(xi,xj)], ∀xi,xj ∈ Xs2

U,P = wKFCM(K, c,m,1ns)3

Extend partition to X:4

dκ(j, i) = κ(xi,xi) + κ(xPj ,xPj)− 2κ(xi,xPj) ∀i, j

uij =

[
c∑

k=1

(
dκ(i, j)

dκ(i, k)

) 1
m−1

]−1

∀i, j

First, a random sample of X is drawn at Line 1. Then the kernel matrix K is com-
puted for this random sample at Line 2, and at Line 3 wKFCM is used to produce a set
of cluster prototypes. Finally, the partition is extended to the remaining data at Line 4.

The rseKFCM algorithm is scalable as one can choose a sample size ns to suit their
computational resources. However, the clustering iterations are not performed on the
entire data set (in literal or in chunks); hence, if the sample Xs is not representative
of the full data set, then rseKFCM will not accurately approximate the literal KFCM
solution.

This leads to the discussion of two algorithms that operate on the full data set by
separating it into multiple chunks.

1 [37] provide a very readable analysis and summary of progressive sampling schemes.

Incremental Kernel Fuzzy c-Means 11

2.2 spKFCM

The spKFCM algorithm is based upon the spFCM algorithm proposed in [22]. Essen-
tially, spKFCM (and spFCM) splits the data into multiple (approximately) equally size
chunks, then clusters each chunk separately. The clustering result from each chunk is
passed to the next chunk in order to approximate the literal KFCM solution on the full
data set. In SPFCM, the cluster center locations from each chunk are passed to the next
chunk as data points to be included in the data set that is clustered. However, these
cluster centers are weighted in the WFCM by the sum of the respective memberships,
i.e. the cth cluster is weighted by the sum of the cth row of U . Essentially, the weight
causes the cluster centers to have more influence on the clustering solution that the data
in the data chunk. In other words, each cluster center represents the multiple data points
in each cluster.

Because there are no cluster centers in KFCM (or wKFCM), the data that is passed
on to the next chunk are, instead, the cluster prototypes—the objects nearest to the
cluster center in the RKHS. Hence, the kernel matrix for each data chunk is the (ns +
c)× (ns + c) kernel function results—ns columns (or rows) for the objects in the data
chunk and c columns for the c prototypes passed on from the previous chunk.

Algorithm 5. spKFCM to approximately minimize Jm(U ; κ)

Input: Kernel function κ, X , c, m, s
Output: P
Randomly draw s (approximately) equal-sized subsets of the integers {1, . . . , n}, denoted1

Ξ = {ξ1, . . . , ξs}. nl is the cardinality of ξl.
K = [κ(xi,xj)] i, j = ξ12

U,P = wKFCM(K, c,m, 1n1)3

w′
j =

∑n1
i=1 uij ∀j4

for l = 2 to s do
w = {w′, 1nl}5

ξ′ = {ξ′(P), ξl}6

K = [κ(xi,xj)] i, j = ξ′7

U,P = wKFCM(K, c,m,w)8

w′
j =

∑nl+c
i=1 uij ∀j9

P = ξ′(P)10

Algorithm 5 outlines the spKFCM algorithm. At Line 1, the data X is randomly
separated into s equally-sized subsets, where the indices of the objects in each subset
of denoted ξi, i = 1, . . . , s. Lines 2-4 comprise the operations on the first data chunk.
At Line 2, the ns × ns kernel matrix of the first data chunk is computed and, at Line 3,
wKFCM is used to cluster the first data chunk. The weights of the c cluster prototypes
returned by wKFCM are computed at Line 4. Lines 5-9 are the main loop of spKFCM.
For each data chunk, Line 5 creates a vector of weights, where the weight for the c
prototypes is calculated from the previous data chunk results and the weights of the ns

objects are set to 1. At Line 6, the indices of the objects in the lth data chunk and the c
cluster prototypes are combined and, at Line 7, the (ns + c) × (ns + c) kernel matrix

12 T.C. Havens, J.C. Bezdek, and M. Palaniswami

is computed (for the objects indexed by ξl and the c cluster prototypes). wKFCM is
then used to produce the clustering results at Line 8. And, at Line 9, the weights are
calculated, which are then used in the next data chunk loop. Finally, at Line 10, the
indices of the c cluster prototypes are returned.

spKFCM is a scalable algorithm because one can choose the size of the data chunk
to be clustered and the maximum size of the data to be clustered is ns + c. The storage
requirements for the kernel matrices is thus O((ns + c)2).

2.3 oKFCM

The oKFCM algorithm is similar to spKFCM, and is based on the oFCM algorithm
proposed in [23]. Algorithm 6 outlines the oKFCM procedure. Like spKFCM, oKFCM
starts by separating the objects into s equally-sized data chunks. However, unlike sp-
KFCM, it does not pass the cluster prototypes from the previous data chunk onto the
next data chunk. oKFCM simply calculates s sets of c cluster prototypes, one set from
each data chunk. It then computes a weight for each of the cs cluster prototypes, which
is the sum of the row of the respective membership matrix (there is one membership
matrix computed for each of the s data chunks). FInally, the cs cluster prototypes are
partitioned using wKFCM, producing a final set of c cluster prototypes.

Algorithm 6. oKFCM to approximately minimize Jm(U ; κ)

Input: Kernel function κ, X , c, m, s
Output: U ,P
Randomly draw s (approximately) equal-sized subsets of the integers {1, . . . , n}, denoted1

Ξ = {ξ1, . . . , ξs}. nl is the cardinality of ξl.
K = [κ(xi,xj)] i, j = ξ12

U1, P1 = wKFCM(K, c,m, 1n1)3

for l = 2 to s do
K = [κ(xi,xj)] i, j = x′

l4

Ul, P
′ = wKFCM(K, c,m, 1nl)5

Pl = ξl(P
′)6

Pall = {P1, . . . , Ps}7

K = [κ(xi,xj)] i, j = Pall8

wl =
∑ns

j=1(Ul)·j ∀l9

U,P ′ = wKFCM(K, c,m,w)10

P = Pall(P
′)11

Because there is no interaction between the initial clustering done on each data
chunk, oKFCM could be easily implemented on a distributed architecture. Each itera-
tion of Lines 4-6 is independent and could thus be simultaneously computed on separate
nodes of a parallel architecture (or cloud, if you will). However, the final clustering of
the cs cluster prototypes prevents oKFCM from being a truly scalable algorithm. If s
is large, then this final data set is large. In extreme cases, if s >> ns then the storage
requirement for oKFCM becomes O((cs)2).

Incremental Kernel Fuzzy c-Means 13

3 Experiments

We performed two sets of experiments. The first compared the performance of the incre-
mental KFCM algorithms on data for which there exists ground-truth (or known object
labels). The second set of experiments applies the proposed algorithms to data sets for
which there exists no ground-truth. For these data, we compared the partitions from the
incremental KFCM algorithms to the literal KFCM partitions.

For all algorithms, we initialize U by randomly choosing c objects as the initial
cluster centers. The value of ε = 10−3 and the fuzzifier m = 1.7. The termination
criteria is max{||Unew − Uold||2} < ε. The experiments were performed on a single
core of an AMD Opteron in a Sun Fire X4600 M2 server with 256 gigabytes of memory.
All code was written in the MATLAB computing environment.

3.1 Evaluation Criteria

We judge the performance of the incremental KFCM algorithms using three criteria.
Each criteria is computed for 21 independent runs with random initializations and sam-
plings. The results presented are the average values.

1. Speedup Factor or Run-time. This criteria represents an actual run-time com-
parison. When the KFCM solution is available, speedup is defined as tliteral/
tincremental, where these values are times in seconds for computing the the mem-
bership matrix U . When the data is too large to compute KFCM solutions, we
present run-time in seconds for the incremental algorithms.

2. Adjusted Rand Index. The Rand index [38] is a measure of agreement between
two crisp partitions of a set of objects. One of the two partitions is usually a ref-
erence partition U ′, which represents the ground truth labels for the objects in the
data. In this case the value R(U,U ′) measures the degree to which a candidate par-
tition U matches U ′. A Rand index of 1 indicates perfect agreement, while a Rand
index of 0 indicates perfect disagreement. The version that we use here, the ad-
justed Rand index, ARI(U,U ′), is a bias-adjusted formulation developed by Hubert
and Arabie [25]. To compute the ARI, we first harden the fuzzy partitions by setting
the maximum element in each row of U to 1, and all else to 0. We use the ARI to
compare the clustering solutions to ground-truth labels (when available), and also
to compare the VL data algorithms to the literal FCM solutions.

Note that the rseKFCM, spKFCM, and oKFCM algorithms do not produce full data
partitions; they produce cluster prototypes as output. Hence, we cannot directly com-
pute ARI and fuzzy ARI for these algorithms. To complete the calculations, we used the
Extension step to produce full data partitions from the output cluster prototypes. The
Extension step was not included in the speedup factor or run-time calculations for these
algorithms as these algorithms were designed to return cluster prototypes (as the analo-
gous rseFCM, SPFCM, and OFCM), not full data partitions. However, we observed in
our experiments that the Extension step added a nearly negligible amount of time to the
overall run-time of the algorithms.

14 T.C. Havens, J.C. Bezdek, and M. Palaniswami

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Feature 1

Fe
at

ur
e

2

Fig. 1. 2D50 synthetic data; n = 7500 objects, c = 50 clusters

The data we used in this study are:

1. 2D50 (n= 7, 500, c = 50, d = 2). These data are composed of 7,500 2-dimensional
vectors, with a visually-preferred grouping into 50 clusters.2 Figure 1 shows a plot
of these data. An RBF kernel with σ = 1, κ(xi,xj) = exp

(
σ||xi − xj ||2

)
, was

used.
2. MNIST (n = 70, 000, c = 10, d = 784). This data set is a subset of the collec-

tion of handwritten digits available from the National Institute of Standards and
Technology (NIST)3. There are 70,000 28 × 28 pixel images of the digits 0 to
9. Each pixel has an integer value between 0 and 255. We normalize the pixel
values to the interval [0, 1] by dividing by 255 and concatenate each image into
a 784-dimensional column vector. A 5-degree inhomogeneous polynomial kernel
was used, which was shown to be (somewhat) effective in [21,9,45].

Figure 2 shows the results of the incremental algorithms on the 2D50 data set. The
speedup factor, shown in view (a), demonstrates that rseKFCM is the fastest algo-
rithm overall, with a speedup of about 450 at a 1% sample rate. However, at sample
rates > 5%, rseKFCM and spKFCM exhibit nearly equal speedup results. As view (b)
shows, at sample rates > 5%, all three algorithms perform comparably. The rseKFCM
algorithm shows slightly better results than oKFCM at sample rates > 5% and the sp-
KFCM algorithm exhibits inconsistent performance, sometimes performing better than
the other algorithms, sometimes worse; although, all three algorithms show about the
same performance. The oKFCM shows the best performance at very low sample rates
(< 5%) but the oKFCM algorithm is also the least efficient of the three.

Figure 3 shows the performance of the incremental KFCM algorithms on the MNIST
data set. These results tell a somewhat different story than the previous data set. First,

2 The 2D50 data were designed by Ilja Sidoroff and can be downloaded at
http://cs.joensuu.fi/∼isido/clustering/

3 The MNIST data can be downloaded at http://yann.lecun.com/exdb/mnist/

Incremental Kernel Fuzzy c-Means 15

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

450

500

Sample Rate (%)

S
p

ee
d

u
p

rseKFCM
SPKFCM
OKFCM

(a) Speedup Factor

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Sample Rate (%)

A
R

I

rseKFCM

SPKFCM
OKFCM

KFCM

(b) ARI

Fig. 2. Performance of incremental KFCM algorithms on 2D50 data set. ARI is calculated relative
to ground-truth labels.

0 2 4 6 8 10
5

10

15

20

25

30

35

40

Sample Rate (%)

S
p

ee
d

u
p

rseKFCM
SPKFCM
OKFCM

(a) Speedup Factor

0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025

0.03

Sample Rate (%)

A
R

I

rseKFCM
SPKFCM

OKFCM
KFCM

(b) ARI

Fig. 3. Performance of incremental KFCM algorithms on MNIST data set. ARI is calculated
relative to ground-truth labels.

rseKFCM is no longer the clear winner in terms of speedup. At low sample rates, the
spKFCM and rseKFCM perform comparably. This is because rseKFCM suffered from
slow convergence at the low sample rates. At sample rates > 2%, rseKFCM is clearly
the fastest algorithm. Second, oKFCM is comparable to the other algorithms in terms
of speedup. However, the ARI results show a dismal view of the performance of these
algorithms for this data set (in terms of accuracy compared to ground truth labels). All
three algorithms fail to perform nearly as well as the literal KFCM algorithm (shown
by the dotted line). Note that even the literal KFCM performs rather poorly on this data
set (in terms of its accuracy with respect to comparison with the ground truth labels).
This suggests that the incremental KFCM algorithms have trouble with data sets that
are difficult to cluster. Perhaps, the cluster structure is lost when the kernel matrix is
sampled.

16 T.C. Havens, J.C. Bezdek, and M. Palaniswami

4 Discussion and Conclusions

We present here three adaptations of an incremental FCM algorithm to kernel FCM.
In a nutshell, the rseKFCM algorithm seems to be the preferred algorithm. It is the
most scalable and efficient solution, and produces results that are on par with those of
spKFCM and oKFCM. The oKFCM does not suffer in performance at low sample rates,
but is also the most inefficient of the three. Hence, we recommend using rseKFCM at
the highest sample rate possible for your computational resources. We believe that this
approach will yield the most desirable results, in terms of both in speedup and accuracy.

Although the incremental KFCM algorithms performed well on the synthetic 2D50
data set, their performance suffered, relative to literal KFCM, on the MNIST data set,
which was not as “easily” clustered. To combat this issue, we are going to examine
other ways by which the KFCM solution can be adapted for incremental operation.
One method we are currently examining is a way by which a more meaningful cluster
prototype can be produced by wKFCM. Furthermore, we plan to look at ways that the
sample size can be increased without sacrificing speedup and scalability, such as in the
approximate kernel k-means approach proposed in [9,21].

Another question that arises in incremental clustering is validity or, in other words,
the quality of the clustering. Many cluster validity measures require full access to the
objects’ vector data or to the full kernel (or relational) matrix. Hence, we aim to ex-
tend several well-known cluster validity measures for incremental use by using similar
strategies to the adaptations presented here.

In closing, we would like emphasize that clustering algorithms, by design, are meant
to find the natural groupings in unlabeled data (or to discover unknown trends in labeled
data). Thus, the effectiveness of a clustering algorithm cannot be appropriately judged
by pretending it is a classifier and presenting classification results on labeled data, where
each cluster is considered to be a class label. Although we did compare against ground-
truth labels in this paper, we used these experiments to show how well the incremental
KFCM schemes were successful in producing similar partitions to those produced by
literal FCM, which was our bellwether of performance. This will continue to be our
standard for the work ahead.

Acknowledgements. Timothy Havens is supported by the National Science Founda-
tion under Grant #1019343 to the Computing Research Association for the CI Fellows
Project.

We wish to acknowledge the support of the Michigan State University High Perfor-
mance Computing Center and the Institute for Cyber Enabled Research.

References

1. Belabbas, M., Wolfe, P.: Spectral methods in machine learning and new strategies for very
large datasets. Proc. National Academy of Sciences 106(2), 369–374 (2009)

2. Bezdek, J.: A convergence theorem for the fuzzy isodata clustering algorithms. IEEE Trans.
Pattern Analysis and Machine Intelligence 2, 1–8 (1980)

3. Bezdek, J.: Pattern Recognition With Fuzzy Objective Function Algorithms. Plenum, New
York (1981)

Incremental Kernel Fuzzy c-Means 17

4. Bezdek, J., Hathaway, R.: Convergence of alternating optmization. Nueral, Parallel, and
Scientific Computations 11(4), 351–368 (2003)

5. Bezdek, J., Keller, J., Krishnapuram, R., Pal, N.: Fuzzy Models and Algorithms for Pattern
Recognition and Image Processing. Kluwer, Norwell (1999)

6. Bo, W., Nevatia, R.: Cluster boosted tree classifier for multi-view, multi-pose object detec-
tion. In: Proc. ICCV (October 2007)

7. Cannon, R., Dave, J., Bezdek, J.: Efficient implementation of the fuzzy c-means algorithm.
IEEE Trans. Pattern Analysis and Machine Intelligence 8, 248–255 (1986)

8. Cheng, T., Goldgof, D., Hall, L.: Fast clustering with application to fuzzy rule generation.
In: Proc. IEEE Int. Conf. Fuzzy Systems, Tokyo, Japan, pp. 2289–2295 (1995)

9. Chitta, R., Jin, R., Havens, T., Jain, A.: Approximate kernel k-means: Solution to large scale
kernel clustering. In: Proc. ACM SIGKDD (2011)

10. Dhillon, I., Guan, Y., Kulis, B.: Kernel k-means, spectral clustering, and normalized cuts.
In: Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery Data Mining, pp. 551–556
(August 2004)

11. Drineas, P., Mahoney, M.: On the nystrom method for appoximating a gram matrix for
improved kernel-based learning. The J. of Machine Learning Research 6, 2153–2175 (2005)

12. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley-Interscience (October
2000)

13. Eschrich, S., Ke, J., Hall, L., Goldgof, D.: Fast accurate fuzzy clustering through data re-
duction. IEEE Trans. Fuzzy Systems 11, 262–269 (2003)

14. Frigui, H.: Simultaneous Clustering and Feature Discrimination with Applications. In: Ad-
vances in Fuzzy Clustering and Feature Discrimination with Applications, pp. 285–312.
John Wiley and Sons (2007)

15. Hartigan, J.: Clustering Algorithms. Wiley, New York (1975)
16. Hathaway, R., Bezdek, J.: NERF c-MEANS: Non-euclidean relational fuzzy clustering.

Pattern Recognition 27, 429–437 (1994)
17. Hathaway, R., Bezdek, J.: Extending fuzzy and probabilistic clustering to very large data

sets. Computational Statistics and Data Analysis 51, 215–234 (2006)
18. Hathaway, R., Bezdek, J., Tucker, W.: An improved convergence theory for the fuzzy iso-

data clustering algorithms. In: Bezdek, J. (ed.) Analysis of Fuzzy Information, vol. 3, pp.
123–132. CRC Press, Boca Raton (1987)

19. Hathaway, R., Davenport, J., Bezdek, J.: Relational duals of the c-means clustering algo-
rithms. Pattern Recognition 22(2), 205–212 (1989)

20. Hathaway, R., Huband, J., Bezdek, J.: A kernelized non-euclidean relational fuzzy c-means
algorithm. In: Proc. IEEE Int. Conf. Fuzzy Systems, pp. 414–419 (2005)

21. Havens, T., Chitta, R., Jain, A., Jin, R.: Speedup of fuzzy and possibilistic c-means for
large-scale clustering. In: Proc. IEEE Int. Conf. Fuzzy Systems, Taipei, Taiwan (2011)

22. Hore, P., Hall, L., Goldgof, D.: Single pass fuzzy c means. In: Proc. IEEE Int. Conf. Fuzzy
Systems, London, England, pp. 1–7 (2007)

23. Hore, P., Hall, L., Goldgof, D., Gu, Y., Maudsley, A.: A scalable framework for segmenting
magentic resonance images. J. Signal Process. Syst. 54(1-3), 183–203 (2009)

24. Huber, P.: Massive Data Sets Workshop: The Morning After. In: Massive Data Sets, pp.
169–184. National Academy Press (1997)

25. Hubert, L., Arabie, P.: Comparing partitions. J. Classification 2, 193–218 (1985)
26. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)
27. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3),

264–323 (1999)
28. Johnson, S.: Hierarchical clustering schemes. Psychometrika 2, 241–254 (1967)
29. Khan, S., Situ, G., Decker, K., Schmidt, C.: Go Figure: Automated Gene Ontology

annotation. Bioinf. 19(18), 2484–2485 (2003)

18 T.C. Havens, J.C. Bezdek, and M. Palaniswami

30. Kolen, J., Hutcheson, T.: Reducing the time complexity of the fuzzy c-means algorithm.
IEEE Trans. Fuzzy Systems 10, 263–267 (2002)

31. Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. on Fuzzy
Sys. 1(2) (May 1993)

32. Kumar, S., Mohri, M., Talwalkar, A.: Sampling techniques for the nystrom method. In:
Proc. Conf. Artificial Intelligence and Statistics, pp. 304–311 (2009)

33. Lloyd, S.: Least square quantization in pcm. Tech. rep., Bell Telephone Laboratories (1957)
34. Lloyd, S.: Least square quantization in pcm. IEEE Trans. Information Theory 28(2),

129–137 (1982)
35. MacQueen, J.: Some methods for classification and analysis of multivariate observations.

In: Proc. 5th Berkeley Symp. Math. Stat. and Prob., pp. 281–297. University of California
Press (1967)

36. Pal, N., Bezdek, J.: Complexity reduction for “large image” processing. IEEE Trans. Sys-
tems, Man, and Cybernetics B (32), 598–611 (2002)

37. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: Proc. KDDM,
pp. 23–32 (1999)

38. Rand, W.: Objective criteria for the evaluation of clustering methods. J. Amer. Stat.
Asooc. 66(336), 846–850 (1971)

39. Shankar, B.U., Pal, N.: FFCM: an effective approach for large data sets. In: Proc. Int. Conf.
Fuzzy Logic, Neural Nets, and Soft Computing, Fukuoka, Japan, p. 332 (1994)

40. The UniProt Consotium: The universal protein resource (UniProt). Nucleic Acids Res. 35,
D193–D197 (2007)

41. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, San
Diego (2009)

42. Tucker, W.: Counterexamples to the convergence theorem for fuzzy isodata clustering algo-
rithms. In: Bezdek, J. (ed.) Analysis of Fuzzy Information, vol. 3, pp. 109–122. CRC Press,
Boca Raton (1987)

43. Wu, Z., Xie, W., Yu, J.: Fuzzy c-means clustering algorithm based on kernel method.
In: Proc. Int. Conf. Computational Intelligence and Multimedia Applications, pp. 49–54
(September 2003)

44. Xu, R., Wunsch II, D.: Clustering. IEEE Press, Psicataway (2009)
45. Zhang, R., Rudnicky, A.: A large scale clustering scheme for kernel k-means. In: Proc. Int.

Conf. Pattern Recognition, pp. 289–292 (2002)

Part I
Evolutionary Computation

Ant Algorithm for Optimal Sensor Deployment

Stefka Fidanova1, Pencho Marinov1, and Enrique Alba2

1 Institute of Information and Communication Technologies, Bulgarian Academy of Sciences
Acad. G. Bonchev str. bl.25A, 1113 Sofia, Bulgaria

{stefka,pencho}@parallel.bas.bg
2 E.T.S.I. Informática, Grupo GISUM (NEO), University of Malaga, Malaga, Spain

eat@lcc.uma.es

Abstract. Telecommunications is a general term for a vast array of technologies
that send information over distances. Mobile phones, land lines, satellite phones
and voice over Internet protocol are all telephony technologies - just one field of
telecommunications. Radio, television and networks are a few more examples of
telecommunication. Nowadays, the trend in telecommunication networks is hav-
ing highly decentralized, multi-node networks. From small, geographically close,
size-limited local area networks the evolution has led to the huge worldwide In-
ternet. In this context Wireless Sensor Networks (WSN) have recently become a
hot topic in research. When deploying a WSN, the positioning of the sensor nodes
becomes one of the major concerns. One of the objectives is to achieve full cov-
erage of the terrain (sensor field). Another objectives are also to use a minimum
number of sensor nodes and to keep the connectivity of the network. In this paper
we address a WSN deployment problem in which full coverage and connectivity
are treated as constraints, while objective function is the number of the sensors.
To solve it we propose Ant Colony Optimization (ACO) algorithm.

1 Introduction

Telecommunications are an important symbol of our present information society.
Telecommunication is a field in which many open research lines are challenging the
research community. Nowadays, the trend in telecommunication networks is having
highly decentralized, multi-node networks. From small, geographically close, size-
limited local area networks the evolution has led to the huge worldwide Internet. This
same path is followed by wireless communications, where we can already see wireless
telephony reaching virtually any city in the world. Wireless Sensor Networks (WSN)
allow the monitoring of wide and remote areas with precision and liveness unseen to the
date without the intervention of a human operator. The evolution of wireless networking
technologies and their key role in Future Internet scenarios offers an increasing wealth
of opportunities for distributing data over wireless networks. A WSN allows an ad-
ministrator to automatically and remotely monitor almost any phenomenon with a high
precision. The use of multiple small cooperative devices yields a brand new horizon
of possibilities yet offers a great amount of new problems to be solved. WSN have so
far been employed in military activities such es reconnaissance, surveillance, and tar-
get acquisition [5], environmental activities such as forest fire prevention, geophysical

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 21–29.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

22 S. Fidanova, P. Marinov, and E. Alba

activities such as volcano eruptions study [13], biomedical purposes such as health data
monitoring [14] or civil engineering [11].

The wireless sensors, fulfill two fundamental functions: sensing and communicating.
The sensing can be of different types (seismic, acoustic, chemical, optical, etc.), and the
communication is performed wirelessly. However, the small size and energy storage ca-
pacity of the sensors prevent them from relaying their gathered information directly to
the base. It is therefore necessary that they transmit their data to a high energy commu-
nication node (HECN) able to provide the transmission relay to an aircraft or a satellite.
All sensors must be able to transmit their data to this node, either directly or via hops,
using nearby sensors as communication relays.

When deploying a WSN, the positioning of the sensor nodes becomes one of the
major concerns. The coverage obtained with the network and the economic cost of
the network depend directly of it. Since many WSN can have large numbers of nodes,
the task of selecting the geographical positions of the nodes for an optimally designed
network can be very complex. Therefore, metaheuristics seem an interesting option to
solve this problem.

In this paper we propose a solution method for the WSN layout problem using ACO.
We focus on minimizing the number of nodes, while the full coverage of the network
and connectivity are considered as constraints.

Jourdan [7] solved an instance of WSN layout using a multiobjective genetic al-
gorithm. In there formulation a fixed number of sensors had to be placed in order to
maximize the coverage. In [9] are proposed several evolutionary algorithms to solve the
problem.

The rest of the paper is organized as follows. In Section 2 the WSN is described
and the deployment problem is formulated. Section 3 presents the ACO algorithm. The
existing state of the art is briefly reviewed in Section 4. In Section 5 the experimental
results obtained are shown. Finally, several conclusions are drown in Section 6.

2 Problem Formulation

Mobile communications is a major area in the industry. Customers get used to hav-
ing mobility and connectivity, thus this types of services are required more and more.
Mobile communications require the use of a mobile device, the presence of a network
accessible and a network that manage the connections and communications. Also, ad
hoc and sensor networks need to define a cluster responsible for communications to
take place. The most important for companies is to can offer best possible services at
the lowest cost.

A Wireless Sensor Network is a wireless network formed by sensor nodes. Each
sensor node sens an area around itself called its sensing area. A parameter called sensing
radius determines the sensitivity range of the sensor node and thus the sensing area.
The nodes communicate among themselves using wireless communication links. These
links are determined by a communication radius. A special node in the WSN called
High Energy Communication Node (HECN) is responsible for external access to the
network. Therefore, every sensor node in the network must have communication with
the HECN. Since the communication radius is often much smaller than the network size,

Ant Algorithm for Optimal Sensor Deployment 23

direct links are not possible for peripheral nodes. A multi-hop communication path is
then established for those nodes that do not have the HECN within their communication
range.

The WSN layout problem amounts to deciding the geographical position of the sen-
sor nodes that form a WSN. In our formulation, a non-fixed amount of sensor nodes has
to be placed in a terrain providing full sensitivity coverage. The positions of the nodes
have to be chosen in a way that minimizes the total number of sensor nodes, while keeps
the connectivity of the network.

The WSN operates by rounds: In a round, every node collects the data from its mea-
surements and sends it to the HECN. Every node transmits the information packets to
the neighbor that is closest to the HECN, or the HECN itself if it is within the commu-
nication range. The sensing area of the WSN is the union of the individual areas of all
nodes. The designer wants the network to cover the complete sensing area. On the other
hand, the number of sensor nodes must be kept as low as possible, since using many
nodes represents a high cost of the network, possibly influences of the environment and
also provokes a probability of detection (when stealth monitoring is designed). The ob-
jective of this problem is to minimize the number of sensors deployed while the area is
fully covered and connected.

3 Ant Colony Optimization Framework

Many of the existing solutions to this problem come from the field of Evolutionary
Computation [1,9]. After analyzing them, we noticed that these interesting develop-
ments are quite similar to ACO algorithms. The relation between ACO algorithms and
evolutionary algorithms provides a structural way of handling constrained problems.
They have in common the use of a probabilistic mechanisms for recombination of indi-
viduals. This leads to algorithms where the population statistics are kept in a probability
vector. In each iteration of the algorithm, these probabilities are used to generate new
solutions. The new solutions are then used to adapt the probability vector.

Real ants foraging for food lay down quantities of pheromone (chemical cues) mark-
ing the path that they follow. An isolated ant moves essentially guided by an heuristic
function and an ant encountering a previously laid pheromone will detect and decide to
follow it with high probability thus taking more informed actions based on the experi-
ence of previous ants (and thereby reinforce it with a further quantity of pheromone).
The repetition of the above mechanism represents the auto-catalytic behavior of real ant
colony where the more the ants follow a trail, the more attractive that trail becomes.

The ACO algorithm uses a colony of artificial ants that behave as cooperative agents
in a mathematic space were they are allowed to search and reinforce pathways (solu-
tions) in order to find the optimal ones. The problem is represented by graph and the
ants walk on the graph to construct solutions. The solution is represented by a path in
the graph. After initialization of the pheromone trails, ants construct feasible solutions,
starting from random nodes, then the pheromone trails are updated. At each step ants
compute a set of feasible moves and select the best one (according to some probabilistic
rules based on a heuristic guided function) to carry out the rest of the tour. The struc-
ture of ACO algorithm is shown in Figure 1. The transition probability pij , to chose the

24 S. Fidanova, P. Marinov, and E. Alba

node j when the current node is i, is based on the heuristic information ηij and on the
pheromone trail level τij of the move, where i, j = 1, , n.

pij =
τα
ijη

β
ij∑

k∈allowed τα
ikηβ

ik

(1)

The higher value of the pheromone and the heuristic information, the more profitable is
to select this move. In the beginning, the initial pheromone level is set to a small positive
constant value τ0 and then ants update this value after completing the construction stage
[3]. ACO algorithms adopt different criteria to update the pheromone level.

Ant Colony Optimization

Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k=0 to number of ants
ant k starts from a random node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Local search procedure;
Update-pheromone-trails;

end while

Fig. 1. Pseudocode for ACO

In our implementation we use MAX-MIN Ant System (MMAS) [12], which is one
of the more popular ant approaches. The main feature of MMAS is using a fixed upper
bound τmax and a lower bound τmin of the pheromone trails. Thus the accumulation of
big amounts of pheromone by part of the possible movements and repetition of same
solutions is partially prevented. The main features of MMAS are:

– Strong exploration to the space search of the best found solution. This can be
achieved by only allowing one single ant to add pheromone after each iteration
(the best one).

– Wide exploration of the best solution. After the first iteration, the pheromone trails
are reinitialized to τmax. In the next iteration, only the movements that belong to
the best solution receive a pheromone, while the rest pheromone values are only
evaporated.

The aim of using only one solution is to make the solution components, which fre-
quently occur in the best found solutions, get a larger reinforcement. The pheromone
trail update rule is given by:

τij ← ρτij + Δτij , (2)

Ant Algorithm for Optimal Sensor Deployment 25

Δτij =

⎧⎨
⎩

1/C(Vbest) if (i, j) ∈ best solution

0 otherwise
,

Where Vbest is the iteration best solution and i, j = 1, . . . , n, ρ ∈ [0, 1] models evapo-
ration in the nature. To avoid stagnation of the search, the range of possible pheromone
values on each movement is limited to an interval [τmin, τmax]. τmax is an asymptotic
maximum of τij and τmax = 1/(1− ρ)C(V ∗), while τmin = 0.087τmax. Where V ∗ is
the optimal solution, but it is unknown, therefore we use Vbest instead of V ∗.

The WSN layout problem is represented by graph as follows: the terrain is mod-
eled by grid G = {gij}N×M ; the pheromone is related with location sites Ph =
{phij}N×M , the initial pheromone can be a small value, for example 1/nants. The
central point, where the HECN is located, is included in the solutions like first point
(zero point). Every ant starts to create the rest of the solution from a random node
which communicates with central one, thus the different start of every ant in every it-
eration is guaranteed. The ant chooses the next position by the ACO probabilistic rule
(equation 1). It choses the point having the higher probability.

The following heuristic information is constructed:

ηij(t) = sij lij(1 − bij), (3)

where sij is the number of points which the new sensor will cover, and

lij =
{

1 if communication exists
0 if there is not communication

(4)

b is the solution matrix and the matrix element bij = 1 when there is sensor on this
position otherwise bij = 0. With sij we try to locally increase the covered points, with
lij we guarantee that all sensors will be connected; with rule (1−bij) we guarantee that
the position is not chosen yet. When pij = 0 for all values of i and j the search stops.
Thus, the construction of the solution stops if no more free positions, or all points are
covered or new communication is impossible.

4 Related Work

The positioning of nodes in a sensor network has received a notable attention in re-
search. We present in this section a short review of the published research on this topic.

Zhang [15] study the positioning of sensors in a terrain from the point of view of
data transmission. They divide the terrain into cells, then analyze how N sensors should
be distributed among the cells, in a way that avoids network bottlenecks and data loss.

In their work [2], Biagioni and Sasaki study different regular positioning methods for
sensors: square, triangular and hexagonal grids. In each case they deduce the minimum
number of sensors required to provide full coverage, and the resulting fault-tolerance,
seen as the minimum number of nodes that have to be shut down in order to degrade the
network coverage. They observe a tradeoff between node density and fault-tolerance,
being the system with highest node density (thus highest number of nodes) the one

26 S. Fidanova, P. Marinov, and E. Alba

with the highest fault-tolerance. In a similar approach, Kar and Banerjee [8] propose
systematic placing methods to ensure connected coverage to 2-dimensional regions and
sets of points, that approach the minimum number of sensor nodes required and have
polynomial execution times.

In [6], Dhillon and Chakrabarty propose two greedy algorithms that select the lo-
cations for a sensor network with minimal number of nodes. They use a grid model
for the terrain and consider a probabilistic coverage model for the sensors where the
probability of coverage for any point by a given sensor decreases exponentially with its
distance from the sensor. Their model allows them to include the effect of obstacles and
terrain height as well as incorporate an importance factor that gives preference to the
coverage of some part of the terrain. However, their model lacks an explicit method to
handle network connectivity or energy optimization

Other works study the performances of random node distributions in a terrain.
Heuristic methods have already been used to solve WSN problems involving net-

work lifetime and coverage. Jourdan and de Weck solved an instance of WSN layout
using a multi-objective genetic algorithm in [7]. In their formulation a fixed number of
ten sensors has to be placed in order to maximize the coverage and the lifetime of the
network. Djikstras algorithm is repeatedly applied to the resulting topology to deter-
mine the number of rounds that can be performed provided each node has a predefined
starting energy. Though the results obtained are encouraging, the small size of the net-
work and the fact the the number of nodes is fixed instead of an optimizable value leave
room for further research, as they state in their work.

We will contribute with this work to improve the stateof- the-art of the use of meta-
heuristics for solving the WSN layout problem. Our aim is to provide an efficient solv-
ing method by comparing a set of state-of-the-art metaheuristic techniques applied in
the same scenario. We want to solve a new flexible instance in which, for the first time
(to the best of our knowledge), both the number and positions of the sensors can be
freely chosen, with full coverage of the sensor field guaranteed, and treating the energy
efficiency and the overall cost of the network. Besides this, our interest is to tackle com-
plex instances in which the WSN size is in the same order of magnitude as real WSN,
with several hundred nodes.

5 Experimental Results

With our algorithm we can solve WSN layout problem on any rectangular area. In this
work we solve an WSN problem instance where a terrain of 500 × 500 meters has to
be covered using nodes with coverage and communication radii equal to 30 meters.
The terrain has an area of 250,000 square meters, and each sensor covers 2,827 square
meters, meaning that in ideal conditions only 89 would be necessary. Now, these ideal
conditions do not exist since they would imply that no overlap exists between any two
nodes sensing areas, which is impossible due to their geometrical shape (circle). There-
fore, the expected minimum number of nodes for full-coverage is higher than 89. An
example of solution that achieves full coverage of the region is a square grid formed
by the sensors separated by 30 meters. Starting at the HECN, 250 meters have to be

Ant Algorithm for Optimal Sensor Deployment 27

covered to each side of the terrain, requiring 8 sensors. Therefore the grid has 17 (8 + 8
+ 1) rows and 17 columns, thus 289 sensors including the HECN. In this symmetrical
configuration there are four nodes directly connected to the HECN, so the complete
traffic of the network 288 messages per round is evenly divided among them. This
result is used for comparison. We apply MAX-MIN ant algorithm with the following
parameters: α = β = 1, ρ = 0.5, the number of used ants is 3 and the maximum
number of iterations is 10. In Table 1 are reported best found results (minimal number
of sensors) achieved by several metaheuristic methods. We compare our ACO algorithm
results with results obtained by the evolutionary algorithms in [9] and the symmetric
solution.

Table 1. Experimental results

Algorithm Number of sensors
Symmetric 289

MOEA 260
NSGA-II 262
IBEAHD 265

ACO 232

We observe that the ACO algorithm outperforms the symmetric solution and the
evolutionary algorithms. We perform 30 independent runs of the ACO algorithm and
the achieved numbers of sensors are in the interval [232, 247]. The ACO algorithm
outperforms the evolutionary algorithms, because the worst found number of sensors
by ACO is less than the best found by the evolutionary algorithms.

The ACO is a constructive method, which is managed by pheromone updating and
heuristic information. The heuristic information includes the apriory knowledge of the

Fig. 2. ACO solution

28 S. Fidanova, P. Marinov, and E. Alba

problem and is one of the crucial point of any ACO algorithms. Our heuristic infor-
mation is constructed thus to represent the specificity of the problem. So the positions
which possibly minimize the number of sensors and in the same time keep the con-
nectivity, becomes more desirable. On another side the genetic algorithm starts from
population of random solutions and recombine and mutate them with aim to be im-
proved without taking in to account the specificity of the problem. Thus we can explain
the better performance of ACO algorithm.

The ACO solution is represented on Figure 2. With black dots are represented the
sensors and with the rings are represented the coverage and connectivity area by a sen-
sor. We can observe there the coverage of the region, positioning of the sensors and
connectivity of the network.

6 Conclusions

We have defined a coverage problem for wireless sensor networks with its connectivity
constraint. A very large instance consisting of 500 × 500 square meter area has to be
covered using sensors nodes whose sensing and communication radii are 30 meters.
We propose ACO algorithm to solve this problem and we compare it with existing
evolutionary algorithms. The ACO algorithm outperforms the evolutionary algorithms.
The worst found solution by ACO is better than the best found solution by evolutionary
algorithms. In a future work we plane to redefine the problem so as to be able to solve
more complex WSN layout problem with regions in a sensing area where to put sensors
is forbidden and network problem with obstacles. Other interesting direction is to study
the robustness of the solutions, to minimize the disturbance in the network when single
sensor fail and thus to avid segmentation of the network.

Acknowledgements. This work has been partially supported by the Bulgarian Na-
tional Scientific Fund under the grants ”Modeling Processes with fixed development
rules” DID 02/29 and ”Effective Monte Carlo Methods for large-scale scientific prob-
lems” DTK 02/44, and by Spanish Ministry of Science and Innovation and FEDER
under contract TIN2008-06491-C04-01 (M-project, http://mstar.lcc.uma.es). It has also
been partially funded by the Andalusian Government under contract P07-TIC-03044
(DIRICOM project, http://diricom.lcc.uma.es).

References

1. Alba, E., Molina, G.: Optimal Wireless Sensor Network Layout with Metaheuristics: Solving
a Large Scale Instance. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2007. LNCS,
vol. 4818, pp. 527–535. Springer, Heidelberg (2008)

2. Biagioni, E., Sasaki, G.: Wireless Sensor Placement for Reliable and Efficient Data Collec-
tion. In: Proc. Hawaii Int. Conf. Sys. Sci. (2003)

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, New York (1999)

4. Cahon, S., Melab, N., Talbi, E.-G.: Paradiseo: A framework for the reusable design of parallel
and distributed metaheuristics. J. of Heuristics 10(3), 357–380 (2004)

Ant Algorithm for Optimal Sensor Deployment 29

5. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic
Algorithm: Nsga-ii (2000)

6. Dhillon, S., Chakrabarty, K.: Sensor Placement for Effective Coverage and Surveillance in
Distributed Sensor Networks. In: Proc. IEEE Wirel. Comm. Netw. Conf., pp. 1609–1614
(2003)

7. Jourdan, D.B.: Wireless Sensor Network Planing with Application to UWB Localization in
GPS-denied Environments. PhD Thesis. Masachusets Institut of Technology (2000)

8. Kar, K., Banerjee, S.: Node Placement for Connected Coverage in Sensor Networks. In: Proc.
WiOpt (2003)

9. Molina, G., Alba, E., Talbi, E.-G.: Optimal Sensor Network Layout Using Multi-Objective
Metaheuristics. J. Universal Computer Science 14(15), 2549–2565 (2008)

10. Nemeroff, J., Garcia, L., Hampel, D., DiPierro, S.: Application of sensor network communi-
cations. In: MILCOM 2001, Communications for Network-Centric Operations: Creating the
Information Force, pp. 336–341. IEEE (2001)

11. Paek, J., Kothari, N., Chintalapudi, K., Rangwala, S., Govindan, R.: The Performance of a
Wireless Sensor Network for Structural Health Monitoring (2004)

12. Stutzle, T., Hoos, H.H.: MAX-MIN Ant System. J. Future Generation Computer Systems 16,
889–914 (2000)

13. Werner-Allen, G., Lorinez, K., Welsh, M., Marcillo, O., Jonson, J., Ruiz, M., Lees, J.: De-
ploying a wireless sensor network on an active volcano. IEEE J. of Internet Computing 10(2),
18–25 (2006)

14. Yuce, M.R., Ng, S.W., Myo, N.L., Khan, J.Y., Liu, W.: Wireless body sensor network using
medical implant band. J. Medical Systems 31(6), 467–474 (2007)

15. Zhang, X., Wicker, S.B.: On the Optimal Distribution of Sensors in a Random Field. ACM
Trans. Sen. Netw. 1(2), 301–306 (2005)

16. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke,
E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P.,
Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer,
Heidelberg (2004)

Countering Evolutionary Forgetting
in No-Limit Texas Hold’em Poker Agents

Garrett Nicolai1 and Robert Hilderman2

1 Dalhousie University, Halifax, NS, B3H 3J5, Canada
2 University of Regina, Regina, SK, S4S 0A2, Canada

Garrett.Nicolai@dal.ca, Robert.Hilderman@uregina.ca

Abstract. No-Limit Texas Hold’em Poker is a stochastic game of imperfect in-
formation. Each player receives cards dealt randomly and does not know which
cards his opponents have been dealt. These simple features result in No-Limit
Texas Hold’em Poker having a large decision space in comparison to other classic
games such as Backgammon and Chess. Evolutionary algorithms and neural net-
works have been shown to find solutions in large and non-linear decision spaces
and have proven to aid decision making in No-Limit Texas Hold’em Poker. In this
paper, a hybrid method known as evolving neural networks is used by No-Limit
Texas Hold’em Poker playing agents to make betting decisions. When selecting a
new generation of agents, evolutionary forgetting can result in selecting an agent
with betting behaviour that has previously been shown to be inferior. To prevent
this from occurring, we utilize two heuristics: halls of fame and co-evolution. In
addition, we evaluate agent fitness using three fitness functions based upon, re-
spectively, the length of time an agent survives in a tournament, the number of
hands won in a tournament, and the average amount of money won across all
hands in a tournament. Results show that the length of time an agent survives is
indeed an appropriate measure of fitness. Results also show that utilizing halls
of fame and co-evolution serve to further improve the fitness of agents. Finally,
through monitoring the evolutionary progress of agents, we find that the skill level
of agents improves when using our evolutionary heuristics.

1 Introduction

In the field of Artificial Intelligence, games have attracted a significant amount of re-
search. Games are of interest to researchers due to their well defined rules and success
conditions. Furthermore, game-playing agents can be easily benchmarked, as they can
play their respective games against previously-created agents, and an objective skill
level can be determined.

Successful agents, capable of beating the best human players have been developed
for deterministic parlour games such as Chess [8,9] and Checkers[16,17], and stochastic
games such as Backgammon[19].

These games all have one key aspect in common: they all involve perfect information.
That is, all players can see all information relevant to the game state at all times. Re-
cently, games of imperfect information, such as Poker[1,2,4,11], and particularly Limit
Texas Hold’em[1,4,11], have started to attract attention in the research community. Un-
like Chess and Checkers, where all information is available to all players, Poker involves

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 31–48.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

32 G. Nicolai and R. Hilderman

deception and hidden information. Part of the allure of card games is that a player must
take risks based on incomplete information.

In this paper, we present an algorithm for creating an agent to play a variant of Poker
known as No-Limit Texas Hold’em [2,7], which allows any size of bet. Rather than re-
duce the decision space, we use evolutionary algorithms [1,2,10,12,13,14,16,17,20,19]
to teach our agents a guided path to a good solution. Using evolutionary neural networks
and iterative play, our agents learn to play No-Limit Texas Hold’em.

2 Rules of No-Limit Texas Hold’em

No-Limit Texas Hold’em is a community variant of the game of Poker. Each player
is dealt two cards, referred to as hole cards. After the hole cards are dealt, a round of
betting commences, whereby each player can make one of three decisions: fold, where
the player chooses to stop playing for the current round; call, where the player chooses
to match the current bet, and keep playing; and raise, where the player chooses to
increase the current bet. This is where No-Limit Texas Hold’em differs from the Limit
variant. In Limit Texas Hold’em, each round has a maximum bet. In No-Limit Texas
Hold’em, any player may bet any amount, up to and including all of his remaining
money, at any time. After betting, three community cards, collectively known as the
flop, are dealt. The community cards can be combined with any player’s hole cards to
make the best 5-card Poker hand. After the flop, another betting round commences,
followed by a fourth community card, the turn. Another betting round ensues, followed
by a final community card, known as the river, followed by a final betting round. If, at
any time, only one player remains due to the others folding, this player is the winner,
and a new round commences. If there are at least two players remaining after the final
betting round, a showdown occurs: the players compare their hands, and the player with
the best 5-card Poker hand is declared the winner.

3 Related Work

Research into computer Poker has progressed slowly in comparison with other games,
so Poker does not have as large an established literature.

3.1 Limit Texas Hold’em Poker

The Computer Poker Research Group at the University of Alberta is the largest contrib-
utor to Poker research in AI. The group recently created one of the best Poker-playing
agents in the world, winning the 2007 Poker Bot World Series [11].

Beginning with Loki [3], and progressing through Poki [4] and PsOpti [5], the Uni-
versity of Alberta has concentrated on creating Limit Texas Hold’em Poker players.
Originally based on opponent hand prediction through limited simulation, each genera-
tion of Poker agents from the UACPRG has modified the implementation and improved
upon the playing style of the predecessors. The current agents [11,18] are mostly game
theoretic players that try to minimize loss while playing, and are capable of defeating
weak to intermediate human players.

Countering Evolutionary Forgetting in No-Limit Texas Hold’em Poker Agents 33

3.2 No-Limit Texas Hold’em Poker

No-Limit Texas Hold’em Poker was studied in [7], where a rule-based system was used
to model players. The earliest agents were capable of playing a very simple version of
two-player No-Limit Texas Hold’em Poker, and were able to defeat several benchmark
agents. After modifying the rules used to make betting decisions, the agents were again
evaluated, and were shown to have maintained their level of play, while increasing their
ability to recognize and adapt to opponent strategies.

No-Limit Texas Hold’em Poker agents were developed in [2], and were capable of
playing large-scale games with up to ten players at a table, and tournaments with hun-
dreds of tables. Evolutionary methods were used to evolve betting strategies that con-
sidered hand strength and cost. The system begins with some expert knowledge (what
was called a head-start approach). Agents were evolved that play well against bench-
mark agents, and it was shown that agents created using both the evolutionary method
and the expert knowledge are more skilled than agents created with either evolutionary
methods or expert knowledge.

3.3 Games and Evolutionary Neural Networks

Applying evolutionary algorithms to games is not without precedent. As early as the
1950’s, the concept of self-play (i.e., the process of playing agents against themselves
and modifying them repeatedly) was being applied to the game of Checkers [16]. In [19]
evolutionary algorithms were applied to the game of Backgammon, eventually evolving
agents capable of defeating the best human players in the world. In [13], an algorithm
similar to that described in [19] was used in conjunction with self-play to create an
agent capable of playing small-board Go. In [10,12,20], evolutionary techiniques are
applied to Chess, improving strategies through iterative play.

Evolutionary methods have also been applied to Poker. In [1], agents are evolved that
can play a shortened version of Limit Texas Hold’em Poker, having only one betting
round. Betting formulas are evoled by adding and removing parameters, and changing
variable weights. Evolution is found to improve the skill level of the agents, allowing
them to play better than agents developed through other means.

4 Methodology

Our agents use a 35-20-3 feedforward neural network to learn how to play No-Limit
Texas Hold’em. This type of network has three levels, the input level, the hidden level,
and the output level. Thirty-five values, which will be explained in Sect. 4.1, are taken
from the current game state. These values are combined and manipulated using weighted
connections to twenty nodes on the hidden level of the network. The values in the hid-
den nodes are further manipulated, and result in three values on the output level.

4.1 Input to the Neural Network

The input to the network consists of 35 factors that are deemed necessary to the evalu-
ation of the current state of the poker table, as seen in Table 1.

34 G. Nicolai and R. Hilderman

Table 1. Input to the Neural Network

Input Feature
1 Chips in pot
2 Chips to call
3 Number of opponents
4 Percentage of hands that will win
5 Number of hands until dealer

6 to 15 Chip counts
16 to 25 Overall Agressiveness
26 to 35 Recent Agressiveness

The Pot. The first feature the value that the agent can win if it wins the hand, and is
less than or equal to the total of all of the chips in the pot. If an agent bet all of its chips
previously, and betting continued with other agents, it is possible that the current agent
is unable to win all of the chips in the pot.

The Bet. The second input feature is the amount of chips that an agent must pay to call
the current bet. If another agent has made a bet of $10, but the current agent already has
$5 in the pot, this value will be $5. Together with the pot, the bet forms the pot odd, a
regularly used feature of Poker equal to the ratio of the pot to the bet.

The Opponents. The third input feature is the number of opponents remaining in the
hand. As the number of opponents increases, it becomes harder to win a hand, and thus,
the agent must become more selective of the hands that it decides to play.

The Cards. The fourth input to the neural network is the quality of the cards that
the agent is holding. The quality of an agent’s cards is dependent upon two factors:
hand strength, and hand potential. Hand strength represents the likelihood that a hand
will win, assuming that there will be no cards to come. Hand potential represents the
likelihood that a hand will improve based upon future cards. For example, after the hole
cards are dealt, a pair of fours would have good hand strength, but poor hand potential.
At this point, only ten hands can beat it, namely the ten higher pairs; however, when
further cards are played, there are many more potential better hands.

Before any evolutionary trials were run, an exhaustive set of lookup tables were built.
These lookup tables can quickly report the likelihood that a hand will win, should a
showdown occur. Entries are calculated for all possible situations of the game, with any
number of table opponents from 1 to 9. Exhaustive simulations were run to calcultate
the percentage of hands that an agent would win, given its hole cards, and the current
situation of the game.

The lookup tables were divided into three states of the game: pre-flop, post-flop, and
post river. For the post-turn stage of the game, the post-river tables were used, looped
for each possible river card, and calculations were made at run-time. The pre-flop ta-
ble was a two-dimensional matrix, representing the 169 potential hole card combina-
tions, marked for each possible number of opponents. The pre-flop table has 1,521 total
entries.

Countering Evolutionary Forgetting in No-Limit Texas Hold’em Poker Agents 35

The post-flop stage requires multiple tables, all of which are 3-dimensional matrices.
The first two dimensions contain the number of hole card combinations and opponents,
respectively. In the pre-flop stage, suits were unimportant, but flushes are now possible,
and suits must be recorded. The third dimension represents the number of potential flops
of a particular type. Flops are sub-divided into five categories: ONE SUIT, where all
three community cards are of the same suit; TWO SUIT, where the three community
cards fall into one of two suits; THREE SUIT, where all of the community cards are
of different suits and ranks; THREE SUIT DOUBLE, where the suits are different,
but two cards have the same rank; and THREE SUIT TRIPLE, where the suits are all
different, but the ranks are all the same.

The post-river tables are again 2-dimensional, discarding the differences for differ-
ent opponent numbers. Since all cards have been played, winning percentage can be
calculated quickly at run-time. The post-river tables are divided into five sub-groups:
FIVE SUITED, where all five community cards are of the same suit; FOUR SUITED,
where four cards are of one suit, and the other is another suit; THREE SUITED, where
three cards are of one suit, and the other two are of other suits; and NO SUITED,
where less than three cards are of the same suit, and thus flushes are not possible. The
BUILD 1 SUIT algorithm gives an example of how the flop tables are generated.

1: procedure BUILD_1_SUIT
2: begin
3: FlopID = 0
4: for i = TWO to ACE do
5: Flop[0] = Card(i,0)
6: for j = i + 1 to ACE do
7: Flop[1] = Card[j, 0)
8: for k = j + 1 to ACE do
9: Flop[2] = Card(k, 0)
10: HoleID = 0
11: for m = TWO to ACE * 2 do
12: if m in Flop continue
13: for n = m + 1 to ACE * 2 do
14: if n in Flop continue
15: if m < ACE then
16: Hole[HoleID][0] = Card(m, 0)
17: else Hole[HoleID][0] = Card(m,1)
18: if n < ACE then
19: Hole[HoleID][1] = Card(n, 0)
20: else Hole[HoleID][1] = Card(n, 1)
21: HoleID++;
22: for m = TWO to ACE do
23: for n = TWO to ACE do
24: Hole[HoleID][0] = Card(m, 1)
25: Hole[HoleID++][1] = Card(n, 2)
26: endfor
27: endfor
28: BUILD_ROW(Table1Suit[FlopID], Hole, HoleID, Flop)
29: FlopID++;
30: end for
31: end for
32: end for
33: end BUILD_1_SUIT

36 G. Nicolai and R. Hilderman

The first 10 lines loop through the possible cards for the flop, creating each potential
flop of one suit. Lines 11 through 20 cover 3 cases of hole cards: the hole cards are
of the same suit, and it is the same suit as the flop; the hole cards are of the same
suit, and it is not the same suit as the flop; and the hole cards are different suits, but
one of the cards is the same suit as the flop. Lines 22 to 27 cover the remaining case:
the hole cards are of different suits, and neither card is the same suit as the flop. The
BUILD ROW function shown on line 28 is used to loop through all potential opposing
hands, and return a percentage of hands that will win if the hand is played all the way
to a showdown. The other functions to build tables work similarly.

The Position. In Poker, it is desirable to maximize information about opponents by
having them bet before you do. This input value starts at 0, when the agent is the last
bettor in a round. After the round, the value resets to the number of players at the table,
and decreases by one for each round that is played. Thus, the value will be equal to the
number of rounds remaining until the agent is betting last.

The Chips. The next inputs to the network are public information, and are known by all
of the players. This input is relative to the current agent, and will shift depending upon
its seat. Input 6 will always be the number of chips of the agent making the decision,
input 7 will be the chip count of the agent in the next seat, and so on.

It is important to know the remaining chips of each particular agent that is playing in
a particular round, as it will affect their decisions. An opponent with less chips is less
likely to call a big raise, and it might be desirable to play aggressively to steal its chips.
It is also important to keep track of the chip counts in relation to an agent’s position. If
an agent is sitting next to another agent with many chips, it may make sense to play a
little more conservative, as the larger chip stack can steal bets with large over-raises.

Aggressiveness. The final twenty inputs to the neural network are concerned with op-
ponent modeling. Since there is so much hidden information, the agent must use what-
ever it can to try to determine the quality of its opponents’ hands. The only information
that an invisible opponent gives away is its betting strategy.

However, it is not as simple as determining that a raise means that an opponent has
good cards. Opponents try to disguise their cards by occasionally betting counter to
what logic might dictate. Our agents are capable of bluffing, as discussed in Sect 4.3.
Luckily, there are a few pieces of knowledge that an agent can use to its advantage to
counteract bluffing.

All other things being equal, cards are stochastic. In the long run, certain hands
will occur with known probability, and an opponent’s actions can be compared to that
probability. If an opponent is betting more often than probability would dictate, it can
be determined that the opponent is likely bluffing, and its high bets can be adjusted to
compensate. Likewise, an agent will be more wary when an opponent that never bets
begins calling and raising.

Countering Evolutionary Forgetting in No-Limit Texas Hold’em Poker Agents 37

All opponents’ bets are recorded over the long term and the short term according to
equation 1. The bets are simplified to a single value. If an opponent folds, that opponent
receives a value of 0 for that decision. If an opponent calls, that opponent receives a
value of 1 for that decision, and if an opponent raises, then that opponent receives a
value equal to the new bet divided by the old bet; this value will always be greater
than 1.

Aggressiveness =
BetAmount

CallAmount
(1)

Aggressiveness over the Long-Term. The aggressiveness values are a running aver-
age of the decisions made by any particular agent. For example, an agent might have an
aggressiveness of 1.3 over 55 decisions made. This could be seen as an agent that gen-
erally calls, but occasionally raises. The agent has a cumulative aggressiveness value of
1.3 × 55, or 71.5 If in the next hand, the agent calls the bet, and then folds, it will get
values of 1.0 and 0.0 for its call and fold, respectively. its aggressiveness will now be
72.5 over 57 decisions, giving a score of 1.27.

The aggressiveness vectors are an attempt to model opponent tendencies, and take
advantage of situations where they play counter to these tendencies. For example, if an
opponent with low aggressiveness suddenly makes a large bet, it can be inferred that ei-
ther the opponent has really good cards, or is making a very large bluff, and the deciding
agent can react appropriately. The agents also keep track of their own aggressiveness,
with the goal of preventing predictability. If an agent becomes too predictable, they can
be taken advantage of. Agents can then make decisions counter to their decisions to
throw off opponents.

Aggressiveness over the Short-Term. Although agents will generally fall into an over-
all pattern, it is possible to ignore that pattern for short periods of time. Thus, agents
keep track of short-term aggressiveness of their opponents. Short-term aggressiveness is
calculated in the same way as long-term aggressiveness, but only over the last ten hands
of a particular tournament. Ten hands is enough for each player to have the advantage
or disadvantage of betting from every single position at the table.

For example, an opponent may have an overall aggressiveness of 1.6, but has decided
to play more conservatively over the last 10 hands, having an aggressiveness of 0.5 over
these hands. Although this agent can be expected to call or raise a bet, recently, they are
as likely to fold to a bet as they are to call. Whereas the long-term aggressiveness values
might indicate that a raise would be the best decision, the short-term aggressiveness
might suggest a call instead.

4.2 The Hidden Layer

The hidden layer of the neural network consists of twenty nodes that are fully connected
to both the input and output layers. Twenty nodes was chosen early in implementation,
and may be an area for future optimization.

38 G. Nicolai and R. Hilderman

4.3 The Output Vector

In Sect. 4, it was stated that the output layer consisted of three nodes. These nodes
correspond to a fold, a call or a raise. Raises are further divided into small, medium, and
large raises, which will be explained later in this section. The output of the network is
stochastic, rather than deterministic; rather than choosing the decision with the highest
likelihood, any decision can be made with a certain percentage. By occasionally making
sub-optimal choices, the agent can disguise its playing style.

Raises are distinguished into small raises, medium raises, and large raises. After
observing many games of Texas Hold’em, it was determined that the biggest determiner
of whether a raise was considered small, medium, or large was the percentage of a
player’s chip count that a bet made up. Bets that were smaller than 10% of a player’s
chips were considered small, bets that were larger than a third of a player’s chips were
considered large, and bets that were in between were considered medium.

Again, bluffing was encouraged, and bets were not restricted to a particular range.
Although a small bet might be 10% of an agent’s chips, we allowed the potential to
make larger (or smaller) bets than the output vector might otherwise allow. An agent
might bluff all of its chips on a recommended small bet, or make the smallest possi-
ble bet when a large bet was suggested. Watching television and internet Poker, it was
determined that generally, players are more likely to make a bet other than the recom-
mended one when they are sure of their cards; when the cards are good, players become
more creative in betting.

The bets are determined using a normal distribution, centred around the values shown
in Table 2.

Table 2. Values used in GetBet algorithm

Value Description
0.06 LoUpper
0.7 LoInside
0.1 MedLower
0.2 MedUpper
0.6 MedInside
0.1 MedOutLo
0.3 MedOutHi
0.3 HiPoint

0.95 HiAbove
0.05 HiBelow
0.1 HiAllIn

Thus, small bets normally fall in the range of 0 to LoUpper, that is, 6% of an agent’s
chips. However, this only occurs with a likelihood of 70%. The other 30% of the time,
a small bet will be more than 6% of an agent’s chips, with a normal distribution with a
mean at 6%. The standard deviation is calculated such that the curves for the standard
and non-standard bets are continuous.

Countering Evolutionary Forgetting in No-Limit Texas Hold’em Poker Agents 39

Medium bets are standard within a range of 10 and 20% of an agent’s chips, 60%
of the time. 10% of medium bets are less than 10% of an agent’s chips, while 30% are
more than 20% of an agent’s chips, again with a normal distribution.

High bets are centred around 30% of an agent’s chips. 5% of the time, the bet will
be less, while 95% of large bets will be more than 30% of an agent’s chips, with the
top 5% of high bets consisting of all of an agent’s chips. If an agent is betting a high
percentage of its chips, it should bet all of them. If it loses the hand, it is as good as
eliminated anyway, and thus bets all instead of almost all of its chips. It is better to risk
the chips on a good hand than to be forced to lose the rest of the chips on a forced bet.

4.4 Evolution

Evolutionary algorithms model biological evolution. Agents compete against each
other, and the fittest individuals are chosen for reproduction and further competition.
The EVOLUTION Algorithm demonstrates the selection of fittest individuals in a
population.

1: procedure EVOLUTION(Generations, NumPlayers, NumPlayersKept,
Tournaments)

2: begin
3: for i = 0 to NumPlayers - 1 do
4: Players[i] = new Player(Random)
5: end for
6: for i = 0 to Generations - 1 do
7: for j = 0 to Tournaments - 1 do
8: PlayTournament()
9: endfor
10: SortPlayers{Players)
11: for j = 0 to NumPlayersKept - 1 do
12: KeptPlayers[j] = Players[j];
13: end for
14: EVOLVE_PLAYERS(Players, KeptPlayers, NumPlayers,

NumPlayersKept)
15: end for
16: end EVOLUTION

In lines 3 and 4, NumPlayers agents are created with neural networks with random
weights between -1 and 1. These agents begin playing tournaments. Decisions are made
by the individuals using the input and output of the neural networks described in Sects.
4.1 and 4.3. Tournament are sub-divided into tables, each of which hosts ten agents.
After each round of Poker, the tournament is re-organised to minimize the number of
tables. Any agents that have been eliminated have their finishing positions recorded, and
the process begins again. After Tournaments number of tournaments have been com-
pleted, the agents are sorted according to their average ranking. The numPlayersKept
best agents are then supplied to the EVOLVE PLAYERS algorithm, which will create
new agents from the best agents in this generation. In order to preserve the current re-
sults, the best agents are kept as members of the population for the next generation, as
shown in lines 11 and 12.

40 G. Nicolai and R. Hilderman

1: procedure EVOLVE_PLAYERS{Players[], Elite[], NumPlayers,
NumPlayersKept[])

2: begin
3: ParentCount = 1
4: for i = NumPlayersKept to NumPlayers do
5: if numPlayersKept == 1 then
6: Players[i] = new Player[Elite[0])
7: else
8: ParentCount = Random.Exponential()
9: Parents = new NeuralNet[ParentCount]
10: //Choose parents from Elite
11: for j = 0 to ParentCount - 1 do
12: Weights[j] = Random.UniformDouble()
13: end for
14: normalise(Weights)
15: for j = 0 to NumLinks do
16: Value = 0
17: for k = 0 to ParentCount do
18: Value += Parents[k].links[j] x weights[k]
19: endfor
20: Players[i].links[j] = Value
21: random = Random.UniformDouble()
22: if random < mutationLikelihood then
23: Players[i].links[j] += Random.Gaussian(mutMean, mutDev)
24: end if
25: end for
26: end for
27: end EVOLVE_PLAYERS

The EVOLVE PLAYERS algorithm describes the creation of new agents for successive
generations in the evolutionary algorithm. In lines 8 through 12, parents are chosen from
the best agents of the previous generation. Our agents are not limited to two parents;
their parents may be comprised of all of the elite agents from the previous generation.
Once the parents are selected, they are given weighted importance, influencing how
much a child will resemble each parent. The values of the child’s neural network are
calculated as a weighted sum of the parent’s network links. For example, if an agent has
two parents, weighted at 0.6 and 0.4, and the parent links between two nodes are 1 and
-1, respectively, then the new agent’s link value would be 0.2, calculated as 0.6 * 1 +
0.4 * -1.

However, if the child agents are simply derived from the parents, the system will
quickly converge. A mutation factor is introduced in line 21 to promote exploration.
After child’s network values have been assigned, random noise is applied to the weights,
with a small likelihood.

4.5 Alternate Fitness Functions

At each generation, the agents that were chosen for replication were those that lasted
the longest in the tournaments. Intuitively, it was determined that these agents would
be the best in their respective generations. It is possible, however, that these agents sur-
vived not due to good Poker skills, but rather because they were overly conservative.

Countering Evolutionary Forgetting in No-Limit Texas Hold’em Poker Agents 41

Two alternate fitness functions were also used to varying degrees to determine if tour-
nament survival was the optimal fitness function.

The MeanMoney fitness function would rank agents according to the average amount
of money that they won across all of the hands that they played. The HandsWon fitness
function ranked agents according to how many hands they had won. The HandsWon
function was combined with the original tournament success function in a series of
increments. In the pure HandsWon function, the ranking of the agents for selection is
solely dependent upon the number of hands that they have won. At Hands80, the ranking
is weighted 80% towards the number of hands won, and 20% towards their ranking in
the tournaments. Likewise, Hands60, Hands40 and Hands20 were also investigated. All
of the agents evolved with alternate fitness functions were otherwise identically evolved
to the original agents, with no evolutionary counter-measures.

4.6 Evolutionary Forgetting

In [15], it is suggested that evolutionary algorithms can occasionally get caught in less-
than-optimal loops. In this case, agent A is deemed to be the best of a generation, is
replaced by B in the next generation, which in turn is defeated by an A-type agent in
the subsequent generation. In [14], it is suggested that an evolutionary system can lose
its learning gradient, or fall prey to Evolutionary Forgetting. Evolutionary forgetting
occurs when a strategy is promoted, even when it is not better than strategies of previous
generations.

For example, in Poker, there is a special decision strategy known as a check-raise.
It involves making a call of $0 to tempt opponents to make a bet. Once the opponent
makes a reasonable bet, the player raises the bet, often to a level that is not affordable
to the opponents. The opponents fold, but the player receives the money that they bet.
A check-raise strategy may be evolved in an evolutionary Poker system, and for several
generations, it may be the strongest strategy. However, once a suitable counter strategy
is evolved, the check-raise falls into disuse. Since the check-raise is no longer used,
strategies no longer need to defend against it, and the strategies, although seeming to
improve, forget how to play against a check-raise. Eventually, the check-raise may sur-
face again, and because current strategies do not defend against it, it is seen as superior.
This cycle can continue indefinitely, unless some measure is implemented to counter
evolutionary forgetting. Several strategies exist for countering evolutionary forgetting,
as presented in [15], but are suggested for two-player games. We have adapted these
strategies for evolutionary Poker, which can contain up to ten players per table, and
thousands of players in tournaments.

4.7 Halls of Fame

A hall of fame serves as a genetic memory for an evolutionary system, and can be used
as a benchmark of previous generations. Agents in the hall of fame are not used to create
new agents. Their sole purpose in the population is as a competitional benchmark for
the competing agents. As long as the regular agents are competing against the hall of
fame agents, their strategies should remember how to defeat the old strategies, and thus
promote steady improvement.

42 G. Nicolai and R. Hilderman

The hall of fame begins with no agents included. After the first tournaments are
played, the agents that are selected for reproduction are also inserted into the hall of
fame. In the next generation, the playing population will consist of the regular popu-
lation of agents, as well as the hall of fame agents. Here, a decision must be made. It
is possible to create a very large hall of fame, as memory permits, but this quickly be-
comes computationally expensive. The population size of the evolutionary system will
increase regularly. Given that many hands are required in each tournament to elimi-
nate all of the agents, as the population size grows, so too does the time required per
tournament, and hence, per generation.

Our hall of fame was had a fixed size, and could include no more agents than were in
the original population. The best agents of previous generations would still be present
in the hall of fame, but the size of the hall would not quickly get out of hand. After
each generation, agents in the hall of fame were replaced according to the REPLACE
algorithm.

1: procedure REPLACE(HallOfFame[], hallSize, Players[],
numPlayersKept)

2: begin
3: j = 0;
4: for i = 0 to numPlayersKept - 1 do
5: if HallOfFame[hallSize - numPlayersKept + i].OverallRanking()

> Players[j].OverallRanking() then
6: HallOfFame[hallSize - numPlayersKept + i] = Players[j++]
7: else continue
8: end if
9: end for
10: end REPLACE

The Players and HallOfFame must be sorted before calling REPLACE. numPlayersKept
is the amount of agents that are selected for reproduction in a given generation. As long
as the rank of the xth best agent is lower (i.e. better) than the x-lowest hall of fame mem-
ber the member is replaced. In the worst case, when all agents in the hall of fame are
replaced every generation, the hall of fame will still have a memory of 10 generations.
The memory is generally much longer.

4.8 Co-evolution

In [13,14,15], it is suggested that co-evolutionary methods may counter evolutionary
forgetting. In co-evolution, several independent populations are evolved simultaneously.
Each population has its own set of agents, and when reproduction occurs, the eligible
agents are chosen from the individual populations. By evolving the populations sepa-
rately, it is hoped that each population will develop its own strategies.

Multiple populations are created in the same way as if there were only a single pop-
ulation. They are then allowed to compete together, similarly to how the agents can
compete against agents in a hall of fame. When it comes time for selection, agents are
only ranked against agents in their respective populations. It is possible that one pop-
ulation may have a superior strategy, and that the agents from this population out-rank
all agents from all other populations. Regardless, agents are separated by population for

Countering Evolutionary Forgetting in No-Limit Texas Hold’em Poker Agents 43

evaluation and evolution, in order to preserve any unique exploration paths that alternate
populations might be exploring.

Like halls of fame, the main strategy of co-evolution is a deepening of the competi-
tion. By having seperately evolving populations, the agents are exposed to a more var-
ied set of strategies, and thus can produce more robust strategies. Often, as co-evolution
proceeds, a situation known as an arms race will develop. In an arms-race, one popula-
tion develops a good strategy, which is later supplanted by another population’s counter-
strategy, which then repeats. As each population progresses, the global skill level also
increases. Agents are less concerned with defeating strategies that it has already seen,
and more concerned with defeating new strategies as they come along.

Halls of fame can be added to co-evolution. Our system gives each population its
own hall of fame, with the same replacement strategy as when there is only one popula-
tion. As stated in Sect. 4.7, the goal of the halls of fame was to protect older strategies
that might get replaced in the population. In a co-evolutionary environment, it is entirely
possible that one sub-population may become dominant for a period of several gener-
ations. If a global hall of fame is used, the strategies of the weaker populations would
quickly be replaced in the hall of fame by the strategies of the superior population. Each
population was given its own hall of fame to preserve strategies that might not be the
strongest in the larger population, but could still be useful competitive benchmarks for
the evolving agents.

4.9 Duplicate Tables

Poker is a game with a high degree of variance. Skill plays a large part in the determi-
nation of which players will win regularly, but if a good player receives poor cards, he
will most likely not win. In [6], a method for evaluating agents is discussed, which is
modeled upon the real-world example of duplicate tables. In professional Bridge tour-
naments, duplicate tables are used to attempt to remove some of the randomness of the
cards. Unfortunately, due to the relatively high cost of performing duplicate tables at
each hand, they are not used in the evolution process. We only use duplicate tables after
the evolution has been completed, as a method to test our best evolved agents against
certain benchmarks.

A duplicate table tournament is a collection of the single tournaments described in
Sect. 4.4. An agent sits at a table, and the tournament is played until every agent at the
table has been eliminated (i.e., every agent except one has lost all of its chips). The
rankings of the agents are noted, and the next tournament can begin.

Unlike a normal tournament, where the deck would be re-shuffled, and agents would
again play to elimination, the deck is reset to its original state, and each agent is shifted
one seat down the table. Thus, the agent at seat 5 is now at seat 6, and so on, with the
agent previously at seat 9 now at seat 0. Again, the agents play to elimination. Since
the deck was reset, the cards will be exactly the same as they were last time; the only
difference will be which agents receive which cards. Each agent keeps no memory of
previous tournaments. This method continues until each agent has sat at each seat at the
table, and thus had a chance with each possible set of hole cards. After the completion
of a revolution of the table and the noting of the rankings, the agents would then play
with new cards.

44 G. Nicolai and R. Hilderman

5 Experimental Results

In order to evaluate agents, a number of benchmarks were used. In [2,5,7,18], sev-
eral static agents, which always play the same, regardless of the situation, are used as
benchmarks. These agents are admittedly weak players, but are supplemented by the
best agents developed in [2], and can be used to evaluate the quality of our evolved
agents relative to each other. The benchmark agents are as follow: Folder, Caller, and
Raiser, that always fold, call and raise, respectively, at every decision; Random, that al-
ways makes random decisions; CallOrRaise, that calls and raises with equal likelihood;
OldBest, OldScratch, OldStart, that were developed in [2]. OldScratch was evolved with
no head start to the evolution, OldBest was evolved with a head start, and OldStart was
given a head start, but no evolution.

Baseline agents were evolved from a population of 1000 agents, for 500 generations,
playing 500 tournaments per generation. After each generation, agents were ranked
according to their average. After each generation, the 100 best agents were selected for
reproduction, and the rest of the population was filled with their offspring. LargeHOF
agents were also evolved from a population of 1000 agents, but included a hall of fame
of size 1000. SmallHOF agents were evolved from a smaller population of 500 agents,
with a hall of fame of size 500, and only 50 agents were selected for reproduction each
generation. HOF2Pop agents were evolved using two co-evolutionary populations of
500 agents each, each with a hall of fame of 500 agents.

After 500 generations, the best agent from the 500th generation played 100,000 du-
plicate table tournaments, with each of the benchmark agents also sitting at the tables.
After each duplicate table tournament, the ranking of each agent at the table was gath-
ered, and the average was calculated after the completion of all 100,000 duplicate table
tournaments. There were nine agents at the duplicate tables. The best possible rank was
1, corresponding to an agent that wins every tournament, regardless of cards or oppo-
nents. The worst possible rank was 9, corresponding to an agent that was eliminated
from every tournament in last place. The results of our best agents are shown in Fig. 1.

Figure 1 represents the results of the duplicate table tournaments. In Fig. 1, the Con-
trol agent represtents the agent that is being evaluated, while the other vertical bars
represent the rankings of the other agents in the evaluation of the control agent. For
example, the first bar of Random represents how the Random agent performed against
the Baseline agent, the second bar represents how the Random agent performed against
the SmallHall agent, and so on.

The best results were obtained by the agents evolved with a large hall of fame, but
no co-evolution. These agents obtained an average rank of 2.85 out of 9. Co-evolution
seemed to have little effect upon the agents when a hall of fame was used, and the
agents in the two co-evolutionary populations received average ranks of 2.92 and 2.93.
The difference between the best agents and the second best seems to be quite small. A
two-tailed paired t-test was conducted on the null hypothesis thatthe ranks of any two
distinct agents were equal. In all cases, and for all experiments, the null hypothesis was
rejected with 99% confidence. Although the difference is small, enough hands were
played that even small differences equate to a difference in skill. The small hall of fame
also seemed to have an impact; although the agent was evolved in a smaller population

Countering Evolutionary Forgetting in No-Limit Texas Hold’em Poker Agents 45

Fig. 1. Results of Duplicate Table Tournaments (Original in Colour)

than the baseline, and thus had less competition, it was able to achieve a rank of 3.48,
which was more than one full rank better than the baseline agent’s 4.73.

The baseline agent itself out-performed all of the benchmarks, with the exception
of the best agents evolved in [2], and the Folder. The best agents evolved in our ex-
periments out-ranked all of the benchmarks, except for the folder, although the best
agents were much closer to the Folder’s rank than the other agents. It was surprising
that the Folder performed so well, considering that it makes no decisions, and simply
lays down its cards at every decision point. However, in an environment where there are
many aggressive players, such as automatic raisers and callers, many of these players
will eliminate each other early, giving better ranks to conservative players. The better
ranks of our best agents tell us that they can survive the over-active early hands until the
aggressive players are eliminated, and then succeed against agents that actually make
decisions.

To ensure that the original fitness function was appropriate, we evaluated agents
evolved with alternate fitness functions, as described in Sect. 4.5. We see the results
of such agents in Fig. 2. Compared with the agents evolved without halls of fame or
co-evolution, the alternate fitness functions do not perform as well. The rank obtained
by the baseline agent in its duplicate table tournaments was 4.73, which was almost a
full rank higher than the 5.48 obtained by the MeanMoney agent, and the 5.49 achieved
when the HandsWon algorithm was weighted at 80%. These two rankings were the

Fig. 2. Results of alternate fitness functions

46 G. Nicolai and R. Hilderman

best obtained by the alternate fitness functions, and were still nowhere near the rank
achieved by the baseline agent. It would appear that the tournament selection fitness
function is the most appropriate function, as was hypothesized.

6 Evolutionary Progress

In the previous section, the best agents from the 500th generation of evolution were cho-
sen to play in the duplicate table tournaments, based upon the assumption that agents
were improving from generation to generation. To test this assumption, we developed
evolutionary progress tournaments. In an evolutionary progress tournament, the best
agent from each generation of an evolutionary trial was inserted into a playing popula-
tion, which would then play 10,000 tournaments, and their average ranking was calcu-
lated. If every agent was exactly equal, each would receive an average ranking of 250,
namely half of the number of agents competing. We defined evolutionary progress as
either maintenance or improvement of skill level from one generation to the next. As
the ranking becomes lower, the agents are improving. The best evolutionary systems
would see a monotonic decrease from generation 1 to generation 500.

First, we examine the evolutionary progress of the baseline agents, shown in Fig.
3. These results are for the agents evolved with no evolutionary counter-measures. In
Fig. 3, we see that although the final generation does have a better rank than the first
generation, the graph is not monotonic. At approximately generation 50, the system
hits its best point, and after staying there for a few generations, decreases in skill until
about generation 200, where the skill level of the agents finally converges at about 250.
Section 4.6 introduced the idea of evolutionary forgetting, and suggested that counter-
measures such as a hall of fame and co-evolution might fix such a problem.

Figure 4 shows the evolutionary progress graph for the agents evolved with a hall of
fame, but no co-evolution. In Sect. 5, it was determined that these were the best overall
agents of all the ones that were evolved. In 4, we see a different picture than that ob-
tained in the graph of the agents evolved without countermeasures. Note that although
the ranks in this graph are higher than those in Fig. 3, the agents are actually more
skilled; the ranks in Fig 4 have no correlation to those in 3. There is a slight decrease
in skill around generation 100, but after generation 200, the agents are generally de-
creasing. Furthermore, by generation 400, the skill levels become much less noisy, and
we still see an improvement in agents right up to generation 500, suggesting that the

200

220

240

260

280

300

320

340

360

0 100 200 300 400 500

Generation

R
an

ki
n

g

Baseline

Fig. 3. Evolutionary Progress for Baseline Agents

Countering Evolutionary Forgetting in No-Limit Texas Hold’em Poker Agents 47

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400 450

Generation

R
an

ki
n

g

LargeHOF

Fig. 4. Evolutionary Progress for Hall of Fame Agents

agents might even improve beyond their current skill level. It would appear that the Hall
of Fame is at least partially forcing agents to find better strategies, rather than simply
recycle old ones.

7 Conclusions

Our algorithms present a new way of creating agents for No-Limit Texas Hold’em
Poker. Previous agents have been concerned with the Limit variant of Texas Hold’em,
and have been centered around simulation [4,5] and game theoretical methods [11,18].
Our approach is to evolve agents that learn to play No-Limit Texas Hold’em through
experience, with good agents being rewarded, and poor agents being discarded. Evolu-
tionary neural networks allow good strategies to be discovered, without providing much
apriori knowledge of the game state. By making minute changes to the networks, alter-
native solutions are explored, and agents discover a guided path through an enormous
search space. Furthermore, it was determined that while co-evolution and halls of fame
had a constructive influence on the results, alternate fitness functions did not.

References

1. Barone, L., While, L.: An adaptive learning model for simplified poker using evolution-
ary algorithms. In: Proceedings of the Congress on Evolutionary Computation, vol. 1,
pp. 153–160 (1999)

2. Beattie, B., Nicolai, G., Gerhard, D., Hilderman, R.: Pattern classification in No-Limit Poker:
A head start evolutionary approach. In: Canadian Conference on AI, pp. 204–215 (2007)

3. Billings, D., Papp, D., Pena, L., Schaeffer, J., Szafron, D.: Using selective-sampling simu-
lations in poker. In: AAAI Spring Symposium on Search Techniches for Problem Solving
Under Uncertainty and Incomplete Information (1999)

4. Billings, D., Davidson, A., Schaeffer, J., Szafron, D.: The challenge of poker. Artificial In-
telligence 134, 201–240 (2002)

5. Billings, D., Burch, N., Davidson, A., Holte, R., Schaeffer, J., Schauenberg, T., Szafron, D.:
Approximating game-theoretic optimal strategies for full-scale poker. In: Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (2003)

6. Billings, D.: Algorithms and Assessment in Computer Poker. PHD Dissertation. University
of Alberta (2006)

7. Booker, L.: A No Limit Texas Hold’em poker playing agent. Master’s Thesis. University of
London (2004)

48 G. Nicolai and R. Hilderman

8. Campbell, M., Hoane, A., Hsu, F.: Deep Blue. Artificial Intelligence 134, 57–83 (2002)
9. Donninger, C., Lorenz, U.: The Hydra project Xcell. Journal 53, 94–97 (2005)

10. Hauptman, A., Sipper, M.: GP-EndChess: Using genetic programming to evolve chess
endgame players, booktitle. In: Proceedings of the 8th European Conference on Genetic
Programming (2005)

11. Johanson, M.: Robust strategies and counter-strategies: Building a champion level computer
poker player. Master’s thesis. University of Alberta (2007)

12. Kendall, G., Whitwell, G.: An evolutionary approach for tuning of a chess evaluation function
using population dynamics. In: Proceedings of the 2001 IEEE Congress on Evolutionary
Computation, pp. 995–1002 (2001)

13. Lubberts, A., Miikkulainen, R.: Co-evolving a go-playing neural network. In: Proceedings of
the GECCO-01 Workshop on Coevolution: Turning Adaptive Algorithms Upon Themselves
(2001)

14. Pollack, J., Blair, A.: Co-evolution in the successful learning of backgammon strategy. Ma-
chine Learning 32, 225–240 (1998)

15. Rosin, C.: Coevolutionary search among adversaries. PHD Dissertation. University fo Cali-
fornia, San Diego (1997)

16. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM Journal of
Research and Development (1959)

17. Schaeffer, J., Cublerson, J., Treloar, N., Knight, B., Lu, P., Szafron, D.: A word championship
caliber checkers program. Artificial Intelligence 53, 273–289 (1992)

18. Schauenberg, T.: Opponent modelling and search in poker. Master’s thesis. University of
Alberta (2006)

19. Tesauro, G.: Programming backgammon using self-teaching neural nets. Artificial Intelli-
gence 134, 181–199 (2002)

20. Thrun, S.: Learning to play the game of chess. Advances in Neural Information Processing
Systems 7, 1069–1076 (1995)

Model Regularization in Coevolutionary Architectures
Evolving Straight Line Code

César L. Alonso1, José Luis Montaña2, Cruz Enrique Borges2,
Marina de la Cruz Echeandı́a3, and Alfonso Ortega de la Puente3

1 Centro de Inteligencia Artificial, Universidad de Oviedo,
Campus de Gijón, 33271 Gijón, Spain

calonso@aic.uniovi.es
2 Departamento de Matemáticas, Estadı́stica y Computación

Universidad de Cantabria, 39005 Santander, Spain
cruz.borges@alumnos.unican.es, montanjl@unican.es
3 Departamento de Ingenierı́a Informática, Escuela Politécnica Superior

Universidad Autónoma de Madrid, Madrid, Spain
{marina.cruz,alfonso.ortega}@uam.es

Abstract. Frequently, when an evolutionary algorithm is applied to a population
of symbolic expressions, the shapes of these symbolic expressions are very differ-
ent at the first generations whereas they become more similar during the evolving
process. In fact, when the evolutionary algorithm finishes most of the best sym-
bolic expressions only differ in some of its coefficients. In this paper we present
several coevolutionary strategies of a genetic program that evolves symbolic ex-
pressions represented by straight line programs and an evolution strategy that
searches for good coefficients. The presented methods have been applied to solve
instances of symbolic regression problem, corrupted by additive noise. A main
contribution of the work is the introduction of a fitness function with a penalty
term, besides the well known fitness function based on the empirical error over
the sample set. The results show that in the presence of noise, the coevolutionary
architecture with penalized fitness function outperforms the strategies where only
the empirical error is considered in order to evaluate the symbolic expressions of
the population.

Keywords: Genetic Programming, Straight-line Programs, Coevolution,
Symbolic Regression, Penalty term.

1 Introduction

Coevolutionary strategies can be considered as an interesting extension of the tradi-
tional evolutionary algorithms. Basically, coevolution involves two or more evolution-
ary processes with interactive performance. Initial ideas on modelling coevolutionary
processes were formulated in [1], [2] or [3]. A coevolutionary strategy consists in the
evolution of separate populations using their own evolutionary parameters (i.e. geno-
type of the individuals, recombination operators, ...) but with some kind of interaction
between these populations. Two basic classes of coevolutionary algorithms have been

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 49–65.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

50 C.L. Alonso et al.

developed: competitive algorithms and cooperative algorithms. In the first class, the fit-
ness of an individual is determined by a series of competitions with other individuals.
Competition takes place between the partial evolutionary processes coevolving and the
success of one implies the failure of the other (see, for example, [4]). On the other hand,
in the second class the fitness of an individual is determined by a series of collaborations
with other individuals from other populations.

The standard approach of cooperative coevolution is based on the decomposition
of the problem into several partial components. The structure of each component is
assigned to a different population. Then the populations are evolved in isolation from
one another but in order to compute the fitness of an individual from a population, a
set of collaborators are selected from the other populations. Finally a solution of the
problem is constructed by means of the combination of partial solutions obtained from
the different populations. Some examples of application of cooperative coevolutionary
strategies for solving problems can be found in [5] and [6].

This paper focuses on the design and the study of several coevolutionary strategies
between Genetic Programming (GP) and Evolutionary Algorithms (EA). Although in
the cooperative systems the coevolving populations usually are homogeneous (i.e. with
similar genotype representations), in this case we deal with two heterogeneous popu-
lations: one composed by elements of a structure named Straight Line Program (SLP)
that represents programs and the other one composed by vectors of real constants. The
coevolution between GP and EA was applied with promising results in [7]. In that case
a population of trees and another one of fixed length strings were used.

We have applied the strategies to solve instances of symbolic regression problem.
The problem of symbolic regression consists in finding in symbolic form a function
that fits a given finite sample set of data points. More formally, we consider an input
space X = IRn and an output space Y = IR. We are given a set of m pairs sample
z = (xi, yi)1≤i≤m. The goal is to construct a function f : X → Y which predicts the
value y ∈ Y from a given x ∈ X. The empirical error of a function f with respect to z
is:

εz(f) =
1
m

m∑
i=1

(f(xi)− yi)2 (1)

which is known as the mean square error (MSE).
In this work we have considered noisy regression problem instances with additive

gaussian noise. The procedure to construct such kind of problem instances is the fol-
lowing: let g : X → Y be the target function used for obtaining the sample points.
Then the set z = (xi, yi)1≤i≤m verifies: yi = g(xi) + ε where ε is independent and
identically distributed (i.i.d.) zero mean random error. Although we provide a sample
set with additive noise, the objective is to learn the function g. In our coevolutionary
processes for finding the function, the GP will try to guess the shape of the function
whereas the EA will try to adjust the coefficients of the function. The motivation is
to exploit the following intuitive idea: once the shape of the symbolic expression rep-
resenting some optimal function has been found, we try to determine the best values
of the coefficients appearing in the symbolic expression. One simple way to exemplify
this situation is the following. Assume that we have to guess the equation of a geometric
figure. If somebody (for example a GP algorithm) tells us that this figure is a quartic

Model Regularization in Coevolutionary Architectures 51

function, it only remains for us to guess the appropriate coefficients. This point of view
is not new and it constitutes the underlying idea of many successful methods in Ma-
chine Learning that combine a space of hypotheses with least square methods. Previous
work in which constants of a symbolic expression have been effectively optimized has
also dealt with memetic algorithms, in which classical local optimization techniques as
gradient descent [8], linear scaling [9] or other methods based on diversity measures
[10] were used.

The paper is organized as follows: section 2 provides the definition of the structure
that will represent the programs and also includes the details of the designed GP al-
gorithm. In section 3 we describe the EA for obtaining good values for the constants.
Section 4 presents the cooperative coevolutionary architecture used for solving sym-
bolic regression problem instances. In section 5 an experimental comparative study of
the performance of our coevolutionary strategies is done. Finally, section 6 draws some
conclusions.

2 GP with Straight Line Programs

In the GP paradigm, the evolved computer programs are usually represented by directed
trees with ordered branches [11]. We use in this paper a structure for representing sym-
bolic expressions by means of programs with straight line code. This structure is called
straight line program (SLP). A SLP consists of a finite sequence of computational as-
signments where each assignment is obtained by applying some function to a set of ar-
guments that can be variables, constants or pre-computed results. The SLP structure can
describe complex computable functions using less amount of computational resources
than GP-trees, as they can reuse previously computed results during the evaluation pro-
cess. Now follows the formal definition of this structure.

Definition 1. Let F = {f1, . . . , fn} be a set of functions, where each fi has arity ai,
1 ≤ i ≤ n, and let T = {t1, . . . , tm} be a set of terminals. A straight line program
(SLP) over F and T is a finite sequence of computational instructions Γ = {I1, . . . , Il},
where for each k ∈ {1, . . . , l}, Ik ≡ uk := fjk

(α1, . . . , αajk
); with fjk

∈ F, αi ∈ T
for all i if k = 1 and αi ∈ T ∪ {u1, . . . , uk−1} for 1 < k ≤ l.

The set of terminals T satisfies T = V ∪C where V = {x1, . . . , xp} is a finite set of
variables and C = {c1, . . . , cq} is a finite set of constants. The number of instructions
l is the length of Γ.

Observe that a SLP Γ = {I1, . . . , Il} is identified with the set of variables ui that
are introduced by means of the instructions Ii. Thus the SLP Γ can be denoted by
Γ = {u1, . . . , ul}. Each of the non-terminal variables ui represents an expression over
the set of terminals T constructed by a sequence of recursive compositions from the set
of functions F.

An output set of a SLP Γ = {u1, . . . , ul} is any set of non-terminal variables of
Γ , that is O(Γ) = {ui1 , . . . , uit}. Provided that V = {x1, . . . , xp} ⊂ T is the set of
terminal variables, the function computed by Γ, denoted by ΦΓ : Ip → Ot, is defined
recursively in the natural way and satisfies ΦΓ (a1, . . . , ap) = (b1, . . . , bt), where bj

stands for the value of the expression over V of the non-terminal variable uij when we
substitute the variable xk by ak; 1 ≤ k ≤ p.

52 C.L. Alonso et al.

Example 1. Let F be the set given by the three binary standard arithmetic operations,
F = {+,−, ∗} and let T = {1, x1, x2} be the set of terminals. In this situation any
SLP over F and T is a finite sequence of instructions where each instruction represents
a polynomial in two variables with integer coefficients. If we consider the following
SLP Γ of length 5 with output set O(Γ) = {u5}:

Γ ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x1 + 1
u2 := u1 ∗ u1

u3 := x2 + x2

u4 := u2 ∗ u3

u5 := u4 − u3

(2)

the function computed by Γ is the polynomial

ΦΓ = 2x2(x1 + 1)2 − 2x2

Straight line programs have a large history in the field of Computational Algebra. A par-
ticular class of straight line programs, known in the literature as arithmetic circuits, con-
stitutes the underling computation model in Algebraic Complexity Theory [12]. They
have been used in linear algebra problems [13], in quantifier elimination [14] and in al-
gebraic geometry [15]. Recently, SLP’s have been presented as a promising alternative
to the trees in the field of Genetic Programming, with a good performance in solving
some regression problem instances [16]. A SLP Γ = {u1, . . . , ul} over F and T with
output set O(Γ) = {ul} could also be considered as a grammar with T ∪ F as the set
of terminals, {u1, . . . , ul} as the set of variables, ul the start variable and the instruc-
tions of Γ as the rules. This grammar only generates one word that is the expression
represented by the slp Γ. Note that this is not exactly Grammar Evolution (GE). In GE
there is a user specified grammar and the individuals are integer strings which code for
selecting rules from the provided grammar. In our case each individual is a context-free
grammar generating a context-free language of size one.

Hence we will work with SLP’s over a set F of functions and a set T of terminals.
The elements of T that are constants, i.e. C = {c1, . . . , cq}, they are not fixed numeric
values but references to numeric values. Hence, by specializing each ci to a fixed value
we obtain a specific SLP whose corresponding semantic function is a candidate solution
for the problem instance.

For constructing each individual Γ of the initial population, we adopt the following
process: for each instruction uk ∈ Γ first an element f ∈ F is randomly selected and
then its arguments are also randomly chosen in T ∪ {u1, . . . , uk−1} if k > 1 and in T
if k = 1. We will consider populations with individuals of equal length L, where L is
selected by the user. In this sense, note that given a SLP Γ = {u1, . . . , ul} and L ≥ l,
we can construct the SLP Γ ′ = {u1, . . . , ul−1, u

′
l, . . . , u

′
L−1, u

′
L}, where u′

L = ul and
u′

k, for k ∈ {l, . . . , L− 1}, is any instruction. If we consider the same output set for Γ
and Γ ′ is easy to see that they represent the same function, i.e. ΦΓ ≡ ΦΓ ′ .

Assume a symbolic regression problem instance with a sample set z = (xi, yi) ∈
IRn × IR, 1 ≤ i ≤ m, and let Γ be a specific SLP over F and T obtained by means
of the specialization of the constant references C = {c1, . . . , cq}. In this situation, the

Model Regularization in Coevolutionary Architectures 53

empirical error of Γ with respect to the sample set of data points z is defined by the
following expression:

εz(ΦΓ) =
1
m

m∑
i=1

(ΦΓ (xi)− yi)2 (3)

We will use the following recombination operators for the SLP structure.

2.1 SLP-Crossover

Let Γ = {u1, . . . , uL} and Γ ′ = {u′
1, . . . , u′

L} be two SLP’s over F and T. For the
construction of an offspring, first a position k in Γ is randomly selected; 1 ≤ k ≤ L.
Let Suk

= {uj1 , . . . , ujm} be the set of instructions of Γ involved in the evaluation
of uk. Assume that j1 < . . . < jm. Next we randomly select a position t in Γ ′ with
m ≤ t ≤ L and we substitute in Γ ′ the subset of instructions {u′

t−m+1, . . . , u
′
t} by

the instructions of Γ in Suk
suitably renamed. The renaming function R applied to

the elements of Suk
is defined as R(uji) = u′

t−m+i, for all i ∈ {1, . . . , m}. With this
process we obtain the first offspring of the crossover operation. For the second offspring
we analogously repeat this strategy, but now selecting first a position k′ in Γ ′.

The underlying idea of the SLP-crossover is to interchange subexpressions between
Γ and Γ ′. The following example illustrates this fact.

Example 2. Let us consider two SLP’s:

Γ ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x + y
u2 := u1 ∗ u1

u3 := u1 ∗ x
u4 := u3 + u2

u5 := u3 ∗ u2

Γ ′ ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x ∗ x
u2 := u1 + y
u3 := u1 + x
u4 := u2 ∗ x
u5 := u1 + u4

If k = 3 then Su3 = {u1, u3} (in bold font). t must be selected in {2, . . . , 5}. Assumed
that t = 3, then the first offspring is:

Γ1 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x ∗ x
u2 := x + y
u3 := u2 ∗ x
u4 := u2 ∗ x
u5 := u1 + u4

that contains the subexpression of Γ represented by u3, and the rest of its instructions
are taked from Γ ′. For the second offspring, if the selected position in Γ ′ is k′ = 4,
then Su4 = {u1, u2, u4}. Now if t′ = 5, the second offspring is:

Γ2 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x + y
u2 := u1 ∗ u1

u3 := x ∗ x
u4 := u3 + y
u5 := u4 ∗ x

54 C.L. Alonso et al.

2.2 Mutation

When mutation is applied to a slp Γ, the first step consists in selecting an instruction
ui ∈ Γ at random. Then a new random selection is made within the arguments of the
function f ∈ F that appears in the instruction ui. Finally the selected argument is
substituted by another one in T ∪ {u1, . . . , ui−1} randomly chosen.

As it is well known, the reproduction operation applied to an individual returns an
exact copy of the individual.

2.3 Fitness Functions

In general, the real error of a model f as a solution of some symbolic regression problem
is written as:

ε(f) =
∫

Q(x, f ; y)dμ, (4)

where Q measures some notion of loss between f(x) and y, and μ is the distribution
from which examples are obtained. In our case we take Q(x, f ; y) = (f(x) − y)2.
Nevertheless, the starting point of Statistical Learning Theory is that we might not know
μ. At this point one replace the theoretical real error ε(f) by the empirical error that is
estimated from the finite sample set (equation 1); and GP procedure can use as fitness
function the empirical error to find the model that minimizes it.

However, given a sample data set obtained by means of the observation, it could
seem that the best model might fit exactly the data, but this situation would lead to a
poor performance on unseen instances and in the presence of noise. Hence, the general
idea is to look for a model as simple as possible that fits well the data set. This raises
the question of how to measure the complexity of a model. There is no universal way
to measure the complexity of the model and the choice of a specific measure depends
on the problem at hand. Usually, for tree structures, a measure for the complexity is
the height or the width of the tree. For our structure of SLP that represents the model
and motivated by the concept of degree for the case of polynomials, we consider the
number of non-scalar instructions in order to measure the complexity. The non-scalar
instructions are those in which the selected operator in F is different from {+,−}.

Analytic model selection criteria estimate the real error displayed in equation 4 as
a function of the empirical error with a penalty term related with the measure of the
model complexity. This function usually takes the following form:

ε(f) � εm(f) ∗ pen(h, m); ∗ ∈ {+, ·} (5)

where f is the model, h is the model complexity and m is the size of the sample set.
Formally, the above expression arises from a previous generalization error bound of the
same type. The results by Vapnik ([17]) state the following error bound that does not
depend on the distribution μ.

ε(f) ≤ εm(f) +

√
h(log(2m/h) + 1)− log(η/4)

m
(6)

Model Regularization in Coevolutionary Architectures 55

where η is the probability that bound is violated and the considered complexity measure
h is the so called Vapnik-Chervonenkis (VC) dimension. This penalty term is known as
the VC confidence.

The Vapnik-Chervonenkis dimension (VC-dimension) of a family H of models,
functions or learning machines, represented by a class of programs, is a measure of
the capacity of the family as classifier. In a binary classification problem, an instance x
is classified by a label y ∈ {−1, 1}. Given a vector of n instances, (x1, . . . , xn) there
are 2n possible classification tuples (y1, . . . , yn), with yi ∈ {−1, 1}. If for each classi-
fication tuple (y1, . . . , yn) there is a classifier f ∈ H with f(xi) = yi, for 1 ≤ i ≤ n,
we say that (x1, . . . , xn) is shuttered by the family H. The VC-dimension of H is de-
fined as the maximum number n of points that can be shuttered by H. Thus, if the
VC-dimension is h this means that there exists at least some set of h points which can
be shuttered. For instance, in binary classification, the VC-dimension of lines in the
plane is 3, because there exists a set of 3 points in the plane such that for each classi-
fication tuple we can draw a line that keeps the points classified by -1 on one side and
the points classified by 1 on the other side. This is not possible for any set of 4 points.

Some results about the relationship between the VC-dimension of a family of SLP’s
and the number of non-scalar instructions can be found in [18] or [19]. In all cases there
is an upper bound of the VC-dimension that is polynomial in the number of non-scalar
instructions.

In our case, for practical use of equation 6 we adopt the following formula as a new
fitness function (see [20] or [17] for the derivation of this formula):

εm(f)

(
1−

√
p− p ln p +

ln m

2m

)−1

(7)

In the above equation, p = h
m and h stands for the VC-dimension of the familyH that

contains f. As an estimator of the VC-dimension h we will consider the number of
non-scalar instructions of the SLP Γ that represents f (i.e. f ≡ ΦΓ)

3 The EA to Adjust the Constants

In this section we describe an EA that provides good values for the numeric terminal
symbols C = {c1, . . . , cq} appearing in the populations of SLP’s that evolve during the
GP process. Assume a population P = {Γ1, . . . , ΓN} constituted by N SLP’s over F
and T = V ∪ C. Let [a, b] ⊂ IR be the search space for the constants ci, 1 ≤ i ≤ q.
In this situation, an individual c is represented by a vector of floating point numbers in
[a, b]q.

There are several ways of defining the fitness of a vector of constants c, but in all
of them the current population P of SLP’s that evolves in the GP process is needed.
So, given a sample set z = (xi, yi) ∈ IRn × IR, 1 ≤ i ≤ m, that defines a symbolic
regression instance, and given a vector of values for the constants c = (c1, . . . , cq), we
could define the fitness of c as follows:

FEA
z (c) = min{Fz(Γ c

i); 1 ≤ i ≤ N} (8)

56 C.L. Alonso et al.

where Fz(Γ c
i) is computed by equation 7 and represents the fitness of the SLP Γi after

the specialization of the references in C to the corresponding real values of c.
Observe that when the fitness of c is computed by means of the above formula, the

GP fitness values of a whole population of SLP’s are also computed. This could be a lot
of computational effort when the size of both populations increases. In order to prevent
the above situation new fitness functions for c can be considered, where only a subset of
the population P of the SLP’s is evaluated. Previous work in cooperative coevolution-
ary architectures suggests two basic methods for selecting the subset of collaborators
[5]. The first one in our case consists in the selection of the best SLP of the current
population P corresponding the GP process. The second one selects two individuals
from P : the best one and a random SLP.

3.1 Crossover

We will use arithmetic crossover [21]. Thus, in our EA, the crossover of two individuals
c1 and c2 ∈ [a, b]q produces two offsprings c′1 and c′2 which are linear combinations of
their parents.

c′1 = λ · c1 + (1− λ) · c2; c′2 = λ · c2 + (1− λ) · c1 (9)

In our implementation we randomly choose λ ∈ (0, 1) for each crossover operation.

3.2 Mutation

A non-uniform mutation operator adapted to our search space [a, b]q, which is convex,
is used [22]. The following expressions define our mutation operator, with p = 0.5.

ct+1
k = ct

k + Δ(t, b− ct
k), with probability p (10)

and
ct+1
k = ct

k −Δ(t, ct
k − a), with probability 1− p (11)

k = 1, . . . , q and t is the current generation. The function Δ is defined as Δ(t, y) =
y · r · (1 − t

T) where r is a random number in [0,1] and T represents the maximum
number of generations. Note that function Δ(t, y) returns a value in [0, y] such that the
probability of obtaining a value of Δ(t, y) close to zero increases as t increases. Hence
the mutation operator searchs the space uniformly initially (when t is small), and very
locally at later stages.

In our EA we will use q-tournament as the selection procedure.

4 The Coevolutionary Architecture

In our case the EA for tuning the constants is subordinated to the main GP process with
the SLP’s. Hence, several collaborators are used during the computation of the fitness
of a vector of constants c, whereas only the best vector of constants is used to compute
the fitness of a population of SLP’s.

Model Regularization in Coevolutionary Architectures 57

The cooperative coevolutionary strategy begins with the initialization of both popu-
lations. First the fitness of the individuals of the SLP’s population are computed con-
sidering a randomly selected vector of constants as collaborator. Then alternative turns
of both cooperative algorithms are performed. We will consider a turn as the isolated
and uninterrupted evolution of one population for a fixed number of generations. We
display below the algorithm describing this cooperative coevolutionary architecture:

begin
Pop_slp := initialize_GP-slp_population
Pop_const := initialize_EA-constants_population
Const_collabor := random(Pop_const)
evaluate(Pop_slp,Const_collabor)
While (not termination condition) do

Pop_slp := turn_GP(Pop_slp,Const_collabor)
Collabor_slp := {best(Pop_slp),

random(Pop_slp)}
Pop_const := turn_EA(Pop_const,Collabor_slp)
Const_collabor := best(Pop_const)

end

5 Experimentation

5.1 Experimental Settings

The experimentation consists in the execution of the proposed cooperative coevolu-
tionary strategies, considering several types of target functions. We have corrupted the
sample set by additive gaussian noise of level 1. Two experiments were performed.

For the first experiment two groups of target functions are considered: the first group
includes 300 randomly generated univariate polynomials whose degrees are bounded
by 5 and the second group consists of 300 target functions represented by randomly
generated SLP’s over F = {+,−, ∗, /, sqrt, sin, cos, ln, exp} and T = {x, c}, c ∈
[−1, 1], with length 16. We will name this second group “target SLP’s”.

A second experiment is also performed solving symbolic regression problem in-
stances associated to the following two multivariate functions:

f1(x, y, z) = (x + y + z)2 + 1 (12)

f2(x, y) = x y + sin((x− 1) (y + 1)) (13)

For every execution the noisy sample set is constituted by 30 points. In the case of the
functions that belong to the first experiment, the sample points are in the range [−1, 1].
For the function f1 the points are in the range [−100, 100] for all variables. Finally
function f2 varies in the range [−3, 3] along each axis.

The individuals are SLP’s over F = {+,−, ∗, /, sqrt} in the executions related to
the 300 generated polynomials and to the function f1. The function set F is incre-
mented with the operation sin for the problem instance associated to f2 and also with
the operations cos, ln and exp for the group of target SLP’s.

58 C.L. Alonso et al.

Besides the variables, the terminal set also includes two references to constants for
the polynomials and only one reference to a constant for the rest of the target functions.
The constants take values in [−1, 1].

The particular settings for the parameters of the GP process are the following: pop-
ulation size: 200, crossover rate: 0.9, mutation rate: 0.05, reproduction rate: 0.05, 2-
tournament as selection procedure and maximum length of the SLP’s: 16. In the case
of the EA that adjusts the constants, the population includes 100 vector of constants,
crossover rate: 0.9, mutation rate: 0.1 and also 2-tournament as selection procedure.
For all the coevolutionary strategies, the computation of the fitness of an SLP during
the GP process will use the best vector of constants as collaborator, whereas in order to
compute the fitness of a vector of constants in the EA process, we consider a collabo-
rator set containing the best SLP of the population and another one randomly selected.
Both processes are elitist and a generational replacement between populations is used.
But in the construction of the new population, the offsprings generated do not neces-
sarily replace their parents. After a crossover we have four individuals: two parents and
two offsprings. We select the two best individuals with different fitness values. Our mo-
tivation is to prevent premature convergence and to maintain diversity in the population.

We compare the standard GP-slp strategy without coevolution with two coevolution-
ary strategies that follow the general architecture described in section 4. We consider
two fitness functions for the populations of SLP’s: The empirical error F1 defined by
equation 1 and the fitness with a penalty term F2 described by equation 7

The first coevolutionary strategy, named Turns GP-EA (TGPEA), consists in the ex-
ecution of alternative turns of each cooperative algorithm. The second strategy executes
first a large turn of the GP algorithm with the SLP’s and then follows the execution of
the EA related with the constants until termination condition was reached. This strategy
is named Separated GP-EA (SGPEA). In the case of TGPEA we have considered a GP
turn as the evolution of the population of SLP’s during 25 generations. On the other
hand, an EA turn consists of 5 generations in the evolution of the population related to
the constants. In SGPEA strategy we divide the computational effort between the two
algorithms: 90% for GP and 10% for EA. The computational effort (CE) is defined as
the total number of basic operations that have been computed up to that moment. We
will denote the use of each fitness function, adding the suffix F1 or F2 to the name of
the corresponding strategy.

In the first experiment one execution for each strategy has been performed over the 600
generated target functions. On the other hand, in the second experiment we have executed
all strategies 300 times for each of the two multivariate functions f1, and f2. For all the
executions the evolution finished after 107 basic operations have been computed.

5.2 Experimental Results

Frequently, when different Genetic Programming strategies for solving symbolic re-
gression instances are compared, the quality of the final selected model is evaluated
by means of its corresponding fitness value over the sample set. But with this quality
measure it is not possible to distinguish between good executions and overfitting execu-
tions. Then it makes sense to consider another new set of unseen points without noise,
called the validation set, in order to give a more appropriate indicator of the quality of

Model Regularization in Coevolutionary Architectures 59

the selected model. So, let (xi, yi)1≤i≤ntest a validation set for the target function g(x)
(i.e. yi = g(xi)) and let f(x) be the model estimated from the sample set. Then the
validation fitness vfntest is defined by the mean square error (MSE) between the values
of f and the true values of the target function g over the validation set:

vfntest =
1

ntest

ntest∑
i=1

(f(xi)− yi)2 (14)

An execution will be considered successful if the final selected model f has validation
fitness less than 10% of the range of the sample set z = (xi, yi)1≤i≤30. That is:

vfntest ≤ 0.1
∣∣ max
1≤i≤30

yi − min
1≤i≤30

yi

∣∣ (15)

On the other hand, an execution will be spurious if the validation fitness of the selected
model verifies:

vfntest ≥ 1.5|Q3 −Q1| (16)

Were Q1 and Q3 represent, respectively, the first and third quartile of the empirical
distribution of the executions in terms of the validation fitness. The spurious executions
will be removed from the experiment.

In what follows we shall present a statistical comparative study about the performance
of the described coevolutionary strategies. For both experiments we will show the em-
pirical distribution of the non-spurious executions as well as the values of the mean, vari-
ance, median, worst and best execution in terms of the validation fitness. We also present
statistical hypothesis tests in order to determine if some strategy is better than the others.
We consider a validation set of 200 new and unseen points randomly generated.

Experiment 1. We shall denote the polynomial set as PR
5 [X] and the set of target

SLP’s over F and T as SLP (F, T). Table 1 displays for each strategy the spurious and
success rates of the executions. Note that the success rate is computed after removing
the spurious executions.

Table 1. Spurious and success rates for each strategy and group of target functions

PR
5 [X] SLP (F, T)

spurious success spurious success

TGPEAF1 13% 6% 20% 13%
SGPEAF1 13% 5% 20% 17%
GP − slpF1 13% 4% 22% 15%
TGPEAF2 7% 3% 19% 13%
SGPEAF2 5% 4% 20% 10%
GP − slpF2 7% 2% 20% 11%

Figure 1 presents the empirical distribution of the executions over the two groups
of generated target functions. This empirical distribution is displayed using standard
box plot notation with marks at best execution, 25%, 50%, 75% and worst execution,

60 C.L. Alonso et al.

GP–slpF1 TGPGAF1 SGPGAF1 GP–slpF2 TGPGAF2 SGPGAF2

0
.0

0.
2

0
.4

0.
6

PR
5 [X]

GP–slpF1 TGPGAF1 SGPGAF1 GP–slpF2 TGPGAF2 SGPGAF2

0
.0

1
.0

2
.0

SLP (F, T)

Fig. 1. Empirical distributions of the non-spurious executions

considering the validation fitness of the selected model. Table 2 specifies the values of
the validation fitness for the worst, median and best execution, as well as the means and
variances. Note that for these two groups of functions one execution per target function
was performed.

Table 2. Minimal, median and maximal values of the validation fitness for each method and group
of target function. Also values of means and variances are showed.

PR
5 [X] min med max

TGPEAF1 8.16 · 10−3 0.17 0.7
SGPEAF1 1.11 · 10−2 0.17 0.66
GP − slpF1 1.6 · 10−2 0.16 0.63
TGPEAF2 8.18 · 10−3 0.15 0.63
SGPEAF2 9.87 · 10−3 0.16 0.59
GP − slpF2 6.35 · 10−3 0.16 0.56
SLP (F, T) min med max

TGPEAF1 3.44 · 10−3 0.23 2.63
SGPEAF1 0 0.19 2.22
GP − slpF1 0 0.21 2.56
TGPEAF2 0 0.11 1.47
SGPEAF2 0 9.29 · 10−2 1.52
GP − slpF2 0 0.11 1.52

PR
5 [X] μ σ

TGPEAF1 0.21 0.14
SGPEAF1 0.19 0.13
GP − slpF1 0.19 0.12
TGPEAF2 0.19 0.13
SGPEAF2 0.19 0.12
GP − slpF2 0.19 0.13
SLP (F, T) μ σ

TGPEAF1 0.37 0.44
SGPEAF1 0.32 0.35
GP − slpF1 0.34 0.43
TGPEAF2 0.23 0.3
SGPEAF2 0.21 0.29
GP − slpF2 0.22 0.27

Model Regularization in Coevolutionary Architectures 61

Analyzing the information given by the above tables and figure we could deduce the
following facts:

1. The penalized fitness F2 seems to produce less spurious executions but also less
success executions. This is more clear for the case of the polynomials. Hence we
can say that F2 produces executions more homogeneous. On the other hand, the
success rates are low because we have corrupted the sample set with a noise level
of 1. Considering noise levels of 0.1 and 0.2, the success rates are for all cases
above 75%.

2. For the group of polynomials, the empirical distributions of the non-spurious runs
are very similar for all the studied strategies. Nevertheless, for the target SLP’s,
probably the coevolutionary strategies with the penalized fitness are slightly better
than the others. Observe in figure 1 that these strategies have the corresponding
boxes smaller and a little below than the other methods.

3. The values displayed in table 2 permit to obtain the same conclusions as those
presented above. However all strategies perform quite well over the target functions
of this experiment.

With the objective of justify the comparative quality of the studied strategies we have
made statistical hypothesis tests between them, which results are showed in table 3.
Roughly speaking, the null-hypothesis in each test with associated pair (i, j) is that
strategy i is not better than strategy j. Hence if value aij of the element (i, j) in table 3
is less than a significance value α, we can reject the corresponding null-hypothesis.

From the results presented in table 3 and with a significance value of α = 0.05, we
can conclude that for the group of polynomials there is not a winner strategy whereas
for the group of target SLP’s the fitness F2 is clearly better than the empirical error
fitness F1.

Table 3. Results of the crossed statistical hypothesis tests about the comparative quality of the
studied strategies

PR
5 [X] TGPEAF1 SGPEAF1 GP − slpF1 TGPEAF2 SGPEAF2 GP − slpF2

TGPEAF1 1 0.91 0.63 0.99 0.76 0.95
SGPEAF1 0.32 1 0.33 0.66 0.84 0.64
GP − slpF1 0.34 0.83 1 0.66 0.81 0.63
TGPEAF2 2.58 · 10−2 0.21 0.12 1 0.47 0.37
SGPEAF2 0.15 0.48 0.22 0.77 1 0.41
GP − slpF2 0.35 0.73 0.42 0.72 0.62 1
SLP (F, T) TGPEAF1 SGPEAF1 GP − slpF1 TGPEAF2 SGPEAF2 GP − slpF2

TGPEAF1 1 0.83 0.62 1 1 1
SGPEAF1 0.17 1 0.6 0.99 1 1
GP − slpF1 0.15 0.58 1 1 1 1
TGPEAF2 3.69 · 10−10 2.14 · 10−7 7.73 · 10−7 1 0.95 0.61
SGPEAF2 1.85 · 10−12 1.48 · 10−9 6.98 · 10−8 0.39 1 0.39
GP − slpF2 9.68 · 10−10 5.33 · 10−7 1.25 · 10−6 0.15 0.71 1

62 C.L. Alonso et al.

Experiment 2. In this experiment, the multivariate functions described by the expres-
sions 12 and 13 have been considered as target functions. We have performed 300 ex-
ecutions for each strategy and function. In the following tables and figures we present
for the new functions the same results as those presented for the target functions of
experiment 1.

In terms of success rates, all methods are of similar performance. The SGPEA strat-
egy, with both fitness functions, seems to be better than the others. Observing figure 2
we can confirm that for the target function f1 the separated method outperforms the
others. Surprisingly, the penalized fitness did not perform very well for the pure GP
strategy nor for the alternative turns strategy. On the other hand, for the target function
f2 is more clear that the penalized fitness is the best one.

Table 4. Spurious and success rates for each strategy and target function

f1(x, y, z) f2(x, y)

spurious success spurious success

TGPEAF1 23% 87% 9% 100%
SGPEAF1 17% 87% 9% 100%
GP − slpF1 25% 86% 11% 100%
TGPEAF2 24% 84% 12% 100%
SGPEAF2 19% 85% 6% 100%
GP − slpF2 23% 84% 10% 100%

GP–slpF1 TGPGAF1 SGPGAF1 GP–slpF2 TGPGAF2 SGPGAF2

0
20

40
60

80

f1(x, y, z)

GP–slpF1 TGPGAF1 SGPGAF1 GP–slpF2 TGPGAF2 SGPGAF2

0
.4

0.
8

1
.2

f2(x, y)

Fig. 2. Empirical distributions of the non-spurious executions

Model Regularization in Coevolutionary Architectures 63

Table 5. Minimal, median and maximal values of the validation fitness for each method and target
function. A table with means and variances is also displayed.

f1(x, y, z) min med max

TGPEAF1 1.51 · 10−6 1 1.58
SGPEAF1 3.6 · 10−6 1 1.78
GP − slpF1 2.48 · 10−5 1 6,64
TGPEAF2 1.54 · 10−5 1 77.25
SGPEAF2 9.67 · 10−8 1 1.18
GP − slpF2 2.71 · 10−6 1 84.16

f2(x, y) min med max

TGPEAF1 0.4 0.65 1.36
SGPEAF1 0.41 0.65 1.36
GP − slpF1 0.26 0.63 1.48
TGPEAF2 0.39 0.52 0.94
SGPEAF2 0.41 0.52 1.02
GP − slpF2 0.39 0.5 0.98

f1(x, y, z) μ σ

TGPEAF1 0.76 0.42
SGPEAF1 0.7 0.48
GP − slpF1 0.91 0.84
TGPEAF2 1.7 6.91
SGPEAF2 0.71 0.45
GP − slpF2 2.79 10.83

f2(x, y) μ σ

TGPEAF1 0.69 0.21
SGPEAF1 0.69 0.21
GP − slpF1 0.7 0.22
TGPEAF2 0.56 0.12
SGPEAF2 0.58 0.14
GP − slpF2 0.56 0.13

Finally, as it was done in experiment 1, we have made for the three functions the
crossed statistical hypothesis tests between all pairs of the considered strategies and
the results are showed in table 6. Considering a significant value α = 0.05, SGPEA is
confirmed as the best strategy for target function f1 and fitness F2 is clearly better for
target function f2.

Table 6. Results of the crossed statistical hypothesis tests

f1(x, y, z) TGPEAF1 SGPEAF1 GP − slpF1 TGPEAF2 SGPEAF2 GP − slpF2

TGPEAF1 1 0.88 0.25 0.26 0.52 0.36
SGPEAF1 2.54 · 10−2 1 5.81 · 10−3 0.32 0.47 1.45 · 10−2

GP − slpF1 0.26 0.44 1 2.54 · 10−2 1 0.71
TGPEAF2 0.45 0.99 0.21 1 0.46 0.28
SGPEAF2 8.16 · 10−2 0.26 1.4 · 10−2 2.03 · 10−2 1 1.78 · 10−2

GP − slpF2 0.12 0.2 0.72 5.37 · 10−3 0.86 1
f2(x, y) TGPEAF1 SGPEAF1 GP − slpF1 TGPEAF2 SGPEAF2 GP − slpF2

TGPEAF1 1 0.89 0.53 1 1 1
SGPEAF1 0.72 1 0.51 0.99 1 1
GP − slpF1 0.49 0.57 1 0.99 1 1
TGPEAF2 4.5 · 10−15 2.27 · 10−14 3.91 · 10−12 1 0.18 0.62
SGPEAF2 6.71 · 10−12 1.64 · 10−11 2.43 · 10−10 0.53 1 0.98
GP − slpF2 1.08 · 10−14 3.27 · 10−14 8.22 · 10−13 4.65 · 10−3 1.84 · 10−2 1

6 Conclusions

We have designed two cooperative coevolutionary strategies between a GP and an EA.
The genetic program evolves straight line programs that represent symbolic expressions
whereas the evolutionary algorithm optimizes the values of the constants used by those

64 C.L. Alonso et al.

expressions. For the evaluation of the populations of SLP’s we have considered the tra-
ditional fitness function based on the empirical error and another one with a penalty
term that involves the number of non-scalar instructions of the corresponding SLP. Ex-
perimentation has been performed on several groups of target functions and we have
compared the performance between the studied strategies. The quality of the selected
model after the execution was measured considering a validation set of unseen points
randomly generated, instead of the sample set used for the evolution process. A statisti-
cal study of the experimental results has been done. It has been shown that the straight
line program is a good structure to represent symbolic expressions. Also we can con-
clude that the penalized fitness is the best option when the sample set is corrupted by
noise.

Acknowledgements. This work was partially supported by the R&D program of the
Community of Madrid (S2009/TIC-1650, project e-Madrid).

References

1. Maynard, J.: Evolution and the theory of games. Cambridge University Press, Cambridge
(1982)

2. Axelrod, R.: The evolution of cooperation. Basic Books, New York (1984)
3. Hillis, D.: Co-evolving parasites improve simulated evolution as an optimization procedure.

Artificial Life II, SFI Studies in the Sciences Complexity 10, 313–324 (1991)
4. Rosin, C., Belew, R.: New methods for competetive coevolution. Evolutionary Computa-

tion 5(1), 1–29 (1996)
5. Wiegand, R.P., Liles, W.C., De Jong, K.A.: An Empirical Analysis of Collaboration Meth-

ods in Cooperative Coevolutionary Algorithms. In: Proceedings of the 2001 Conference on
Genetic and Evolutionary Computation (GECCO), pp. 1235–1242 (2001)

6. Casillas, J., Cordón, O., Herrera, F., Merelo, J.: Cooperative coevolution for learning fuzzy
rule-based systems. In: Genetic and Evolutionary Computation Conference (GECCO 2006),
pp. 361–368 (2006)

7. Vanneschi, L., Mauri, G., Valsecchi, A., Cagnoni, S.: Heterogeneous Cooperative Coevo-
lution: Strategies of Integration between GP and GA. In: Proc. of the Fifth Conference on
Artificial Evolution (AE 2001), pp. 311–322 (2001)

8. Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient search of nu-
meric leaf values. In: Proceedings of the 2001 Conference on Genetic and Evolutionary Com-
putation (GECCO), pp. 155–162 (2001)

9. Keijzer, M.: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling.
In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003.
LNCS, vol. 2610, pp. 71–83. Springer, Heidelberg (2003)

10. Ryan, C., Keijzer, M.: An Analysis of Diversity of Constants of Genetic Programming. In:
Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003.
LNCS, vol. 2610, pp. 409–418. Springer, Heidelberg (2003)

11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. The MIT Press, Cambridge (1992)

12. Burguisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Springer, Hei-
delberg (1997)

13. Berkowitz, S.J.: On computing the determinant in small parallel time using a small number
of processors. Information Processing Letters 18, 147–150 (1984)

Model Regularization in Coevolutionary Architectures 65

14. Heintz, J., Roy, M.F., Solerno, P.: Sur la complexite du principe de Tarski-Seidenberg. Bul-
letin de la Societe Mathematique de France 118, 101–126 (1990)

15. Giusti, M., Heintz, J., Morais, J., Morgenstern, J.E., Pardo, L.M.: Straight Line Programs in
Geometric Elimination Theory. Journal of Pure and Applied Algebra 124, 121–146 (1997)

16. Alonso, C.L., Montana, J.L., Puente, J.: Straight line programs: a new Linear Genetic Pro-
gramming Approach. In: Proc. 20th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 517–524 (2008)

17. Vapnik, V.: Statistical Learning Theory. John Willey and Sons (1998)
18. Montaña, J.L., Alonso, C.L., Borges, C.E., Crespo, C.L.: Adaptation, Performance and

Vapnik-Chervonenkis Dimension of Straight Line Programs. In: Proc. 12th European Con-
ference on Genetic Programming, pp. 315–326 (2009)

19. Alonso, C.L., Montaña, J.L., Borges, C.E.: Model Complexity Control in Straight Line Pro-
gram Genetic Programming. Technical Report (2011)

20. Cherkassky, V., Yunkian, M.: Comparison of Model Selection for Regression. Neural Com-
putation 15(7), 1691–1714 (2003)

21. Schwefel, H.P.: Numerical Optimization of Computer Models. John Wiley and Sons, New-
York (1981)

22. Michalewicz, Z., Logan, T., Swaminathan, S.: Evolutionary operators for continuous convex
parameter spaces. In: Proceedings of the 3rd Annual Conference on Evolutionary Program-
ming, pp. 84–97 (1994)

Evolution of Collective Perception
in a Group of Autonomous Robots

Giuseppe Morlino1, Vito Trianni2, and Elio Tuci3

1 ISTC-CNR, Rome, Italy
giuseppe.morlino@istc.cnr.it
2 IRIDIA-CoDE, ULB, Brussels, Belgium

vtrianni@ulb.ac.be
3 Aberystwyth University, Aberystwyth, U.K.

elt7@aber.ac.uk

Abstract. In this paper, we present an evolutionary robotics experiment that aims
at studying how a macroscopic variable can be encoded in the collective activity
of a group of robots. In particular, we aim at understanding how perception can be
the result of a collective, self-organising process. A group of robots is placed in an
environment characterised by black spots painted on the ground. The density of
the spots is the macroscopic variable that should be perceived by the group. The
density varies from trial to trial, and robots are requested to collectively encode
such density into a coherent signalling activity. Robots have access only to local
information, therefore cannot immediately perceive the global density. By ex-
ploiting interactions through an all-to-all communication channel, robots should
prove capable of perceiving and encoding the global density. We show how such
behaviour can be synthesised exploiting evolutionary robotics techniques, and we
present extensive analyses of the evolved strategies.

1 Introduction

How can a distributed system collectively encode the magnitude of a macroscopic vari-
able? This question holds over multiple domains, and at different scales. First and fore-
most, in the context of cognitive neuroscience, this question can be reformulated as:
what are the neural mechanisms underlying perception? This is a fundamental question,
which must be answered first in order to lay the foundations for further investigations on
other cognitive processes, such as decision-making, attention or learning. For this rea-
son, the literature abounds of models about neural coding of every sort of stimuli, from
the basic ones—e.g., vibro-tactile or visual stimuli [1,2]—to more complex perceptual
conditions—e.g., multi-stability, face recognition or numbers [3,4,5,6].

The problem of suitably encoding environmental stimuli, however, does not pertain
exclusively individual animals, but is of fundamental importance also for collective sys-
tems, such as bird flocks and honeybee swarms. Similar systems are often considered
as super-organisms, due to their high cohesion and integrated functioning [7,8]. It is
therefore interesting to look at how super-organisms can achieve a coherent perception
of macroscopic features of the environment they inhabit. For instance, while searching
a new nesting site, honeybees explore the environment thanks to scouts that report their

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 67–80.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

68 G. Morlino, V. Trianni, and E. Tuci

discoveries to the nest. In there, a collective perception and a decision-making process
is carried on, which results in the recognition and selection of the best site among the
discovered choices [9]. In this process, no single bee has the full picture. However, the
partial information of many bees is aggregated in the nest and through a self-organising
process decision-making is successfully performed. In [9], strong similarities are recog-
nised between honeybees behaviour and the mechanisms that support perception and
decision-making in neural systems. In particular, cross-inhibition within neural popu-
lations is functionally similar to negative feedback between bee workers committed to
different nesting sites. The parallel between cognitive systems and swarm behaviour
goes beyond qualitative considerations. In [10], the nest site selection behaviour in ants
and honeybees is compared with the brain dynamics during decision making in a per-
ceptual choice task. The author show that the swarm behaviour can be described by the
same model that was proposed for decision making in [11]. As a consequence, the two
decision processes can be directly compared, and similarities can be drawn between
cognition in the brain and in the swarm.

In this paper, we aim at studying collective perception in a robotic swarm. The goal
of this study is understanding which are the self-organising processes underlying the
collective perception of a macroscopic environmental feature, which is not accessible
to the individual robots due to their limited perceptual abilities and due to the nature
of their individual exploration strategies. Therefore, multiple robots need to interact in
order to give a collective response that correlates with the macroscopic variable. It is
worth noticing that the perceptual discrimination task employed could in principle be
solved by a single robot, given an effective exploration strategy and enough time to
accomplish it. The reason why we let a group of robots to find a collective solution is
because we believe that the study of successful collective discrimination strategies in
this particular artificial scenario may shed a light on the mechanisms of collective per-
ception in natural organisms.

In this robotic model, we synthesise the robot neural controllers through evolutionary
robotic techniques, and we afterwards analyse the obtained results in order to uncover
the mechanisms that support the collective perception process. Our working hypoth-
esis is that the evolutionary process can produce optimal solutions to the given task.
Therefore, by analysing these solutions, we can discover general mechanisms for col-
lective perception, which are adapted to the experimental conditions we have devised.
This allows us to discuss the discovered mechanisms with respect to known processes
performed by individuals and collectives. The usage of evolutionary techniques for col-
lective and swarm robotics has been demonstrated in various recent studies. For in-
stance, in [12], self-organising synchronisation was evolved for a group of robots that
presented an individual periodic behaviour. In [13], the behaviour for a robotic swarm
was evolved through an evolutionary process in order to collectively explore the envi-
ronment and form a path to navigate between two target areas, which were too distant
to be perceived by a single agent at the same time. In [14], artificial evolution was
exploited to synthesise Swarming Micro Air Vehicles (SMAVs) able to organise au-
tonomously, relaying only on local informations, to establish a wireless communication
network between users located on the ground.

Evolution of Collective Perception in a Group of Autonomous Robots 69

The paper is organised as follows. In Section 2 we describe the experimental setup,
giving details about the robot configuration, the characteristics of the environment, the
controller and the evolutionary algorithm used to synthesise it. In Section 3, we describe
the obtained results, and in particular we select and analyse two different controllers that
are representative of two classes of evolved strategies. Finally, Section 4 concludes the
paper with some discussion.

2 Experimental Setup

As mentioned above, in this paper we study how a swarm of robots can collectively en-
code a macroscopic feature of the environment. We have set up an experimental arena in
which black circular spots are painted on a grey background. The macroscopic feature
that must be encoded by the robotic swarm is the density of black spots, which may vary
from trial to trial in the range d ∈ [0, 1]. Robots can perceive the colour of the ground
only locally, through a noisy infrared sensor placed under their chassis. Robots can emit
flashing signals, which can be perceived by all other robots. By combining the locally
acquired information through this kind of simple communication, the group should en-
code the global density through the frequency of the emitted signals: the higher the
density, the higher the frequency of the collective flashing signal. In the following, we
give the details of the experimental setup and of the evolutionary algorithm we used to
synthesise the robot neural controllers.

2.1 The Robots and the Environment

The experimental arena is square (side l = 2m) and surrounded by walls. Circular
black spots are painted on the ground in order to probabilistically obtain a desired
global density. The spots are homogeneous in colour and size (radius r = 2.5cm),
and are aligned to a square grid of 40 × 40 cells (see Fig. 1). The density d represents
the probability that each cell of the grid is filled with a black spot. Therefore, when
the density is 0, no spot is present and the arena ground is completely grey; when the
density is 1, the arena is completely filled with black circular spots. In this way, we
can control the black spot density with a single parameter, and we can create multiple
instances for the same macroscopic value.

Ten robots (radius 3.75cm) are randomly placed in the environment. Each robot is
equipped with two wheels that provide a differential drive motion (maximum linear
speed: vmax = 8.2cm/s). Robots can perceive walls and other obstacles by means
of eight infrared sensors placed around the turret (see Fig. 2(a)). The infrared sensors
can be exploited for obstacle avoidance. The ground colour is perceived through an in-
frared sensor placed under the chassis of the robot, in the front part (indicated by ‘G’
in Fig. 2(a)). In the absence of noise, the ground sensor returns 0 when is over a black
spot, and 0.5 when is over the grey background. Additionally, we make this sensor very
unreliable by adding 30% white noise to the absolute sensor reading. Finally, each robot
r can emit a flashing signal Sr(t) switching on for a time-step (Δt = 0.1s) the LEDs

70 G. Morlino, V. Trianni, and E. Tuci

Fig. 1. Two snapshots of the simulated arena are shown. The black disks spots are painted on a
grey floor. The spots are positioned on a grid of 40× 40 cells. The density (i.e. the probability to
find a spot in a cell) varies in the range [0, 1] (left: d = 0.26, right: d = 0.66).

(a)

NO,3NO,2

NH,1 NH,4

NI,10NI,1 NI,8

NO,1

NI,9

NH,3NH,2

to actuators

from sensors

(b)

Fig. 2. The robot and the neural controller. (a) a schema of the simulated robot. Eight proximity
sensors (IR0−7) are positioned at 3.25cm from the ground pointing horizontally. The sensors
detect obstacles at a maximum distance of ≈ 5cm. The floor colour is perceived through an
infrared sensor (G) positioned on the robots’ front and pointing the floor. (b) the agents’ controller
is a CTRNN with 10 sensory neurons, 4 hidden and three motor units.

placed around its turret. This signal can be perceived by all the other robots present
in the environment in a binary way: s(t) = 1 if there is at least one robot r emitting
a signal, otherwise s(t) = 0. A robot can perceive the flashing signals through the
omni-directional camera, including the signals emitted by the robot itself.

2.2 The Controller and the Evolutionary Algorithm

Each robot is controlled by a continuous time recurrent neural network (CTRNN) [15].
The neural network has a multi-layer topology, as shown in Fig. 2(b): neurons NI,1

to NI,10 take input from the robot’s sensory apparatus, neurons NO,1 to NO,3 control

Evolution of Collective Perception in a Group of Autonomous Robots 71

the robot’s actuators, and neurons NH,1 to NH,4 form a fully recurrent continuous time
hidden layer. The input neurons are simple relay units, while the output neurons are
governed by the following equations:

oj = σ(Oj + βj), (1)

Oj =
4∑

i=1

WO
ij σ(Hi + βi), (2)

σ(z) = (1 + e−z)−1, (3)

where, using terms derived from an analogy with real neurons, Oj and Hi are the cell
potentials of respectively output neuron j and hidden neuron i, βj and βi are bias terms,
WO

ij is the strength of the synaptic connection from hidden neuron i to output neuron j,
and oj and hi = σ (Hi + βi) are the firing rates. The hidden units are governed by the
following equation:

τjḢj = −Hj +
4∑

i=1

WH
ij σ(Hi + βi) +

10∑
i=1

W I
ijIi, (4)

where τj is the decay constant, WH
ij is the strength of the synaptic connection from

hidden neuron i to hidden neuron j, W I
ij is the strength of the connection from input

neuron i to hidden neuron j, and Ii is the intensity of the sensory perturbation on neu-
ron i. The weights of the connection between neurons, the bias terms and the decay
constants are genetically encoded parameters. Cell potentials are set to 0 each time a
network is initialised or reset. State equations are integrated using the forward Euler
method with an integration step-size of 0.1 seconds.

Eight input neurons—NI,1 to NI,8—are set from the infrared sensors. Input neuron
NI,9 is set from the ground sensor. Finally, input neuron NI,10 is a binary input set by
the perception of the flashing signal s(t). The neurons NO,1 and NO,2 are used to set
the speed of the robot’s wheels. Neuron NO,3 is used to switch on the LEDs. In order to
emit a flashing signal that lasts a single time-step, the LEDs are switched on only when
the neuron activation surpasses the threshold 0.5:

Sr(t) = 1 ⇐⇒ o3(t) ≥ 0.5 ∧ o3(t− 1) < 0.5. (5)

This means that in order to flash again, the activation o3 of neuron NO,3 must go below
the threshold, and up again. The minimum period for oscillations is therefore 2 time-
steps, that is, 0.2s.

The free parameters of the robot’s neural controller are encoded in a binary
genotype, using 8 bits for each real number. Evolution works on a population of 100
randomly generated genotypes. After evaluation of the fitness, the 20 best genotypes
survive in the next generation (elitism), and reproduce by generating four copies of
their genes with a 2% mutation probability of flipping each bit. The evolutionary pro-
cess lasts 5000 generations. During evolution, genotype parameters are constrained to
remain within the range [0, 1]. They are mapped to produce CTRNN parameters with
the following ranges: connection weights Wij ∈ [−4, 4]; biases β ∈ [−4, 4]; concern-
ing decay constants, the genetically encoded parameters are firstly mapped onto the

72 G. Morlino, V. Trianni, and E. Tuci

s(t)

T T Ti+2i i+1

flashing event i flashing event i+1

Fig. 3. Schematic representation of the collective flashing signal, through which the group of
robots encodes the black spot density

range [−1, 2] and then exponentially mapped onto τ ∈ [10−1, 102]. The lower bound of
τ corresponds to the integration step size used to update the controller; the upper bound
is arbitrarily chosen.

2.3 The Fitness Function

A genotype is translated into N = 10 identical neural controllers which are downloaded
onto N identical robots (i.e., the group is homogeneous). Each group of robots is tested
for 20 trials, which last either 1000 or 2000 time-steps (one time-step corresponds to
0.1s). The density is varied systematically, making the group experience 20 different
values, equally distributed in [0, 1]. The robots’ neural controllers are not reset from
trial to trial, therefore the order in which trials are presented is relevant. At each fitness
evaluation, we randomly shuffle the sequence of environments experienced by the same
group, in order to remove regularities that could be exploited by spurious behaviours.

In order to evaluate the fitness of a genotype, we measure how well the corresponding
robotic group encodes the black spot density d. To do so, we demand that robots as
a group display a periodic flashing activity with a frequency that correlates with the
black spot density. The group flashing activity is measured on the global signal s(t)
that results from the coupled activity of each robot. When robots flash in subsequent
time-steps, their signals are perceived as a single flashing event (i.e., a sequence of
consecutive flashes is perceived as a square signal, see Fig. 3). We measure the period
Ti as the time between the start of two subsequent events. In this way, we obtain a
series of inter-flash periods that we use to compute the fitness. First of all, we compute
through an exponential moving average the average period T̂ and the average difference
between two consecutive periods ΔT :

T̂ = αT̂ + (1 − α)Ti, (6)

ΔT = αΔT + (1− α)|Ti − Ti−1|, (7)

where α = 0.9 is the time constant of the moving average. At the end of the trial θ,
T̂ should encode the density. We measure the encoded density by linearly scaling the
average period:

denc =
TM − T̂

TM − Tm
, (8)

Evolution of Collective Perception in a Group of Autonomous Robots 73

where TM = 5s and Tm = 1s are respectively the maximum and minimum periods,
arbitrarily chosen. Finally, the two fitness components are computed: F θ

d rewards the
group for suitably encoding the black spot density:

F θ
d = Φ(1.0− |d− denc|), (9)

where Φ(x) is a piecewise linear function that simply constrains the fitness value in the
interval [0, 1]. This component therefore rewards the group for minimising the differ-
ence between the black spot density and the group encoded density. However, it does
not assure that the system converges towards a periodic signalling. For this purpose, a
second fitness component is computed, that minimises the difference between consec-
utive periods:

F θ
Δ = Φ(1.0− ΔT

ΔTM
), (10)

where ΔTM = 2s is the maximum difference allowed. By minimising the difference
among consecutive periods, the system is rewarded to produce periodic signals. Finally,
the fitness of a genotype is the product of the two fitness components, averaged over
multiple trials:

F =
20∑

θ=1

F θ
d · F θ

Δ. (11)

A trial is stopped and the fitness is zero when no flashing event is detected within the last
10s, therefore promoting a sustained flashing activity during the whole trial. Similarly,
a trial is stopped if any robot collides with another robot or with a wall, and the fitness is
zero for that trial. This indirect selective pressure allows to evolve obstacle avoidance.

3 Results

We have performed 20 evolutionary runs for 5000 generations. For each evolutionary
run, we selected a single genotype to be further analysed. To this aim, we evaluated the
performance of the 20 best individuals of the last generation, measuring the fitness over
100 trials for each of the 20 density values (2000 trials in total), and we selected the
genotype with the highest mean performance to represent the evolutionary run. Among
the selected genotypes, 9 out of 20 resulted in a good collective behaviour while the re-
maining ones resulted in sub-optimal solutions, in which the group always converged to
a fixed signalling frequency, therefore failing to suitably encode the black spot density.
The performance of the best genotypes is presented in Table 1. Despite the variability
in performance, the behaviours evolved in different evolutionary runs are qualitatively
similar: robots mainly rotate on the spot, in some cases slightly moving away from the
initial position. While rotating on the spot, the ground sensor positioned on the robot
front gives a very local and noisy estimate of the ground colour. The ground informa-
tion is integrated over time, and modulates an internal oscillator that allows to tune the
frequency of a periodic signalling. However, this frequency is related just to the local
density perceived by the robot, which may be significantly different from the global
density: in fact, an individual robot rotating in one place can perceive only a limited

74 G. Morlino, V. Trianni, and E. Tuci

number of different ground patterns, which do not represent well the global density,
above all for intermediate density values. Moreover, the 30% white noise of the ground
sensor makes it difficult to have even a good and stable local perception. For these rea-
sons, robots have to coordinate to better estimate the global density, and to do so, they
can exploit the flashing signals.

Table 1. Performance of the genotypes that result in a good collective perception behaviour. Data
are sorted in decreasing order and, for each column, the mean and standard deviation are shown.
The columns represent the fitness F and the the two components Fd and FΔ.

run F Fd FΔ

4 0.87±0.06 0.92±0.06 0.95±0.02
19 0.85±0.08 0.92±0.08 0.93±0.04
14 0.84±0.07 0.89±0.08 0.94±0.03
9 0.83±0.07 0.92±0.06 0.91±0.05
20 0.83±0.08 0.92±0.07 0.90±0.05
10 0.82±0.06 0.91±0.07 0.90±0.03
15 0.81±0.07 0.88±0.08 0.92±0.03
3 0.80±0.10 0.85±0.11 0.94±0.03
13 0.80±0.07 0.89±0.08 0.89±0.04

By analysing the communication strategies evolved in the different evolutionary
runs, we found that they can be grouped into two classes. In some cases, the flash-
ing signals are excitatory, that is, signal reception anticipates or provokes the signal
production. This is the case for the behaviour evolved in runs 4, 9, 10 and 15. In the
other cases—namely, runs 3, 13, 14, 19 and 20—flashing signals are inhibitory, that
is, signal reception prevents or delays the signal production. In order to understand the
mechanisms behind these two strategies, we analyse the best performing genotype of
each class, namely the one obtained in run 4 for the excitatory strategy, and the one
obtained in run 19 for the inhibitory one.

3.1 Analysis of the Excitatory Strategy

To better understand the properties of the evolved behaviour, we first perform a gener-
alisation test that aims at revealing how well the system behaves with varying densities.
For this purpose, we have recorded the performance of the system over 50 different
black spot densities uniformly distributed in the range [0, 1] (200 trials per density
value). The results are displayed in Fig. 4. Here, we plot the fitness F and the two
components Fd and FΔ for each density. Moreover, we also plot the encoded density
denc. The figure reveals that the system shows a good behaviour for almost all densities.
In average, performance F oscillates in the interval [0.8, 1.0]. Moreover, it is possible
to observe that the component FΔ is very high, especially for high densities. This in-
dicates that the group is able to converge to a very regular flashing activity, while for
smaller values the period is noisier. However, for small density values the component Fd

is higher, revealing that the system performs better in this conditions. The actual abil-
ities of the robotic group can be discussed looking at the encoded density denc, which

Evolution of Collective Perception in a Group of Autonomous Robots 75

0 0.04 0.1 0.14 0.2 0.24 0.3 0.34 0.4 0.44 0.5 0.54 0.6 0.64 0.7 0.74 0.8 0.84 0.9 0.94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

real density

pe
rf

or
m

an
ce

 /
en

co
de

d
de

ns
ity

Fitness
Comp1: Density
Comp2: Regularity
Encoded Density

Fig. 4. Generalisation test for the excitatory strategy. Boxes represent the inter-quartile range of
the data, while the horizontal lines inside the boxes mark the median values. The whiskers extend
to the most extreme data points within 1.5 times the inter-quartile range from the box. The empty
circles mark the outliers.

 0

 0.5

 1

 600 700 800

 0

 0.5

 1

 600 700 800

time-step (t)

(a) density d = 0.2

 0

 0.5

 1

 600 700 800

 0

 0.5

 1

 600 700 800

time-step (t)

(b) density d = 0.8

Fig. 5. Excitatory strategy: neural activation and signalling status for two of the ten robots.
The bold line indicates the activation of the neuron NO,3, which controls the flashing signal.
The vertical grey bands indicate the perceived signal s(t). The small dark vertical lines within
the grey band indicate the time-step in which the robot itself is signalling.

is plotted against the ideal case y = x. We note that for densities up to d = 0.6, the
encoded density nicely follows the real one. For larger values, however, a sort of phase
transition occurs, in which the robots present a fast signalling behaviour that encodes a
density around 0.84.

How can the robots produce such behaviour? We answer this question by analysing
the behavioural and communication strategy. In this case, robots rotate on the spot with-
out changing position. By observing an isolated robot, we noticed that the flashing ac-
tivity is regulated by the locally perceived density: the higher the density, the higher
the flashing frequency. However, the individual robot always underestimates the real
density, in average. Therefore a collective mechanism must be in place. As mentioned
above, in the excitatory strategy the reception of a signal provokes the emission of a
signal. The dynamics of the oscillation for a low density d = 0.2 can be observed look-
ing at Fig. 5(a). In correspondence of a perceived signal, the activation o3 of the neuron
controlling the signal output increases until it goes beyond the 0.5 threshold, making the

76 G. Morlino, V. Trianni, and E. Tuci

 0

 0.25

 0.5

 0.75

 1

 0 0.2 0.4 0.6 0.8 1

en
co

de
d

de
ns

ity

density

1 robot
2 robots
3 robots
4 robots

10 robots

Fig. 6. Encoded density for varying group size. Each line represents the average of 100 trials,
performed for 100 density values in [0, 1]. Data for 1, 2, 3, 4 and 10 robots are shown.

robot itself signal. Upon the sustained perception of a signal, the activation o3 remains
high, therefore delaying the following flash. For instance, in the first signalling event in
Fig. 5(a), the top robot flashes the earliest, and the persistence of the signal afterwards
delays the following flash. Instead, if more than one flash is required for o3 to overcome
the signalling threshold, the following flash is anticipated: the bottom plot reveals that
in correspondence of a very delayed flash—during the second signalling event—the ac-
tivation o3 is just over the threshold and goes immediately down afterwards, allowing
the robot to anticipate the following flash. The sequence of perceived flashes functions
both as a positive and negative feedback mechanism: robots compete in emitting the
first flash, and consequently mutually accelerate their rhythm. This acceleration is how-
ever limited by the presence of multiple signals that slow the flashing frequency down.
The same mechanism is in place for larger frequencies (see Fig. 5(b)). However, in this
case the system converges into a different dynamic regime, in which robots differentiate
in two groups that alternately signal. This is evident in the dynamics of the activation
o3 shown in Fig. 5(b): the asymmetric oscillations indicate that robots engage in a sort
of turn-taking, achieving the maximum flashing frequency. This also justifies the phase
transition we observed in Fig. 4: for high densities the probability of converging into
this fast flashing regime is higher. In order to further test the hypothesis that robots
compete to emit the first signal, we run a series of experiments varying the number of
robots in the arena. The results plotted in Fig. 6 show that the average encoded density
increases with the number of robots, thus suggesting that robots are able to collectively
accelerate their flashing rhythm.

3.2 Analysis of the Inhibitory Strategy

In the case of the inhibitory strategy, we performed similar analyses. The results of the
generalisation test are plotted in Fig. 7. It is possible to notice that the system has a very
similar performance with respect to the excitatory case: the performance Fd is very
high for each density, while FΔ slightly increases for large d. Therefore, also in this
case the group converges towards very regular and precise flashing activity, especially
for high densities. Looking at denc, it is possible to notice that the system presents a
phase transition similar to the one discussed for the excitatory strategy.

All these similarities, however, result from radically different mechanisms. As we
already mentioned, in this case signals are inhibitory: when a robot perceives a flash,

Evolution of Collective Perception in a Group of Autonomous Robots 77

0 0.04 0.1 0.14 0.2 0.24 0.3 0.34 0.4 0.44 0.5 0.54 0.6 0.64 0.7 0.74 0.8 0.84 0.9 0.94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

real density

pe
rf

or
m

an
ce

 /
en

co
de

d
de

ns
ity

Fitness
Comp1: Density
Comp2: Regularity
Encoded Density

Fig. 7. Generalisation test for the inhibitory strategy

 0

 0.5

 1

 600 700 800

 0

 0.5

 1

 600 700 800

time-step (t)

(a) density d = 0.2

 0

 0.5

 1

 600 700 800

 0

 0.5

 1

 600 700 800

time-step (t)

(b) density d = 0.8

Fig. 8. Neural activation and signalling status for the inhibitory strategy

the neural activity o3 that controls the flashing signal is reset, whatever its value is.
This means that there is normally only one robot flashing at any time, that is, the one
the reaches the signalling threshold the earliest. This behaviour is evident looking at
Fig. 8(a), in which the dynamics of the neural activity of two different robots are plot-
ted for a density d = 0.2: the bottom plot reveals that the corresponding robot flashes
the earliest in the first four signalling events, preventing other robots to flash them-
selves. The situation is similar in the case of d = 0.8, shown in Fig. 8(b), in which
we observe that robots compete in order to flash the earliest, similarly to what happens
for the excitatory strategy. However, in this case the inhibitory signal does not allow a
negative feedback mechanism. In fact, if a robot flashes with an individual frequency
higher than the other robots (e.g., the robot locally perceives a higher density), it would
impose its frequency to the group by inhibiting all other robots. If this is the case, the
group systematically overestimates the black spot density due to those robots that lo-
cally perceive a high value. Therefore there must exist another mechanism that serves
as negative feedback to control the frequency of the group. By looking at the behaviour
of the robots, we notice that at the beginning of the trial robots slightly move from their
initial position while rotating on the spot. This allows robots to explore the neighbour-
hood for a short time. In order to understand the role of these movements, we tested the
robotic system fixing the motor outputs to constant values (o1 = 1 and o2 = 0), forcing
the robots to turn on the spot without changing position. The results are shown in Fig. 9,

78 G. Morlino, V. Trianni, and E. Tuci

 0

 0.25

 0.5

 0.75

 1

 0 0.2 0.4 0.6 0.8 1

en
co

de
d

de
ns

ity

density

10 robots
10 robots NM

1 robot
1 robot NM

Fig. 9. Encoded density for varying group size and for blocked . Each line represents the average
of 100 trials, performed for 100 density values in [0, 1]. Data for 1, 2, 3, 4 and 10 robots are
shown.

for varying density and varying number of robots. From these tests, we infer that the
slight motion of the robots is an adaptive mechanisms, given that the system without
motion performs worse. As predicted, when robots cannot search the neighbourhood of
their initial position, they slightly overestimate the density. We also observe that robots
exploit the information coming from other robots. In fact, there is no difference be-
tween the performance of a single robot when it can and when it cannot move. This
means that the motion alone does not allow a single robot to better estimate the global
density. We therefore believe that the initial motion of the robots is performed when
there are discrepancies between the locally perceived density and the global flashing
activity. In other words, a robot moves in search of a local density that corresponds to
the globally encoded density. This is brought forth only for a short time at the beginning
of the trial. After this short time, the robot stops in place, whatever the local density is.
With this mechanism, robots can average out the global density.

4 Discussions and Conclusions

In this paper, we have analysed how a group of robots can collectively encode a macro-
scopic variable that is not accessible to the single individuals in the group. By evolving
the collective perception behaviour, we have found two possible strategies that use the
communication channel in a opposite way: signals are either excitatory or inhibitory.
In both cases, robots compete in flashing the earliest. In doing so, they share the infor-
mation gathered locally, allowing to collectively encode an average value close to the
actual density.

It is important to remark the fact that, besides the excitatory or inhibitory commu-
nicative interaction, a second mechanism is necessary to regulate the activities of the
group. On the one hand, this mechanism has been found in the length of the signalling
event, which limits robots in producing the first flash for many times consecutively. On
the other hand, we observed that robots move from their initial position, therefore ex-
ploring the neighbourhood. In both cases, these regulatory mechanisms allow multiple
robots to participate in the collective perception in order to have a better estimate of the
macroscopic variable. It is therefore possible to identify a general strategy that supports
the collective perception in our system: individually, robots encode the local density in a

Evolution of Collective Perception in a Group of Autonomous Robots 79

flashing frequency and compete in producing the first flash, which is globally perceived
and influences the whole group. At the same time, robots try to hand on the leader role
and to listen to the other robots. The balancing of these two tendencies leads to the
correct encoding of the global density.

The presence of two counteracting mechanisms that regulate the activity of the group
is common to systems as diverse as brains and swarms. The positive feedback loop al-
lows to amplify small perturbations and quickly spread information in a system, while
the negative feedback loop controls the competition between different options and mod-
ulate the information spreading. The relevance of the negative feedback is recognised
in neural systems—in which it is provided by specialised inhibitory inter-neurons and
mediated by glycine and gamma-aminobutyric acid (GABA) transmitters [16]—and in
super-organisms—in which it may results from specific stop signals issued by some
individuals [17]. In our system, we have not provided a specific interaction modality
different from the flashing signals. Despite this limitation, evolution could synthesise
other mechanisms that resulted in regulatory processes.

In future work, we plan to continue the study of cognitive abilities displayed by col-
lective systems. The experimental scenario we have presented here has been conceived
to investigate the collective perception and decision making. We plan to study whether
groups of robots can select the most dense environment among two or more possibil-
ities presented sequentially or segregated in space. By comparing the results obtained
in different artificial setups, we aim at discovering general principles about collective
perception and decision making that could be generalised also to the biological real-
ity [18].

Acknowledgements. The authors thank the Institute of Cognitive Sciences and Tech-
nology of the Italian National Research Council for having funded the research work
presented in this paper. The authors also thank the members of LARAL group for the
constructive comments during the early preparation of this research work.

References

1. Romo, R., Salinas, E.: Flutter discrimination: neural codes, perception, memory and decision
making. Nature Reviews Neuroscience 4, 203–218 (2003)

2. Loffler, G.: Perception of contours and shapes: Low and intermediate stage mechanisms.
Vision Research 48, 2106–2127 (2008)

3. Leopold, D.A., Logothetis, N.K.: Activity changes in early visual cortex reflect monkeys per-
cept during binocular rivalry. Nature 379, 549–553 (1996)

4. Rubin, N.: Binocular rivalry and perceptual multi-stability. Trends in Neurosciences 26,
289–291 (2003)

5. Grill-Spector, K.: The neural basis of object perception. Current Opinion in Neurobiology 13,
159–166 (2003)

6. Dehaene, S.: The neural basis of the weber-fechner law: a logarithmic mental number line.
Trends in Cognitive Sciences 7, 145–147 (2003)

7. Hölldobler, B., Wilson, E.O.: The Superorganism: The Beauty, Elegance, and Strangeness of
Insect Societies. W. W. Norton & Company, New York (2008)

8. Detrain, C., Deneubourg, J.L.: Self-organized structures in a superorganism: do ants “be-
have” like molecules? Physics of Life Reviews 3, 162–187 (2006)

80 G. Morlino, V. Trianni, and E. Tuci

9. Passino, K., Seeley, T., Visscher, P.: Swarm cognition in honey bees. Behavioral Ecology and
Sociobiology 62, 401–414 (2008)

10. Marshall, J.A.R., Bogacz, R., Dornhaus, A., Planqué, R., Kovacs, T., Franks, N.R.: On opti-
mal decision-making in brains and social insect colonies. Journal of the Royal Society Inter-
face 6, 1065–1074 (2009)

11. Ratcliff, R., Smith, P.L.: A comparison of sequential sampling models for two-choice reac-
tion time. Psychological Review 111, 333–367 (2004)

12. Trianni, V., Nolfi, S.: Self-organising sync in a robotic swarm. a dynamical system view.
IEEE Transactions on Evolutionary Computation, Special Issue on Swarm Intelligennce 13,
722–741 (2009)

13. Sperati, V., Trianni, V., Nolfi, S.: Self-organised path formation in a swarm of robots. Swarm
Intelligence 5, 97–119 (2011)

14. Hauert, S., Zufferey, J.C., Floreano, D.: Evolved swarming without positioning information:
an application in aerial communication relay. Autonomous Robots 26, 21–32 (2009)

15. Beer, R.D.: A dynamical systems perspective on agent-environment interaction. Art. In-
tell. 72, 173–215 (1995)

16. Jonas, P., Buzsaki, G.: Neural inhibition. Scholarpedia 2, 3286 (2007)
17. Nieh, J.C.: Negative feedback signal that is triggered by peril curbs honey bee recruitment.

Current Biology 20, 310–315 (2010)
18. Trianni, V., Tuci, E.: Swarm cognition: an interdisciplinary approach to the study of self-

organising biological collectives. Swarm Intelligence 5, 3–18 (2011)

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 81–97.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Solving SONET Problems Using a Hybrid Scatter Search
Algorithm

Anabela Moreira Bernardino1, Eugénia Moreira Bernardino1,
Juan Manuel Sánchez-Pérez2, Juan Antonio Gómez-Pulido2,

and Miguel Angel Vega-Rodríguez2

1 Computer Science and Communication Research Centre
School of Technology and Management, Polytechnic Institute of Leiria, 2411 Leiria, Portugal

{anabela.bernardino,eugenia.bernardino}@ipleiria.pt
2 Department of Technologies of Computers and Communications, Polytechnic School

University of Extremadura, 10071 Cáceres, Spain
{sanperez,jangomez,mavega}@unex.es

Abstract. Nowadays the Synchronous Optical NETworking (SONET) standard
is widely used in telecommunications. In this paper we consider three problems
that arise in SONET networks: (1) Weighted Ring Edge-Loading Problem
(WRELP), (2) SONET Ring Assignment Problem (SRAP) and, (3) Intraring
Synchronous Optical Network Design Problem (IDP), known to be NP-hard.
WRELP asks for a routing scheme such that the maximum load on the edges of
a ring will be minimum. In SRAP the objective is to minimise the number of
rings (i.e., DXCs). In IDP the objective is to minimise the number of ADMs.
The last two problems are subject to a ring capacity constraint. We study these
three problems without demand splitting and for solving them we propose a
Hybrid Scatter Search (HSS) algorithm. Coupled with the Scatter Search
algorithm, we use a Tabu Search algorithm to locate the global minimum. We
show that HSS is able to achieve feasible solutions, improving the results
obtained by previous approaches.

Keywords: Communication networks, Weighted ring edge-loading problem,
SONET design problems, Scatter search algorithm, Bio-inspired algorithms.

1 Introduction

In this paper we consider the Weighted Ring Edge-Loading Problem (WRELP) which
arises in engineering and planning of SONET rings [1]. Specifically, for a given set of
non-splitable and unidirectional point-to-point demands, the purpose is to find the
routing for each demand so that the maximum link segment load will be minimised
[2], [3], [4], [5]. We verify that the main purpose of mainly previous works was to
build feasible solutions for the loading problems in a reduced amount of time. Our
purpose is different - we want to compare the performance of our algorithm with
others in the achievement of the best-known solution.

In a SONET network, each customer (or node) is connected to one or more rings
and the entire network is made up of a collection of such rings. The choice of

82 A.M. Bernardino et al.

assigning a customer to a single ring or to multiple rings, and the way the rings are
connected, determines different designing issues. In this paper we consider two
different designing techniques determining different network topologies.

In the first topology we consider the SONET/SDH Ring Assignment Problem
(SRAP). In this problem, each customer has to be assigned to exactly one SONET
ring and a special ring called federal ring interconnects the other rings together
through a special device, the Digital Cross Connect (DXC), which is the most costly
network component. In this problem a capacity constraint on each ring is imposed.
The capacity of each bidirectional ring of the network, including the federal ring has
to accommodate the sum of bandwidth requests between all pairs of nodes connected
by that ring. The problem is to find a feasible assignment of the customers minimising
the total number of rings used (i.e. DXCs used) [5], [6], [7].

In the second topology, customers can be connected to more than one ring. If two
customers want to communicate, they have to be connected to the same ring. In this
case, the DXCs and the federal ring are not necessary, however the number of ADMs
increase substantially in this topology. Since ADMs are the most expensive
component in this network topology, it is important to obtain the smallest number of
ADMs to reduce the cost of the network. This combinatorial optimisation problem is
called Synchronous Optical Network Design Problem (IDP). Similarly to SRAP, the
capacity of each ring is limited [6], [7], [8], [9].

Since the three problems studied in this paper are NP-hard combinatorial
optimisation problems, we cannot guarantee to find the best solution in a reasonable
amount of time. In practice, approximate methods are used to find a good solution
to complex combinatorial optimisation problems where classical heuristics have failed
to be efficient. The existing, successful methods in approximate optimisation fall into
two classes: Local Search (LS) and population-based search. There are many LS and
population-based optimisation algorithms. This paper presents an application of a
population-based optimisation algorithm called the Scatter Search (SS) algorithm,
combined with a LS technique called the Tabu Search (TS). The SS is an algorithm
that has recently been found to be promising to solve combinatorial optimisation
problems. The SS was first introduced in 1977 by Glover [10] and extensive
contributions have been made by Laguna [11]. Embedded in the SS algorithm we use
a TS algorithm, which is used to improve the solutions’ quality. The TS algorithm is a
mathematical optimisation method, which belongs to the class of LS techniques [12].

For the WRELP we compare the performance of Hybrid SS (HSS) algorithm with
five algorithms: Probability Binary Particle Swarm Optimisation (PBPSO), Genetic
Algorithm (GA), Hybrid Differential Evolution (HDE) algorithm, Hybrid ACO
(HACO) algorithm and Discrete Differential Evolution (DDE). For SRAP and IDP
we compare our results with: Diversification by Multiple Neighbourhoods (DMN and
DMN2). For the SRAP we also compare our results with: standard GA, GA with
Evolutionary Path-Relinking (GA-EvPR), Greedy Randomised Adaptive Search
Procedure (GRASP), and GRASP with Path-Relinking (GRASP-PR). All the
algorithms used for comparison were used in literature to solve the same problems.

The paper is structured as follows: in Section 2 we present the definition of the
problems; in Section 3 we present the related literature; in Section 4 we describe the
implemented HSS algorithm; in Section 5 we discuss the computational results
obtained and in Section 6 we report about the conclusions.

 Solving SONET Problems Using a Hybrid Scatter Search Algorithm 83

2 Problems Definition

2.1 Weighted Ring Edge-Loading Problem

Let Rn be a n-node bidirectional SONET ring with nodes {n1,n2,…,nn} labelled
clockwise. Each edge {ek,ek+1} of Rn, 1≤ k ≤ n, is taken as two arcs with opposite
directions, in which the data streams can be transmitted in either direction:

)e,(ea 1kkk +
+ = or)k1kk e,(ea +

− = .

A communication request on Rn is an ordered pair (s,d) of distinct nodes, where s is
the source and d is the destination. We assume that data can be transmitted clockwise
or counter-clockwise on the ring, without splitting. We use P+(s,d) to denote the
directed (s,d) path clockwise around Rn, and P-(s,d) the directed (s,d) path counter-
clockwise around Rn. Often a request (s,d) is associated with an integer weight w>=0;
we denote this weighted request by (s,d;w). Let Z={(s1,d1;w1), (s2,d2;w2),...,(sm,dm;wm)}
be a set of integrally weighted requests on Rn. For each request (si,di) we need to
design a directed path Pi of Rn from si to di. A collection P={Pi: i=1,2,…,m} of such
directed paths is called a routing for Z.

In this work, the solutions are represented using integer vectors (Table 1). If a
position has a positive value, the demand flows in the clockwise direction, if it has the
value 0, it flows in the other way. We assume that weights cannot be split, that is, for
some integer Li≠0, 1≤ i ≤ m, the total amount of data is transmitted along P+(si,di);
Li=0, the total amount of data is transmitted along P-(si,di). The vector L= (L1,L2,…,Lm)
determines a routing scheme for Z.

Table 1. Representation of the WRELP/SRAP/IDP solution

Pair(s,d)/Edge(u,v) Demand
1: (1, 2) 10
2: (1, 4) 20
3: (1, 7) 10
4: (1, 8) 30

5: (2, 3) 10
6: (3, 6) 20
7: (3, 7) 10

14: (7, 8) 20

 n=numberCustomers=8 m=numberPairs=14 B=150
Representation
WRELP

Pair1 Pair 2 Pair 3 Pair 4 ... Pair 14
10 0 20 0 ... 0

Representation
SRAP

Customer1 Customer2 Customer3 Customer4 ... Customer8
1 2 2 1 ... 1

Representation
IDP

Edge1 Edge2 Edge3 Edge4 ... Edge14
1 2 1 3 ... 1

2.2 SONET Ring Assignment Problem

In literature there are different ways to represent a network. We consider the same network
topologies described by Aringhieri and Dell’Amico [6] and we use the same model based
on graph theory for the problems SRAP and IDP. In both topologies the objective is to
minimise the total cost of the network and, at the same time is necessary to guarantee that
the customer’s demands, in term of bandwidth, are satisfied.

84 A.M. Bernardino et al.

Considering a set of n customers and a symmetric traffic matrix [duv], where u, v =
{1, . . . , n} and u ≠ v, each entry of the matrix gives the amount of traffic between
customer u and v. Note that duv = dvu and that duu =0. Given an undirected graph G =
(V,E), the node set V contains one node for each customer and the edge set E contains
one edge (u, v) for each pair of customers u, v such that duv > 0.

Problems SRAP and IDP correspond to two different partitioning of the above
graph, subject to capacity constraints. In particular, SRAP involves a node
partitioning, whereas IDP, involves an edge partitioning.

Formally, let V1, V2, . . . Vk, be a partitioning of V in k subsets, the corresponding
SRAP network is obtained by defining k local rings and a federal ring. All the
customers of subset Vi are associated to the i-th local ring by means of an ADM and
federal ring uses a DXC to connect each local ring. As a result the corresponding
SRAP network uses n ADMs and k DXCs.

Solving SRAP corresponds to finding the partition V1, . . . Vk minimising k
(number of rings), taking into consideration that the volume traffic on any ring is
limited by a link capacity, called B. In other words, it is necessary to force the total
traffic demands of all the customers connected to a ring to be lower or equal to the
bandwidth (see Eq. 1) and also that the total traffic of the federal ring is not larger
than the bandwidth B (see Eq. 2).

,

, 1, ...
i

uv
u V v V v u

d B i k
∈ ∈ ≠

≤ ∀ =∑ ∑
(1)

Bd
k

i

k

ij Vu Vv
uv

i j

≤∑ ∑ ∑ ∑
−

= += ∈ ∈

1

1 1

 (2)

Likewise, for the SRAP, solutions are represented using integer vectors (Table 1).
Each position of the solution corresponds to a customer and the value of that position
corresponds to the ring to which it is connected. We assume that the weights of the
traffic demands cannot be split and that each customer is assigned to one ring.

2.3 Intraring Synchronous Optical Network Design Problem

In IDP there is no need to assign each customer to a particular ring since customers can be
connected to several rings. For this problem, the model is based on the edges of the graph,
where a subset of the partition corresponds to a ring.

Given a partition of E into k subsets E1, E2, . . . Ek, the IDP network can be obtained
by defining k rings and connecting each customer of V (Ei) to the i-th ring by means
of an ADM. In this case, the DXC are no longer needed and neither is the federal ring.
Solving IDP corresponds to finding the partition E1, E2, . . . Ek for each edge in order to
minimise the number of ADMs [6], [7].

In this problem, like in SRAP, the traffic volume inside each ring is also limited by
a link capacity B (see Eq. 3).

kiBd
iEvu

uv ,...,1,
),(

=∀≤∑
∈

(3)

 Solving SONET Problems Using a Hybrid Scatter Search Algorithm 85

IDP solutions are also represented using integer vectors (Table 1), where each position of
the solution corresponds to an edge and the value of that position corresponds to the
partition to which it is associated. Also, in IDP, the weights of the traffic demands cannot
be divided.

3 Related Literature

Cosares and Saniee [2], and Dell’Amico et al. [3] studied the non-split loading problem on
SONET rings. Cosares and Saniee [2] proved that the formulation without demand
splitting is NP-Hard. For the split problem, various approaches are summarised by
Schrijver et al. [4] and their algorithms are compared in Myung and Kim [12] and Wang
[13]. Recently, Kim et al. [14] presented an Ant Colony Optimisation algorithm using
different strategies to solve the SONET ring loading. The main purpose of previous works
was to produce near optimal solutions for WRELP in a reduced amount of time. Our
purpose is different, - we want to compare the performance of our algorithm with others in
the achievement of the best-known solution. Using the same principle, Bernardino et al.
[15] proposed several bio-inspired algorithms to solve the non-split WRELP. The authors
made a comparison between several heuristics to prove the efficiency of their algorithms.
The same authors of this paper solved a similar WRELP problem - the Weighted Ring Arc
Loading Problem (WRALP) that arises in Resilient Packet Ring systems [16]. In that
paper the authors also proposed the HSS algorithm to solve the WRALP.

Goldschmidt et al. [9] studied the SRAP and shown that it is NP-hard. The authors
proposed three polynomial-time heuristic algorithms to solve the problem, namely the
edge-based, the cut-based and the node-based heuristic. Aringhieri et al. [17] solved SRAP
with metaheuristic algorithms mainly based on Tabu Search. The authors introduced an
objective function that depends on the current search status, and used a strategic oscillation
obtained through the swap of two neighbourhoods. Macambira et al. [18] studied a similar
SRAP problem - the k-SRAP problem. In k-SRAP the number of rings is fixed to k and it
does not constrain the capacity of the federal ring to be B. The authors proposed an integer
linear programming formulation to solve this problem. In [19] Macambira and Maculan
reformulate SRAP as a set partitioning model with an additional knapsack constraint. To
solve it, they implemented a branch-and-price/column generation algorithm. Bastos et al.
in [20], [21], [22] solved SRAP using GRASP, GRASP with Path-Relinking and GA-
EvPR.

In [8] and [23] Lee et al. and Laguna studied different formulations of the IDP and
proposed several heuristics to solve these formulations. Goldschmidt et al. [9]
considered the special case of IDP in which all the edges have the same weight. In [9]
the authors show that this problem is NP-hard.

Aringhieri and Dell’Amico [6] studied the SRAP and the IDP as presented in this
paper. They first described several objective functions that depend on the transition
from one solution to a neighbouring one, then they applied several diversification and
intensification techniques including two versions of Path Relinking (PR1 and PR2),
eXploring Tabu Search (XTS) and Scatter Search (SS). They also proposed a
Diversification method based on the use of Multiple Neighbourhoods (DMN). A set
of extensive computational results is used to compare the behaviour of the proposed
methods and objective functions. SRAP and IDP have been recently studied by

86 A.M. Bernardino et al.

Pelleau et al. [7]. Their work extends the seminal ideas introduced by Aringhieri and
Dell’Amico [6]. They proposed a new fitness function and a new local search
algorithm (DMN2, a variant of the DMN proposed in [6]) to solve the problems and
compared their method to previous ones. We use the fitness function proposed in this
paper to evaluate SRAP and IDP solutions (see section 4.3).

4 Hybrid Scatter Search Algorithm

This metaheuristic technique derives from strategies proposed by Glover [10] to combine
decision rules and constraints, and was successfully applied to a large set of problems [24].
The basic idea is to create a set of solutions (the reference set), that guarantees a certain
level of quality and diversity. The iterative process consists in selecting a subset of the
reference set, combining the corresponding solutions through a strategy, in order to create
new solutions and to improve them through a LS optimisation technique. The process is
repeated with the use of diversification techniques, until certain stopping criteria is met.

In SS algorithm an initial set of solutions (reference set) are build and then the
elements of specific subsets of that set are systematically combined to produce new
solutions, which hopefully will improve the best-known solution (see Glover et al.
[24] for a comprehensive description of the algorithm). The basic algorithmic scheme
is composed of five steps: (1) Generation and improvement of solutions; (2)
Construction of the reference set; (3) Subset selection; (4) Combination; and (5)
Reference set update. The standard SS algorithm stops when the reference set cannot
be updated. However, the scheme can be enhanced by adding new steps in which the
reference set is regenerated. Our algorithm uses a diversification mechanism after a
pre-defined number of nid iterations without improving the best solution found so far.
The reinitialisation can be very useful to refocus the search on a different search space
region and to avoid the early convergence of the algorithm.

The main steps of the HSS algorithm applied to the problems are detailed below:

Initialise Parameters
Generate initial set of Solutions
Evaluate Solutions
Apply Improvement Method
Generate Reference Set
WHILE TerminationCriterion()

Select subsets
 Apply Combination Method
 Apply Improvement Method
 Update Reference Set
 IF (no new solutions) THEN
 Regenerate Reference Set

IF (nid iterations without improve best solution) THEN
 Apply Diversification Mechanism

The next subsections describe each step of the algorithm in detail.

4.1 Initialisation Parameters

The following parameters must be defined by the user: (1) mi– number of iterations;
(2) ti– number of seconds; (3) ni– number of initial solutions; (4) b1– number of best

 Solving SONET Problems Using a Hybrid Scatter Search Algorithm 87

solutions in the reference set; (5) b2– number of most different feasible solutions in
the reference set and (6) nid- number of iterations without improvement (used for
diversification).

4.2 Generation of Solutions

The initial WRELP solutions can be randomly created or in a deterministic form based in
a Shortest-Path Algorithm (SPA). The SPA is a simple traffic demand assignment rule in
which the demand will traverse the smallest number of segments. This rule has been used
by other authors to create the initial set of solutions [15], [16].

For SRAP and IDP the solutions can also be created randomly or in a deterministic
form. We create a simple heuristic that builds balanced solutions based on the number
of customers for each ring. We consider an initial k = klb +1 (see Eq. 4).

⎥
⎦

⎤
⎢
⎣

⎡= ∑∑
+=

−

=
Bdk

n

uv
uv

n

u
lb

1

1

1

 (4)

The main steps of the heuristic algorithm are detailed bellow:

FOR c=1 TO n DO
customer[c] ← -1

END FOR
FOR r=1 TO k DO

numberCustomers[r] ← 0
END FOR
c ← 0
WHILE c ≠ n DO

cr←Choose a random
customer

 IF customer[cr] = -1 THEN
 customer[cr] ← c
 c ← c+1
 END IF
END WHILE

FOR c=1 TO n DO
 rn ← choose a random ring
 FOR r=1 TO k DO
 IF numberCustomers[r]
 <= n/k THEN
 rn ← r
 END IF
 END FOR
 solution[customer[c]]← rn
 numberCustomers[rn]

←numberCustomers[rn]+1
END FOR

4.3 Evaluation of Solutions

To evaluate how good a potential solution is in relation to other potential solutions we use
a fitness function. The fitness function returns a positive value (fitness value) that reflects
how optimal the solution is. The fitness function used for WRELP is based on the fitness
function used in [15], [16].

wi,…,wm demands of the pairs (si,ti),…,(sm,tm)
Vi, …, Vm = 0 Path-(si,ti) or 1 Path+(si,ti)

(5)

Load(L,ek) = ∑
++ ∈)d,(sPa:i

i

iik

w + ∑
−− ∈)d,(sPa:i

i

iik

w

∀k=1,…,n; ∀i=1,…,m
(6)

Fitness function: max{Load(L,ek)}
(7)

88 A.M. Bernardino et al.

For a given ring, between each node pair (si,ti) there is a demand value >=0.
Constraint sets (5) state that each positive demand value is routed in either clockwise
(C) or counter-clockwise (CC) direction.

For an edge, the load is the sum of wi for clockwise and counter-clockwise between
nodes ek and ek+1 (see Eq. 6). The purpose is to minimise the maximum load on the
edges of a ring (see Eq. 7).

For SRAP and IDP, Aringhieri and Dell’Amico [6] introduced four objective
functions. Let z0 be the basic objective function counting the number of rings of a
solution for SRAP, and the total number of ADMs for IDP, and let BN be the highest
load of a ring in the current solution. α ≥ 1 and β≥ 2 are two fixed parameters, and
RingLoad(r) is the load of the ring r.

}{+= B - BN0,max z z 01
 (8)

⎩
⎨
⎧ ⋅

+=
otherwise 0

r ring new a created has movelast theif)RingLoad(r
 z z 12

α (9)

BN B z z 03 +⋅= (10)

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=

+=
=+⋅=

=

unfeasible tounfeasible from : (d) BNz z

feasible tounfeasible from : (c) Bz z

unfeasible tofeasible from : (b) 1)BN (z z

feasible tofeasible from : (a))z BN(B z z

04d

04c

04b

304a

4

β

z

(11)

The first function z1 (Eq. 8) minimises the basic function z0. If BN > B, it also
penalises the unfeasible solutions. In addition to the penalty for the unfeasible
solutions, z2 (Eq. 9) penalises the moves that increase the number of rings. Function z3
(Eq. 10) encourages solutions with small z0, while among all the solutions with the
same value of z0, it prefers the ones in which the rings have the same loads. The last
objective function z4 (Eq. 10) is an adapting technique that modifies the evaluation
according to the status of the search. It is a variable objective function having
different expressions for different transitions from the current status to the next one.

In our work we used the fitness function z5 (Eq. 12) introduced by Pelleau et al. [7].
The authors have implemented the five fitness functions. The z5 function finds more
good solutions than the other ones.

)(pviolations z z
partitions p

05 ∑
∈

+=
(12)

⎩
⎨
⎧

=
otherwise 0

B exceed p of load theif B - apacity(p)
 (p)violations

c (13)

The objective function z5 minimises the basic function z0 and penalises the unfeasible
solutions. In this objective function every constraint violated (partition with total load
higher than B) has a certain cost (the current load of a partition minus B). Summing
all the violations of the current solution, the total violation is obtained. As z0 is much
smaller than the load of a ring, a feasible solution with 4 rings will be preferred to an

 Solving SONET Problems Using a Hybrid Scatter Search Algorithm 89

unfeasible solution with 3 rings. In z5 partitions are all the rings (in the case of the
SRAP the federal ring is also included).

4.4 Generation of Reference Set

The best b1 solutions in the initial set of solutions are selected to be in the reference
set. The b2 feasible solutions in the initial set of solutions that are the most different
when compared to the solutions already in the reference set, are also selected to be in
the reference set. As a measure of the difference between two solutions, we compute
the total number of different assignments between the two solutions.

4.5 Subset Selection

In literature, several methods can be applied to generate the subsets. In our
implementation, the subsets are formed by combining two solutions from the
reference set: (1,2), (1,3), (1,4),…, (1,b1+b2), (2,3),…, (b1+b2-1,b1+b2). We adopt
Type-1 [24]. This method consists of ((b1+b2)2 - (b1+b2))/2 pair wise combinations
of the solutions. All pairs of solutions in the reference set are selected for the
combination procedure (see subsection 4.6).

4.6 Combination Method

This method combines the solutions in each subset to form new solutions.
For WRELP first a random node is chosen and then the pairs with that node are

exchanged (see sec. “Combination Method” in [16]) between the two solutions. The
combination method produces two combined solutions. For SRAP and IDP First a
random ring/partition is chosen and then the customers/edges of that ring/partition are
exchanged between the two solutions (see sec. “Combination Method” in [25]).

The combined solutions go through the improvement phase (see subsection 4.7).

4.7 Improvement Method

A TS algorithm is applied to each solution in the initial set of solutions in order to reduce
its cost, if possible. After the combination, the TS algorithm is also applied to improve the
quality of the combined solutions. The basic concept of TS was described by Glover [26].
TS allows the search to explore solutions that decrease the objective function value only in
those cases where these solutions are not forbidden. This is usually obtained by keeping
track of the action used to transform one solution into the next. When an action is
performed it is considered tabu for the next T iterations, where T is the tabu status length.
A solution is forbidden if it is obtained by applying a tabu action to the current solution.

In our implementation, the TS only exploits a part of the neighbourhood. The most
common and simplest way to generate a neighbour for WRELP is to exchange the
traffic direction of one request. In our implementation, some positions of the solution
are selected and their directions are exchanged (partial search). This method was used
for the WRALP and is summarised in [16]. The positions which directions are
exchanged are classified as tabu attributes. A candidate can be chosen as a new
current solution, if the positions which directions are exchanged are not the same as
those in the tabu list.

90 A.M. Bernardino et al.

In SRAP and IDP the simplest way to generate a neighbour is to swap two
customers in the permutation. In this case the size of the neighbourhood is n*(n-1)/2,
which would be large for large-scale problems. This would waste a lot of computing
time. Other way to generate a neighbour is to assign one customer to other
ring/partition. The size of the neighbourhood is n*(k-1), which is also large for large-
scale problems. In our implementation, we generate a neighbour by swapping two
customers between two rings, r1 and r2 (randomly chosen). The algorithm searches
for a better solution in the initial set of neighbours. If the best neighbour improves the
actual solution, then the LS algorithm replaces the actual solution with the best
neighbour. Otherwise, the algorithm creates another set of neighbours. In this case,
one neighbour results on assigning one customer of r1 to r2, or r2 to r1. The
neighbourhood size is N(r1)*N(r2) or N(r1)*N(r2) + N(r1)+N(r2).

The LS algorithm consists in the following steps:

r1 = random (number of customers) r2 = random (number of customers)
NN = neighbours of ACTUAL-SOL (one neighbour results of interchange
 one customer of r1 or r2 with one customer of r2 or r1)
SOLUTION = FindBest (NN)
IF fitness(ACTUAL-SOL)<fitness(SOLUTION) THEN
 NN = neighbours of ACTUAL-SOL (one neighbour results of assign
 one customer of r1 to r2 or r2 to r1)
 SOLUTION = FindBest (NN)
 IF fitness(SOLUTION)<fitness(ACTUAL-SOL) THEN
 ACTUAL-SOL = SOLUTION
 END IF
ELSE
 ACTUAL-SOL = SOLUTION
END IF

The evaluation process is the most time-consuming step of the algorithm, which is
usually the case in many real-life problems. For IDP and SRAP, our TS algorithm has
some important improvements. After creating a neighbour, the algorithm does not
perform a full examination to calculate the new fitness value; it only updates the
fitness value based on the modifications made to create the neighbour. The running
time is considerably reduced. The two rings which customers are exchanged are
classified as tabu attributes. A candidate can be chosen as a new current solution if the
rings which customers are exchanged are not the same as those in the tabu list. In our
implementation, like in WRELP, we don’t explore neighbours when the two rings
chosen are in the tabu list. In aspiration, just the best neighbour not tabu with a fitness
value lower than the best is selected.

The TS ends when a maximum number of iterations is reached. Based on preliminary
observations, we consider 10 iterations. With a higher value of iterations, the algorithm
slows down. We also observed that a high number of iterations does not produce
significant better results.

Based on preliminary observations we consider N/20 elements for the tabu list [16].
The improved solutions are considered for inclusion in the reference set (see

subsection 4.8).

 Solving SONET Problems Using a Hybrid Scatter Search Algorithm 91

4.8 Reference Set Update

The purpose is to maintain a good level of quality and diversity. We adopted the dynamic
reference set update [24]. A new feasible solution immediately enters in the reference set,
if its quality is better than the quality of the worst solution, or if its diversity is greater than
the diversity of the less different solution. Solutions that are equal to others already in the
reference set are not allowed to enter under any condition. If the reference set is not
updated, then the algorithm restarts the reference set (see subsection 4.9).

4.9 Regeneration of Reference Set

The algorithm creates another set of solutions - Ps (with the same size of the initial set
of solutions). The new solutions go through the improvement phase (see subsection
4.7). A new feasible solution immediately enters in the reference set, if its quality is
better than the quality of the worst solution. The b2 solutions with greater diversity
are erased from the reference set and the b2 feasible solutions in Ps that are the most
different when compared to the solutions already in the reference set are selected to
be in the reference set.

4.10 Diversification Mechanism

This mechanism restarts the best b1 solutions in the reference set. The algorithm
creates another set of solutions - Pd (with the same size of the initial set of solutions).
The new solutions go through the improvement phase (see subsection 4.7). The best
(b1-1) solutions in Pd are selected to be in the reference set. For the following
iteration, we kept the best solution.

4.11 Termination Criterion

The algorithm stops when a maximum number of iterations (mi) is reached or when a
maximum number of seconds (ti) is reached.

5 Benchmark Instances

We evaluate the utility of the algorithm HSS used to solve WRELP using the same
instances produced by Bernardino et al. [15], [16]. The studied examples arise by
considering six different ring sizes – 5, 10, 15, 20, 25 or 30 nodes. The demand cases
are: (1) complete set of demands between 5 and 100 with uniform distribution; (2)
half of the demands in Case 1 set to zero; (3) 75% of the demands in Case 1 set to
zero and; complete set of demand between 1 and 500 with uniform distribution. Last
case was only used for the 30 nodes ring. It was studied 19 instances. For
convenience, they are labelled Cij, where 1<i<6 represents the ring size, and 1<j<4
represents the demand case. Other authors from literature used similar instances, but
with smaller ring sizes or only with a low variance range for the demands [2], [3], [4].

For SRAP we used three sets of instances. The first one, class C1 has been
introduced in [5]. They have generated 80 geometric instances, based on the fact that
customers tend to communicate more with their close neighbours, and 80 random

92 A.M. Bernardino et al.

instances. These subsets have both 40 low-demand instances, with a ring capacity B =
155 Mbs, and 40 high-demand instances, where B = 622 Mbs. The graphs generated
have |V | ∈ {15, 25, 30, 50}. In the 160 instances, generated by Goldschmidt et al. [5],
42 have been proven to be unfeasible for SRAP by Aringhieri and Dell’Amico [6]
using CPLEX 8.0. Class C2 was obtained by randomly modifying the 42 instances in
C1 that are unfeasible for SRAP [6]. The authors have created 230 new and hard
feasible instances. The characteristics of an instance in C1 or C2 can be deduced from
its name. Instance names always start with two letters. The first letter is either G or R
meaning that the instance belongs to the geometric or the random subdivision,
respectively. The second letter is either L or H, depending if the ring capacity is 155
Mbs or 622 Mbs¸ respectively. The last set of instances, class C3, has been presented
in [8]. They have generated 40 instances with a ring capacity B = 48 *T1 lines and the
number of T1 lines required for the traffic between two customers has been chosen in
the interval [1, 30]. The graphs considered have |V| ∈ {15, 20, 25} and |E| = {30, 35}.
Most of the instances in this set are unfeasible for SRAP (only two are feasible).

For IDP we only studied the instances of the set C1 and C3. We want to compare
our results with others from literature, and Pelleau et al. [7] provided their results for
this two set of instances (they have specified the number of ADMs obtained for each
instance). In [6] the authors also solved class C2, however they only presented the
number of optimal solutions. To make an effective comparison it is necessary to know
the exact number of ADMs obtained for each instance.

For more details on how these instances were generated and their properties, we
guide the interested reader to the original papers where they were introduced.

6 Results

6.1 WRELP

The same authors of this paper have performed comparisons among all parameters
(using all instances) of the HSS algorithm in order to establish the correct parameter
setting for solving the WRALP [16]. The best results obtained with the HSS
algorithm use ni between 40 and 100, b1 between 4 and 10, b2 between 4 and 10 and
nid between m/10 and m/2. With these values, the algorithm reaches, in a reasonable
amount of time, a reasonable number of best-known solutions. In general, the
experiments have shown that the proposed parameter setting is very robust to small
modifications. Based on preliminary studies [15] we verify that the behaviour of the
WRELP is very similar to the WRALP, independent of the algorithm applied to solve
it, so we used the same combination of parameters for this problem.

In this paper, we only compare our algorithm used to solve WRELP with: PBPSO,
GA, HDE, HACO and DDE proposed by Bernardino et al. [15] to solve the same
problem, because the authors: (1) use the same test instances; (2) adopt the same
fitness function, and; (3) implement the algorithms using the same language (C++).

The six algorithms were executed using a processor Intel Quad Core Q9450. The
initial solutions of the six algorithms were created using random solutions. For the
instance C64 the SPA was used to create the initial populations.

 Solving SONET Problems Using a Hybrid Scatter Search Algorithm 93

Table 2. WRELP results – run times and number of iterations

Inst.
LS-PBPSO GA HDE HACO DDE HSS

Time(s) IT Time(s) IT Time(s) IT Time(s) IT Time(s) IT Time(s) IT
C11 <0.001 5 <0.001 2 <0.001 2 <0.001 4 <0.001 2 <0.001 2
C12 <0.001 1 <0.001 1 <0.001 2 <0.001 1 <0.001 1 <0.001 1
C13 <0.001 1 <0.001 1 <0.001 1 <0.001 1 <0.001 1 <0.001 1
C21 <0.001 20 <0.001 15 <0.001 10 <0.001 20 <0.001 15 <0.001 10
C22 <0.001 10 <0.001 10 <0.001 3 <0.001 10 <0.001 10 <0.001 3
C23 <0.001 5 <0.001 5 <0.001 3 <0.001 5 <0.001 5 <0.001 3
C31 0. 1 30 0. 1 30 0. 1 15 0. 1 30 0. 1 15 0. 1 15
C32 0.002 15 <0.001 20 <0.001 5 <0.001 15 <0.001 10 <0.001 5
C33 <0.001 5 <0.001 10 <0.001 5 <0.001 10 <0.001 5 <0.001 5
C41 0.15 100 0.15 100 0.1 30 0.15 100 0.1 50 0.1 30
C42 0.06 30 0.075 40 0.05 10 0.075 25 0.05 15 0.05 10
C43 <0.001 10 <0.001 10 <0.001 5 <0.001 10 <0.001 5 <0.001 5
C51 1.5 150 1.5 150 0.75 30 1.5 250 1.25 80 0.6 30
C52 0.15 40 0.15 60 0.1 15 0.15 50 0.15 25 0.1 15
C53 0.01 15 0.01 25 0.01 10 0.01 20 0.01 15 0.01 10
C61 2.5 200 2.25 150 1.75 40 2 200 2 80 1.5 30
C62 0.5 70 0.3 70 0.25 20 0.3 60 0.25 30 0.25 20
C63 0.075 15 0.075 30 0.075 10 0.075 20 0.075 15 0.05 10
C64 3 300 0.3 40 0.25 5 0.3 40 0.25 25 0.2 5

Table 2 presents the best WRELP results obtained with the six algorithms for the
hardest instances. The first column represents the instance number (Inst.) and the
remaining columns demonstrate the obtained results (Time – Run Times, IT –
Iterations) by the six algorithms. The presented values have been computed based on
50 different executions for each test instance, using the best combination of
parameters found and different seeds (see [15]). The six algorithms reach feasible
solutions for all test instances and all the algorithms reach the best-known solutions
(see [15]) before the run times and the number of iterations presented.

We must refer that our WRELP results are very similar to the WRALP results
obtained in [16]. In fact, the formulation of the two problems is very similar. In [16]
the authors proved that the standard deviations and average fitness for HSS are
smaller for WRALP. It means that the HSS is more robust than the other algorithms.
For the WRELP the algorithm produced similar results. In comparison, the HSS
algorithm produces a higher number of best-known solutions using the same number
of iterations. DDE algorithm obtains a good average fitness in a similar running time.

6.2 SRAP and IDP

Bernardino et al. studied a similar assignment problem in [25] – the Terminal
Assignment Problem (TAP), a NP-Hard combinatorial optimisation problem. The
main objective of this problem was to assign a collection of terminals to a collection
of concentrators. In the paper, the authors have also proposed a HSS algorithm to
assign terminals to concentrators. In a large network, some concentrators are used to
increase the network efficiency. The terminals are connected to a concentrator and
each concentrator is connected to the central computer. The purpose is to minimise
the link cost to form a network by connecting a given set of terminals to a given set of
concentrators. The number of concentrators and terminals and their locations are

94 A.M. Bernardino et al.

known. Each concentrator is limited in the amount of traffic that it can accommodate.
For that reason, each terminal must be assigned to one node of the set of
concentrators, in such a way that no concentrator oversteps its capacity. We can
establish an association of the TAP with the SRAP and IDP studied in this paper.
Concentrators and terminals in TAP correspond to rings/partitions and customers in
SRAP/IDP, respectively. Based in preliminary studies, we observed that the
parameters values of the HSS in our problems have a similar influence.

Bernardino el al. [25] compared HSS with the TS, LSGA, HDE and HACO and all
the five algorithms reach feasible solutions for all test instances. All the statistics
obtained in [25] show that the performance of HSS algorithm is superior. The best
results obtained with the HSS algorithm use ni between 30 and 100, b1 between 5 and
10, b2 between 5 and 10 and nid between N/15 and N/2. These parameters were
experimentally considered good and robust for the instances tested.

In our paper, the parameters of the HSS algorithm were set to ni=50, b1=8, b2=8,
and nid between N/15 and N/2. The initial population was created using the
deterministic algorithm. Based on preliminary observations we verified that for each
execution, using the same number of iterations or using a limited number of seconds
the deterministic algorithm obtains a better average fitness in comparison with a
random initial population.

Aringhieri and Dell’Amico [6] describe the results obtained for SRAP and IDP on
the three benchmark sets studied in this paper, by the algorithms BTS, PR1, PR2,
XTS, SS, and DMN. For each algorithm they consider four objective functions (z1, z2,
z3 and z4), described in section 4.3. For the two problems, DMN with function z4 gives
the best overall results. Pelleau et al. [7] implemented all the algorithms described by
Aringhieri and Dell’Amico, including a new one DMN2,and compare them using the
new objective function z5. DMN and DMN2 were the heuristics that obtained the best
results. Bastos et al. [20], [21], [22] solved SRAP using GA, GA-EvPR, GRASP and
GRASP-PR, and obtained good results with them. In this paper we compare our IDP
results with DMN and DMN2 (algorithms that obtained the best results in [7]), and
our SRAP results with DMN, DMN2, GA, GA-EvPR, GRASP and GRASP-PR.

For each SRAP instance considered in our experiments, we fix a solution target
value equal to the optimal solution. In [19], the authors implemented an exact
algorithm that provided optimal solutions for the two classes C1 and C2 (in almost all
instances klb+1). In class C3 there are only two feasible instances and for them we
consider the lower bound klb+1. For IDP we consider the lower bound klb. We gave a
time limit of 20 seconds to each run of our algorithm for solving SRAP, and one
minute for IDP. However we observed that the average time to find the best solution
is less than 2 seconds for SRAP and less than 10 seconds for IDP. Obviously, the
algorithm terminates if the current best solution found is equal to the solution target.
If the lower bound is not reached, we define as a high-quality solution, a solution for
which the evaluation of the objective is equal to klb+1. To solve an IDP instance
normally takes much more iteration to improve the value of the objective function
than in SRAP. In SRAP the size of the solutions are smaller.

In Table 3, we compare the SRAP results obtained by HSS with the results e taken
from [21], [22] and [7]. The first two columns show instance class and number of
feasible solutions, the following columns give the percentage of optimal solutions
found in literature by other algorithms. The presented HSS values have been

 Solving SONET Problems Using a Hybrid Scatter Search Algorithm 95

computed based on 50 different executions for each test instance, using the best
combination of parameters found and different seeds (in almost all executions, the
algorithm obtains the best solution).

Table 3. Results for SRAP

Class FS GRASP GRASP-PR GA GA-EvPR EB, CB, NB DMN DMN2 HSS
C1 118 100 * 100* 98,3 100 97,46 100 97,46 100
C2 230 98,69 99,57 85,7 98,26 - 98,26 - 99,57
C3 2 - - - - - 100 100 100

* The authors only consider 111 feasible instances

The HSS did not find the optimal solution for just one instance – new.GH_50_3.4.
The optimal solution is 5 and our algorithm obtained the value 6.

For IDP we performed identical examinations. With HSS we have obtained the
same number of ADMs for all the instances studied by Pelleau et al. [7] using DMN
and DMN2. The authors indicate that for IDP problem, they have obtained better
results for 15 instances. We have obtained the same values using smaller times for
each execution. In their work they used a limit of 5 minutes. We have obtained our
results with less than one minute. In 7 instances of the 200 instances studied for this
problem, it was necessary klb+1 rings to obtain the smallest number of ADMs.

The results show that GRASP-PR and HSS present better results in terms of
solution quality for SRAP and DMN, and HSS obtain better results also in terms of
solution quality for IDP. We are not comparing computational times, because the
experiments were performed on different equipment but we believe that our algorithm
is very fast.

7 Conclusions

In this paper we present a HSS algorithm to solve the WRALP, SRAP and IDP. The
HSS algorithm is an optimisation technique, able to perform simultaneous local and
global search. Extensive computational experiments were done with benchmark
instances from literature. The performance of' HSS algorithm is compared with
several algorithms used to solve the same problems studied in this paper.

The computational results show that HSS had a stronger performance, improving
in some cases, the results obtained by previous approaches. We cannot say that for
IDP and SRAP the HSS is the faster algorithm, because we have implemented and
executed it in other platform, however we can say that it is competitive with the best
heuristics in literature in terms of solution quality. We didn’t find in literature all the
necessary results to fully compare our results. It will be interesting to do it in the
future.

In literature, the application of the HSS algorithm for these problems is
nonexistent. For that reason, this article shows its enforceability in the resolution of
these problems.

The continuation of this work will be the search and implementation of new
methods to speed up the optimisation process.

96 A.M. Bernardino et al.

References

1. Goralski, W.J.: SONET. McGraw-Hill Professional (2002)
2. Cosares, S., Saniee, I.: An optimistion problem related to balancing loads on SONET

rings. Telecommunication Systems 3(2), 165–181 (1994)
3. Dell’Amico, M., Labbé, M., Maffioli, F.: Exact solution of the SONET Ring Loading

Problem. Oper. Res. Lett. 25(3), 119–129 (1999)
4. Schrijver, A., Seymour, P., Winkler, P.: The ring loading problem. SIAM Journal of

Discrete Mathematics 11, 1–14 (1998)
5. Goldschmidt, O., Laugier, A., Olinick, E.V.: SONET/SDH Ring Assignment with

Capacity Constraints Discrete. Appl. Math. 129, 99–128 (2003)
6. Aringhieri, R., Dell’Amico, M.: Comparing Metaheuristic Algorithms for Sonet Network

Design Problems. Journal of Heuristics 11, 35–57 (2005)
7. Pelleau, M., Van Hentenryck, P., Truchet, C.: Sonet Network Design Problems. In:

EPTCS 5, LSCS 2009, pp. 81–95 (2009)
8. Lee, Y., Sherali, H.D., Han, J., Kim, S.: A Branch-and-Cut Algorithm for Solving an

Intraring Synchronous Optical Network Design Problem. Networks 35, 223–232 (2000)
9. Goldschmidt, O., Hochbaum, D.S., Levin, A., Olinick, E.V.: The Sonet Edge-Partition

Problem. Networks 41, 3–23 (2003)
10. Glover, F.: Heuristics for integer programming using surrogate constraints. Decision

Sciences 8, 156–166 (1977)
11. Laguna, M.: Scatter search. In: Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of

Applied Optimistion, pp. 183–193. Oxford University Press (2002)
12. Myung, Y.S., Kim, H.G.: On the ring loading problem with demand splitting. Operations

Research Letters 32(2), 167–173 (2004)
13. Wang, B.F.: Linear time algorithms for the ring loading problem with demand splitting.

Journal of Algorithms 54(1), 45–57 (2005)
14. Kim, S.-S., Kim, I.-H., Mani, V., Kim, H.J.: Ant Colony Optimistion for SONET Ring

Loading Problem. International Journal of Innovative Computing, Information and
Control 4(7), 1617–1626 (2008)

15. Bernardino, A.M., Bernardino, E.M., Sánchez-Pérez, J.M., Vega-Rodríguez, M.A.,
Gómez-Pulido, J.A.: Solving ring loading problems using Bio-inspired algorithms. Journal
of Network and Computer Applications 34(2), 668–685 (2011)

16. Bernardino, A.M., Bernardino, E.M., Sánchez-Pérez, J.M., Vega-Rodríguez, M.A.,
Gómez-Pulido, J.A.: Solving the ring arc-loading problem using a Hybrid Scatter Search
Algorithm. In: International Conference on Evolutionary Computation (2010)

17. Aringhieri, R., Dell’Amico, M., Grasselli, L.: Solution of the sonet ring assignment
problem with capacity constraints. Technical Report 12, DISMI. University of Modena
and Reggio Emilia (2001)

18. Macambira, E.M., Meneses, C.N., Pardalos, P.M., Resende, M.G.C.: A novel integer
programming formulation for the K-SONET ring assignment problem. AT&T Labs
Research Technical Report TD-6HLLNR (2005)

19. Macambira, E.M., Maculan, N., Souza, C.C.: A column generation approach for SONET
ring assignment. Networks 47(3), 157–171 (2006)

20. Bastos, L.O., Ochi, L.S., Macambira, E.M.: A relative neighbourhood GRASP for the
SONET ring assignment problem. In: Proceedings of the International Network
Optimization Conference, pp. 833–838 (2005)

 Solving SONET Problems Using a Hybrid Scatter Search Algorithm 97

21. Bastos, L.O., Ochi, L.S., Macambira, E.M.: GRASP with Path-Relinking for the SONET
Ring Assignment Problem. In: Proc. Fifth International Conference on Hybrid Intelligent
Systems (HIS 2005), pp. 239–244 (2005)

22. Bastos, L.O., Ochi, L.S.: A genetic algorithm with evolutionary path-relinking for the
Sonet Ring Assignment Problem. In: International Conference on Engineering
Optimization - EngOpt 2008, RJ. Proc. of the EngOpt 2008 - Sponsoring Societies:
Mathematical Programming Society (MPS), ISSMO, EUROPT, ABCM. RJ : EngOpt, v. 1
(2008)

23. Laguna, M.: Clustering for the design of sonet rings in interoffice telecomunications.
Management Sciennce 40(11), 1533–1541 (1994)

24. Glover, F., Laguna, M., Marti, R.: Scatter Search and Path Relinking: Advances and
Applications. In: Handbook of Metaheuristics, vol. 57, pp. 1–35. Springer, Heidelberg
(2003)

25. Bernardino, A.M., Bernardino, E.M., Sánchez-Pérez, J.M., Vega-Rodríguez, M.A.,
Gómez-Pulido, J.A.: A Hybrid Scatter Search Algorithm to Assign Terminals to
Concentrators. In: IEEE Congress on Evolutionary Computation (CEC 2010), pp. 329–
336. IEEE Computer Society, IEEE press, Los Alamitos (2010)

26. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (1997)

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 99–114.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Investigating a Measure of the Recombinational Distance
Traversed by the Genetic Algorithm

Robert Collier and Mark Wineberg

Department of Computing and Information Science
University of Guelph, Guelph, Ontario, Canada
{collierr,mwineber}@uoguelph.ca

Abstract. Measures of distance are essential to the development of many
applications, but the need for these measures to be representative is often
ignored - measures that truly represent the manner in which solution space is
traversed are often disregarded in favour of simpler measures. With the genetic
algorithm employing both unary and binary operators, it is difficult to quantify
the distance between chromosomes with an approach that is truly representative
of the distances traversed by the evolutionary mechanism. It is, however,
possible to redefine the function of recombination to facilitate a more
representative measure. The recursive approach presented here entails the
redefinition of recombination as a set of unary operators determined by the
current population. These operators replicate the behaviour of the original
operator precisely and can be used to calculate the recombinational distance
between chromosomes with a time complexity that is improved logarithmically
over a simplistic approach.

Keywords: Genetic algorithms, Distance measurement, Complexity analysis.

1 Introduction

Whether conducting scientific studies on organisms that have been observed in the
natural world, or developing simulations with which to analyze forms of artificial life,
every scientist investigating the underlying mechanisms that govern the processes of
evolution recognizes the need for scientific taxonomy and, ultimately, the importance
of being able to quantify any distinguishing differences observed between organisms.
However, where researchers of the natural world are largely restricted to collecting
observations about the phenotypes of living organisms (often employing structures
such as pedigree charts to trace evolutionary processes), for those researchers
investigating the population simulations employed by the genetic algorithm it is
possible to compute an accurate measurement of the distance between simulated
chromosomes in terms of the actual genetic operators that are in use by the algorithm.
Not only are these same measurements of distance essential for calculating population
diversity, but any attempt to visualize the movement of a population through a search
space of possible structures requires accurate and representative measures of
interchromosomal distance.

100 R. Collier and M. Wineberg

As there are numerous applications for representative measures of interchromosomal
distance (Stadler, 2002; Jones, 1995a; Wineberg and Oppacher, 2003), it is the objective
of this paper to introduce and thoroughly explore an approach to the measurement of these
distances with respect to the function of the recombination operator. Furthermore, as the
incurrence of computational expense is often used in the justification of excessively
simplistic methodologies, this paper places a strong emphasis on the complexity of the
proposed approach. The details surrounding any one specific application of this measure
largely exceed the scope of this paper and are only briefly addressed.

2 Genetic Operators

With the substitutional mutation process observed in natural world biology
representing one of the simplest processes by which a new feature can be introduced
into the phenotype of an organism, it is not surprising that most attempts to quantify
the distance between chromosomes focus upon the distance that would be traversed
by a point mutation operator. Mitchell (1998) offered the simple operational
definition of the mutation operation of the genetic algorithm as the act of randomly
changing the values of some alleles of a simulated chromosome. As it is technically
possible, though highly unlikely, for every allele of a simulated chromosome to be
mutated in a single generation of a typical genetic algorithm, it follows that it is then
also possible for any chromosome to be entirely transformed into any other
chromosome in a single generation. However, as the mutation operator is typically
applied to each allele probabilistically and independently, the likelihood of one
chromosome transforming into another decreases exponentially with the number of
alleles that differ between the chromosomes in question. Consequently, the widely
known Hamming distance metric, often used in quantifying the distance between two
strings, is frequently employed by researchers of the genetic algorithm as a
measurement of the distance between the chromosomes in the population simulation.
Although the widespread use of the Hamming distance (Jones, 1995a) as a measure of
the distance between simulated chromosomes is not inappropriate, it is important to
acknowledge that Hamming distance alone is only representative of the developments
facilitated by a mutation operator and, thus, should only be considered the sole source
of variation in a population that employs asexual reproduction alone. With sexual
reproduction becoming the predominant form of reproduction for the majority of the
non-microscopic organisms observed in the natural world (Merrell, 1994), the genetic
algorithm, seeking to emulate populations observed in the natural world as closely as
possible, typically also employs a binary recombination operator that is often referred
to as the crossover operator.

This recombination operator used by the genetic algorithm can be defined simply
as an operator that exchanges data between the encoded chromosomes of two
population members, in emulation of the biological process (Mitchell, 1998).
Typically the operator randomly selects a set of alleles from one chromosome to be
exchanged with the corresponding alleles of another. A uniform recombination
operation will exchange each allele of a simulated chromosomes probabilistically and
independently which, although similar to the manner in which the typical mutation

 Investigating a Measure of the Recombinational Distance 101

operator is applied, entails that the range of possible offspring that can be created
through recombination is directly proportional to the genetic difference between the
simulated chromosomes selected to act as parents.

Although k-point recombination operations, which randomly select a set number of
substrings from a simulated chromosome for exchange, are also employed by genetic
algorithm researchers with great frequency, since the set of possible offspring that can
be created through the application of a uniform recombination operation contains all
sets of possible offspring that can be created through the application of any number of
fixed k-point recombination operations, for the sake of generalizability all subsequent
references to recombination refer to uniform recombination.

3 Distance Measurement

The significance of distance functions to the genetic algorithm is most apparent when
considering a formal definition of the fitness landscape (Stadler, 2002) that the
genetic algorithm traverses in search of an optimum. Stadler defined the three-part
composition of a fitness landscape to include an evaluation function to be optimized,
the set of possible candidate solutions, that are represented by the genetic algorithm as
simulated chromosomes, and a conceptualization of distance or neighbourhood that
induces a topology on the solution set to create a solution space. Furthermore,
knowing the distance between two chromosomes that must be traversed by the
operators of the genetic algorithm is a reasonable indicator of the smallest number of
generations it will take before the transformation of one chromosome to another is
possible. Although the application of this information to optimization is apparent, by
computing the distance between all possible pairs of chromosomes in the population,
it is possible to get an impression of the actual diversity of the population as well.

For a function (whose domain is a pair of simulated chromosomes and whose
range is a real value) to actually be considered a distance metric (as opposed to a
distance measure), there are four conditions that must be satisfied. Firstly, the
function must never report the distance between two elements of the solution set as a
negative value, a condition known as non-negativity. The function must also comply
with the identity of indiscernibles condition that states that the distance between two
elements can and will only be considered zero if the two elements are identical. The
third condition that must be observed, symmetry, states that the distance to be
traversed from element x to element y must be the same as the distance that would be
traversed from element y to element x. Finally, the function must also comply with
the triangle inequality, which states that the distance from element x to element y
must always be less than or equal to the sum of the distance from x to z and the
distance from z to y. Since it is often the case that the mechanism of an operator
cannot be described using a function that satisfies each of the four metric conditions
presented above, a more generalized measure can be created by relaxing one or more
conditions. Pseudometrics, semimetrics, and quasimetrics each observe three of the
four conditions, failing to observe the identity of indiscernibles, the triangle
inequality, and the symmetry conditions, respectively.

102 R. Collier and M. Wineberg

3.1 Recombinational Distances

The binary arity of the recombination operator, in contrast with the unary arity of the
typical mutation operator, poses the most significant barrier to the introduction of an
accurate measure of distance between chromosomes that would be traversed by the
recombination operator. Since recombination requires two operand chromosomes to
produce a single offspring chromosome, the notion of exactly two chromosomes
being separated by any finite number of recombinations is undefined without the
composition of the population. Consequently, when considering traversal of the
search space using only recombination, the population must be explicitly considered,
as in Fig. 1.

Fig. 1. Populations P and P', depicted as the shaded region of the solution space S of binary
chromosomes of length 2. It is observed that, although the recombination operator can be
applied to the chromosomes in the population P {, , } depicted in Fig. 1. (a) to
produce the chromosome as an offspring (as is indicated by the edges between and
the shaded area P), if chromosome is not present in the population, as is depicted in
population P' in Fig. 1. (b), all edges incident on disappear, demonstrating that the
presence of an edge between chromosomes is dependent upon the entire population.

It was noted by both Jones (1995a, 1995b) and Culberson (1994) that considering
each point in the search space to be a single chromosome does not permit researchers
to explicitly connect them using a binary recombination operation. They proposed
that points in the search space should represent possible chromosome pairings instead,
between which connections would exist when one pair of chromosomes could be
recombined to produce the other pair as offspring, as depicted in Fig. 2 on the
following page.

Similarly, in Altenberg's (1997) development of an evaluation function for his fitness
distance correlation counterexample, a measure termed "crossover distance" was defined
as the number of single point recombination operations that must be applied to transform
one pair of complementary chromosomes into another complementary pair. However, as
recombination operations applied to complementary chromosomes can produce offspring
of any genotypic configuration, this definition would not need to provide consideration
for pairs separated by infinite distances. Although this was sufficient for the construction
of Altenberg's function, it was also explicitly acknowledged that the recombination of
complementary chromosomes is a rare occurrence during the operation of an actual
instance of the genetic algorithm.

 Investigating a Measure of the Recombinational Distance 103

Fig. 2. It is possible to depict recombination operations in a simple graph if vertices represent
pairs, rather than individual chromosomes. Although the space S of binary chromosomes
remains unchanged from Figure 1, there are three unique pairings of the two members of
population P, shaded and denoted P'' in the figure. The edge that connects pair (,) with
(,) indicates that recombination between one pair could produce the other pair as
offspring.

A contrasting alternative proposed by Gitchoff and Wagner (1996) employs a
hypergraph topology wherein chromosomes are connected by as many hyperedges as
there are offspring that could be the result of recombining hyperconnected
chromosomes, as depicted in Fig. 3, below.

Fig. 3. Under the other paradigm proposed, possible recombination operations can be depicted
in a hypergraph if vertices depict individual chromosomes connected by as many hyperedges as
possible offspring, as demonstrated by the complementary pair (,) in (b) having twice
as many hyperedges as pair (,) in (a)

4 Recombination Arity

Although either of the aforementioned techniques successfully captures some notion
of the distance between possible chromosomes, a third alternative might suggest that
the set of all possible binary recombination operations in a given population could
instead be expressed using a set of unary operations. As a clarifying example, for a
population of three simulated chromosomes, the set of possible binary operations
recombine(A, B), recombine(A, C), and recombine(B, C), could be equivalently
expressed using the three unary operators recombineWithA, recombineWithB, and

104 R. Collier and M. Wineberg

recombineWithC. Under this paradigm, the distance between two simulated
chromosomes with respect to traversal by the recombination operator would be the
smallest number of unary recombination operations available within the current
population. It is important to recognize, however, that the symmetry property
normally associated with true measures of distances cannot be upheld when each
binary recombination operation between two chromosomes is treated as a unary
operation. Consider, as a clarifying example, sample chromosomes A = , B =
, and C = with the binary recombination operation redefined as two
distinct unary operations. Although it is true that the operation recombineWithA(B) is
capable of producing an offspring chromosome C under uniform recombination, it
does not follow that recombineWithA(C) could produce B as an offspring. Since the
distance (measured in terms of unary recombination operation recombineWithA)
between B to C is finite while the distance from C to B is infinite, the recombination
distance measure would, in fact, be more accurately defined as a quasimetric.

Although it is known that the search space of possible simulated chromosomes can
only be depicted as a simple graph in two dimensions (with one vertex for each
possible chromosome) if the undirected edges are representative of a unary operator
such as mutation (Stadler, 2002), with the replacement of the binary recombination
operator with a set of unary recombination operators, a graphical representation
becomes possible. However, since it has been demonstrated that the unary
recombination operator is not symmetric, a directed graph representation would be
more accurate.

4.1 Unary Recombination Definition

In order to define a unary recombination operator it is first necessary to establish a
definition of the space of possible chromosomes in terms of a single fixed
chromosome, here denoted α, as was done with the recombineWithA operator
example of the previous section. With the recombination operators of the genetic
algorithm defined for chromosome operands of a fixed length λ, the set of possible
chromosomes of the same length with which the fixed chromosome α could be
recombined is referred to as the set β, of cardinality 2λ. Within the set β there are
exactly C(λ, δ) unique chromosomes at a Hamming distance of δ from the
chromosome α, ∀δ where 0 ≤ δ ≤ λ. From the binomial theorem it is established that
δ=0Σλ C(λ, δ) = 2λ and, consequently, the subsets of β associated with each possible
Hamming distance value of δ, for 0 ≤ δ ≤ λ, are mutually exclusive and exhaustive.
Any chromosome βi belonging to set β can be uniquely identified as the chromosome
of length λ that has values complementary to those of α at the set of indices χ, where
the cardinality of set χ can range from 0 (for chromosome β1 , that is at a Hamming
distance of 0 from α) to λ (for chromosome β2

λ, that is complementary to
chromosome α and, thus, at a Hamming distance of λ from α).

It is stressed that any binary string of length λ could be assigned to chromosome α
provided that the set of chromosomes β is the set of all binary strings of length λ,
ordered such that β0 for χ = {} will be the binary string that is identical to α, having a
Hamming distance of 0, β1 for χ = {1} will be the binary string that is identical to α
except at index 1 for which it will be complementary, having a Hamming distance of

 Investigating a Measure of the Recombinational Distance 105

1, etc. It is now possible to define a unary recombination operator such that the
domain is a single chromosome and the range is a set of possible offspring
chromosomes. The set of possible offspring chromosomes ε of a uniform
recombination operation between parent chromosomes α and βi is the set of
chromosomes having values complementary to those of α at any set of indices that is
a member of the power set P(χ). Equivalently, it could be stated that every element of
the set of possible offspring chromosomes ε is contained within the highest order
schema that contains both parent chromosomes α and βi. This schema would only
contain wildcard characters at indices where chromosomes α and βi differ and, thus,
the set of wildcard character indices would be equivalent to the set χ. For
recombination between parent chromosomes α and βi between which there is a
Hamming distance value of δ, the cardinality of set χ will be δ, and thus the
cardinality of the power set P(χ) will be 2δ, as is evident in the example from Fig. 4.

Fig. 4. For uniform recombination between the pair of parent chromosomes and ,
where is defined relative to as having complementary index set χ = {2, 3}, there
exists exactly one possible offspring (defined relative to with a complementary index set)
for each a unique member of the power set of the complementary index set between α and βi

It should be noted that since every chromosome βi is described relative to
chromosome α using a complementary index set χ, the actual configuration ()
for the chromosome α need not have been explicitly noted. Had α been a different
fixed chromosome (, for example), the complementary index set χ ={2,3}
would change the configuration of chromosome βi (into if α was configuration
). The possible offspring would remain the configurations defined by
complementary index sets {}, {2}, {3}, and {2,3}. With every chromosome βi
described relative to α, it is sufficient to associate each set of possible offspring
chromosomes, denoted ε, with the parent chromosome βi which, when recombined
with α, could produce those chromosomes as offspring.

With the newly established approach for redefining the space of possible
chromosomes with respect to a single, fixed chromosome using complementary index
sets, the set of unary recombination operators necessary to replace the binary
recombination operator can be constructed. For every unique chromosome α in the
population that could act as one operand of the binary recombination operator, there
exists a unary operator (upon the chromosome space defined in terms of α) that takes
a single operand chromosome and generates a set of possible offspring chromosomes

106 R. Collier and M. Wineberg

equal to the set of possible offspring for a binary recombination operation between the
operand chromosome and the fixed chromosome α.

The associations present between chromosomes from set β and the set ε that
represents the set of possible offspring of a recombination operation between a
member of β and the chromosome α can be stored as an adjacency matrix that would
define a directed graph structure representative of the recombination operations
possible. Although similar to the matrix employed by Vose (1990) to encode mixing
information (the probability that a pair of chromosomes, through both unary mutation
and binary recombination, can produce a specific offspring), the adjacency matrix for
the digraph representation of recombination would encode Boolean values for
whether or not each chromosome could produce any other in the space solely through
the act of recombining with a member of the population. Furthermore, as it was
Vose's intention to employ the mixing probabilities in tandem with the selection
probabilities (which cannot be computed without the evaluation function and a
corresponding decrease in generality), for the present task of determining whether or
not a given chromosome can be created by recombining elements of the current
population, the proposed matrix of Boolean values would incur a lesser computational
expense.

4.2 Digraph Representation

Since the recombination operations discussed herein probabilistically determine
whether or not each allele of a chromosome will be exchanged independently, the
adjacency matrix used to define the directed graph representation for recombination
between chromosomes of length λ can be constructed recursively from adjacency
matrices for chromosomes of length λ−1. Under the temporary assumption that
chromosome α is the binary string of length λ comprised entirely of zero bits, there
exists a 2λ × 2λ matrix of Boolean values where entry φij indicates whether or not
recombination between α and the ith member of the chromosome space can yield the
jth member of the chromosome space as an offspring. The matrix that would function
as the basis for a recursive construction would be used for a chromosome length of 1
and, thus, entry φ00 would indicate whether or not chromosome α (which is) and
the zeroth member of the chromosome space (which is also) can be recombined to
produce the zeroth member of the chromosome space (which is also) as an
offspring. Entry φ01, on the other hand, would indicate whether or not chromosome α
(which is) and the zeroth member of the chromosome space (which is also) can
be recombined to produce the first member of the chromosome space (which is) as
an offspring. For single bit chromosome recombination, the entries φ00, φ01, φ10, and
φ11 would be assigned the Boolean values true, false, true, and true, respectively.

For the recursive step in the construction of an adjacency matrix of the digraph
representation for a chromosome of length λ, assume that the adjacency matrix of the
digraph representation for a chromosome of length λ - 1 is complete and accurate. For
entry φij of the adjacency matrix for a chromosome of length λ to have a value of true,
it must be possible to recombine the ith member of the chromosome space of length λ,
denoted "i1 i2 i3 ... iλ", with a chromosome of length λ of only zero bits, such as
..., and produce the jth member of the chromosome space of length λ, denoted

 Investigating a Measure of the Recombinational Distance 107

"j1 j2 j3 ... jλ" as an offspring. In the case where i1 = this recombination is possible if
and only if "i2 i3 ... iλ" and ... can be recombined to produce "j2 j3 ... jλ", since
an i1 of can be recombined with a from α to produce either possible value of j1.
Consequently, the 2λ -1 × 2λ -1 entries φij of the adjacency matrix for length λ for i from
[2λ -1+1...2λ] and j from [1...2λ -1] and the 2λ -1 × 2λ -1 entries φij of the adjacency matrix
for length λ for i from [2λ -1+1...2λ] and j from [2λ -1+1...2λ] will both be precise copies
of the adjacency matrix associated with chromosomes of length λ - 1. In the
alternative case, where i1 = "0", recombination between "i1 i2 i3 ... iλ" and ...
can only produce "j1 j2 j3 ... jλ" as an offspring chromosome if and only if j1 = and
"i2 i3 ... iλ" and ... can be recombined to produce "j2 j3 ... jλ" as an offspring.
Consequently, the 2λ -1 × 2λ -1 entries φij of the adjacency matrix for length λ for i from
[1...2λ -1] and j from [1...2λ -1] will also be a copy of the adjacency matrix associated
with length λ - 1 and the 2λ -1 × 2λ -1 entries φij of the adjacency matrix for length λ for
i from [1...2λ -1] and j from [2λ -1+1...2λ] will have a value of false.

For demonstrative purposes, consider the construction of the 4 × 4 adjacency
matrix for the digraph representation of recombination applied to chromosomes of
length 2. Under the continued assumption that chromosome α is comprised entirely of
zero bits (in this case, chromosome), recombination with the 1st chromosome,
, can produce only the chromosome as an offspring. Thus, the first row of
the adjacency matrix will be [true false false false]. Recombination between α and the
second chromosome, , can produce either the or the chromosome as an
offspring and, thus, the second row of the adjacency matrix will be [true true false
false]. Similarly, the third and fourth rows of this adjacency matrix will be [true false
true false] and [true true true true], respectively. The adjacency matrices constructed
for the digraph representations of recombination operations that are applied to binary
chromosomes of length 1 and 2 are depicted below in Fig. 5 (a) and (b), respectively.

Fig. 5. The adjacency matrices used to define the digraph representation of recombination
between chromosomes of length 1, (a), and length 2, (b). The recursive construction approach
for these adjacency matrices is evidenced by the top left, bottom left, and bottom right
quadrants of the matrix in (b) being identical to the matrix in (a).

As would be expected from the structural induction proof of the preceding
paragraph, if the adjacency matrix associated with recombination on binary
chromosomes of length 2 is bisected vertically and horizontally into exactly 4, 2 × 2
adjacency matrices, the top-left, bottom-left and bottom-right submatrices are copies
of the basis matrix, and the top right submatrix is a 2 × 2 matrix comprised entirely of
zeros.

108 R. Collier and M. Wineberg

It also follows that if the adjacency matrix for the digraph representation of
recombination applied to chromosomes of length 3 is bisected vertically and
horizontally into exactly 4, 4 × 4 adjacency matrices, the top-left, bottom-left, and
bottom-right submatrices are each a copy of the adjacency matrix for the digraph
representation of recombination applied to chromosomes of length 2, and the top right
is a 4 × 4 matrix comprised entirely of zeros. Figure 6 clearly depicts the presence of
the digraph representation associated with recombination for chromosomes of length
2 within the digraph representation associated with recombination for chromosomes
of length 3.

Fig. 6. For βi separated from α by Hamming distance δ < λ, the chromosomes must share at
least one allele, making any recombination between these configurations equivalent to a
recombination applied to configurations of length λ-1. In (a) above, since λ = 3, configuration
βi and α must share the symbol at index ι = 1, 2 or 3. If the index ι = 1, then the digraph
representation (b) of recombination for length 2 can be consulted, and the edges mapped to the
nodes in (a) by inserting the symbol shared by βi and α at index ι. For example, if βi and α
share the symbol at ι = 1, the arc from to in (b) corresponds to the arc from to
. If the symbol at ι = 2 is shared, the arc from to in (c) corresponds to the arc
 to . Thus, every arc in a digraph representation for λ, except for those that would
originate in the node complementary to α, can be determined from the digraph representation
for λ-1.

5 Possible Offspring

It can be concluded, from the proof and discussion contained in the previous section,
that if the first parent chromosome α of a recombination operation is a binary string of
zero digits, there is a trivially simple recursive algorithm that will determine whether

 Investigating a Measure of the Recombinational Distance 109

the chromosome εi can be produced as an offspring of a recombination operation
between the first parent chromosome α and the second parent chromosome βi. This
algorithm, in order to determine whether the ith member of the chromosome space can
produce the jth member of the chromosome space as an offspring through
recombination with a chromosome comprised entirely of zero bits, entails determining
whether the entry φij of the adjacency matrix lies in the top right quadrant of the
adjacency matrix. If so, it can be concluded that a recombination operation between
the ith member of the chromosome space and the zero bit chromosome cannot produce
the jth member of the chromosome space as an offspring. If, however, the entry φij lies
in any other quadrant, the same algorithm is recursively applied to the 2nd through the
λth bits of chromosomes i and j until the chromosome length is 1.

5.1 Fixed Parent General Case

As an alternative to the development of a similar proof for every other possible value
of the simulated first parent chromosome α, it would suffice to demonstrate that there
exists a reversible transformation that, when applied to both the parent and offspring
chromosomes, would convert one of the parent chromosomes into the binary string
comprised entirely of zeros. Under this transformation, denoted τ, the Boolean value
describing whether or not recombination between a pair of chromosomes βi and βj can
yield chromosome εk as an offspring would be equivalent to the Boolean value
describing whether or not a recombination operation applied to a chromosome α that
is comprised entirely of zero bits and chromosome τ(βj) can yield the chromosome
τ(εi) as an offspring.

Vose (1990) noted such a transformation in the second lemma of his technical
report on the formalization of the genetic algorithm to be the application of the
bitwise exclusive disjunction operator. This section will demonstrate that the use of
this operator allows a single digraph representation of a recombination operation with
a chromosome comprised entirely of zero bits to serve as a sufficient representation
for any recombination operator.

If the previously mentioned adjacency matrix has already been constructed,
wherein the Boolean value of entry φij indicates whether or not recombination
between a chromosome α comprised entirely of zero bits can be recombined with the
ith member of the chromosome space to yield the jth member of the chromosome space
as an offspring, then the question of whether uniform recombination between the pair
of simulated chromosomes βi and βj can yield chromosome εk as an offspring is
equivalent to the question of whether recombination between a chromosome α
comprised entirely of zero bits and τ(βj) can yield chromosome τ(εi) as an offspring.
This Boolean value, in turn, can be read directly from the adjacency matrix.

If transformation τ is the application of a bitwise exclusive disjunction operation
(represented with the symbol ⊕) between the operand and the kth member of the
chromosome space, then τ("i1 i2 i3 ... iλ") would be equivalent to "k1 ⊕ i1 k2 ⊕ i2 k3 ⊕
i3 ... kλ ⊕ iλ". Since exclusive disjunction results in a value of false if and only if the
two operands are either both true or both false, then "τ(k)1 τ(k)2 ... τ(k)λ" would be
equivalent to "k1 ⊕ k1 k2 ⊕ k2 ... kλ ⊕ kλ", also equivalent to

110 R. Collier and M. Wineberg

To solve for the Boolean value of whether recombination between the kth and ith
member of the chromosome space, denoted "k1 k2 k3 ... kλ" and "i1 i2 i3 ... iλ"
respectively, can produce the jth member, denoted "j1 j2 j3 ... jλ", as an offspring, the
application of a bitwise exclusive disjunction operations with "i1 i2 i3 ... iλ" will
transform the kth, ith, and jth members of the chromosome space into configurations
..., "τ(i)1 τ(i)2 τ(i)3 ... τ(i)λ", and "τ(j)1 τ(j)2 τ(j)3 ... τ(j)λ", respectively. It then
suffices to prove that the Boolean value describing whether uniform recombination
between configurations ... and "τ(i)1 τ(i)2 τ(i)3 ... τ(i)λ" can produce
configuration "τ(j)1 τ(j)2 τ(j)3 ... τ(j)λ" as an offspring is equivalent to the Boolean
value describing whether uniform recombination between the kth and ith member of
the chromosome space can produce the jth member of the chromosome space. For this
to be true it must be shown that, for all values of x, τ(j)y = 0 ∨ τ(i)y will be true if and
only if jx = kx ∨ ix is also true. This particular fact can be most easily demonstrated by
using a simple truth table to compare the values of jx = kx ∨ ix and τ(j)y = 0 ∨ τ(i)y t,
for all values of kx, ix, and jx. This is included below as Table 1.

Table 1. The fact that the fourth column, jx = kx ∨ ix, and the eighth column, τ(j)y = 0 ∨ τ(i)y,
are equivalent demonstrates that recombination can produce offspring j from parent
configurations i and k if and only if recombination between a chromosome comprised entirely
of zeros and one equal to i ⊕ k can produce j ⊕ k as an offspring

kx ix jx jx = kx ∨ ix
kx ⊕ kx

≡ τ(k)x
kx ⊕ ix
≡ τ(i)x

kx ⊕ jx
≡ τ(j)x

τ(j)y =
0 ∨ τ(i)y

0 0 0 true 0 0 0 true
0 0 1 false 0 0 1 false
0 1 0 true 0 1 0 true
0 1 1 true 0 1 1 true
1 0 0 true 0 1 1 true
1 0 1 true 0 1 0 true
1 1 0 false 0 0 1 false
1 1 1 true 0 0 0 true

5.2 Digraph Representation Properties

Since the set of possible offspring chromosomes that can be produced by the
application of uniform recombination operations to chromosomes of length λ is
equivalent to the set of possible chromosomes β with which chromosome α could be
recombined to create offspring chromosomes, and since both sets are present in the
digraph representation of recombination, the number of possible resultant offspring
chromosomes is 2λ. Furthermore, since the C(λ, δ) unique chromosomes at a
Hamming distance of δ, where 0 ≤ δ ≤ λ, represent every possible chromosome with
which chromosome α could be recombined, and since the cardinality of the set of
possible offspring chromosomes that could be produced from a recombination
operation applied to chromosomes between which there is a Hamming distance of δ is
2δ, it stands to reason then that the number of arcs that are present in the offspring
digraph is δ=0Σλ C(λ, δ)⋅2δ = (1+2)λ = 2λ.

 Investigating a Measure of the Recombinational Distance 111

6 Complexity Impressions and Analyses

If the set of all possible chromosomes to be searched by the genetic algorithm is
denoted R, it was explicitly observed by Jones (1995a, 1995b) and Culberson (1994)
that binary recombination would then act on an element of R2 to produce elements of
R. This function could be accurately depicted using bipartite directed graph G = (U,
V, E) where, for every vertex of U representative of a pair of chromosomes, there
exists an arc in E whose direct successor is a vertex in V representative of a
chromosome that might be created by recombining the pair of chromosomes at the
direct predecessor of the arc in U. While it is obvious that the cardinality of set V is
the cardinality of the entire chromosome space S being searched, where |S| = 2λ,
depending upon whether or not the recombination operator is permitted to recombine
a chromosome with itself, the cardinality of set U is, for a population containing
exactly ρ unique chromosomes, either (ρ+1)! / (2!⋅(ρ-1)!) or (ρ)! / (2!⋅(ρ-2)!)
respectively.

It might then be concluded that determining whether or not (from the set B of
Boolean values) a specified chromosome (belonging to set V) can be produced by the
application of a single recombination operation to a pair of chromosomes taken from
the current population (belonging to set U), and, thus, evaluating the solution for the
function f:(U,V) → B, is actually equivalent to the task of searching the previously
defined bipartite directed graph and must then have a time complexity of the order
O(ρ22λ).

The contrasting representation of binary recombination investigated by Gitchoff
and Wagner (1996) employed a hypergraph wherein exactly one vertex exists for each
possible chromosome, and a hyperedge between any two vertices would exist for each
possible offspring that could be the result of a recombination operation between the
hyperconnected vertices. Although this hypergraph would have only P vertices, the
set of hyperedges that would connect a single pair of complementary vertices would
have the cardinality of the entire chromosome space S. With binary recombination
operations being possible between any two chromosomes in the population, this
would be a complete graph of n(n-1)/2 edges, also suggesting a complexity of the
order O(ρ22λ).

6.1 Actual Complexity Analysis

With the proposed methodology, determining whether a given chromosome can be
produced by a population through a single application of a binary recombination
operator is equivalent to determining whether a given chromosome can be produced
from any pair of chromosomes in the population, necessitating the O(ρ2) component
of the complexity associated with examining all possible chromosome pairs. Although
it remains true that recombination between a pair of complementary chromosomes
could theoretically result in any chromosome in the search space S as an offspring,
determining whether or not a matrix entry is located in the top right quadrant, at most
λ times, has time complexity O(λ).

Overall, the time complexity of the proposed recursive algorithm is the sum of the
complexity of locating the appropriate matrix entries for all possible chromosome

112 R. Collier and M. Wineberg

pairings, O(ρ2λ), and the complexity of the application of the bitwise exclusive or
operations necessary to redefine the chromosomes of the current population in terms of
each possible fixed parent, also O(ρ2λ), for a total worst case time complexity of O(ρ2λ).
Thus, the time complexity has been reduced from O(ρ22λ) to O(ρ2λ), which constitutes a
logarithmic speedup. Furthermore, for each of the λ determinations of whether the
associated matrix entry lies in the top right quadrant of the adjacency matrix, the 25%
likelihood that the algorithm can terminate early at every step of the recursion also
indicates a very fast average case time complexity of the algorithm as well.

7 Discussion

It was previously noted that the notion of interchromosomal distances in the genetic
algorithm is central to both the established adaptive landscape visualization technique
and measures of population diversity. It was noted by Wineberg and Oppacher (2003)
that every measure of population diversity in common usage is essentially an
aggregating function of the Hamming distances between all possible pairs of
chromosomes that are present in the population (or a slight variant thereof).
Furthermore, when constructing a three-dimensional adaptive landscape visualization,
the chromosome space must first be represented as a two-dimensional plane from
which the landscape can be extruded.

Since the dimensionality of the chromosome space employed by a genetic
algorithm is typically in excess of two, if researchers do not wish to limit their own
usage of this visualization technique to instances where the evaluation function is of
two dimensions or less the chromosome space dimensionality should be reduced by
multidimensional scaling technique for which an accurate interchromosomal distance
measure has been defined.

Although some researchers might consider the Hamming distance metric sufficient
for calculating interchromosomal distances, it must be explicitly observed that the
chromosome space is traversed by the mechanism of the genetic algorithm with both a
mutation operator and a recombination operator, simultaneously. Since it has been
previously demonstrated that recombination operations are more likely to assemble
higher order building blocks than mutation operations (Spears, 1998), the set of
approaches to interchromosomal distance measurement in the genetic algorithm
would be remiss if a technique for measuring recombinational distance were not
included.

8 Recent Advances

Since the analysis in this paper was initially presented at the International Conference
on Evolutionary Computation in 2010, the authors have continued to investigate
possible approaches to the measurement of recombinational distance, with the
ultimate goal being the integration of both a mutational distance and a
recombinational distance into a measure that is truly representative of the manner in
which the space of candidate solution genotypes is traversed by a simple genetic
algorithm. The approach introduced here was designed to generate a Boolean value

 Investigating a Measure of the Recombinational Distance 113

for whether or not a specified target chromosome could be produced by the
application of recombination to those chromosomes that comprise the entire current
population, but with the operational definition of the distance resolution as the
cardinality of the total range of values that can be produced by the distance measure,
the authors have been able to expand the approach to increase the distance resolution
of the measure. To this effect, all possible subsets of the current population (sorted
according to increasing cardinality) are also tested, in order to determine whether or
not the target chromosome could be recombinationally produced as the offspring of
an origin chromosome and a proper subset of the current population. The size of the
smallest subset can then be reported as the recombinational distance from the origin
chromosome to the target, except where a value of zero or +∞ must be assigned, if
the origin and target chromosomes are identical or if it is not possible to produce the
target chromosome by recombining the origin chromosome with members of the
population, respectively. Thus, the distance resolution of a recombinational distance
measure can be increased from a value of two to a value of two plus the number of
unique members of the population. Finally, the authors have been able to successfully
integrate the above measure of recombinational distance with the common approach
to measuring mutational distance, constructing a measure that is demonstrably more
representative of the manner in which genotypic spatial distance is traversed by the
genetic algorithm.

9 Conclusions

Although previous approaches to the depiction of the binary recombination operator
would seem to suggest a time complexity O(ρ22λ), this paper has demonstrated that a
logarithmic speedup can be achieved. By first defining a set of unary recombination
operators that are equivalent to the function of the binary recombination operator,
followed by the application of a bitwise transformation on the operands, the time
complexity associated with the process of determining whether a certain chromosome can
be produced from a given population through a single recombination can be improved to
O(ρ2λ). The recursive approach presented in this paper affords researchers an opportunity
to include consideration for the traversal of the chromosome space by both mutational and
recombinational operations, which will ultimately result in more representative
visualizations and calculations of population diversity.

Acknowledgements. The authors wish to acknowledge partial funding for this
research by the Natural Sciences and Engineering Research Council of Canada
(NSERC).

References

1. Altenberg, L.: Fitness Distance Correlation Analysis: An Instructive Counterexample. In:
Proceedings of the 7th International Conference on Genetic Algorithms, pp. 57–64 (1997)

2. Culberson, J.C.: Mutation-Crossover Isomorphisms and the Construction of Discriminating
Functions. Evolutionary Computation 2, 279–311 (1995)

114 R. Collier and M. Wineberg

3. Dybowski, R., Collins, T.D., Weller, P.R.: Visualization of Binary String Convergence by
Sammon Mapping. In: Proceedings of the 5th Annual Conference on Evolutionary
Programming, pp. 377–383 (1996)

4. Gitchoff, P., Wagner, G.P.: Recombination Induced Hypergraphs. Complexity 2(1), 37–43
(1996)

5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc. (1989)

6. Hamming, R.: Error Detecting and Error Correcting Codes. Bell System Technical
Journal 29(2), 147–160 (1950)

7. Jones, T.: Evolutionary Algorithms, Fitness Landscapes, and Search. Thesis Document.
The University of New Mexico, Albuquerque (1995)

8. Jones, T.: One Operator, One Landscape. Working Paper. Santa Fe Institute (1995)
9. Merrell, D.J.: The Adaptive Seascape: The Mechanism of Evolution, p. 59 (1994)

10. Mitchell, M.: An Introduction To Genetic Algorithms. MIT Press, Cambridge (1996)
11. Sammon, J.W.: A Nonlinear Mapping for Data Structure Analysis. IEEE Transactions on

Computers 18(5), 401–409 (1969)
12. Spears, W.M.: The Role of Mutation and Recombination in Evolutionary Algorithms.

Thesis Document. George Mason University, Fairfax (1998)
13. Stadler, P.F.: Fitness Landscapes. Biological Evolution and Statistical Physics, 183–204

(2002)
14. Wijk, J.J.: The Value of Visualization. In: IEEE Visualization Conference, vol. 0, p. 11

(2005)
15. Vose, M.D.: Formalizing Genetic Algorithms. In: Proceedings of Genetic Algorithms,

Neural Nets, and Simulated Annealing Applied to Problems in Signal and Image
Processing (1990)

16. Wineberg, M., Oppacher, F.: The Underlying Similarity of Diversity Measures Used in
Evolutionary Computation. In: Proceedings of the 5th Genetic and Evolutionary
Computation Conference, pp. 1493–1504 (2003)

17. Wright, S.: The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution.
In: Proceedings of the 11th International Congress of Genetics, vol. 8, pp. 209–222 (1932)

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 115–130.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Enhancing the Adaptive Dissortative Mating Genetic
Algorithm in Fast Non-stationary Fitness Functions

Carlos M. Fernandes1,2, Juan Julián Merelo1, and Agostinho C. Rosa2

1 Department of Computers’ Architecture, University of Granada, Granada, Spain
2.LaSEEB-ISR-IST, Technical University of Lisbon, Lisbon, Portugal

{c.m.fernandes.photo,jjmerelo}@gmail.com
{acrosa}@laseeb.org

Abstract. The Adaptive Dissortative Mating Genetic Algorithm (ADMGA) is a
variation of the standard GA in which a mating restriction based on the
genotypic similarity of the individuals is introduced. The algorithm mimics a
mating strategy often found in nature: dissimilar individuals mate more often
than expected by chance and, as a result, genetic diversity throughout the run is
maintained at a higher level. ADMGA has been previously applied to non-
stationary fitness function, performing well when the changes hit the function at
a medium and slow rate, while being less effective when the frequency is
higher. Due to the premises under which the algorithm was tested, it has been
argued that the replacement strategy that results from the implementation of the
dissortative mating strategy may be harming the performance when solving
high-frequency dynamic problems. This paper investigates alternative
replacement strategies for ADMGA with the objective of improving its
performance on this class of non-stationary problems. The strategies maintain
the simplicity of the algorithm, i.e., the parameter set is not increased. The
replacement schemes were tested in dynamic environments based on stationary
functions with different frequency and severity, showing that it is possible to
improve standard ADMGA’s performance in fast dynamic problems by simple
modifications of the replacement strategy.

Keywords: Genetic algorithms, Dissortative mating, Replacement strategies,
Dynamic optimization problems.

1 Introduction

In the last two decades, Evolutionary Algorithms (EAs) [2] have been successfully
applied to industrial problems, especially those with non-linearities and multiple
objectives. However, real-world problems often have dynamic components that lead
to (predictable or unpredictable) variations of the fitness function, i.e., the problem is
defined by a time-varying fitness function. Such problems are called non-stationary
(or dynamic) optimization problems.

A problem is said to be non-stationary when there is a change in the fitness function,
problem instance or restrictions, thus making the optimum change as well. In each period
of optimization, the fitness function is deterministic, but, when changes occur, solutions

116 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

already found may be no longer valid and the process must engage in a new search effort.
EAs self-adaptive characteristics make them promising candidates to solve this type of
problems. However, there other characteristics of these of these algorithms that demand a
special care when tuning or designed them for tackling dynamic optimization problems.
In nowadays, the study of efficient strategies for dynamic optimization is one the main
research lines in the Evolutionary Computation field.

Recent studies on evolutionary dynamic optimization are mainly directed towards
diversity maintenance techniques and memory schemes [5]. There are other possible
approaches, like reacting to changes (by increasing mutation, for instance, as in [6])
when they occur, or even tackling the change with a new randomly generated
population. However, the performance of such kind of approaches is strongly
dependent on the intensity of the changes — they perform better when changes affect
only a small percentage of the solution’s variables — and, usually, require that the
changes are easy to detect. Moreover, even if the change is easy to detect, it is not
trivial to decide whether it is better to restart the population or to continue the search
with the same population after a shift in the environment. Thus, it is sometimes better
to have an algorithm that is capable of continuously adapting the solution to a
changing environment — for instance, by using a memory [14, 18, 23] or a multi-
population approach [4]. Memory may be very effective in some situations but their
utility is believed to be restricted to a certain type of dynamics — in general, memory
is particularly useful when the shape of the fitness landscape repeats from time to
time. In addition, memory schemes require a considerable tuning effort and some
parts of their design and implementation is not trivial.

Diversity maintenance techniques [12, 15, 23, 21, 13] do not require, in general,
any knowledge about the problem and neither its dynamics nor its performance is
reported to be highly dependent on a specific configuration of the problem. A possible
approach for designing diversity maintenance EAs for dynamic optimization is using
mating restrictions based on the genotypes. Dissortative mating, for instance, which
refers to mating strategies in which dissimilar individuals mate more often than
expected by chance, may be inserted into to an EA and slow down the diversity loss.
There are several EAs in the literature with such type of mating strategies. One of
them is the Adaptive Dissortative Mating Genetic Algorithm (ADMGA), proposed by
Fernandes and Rosa in [10], and applied to dynamic optimization with promising
results in [11] and [13]. However, it has been observed that its performance degrades
when the frequency of changes increases. One of the possible explanations for this
behavior resides in the replacement strategy and the premises under which it is tested:
since changes are assumed to be hard to detect, the algorithm reevaluates every
solution that remains in the population after one generation (Please note that this is
the worst case scenario; in many applications the changes may be detected with less
computational effort).

This problem arises because the original ADMGA’s replacement procedure is a
population-wide elitist strategy [20]: parents and children compete and live in the
same population. It has been shown in [13] that if every old solution is reevaluated,
then the average ratio between ADMGA’s new individuals and function evaluations,
in each generation, is approximately 1/2

. In addition, since the replacement strategy is

elitist, it tends to reduce diversity. This may be slowing down ADMGA and the effect

 Enhancing the Adaptive Dissortative Mating Genetic Algorithm 117

is much more pronounced with high frequency problems because there are fewer
evaluations them between each change.

This paper addresses this issue by proposing alternative replacement strategies that
introduce diversity in the parents’ subpopulation. Three different schemes are
proposed: one in which the parents that remain in the population are first mutated and
then reevaluated; another one that replaces the parents by mutated copies of the best
individuals; finally, a third scheme, inspired by the Random Immigrants Genetic
Algorithm (RIGA) [15], that replaces the parents that remain in the population by
randomly generated solutions. The three strategies are tested in several dynamic
problems constructed by applying the dynamic problem generator proposed in [22] to
base-functions with binary variables. The results are compared to those attained by
the standard ADMGA. Then, the best strategy is compared with a standard
Generational Genetic Algorithm (GGA) and with the Elitism-based Immigrants
Genetic Algorithm (EIGA) [23]. The results demonstrate that the best strategy is
clearly capable of outperforming standard ADMGA on fast environments, without
degrading its performance when the frequency is lower. Statistical tests are given.

The paper is structured as follows. The following section describes the most
relevant dissortative mating strategies for EAs found in literature. Section 3 describes
ADMGA and introduces the proposed replacement strategies. Section 4 describes the
experimental setup and Section 5 presents and discusses the results. Finally, Section 6
concludes the paper and outlines future lines of research.

2 Background Review

By considering merely the quality of the solutions represented by the chromosomes
when selecting individuals for mating purposes, the traditional EAs emulate what, in
nature, is called random mating [19], i.e., mating chance is independent of genotypic
or phenotypic distance between individuals. However, random mating is not the sole
mechanism of sexual reproduction observed in nature. Outbreeding, assortative
mating and dissortative mating [19] are all non-random strategies frequently found in
natural species. Each one of these scheme has different effects on the genetic diversity
of the population. Dissortative mating, for instance, increases the diversity of a
population. Assortative mating, on the other hand, restricts mating between dissimilar
individuals and leads to diversity loss.

Therefore, dissortartive mating naturally came out in EAs’ research field as an
inspiration for dealing with the problem of premature convergence. A well-known EA
with a dissortative mating strategy is the CHC [8]. CHC uses no mutation in the
classical sense of the concept, but instead it increases the mutation probability when
the best fitness does not change after a certain number of generations. A reproduction
restriction assures that selected pairs of chromosomes reproduce unless their
Hamming Distance is above a certain threshold, that is, the algorithm restricts
crossover between similar individuals.

Another possible way of inserting assortative or dissortative mating into an EA is
described in [9]. The negative Assortative Mating GA (nAMGA) selects one parent,
by any method. Then, it selects a pool of individuals (the size of the pool controls
the intensity of the restriction) and computes the Hamming distance between those

118 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

chromosomes and the first parent. The individual less similar to the first parent is
selected for recombination. Although nAMGA’s results are interesting, the pool’s size
is critical to its performance and hard to tune.

Ochoa et al. [16] carried out an idea related with nAMGA in a dynamic
optimization framework. Assortative and dissortative GAs are used to solve a
dynamic knapsack problem. The results show that dissortative mating is more able to
track solutions, while a standard GA often fails to track them. The assortative GA is
the worst algorithm in the test set. The authors also discuss the optimal mutation
probability for different strategies, concluding that the optimal value increases when
the strategy goes from dissortative to assortative. In this line of work, there is also a
study by Ochoa et al. [17] on the error threshold of replication in GAs with different
mating strategies that aims at shedding some light into the relationship between
mutation probabilities and mating strategies in EAs.

Besides the above-referred techniques, a large number of other GAs with non-
random mating are found in the literature. Please refer to [13] for a detailed state-of-
the-art review.

3 ADMGA and Replacement Strategies

There are many replacement strategies1 for EAs but, in general, they may be classified
into two categories: generational and elitist. Generational schemes replace the entire
parents’ population by the children; in elitist strategies, offspring must compete with
their parents. ADMGA, due to its specific design, is a population-wide elitist strategy
[20]. This means that some individuals may remain in the population for more than
one generation. Since changes in non-stationary functions are not always easy to
detect, the most reliable way to guarantee that a fitness value does not become
outdated by a change in the environment is to reevaluate all the chromosomes that
remain in the population after reproduction. Assuming this worst case scenario does
not affect generational EAs, because the entire population is replaced by the offspring
in each generation, and fitness values must be always computed — where is the
population size —, independently of the premises.

For an elitist EA, assuming that changes are very hard to detect means that old
individuals must be reevaluated and that the average ratio between new solutions and
function evaluations, in each generation, is below . In the particular case of
ADMGA, it has been shown in [13] that this ratio is approximately , meaning that,
ADMGA generates only half of the solutions that a standard generational GA is able
to generate in the same period of time. This may be particularly penalizing when the
frequency of changes is high, and, in fact, ADMGA’s performance has been shown to
degrade in those situations. The question is: is it possible to improve ADMGA’s
performance in fast dynamic problems by changing the replacement strategy in a way
that those reevaluations are accompanied by the introduction of new genetic material
in the population? To assess this hypothesis, three alternative replacement strategies
are proposed. Before discussing them, let us describe the main algorithm.

1 We call replacement strategy to the procedure that, from the population of parents P(t) and the
population of offspring P’(t), selects the individuals that form the population P(t+1) and then
replace population P(t).

 Enhancing the Adaptive Dissortative Mating Genetic Algorithm 119

Algorithm. ADMGA

initialize population P with size(P) = n
evaluate population P
set initial threshold ts(0)
while (not termination condition)
 create new individuals P’(t)
 evaluate new individuals P’(t) // ’ is the size of P’(t)
 if (stationary) P(t+1) ← best[P’(t)+P(t)] //insert the best from P’(t)+P(t) into P(t+1)
 if (non-stationary) P(t+1) ← P’(t)+best[P(t)] //insert ’ of P’(t) and best ’ of P(t)
end while

Procedure: create new individuals
matingEvents ← /2; successfulMating ← 0; failedMating ← 0
while (successfulMatings < 1) do
 for (i ← 1 to matingEvents) do
 select two chromosomes (c1, c2)
 compute Hamming distance H(c1, c2)
 if (H(c1, c2) >= ts(t))
 crossover and mutate
 successfulMating ← successfulMating+1
 end if
 if (H(c1, c2) < ts(t)) failedMating ←failedlMating+1
 end for
 if (failedMating > successfulMating) ts(t+1)← ts(t)-1
 else ts(t+1) ← ts(t)+1
end while

Fig. 1. Pseudo-code of the Adaptive Dissortative Mating Genetic Algorithm (ADMGA)

3.1 ADMGA

ADMGA is a self-regulated dissortative mating GA, which incorporates an adaptive
Hamming distance mating restriction that tends to relax as the search process
advances. After two parents are selected, crossover only occurs if the Hamming
distance between them is found to be above a threshold value. If not, the
recombination event is classified as failed and another pair of individuals is selected
until 2⁄ pair have tried to recombine (is the population size).

After the reproduction cycle is completed, a new population is created by selecting
the members amongst the parents and newly generated offspring. Then, the
threshold is incremented when the number of successful matings is greater or equal
than the number of failed matings, and it is decremented otherwise (see pseudo-code
in Fig. 1). This way, the genetic diversity indirectly controls the threshold value.
When diversity is decreased, threshold tends to be decremented because the frequency
of unsuccessful mating will necessarily increase. However, mutation introduces
variability in the population, resulting in occasional increments of the threshold that
moves it away from 0. The only parameters that need to be tuned in ADMGA is
population size and mutation probability . Crossover probability is not used (in a
way, is somewhat adaptive, because selected individuals recombine or not
depending on their Hamming distance and the threshold value). As for the threshold,
ADMGA has shown to be capable of self-adapting its value in the first generation,
and therefore threshold may be set to its highest possible value (1, where is the

120 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

chromosome length) in the beginning of the run. However, in order to avoid initial
generations in which the ratio between new individuals and function evaluations is
very low, an initial threshold value of 4⁄ is used when optimizing non-stationary
functions.

RS 1
insert best ’ individuals from P(t) into P’(t)
P(t+1) ← P’(t)´ // is the size o P(t) and ’ is the size of P’(t)

RS 2
insert mutated best ’ individuals from P(t) into P’(t)
P(t+1) ← P’(t)

RS 3
insert ’ copies of mutated best from P(t) into P’(t)
P(t+1) ← P’(t)

RS 4
insert ’ random solutions into P’(t)
P(t+1) ← P’(t)

Fig. 2. ADMGA’s replacement strategies (RS)

3.2 Replacement Strategies

In order to tackle dynamic optimization problems, the original ADMGA’s replacement
strategy, proposed in [10], has been already modified in order to reduce the size of the
parents’ subpopulation that is introduced in the new population. While for stationary
functions the algorithm inserts the best of the complete pool of parents and children into
the new population, the ADMGA for non-stationary fitness functions inserts all the ’
children in the new population, and then selects the ’ parents (where is the
population size) to complete the population of solutions.

The modified ADMGA was then tested in dynamic optimization problems, and
compared with a standard GA, a standard population-wide elitist GA, RIGA, EIGA
and the Self-Organized Criticality RIGA (SORIGA) [21] on several problems and
dynamics [23]. However, when the frequency of changes is high, ADGMA’s
performance when compared to the other algorithms diminishes. In order to overcome
this difficulty, three different replacement strategies are introduced. Fig. 2 describes
the new strategies as well as the original scheme used for dynamic optimization (RS
1). Please note that every strategy inserts the offspring into the new population. The
differences reside in the way in which the remaining slots are occupied (i.e.,
slots, where is the population size and ’ is the offspring population size).

Replacement strategy 1 (RS 1) — original ADMGA’s strategy — inserts the
 best individuals from the parents’ population into the new population.

Replacement strategy 2 (RS 2) fills up the remaining slots with mutated copies of the ’ best individuals in parents’ population (with mutation probability).
Replacement strategy 3 (RS 3) inserts ’ mutated copies of the best solution.
Finally, strategy 4 (RS 4) inserts random immigrants — i.e., randomly generated
genotypes — into the vacant slots. The following section describes the problems used
to test the efficiency of the algorithms.

 Enhancing the Adaptive Dissortative Mating Genetic Algorithm 121

4 Experimental Setup

The experiments were conducted with dynamic versions of the order- trap function, the
onemax problem and the the 0 1 knapsack problem. With these base-functions, the test
set comprises a simple linear functions (onemax), a quasi-deceptive trap functions (order-

 trap) and combinatorial problems (knapsack). These stationary functions were used to
construct non-stationary problems with the dynamic problem generator proposed in [22].
This section describes the stationary functions, the dynamic problem generator, and the
methodology followed during the experiments.

4.1 Functions

The 0 1 knapsack is a class of NP-complete problems that consist in maximizing a
profit under certain restrictions. Given a set of items with different weights
and profits , the profit must be maximized:

p x (1)

where … and is or , depending if the item is selected 1 or
not 0 . The function is subject to a constraint:

w x 0.6 w (2)

where is a random integer in the interval 1,50 and is the sum of with a
random integer in the interval 1,5 . The knapsack problem used in this study consists
of 100 items (meaning that the length of the chromosomes is 100) with strongly
correlated sets of randomly generated data (as in [22]). The fitness of the global
optimum is 1853 (since the weights are non-negative integers the global optimum can
be obtained with dynamic programming).

A trap function [7] is a piecewise-linear function defined on unitation (the number
of ones in a binary string) that has two distinct regions in the search space, one
leading to a global optimum and the other leading to the local optimum. Depending
on its parameters, trap functions may be deceptive or not. The traps in this study are
defined by: ,1 , (3)

where u() is the unitation function and is the problem size (and also the fitness of
the global optimum). With this equation, order- traps are in the region between
deceptive and non-deceptive. For this study, a 30 bit problem was constructed by
concatenating 10 order-3 subproblems. The fitness of the global optimum is 30.

Finally, the onemax is a simple linear problem that consists in maximising the
number of ones in a binary string. For these experiments, we used a 100-bit problem.

122 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

4.2 Problem Generator and Methodology

The test environment proposed in [22] was then used to create a dynamic experimental
setup based on the functions described above. This problem generator has two parameters
that control the severity of the changes and their frequency: is a value between 0 and 1.0
which controls the severity and defines number of generations between changes. By
changing and it is possible to control two of the most important features when testing
algorithms on dynamic optimization problems: severity () and period (— i.e., 1⁄ is
the frequency — between changes [1]. However, the value, if given without the
population size , does not provide enough information on the real period between
changes. Therefore, in this paper we use the number of evaluations between each change
, defined by . For each one of the stationary problems, five different dynamic

scenarios were constructed by setting to 600, 1200, 2400, 4800, 9600, 19200 and 38400. As for the severity () value, it is randomly generated in each time the function
changes. The scope of this investigation is the performance according to the frequency of
changes, and therefore setting to random values simplifies the analysis. However, a final
test is made with set to 1200 and 4800 and set to 0.05, 0.3, 0.6 and 0.95. Every run
covers 50 periods of change, i.e., 50 evaluations, with changes every evaluations.

In order to evaluate an algorithm’s configuration when solving a specific problem,
the offline performance [21] — i.e., the best-of-generation fitness values averaged
over the total number of runs and over the data gathering period — is first examined: 1G 1R (4)

where is the number of generations, is the number of runs (30 in all the
experiments) and is the best-of-generation fitness of generation of run of an

algorithm on a specific problem. This value gives information on how close the GAs
are able to track the moving solution.

A GA has several parameters that model their general behavior. We are particularly
interested in GAs’ performance when varying the mutation probability, because
evolutionary approaches that work by maintaining population diversity at a higher level
during the search may be shifting the optimal mutation probability to different values. In
addition, it has been demonstrated [17] that dissortative and assortative mating increase
and decrease, respectively, the optimal mutation probability of a GA. Therefore, it is of
extreme importance to test the GAs under a reasonable range of values, otherwise the
results may become biased toward some of the approaches. Probability values were set
to 1/ 2 , 1/ , 2/ and 4/ .

The population size also affects the performance of the GAs, not only on static
problems, but also in dynamic environments. Knowing the optimal size is important for
determining with accuracy the scalability of a GA and to avoid superfluous computation
effort due to a population larger than the optimal. Although this investigation does not aim
at studying scalability, a proper research methodology must test different values,
otherwise there is a risk of comparing suboptimal parameter settings and, consequently,
getting invalid conclusions. In this study, all the algorithms were tested with 8, 16, 30, 60 and 120. Uniform crossover was chosen in order to avoid taking advantage of the
trap function building blocks tight linkage.

 Enhancing the Adaptive Dissortative Mating Genetic Algorithm 123

Every algorithm in the test set uses binary tournament (tournament size is in
general a fairly good selective pressure for most problem [20].

The ADMGA was compared with GGA and EIGA. EIGA is a very simple scheme
that in each generation replaces a fraction of the population by mutated copies of
the best solution of the previous generation (with mutation probability). In [23],
Yang shows that the algorithm is more effective when the changes are not too severe.
Due to its simplicity and the interesting results reported in [23], EIGA was selected as
the main peer-algorithm for this study. In addition, EIGA has some similarities with
one of the replacement strategies proposed in this paper to improve ADMGA’s
performance, which makes in a suitable candidate for being included in the test set.

RS 4 was found to be the worst replacement strategy in the test set, being unable to
deal with the proposed dynamic problems. RS 4 is not a proper strategy for ADMGA
and therefore, in order to simplify the graphics, it was removed from analysis and
discussion in Section 5.

Fig. 3. Order-3 dynamic trap function. Standard ADMGA, GGA and EIGA. Population size 30; 1⁄ (GGA), 2⁄ (EIGA and ADMGA); 1.0; GGA with 2-elitism.

GGA was tested with crossover probability set to 0.7 and 1.0, with and without
elitism. The best results are attained with 1.0 and 2-elitism. Like the other
algorithms, EIGA was also tested with several values; was set to 0.6 (as
suggested in [23]), 0.7 and 1.0; is set 0.2 (also, as suggested in [23]). Please note
that due to its design, EIGA population size must set so that 1 ,
where is the population size of a standard GA that would perform the same number
of function evaluations in each generation. EIGA was tested with different values
and the results discussed in the following section refer always to the best
configurations. Please refer to [23] for details the algorithm’s implementation and
parameter tuning.

5 Results and Discussion

Fig. 3 illustrates the issue addressed by this study. ADMGA only outperforms the
other GAs when is above a specific value. In the results on depicted in the graphic,

22

24

26

28

30

ε = 1200 ε = 2400 ε = 4800 ε = 9600 ε = 19200

av
er

ag
ed

 o
ff

lin
e

pe
rf

or
m

an
ce order-3 trap

ADMGA

GGA

EIGA

124 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

ADMGA is clearly outperformed by the other algorithms when 4800
(confirmed by statistical tests). The main objective is to find a replacement strategy
for ADMGA that reduces this value.

Fig. 4 summarizes the results attained by the different versions of ADMGA. The
graphics show the configurations with and values that maximize the performance
of each replacement strategy. These results demonstrate RS 2 is capable of
outperforming standard ADMGA (RS 1) in the high frequency scenarios.
Replacement strategy 3, which introduces mutated copies of the best individual in the
population, works well in the onemax problem, but it is outperformed by the other
strategies in most of the dynamic scenarios based knapsack and trap function. (RS 2 is

-elitist, because it improves its performance. Please note that RS 2 is quite
disruptive, but the elitism guarantees that the best solutions are not lost.)

Table 1 summarizes the statistical tests. RS 2 is compared with RS 1 using
Kolmogorov-Smirnov tests with 0.05 level of significance. The tests show that RS 2
clearly outperforms standard ADMGA (RS 1) in most of the problems. The first
objective of this study has been accomplished: one of the schemes is able to improve
ADMGA’s performance in fast dynamic problems. The following step is to compare
the new ADMGA with other GAs.

As already stated, GGA and EIGA were thoroughly tested in order to avoid unfair
comparisons. GGA is better with 1.0 and 2-elitism. Best population size is 16 for onemax, and 30 for order-3 trap and knapsack. In general, GGA’s
performance is optimized by 1⁄ except on knapsack, for which the best is 2⁄ . Fig. 5 and Table 2 shows that for 2400, ADMGA with RS 2 is never
outperformed by GGA. In particular, the value above which ADMGA is at least
equivalent to GGA decreases from 4800 to 600 in order-3 trap (please compare Fig.
3 and Fig. 5). Table 3 compares ADMGA with the standard strategy (RS 1) and GGA.
By comparing the results in Table 2 and Table 3, it is perceptible that RS 2 reduces
the above which ADMGA is significantly better or at least statistically equivalent to
GGA in the three types of dynamic fitness functions. If we compare ADMGA’s
replacement strategy 2 with EIGA the conclusions are similar — see Fig. 5 and Table
4. EIGA performs better than ADMGA (RS 2) in fast onemax problem and knapsack
problems. On the other hand, EIGA is outperformed by ADMGA in most of the
dynamic order-3 trap problems.

As stated above, the comparisons in this study were made considering the worst-case
scenario, i.e., changes are hard to detect and a reliable detection requires the reavaluation
of the chromosomes that are copied from previous generations. However, we may
consider a different assumption: changes are easy to detect and all that is required is to
reevaluate old chromosomes after a change is detected. Under these conditions, the results
are different. A summary of EIGA and ADMGA’s behavior is shown in Table 5:
ADMGA clearly outperforms EIGA in almost every dynamic problem. However, at this
point we cannot exclude the possibility that population-wide elitism may be biasing the
results towards ADMGA under these conditions; therefore, other experiments must be
devised in order to compare properly the GAs.

A final test was conducted with dynamic scenarios with fixed severity values.
ADMGA with RS 1 and RS 2 was tested and compared on dynamic problems with
set to 1200 and 4800 and severity set to 0.05, 0.3, 0.6 and 0.95. The algorithms
were tested with the parameter values that maximize their performance on the random
severity problems.

 Enhancing the Adaptive Dissortative Mating Genetic Algorithm 125

Fig. 4. ADMGA replacement strategies. Onemax, order-3 trap and knapsack dynamic
problems. Population size: 16 (onemax) and 30 (trap and knapsack); 2/
(RS 1) and 1/ (RS 2 and RS 3). RS 2 with 2-elitism.

80

85

90

95

100

ε = 1200 ε = 2400 ε = 4800 ε = 9600 ε = 19200

av
er

ag
ed

 o
ff

lin
e

pe
rf

or
m

an
ce

onemax

RS 1

RS 2

RS 3

22

24

26

28

30

ε = 1200 ε = 2400 ε = 4800 ε = 9600 ε = 19200

av
er

ag
ed

 o
ff

lin
e

pe
rf

or
m

an
ce

order-3 trap

RS 1

RS 2

RS 3

1770

1790

1810

1830

ε = 1200 ε = 2400 ε = 4800 ε = 9600 ε = 19200

av
er

ag
ed

 o
ff

lin
e

pe
rf

or
m

an
ce knapsack

RS 1

RS 2

RS 3

126 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

Table 1. Kolmogorov-Smirnov tests (RS 2 vs RS1). Results are shown as + signs when
ADMGA (RS 2) is significantly better than the ADMGA (RS 1), − when RS 2 is significantly
worst, and ≈ when the differences are not statistically significant. Parameters as in Fig. 4.

ε→ 600 1200 2400 4800 9600 19200 38400

onemax + + + + ≈ ≈ ≈

trap + + + + + + +

knapsack + + + + + + +

Table 2. Kolmogorov-Smirnov tests (RS 2 vs GGA). The results are shown as + signs when
ADMGA with RS 2 is significantly better than GGA, − when RS 2 is significantly worst, and ≈
when the differences are not statistically significant. Parameters as in figure 5.

ε→ 600 1200 2400 4800 9600 19200 38400

onemax − − ≈ ≈ ≈ ≈ ≈

trap ≈ ≈ + + + + +

knapsack − − ≈ ≈ ≈ + +

Table 3. Kolmogorov-Smirnov tests (RS 1 vs GGA). The results are shown as + signs when
ADMGA with RS 1 is significantly better than GGA, − when RS 1 is significantly worst, and ≈
when the differences are not statistically significant. Parameters as in figures 4 and 5.

ε→ 600 1200 2400 4800 9600 19200 38400

onemax − − − − ≈ ≈ ≈

trap − − − ≈ + + +

knapsack − − − − − ≈ +

Table 4. Kolmogorov-Smirnov tests (RS 2 vs EIGA). The results of the test are shown as +
signs when ADMGA with RS 2 is significantly better than EIGA, − when RS 2 is significantly
worst, and ≈ when the differences are not statistically significant. Parameters as in figure 5.

ε→ 600 1200 2400 4800 9600 19200 38400

onemax − − − ≈ ≈ ≈ ≈

trap ≈ ≈ + + + + +

knapsack − − ≈ ≈ ≈ ≈ ≈

Table 5. Kolmogorov-Smirnov tests (RS 2 vs EIGA). The results of the test are shown as +
signs when ADMGA with RS 2 is significantly better than EIGA, − when RS 2 is significantly
worst, and ≈ when the differences are not statistically significant. Parameters as in Fig. 5.

ε→ 600 1200 2400 4800 9600 19200 38400

onemax + + + + + + ≈

trap + + + + + + +

knapsack + + + + + + +

 Enhancing the Adaptive Dissortative Mating Genetic Algorithm 127

Finally, a test with fixed severity shows that the new replacement strategy is able
to improve the standard strategy performance on a wide range of severity values.

Table 6 shows the numerical results and the statistical tests. RS 2 improves the
performance of the standard strategy in most of the scenarios. These results validate
the approach and show that it is possible to improve ADMGA’s performance on
dynamic optimization problems by adjusting the replacement strategy.

Fig. 5. ADMGA (RS 2), GGA and EIGA. Parameters as in fig. 3 and 4. Population size n = 16
(onemax) and n = 30 (order-3 and knapsack). GGA with 1⁄ (onemax and trap) and 2⁄ (knapsack). EIGA with 2⁄ and 0.2.

80

85

90

95

100

ε = 1200 ε = 2400 ε = 4800 ε = 9600 ε = 19200

av
er

ag
ed

 o
ff

lin
e

pe
rf

or
m

an
ce onemax

ADMGA (RS 2)

GGA

EIGA

22

24

26

28

30

ε = 1200 ε = 2400 ε = 4800 ε = 9600 ε = 19200

av
er

ag
ed

 o
ff

lin
e

pe
rf

or
m

an
ce

order-3 trap

ADMGA (RS 2)

GGA

EIGA

1780

1790

1800

1810

1820

1830

ε = 1200 ε = 2400 ε = 4800 ε = 9600 ε = 19200

av
er

ag
ed

 o
ff

lin
e

pe
rf

or
m

an
ce knapsack

ADMGA (RS 2)

GGA

EIGA

128 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

Table 6. Numerical results and Kolmogorov tests (R1 vs R2). Results are shown as + signs
when ADMGA (RS 2) is significantly better than the ADMGA (RS 1), − when RS 2 is
significantly worst, and ≈ when the differences are not statistically significant. Population size 30. Trap: ADMGA (RS 1): 1/ ; ADMGA (RS 2): 1/ 2 . Knapsack:
ADMGA (RS 1): 4/ (1200) and 2/ (4800). ADMGA (RS 2): 4/ (1200) and 2/ (4800).

ρ →

 . . . 0.95 . . . 0.95

trap

RS 1
28.35

±0.40

23.96

±0.26

22.66

±0.21

24.68

±0.08

29.46

±0.13

27.35

±0.21

25.53

±0.16

25.13

±0.05

RS 2

28.74

±0.19

(+)

24.25

±0.28

(+)

22.92

±0.20

(+)

24.73

±0.07

(+)

29.73

±0.04

(+)

28.10

±0.10

(+)

25.90

±0.13

(+)

25.26

±0.07

(+)

knapsack

RS 1
1807.41

±1.35

1794.94

±1.16

1785.57

±0.32

1767.99

±1.25

1827.30

±0.99

1811.84

±0.70

1800.84

±0.98

1789.27

±0.56

RS 2

1800.76

±0.91

(−)

1796.52

±0.83

(+)

1791.09

±0.88

(+)

1779.46

±0.86

(+)

1819.90

±0.65

(−)

1812.29

±0.56

(+)

1804.79

±0.57

(+)

1794.88

±0.42

(+)

6 Conclusions

This paper proposes new replacement schemes for the Adaptive Dissortative Mating
Genetic Algorithm (ADMGA). The main objective is to improve standard ADMGA’s
performance in dynamic problems with high frequency of changes. One of the
proposed strategies outperforms the standard strategy in most of the dynamic
scenarios designed for testing the algorithms. The new strategy simply mutates the
chromosomes that remain in the population after the recombination stage before
reevaluating them.

The results show that ADMGA is capable of outperforming not only a standard
GA, but also the Elitism-based Immigrants GA (EIGA) in some classes of problems
and dynamics with random severity: 1) when the frequency of changes is lower,
ADMGA is never outperformed by the other GAs; 2) with higher frequencies,
ADMGA is never outperformed by GGA and EIGA in order- trap functions.
Preliminary tests in non-stationary functions in which the changes are easy to detect,
show that ADMGA is able to outperform EIGA in all but one scenario. Finally, a test
with fixed severity shows that the new replacement strategy is able to improve the
standard strategy performance on a wide range of severity values.

One of ADMGA’s advantages over other GAs is that it only requires two
parameters that need to be tuned (and), while EIGA, for instance, requires the
setting of four parameters (, , and). Since EIGA has been recently proposed
as a GA specifically conceived for dynamic optimization, and since the report in [16]
claims that the algorithm performs well on dynamic optimization problems, we may
state that ADMGA is a viable strategy for tackling dynamic optimization problems.

 Enhancing the Adaptive Dissortative Mating Genetic Algorithm 129

Acknowledgements. The first author wishes to thank FCT, Ministério da Ciência e
Tecnologia, his Research Fellowship SFRH / BPD / 66876 / 2009, also supported by
FCT (ISR/IST plurianual funding) through the PIDDAC Program Funds. The paper
has also been funded in part by the Junta de Andalucía P06-TIC-02025 and P07-TIC-
03044.

References

1. Angeline, P.: Tracking Extrema in Dynamic Environments. In: Proceedings of the 6th
International Conf. on Evolutionary Programming, pp. 335–345. Springer (1997)

2. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press
(1996)

3. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation, pp.
1875–1882. IEEE Press (1999)

4. Branke, J., Kaußler, T., Schmidt, C., Schmeck, H.: A multi-population approach to
dynamic optimization problems. In: Parmee, I.C. (ed.) Proceedings of the Adaptive
Computing in Design and Manufacturing (ACDM 2000), pp. 299–308. Springer, London
(2000)

5. Branke, J.: Evolutionary optimization in dynamic environments. Kluwer, Norwel (2001)
6. Cobb, H. G.: An investigation into the use of hypermutation as an adaptive operator in

GAs having continuous, time-dependent nonstationary environments. Technical Report
AIC-90-001. Naval Research Laboratory, Washington (1990)

7. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D. (ed.)
Foundations of Genetic Algorithms 2, pp. 93–108. Morgan Kaufmann, San Francisco
(1993)

8. Eschelman, L.J., Schaffer, J.D.: Preventing premature convergence in genetic algorithms
by preventing incest. In: Proceedings of the 4th International Conference on Genetic
Algorithms, pp. 115–122. Morgan Kauffman, San Francisco (1991)

9. Fernandes, C.M., Rosa, A.C.: A Study on Non-Random Mating in Evolutionary
Algorithms Using a Royal Road Function. In: Proceedings of the 2001 Congress on
Evolutionary Computation, pp. 60–66. IEEE Press (2001)

10. Fernandes, C.M., Rosa, A.C.: Self-adjusting the intensity of dissortative mating of genetic
algorithms. Journal of Soft Computing 12, 955–979 (2008)

11. Fernandes, C.M., Rosa, A.C.: Evolutionary Algorithms with Dissortative Mating on Static
and Dynamic Environments. In: Kosinski, W. (ed.) Advances in Evolutionary Algorithms,
pp. 181–206. In-Tech (2008)

12. Fernandes, C.M., Merelo, J.J., Ramos, V., Rosa, A.C.: A Self-Organized Criticality
Mutation Operator for Dynamic Optimization Problems. In: Keijzer, M. (ed.) Proceedings
of the 2008 Genetic and Evolutionary Computation Conference, pp. 937–944. ACM Press
(2008)

13. Fernandes, C.M.: Diversity-enhanced Genetic Algorithms for dynamic optimization. Ph.D
Thesis. Technical University of Lisbon (2009), http://geneura.ugr.es/pub/tesis/PhD-
CFernandes.pdf

14. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic
algorithms with dominance and diploidy. In: Grefenstette, J.J. (ed.) Proceedings of the 2nd
International Conference on Genetic Algorithms, pp. 59–68. L.Erlbaum Associates,
Hillsdale (1987)

130 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

15. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Manner, R.,
Manderick, B. (eds.) Parallel Problem Solving from Nature II, pp. 137–144. North-
Holland, Amsterdam (1992)

16. Ochoa, G., Mädler-Kron, C., Rodriguez, R., Jaffe, K.: Assortative Mating in Genetic
Algorithms for Dynamic Problems. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W.,
Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G.
(eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 617–622. Springer, Heidelberg (2005)

17. Ochoa, G.: Error Thresholds in Genetic Algorithms. Evolutionary Computation 14(2),
157–182 (2006)

18. Ramsey, C.L., Grefenstette, J.J.: Case-based initialization of genetic algorithms. In:
Proceedings of the 5thInternational Conference on Genetic Algorithms, pp. 84–91. Morgan
Kaufmann (1993)

19. Russel, P.J.: Genetics. Benjamin/Cummings (1998)
20. Thierens, D.: Scalability problems of simple GAs. Evolutionary Computation 7(4),

331–352 (1999)
21. Tinós, R., Yang, S.: A self-organizing random immigrants GA for dynamic optimization

problems. Genetic Programming and Evolvable Machines 8(3), 255–286 (2007)
22. Yang, S., Yao, X.: Experimental study on PBIL algorithms for dynamic optimization

problems. Journal of Soft Computing 9(11), 815–834 (2005)
23. Yang, S.: Genetic Algorithms with Memory- and Elitism-Based Immigrants in Dynamic

Environments. Evolutionary Computation 16(3), 385–416 (2008)

A Receding Horizon Genetic Algorithm for Dynamic
Resource Allocation: A Case Study on Optimal

Positioning of Tugs

Robin T. Bye

Department of Technology and Nautical Sciences, Ålesund University College
Postboks 1517, N-6025 Ålesund, Norway

roby@hials.no
http://www.robinbye.com

Abstract. This paper presents a receding horizon genetic algorithm (RHGA) for
dynamic resource allocation. The algorithm combines methods from control the-
ory and computational intelligence to simultaneously solve the problems of (i)
coordinated control of resources, (ii) task assignment, and (iii) multiple target
tracking in a dynamic environment. A simulated case study on optimal position-
ing of a fleet of tugs along the northern Norwegian coast serves as a means of
evaluating the algorithm. In terms of reducing the risk of oil tanker drifting ac-
cidents, the study shows that the RHGA is able to iteratively plan movement
trajectories for each individual tug such that the net collective behaviour of the
tugs outperforms that of stand-by tugs stationed at bases located uniformly along
the coast. The promising results suggest great potential for further development
and generalisation to other dynamic resource allocation problems.

Keywords: Dynamic resource allocation, genetic algorithm, receding horizon
control, model predictive control, optimal control.

1 Introduction

Dynamic resource allocation can be considered a broad class of optimisation problems,
including search and rescue operations, vehicle routing, crew allocation and scheduling,
and many others. This study focuses on the problem of allocating a group of resources
to the tracking of multiple targets in a dynamic environment. Specifically, it considers
a fleet of tugs operating along a coast line with the purpose of preventing oil tankers
from drift grounding. The tugs must dynamically be assigned moving target positions
for tracking such that the overall risk of any oil tankers drifting aground is minimised.
Such a problem is a demanding one and poses a number of interrelated challenges.

A first challenge is that of task assignment: Which resources shall track which tar-
gets? On the one hand, if there are more resources than targets, a subset of resources
could be given the task of tracking one target each whilst remaining resources could be
given the task of self-maintenance or simply doing nothing. On the other hand, if the
number of targets exceeds the number of resources, some resources must be assigned
more than one target. In both cases, some governing principle is needed for allocating
resources.

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 131–147.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

132 R.T. Bye

A second challenge is that of target tracking: How should each resource move to best
track, or cover, its assigned targets? When targets outnumber resources, there will be an
inherent tradeoff between good tracking of some targets at the expense of bad tracking
of others. In addition, some targets may be considered more important to track than
others and therefore must be weighted more.

Collectively considering task assignment and target tracking for the resources as a
group, a third challenge is that of coordinated control and collective performance: How
should tasks be assigned and targets be tracked such that some net performance index
is optimised?

Finally, being in a dynamic environment, these challenges need to be constantly
reevaluated: How can future changes in the state space, such as motion of targets and
changing dynamics of the surroundings, be incorporated?

This paper presents a receding horizon genetic algorithm (RHGA) for solving the
abovementioned challenges. The performance of the algorithm is demonstrated in a
simulated case study of a real-world problem, namely the positioning of tug vessels
along the coastline of northern Norway.

The following sections provide background information on the tug positioning prob-
lem, derivation of a simplified and concise problem description, and details on a pro-
posed algorithm that solves the problem by combining receding horizon control (RHC)
with a genetic algorithm (GA). The performance of the RHGA will be demonstrated in
some simulated scenarios. Finally, the simulation results, aspects of our approach, and
future potential will be discussed.

1.1 The Tug Positioning Problem

Each year thousands of ship transits, including several hundred transits of oil tankers,
are made along the coastline of northern Norway, thus exposing it to the risk of drift
grounding accidents and oil spill [1]. In an effort to reduce the risk of such accidents, the
Norwegian Coastal Administration (NCA) runs a vessel traffic services (VTS) centre in
the town of Vard, which administers a fleet of tugs patrolling the coastline. The main
purpose of these tugs is to cleverly patrol the coastline in such a manner that if an oil
tanker loses manoeuvrability through steering or propulsion failure, there will be a tug
sufficiently close that it can intercept the drifting oil tanker before it runs ashore [2].

Oil tankers are required by law to sail along predefined piecewise-linear corridors
approximately parallel to the coastline. Hence, for example by linearly extrapolating its
speed along its corridor, it is possible to predict a tankers future position. Moreover,
all ships are required by international law to constantly transmit both static (identity,
dimensions, cargo, etc.) and dynamic (position, speed, heading, etc.) ship information
through the automatic identification system (AIS). The AIS information is transmitted
both to other ships and nearby VTS centres and relayed on the Internet. Together with
weather forecasts and dynamic models of wind, wave heights, and ocean currents, the
AIS information can be used to predict potential drift trajectories and grounding loca-
tions for ships that lose manoeuvrability [2].

The NCA has developed risk-based decision support tools based on dynamical risk
models that draws on a vast pool of information [2,3]. Some of this information is
static and certain, such as a the type of ship, the nationality of its crew, and the amount

RHGA for Dynamics Resource Allocation 133

and type of oil it is carrying. Information about other factors is dynamic and uncertain
and requires modelling. Such factors include wind, waves, currents, accident frequency
and consequences, oil spill size and potential impact, and others. The decision support
tools aid the human operator at a VTS centre in directing tugs by determining high-risk
target areas that tugs should approach. Nevertheless, with the projected rapid increase
in oil tanker transits in coming years [1] and the increasing number of tugs required for
adequate patrolling, the problem quickly becomes unmanageable by a human operator.
Consequently, there is a need of an algorithm able to calculate position trajectories that
each tug should follow in order to reduce the overall risk of drifting accidents.

1.2 Problem Formulation

Before developing an algorithm, the tug positioning problem must be formulated care-
fully and precisely. First, it is assumed that No oil tankers move in one dimension only
(north or south, say) along a line of motion z. This is a reasonable assumption consider-
ing that oil tankers follow predefined piecewise-linear corridors. Inside of z and closer
to shore, it is assumed that Np tugs are patrolling along a line of motion y parallel to
z. The possibility of collisions between oil tankers and patrol tugs on their respective
lines of motion is not considered.

It is acknowledged that the coastline does not constitute a sequence of connected
straight line segments due to its vast amount of fjords, peninsulas, and islands. Never-
theless, because tugs should stop drifting ships before they reach land or danger zones,
a straight patrol line some distance from the rugged coastline can be considered a con-
servative choice. Figure 1 shows a graphical representation of the problem description,
illustrated by two patrolling tugs and three oil tankers.

Moreover, the algorithm assumes real-time access to prediction data from a set of
accurate models such as those developed by the NCA and described in Sect. 1.1. These
models must be able to predict future positions of oil tankers along z and the corre-
sponding potential drift trajectories given current and predicted information about the
tankers themselves and the environment they are operating in.

Suppose an oil tanker currently positioned at z(t) starts drifting at some time t = td.
The algorithm requires a future position trajectory predicted Th hours ahead in time,
where Th is called the prediction horizon. Employing a discrete-time model with a
sampling period of Ts = 1 hour, the estimated future positions are given by ẑ(t|td) for
t = td + 1, td + 2, . . . , td + Th.

Moreover, for each predicted position ẑ(t|td) there is a corresponding predicted drift
trajectory starting at ẑ(t|td) that may or may not intersect the patrol line y after an es-
timated drift time Δ̂ into the future depending on ocean currents, wave heights, wind
conditions, oil tanker shape and weight, and more. Collecting all predicted drift tra-
jectories for all oil tankers results in a distribution of cross points where future drift
trajectories will intersect the patrol line.

Based on the predicted distribution of cross points, the problem is to calculate trajec-
tories, or sequences of patrol points, along y for each of the patrolling tugs such that the
risk of an oil tanker in drift not being reached and towed to safety before grounding is
minimised. This is a difficult problem involving collective behaviour, task assignment,
and multi-target tracking in a dynamic environment.

134 R.T. Bye

Fig. 1. Problem description. Patrol tugs P1 and P2 (black circles) and oil tankers O1, O2, and O3

(white circles) move unidimensionally along lines y and z, respectively. Solid circles correspond
to positions at current time of drift t = td, whereas dashed lines and circles indicate predicted
drift trajectories and positions for t > td. The estimated duration of each drift trajectory is
denoted Δ̂k

i , where i and k refers to the drift trajectory for the ith oil tanker that begins k hours
ahead in time at t = td+k. Circles with a cross indicate cross point points. The dynamic resource
allocation problem is that of determining how the tugs collectively should move in the time ahead
in order to best reduce the risk of drift grounding accidents.

2 Method

An example scenario in Fig. 2 shows three tugs and three corresponding random walk
patrol trajectories the tugs may follow in order to track the cross point distributions of
six oil tankers. As seen from the plot, these patrol trajectories provide poor coverage
of cross points. The tugs stay more or less around their initial positions, leaving a large
number of cross points unattended. A better solution would have the tugs spread out,
each tug covering its own set of cross points, and thus improving the overall coverage.

How can the quality, or performance, of the choice of patrolling tug trajectories be
measured? One possible approach is to examine a large number of sets of potential
patrol trajectories and for each set evaluate a cost function that quantifies the perfor-
mance of the tugs. There are several methods that likely can find near-optimal solutions
in reasonable time for this approach, for example variants of Monte Carlo methods,
simulated annealing, ant colony optimisation, genetic algorithms (GAs), or other meth-
ods from computational intelligence (e.g., see [4] for an overview). This study uses a
continuous GA based on a version similar to that described in [5].

Another challenge is how to accomodate changing dynamics of the environment.
Not only may oil tankers change their speeds and headings but weather conditions also
constantly change. Consequently, cross point distributions will change with time and

RHGA for Dynamics Resource Allocation 135

0 5 10 15 20 25
−800

−600

−400

−200

0

200

400

600

800
Time since start: 0 hour(s)

Time (hours)

P
at

ro
l

li
n
e

y
or

oi
l

ta
n
ke

r
li

n
e

z
(k

m
)

Fig. 2. Example scenario. White squares on the vertical axis indicate the initial positions of six
oil tankers on the oil tanker line z at t = 0. White circles indicate where the corresponding
predicted drift trajectories will cross the patrol line y as a function of time. Black circles indicate
three random walk patrol trajectories on y for t = 0, 1 . . . , Th, where the prediction horizon is
set to Th = 24 hours. The area reachable by each of the three tugs at full speed from their initial
positions are depicted by envelopes delimited by dotted lines. Note that the smallest observed
drift time is Δ̂ = 8 hours, whereas the largest drift time is Δ̂ = 11 hours. An algorithm for
tug positioning must generate patrol trajectories such that the tugs cover the distribution of cross
points as well as possible.

solutions must be recalculated. One solution is to redo the search for candidate patrol
trajectories at regular intervals and replace the previously generated trajectories with
new ones. Such a scheme is implemented in the tug positioning algorithm by utilising
receding horizon control (RHC).

Details of the GA and RHC strategy are presented in Sects. 2.1 and 2.2, respectively.

2.1 The Genetic Algorithm

A GA is a heuristic search method based on principles of natural evolution (e.g., see
[6,5,4] for detailed descriptions). GAs are particularly useful for obtaining solutions
to difficult optimisation and search problems where the solution space is nonconvex.
Although no mathematical analysis about the convexity of the tug position problem is
provided in this paper, it seems clear that generating patrol trajectories that are optimal,
or near-optimal, in some sense by minimising a cost function such as (3) (defined later)
is not easy and utilising a GA is an appropriate choice.

136 R.T. Bye

Characteristics of the GA. The GA used here consists of the following steps, which
adheres to the general scheme used in most GAs (e.g., see [5]):

1. Define a cost function and a chromosome encoding and set some GA parameters
such as mutation and selection.

2. Generate an initial population of chromosomes.
3. Evaluate a cost for each chromosome.
4. Select mates based on a selection parameter.
5. Perform mating.
6. Perform mutation based on a mutation parameter.
7. If the desired number of iterations or cost level is reached, stop algorithm and return

solution, otherwise, repeat from Step 3.

The selection parameter is in the range 0–1 and determines how many chromosomes
in a population survives from one iteration to the next. The cost associated with each
chromosome is evaluated and the chromosomes are given a weighted selection proba-
bility according to their cost, where a smaller cost results in a greater probability. For
a selection parameter of 0.5, half the population is then randomly picked, with low
cost chromosomes having a greater chance of being picked and kept for survival and
reproduction. The other chromosomes are discarded to make room for new offspring.

For mating, the GA uses a combination of an extrapolation method and a crossover
method. Information from two parent chromosomes are combined with an extrapolat-
ing method to obtain new offspring variable values bracketed by the parents’ variable
values. A single crossover point is used to determine which parts of the parent chromo-
somes are used for creating offspring.

After mating, a fraction of the genes are mutated, which means that the values of
these genes are changed to random numbers within an allowable range. A mutation rate
determines how many genes are mutated at every iteration.

Particular to the problem described in this paper is the choice of cost function and
chromosome encoding, which are described in the following.

Cost Function. Proper choice of a cost function is imperative for the algorithm to
find desirable solutions. Here, the cost function is defined as the sum of the distances
between all cross points and the nearest patrol points. The rationale behind this choice
is that if an oil tanker in drift can be saved by a tug a certain distance away, it is not
important that other tugs further away can save it at a later time.

Note that choosing distance as a cost measure is equivalent to minimum rescue time
if one assumes that all tugs have the same maximum speed. For cases where tugs have
different maximum speeds, one could define rescue time as distance divided by maxi-
mum tug speed and sum the minimum rescue times for each cross point.

By intuition, the emphasis on punishing distances to only the nearest patrol points
should yield proper task assignment, as good solutions found by the GA will tend to
have patrol tugs spreading out and tracking different groups of cross points, thus col-
lectively reducing the overall risk of grounding. Indeed, this intuition is confirmed by
the results presented in Sect. 3.

RHGA for Dynamics Resource Allocation 137

A cross point (position on y intersected by a drift trajectory) of the cth oil tanker’s
drift trajectory at time t can be defined as yct . For the prediction horizon Th there is a
set of cross points given by

{yct} =
{
yctd , y

c
td+1, . . . , y

c
td+Th

}
, (1)

however, only a subset of these points are defined, since the drift trajectories must actu-
ally cross the patrol line at the specified times. For example, if the predicted drift time
is Δ̂ for all drift trajectories, the earliest occurrence of a cross point of a drift trajectory
starting on z at t = td will be at t = td + Δ̂, and

{yct} =
{
yc
td+Δ̂

, yc
td+1+Δ̂

, . . . , yctd+Th

}
. (2)

A patrol point (tug position on y) on the pth tug’s patrol trajectory at time t can be
defined as ypt . For No oil tankers and Np patrol tugs, then, the cost f(t,Ci) is defined
as a function of time t and the ith chromosome Ci by

f(t,Ci) =

td+Th∑
t=td

No∑
c=1

min
p∈P

|yct − ypt | , (3)

where P = {1, 2 . . . , Np} and details on ypt and Ci are given below.

Chromosome Encoding. For tug p, consider a sequence {up
t } consisting of Th nor-

malised control inputs, or speed commands, up
t , where

{up
t } =

{
up
td+1, u

p
td+2, . . . , u

p
td+Th

}
, −1 ≤ up

t ≤ 1 . (4)

The maximum control input values of−1 and 1 are equivalent to tugs going with maxi-
mum speed in the negative or positive y-direction, respectively. This encoding is generic
as it is independent of each tug’s maximum speed.

Given a control input up
t , a point ypt on the patrol trajectory for tug p at time t can be

obtained through linear extrapolation using the difference equation

ypt = ypt−1 + up
t v

p
maxTs , (5)

where vpmax is the maximum speed for the pth tug and Ts is the duration of each time
step. The entire patrol trajectory is a sequence of Th patrol points given by

{ypt } =
{
yptd+1, y

p
td+2, . . . , y

p
td+Th

}
. (6)

To encode Np control trajectories as sequences {up
t} of length Th for each patrol tug

p ∈ P , the ith chromosome Ci of length Np × Th is encoded as

Ci =
{
u1
1, . . . , u

1
Th
, u2

1, . . . , u
2
Th
, . . . , u

Np

1 , . . . , u
Np

Th

}
. (7)

That is, each chromosome is a concatenation of Np control trajectories, each of which
consists of Th future control inputs. Given an initial tug position yptd and employing (5)
repeatedly, these control trajectories are used to generate the patrol trajectories in (6).

138 R.T. Bye

2.2 Receding Horizon Control

Because of the dynamics of the problem, where neither oil tankers speed and heading
nor wind, wave, and ocean current conditions are static, patrol trajectories optimised by
the GA will soon become outdated. One possibility is to run the GA at regular intervals,
constantly incorporating updated current information about the state of the oil tankers
and weathers conditions as well as updated predictions of these factors. While tugs
begin to move according to the solutions planned by the GA, new patrol trajectories can
be calculated and replace the old ones. This strategy is equivalent to a RHC scheme,
which is interchangeably termed model predictive control (MPC) in the literature (e.g.,
see [7,8] for theoretical treatments).

In RHC, a control strategy that minimises some cost function is calculated a prespec-
ified duration, namely the prediction horizon, into the future. Only the first portion of
this strategy is implemented before another control strategy is calculated based on new
and predicted information available. The new solution replaces the old one but again
only the first portion is implemented. This process repeats as a sequence of RHC steps.

RHC is currently one of the most popular control algorithms employed in computer-
controlled systems, predominantly in the petrochemical industry, but also increasingly
so in electromechanical control problems (e.g., see [9]). It can be shown that RHC can
be designed with guaranteed asymptotic closed-loop stability [9] and this remarkable
property is perhaps the most important reason for its popularity.

Constraints. An advantage of using RHC is that constraints can be handled in the
design phase and not post hoc (e.g., see [9,7]). For tugs, such a constraint is the inherent
limitation of moving no faster than their maximum speed. This speed limits the size of
the envelopes in Fig. 2 and thus the number of reachable cross points. Using RHC it is
possible to incorporate this constraint in the planning of tug trajectories.

Optimisation. A good choice of initial population allows the GA to find good solutions
in fewer iterations than simply using a random population. It is possible to take the
dynamics of the simulated scenario into account and, assuming that the scenario will
not change significantly, a solution found at one RHC step should also be a viable
solution at the next RHC step. This is achieved by an elitist strategy of keeping (a
slightly modified version of) the best chromosome at one RHC step and inserting it into
the initial population of the GA at the next RHC step.

2.3 Simulation Study

The technical computing software package MATLAB.1 was used for the implementation
of a simulation study of the tug positioning problem. A number of choices had to be
made about properties of oil tankers and patrol tugs, the GA and RHC, and general
settings. Based on preliminary work [10] and extended testing, the settings described
below were chosen.

1 MATLAB R2010b, available at www.mathworks.com

RHGA for Dynamics Resource Allocation 139

Number of Ships. Based on information provided by NCA staff or affiliates and a
recent report [1], it was decided to use Np = 3 tugs and No = 6 oil tankers for
the simulations. Whereas these numbers were realistic as of 2010, they will increase
significantly the next decades due to the development of oil and gas fields in the area
(see Sect. 4.5).

Position of Ships. The initial position of oil tankers at time t = 0 was varied for each
simulation, with oil tankers being placed on z (in km) at positions drawn randomly from
a uniform distribution in a 1500-km range from z = −750 to z = 750. Dividing the
same range on y into Np = 3 equally-sized segments of length 500 km, the patrol tugs
were always positioned initially at tug bases located in the centre of these segments,
namely at y = −500, 0, 500. The reason for this was to compare the performance of
the actively patrolling tugs controlled by the RHGA with keeping the patrol tugs on
stand-by at uniformly distributed stationary bases.

Velocities of Ships. According to [11], oil tankers have a typical operating speed of
14–15 knots whereas tugs have a global average maximum speed of about 12 knots,
spanning from 5–26 knots [2]. In the geographical area of this case study, the typical
maximum speed of tugs is 15 knots and operating speed of oil tankers is 10–14 knots.2

Based on these figures, each oil tanker was initialised with a random speed in ei-
ther the negative (southbound) or positive (northbound) y-direction and drawn from
a uniform distribution in the range ±[20, 30] (km/h). The oil tankers maintained their
respective speeds throughout each simulation.

The patrol tugs were assigned a maximum speed of 30 km/h, corresponding to the
envelopes presented previously in Figure 2.

Drift Trajectories. Wind, wave heights, ocean currents, oil tanker size and shape,
and other factors lead to nonlinear drift trajectories perhaps resembling those in Fig. 1.
To implement nonlinearity, it was assumed that any oil tanker in drift will follow an
eastbound sinusoidal trajectory with period equal to Th scaled by its velocity v.3 That is,
if the cth oil tanker with velocity v and position z(td) loses manoeuvrability at t = td,
it is predicted to drift across the patrol line at

yc
td+Δ̂

= z(td) + v sin

(
2π

Th
Δ̂

)
(8)

after a predicted drift time Δ̂.
For each oil tanker, a random integer drawn from a uniform distribution [8, 9 . . . , 12]

was chosen as its predicted drift time and kept constant throughout each simulation.
According to [2], drift times of only 10 hours are considered fast drift, whereas slow
drift means that most tankers will not run aground for the first 20–30 hours of uncon-
trolled drift. Thus, the choice of drift times in the interval 8–12 hours is a conservative
estimate. In most cases, tugs will have more time to come to the rescue of a drifting
ship.

2 Information provided by a close affiliate of the NCA.
3 Note that this relationship is not physically realistic but simply chosen for the sake of intro-

ducing nonlinearity.

140 R.T. Bye

GA Settings. At every RHC step, the GA was set to perform Niter = 100 iterations
searching for a solution set of optimal patrol trajectories minimising the cost function
given by (3). As discussed in Sect. 4.3, each RHC step keeps a modified version of
the best chromosome found in the previous RHC step. This ensures that much fewer
iterations are needed in later RHC steps than early ones.

The population size was set to 10 chromosomes, the mutation rate was set to 0.1, and
the selection parameter was set to 0.5. Together with the other simulation parameters,
these choices gave a good tradeoff between exploration and exploitation.

RHC Settings. The GA was used to search for optimal trajectories with a duration of
Th = 24 hours for the patrol tugs. At every RHC step, each of duration Ts = 1 hour,
only the first sample of these trajectories was executed by each tug before another
solution set of trajectories was generated by the GA. This process was repeated for
NRHC = 26 RHC steps, yielding scenarios simulated from td = 0 to td = 25 hours.

General Settings. A total of Nsim = 30 scenarios (random initial positions, velocities,
and drift times of oil tankers) were simulated. For each scenario i, the minimum costs
found by the GA at each RHC step were calculated and the average cost stored as the
ith element in a vector fRHGA of length Nsim. Similarly, the costs incurred if the patrol
tugs stayed on stand-by at their individual bases were calculated and the average stored
as the ith element in a vector f static of length Nsim.

Settings Summary. The simulation settings are summarised in Table 1.

3 Results

3.1 Simulation Example

Figure 3 shows a simulation example using the settings given in Table 1. Initially at
time td = 0 (Fig. 3(a)), three patrol trajectories, each of duration Th = 24 hours, are
planned for the tugs based on the predicted distributions of cross points. The first tug at
y10 = −500 is assigned the task of covering the isolated bottom cluster of cross points
centred around y = −600, whereas the second tug at y20 = 0 is assigned the top cluster
of cross points centred around y = 100. The third tug at y30 = 500 is not assigned any
cross points and given a dont care, or random walk, trajectory.

In Fig. 3(b), the positions of oil tankers and patrol tugs are shown for td = 5. Because
of the last five hours of oil tanker movements, there are now three distinct clusters of
cross points. The GA now performs task reassignment by planning for the top tug to
cover the top cluster of cross points. The middle tug is assigned the middle cluster, and
the bottom tug the bottom cluster.

The remaining Figs. 3(c)–3(f) shows how the scenario develops for td = 10, 15, 20, 25,
with the three tugs constantly being assigned and tracking sets of cross points, whose po-
sitional distributions change with time.

In terms of performance one may compare the cost of the RHGA-generated trajec-
tories to that of static trajectories, that is, keeping each patrol tug stationary at its base.
For this simulation example, which was scenario number 4, the static cost was 10844,
whereas the RHGA cost was 3130, representing a cost reduction of 71.1 %.

RHGA for Dynamics Resource Allocation 141

Table 1. Simulation settings

Oil tanker settings
Number of tankers No 6

Random initial position (km) [−750, 750]
Random velocity (km/h) ±[20, 30]

Drift field sinusoidal eastbound
Random drift time Δ̂ (hours) [8, 9, . . . , 12]

Patrol tug settings
Number of tugs Np 3

Initial positions (km) {−500, 0, 500}
Max velocity (km/h) ±30

GA settings
Iterations Niter 100
Population size 10
Mutation rate 0.1

Selection 0.5

RHC settings
Prediction horizon Th (hours) 24

Simulation step size Ts (hours) 1
Number of steps NRHC 26

General settings
Number of scenarios Nsim 30

Strategies RHGA, static

3.2 Main Study

Table 2 summarises the results from simulation scenario number 4 in Fig. 3 and 29 other
simulated scenarios based on the settings presented in Table 1. For every scenario, the
costs of each RHC step were summed and averaged for both the static case and the
RHGA case. The mean cost for the 30 scenarios was 7372 for the RHGA and 17342 for
the static strategy. This represents a mean improvement, or performance, of 57.5 % by
the RHGA.

Comparing the standard deviation (STD) of the costs of the static case and the RHGA
case, the STD of the RHGA was smaller by 34.6 %. However, because the static case
has a much higher mean, its relative STD of 0.211 is 53.9 % smaller than the relative
STD of the RHGA. Hence, relative to respective means, the cost of the static strategy
varied less (it is consistently high) than that of the RHGA.

The minimum cost for a single scenario was 10844 for the static strategy and 3130
for the RHGA. Incidentally, the minimum cost occurred in scenario 4 for both cases.
Inspection4 of this simulated scenario showed that cross points were distributed close
to tug bases throughout the simulation, thus the static strategy resulted in a low cost.
Still, the RHGA outperformed the static solution by 71.1 %.

4 Where no figure is referred to the reader must trust the inspection made by the author.

142 R.T. Bye

0 5 10 15 20 25
−1500

−1000

−500

0

500

1000

1500
Time since start: 0 hour(s)

Time (hours)

P
at

ro
l

li
n
e

y
or

oi
l

ta
n
ke

r
li

n
e

z
(k

m
)

(a) td = 0

5 10 15 20 25 30
−1500

−1000

−500

0

500

1000

1500
Time since start: 5 hour(s)

Time (hours)

P
at

ro
l

li
n
e

y
or

oi
l

ta
n
ke

r
li

n
e

z
(k

m
)

(b) td = 5

10 15 20 25 30 35
−1500

−1000

−500

0

500

1000

1500
Time since start: 10 hour(s)

Time (hours)

P
at

ro
l

li
n
e

y
or

oi
l

ta
n
ke

r
li

n
e

z
(k

m
)

(c) td = 10

15 20 25 30 35 40
−1500

−1000

−500

0

500

1000

1500
Time since start: 15 hour(s)

Time (hours)

P
at

ro
l

li
n
e

y
or

oi
l

ta
n
ke

r
li

n
e

z
(k

m
)

(d) td = 15

20 25 30 35 40 45
−1500

−1000

−500

0

500

1000

1500
Time since start: 20 hour(s)

Time (hours)

P
at

ro
l

li
n
e

y
or

oi
l

ta
n
ke

r
li

n
e

z
(k

m
)

(e) td = 20

25 30 35 40 45 50
−1500

−1000

−500

0

500

1000

1500
Time since start: 25 hour(s)

Time (hours)

P
at

ro
l

li
n
e

y
or

oi
l

ta
n
ke

r
li

n
e

z
(k

m
)

(f) td = 25

Fig. 3. Example simulation

The maximum cost for a single scenario for the static case was 22846 (scenario 2).
Inspection of this scenario revealed that for most of the RHC steps, a large portion of
cross points was distributed far to the south of the nearest southernmost tug base and

RHGA for Dynamics Resource Allocation 143

Table 2. Simulation results

Statistic f static fRHGA Reduction by RHGA

Mean 17342 7372 57.5 %
STD 3667 2399 34.6 %

Relative STD 0.211 0.325 −53.9 %
Minimum (scenario) 10844 (4) 3130 (4) 31.0 % (3)
Maximum (scenario) 22846 (2) 12503 (23) 79.0 % (2)

95 % bounds 11309 or more 11318 or less −0.1 %

thus the static strategy had a high cost for this scenario. The RHGA solution, on the
other hand, was very good at this scenario with a cost of only 4796, thus outperforming
the static solution by 79.0 %, which was also the highest cost reduction by the RHGA
for any of the scenarios.

The maximum cost for a single scenario for the RHGA was 12503 (scenario 23).
Inspection of this scenario showed that a small cluster of cross points was located far
away to the south from the other cross points. Minimisation of the cost function by the
RHGA resulted in a solution where patrol trajectories ignored this small cluster, which
contributed to the high cost. The RHGA still outperformed the static case by 37.6 %.

The worst performance in terms of cost reduction by the RGHA occurred in scenario
3, where the static solution had a cost of 16544 and the RHGA had a cost of 11415, or
a reduction of only 31.0 %. Inspection of this scenario showed that cross points were
divided into six separate clusters, each far away from the others. The static solution
performed better than its average cost for this scenario, which is unsurprising, given
that uniformly spread out tug bases is a good choice for uniformly spread out cross
points.

Finally, subtracting 1.645×STD from the mean cost of the static strategy shows that
an estimated 95 % of all scenarios in the static case will have a cost greater than ap-
proximately 11300. Similarly, adding 1.645×STD to the mean cost of the RHGA shows
that an estimated 95 % of all simulated scenarios employing the RHGA will have a cost
smaller than approximately 11300. The likelyhood that the static solution is at least as
good as the RHGA solution is thus very small.

3.3 Conclusions

The simulation results show that the RHGA is able to simultaneously perform coordi-
nated control, task assignment, and multiple target tracking in a dynamic environment.
Based on current and predicted information, a GA calculates patrol trajectories that
minimise a cost function. However, as the environment changes, an RHC process must
be employed, where the GA constantly replans new trajectories based on the most re-
cent data.

Employing a cost function related to the distance from each cross point to the near-
est predicted patrol trajectory gives good tracking but also provides task assignment
for free. The resulting patrol trajectories suggested by the RHGA yield good preven-
tion against possible drift accidents due to taking the predicted future environment into
account.

144 R.T. Bye

4 Discussion

The simulation study presented here is substantially updated and extended compared
to a preliminary study presented previously [10]. Modifications that have been made
include realistic movement distances and speeds of tugs and oil tankers, nonlinear drift
and cross point trajectories, an improved static strategy with tugs on stand-by uniformly
positioned at stationary bases, a more rigorous problem formulation and definition of
cost function, and a detailed analysis of the results.

In the following, some important aspects of the present study will be discussed.

4.1 Evaluation of Performance

Performance was measured by comparing the RHGA with a very simple static strategy
where tugs are kept stationary on stand-by at bases located uniformly along the coast-
line. The static method is good for very large and uniform distributions of cross points.
For small numbers of oil tankers, on the other hand, this method does not perform well
because cross points will often exist far from tug bases. As demonstrated in Sect. 3, the
RHGA significantly outperformed the static strategy for all simulated scenarios.

An alternative to the static method is a simple heuristic method such as letting patrol
trajectories move towards the nearest cross point. Preliminary studies not presented here
show that this method performs well when the numbers of tugs and tankers are approxi-
mately equal but as the number of tankers increases its performance drops significantly
compared to that of the RHGA. The reason, of course, is that when all tugs have been
allocated a distributions of cross points, superfluous distributions will be ignored, which
in turn causes evaluations of the cost function to increase drastically.

It still remains to compare the RHGA with other intelligent algorithms for the same
problem as defined in this paper. Nevertheless, the results from this study are very
promising and shows that the RHGA provides a viable method for solving dynamic
resource allocation problems of the kind presented here.

4.2 Choice of Cost Function

Choosing a suitable cost function is essential for a GA to be able to solve the problem
at hand. Although the selected cost function (3) seems to be a reasonable choice, there
are likely other choices that may be equally, or better, suited to our problem.

A potential modification to the cost function is to include a term for the control
input in order to punish excessive fuel consumption. If so, care must be taken to ensure
that this does not compromise the main goal of covering cross points and reducing the
overall risk picture.

Another option is to introduce risk weights on oil tankers and scale the minimum
distances in the cost function by these weights. Such risk weights already exists in the
models of the NCA.

Finally, it would be interesting to let tugs have different maximum speeds and also let
the speeds of tugs and oil tankers vary over time due to weather conditions, cargo and
fuel effects, and other factors. In this case, the cost function would have to be modified
to sum minimum rescue times, and not minimum distances.

RHGA for Dynamics Resource Allocation 145

4.3 Optimisation

For a slow-changing dynamic environment, a good chromosome at one time instant
is likely a good chromosome at the next. Consequently, as described in Sect. 2.2, the
RHGA keeps the best chromosome from one RHC step and places it in the initial pop-
ulation of the next. The other chromosomes are randomly initialised as usual.

If desirable, this strategy can be used to reduce the overall number of GA iterations
since only a fraction of the initial number of iterations is needed for subsequent RHC
steps. This is because the dynamics are slow-varying and the GA will tune in to good
solution spaces where previously found solutions greatly assists the GA in finding new,
good solutions.

4.4 Real-Time Requirements

Simulating a single RHC step with three tugs and six oil tankers for a particular scenario
took about 30 seconds on a MacBook Pro Core 2 Duo 2.53 GHz computer. Increasing
the number of oil tankers tenfold to 60 (which might be realistic in the not too distant
future, see Section 4.5), one RHC step took slightly less than five minutes. This shows
that the RHGA can accommodate much greater complexity than simulated in this study
while staying within the real-time requirement of finishing each RHC step within an
hour of real-time. It also implies that more accurate solutions can be obtained by in-
creasing GA parameters such as population size and number of iterations at each RHC
step.

Conversely, the small execution time for a RHC step means that the simulated dura-
tion of a RHC step can be greatly reduced if desired. This may not be relevant for the
study presented here but implies that systems with much faster dynamics may take ad-
vantage of the RHGA. An example where each RHC step must be in the range of tenths
of seconds or smaller is real-time control of football-playing robots, where algorithm
speed will most definitely be an issue. For such applications, it is possible to adjust the
GA and RHC settings to obtain small RHC step durations as required. Specifically, one
may reduce the prediction horizon, number of iterations, and population size. This may
not necessarily degrade performance. For example, employing a large prediction hori-
zon in a football game where it is only possible to predict actions a short period ahead
will not increase performance, it may even degrade it if it causes each RHC step to take
too long.

4.5 Other Simulation Scenarios

Based on recent information in a governmental report made by the Norwegian Institute
of Maritime Research [1], the choice of three tugs and six oil tankers represents a real-
istic and typical scenario as of today. Nevertheless, due the development of large oil and
gas fields in the Barents Sea such as Goliat, Snhvit, and Shtokman, oil and gas tanker
traffic will drastically increase over the next 10–15 years. As mentioned in Section 4.1,
the RHGA can easily handle the tenfold number of oil tankers while maintaining real-
time requirements and thus appears well suited for much heavier traffic than that of
today.

146 R.T. Bye

Cases where drifting actually occurs or situations where a tug becomes unavailable
due to refuelling, change of crew, or being busy rescuing a drifting tanker have not been
simulated. Moreover, no attempts have been made at trying to estimate how many tugs
are necessary to maintain a sufficient degree of safety for a given number of tankers.
These issues are highly relevant considering the foreseen increase in tanker activity.

Finally, it would be of interest to include more realistic two-dimensional (2D) plan-
ning for ships and three-dimensional (3D) planning for aeroplanes or submersible ve-
hicles. This should be investigated further, particularly in light of other applications
where dynamic resource allocation takes place at higher frequencies than for the tug
positioning problem.

4.6 Other Applications

In addition to the one-dimensional (1D) problem described in this paper, the RHGA
could be modify for performing multi-target allocation and tracking also in 2D and 3D
dynamic environments. A 2D version in environments with slow dynamics may not
require huge modifications, however, for fast dynamics and/or 3D environments, the
algorithm must be improved, for example through distributed evaluation of the cost
function.

Moreover, it could be interesting to combine the RHGA with so-called boid, or flock-
ing, rules involving cohesion, separation, and alignment [12]. In a promising effort, [13]
presents a flocking algorithm that modifies the flocking rules by [12] and succeeds in
multi-target tracking performed by multiple agents. Through further development, a
modified version of the RHGA could perform equally well as the algorithm used for
the scenarios described by [13].

Furthermore, the problem definition used in this paper somewhat resembles that of
the RoboFlag Drill described by [14]. They describe a scenario where a set of defenders
are guarding a circular defence zone against a set of attackers. The attackers are ran-
domly placed in an outer circle circumscribing the inner defence zone and move with
constant velocity towards the zone. The goal of the defenders is to intercept as many of
the incoming attacking trajectories before they reach the defence zone. It would be of
great interest to test the RHGA for this scenario and compare the results with those of
[14].

4.7 Concluding Remarks

This paper shows that a GA combined with RHC is able to simultaneously perform co-
ordinated control, task assignment, and multiple target tracking in dynamically chang-
ing environments. The problem description is an interesting and non-trivial challenge
for researchers in the field who are welcome to find alternative methods for solving it.

Acknowledgements. The author wishes to thank staff at the NCA and Christian
Michelsen Research for providing details on oil tanker traffic and the dynamic position-
ing of tugs operating along the northern Norwegian coast. Collaboration with the NCA
has recently been formalised and it is envisioned that a future version of the RHGA will
be part of the decision support tools at VTS centres run by the NCA.

RHGA for Dynamics Resource Allocation 147

In addition, the author is grateful for the contributions of his colleagues, associate
professor Siebe B. van Albada and professor Harald Yndestad at the Ålesund University
College, in the early phase of this work.

References

1. Havforskningsinstituttet: Fisken og havet, særnummer 1a-2010: Det faglige grunnlaget for
oppdateringen av forvaltningsplanen for Barentshavet og havområdene utenfor Lofoten.
Technical report, Institute of Marine Research (Havforskningsinstituttet) (2010)

2. Eide, M.S., Endresen, Ø., Breivik, Ø., Brude, O.W., Ellingsen, I.H., Røang, K., Hauge, J.,
Brett, P.O.: Prevention of oil spill from shipping by modelling of dynamic risk. Marine Pol-
lution Bulletin 54, 1619–1633 (2007)

3. Eide, M.S., Endresen, Ø., Brett, P.O., Ervik, J.L., Røang, K.: Intelligent ship traffic monitor-
ing for oil spill prevention: Risk based decision support building on AIS. Marine Pollution
Bulletin 54, 145–148 (2007)

4. Russell, S., Norvig. P.: Artificial Intelligence: A Modern Approach. Pearson (2010)
5. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. Wiley (2004)
6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Professional (1989)
7. Maciejowski, J.M.: Predictive Control with Constraints, 1st edn. Prentice Hall (2002)
8. Rossiter, J.A.: Model-based Predictive Control. CRC Press (2004)
9. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice Hall, New

Jersey (2001)
10. Bye, R.T., van Albada, S.B., Yndestad, H.: A receding horizon genetic algorithm for dy-

namic multi-target assignment and tracking: A case study on the optimal positioning of tug
vessels along the northern norwegian coast. In: Proceedings of the International Conference
on Evolutionary Computation, pp. 114–125. SciTePress (2010)

11. Det Norske Veritas: Rapport Nr. 2009-1016. Revisjon Nr. 01. Tiltaksanalyse — Fartsgrenser
for skip som opererer i norske farvann. Technical report, Sjøfartsdirektoratet (2009)

12. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: Computer
Graphics (ACM SIGGRAPH), vol. 21, pp. 25–34 (1987)

13. Luo, X., Li, S., Guan, X.: Flocking algorithm with multi-target tracking for multi-agent sys-
tems. Pattern Recognition Letters 31, 800–805 (2010)

14. Earl, M.G., D’andrea, R.: A decomposition approach to multi-vehicle cooperative control.
Robotics and Autonomous Systems 55, 276–291 (2007)

Part II
Fuzzy Computation

Generating Optimized Fuzzy Partitions to Classification
and Considerations to Management Imprecise Data

J.M. Cadenas, M.C. Garrido, and R. Martı́nez

University of Murcia, Faculty of Informatic, Campus of Espinardo, 30100 Murcia, Spain
{jcadenas,carmengarrido,raquel.m.e}@um.es

Abstract. Many algorithms for classification need to discretize the continuous
attributes for their development. Therefore the discretization of continuous at-
tributes is a very important part in data mining. In this paper, we propose a tech-
nique for discretizing continuous attributes by means of a series of fuzzy sets
which constitute a fuzzy partition of the domain of these attributes. The defini-
tion of these sets is very important as it affects the results obtained in the classi-
fication algorithms. Throughout this document we present a strategy to construct
fuzzy sets in order to improve classification results. Additionally, we give some
ideas about how to improve this strategy in order to work with another kinds of
data. Also, we show various experimental results which evaluate our proposal in
comparison with previously existing ones and where the results have been statis-
tically validated.

Keywords: Fuzzy discretization, Fuzzy set, Genetic algorithm, Fuzzy decision
tree.

1 Introduction

The selection, processing and data cleaning is one of the phases making up the process
of knowledge discovery. This phase can be very important for some algorithms of clas-
sification, because the data must be preprocessed so that the algorithm can work with
them. A possible change in the data may be the discretization of continuous values. The
discretization continuous attributes can be carried out through crisp partitions or fuzzy
partitions. Crisp partitions use classical logic, where each attribute is split into sev-
eral intervals, whereas fuzzy partitions use fuzzy logic. On the one hand, we can find
techniques to discretize continuous attributes into crisp intervals, [5], [12] , in which
a domain value can only belong to a partition or interval. On the other hand we find
methods to discretize continuous attributes into fuzzy intervals [10], [11], in this case,
a domain value can belong to more than one element of the fuzzy partition.

In this study we present the OFP CLASS Algorithm to carry out a fuzzy discretiza-
tion of continuous attributes, which is divided in two stages. In the first stage, we carry
out a search of split points for each continuous attribute. In the second stage, based on
these split points, we use a genetic algorithm which optimizes the fuzzy sets formed
from the split points. Having designed the fuzzy sets that make up the fuzzy partition
of each continuous attribute, they are evaluated with a classifier constituted by a fuzzy
decision tree.

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 151–165.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

152 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

The structure of this study is as follows. In Section 2, we are going to present a
taxonomy of discretization methods, as well a review various discretization methods.
Then, in Section 3, we are going to present the OFP CLASS Algorithm, which is based
on a decision tree and a genetic algorithm, as our proposal for the problem of fuzzy
discretization applied to classification. In Section 4, we propose an extension of the
OFP CLASS Algorithm to incorporate interval values. Next, in Section 5, we will show
various experimental results which evaluate our proposal in comparison with previously
existing ones and where the results have been statistically validated. Finally, in Section
6, we will show the conclusions of this study.

2 Discretization Methods

The classification is one of the most important topics in data mining area. There are
many different classification methods which work with continuous values and/or dis-
crete values. However, not all classification algorithms can work with continuous data,
hence discretization techniques are needed to these algorithms. Although, there are al-
gorithms which work with discrete data by the fact that they can improve results in
classification tasks.

When a discretization process is to be developed, four iterative stages must be carried
out, [12]:

1. The values in the database of the continuous attributes to be discretized are ordered.
2. The best split point for partitioning attribute domains in the case of top-down meth-

ods is found, or the best combination of adjacent partitions for bottom-up methods
is found.

3. If the method is top-down, once the best split point is found, the domain of each
attribute is divided into two partitions, and when the method is bottom-up, both
partitions are merged.

4. Finally, we check whether the stopping criterion is fulfilled, and if so the process is
terminated.

In this general discretization process we have differentiated between top-down and
bottom-up algorithms. However, there are more complex taxonomies for the different
methods of discretization such as that presented in [12] and which are shown here:

– Supervised or non-supervised. Non-supervised methods are those based solely on
continuous attribute value in order to carry out discretization, whereas supervised
ones use class value to discretize continuous attributes, so that they are more or less
uniform with regard to class value.

– Static or dynamic. In both types of methods it is necessary to define a maximum
number of intervals and they differ in that static methods seek to divide each at-
tribute in partitions sequentially, whereas dynamic ones discretize domains by di-
viding all the attributes into intervals simultaneously.

– Local or global. Local methods of discretization are those which use algorithms
such as C4.5 or its successor C5.0, [14], and they are only applied to specific regions
in the database. On the other hand, global methods are based on the whole database
to carry out discretization.

Optimized Fuzzy Partitions and Management Imprecise Data 153

– Top-down or bottom-up. Top-down methods begin with an empty list of split points
and add them as the discretization process finds intervals. On the other hand, bottom-
up methods begin with a list full of split points and eliminate points during the
discretization process.

– Direct or incremental. Direct methods divide the dataset directly into k intervals.
Therefore they need an external input determined by the user to indicate the number
of intervals. Incrememental methods begin with a simple discretization and undergo
an improvement process. For this reason they need a criterion to indicate when to
stop discretizing.

In addition to the taxonomy exposed, from another viewpoint we consider discretization
methods can also be classified according to the type of partitions constructed, crisp or
fuzzy partitions.

Thus, in the literature we find some algorithms that generate crisp partitions. Among
these, in [9] describes a method that performs crisp intervals taken as a measure the
amplitude or frequency, which need to fix a k number of intervals. Also, [9] describes
other method, called R1, which needs to have a fixed number of k intervals, but in this
case, the measure which used is the class label. Another method that constructs crisp
partitions, D2, is described in [5], where the measure used is entropy.

On the other hand, we find methods which discretize continuous values in fuzzy par-
titions, in this case, these methods use decision trees, clustering algorithms, genetic al-
gorithms, etc. So, in [1] a hierarchical fuzzy partition based on 2|A|-tree decomposition
is carried out, where |A| is the number of attributes in the system. This decomposition
is controlled by the degree of certainty of the rules generated for each fuzzy subspace
and the deeper hierarchical level allowed. The fuzzy partitions formed for each domain
are symmetric and triangular. Furthermore, one of the most widely used algorithms for
fuzzy clustering is fuzzy c-means (FCM) [4]. The algorithm assigns a set of examples,
characterized by their respective attributes, to a set number of classes or clusters. Some
methods developed for fuzzy partitioning start from the FCM algorithm and add some
extension or heuristic to carry out an optimization in the partitions. We can find some
examples in [10], [11]. Also, a method that constructs fuzzy partition using a genetic
algorithm is proposed in [13], where fuzzy partitions are obtained through beta and
triangular functions. The construction process of fuzzy partitions is divided into two
stages. In the first stage, fuzzy partitions with beta [7] or triangular functions are con-
structed; and in the second stage these partitions are adjusted with a genetic algorithm.

3 OFP CLASS: An Algorithm to Generate Optimized Fuzzy
Partitions to Classification

In this section, the OFP CLASS Algorithm we propose for discretizing continuous at-
tributes by means of fuzzy partitions is presented and it is may be catalogued as su-
pervised and local. The OFP CLASS Algorithm is made up of two stage. In the first
stage, crisp intervals are defined for each attribute. In the second stage, these inter-
vals obtained are used to form an optimal fuzzy partition for classification using a ge-
netic algorithm, but not all the crisp intervals obtained are used, because the genetic

154 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

algorithm is who determines which intervals are the best. The partition obtained for
each attribute guarantees the:

– Completeness (no point in the domain is outside the fuzzy partition), and
– Strong fuzzy partition (it verifies that ∀x ∈ Ωi,

∑Fi

f=1 μBf
(x) = 1, where B1, ..,

BFi are the Fi fuzzy sets for the partition corresponding to the i continuous attribute
with Ωi domain)

The domain of each i continuous attribute is partitioned in trapezoidal fuzzy sets,
B1, B2.., BFi , so that:

μB1(x) =

⎧⎨
⎩

1 b11 ≤ x ≤ b12
(b13−x)

(b13−b12)
b12 ≤ x ≤ b13

0 b13 ≤ x

; μB2(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x ≤ b12
(x−b12)

(b13−b12)
b12 ≤ x ≤ b13

1 b13 ≤ x ≤ b23
(b24−x)

(b24−b23)
b23 ≤ x ≤ b24

0 b24 ≤ x

;

· · · ; μBFi
(x) =

⎧⎪⎨
⎪⎩

0 x ≤ b(Fi−1)3
(x−b(Fi−1)3)

(b(Fi−1)4−b(Fi−1)3) b(Fi−1)3 ≤ x ≤ b(Fi−1)4

1 bFi3 ≤ x

Before going into a detailed description of OFP CLASS Algorithm, we are going to
introduce the nomenclature we are going to use throughout the section and then we
will present the fuzzy decision tree to be used in the evaluation of the fuzzy partitions
generated and which, with some modification, is used in the first stage of OFP CLASS
Algorithm.

3.1 Nomenclature and Basic Expressions

– N : Node which is being explored at any given moment.
– C: Set of classes or possible values of the decision attribute. |C| denotes the C set

cardinal.
– E: Set of examples from the dataset.|E| denotes the number of examples from the

dataset.
– ej : j-th example from the dataset.
– A: Set of attributes which describe an example from the dataset. |A| denotes the

number of attributes that describe an example.
– GN

i : information gain when node N is divided by attribute i.

GN
i = IN − ISN

Vi (1)

Optimized Fuzzy Partitions and Management Imprecise Data 155

where:
• IN : Standard information associated with node N . This information is calcu-

lated as follows:
1. For each class k = 1, ..., |C|, the value PN

k , which is the number of exam-
ples in node N belonging to class k is calculated:

PN
k =

|E|∑
j=1

χN (ej) · μk(ej) (2)

where:

· χN (ej) the degree of belonging of example ej to node N .
· μk(ej) is the degree of belonging of example ej to class k.

2. PN , which is the total number of examples in node N , is calculated.

PN =
|C|∑
k=1

PN
k

3. Standard information is calculated as:

IN = −
|C|∑
k=1

PN
k

PN
· log

PN
k

PN

• ISN
Vi is the product of three factors and represents standard information ob-

tained by dividing node N using attribute i adjusted to the existence of missing
values in this attribute.

ISN
Vi = I

SN
Vi

1 · ISN
Vi

2 · ISN
Vi

3

where:

∗ I
SN

Vi
1 = 1 - P Nmi

P N , where PNmi is the weight of the examples in node N
with missing value in attribute i.

∗ I
SN

Vi
2 = 1∑Hi

h=1 P Nh
, Hi being the number of descendants associated with

node N when we divide this node by attribute i and PNh the weight of the
examples associated with each one of the descendants.

∗ I
SN

Vi
3 =

∑Hi

h=1 PNh · INh , INh being the standard information of each de-
scendant h of node N .

3.2 A Fuzzy Decision Tree

In this section, we describe the fuzzy decision tree that we will use as a classifier to
evaluate fuzzy partitions generated and whose basic algorithm will be modified for the
first stage of the OFP CLASS Algorithm, as we will see later.

156 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

The set of examples E out of which the tree is constructed is made up of examples
described by attributes which may be nominal, discrete and continuous, and where there
will be at least one nominal or discrete attribute which will act as a class attribute. The
algorithm by means of which we construct the fuzzy decision tree is based on the ID3
algorithm, where all the continuous attributes have been discretized by means of a series
of fuzzy sets.

An initial value equal to 1 (χroot(ej) = 1) is assigned to each example ej used in
the tree learning, indicating that initially the example is only in the root node of the
tree. This value will continue to be 1 as long as the example ej does not belong to more
than one node during the tree construction process. In a classical tree, an example can
only belong to one node at each moment, so its initial value (if it exists) is not modified
throughout the construction process. In the case of a fuzzy tree, this value is modified
in two situations:

– When the example ej has a missing value in an attribute i which is used as a test in
a node N . In this case, the example descends to each child node Nh, h = 1, ..., Hi

with a modified value as χNh
(ej) = χN (ej) · 1

Hi
.

– According to ej’s degree of belonging to different fuzzy partition sets when the test
of a node N is based on attribute i which is continuous. In this case, the example
descends to those child nodes to which the example belongs with a degree greater
than 0 (μBf

(ej) > 0; f = 1, ..., Fi). Because of the characteristics of the parti-
tions we use, the example may descend to two child nodes at most. In this case,
χNh

(ej) = χN (ej) · μBf
(ej); ∀f | μBf

(ej) > 0; h = f .

We can say that the χN (ej) value indicates the degree with which the example fulfills
the conditions that lead to node N on the tree.

The stopping condition is defined by the first condition reached out of the following:
(a) pure node, (b) there aren’t any more attributes to select, (c) reaching the minimum
number of examples allowed in a node. Having constructed the fuzzy tree, we use it to
infer an unknown class of a new example:

Given the example e to be classified with the initial value χroot(e) = 1, go through
the tree from the root node. After obtain the leaf set reached by e. For each leaf reached
by e, calculate the support for each class. The support for a class on a given leaf N is
obtained according to the equation (2). Finally, obtain the tree’s decision, c, from the
information provided by the leaf set reached and the value χ with which example e
activates each one of the leaves reached.

In the following sections we describe the stages which comprise the Algorithm of
discretization OFP CLASS.

3.3 First Stage: Looking for Crisp Intervals

In this stage, a fuzzy decision tree is constructed whose basic process is that described
in subsection 3.2, except that now a procedure based on priority tails is added and
there are continuous attributes that have not been discretized. The discretization of these
attributes is precisely the aim of this first stage.

To deal with non-discretized continuous attributes, the algorithm follows the basic
process in C4.5. The thresholds selected in each node of the tree for these attributes

Optimized Fuzzy Partitions and Management Imprecise Data 157

will be the split points that delimit the intervals. Thus, the algorithm that constitutes
this first stage is based on a fuzzy decision tree that allows nominal attributes, contin-
uous attributes discretized by means of a fuzzy partition, non-discretized continuous
attributes, and furthermore it allows the existence of missing values in all of them. Al-
gorithm 1 describes the whole process.

Algorithm 1. Search of crisp intervals

SearchCrispIntervals(in : E, Fuzzy Partition; out : Split points)
begin

1. Start at the root node, which is placed in the initially empty priority tail. Initially, the
root node is found in the set of examples E with an initial weight of 1. The tail
is a priority tail, ordered from higher to lower according to the total weight of the
examples of nodes that form the tail. Thus the domain is guaranteed to partition
according to the most relevant attributes.

2. Extract the first node from the priority tail.
3. Select the best attribute to divide this node using information gain expressed in

equation (1) as the criterion. We can find two cases. The first case is where
the attribute with the highest information gain is already discretized, either be-
cause it is nominal, or else because it had already been discretized earlier by the
Fuzzy Partition. The second case arises when the attribute is continuous and non-
discretized, in which case it is necessary to obtain the corresponding split points.
(a) If the attribute is already discretized, node N is expanded into as many chil-

dren as possible values the selected attribute may have. In this case, the tree’s
behaviour is similar to that described in the Subsection 3.2.

(b) If the continuous attribute is not previously discretized, its possible descendants
are obtained. To do this, as in C4.5, the examples are ordered according to
the value of the attribute in question and the intermediate value between the
value of the attribute for example ej and for example ej+1 is obtained. The
value obtained will be that which provides two descendants for the node and
to which the criterion of information gain is applied. This is repeated for each
pair of consecutive values of the attribute, searching for the value that yields the
greatest information gain. The value that yields the greatest information gain
will be the one used to divide the node and will be considered as a split point
for the discretization of this attribute.

4. Having selected the attribute to expand node N , all the descendants generated are
introduced in the tail according to the established order.

5. Go back to step two to continue constructing the tree until there are not nodes in the
priority tail or until another stopping condition occurs, such as reaching nodes with
a minimum number of examples allowed by the algorithm.

end

3.4 Second Stage: Constructing and Optimizing Fuzzy Partitions

Genetic algorithms are very powerful and very robust, as in most cases they can suc-
cessfully deal with an infinity of problems from very diverse areas. These algorithms
are normally used in problems without specialized techniques or even in those problems

158 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

where a technique does exist, but is combined with a genetic algorithm to obtain hybrid
algorithms that improve results [6].

In this second stage of the OFP CLASS Algorithm, we are going to use a genetic
algorithm to obtain the fuzzy sets that make up the partitioning of continuous attributes
of the problem. Given the Fi−1 split points of attribute i obtained in the prior stage, we
can define a maximum of Fi fuzzy sets that perform up the partition of i. The definition
of the different elements that make up this genetic algorithm is as follows:

– Encoding. An individual will consist of two array v1 and v2. The array v1 has a
real coding and its size will be the sum of the number of split points that the fuzzy
tree will have provided for each attribute in the first stage.

Each gene in array v1 represents the quantity to be added to and subtracted from
each attribute’s split point to form the partition fuzzy. On the other hand, the array
v2 has a binary coding and its size is the same that the array v1.

Each gene in array v2 indicates whether the corresponding gene or split point of
v1 is active or not. The array v2 will change the domain of each gene in array v1. The
domain of each gene in array v1 is an interval defined by [0, min(pr−pr−1

2 , pr+1−pr

2)]
where pr is the r-th split point of attribute i represented by this gene except in the
first (p1) and last (pu) split point of each attribute whose domains are, respectively:
[0, min(p1,

p2−p1
2] and [0, min(pu−pu−1

2 , 1− pu].
When Fi = 2, the domain of the single split point is defined by [0, min(p1, 1−

p1]. The population size will be 100 individuals.

– Initialization. First the array v2 in each individual is randomly initialized, provided
that the genes of the array are not all zero value, since all the split points would be
deactivated and attributes would not be discretized. Once initialized the array v2 ,
the domain of each gene in array v1 is calculated, considering what points are ac-
tive and which not. After calculating the domain of each gene of the array v1, each
gene is randomly initialized generating a value within its domain.

– Fitness Function. The fitness function of each individual is defined according to
the information gain defined in [3]. Algorithm 2 implements the fitness function,
where:

• μif is the belonging function corresponding to fuzzy set f of attribute i.
• Ek is the subset of examples of E belonging to class k.

This fitness function, based on the information gain, indicates how dependent the
attributes are with regard to class, i.e., how discriminatory each attribute’s partitions
are. If the fitness we obtain for each individual is close to zero, it indicates that the
attributes are totally independent of the classes, which means that the fuzzy sets
obtained do not discriminate classes. On the other hand, as the fitness value moves
further away from zero, it indicates that the partitions obtained are more than ac-
ceptable and may discriminate classes with good accuracy.

– Selection. Individual selection is by means of tournament, taking subsets with
size 2.

Optimized Fuzzy Partitions and Management Imprecise Data 159

Algorithm 2. Fitness Function

Fitness(in : E, out : V alueF itness)
begin
1. For each attribute i = 1, ..., |A|:

1.1 For each set f = 1, ..., Fi of attribute i
For each class k = 1, ..., |C| calculate the probability

Pifk =
ΣeεEkμif (e)

ΣeεEμif (e)

1.2 For each class k = 1, ..., |C| calculate the probability

Pik = ΣFi
f=1Pifk

1.3 For each f = 1, ..., Fi calculate the probability

Pif = Σ
|C|
k=1Pifk

1.4 For each f = 1, ..., Fi calculate the information gain of attribute i and set f

Iif = Σ
|C|
k=1Pifk · log2

Pifk

Pik · Pif

1.5 For each f = 1, ..., Fi calculate the entropy

Hif = −Σ
|C|
k=1Pifk · log2 Pifk

1.6 Calculate the I and H total of attribute i

Ii =

Fi∑
f=1

Iif and Hi =

Fi∑
f=1

Hif

2. Calculate the fitness as :

V alueF itness =

∑|A|
i=1 Ii

∑|A|
i=1 Hi

end

– Crossing. The crossing operator is applied with a probability of 0.3, crossing two
individuals through a single point, which may be any one of the positions on the
vector. Not all crossings are valid, since one of the restrictions imposed on an indi-
vidual is that the array v2 should not has all its genes to zero. When crossing two
individuals and this situation occurs, the crossing is invalid, and individuals remain
in the population without interbreeding. If instead the crossing is valid, the domain
for each gene of array v1 is updated in individuals generated.

– Mutation. Mutation is carried out according to a certain probability at interval
[0.01, 0.1], changing the value of one gene to any other in the possible domain.
First, the gene of the array v2 is mutated and then checked that there are still genes
with value 1 in v2. In this case, the gene in array v2 is mutated and, in addition, the

160 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

domains of this one and its adjacent genes are updated in the vector v1. Finally, the
mutation in this same gene is carried out in the vector v1.

If when a gene is mutated in v2 all genes are zero, then the mutation process is
not produced.

– Stopping. The stopping condition is determined by the number of generations sit-
uated at interval [150, 200].

The genetic algorithm should find the best possible solution in order to achieve a more
efficient classification. By way of an example, let us suppose that we have a dataset that
only consists of three attributes, for which the fuzzy decision tree has indicated 2, 3 and
1 split points for each one respectively and which we show in Table 1.

Table 1. Stage 1 of the OFP CLASS Algorithm

Attribute 1 0.3 0.5
Attribute 2 0.1 0.4 0.8
Attribute 3 0.7

Based on the split points, in the second stage, the genetic algorithm will determine
which of them will form the fuzzy partition of each attribute. Following the example,
the domains of two possible individuals are showed in the Figure 1, where for each
individual, the v2 array is showed and the array v1 shows the domain of the genes in
which the corresponding gene in the array v2 is 1. As we have already commented
previously, the vector v1 is made up of a set of values that represent for each attribute
and split point what the distance to be added and subtracted to define the straight lines
that make up the fuzzy sets. Also, the domain of each gene depends on previous and
later active split points.

a) Individual 1 b) Individual 2

Fig. 1. Domains for each gene

Following with the example given, Figure 2 shows a possible valid crossing at point
A. If the crossing is realized at point B instead of A, it would not be valid because the
array v2 would stay with all zero values and all the split points would be deactivated
and attributes would not be discretized.

The mutation can generate invalid individuals too. The Figure 3 shows an exam-
ple of mutation invalid, because the individual 2, after the crossing, only has one active

Optimized Fuzzy Partitions and Management Imprecise Data 161

Fig. 2. Crossing example allowed

Fig. 3. Mutation example doesn’t allowed

gene and whether this gene is turned off all genes in array v2 are zero. If the mutated
gene had been any other, the mutation would be valid. An important aspect is that if an
inactive gene is mutated, then there are to calculate the domains of the mutated gene
and adjacent.

If we assume, in the example, that individuals are not changed after the crossing
shown in Figure 2 and the algorithm reaches a stopping condition, the algorithm only
has discretized the second attribute in the two individuals. Figure 4 shows the discretiza-
tion that each individual makes the second attribute.

This example shows that although in the first stage many split points are obtained,
the algorithm may only use a subset of these to discretize.

162 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

a) Discretization of second attribute b) Discretization of second attribute
Individual 1 Individual 2

Fig. 4. Fuzzy Partition of the example

Fig. 5. Extending OFP CLASS

4 Extending OFP CLASS to Incorporate Interval Values

As we have shown through this work, OFP CLASS obtains a fuzzy partition from a
dataset available. The values of the different attributes of this dataset are known ex-
actly, ie, they are crisp values.

However, imperfect information inevitably appears in domains and situations of real
world so that the values of attributes may not be known exactly. Instrumental errors or
corruption from noise during experiments may give rise to imprecise values when mea-
suring a specific attribute. Therefore, we consider interesting to include the treatment of
imprecise values in the OFP CLASS Algorithm. So, in this section we propose a first
extension of the OFP CLASS Algorithm to obtain the fuzzy partition from attributes
specified with crisp values and by intervals (classical imprecision). Figure 5 shows the
idea of the extending process of OFP CLASS Algorithm.

In order to carry out this extension, we need to modify the first stage of OFP CLASS
Algorithm.

– First we must modify the Algorithm 1 to allow the processing of interval values.
The main modification should be performed in step 3 of that algorithm where the
best attribute to divide a node using the information gain must be selected. In this

Optimized Fuzzy Partitions and Management Imprecise Data 163

case to get the best split point for each attribute, is necessary to establish an order
for the values in the dataset for each attribute.
This ordering of values must consider the existence of interval values and we will
use some ordering indices with reasonable properties. A good analysis of the or-
dering indices can be seen in [16].

– Second, once selected the attribute and its threshold value to partition the node N ,
an example with interval value in that attribute descends to the first child node with
a modified value χNh

(ej) in proportion to the part of the interval that is below the
threshold and to the second child node with a modified value χNh

(ej) in proportion
to the part of the interval that is above the threshold.

When the extension of OFP CLASS to incorporate interval values is realized, it is
straightforward to extend it to incorporate more general imprecision adding both fuzzy
and interval values. Thus, the algorithm will work with imperfect data respecting its
real nature and avoiding processing which may cause loss of information that can affect
the performance of the algorithm and consequently the obtention of worse results.

5 Experiments

In this section we show several computational results which measure the accuracy of
the OFP CLASS Algorithm proposed. In order to evaluate the OFP CLASS Algorithm
a comparison with the results of [10] and [11] is carried out, in which fuzzy partitions
are constructed by means of a combination of fuzzy clustering algorithms, using the
majority vote rule or the weighted majority vote rule, respectively. To obtain these re-
sults we have used several datasets from the UCI repository [2], whose characteristics
are shown in Table 2. It shows the number of examples (|E|), the number of attributes
(|A|), the number of continuous attributes (Cont.) and the number of classes for each
dataset (CL). “Abbr” indicates the abbreviation of the dataset used in the experiments.

In order to evaluate the partitions generated by the OFP CLASS Algorithm, we clas-
sify the datasets using the fuzzy decision tree presented in Subsection 3.2. We compare
the results obtained in [10] and [11] with those obtained by OFP CLASS Algorithm.
The comparison is carried out on the same datasets used in those two references. For
this experiment, a 3×5-fold cross validation was carried out. In Table 3, the best average

Table 2. Datasets Description

Dataset Abbr |E| |A| Cont. CL

Australian Credit Approval AUS 690 14 6 2
German Credit Data GER 1000 24 24 2
Iris Data Set IRP 150 4 4 3
Pima Indian Diabetes Data Set PIM 768 8 8 2
SPECTF Heart Data Set SPE 267 44 44 2
Thyroid Disease Data Set THY 215 5 5 3
Zoo Data Set ZOO 101 16 1 7

164 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

Table 3. Testing accuracies

Dataset Best result of [10,11] OFP CLASS

AUS 60.29% 85.50%±0.00
GER 66.80% 73.13%±0.21
IRP 92.00% 97.33%±0.00
PIM 65.10% 77.07%±0.12
SPE 64.79% 84.09%±0.18
THY 79.07% 95.83%±0.00
ZOO 68.32% 94.06%±0.00

success percentages obtained in [10] and [11] and those obtained with OFP CLASS Al-
gorithm are shown. Also, in the case of OFP CLASS Algorithm the standard deviation
for each dataset is shown.

After the experimental results have been shown, we perform an analysis of them
using statistical techniques. Following the methodology of [8] we use nonparametric
tests. We use the Wilcoxon signed-rank test to compare two methods. This test is a
non-parametric statistical procedure for performing pairwise comparison between two
methods. Under the null-hypothesis, it states that the methods are equivalent, so a re-
jection of this hypothesis implies the existence of differences in the performance of all
the methods studied. In order to carry out the statistical analysis we have used the tool
R, [15].

Results obtained on comparing the OFP CLASS Algorithm with the best result of
[10] and [11] for each dataset show that, with a 99.9% confidence level, there are sig-
nificant differences between the methods, with the OFP CLASS Algorithm being the
best.

6 Conclusions

In this study we have presented an algorithm for fuzzy discretization of continuous
attributes, which we have called OFP CLASS Algorithm. The aim of this algorithm
is to find a partition that allows good results to be obtained when using it afterwards
with fuzzy classification techniques. The algorithm makes use of two techniques: a
Fuzzy Decision Tree and a Genetic Algorithm. Thus the proposed algorithm consists
of two stages, using in the first of them the fuzzy decision tree to find divisions in the
continuous attribute domain, and in the second, the genetic algorithm to find, on the
basis of prior divisions, a fuzzy partition. In addition, we have discussed some ideas
on how to make a fuzzy partition of the continuous attributes domains when the values
may be given by interval values.

We have presented experimental results obtained by applying the OFP CLASS Al-
gorithm to various datasets. On comparing the results of the OFP CLASS Algorithm
with those obtained by two methods in the literature we conclude that the OFP CLASS
Algorithm is an effective algorithm and it obtains the best results. Moreover, all these
conclusions have been validated by applying statistical techniques to analyze the be-
haviour of the algorithm.

Optimized Fuzzy Partitions and Management Imprecise Data 165

Acknowledgements. Supported by the project TIN2008-06872-C04-03 of the MICINN
of Spain and European Fund for Regional Development. Thanks also to the Funding
Program for Research Groups of Excellence with code 04552/GERM/06 granted by the
“Fundación Séneca”. R. Martı́nez is supported by the scholarship program FPI from the
“Fundación Séneca” of Spain.

References

1. Ait Kbir, M., Maalmi, K., Benslimane, R., Benkirane, H.: Hierarchical fuzzy partition for
pattern classification with fuzzy if-then rules. Pattern Recognition Letters 21(6-7), 503–509
(2000)

2. Asuncion, A., Newman, D.: Uci machine learning repository. University of California,
School of Information and Computer Science,
http://www.ics.uci.edu/mlearn/MLRepository.html

3. Au, W.H., Chan, K.C., Wong, A.: A fuzzy approach to partitioning continuous attributes for
classification. IEEE Tran. Knowledge and Data Engineering 18(5), 715–719 (2006)

4. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Aca-
demic Publishers, Norwell (1981)

5. Catlett, J.: N changing continuous attributes into ordered discrete attributes. In: Fifth Euro-
pean Working Session on Learning, pp. 164–177 (1991)

6. Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Morgan
Kaufmann Publishers, New York (2005)

7. Cox, E., Taber, R., O’Hagan, M.: The Fuzzy Systems Handbook. P. Professional, 2nd edn.
(1998)

8. Garcı́a, S., Fernández, A., Luengo, J., Herrera, F.: A study statistical techniques and per-
formance measures for genetics-based machine learning: accuracy and interpretability. Soft
Computing 13(10), 959–977 (2009)

9. Holte, R.: Very simple classification rules perform well on most commonly used datasets.
Machine Learning 11, 63–90 (1993)

10. Li, C.: A combination scheme for fuzzy partitions based on fuzzy majority voting rule. In: In-
ternational Conference on Networks Security, Wireless Communications and Trusted Com-
puting, vol. 2, pp. 675–678 (2009)

11. Li, C., Wang, Y., Dai, H.: A combination scheme for fuzzy partitions based on fuzzy weighted
majority voting rule. In: International Conference on Digital Image Processing, pp. 3–7
(2009)

12. Liu, H., Hussain, F., Tan, C., Dash, M.: Discretization: an enabling technique. Journal of
Data Mining and Knowledge Discovery 6(4), 393–423 (2002)

13. Piero, P., Arco, L., Garcı́a, M., Acevedo, L.: Algoritmos genéticos en la construcción de
funciones de pertenencia borrosas. Revista Iberoamericana de Inteligencia Artificial 18, 25–
35 (2003)

14. Quilan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Fran-
cisco (1993)

15. R Project: Language and environment for statistical computing and graphics. R Foundation,
http://www.r-project.org

16. Wang, X., Kerre, E.E.: Reasonable propierties for the ordering of fuzzy quantities (I-II).
Fuzzy Sets and Systems 118, 375–405 (2001)

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.r-project.org

A Fuzzy Logic Based Approach to Expressing
and Reasoning with Uncertain Knowledge

on the Semantic Web

Jidi Zhao1, Harold Boley2, and Weichang Du3

1 Antai School of Management, Shanghai Jiao Tong University, Shanghai, China
2 Institute for Information Technology, National Research

Council of Canada, Fredericton, Canada
3 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada

Abstract. The necessity of dealing with uncertain knowledge has arisen from
Semantic Web applications in different areas. Handling uncertainty thus becomes
one of the key research directions in the Semantic Web community. This paper
introduces a fuzzy logic based approach which extends the classic Description
Logic with Zadeh semantics to deal with uncertain knowledge about concepts and
roles as well as instances of concepts and roles. Uncertain knowledge representa-
tion and the reasoning algorithm for consistency checking of a fuzzy knowledge
base are addressed in detail. This paper also discusses complexity issues of the
reasoning problem.

Keywords: Semantic web, Uncertain knowledge, Description logic, Fuzzy logic,
Linear programming.

1 Introduction

The Semantic Web initiative aims at creating an extension to the current World Wide
Web by developing logic-based standards and technologies that enable machines to
understand the information on the Web, so that they can support richer knowledge in-
ference and automate the performance of various tasks for human beings [2].

The current W3C standard for Semantic Web ontology languages, Web Ontology
Language (OWL), is designed for use by applications that need to process the content of
information instead of just presenting information to humans [15]. It facilitates greater
machine interpretability of Web content than that supported by other Web languages
such as XML, RDF, and RDF Schema (RDFS). This ability of OWL is enabled by
its underlying knowledge representation formalism of Description Logics (DLs). DLs
[1,7] are a family of logic-based formalisms designed to represent and reason about
the conceptual knowledge of arbitrary domains. Elementary descriptions of DLs are
atomic concepts and atomic roles. Complex concept descriptions and role descriptions
can be built from the elementary descriptions according to construction rules. Differ-
ent description languages of DLs are distinguished by the kind of concept and role
constructors (such as conjunction, disjunction, and exists restriction) allowed in their
description language and the kinds of axioms allowed in their terminologies. The basic

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 167–181.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

168 J. Zhao, H. Boley, and W. Du

propositionally closed DL is ALC in which the letters AL stand for attributive lan-
guage and the letter C for complement (negation of arbitrary concepts). Besides ALC,
other letters are used to indicate various DL extensions. For example, in the Descrip-
tion Logic SI [7], S is used for ALC extended with transitive roles (R+), and I for
inverse roles. DLs have a model-theoretic semantics, which is defined by interpreting
concepts as sets of individuals and roles as sets of pairs of individuals. An interpreta-
tion I is a pair I = (ΔI , ·I) consisting of a domain ΔI which is a non empty set and
of an interpretation function ·I which maps each individual x into an element of ΔI

(x ∈ ΔI), each concept C into a subset of ΔI (CI ⊆ ΔI) and each role R into a subset
of ΔI × ΔI (RI ⊆ ΔI × ΔI). The semantics of complex concept and role descrip-
tions can be found in [1,7]. Furthermore, a knowledge base (KB) in DLs consists of two
parts: the terminological box (TBox T) and the assertional box (ABox A).

Uncertainty is an intrinsic feature of real-world knowledge, which is also reflected
in the World Wide Web and the Semantic Web. Many concepts needed in knowledge
modeling lack well-defined boundaries or, precisely defined criteria. Examples are the
concepts of young, tall, and cold. The Uncertainty Reasoning for the World Wide Web
(URW3) Incubator Group defined the challenge of representing and reasoning with un-
certain information on the Web. According to the latest URW3 draft report, uncertainty
is a term intended to encompass different forms of uncertain knowledge, including in-
completeness, inconclusiveness, vagueness, ambiguity, and others [11]. The need to
model and reason with uncertainty has been found in many different Semantic Web
contexts, such as matchmaking in Web services [13], classification of genes in bioin-
formatics [18], multimedia annotation [17], and ontology learning [6].

Fuzzy Set Theory was first introduced by Zadeh [21] as an extension to the classic
notion of a set to capture inherent vagueness (the lack of crisp boundaries of sets).
Fuzzy Logic is a form of multi-valued logic derived from Fuzzy Set Theory to deal
with reasoning that is approximate rather than precise. In Fuzzy Logic, the degree of
truth of a statement can range between 0 and 1, and is not constrained to the two truth
values {0, 1} or {false, true} as in classic predicate logic. Formally, a fuzzy set A with
respect to a set of elements Ω (also called a universe) is characterized by a membership
function μA(x) which assigns a value in the real unit interval [0,1] to each element x
in Ω (x ∈ Ω), notated as μA : Ω → [0, 1]. μA(x), often written as A(x), gives the
degree of an element x belonging to the set A. Such degrees can be computed based on
a membership function. A fuzzy relation R over two fuzzy sets A and B is similarly
defined by a function R : Ω × Ω → [0, 1].

Fuzzy Logic extends the Boolean operations defined on crisp sets and relations for
fuzzy sets and fuzzy relations. These operations, e.g. complement, union, and inter-
section, are interpreted as mathematical functions over the unit interval [0,1]. In the
following, η, θ define the truth degrees of sets and relations, ranging between 0 and 1.
The mathematical functions for fuzzy intersection are usually called t-norms (t(η, θ));
those for fuzzy union are called s-norms (s(η, θ), a.k.a. t-conorms); and those for the
fuzzy set complement are called negations (¬η); These functions usually satisfy certain
mathematical properties. The most widely known operations in the Fuzzy Logic family
are Zadeh Logic, Lukasiewicz Logic, Product Logic, and Gödel Logic.

An Approach to Uncertain Knowledge Treatment on the Semantic Web 169

To deal with the ‘crisp limitation’ of classic DLs, considerable work has been carried
out on integrating uncertain knowledge into DLs in recent years. The current literature
generally follows two approaches. One is Probabilistic Logic based on Probability The-
ory; for example the work in [9] [10] [12]. The other is Fuzzy Logic and Fuzzy Sets;
for example the work in [20] [19] [23]. A review and comparison of these works can be
found in [22]. We presented a Norm-Parameterized Fuzzy Description Logic fALCN
and addressed the consistency checking problem in [23]. We use fNDL to denote a
Fuzzy Description Logic fDL with norm parameter N. Omitting the indexN means the
fDL is norm-parameterized. In the current paper, we follow the Fuzzy Sets and Fuzzy
Logic approach and present the fuzzy Description Logic fZSI . We call this fuzzy De-
scription Logic fZSI as SI is the underlying Description Logic and Z fixes the norms
to Zadeh Logic. This paper is different from previous work due to the following fea-
tures. First, the underlying classic DL SI is a more expressive Description Logic which
deals with fuzzy transitive roles and fuzzy inverse roles. Second, we combine Descrip-
tion Logic, Fuzzy Logic, and Linear Programming methods in the reasoning procedure.
Last but not least, fZSI supports both fuzzy axioms and fuzzy assertions for uncertain
knowledge representation and reasoning.

2 The Fuzzy DL fZSI
fZSI extends the fZALCN DL with inverse roles, and transitive roles but excludes
number restrictions. Due to space limitations, we refer interested readers to [23] for the
syntax and semantics of complex concept descriptions as well as axioms and assertions
for fZALC by specializing the t-norm to min and the s-norm to max. Here we simply
list them in Tables 1 and 2, and then explain the expressiveness beyond fZALC. A fuzzy
knowledge base in fZSI consists of two parts: the fuzzy terminological box consisting
of a finite set of fuzzy axioms (TBox T) and the fuzzy assertional box consisting of a
finite set of fuzzy assertions (ABox A). As shown in Table 2, a fuzzy axiom or fuzzy
assertion is of the form α [l, u] with 0 ≤ l ≤ u ≤ 1, which is equivalent to the two
inequalities α ≥ l and α ≤ u. In what follows, we use these expressions as needed.

In classic DLs, a role R is symmetric iff for all x, y ∈ �I , (Inv(R))I(y, x) =
RI(x, y), where the role function Inv(R) defines the inverse of a role. The same prop-
erty holds for a fuzzy symmetric role. For example, the role hasPart is the inverse of
the role isPartOf.

In classic DLs, a role R is transitive iff for all x, y, z ∈ �I , RI(x, y) and RI(y, z)
imply RI(x, z). While in Fuzzy Logic, a fuzzy role R is transitive iff for all x, y, z ∈
�I , it satisfies the following inequality [3]:

RI(x, z) ≥ sup
y∈�I

t(RI(x, y), RI(y, z)) (1)

where t(η, θ) denotes a general t-norm. Thus, in the case of Zadeh Logic, a transitive
role satisfies:

RI(x, z) ≥ sup
y∈�I

min(RI(x, y), RI(y, z)) (2)

In order to make the following explanations easier, we introduce the role function
Trans(R) which specifies that R is transitive or Inv(R) is transitive.

170 J. Zhao, H. Boley, and W. Du

Table 1. Syntax and semantics of fZSI constructors

Constructor Syntax Semantics
top concept � �I = 1

bottom concept ⊥ ⊥I = 0

atomic negation ¬A (¬A)I(x) = 1−AI(x)

concept conjunction C 	D (C 	D)I = min(CI(x), DI(x))

concept disjunction C
D (C
D)I = max(CI(x), DI(x))

exists restriction ∃R.C (∃R.C)I(x) = supy∈ΔI{min(RI(x, y), CI(y))}
value restriction ∀R.C (∀R.C)I(x) = infy∈ΔI{max(1−RI(x, y), CI(y))}
inverse role Inv(R) (Inv(R))I(y, x) = RI(x, y)

Table 2. Syntax and semantics of fZSI axioms

Axioms Syntax Semantics
concept inclusion A � C ∀x ∈ ΔI , AI(x) ≤ CI(x)

concept definition A ≡ C ∀x ∈ ΔI , AI(x) = CI(x)

concept implication A → C [l, u] ∀x ∈ ΔI , CI(x) ∈ min(AI(x), [l, u])

transitive role Trans(R) RI(a, c) ≥ supb∈�I min(RI(a, b), RI(b, c))

concept assertion C(a) [l, u] l ≤ CI(a) ≤ u

role assertion R(a, b) [l, u] l ≤ RI(a, b) ≤ u

individual inequality a �= b aI �= bI

Now, we use some mathematical properties of Zadeh Logic to show that the follow-
ing property is satisfied by a role value restriction ∀R.C with Trans(R).

Lemma 1. Under Zadeh Logic, if (∀R.C)I(x) ≥ l (l ∈ [0, 1]) and R is transitive, then
(∀R.(∀R.C))I(x) ≥ l holds.

Proof. (∀R.C)I(x) ≥ l
Definition of semantics−−−−−−−−−−−−−−−−→
infz∈ΔI{max(¬RI(x, z), CI(z))} ≥ l

Equation 1−−−−−−−→
infz∈ΔI infy∈ΔI{max(¬(min(RI(x, y),RI(y, z))), CI(z))} ≥ l
De Morgan′s Law−−−−−−−−−−−−→
infz∈ΔI infy∈ΔI{max(max(¬RI(x, y),¬RI(y, z)), CI(z))} ≥ l
Associativity−−−−−−−−−→
infz∈ΔI infy∈ΔI{max(¬RI(x, y),max(¬RI(y, z), CI(z)))} ≥ l
Commutativity−−−−−−−−−−→
infy∈ΔI{max(¬RI(x, y), infz∈ΔI max(¬RI(y, z), CI(z)))} ≥ l
Definition of semantics−−−−−−−−−−−−−−−−→
infy∈ΔI{max(¬RI(x, y), (∀R.C)I(y))} ≥ l

Definition of semantics−−−−−−−−−−−−−−−−→ (∀R.(∀R.C))I(x) ≥ l

However, in the cases of ≤, we cannot derive such a property for (∀R.C)(x) and
Trans(R).

An Approach to Uncertain Knowledge Treatment on the Semantic Web 171

Under Zadeh Logic, by applying the semantics of ∃R.C and negation, it is easy to
see that the following equivalence rules hold:
∀a, b ∈ ΔI ,

¬¬C ≡ C , (3)

¬∃R.C ≡ ∀R.¬C , (4)

¬∀R.C ≡ ∃R.¬C (5)

Then, (∃R.C)I(x) ≤ u
Monotonicity−−−−−−−−−→ ¬((∃R.C)I (x)) ≥ 1− u
Equilvalence 4−−−−−−−−−−→ (∀R.(¬C))I (x)) ≥ 1− u
Lemma 1−−−−−−→ (∀R.(∀R.(¬C)))I (x)) ≥ 1− u
Monotonicity−−−−−−−−−→ ¬(∀R.(∀R.(¬C))I (x)) ≤ u
Equilvalence 5−−−−−−−−−−→ (∃R.¬(∀R.(¬C)))I (x) ≤ u
Equilvalence 5 and 3−−−−−−−−−−−−−−→ (∃R.(∃R.C))I(x) ≤ u

Therefore, the following property is satisfied with respect to a role exists restriction
∃R.C and Trans(R). Such a property cannot be inferred from the cases of ≥.

Lemma 2. Under Zadeh Logic, if (∃R.C)I(x) ≤ u and R is transitive, then
(∃R.(∃R.C))I(x) ≤ u holds.

Although we can show that such properties also hold under Product Logic and other
logics, we neglect it here, as it is out of scope. We will soon see that these properties
will be embodied in the fuzzy completion rules for the fZSI reasoning algorithm.

3 Reasoning Algorithm for Building a Fuzzy Tableau of fZSI
The reasoning algorithm that we will present is a fuzzy extension to the tableau method
and tests the consistency of a knowledge base KB =< T ,A > by trying to construct
a model of KB. A model of KB in our Fuzzy Description Logic fZSI is a fuzzy
interpretation I = (�I , ·I). Similar to the classic DL, such a model has the shape
of a forest, i.e., a collection of trees, with nodes corresponding to individuals, root
nodes corresponding to named individuals, and edges corresponding to roles between
individuals. Each node has a node label L(individual), but different from classic DLs,
each node in a fZSI tableau is labeled with a set of fZSI-concepts. Each element in
the set consists of a pair of elements {concept, constraint}. The sets for all nodes are
restricted to subsets of sub(A), where sub(A) is the set of sub-concepts of concepts
that appear within an ABoxA. Furthermore, each edge is associated with an edge label
L(individual1, individual2) which consists of a pair of elements {role, constraint}.

In [23], we explained the TBox processing procedure which consists of some prepro-
cessing steps to deal with the fuzzy TBox before applying the reasoning algorithm. Those

172 J. Zhao, H. Boley, and W. Du

steps are applicable to the fZSI knowledge base. Therefore, we can assume all concepts
C occurring in KB to be in negation normal form (NNF) and we only deal with un-
foldable TBox after those preprocessing steps. However, due to the properties of a fZSI
knowledge base, the TBox processing procedure should include a couple of other steps.
First, the TBox processing procedure transforms all the assertions in the fuzzy ABox and
the fuzzy implication axioms in the fuzzy TBox with the form α0 [l, u] into two expres-
sions: α0 ≥ l and α0 ≤ u. In order to keep our presentation simple and compact, in
what follows, we use a general form α op n where op ∈ {≥,≤} and n ∈ [0, 1]whenever
applicable. Second, an fZSI knowledge base may contain transitive role axioms and in-
verse roles. We know that if a role R is transitive, the inverse role of R is also transitive.
Therefore, for each pair of Trans(R) and Inv(R), the procedure should also add an ax-
iom Trans(Inv(R)). After the application of the TBox processing procedure, in what
follows, we only have to consider a knowledge base in fZSI only consists of fuzzy ABox
assertions, a set of transitive role axioms, and a finite set of fuzzy implication axioms.

Next, we first give the definitions of fuzzy tableau, clash, and clash-free, and then
present a decision procedure for the consistency checking problem for an fZSI knowl-
edge base.

Definition 1. If KB =< T ,A > is an fZSI knowledge base, RA is the set of roles
occurring in A, together with their Inv(R)s, a fuzzy tableau T for KB is defined to be
a quadruple (S,L, ε, C) such that: S is a set of individuals, L : S × sub(A) → [0, 1]
maps each individual and a concept which is a subset of sub(A) to the membership
degree of the individual to that concept, ε : RA × S × S → [0, 1] maps each role in
RA and a pair of individuals to the membership degree of the pair to the role, and C is
a set of constraints must be satisfied. For all x, y ∈ S, A,C,D ∈ sub(A), R ∈ RA
and n ∈ [0, 1], it holds that:

1. For any x ∈ S, {x : ⊥ = 0} and {x : � = 1} ∈ L(x).
2. If {x : ¬(A) op n} ∈ L(x), then {x : A op 1− n} ∈ L(x).
3. If {x : C �D ≥ n} ∈ L(x), then {x : C ≥ n} ∈ L(x) and {x : D ≥ n} ∈ L(x).
4. If {x : C �D ≤ n} ∈ L(x), then {x : C ≤ n} ∈ L(x) and {x : D ≤ n} ∈ L(x).
5. If {x : C �D ≤ n} ∈ L(x), then {x : C ≤ n1} ∈ L(x), {x : D ≤ n2} ∈ L(x),

and n = min(n1, n2) for some n1, n2.
6. If {x : C �D ≥ n} ∈ L(x), then {x : C ≥ n1} ∈ L(x), {x : D ≥ n2} ∈ L(x),

and n = max(n1, n2) for some n1, n2.
7. If {x : ∃R.C ≥ n} ∈ L(x), then there exists y ∈ S such that {< x, y >: R ≥

n} ∈ ε(R) and {y : C ≥ n} ∈ L(y).
8. If {x : ∀R.C ≤ n} ∈ L(x), then there exists y ∈ S such that {< x, y >: R ≥

1− n} ∈ ε(R) and {y : C ≤ n} ∈ L(y).
9. If {x : ∃R.C ≤ n} ∈ L(x), then {< x, y >: R ≤ n1} ∈ ε(R), {y : C ≤ n2} ∈
L(y), and n = min(n1, n2) for some n1, n2.

10. If {x : ∀R.C ≥ n} ∈ L(x), then {< x, y >: R ≤ 1 − n1} ∈ ε(R), {y : C ≥
n2} ∈ L(y), and n = max(1 − n1, n2) for some n1, n2.

11. {< x, y >: R op n} ∈ ε(R) iff {< y, x >: Inv(R) op n} ∈ ε(R).
12. If {x : ∀R.C ≥ n} ∈ L(x) and Trans(R), then {< x, y >: R ≤ 1−n1} ∈ ε(R),

{y : ∀R.C ≥ n2} ∈ L(y), and n = max(1− n1, n2) for some n1, n2.

An Approach to Uncertain Knowledge Treatment on the Semantic Web 173

13. If {x : ∃R.C ≤ n} ∈ L(x) and Trans(R), then {< x, y >: R ≤ n1} ∈ ε(R),
{y : ∃R.C ≤ n2} ∈ L(y), and n = min(n1, n2) for some n1, n2.

14. If {A → C ≥ n} ∈ T and {x : A ≥ n1} ∈ L(x), then {x : C ≥ n2} ∈ L(x)
and n2 = min(n, n1), for any x ∈ S.

15. If {A → C ≤ n} ∈ T and {x : A ≤ n1} ∈ L(x), then {x : C ≤ n2} ∈ L(x)
and n2 = min(n, n1), for any x ∈ S.

In [23], we defined the semantics (C�D)I as t(CI(x), DI(x)) for various t-norms. For
the case of Zadeh Logic, we have that if (C�D)I (x) ≥ n, then CI(x) = nC , DI(x) =
nD, and min(nC , nD) ≥ n. In this definition, we can draw a further conclusion based
on the properties of the min norm that CI(x) = nC ≥ n and DI(x) = nD ≥ n.
Similar extensions are conducted on other fZSI concepts and roles.

Definition 2. LetA be an extended fZSI ABox,A contains a clash if only if one of the
following situations occurs:

1. {⊥(a) �= 0} ⊆ A
2. {�(a) �= 1} ⊆ A
3. {α ≤ n1, α ≥ n2} ⊆ A and n1 < n2

4. there is no solution for the constraint system of inequations C

A is called clash-free if it does not contain any clash.

Similar to the tableau algorithm presented by Horrocks et al. [8], our algorithm works
on building a fuzzy tableau for an fZSI knowledge base which may be a completion-
forest since the ABox might contain several named individuals with arbitrary edges
connecting them. Each node x is labeled with a set L(x) = {{x : C1 op n1}, · · · , {x :
Cm op nm}} (m ≥ 1) and a constraint set C(x) = {{xC1 op n1}, ·, {xCm op nm}},
where Ci ∈ sub(A), xCi , ni ∈ [0, 1], 1 ≤ i ≤ m, and op ∈ {≥,≤}. Each edge
< x, y > is labeled with a set L(x, y) = {[x, y] : R op n} and a constraint in the set
C(x, y) = {xR op n}, where R are roles occurring in A.

We adapt the conjugation concept in [19] to represent pairs of fuzzy assertions that
form a contradiction. Let α be a SI assertion, two fuzzy assertions (α ≥ n1 and
α ≤ n2) conjugate with each other if n1 > n2. For a given fuzzy assertion, its
conjugated assertion is not unique, and in fact, infinite. For example, both {[x, y] : R ≤
0.5} and {[x, y] : R ≤ 0.3} conjugate with the fuzzy assertion {[x, y] : R ≥ 0.6}.

Let us recall some notations used in [7]. If nodes x and y are connected by an edge
< x, y > with {R op n} ∈ L(x, y), then y is called an Rn-successor of x and x is
called an Rn-predecessor of y. Ancestor is the transitive closure of predecessor. If y is
an Rn-successor or an (Inv(R))n-predecessor of x, then y is called an Rn-neighbor
of x. An expressive DL such as fZSI which allows transitive roles and inverse roles
may lead to nontermination as the fuzzy completion rules can introduce new concepts
that are the same size as the decomposed concept. Our algorithm for the consistency
checking of an fZSI knowledge base follows the dynamic blocking presented in [7]
and uses it to guarantee the termination of the reasoning algorithm. In dynamic block-
ing, blocked nodes are allowed to be dynamically established and broken as the expan-
sion progresses, and expand role value restriction and role exists restriction concepts.

174 J. Zhao, H. Boley, and W. Du

This dynamic blocking strategy is crucial in the presence of inverse roles since informa-
tion might be propagated up the completion-forest and affect other branches. For exam-
ple, consider the nodesx, y and z, the edges< x, y > and< x, z >. Supposex blocks y.
In the presence of inverse roles it is possible that z adds information to node x, although
z is a successor of x. In that case the block on y must be broken. A node x is blocked if
for some ancestor y, y is blocked or L(x) = L(y). Dynamic blocking uses the notions
of directly blocked and indirectly blocked nodes. If a blocked node x’s predecessor is
blocked, x is called indirectly blocked. A blocked node x is called directly blocked if it
has a unique ancestor y such that L(x) = L(y).

Now, for an expanded fZSI ABoxA with a set of transitive role axioms and a set of
fuzzy implication axioms, the algorithm initializes a forest to contain (1)root nodes, for
each individual x occurring in A, the root node x is labeled with L(x) = {x : C op n}
and C(x) = {xC op n} for each assertion of the form C(x) op n in A, and (2)edges,
each edge 〈x, y〉 corresponds to an assertion R(x, y) op n in A with R be an atomic
role or an inverse role and is labeled with L(x, y) = {[x, y] : R op n} and C(x, y) =
{xR op n}. If an assertion is of the form Inv(P)(x, y) op n, the corresponding edge
is also labeled with L(x, y) = {[y, x] : P op n} and C(x, y) = {xP op n}. The com-
pletion forest is then expanded by repeatedly applying the following fuzzy completion
rules in Table 3 . The completion forest is complete when a clash is detected, or none
of the fuzzy completion rules are applicable.

The algorithm stops when a clash occurs; KB is consistent iff the completion rules
can be applied in such a way that they yield a complete and clash-free completion forest,
and KB is inconsistent otherwise.

Table 3. Fuzzy Completion Rules for fZSI

fZSI Fuzzy Completion Rules
¬≥-rule
Condition: {x : (¬A) ≥ n} ∈ L(x) and {x : A ≤ 1− n} /∈ L(x)
Action: L(x) −→ L(x) ∪ {{x : A ≤ 1− n}} and C(x) −→ C(x) ∪ {xA ≤ (1− n)}
¬≤-rule
Condition: {x : (¬A) ≤ n} ∈ L(x) and {x : A ≥ 1− n} /∈ L(x)
Action: L(x) −→ L(x) ∪ {{x : A ≥ 1− n}} and C(x) −→ C(x) ∪ {xA ≥ (1− n)}
	≥-rule
Condition: {x : (C1	C2) ≥ n} ∈ L(x), x is not indirectly blocked, and {{x : C1 ≥ n}, {x :
C2 ≥ n}} � L(x)
Action: L(x) −→ L(x) ∪ {{x : C1 ≥ n}, {x : C2 ≥ n}} and C(x) −→ C(x) ∪ {xC1 ≥
n, xC2 ≥ n}
	≤-rule
Condition: {x : (C1	C2) ≤ n} ∈ L(x), x is not indirectly blocked, and {{x : C1 ≤ n}, {x :
C2 ≤ n}} ∩ L(x) = ∅
Action: L(x) −→ L(x) ∪ {{x : C1 ≤ x1}, {x : C2 ≤ x2}} and C(x) −→ C(x) ∪ {xC1 ≤
x1, xC2 ≤ x2, x1 + x2 = 1 + n, x1 ≥ y, x2 ≥ 1− y, y ∈ {0, 1}, x1 ∈ [0, 1], x2 ∈ [0, 1]}

≥-rule
Condition: {x : (C1
C2) ≥ n} ∈ L(x), x is not indirectly blocked, and {{x : C1 ≥ n}, {x :
C2 ≥ n}} ∩ L(x) = ∅
Action: L(x) −→ L(x) ∪ {{x : C1 ≥ x1}, {x : C2 ≥ x2}} and C(x) −→ C(x) ∪ {xC1 ≥
x1, xC2 ≥ x2, x1 + x2 = n, x1 ≤ y, x2 ≤ 1− y, y ∈ {0, 1}, x1 ∈ [0, 1], x2 ∈ [0, 1]}

An Approach to Uncertain Knowledge Treatment on the Semantic Web 175

Table 3. (continued)

fZSI Fuzzy Completion Rules

≤-rule
Condition: {x : (C1
C2) ≤ n} ∈ L(x), x is not indirectly blocked, and {{x : C1 ≤ n}, {x :
C2 ≤ n}} � L(x)
Action: L(x) −→ L(x) ∪ {{x : C1 ≤ n}, {x : C2 ≤ n}} and C(x) −→ C(x) ∪ {xC1 ≤
n, xC2 ≤ n}
∃≥-rule
Condition: {x : (∃R.C) ≥ n} ∈ L(x), x is not blocked, and x has no Rn-neighbor y
Action: create a new node y with L(x, y) = {{[x, y] : R ≥ n}}, L(y) = {{y : C ≥ n}},
C(x, y) = {xR ≥ n}, and C(y) = {xC ≥ n}
∃≤-rule
Condition: {x : (∃R.C) ≤ n} ∈ L(x), x is not indirectly blocked, and x has an Rn1R -
neighbor y with {[x, y] : R op n1} ∈ L(x, y) and {y : C ≤ n} /∈ L(y).
Action: L(y) −→ L(y)∪ {{y : C ≤ n}}, if {[x, y] : R op n1} conjugates with {[x, y] : R ≤
n}, then C(y) −→ C(y) ∪ {xC ≤ n}, else C(y) −→ C(y) ∪ {xC ≤ n, n1 > n}
∀≥-rule
Condition: {x : (∀R.C) ≥ n} ∈ L(x), x is not indirectly blocked and x has an Rn1R -
neighbor y with {y : C ≥ n} /∈ L(y)
Action: L(y) −→ L(y)∪ {{y : C ≥ n}}, if {[x, y] : R op n1} conjugates with {[x, y] : R ≤
(1− n)}, then C(y) −→ C(y) ∪ {xC ≥ n}, else C(y) −→ C(y) ∪ {xC ≥ n, n1 > 1− n}
∀≤-rule
Condition: {x : (∀R.C) ≤ n} ∈ L(x), x is not blocked, x has no Rn-neighbor y, and
{y : C ≤ n} ∈ L(y)
Action: create a new node y with L(x, y) = {{[x, y] : R ≥ (1 − n)}}, L(y) = {{y : C ≤
n}}, C(x, y) = {xR ≥ (1− n)}, and C(y) = {xC ≤ n}
∃≤,+-rule
Condition: {x : (∃R.C) ≤ n} ∈ L(x), Trans(R), x is not indirectly blocked, and x has an
Rn1R -neighbor y with {y : (∃R.C) ≤ n} /∈ L(y)
Action: L(y) −→ L(y)∪{{y : (∃R.C) ≤ n}}, if {[x, y] : R op n1} conjugates with {[x, y] :
R ≤ n}, then C(y) −→ C(y) ∪ {x∃R.C ≤ n}, else C(y) −→ C(y) ∪ {x∃R.C ≤ n, n1 > n}
∀≥,+-rule
Condition: {x : (∀R.C) ≥ n} ∈ L(x), Trans(R), x is not indirectly blocked, and x has an
Rn1R -neighbor y with {y : (∀R.C) ≥ n} /∈ L(y)
Action: L(y) −→ L(y) ∪ {{y : (∀R.C) ≥ n}}, if {[x, y] : R op n1} conjugates with
{[x, y] : R ≤ (1−n)}, then C(y) −→ C(y)∪{x∀R.C ≥ n}, else C(y) −→ C(y)∪{x∀R.C ≥
n, n1 > 1− n}
→≥-rule
Condition: {A → C ≥ n} ∈ T , {x : A ≥ n1} ∈ L(x)
Action: L(x) −→ L(x) ∪ {{x : D ≥ n2}} and C(x) −→ C(x) ∪ {xD ≥ n2, n2 =
min(n, n1)}
→≤-rule
Condition: {A → C ≤ n} ∈ T , {x : A ≤ n1} ∈ L(x)
Action: L(x) −→ L(x) ∪ {{x : D ≤ n2}} and C(x) −→ C(x) ∪ {xD ≤ n2, n2 =
min(n, n1)}

176 J. Zhao, H. Boley, and W. Du

Example 1. Consider a fuzzy knowledge base KB = { CP → ∃hP.CP [0.5, 1],
CP (P002) [0.6, 1], (∃hP.CP)(P002) [0, 0.4]} where we abbreviate the concept Can-
cerPatient and the role hasFirstDegreeRelatives by CP and hP , respectively. The
knowledge base describes that the truth degree for a first-degree relative of a cancer pa-
tient also being a cancer patient is greater than or equal to 0.5. Person P002 is a cancer
patient with certainty greater than 0.6 and the possibility that one of P002’s first-degree
relative is also a cancer patient is less than or equal to 0.4. The query is that whether
KB is consistent or not.

First, because of the fuzzy concept implication axiom, {∃hP.CP (P002) [0.5, 1]}
is added to A. Next, we can initialize the fuzzy tableau by creating a node P002 and
label it with L(P002) = {{P002 : CP ≥ 0.6}, {P002 : ∃hP.CP ≥ 0.5}, {P002 :
∃hP.CP ≤ 0.4}} and C(P002) = {xCP ≥ 0.6, x∃hP.CP ≥ 0.5, x∃hP.CP ≤ 0.4}}.
Since both {P002 : ∃hP.CP ≥ 0.5} and {P002 : ∃hP.CP ≤ 0.4} are contained in
the fuzzy tableau, the reasoning algorithm obviously detects a clash. Therefore, it stops
the application of any fuzzy completion rule and returns that KB is inconsistent.

Next, let us look at an example for the ∀≥,+-rule.

Example 2. Consider there are two assertions in a fuzzy knowledge base:
(∀hasFriend.Student)(John) [0.75, 1] and hasFriend(John,Mary) [0.7, 1]where
hasFriend is a transitive role.

Following the preprocessing steps, we have {John : (∀hasFriend.Student) ≥
0.75} ∈ L(John) and {[John,Mary] : hasFriend ≥ 0.7}. Since {[John,Mary] :
hasFriend ≥ 0.7} conjugates with {[John,Mary] : hasFriend ≤ 0.25}, the
∀≥,+-rule is applicable, thus {Mary : (∀hasFriend.Student) ≥ 0.75} is added to
L(Mary).

We can see from Table 3 that all these fuzzy completion rules are based on the properties
and the semantics of fZSI concepts. Notice that since we assume all concepts to be in
their negation normal form, the fuzzy concept negation rule only applies to concept
names.

Let us take a second look at the �≥-rule and the �≤-rule. The �≥-rule generates
several new constraints {x1+x2 = n, x1 ≤ y, x2 ≤ 1−y, y ∈ {0, 1}, x1 ∈ [0, 1], x2 ∈
[0, 1]}. We can see that y is an integer variable with value of 0 or 1. When y = 0, we
have x1 = 0, x2 = n, and thus {xC1 ≥ 0, xC2 ≥ n}; while y = 1, we have x1 = n,
x2 = 0, and thus {xC1 ≥ n, xC2 ≥ 0}. These two cases are actually representing
the or-branch of the concept disjunction rule in classic DL. That is, the {0, 1} integer
variable y enable the simulation of or-branching. Furthermore, by the introduction of
the variable y, we also transform the non-linear constraint max(x1, x2) ≥ n into a set
of linear constraints. Similar conclusions can be drawn on the �≤-rule. Now we can see
that all the fuzzy completion rules in Table 3 generate only linear constraints, therefore,
the resulted constraint set for any node or edge is a linear constraint set. Such a property
makes it possible for the reasoning algorithm to call some external Linear Programming
solver to solve the constraint set.

Here is another example to explain how the reasoning algorithm determines the con-
sistency of a knowledge base.

An Approach to Uncertain Knowledge Treatment on the Semantic Web 177

Example 3. Consider the following fuzzy knowledge base KB = {Trans(R), C(a) [0.7,

1], D(b) [0.8, 1], R(a, b) [0.6, 1], R(b, c) [0.7, 1], (∃Inv(R).C	∃Inv(R).D)(c) [0, 0.5]}. We
want to check the consistency of the knowledge base.

With Trans(R) and Inv(R), we have Trans(Inv(R)). The fuzzy tableau is ini-
tialized as shown in Figure 1.

Next, since {c : (∃Inv(R).C � ∃Inv(R).D) ≤ 0.5} ∈ L(c), the �≤-rule is trig-
gered, the reasoning algorithm adds {c : (∃Inv(R).C) ≤ x1} and {c : (∃Inv(R).D) ≤
x2} toL(c), adds {x(∃Inv(R).C)(c) ≤ x1, x(∃Inv(R).D)(c) ≤ x2, x1+x2 = 1+0.5, x1 ≥
y, x2 ≥ 1− y, y ∈ {0, 1}, x1 ∈ [0, 1], x2 ∈ [0, 1]} to C(c).

Next, since {c : (∃Inv(R).C) ≤ x1} ∈ L(c), {c : (∃Inv(R).D) ≤ x2} ∈ L(c),
and we have [b, c] : R ≥ 0.7, the ∃≤-rule is applicable, thus the reasoning algorithm
adds {b : C ≤ x1} and {b : D ≤ x2} to L(b), adds {xC(b) ≤ x1, xD(b) ≤ x2, x1 <
0.7, x2 < 0.7} to C(b). Note that the constraints x1 < 0.7 and x2 < 0.7 are added
because of conjugation.

Next, since {c : (∃Inv(R).C) ≤ x1} ∈ L(c), {c : (∃Inv(R).D) ≤ x2} ∈ L(c), we
have [b, c] : R ≥ 0.7 and Trans(Inv(R)), the ∃≤,+-rule is also applicable, thus the
reasoning algorithm adds {b : (∃Inv(R).C) ≤ x1} and {b : (∃Inv(R).D) ≤ x2} to
L(b), adds {x(∃Inv(R).C)(b) ≤ x1, x(∃Inv(R).D)(b) ≤ x2} to C(b).

Next, since {b : (∃Inv(R).C) ≤ x1} ∈ L(b), {b : (∃Inv(R).D) ≤ x2} ∈ L(b),
and we have [a, b] : R ≥ 0.6, the ∃≤-rule is also applicable, thus the reasoning algo-
rithm adds {a : C ≤ x1} and {a : D ≤ x2} to L(a), adds {xC(b) ≤ x1, xD(b) ≤
x2, x1 < 0.6, x2 < 0.6} to C(a).

Now the fuzzy tableau is shown in Figure 2. Together with the default variable con-
straints, the reasoning algorithm forms the following constraint set:

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xC(a) ≥ 0.7, xD(b) ≥ 0.8

xR(a,b) ≥ 0.6, xR(b,c) ≥ 0.7

x(∃Inv(R).C
∃Inv(R).D)(c) ≤ 0.5

x(∃Inv(R).C)(c) ≤ x1, x(∃Inv(R).D)(c) ≤ x2

x1 + x2 = 1 + 0.5

x1 ≥ y, x2 ≥ 1− y

xC(b) ≤ x1, xD(b) ≤ x2

x1 < 0.7, x2 < 0.7

xC(a) ≤ x1, xD(a) ≤ x2

x1 < 0.6, x2 < 0.6

x(∃Inv(R).C)(b) ≤ x1, x(∃Inv(R).D)(b) ≤ x2

xC(a), xD(b), xR(a,b), xR(b,c) ∈ [0, 1]

x(∃Inv(R).C
∃Inv(R).D)(c) ∈ [0, 1]

x(∃Inv(R).C)(c), x(∃Inv(R).D)(c) ∈ [0, 1]

y ∈ {0, 1}
x1, x2, xC(b), xD(b) ∈ [0, 1]

x(∃Inv(R).C)(b), x(∃Inv(R).D)(b) ∈ [0, 1]

Using a Linear Programming solver, e.g., the GLPK solver [4], it is easy to show that
the constraint set is unsolvable. Therefore, the fuzzy knowledge base is inconsistent.

178 J. Zhao, H. Boley, and W. Du

Fig. 1. The initial fuzzy tableau of example 3

Fig. 2. The extended fuzzy tableau of example 3

Through this example, it is shown that the consistency check of a knowledge base can
be reduced to a problem of constraints solving in linear programming. The constraints
solving can be processed either at the end of the reasoning procedure when no further
fuzzy completion rules are applicable, or after each application of a completion rule.
The advantage of the later case is that, in some situations, the computation effort could
be saved when the constraints solver can identify unsolvable constraints sets earlier
in the reasoning process. However, in other situations, since calling an external solver
is time consuming, frequent calls will severely affect the overall performance. In the
former case, we only have to call the external solver once. In addition, we can apply
some optimization strategies such as trivial clash detection and individual groups to
improve the performance.

An Approach to Uncertain Knowledge Treatment on the Semantic Web 179

In the following, we discuss complexity issues of the reasoning problem in fZSI .
The lower bound complexity of the consistency checking problem in fZSI is EXP-time.
Horrocks and Sattler showed that the consistency checking problem for an SI knowl-
edge base is complete for EXP [7]. Since every SI knowledge base is a special case of
fZSI , the consistency checking problem in fZSI inherits SI’s time complexity as its
lower bound. The overhead for the consistency checking algorithm in fZSI is approxi-
mately a linear factor (O(n)) of the time complexity of the conventional SI algorithm.
It results from applying the completion rules, adding constraints to the constraint set,
and solving the mixed integer linear programming problem on the application of each
fuzzy completion rule. Each completion rule in the SI reasoning algorithm is extended
into at most two fuzzy completion rules in fZSI . Furthermore, each fuzzy completion
rule includes the extra step of adding constraints to the constraint set. Assuming τ3 is
the computational complexity of SI’s consistency checking algorithm, the upper bound
complexity for the fuzzy tableau construction part is O(4 ∗ τ3). Next, let τ4 be the time
complexity of solving a mixed integer linear programming problem, where some of
the unknown variables are required to be integers from {0, 1}. It is well-known that a
mixed integer linear programming problem is NP-complete [5]. Solving a linear pro-
gram is bounded by O(m3 ∗L) where L is the maximum ‘bit size’ of coefficients in the
linear program and m is the number of variables [14]. Solving a binary mixed integer
problem is bounded by O(2q ∗m3∗L) where q is the number of integer variables. In our
case, q and m are bounded by the size of the knowledge base, thus τ4 is O(2n ∗n3 ∗L).
Assuming p(n) is Ω(n1+ε), then O(2n ∗ n3 ∗L) is less than O(2p(n)) when n is large;
therefore, the upper bound of the time complexity for the consistency checking in fZSI
is O(4 ∗ τ3 + n ∗ τ4)=O(n ∗ τ3), where n is the size of the underlying knowledge base.
If the reasoning algorithm processes mixed integer linear programming only once at the
end, when no more fuzzy completion rule is applicable, the time complexity of fZSI
becomes O(τ3).

4 Conclusions

In this paper, we address the fuzzy instance entailment problem with respect to a fuzzy
knowledge base and then present a fuzzy extension to the expressive Description Logic
SI based on Zadeh Logic and the residual R-implication.

For real-world applications where a knowledge base is considered as a means to store
information (both precise and imprecise) about individuals, usually more complex in-
ferences other than consistency checking are required. For example, users may want to
pose a query like “Given a knowledge base, what’s the certainty of an assertion?”. An-
other kind of query can be “How many individuals belong to a given concept description
with a confidence greater than 0.5, and what are they?” We describe the former query as
an instance range entailment problem and the later as an f-retrieval problem. However,
due to space limitations, the reasoning methods for these problems are omitted in this
paper.

A prototype reasoner using SWI-Prolog and GLPK has been under implementation
based on the ALC reasoner ALCAS [16]. It currently supports functionalities to check
consistency, fuzzy instance entailment and f-retrieval of a fuzzy fZALC knowledge

180 J. Zhao, H. Boley, and W. Du

base. Part of our ongoing work considers further development of the reasoner to support
other reasoning problems as well as more expressivity in the fuzzy knowledge base.

As we pointed out in Section 2, the properties for transitive roles and value restric-
tions also hold under Product Logic. Therefore, another direction of future work is
to investigate the reasoning algorithms for expressive fuzzy Description Logics under
norms from other logics in the family of Fuzzy Logics.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, Cambridge (2003)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284, 34–44
(2001)

3. Dı́az, S., De Baets, B., Montes, S.: General results on the decomposition of transitive fuzzy
relations. Fuzzy Optimization and Decision Making 9, 1–29 (2010)

4. GLPK: GNU linear programming kit. Technical Report (2008),
http://gnuwin32.sourceforge.net/packages/glpk.htm

5. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Mathematics of
Operations Research 8(4), 538–548 (1983)

6. Haase, P., Völker, J.: Ontology learning and reasoning - dealing with uncertainty and incon-
sistency. In: Proceedings of Uncertainty Reasoning for the Semantic Web, pp. 45–55 (2005)

7. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierar-
chies. J. of Logic and Computation 9, 385–410 (1999)

8. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic
SHIQ. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 482–496. Springer,
Heidelberg (2000)

9. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Proc. of the 4th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR 1994), pp. 305–316 (1994)

10. Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description logic. In:
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI 1997),
pp. 390–397 (1997)

11. Laskey, K.J., Laskey, K.B., Costa, P.C.G., Kokar, M.M., Martin, T., Lukasiewicz, T.: W3C
incubator group report. Technical Report, W3C (March 05, 2008),
http://www.w3.org/2005/Incubator/urw3,

12. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for the
semantic web. Fundamenta Informaticae 82, 289–310 (2008)

13. Martin-Recuerda, F., Robertson, D.: Discovery and uncertainty in semantic web services. In:
Proceedings of Uncertainty Reasoning for the Semantic Web, vol. 188 (2005)

14. Matousek, J., G’artner, B.: Understanding and Using Linear Programming. Springer, Heidel-
berg (2007)

15. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview (2004),
http://www.w3.org/TR/owl-features/

16. Spencer, B.: ALCAS: An ALC Reasoner for CAS (2006),
http://www.cs.unb.ca/bspencer/cs6795swt/alcas.prolog

17. Stamou, G., van Ossenbruggen, J., Pan, J.Z., Schreiber, G.: Multimedia annotations on the
semantic web. IEEE MultiMedia 13, 86–90 (2006)

18. Stevens, R., Aranguren, M.E., Wolstencroft, K., Sattlera, U., Drummond, N., Horridge, M.,
Rectora, A.: Using owl to model biological knowledge. International Journal of Human-
Computer Studies 65, 583–594 (2007)

http://gnuwin32.sourceforge.net/packages/glpk.htm
http://www.w3.org/2005/Incubator/urw3,
http://www.w3.org/TR/owl-features/
http://www.cs.unb.ca/bspencer/cs6795swt/alcas.prolog

An Approach to Uncertain Knowledge Treatment on the Semantic Web 181

19. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence
Research 14, 137–166 (2001)

20. Yen, J.: Generalizing term subsumption languages to fuzzy logic. In: Proc. of the 12th Int.
Joint Conf. on Artificial Intelligence (IJCAI 1991), pp. 472–477 (1991)

21. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
22. Zhao, J.: 1. Advances in Semantic Computing. In: Uncertainty and Rule Extensions to De-

scription Logics and Semantic Web Ontologies. Technomathematics Research Foundation,
pp. 1–22 (2010) (accepted)

23. Zhao, J., Boley, H.: Canadian Semantic Web: Technologies and Applications. In: Knowledge
Representation and Reasoning in Norm-Parameterized Fuzzy Description Logics. Springer
(2010)

Portfolio Investment Decision Support System
Based on a Fuzzy Inference System

Isidoro J. Casanova

Department of Informatics and Systems, University of Murcia
Campus de Espinardo, 30100 Murcia, Spain

isidoroj@um.es
http://webs.um.es/isidoroj

Abstract. This paper describes a hybrid intelligent system formed by a decision
support system based on rules for the management of a stock portfolio and by a
fuzzy inference system to select the stocks to be incorporated.

This system simulates the behavior of any rational investor, so that each day
would look if there is any investment opportunity with the use of technical indi-
cators applying a fuzzy logic based approach.

The system has been tested in 3 time periods (1 year, 3 years and 5 years),
simulating the purchase/sale of stocks in the Spanish continuous market and the
results have been compared with the revaluations obtained by the best investment
funds operating in Spain.

Keywords: Finance, Portfolio selection, Trading system, Decision support sys-
tem, Fuzzy inference system.

1 Introduction

Investment management consists of strategic asset allocation, tactical asset allocation,
and stock picking three phases [2]. Strategic asset allocation is a long-term allocation
strategy that implies to elect the market where you are going to invest, what kind of
assets you’re going to buy and the distribution of these in the portfolio in accordance
with the investor’s objectives. Tactical asset allocation consists of regularly adjusting
the portfolio, in a systematic or discretionary way, to take advantage of short-term op-
portunities. Stock picking consists in selecting the better stocks to be incorporated in the
portfolio, being the most time-consuming phase and has a greater impact on the return
of the portfolio.

Our study is focus on tactical asset allocation and stock picking.
To perform the tactical asset allocation an intelligent system based on rules that will

dynamically invest in shares for a certain period of time is proposed.
The last phase, stock picking, is one of the most important phases, since it must

decide for each day what shares should be bought to add to the portfolio. A simple
rule that could be used to implement this step could be to invest in the stock that has
been revalued at least a certain percentage in the last days. Although we could use
more sophisticated rules using technical analysis, like Relative Strength Index (RSI) or
Moving Average, [15].

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 183–196.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

http://webs.um.es/isidoroj

184 I.J. Casanova

Each of the indicators used in technical analysis has some limitation, and in most
cases, the answer by each of them is not a definite “yes” or “no”. The best result could
be achieved when combining many indicators at the same time and evaluating their
output collectively.

Fuzzy reasoning is very effective in such environments. Managers perceive technical
indicators differently and their answers to these indicators are not obvious and surely
they are not true or false answers but somewhere in between. In fuzzy logic, the truth of
any statement becomes a matter of degree. In our opinion, fuzzy logic blends very well
with technical analysis process.

Our proposal is to use technical indicators with fuzzy logic in order to create a strict
fuzzy indicator that only recommends “buy”, when most of the technical indicators
recommend it. To implement this last phase we will use well defined and simple rules,
selecting suitably input membership functions that influence in the purchase of a stock.

The proposed system will be applied to the Spanish stock market, in particular, the
IBEX 351, keeping in mind that we invest all the available money in stocks without
regard to which sector they belong, and supporting a maximum of 4 % loss per share.
We will compare our investment performance with the index itself and with the results
that have obtained the better equity funds that invest in the Spanish continuous market
in the time limit of 1, 3 and 5 years.

In Section 2, we introduce the concepts of investment portfolio and how fuzzy in-
ference systems have been introduced in order to help in financial market analysis. In
Section 3, we present the system proposed with all the elements that compose it. In
Section 4, we show different computational results that illustrate the behavior of the
proposed hybrid intelligent system. Finally, we present the conclusions in Section 5.

2 Literature Review

2.1 Investment Portfolio

The concept behind investment portfolio is to combine different investment targets to
avoid concentrating too much risk on any one target with the aim of dispersing overall
investment risk. Any combination of two or more securities or assets can be termed
an investment portfolio. Over a half century, the Markowitz meanvariance model, [13],
has become a universally understood technique within the investment field. However,
this model is limited by the uncertainty of the inputs such as expected returns, standard
deviations, and correlation matrix. Many asset managers build on the foundation of the
Markowitz meanvariance model to construct an Efficient Frontier portfolio and use the
rate of return and variance to assess overall portfolio performance and risk. Neverthe-
less, this approach assumes that the rate of return and variance of each investment target
is known at the beginning.

On the other hand efficient-market hypothesis is an idea partly developed in the 1960s
by Eugene Fama and defended by Burton G. Malkiel [12] which asserts that financial
markets are “informationally efficient”, or that prices on traded assets (e.g., stocks,

1 The IBEX 35 (an acronym of Iberia Index) is the benchmark stock market index of the Bolsa
de Madrid, Spain’s principal stock exchange.

Fuzzy Portfolio Investment 185

bonds, or property) already reflect all known information, and instantly change to re-
flect new information. Therefore, according to theory, it is impossible to consistently
outperform the market by using any information that the market already knows, except
through luck.

Following this last hypothesis are the passive managers, which believe that it is im-
possible to predict which individual holdings or section of the market will perform
better than another therefore their portfolio strategy is determined at outset of the port-
folio and not varied thereafter. Many passive portfolios are index portfolio where the
portfolio tries to mirror the market as a whole. Another example of passive management
is the “buy and hold” method used by many traditional Unit Investment Trusts where
the portfolio is fixed from outset. Today, there is a plethora of market indexes in the
world, and thousands of different index funds tracking many of them.

One of the largest equity mutual funds, the Vanguard 500, is a passive manage-
ment fund. The two firms with the largest amounts of money under management, Bar-
clays Global Investors and State Street Corp., primarily engage in passive management
strategies.

Contrary to the efficient-market hypothesis are the active managers, which believe
that by selectively buying within a financial market that it is possible to outperform
the market as a whole. Therefore they employ dynamic portfolio strategies buying and
selling investments with changing market conditions.

Investors or mutual funds that do not aspire to create a return in excess of a bench-
mark index will often invest in an index fund that replicates as closely as possible the in-
vestment weighting and returns of that index; this is called passive management. Active
management is the opposite of passive management, because in passive management
the manager does not seek to outperform the benchmark index.

2.2 Artificial Intelligence and Investment Portfolio

The world of artificial intelligence applied to the stock market investment can be divided
into two groups, the first one would try to ascertain as accurately as possible the future
price of a share and the second endeavors in optimizing the mean-variance analysis
proposed by Markowitz.

One of the most widely used techniques for predicting the price of a particular stock
are neural networks, [20]. There are also used genetic algorithms to optimize the pa-
rameters of these neural networks or to optimize the technical analysis of one stock [7].
In [1] there are utilized, among others, as methods for the classification of stocks the
recursive partitioning or probabilistic neural networks. There are also studies about how
to predict the behavior of one stock from the news published on the Internet, [14].

With respect to Artificial Intelligence techniques to optimize the mean-variance anal-
ysis we have [11] that deals with fuzzy optimization schemes for managing a portfolio.
Kendall and Su [9] use particle swarm optimization to find the best proportion of risk
assets. This method is based on the mean-variance model and uses the Sharpe ratio as
fitness function.

These articles may be helpful to invest, although they do not go so far as to realize the
buying and selling of the stocks. Once stocks have been selected, the time of purchase
and sale is not clearly specified, existing articles in which a notice appears in real-time

186 I.J. Casanova

on what stock or group of stock are recommended, [18], where the stocks are bought
and sold annually, [19], in which is estimated if a purchase is going to be long or short
term, or where it just does not say anything about what methodology has been applied
to estimate when these buying and selling must be realized.

In most of these articles there is a vector which indicates the percentage of investment
being made in each stock for each one of the subperiods. For example, in [1] is fixed
an investment horizon of 5 years, with sub-periods of 1 year. This modus operandi has
not really considered the normal carry out of a trade operation done when an investor
buys or sells shares. Thus, for example all these articles have a vector which shows
the percentage of investment in each stock instead of real orders to buy or sell (market
orders/limit orders). Likewise the commissions of buying and selling are not calculated
in a completely real way and does not perform a daily monitoring of the stocks that are
in the portfolio, so that these stocks could fall into a downward spiral and in none of
these studies any corrective measure would be taken, either because until it does not
pass the subperiod does not re-balance again the portfolio, or because the technique
used to calculate the percentages of investment in each of the shares does not take into
account the behavior of the stocks that have already been purchased.

2.3 Fuzzy Inference Systems

A fuzzy inference system is a computer paradigm based on fuzzy set theory, fuzzy
if-then-rules and fuzzy reasoning.

Fuzzy inference systems have been successfully applied in fields such as automatic
control, data classification, decision analysis, expert systems, and computer vision. Be-
cause of its multidisciplinary nature, fuzzy inference systems are associated with a num-
ber of names, such as fuzzy-rule-based systems, fuzzy expert systems, fuzzy modeling,
fuzzy associative memory, fuzzy logic controllers, and simply (and ambiguously) fuzzy
systems.

In the field of financial market analysis, we have for example, [6], which uses three
technical indicators (rate of change, stochastic momentum and resistance indicator) in a
fuzzy control system with the following modules: convergence (maps the technical in-
dicators into new inputs), fuzzification, fuzzy processing and defuzzification (using the
center of area method to map the output universe with four membership functions -low,
medium, big and large- into a nonfuzzy action). Also in [5] the fuzzy trading system
is based on four technical indicators (Moving Average Convergence/Divergence, Com-
modity Channel Index, Relative Strength Index and Bollinger Bands) and the output of
the fuzzy system is a signal on a normalized domain, on which four different fuzzy sets
(strong sell, sell, buy and strong buy) are defined.

On the other hand in [3] use a neuro-fuzzy based methodology to forecast the next
day’s trend of chosen stocks. The forecasting is based on the rate of change of three-day
stock price moving average.

Furthermore, other scholars have used rough sets to generate trading rules. For in-
stance, in [16] seven technical indicators are used for rule generation using three steps,
namely, Decision Table Reconstruction, Discretization and Rough Sets Application.
The last step is to apply rough sets to generate rules and check the predictive accuracy
on the testing data sets.

Fuzzy Portfolio Investment 187

3 Research Framework

3.1 Intelligent System for Tactical Asset Allocation

The proposed system for decision making is based on a policy of buying and selling the
stocks that make up any stock market over a period of time.

This policy of buying and selling is based on that if we assume a stock market quoted
from a start date (datestart) until an end date (dateend), each one of those days, all their
stocks have had an opening price (popen), a maximum price (pmax), a minimum price
(pmin) and a closing price (pclose).

If we take a day d between datestart and dateend in which you have no shares
purchased (there is no order of sale or purchase pending), then we will be able to select
a set of m stocks (Sb), using technical analysis or any other technique, which would be
most recommendable to buy, because it expects them to give a good return.

The technique for selecting stocks should calculate a value for each one of the stocks
that make up the market on that day d, quantifying if it would be advisable to buy the
shares. Stocks are ordered from most to least according to this value, and the system
will have to choose the best set of stocks, defining which minimum value is considered
for a stock to belong to this set of the better stocks, existing the possibility that one day
any stock is not recommended (m = 0), or that many are recommended because its
analysis has been the sufficiently satisfactory for all them.

Once we have this set Sb with the selection of the best stocks for a day d, we might
try to buy all or some of these stocks. To simplify the algorithm we will try to buy only
one of the selected stocks every day, so that after several days, we could have a portfolio
of n stocks (Sa). Thus, to choose the stock to buy we would have two possibilities, to
select the best or well to select any randomly.

Once we have chosen a stock, we will have to give the purchase order for the next
day. We will limit the purchase price to any of the prices that has had the stock during
that same day ([pmin, pmax]), or choose the opening popen or closing pclose price of
the next day. If we use a low purchase price, there are fewer possibilities to execute the
purchase in the following days, but on the other hand, the stock will be bought more
cheaply.

The next day (d+1), one sees if the purchase of the share can be executed, whenever
the purchase price of this day is between pmin and pmax. If this purchase order does
not manage to be executed in W days, then we would eliminate this purchase order, and
would give a new purchase order, selecting a share among the best ones of that day.

On this following day in which we can already have bought shares, it is necessary to
calculate which of them should be kept in the portfolio and which should be sold, reason
why a new analysis is performed to select p stocks (Sc) so that using again anyone of
the previously commented techniques would tell us which stocks shall be maintained in
the portfolio, since it is expected that they give a good profit value. The technique used
must calculate a value for each of the stocks that make up the market on that day d + 1,
quantifying if it would be advisable to maintain this share in the portfolio.

In this new day we would check if each one of the bought stocks continues being
among the best that are recommended to maintain in the portfolio (Sc), in which case
we would not do anything or otherwise we would leave spent M days without the stock

188 I.J. Casanova

among the best to give a sale order. A sale order is given when M days have passed
without the stock is recommended to keep in the portfolio or when the stock has had a
loss regarding the price of purchase higher than a certain percentage P%. A sale order
will also have a limited price, as the purchase order. The higher the sale price more
difficult it is to execute the sell order. In case during V days it is not possible to sell at
this price, probably because the stock is in a bearish period, then we would descend the
price of this sale order.

From this policy of buying and selling, it is proposed Algorithm 1, which simulate
the intelligent behavior of an investor in a continuous market to form portfolios of n
shares (Sa). In this algorithm the following functions are used:

– exec ord sell pend(): Executes the pending sell orders that have been introduced in
the system.

– exec ord buy pend(): Executes the pending buy orders.
– drop price ord sell pend exec(): Drops the sale price of the sale orders that carry

without being executed during V days.
– delete ord buy pend exec(): Erases the purchase orders that they have not been

executed in W days.
– fuzzy select best stocks buy(date): Selects the best stocks that are recommended

for purchase in a certain day. This function is explained thoroughly in the following
section.

– new ord buy(Best(Sb)): Introduces in the system a new purchase order for the best
share of Sb.

– select best stock hold (date, rule hold portf): Selects which shares are better to
maintain in the portfolio, because it is expected that they provide a good profit
value. The rule that realizes this selection “rule hold portf ′′ is passed like input
parameter to the algorithm.

– new ord sell(Ai): Introduces in the system a new sale order for the share Ai, if this
share surpasses the maximum loss permitted, or if the share is not recommended to
maintain in the portfolio during more than M days.

3.2 Stock Picking Based on a Fuzzy Inference System

For every day d along the investment period it is necessary to look for which are the
best shares Sb to be able to introduce them in the decision support system dedicated to
tactical asset allocation commented in the previous paragraph, and that this one decides
how it is going to invest in them.

To select the best shares of one day d, we are going to use technical analysis indica-
tors, although the most difficult part of technical analysis is to decide which indicator
to use.

We have chosen the following four technical indicators to select stocks:

1. Average Revaluation Period (ARP): Average revaluation that has had a stock in a
given period of time.

2. Relative Strength Index (RSI): Relative Strength Index of a stock in a given period
of time.

Fuzzy Portfolio Investment 189

Algorithm 1. Tactical asset allocation
FUNCTION trade (datebegin, dateend, n, rule hold portf, moneybegin): moneyend

begin

date=datebegin;
money=moneybegin ;
while (date ≤ dateend)
begin

money=money+exec ord sell pend();
money=money-exec ord buy pend();
if (exists(Pending sell orders during V days))

then drop price ord sell pend exec();
if (exists(Pending buy orders during W days))

then delete ord buy pend exec();
Sb=fuzzy select best stocks buy(date);
if (Sb<>{}) and (money> 0) and (Sa<n)

then new ord buy(Best(Sb));
Sc=select best stock hold (date, rule hold portf);
for each Ai in Sa

if (Ai not in Sc during M days) or (loss(Ai)> P)
then new ord sell(Ai);

date=next day(date);

end;
return money;

end;

3. Moving Average (MA): Calculates the revaluation that reaches a stock with respect
to the average value of price in a given period of time.

4. Double Moving Average (DMA): Known also as double crossover method, uses a
combination of long-term and short-term moving averages. When the shorter mov-
ing average rises above the longer moving average from below, a buy signal is
issued.

The results of applying these indicators to the stocks are going to be the input variables
in the fuzzy inference system. We have chosen these indicators because they are basic
in the world of technical analysis, and because they are very easy to understand.

Technical analysis deals with probability and therefore multiple indicators can be
used to improve the result. In most cases, the answer by each indicator is not a definite
yes or no answer.

We are going to use technical indicators with fuzzy logic to create a strict fuzzy in-
dicator that only recommends buying a stock when the set of indicators does it. We will
only focus on the purchase recommendations, because the intelligent system discussed
in the preceding section will be in charge of managing the portfolio, selling those shares
no longer necessary.

190 I.J. Casanova

Our plan can be summarized as follows:

– To create membership functions, where the inputs are each one of the financial
indicators and the outputs are these indicators “fuzzified”.

– To create fuzzy rules that indicate if it is highly recommendable to buy a share.
– To translate the fuzzy output into a crisp trading recommendation.

Fuzzification. The input variables in this fuzzy inference system are mapped by sets of
membership functions, known as “fuzzy sets”. The process of converting a crisp input
value to a fuzzy real value between 0 and 1 is called “fuzzification”. The fuzzification
comprises the process of transforming crisp values into grades of membership for lin-
guistic terms of fuzzy sets. The membership function is used to associate a grade to
each linguistic term.

Our fuzzy system also have a “ON-OFF” type of switch for the Double Moving
Average input variable, because this input will always have a truth value equal to either
1 or 0, depending if the buy signal has been issued.

There is yet no fixed, unique, and universal rule or criterion for selecting a member-
ship function for a particular “fuzzy subset” in general: a correct and good membership
function is determined by the user based on his scientific knowledge, working experi-
ence, and actual need for the particular application in question.

The criteria followed in the fuzzification of profitability and RSI are explained below.

Fuzzification of Profitability. At the moment of carrying out the fuzzification of the
daily profit values, the present fuzzy systems usually assign “low”, “normal” or “high”
profitability values according to subjective estimations carried out by the writer of the
article.

In this research, in order to perform this fuzzyfication we need to keep in mind that,
statistically (Figure 1), is considered normal profitability between 0% and 0.5%-1%,
high profitability between 0.5%-1% and 1.5%-4%, and very high profitability from
1.5%-4%, [4].

The membership grade functions defined on the profitability domain are based on
trapezoid shapes (Figure 2). It can be seen that just positive returns have been consid-
ered, since only this type of profit values will be able to originate recommendations for
purchase.

Fuzzification of RSI. The Relative Strength Index (RSI) method, which was developed
by J. Welles Wilder, may be classified as a momentum oscillator, measuring the velocity
and magnitude of directional price movements. Momentum is the rate of the rise or fall
in price.

Wilder posited that when price moves up very rapidly, at some point it is considered
overbought. Likewise, when price falls very rapidly, at some point it is considered over-
sold. In either case, Wilder felt a reaction or reversal is imminent. The slope of the RSI
is directly proportional to the velocity of the move. The distance traveled by the RSI is
proportional to the magnitude of the move.

As a result, Wilder believed that tops and bottoms are indicated when RSI goes
above 70 or drops below 30. Traditionally, RSI readings greater than the 70 level are

Fuzzy Portfolio Investment 191

Fig. 1. Histogram of daily returns on IBEX35 (2003-2005)

Fig. 2. Membership functions and output fuzzy sets

considered to be in overbought territory, and RSI readings lower than the 30 level are
considered to be in oversold territory. In between the 30 and 70 level is considered
neutral.

The membership grade functions defined on the RSI domain (Figure 2) have the
following fuzzy sets (overbought, oversold and neutral) based on a trapezoid shape.

Fuzzy Rule Base. Decisions are made based on fuzzy rules. These rules are charac-
terized by a collection of fuzzy IF THEN rules in which the preconditions and post-
conditions involve linguistic variables. This collection of fuzzy rules characterizes the
behavior of the system in a linguistic form that is close to the way human think.

Designing a good fuzzy logic rule base is key to obtaining a satisfactory controller
for a particular application. Therefore, when designing the rules, it has been taken into
account that only those rules that define the purchase of a stock must be defined, and
they should be the easiest possible rules so as to understand its application. Thus, only
the linguistic term associated with the most representative membership function to make

192 I.J. Casanova

a purchase (“RSI oversold” or “profitability very high”) has been used when setting
these rules, and no other membership functions such as “profitability high” which are
usually used in other researches.

For simplicity of design we have taken linear input-output relations (implications) in
a SISO system. Generally, in multiple-input/multiple-output (MIMO) fuzzy inference
systems, it is difficult to generate control rules.

Keeping the rules mentioned above in mind, the rules that we have defined are the
following:

1. IF RSI is oversold THEN buy
2. IF DMA is buy signal THEN buy
3. IF MA is very high THEN buy
4. IF ARP is very high THEN buy
5. OTHERWISE not buy

The antecedent (the rules premise) describes to what degree the rule applies, while the
conclusion (the rules consequent) assigns a membership function to the output variable.

The output variable “buy” is assigned a range between 0 and 1. A low value repre-
sents that is not a good idea to buy the stock and a high value represents an excellent
opportunity to buy the stock. There is an inverse relationship between the output mem-
bership functions “buy” and “not buy” so that: buy = 1 - not buy.

The strength of the ith fuzzy rule is calculated by evaluating the strength of the
precondition i (degree of truth) on the corresponding output membership. The final
value of the output variable will correspond exactly with the value that reaches the
membership function in the precondition.

Combining Rules and Defuzzification. As all the rules are activated every day result-
ing in different values for the output fuzzy set “buy”, corresponding each output value
with the value of the fuzzified input, we are going to perform a combination of rules
additive, [10], to obtain a unique final value assigning a weight to each rule.

The weight of the combiner can be thought of as providing degrees of belief to each
rule, but we consider that all the rules have the same importance, so we set all the
weights equal to unity.

Defuzzication is a mapping process from a fuzzy space defined over an output uni-
verse of discourse into a nonfuzzy (crisp) action. It is not a unique operation as different
approaches are possible.

The final output of the system (a crisp control signal) is a value between 0 and 1.
A strong buy signal is generated when the output is close to 1.0 and a strong not buy
signal is generated when the output is close to zero.

The fuzzy logic and the fuzzy control rules are considered and are chosen so that
the defuzzified output is always a linear function of the inputs to the fuzzy controller.
According to [17] the output of multiple input single output fuzzy logic controller can
be represented by the convex linear combination of the inputs of fuzzy logic controller.

Therefore, to calculate the final output of the system we calculate the average of the
fuzzified values that have been returned by the selected membership functions.

Fuzzy Portfolio Investment 193

4 Experiments and Results

We are going to verify the operation of the system in 3 periods of time: 5 years (2005-
2009), 3 years (2007-2009) and 1 year (2009). The market where we will operate will
be the Spanish stock market, but restricted to the shares that conformed the IBEX35 in
the year 2009. The historic prices have been corrected of dividends, splits and increases
in capital. The short selling is not allowed. The cost of each trade has been taken into
consideration, so that we assume that the financial intermediary charges a fee of 0.2%
and we are going to consider the transaction fees published by the market of Madrid.

The portfolio will be formed by 14 shares as maximum and the rule which is re-
sponsible for defining whether a stock should remain in the portfolio has been defined
so that the Relative Strength Index of the shares for 28 days must be worth at least 45
for not give a sale order if the stock has remained in the portfolio at least 14 days. The
maximum loss allowed to give an immediate sale order is 4%.

In Table 1 are the results obtained in each one of the three periods and they are
compared with the revaluation of IBEX 35 in that time. Also is the variance of the daily
revaluation throughout each one of the periods. We can found that the system achieves
a lower variance than produced by the IBEX 35 and therefore offers less risk. This is
because the intelligent system for tactical asset allocation controls the behavior of the
shares, selling for example those that have lost over 4%.

Table 1. Result of the simulation vs. IBEX35 revaluation

System Period Result Variance

Simulation 2009 42.94% 1.65
IBEX35 2009 26.22% 2.45

Simulation 2007-2009 5.22% 1.42
IBEX35 2007-2009 -16.92% 3.34

Simulation 2005-2009 104.23% 1.12
IBEX35 2005-2009 30.85% 2.23

Figure 3 shows graphically a comparison of daily results of the hybrid intelligent
system with the behavior of the IBEX35 index in the period 2005-2009, with an initial
investment of 100,000 Euros.

To evaluate the importance of the results obtained with this system, we are going
to compare them with the results of a report elaborated by INVERCO (Spanish As-
sociation of Investment and Pension Funds). Table 2 shows the ranking (R) by annual
equivalent return (APR) in periods of 1, 3 and 5 years of each one of the best Spanish
equity funds (Foncaixa Bolsa España 150, BBVA Bolsa Ibex Quant, Bankinter Bolsa
España 2, CC Borsa 11, Venture Bol. Española), until 31 December 2009.

In this report elaborated by INVERCO we can see that the most profitable fund in 2009
was the Foncaixa Bolsa España 150, with a 51.9% of revaluation, although this fund
was ranked in the position 79 by the return of -8.9% APR that obtained in the 3 previous
years. Our system obtains in 2009 a yield of 42.9%, so that if we could participate in this
ranking we would be included in the fifth position by yield to one year.

194 I.J. Casanova

Fig. 3. Daily evolution of the investment and the IBEX35

Table 2. Ranking of funds from Spanish equity investment [8]

2009 2007-2009 2005-2009

Equity funds APR R APR R APR R
Foncaixa 51.9 1 −8.9 79 − −

BBVA 48.7 2 −13.0 86 − −
Bankinter 34.5 32 4.4 1 11.7 1

CC 19.1 88 2.4 2 4.1 72
Venture 34.9 24 0.0 6 10.6 2

Simulation 42.9 5 1.7 3 15.4 1

To three years view the stock market crisis continues nevertheless passing bill, since
almost all the funds register red numbers, except the first funds, like Bankinter Bolsa
España 2, that with a 4.4% APR would remain first inside this ranking of the better
investment funds in Spain for 3 years. Our system achieves a revaluation of 1.7% APR
in this period, therefore we would remain third in the ranking for profitability for 3
years.

With a horizon of five years, the situation is different: some funds, as the mentioned
Bankinter Bolsa España 2 (11.7% APR) or Venture Bol. Española (10.6% APR) obtain
notable performances, although our system surpasses all of these funds with a profit
value of 15.4% APR.

5 Conclusions

This article has proposed a hybrid intelligent system that solves quite successful in-
vestment in shares forming a portfolio. This system has two main parts: the first is
responsible for buying and selling shares, managing a portfolio and monitoring the pur-
chased shares and the second part is responsible for selecting which are the best shares
to incorporate them into the portfolio.

The part entrusted to realize the tactical asset allocation, corresponds to a decision
system based on rules and the part entrusted to select shares has been based on a fuzzy
inference system.

Fuzzy Portfolio Investment 195

The proposed system solves in an integral way the process of investment in shares,
since usually all the research papers focus on stock selection leaving out portfolio man-
agement, not taking into account the way in which an investor operates normally when
he carries out the purchase or sale of shares. Moreover, the implementation of stock
picking is also novel, using only purchase rules and properly selecting the membership
functions that have more influence in the purchase of a stock.

In the obtained results the revaluation of the reference index is surpassed (IBEX35) in
all the periods and even we can place the hybrid intelligent system in the first positions
of the ranking by profit value if it is compared with commercial investment funds that
invest in Spanish equities.

Acknowledgements. Supported by the project TIN2008-06872-C04-03 of the MICINN
of Spain and European Fund for Regional Development.

References

1. Albanis, G., Batchelor, R.: Combining heterogenous classifiers for stock selection. Interna-
tional Journal of Intelligent Systems in Accounting and Finance Management 15(1-2), 1–21
(2007)

2. Amenc, N., Sourd, V.L.: Portfolio Theory and Performance Analysis. Wiley Finance (2003)
3. Atsalakis, G., Valavanis, K.: Forecasting stock market short-term trends using a neuro-fuzzy

based methodology. Expert Systems with Applications 36(7), 10696–10707 (2009)
4. BME - Bolsas y Mercados Españoles: Normalidad de las series financieras (2009),

http://www.bolsasymercados.es
5. Cheung, W., Kaymak, U.: A fuzzy logic based trading system. In: 3rd European Symposium

on Nature-inspired Smart Information Systems. Nisis (2007)
6. Dourra, H., Siy, P.: Investment using technical analysis and fuzzy logic. Fuzzy Sets and

Systems 127(2), 221–240 (2002)
7. Drake, A., Marks, R.: Genetic Algorithms in Economics and Finance: Forecasting Stock

Market Prices and Foreign Exchange - A Review. Genetic algorithms and genetic program-
ming in computational finance. Kluwer (2002)

8. INVERCO - Asociación de Instituciones de Inversión Colectiva y Fondos de Pensiones:
Ranking Fondos Inversión a (December 31, 2009), http://www.inverco.es

9. Kendall, G., Su, Y.: A particle swarm optimisation approach in the construction of optimal
risky portfolios. In: 23rd IASTED International Multi-conference Artificial Intelligence and
Applications, pp. 140–145 (2005)

10. Kosko, B.: Neural network and Fuzzy systems. In: A Dynamical Systems Approach to Ma-
chine Intelligence. Prentice Hall Press (1992)

11. León, T., Vercher, V.L., Viability, E.: Viability of infeasible portfolio selection problems: A
fuzzy approach. European Journal of Operational Research 139(1), 178–189 (2002)

12. Malkiel, B.: A Random Walk Down Wall Street. W. W. Norton & Company (1973)
13. Markowitz, H.: Portfolio selection. Journal of Finance 7(1), 77–91 (1952)
14. Mittermayer, M.: Forecasting intraday stock price trends with text mining techniques. In:

37th Annual Hawaii International Conference on System Sciences, pp. 140–145. IEEE
Xplore (2004)

15. Murphy, J.: Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading
Methods and Applications. Prentice Hall Press (1999)

http://www.bolsasymercados.es
http://www.inverco.es

196 I.J. Casanova

16. Shen, L., Loh, H.T.: Applying rough sets to market timing decisions. Decision Support
Systems 37(4), 583–597 (2004)

17. Sun, H., Liu, L.: A linear output structure for fuzzy logic controllers. Fuzzy Sets and Sys-
tems 131(2), 265–270 (2002)

18. Tseng, C.-C., Gmytrasiewicz, P.J.: Real time decision support system for portfolio manage-
ment. In: 35th Annual Hawaii International Conference on System Sciences, vol. 3, p. 79.
IEEE Computer Society (2002)

19. Zargham, M., Sayeh, M.: A web-based information system for stock selection and evalua-
tion. In: Proc. International Conference on Advance Issues of E-Commerce and Web-Based
Information Systems, pp. 81–83. IEEE Computer Society (1999)

20. Zekic, M.: Neural network applications in stock market - a methodology analysis. In: Proc.
9th International Conference on Information and Intelligent Systems, pp. 255–263 (1998)

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 197–210.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Fuzzy Analytical Network Models for Metasearch

Arijit De1 and Elizaebeth Diaz2

1 TCS Innovation Labs-Mumbai, Tata Consultancy Services,
Thane (W), Mumbai 400601, India

2 University of Texas of Permian Basin, Odessa, TX 79762, U.S.A.
arijit.axd9142@gmail.com, diaz_e@utpb.edu

Abstract. Merging of search engine results is a key metasearch engine function.
Most result merging models try to merge ranked lists of web documents
returned by search engines in response to a user query using some linear
combination approach. A few give more importance to one search engines as
opposed to another based on some performance criteria. Other assign weights to
documents ranks etc. However few models compare documents and search
engines head to head during the process of result merging. In this paper we
propose two models for result merging for metasearch, Fuzzy ANP and
Weighted Fuzzy ANP that employ fuzzy linguistic quantifier guided approach
to result merging using Saty's Analytical Network Process. We compare our
models to existing result merging models. Our results show significant
improvements.

Keywords: Information retrieval, Fuzzy sets, Soft computing, Multi-criteria
decision making.

1 Introduction

A metasearch engine is an Information Retrieval (IR) system that employs multiple
search engines, in parallel to search for information on the World Wide Web
(WWW). Search engines return documents/web pages relevant to the query as a
ranked result list of documents. The metasearch engine then merges these lists into
one list for the user. Metasearch engines serve to expand the scope of web search
beyond the coverage of one search engine.

Result merging is thus a critical problem for metasearch. In this paper we take a
multi criteria decision making (MCDM) approach to the result merging problem by
proposing two models for result merging, Fuzzy ANP and Weighted Fuzzy ANP. Our
models are based on the Analytical Network Process (ANP), a MCDM technique
proposed by Saty [12] and use Fuzzy Linguistic Quantifiers proposed by Zadeh [16].
We compare the performance of our models with the OWA model [4], the Borda-
Fuse and Weighted Borda Fuse models[1].

This paper is organized as follows. In the next section we do a brief review of the
existing result merging models with a special focus on the OWA model for result
merging proposed by Diaz [4]. In subsequent sections we discuss our proposed Fuzzy
ANP and Weighted Fuzzy ANP models. Following this we describe our experiments,
take a look at our results and summarize our discussions in a conclusion.

198 A. De and E. Diaz

2 Previous Work

Early result merging models, such as the Logistic Regression [7] model and the
Combination of Experts [13] model combined document scores/ranks through a linear
combination function. However, the most popular linear combination model was the
Borda-Fuse model and the Weighted Borda Fuse models proposed by Aslam and
Montague [1]. Diaz [5] applied Yager’s [14] OWA operator to create a result
aggregation model for metasearch. As we compare our work to the OWA model, the
Borda-Fuse model, and the Weighted Borda-Fuse models we discuss these in greater
depth.

2.1 Borda-Fuse and Weighted Borda-Fuse Models

The Borda-Fuse model was proposed by Aslam and Montague [1]. It is based on the
Borda-Count [3]. In this model the highest ranked document in each result list
returned by a search engine is given a specific number of “Borda” points. Let us say d
points are assigned to the top document. The next document receives d-1 Borda points
and so on. If there are some documents that exist in some result lists but are missing
in others, these are assigned a less number of points in the lists they do not appear in.
The documents are ranked in descending order according to the total number of points
accumulated in these lists. The Weighted Borda-Fuse is a weighted aggregation
model that ranks documents based on the product sum of the Borda points earned by
a document from a search engine and an importance weight attached to that search
engine.

2.2 OWA Model for Metasearch

Diaz [4] applies the OWA operator for result aggregation in a metasearch model. The
OWA model uses a measure similar to Borda points, called positional values. The
positional value (PV) of a document di in the result list lk returned by a search engine
sk is defined as (n – rik + 1) where, rik is the rank of di in search engine sk and n is the
total number of documents in the result. Thus, the top ranked document in a result list
has the highest positional value. One shortcoming of the Borda-Fuse model is that it
handles missing documents (ones that appear in some lists to be merged but not in
others) in a rather ambiguous way by distributing the remaining points available to
them. This often results in missing documents being ranked at the bottom of the list.
The issue of missing documents has been discussed by Meng [9] where the authors
mention the challenge posed by them to result merging. Reasons for missing
documents are obvious as coverage of search systems vary.

Diaz [4] addresses this issue by applying two simple heuristics for handling
missing documents by calculating a virtual positional value of a document missing in
the result list depending on its positional value in lists they occur, thereby effectively
inserting the document in the result list in which it is missing. Handling missing
documents makes result merged a easier task.

Yager [14] proposed the OWA operator as multi-criteria decision making
(MCDM) approach. Let A1, A2….. An be n criteria of concern in a multi-criteria

 Fuzzy Analytical Network Models for Metasearch 199

decision making problem and x be a alternative, being rated by/against these criteria.
Aj(x) ε [0, 1] indicates the degree to which x satisfies the jth criteria. Yager [14] comes
up with a decision function F to combine these criteria and evaluate the degree to
which the alternative x satisfies the criteria. Let a1=A1(x), a2=A2(x), and an=An(x).The
OWA decision function is:

∑
=

•=
n

i
jjn bwaaaF

1
21),....,((1)

Here bj is the jth greatest ai. Here wj is the ordered weight vector attached to the jth
criteria and such that the ordered weight vector W = [w1, w2, ….. wn] associated with
the OWA operator is key to determining the “orness” of the aggregation. When W =
[1, 0, ….. 0] the value of the largest ai is the value of F. In this case we get maximum
orness. On the other hand when W = [0, 0, ….. 1] the value of the smallest ai is the
value of F. In this case we get minimum orness/maximum andness.

In the OWA model for metasearch, Diaz [5] uses the Yager [15] approach to
computing OWA weights using linguistic quantifiers. The weight associated with the
ith criterion (positional value associated with a search engine) is given by:

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛=

n

i
Q

n

i
Qw i

1 (2)

Here, Q is a RIM (Regular Increasing Monotone) quantifier of the form Q(r) = rα.
The orness associated with the quantifier, orness (Q) =

α+1

1 . In the OWA model,

each result list, returned by a search engine, is analogous to a criterion and each
document an alternative. The positional value of the document in a search engine
result list corresponds to the extent to which a document (alternative) satisfies a
search engine (criteria) for a specific query. It is now easy to apply the OWA operator
as a decision function to compute the value of function F, for each document. Sorting
the documents in descending order depending on the value of function F gives us the
merged list of documents.

2.3 Shortcomings of the OWA Model

The OWA model for metasearch assigns weights to the positional values of
documents based on the order. While it is comprehensive in handling missing
documents, it does not explore the relationship between documents and search
engines in pair-wise comparisons. Saty [11] highlights the advantages of pair-wise
comparisons in MCDM problems. To create a model that explores the relationship
between documents and search engines, we came with the Fuzzy ANP model for
metasearch. We further extended this model to assign search engine importance
weights in the Weighted Fuzzy ANP model.

3 Proposed Model

In the last part of the previous section we discussed the shortcomings of the OWA
model. Our main motivation was to overcome these and build a model that analyzed

200 A. De and E. Diaz

the close relationship between documents and search engines in pair-wise
comparison. While Saty’s Analytical Hierarchy Process (AHP) is a more popular
MCDM approach, we chose to build our model on the more generic Analytical
Network Process (ANP) as the core structure of the metasearch problem is not
hierarchical in nature. In this section we discuss ANP, without going into the
mathematical theory behind its creation. Then we proceed to describe how Fuzzy
Linguistic Quantifiers developed by Yager [15] is used in transforming the ANP
Super Matrix to a Weighted (column stochastic) Super Matrix.

3.1 Analytical Network Process

Saty proposed two MCDM techniques, the Analytical Hierarchy Process (AHP) [10]
and the Analytical Network Process (ANP) [12], to solve MCDM problems that
compared criteria and alternatives in pairs. While the AHP is considered the technique
of choice for most MCDM problems, the ANP is used when the problem cannot be
structured hierarchically because the problem involves the interaction and dependence
of higher level elements on a lower level element [12]. Moreover, when the problem
is not hierarchical in nature the Analytical Network Process (ANP) is more
appropriate.

The first step in the ANP process is model construction and problem structuring. In
this step the key components in the model, alternatives and criteria need to be clearly
identified and their relationships captured through the creation of a network. The
structure can be obtained by the opinion of decision makers through brainstorming or
other appropriate methods.

The second step is the creation of pair-wise comparison matrices and priority
vectors. In ANP decision elements at each component are compared pair-wise with
respect to their importance towards their control criterion, and the components
themselves are also compared pair-wise with respect to their contribution to the goal.
Pair-wise comparisons of two alternatives or two criteria at a time can be done
quantitatively or by discussing with experts. In addition, if there are interdependencies
among elements of a component, pair-wise comparisons also need to be created, and
an eigenvector can be obtained for each element to show the influence of other
elements on it. The relative importance values are determined with Saaty’s 1-9 scale
(Table 1), where a score of 1 represents equal importance between the two elements
and a score of 9 indicates the extreme importance of one element (row component in
the matrix) compared to the other one (column component in the matrix).

Let us formalize the notion of pair-wise comparisons and construction of the super
matrix. Let us say we have a set of alternatives A = {a1,……,ap} and a set of criterion
C = {c1,……,cq}. Using the 9 point scale shown in table 1, we can compare
alternatives pair-wise for each criterion, based on the degree to which the alternative
satisfies the criterion. Thus for each alternative ci in C we can obtain a pair-wise
matrix M. Each element of the matrix M, mjk represents a quantified result of pair -
wise comparison of alternatives aj and ak. Here 1 ≤ mjk ≤9 as per the 9 point scale
shown in table 1. To obtain the priority vectors we divide each element of the matrix
M by the sum of the column and then average out the values. Thus we can obtain for
each criteria ci, a priority vector V = {Vj, where 1 ≤ j ≤ p} and each Vi represents the
alternative aj. Thus for each (ci , aj) we get a value Vij. Similarly, criteria can also be

 Fuzzy Analytical Network Models for Metasearch 201

compared pair-wise with reference to alternatives, depending on how each pair of
criteria (ci, cj) measure up with respect to an alternative, for all ci, cj in C. Similarly
priority vectors can be created for each alternative ak such that we obtain a priority
value Vki for (ak, ci).

The third step in the process is to create a super matrix. The super matrix concept
is similar to the Markov chain process. To obtain global priorities in a system with
interdependent influences, the local priority vectors are entered in the appropriate
columns of a matrix. As a result, a super matrix is actually a partitioned matrix, where
each matrix segment represents a relationship between two nodes (components or
clusters) in a system. To put it simply the super matrix is a matrix that contains each
priority vector corresponding to criteria and alternatives. The super matrix is a square
matrix with each alternative and each criteria being a row element and as well as a
column element. Each priority vector for an alternative and criterion is placed in the
column for that alternative or criterion in the super matrix.

The super matrix created must be raised to a higher power till it converges to a
limiting super matrix. Convergence occurs when each column of the super matrix
contain identical values. Thus final scores are obtained for each alternative from their
corresponding row values in the limiting super matrix. However for the initial super
matrix created to converge it needs to be column stochastic. This means that all
column values need sum up to 0. Thus prior to creating a limiting super matrix, each
element in every column of the super matrix needs to weighted such the sum of
elements in the column need to sum up to unity. This intermediate step results in the
creation of a weighted super matrix.

Table 1. Pair-wise comparison matrix scale

mjk Criterion Value
1 If ai is equally important as aj
3 If ai is weakly more important than aj
5 If ai is strongly more important than aj
7 If ai is very strongly more important than aj
9 If ai is absolutely more important than aj

1/3 If ai is weakly less important than aj
1/5 If ai is strongly less important than aj
1/7 If ai is very strongly less important than aj
1/9 If ai is absolutely less important than aj

3.2 Linguistic Quantifiers

While the backbone of our proposed models, Fuzzy ANP and the Weighted Fuzzy
ANP, is the Analytical Network Process, we use a Fuzzy Linguistic Quantifier
Guided approach to transforming the Super Matrix constructed through pair-wise
comparisons, into a column stochastic Weighted Super-Matrix. Let us introduce the
concept of Fuzzy Linguistic Quantifiers by reviewing the work of Zadeh [16] and
Yager [15] in brief.

Linguistic quantifiers have been used to generate ordered weights for aggregation
in the OWA operator in Yager [14, 15]. The notion of linguistic quantifiers was
introduced by Zadeh [16]. Linguistic quantifiers are the mathematical representation

202 A. De and E. Diaz

of linguistic terms such as at most, many, at least half, some and few. In Zadeh [16]
suggests a formal representation of these linguistic quantifiers using fuzzy sets. In
classical logic, only two fundamental quantifiers are used. These quantifiers are “there
exists” a certain number and “all.” Furthermore, Zadeh breaks up quantifiers into two
types: absolute and relative. Absolute quantifiers can be represented as zero or
positive real numbers, such as “about 5,” “greater than 10.” Relative quantifiers are
terms such as “most,” “few,” or “about half.” Yager [15] distinguished three
categories of these relative quantifiers. Of these the most popular quantifier is the
Regular Increasing Monotone (RIM) quantifier of the form Q(r) = rα, mentioned
earlier. Yager [15] shows how to model these quantifiers, to obtain weights for his
OWA operator. Equation 2 shows a technique to generate weights when criteria
importances are not taken into consideration. However when criteria/alternative
importances are available Yager uses equation 3 to compute weights.

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
∑∑

−

==

T

u
Q

T

u
Q(x)w

j

k
k

j

k
k

j

1

11

(3)

Here uk is the importance weight of the kth criteria to be merged. One property of the
weights so generated is that they always add up to unity. We exploit this in the
construction of the Weighted Super Matrix.

In our proposed models for metasearch we borrow this notion of linguistic
quantifier guided weights in transforming the constructed Super Matrix to the
Weighted (column stochastic) Super Matrix. Let us illustrate the working with
the help of an example. Let us say that a column of our super matrix constructed is of
the form [0, 0, 0, 0.8, 0.6, 0.4]T. Clearly these values do not add up to unity and
therefore the column is not stochastic. To transform this column into a column
stochastic matrix we compute Fuzzy Linguistic Weights using the equation 3. Here u1,
u2 and u3 are 0 while u4 = 0.8, u5 = 0.6 and u6 = 0.4. Let us say we apply a weight of
α = 1 (for simplicity). Weights w1, w2 and w3 are 0. Weight w4 = 0.44, w5 = 0.337 and
w6 = 0.222. Now our column becomes [0, 0, 0, 0.44, 0.337, 0.222].

3.3 The Fuzzy ANP Model

Our proposed model Fuzzy ANP is based on Saty’s [12] Analytical Network Process
(ANP). In our model, in order to apply the Analytical Network Process, we treat our
search engines (criteria) and documents (alternative) as nodes in a network. The steps
are outlined below.

Step 1: Modeling Documents and Search Engines Relationships. Let us say we are
trying to merge result lists from n search engines SE-SET = { SE1, SE2, … SEn }. Let
DOC-SET be a set of m unique documents returned in all. Thus DOC-SET = { D1,
D2, … Dm }. Each document and search engine appears as nodes in an Analytical
Network G(E, V). Here E represents a set of edges and V represents a set of vertices.
Since each search engine and document is a vertex, |V| = m+n and V= { SE1, SE2, …
SEn, D1, D2, … Dm}. E = {Eik, 1≤i≤n & 1≤k≤m}. Eik is the rank/score assigned by
search engine SEi to document Dk. Eik = 0 when the document Dk is not retrieved by
search engine SEi.

 Fuzzy Analytical Network Models for Metasearch 203

Step 2: Pair-wise Comparisons of Documents and Search Engines. Let us compare
documents pair-wise. Let us say a search engine SEf ε SE-SET return relevance scores,
Efi and Efk for two documents Di and Dk respectively. Di , Dk ε DOC-SET. Let Ef,max and
Ef,min be the maximum and minimum scores returned by a search engine SEf for any
document. The pair-wise comparison value P (SEf, Di, Dk) for all Di > Dk is shown in
equation 4. Consequently as per Saty’s scale P (SEf, Dk, Di) = 1/ P (SEf, Di, Dk).

9
EE

EE
)D,D,P(SE

minf,maxf,

fkfi
kif •

−
−= (4)

Equation 4 holds when Ef,max ≠ Ef,min and Efi ≠ Efk and. If Ef,max = Ef,min or SCi = SCk then
P (SEf, Dfi, Dfk) = 1. The pair-wise comparison values P (SEf, Dfi, Dfk) can be computed
for all Di, Dk ε DOC-SET and stored in a matrix, which can be normalized by dividing
each column by a sum of all elements in the column and then by taking the average of
each row to obtain a priority vector VSEf= [SDf1, SDf2, .. SDfm]. Here SDf1, SDf2, .. SDfm
are pair-wise comparison scores for documents D1, D2, … Dm with respect to SEf.

Similarly let us say we have a document Df ε DOC-SET. Two search engines SEi
and SEk return relevance scores of Eif and Ekf for Df. Here, SEi , SEk ε SE-SET. Let
Emax,f and Emin,f be the maximum and minimum scores obtained by Df. P (Df, SEi, SEk)
can be computed for all SEi , SEk ε SE-SET using equation (5) and stored in a matrix.

9
EE

EE
)SE,SE,P(D

fmin,fmax,

kfif
kif •

−
−=

(5)

This matrix can be normalized, to get the priority vector, VDf = [SSEf1, SSEf2, ..
SSEfn] specific to document Df. Here SSEf1, SSEf2, .. SSEfn are scores returned for
SE1, SE2, … SEn as a result of pair-wise comparison.

Step 3: Constructing the Super Matrix. Let SM be the super-matrix where each
document and search engine is represented by a row and a column. Thus SM is of
square matrix of dimension |m+n|. For each document Df, from Step 2, we have a
priority vector VDf= [SSEf1, SSEf2, .. SSEfn] representing search engines SE1, SE2, ..
SEn. We populate the super matrix SM such that SM(SE1, Df) = SSEf1, SM(SE2, Df) =
SSEf2,…., SM(SEn, Df)= SSEfn. For each search engine SEf we have a vector VSEf =
[SDf1, SDf2, .. SDfm] representing documents D1, D2, .. Dm. We populate the super
matrix SM such that SM(D1, SEf) = SDf1, SM(D2, SEf) = SDf2,…., SM(Dm,
SEf)=SDfm.

Step 4: Transforming the Super Matrix to form a Weighted Super Matrix. For
the Super Matrix to converge we need to transform it to a column stochastic Weighted
Super Matrix. This is done by applying weights to elements in each column such that
all column values add up to unity. We take the column values and use them as inputs
in computing linguistic fuzzy weights as developed by Yager [15] and described in
equation 3 and the subsequent example (section 3.2). This makes the matrix column
stochastic as the linguistic fuzzy weights add up to unity. The column stochastic
Weighted Super Matrix is then multiplied with itself iteratively till the values of each
column becomes identical. The column value corresponding to the each document
determines the final score of the document.

204 A. De and E. Diaz

Example

Let us illustrate the working of our model with an example. Let us consider a
metasearch system where four documents D1, D2, D3 and D4 are being ranked. Let
us say there are 3 search engines whose results are to be merged SE1, SE2 and SE3.
The scores achieved by each document from each search engine are represented
below in table 2. Documents can be sorted by their scores obtained from each search
engine to form ranked result lists. Search Engine SE2 does not retrieve document D1.
Hence the corresponding scores are 0.

Table 2. Document Scores for Search Engines

 SE1 SE2 SE3

D1 4.14 0.00 2.04

D2 5.78 4.81 4.71

D3 3.18 3.69 3.62

D4 2.20 1.98 2.94

The first step is to construct a network graph with each node representing a

document or a search engine. Each document node (represented as an oval) is
connected to a search engine node if the search engine retrieves the document. Notice
that there is no edge connecting SE2 with D1 as SE2 does not retrieve document D1.

From the Table 2, using equation 4, we can do pair-wise comparison of documents
for each search engine. Table 3 shows the results of pair-wise comparison for
documents using search engine SE2. Each column in Table 4 represents a document
priority vectors using a particular search engine. The column headers contain the names
of the search engines. Column marked SE2 from Table 4 represents priority vector for
documents D1 through D4 using SE2. The priority vector values are obtained by
dividing each element of the matrix in Table 3 by the sum of each column and then
computing the average of each row. Notice that since SE2 does not retrieve documents
D1 there is no pair-wise comparison for other documents with D1 for this search engine.

Table 3. Document Pair-Wise comparisons using SE2

SE2 D1 D2 D3 D4

D1 0.00 0.00 0.00 0.00

D2 0.00 1.00 2.11 5.29

D3 0.00 0.47 1.00 3.18

D4 0.00 0.19 0.31 1.00

Similarly, we can calculate Priority Vectors for Search Engine SE1, SE3, and SE4

for each document and represented in columns in table 5.
Using these priority vectors we construct the super matrix. The super matrix is

shown in Table 6. Notice that the super matrix is not column stochastic. This is where
Fuzzy Linguistic Weights are employed to calculate the weighted super matrix that is
column stochastic.

 Fuzzy Analytical Network Models for Metasearch 205

Table 4. Priority Vectors of Documents using Search Engines for Pair-Wise Comparisons

 SE1 SE2 SE3
D1 0.21 0.00 0.05
D2 0.63 0.44 0.61
D3 0.10 0.23 0.22
D4 0.05 0.08 0.12

Table 5. Priority Vectors of Search Engines using Documents for Pair-Wise Comparisons

 D1 D2 D3 D4
SE1 0.55 0.81 0.06 0.13
SE2 0.00 0.09 0.50 0.08
SE3 0.12 0.10 0.44 0.79

Table 6. Super Matrix

 SE1 SE2 SE3 D1 D2 D3 D4

SE1 0.00 0.00 0.00 0.55 0.81 0.06 0.13

SE2 0.00 0.00 0.00 0.00 0.09 0.50 0.08

SE3 0.00 0.00 0.00 0.12 0.10 0.44 0.79

D1 0.21 0.00 0.05 0.00 0.00 0.00 0.00

D2 0.63 0.44 0.61 0.00 0.00 0.00 0.00

D3 0.10 0.23 0.22 0.00 0.00 0.00 0.00

D4 0.05 0.08 0.12 0.00 0.00 0.00 0.00

Let us consider the column for SE2. The column values are [0, 0, 0, 0, 0.44, 0.23,
0.08]. We treat the values in the column as weights. Thus u1=0, u2=0, u3=0, u4=0,
u5=0.44, u6=0.23, u7=0.08. Applying equation 4, we get T = 0.75. Using a linguistic
quantifier of the form Q(r) = rα where α =2 we obtain the weights w1=0, w2=0, w3=0,
w4=0, w5=0..35, w6=0.45, w7=0.20. These values sum up to unity and therefore the
column is column stochastic. Similar adjustments can be made for other columns.
Table 7 shows the weighted super matrix.

Table 7. Weighted Super Matrix

 SE1 SE2 SE3 D1 D2 D3 D4

SE1 0.00 0.00 0.00 0.67 0.66 0.00 0.02

SE2 0.00 0.00 0.00 0.00 0.16 0.31 0.03

SE3 0.00 0.00 0.00 0.33 0.18 0.69 0.95

D1 0.04 0.00 0.00 0.00 0.00 0.00 0.00

D2 0.67 0.35 0.43 0.00 0.00 0.00 0.00

D3 0.19 0.45 0.35 0.00 0.00 0.00 0.00

D4 0.10 0.20 0.22 0.00 0.00 0.00 0.00

206 A. De and E. Diaz

Multiplying this square matrix by itself iteratively results in the columns beco-
ming identical in content. This matrix where the columns become identical in content
is called the limiting super matrix. Table 8 shows the limiting super matrix. Document
scores are D1 = 0.02, D2=0.50, D3=0.32 and D4=0.17. Final document ranking is
shown in table 9.

Table 8. Limiting Super Matrix

 SE1 SE2 SE3 D1 D2 D3 D4

SE1 0.32 0.32 0.32 0.00 0.00 0.00 0.00

SE2 0.19 0.19 0.19 0.00 0.00 0.00 0.00

SE3 0.49 0.49 0.49 0.00 0.00 0.00 0.00

D1 0.00 0.00 0.00 0.02 0.02 0.02 0.02

D2 0.00 0.00 0.00 0.50 0.50 0.50 0.50

D3 0.00 0.00 0.00 0.32 0.32 0.32 0.32
D4 0.00 0.00 0.00 0.17 0.17 0.17 0.17

Table 9. Final Scores and Ranks

Document D2 D3 D4 D1
Scores 0.5 0.32 0.17 0.02
Rank 1 2 3 4

3.4 Weighted Fuzzy ANP

The Fuzzy ANP model does not consider search engine importance weights in result
merging. However, in metasearch, often the best performance is obtained when search
engine importance weights are considered in result merging. Search engine
importance weights can be assigned based on prior performance, reputation etc. The
Weighted Fuzzy ANP model for metasearch was created as an extension to the Fuzzy
ANP model, so as to consider search engine importance weights while merging result
lists from them.

The Weighted Fuzzy ANP model is similar to the Fuzzy ANP model. The
difference is that search engine importance weights are considered in pair-wise.
Continuing from section 3.3, let us say w1, w2, ……., wn be the importance weights of
the search engines, SE1, SE2,……., SEn in SE-SET. Thus wi be the importance weight
assigned to the search engine SEi. Let wmax and wmin be the highest and lowest
importance weights assigned to the search engines. We can compare each pair of
search engines based on Saty’s scale. So for a pair of search engines SEi, SEk with
weights wi ,wk respectively, we can compute P (SEi, SEk) for all SEi and SEk such that
wi > wk and wi ≠ wk and wmax ≠ wmin based on equation (6). Automatically P(SEk,
SEi) = 1/ P(SEi, SEk). When wi = wk or wmax = wmin then P(SEi, SEk) = P(SEk, SEi) =
1. For all pairs of search engines, (SEi, SEk) such that SEi, SEk ε SE-SET we can
calculate P(SEi, SEk) and construct an n x n matrix. This can be normalized by
dividing each element by its column sum and then averaging over rows to obtain a
priority vector which contains pair-wise comparison weights for search engines. Let
these weights be denoted by SW1, SW2,…SWn for search engines SE1, SE2, …SEn

 Fuzzy Analytical Network Models for Metasearch 207

respectively. In Step 2, in the Weighted Fuzzy ANP process, we compute P (Df, SEi,
SEk) and P (SEf, Di, Dk) as per equation (5) & (6). However, priority vector for any
document VDf= [SW1 • SSEf1, SW2 • SSEf2, .. SWn • SSEfn] and priority vector for
search engine SEf, VSEf = [SWf • SDf1, SWf • SDf2, .. SWf • SDfm] .

9
ww

ww
)SE,P(SE

minmax

ki
ki •

−
−= (6)

4 Experiments and Results

The focus of our experiments is to compare the performance of our proposed models,
Fuzzy ANP and Weighted Fuzzy ANP versus the Borda-Fuse, Weighted Borda-Fuse
and OWA models. We do this performance comparison for score-based result
merging when document scores from search engines are available.

4.1 Experiments

We use the Hersh’s OHSUMED [6] collection constituted in LETOR 2 (Learning TO
Rank) [8] dataset. LETOR provides (query, document) relevance measures and a host
of other similarity scores based the features of the LETOR dataset. The OSHUMED
collection provided as a part of LETOR 2 consists of 106 queries. The degree of for
each query-document pair is pre-judged and categorized as 0 (non relevant), 1
(possibly relevant) and 2(definitely relevant). There are a total of 16,140 query-
document pairs with relevance judgments. There are 25 features for each document
and relevance scores between 0 and 1 with respect to a query. For our experiments
features are treated as search systems and the result list of documents returned by
them along with document scores for the 106 queries in the OHSUMED dataset are
treated as result lists for merging.

Our metric for measuring performance is Recall-Based (RB) Precision. The
detailed theory of RB precision can be found in [2]. RB precision is used in case when
there are a series of documents ranked in a weak ordering and we need to find out the
precision for various levels of recall. The formula is as described in equation 7.

r

i
*sjn*x

n*x
Precision

++
=

(7)

Where (1) x is one of the standardized recall values i.e., 0.25, 0.5, 0.75, etc; (2) n is
the number of relevant documents in the collection; (3) s is the number of relevant
document needed to be retrieved from the final rank, where final rank refers to the
rank containing the needed number of relevant documents for completing the total
number of retrieved and relevant documents as specified by x *n; (4) i is the number
of irrelevant documents in the final rank; (5) r is the number of relevant documents in
the final rank; (6) j is the number of non-relevant documents retrieved from all the
ranks above the final rank. We compute the precision at every level of recall and
compute the average of these values to obtain the average precision. Average
Precision is use as a performance measure.

208 A. De and E. Diaz

Our objective is to gauge the performance of our proposed models Fuzzy ANP and
Weighted Fuzzy ANP models with the performance of the Borda-Fuse and OWA
models. For each iteration of experiment we randomly pick a number of search
systems (N) to be merged. N varies between 2 and 12. We pick a query out of the 106
at random, and obtain result lists from the search engines selected in the previous
step. We merge these result lists using the OWA/Borda-fuse/Weighted Borda
Fuse/Fuzzy ANP/Weighted Fuzzy ANP models. The Weighted Borda-Fuse and
Weighted Fuzzy ANP models for metasearch require search engine performance
weights. We use odd queries in the collection of 106 queries to evaluate the
performance weights in case of these models and even queries for experimentation.

For our models and the OWA model, we vary the Linguistic Quantifier parameter
α, from 0.25 to 2, that is used to compute ordered weights in the OWA model and
column stochastic weights in our proposed models. We calculate the RB-precision of
the merged list from each of the models based on relevance judgments provided as
part of the dataset for recall levels of 0.25, 0.5, 0.75 and 1 and compute the average.
We perform 200 iterations of experiment for each value of N and α and average of
over N and α.

4.2 Results

Table 10, shows the variation in average precision when the number of search engines
(N) being merged is varied from 2 to 12. The benefits of metasearch are illustrated by
the results as the overall average precision of the merged result list goes up when
merging more number of search engines. Clearly the OWA model outperforms the
Borda-Fuse and Weighted Borda-Fuse models for result merging. Also, our Fuzzy
ANP model outperforms the Borda-Fuse model, the Weighted Borda-Fuse model and
the OWA model by 57%,54% and 34% respectively. Our Weighted Fuzzy ANP
model also outperforms the Borda-Fuse model, the Weighted Borda-Fuse model and
the OWA model by 63%,60% and 39% respectively. The Weighted Fuzzy ANP
model also improves on the performance of the Fuzzy ANP model by 5%.

Table 10. Comparing Model Performance vs. Number of Search Engine Result Lists Merged

 Average Precision

 Borda-Fuse Weighted Borda-Fuse OWA Fuzzy ANP Weighted Fuzzy ANP

2 0.3467 0.362 0.4051 0.5312 0.5508

4 0.3571 0.368 0.4237 0.5621 0.5793

6 0.3675 0.371 0.4297 0.5824 0.5987

8 0.3755 0.381 0.4332 0.5913 0.6193

10 0.3948 0.392 0.4681 0.6135 0.6378

12 0.4030 0.412 0.4732 0.6615 0.6889

 Fuzzy Analytical Network Models for Metasearch 209

Table 11 shows the variation is average precision when the Linguistic Quantifier
parameter α used to compute weights is varied from 0.25 through to 2. Consistent
with the findings of Diaz [5], the performance of the OWA model is best when
α = 0.25 and goes down to a lowest value when α = 1. When α increases beyond that
value the performance in terms of RB-precision goes up. The performance of the
OWA model is poorest when ‘orness’ of aggregation is balances i.e., under simple
averaging conditions. Under conditions of high orness when α ≤ 1 and under high
andness conditions when α ≥ 1, the model performance of the OWA model is higher.
However, the performance of both the Fuzzy ANP and Weighted Fuzzy ANP models
gradually go up when orness aggregation goes down i.e., as α progresses from 0.25
towards 2. The Fuzzy ANP model and Weighted Fuzzy ANP model both improve on
the OWA model for all values of α.

Table 11. Comparing Model Performance over variation of Linguistic Quantifier Parameter α

 Average Precision

ALPHA Borda-Fuse Weighted Borda-Fuse OWA Fuzzy ANP Weighted Fuzzy ANP

0.25 0.3814 0.4011 0.4645 0.5412 0.5521

0.5 0.3814 0.4011 0.4413 0.5767 0.5813

1 0.3814 0.4011 0.3814 0.5971 0.6023

2 0.3814 0.4011 0.4521 0.6243 0.6315

2.5 0.3814 0.4011 0.4734 0.6473 0.6613

5 Conclusions

In this paper we have proposed two models for result merging for metasearch that are
based on the Analytical Network Process (ANP) that employs Fuzzy Linguistic
Quantifiers to construct a column stochastic weighted super matrix for the
convergence of the ANP process. We compare our model to three existing models for
the result aggregation. The first of these is the non fuzzy result merging model called
Borda Fuse. The second model is the Weighted Borda-Fuse model and the third
model is the OWA model based on Yager’s [14] Ordered Weighted Average (OWA)
operator. Our Fuzzy ANP model compares documents and search engines in pairs
prior to merging using the ANP. It uses linguistic quantifier guided approach in
transforming the ANP Super Matrix into the Weighted Super Matrix. One short
coming of the Fuzzy ANP model is that it does not consider search engine prior
performance in result merging. Previous work by Aslam [1] had shown the advantage
of taking into consideration prior search engine performance. To overcome this we
came up with an extension that was the Weighted Fuzzy ANP model for result
merging. Our experiments show that our proposed models Fuzzy ANP and Weighted
Fuzzy ANP both outperform the Borda-Fuse, Weighted Borda-Fuse and OWA
models. Also the Weighted Fuzzy ANP model outperforms the Fuzzy ANP model for
result merging.

210 A. De and E. Diaz

References

1. Aslam, J., Montague, M.: Models for metasearch. In: Proceedings of the 24th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 275–284. ACM Press, New Orleans (2001)

2. Bollmann, P., Raghavan, V.V., Jung, G.S., Shu, L.C.: On probabilistic notions of precision
as a function of recall. Information Processing and Management 28, 291–315 (1992)

3. Borda, J.C.: Memoire sur les elections au scrutiny. Histoire de l’Academie Royale des
Sciences, Paris (1781)

4. Diaz, E.D., De, A., Raghavan, V.V.: A Comprehensive OWA-Based Framework for
Result Merging in Metasearch. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X.
(eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 193–201. Springer, Heidelberg
(2005)

5. Diaz, E.D.: Selective Merging of Retrieval Results for Metasearch Environments.
University of Louisiana Press, Lafayette (2004)

6. Hersh, W., Buckley, C., Leone, T.J., Hickam, D.: OHSUMED: An interactive retrieval
evaluation and new large test collection for research. In: Proceedings of the 17th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 275–284. ACM Press, Dublin (1994)

7. Hull, D.A., Pedersen, J.O., Schütze, H.: Method combination for document filtering. In:
Proceedings of the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 279–287. ACM Press, Zurich (1996)

8. Liu, T., Xu, J., Qin, T., Xiong, W., Li, H.: LETOR: Benchmark dataset for re-search on
learning to rank for information retrieval. In: LR4IR 2007 in Conjunction with SIGIR
2007, pp. 1–6. ACM Press, Amsterdam (2007)

9. Meng, W., Yu, C., Liu, K.: Building efficient and effective metasearch engines. ACM
Computing Surveys 34, 48–89 (2002)

10. Saaty, T.L.: The Analytic Hierarchy Process: Planning, Priority Setting, Resource
Allocation (Decision Making Series). McGraw-Hill, New York (1980)

11. Saaty, T.L.: Relative Measurement and its Generalization in Decision Making: Why Pair
wise Comparisons are Central in Mathematics for the Measurement of Intangible Factors -
The Analytic Hierarchy/Network Process. Review of the Royal Spanish Academy of
Sciences, Series A, Mathematics 102, 251–318 (2007)

12. Saaty, T.L.: Decision Making with Dependence and Feedback: The Analytic Network
Process. RWS Publications, Pittsburgh (1996)

13. Thompson, P.: A combination of expert opinion approach to probabilistic information
retrieval, part 2: mathematical treatment of CEO model. Information Processing and
Management 26, 383–394 (1990)

14. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria
decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190
(1988)

15. Yager, R.R.: Quantifier guided Aggregating using OWA operators. International Journal
of Intelligent Systems 11, 183–190 (1998)

16. Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages.
Computers and Mathematics with Applications 9, 149–184 (1983)

On the Satisfiability and Validity Problems
in the Propositional Gödel Logic�

Dušan Guller

Department of Applied Informatics, Comenius University,
Mlynská dolina, 842 48 Bratislava, Slovakia

guller@fmph.uniba.sk

Abstract. This paper addresses the satisfiability and validity problems of a for-
mula in the propositional Gödel logic. Our approach is based on the translation
of a formula to an equivalent CNF one which contains literals of the augmented
form: either a or a → b or (a → b) → b, where a, b are propositional atoms or
the propositional constants 0 , 1 . Since the equivalent output CNF may be expo-
nential in the size of an input formula, we improve the translation using interpo-
lation rules so that output CNF formulae are in linear size with respect to input
ones; however, not equivalent - only equisatisfiable. A CNF formula is further
translated to an equisatisfiable finite order clausal theory which consists of order
clauses - finite sets of order literals of the forms a � b or a ≺ b, where � and
≺ are interpreted by the equality and strict linear order on [0, 1], respectively. A
variant of the DPLL procedure, operating on order clausal theories, is proposed.
The DPLL procedure is proved to be refutation sound and complete for count-
able order clausal theories. Finally, the validity problem of a formula (tautology
checking) is reduced to the unsatisfiability of a finite order clausal theory.

1 Introduction

Infinitely-valued logics have not yet been explored so widely as finitely-valued ones. It
is not known any general approach as signed logic one in the finitely-valued case. The
solution of the SAT and VAL problems strongly varies on a chosen infinitely-valued
logic. The same holds for the translation of a formula to clause form, the existence of
which is not guaranteed in general. The results in this area have been achieved in sev-
eral ways, since infinite truth value sets form distinct algebraic structures. One approach
may be based on the reduction from the infinitely-valued case to the finitely-valued
one, as it has been done e.g. for the VAL problem in the propositional infinitely-valued
Łukasiewicz logic in [15,1]. Another approach exploits the reduction of the SAT prob-
lem to mixed integer programming (MIP) [12,14]. [3] investigates the VAL problem in
the prenex fragment of the first-order Gödel logic enriched by the relativisation operator
Δ, denoted as the prenex GΔ

∞. At first, a variant of Herbrand’s Theorem for the prenex
GΔ∞ is proved, which reduces the VAL problem of a formula in the prenex GΔ∞ to the
VAL problem of an open formula in GΔ

∞. Then a chain normal form is defined using

� Partially supported by the grants VEGA 1/0688/10, VEGA 1/0726/09, and Slovak Literary
Fund.

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 211–227.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

212 D. Guller

the formulae φ � ψ, as an abbreviation for ¬Δ(ψ → φ), and φ ≡Δ ψ, as an abbrevia-
tion for Δ(φ → ψ) ∧Δ(ψ → φ). These formulae express the strict dense linear order
with endpoints and equality on [0, 1], which is not possible without Δ in G∞. Further,
a meta-level logic of order clauses is defined, which is a fragment of classical one. An
order clause is a finite set of inequalities of the form either A < B or A ≤ B where
<, ≤ are meta-level predicate symbols and A, B are atoms of GΔ

∞ considered as meta-
level terms. The semantics of the meta-level logic of order clauses is given by classical
interpretations on [0, 1], varying on assigned (truth) values to atoms of GΔ∞ handled as
meta-level terms, which are the strict dense linear order with endpoints on [0, 1]; < is
interpreted as the strict dense linear order with endpoints and ≤ as its reflexive closure
on [0, 1]. A formula in the prenex GΔ∞ is valid if and only if a translation of it to the
order clause form is unsatisfiable with respect to the semantics of the meta-level logic.
The chaining calculi in [4,5] may be used for efficient deduction over order clauses.

In the paper, we investigate SAT and VAL problems of a formula in the propositional
Gödel logic. Our approach is based on the translation of a formula to an equivalent
CNF one, Lemma 1, Section 3, which contains literals of the augmented form: either
a or a → b or (a → b) → b, where a, b are propositional atoms or the propositional
constants 0 , 1 . We consider a ground fragment of the first-order two-valued logic with
equality and strict order. The syntax is given by a class of order clausal theories. An
order clause is a finite set of order literals of the form: either a � b or a ≺ b. The
semantics is given by a class of order interpretations. An order interpretation is a first-
order two-valued interpretation such that its universum is [0, 1], � is interpreted as
=[0,1], and≺ as <[0,1]. For the purpose of solving the SAT problem, a CNF formula is
translated to an equisatisfiable finite order clausal theory, Lemma 3, Section 3. The basis
is the translation of a literal to an order clause: e.g. a→ b is translated to a ≺ b∨ a � b
or (a → b) → b to b ≺ a ∨ b � 1 . The trichotomy on order literals: either a ≺ b or
a � b or b ≺ a, naturally invokes proposing a variant of the DPLL procedure with a
trichotomy branching rule as an algorithm for deciding the satisfiability of a finite order
clausal theory. The DPLL procedure is proved to be refutation sound, and complete in
the finite case, Theorem 1, Section 4. By means of the compactness theorem, Theorem
2, Section 4, we obtain the refutational completeness in the countable case as well,
Corollary 1, Section 4. In case of solving the VAL problem, we exploit the fact that a
formula φ is a tautology (valid) if and only if the order formula φ ≺ 1 is unsatisfiable,
Theorem 3, Section 5.

The paper is organised as follows. Section 2 gives the basic notions, notation, and
useful properties concerning the propositional Gödel logic. Section 3 deals with clause
form translation. In Section 4, we propose a variant of the DPLL procedure with a
trichotomy branching rule and prove its refutational soundness, completeness, as well
as the compactness theorem. Section 5 solves the VAL problem (tautology checking).

2 Propositional Gödel Logic

Throughout the paper, we shall use the common notions of propositional many-valued
logics. The set of propositional atoms of Gödel logic will be denoted as PropAtom . By
PropForm we designate the set of all propositional formulae of Gödel logic built up

On the SAT and VAL Problems in the Propositional Gödel Logic 213

from PropAtom using the propositional constants 0 , the false, 1 , the true, and the con-
nectives ¬, negation, ∧, conjunction, ∨, disjunction,→, implication. We shall assume
that Gödel logic is interpreted by the standard G-algebra

G = ([0, 1],≤, ∨, ∧, ⇒G,
G
, 0, 1)

where ∨ and ∧ denote the respective supremum and infimum operators on [0, 1],

a ⇒G b =

{
1 if a ≤ b,

b else,

a G =

{
1 if a = 0,

0 else.

We recall that G is a complete linearly ordered lattice algebra; the supremum operator
∨ is commutative, associative, idempotent, monotone, 0 is its neutral element; the in-
fimum operator ∧ is commutative, associative, idempotent, monotone, 1 is its neutral
element;1 the residuum operator ⇒G of ∧ satisfies the condition of residuation:

for all a, b, c ∈ G, a ∧ b ≤ c⇐⇒ a ≤ b ⇒G c; (1)

the Gödel negation G satisfies the condition:

for all a ∈ G, a G = a ⇒G 0; (2)

and the following properties, which will be exploited later, hold:2

For all a, b, c ∈ G,

a ∨ b ∧ c = (a ∨ b) ∧ (a ∨ c), (3) (distributivity of ∨ over ∧)

a ∧ (b ∨ c) = a ∧ b ∨ a ∧ c, (4) (distributivity of ∧ over ∨)

a ⇒G (b ∨ c) = a ⇒G b ∨ a ⇒G c, (5)

a ⇒G b ∧ c = (a ⇒G b) ∧ (a ⇒G c), (6)

(a ∨ b) ⇒G c = (a ⇒G c) ∧ (b ⇒G c), (7)

a ∧ b ⇒G c = a ⇒G c ∨ b ⇒G c, (8)

a ⇒G (b ⇒G c) = a ∧ b ⇒G c, (9)

((a ⇒G b) ⇒G b) ⇒G b = a ⇒G b, (10)

(a ⇒G b) ⇒G c = ((a ⇒G b) ⇒G b) ∧ (b ⇒G c) ∨ c, (11)

(a ⇒G b) ⇒G 0 = ((a ⇒G 0) ⇒G 0) ∧ b ⇒G 0. (12)

1 Using the commutativity, associativity, idempotence, monotonicity, neutral elements of ∨ and
∧ will not be explicitly referred to.

2 We assume the decreasing operator priority sequence G, ∧, ⇒G, ∨, which enables writing
order clauses without parentheses.

214 D. Guller

A valuation V of propositional atoms is a mapping V : PropAtom −→ [0, 1]. A
partial valuation V of propositional atoms with the domain dom(V) ⊆ PropAtom is
a mapping V : dom(V) −→ [0, 1]. Let atoms(φ), atoms(T) ⊆ dom(V) in case of V
being a partial valuation. The truth value φ in V , in symbols ‖φ‖V , is defined by the
standard way; the propositional constants 0 , 1 are interpreted by 0, 1, respectively, and
the connectives by the respective operators on G. V is a (partial) propositional model
of φ, in symbols V |= φ, iff ‖φ‖V = 1. V is a (partial) propositional model of T , in
symbols V |= T , iff for all φ ∈ T , V |= φ. φ is a propositional consequence of T , in
symbols T |=P φ, iff for every propositional model V of T , V |= φ. φ is equivalent to
φ′, in symbols φ ≡ φ′, iff for every valuation V , ‖φ‖V = ‖φ′‖V . φ | T is satisfiable iff
there exists a propositional model of φ | T . φ | T is equisatisfiable to φ′ | T ′ iff φ | T is
satisfiable if and only if φ′ | T ′ is satisfiable.

Let X , Y , Z be sets, Z ⊆ X , and f : X −→ Y a mapping. By X ⊆F Y we
denote X is a finite subset of Y . We designate P(X) = {x |x ⊆ X}, P(X) is the
power set of X ; PF(X) = {x |x ⊆F X}, PF(X) is the set of all finite subsets of
X ; f [Z] = {f(z) | z ∈ Z}, f [Z] is called the image of Z with respect to f ; and
f |Z = {(z, f(z)) | z ∈ Z}, f |Z is the restriction of f onto Z . f : ω −→ Y is a
sequence of Y iff f is a bijection.

3 Translation to Clausal Form

We propose translation of a formula to an equivalent CNF formula, Lemma 1. In con-
trast to two-valued logic, we have to consider an augmented set of literals appearing in
CNF formulae. Let l, φ ∈ PropForm . l is a literal iff either l = a or l = a → b or
l = (a→ b)→ b where a ∈ PropAtom and b ∈ PropAtom ∪ {0}. φ is a conjunctive
| disjunctive normal form, in symbols CNF | DNF , iff either φ = 0 or φ = 1 or
φ =

∧
i≤n

∨
j≤mi

lij | φ =
∨

i≤n

∧
j≤mi

lij where lij are literals.3

Lemma 1. Let φ ∈ PropForm . There exists a CNF ψ ≡ φ.

Proof. It is straightforward to prove that there exists ϑ ≡ φ without any occurrence of
¬. The proof is by induction on the structure of φ using (2); every subformula of the
form ¬ϕ of φ is replaced with ϕ→ 0 ≡ ¬ϕ. We further prove the statement:

There exists a CNF ψ ≡ ϑ. (13)

The proof is by induction on the structure of ϑ; all the occurrences of → in ϑ are
pushed down and the resulting CNF ψ is recursively built up. The obvious cases are
ϑ ∈ PropAtom ∪ {0 , 1} and ϑ = ϑ1 ∧ ϑ2. In the case ϑ = ϑ1 ∨ ϑ2, the distributivity
of ∨ over ∧, (3), is exploited.

Let ϑ = ϑ1 → ϑ2. Then, by induction hypothesis, there exist CNF ’s ψ1 ≡ ϑ1,
ψ2 ≡ ϑ2, and we distinguish three cases for ψ1, ψ2. Case 1: either ψ1 = 0 or ψ2 = 1
is obvious; ψ1 → ψ2 ≡ 1 . Case 2: ψ1 = 1 is also obvious; ψ1 → ψ2 ≡ ψ2. Case 3:
neither ψ1 = 0 nor ψ2 = 1 nor ψ1 = 1 . Then ψ1 =

∧
i≤n

∨
j≤mi

lij , lij are literals,

3 Associativity of ∧, ∨ will not be explicitly referred to, and hence,
∧

i≤n φi,
∨

i≤n φi ∈
PropForm are written without parentheses.

On the SAT and VAL Problems in the Propositional Gödel Logic 215

and we get two cases for ψ2: either ψ2 =
∧

r≤v

∨
s≤ur

kr
s , kr

s are literals, or ψ2 = 0 .
Using (6), (5), (8), (7), (3), in both the cases, there exists

∧
θ≤Θ

∨
ξ≤Ξθ

λθ
ξ → κθ

ξ ≡ ψ1 → ψ2

(IH)≡≡ ϑ1 → ϑ2 = ϑ, (14)

λθ
ξ are literals, either κθ

ξ are literals or κθ
ξ = 0 . We show that

for all θ ≤ Θ and ξ ≤ Ξθ, there exists a DNF δθ
ξ ≡ λθ

ξ → κθ
ξ . (15)

Let θ ≤ Θ and ξ ≤ Ξθ. We then distinguish nine cases for λθ
ξ and κθ

ξ . Case 3.1: λθ
ξ = a

and κθ
ξ = b, a ∈ PropAtom , b ∈ PropAtom ∪{0}. Hence, δθ

ξ = a→ b = λθ
ξ → κθ

ξ is
a DNF . Case 3.2: λθ

ξ = a→ b and κθ
ξ = c, a ∈ PropAtom , b, c ∈ PropAtom ∪ {0}.

Hence,

δθ
ξ = ((a→ b)→ b) ∧ (b→ c) ∨ c

(11)≡≡ (a→ b)→ c = λθ
ξ → κθ

ξ

is a DNF . Case 3.3: λθ
ξ = (a → b) → b and κθ

ξ = c, a ∈ PropAtom , b, c ∈
PropAtom ∪ {0}. Hence,

δθ
ξ == (a→ b) ∧ (b→ c) ∨ c

(10)≡≡ (((a→ b)→ b)→ b) ∧ (b→ c) ∨ c
(11)≡≡ ((a→ b)→ b)→ c = λθ

ξ → κθ
ξ

is a DNF . Cases 3.4 − 3.9: either λθ
ξ = a or λθ

ξ = a → b or λθ
ξ = (a → b) → b,

and κθ
ξ = ϕ → d where either ϕ = c or ϕ = c → d, a, c ∈ PropAtom , b, d ∈

PropAtom ∪ {0}. By Cases 3.1− 3.3, there exists a DNF γθ
ξ ≡ λθ

ξ → d, and

δθ
ξ = γθ

ξ ∨ ϕ→ d ≡ λθ
ξ → d ∨ ϕ→ d

(8)≡≡ λθ
ξ ∧ ϕ→ d

(9)≡≡ λθ
ξ → (ϕ→ d) = λθ

ξ → κθ
ξ

is a DNF . So, the claim (15) holds. We get that there exists a CNF

ψ
((3))≡≡

∧
θ≤Θ

∨
ξ≤Ξθ

δθ
ξ

(15)≡≡
∧

θ≤Θ

∨
ξ≤Ξθ

λθ
ξ → κθ

ξ

(14)≡≡ ϑ.

Thus, the claim (13) holds. The induction is completed. We conclude that there exists

a CNF ψ
(13)≡≡ ϑ ≡ φ. ��

In Lemma 1, we have laid no restrictions on the use of the distributivity law, (3), during
translation to conjunctive normal form. Therefore the size of the output CNF may be
exponential in the size of an input formula. To avoid this disadvantage, we propose
translation to CNF via interpolation using new atoms, which produces CNF formulae
in linear size. A similar approach exploiting the renaming subformulae technique can
be found in [17,6,13,16,18]. By pi

j ∈ PropAtom we denote atoms not yet occurring

216 D. Guller

in the set of formulae in question. The empty sequence of symbols is denoted as ε. Let
φ ∈ PropForm . We define the size of φ by recursion on the structure of φ:

|φ| =

⎧⎪⎨
⎪⎩

1 if φ ∈ PropAtom ∪ {0 , 1},
|φ1|+ 1 if φ = ¬φ1,

|φ1|+ |φ2|+ 1 if φ = φ1 � φ2 where � ∈ {∧,∨,→}.

Let φj ∈ PropForm and pi
j ∈ PropAtom . We denote

ϕi
j =

{
φj if φj ∈ PropAtom ,

pi
j if φj �∈ PropAtom ;

+πi
j =

{
ε if φj ∈ PropAtom ,

pi
j → φj if φj �∈ PropAtom ;

−πi
j =

{
ε if φj ∈ PropAtom ,

φj → pi
j if φj �∈ PropAtom .

Let φ1, φ2 ∈ PropForm and pi
j ∈ PropAtom . In Table 1, we introduce interpolation

rules. Let φ ∈ PropForm . ψ is a CNF of φ iff ψ is a CNF obtained from pi∧(pi → φ)
for some i by a finite derivation using the interpolation rules. We denote the set of all
CNF ’s of φ as CNF (φ). Let f, g : M −→ N. f ∈ O(g) iff there exist n0, k ∈ N, and
for every m ∈M such that g(m) ≥ n0, f(m) ≤ k · g(m).

Lemma 2. Let φ ∈ PropForm . CNF (φ) �= ∅, and for all ψ ∈ CNF (φ), ψ is equisat-
isfiable to φ, |ψ| ∈ O(|φ|).
Proof. The proof of CNF (φ) �= ∅ is by induction on the structure of φ. It is straight-
forward to prove that pi ∧ (pi → φ) is equisatisfiable to φ; for every interpolation rule,
its antecedent is equisatisfiable to its consequent; if for every i, ψi is equisatisfiable
to φi, then so is

∧
i ψi to

∧
i φi; there exists k such that for every interpolation rule,

the size of its consequent is less than or equal to k times the size of its antecedent. Let
ψ ∈ CNF (φ). Then there exist i, n, a finite derivation ζ0 = pi∧(pi → φ), . . . , ζn = ψ,
and k such that for all j ≤ n, ζj is equisatisfiable to φ and |ζj | ≤ k · |φ|. The proof is
by induction on n using the previous statements. ��
We further introduce a ground fragment of the first-order two-valued logic with equality
and strict order. The syntax is given by a class of order clausal theories. We form order
literals and clauses from PropAtom∪{0 , 1}, regarded as constants, using binary pred-
icates �, equality, and ≺, strict order. l is an order literal iff either l = a � b = b � a;
since equality is commutative by definition, we identify a � b and b � a; or l = a ≺ b
where a, b ∈ PropAtom∪{0 , 1}. An order clause is a finite set of order literals. An or-
der clause {l1, . . . , ln} is written in the form l1∨· · ·∨ln. The order clause ∅ is called the
empty clause and denoted as �. An order clause {l} is called a unit order clause and de-
noted as l if it does not cause the ambiguity with the denotation of the single literal l in a
given context. We designate the set of order clauses as OrdCl . Let l, l1, . . . , ln be order

On the SAT and VAL Problems in the Propositional Gödel Logic 217

Table 1. Interpolation rules

Case: Positive interpolation

Negative interpolation

φ1 ∧ φ2
pi
0 → φ1 ∧ φ2

(pi
0 → φ1) ∧ (pi

0 → φ2)
(16)

φ1 ∧ φ2 → pi
0

(ϕi
1 → pi

0 ∨ ϕi
2 → pi

0) ∧ −πi
1 ∧ −πi

2
(17)

φ1 ∨ φ2
pi
0 → (φ1 ∨ φ2)

(pi
0 → ϕi

1 ∨ pi
0 → ϕi

2) ∧ +πi
1 ∧ +πi

2
(18)

(φ1 ∨ φ2) → pi
0

φ1 → pi
0 ∧ φ2 → pi

0
(19)

φ1 ∧ φ2 → 0
pi
0 → (φ1 ∧ φ2 → 0)

(pi
0 → 0 ∨ ϕi

1 → 0 ∨ ϕi
2 → 0) ∧ −πi

1 ∧ −πi
2

(20)

(φ1 ∧ φ2 → 0) → pi
0

((φ1 → 0) → pi
0) ∧ ((φ2 → 0) → pi

0)
(21)

(φ1 ∨ φ2) → 0
pi
0 → ((φ1 ∨ φ2) → 0)

(pi
0 → (φ1 → 0)) ∧ (pi

0 → (φ2 → 0))
(22)

((φ1 ∨ φ2) → 0) → pi
0

((ϕi
1 → 0) → 0 ∨ (ϕi

2 → 0) → 0 ∨ pi
0) ∧ +πi

1 ∧ +πi
2

(23)

(φ1 ∧ φ2 → 0) → 0
pi
0 → ((φ1 ∧ φ2 → 0) → 0)

(pi
0 → ((φ1 → 0) → 0)) ∧ (pi

0 → ((φ2 → 0) → 0))
(24)

((φ1 ∧ φ2 → 0) → 0) → pi
0

(ϕi
1 → 0 ∨ ϕi

2 → 0 ∨ pi
0) ∧ −πi

1 ∧ −πi
2

(25)

((φ1 ∨ φ2) → 0) → 0
pi
0 → (((φ1 ∨ φ2) → 0) → 0)

(pi
0 → 0 ∨ (ϕi

1 → 0) → 0 ∨ (ϕi
2 → 0) → 0) ∧ +πi

1 ∧ +πi
2

(26)

(((φ1 ∨ φ2) → 0) → 0) → pi
0

(((φ1 → 0) → 0) → pi
0) ∧ (((φ2 → 0) → 0) → pi

0)
(27)

((φ1 → 0) → 0) → 0
pi
0 → (((φ1 → 0) → 0) → 0)

pi
0 → (φ1 → 0)

(28)

(((φ1 → 0) → 0) → 0) → pi
0

(φ1 → 0) → pi
0

(29)

((φ1 → φ2) → 0) → 0 , φ2 	= 0
pi
0 → (((φ1 → φ2) → 0) → 0)

(pi
0 → 0 ∨ ϕi

1 → 0 ∨ (ϕi
2 → 0) → 0) ∧ −πi

1 ∧ +πi
2

(30)

(((φ1 → φ2) → 0) → 0) → pi
0

((φ1 → 0) → pi
0) ∧ (((φ2 → 0) → 0) → pi

0)
(31)

(φ1 → φ2) → 0 , φ2 	= 0
pi
0 → ((φ1 → φ2) → 0)

(pi
0 → ((φ1 → 0) → 0)) ∧ (pi

0 → (φ2 → 0))
(32)

((φ1 → φ2) → 0) → pi
0

(ϕi
1 → 0 ∨ (ϕi

2 → 0) → 0 ∨ pi
0) ∧ −πi

1 ∧ +πi
2

(33)

φ1 → φ2, φ2 	= 0
pi
0 → (φ1 → φ2)

(pi
0 → ϕi

2 ∨ ϕi
1 → ϕi

2) ∧ −πi
1 ∧ +πi

2
(34)

(φ1 → φ2) → pi
0

((ϕi
1 → ϕi

2) → ϕi
2 ∨ pi

0) ∧ (ϕi
2 → pi

0) ∧ +πi
1 ∧ −πi

2

(35)

218 D. Guller

literals and C, C′ ∈ OrdCl . By l∨C we denote {l}∪C where l �∈ C. Analogously, by∨n
i=1 li ∨C we denote {l1} ∪ · · · ∪ {ln} ∪C where for all 1 ≤ i �= i′ ≤ n, li �∈ C and

li �= li′ . By C ∨ C′ we denote C ∪ C′. C is a subclause of C′, in symbols C � C′, iff
C ⊆ C′. An order clausal theory is a set of order clauses. A unit order clausal theory is a
set of unit order clauses. Let T, T ′ ⊆ OrdCl . By atoms(C) | atoms(T) ⊆ PropAtom
we denote the set of all the propositional atoms occurring in C | T .

The semantics is given by a class of order interpretations. An order interpretation I
with the domain dom(I) = PropAtom is a first-order two-valued interpretation such
that UI = [0, 1], for all a ∈ PropAtom, aI ∈ [0, 1], 0I = 0, 1I = 1, and �I==[0,1],
≺I=<[0,1]. A partial order interpretation I with the domain dom(I) ⊆ PropAtom is
an order interpretation such that for all a ∈ dom(I), aI ∈ [0, 1]. An (partial) order
interpretation I is identified with the (partial) valuation VI : dom(VI) −→ [0, 1],
VI(a) = aI . Let atoms(l), atoms(C), atoms(C′), atoms(T), atoms(T ′) ⊆ dom(I).
I is a (partial) model of l, in symbols I |= l, iff either for l = a � b, aI =[0,1] bI , or
for l = a ≺ b, aI <[0,1] bI . I is a (partial) model of C, in symbols I |= C, iff there
exists l ∈ C such that I |= l. I is a (partial) model of T , in symbols I |= T , iff for
all C ∈ T , I |= C. Note that � and T such that � ∈ T are unsatisfiable by definition.
C′ is an order consequence of C, in symbols C |=O C′, iff for every model I of C,
I |= C′. C is an order consequence of T , in symbols T |=O C, iff for every model
I of T , I |= C. T ′ is an order consequence of T , in symbols T |=O T ′, iff for every
model I of T , I |= T ′. C | T is satisfiable iff there exists a model of C | T . C′ | T ′ is
equisatisfiable to C | T iff C′ | T ′ is satisfiable if and only if C | T is satisfiable.

By OrdPropForm we designate the augmented set of all order propositional formu-
lae built up from PropAtom using 0 , 1 , ¬,∧,∨,→, and≺, �. Note that OrdPropForm
⊇ PropForm by definition, and all the notions and notation concerned with PropForm
are straightforwardly extended to OrdPropForm .

Lemma 3. Let φ be a conjunctive normal form. There exists Tφ ⊆F OrdCl such that
Tφ is equisatisfiable to φ.

Proof. By the definition of CNF , we distinguish three cases for φ. Case 1: φ = 0 .
Then φ is unsatisfiable and Tφ = {�} ⊆F OrdCl is unsatisfiable as well. So, the claim
holds. Case 2: φ = 1 . Then φ is satisfiable and Tφ = ∅ ⊆F OrdCl is satisfiable as
well. So, the claim holds. Case 3: φ =

∧
i≤n

∨
j≤mi

lij , lij are literals.

For all i ≤ n and j ≤ mi, there exists (36)

Ci
j ∈ OrdCl such that Ci

j is equisatisfiable to lij .

The proof is by definition. We get five cases for lij . Case 3.1: lij = a, a ∈ PropAtom .
Then Ci

j = a � 1 . Case 3.2: lij = a → 0 , a ∈ PropAtom . Then Ci
j = a � 0 . Case

3.3: lij = a→ b, a ∈ PropAtom , b ∈ PropAtom . Then Ci
j = a ≺ b∨a � b. Case 3.4:

lij = (a→ 0) → 0 , a ∈ PropAtom. Then Ci
j = 0 ≺ a. Case 3.5: lij = (a → b)→ b,

a ∈ PropAtom , b ∈ PropAtom . Then Ci
j = b ≺ a ∨ b � 1 . So, the claim (36)

holds. By (36), there exists Tφ ⊆F OrdCl such that Tφ = {∨j≤mi
Ci

j | i ≤ n} is
equisatisfiable to φ. ��

On the SAT and VAL Problems in the Propositional Gödel Logic 219

4 DPLL Procedure

We devise a variant of the DPLL procedure over finite order clausal theories. Let l,
l1, l2, l3 be order literals. l is a contradiction iff either l = 0 � 1 or l = 0 ≺ 0 or
l = 1 ≺ 1 or l = a ≺ 0 or l = 1 ≺ a or l = a ≺ a where a ∈ PropAtom . l is
a tautology iff either l = 0 � 0 or l = 1 � 1 or l = 0 ≺ 1 or l = a � a where
a ∈ PropAtom . l1 ∨ l2 ∨ l3 is a general trichotomy iff l1 = a ≺ b, l2 = a � b,
l3 = b ≺ a where a, b ∈ PropAtom ∪ {0 , 1}. Let T ⊆ OrdCl . The basic rules are as
follows:

(37) (One literal contradiction simplification rule)

T

T ∪ {�}
if T is a unit order clausal theory, l ∈ T, and l is a contradiction;

(38) (One literal transitivity rule of � and ≺)

T

T ∪ {a � c} where � =

{
� if �1 = �2 =�,

≺ else,

if T is a unit order clausal theory, a �1 b, b �2 c ∈ T, and �1, �2 ∈ {�,≺};
(39) (General trichotomy branching rule)

T

T − {l1 ∨C} ∪ {l1}
∣∣ T − {l1 ∨ C} ∪ {C} ∪ {l2}

∣∣ T − {l1 ∨ C} ∪ {C} ∪ {l3}
if l1 ∨C ∈ T, C �= �, and l1 ∨ l2 ∨ l3 is a general trichotomy.

Rule (39) reflects the linearity of <[0,1] in terms of general trichotomy. Rule (37) for-
malises its additional properties: the endpoints 0 <[0,1] 1 and strictness via contradic-
tions. Rule (38) expresses the mutual transitivity of =[0,1] together with <[0,1]. Rules
(37), (38), (39) are sound in view of satisfiability:

T and T ∪ {�} in the consequent of Rule (37) are both unsatisfiable. (40)

T is equisatisfiable to T ∪ {a � c} in the consequent of Rule (38). (41)

Let I be a partial order interpretation, dom(I) ⊇ atoms(T). (42)

I |= T if and only if I |= T − {l1 ∨ C} ∪ {l1} or I |= T − {l1 ∨C} ∪ {C} ∪ {l2}
or I |= T − {l1 ∨ C} ∪ {C} ∪ {l3} in the consequent of Rule (39).

(43)

T is satisfiable if and only if T − {l1 ∨ C} ∪ {l1} or T − {l1 ∨ C} ∪ {C} ∪ {l2}
or T − {l1 ∨ C} ∪ {C} ∪ {l3} in the consequent of Rule (39) is satisfiable.

220 D. Guller

The proof is by assumption and definition. The refutational completeness argument
of the basic rules, Theorem 1(ii), may be provided using the excess literal technique
[2]. From this point of view, Rules (37) and (38) handle the base case: T is a unit order
clausal theory, while Rule (39) the induction one: it subtracts the excess literal measure
of T at least by 1 for every clausal theory in a branch of its consequent.

T is closed under Rules (37) and (38) iff for every application of Rules (37) and

(38) of the form
T

T ′ , T ′ = T . By trans(T) ⊆ OrdCl we denote the least set such that

trans(T) ⊇ T and trans(T) is closed under Rules (37), (38).
Using the basic rules, one can construct a finitely generated tree with the input theory

as the root in the usual manner, so as the classical DPLL procedure does; for every
parent vertex, there exists an application of Rule (37) or (38) or (39) such that the
parent vertex is the theory in its antecedent and the children vertices are the theories in
its consequent. A branch of a tree is closed iff it contains a vertex T ′ such that � ∈ T ′.
A branch of a tree is open iff it is not closed. A tree is closed iff every its branch is finite
and closed. Note that a closed tree is finite by König’s Lemma. A tree is open iff it is
not closed. A tree is linear iff it consists of only one branch, beginning from its root and
ending in its only leaf.

Lemma 4. Let T ⊆ OrdCl .

(i) If T ⊆F OrdCl , then trans(T) ⊆F OrdCl .
(ii) If T is a unit order clausal theory and � �∈ trans(T), then trans(T) is a unit

order clausal theory.
(iii) atoms(trans(T)) = atoms(T).
(iv) T |=O trans(T).
(v) If T ⊆F OrdCl , then there exists a finite linear tree with the root T and the leaf

trans(T) constructed using Rules (37) and (38).

Proof. By assumption and definition. ��
The following lemma shows that Rules (37) and (38) are refutation complete for a
countable unit order clausal theory, which will be exploited in the base case of Theorem
1(ii) and in Theorem 2.

Lemma 5. Let T = trans(T) ⊆ OrdCl be a countable unit order clausal theory.
There exists a partial model A of T , dom(A) = atoms(T).

Proof. By the theorem assumption that T is a unit order clausal theory, � �∈ T =
trans(T). In addition, by the theorem assumption that T is a countable set, there exists
a sequence δ of atoms(T). At first, we define partial order interpretations Modα by
recursion on α ≤ ω:

On the SAT and VAL Problems in the Propositional Gödel Logic 221

Mod0 = ∅;
Modα = Modα−1 ∪ {(δ(α− 1), vα−1)} (0 < α < ω),

Mα−1 = {‖a‖Modα−1 | a � δ(α− 1) ∈ T, a ∈ dom(Modα−1) ∪ {0 , 1}},
Sα−1 = {Modα−1(a) | a ≺ δ(α− 1) ∈ T, a ∈ dom(Modα−1)},
Iα−1 = {Modα−1(a) | δ(α− 1) ≺ a ∈ T, a ∈ dom(Modα−1)},

vα−1 =
{∨

Sα−1+
∧

Iα−1
2 , Mα−1 = ∅,∨

Mα−1, Mα−1 �= ∅;

Modω =
⋃

α<ω

Modα.

It is straightforward to prove the following statements:

For all α ≤ ω, Modα is a partial order interpretation, dom(Modα) = δ[α], (44)

and for all β ≤ α, Modβ ⊆ Modα.

For all α ≤ ω and l ∈ T such that atoms(l) ⊆ dom(Modα), Modα |= l. (45)

For all α ≤ ω and a ∈ dom(Modα), if Modα(a) = 0, then a � 0 ∈ T . (46)

For all α ≤ ω and a ∈ dom(Modα), if Modα(a) = 1, then a � 1 ∈ T . (47)

The proofs are by induction on α ≤ ω. We put A = Modω. By (44), A = Modω is a

partial order interpretation, dom(A) = dom(Modω)
(44)
== δ[ω] = atoms(T). Let l ∈

T . Then atoms(l) ⊆ atoms(T) = dom(Modω) = dom(A) and A = Modω

(45)

|==== l.
So, A |= T . We conclude that A is a partial model of T , dom(A) = atoms(T). ��

The DPLL procedure is refutation sound and complete.

Theorem 1 (Refutational Soundness and Completeness of the DPLL Procedure).
Let T be a countable order clausal theory.

(i) If there exists a closed tree Tree with the root T constructed using Rules (37),
(38), (39), then T is unsatisfiable.

(ii) If T ⊆F OrdCl , then there exists a finite tree Tree with the root T constructed
using Rules (37), (38), (39) with the following properties:

If T is unsatisfiable, then Tree is closed. (48)

If T is satisfiable, then Tree is open and there exists (49)

a partial model A of T , dom(A) = atoms(T), related to Tree.

Proof. (i) The proof is by induction on the structure of Tree using (40), (41), (42).

222 D. Guller

(ii) We distinguish two cases:

either � ∈ T or � �∈ T .

Case 1: � ∈ T . Then T is unsatisfiable and Tree = T is a closed tree with the root
T . So, (48) holds and (49) holds trivially.

Case 2: � �∈ T . We exploit the excess literal technique to construct a finite tree
Tree with the root T using Rules (37), (38), (39). Let T F ⊆F OrdCl . We define
elmeasure(T F) = (

∑
C∈T F |C|)− |T F |. We proceed by induction on elmeasure(T).

Let elmeasure(T) = 0. Then, by the assumption � �∈ T and the definition of
elmeasure(T), T is a unit order clausal theory. By Lemma 4(v), there exists a finite
linear tree Tree with the root T and the leaf trans(T) constructed using Rules (37) and
(38). We get two cases:

either � ∈ trans(T) or � �∈ trans(T).

Case 2.1: � ∈ trans(T). Then Tree is a closed tree with the root T ; its only branch
from T to trans(T) is closed. Hence, by (i), T is unsatisfiable. So, (48) holds and (49)
holds trivially.

Case 2.2: � �∈ trans(T). Then Tree is an open tree with the root T ; its only branch
from T to trans(T) is open. Since T is a unit order clausal theory, by Lemma 4(ii), we
get trans(T) is a unit order clausal theory, and by Lemma 5 for trans(T), there exists
a partial model A of trans(T), dom(A) = atoms(trans(T)). Hence, A is a partial

model of T ⊆ trans(T), dom(A) = atoms(trans(T))
Lemma 4(iii)

========== atoms(T), related
to Tree and T is satisfiable. So, (49) holds and (48) holds trivially.

Let elmeasure(T) = n > 0 and the statement hold for all T F ⊆F OrdCl such that
elmeasure(T F) < n. Since elmeasure(T) > 0, by the definition of elmeasure(T),
there exists l1∨C ∈ T such that C �= �. Let l2, l3 be order literals such that l1∨ l2∨ l3
is a general trichotomy. This yields the application of Rule (39)

T

(T − {l1 ∨ C}) ∪ {l1}
∣∣(T − {l1 ∨C}) ∪ {C} ∪ {l2}

∣∣(T − {l1 ∨C}) ∪ {C} ∪ {l3}
.

We denote T1 = (T − {l1 ∨ C}) ∪ {l1}, T2 = (T − {l1 ∨ C}) ∪ {C} ∪ {l2}, T3 =
(T −{l1∨C})∪{C}∪{l2}. Then elmeasure(T1) < elmeasure(T), elmeasure(T2) <
elmeasure(T), elmeasure(T3) < elmeasure(T), and by induction hypothesis, there
exist finite trees Tree1 with the root T1, Tree2 with the root T2, Tree3 with the root T3

constructed using Rules (37), (38), (39) such that (48) and (49) hold for Tree1, Tree2,
Tree3. This yields

Tree =
T

Tree1

∣∣ Tree2

∣∣ Tree3

is a finite tree with the root T constructed using Rules (37), (38), (39). We get two
cases:

either T is unsatisfiable or T is satisfiable.

Case 3: T is unsatisfiable. Then, by (42), T1, T2, T3 are unsatisfiable, and by (48)
for Tree1, Tree2, Tree3, Tree1, Tree2, Tree3 are closed trees. Hence, Tree is a closed
tree. So, (48) holds and (49) holds trivially for Tree.

On the SAT and VAL Problems in the Propositional Gödel Logic 223

Case 4: T is satisfiable. Then, by (42), there exists 1 ≤ i ≤ 3 such that Ti is
satisfiable. Hence, by (49) for Treei, Treei is an open tree and there exists a partial
model Ai of Ti, dom(Ai) = atoms(Ti), related to Treei. By the definition of Ti,
Ti |=O T . As {l1, l2, l3} is a trichotomy, atoms(l1) = atoms(l2) = atoms(l3) and
atoms(Ti) ⊆ atoms(T). We get Tree is an open tree and A = Ai ∪ {(p, 0) | p ∈
atoms(T) − atoms(Ti)}, dom(A) = atoms(T), is a partial model of T related to
Tree. So, (49) holds and (48) holds trivially for Tree. The induction is completed. ��
The refutational completeness of the DPLL procedure can be generalised to the case of
a countable order clausal theory by means of the following compactness theorem. Let
T ⊆ OrdCl and A ⊆ PropAtom . We denote T |A = {C |C ∈ T, atoms(C) ⊆ A} ⊆
T , atoms(T |A) ⊆ atoms(T) ∩A.

Theorem 2 (Compactness Theorem). Let T ⊆ OrdCl be a countable order clausal
theory and δ be a sequence of atoms(T). If for every α < ω, there exists a partial
model Aα of T |δ[α] ⊆F T , dom(Aα) = δ[α], then there exists a partial model A of T ,
dom(A) = atoms(T).

Proof. We are able to define unit order clausal theories Tα ⊆F OrdCl by recursion on
α < ω with the following properties:

atoms(Tα) ⊆ δ[α]; (50)

Tα = trans(Tα); (51)

for all β ≤ α, Tβ ⊆ Tα; (52)

Tα |=O T |δ[α]; (53)

for every α ≤ β < ω, there exists β ≤ β∗ < ω such that (54)

Aβ∗ is a partial model of T |δ[β] − T |δ[α] ∪ Tα;

for all α < ω, dom(Aβ∗) = δ[β∗] ⊇ δ[β] ∪ δ[α] ⊇
(50)

atoms(T |δ[β] − T |δ[α] ∪ Tα).

(55)

We exploit the excess literal technique to define Tα using Rules (37), (38), (39) from
T |δ[α] − T |δ[α−1] ∪ Tα−1.

We put Tω =
⋃

α<ω Tα. Since, for all α < ω, Tα ⊆F OrdCl is a unit order clausal
theory, we get Tω ⊆ OrdCl is a countable unit order clausal theory,

atoms(Tω) =
⋃

α<ω

atoms(Tα) ⊆
(48)

⋃
α<ω

δ[α] ⊆ δ[ω] = atoms(T). (56)

It is straightforward to prove that Tω = trans(Tω). By Lemma 5, we close that there
exists a partial model Aω of Tω, dom(Aω) = atoms(Tω). We put

A = Aω ∪ {(a, 0) | a ∈ atoms(T)− dom(Aω)},
dom(A) = dom(Aω) ∪ dom({(a, 0) | a ∈ atoms(T)− dom(Aω)})

= atoms(Tω) ∪ atoms(T)− atoms(Tω)
(56)
== atoms(T).

224 D. Guller

As Aω is a partial order interpretation, by the definition of A, A is a partial order inter-
pretation. We further show that A |= T . Let C ∈ T . Then atoms(C) ⊆F atoms(T) =
δ[ω], there exists α < ω such that atoms(C) ⊆ δ[α], and C ∈ T |δ[α]. We get Aω |= Tω,

by the definition of A, A ⊇ Aω, and A |= Tω =
⋃

α<ω Tα |=O Tα

(53)

|====O T |δ[α] � C.
So, A |= T . We conclude that A is a partial model of T , dom(A) = atoms(T). ��
Corollary 1 (Refutational Completeness of the DPLL Procedure (The Countable
Case)). Let T be a countable order clausal theory. If T is unsatisfiable, then there exists
a closed tree Tree with the root T constructed using Rules (37), (38), (39).

Proof. An immediate consequence of Theorems 1 and 2. Let T be unsatisfiable and
δ be a sequence of atoms(T). Then, by Theorem 2, there exists α < ω such that
T |δ[α] ⊆F OrdCl is unsatisfiable. Hence, by Theorem 1(ii) and (48), there exists a
closed tree Tree ′ with the root T |δ[α] constructed using Rules (37), (38), (39). We get
that there exists a closed tree Tree with the root T ⊇ T |δ[α] constructed using Rules
(37), (38), (39). The proof is by induction on the structure of Tree′. ��

Concerning the SAT problem of a formula, we conclude.

Corollary 2. Let φ ∈ PropForm . There exist an equisatisfiable Tφ ⊆F OrdCl to φ
and a finite tree Treeφ with the root Tφ constructed using Rules (37), (38), (39) with
the following properties:

If φ is unsatisfiable, then Treeφ is closed. (57)

If φ is satisfiable, then Treeφ is open and there exists (58)

a partial model Aφ of φ, dom(Aφ) = atoms(φ).

Proof. An immediate consequence of Lemma 3 and Theorem 1. ��
Note that the SAT problem of a finite theory can be reduced to the SAT one of

a formula in the usual manner. Let T = {φi | i ≤ n} ⊆F PropForm . Then φ =∧
i≤n φi ∈ PropForm is equisatisfiable to T .

5 Tautology Checking

One application of the DPLL procedure may be to tautology checking. Let φ ∈
PropForm . φ is a tautology (valid) iff for every valuation V , V |= φ. The VAL problem
of a formula φ can be reduced to the unsatisfiability of the order formula φ ≺ 1 conse-
quently translated to an equisatisfiable finite order clausal theory Tφ. Then the unsatis-
fiability of Tφ is decided by the DPLL procedure. This section provides the technical
details of the reduction, Theorem 3. In addition to the properties stated in Section 2, the
following ones hold:

For all φ1, φ2 ∈ PropForm and ψ1, ψ2, ψ3 ∈ OrdPropForm ,

(φ1 ∧ φ2) ≺ 1 ≡ φ1 ≺ 1 ∨ φ2 ≺ 1, (59)

(φ1 ∨ φ2) ≺ 1 ≡ φ1 ≺ 1 ∧ φ2 ≺ 1, (60)

ψ1 ∨ ψ2 ∧ ψ3 = (ψ1 ∨ ψ2) ∧ (ψ1 ∨ ψ3). (61)

On the SAT and VAL Problems in the Propositional Gödel Logic 225

Theorem 3 (Reduction Theorem). Let φ ∈ PropForm . There exists Tφ ⊆F OrdCl
such that Tφ is unsatisfiable if and only if φ is a tautology.

Proof. By Lemma 1, there exists a conjunctive normal form ψ such that ψ ≡ φ, and we
distinguish tree cases:

either ψ = 0 or ψ = 1 or ψ =
∧
i≤n

∨
j≤mi

lij , lij are literals.

Case 1: φ ≡ ψ = 0 . Then φ is not a tautology and Tφ = ∅ ⊆F OrdCl is satisfiable.
So, the claim holds.

Case 2: φ ≡ ψ = 1 . Then φ is a tautology and Tφ = {�} ⊆F OrdCl is unsatisfiable.
So, the claim holds.

Case 3: φ ≡ ψ =
∧

i≤n

∨
j≤mi

lij , lij are literals. Then

φ is a tautology if and only if φ ≺ 1 ∈ OrdPropForm is unsatisfiable; (62)

φ ≺ 1 ≡ ψ ≺ 1 = (
∧
i≤n

∨
j≤mi

lij) ≺ 1
(59)≡≡
(60)

∨
i≤n

∧
j≤mi

lij ≺ 1 . (63)

For all i ≤ n and j ≤ mi, there exists a conjunction of disjunctions

of order literals δi
j ∈ OrdPropForm such that δi

j is equisatisfiable to lij ≺ 1 . (64)

The proof is by definition. We get five cases for lij : Case 3.1: lij = a, a ∈ PropAtom .
Then δi

j = a ≺ 1 . Case 3.2: lij = a → 0 , a ∈ PropAtom . Then δi
j = 0 ≺ a. Case

3.3: lij = a → b, a ∈ PropAtom , b ∈ PropAtom . Then δi
j = b ≺ a. Case 3.4:

lij = (a → 0) → 0 , a ∈ PropAtom. Then δi
j = a � 0 . Case 3.5: lij = (a → b)→ b,

a ∈ PropAtom , b ∈ PropAtom . Then δi
j = (a ≺ b ∨ a � b) ∧ b ≺ 1 . So, the claim

(64) holds. By (64) and (63),∨
i≤n

∧
j≤mi

δi
j is equisatisfiable to

∨
i≤n

∧
j≤mi

lij ≺ 1 and φ ≺ 1 . (65)

Hence, there exists ϕ ∈ OrdPropForm such that

ϕ =
∧
r≤v

∨
s≤ur

κr
s

((61))≡≡
∨
i≤n

∧
j≤mi

δi
j (66)

where κi
j are order literals. By (66) and (65), there exists Tφ ⊆F OrdCl such that

Tφ = {
∨

s≤ur

κr
s | r ≤ v} is equisatisfiable to ϕ,

∨
i≤n

∧
j≤mi

δi
j , and φ ≺ 1 . (67)

We close that Tφ is unsatisfiable
(67)⇐⇒ φ ≺ 1 is unsatisfiable

(62)⇐⇒ φ is a tautology. ��

226 D. Guller

6 Conclusions

We have investigated the satisfiability and validity problems of a formula in the propo-
sitional Gödel logic. The satisfiability problem has been solved via the translation of
a formula to an equivalent CNF one, containing literals of the forms a, a → b, or
(a → b) → b. A CNF formula has further been translated to an equisatisfiable finite
order clausal theory, which consists of order clauses with order literals of the forms
a � b or a ≺ b. � and ≺ are interpreted by the equality and strict linear order on [0, 1],
respectively. The trichotomy on order literals: either a ≺ b or a � b or b ≺ a, has nat-
urally led to a variant of the DPLL procedure with a trichotomy branching rule, which
is refutation sound and complete in the case of countable order clausal theories; where
the compactness theorem holds. We have reduced the validity problem of a formula to
the unsatisfiability of a finite order clausal theory.

References

1. Aguzzoli, S., Ciabattoni, A.: Finiteness of infinite-valued Łukasiewicz logic. Journal of
Logic, Language and Information 9, 5–29 (2000)

2. Anderson, R., Bledsoe, W.W.: A linear format for resolution with merging and a new tech-
nique for establishing completeness. Journal of the ACM 17(3), 525–534 (1970)

3. Baaz, M., Ciabattoni, A., Fermüller, C.: Herbrand’s theorem for prenex gödel logic and its
consequences for theorem proving. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001.
LNCS (LNAI), vol. 2250, pp. 201–215. Springer, Heidelberg (2001)

4. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and
simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

5. Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of transitive
relations. Journal of the ACM 45(6), 1007–1049 (1998)

6. Boy de la Tour, T.: An optimality result for clause form translation. Journal of Symbolic
Computation 14(4), 283–301 (1992)

7. Davis, M., Putnam, H.: A computing procedure for quantification theory. Communications
of the ACM 7, 201–215 (1960)

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nications of the ACM 5, 394–397 (1962)

9. Guller, D.: Binary resolution over complete residuated Stone lattices. Fuzzy Sets and Sys-
tems 159(9), 1031–1041 (2008)

10. Guller, D.: On the refutational completeness of signed binary resolution and hyperresolution.
Fuzzy Sets and Systems 160(8), 1162–1176 (2009)

11. Guller, D.: A DPLL procedure for the propositional Gödel logic. In: Proceedings of the
ICFC Conference, INSTICC, pp. 31–42 (2010)

12. Hähnle, R.: Many-valued logic and mixed integer programming. Annals of Mathematics and
Artificial Intelligence 12(3,4), 231–264 (1994)

13. Hähnle, R.: Short conjunctive normal forms in finitely-valued logics. Journal of Logic and
Computation 4(6), 905–927 (1994)

14. Hähnle, R.: Proof theory of many-valued logic - linear optimization - logic design: Con-
nections and interactions. Soft Computing - A Fusion of Foundations, Methodologies and
Applications 1(3), 107–119 (1997)

On the SAT and VAL Problems in the Propositional Gödel Logic 227

15. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoretical Com-
puter Science 52, 145–153 (1987)

16. Nonnengart, A., Rock, G., Weidenbach, C.: On Generating Small Clause Normal Forms.
In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 397–411.
Springer, Heidelberg (1998)

17. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of
Symbolic Computation 2(3), 293–304 (1986)

18. Sheridan, D.: The optimality of a fast CNF conversion and its use with SAT. In: Online Pro-
ceedings of International Conference on the Theory and Applications of Satisfiability Testing
(2004), http://www.satisfiability.org/SAT04/programme/114.pdf

http://www.satisfiability.org/SAT04/programme/114.pdf

A Fuzzy Approach to Resource Aware Automatic
Parallelization

T. Trigo de la Vega1,�, P. Lopez-Garcia1,2, and S. Muñoz-Hernández3

1 The IMDEA Software Institute, Madrid, Spain
2 Spanish Research Council (CSIC), Madrid, Spain

3 School of Computer Science, Technical University of Madrid, Madrid, Spain
{teresa.trigo,pedro.lopez}@imdea.org,susana@fi.upm.es

Abstract. Any realistic approach to automatic program parallelization must take
into account practical issues related to the resource usage of parallel executions,
such as the overheads associated with parallel tasks creation, migration of tasks
to remote processors, and communication. The aim of granularity control tech-
niques is avoiding such overheads undermining the benefits of parallel execu-
tions. For example, sufficient conditions have been proposed to ensure that the
parallel execution of some given tasks will not take longer than their correspond-
ing sequential execution. However, when the goal is to optimize the average ex-
ecution time of several runs, such conditions can be very conservative, causing
a loss in parallelization opportunities. To solve this problem, we have proposed
novel conditions based on fuzzy logic and performed an experimental assess-
ment with real programs. The results show that such conditions select the opti-
mal type of execution in most cases and behave much better than the conservative
conditions.

Keywords: Fuzzy logic application, Parallel computing, automatic Paralleliza-
tion, Granularity control, Scheduling, complexity Analysis.

1 Introduction

There is an increasing need of automatic software development techniques and tools
that can exploit the potential of current parallel and distributed architectures. Since
writing parallel code is a complex, tedious and prone to errors task, several approaches
to automatic parallelization have been proposed. Most of them have concentrated on
proving the correctness of automatic parallelizations (i.e., that the same results as those
of the corresponding sequential executions are obtained) and their theoretical efficiency
(i.e., that no more work than the sequential executions is performed) [5]. However, little
work has been done that takes into account practical issues related to the resource us-
age of parallel executions, such as the overheads associated with tasks creation, possible
migration of tasks to remote processors, and the associated communication overheads.
Clearly, any realistic approach has to take all of these practical overheads and the re-
source usage of parallel tasks into account in order to avoid that the benefits of parallel

� Current affiliation: Google Inc.

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 229–245.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

230 T. Trigo de la Vega, P. Lopez-Garcia, and S. Muñoz-Hernández

executions be undermined by such overheads. This is the objective of granularity con-
trol: decide whether to execute some given tasks in parallel or sequentially based on
conditions related to the resource usage of such tasks and the mentioned overheads.
Granularity control has been studied in the context of traditional [9,13], functional [7]
and logic programming [2,16,12]. Since tasks resource usages and overheads are not
in general computable before the execution of the tasks, we are forced to resort to ap-
proximated conditions for deciding the type of execution to be performed. Previous
approaches [12] have proposed sufficient conditions to ensure that the parallel (respec-
tively, sequential) execution will not take longer than the corresponding sequential (re-
spectively, parallel) one. However, when the goal is to optimize the average execution
time of several runs, such conditions can be very conservative, and if they are not met,
a type of execution is performed by default (either sequential of parallel), even though
the other type of execution is the optimal one. Thus, this causes a loss in optimization
opportunities. For this reason, we have proposed a novel approach that applies fuzzy
logic to evaluate “fuzzy” conditions that, although can entail eventual slowdowns in
some executions, speedup the whole computation on average (always preserving cor-
rectness).

It is remarkable the originality of this approach that is betting for the expressiveness
of fuzzy logic to improve the decision making in the field of automatic program opti-
mization and, in particular, in automatic parallelization including granularity control.

Fuzzy Logic Programming. Fuzzy logic has been a very fertile area during the last
years. Specially in the theoretical side, but also from the practical point of view. Fuzzy
logic programming systems, which are specially interesting by their simplicity, replace
their inference mechanism, SLD-resolution, with a fuzzy variant that is able to han-
dle partial truth. Most of these systems implement the fuzzy resolution introduced by
Lee in [10]: the Prolog-Elf system [8], the FRIL Prolog system [1] and the F-Prolog
language [11].

One of the most promising fuzzy tools for Prolog was the Fuzzy Prolog system [3].
Fuzzy Prolog adds fuzziness to a Prolog compiler using CLP(R) instead of implement-
ing a new fuzzy resolution method, as other former fuzzy Prologs do. It represents
intervals as constraints over real numbers and aggregation operators as operations with
these constraints, so it uses the Prolog built-in inference mechanism to handle the con-
cept of partial truth.

Fuzzy Prolog [3] offers many useful features, however its truth value representation,
based on constraints, is too general, which makes it complex to be interpreted by regular
users. For this reason, and in order to provide a tool for practical application, a simpler
variant was developed, called RFuzzy [15]. In RFuzzy, the truth value is represented by
a simple real number.

RFuzzy is implemented as a Ciao Prolog [6] package, since Ciao Prolog offers the
possibility of dealing with a higher order compilation through the implementation of
Ciao packages.

Thus, since RFuzzy provides many nice features that represent an advantage with
respect to previous fuzzy tools to model real problems, we have chosen RFuzzy for the
implementation of our prototype in this work.

A Fuzzy Approach to Resource Aware Automatic Parallelization 231

2 The Granularity Control Problem

We start by discussing the basic issues to be addressed in our approach to granularity
control. In particular, we discuss how conditions for deciding between parallel and se-
quential execution can be devised. We consider the generic execution model described
in [12]. Let g = g1, . . . , gn be a task such that subtasks g1, . . . , gn are candidates for
parallel execution. Ts represents the cost (execution time) of the sequential execution
of g and Ti represents the cost of the sequential execution of subtask gi. There can be
many different ways to execute g in parallel, involving different choices of scheduling,
load balancing, etc., each having its own cost. To simplify the discussion, we will as-
sume that Tp represents in some way all of the possible costs. More concretely, Tp ≤ Ts

should be understood as “Ts is greater or equal than any possible value for Tp.” We will
also assume that the points of parallelization of g are fixed, and, without loss of gener-
ality, that no tests – such as, perhaps, “independence” tests [5] – other than those related
to granularity control are necessary. Thus, the purpose of granularity control is to de-
termine, based on some conditions related to the cost of tasks and parallel execution
overheads, whether the gi’s should be executed in parallel or sequentially in order to
optimize the execution time of their whole computation.

Performing an accurate granularity control at compile-time is difficult since most
of the information needed, as for example, input data size, is only known at run-time.
An useful strategy is to do as much work as possible at compile-time and postpone
some final decisions to run-time. This can be achieved by generating at compile-time
cost functions which estimate task costs as a function of input data sizes, which are
then evaluated at run-time when such sizes are known. Then, after comparing costs of
parallel and sequential executions, it can be determined which of these types of execu-
tions must be performed. An interesting goal is to ensure that Tp ≤ Ts. In general, this
condition cannot be determined before executing g, while granularity control should in-
tuitively be carried out ahead of time. Thus, we are forced to use approximations. This
is discussed in the two following sections.

3 The Conservative Approach

The approach proposed in [12] consists on using safe approximations, i.e., evaluating
(simple) sufficient conditions to detect when either, the parallel or sequential execution
is the optimal one. There are two strategies, each with a different type of execution
performed by default when the sufficient conditions are not met. They are described in
the following.

Parallelizing a Sequential Program. This strategy corresponds to the case where tasks
are executed sequentially unless parallel execution can be shown not to be slower. The
sufficient condition T u

p ≤ T l
s for proving Tp ≤ Ts is used, where T u

p denotes an upper
bound on Tp and T l

s a lower bound on Ts. We will use the superscripts l and u to denote
lower and upper bounds respectively throughout the paper. Thus, if such sufficient con-
dition does not hold, the tasks are executed sequentially by default. We refer the reader
to [14] and [12] for a full description of compile-time analysis that infer lower and upper
bounds on sequential and parallel execution times as functions of input data sizes.

232 T. Trigo de la Vega, P. Lopez-Garcia, and S. Muñoz-Hernández

Sequentializing a Parallel Program. This is the converse strategy, where tasks are
executed in parallel unless sequential execution can be shown not to be slower. In this
case, if the sufficient condition T u

s ≤ T l
p for proving Ts ≤ Tp does not hold, the tasks

are executed in parallel by default.

4 The Fuzzy Approach

In some scenarios, it is not allowed to perform parallelizations if they do not ensure
any speedup. However, in most environments it is justified to sacrifice performance in
some cases in order to improve the speedup on average. Thus our approach is to give
up strictly ensuring that Tp ≤ Ts holds and to use some relaxed heuristics using fuzzy
logic which selects the optimal type of execution in most cases, improving the average
execution time of several runs.

We use as a decision criteria the formulaTp ≤ Ts. It is easy to transform such formula
into 1 ≤ Ts/Tp or the equivalent Ts/Tp ≥ 1. We are implicitly using a crisp criteria in
the sense that we use an operator whose truth values are defined mathematically.

If we move to classical logic and want to represent the condition of parallelizing or
not a set of subtasks using a logic predicate, we could define greater/2 as a predicate of
two arguments that is successful if the first one is greater than the second one and false
otherwise. We could check the condition greater(Ts/Tp,1) or rename this condition to
a logic predicate, greater1/1, of arity 1 that compares its argument with 1, succeeds if it
is greater than 1 and fails otherwise (i.e., greater1(1.8) succeeds, whereas greater1(0.8)
fails). With the boolean condition represented by the predicate greater1/1 it is easy to
follow the conservative approach presented in Section 3. We can see that the concept
of being “greater than” is very strict in the sense that some cases in which the value
is close to 1 are going to be considered false. Let us introduce the concept of truth
value. Till now we have been using two truth values true and false, or 1 and 0. But if we
introduce levels of truth we could for example provide for a logic predicate intermediate
truth values in between 0 and 1. We have defined other predicates similar to greater1/1
that are more flexible in their semantics. They are quite greater/1 and rather greater/1.
They are described in Section 5.1 and illustrated in Fig. 1.

With this set of predicates we are going to define a fuzzy framework for the ex-
perimental possibilities of using a fuzzy criteria to take decisions about parallelization
of tasks.

4.1 Decision Making

Instead of deciding about the goodness of the parallelizations depending on a crisp
condition as in the conservative approach, in this paper we make the decision attending
to a couple of certainty factors: S, the certainty factor that represents the preference (its
truth value) for executing the sequential variant of a program, and P , the certainty factor
that represents the preference for executing the parallel variant of such program. Both
certainty factors are real numbers,S, P ∈ [0, 1]. We define different fuzzy heuristics for
assigning a value to each certainty factor and we compare a set of them in Section 5.2
in order to choose the best model (which is done in Section 5.3).

A Fuzzy Approach to Resource Aware Automatic Parallelization 233

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0 5 10 15 20
Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0 5 10 15 20
Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0 5 10 15 20
Ratio

Greater Quite greater Rather greater

Fig. 1. Fuzzy sets for greater

Once the values of S and P have been already assigned, if P > S then our task
scheduling prototype executes the parallel variant of the program, otherwise it executes
the sequential one.

5 Experimental Assessment

We have developed a prototype (Section 5.1) of a fuzzy task scheduler based on the
approach described in Section 4. We have prepared a common framework to test the
behavior of a set of different heuristics (Section 5.2) and we have also compared them
with the rules of the conservative approach (Section 3) in order to be able to select the
best results (Section 5.3). For a better understanding of these experiments, we present
the behavior of our prototype for a progression of execution time data (Section 5.4). Fi-
nally, we have tested our prototype with real programs (Section 5.5) in order to demon-
strate that it can be successfully applied in practice.

5.1 Prototype Implementation

All the granularity control methods presented in this paper have been implemented
in Ciao [6], a multi-paradigm program development system that provides, among other
features, a standard Prolog programming language. We have decided to use logic
programming for implementing our approach because of its simplicity and for taking
advantage of some useful extensions provided by the Ciao Prolog framework. In par-
ticular, the Ciao development system has integrated static analyzers for obtaining upper
and lower bounds on execution times of procedures and tasks (which are part of the
CiaoPP subsystem), and fuzzy packages for the calculation of certainty factors such as
the Rfuzzy package which we have used for implementing the fuzzy logic rules.

As explained before, in our new approach to granularity control, the decision of how
to execute a set of tasks is based on certainty factors associated to both, the sequential
and parallel variants of their execution. So that, first of all, we have to quantify such
certainty factors and then decide how to execute the tasks. The values of the certainty
factors are provided by fuzzy rules that are able to combine fuzzy values using aggre-
gation operators. According to RFuzzy syntax:

234 T. Trigo de la Vega, P. Lopez-Garcia, and S. Muñoz-Hernández

S(p, vs) : op cond1(v1), cond2(v2), · · · , condn(vn).
P (p, vp) : op′ cond′1(v

′
1), cond

′
2(v

′
2), · · · , cond′n(v′n).

The truth value vs represents how much adequate is executing the program p sequen-
tially, and is obtained by combining the truth values of the partial conditions v1, ..., vn
with the aggregation operator op. Similarly, vp represents how much adequate is exe-
cuting the program p in parallel. The bigger factor (S or P) will point out the selected
execution (sequential or parallel).

In order to test the behavior of our method we have developed a set of conditions
comparing a set of values of execution times {T l

p, T
m
p , T u

p , T
l
s, T

m
s , T u

s } by pairs (where
the superscript m represents an average value). The comparison that each condition
makes is calculated with the fuzzy relations quite greater and rather greater, whose
definitions are (illustrated in Fig. 1):

quite greater(X) =

⎧⎨
⎩

0 if X ≤ −7
X+7
15 if −7 < X < 8

1 if X ≥ 8

rather greater(X) =

⎧⎨
⎩

0 if X ≤ −14
X+14
29 if −14 < X < 15

1 if X ≥ 15

We also use the relative harmonic difference, an experimental relation described in [14]

as follows: harmonic diff(X,Y) = (X − Y) ∗ (1/X + 1/Y)/2. We have selected
this relation because it compares two numbers in a relative and symmetric way, i.e.:
harmonic diff(X,Y) = −harmonic diff(Y,X). The harmonic difference only
works well for positive numbers, but as we are working with execution times, it is
enough for our purposes.

These fuzzy relations can be redefined with different bounds, although in this pro-
totype we have only used the values 0, 7 and 14. These bounds have been selected ac-
cording to the magnitude of the execution times that we provide for the programs (see
Figures 2 to 7) in order to obtain significant results depending on the selected fuzzy
relation.

5.2 Heuristic Comparison

We now discuss the assessment of our prototype using different aggregation operators.
We have defined a benchmarks suite in terms of several characteristics. They are il-
lustrated in Figures 2 to 7, which show the name of the program, lower bounds on
sequential (T l

s) and parallel (T l
p) execution times, average sequential (Tm

s) and parallel
(Tm

p) execution times, and upper bounds on sequential (T u
s) and parallel (T u

p) execu-
tion times. All the times are given in microseconds. Each figure illustrate both, parallel
and sequential executions (in horizontal), and the intervals for all execution times de-
fined by the mentioned upper and lower bounds (in vertical). The benchmarks have
been created to cover all relevant cases in order to evaluate whether our fuzzy condi-
tions select the optimal type of execution. Obviously, in real cases, the execution times

A Fuzzy Approach to Resource Aware Automatic Parallelization 235

Fig. 2. Program p1. T l
s = 400, Tm

s = 600,
T u
s = 800, T l

p = 100, Tm
p = 175, T u

p = 250.
Fig. 3. Program p2. T l

s = 50, Tm
s = 175,

T u
s = 300, T l

p = 350, Tm
p = 550, T u

p = 750.

Fig. 4. Program p3. T l
s = 250, Tm

s = 525,
T u
s = 800, T l

p = 300, Tm
p = 375, T u

p = 450.
Fig. 5. Program p4. T l

s = 50, Tm
s = 150,

T u
s = 250, T l

p = 100, Tm
p = 325, T u

p = 550.

Fig. 6. Program p5. T l
s = 200, Tm

s = 400,
T u
s = 600, T l

p = 200, Tm
p = 325, T u

p = 450.
Fig. 7. Program p6. T l

s = 150, Tm
s = 325,

T u
s = 500, T l

p = 100, Tm
p = 275, T u

p = 450.

236 T. Trigo de la Vega, P. Lopez-Garcia, and S. Muñoz-Hernández

Table 1. Aggregation operators execution times (in microseconds)

Prog.
Aggregation Operator
max dprod dluka

p1 1.23 1.11 1.04
p2 0.42 0.51 0.45
p3 0.93 0.88 0.88
p4 0.43 0.51 0.45
p5 0.62 0.76 0.63
p6 0.56 0.62 0.57

average 0.70 0.73 0.67

would be estimated at compile-time by a program analyzer like those of integrated in
the Ciao/CiaoPP system [6,4,14]. For simplicity, we refer to the fuzzy set as gt, and to
the relative harmonic difference relation as hd.

The rules of fuzzy logic for calculating the certainty factors Pi and Si, for program
pi, 1 ≤ i ≤ 7 (see Tables 2-3), have been composed using several aggregation operators
but the results have shown that only the t-conorms max (max), Lukasiewicz (dluka)
and sum (dprod) are correct (i.e., they always suggest the optimal type of execution)
so we do not show the rest of the tested operations1 in the results. We have seen how
the three t-conorms max (max), Lukasiewicz (dluka) and sum (dprod) have the same
behavior. Thus, in order to chose one of these aggregation operators, we have followed
the criteria of the one more efficiently evaluated. In this sense, we have measured the
execution time of evaluating the condition P1 for each program using the three oper-
ators. These execution times have been obtained over an Intel platform (Intel Pentium
4 CPU 2.60GHz). They are shown in Table 1. The first column shows the name of the
program (illustrated in Figures 2 to 7) and the three next ones, the aggregation oper-
ators. Each row shows the execution time (in microseconds) of the evaluation of the
condition P1 (see Tables 2-3) for the program using the three mentioned operators. The
last row contains, for each operator, an average value on the execution time of evalu-
ating such condition for all the programs. As we can see, the results are very similar
for the aggregation operators max and dluka while for dprod they are almost always
bigger. Although max is a little bit less efficient (on average) than dluka, max seems
to be the best option due to its simplicity.

The whole set of proposed certainty factors and the results for each approach are
shown in Tables 2-3. They correspond to the case of parallelizing a sequential program
(i.e., where the action taken by default when there is no evidence towards executing in
parallel is to execute sequentially). We have performed the experiments for two different
levels of flexibility using the fuzzy relations quite greater (Table 2) and rather greater
(Table 3). Both tables show similar data. The first column (Pr.) shows the name of the
program. The second column (Op.) shows what would be the right (optimal) decision
about the type of execution that should be performed, either parallel (Pa.) or sequential
(Se.). The rest of the columns contain the results of evaluating the conditions. Columns
3 and 4 contain the results obtained using the conservative approach (Clas. Logic),

1 The rest of the tested operations are: min, luka and prod.

A Fuzzy Approach to Resource Aware Automatic Parallelization 237

while columns 5-18 contain the results obtained using our proposed conditions based on
fuzzy logic (Fuzzy Logic). Each column in the later group of columns corresponds
to a different fuzzy condition. Si and Pi, for 1 ≤ i ≤ 7, are the truth values obtained
for the certainty factors of the sequential and parallel executions of the program pi
respectively. The selected type of executions (using the process explained in Section 4.1,
i.e., if Pi > Si then execute in parallel, otherwise execute sequentially) are highlighted.
The decisions made by using the fuzzy conditions are always the optimal ones for these
experiments. However, the conservative approach (classical logic) disagrees with the
optimal ones in half of the cases.

For example, the condition T u
p ≤ T l

s holds for program p1 (see Fig. 2), i.e., the
truth value Pc takes the value 1. Thus, the parallel execution of p1 is more efficient than
the sequential one. In this case, both the conservative approach (classical logic) and the
fuzzy logic approach agree in that the execution of p1 should be in parallel. The converse
condition (T u

s ≤ T l
p) holds for program p2, i.e., the truth value Sc takes the value 1 (see

Fig. 3), and thus, the optimal action is executing it sequentially. In this case, also both
approaches agree in that the execution of p2 should be sequentially.

For programs 3-6, both of the classical logic truth values (Pc and Sc) are always
zero, which means that (by default) the suggested type of execution is sequential for all
of these programs. However, from Figures 4, 5, 6 and 7, we can see that in most cases
the optimal decision is to execute these programs in parallel. For example, consider
program p3 (see Fig. 4). We have that for this program, T u

p = 450 μs and T l
s = 250 μs,

and thus T u
p ≤ T l

s does not hold. The decision of executing p3 sequentially made by
classical logic is safe. However, in this case, since T u

s = 800 μs, assuming that p3 is run
a significant number of times, we have that on average, executing p3 in parallel would
be more efficient than executing it sequentially. Unlike the classical logic conditions our
proposed fuzzy approach selects the optimal type of execution for p3: its two subtasks
should be executed in parallel. Program p4 (see Fig. 5) represents the opposite case.
In this case T u

s = 250 μs and T l
p = 100 μs so T u

s ≤ T l
p does not hold. But in this

case T u
p = 550 μs and T u

s = 250 μs. Thus, the best choice seems to be executing p4
sequentially. Using classical logic, the selected execution is sequential, the one selected
by default when none of the sufficient conditions Pc nor Sc hold. Using fuzzy logic the
selected execution is also sequential. However our conditions provide enough evidences
that support the decision of executing sequentially.

In the situations illustrated by programs p5 and p6 (see Figures 6 and 7) it is not so
clear what type of execution should be selected. For program p5 we have that T u

p =

450 μs and T l
s = 200 μs. Thus, since the sufficient condition T u

p ≤ T l
s for executing

in parallel does not hold, it seems that the program should be executed sequentially.
However, since T l

p = 200 μs and T u
s = 600 μs, the sufficient condition T u

s ≤ T l
p

for executing sequentially does not hold either. Now, using our fuzzy logic approach,
taking the four values T l

p, T
u
p , T

l
s and T u

s into account, a certainty factor of nearly 0.5
suggests that the best choice is to execute p5 in parallel.

For program p6 (see Fig. 7), none of the sufficient conditions T u
p ≤ T l

s and T u
s ≤ T l

p

(for selecting parallel and sequential execution respectively) hold. However, since T u
p ≤

T u
s and T l

p ≤ T l
s hold, it is clear that the execution time of the sequential execution is

going to belong to an interval whose limits are bigger than the limits of the parallel

238 T. Trigo de la Vega, P. Lopez-Garcia, and S. Muñoz-Hernández

Table 2. Selected types of executions using classical and fuzzy logic with quite greater

Pr. Op.

Clas. Logic Fuzzy Logic

greater quite greater

Classical Fuzzy 1 Fuzzy 2 Fuzzy 3 Fuzzy 4 Fuzzy 5 Fuzzy 6 Fuzzy 7

Pc Sc P1 S1 P2 S2 P3 S3 P4 S4 P5 S5 P6 S6 P7 S7

p1 Pa. 1 0 0.73 0.48 0.73 0.48 0.73 0.48 0.57 0.35 0.57 0.35 0.57 0.35 0.57 0.36

p2 Se. 0 1 0.48 0.93 0.49 0.93 0.49 0.93 0.34 0.58 0.33 0.59 0.34 0.58 0.31 0.58

p3 Pa. 0 0 0.56 0.54 0.58 0.54 0.58 0.54 0.48 0.44 0.48 0.44 0.48 0.44 0.47 0.44

p4 Se. 0 0 0.5 0.61 0.5 0.61 0.5 0.61 0.41 0.52 0.41 0.52 0.41 0.52 0.41 0.52

p5 Pa. 0 0 0.54 0.53 0.55 0.53 0.55 0.53 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45

p6 Pa. 0 0 0.56 0.52 0.56 0.52 0.56 0.52 0.48 0.45 0.48 0.45 0.48 0.45 0.48 0.45

Table 3. Selected types of executions using classical and fuzzy logic with rather greater

Pr. Op.

Clas. Logic Fuzzy Logic

greater rather greater

Classical Fuzzy 1 Fuzzy 2 Fuzzy 3 Fuzzy 4 Fuzzy 5 Fuzzy 6 Fuzzy 7

Pc Sc P1 S1 P2 S2 P3 S3 P4 S4 P5 S5 P6 S6 P7 S7

p1 Pa. 1 0 0.62 0.49 0.62 0.49 0.62 0.49 0.53 0.42 0.53 0.42 0.53 0.42 0.54 0.42

p2 Se. 0 1 0.49 0.72 0.49 0.72 0.49 0.72 0.41 0.54 0.41 0.55 0.41 0.54 0.4 0.54

p3 Pa. 0 0 0.53 0.52 0.54 0.52 0.54 0.52 0.49 0.47 0.49 0.47 0.49 0.47 0.48 0.47

p4 Se. 0 0 0.5 0.55 0.5 0.55 0.5 0.55 0.45 0.51 0.45 0.51 0.45 0.51 0.45 0.51

p5 Pa. 0 0 0.52 0.51 0.52 0.51 0.52 0.51 0.48 0.47 0.48 0.47 0.48 0.47 0.48 0.47

p6 Pa. 0 0 0.53 0.51 0.53 0.51 0.53 0.51 0.49 0.47 0.49 0.47 0.49 0.47 0.49 0.47

Conditions (certainty factors):

Pc = T u
p ≤ T l

s

Sc = T u
s ≤ T l

p

P1 = max(gt(T l
s/T

u
p), gt(T

l
s/T

l
p), gt(T

m
s /Tm

p))
S1 = max(gt(T l

p/T
u
s), gt(T

l
p/T

l
s), gt(T

m
p /Tm

s))
P2 = max(gt(T l

s/T
u
p), gt(T

l
s/T

l
p), gt(T

u
s /T

u
p))

S2 = max(gt(T l
p/T

u
s), gt(T

l
p/T

l
s), gt(T

u
p /T

u
s))

P3 = max(gt(T l
s/T

u
p), gt(T

l
s/T

l
p), gt(T

m
s /Tm

p), gt(T u
s /T

u
p))

S3 = max(gt(T l
p/T

u
s), gt(T

l
p/T

l
s), gt(T

m
p /Tm

s), gt(T u
p /T

u
s))

P4 = rel hd(0.5 ∗ hd(Tm
s , Tm

p) + 0.25 ∗ hd(T u
s , T

u
p) + 0.25 ∗ hd(T l

s, T
l
p))

S4 = rel hd(0.5 ∗ hd(Tm
p , Tm

s) + 0.25 ∗ hd(T u
p , T

u
s) + 0.25 ∗ hd(T l

p, T
l
s))

P5 = rel hd((hd(Tm
s , Tm

p) + hd(T u
s , T

u
p) + hd(T l

s, T
l
p))/3)

S5 = rel hd((hd(Tm
p , Tm

s) + hd(T u
p , T

u
s) + hd(T l

p, T
l
s))/3)

P6 = rel hd(0.25 ∗ hd(Tm
s , Tm

p) + 0.5 ∗ hd(T u
s , T

u
p) + 0.25 ∗ hd(T l

s, T
l
p))

S6 = rel hd(0.25 ∗ hd(Tm
p , Tm

s) + 0.5 ∗ hd(T u
p , T

u
s) + 0.25 ∗ hd(T l

p, T
l
s))

P7 = rel hd(0.25 ∗ hd(Tm
s , Tm

p) + 0.25 ∗ hd(T u
s , T

u
p) + 0.5 ∗ hd(T l

s, T
l
p))

S7 = rel hd(0.25 ∗ hd(Tm
p , Tm

s) + 0.25 ∗ hd(T u
p , T

u
s) + 0.5 ∗ hd(T l

p, T
l
s))

execution. Thus, is it more likely that the execution time of the parallel execution be
less than the execution time of the sequential one, so that the right decision seems to
execute p6 in parallel. We can see that our proposed fuzzy conditions also suggests the
parallel execution.

A Fuzzy Approach to Resource Aware Automatic Parallelization 239

Finally, we can see that in those cases in which classical logic suggests a type of
execution (sequential or parallel) with truth value 1, our fuzzy logic approach suggests
the same type of execution too.

5.3 Selected Fuzzy Condition

Tables 2-3 show that all the fuzzy conditions (Fuzzy 1-7) select the same type of ex-
ecution (sequential or parallel) independently of the fuzzy set used, either quite greater
or rather greater. Our goal is to use the best (according to some criteria) fuzzy con-
dition able to detect those situations where the parallel execution is faster than the se-
quential one on average, such that a conservative (safe) approach is not able to detect it
but the fuzzy approach is. Approaches Fuzzy 1, 2 and 3 suggest parallel execution
with greater evidence than Fuzzy 4, 5, 6 and 7 for both fuzzy sets, quite greater
(Table 2) and rather greater (Table 3). As we are interested in suggesting to execute in
parallel with evidences as bigger as possible we rule out the later subset of conditions
and we focus our attention in the former set. Now, both Fuzzy 2 and 3 obtain the
same values in all cases. Furthermore they provide higher evidences for parallel exe-
cution than the condition Fuzzy 1. This fact can be seen in programs p3 and p5. As
Fuzzy 2 is a subset of Fuzzy 3, evaluating the first one is more efficient than the
second one (the Fuzzy 3 condition has one more comparison). Thus, the condition
that we have selected is Fuzzy 2:

P2 = max(gt(T l
s/T

u
p), gt(T

l
s/T

l
p), gt(T

u
s /T

u
p))

This condition obtains a better average case behavior by relaxing decision conditions
(and possibly losing some precision in some cases). There may be cases in which our
approach will select the slowest execution, however it will select the fastest one in a
bigger number of cases. This tradeoff between safety and efficiency makes this new
approach only applicable to non-critical systems, where no constraints about execution
times must be met, and a wrong decision in a particular case will only cause a slow-
down which is admissible. The fuzzy approach for sequentializing a parallel program is
symmetric to the problem of parallelizing a sequential program. The condition that we
have selected for the former is:

S2 = max(gt(T l
p/T

u
s), gt(T

l
p/T

l
s), gt(T

u
p /T

u
s))

5.4 Decisions Progression

Focusing on program p3 and using the fuzzy set quite greater with the selected fuzzy
model (in Section 5.3) we have developed an incremental experiment whose results are
shown in Table 4. The main goal is to see how with this fuzzy logic approach we can
select the optimal execution in those cases in which the conservative approach is not
able to give a conclusion, and also, how our fuzzy logic approach detects all situations
(safely) detected optimal by the conservative approach. Fig. 8 shows all the execution
scenarios. The sequential execution times are fixed, while the parallel execution ones
depend on each scenario. The later are represented by pairs (T l

p(i), T
u
p (i)) where i is the

240 T. Trigo de la Vega, P. Lopez-Garcia, and S. Muñoz-Hernández

Fig. 8. Progression of executions of the example program p3

Table 4. Progression of decisions using the fuzzy set quite greater

Execution Op.
Clas. Logic Fuzzy Logic

greater quite greater
Classical Fuzzy 2
Pc Sc P2 S2

p3 execution1 Pa. 1 0 0.68 0.49
p3 execution2 Pa. 0 0 0.64 0.5
p3 execution3 Pa. 0 0 0.61 0.52
p3 execution4 Pa. 0 0 0.6 0.53
p3 execution5 Pa. 0 0 0.58 0.54
p3 execution6 Pa. 0 0 0.57 0.56
p3 execution7 Se. 0 0 0.56 0.57
p3 execution8 Se. 0 0 0.55 0.58
p3 execution9 Se. 0 0 0.54 0.6
p3 execution10 Se. 0 0 0.54 0.61
p3 execution11 Se. 0 0 0.53 0.62
p3 execution12 Se. 0 0 0.53 0.64
p3 execution13 Se. 0 0 0.52 0.65
p3 execution14 Se. 0 0 0.52 0.66
p3 execution15 Se. 0 1 0.52 0.68

A Fuzzy Approach to Resource Aware Automatic Parallelization 241

concrete case. The parallel execution times of each scenario are the times of the previous
one plus 50 units, in order to appreciate the progression. The times of the first scenario
are T l

p(1) = 100 μs and T u
p (1) = 250 μs. Pc, Sc, P2 and S2 are defined as in Tables 2-

3. According to classical logic we can see how only when Pc = 1 or Sc = 1 we obtain
a justified answer (i.e., that the program must be executed in parallel or sequentially
respectively). In the rest of the cases the selected type of execution is sequential by
default, since we are following the philosophy of parallelizing a sequential program,
and there are no evidences towards either type of execution. On the other hand, fuzzy
logic always selects the optimal execution supported by evidences.

5.5 Experiments with Real Programs

The former experiments (Section 5.2) have shown that our fuzzy granularity control
framework is able to capture which is the optimal type of execution on average. More-
over, in order to ensure that our approach can be applied in practice, we have performed
some experiments with real programs (and real execution times). The experimental as-
sessment have been made over an UltraSparc-T1, 8 cores x 1GHz (4 threads per core),
8GB of RAM, SunOS 5.10.

We have tested the fuzzy model selected in Section 5.3, so that only upper and lower
bounds on (parallel and sequential) execution times were needed. Sequential execution
times have been measured directly over the execution platform (executing the worst
and best possible cases) while the parallel ones have been estimated as we explain in
the following.

There are different ways of executing a task in parallel depending on the scheduling.
The highest parallel execution time will be the one with the worst scheduling (i.e., the
one in which the cores are idle as much as possible). Consider a task g = g1, . . . , gn
such that subtasks g1, . . . , gn are candidates for parallel execution. Assume that the
number of cores of the processor is denoted as p, and the relation �n/p� is denoted as
k. We consider two different overheads of parallel execution: (a) the time needed for
creating n parallel tasks, called Create(n), and (b) an upper bound on the time taken
from the point in which a parallel subtask gi is created until its execution is started
by a processor, denoted as SysOverheadi. Both types of overheads have been exper-
imentally measured for the execution platform. For the first one, we have measured
directly the time of creating p threads. The second one has been obtained by using the
expression (Seq/2) − Par, where Seq and Par are the measured execution times of
a program consisting of two perfectly balanced tasks running with one and two threads
respectively. Assume that Tsi represents the cost (execution time) of the execution of
subtask gi and that Ts1, T s2, ..., T sn are in descending order of cost. Then, we can
estimate lower and upper bounds on the parallel execution time of task g (T l

p and T u
p

respectively) as follows:
T l
p = T l

s/p . (1)

T u
p = Create(p) +

k∑
i=1

(SySoverheadi + T u
si) . (2)

242 T. Trigo de la Vega, P. Lopez-Garcia, and S. Muñoz-Hernández

Table 5. Selected executions for real programs using the fuzzy set quite greater

Execution Op.
Clas. Logic Fuzzy Logic

Speedupgreater quite greater
Classical Fuzzy 2
Pc Sc P2 S2

qsort(250) Pa. 0 0 0.6 0.53 1.66
qsort(500) Pa. 0 0 0.6 0.53 1.74
qsort(750) Pa. 0 0 0.6 0.53 1.74

qsort(1000) Pa. 0 0 0.6 0.53 1.75
qsort(1250) Pa. 0 0 0.6 0.53 1.71

substitute(0) Se. 0 0 0.53 0.53 1.0
substitute(10) Se. 0 0 0.6 0.65 1.0
substitute(20) Se. 0 0 0.6 0.59 0.97
substitute(30) Pa. 0 0 0.6 0.57 1.09
substitute(40) Pa. 0 0 0.6 0.56 1.22
substitute(50) Pa. 0 0 0.6 0.56 1.32
substitute(60) Pa. 0 0 0.6 0.55 1.39
substitute(70) Pa. 0 0 0.6 0.55 1.47
substitute(80) Pa. 0 0 0.6 0.55 1.51
substitute(90) Pa. 0 0 0.6 0.54 1.55

substitute(100) Pa. 0 0 0.6 0.54 1.59
substitute(110) Pa. 0 0 0.6 0.54 1.62
substitute(120) Pa. 0 0 0.6 0.54 1.64
substitute(200) Pa. 0 0 0.6 0.54 1.77

fib(1) Se. 0 0 0.53 0.53 1.0
fib(2) Se. 0 0 0.6 0.59 0.64
fib(3) Se. 0 0 0.6 0.56 0.82
fib(4) Pa. 0 0 0.6 0.53 1.04
fib(5) Pa. 1 0 0.6 0.52 1.0
fib(6) Pa. 1 0 0.6 0.51 1.0
fib(7) Pa. 1 0 0.6 0.51 1.0
fib(8) Pa. 1 0 0.6 0.51 1.0
fib(9) Pa. 1 0 0.6 0.5 1.0

fib(10) Pa. 1 0 0.6 0.5 1.0
fib(11) Pa. 1 0 0.6 0.5 1.0
fib(12) Pa. 1 0 0.6 0.5 1.0
fib(13) Pa. 1 0 0.6 0.5 1.0
fib(14) Pa. 1 0 0.6 0.5 1.0

hanoi(1) Se. 0 0 0.53 0.53 1.0
hanoi(2) Se. 0 0 0.6 1 1.0
hanoi(3) Se. 0 0 0.6 0.9 1.0
hanoi(4) Se. 0 0 0.6 0.68 1.0
hanoi(5) Se. 0 0 0.6 0.58 0.94
hanoi(6) Pa. 0 0 0.6 0.53 1.28
hanoi(7) Pa. 1 0 0.6 0.51 1.0
hanoi(8) Pa. 1 0 0.6 0.5 1.0
hanoi(9) Pa. 1 0 0.6 0.5 1.0

hanoi(10) Pa. 1 0 0.6 0.5 1.0
hanoi(11) Pa. 1 0 0.6 0.5 1.0
hanoi(12) Pa. 1 0 0.6 0.5 1.0
hanoi(13) Pa. 1 0 0.6 0.5 1.0
hanoi(14) Pa. 1 0 0.6 0.5 1.0

A Fuzzy Approach to Resource Aware Automatic Parallelization 243

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200 400 600 800 1000 1200 1400

E
xe

cu
tio

n
tim

e
(m

s)

Input data size (list length)

Classic
Fuzzy

Fig. 9. Qsort selected executions

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200

E
xe

cu
tio

n
tim

e
(m

s)

Input data size (list length)

Classic
Fuzzy

Fig. 10. Substitute selected executions

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16 18

E
xe

cu
tio

n
tim

e
(m

s)

Input data size (integer value)

Classic
Fuzzy

Fig. 11. Fibonacci selected executions

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14

E
xe

cu
tio

n
tim

e
(m

s)

Input data size (integer value)

Classic
Fuzzy

Fig. 12. Hanoi selected executions

Table 5 shows the experimental results. The first four columns show the same infor-
mation as in Tables 2-3, although in Table 5, the first column refers to real benchmarks,
namely: qsort(n) sorts a list of n random elements; substitute(n) replaces by
2 the x’s that appears in an expression of the form (x + x · · ·) composed by n +’s and
n+1 x’s; fib(n) obtains the nth Fibonacci number; and hanoi(n) solves the Tow-
ers of Hanoi problem with 3 rods and n disks. Pc, Sc, P2 and S2 are also defined as
in Tables 2-3. Note that in this case, in order to determine the optimal execution, both
sequential and parallel execution times have been measured directly over the platform.
The last column shows the speedup of our fuzzy approach with respect to the conser-
vative approach: speedup = Tc

Tf
, where Tc is the time of the selected execution using

the conservative approach and Tf is the time of the selected execution using our fuzzy
approach. A value bigger than one of speedup means that the execution selected with
our approach is faster than the one selected by the conservative one.

We can distinguish two main sets of cases in Table 5: on one hand qsort and sub-
stitute, and on the other hand fib and hanoi. In the first set the upper bound on the
sequential execution time is different from the lower bound whereas in the second set,
both bounds are equal. This is understandable, since the execution time for the first set
of cases not only depends on the length of the input list, but also on the values of its el-
ements. Thus, for a given list length, there may be different execution times, depending
on the actual values of the lists with such length. However, in the second set of cases,
the execution time only depends on the size (using the integer value metric) of the input
argument, and all executions for the same input data size take the same execution time.

244 T. Trigo de la Vega, P. Lopez-Garcia, and S. Muñoz-Hernández

Our approach provides better average case behavior than the conservative approach in
both cases.

Figures 9, 10, 11 and 12 show, in detail, how both approaches work in particular
cases in a graphical way. Input has the same meaning that in previous Table 5 and exe-
cution times are presented in milliseconds. In all the figures the conservative approach is
called Classic and represented with a stars line while our approach is called Fuzzy
and its symbol is a white square.

Figures 11 and 12 show how both approaches have nearly the same behavior for all
the tested cases for fibonacci and hanoi. In fact, at this scale, the scarce cases
in which there is a slowdown (see Table 5) cannot be appreciated. Figure 9 show the
behavior for qsort and substitute. It is clear how the times of the executions
selected by our approach are smaller (except in a small number of cases that is insignif-
icant), and how the difference between both approaches becomes bigger when input
data sizes increase.

6 Conclusions

We have applied fuzzy logic to the program optimization field, in particular, to au-
tomatic granularity control in parallel/distributed computing. We have derived fuzzy
conditions for deciding whether to execute some tasks in parallel or sequentially, using
information about the cost of tasks and parallel execution overheads.

We have performed an experimental assessment of the fuzzy conditions and iden-
tified the ones that have the best average case behavior. We have also compared our
proposed fuzzy conditions with existing sufficient (conservative) ones for performing
granularity control. Our experiments showed that the proposed fuzzy conditions result
in better program optimizations (on average) than the conservative conditions. The con-
servative approach ensures that execution decisions will never result in a slowdown, but
loses some parallelizations opportunities (and thus, no speedup is obtained). In contrast,
the fuzzy approach makes a better use of the parallel resources and although fuzzy con-
ditions can produce slowdown for some executions, the whole computation benefits
from some speedup on average (always preserving correctness). Of course, the fuzzy
approach is applicable in scenarios where the no slowdown property is not needed, as
for example video games, text processors, compilers, etc.

Experiments performed with real programs (and real execution times) have demon-
strated that our approach can be successfully applied in practice. We intend to perform
a more rigorous and broad assessment or our approach, by applying it to larger real life
programs and using fully automatic tools for estimating execution times.

Although a lot of work still remains to be done, the preliminary results are very
encouraging and we believe that it is possible to exploit all the potential offered by
multicore systems by applying fuzzy logic to automatic resource aware program paral-
lelization techniques.

Acknowledgements. This research has been partially funded by the EU 7th. FP NoE
S-Cube 215483, FET IST-231620 HATS, MICINN TIN-2008-05624 DOVES and CM
project P2009/TIC/1465 PROMETIDOS. Teresa Trigo has been supported by CAM
grant CPI/0621/2008.

A Fuzzy Approach to Resource Aware Automatic Parallelization 245

References

1. Baldwin, J.F., Martin, T., Pilsworth, B.: Fril: Fuzzy and Evidential Reasoning in Artificial
Intelligence. John Wiley & Sons (1995)

2. Debray, S.K., Lin, N.W., Hermenegildo, M.: Task Granularity Analysis in Logic Programs.
In: Proc. of the 1990 ACM Conf. on Programming Language Design and Implementation,
pp. 174–188. ACM Press (June 1990)

3. Guadarrama, S., Muñoz, S., Vaucheret, C.: Fuzzy Prolog: A new Approach Using Soft Con-
straints Propagation. Fuzzy Sets and Systems FSS144(1), 127–150 (2004) iSSN 0165-0114

4. Hermenegildo, M., Puebla, G., Bueno, F., López-Garcı́a, P.: Integrated Program Debugging,
Verification, and Optimization Using Abstract Interpretation (and The Ciao System Prepro-
cessor). Science of Computer Programming 58(1–2) (2005)

5. Hermenegildo, M., Rossi, F.: Strict and Non-Strict Independent And-Parallelism in Logic
Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal of Logic Pro-
gramming 22(1), 1–45 (1995)

6. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Morales, J.F., Puebla, G.: An Overview
of the Ciao Multiparadigm Language and Program Development Environment and its Design
Philosophy. In: Degano, P., De Nicola, R., Bevilacqua, V. (eds.) Concurrency, Graphs and
Models. LNCS, vol. 5065, pp. 209–237. Springer, Heidelberg (2008)

7. Huelsbergen, L., Larus, J.R., Aiken, A.: Using Run-Time List Sizes to Guide Parallel Thread
Creation. In: Proc. ACM Conf. on Lisp and Functional Programming (June 1994)

8. Ishizuka, M., Kanai, N.: Prolog-ELF incorporating fuzzy logic. In: IJCAI, pp. 701–703
(1985)

9. Kruatrachue, B., Lewis, T.: Grain Size Determination for Parallel Processing. IEEE Software
(January 1988)

10. Lee, R.: Fuzzy logic and the resolution principle. Journal of the Association for Computing
Machinery 19(1), 119–129 (1972)

11. Li, D., Liu, D.: A Fuzzy Prolog Database System. John Wiley & Sons, New York (1990)
12. López-Garcı́a, P., Hermenegildo, M., Debray, S.K.: A Methodology for Granularity Based

Control of Parallelism in Logic Programs. Journal of Symbolic Computation, Special Issue
on Parallel Symbolic Computation 21(4–6), 715–734 (1996)

13. McGreary, C., Gill, H.: Automatic Determination of Grain Size for Efficient Parallel Pro-
cessing. Communications of the ACM 32 (1989)

14. Mera, E., López-Garcı́a, P., Carro, M., Hermenegildo, M.: Towards Execution Time Estima-
tion in Abstract Machine-Based Languages. In: 10th Int’l. ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming (PPDP 2008), pp. 174–184. ACM Press
(July 2008)

15. Pablos-Ceruelo, V., Strass, H., Muñoz Hernández, S.: Rfuzzy—a framework for multi-
adjoint fuzzy logic programming. In: Annual Meeting of the North American of Fuzzy In-
formation Processing Society, NAFIPS 2009, pp. 1–6 (June 2009)

16. Zhong, X., Tick, E., Duvvuru, S., Hansen, L., Sastry, A., Sundararajan, R.: Towards an Ef-
ficient Compile-Time Granularity Analysis Algorithm. In: Proc. of the 1992 International
Conference on Fifth Generation Computer Systems, Institute for New Generation Computer
Technology (ICOT), pp. 809–816 (June 1992)

Fuzzy and Fractal Technology in Market Analysis

Petr Kroha and Marcus Lauschke

Department of Computer Science, University of Technology,
Strasse der Nationen 62, 09111 Chemnitz, Germany

kroha@informatik.tu-chemnitz.de, m.lauschke@gmx.de
http://www.tu-chemnitz.de/informatik/ISST

Abstract. In this contribution, we describe our investigation of using fuzzy and
fractal technology for analysing time series of market data. For having a compar-
izon, we implemented the commonly accepted technical indicator method. Then,
we implemented and tested a fuzzy component that provides fuzzyfication by the
Mamdani Larsen inference method with static rules using not only Gauss but also
Cauchy and Mandelbrot distribution. In the sequel, we implemented and tested
a fractal component that provides fuzzy clustering by the Takagi Sugeno method
with dynamic fuzzy rules. Looking for an optimum, we simulated many param-
eter combinations and compared the results. We compared the results obtained
and present some interesting results of our experiments.

Keywords: Time series of market data, Technical indicators, Fuzzy controller,
Static fuzzy rules, Mamdani Larsen method, Dynamic fuzzy rules, Takagi Sugeno
method.

1 Introduction

Currently, it is not difficult to collect and store very large data representing time series.
However, there is a question whether it is possible to extract any information usable for
trend forecasting (meteorology, biology, seismology, finance) and how to do it.

Data about financial markets is very interesting. There are large time series available
and the eventually obtained forecast can be easily tested. The question is whether a
forecast exists, of course.

There are different hypotheses about processes in markets. Under Efficient market
hypothesis [6], [18], markets were assumed to be efficient in the sense that prices re-
flected all current information that could anticipate future events. There is a statistical
requirement that market returns were normally distributed as white noise. This tradi-
tional capital market theory has been modeled by probabilities since the first approach
in [1] (originally published in 1900 as Ph.D. Thesis).

More recently, Markowitz [19], [20] used the standard deviation as a measure of the
risk of investment, and the covariance of returns as a measure of diversification of in-
vestment, where uncorrelated or negative correlated stocks reduced the risk of portfolio.
The next famous work based on probabilities is Black-Scholes option pricing model [2].

Later, some anomalies in market development have been found. They were explained
by the fact that different investors have different access to information (e.g. insiders

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 247–260.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

http://www.tu-chemnitz.de/informatik/ISST

248 P. Kroha and M. Lauschke

know more), different investment horizon (short-term investors, long-term investors),
and different interpretation procedures. Based on these phenomenons, an Inefficient
market hypothesis was formulated [24] but the anomalies cannot be modeled easily.

The probability model of markets used in [6], [19], [2] has one advantage and one
disadvantage:

– The advantage is that it can be simply described by tools for Gaussian statistics.
– The disadvantage is that the measured data, i.e. the market returns, are not dis-

tributed normally. Using the current computer technology and the known time se-
ries (e.g. 103-years known daily prices of Dow Jones Industrial), the difference
between the theoretically supposed distribution and the distribution found by ex-
periments is very significant. This was documented in many works starting with
Mandelbrot [17], [21] and others. Compared to normal distribution, the real dis-
tribution of market returns is characterized by asymmetry, by higher peaks at the
mean and fatter tails that do not converge to zero.

The Fractal market hypothesis [21], [22] places no statistical requirements on the mar-
ket development process. The goal is to include the investor behavior and to find a
model that fits to observated time series. The components of investor behavior are in-
vestment horizon and crowd behavior. Investors have different horizons of investment.
Hence, they have different strategies for buying and selling. Further, there are panics
and stampedes caused by the known crowd behavior of investors. It has been found
that markets have a memory and their behavior is not characterized by white noise (no
memory) as suggested in [6] but by black noise [21].

All investors are interested in the prediction of market movements. Short-term in-
vestors follow technical analysis, long-term investors follow fundamental analysis. Of-
ten a combination of both approaches will be used.

Theoretically, market movements cannot be predicted succesfully as both efficient
market theory and fractal market theory say. But there is not only local noise. Also, non-
regular and non-periodic global deterministic movements called “trends” are present. It
is very probably not predictable when they start and how long they take. Investors try to
estimate the trend begin and the trend end and use loss-limiting strategies that control
buying and selling stocks.

In this paper, we do not discuss the possibility that the market can be intentionally
influenced by big purchases or sells. However, it is known that large investments can be
moved only to start an artificial trend and to use it.

So, the goal of such a strategy is to indicate that a trend started, resp. finished and
generate a corresponding buy signal, resp. a sell signal, in such a way that the gain
is greater than the loss in the investment horizon. To simplify the problem, we do not
discuss problems of taxes, problems of money management, problems of hedging and
other more complex strategies that are used by traders and investors. More or less,
these aspects are parts of the market parameters that change their weighting chaotically
corresponding to the changes in regulations, to the behavior and sentiment of investors.

The motivation of our project is to build controllers based on fuzzy and fractal tech-
nology and test, what can be gained with fuzzy and fractal strategies compared to the
often used strategies based on technical indicators of technical analysis.

Fuzzy and Fractal Technology in Market Analysis 249

Our original approach is that we implemented and tested not only Gauss but also
Cauchy and Mandelbrot distributions in our fuzzy component. The published fuzzy-
controllers discussed in Section 2 (Related work) use Gaussian distribution of price
deviations even though it is known that the Gaussian normal distribution does not fit to
the reality very well. We compared the results and found that the Cauchy distribution is
more efficient than the others.

Further, we implemented and tested a fractal component using fuzzy clustering and
the Takagi Sugeno method of dynamic fuzzy rules. This method brings the best results.
All methods were tested on daily prices of 100 stocks of NASDAQ100 (see Section 9
for more details).

The rest of the paper is organized as follows. In Section 2, we discuss related work.
In Section 3, we introduce the developed system. In Sections 4, 5, and 6, its components
are described. The synthesis of the components is discussed in Section 7. The goals of
our investigation are explicitly stated in Section 8. Section 9 describes the implementa-
tion, experiments, and results. In the last section we conclude.

2 Related Work

The idea that the market returns are not normally distributed is not new. It has been
published in [17]. In [5], a system using the Mamdani Larsen fuzzy inference method
is described but with the Gaussian distribution in background.

In [3], a system using the Takagi Sugeno inference method was used to calculate the
fractal dimension of a time series. We extended this approach using the Hurst exponent
and correlation quotient.

In [23], a system with technical indicators and lately a fuzzy system (using triangular
membership function) with static fuzzy rules is described. This system was tested with
data from January, 1st, 2000 to July, 7th, 2006 and documented that the fuzzy system
performed better than the system using technical indicators. In our system, we used
dynamic fuzzy rules and non-Gaussian distribution for membership function.

3 The System Developed

The main components of our system and their features:

– technical indicator component
(used MA, TBI, MACD, MAcut, dTD)

– fuzzy-control component
(ROC, stochastic indicator, and support/resistence indicator are used to get input
data for fuzzy component),
– static fuzzy rules,
– Mamdani Larsen fuzzy inference,
– defuzzyfication.

– fractal analysis component using additional input data
(fractal dimension, Hurst exponent, correlation, trend)
– fuzzy clustering and dynamic fuzzy rules (Takagi Sugeno inference method),
– interpretation of the result.

250 P. Kroha and M. Lauschke

Fig. 1. The system architecture and dataflow

– decision strategies,
– synthesis of results.

These parts will be discussed in the next sections.

4 Technical Indicators Component

Technical analysis is based on a study of patterns on charts, as well as price trends, as
well as support and resistence levels at which rising or falling trends may be halted or
reversed.

The main idea is that all information necessary to forecast the market is stored in the
existing time series. Some technical indicators have been defined to indicate a trend’s
begin, its end, and its strength. Most short-term investors use technical analysis because
it reflects the current investors’ behavior.

The effectivity of technical indicators has been investigated by [7], [8].
We have used it for two purposes:

– First, to get input parameters for the fuzzy control component (technical indica-
tors [26] used: rate of change indicator, stochastic indicator, and Support/resistance
indicator)—see Section 5.

– Second, to get input parameters for the technical indicator component (technical
indicator used: MA, TBI, MACD, MAcut, dTD)—see Section 9.2. We normalized
the used technical parameters into the interval [0..1].

5 Fuzzy Component

Fuzzyfication provides the transformation of numeric input data (sharp data) into fuzzy
data (unsharp data). Values of technical indicators such as rate of change indicator,
stochastic indicator, and Support/resistance indicator have been used as input data.

Fuzzy and Fractal Technology in Market Analysis 251

Y j
j m

Z k
k k

Fig. 2. Fuzzy component

5.1 Technical Indicators as Input for the Fuzzy Component

In this component, technical indicators will be computed to be used as basics of input
data for the fuzzy component.

Rate of Change(ROC). This indicator describes the absolute difference between the
the current stock price and the price n days ago:

sp = last closing stock price

ROC = sp(today)− sp(today − ndays)

Stochastic indicator. The main idea behind stochastic indicator is that rising price
tends to close near its previous highs, and falling price tends to close near its previ-
ous lows (definitions are given below). K - D stochastic indicatr was introduced by
Lane [15]. Usually, indicator K(nT) (denoted often as %K - fast line) und D(nT))
(denoted often as %D - slow line) are used. We computed two values for time in-
terval n, where

sp = last closing stock price

lp = the lowest price

hp = the highest price

ap = average price of m days

K(nT) =
sp(today)− lp

hp− lp
∗ 100

D(nT) =

n∑
i=n−3

K(iT)

3
;n ≥ 3

Low resp. high price means here the lowest resp. the highest stock price in the given
time interval. The lag of 3 days used in D(nT) is a value recommended by traders.
Very probably, it represents an experience that price changes older that 3 days have
a very small influence.

252 P. Kroha and M. Lauschke

Support/Resistance Indicator

sl = Support level

rl = Resistance level

sl = Avg(nT)− 2 ∗ σ(nT),
rl = Avg(nT) + 2 ∗ σ(nT),

where

σ(nT) =

√∑n
i=n−m(sp(dayi)−Avg(dayi))2

m
,

Avg(nT) = ap

=

∑n
i=n−m sp(dayi)

m

5.2 Convergence Module - More Input Parameters

In this component, the indicators mentioned above are used to generate more parame-
ters. We used the following equations from [5]:

YROC(nT) =
R(nT)−R((n− 30)T))

R((n− 30)T)
, n ≥ 30,

Yd(ROC)(nT) = YROC((n− 2)T)− YROC(nT), n ≥ 2,

YD(nT) = D(nT),

YK(nT) = K(nT),

YD−K(nT) = YD(nT)− YK(nT),

YRes(nT) = Avg(nT) + 2 ∗ σ(nT)−R(nT), n ≥ 30,

YSup(nT) = R(nT)− (Avg(nT) + 2 ∗ σ(nT)), n ≥ 30,

YAvg(nT) = R(nT)−Avg(nT), n ≥ 30,

R(nT) is the stock price on the n-th day, D(nT) und K(nT) are indicators defined
above and Avg(nT) is the average stock price during the observation time interval.

5.3 Fuzzyfication, Fuzzy Processing, and Defuzzyfication

This part of our system generates forecast using the Mamdani Larsen inference method.
The membership functions and rules are implemented as being static. The indicators
described above have been used as input parameters in a similar way as in [5].

We used 11 fuzzy rules for fuzzyfication and the Gaussian bell function (in the
first approach - the improvement is given in Section 9.1) as the membership function
(SUP = 100 und INF = 0). The output membership function is shown in Fig. 3.

The output membership function is sent to the defuzzyfication module. We used the
center-of-area method producing a value in the interval [0..100].

Fuzzy and Fractal Technology in Market Analysis 253

Fig. 3. Output membership function

6 Fractal Analysis Component

This component uses stock prices as input data. In the part Fractal data calculation (see
Fig. 4), the following data will be computed:

– box dimension and fractal dimension,
– Hurst exponent,
– correlation,
– trend in interval.

Calculate
InputdataStockdata Fuzzyfication Fuzzy processing Forecast

data

Fuzzy clustering

Fig. 4. Fractal architecture

The fractal dimension of the time series is a real number of the interval [1;2] which
can be seen as a metric measuring how much the time series is jagged. A value near
1 means that there is a trend similar to a line, a value near 2 means that there are very
many positive or negative changes in the interval. To measure the fractal dimension,
a box covering method is used. The graph of the time series has to be covered by a
set of smallest quadratic nonoverlapping boxes of the same size. The fractal dimension
(exact: the fractal capacity dimension) is the number of such boxes that contain at least
one point of the object [3]. Then, we can calculate the fractal dimension using the
following formula:

Dim =
log10(number − of − boxes)

log10(
1

size−of−boxes)
(1)

254 P. Kroha and M. Lauschke

The box size is normalized in relation to the size of the interval.
To obtain the Hurst exponent, we first have to eliminate all linear trends from the

data. Then, we define a time interval N and find the range R and the standard deviation
S in this interval. We can derive the Hurst quotient as R

S or calculate the Hurst exponent
(values in interval [0;1]) as:

H =
log(RS)

log(N2)
(2)

Time series with H near to 1 have trends, time series with H near to 0 are near to a
white noise and no trend can be found and forecasted. The Hurst exponent has a close
relation to the fractal dimension:

Dim = 2−H (3)

The correlation quotient (value of interval [-1;1]) specifies the linear correlation be-
tween elements of the time series. A value near to 1 indicates a positive trend, values
near to −1 indicate a negative trend. The following formula (Bravais-Pearson) will be
used (x̄ is a mean value):

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
√∑n

i=1(yi − ȳ)2
(4)

The trend in an interval is calculated as the difference between the stock value at the
begin and at the end of the interval.

The fuzzy-component used for the fractal analysis subsystem (Fig. 1) uses fractal
data (fractal dimension, Hurst exponent, correlation coefficient, and trend) as input pa-
rameters. They are processed by a fuzzy control system using the Takagi Sugeno in-
ference method. The membership function and the rules are not defined as being static.
They will be found dynamically using fuzzy clustering of time series in a similar way
as in [3].

We assigned the cluster number to 4, being inspired by (low, medium, big, large).
The clustering is analysed by the c-mean clustering method. It gives us the weights aij
we need for the output function calculation. In our system, this process will be repeated
any 150 days with the last 364 data sets.

Having the membership functions given by clustering the fuzzyfication can start to
calculate the output function directly according to:

yres =

∑n
i=1 Ei ∗ (ai0 + ai1 ∗ x1 + ...+ aim ∗ xm)∑n

i=1 Ei
(5)

There are more methods available how to calculate variables Ei which denote how
much the rule Ri matches. We have used c-mean clustering that calculates Ei using

Ei =
1

(||x−ci||∑
c
k=1 ||x−ck||)

2
m−1

(6)

The value of the output function has to be qualified in some way, i.e. we have to specify
the threshold for buy and sell signals. To find some empirical values we analysed 100

Fuzzy and Fractal Technology in Market Analysis 255

stocks in the time interval 2003 − 2009. We found using simulation that is was most
effective (at least in the analysed time interval) to have +6% as a threshold that should
be crossed to generate a buy signal and −6% as a threshold for sell signal.

7 Synthesis of Component Results

In the previous parts, all three components have been described. The obtained results,
i.e. the buy and sell signals, have to be merged together as shown in Fig. 1.

First, we used the following merging formula, which we denote as absolute merging:

result = rFC +
(rT I − 0.5) ∗ 100

2
+

rFR − 50

2
(7)

where rFC is the result of fuzzy-control, rT I is the result of the technical indica-
tors, rFR is the result of the fractal component. The variable result is in the interval
[−50...150].

Second, we used the following formula, which can be denoted as mean merging:

FC = doFC ∗ rFC (8)

FI = doT I ∗ (rT I ∗ 100) (9)

FR = doFR ∗ rFR (10)

result =
FC + TI + FR

doFC + doT I + doFR
(11)

where variables doFC, doTI, and doFR have values 0 or 1 and indicate whether the
results of the fuzzy control (FC), the technical indicators (TI), and/or the fractal control
(FR) are present.

7.1 Decision Strategies

The resulting value of the whole system is a numeric one, but we need a qualitative
value for the decision. This means, we need thresholds for the definition of signals for
buy and sell. We defined two thresholds UTL (upper limit) and LTL (lower limit) and
implemented the following strategies:

– Low risk strategy - LTL = 49 and UTL = 51 - very careful but the frequency of
buy and sell can be very high.

– High risk strategy - LTL = 40 and UTL = 60 - more risk but the frequency of
buying and selling is not as high.

– Variable border - the last values (0 means all past data, 256 means the last 256 days)
have been analysed and the best combination of LTL and UTL will be used.

In Section 9, we show which decision strategy brings the best results.

256 P. Kroha and M. Lauschke

8 Goals of Our Investigation

As we stated in Section 1, market returns (exactly, increments of market returns) are
not distributed normally in real markets, even though normal distribution will be used
in routine business. We stated the following questions as objectives of our investigation:

– which parameter combination used in the technical indicator component will bring
the highest gain,

– which distribution function will bring the highest gain when used in the fuzzy-
controller,

– which tuple of fractal analysis parameters will bring the highest gain,
– which component of our system will generate the highest gain,
– which combination of components can generate more gain than each of them sep-

arately.

9 Implementation, Experiments, and Results

The presented system has been implemented in Java as a multi-threaded component of
our information system [9], [10], [11], [12], [13], [14]. A detailed description of the
design and implementation of the presented system is out of the scope of this paper and
is given completely in [16].

For our experiments with the implemented system we used time series of all stocks
from NASDAQ100 (daily prices) in the time interval from January, 1st, 2003 to October,
1st, 2009. When looking for the parameters’ value by simulation, we used an investment
of $ 10.000 and transaction costs of $ 10. The implemented system runs on Apple
MacPro with 8 cores, 8 GB of memory, and 2.26 GHz.

9.1 Non-gaussian Distribution Used in the Fuzzy Component Contribution

In the following Table 1, we can see the results, i.e., the value (in thousands of the in-
vested $ 10,000) when changing the distribution in the fuzzy-controller and the strategy.
The elapsed time was about 15 minutes.

Table 1. Results of Fuzzy-Control component

Strategy Gauss Cauchy Mandelbrot
Low Risk $ 15.3 $ 16.8 $ 14.5
High Risk $ 17.8 $ 19.9 $ 19.3
Var. Border 0 $ 17.7 $ 19.7 $ 18.3
Var. Border 256 $ 15.2 $ 14.7 $ 15.1

We found that in most cases (Table 1) the Cauchy distribution used in the fuzzy-
controller gives the best results (about 99 %) and the Gauss distribution the worst results
(about 78 %). Considering strategies, the high risk strategy results were the best.

Fuzzy and Fractal Technology in Market Analysis 257

9.2 Technical Indicators Component and Its Contribution

We used the technical indicators with the following parameters: Moving Average (17),
TBI (9,17), TBI-line = 100, MACD(12,26) - always calculated any 3 days. The highest
gain (about 60%) was achieved for the most simple merging (for variable border 0), but
it was rather small compared to fuzzy-control. Hence, we do not describe the details
about the used methods of technical indicators merging here.

9.3 Fractal Component and Its Contribution

In this experiment, we used the 6 % threshold as explained above and used the rules
recomputation, i.e. the new clustering, every 150 days. The highest gain (about 100 %)
was achieved when using the tuple [box-dimension;correlation] for fuzzy clustering.
The gain was higher than that of the other components. To get the results, we needed
about 32 minutes.

Table 2. Results of fractal component

Input Result
Box-corr $ 20,024.19
Hurst-corr $ 17,797.11
Box-Hurst-corr $ 16,038.22
Box-Hurst-corr-Trend $ 16,951.81

9.4 Synthesis of Components and Their Contributions

We just described the individual behavior of components. The next question was whether
we can get more profit when using some specific combination of the components’ re-
sults. Because of the very large number of possible combinations, the simulation allto-
gether took about 71 hours. The best gain of 88.4 % was obtained with the following
parameters of our system:

– synthesis of the components’ results = mean,
– distribution used in fuzzy-controller fuzzyfication = Cauchy,
– clustering in fractal analysis according to [Hurst exponent; correlation],
– decision strategy = high risk.

We do not discuss the details of the synthesis because we can see that the best solu-
tion is to use only the fractal component (higher gain than the combination with other
components).

9.5 Comparison with the Strategy Buy and Hold

One of the often used strategies is Buy & Hold. A stock will be bought at the begin
of the interval and sold at the end of interval. In the next experiment, we choose an
interval (21.11.2000 - 26.9.2008) in which the value of the German market index DAX
was more or less equal at the begin and at the end.

258 P. Kroha and M. Lauschke

Table 3. Comparison with Buy & Hold - Fuzzy methods, Fractal methods, and Technical
indicators

Index Buy & Hold Fuzzy Fractal Techn. Ind. The best combination
DAX 0.9365 1.2236 1.0326 1.5593 0.6884
Nasdaq100 0.6636 0.5206 0.8755 0.6306 0.7256

Then, we simulated how much an investor would have earned when using our fuzzy
or fractal controller for his/her transactions. The Table 3 contains quotients that denote
how many times the investement would have been increased. We can see that the frac-
tal method brings slightly better results than the Buy & Hold strategy but in this case
technical indicators bring good results.

The number of transactions is important, too. The Buy & Hold used only 2 trans-
actions, fuzzy approach used 7 transactions, technical indicators 70 transactions, and
fractal approach 117 transactions.

10 Conclusions

As we have discussed, market returns are not distributed normally and the Gauss distri-
bution used in our fuzzy-controller delivered the worst results. According to the Fractal
market hypothesis, non-periodical trends exist that correspond to the global determin-
ism component of the process and black noise that corresponds to the local randomness
component.

The result is that it is not possible to forecast market changes but it seems to be
possible to achieve some gain in the long-term investment when usig fuzzy or fractal
technology. Of course, we did not consider taxes but they are different in various coun-
tries and changes in time. Further, the data processing, especially in the case of fractal
analysis, is very time consuming as given above.

In the light of the recent financial crisis, we have to mention that we can only use
public data for our processing and forecasting. May be that there is a currently hidden
accounting fraud by a company like by Enron in 2001 which was named by the mag-
azine Fortune as the America’s Most Innovative Company for six consecutive years or
by Lehman & Brothers in 2008. May be that there is a currently hidden accounting
fraud by a state caused by years of unrestrained spending like in Argentina in 1999 or
in Greece in 2008. We cannot expect too much from results of public data processing
because we do not know anything about the data quality.

In further work, we will try to combine the fuzzy and fractal methods with our text
classification of market news [11], [12], [13], [14]. The goal would be to investigate
whether the result could be improved.

References

1. Bachelier, L.: Theory of speculation. In: Cootner, P. (ed.) The Random Character of
Stock Market Prices, M.I.T. Press, Cambridge (1964) (Originally published in 1900 as
Ph.D. Thesis)

Fuzzy and Fractal Technology in Market Analysis 259

2. Black, F., Scholes, M.: The Pricing of Options and Corporate Liabilities. Journal of Political
Economy (May/June 1973)

3. Castillo, O., Melin, P.: Hybrid Intelligent Systems for Time Series Prediction Using Neural
Networks, Fuzzy Logic, and Fractal Theory. IEEE Transactions on Neural Networks 13(6)
(2002)

4. Castillo, O., Melin, P.: Evolutionary design and applications of hybrid intelligent systems.
Int. J. Innovative Computing and Applications 1(1) (2007)

5. Dourra, H., Siy, P.: Investment using technical analysis and fuzzy logic. Fuzzy Sets and
Systems 127(2), 221–240 (2002)

6. Fama, E.: Efficient capital markets: A review of theory and empirical work. Journal of Fi-
nance 25, 383–417 (1970)

7. Hellstroem, T., Holmstroem, K.: Predicting the Stock Market. Technical Report Series IMa-
TOM-1997-07. Maelarden University (1997)

8. Hellstroem, T., Holmstroem, K.: Predictable Patterns in Stock Returns. Technical Report
Series IMa-TOM-1997-0. Maelarden University (1997)

9. Kroha, P., Gemeinhardt, L.: Using XML in a Web-oriented Information System. In: Tjoa,
A.M., Wagner, R.R. (eds.): Proceedings DEXA 2001, Workshop Network-Based Informa-
tion Systems, 12th International Workshop on Database and Expert Systems Applications,
pp. 217–221 (2001)

10. Kroha, P., Baeza-Yates, R.: A Case Study: News Classification Based on Term Frequency.
In: Proceedings of 16th International Conference DEXA 2005, Workshop on Theory and
Applications of Knowledge Management TAKMA 2005, pp. 428–432 (2005)

11. Kroha, P., Baeza-Yates, R., Krellner, B.: Text Mining of Business News for Forecasting.
In: Proceedings of 17th International Conference DEXA 2006, Workshop on Theory and
Applications of Knowledge Management TAKMA 2006, pp. 171–175 (2006)

12. Kroha, P., Reichel, T.: Using Grammars for Text Classification. In: Cardoso, J., Cordeiro,
J., Filipe, J. (eds.) Proceedings of the 9th International Conference on Enterprise Informa-
tion Systems ICEIS’2007, Volume Artificial Intelligence and Decision Support Systems,
pp. 259–264 (2007)

13. Kroha, P., Reichel, T., Krellner, B.: Text Mining for Indication of Changes in Long-Term
Market Trends. In: Tochtermann, K., Maurer, H. (eds.) Proceedings of I-KNOW 2007 7th
International Conference on Knowledge Management as part of TRIPLE-I 2007, Journal of
Universal Computer Science, pp. 424–431 (2007)

14. Kroha, P., Nienhold, R.: Classification of Market News and Prediction of Market Trends.
In: ICEIS 2010. Artificial Intelligence and Decision Support Systems, vol. 2, pp. 187–192
(2011)

15. Lane, G.: Lane’s Stochastics. Technical Analysis od Stocks and Commodities magazine, 2nd
edn., pp. 87–90 (May/June 1984)

16. Lauschke, M.: Time series analysis of stock prices using fuzzy logic, technical indicators,
fractal analysis. University of Technology Chemnitz, M.Sc. Thesis (2010) (in German)

17. Mandelbrot, B.: The variation of certain speculation prices. IBM Research Report (1962)
18. Malkiel, B.: A Random Walk Down Wall Street. W.W. Norton, New York (1996)
19. Markowitz, H.: Portfolio Selection. Journal of Finance 7 (1952)
20. Markowitz, H.: Portfolio Selection: Efficient Diversification of Investments. John Wiley

(1959)
21. Peters, E.: Fractal market analysis. John Wiley (1994)
22. Peters, E.: Chaos and Order in the Capitel Markets, 2nd edn. John Wiley (1996)
23. Raimondi, F., Via, P., Mulè, M.: A New Fuzzy Logic Controller for Trading on the Stock

Market. In: Proceedings of Conference ICEIS, pp. 322–329 (2007)

260 P. Kroha and M. Lauschke

24. Shleifer, A.: Inefficient Markets – An Introduction to Behavioral Finance. Oxford University
Press (2000)

25. Setnes, M., van Drempt, O.: Fuzzy modeling in stock-market analysis. Delft University of
Technology (2001)

26. Kirkpatrick, C., Dahlquist, J.: Technical Analysis: The Complete Resource for Financial
Market Technicians. Financial Times Prent. Int. (2006)

The Banach Contraction Principle in Fuzzy
Quasi-metric Spaces and in Product Complexity Spaces:
Two Approaches to Study the Cost of Algorithms with a

Finite System of Recurrence Equations

Francisco Castro-Company, Salvador Romaguera, and Pedro Tirado�

Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

{fracasco,sromague,pedtipe}@mat.upv.es
http://www.iumpa.upv.es

Abstract. Considering recursiveness as a unifying theory for algorithm related
problems, we take advantage of algorithms formulation in terms of recurrence
equations to show the existence and uniqueness of solution for the recurrence
equations associated to a kind of algorithms defined as a finite system of proce-
dures by applying the Banach contraction principle both in a suitable product of
fuzzy quasi-metrics defined on the domain of words and in the product quasi-
metric space of complexity spaces.

Keywords: Algorithm, Recurrence equation, Fuzzy quasi-metric, Domain of
words, Complexity space, Banach contraction principle, Fixed point, Improver.

1 Introduction

Complexity analysis in algorithms theory classifies the cost of execution of computer
programs. This is essential because such a classification allows us to decide on the
feasibility of software solutions. For this means, asymptotic cost analysis is generally
used (see [2] or [7]). This technique compares the order of magnitude of the cost of an
algorithm with a known cost.

Denotational semantics theory has proved to be suitable for the complexity analysis
of “Divide and Conquer” algorithms via the so-called complexity spaces as defined by
Schellekens (see Section 6 of [24]). Furthermore, the existence (and uniqueness) of
solution for the recurrence equations typically associated to Probabilistic Divide and
Conquer algorithms and expoDC algorithms was deduced by using fixed point methods
on complexity spaces in [9] and [21], respectively.

In the last years some authors have applied alternatives based on fixed point theo-
rems in the domain of words, equipped with suitable bicomplete fuzzy quasi-metrics,
to prove the existence and uniqueness of solution for the recurrence equations typically
associated to Divide and Conquer algorithms and Quicksort algorithms ([19,22,23]).

� The authors acknowledge the support of the Spanish Ministry of Science and Innovation, under
grant MTM2009-12872-C02-01.

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 261–274.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

http://www.iumpa.upv.es

262 F. Castro-Company, S. Romaguera, and P. Tirado

Taking advantage of denotational semantics to define recursive algorithms, we here
study the suitability of the Banach contraction principle in fuzzy quasi-metric spaces
and in product complexity spaces for the complexity analysis of algorithms based on
finite systems of recurrence equations (see Section 2 and Section 3, respectively).

Recall that, among all kinds of algorithms, recursive algorithms are those defined
in terms of calls to the algorithm itself. In fact, recursiveness is an unifying theory for
algorithmic problems based on recurrence equations.

Our study is motivated, in part, by the following algorithm, considered by Atkinson
in [1, p. 16-17], which is defined as two procedures P and Q depending the one on the
other such that:

function P(n)
if n > 0 then
Q(n-1); C; P(n-1); C; Q(n-1)

function Q(n)
if n > 0 then
P(n-1); C; Q(n-1); C; P(n-1); C; Q(n-1)

where C denotes any statements taking time independent of n.
In fact, the complexity analysis of that algorithm was discussed using both ap-

proaches in [4] and in [3]. These studies complemented previous results of existing
Divide and Conquer algorithms to decide on the suitability of both approaches.

Here we extend our previous results to study a system of n procedures depending
each one on the others and forming a finite system of recurrence equations.

Concrete examples of this class of algorithms could be extracted from language the-
ory scenarios; such a system of equations may represent mutually dependent rules of a
grammar.

Another scenario where many cases can be found is enterprise object-oriented de-
sign. Such systems are usually multi-tiered ones and inside each of these tiers, collabo-
ration and reusability is highly promoted. In this case we are modeling objects that rely
the ones on the others. For a tier designed for user interface modeling this system would
define window or pages navigation. For a services tier it would model the dependencies
among business components. For a data access tier, it could model the relationships
among database entities, and so on.

2 Fuzzy Approach to the Algorithms Cost Analysis

In order to show the existence and uniqueness of solution for a finite system of recur-
rence equations as defined in equation (9) below, we will apply the Banach fixed point
theorem in a suitable product of fuzzy quasi-metrics defined on the domain of words.
This technique was already used in [19] to prove the existence and uniqueness of so-
lution for the recurrence equations associated with Quicksort, and Divide and Conquer
algorithms.

The Cost of Recurrence Algorithms Based on Banach Contraction Principle 263

2.1 Background

In the following, the letters N and ω will denote the set of all positive integer numbers
and the set of all non-negative integer numbers respectively. The supremum of a finite
number of real numbers will be denoted by max or by ∨, and the infimum of a finite
number of real numbers will be denoted by min or by ∧, indistinctly.

Next we recall several concepts and facts which are basic in our study.
A quasi-metric on a set X is a function d : X × X → [0,∞) such that for all

x, y, z ∈ X : (i) x = y ⇔ d(x, y) = d(y, x) = 0; (ii) d(x, z) ≤ d(x, y) + d(y, z).
A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric on

X.
A quasi-metric space (X, d) such that d(x, z) ≤ max{d(x, y), d(y, z)}, for all

x, y, z ∈ X, is called a non-Archimedean quasi-metric space, and d is said to be a
non-Archimedean quasi-metric on X.

Each quasi-metric d on X induces a topology τd onX which has as a base the family
of open balls {Bd(x, r) : x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈ X : d(x, y) < ε} for
all x ∈ X and ε > 0.

Given a quasi-metric d on X, then the function d−1 defined by d−1(x, y) = d(y, x),
is also a quasi-metric on X, called the conjugate of d, and the function ds defined by
ds(x, y) = max{d(x, y), d−1(x, y)} is a metric on X.

A quasi-metric space (X, d) is said to be bicomplete if (X, ds) is a complete metric
space. In this case we say that d is a bicomplete quasi-metric on X.

According to [26], a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous
t-norm if ∗ satisfies the following conditions: (i) ∗ is associative and commutative; (ii)
∗ is continuous; (iii) a ∗ 1 = a for every a ∈ [0, 1]; (iv) a ∗ b ≤ c ∗ d whenever a ≤ c
and b ≤ d, with a, b, c, d ∈ [0, 1].

Definition 1. [5,12]. A fuzzy quasi-metric on a set X is a pair (M, ∗) such that ∗ is a
continuous t-norm and M is a fuzzy set in X×X× [0,∞) such that for all x, y, z ∈ X:
(KM1) M(x, y, 0) = 0.
(KM2) x = y if and only if M(x, y, t) = M(y, x, t) = 1 for all t > 0.
(KM3) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) for all t, s ≥ 0.
(KM4) M(x, y,) : [0,∞)→ [0, 1] is left continuous.

Definition 2. [14]. A fuzzy metric on a set X is a fuzzy quasi-metric (M, ∗) on X such
that for each x, y ∈ X:

(KM5) M(x, y, t) = M(y, x, t) for all t > 0.

Definition 3. [5,12]. A fuzzy (quasi-)metric space is a triple (X,M, ∗) such that X is
a set and (M, ∗) is a fuzzy (quasi-)metric on X .

Each fuzzy (quasi-)metric (M, ∗) on a set X induces a topology τM on X which has
as a base the family of open balls {BM (x, ε, t) : x ∈ X, 0 < ε < 1, t > 0}, where
BM (x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε}.

If (M, ∗) is a fuzzy quasi-metric on a set X, it is obvious that (M−1, ∗) is also a
fuzzy quasi-metric on X, where M−1 is the fuzzy set in X ×X × [0,∞) defined by

M−1(x, y, t) = M(y, x, t). (1)

264 F. Castro-Company, S. Romaguera, and P. Tirado

Moreover, if we denote by M i the fuzzy set in X ×X × [0,∞) given by

M i(x, y, t) = min{M(x, y, t),M−1(x, y, t)}, (2)

then (M i, ∗) is, clearly, a fuzzy metric on X .
A fuzzy (quasi-)metric space (X,M, ∗) such that

M(x, z, t) ≥ min{M(x, y, t),M(y, z, t)}, (3)

for all x, y ∈ X and t > 0, is said to be a non-Archimedean fuzzy (quasi-)metric space.
In [11], M. Grabiec introduced the following notions in order to obtain a fuzzy ver-

sion of the classical Banach fixed point theorem:
A sequence (xn)n in a fuzzy metric space (X,M, ∗) is Cauchy provided that

lim
n→∞

M(xn, xn+p, t) = 1 for each t > 0 and p ∈ N.

A fuzzy metric space (X,M, ∗) is complete provided that every Cauchy sequence in
X is convergent.

In the sequel, and according to [13] and [29], a Cauchy sequence in Grabiec’s sense
will be called G-Cauchy and a complete fuzzy metric space in Grabiec’s sense will be
called G-complete.

On the other hand, following [27], a B-contraction on a fuzzy metric space (X,M, ∗)
is a self-map f on X such that there is a constant α ∈ (0, 1) satisfying

M(f(x), f(y), α t) ≥M(x, y, t) (4)

for all x, y ∈ X, t > 0.
Thus, Grabiec’s fixed point theorem can be formulated as follows.

Theorem 1. [11]. Let (X,M, ∗) be a G-complete fuzzy metric space such that
lim
t→∞

M(x, y, t) = 1 for all x, y ∈ X. Then every B-contraction on X has a unique

fixed point.

The following quasi-metric generalizations of the notions of B-contraction and
G-completeness were introduced in [19].

Definition 4. A B-contraction on a fuzzy quasi-metric space (X,M, ∗) is a self-map f
on X such that there is a constant α ∈ (0, 1) satisfying

M(f(x), f(y), α t) ≥M(x, y, t) (5)

for all x, y ∈ X, t > 0. The number α is then called a contraction constant of f.

Definition 5. A sequence (xn)n in a fuzzy quasi-metric space (X,M, ∗) is called G-
Cauchy if it is a G-Cauchy sequence in the fuzzy metric space (X,M i, ∗).

Definition 6. A fuzzy quasi-metric space (X,M, ∗) is called G-bicomplete if the fuzzy
metric space (X,M i, ∗) is G-complete.

Then, Grabiec’s theorem was generalized to fuzzy quasi-metric spaces in [19] as
follows.

The Cost of Recurrence Algorithms Based on Banach Contraction Principle 265

Theorem 2. [19]. Let (X,M, ∗) be a G-bicomplete fuzzy quasi-metric space such that
lim
t→∞

M(x, y, t) = 1 for all x, y ∈ X. Then every B-contraction on X has a unique

fixed point.

Since G-(bi) completeness is a very strong kind of completeness (see [10,29]), George
and Veeramani introduced the following notions:

A sequence (xn)n in a fuzzy metric space (X,N, ∗) is a Cauchy sequence [10] if
for each ε ∈ (0, 1), t > 0 there exists n0 ∈ N such that M(xn, xm, t) > 1 − ε for all
n,m ≥ n0.

A fuzzy metric space is complete provided that every Cauchy sequence is convergent.

Definition 7. A fuzzy quasi-metric space (X,M, ∗) is called bicomplete if the fuzzy
metric space (X,M i, ∗) is complete.

Then we have the following nice and useful fact for our approach.

Theorem 3. [19]. Each bicomplete non-Archimedean fuzzy quasi-metric space is G-
bicomplete.

Let us recall [12] that if (X, d) is a (quasi-)metric space, then the pair (Md,∧) is a
fuzzy (quasi-)metric on X where Md is the fuzzy set in X × X × [0,∞) given by
Md(x, y, 0) = 0, and, for t > 0, by

Md(x, y, t) =
t

t+ d(x, y)
. (6)

The triple (X,Md,∧) is called the standard fuzzy (quasi-)metric space.
Furthermore, we have that (Md)

−1 = Md−1 and (Md)
i = Mds . In addition, topology

τd, induced by d coincides with the topology τMd
induced by the fuzzy (quasi-)metric

(Md,∧).

2.2 The Banach Fixed Point Theorem on Fuzzy Quasi-metric Spaces Applied to
Algorithms Cost Analysis

We start this subsection by constructing a suitable non-Archimedean quasi-metric on
the domain of words, which will be crucial in our approach.

The domain of words Σ∞ ([15,16,18,25,28, etc]) consists of all finite and infinite
sequences (“words”) over a nonempty set (“alphabet”) Σ, ordered by the so-called in-
formation order � on Σ∞, i.e., x � y ⇔ x is a prefix of y, where we assume that the
empty sequence φ is an element of Σ∞.

For each x, y ∈ Σ∞ denote by x � y the longest common prefix of x and y, and for
each x ∈ Σ∞ denote by �(x) the length of x. Thus �(x) ∈ [1,∞] whenever x �= φ,
and �(φ) = 0.

Given a nonempty alphabet Σ, Smyth introduced in [28] a non-Archimedean quasi-
metric d
 on Σ∞ given by

d
(x, y) = 0 if x � y, and d
(x, y) = 2−�(x�y) otherwise,

(see also [15,17,19, etc]).

266 F. Castro-Company, S. Romaguera, and P. Tirado

This quasi-metric has the advantage that its specialization order coincides with the
order�, and thus the quasi-metric space (Σ∞, d
) preserves the information provided
by �. Moreover, the metric (d
)s is given by

(d
)
s(x, y) = 0 if x = y, and (d
)

s(x, y) = 2−�(x�y) otherwise,

so that (d
)s is exactly the celebrated Baire metric on Σ∞. Since the Baire metric
is complete, it follows that (Σ∞, d
) is a bicomplete non-Archimedean quasi-metric
space.

In order to apply techniques of fixed point for obtaining the existence and uniqueness
of solution for the system of k recurrence equations associated to algorithms with k re-
currence procedures, we shall combine the above results with some facts on the product
of (non-Archimedean) fuzzy quasi-metric spaces that we present in the sequel.

Let us recall that given a quasi-metric d on a set X and a k ∈ N, the product quasi-
metric is the quasi-metric dk on Xk defined by

dk(x, y) = max
1≤j≤k

d(xj , yj). (7)

for all x = (x1, ..., xk), y = (y1, ..., yk) ∈ Xk.
In this case the quasi-metric space (Xk, dk) is the (so-called) product quasi-metric

space.
Similarly (compare [6]), given a fuzzy quasi-metric space (M, ∗) on a set X and a

k ∈ N, the product fuzzy quasi-metric is the fuzzy quasi-metric (Mk, ∗) on Xk defined
by

Mk(x, y, t) = M(x1, y1, t) ∗ · · · ∗M(xk, yk, t), (8)

for all x = (x1, ..., xk), y = (y1, ..., yk) ∈ Xk, and t ≥ 0.
In this case the fuzzy quasi-metric space (Xk,Mk, ∗) is the (so-called) product fuzzy

quasi-metric space.

Remark 1. Note that if (X,Md,∧) is the standard fuzzy quasi-metric space of a quasi-
metric space (X, d), then (Xk, (Md)

k,∧) is the standard fuzzy quasi-metric space of
the product quasi-metric space (Xk, dk).

Indeed, for x = (x1, ..., xk), y = (y1, ..., yk) ∈ Xk, and t > 0,we have

Mdk(x, y, t) =
t

t+ dk(x, y)
=

t

t+max1≤j≤k d(xj , yj)
= min

1≤j≤k

t

t+ d(xj , yj)

= min
1≤j≤k

Md(xj , yj, t) = (Md)
k(x, y, t).

Now let Σ be a non-empty alphabet, and consider the product fuzzy quasi-metric space
((Σ∞)k, (d
)

k).
Then, since (Σ∞, d
) is bicomplete and non-Archimedean, it follows that ((Σ∞)k,

(d
)
k) is bicomplete and non-Archimedean, and consequently the standard fuzzy quasi-

metric space ((Σ∞)k, (Md�)
k,∧) of ((Σ∞)k, (d
)

k) is bicomplete and non-
Archimedean.

Hence, the following result is a direct consequence of Theorems 2 and 3.

The Cost of Recurrence Algorithms Based on Banach Contraction Principle 267

Theorem 4. ((Σ∞)k, (Md�)
k,∧) is a G-bicomplete fuzzy quasi-metric space such

that limt→∞(Md�)
k(x, y, t) = 1 for all x, y ∈ (Σ∞)k. Therefore, every B-contraction

on this space has a unique fixed point.

In the sequel, the alphabet Σ will be the set of all non-negative real numbers, and for
each x ∈ Σ∞ we will denote by (x)n its (n + 1)-th letter. For instance, if �(x) = 3,
x := (x0)(x1)(x2)..

Let the finite system of k recurrence equations T1, ..., Tk, defined by

⎧⎪⎪⎨
⎪⎪⎩

T1(n) = a11T1(n− 1) + a12T2(n− 1) + · · ·+ a1kTk(n− 1) + c1
T2(n) = a21T1(n− 1) + a22T2(n− 1) + · · ·+ a2kTk(n− 1) + c2
...
Tk(n) = ak1T1(n− 1) + ak2T2(n− 1) + · · ·+ akkTk(n− 1) + ck

(9)

with n ∈ N, aij ≥ 0, and ci ≥ 0, for i, j = 1, ..., k; and Ti(0) > 0, for i = 1, ..., k.
Construct a functional Φ : (Σ∞)k → (Σ∞)k as follows:

Φ(x1, ..., xk) = (u1, ..., uk), (10)

where, for i = 1, ..., k, �(ui) = 1 +min1≤j≤k �(xj), and

(ui)0 = Ti(0), and

(ui)n = ai1(x1)n−1 + ai2(x2)n−1 + · · ·+ aik(xk)n−1 + ci,

whenever 0 < n ≤ 1 + min1≤j≤k �(xj).
We shall show that Φ is a B-contraction on ((Σ∞)k, (Md�)

k,∧), with contraction
constant 1/2.

Let (x1, ..., xk), (y1, ..., yk) ∈ (Σ∞)k, and Φ(x1, ..., xk) = (u1, ..., uk), Φ(y1, ...,
yk) = (v1, ..., vk).

If ui � vi for all i ∈ {1, ..., k}, then

M(d�)k(Φ(x1, ..., xk), Φ(y1, ..., yk), t/2) = min
1≤i≤k

Md�(ui, vi, t/2)

= min
1≤i≤k

t/2

t/2 + d
(ui, vi)
= 1,

for all t > 0.
Otherwise, we have

�(ui � vi) ≥ 1 + min
1≤j≤k

�(xj � yj).

for all i ∈ {1, ..., k}.

268 F. Castro-Company, S. Romaguera, and P. Tirado

Therefore

M(d�)k(Φ(x1, ..., xk), Φ(y1, ..., yk), t/2) = min
1≤i≤k

Md�(ui, vi, t/2)

= min
1≤i≤k

t/2

t/2 + d
(ui, vi)

= min
1≤i≤k

t

t+ 2−�(ui�vi)+1

≥ t

t+ 2−min1≤i≤k �(xi�yi)

= min
1≤i≤k

t

t+ 2−�(xi�yi)

= min
1≤i≤k

Md�(xi, yi, t)

= M(d�)k((x1, ..., xk), (y1, ..., yk), t).

So, by Remark 1,

(Md�)
k(Φ(x1, ..., xk), Φ(y1, ..., yk), t/2) ≥ (Md�)

k(x1, ..., xk), (y1, ..., yk), t),

for all t > 0.
Hence, by Theorem 4, there exists a unique z = (z1, ..., zk) ∈ (Σ∞)k such that

Φ(z) = z. Consequently z is the unique solution for the system (9).

Remark 2. As mentioned in Section 1, and following Atkinson [1, p. 16-17], the ex-
ecution times S(n) and T (n) of P (n) and Q(n), satisfy, at least approximately, the
recurrences

S(n) = S(n− 1) + 2T (n− 1) +K1,

and

T (n) = 2S(n− 1) + 2T (n− 1) +K2,

(11)

for n ∈ N, and with K1,K2, non-negative constants. Note that recurrences S and T
are a particular case of the system (9) for k = 2.

Remark 3. In practice, one actually works on the set ΣF of all finite words (over
the alphabet [0,∞)), that endowed with the restriction of (Md� ,∧) provides a non-
Archimedean fuzzy quasi-metric space which, obviously, is not bicomplete. In fact

the product space (
(
ΣF

)k
,
(
Md�

)k
,∧) is also a non-bicomplete non-Archimedean

fuzzy quasi-metric space. However, for each x ∈
(
ΣF

)k
, the sequence of iterations

(Φm(x))m, is a Cauchy sequence in the complete fuzzy metric space ((Σ∞)k ,

The Cost of Recurrence Algorithms Based on Banach Contraction Principle 269

((
Md�

)k)i

,∧) by the property of B-contraction of Φ stated above, and thus it con-

verges to an element y = (y1, ..., yk) with �(yi) =∞ for i = 1, ..., k, which is, in fact,
the solution for the recurrence equations of system (9).

3 Complexity Spaces Approach to the Algorithms Cost Analysis

Schellekens introduced [24] the complexity (quasi-metric) space based on the Smyth
completion [28] in order to construct a suitable mathematical model for the complex-
ity analysis of algorithms. In fact, he proved in Section 6 of [24] the existence and
uniqueness of solution for the recurrence equations associated to “Divide and Con-
quer” algorithms by applying a quasi-metric version of the Banach fixed point theorem
to the complexity space. Recently it was shown in [9] that Schellekens’ technique can
be successfully systematized to deduce the existence and uniqueness of solution for the
recurrence equations associated to “Probabilistic Divide and Conquer” algorithms, and
for the recurrence inequations associated to expoDC algorithms, respectively (see [8]
and Section 7.7 of [2] for a study of such algorithms).

Here we show that the complexity space also provides an efficient framework to
prove the existence and uniqueness of solution for the system of recurrence equations
associated to a class of algorithms with a finite number of recurrence procedures as
defined in (9). To this end, we will need to apply the Banach fixed point theorem to the
“product complexity space” instead to the original one because this kind of algorithms
involves several equations. Finally, we shall show that if (f0, g0) denotes the solution
of the pair or recurrence equations S and T corresponding to the algorithm considered
by Atkinson [1], then f0(n) ∈ O(e2n) and g0(n) ∈ O(e2n).

Let us recall that asymptotic notation introduces functions to denote the “order of” an
algorithm f in the set of all possible functions. For a lower order threshold,O-notation
is used for any function g : ω → [0,∞):

O(g(n)) = {f : ω → [0,∞) : ∃c > 0, n0 ∈ ω, such that

f(n) ≤ cg(n) for all n ≥ n0}

3.1 Background

By a contraction map on a quasi-metric space (X, d) we mean a self-map f of X such
that there is a constant α ∈ (0, 1) satisfying d(fx , fy) ≤ α d(x , y) for all x, y ∈ X .
The number α is then called a contraction constant of f.

It is clear that if f is a contraction map on a quasi-metric space (X, d) with contrac-
tion constant α then f is a contraction map on the metric space (X, ds) with contraction
constant α .

Therefore, the classical Banach contraction principle can be generalized to the quasi-
metric setting as follows (see for instance [16, Lemma 2.4]).

Theorem 5. Let f be a contraction map on a bicomplete quasi-metric space (X,d).
Then, for each x ∈ X , the sequence of iterations (fnx)n is convergent in (X, ds)
to a point x0 ∈ X which is the unique fixed point of f.

270 F. Castro-Company, S. Romaguera, and P. Tirado

The so-called complexity space ([24]) is the quasi-metric space (C, dC), where

C =

{
f : ω → (0,∞] :

∞∑
n=0

2−n 1

f(n)
<∞

}
, (12)

and dC is the quasi-metric on C given by

dC(f, g) =
∞∑
n=0

2−n

((
1

f(n)
− 1

g(n)

)
∨ 0

)
(13)

for all f, g ∈ C. (We adopt the convention that 1/∞ = 0.)
The elements of C are called complexity functions.
The following useful result is a consequence of [20, Theorem 1, and Remark on p.

317].

Theorem 6. The complexity space (C, dC) is bicomplete.

3.2 The Banach Fixed Point Theorem on Product Complexity Spaces Applied to
Algorithms Cost Analysis

In order to simplify some formulas and equations which will be obtained in our next
theorem, we re-write system (8) as

Ti(n) =

k∑
j=1

aijTj(n− 1) + ci, i = 1, ..., k. (14)

Moreover, we assume that aij �= 0, for all i, j ∈ {1, ..., k}, because, in this context, the
rest of cases is a simplification of this one.

Theorem 7. Let Ψ be the functional on Ck defined, for each f = (f1, ..., fk) ∈ Ck, by

Ψ(f)(0) = (T1(0), ..., Tk(0)) and (15)

Ψ(f)(n) = (
k∑

j=1

a1jTj(n− 1) + c1, ...,
k∑

j=1

akjTj(n− 1) + ck),

for all n ∈ N.

If α < 2, where α = max1≤i≤k(
∑k

j=1(1/aij)), then:

(1) Ψ is a monotone increasing contraction on (Ck, (dC)k) with contraction constant
α/2.

(2) Ψ has a unique fixed point.

The Cost of Recurrence Algorithms Based on Banach Contraction Principle 271

Proof

(1) Let f = (f1, ..., fk) ∈ Ck. Put Ψ(f) = u = (u1, ..., uk). Then, for each i ∈
{1, ..., k},

∞∑
n=1

2−n 1

ui(n)
=

∞∑
n=1

2−n 1

ai1f1(n− 1) + · · ·+ aikfk(n− 1) + ci

≤ 1

ai1

∞∑
n=0

2−n 1

f1(n)
<∞.

Thus ui ∈ C and consequently Ψ(f) ∈ Ck.
Now let f, g ∈ Ck be such that f ≤ g. Thus fi ≤ gi, i = 1, ..., k, where f =

(f1, ..., fk) and g = (g1, ..., gk). It is straightforward to check that then Ψ(f) ≤ Ψ(g).

Next we show that for each f = (f1, ..., fk) ∈ Ck and g = (g1, ..., gk) ∈ Ck, one has

(dC)
k(Ψ(f), Ψ(g)) ≤ α

2
(dC)

k(f, g).

Indeed, for f, g ∈ Ck, and Ψ(f) = u = (u1, ..., uk), Ψ(g) = v = (v1, ..., vk), we have

(dC)
k(Ψ(f), Ψ(g)) = max

1≤i≤k
dC(ui, vi),

and, for each i ∈ {1, ..., k},

dC(ui, vi) =
∞∑

n=0

2−n

(
(

1

vi(n)
− 1

ui(n)
) ∨ 0

)

=
∞∑

n=1

2−n

⎛

⎝[(
k∑

j=1

aijgj(n− 1) + ci)
−1 − (

k∑

j=1

aijfj(n− 1) + ci)
−1] ∨ 0

⎞

⎠

∞∑

n=1

2−n

⎛

⎝[(
k∑

j=1

aij(fj(n− 1) − gj(n− 1))) · (
k∑

j=1

a2ijfj(n− 1)gj(n− 1))−1] ∨ 0

⎞

⎠

≤
∞∑

n=1

2−n

⎛

⎝
k∑

j=1

(
fj(n− 1)− gj(n− 1)

aijf1(n− 1)gj(n− 1)
∨ 0)

⎞

⎠

=
1

2

∞∑

n=0

2−n

⎛

⎝
k∑

j=1

1

aij
((

1

gj(n)
− 1

fj(n)
) ∨ 0)

⎞

⎠

=
1

2

k∑

j=1

1

ai1
dC(fj , gj)

≤ 1

2

⎛

⎝
k∑

j=1

1

aij

⎞

⎠ · max
1≤i≤k

dC(fi, gi)

≤ α

2
(dC)k(f, g).

272 F. Castro-Company, S. Romaguera, and P. Tirado

Consequently

(dC)
k(Ψ(f), Ψ(g)) ≤ α

2
(dC)

k(f, g).

We conclude that Ψ is a contraction on (Ck, (dC)k) with contraction constant α/2.

(2) Since (C, dC) is bicomplete (Theorem 6), it follows that (Ck, (dC)k) is also bi-
complete. Then, by Theorem 5, Ψ has a unique fixed point which is obviously the solu-
tion of system (9). �
We finish the paper by showing that if (f0, g0) denotes the (unique) solution of the
recurrence equations S and T associated with the algorithm discussed by Atkinson [1],
then f0(n) ∈ O(e2n) and g0(n) ∈ O(e2n).

This will be done by constructing an appropriate element of C2 (C × C in the sequel)
for which Φ is an improver.

To this end, the following extension to our context of Definition 6.2 of [24] will be
needed.

Definition 8. A functional Φ from (C × C, dC × dC) into itself is an improver with re-
spect to an element (f, g) ∈ C × C if for each n ∈ ω, Φn+1(f, g) ≤ Φn(f, g).

Note that if Φ is monotone increasing (i.e., Φ(f1, g1) ≤ Φ(f2, g2) whenever f1 ≤ f2
and g1 ≤ g2), to show that Φ is an improver with respect to (f, g) it suffices to verify
that Φ(f, g) ≤ (f, g).

Intuitively (compare, for instance, [9, p. 348]), an improver is a functional that cor-
responds to a transformation on algorithms and satisfies the following condition: the
iterative applications of the transformation to a given algorithm yield an improved al-
gorithm at each step of the iteration.

Put c = (S(0) + T (0) +K1 +K2)(e
2 − 4)−1, and let u, v : ω → (0,∞) given by

u(0) = S(0), v(0) = T (0), and u(n) = v(n) = ce2n for all n ∈ N.

Clearly u, v ∈ C. Next we show that Φ((u, v)) ≤ (u, v), and thus Φ is an improver with
respect to (u, v).

Indeed, we have

Φ((u, v))(0) = (S(0), T (0)) = (u(0), v(0)),

Φ((u, v))(1) = (u(0) + 2v(0) +K1, 2u(0) + 2v(0) +K2)

= (S(0) + 2T (0) +K1, 2S(0) + 2T (0) +K2)

≤ ((S(0) + T (0) +K1 +K2)
e2

e2 − 4
,

(S(0) + T (0) +K1 +K2)
e2

e2 − 4
)

= (ce2, ce2)

= (u(1), v(1))

= (u, v)(1).

The Cost of Recurrence Algorithms Based on Banach Contraction Principle 273

and for n > 1,

Φ((u, v))(n) = (u(n− 1) + 2v(n− 1) +K1, 2u(n− 1) + 2v(n− 1) +K2)

= (ce2(n−1) + 2ce2(n−1) +K1, 2ce
2(n−1) + 2ce2(n−1) +K2)

≤ (4ce2(n−1) +K1 +K2, 4ce
2(n−1) +K1 +K2)

≤ (4ce2(n−1) + c(e2 − 4), 4ce2(n−1) + c(e2 − 4))

≤ (ce2(n−1)(4 + (e2 − 4)), ce2n(4 + (e2 − 4)))

= (ce2n, ce2n)

= (u, v)(n).

Since Φ is increasing it follows that Φn+1((u, v)) ≤ Φn((u, v)) for all n ∈ ω. There-
fore, from the fact (see Theorem 5) that (Φn((u, v)))n converges to (f0, g0) in (C × C,
(dC × dC)

s), it follows that (f0, g0) ≤ (u, v). Consequently f0(n) ∈ O(e2n) and
g0(n) ∈ O(e2n).

References

1. Atkinson, M.D.: The Complexity of Algorithms. In: Computing Tomorrow: Future Research
Directions in Computer Science, pp. 1–20. Cambridge, Univ. Press, New York (1996)

2. Brassard, G., Bratley, P.: Fundamentals of Algorithms. Prentice Hall (1996)
3. Castro-Company, F., Romaguera, S., Tirado, P.: An Application of the Banach Contraction

Principle on the Product of Complexity Spaces to the Study of Certain Algorithms with Two
Recurrence Procedures. In: Vigo-Aguiar, J. (ed.) Proceedings of the 2010 International Con-
ference on Computational and Mathematical Methods in Science and Engineering (CMMSE
2010), Almerı́a, Spain, vol. 5, pp. 978–984 (2010) ISBN 978-84-613-5510-5

4. Castro-Company, F., Romaguera, S., Tirado, P.: Application of the Banach Fixed Point The-
orem on Fuzzy Quasi-Metric Spaces to Study the Cost of Algorithms with Two Recurrence
Equations. In: IJCCI 2010 2nd International Joint Conference on Computational Intelligence
(2010) ISBN 978-989-8425-32-4

5. Cho, Y.J., Grabiec, M., Radu, V.: On non Symmetric Topological and Probabilistic Struc-
tures. Nova Sci. Publ. Inc., New York (2006)

6. Cho, Y.J., Grabiec, M., Taleshian, A.A.: Cartesian product of PQM-spaces. J. Nonlinear Sci.
Appl. 2, 60–70 (2009)

7. Cormen, T.H., Leiserson, C.E., Stein, C., Rivest, R.L.: Introduction to Algorithms, 3rd edn.
MIT Press (2001)

8. Flajolet, P.: Analytic Analysis of Algorithms. In: Kuich, W. (ed.) ICALP 1992. LNCS,
vol. 623, pp. 186–210. Springer, Heidelberg (1992)

9. Garcı́a-Raffi, L.M., Romaguera, S., Schellekens, M.: Applications of the Complexity Space
to the General Probabilistic Divide and Conquer Algorithms. J. Math. Anal. Appl. 348,
346–355 (2008)

10. George, A., Veeramani, P.: On Some Results in Fuzzy Metric Spaces. Fuzzy Sets and Sys-
tems 64, 395–399 (1994)

11. Grabiec, M.: Fixed Points in Fuzzy Metric Spaces. Fuzzy Sets and Systems 27, 385–389
(1988)

274 F. Castro-Company, S. Romaguera, and P. Tirado

12. Gregori, V., Romaguera, S.: Fuzzy Quasi-Metric Spaces. Appl. Gen. Topology 5, 129–136
(2004)

13. Gregori, V., Sapena, A.: On Fixed Point Theorems in Fuzzy Metric Spaces. Fuzzy Sets and
Systems 125, 245–253 (2002)

14. Kramosil, I., Michalek, J.: Fuzzy Metrics and Statistical Metric Spaces. Kybernetika 11,
326–334 (1975)

15. Künzi, H.P.A.: Nonsymmetric Topology. In: Proceedings of the Colloquium on Topology.
Szekszárd, Colloq. Math. Soc. János Bolyai Math. Studies, Hungary, vol 4, pp. 303–338
(1995)

16. Matthews, S.G.: Partial Metric Topology. In: Proceedings of the 8th Summer Conference
on General Topology and Applications, Ann. New York Acad. Sci., vol. 728, pp. 183–197
(1994)

17. Rodrı́guez-López, J., Romaguera, S., Valero, O.: Denotational Semantics for Program-
ming Languages, Balanced Quasi-Metrics and Fixed Points. Internat. J. Comput. Math. 85,
623–630 (2008)

18. Romaguera, S., Schellekens, M.: Partial Metric Monoids and Semivaluation Spaces. Topol-
ogy Appl. 153, 948–962 (2005)

19. Romaguera, S., Sapena, A., Tirado, P.: The Banach Fixed Point Theorem in Fuzzy Quasi-
Metric Spaces with Application to the Domain of Words. Topology Appl. 154, 2196–2203
(2007)

20. Romaguera, S., Schellekens, M.: Quasi-Metric Properties of Complexity Spaces. Topology
Appl. 98, 311–322 (1999)

21. Romaguera, S., Schellekens, M., Tirado, P., Valero, O.: Contraction Maps on Complexity
Spaces and ExpoDC Algorithms. In: Proceedings of the International Conference of Compu-
tational Methods in Sciences and Engineering ICCMSE 2007, AIP Conference Proceedings,
vol. 963, pp. 1343–1346 (2007)

22. Romaguera, S., Tirado, P.: Contraction Maps on IFQM-Spaces with Application to Re-
currence Equations of Quicksort. Electronic Notes in Theoret. Comput. Sci. 225, 269–279
(2009)

23. Saadati, R., Vaezpour, S.M., Cho, Y.J.: Quicksort Algorithm: Application of a Fixed Point
Theorem in Intuitionistic Fuzzy Quasi-Metric Spaces at a Domain of Words. J. Comput.
Appl. Math. 228, 219–225 (2009)

24. Schellekens, M.: The Smyth Completion: a Common Foundation for Denotational Semantics
and Complexity Analysis. Electronic Notes Theoret. Comput. Sci. 1, 535–556 (1995)

25. Schellekens, M.: The Correspondence between Partial Metrics and Semivaluations. Theoret.
Comput. Sci. 315, 135–149 (2004)

26. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, Amsterdam (1983)
27. Sehgal, V.M., Bharucha-Reid, A.T.: Fixed Points of Contraction Mappings on PM-spaces.

Math. Systems Theory 6, 97–100 (1972)
28. Smyth, M.B.: Quasi-uniformities: Reconciling Domains with Metric Spaces. In: Main, M.G.,

Mislove, M.W., Melton, A.C., Schmidt, D. (eds.) MFPS 1987. LNCS, vol. 298, pp. 236–253.
Springer, Heidelberg (1988)

29. Vasuki, R., Veeramani, P.: Fixed Point Theorems and Cauchy Sequences in Fuzzy Metric
Spaces. Fuzzy Sets and Systems 135, 415–417 (2003)

Part III
Neural Computation

SVM-Based Object Detection Using Self-quotient
ε-Filter and Histograms of Oriented Gradients

Mitsuharu Matsumoto�

The Education and Research Center for Frontier Science,
The University of Electro-Communications,

1-5-1, Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan
mitsuharu.matsumoto@ieee.org

http://www.mm-labo.org

Abstract. This paper presents noise robust object detection using self-quotient
ε-filter (SQEF) and histograms of oriented gradients (HOG). Although object
detection combining HOG and support vector machine (SVM) is a promising
approach, when the images are corrupted with noise, it is difficult to realize a good
detection performance. To handle noise corrupted images, we employ SQEF, and
apply it to object detection combining HOG and SVM. SQEF is an improved self-
quotient filter (SQF), and can clearly extract features from the images not only
when they have illumination variations but also when they are corrupted with
noise. We confirmed the effectiveness of our approach by using human images
and car images. Throughout the experiments, our approach can realize a robust
object detection from noise corrupted images using the data trained by intact
images without noise.

Keywords: Object detection, Histograms of oriented gradients, Self-quotient
filter, Self-quotient ε-filter, Impulse noise, Feature extraction.

1 Introduction

Human and object detection in images is a challenging task and has a wide range of
applications in industrial fields [1,2,3]. It is widely used in many applications such as
image analysis, smart cars, and visual surveillance to behavioral analysis. The first re-
quirement is a robust feature set that allows object form to be discriminated cleanly,
even in backgrounds under different illumination. Histograms of oriented gradients
(HOG) algorithm is a promising approach to match this requirement [4] and provides
excellent performance compared to other existing feature sets including wavelets [5].
It is reminiscent of edge orientation [6], SIFT descriptors [7] and shape contexts [8].
Many studies have been reported concerning HOG. Although locally normalized HOG
detectors are attractive approaches to detect the human from the image, it is difficult to
detect them from the noise corrupted images because it uses local intensity gradients.

� This research was supported by the research grant of Support Center for Advanced Telecom-
munications Technology Research (SCAT), by the research grant of Foundation for the Fusion
of Science and Technology, and by the Ministry of Education, Culture, Sports, Science and
Technology, Grant-in-Aid for Young Scientists (B), 20700168, 2008.

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 277–286.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

http://www.mm-labo.org

278 M. Matsumoto

To solve the problem, we introduce self-quotient ε-filter (SQEF) [9], which is an ad-
vanced noise robust self-quotient filter (SQF) and propose a noise robust support vector
machine (SVM)-based object detection combining SQEF and HOG. SQF is a simple
nonlinear filter to extract the feature from an image [10]. It needs only an image, and can
extract intrinsic lighting invariant property of an image, while removing extrinsic factor
corresponding to the lighting. Feature extraction by SQF is simpler than that based on
multi-scale smoothing [11]. SQF can extract the outline of the objects independent of
shadow region. However, as it assumes that the image does not include noise, it can not
extract the shape and texture when the noise damages the image. The noise influence
becomes large due to the self-quotient effect of SQF.

SQEF is based on the idea of SQF and ε-filter [12,13]. ε-filter is a simple edge-
preserving nonlinear filter. Although many studies have been reported to reduce the small
amplitude noise while preserving the edge [14], it is considered that ε-filter is a promising
approach due to its simple design. It does not need to have the signal and noise models
in advance. It is easy to be designed and the calculation cost is small because it requires
only switching and linear operation. We can clearly extract the feature from noise cor-
rupted images by defining SQEF as the ratio of two different ε-filters. In this paper, we
aim to reduce the noise influence by employing SQEF as preprocessing of HOG.

The rests of this paper are organized as follows. In section 2, we briefy introduce
SQEF, and discuss the merits of SQEF compared to SQF. We also describe the algorithm
of SVM-based object detection combining SQEF and HOG. Experimental results are
shown to clarify the effectiveness of the proposed method for human detection from
noise corrupted images compared to other approaches in section 3. We also show the
results on car detection from noise corrupted images. A libsvm [15], MIT pedestrian
test set [16], MIT CBCL car data [17] and standard image database (SIDBA) [18] are
used as a SVM classifier, positive sample images for human detection, positive sample
images for car detection and negative sample images for both experiments, respectively
throughout the experiments. Conclusion is given in section 4.

2 Proposed Algorithm

This section gives the proposed algorithm. The procedure of our approaches is shown
in Figure 1. In the proposed method, we first extract the feature from the noise cor-
rupted image by using self-quotient ε-filter (SQEF) to eliminate not only illumination
variations but also noise influence. Some examples are shown to clarify the difference
between self-quotient filter (SQF) [10] and SQEF. Figure 2 shows the examples of filter
output of SQEF to show its robust feature extraction from noise corrupted images. We
also show the filter output of self-quotient filter (SQF). Fig.2(a) shows a sample image
from MIT pedestrian database [16]. Figs.2(b) and 2(c) show the filter outputs of SQF
and SQEF, respectively when we used the original image. On the other hand, Fig.2(d)
shows the sample image corrupted with 40% impulse noise. Figs.2(e) and 2(f) show the
filter outputs of SQF and SQEF, respectively when we used the impulse noise corrupted
image. As shown in Fig.2, both SQF and SQEF can extract the feature from the orig-
inal image. However, SQF cannot extract its feature from the impulse noise corrupted
image, while SQEF can extract the feature from the impulse noise corrupted image.

Object Detection Using Self-quotient ε-Filter 279

Input
image

Normalized
Gamma and Color

Self quotient
ε-filter

Compute
gradients

 SVM
Person /
Non-person
Classification

Weighted vote into
space & orientation

cells

Contrast normalized
over detection

window

Collect HOG's
over detection

window

Fig. 1. An overview of our feature extraction and object detect chain

(a) A sample image
from MIT pedestrian
database (file name:
per00008.pgm)

(b) Filter output of
SQF when we used
original image

(c) Filter output of
SQEF when we used
original image

(d) Impulse noise cor-
rupted image (40%
impulse noise)

(e) Filter output
of SQF when we
used impulse noise
corrupted image

(f) Filter output
of SQEF when we
used impulse noise
corrupted image

Fig. 2. Self-quotient image and self-quotient ε-filter from original image and impulse noise cor-
rupted image

Let x(i1, i2) be the image intensity at the point i = (i1, i2) in the image. The aim of
SQF is to separate the intrinsic property and the extrinsic factor, and to remove the ex-
trinsic factor. To handle the problem, SQF assumes that a smoothed version of an image
has approximately the same illumination as the original one. In SQF, we first calculate
the following equation:

y(i1, i2) =
x(i1, i2)

F [x(i1, i2)]
, (1)

280 M. Matsumoto

where x(i1, i2) is the original image andF is the smoothing function. Due to the process
of Eq.1, the texture and edge can be extracted because the original image is divided by
the smoothed image. However, SQF assumes that the image does not include the noise.
When we consider the noise corrupted image, the noise is reduced in the smoothed
images F [x(i1, i2)], while the original image x(i1, i2) includes the noise. As a result,
the influence from the noise in SQF is emphasized very much as shown in Fig.2 due to
the self-quotient effect of SQF in Eq.1.

A simple idea to solve the noise influence in SQF is to use two smoothed filters
instead of original image as follows:

y(i1, i2) =
F1[x(i1, i2)]

F2[x(i1, i2)]
. (2)

F1 and F2 should be different because the output always becomes 1 if F1 and F2 are
the same smoothed filter.

However, even if we design SQF by using two different smoothed filters, not only
the noise is smoothed but also the texture and shape are blurred. As the blur level of one
smoothed filter is different from the other, it is also difficult to handle impulsive noise.
Hence, we need to employ alternative filters, which can reduce the small amplitude
noise effectively, while preserving the texture and shape information instead of simple
smoothed filter. The alternative filters should be simple to keep the simplicity of SQF.

Based on the above prospects, self-quotient ε-filter (SQEF) is designed as follows:

y(i1, i2) =
Φε1 [x(i1, i2)]

Φε2 [x(i1, i2)]
, (3)

where Φε represents ε-filter described as follows:

z(i1, i2) =

Φε[x(i1, i2)] = x(i1, i2) + (4)
K∑

j1=−K

K∑
j2=−K

a(j1, j2)F (x(i1 + j1, i2 + j2)− x(i1, i2)),

where a(j1, j2) represents the filter coefficient. a(j1, j2) is usually constrained as
follows:

K∑
j1=−K

K∑
j2=−K

a(j1, j2) = 1. (5)

F (x) is the nonlinear function described as follows:

|F (x)| ≤ ε : −∞ ≤ x ≤ ∞, (6)

where ε is a constant number constrained as follows.

0 ≤ ε. (7)

It should be noted that calculation cost of ε-filter is small because it requires only
switching and linear operation. See the references [13] if the reader would like to know
the details about ε-filter.

Object Detection Using Self-quotient ε-Filter 281

⋅⋅⋅⋅

FrequencyGradient calculation

Filter output of SQEF

⋅⋅⋅

Frequency

Feature vector
Cell
sliding

Connection Voting

Fig. 3. Procedure of Histogram of Oriented Gradients (HOG) from SQEF output

When we apply SQEF to impulse noise corrupted image, it is considered that both
ε-filters in SQEF keep the impulse noise in the image unlike when two smoothed filters
are employed. Hence, when one filter output in SQEF is divided by the other filter in
SQEF, the impulse noise effect is reduced by the self-quotient effects.

We next apply HOG procedure to SQEF output. Figure 3 shows the procedure of
HOG from SQEF outputs. The method is based on evaluating well-normalized local
histograms of image gradient orientations in a dense grid. As local object appearance
and shape are kept in SQEF output, the gradient intensity and the gradient direction of
SQEF are calculated for all the pixels as follows:

fi1(i1, i2) = y(i1 + 1, i2)− y(i1 − 1, i2) (8)

fi2(i1, i2) = y(i1, i2 + 1)− y(i1, i2 − 1) (9)

m(i1, i2) =
√
f2
i1
+ f2

i2
(10)

θ(i1, i2) = arctan
fi2
fi1

(11)

The basic idea of HOG is that local object appearance and shape can often be character-
ized rather well by the distribution of local intensity gradients or edge directions, even
without precise knowledge of the corresponding gradient or edge positions [4]. In prac-
tice, this is implemented by dividing the filter output into small spatial regions (“cells”),
for each cell accumulating a local 1-D histogram of gradient directions or edge orienta-
tions over the pixels of cell. The obtained direction θ (0◦ ≤ θ ≤ 180◦) is divided with
20◦ intervals. 9 dimensional feature vector is generated by adding the gradient intensity
m(i1, i2). We then regard 3 × 3 cells as “Block” and generate many blocks by sliding
on a pixel to pixel basis. The feature vector is finally obtained by combining all the
feature vector. The obtained feature vector is adopted to SVM.

282 M. Matsumoto

3 Experiments

3.1 Experiments on Human Detection

We first conducted the experiments on human detection using impulse noise corrupted
images to show the effectiveness of the proposed method.

MIT pedestrian database and SIDBA were employed as image database. MIT pedes-
trian database contains 900 images. The size is 64 pixel × 128 pixel. Some non person
images were selected from standard image database (SIDBA). 900 64 pixel× 128 pixel
images were cut from them. We also prepared impulsive noise corrupted images by
adding the impulse noise to the above 1800 images. Noise percentage changed from
10% to 40% with 10% intervals. Figure 4 shows original person / non-person images
and its noise-corrupted version. Our aim is to detect human from these types of noise
corrupted images not by using the data trained by the impulse noise corrupted image
but by using the data trained by intact images without noise. As a SVM tool, we used
libsvm, a library for support vector machines [15], and employed default setting and
parameters throughout the experiments for simplicity.

In the experiments, we used original 450 pedestrian images from MIT pedestrian
database and 450 non-person images from SIDBA. We tried to classify the impulse
noise corrupted image by using the training data. The test images are the remaining 450
pedestrian images from MIT pedestrian database and the remaining 450 non-person
images from SIDBA with impulse noise, which are different from the training images.
For comparison, we also tested to classify them using the method combining HOG and
SVM, and the method combining SQF, HOG and SVM. Figure 5 shows the recognition
results. As shown in Fig.5, it was difficult to classify the images using the method
combining HOG and SVM when the image was corrupted with the impulse noise. The
results were still bad even when we used the method combining SQF, HOG and SVM.
On the other hand, the proposed approach could detect human from noise corrupted
images almost 100% using training data with intact images without noise.

3.2 Experiments on Car Detection

We second conducted the experiments on car detection using impulse noise corrupted
images. We used 500 images from MIT CBCL Car Data [17] as car image database.
The size is 128 pixel × 128 pixel. Some non car images were selected from standard
image database (SIDBA). 500 128 pixel × 128 pixel images were cut from them. We
also prepared impulsive noise corrupted images by adding the impulse noise to the
above 1000 images the same as the previous experiment. Noise percentage changed
from 10% to 40% with 10% intervals. Figure 6 shows original car / non-car images and
its noise-corrupted version. Our aim is to detect car from these types of noise corrupted
images not by using the data trained by the impulse noise corrupted image but by using
the data trained by intact images without noise. We used the same SVM tool and the
same parameter as the previous experiments.

In the experiments, we used original 250 car images from MIT CBCL Car Data
and 250 non-car images from SIDBA. We tried to classify the impulse noise corrupted
image by using the training data. The test images are the remaining 250 car images

Object Detection Using Self-quotient ε-Filter 283

(a) Person im-
age from MIT
pedestrian database
(per00003.pgm)

(b) Non-person image from SIDBA
(Airplane)

(c) Person image
from MIT pedes-
trian database with
40% impulse image
(per00003.pgm)

(d) non-person image from SIDBA
with 40% impulse noise (Airplane)

Fig. 4. Sample images of person image and non-person image (Original and noise corrupted
images)

0

0.2

0.4

0.6

0.8

1

0% 10% 20% 30% 40%

Original image
Self-quotient filter
Self-quotient ε-filter

Fig. 5. Experimental results of human detection from impulse noise corrupted image

from MIT CBCL Car Data and the remaining 250 non-car images from SIDBA with
impulse noise, which are different from the training images. For comparison, we also
tested to classify them using the method combining HOG and SVM, and the method

284 M. Matsumoto

(a) Car image from MIT CBCL car data
(1.bmp)

(b) Non-car image from SIDBA (Man-
drill)

(c) Car image from MIT CBCL car data
with 40% impulse image (1.bmp)

(d) Non-car image from SIDBA with
40% impulse noise (Mandrill)

Fig. 6. Sample images of car image and non-car image (Original and noise corrupted images)

0

0.2

0.4

0.6

0.8

1

0% 10% 20% 30% 40%

Original image
Self-quotient filter
Self-quotient ε-filter

Fig. 7. Experimental results of car detection from impulse noise corrupted image

combining SQF, HOG and SVM the same as the previous experiment. Figure 7 shows
the recognition results. As shown in Fig.7, it was difficult to classify the images using
the method combining HOG and SVM when the image was corrupted with the impulse
noise. The results were still bad even when we used the method combining SQF, HOG
and SVM. On the other hand, the proposed approach could detect human from noise
corrupted images about 100% using training data with intact images without noise.

Object Detection Using Self-quotient ε-Filter 285

4 Conclusions

This paper proposed a noise robust SVM-based object detection combining self-quotient
ε-filter and histogram of oriented gradients. We compared the results of our approach to
the results of HOG and SVM, and the results of SQF, HOG and SVM. Throughout the
experiments, the proposed method could robustly detect pedestrians and cars from noise
corrupted images using the training data with the clean image without noise, while it is
difficult to detect objects using other approaches. Future works include the applications
of our method to robot vision. Detailed study of effects of the parameters should also be
required. We also would like to apply the proposed method to medical images to detect
disease site from noise corrupted images.

Acknowledgements. This research was supported by the research grant of Support
Center for Advanced Telecommunications Technology Research (SCAT), by the re-
search grant of Foundation for the Fusion of Science and Technology, by Special
Coordination Funds for Promoting Science and Technology, and by the Ministry of Ed-
ucation, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 20700168,
2008.

References

1. Vadakkepat, P., Lim, P., Silva, L.C.D., Jing, L., Ling, L.L.: Multimodal Approach to Human-
Face Detection and Tracking. IEEE Trans. on Industrial Electronics 55(3), 1385–1393 (2008)

2. Hsiao, P.-Y., Lu, C.-L., Fu, L.-C.: Multilayered Image Processing for Multiscale Harris Cor-
ner Detection in Digital Realization. IEEE Trans. on Industrial Electronics 57(5), 1799–1805
(2010)

3. Huang, W.-C., Wu, C.-H.: Adaptive color image processing and recognition for varying back-
grounds and illumination conditions. IEEE Trans. on Industrial Electronics 45(2), 351–357
(1998)

4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. of Int’l
Conf. on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

5. Mohan, A., Papageorgiou, C., Poggio, T.: Example-based object detection in images by com-
ponents. IEEE Trans. on Pattern Recognition and Machine Intelligence 23, 349–361 (2001)

6. Freeman, W.T., Tanaka, K., Ohta, J., Kyuma, K.: Computer vision for computer games. In:
Proc. of Int’l Conf. on Automatic Face and Gesture Recognition, pp. 100–105 (1996)

7. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int’l Journal of Com-
puter Vision 60, 91–110 (2004)

8. Belongie, S., Malik, J., Puzicha, J.: Matching shapes. In: Proc. of Int’l Conf. on Computer
Vision, pp. 454–461 (2001)

9. Matsumoto, M.: Self-quotient -filter for feature extraction from noise corrupted image. IEICE
Transactions on Information and Systems E93-D(11), 3066–3075 (2010)

10. Wang, H., Zhang, J.J., Li, S.Z., Wang, Y.: Shape and texture preserved non-photorealistic
rendering. Computer Animation and Virtual Worlds (2004)

11. Gooch, B., Reinhard, E., Gooch, A.: Human facial illustrations: Creations and psychological
evaluation. ACM Transactions on Graphics 23(1), 27–44 (2004)

12. Arakawa, K., Matsuura, K., Watabe, H., Arakawa, Y.: A method of noise reduction for
speech signals using component separating ε-filters. IEICE Trans. on Fundamentals J85-
A(10), 1059–1069 (2002)

286 M. Matsumoto

13. Arakawa, K., Okada, T.: ε-separating nonlinear filter bank and its application to face image
beautification. IEICE Trans. on Fundamentals J90-A(4), 52–62 (2005)

14. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. IEEE Int’l
Conf. on Computer Vision, pp. 839–846 (1998)

15. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001)
16. Oren, M., Papageorgiou, C.P., Sinha, P., Osuna, E., Poggio, T.: Pedestrian Detection Using

Wavelet Templates. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition,
pp. 193–199 (1997)

17. Papageorgiou, C., Poggio, T.: A Trainable System for Object Detection. International J. of
Computer Vision 38(1), 15–33 (2000)

18. http://sipi.usc.edu/database/

http://sipi.usc.edu/database/

Adaptive Control of Robot Systems with Simple Rules
Using Chaotic Dynamics in Quasi-layered Recurrent

Neural Networks

Ryosuke Yoshinaka, Masato Kawashima, Yuta Takamura, Hitoshi Yamaguchi,
Naoya Miyahara, Kei-ichiro Nabeta, Yongtao Li, and Shigetoshi Nara

Electrical & Electronic Department,
Graduate School of Nat. Sci. & Tech., Okayama University,

3-1-1, Tsushima-naka, Okayama, 700-8530 Japan
nara@ele.okayama-u.ac.jp

Abstract. A novel idea of adaptive control with simple rules using chaotic dy-
namics in a recurrent neural network model and two kinds of quasi-layered
recurrent neural network model have been proposed. Since chaos in brain was
discovered in the context of brain function, the authors have claimed that chaos
has complex functional potentialities and have presented the results of computer
experiments which use chaos to solve several kinds of ”ill-posed problems”. The
key idea is to harness the onset of complex nonlinear dynamics in dynamical sys-
tems. More specifically, attractor dynamics and chaotic dynamics in a recurrent
neural network model are introduced by changing a system parameter, “connec-
tivity” in one type of model and via “sensitive response of chaos to external in-
puts” in other models. In this report, we will show the following. (1) A global
outline of our idea and our recurrent neural network models with neuro-chaos ,
(2) Several computer experiments on the use of the neuro-chaos recurrent neu-
ral network models for solving of 2-dimensional mazes by an autonomous robot,
in the context of an ill-posed problem setting, (3) Hardware implementations of
the computer experiments using robots with two-wheels or two-legs driven by
a neuro chaos simulator. Successful results of maze-solving are shown not only
for computer experiments but also for practical experiments, (4) A proposal for
a pseudo-neuron device using semiconductor and opto-electronic technologies.
The device is called a ”dynamic self-electro optical effect devices (DSEED)”,
and it has the potential to be a ”neuromorphic device” or even a ”brainmorphic
device”. (5) A proto-type model of intra-brain communications between far dis-
tant neurons in the brain is proposed, from a heuristic point of view based on ob-
servations of neuron synchronization phenomena associated with advanced brain
functioning.

Keywords: Complex dynamics, Chaos, Adaptive control, Quasi-layered recur-
rent neural network, Hardware implementation, Autonoumous robot, Neuromor-
phic device, Brainmorphic device.

1 Introduction

Observations of chaotic dynamics in biological systems, in particular brains, suggest to
us that there may be important relations between chaotic dynamics and the functions

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 287–305.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

288 R. Yoshinaka et al.

of biological systems, for example information processing, regulation or control, intra-
brain communications between far areas. [1][12][13][14][19].

The rapid progress of robotics has brought various robots into our life and indus-
try. However, it is still difficult for robots to perform tasks adaptively in various en-
vironments as biological systems do. Conventional methodologies for robotics such
as designing systems from many parts and elements, often fall into difficulties in the
face of enormous complexity arising in the dynamics of systems with many degrees of
freedom.

For these reasons, it has been suggested that information processing and control
in biological systems could work with novel dynamical mechanisms. Many dynamical
models have been proposed for biological mechanisms and analyzed by means of large-
scale simulation or heuristic methods. Our work is based on a novel idea to harness the
onset of complex nonlinear dynamics in information processing or control systems,
and on studies of chaotic dynamics in neural networks from the functional viewpoint.
First, Nara & Davis introduced chaotic dynamics into a recurrent neural network model
(RNNM) by adjusting only one system parameter, the connectivity among neurons, and
proposed that constrained chaos could be useful to solve complex problems such as ill-
posed problems [4]. In functional experiments, chaotic dynamics was applied to solving
a memory search task or an image synthesis task set in an ill-posed context [5][6][8].
Furthermore, the idea has been extended to challenging applications of chaotic dynam-
ics to control. Chaotic dynamics in a recurrent neural network model was applied to a
control task in which an object solves a two-dimensional maze to catch a target [10], or
to capture a target moving along different trajectories [9]. From the results of computer
experiments, we consider that chaotic dynamics could be useful not only in solving
ill-posed problems but also in controlling systems with many degrees of freedom.

In the present paper, we develop this idea further and propose two types of quasi-
layered RNNMs. The first type has an upper layer consisting of sensing neurons and
a lower layer consisting of driving neurons, with chaotic dynamics used in both lay-
ers. The second type consists of a upper layer (sensory-neurons), an intermediate layer
(inter-neurons) and a lower layer (motor-neurons). This approach is based on the work
of Mikami and Nara who found that chaos has the property of sensitive response to
external input [3]. The RNMM is applied to solving 2-dimensional mazes. We can
find a corresponding example in biological behavior, the auditory behavior of a cricket,
which is a typical ill-posed problem in a biological system [2]. Further developments
are shown about the following topics. They are

(a) application to a roving robot with two legs
(b) application to an arm robot
(c) proposal of a hardware device for a pseudo-neuronand a network of pseudo-neurons,

and evaluation by computer experiments
(d) making of actual hardware device using semiconductor and opto-electronic tech-

nologies
(e) proposal of a proto-type model of intra-brain communications between far areas in

a brain, which are observed as synchronization of firing patterns associated with
advanced functioning.

Novel Adaptive Control of Robot Systems via Simple Rules 289

Fig. 1. The block diagram of our robot
control system

Fig. 2. The roving
robot in our hardware
experiments

Fig. 3. The sensor con-
figurations

2 Main Algorithm of Control System Using Chaos

Construction of Control System. The experimental system mainly consists of a rov-
ing robot with a micro processor unit (MPU), sensing system for sensing sound signals
from the target and for detecting obstacles, a neural chaos simulator, a Bluetooth inter-
face between the robot and the neural chaos simulator, and a target emitting a specific
sound signal, which is like the song of a male cricket, as shown in Fig.1.

The robot with sensors is shown in Fig.2, 3 & 11. It has two driving wheels and one
castor (2DW1C). The robot has six sensors which can be divided into two sub-systems.
One is the sensing system for detecting obstacles, which consists of two ultrasonic
sensors that give the robot the ability to detect whether an obstacle exists in front of the
robot without actually touching it. The other is the sensing system for sensing sound
signals from a target, which consists of four sets of directional microphone circuits that
function as the ears of the robot. Four microphones are set facing four perpindicular
directions, the front, the back, the left and the right of the robot, as shown in Fig.3.
In our study, a loud speaker is employed to emit the sound from the target, a 3.6KHz
signal sounding like a singing cricket. The sound signal from the target is picked up by
the four microphone ears. These four sound signals are amplified, rectified, digitized,
and transferred to the MPU. At the preliminary stage, these signals are compared to
determine which direction has the strongest signal. In the future, we plan to input them
to the upper layer (sensing neurons) in the quasi-layered RNNM. In the present study,
We emphasize the two points. One is that the system for sensing the sound signal from a
target does not give accurate information about the direction of the target, but only gives
rough information about the direction of the target, with some uncertainty. The other
is that, the signals input from the four microphones are not processed with complex
techniques or methods. These are quite important differences between our work and
other conventional robotic systems.

2.1 Context Setting of Solving Mazes

In the present study, the context for solving mazes is as follows.

1) Set obstacles unknown by the robot
2) Set a target emitting a sound signal

290 R. Yoshinaka et al.

3) Acquire information for reaching the target • Check whether there is an obstacle
which prevents the robot from moving forward, using ultrasonic sensors for obsta-
cle detection • Obtain the rough direction of the target by comparing the signals
from four microphones

4) Calculate movement increments at every time step of the neural network activity

3 Neural Chaos Simulator

A neural chaos simulator is used to simulate the dynamical behavior of a neural net-
work, and works as the ”brain” of the robot. Chaotic dynamics in the neural network
cause the robot to generate complex motions which enable it to avoid obstacles in un-
known environments such as mazes. In our study, we start from a simple RNNM, and
develop it to a quasi-layered RNNM (abbreviated as QL-RNNM hereafter) in a heuris-
tic approach to modeling the mechanism of a brain. In regard to QL-RNNM, we con-
sider two kinds of QL-RNNM. The first type of QL-RNNM consists of sensory-neurons
and motor-neurons, and the second type of QL-RNNM consists of sensory-, inter-, and
motor-neurons.

3.1 Recurrent Neural Network Model

Our system uses a fully interconnected RNNM consisting of N binary neurons, with an
updating rule defined by

Si(t+ 1) = sgn
(∑

j∈Gi(r)

WijSj(t)
)

(1)

sgn(u) =

{
+1 u ≥ 0;
−1 u < 0.

– Si(t) = ±1(i = 1 ∼ N) : the firing state of a neuron specified by index i at time t.
– Wij : connection weight from the neuron Sj to the neuron Si, Wii is taken to be 0.
– r(0 < r < N): fan-in number for neuron Si, named connectivity
– Gi(r): spatial configuration set of connectivity r for neuron Si

At a certain time t, the state of neurons in the network can be represented as a N -
dimensional state vector S(t), called a state pattern. The updating rule shows that time
development of state pattern S(t) depends on the connection weight matrix Wij and
connectivity r. When there is full connectivity r = N − 1, appropriately determining
Wij by means of a kind of orthogonalized learning method [6] can be used to embed
groups of N dimensional state patterns as cyclic memory attractors in N dimensional
state space. Cyclic memory attractors consist of K patterns per cycle and we denote the
number of cycles as L. For example, in Fig.4, we take K = 6, L = 4,and N = 400.
In this case, the firing state of each of the N = 20 × 20 = 400 neurons is represented
by a black pixel or a white pixel. After the network evolves according to the updating
rule for enough time steps, a randomly initial state pattern will converge into one of the
embedded cyclic attractors.

Novel Adaptive Control of Robot Systems via Simple Rules 291

Fig. 4. An example of sets of patterns embedded as cyclic attractors : when connectivity r =
N − 1, if S(t) is ξ1

1, then the output sequence for t > 1 is ξ2
1, ξ3

1 ,. . . , ξ6
1, ξ1

1,. . .

Now if we reduce connectivity r by blocking signal transfer from other neurons,
the attractors gradually become unstable, and the state dynamics changes from cyclic
attractor dynamics to chaotic dynamics. In order to analyze the destabilizing process,
we have calculated a bifurcation diagram for the overlap, (Fig.5), where the overlap is
a one-dimensional projection of the state pattern S(t) onto a certain reference pattern.
The overlap m(t) is defined as follows.

m(t) =
1

N
S(0) · S(t) (2)

t = Kp+ t0 (p = 1, 2, . . .) (3)

where S(0) is the initial pattern which is taken as the reference pattern, and S(t) is the
state pattern at time step t. Because m(t) is a normalized inner product, −1 ≤ m(t) ≤
1. m(t) = 1 means that the present state pattern and the reference pattern are the same
at every K steps. Figs. 5 and 6, show the calculated overlap m(t) after S(t) has evolved
for a long time, for the upper layer and the lower layer, respectively.

3.2 Quasi-layered Recurrent Neural Network Model

A quasi-layered RNNM consists of an upper layer with N neurons and a lower layer
with N neurons. The upper layer is updated by only self-recurrence. On the other hand,
the lower layer is updated not only by self-recurrence but also by recurrent outputs of
the upper layer. State pattern S(t) = [x(t),y(t)], where x(t) = {xi(t) = ±1 | i =
1, 2, · · · , N} and y(t) = {yi(t) = ±1 | i = 1, 2, · · · , N}. The updating rules of the
two layers are defined by

xi(t+ 1) = sgn

(∑
j∈Gu(ru)

Wu−u
ij xj(t)

)
(4)

yi(t+ 1) = sgn

(∑
j∈Gl(rl)

[W l−l
ij yj(t) +Wu−l

ij xj(t)]

)
, (5)

where u means upper layer and l means lower layer. Wu−u
ij is the connection weight

from neuron xj of the upper layer to neuron xi of the upper layer, and Wu−l
ij and W l−l

ij

are defined similarly.

292 R. Yoshinaka et al.

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400

m
(t

)
O

ve
rla

p

r(ru,u)Connectivity

Fig. 5. The long-time behavior of the K-step
overlap m(t) in the upper layer. The horizontal
axis is r(ru,u) (0-399).

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400

rl,lConnectivity

m
l(

t)
O

ve
rla

p

Fig. 6. The long-time behavior of the K-step
overlap m(t) in the lower layer. The horizontal
axis is r(rl,l) (0-399).

In the quasi-layered RNNM, if we take sufficiently large connectivity r (ru,u �
N, ru,l � N, rl,l � N), by appropriately determining connection weight Wij , a group
of arbitrarily designed state patterns can be embedded as cyclic memory attractors. Cer-
tain cyclic memory attractors are embedded in each layer. Since three connectivity’s
ruu, rul, rll affect the development of state pattern, for the upper layer and the lower
layer, we have calculated the overlap m(t) of a state pattern S(t) after it evolves for a
long time. The overlap mu(t) of the upper layer as a function of connectivity ru,u is the
same as in Fig.5.

Next, let us show examples of long time behaviors of ml(t) for a few cases of con-
nectivity’s, ruu, rul, rll. They are shown in Fig.6 (rl,l dependence when ru,l = 0),
Fig.7 (rl,l + ru,l dependence when ru,l �= 0). In regard to the latter case, let us show an
example of time development of mu(t) and ml(t) in Fig.8 when ru,u = 40, ru,l = 400,
rl,l = 399, where the lower layer sensitively responds to the upper layer, depending on
whether trajectories of the upper layer pass through states near the embedded attractors
or far from them.

3.3 Quasi-layered Recurrent Neural Network Model Consisting of Sensory-,
Inter-, and Motor-Neurons

The other quasi-layered RNNM consisting of three layers having Ns, Ni, and Nm neu-
rons, respectively, is realized by adding new variables corresponding to inter-neurons.
The upper layer is updated by only self-recurrence. On the other hand, the intermediate
layer is updated not only by self-recurrence but also by recurrent outputs of the upper
layer. The lower layer is also updated in the same way. State patterns are represented
as S(t) = [x(t),y(t), z(t)], where x(t) = {xi(t) = ±1 | i = 1, 2, · · · , Ns}, y(t) =
{yi(t) = ±1 | i = 1, 2, · · · , Ni} and z(t) = {zi(t) = ±1 | i = 1, 2, · · · , Nm}.

The updating rules of the three layers are defined by

xi(t+ 1) = sgn

(∑
j∈Gu(ru)

Wu−u
ij xj(t)

)
(6)

yi(t+ 1) = sgn

(∑
j∈Gi(ri)

[W i−i
ij yj(t) +Wu−i

ij xj(t)]

)
, (7)

Novel Adaptive Control of Robot Systems via Simple Rules 293

-1

-0.5

 0

 0.5

 1

 0 200 400 600 800

ru,l+rl,lConnectivity

m
l(

t)
O

ve
rla

p

Fig. 7. The long-time behaviors of K-step
overlaps ml(t) (ru,u = 40, ru,l = 400).
The horizontal axis represents the reduced in-
put connectivity to the lower layer, 0-799.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

pThe number of periodic maping

m
l(

t)
,m

u(
t)

O
ve

rla
p

Fig. 8. The overlap mu(t)(Red solid line) and
ml(t)(Green broken line) along time axis. The
horizontal axis represents the p-th K-step,
where t = Kp+ t0 (K = 6 and t0 = 1200).

zi(t+ 1) = sgn

(∑
j∈Gl(rl)

[W l−l
ij zj(t) +W i−l

ij yj(t)]

)
, (8)

where u means upper layer, i, intermediate layer, and l, lower layer, respectively.Wu−u
ij

is the connection weight from neuron xj of the upper layer to neuron xi of the upper
layer, W i−i

ij , Wu−i
ij , and W i−l

ij , and W l−l
ij are defined similarly.

4 Designing Attractors for Control

4.1 Motion Functions

The robot has local coordinates so that at any time t, in the local coordinates the robot
is at the origin with orientation 0, as shown in Fig.9.

The robot has two driving wheels and one castor wheel, and when the two driving
wheels rotate with the same velocity and reverse direction, the rotation radius can be
regarded as zero if we do not consider the slippage of the wheels. Therefore, the mo-
tion of the robot at each step includes two actions. First, the robot rotates with an angle
θ(t) around the present origin. Next, it moves forward for an distance L(t). The two-
dimensional motions of the robot can be described by two time-dependent variables
θ(t) and L(t). Therefore, in order to realize 2-dimensional motion of the robot using
dynamical behavior of the neural network, the four hundred dimensional state pattern
S(t) of the neural network is transformed into the rotation angle θ(S(t)) and the move-
ment distance L(S(t)) by simple coding functions. The coding functions are called
motion functions and defined by

θ(S(t)) = tan−1 fy(S(t))

fx(S(t))
(9)

L(S(t)) = πd
√
f2
x(S(t)) + f2

y (S(t)) (10)

294 R. Yoshinaka et al.

Fig. 9. The motion of the robot: at each new position, the robot has local coordinates in which the
positive x axis is always in the direction toward the front of the robot

where d is the diameter of the driving wheels, and fx(S(t)), fy(S(t)) are the x-axis
increment and y-axis increment in the local coordinates at time t defined by

fx(S(t)) =
4

N
A · C fy(S(t)) =

4

N
B · D (11)

where fx(S(t)) and fy(S(t)) are four N/4 dimensional sub-space vectors of state pat-
tern S(t), which is shown in Fig.11. The inner products of A · B and C · D are nor-
malized by 4/N = 100, so fx(S(t)) and fy(S(t)) ranges from -1 to +1.Therefore, the
rotation angle θ(S(t)) takes value from −π to π, and the movement distance L(S(t)),
takes values from 0 to

√
2πd.

4.2 Attractors for Control Mechanisms

Upper Layer. The upper layer for sensing consists of 5 independent sub-space vectors
that correspond to 5 sensors — four microphones for detecting target direction and
one pair of ultrasonic sensors for detecting obstacles, shown in Fig.10. Attractors are
embedded in the case that the direction of the maximum signal intensity received by
microphones is front, back, right, or left without obstacles, respectively. As the robot
moves, the signal intensity of the four microphones changes. The firing state of the
sensing neurons in the upper layer sensitively responds to the external signal input and
produce adaptive dynamics which act on the driving neurons. On the other hand, if there
are obstacles to prevent the robot from moving forward, sensing neurons corresponding
to ultrasonic sensors are activated, and cause strong chaotic dynamics in the sensing
neurons to act on the driving neurons so as to enable the robot to perform complex
motions.

Lower Layer. The lower layer for driving consists of four groups of attractor patterns,
shown in Fig.11. Each group of patterns are embedded as a cyclic attractor. Each cyclic
attractor corresponds to a prototypical simple motion.@Each attractor pattern consists
of four random sub-space vectors A,B,C and D. A and B are independent random
patterns. A group of specified intra-pattern structure is given, such as A = C or −C
andB = D or−D in the present study. By the coding of motion functions, each group
of attractor patterns corresponds to a stationary motion in two-dimensional space.

Novel Adaptive Control of Robot Systems via Simple Rules 295

Fig. 10. Four cyclic attractors embedded in upper layer

Fig. 11. Attractor patterns designed for motion control. Each cyclic memory corresponds to a
simple motion.

5 Control Algorithms in Roving Robot

Studies of RNNM have shown that sufficiently large or small values of connectivity
r enable the neural network to generate either chaotic dynamics or attractor dynamics
[4], respectively. In a quasi-layered RNNM, a set of connectivity values (ru,u, ru,l, rl,l)
should be considered. In our example, when rl,l is set as 60, different values of ru,u
cause chaotic dynamics with different dynamical properties. Correspondingly, with the
coding of motion functions, the robot can show either weak (localized) chaotic motions
(Fig.12(left)), or strong chaotic motions (Fig.12(right)).

296 R. Yoshinaka et al.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

START

-8

-6

-4

-2

 0

 2

 4

 6

 8

-8 -6 -4 -2 0 2 4 6 8

START

Fig. 12. Examples of motion control (ru,l = 400 and rl,l = 60): (left) larger ru,u = 60 generates
weak chaotic dynamics with localized property, (right) smaller ru,u = 20 causes strong chaotic
dynamics

Fig. 13. Control algorithm for solving 2-dimensional mazes

Once optimal connectivities are determined, the control for motion in a two-dimen-
sional maze will work well even when obstacle information is just given to the obstacle
sub-space in the upper sensing layer. However, in the initial implementation, the obsta-
cle information is used to adaptively switch the connectivity ru,u in the upper sensing
layer. The control algorithm is shown in Fig.13.

The sensing neurons in the upper layer sensitively response to the intensity of the
sound signal from the target detected by the four microphones. Driving neurons in the
lower layer sensitively respond to the sensing neurons and the robot adaptively turns
toward the strongest intensity direction quickly due to the sensitivity of the chaotic dy-
namics. When there are no obstacles in the range of the ultrasonic sensor, the robot
moves with large value of connectivity ru,u. When there is an obstacle, it moves chaot-
ically with small value of connectivity of ru,u until it avoids the obstacle. Several ex-
amples of computer experiment are shown in Fig.14. In the near future, switching of
connectivity ru,u will be replaced with only sensing neurons responding to external
input adaptively.

6 Experiments with Hardware Implementations

Experiments were down with a hardware implementation of the robot control system.
Several kinds of typical 2-dimensional mazes were constructed. A loud speaker was
set as a target, which is emitting a specific sound signal resembling the calling song of

Novel Adaptive Control of Robot Systems via Simple Rules 297

-1

 0

 1

 2

 3

 4

 5

 6

-1 0 1 2 3 4 5 6

START

TARGET

-1

 0

 1

 2

 3

 4

 5

 6

-1 0 1 2 3 4 5 6

START

TARGET

W
ALL

Fig. 14. Examples of computer experiments of obstacle avoidance: (left) No obstacle, ruu stays
at large value; (right) When an obstacle prevents the robot from moving forward, small value of
ruu is used to update the network

(a) t = 0s (b) t = 408s

Fig. 15. Video snapshots of the roving robot walking on a horizontal floor where there are ob-
stacles between the robot and the target. (a) Around the starting point, the robot is far from the
target, and there are obstacles between the robot and the target (b) after some time of wandering,
including chaotic dynamics, the robot reaches the target.

a male cricket. When the robot, like a female cricket, moves in the two-dimensional
space, it can obtain only rough directional information from the four microphones,
which are attached to the front, the back, the left and the right of the robot. The robot
was controlled according to the control algorithm shown in Fig.13. Using chaotic dy-
namics, the robot successfully avoids obstacles and reaches the target. Fig.15 shows
some video snapshots of the robot solving the above 2-dimensional maze. Now we are
implementing control using input of obstacle information to sensing neurons, and will
report experiments on this in the near future.

7 Developing Hardware Implementations and Pseudo-neuron
Devices

Now, we briefly show our preliminary results about further hardware developments for
implementations based on our ideas for functional chaos.

298 R. Yoshinaka et al.

Fig. 16. A humanoid robot used in our
experiments

Fig. 17. A humanoid robot executing
the action of climbing upstairs

Fig. 18. An arm robot used in our
experiments

Fig. 19. An arm robot executing the
action of reaching for a target

7.1 Roving Humanoid Robot and Arm Robot Driven by Chaos

In this section we introduce two examples of implemented robot systems. One applies
the same control method for solving mazes to a humanoid robot with two legs, as shown
in Fig.16. This experiment is designed to extend our idea to deal with 3-dimensional
configuration of obstacles, instead of 2-dimensional mazes as in the previous examples.
The robot behavior necessarily includes the actions not only of straddling or stepping
over obstacles but also of climbing up and down obstacles, depending on their size (see
Fig.17). This experiment is still underway.

The other experimental system applies the same control idea to arm motions of ani-
mals like human beings or monkeys. We consider the situation in which the robot does
not have advanced visual information processing ability like mammals but has only a
poor visual sensing system. In this situation, the sensors can detect only the rough di-
rection of target, with some uncertainty. Four infrared light sensors are attached on the
arms to realize such ”ill-posed” control situations. (see Fig.18) At present, the experi-
ment has only been successful in the case without obstacles (see Fig.19).

Novel Adaptive Control of Robot Systems via Simple Rules 299

7.2 A Pseudo-neuron Device and Diffusively Coupled Network

In this section, we report our study about a pseudo-neuron device fabricated using Self
Electro-optic Effect Device (SEED) and coupled dynamic SEED (D-SEED).

inP

Fig. 20. single SEED Fig. 21. Serially connected SEEDs with feedback

Self Electro-optic Effect Device (SEED) & Dynamic SEED. A typical single SEED
composed of p-i-n semiconductors is shown in Fig. 20. The primary variable of this
system is photocarrier density n which is generated by the incident optical power Pin.
The rate equation for photocarrier density n is presented below. The important point is
that it exhibits a bistable property with respect to incident optical power.

We propose a pseudo-neuron device that consists of two bistable SEED elements
optically connected in a series with feedback from the lower element to the power of an
incident light beam (Fig. 21). We called it ”Dynamic SEED (D-SEED)”.

Coupled rate equations for photocarrier density in the two SEED sections, n1 (upper)
and n2 (lower), are written as

dn1

dt
= −n1

τ1
+

α1 (Pin + Pf)Ω01

{ω − ξ1}2 +
(
Ω01

2

)2 (12)

dn2

dt
= −n2

τ2
+

α2 (Pin + Pf −m1n1)Ω02

{ω − ξ2}2 +
(
Ω02

2

)2 (13)

ξi = ω0i − β (V0i −RiIi) (i = 1, 2) (14)

Ii = ηini (i = 1, 2) (15)

Pf = AI2R2 = AR2η2n2 (16)

where τ , α, Ω0, ω, ω0, β, Vin, V0, R, η are system parameters. Note that the primary
parameter is Pin, which causes many kinds of bifurcation phenomena. m is absorption
parameter and A is feedback gain parameter.

The rate equations show that for the upper SEED, feedback light is added to incident
light, whereas the lower SEED receives the light decreased by the absorption in the

300 R. Yoshinaka et al.

Input Power [mW] Input Power [mW]P
ho

to
ca

rr
ie

r
D

en
si

ty
 [×

10
12

m
-3

]

P
ho

to
ca

rr
ie

r
D

en
si

ty
 [×

10
12

m
-3

]

Fig. 22. Stationary solutions of upper SEED (left) and lower SEED (right) as a function of input
light power Pin. Blue lines, green lines and red lines indicate stable ”ST”, saddle ”SD” and
unstable ”UN”solutions respectively.

0.20.10

0.2

0.4

Ph
ot

oc
ar

ri
er

 D
en

si
ty

 [
×

10
12

m
-3

]

Time[μs]

0.20.10

0.2

0.4

Ph
ot

oc
ar

ri
er

 D
en

si
ty

 [
×

10
12

m
-3

]

Time[μs]

0.05
0.3

upper
lower

Fig. 23. Oscillatory solutions of n1 and n2 for input light power, Pin = 0.170 (left), 0.220 (right),
respectively. Note that oscillation periods become infinitely long as the solutions approach the
saddle-node bifurcation points at the edge of the unstable regions (Fig. 22).

upper SEED. When we choose appropriate parameter values, we can obtain various
bifurcation phenomena as shown in Fig. 22. Particularly, important bifurcations are
”Hopf bifurcation” and ”Saddle-node bifurcation”.[16]

The important point of this case is that a saddle-node bifurcation occurrs on a marginal
limit cycle, so that, the period of the limit cycle becomes infinitely long as light power
approaches the saddle-node bifurcation point (Fig. 23). Two typical cases of oscillation
are shown in Fig. 23.

Now we extend our idea to a network of D-SEEDs which are diffusively coupled
in a two-dimentional array. The coupled rate equations can be modified to include a
diffusion term, from Eq. (17).

D

[
∂2n

∂x2
+

∂2n

∂y2

]
∼= D (ni−1,j + ni+1,j + ni,j−1 + ni,j+1 − 4ni,j) (17)

Novel Adaptive Control of Robot Systems via Simple Rules 301

Fig. 24. Example of D-SEED network. (upper-left) Two-dimensional square lattice D-SEEDs,
(lower-left) snapshot of a network state at a certain time step, where brightness of each cell cor-
responds to ni,j and is represented in grayscale normalized by maximum value of carrier density,
(right) example of time-dependence of carrier density (chaotic oscillation and synchronization).

Fig. 25. Switching between two states by varying light power between Pin=0.160 (Chaos) and
0.110 (Multi-stable)

Here (i, j) means the position of a D-SEED in an square lattice of points in two-
dimensions, as shown in Fig. 24 (left-up). Under certain light power, time-dependence
of carrier density shows chaotic dynamics and long time behavior converges to synchro-
nized periodic oscillation (Fig. 24 (right)). We obtained global spatio-temporal chaotic
dynamics if we sufficiently increased the number of D-SEEDs. By varying light power,
we also confirmed the existence of multi-stable states. In Fig. 25, we succeeded in ob-
taining switching between two states, chaotic state and a multi-stable state, by varying
incident light power. We aim to use this property to implement control functions with
adaptive switching among chaotic state, multi-stable states and synchronized periodic
states.

302 R. Yoshinaka et al.

Fig. 26. 2-dimensional motion

αβ coding
α

β

0.5

0.5

object

Fig. 27. Coding method (b)-1

Complex Control using Pulsed Neuron Networks. In our previous studies, the key
idea was adaptive switching between chaotic dynamics and attractor dynamics in neu-
ral networks. Now, it is necessary to develop hardware implementations using artificial
neuron devices. In order to apply a pulsed-neuron network such as the D-SEEDs net-
work to the problem of solving mazes, it is necessary to determine appropriate coding
functions for mapping the device states to the motion variables.

We considered two types of switching.

(a) Adaptive switching between chaotic state and synchronized periodic state.
(b) Adaptive switching between chaotic state and multi-stable state.

In each case, the state pattern of the network is represented by 400-dimensional state
vectors, while motion in 2-dimensional space is only two-dimensional (Fig.26). There-
fore, it is necessary to convert 400-dimensional state to 2-dimensional motion by a
coding function. We designed 3 different coding methods. One is shown in Fig.27, and
another is shown in Fig.28, where the detailed definition of motion increments are omit-
ted. An important point is that, at each sampling time for motion increments calculation,
periodic or chaotic pulsed operations of photocarrier density in each element are trans-
formed into binary states (+1 or -1) depending on being larger or smaller than a certain
threshold value.

With the second method it is possible to switch between 4 monotonic motions which
are almost linear motions in 4 quadrant directions and chaotic motion. Now, we can
solve the maze by adaptive switching between monotonic motion and chaotic motion
with a simple control algorithm shown in Fig. 29. Successful results were obtained from
computer experiments and details will be reported elsewhere.

Novel Adaptive Control of Robot Systems via Simple Rules 303

20

+r1 -r2

20

-r
1+r

2

Fig. 28. Coding method (b)-2

Direction of movement

Direction to target

＝

Direction of movement

Direction to target

＝

Direction of movement

Direction to target

＝

Monotonic motion (multi-stable)

YES

NO
Chaotic motion (chaos)

The obstacle exists
in direction of movement

YES

Move
NO

Fig. 29. Control algorithm for adaptive switching between chaotic motion and monotonic motion

8 Experiments Using Quasi-layered Recurrent Neural Network
with Sensory-, Inter-, and Motor-Neurons

The proposal of the Quasi-Layered Recurrent Neural Network with three layers, com-
posed of Sensory-, Inter-, and Motor-Neurons, is based on two aims in our heuristic
research approach. One is to develop our idea about control via simple rules using
chaos in a recurrent neural network model so as to enable simultaneous multi-tasks,
and the other is to show phenomena of synchronization of firing patterns between far
distant neurons, which are observed in physiological-, fMRI-, and EEG-experiments
on brains, associated with advanced functioning (for example, see [19]). The impor-
tant point of the observed synchronization phenomenon is that there does not appear
to be any strongly correlated activity in the intermediate neurons located between the
synchronized neurons. We consider that intermediate layers of neurons may be chaotic.

The outline of our model corresonding to Quasi-Layered Recurrent Neural Network
with Sensory-, Inter-, and Motor-Neuronsis is shown in Fig. 31. Our computer experi-
ments are at the stage that the same maze-solving functions as the previous models can
be realized, as shown in Fig. 30. It should be noted that the connectivity’s are all fixed
and inputs only enter the sensory-neurons. Experiments on multi-tasks are now being
done and the results will be reported elsewhere. Synchronization experiments are also
underway.

304 R. Yoshinaka et al.

Fig. 30. A block diagram of our model for a Quasi-Layered Recurrent Neural Network with three
layers, composed of Sensory-, Inter-, and Motor-Neurons

Fig. 31. Examples of successful cases of solving a maze

9 Concluding Remarks

The results of the present preliminary experiments, allow us to conclude that chaotic
dynamics is useful to solve complex problems, such as mazes, not only in computer ex-
periments, but also in hardware implementation of robot systems. Although detail con-
siderations remain to be done, it is at least a heuristic discovery that chaotic dynamics
could play important roles in biological systems. We are sure that such novel functional
aspects of chaotic dynamics could be applied to complex control by simple rules in sys-
tems with large numbers of degrees of freedom, and be useful for engineering applica-
tions mimicking complex functions observed in biological systems including brain.

Acknowledgements. The authors greatly appreciate the valuable comments of Dr. Pe-
ter Davis. This work has been partly supported by Grants-in-Aid for Scientific Research,
#19500191 in Japan Society for the Promotion of Science and #22120509 in the Min-
istry of Education, Culture, Sports, Science & Technology, also partly supported by
System Development Program for Advanced Measurement and Analysis in Japan Sci-
ence and Technology Agency (JST).

References

1. Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of the world.
Behavioral and Brain Sciences 10, 161–195 (1987)

2. Huber, F., Thorson, H.: Cricket Auditory Communication. Sci. Amer. 253, 60–68 (1985)

Novel Adaptive Control of Robot Systems via Simple Rules 305

3. Mikami, S., Nara, S.: Dynamical Responses of Chaotic Memory Dynamics to Weak Input in
a Recurrent Neural Network Model. Neural Computing & Applications 11, 129–136 (2003)

4. Nara, S., Davis, P.: Chaotic wandering and search in a cycle memory neural network.
Progress of Theoretical Physics 88, 845–855 (1992)

5. Nara, S., Davis, P., Kawachi, M., Totuji, H.: Memory search using complex dynamics in a
recurrent neural network model. Neural Networks 6, 963–973 (1993)

6. Nara, S., Davis, P., Kawachi, M., Totuji, H.: Chaotic memory dynamics in a recurrent neural
network with cycle memories embedded by pseudo-inverse method. Int. J. Bifurcation and
Chaos Appl. Sci. Eng. 5, 1205–1212 (1995)

7. Nara, S., Davis, P.: Learning feature constraints in a chaotic neural memory. Phys. Rev. E 55,
826–830 (1997)

8. Nara, S.: Can potentially useful dynamics to solve complex problems emerge from con-
strained chaos and/or chaotic itinerancy? Chaos 13, 1110–1121 (2003)

9. Li, Y., Nara, S.: Novel Tracking Function of Moving Target Using Chaotic Dynamics in A
Recurrent Neural Network Model. Cognitive Neurodynamics 2, 39–48 (2008)

10. Suemitsu, Y., Nara, S.: A solution for two-dimensional mazes with use of chaotic dynamics
in a recurrent neural network model. Neural Computation 16, 1943–1957 (2004)

11. Skarda, C.A., Freeman, W.J.: Behavioural and Brain Sciences 10, 161–195 (1987)
12. Tsuda, I.: Behavioral and Brain Sciences 24, 793–847 (2001)
13. Fujii, H., Itoh, H., Aihara, K., Ichinose, N., Tsukada, M.: Neural Networks 9, 1303 (1996)
14. Adachi, M., Aihara, K.: Neural Networks 10, 83–98 (1997)
15. Nara, S., Tokuda, Y., Abe, Y., Yasukawa, M., Tsukada, N., Totsuji, H.: J. Appl. Phys. 75(8),

3749–3755 (1994)
16. Ohkawa, Y., Yamamoto, T., Nagaya, T., Nara, S.: Phys. Appl. Phys. Lett. 86, 111107 (2005)
17. Suemitsu, Y., Nara, S.: Neural Compt. 16(9), 1943–1957 (2004)
18. Nara, S., Davis, P.: Prog. Theor. Phys. 88, 845–855 (1992); Nara, S.: Chaos 13(3), 1110-1121

(2003)
19. Yamaguchi, Y.: The Brain Computation Based on Synchronization of Nonlinear Oscillations:

On Theta Rhythms in Rat Hippocampus and Human Scalp EEG. In: Marinaro, M., Scarpetta,
S., Yamaguchi, Y. (eds.) Dynamic Brain - from Neural Spikes to Behaviors. LNCS, vol. 5286,
pp. 1–12. Springer, Heidelberg (2008)

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 307–316.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Mathematical Modeling of Human Thermoregulation:
A Neurophysiological Approach to Vasoconstriction

Boris R.M. Kingma1, Arjan J.H. Frijns2, Wim H. Saris1
Anton A. van Steenhoven2, and Wouter D. van Marken Lichtenbelt1

1 Department of Human Biology, NUTRIM School for Nutrition
Toxicology and Metabolism of Maastricht Universitary Medical Centre+

Universiteitssingel 50, Maastricht, The Netherlands
{B.Kingma,W.Saris,Markenlichtenbelt}@maastrichtuniversity.nl

2 Department of Mechanical Engineering, Eindhoven University of Technology
Eindhoven, The Netherlands

{A.J.H.Frijns,A.A.v.Steenhoven}@tue.nl

Abstract. Skin blood flow is of major importance in human thermoregulation.
Classic thermoregulation models require an explicit set point to control
temperature. Normally such a set point is defined in the unit of the controlled
variable (i.e. Celsius). However, the human body does not sense temperature
directly, instead temperature information is coded into neuron fire rates. Here
we explored the neurophysiology of thermoregulation to develop a
mathematical model of skin blood flow that does not require a set point. The
model was developed on measurement data of skin temperature, core
temperature and skin blood flow and was validated using k-fold cross
validation. The model explained over 90% of the variance in the measurements
(r2=0.91). Hence, the results are promising and indicate that emulation of
thermoregulatory neurophysiology is able to capture the dynamics of skin blood
flow control.

Keywords: Neural pathways, Skin blood flow, Temperature, Thermoreception.

1 Introduction

In order to maintain core temperature within narrow limits, the human body balances
both heat gain and heat loss [1]. Conservation of body heat during mild cold
challenges is primarily achieved by vasoconstriction (i.e. constriction of blood
vessels), which decreases skin blood flow [2, 3]. Thereby heat transport from the core
to the skin is diminished and eventually heat loss to the environment is decreased.
Hence, the accuracy of models of human thermoregulation depends for a great deal on
their ability to predict skin blood flow. In the past various models predicting skin
perfusion responses have been developed [4]. What these models have in common is
that they require an explicit setpoint; i.e. a reference temperature which is compared
with the actual body temperatures to generate error signals. The effector response (in
this case vasoconstriction) is assumed to be proportional to the error signal [5].

308 B.R.M. Kingma et al.

Although from an engineering perspective the meaning of a set-point might be
clear, application of the concept in human physiology is still under debate as it is not
clear how this set-point could be contained [6]. Alternatively, it is hypothesized that
thermoregulatory effectors could also be modeled by using bell-shaped neural
activation patterns of thermo-sensitive neurons, and reciprocal cross inhibition (RCI)
[7-10]. An advantage of this approach is that the model structure remains true to
current neurophysiologic knowledge on thermoregulation. For instance, the
thermoregulatory system does not sense temperature directly, yet the information is
coded into neuron fire rates [11]. Hence skin blood flow is modeled from principles of
neurophysiology instead of simple regression.

In this study a mathematical model for skin blood flow during cold exposure was
developed based on physiological data on neural thermo-sensitivity and neural
pathways. The aim of this study was to investigate whether skin blood flow can be
adequately modeled through simulation of thermo-sensitive neurons and neuro-
physiological pathways of excitation and inhibition.

2 Methods

The model for the central control of skin blood flow was based on thermal reception
and neural pathways that were mostly established by in vivo animal experiments. To
underline the importance of modeling human physiological responses from
neurophysiological principles we first address the physiological mechanisms,
thereafter a mathematical translation is described.

2.1 Physiology of Vasoconstriction

Physiological experimental evidence indicates that skin blood flow is regulated by
both reflex (neural) and local mechanisms [2]. Neural control of vasoconstriction is
mediated by the sympathetic nervous system. Under thermoneutral conditions blood
vessels are under a baseline sympathetic vasoconstrictor tone. During a cold challenge
an increase in sympathetic vasoconstrictor tone causes blood vessels to constrict [3].

The ability of the body to react to a cold challenge is determined by thermal
reception, neural integration of thermal information and vessel responsiveness to the
increased vasoconstrictor tone.

Thermal Reception. Thermal reception is mediated through temperature sensitive
neurons. The steady state fire rate vs. temperature has a characteristic bell-shaped
form (see Figure 1).

In addition to steady state fire rates, temperature dynamics influence the neuron fire
rate such that cold sensitive neurons will fire more often (also referred to as bursts)
during cooling than during warming in the same temperature range [5, 9, 12].
Likewise a warm-sensitive neuron will fire more often when heated rather than
cooled. Although there is spatial variation in the actual fire rate of neurons, the
general response of individual temperature sensitive neurons has been accepted
widely.

 Mathematical Modeling of Human Thermoregulation 309

0

2

4

6

8

10

12

10 15 20 25 30 35 40 45
Skin temperature [°C]

N
eu

ro
n

fi
re

 r
at

e
[p

ul
se

/s
ec

]

Cold sensitive

Warm sensitive

Fig. 1. Steady-state fire rate of cold sensitive neuron (gray line) and warm-sensitive neuron
(black line). Adjusted from Zotterman [12]

Neural Integration. The specific integration of neural information through neural
pathways is still enigmatic. However Nakamura and Morrison recently identified
neural control of cold defensive responses to skin cooling in the rat [11, 13]. For the
mathematical model we used their description of sensory pathways, effector pathways
and related neuronal circuits (see Figure 2). Nakamura and Morrison showed that in a
neutral situation, when there is virtually no cool input from the skin, cold defense
pathways are inhibited by warm sensitive neurons in the hypothalamus. Hence, no
vasoconstriction occurs. However, during environmental cooling, cold sensitive
neurons at the skin are excited and increase their fire rate. Information of individual
neurons is combined in neurons of the spinal cord where it is transmitted to the
hypothalamus. There the warm sensitive neurons in the hypothalamus are inhibited,
which leads to the increase of sympathetic adrenergic tone and ultimately
vasoconstriction.

2.2 Modeling of Vasoconstriction

The description of thermal reception and neural integration was schematized in a
diagram (see Figure 2).

In the left part of Figure 2, local skin temperatures are transduced into neural coded
information by cold and warm sensitive neurons. In the spinal cord section information
from individual neurons is combined and transmitted to the hypothalamus. Warm
sensitive neurons in the hypothalamus transduce core temperature and are inhibited by
cold sensitive neurons from the periphery, whereas peripheral warm sensitive neurons
perform an excitatory role. Control neurons responsible for cold defense pathways are
inhibited by the warm sensitive neurons in the hypothalamus.

310 B.R.M. Kingma et al.

Cold Neurons

Warm Neurons

Warm Neuron

L
oc

al
 S

ki
n

Te
m

pe
ra

tu
re

s

+

-

-

Vasoconstriction

+

+

β2

β3

Spinal cord Hypothalamus

-

Core Temperature

Face

…
...

Foot

+

+
Face

Foot

…
...

Warm Neuron

β1

+

Skin Skin

Fig. 2. Schematic of neuronal model for control of skin blood flow. + and – denote excitatory
or inhibitory pathways; β1 denotes the averaged combined effect of non-thermal inputs on skin
blood flow; β2 and β3 denote respectively weighing of the inhibition of the cold defense
pathway by warm sensitive neurons in the hypothalamus.

Table 1. Coefficients for the 10th order polynomial function of static neuron fire rate as given in
Mekjavic and Morrison (1985). Coefficients in bold are corrected values.

Polynomial order Cold sensitive neuron Warm sensitive neuron

x0 -0.19005313e6 0.1526647e5
x1 0.85318078e5 -0.5147704e4
x2 -0.16974919e5 0.7707699e3
x3 0.19724509e4 -0.67475955e2
x4 -0.14833377e3 0.38244284e1
x5 0.75486723e1 -0.14664175e0
x6 -0.26343323e0 0.38526706e-2
x7 0.62289589e-2 -0.68496075e-4
x8 -0.95563808e-4 0.78889647e-6
x9 0.85949930e-6 -0.53173142e-8
x10 -0.34432887e-8 0.15936041e-10

Thermal Reception. The neural input for the model is based on activation patterns of
thermo-sensitive neurons on the skin and in the core region of the body. Simulation of
both the static and dynamic components of thermo-sensitive neurons is based on the
approach of Mekjavic and Morrison [14]. In their study they performed a polynomial
fit of the static fire rate of temperature sensitive neurons (see Table 1 for the used
coefficients).

Equations 1 to 3 describe the simulation of the neuron fire rate (after Mekjavic, 1985):

(1)

 Mathematical Modeling of Human Thermoregulation 311

Here Ci,t is the neural response at location i and time t (C for cold sensitive neurons,
W for warm sensitive neurons); Δt is the time interval (60 sec); F1 is the static neuron
fire rate at t=t-1. A0 and A are static gain factors that depend on the difference static
fire rates between two moments in time.

A0 = F2 − F1 (2)

A = 5.0⋅ F1⋅ A0
 (3)

K=5.5, Ki=3.3 and Ke=5.5 are static, inhibitory and excitatory gain factors
respectively. P is a sign operator indicating an inhibitory or excitatory response.
When cold sensitive neurons are heated P is negative, when the same neurons are
cooled P is positive; vice versa for warm sensitive neurons. See Figure 3 for an
example of neuron simulation.

6

7

8

9

10

11

12

13

0 20 40 60 80 100 120

N
eu

ro
n

fir
e

ra
te

 [
pu

ls
e/

se
c]

Time [sec]

Average fire rate

Average fire rate

Static T1
Static T2

Fig. 3. Example of simulated neuron response using Equation 1. The peak indicates an
excitatory response, after which the fire rate returns to its static level. The dynamic component
is larger for larger variations in temperature. The average fire rate during 1 minute was used as
the input fire rate for the model.

Neural Integration. As can be seen in Figure 2, neural information from skin sites
was integrated at the spinal neurons. From then on, neuron response was considered
as a neural drive. The resulting neural drive (N) from cold (C) and warm (W) sensitive
neurons was defined as the average fire rate over all locations.

NSkin,Cold =
Ci,t∑

nloc

 (4)

NSkin,Warm =
Wi,t∑

nloc

 (5)

312 B.R.M. Kingma et al.

It should be pointed out that due to the non-linear characteristics of neuron fire rates,
as a function of temperature and temperature history, the mean skin temperature was
not used to calculate the neural drive. For example, given two temperatures T1=20°C
and T2=30°C, due to the bell-shaped form of the static neuron fire rate, the neuron fire
rate of the averaged temperature (25°C) is not equal to the averaged neuron fire rates
at T1 and T2 (see Figure 1).

The hypothalamic neural drive was calculated as the neural response to core
temperature. The response of neurons in the body core is shifted by 2°C [14].
Inhibition of core neural drive by peripheral cold neurons was calculated by
subtraction of cold peripheral neural drive from the core neural drive. Likewise,
excitation of core neural drive by peripheral warm neurons was simulated by addition
of warm peripheral neural drive on the core neural drive.

Hcold = NCore,Warm − NSkin,Cold (6)

Hwarm = NCore,Warm + NSkin ,Warm (7)

Here H denotes the net hypothalamic neural drive of either warm or cold pathway and
N denotes the neural drive of neurons given their position and type.

Weighting factors for the neural drive on cold sensitive neurons (β2 and β3 in
Figure 2) were estimated by least squares regression using the following model:

y = β1 − β2Hcold − β3Hwarm (8)

Here y denotes the perfusion response. The constant β1 can be interpreted as the
averaged combined effect of non-thermal factors on skin blood flow.

2.3 Validation

The model is validated by k-fold cross validation. This method maximizes the
available data by fitting the model on the average response of n-1 subjects and
calculating the mean squared residuals (MSR) on the remaining subject.

MSR =
yt − f xt()()2

n
∑ (9)

Where yt is the measured perfusion at time point t, f(xt) is the model prediction at t and
n is the number of measurement points in one recording. The MSR provides a
measure of the quality of the model prediction, irrespective of the length of
measurement. This process is iterated k times (k=n=8) where each fold the model is
fitted and tested on a unique subset. Hence k-fold cross validation provides a measure
of the ability of the model to predict the vasoconstriction response over individuals
whilst maintaining the experimental conditions constant. The average MSR over k
iterations is used as general measure of the capability of the model to predict
perfusion.

2.4 Experimental Setup

Eight young adult males (18 to 28 years) were included (characteristics in Table 2).
All subjects were healthy, non-obese and not taking medications. Subjects were in

 Mathematical Modeling of Human Thermoregulation 313

fastened state and refrained from caffeinated or alcoholic beverages in the morning
prior to the test. The medical ethical committee of Maastricht University Medical
Centre+ approved the study. Each subject gave verbal and written informed consent
prior to participation in the study. All procedures conformed the standards of the
Declaration of Helsinki.

Table 2. Subject characteristics. Values are mean ± standard error of the mean. (n=8).

Variable Mean ± SE
Age, yr 23.63 ± 1.05
Height, m 1.81 ± 0.02
Mass, kg 69.05 ± 3.49
BMI, kg/m2 21.07 ± 1.07
Mean BP, mmHg 85.00 ± 1.98
Whole body fat, % 15.93 ± 1.60
Leisure Activity Level 3.34± 0.19

2.4.1 Protocol

Subjects arrived at the laboratory at 9:00 a.m. Skin temperature was measured in 1-
minute intervals by i-buttons (type DS1921H; Maxim/Dallas Semiconductor Corp.,
USA) at the 14 positions of the ISO standard for mean skin temperature [4, 15]. Core
temperature was measured in 1-minute intervals using a telemetric pill
(Coretemp,USA). Whole body skin temperature was controlled by a water-perfused
suit (DTI, TUBEsuit) in combination with a water temperature control unit
(Blanketrol II, Cincinnati Sub-Zero). Skin perfusion was sampled at 8Hz using laser-
Doppler flowmetry (Perimed, PF 5000, Sweden) at the ventral side of the hand
between the base and metacarpal of the thumb. Custom made Peltier elements in the
casing of the probe allowed for local temperature control. Whole body fat percentage
was measured using Dual X-ray absorptiometry. Leisure activity level was indexed by
a Baecke questionnaire. Subjects were in supine position and were able to watch TV.
Room air temperature was kept at 24°C. A small draft in the room was allowed to
assure sufficient ventilation. Before starting the measurements subjects maintained in
supine position for 1 hr to become accustomed to the environment. During this period
the temperature of the water suit was maintained at 33.5°C. Measurements were
divided in a 15-minute baseline period where the water temperature of the suit was
kept at 33.5°C followed by 15-minutes of whole body cooling where the temperature
control unit was set to 10°C. Short term cooling was preferred to minimalize the
influence of other factors than acute sympathetic activation of the nervous system on
vasoconstriction [16]. To avoid interference from local skin perfusion regulation,
local skin was clamped at 33°C throughout the entire experiment [17].

2.5 Data Handling

Data handling and model development was performed using Matlab R2007a, figures
were created with Microsoft Excel 2008 for Mac; statistical tests on subject
characteristics were performed with SPSS16.0 for Mac. Perfusion data was resampled
to 1-minute intervals using a (lowpass) FIR filter and normalized over the baseline

314 B.R.M. Kingma et al.

period. Temperature data were sampled on a minute base. Peripheral warm and cold
neuron fire rates were simulated in 1-minute intervals for each measured location and
sequentially averaged over subjects.

3 Results

Estimated coefficients, regression statistics and k-fold cross validation results of the
neural model are presented in Table 3.

Table 3. Estimated model coefficients, β1: model constant; β2: integrated pathway of
peripheral cold neurons and hypothalamic warm neurons; β3: integrated pathway of peripheral
warm neurons and hypothalamic warm neurons. Regression statistics: p-value, r2 and averaged
mean squared residuals (MSR).

Parameter Value
β1 25.48
β2 -1.44
β3 3.26
R2-value 0.91
p-value p<0.001
Averaged MSR 0.087
Averaged variance 0.080

Neural model regression analysis revealed significant fits on the measured data.

Given the high r2–values the majority of the measured variance could be explained by
the model (Table 3). Furthermore the averaged MSR of the k-fold cross validation is
close to the time-averaged variance in the measurements, indicating that there is a
small bias in the model prediction.

Perfusion measurements and the model prediction are shown in Figure 4. After
t=15 subjects were cooled and vasoconstriction is observed immediately. After 10
minutes of cooling perfusion reached a nadir. The fitted line through the data points
represents the prediction of the neural model.

4 Discussion

In this study a model for vasoconstriction during cold exposure was developed based
on neuro-physiological concepts. Simulation of thermo-reception through warm and
cold sensitive neurons was adapted from work by Mekjavic and Morrison [14].
Neural integration pathways were based on experiments by Nakamura and Morrison
[11, 13]. Neural drives that were calculated by the model were fitted to human
experimental skin blood flow data. Given the high value of explained variance, the
model predicts vascular responses to a mild thermal cold stimulus adequately.
Furthermore, the averaged MSR values are close to the variance of the measurements.
Therefore, this study shows that an explicit declaration of a set point is not necessary
for modeling skin perfusion during short term cooling.

 Mathematical Modeling of Human Thermoregulation 315

4.1 Limitations

The neuron response and neural afferent pathways are established in small mammals
and projected on human response. Therefore, the modeled pathways might deviate
from the actual pathways in humans. However, as long as no detailed human studies
on neural pathways and integration are available we have to rely on these elaborate
animal studies.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

N
or

m
al

iz
ed

 P
er

fu
si

on
 [

-]

Time [min]

Measurement

Neural model

Fig. 4. Measured and fitted perfusion response. After 15 minutes whole body cooling was
performed. Error bars represent SEM (n=8).

In general the thermoregulatory response is subject to both thermal factors and
non-thermal factors such as blood pressure and exercise or pathologies like motion-
sickness and fever [5]. The experimental set-up was developed to minimize the
influence of other factors than central sympathetic regulation on vasomotor response.
Short term cooling was used to avoid hormonal regulation and local skin temperature
was clamped to avoid local regulation of skin blood flow.

The authors acknowledge that the current model coefficients were not validated
against data sets with different experimental conditions or on different subpopulations
(e.g. gender, age, adiposity). Therefore it is not possible to conclude that the
coefficients hold for other types of thermal challenges or different subpopulations.

In this study we did not incorporate the effect of differences in spatial thermo-
sensitivity. With a greater dataset it might be possible to assign weights to the
individual branches of thermo-sensitive input (face, hand, chest, etc.). It is however
not possible to use data of published studies, because usually mean skin temperatures
are presented. Our model instead requires local skin temperature data.

316 B.R.M. Kingma et al.

5 Conclusions

In summary, this study presents a mathematical model for skin blood flow during cold
exposure based on thermo-sensitive neurons and neurophysiological pathways. The
model was fitted to experimental data where young adult males were exposed to a
short mild cold exposure. The model explained over 90% of the variance in the
measurements (r2=0.91). Hence, although further research is warranted, the results are
promising and indicate that emulation of thermoregulatory neurophysiology is able to
capture the dynamics of skin blood flow control.

References

1. Hardy, J.D., Dubois, E.F.: Regulation of Heat Loss from the Human Body. Proc. Natl.
Acad. Sci. USA 23(12), 624–631 (1937)

2. Kellogg Jr., D.L.: In vivo mechanisms of cutaneous vasodilation and vasoconstriction in
humans during thermoregulatory challenges. J. Appl. Physiol. 100(5), 1709–1718 (2006)

3. Savage, M.V., Brengelmann, G.L.: Control of skin blood flow in the neutral zone of
human body temperature regulation. J. Appl. Physiol. 80(4), 1249–1257 (1996)

4. Parsons, K.C. (ed.): Human Thermal Environments, 2nd edn. Taylor & Francis (2003)
5. Mekjavic, I.B., Eiken, O.: Contribution of thermal and nonthermal factors to the regulation

of body temperature in humans. J. Appl. Physiol. 100(6), 2065–2072 (2006)
6. Romanovsky, A.A.: Thermoregulation: some concepts have changed. Functional

architecture of the thermoregulatory system. Am. J. Physiol. Regul. Integr. Comp.
Physiol. 292(1), R37–R46 (2007)

7. Bligh, J.: A theoretical consideration of the means whereby the mammalian core
temperature is defended at a null zone. J. Appl. Physiol. 100(4), 1332–1337 (2006)

8. Benzinger, T.H.: Heat regulation: homeostasis of central temperature in man. Physiol.
Rev. 49(4), 671–759 (1969)

9. Hensel, H.: Thermoreception and Temperature Regulation. Monographs of the
Physiological Society. Academic Press Inc. LTD., London (1981)

10. Hammel, H.T., et al.: Temperature Regulation by Hypothalamic Proportional Control with
an Adjustable Set Point. J. Appl. Physiol. 18, 1146–1154 (1963)

11. Nakamura, K., Morrison, S.F.: A thermosensory pathway that controls body temperature.
Nat. Neurosci. 11(1), 62–71 (2008)

12. Zotterman, Y.: Special senses: thermal receptors. Annu. Rev. Physiol. 15, 357–372 (1953)
13. Nakamura, K., Morrison, S.F.: Preoptic mechanism for cold-defensive responses to skin

cooling. J. Physiol. 586(10), 2611–2620 (2008)
14. Mekjavic, I.B., Morrison, J.B.: A model of shivering thermogenesis based on the

neurophysiology of thermoreception. IEEE Trans. Biomed. Eng. 32(6), 407–417 (1985)
15. van Marken Lichtenbelt, W.D., et al.: Evaluation of wireless determination of skin

temperature using iButtons. Physiol. Behav. 88(4-5), 489–497 (2006)
16. Johnson, J.M.: Mechanisms of vasoconstriction with direct skin cooling in humans. Am. J.

Physiol. Heart Circ. Physiol. 292(4), H1690-1 (2007)
17. Kingma, B.R., et al.: Cold-induced vasoconstriction at forearm and hand skin sites: the

effect of age. Eur. J. Appl. Physiol. 109(5), 915–921 (2010)

Visual Target Selection Emerges from a Bio-inspired
Network Topology

Wahiba Taouali, Nicolas Rougier, and Frédéric Alexandre

Université Henri Poincaré- LORIA, Campus Scientifique
Vandoeuvre-lès-Nancy Cedex, France

INRIA Nancy - Grand Est Research Center, Villers les Nancy Cedex, France
{wahiba.taouali,nicolas.rougier,frederic.alexandre}@inria.fr

Abstract. The orientation of sensors toward regions of interest of the environ-
ment is an important motor activity, monitored by ancient structures of the brain-
stem. Particularly, the superior colliculus is known to be deeply involved in visual
saccadic behavior. Target selection relies on various hints including exogenous in-
formation about the nature and the position of candidate targets and endogenous
information about current motivations. We present a model of the collicular struc-
ture based on biological data, the specificity of which is related to the homogene-
ity of the underlying substratum of computation. This makes it more suitable to
process massive visual flows on a distributed architecture, as it could be requested
in a realistic task in autonomous robotics. The present model is restricted to the
exogenous part of the visual pathway, from the retina to the superior colliculus.
A realistic behavior for the selection of exogenous targets is reported here.

Keywords: Superior colliculus, Dynamic neural field, Visual attention, Ocular
saccades.

1 Introduction

Displaying an intelligent behavior is often synonymous of intelligently exploiting the
surrounding environment. In many animals, this is massively performed through the
analysis of information by the visual channel, to orient subsequent behavior (perceptual
decision and action). Much research in computational intelligence aims at endowing an-
imats with such powerful skills, drawing inspiration from the living science, at several
levels of description. At the functional level, it is important to know which information
animals extract from the visual input, possibly in parallel communicating processing
flows and, accordingly, which representations are built and exploited in memory sys-
tems. At the physiological level, if one wishes a deep anchoring in biological inspira-
tion, the functional behavioral analysis has to be mapped onto the neural substratum
and its known anatomy and physiology, which can also give indications about the way
behavioral properties can emerge from fine grained neural computations. At the opera-
tional level, a formalism of computation has to be defined to implement the correspond-
ing models, as a compromise between accuracy to biological inspiration and efficiency
of computation for animats plunged in the real world.

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 317–330.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

318 W. Taouali, N. Rougier, and F. Alexandre

1.1 At the Functional Level

It has been proposed for a long time [1] that two separate visual systems can be de-
scribed in the ventral (temporal) and dorsal (parietal) visual cortex. These associative
cortical areas were first respectively presented as dedicated to identification and loca-
tion of objects. Later [2], it was more precisely explicited that the ventral cortex elab-
orates the construction of the perceptive representation of objects in the world, thanks
to its privileged relationships with the limbic system, center of the declarative memory,
whereas the dorsal cortex, linking the primary visual cortex and the motor cortex, allows
for the visual control of actions towards that objects, by extracting, in the visual flow,
information useful for the preparation of actions (eg. size of an object for anticipating
the size of the grip in a grasping movement).

In [3], the authors explain that both cortical axes are separate but deeply interacting
in primates and conclude that this dual view reconciliates the reconstructionist approach
by D. Marr, very much influential in the domain of computer vision, and the purposive-
animate-behaviorist approach by J. Gibson, very popular in reactive robotics. Particu-
larly, the interplay between both functional analysis is well illustrated by two adaptive
behaviors that allow to decrease the huge amount of information brought by the visual
channel: visual attention proposes a sequential processing of possible targets; saccadic
movements orient the body and particularly the fovea on regions of interest in the vi-
sual scene. In both cases, the visual control of action is dedicated to elaboration of a
flexible and powerful representation of the visual information. According to [4], fixa-
tion and attention can be considered as mechanical and neural deictic devices and the
authors explain the computational power of such a technique for variable binding and
other strategies of embodied representation. At the cerebral level, the premotor theory
of attention [5] stipulates that there are common processes between these key behav-
iors and, more precisely, that they share common neuronal circuits: Attention would be
pre-programming of a saccade.

1.2 At the Physiological Level

In the above mentioned paper [3], the authors also make a very precious reference to
phylogenesis and indicate that, in more primitive animals, the goal of vision is not to
see but to guide their movements. The visual control of actions corresponds to a direct
instantaneous perception system, whereas the identification of objects can be seen as a
relation from the present visual input to a past information stored in declarative memory,
not present in ancient species (eg. reptilians, amphibians). Consequently, the general
purpose network that we observe in the brain of primates, where the cortex plays a
major role, must be also related to the basic visual system of a frog [6], where only
several input/output sensorimotor lines (predator avoidance, prey catching, locomotion
guiding) define a kind of purposive vision. The very nature of the evolution of the brain
makes that these ancient visuomotor structures are still present, though modulated of
course by advanced control systems and coordinated by more recent memory systems.

Particularly, these circuits converge, in the frog, in a neural structure called the tec-
tum, directly linking retinal inputs to motor actions. In mammals, the similar structure is

Visual Target Selection Emerges from a Bio-inspired Network Topology 319

called the superior colliculus (SC). Indeed, this small structure in the midbrain of mam-
mals is known to be implicated in these sensorimotor behaviors. From an hodological
viewpoint, it integrates visual information from many sources (cortical or not) in the
brain and sends projections toward the brainstem premotor circuits that trigger saccades
[7]. From an anatomical viewpoint, it consists of a set of topological maps, mapping the
surrounding space, from visual to motor reference frames [8]. And from a physiological
viewpoint, its inactivation or electrical stimulation confirms its role in visual attention
and saccades [9].

Many models have studied the SC and associated properties (cf. [8] for a review). We
just mention here some models underlying the link to information flows and underlying
behavior. The structure of the model described in [10] underlines that the main task is
to decide when and where the saccade must be performed. As a consequence, two hier-
archical axes are defined. The When axis (corresponding to the FEF (Frontal Eye Field)
area in the prefrontal cortex) decides when to leave the current fixation point, whereas
the Where axis corresponds to the SC and implements a spatial competition between
candidate targets. A double-axis model combining FEF and the SC is also proposed in
[11], to explain the integration of exogenous elements (external stimuli coming from
the retina to the SC) and endogenous elements (internal expectancies or instructions
elaborated in the prefrontal cortex). Later on, [12] proposed a competitive integration
model based on strong experimental evidences at the behavioral level, indicating that
all these elements (spatial vs temporal processing and integration of exogenous vs en-
dogenous stimuli) can be integrated in a unique map, seen as a model of the SC. This
common saccade map also includes features generally reported as physiologically plau-
sible in the SC: a local excitation in the map allowing to combine close stimuli and a
wider inhibition mechanism to trigger a competition between far stimuli. This interac-
tion scheme explains why it was possible to use such a formalism as Dynamic Neural
Field (DNF) [13] to implement this kind of model, as it is also the case in [14,15].

1.3 At the Operational Level

Many recent models of the SC explain a wider range of visuomotor and more generally
cognitive functions at the price of a more complex internal circuitry describing the
SC. Indeed, those models define several kinds of units, depending on their location
on the map, which is not very consistent with the principle of homogeneity in DNF.
More precisely, in [14], the reported behavior is obtained with some units standing
for the currently fixated stimulus (consequently in the fovea), other units representing
potentially fixated stimuli in the periphery, both kinds sending inhibition to other units
triggering saccades toward a target. These kinds of units, also exploited in the model
by [15], are presented as representing respectively so-called fixation, build-up and burst
neurons, which are sometimes reported as parts of the intermediate layer of the SC [16],
though this is still to be clearly established. In [12] also, the substratum of computation
is not homogeneous, since the sensitivity of units decreases with their eccentricity onto
the map. This trick is used to reproduce the observation that the latency of a saccade
toward a target, presented together with a distractor, is longer when the distractor is
closer from the rostral zone of the SC (corresponding to the fovea).

320 W. Taouali, N. Rougier, and F. Alexandre

Consequently, these complex models often rely on physiological considerations that
are controversial and their inner mechanisms can often be described as ad hoc, designed
to stick to experimental observations. Moreover, this additional complexity is often ob-
tained by introducing numerous parameters, which affects negatively the robustness of
these models. Also, it becomes difficult to simulate on-line the analysis of a visual flow,
due to the amount of generated computations. Such an assessment is contradictory to
the ordinary view that neuronal structures are often homogeneous, due to the repetitive
tiling of elementary circuits of neurons. It is also contradictory to the spirit of DNF that
have been designed as a generic homogeneous model for such populations of neurons.
For that reasons, in this paper, we present a model of the SC, based on DNF formalism,
with an identical functioning rule for all the units in the map. Moreover, obtaining such
an homogeneous substratum can yield fully distributed computation, which is impor-
tant to design models that can be used online in robotic visuomotor tasks. Also, this
approach has a common ground with the reactive and enactive frameworks mentioned
above, which state that fundamental properties can emerge from low-level, basic com-
putations and not from a high-level structured module. Correspondingly, one of our
questions here is to observe which of the known properties of the SC we can obtain
with such an homogeneous and simple brick of computation.

Finally, the proposed model is not an isolated structure but is a function of exogenous
information flows and associated geometrical properties. We have explained that the SC
is undoubtedly an important integrative structure, to be included in a cognitive neuro-
science modeling approach of visuospatial behaviors and we will illustrate accordingly
how this model could be exploited in more high level tasks.

2 Model

The computational paradigm supporting the model is grounded on the notion of a unit
that is essentially a set of time dependent values varying under the influence of other
units via learnable weighted links (fig. 1). The evolution of units’ value is defined by a
set of differential equations expressed in standard mathematical notations. The units are
organized into groups that form a network and each unit can be linked to any other unit
(including itself) using a weighted link. The modeling framework1 offers a set of core
objects needed to design and run such networks. However, in this framework, what is
actually computed by a unit and what is learnt are the responsibility of the modeler who
is in charge of providing the equations governing the unit’s behavior and the plasticity
of its links. Such a modeling framework is actually strongly constrained and cannot
cope for example with standard artificial neural networks. It is indeed centered around a
set of four principles (distributed, asynchronous, numerical and adaptive) that we think
may help to bring insights on our understanding of computational intelligence. While
many computational models involve explicit symbols and/or a central supervisor, this
framework is able to guarantee to a certain extent the absence of such artifacts. In the
end, what is achieved by such a model is the sole result of the interaction of many units
working together.

1 See http://dana.loria.fr

http://dana.loria.fr

Visual Target Selection Emerges from a Bio-inspired Network Topology 321

Fig. 1. A unit is a set of one to several values (Vi). A group is a structured set of one to several
homogeneous units. A layer is a subset of a group restricted to a unique value Vi. A layer is a
group. A link is a weighted connection between a source group to a target group. A group can be
linked to any other group including itself.

2.1 Model Architecture

In short, we consider here projections to the SC coming from the retina and the primary
visual cortex, carrying exogenous information, and not those coming from the frontal
cortex, carrying endogenous information. Under that restriction, we want to check to
what extent the model exhibits some of the well known properties of saccadic behavior
associated to the SC. More specifically, our goals are to analyze the topology of the vi-
sual information that we obtain after applying this very simple transformation, together
with the associated behavioral properties.

Consequently, the model is made of three distinct groups (see fig. 2) modeling the
visual pathway from the retina (R) to the superior colliculus (SC) through the primary
visual cortex (V1):

– retina (R, 256× 512 units) receives visual input from a CCD camera.
– visual cortex (V1, 256× 256 units) implements the actual cortical magnification.
– superior colliculus (SC, 63 × 63 units) is the place where salient locations enters

competition.

The retina model is restricted to the right visual field as it is known to be the case in
mammals visual pathway (left visual field projects to right colliculus and right visual
field projects to left colliculus). We used an image size of 512× 512 pixels and fed the
retina with a normalized gray-level image of size 512× 256 pixels. We will now detail
the cortical magnification occurring between the retina and the primary visual area V1
as well as the competition occurring within the superior colliculus resulting in a unique
localized packet of excitation designing the selected target.

2.2 Cortical Magnification

The retina represents the sensory input space and possesses a complex structure
composed of several layers of neurons. Vision actually starts early in the layer of

322 W. Taouali, N. Rougier, and F. Alexandre

Fig. 2. The model is made of three distinct groups. The retina receives input from a CCD camera
and transmit information to the primary visual cortex where the actual magnification occurs. This
result is then feed to the superior colliculus where salient locations enter competition.

photo-receptors from where the flow of information is processed via the ganglion cells
which are large nerve cells whose cylindraxes form the optic nerve. Due to the non-ho-
mogeneous repartition of photo-receptors on the (human) retina surface, visual acuity
decreases from the center of the retina (fovea) to its periphery. This property is at-
tributed to a variation in the density of photo-receptors that decreases from the center to
the periphery [17]. Consequently, the foveal region benefits from a much higher resolu-
tion than peripheral regions and this property is preserved along the visual pathway up
to early visual areas [18]. This is referred to as cortical magnification. To analyze this
magnification in a quantitative way, a coordinate system is often defined in the visual
field. The coordinate system that is best suited to the visual system is the polar coor-
dinates (ρ, φ). It characterizes a position in the visual field by its eccentricity ρ from
the center of gaze and its polar angle φ is measured, for example, in relation to the
lower vertical meridian. We can therefore define a retinotopic map which corresponds
to the spatial transformation of the image by the spatial arrangement of the grid of
neurons. It is often approximated by a log-polar transformation of the spherical image
centered on the eye [19]. We used a simplified model of the retina considering only the
photo-receptors layer. And for computational reasons (speed), we did not enforce the
non-uniform repartition of photo-receptors on the retina surface. Instead, we modeled a
uniform distribution of neurons onto the retina associated with a deformed polar coor-
dinate system as proposed by [20]. Each cortical visual cell is supposed to be connected
to a single or several photo-receptor cells, with respect to a logpolar deformation, that
form its receptive field. So the non uniformity is caused by the changing size of the
receptive fields. We used equations mapping retinotopic polar coordinates (ρ, φ) onto
V1 Cartesian coordinates (x,y). These equations were first introduced by [20]:

x = Bx ln (

√
ρ2 + 2Aρ| cos (φ)|+A2

A
) (1)

y = By arctan (
ρ sin (φ)

ρ| cos (φ)|+ A
) (2)

Visual Target Selection Emerges from a Bio-inspired Network Topology 323

10 20 50 80
H(deg)

10

20

50

0

80

10

20

50

80

V
(d
e
g
)

0 1 2 3 4 5
X(mm)

3

2

1

0

1

2

3

Y
(m

m
)

0

2

10

20
50 90

-90.0

-45.0

0.0

45.0

90.0

Fig. 3. Cortical magnification from the retina to the visual cortex distorts geometrical properties
of the image while keeping neighborhood relationship

with A = 3◦, Bx = 1.4mm, By = 1.8mm. These parameters have been chosen to
fit the stimulation map of the SC given by [19]. A neuron in the visual cortex fires
an action potential when a visual stimulus appears within its receptive field. But for
any given neuron, it may respond best to a subset of stimuli within its receptive field
corresponding to its preferred direction. Neurons with similar tuning properties (what
the neurons respond to) tend to cluster together but the exact structure is still unclear.
Then, it is acceptable to assume that V1 has a retinotopic map similar to the collicular
motor map in [21]. It means that a cell at a given position (x,y) in the V1 map is
activated by retinal cells in positions (ρ, φ) according to given equations. One result of
this deformation is that the same stimulus causes a large activation in the V1 map if
it is located near the fovea and smaller activation in peripheral positions (cf. figure 3).
Visual receptors of V1 have been modeled in two dimensions corresponding to an eye
visual hemifield with no connection between the different receptors.

2.3 Dynamic Neural Field Theory

Collicular population (the motor layer of one superior colliculus) has been modeled
with respect to the dynamical neural field theory [22,13,23] that describes the evolution
of a neural population using equation (see [24] for details):

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
w(x − y)f(u(y))dy + h+ I(x, t) (3)

where x denotes a location onto the SC; t is time; u(x, t) denotes the membrane poten-
tial of a neural population at point x and time t; τ is the temporal decay of synapses, f is
a sigmoid function computing the mean firing rate, w is a neighborhood function, s(x)

324 W. Taouali, N. Rougier, and F. Alexandre

is the input received at position x and h is the mean neuron threshold. w has been set as
a difference of Gaussian (DoG) with short-range excitations and long range inhibitions
following anatomical and physiological data as reported in [25]:

w(x− y) = Ae−
|x− y|2

a2
−Be−

|x− y|2
b2

(4)

and f has been set as a simple rectification of x. The input I(x, t) is a direct one-to-one
relationship according to V1 and SC respective sizes.

3 Results

The reported experimental results are of three kinds. Firstly, we check that basic prop-
erties of information encoding are ensured (topology, accuracy). Secondly, we examine
the resulting saccadic behavior for target selection from exogenous information, partic-
ularly depending on the position of candidate targets with regard to the fovea. Thirdly,
we address more difficult cases, particularly considering natural images and introducing
the need for endogenous information.

3.1 Output Decoding

One of the questions related to the superior colliculus concerns the proper way to decode
the output. Since the amplitude and direction of a saccade depend on the activity of the
neural population in the deep SC [26], different ways of SC output evaluation have been
proposed in the past:

– winner-take-all where the most active site indicates the direction
– summation[27,28] where all activities of active neurons are summed with weights

determined by their individual labels
– weighted average [29] using a normalization according to the number of active

neurons

These three evaluation schemes are equivalent in the case of a normally activated pop-
ulation but differ when there is a deactivation or an over-activation of a part of the
population. We have retained the last decoding scheme because the superior colliculus
was modeled using a dynamic neural field and it is thus ensured that a stereotyped activ-
ity profile emerges anytime corresponding to the most salient location of the V1 area.
Furthermore, this stereotyped activity possesses a Gaussian shaped two-dimensional
profile and it is possible to find its center of mass. We have been testing the accuracy
of this coding scheme by feeding the model with standard Gaussian shaped stimuli at
different locations (see figure 4). Despite the magnification effect, one can see that the
model has a high precision in the standard saccadic range (−30◦ to +30◦, 0 to 50). We
also tested the inactivation of a subpart of the collicular layer to check that we obtain
both hypometric and hypermetric saccades as reported in [19] (results not presented
here).

Visual Target Selection Emerges from a Bio-inspired Network Topology 325

Fig. 4. Accuracy of the model of the superior colliculus has been measured using a set of retina
targets that have been sequentially presented to the SC model. For each target and after conver-
gence (difference of activity between time t and time t + dt is negligible), the center of mass
of the collicular activity has been decoded and represented as a circle (black dots represent the
actual projection of the target in collicular coordinates).

3.2 Target Selection from Exogenous Information

Several studies have provided data on the organization of the saccadic path [30,31,32].
A set of experiences on adults with normal vision showed that the attractive value of a
visual stimulus depends strongly on its distance relative to the previous fixation point
(short distances preferred). Moreover, for several targets at the same distance, this at-
tractive value is greater when the eccentricity is less important (targets closer to the
fovea preferred). This result can be interpreted in the purposive framework evoked
above, associating vision and preparation for action. In this perspective, shorter sac-
cades are preferred and a nearby object is more interesting than a distant object for
example in the case of hunger or danger.

Interestingly, our model displays a similar behavior and provides an explanation that is
based on the topology of the neural network preparing the saccade. On the one hand, the
spatial distribution of collicular neurons and their receptive fields resulting from the log-
polar transformation (cortical magnification) reflect in a qualitative way how the visual
information is transformed from the retina to the motor map of the superior colliculus.

326 W. Taouali, N. Rougier, and F. Alexandre

Fig. 5. The projection of two equivalent horizontal stimuli but at different eccentricities. The
stimulus nearer to the fovea is automatically selected to be the saccade target.

A visual stimulus projected onto the foveal region evokes more neural activity (on the
rostral part of the collicular map) than a similar stimulus in the peripheral region. On the
other hand, the connectivity of the DNF model plays the role of a ”winner-take-all”. The
profile of inhibition ensures that the system reaches a stable state once a neighborhood is
recruited; there is always a selection at the end of the process. But this selection made
at the premotor level does not always reflect a sensory selection: In some cases, the
recruited population corresponds to an averaging and the final target may be a position
where there is no stimulus; this depends on the profile of the lateral connections. Figure
5 reports an experiment where the model is tested using two punctual equivalent stimuli
(same aperture, intensity and shape). Their attractive value is estimated in V1 map. The
cortical population activated by the stimulus at 3◦ is larger than the population activated
by the stimulus at 10◦. Then, the resulting activity after computation in the deep layer
of the superior colliculus is a stable bubble in the first position. So it can be said that
the selection of the nearby stimulus emerges from the local computation.

3.3 Natural Images Processing

We have also tested the model using natural images taken from a color CCD camera.
No image processing has been performed on the image but a conversion to a gray-level
representation. Figure 6 exhibits an example where a subpart of a computer keyboard
has been shot. This allows to illustrate the main feature of the proposed model. If one
look closely at the half retina representing the keyboard (upper left part of the figure),
one can see that several letters (O, P, L, M) are eligible for attention focus and for
ocular saccade. However, the retinotopic projection onto the model of the V1 area re-
duces quite naturally this set to letters O and L. The model of the SC is thus confronted
with a choice between these two locations and the dynamic field theory, as it has been
introduced in the previous section, ensures that only one location remains after com-
petition. However it is hard to specify the exact conditions that make the model focus
on the O instead of the L letter in the given example and the spatially compact shape
of the O is certainly to be taken into account. This example also underlies the inherent
difficulty in temporally organizing ocular saccades without any top-down control. If we
were to let the model only react to its sensory input, it would certainly focus on the

Visual Target Selection Emerges from a Bio-inspired Network Topology 327

Fig. 6. An image of a computer keyboard has been captured using a color camera (resolution
1024 × 1280) and transformed into a normalized gray level image. Upper figure. The right half
of the image is presented to the half retina area which in turn feeds the V1 area where retinotopy
is applied following equation 2. The colliculus area enters a competition stage where most salient
locations are eligible for final activation and after some iterations, the competition ends up onto
the O letter that is thus considered the most salient location of the visual scene according to its
location and activation. Lower figure. A saccade has been simulated to center the O letter into
the center of the fovea and the colliculus now focuses onto a subpart of the O letter that appears
to be the newly most salient location of the new visual scene.

most salient location without ever exploring other points of interest (from a behavioral
point of view). If the actual saccade brings into view another salient location, the model
would jump again to the new location (provided we inhibited the foveal region to pre-
vent the model to be stuck forever on this single location) but in such a case, nothing
would prevent the model from going to location A then location B and then again loca-
tion A, being trapped in a cycle. Exploring the whole visual scene thus requires some
kind of top down control to be able to dynamically inhibit visited location once they
have been focused in order to favor other locations. This is out of scope of the present
article but this has been already made in a wider but less realistic model [33].

4 Discussion

We have introduced in this paper a model of the superior colliculus based on on a large
set of biological data. This model has been designed using a strongly constrained mod-
eling framework relying on a set of four computational principles (distributed, asyn-
chronous, numerical and adaptive) and those properties ensure to some extent that the

328 W. Taouali, N. Rougier, and F. Alexandre

model does not suffer from usual artifacts of such computational framework (presence
of a central supervisor deciding of the actual behavior). More specifically, the saccadic
behavior we exhibited through the various experiments is a true and emergent property
of local and homogeneous computations only. If we give a closer look to the selection
process that is carried out when the model is presented with two identical stimuli (but at
two different locations), we may explain the selection of the stimuli closest to the foveal
region because of the cortical magnification. Said differently, the cortical magnification
deeply influences the network topology and consequently the saliency of any presented
stimuli. If we were to use some different magnification function, this would modify as
well the selection process. This selective behavior is thus tightly linked to the spatial
and physic implementation of the computational units. The intelligence of the system
is thus rooted in its physical instantiation (even though it is simulated in our case).

However, if we now give a closer look to figure 3, we may realize that there is coun-
terpart for such an automatic selection. Because the foveal region benefits from a much
higher resolution than peripheral regions, the projections from retina to the V1 region
distorts the geometrical properties of the image. This is especially the case of straight
lines that are now projected as curved lines within the V1 region. Furthermore, the pro-
jection of any straight line from retina to V1 is unique and does not benefit from the
same geometrical properties. How do we recognize a straight line in such conditions ?
Classical answers relying on generic neighborhood functions that would (for example)
link geometrically aligned neurons (hence mimicking the abstract description of a geo-
metrical line) is not possible anymore. We thus have to change paradigm and consider
new approaches like the one described in [34]. In this article, authors propose to recon-
sider vision by integrating the sensory-motor dimension of perception. Even though a
straight line is not projected as a straight line in visual regions, there is nonetheless a
physical property that remains true independently of the physical apparatus: if we move
eyes along a straight line, there is an invariance in the projection because this is the
physical definition of a line. Such sensori-motor behavior is a complex challenge that
we are now actively exploring in terms of the temporal organization of the saccadic
behavior. In order to achieve such active behavior, we now have to consider endoge-
nous inputs conveying such information as instructions, goals or motivations from other
higher-level neural structures. This lead us to consider anatomical structure such as the
basal ganglia that are known to be deeply involved with voluntary motor control. In the
end, we expect the model to achieve vision and recognition based on motor learning
that may ultimately replace passive perception.

References

1. Ungerleider, L., Mishkin, M.: Two Cortical Visual Systems. In: Ingle, D.J., Goodale, M.,
Mansfield, R.J.W. (eds.) Analysis of Visual Behaviour, pp. 549–586 (1982)

2. Milner, A., Goodale, M.: The Visual Brain in Action. Oxford University Press (1995)
3. Goodale, M., Humphrey, G.: The objects of action and perception. Cognition 67, 181–207

(1998)
4. Ballard, D., Hayhoe, M., Pook, P., Rao, R.: Deictic Codes for the Embodiment of Cognition.

Behavioral and Brain Sciences 20, 723–767 (1997)

Visual Target Selection Emerges from a Bio-inspired Network Topology 329

5. Rizzolatti, G., Riggio, L., Dascola, I., Umil, C.: Reorienting attention across the horizontal
and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsycholo-
gia 25, 31–40 (1987)

6. Lettvin, J., Maturana, H., Mcculloch, W., Pitts, W.: What the frog’s eye tells the frog’s brain.
In: Corning, W.C., Balaban, M. (eds.) The Mind: Biological Approaches to its Functions, pp.
233–258 (1968)

7. Isa, T.: Intrinsic processing in the mammalian superior colliculus. Current Opinion in Neu-
robiogy 12, 668–677 (2002)

8. Girard, B., Berthoz, A.: From brainstem to cortex: computational models of saccade genera-
tion circuitry. Progress in Neurobiology 77, 215–251 (2005)

9. Muller, J., Philiastides, M., Newsome, W.: Microstimulation of the superior colliculus fo-
cuses attention without moving the eyes. Proceedings of the National Academy of Sci-
ences 102, 524–529 (2005)

10. Findlay, J., Walker, R.: A model of saccade generation based on parallel processing and
competitive inhibition. Behavioral and Brain Sciences 22, 661–674 (1999)

11. Kramer, A.F., Irwin, D.E., Theeuwes, J., Hahn, S.: Oculomotor capture by abrupt onsets re-
veals concurrent programming of voluntary and involuntary saccades. Behavioral and Brain
Sciences 22, 689–690 (1999)

12. Godijn, R., Theeuwes, J.: Programming of endogenous and exogenous saccades: evidence
for a competitive integration model. Journal of Experimental Psychology: Human Perception
and Performance 28, 1039–1054 (2002)

13. Amari, S.I.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biological
Cybernetics 27, 77–87 (1977)

14. Trappenberg, T., Dorrisn, M., Munoz, D., Klein, R.: A model of saccade initiation based on
the competitive integration of exogenous and endogenous signals in the superior colliculus.
Journal of Cognitive Neuroscience 13, 256–271 (2001)

15. Schneider, S., Erlhagen, W.: A neural field model for saccade planning in the superior collicu-
lus: speed-accuracy tradeoff in the double-target paradigm. Neurocomputing 44-46, 623–628
(2002)

16. Wurtz, R., Optican, L.: Superior colliculus cell types and models of saccade generation.
Current Opinion in Neurobiology 4, 857–861 (1994)

17. Marilly, E., Mercier, A., Coroyer, C., Faure, A., Cachard, O.: Propriétés d’un pré-processeur
de vision fovéale. Dix-septiéme colloque GRETSI (1999)

18. Purves, D.: Neurosciences, 2nd edn. De Boeck (2004)
19. Robinson, D.: Eye movements evoked by collicular stimulation in the alert monkey. Vision

Research 12, 1795–1808 (1972)
20. Ottes, F., Gisbergen, J.V., Eggermont, J.: Visuomotor fields of the superior colliculus: a quan-

titative model. Vision Res. 26, 857–873 (1986)
21. Bear, M., Connors, B., Paradiso, M.: Neuroscience: Exploring the Brain. Lippincott Williams

& Wilkins (1996)
22. Wilson, H., Cowan, J.: A mathematical theory of the functional dynamics of cortical and

thalamic nervous tissue. Biological Cybernetics 13, 55–80 (1973)
23. Taylor, J.: Neural bubble dynamics in two dimensions: foundations. Biological Cybernet-

ics 80, 393–409 (1999)
24. Rougier, N., Vitay, J.: Emergence of attention within a neural population. Neural Net-

works 19, 573–581 (2006)
25. Munoz, D., Istvan, P.: Lateral inhibitory interactions in the intermediate layers of the monkey

superior colliculus. J. Neurophysiol. 79, 1193–1209 (1998)
26. Sparks, D., Lee, C., Rohrer, W.: Population coding of the direction, amplitude, and velocity of

saccadic eye movements by neurons in the superior colliculus. Cold Spring Harbor Symposia
on Quantitative Biology 55, 805–811 (1990)

330 W. Taouali, N. Rougier, and F. Alexandre

27. McIlwain, J.: Large receptive fields and spatial transfor- mations in the visual system. Int.
Rev. Physiol. 10, 223–248 (1976)

28. Sparks, D., Holland, R., Guthrie, B.: Size and distribution of movement fields in the monkey
superior colliculus. Brain Res. 113, 21–34 (1976)

29. Lee, C., Rohrer, W., Sparks, D.: Population coding of saccadic eye movements by neurons
in the superior colliculus. Nature 332, 357–360 (1988)

30. Yarbus, A.: Eye movements and vision, 1st edn. Plenum Press (1967)
31. Noton, D., Stark, L.: Scanpaths in eye movements during pattern perception. Science 13,

149–177 (1971)
32. Levy-Schoen, A.: Le champ d’activité du regard: données expérimentales. Année Psy-

chol. 74, 43–66 (1974)
33. Fix, J., Vitay, J., Rougier, N.: A computational model of spatial memory anticipation during

visual search. In: Anticipatory Behavior in Adaptive Learning Systems (2006)
34. O’Regan, J., Noe, A.: A sensorimotor account of vision and visual consciousness. Behavioral

and Brain Sciences 24, 939–1031 (2001)

Use of Swarm Intelligence for the Identification
of a Class of Nonlinear Dynamical Systems

Syed Z. Rizvi and Hussain N. Al-Duwaish

Department of Electrical Engineering
King Fahd University of Petroleum & Minerals, Saudi Arabia

{srizvi,hduwaish}@kfupm.edu.sa
http://www.kfupm.edu.sa

Abstract. In this work, properties of swarm intelligence are exploited to solve
the identification problem of a class of nonlinear dynamical systems known as
Hammerstein systems. Without any assumption on the structure of nonlinearity
of the system, the nonlinearity is modeled using artificial neural network. Synap-
tic weights of the neural network are estimated via a particle swarm-based learn-
ing routine. Linear dynamics of the system are modeled using state space model.
A recursive algorithm is developed to estimate the two components of the Ham-
merstein system. Numerical Monte-Carlo simulations are performed to test the
reliability and repeatability of the identification technique presented. Identifica-
tion is carried out with noisy data, having low signal-to-noise ratio (SNR). The
presented identification technique provides encouraging estimation results.

Keywords: Particle swarm optimization, Linear dynamics, Neural network train-
ing, Nonlinearity, Artificial neural networks, Synaptic weights, Signal-to-Noise
ratio.

1 Introduction

For the ease of estimation and study, nonlinear dynamical systems are often broken
down into cascaded subsystems. A variety of such systems are collectively known as
the block-oriented models. The Hammerstein system is one such block-oriented model.
It is made up of a static nonlinear subsystem followed by a dynamical linear subsys-
tem. Figure 1 shows the block diagram of a Hammerstein model. Variable u(t) is the
system input at time index t, y(t) is the system’s output, while v(t) is an intermediate
variable which is inaccessible to measurement. The challenge of Hammerstein model
identification therefore lies in estimating the two subsystems based on measurement of
input and output data only. The Hammerstein model has been used in the literature to
model real-life nonlinear dynamical industrial processes, including a pH neutralization
process [1], a heat exchanger [2], nonlinear filters [3], and a water heater [4] among
several other processes. Hammerstein model identification is therefore of paramount
importance to researchers, and as can be expected, it has attracted a lot of attention
in the past few decades. Hammerstein system identification primarily falls under two
main categories, parametric and nonparametric identification. Nonparametric models
represent the system in terms of curves resulting from expansion of series such as the
Volterra series or kernel regression. Parametric representations are more compact hav-
ing fewer parameters. Notable parametric identification techniques can be found in [5],

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 331–344.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

332 S.Z. Rizvi and H.N. Al-Duwaish

Fig. 1. Block diagram of a Hammerstein model

[6], [7], [8], [9] and in references therein. Nonparametric identification techniques can
be found in several papers including, but not limited to those of [10], [11], [12].

Recently, advances in system identification have led to the development of more
efficient and computationally less complicated identification techniques like subspace
identification methods (SIM). However, its main limitation lies in that its use is re-
stricted to linear systems only. Its advantages include being computationally less com-
plicated as compared to conventional prediction error methods (PEM), not requiring
initial estimate of a canonical model like PEM, and being easily extendable to systems
having multiple inputs and outputs [13]. Owing to these advantages, it is not surprising
that attempts have been made to extend the use of SIM to nonlinear systems such as
Wiener and Hammerstein systems. Such works include the use of static nonlinearity in
the feedback path [14], Hammerstein systems with known nonlinearity structures [15],
and using least squares support vector machines [16].

On the other hand, biologically inspired estimation and optimization algorithms have
changed the way we approach problems to a significant degree. With the publication
of Kennedy and Eberhart’s paper on particle swarm optimization (PSO) [17], a door
opened for new optimization techniques based on human and animal social behavior.
These algorithms have proven extremely efficient in solving problems based on high-
dimensional, multi-modal, discontinuous as well as continuous functions.

Here, we present a new estimation method for Hammerstein system identification,
which exploits the properties of both subspace methods for estimation, as well as those
of swarm intelligence, to obtain accurate nonlinear models. The method presented uses
radial basis function (RBF) neural network in cascade with a state space model. A
recursive algorithm is presented for parameter estimation of the two subsystems using
the above mentioned techniques. Notation convention used in this work is as follows.
Lower case variables represent scalars. Lower case bold variables represent vectors.
Upper case bold letters denote matrices. The only exception to this convention lies in
the choice of a more conventional J for the cost function.

2 Identification Scheme

In this section, we take a look at the proposed scheme for the identification of Ham-
merstein model. Model structure in this work uses state space model to represent the
linear dynamic part. The memoryless nonlinear part is modeled using an RBF network.
An RBF network is an effective type of neural network that has proved useful in appli-
cations like function approximation and pattern recognition. A typical three-layer RBF
network is shown in Figure 2. The input layer connects the network to its environment.

Use of Swarm Intelligence in Nonlinear Dynamical Identification 333

Fig. 2. An RBF neural network with q neurons in the hidden layer

The second layer, known as the hidden layer, performs a fixed nonlinear transformation
using basis functions. The output layer linearly weighs the response of the network to
the output [18]. The external inputs to the system u(t) are fed to the RBF network,
which generates the outputs v(t). Considering an RBF network having q number of
neurons in the hidden layer, the basis vector is

φ(t) = [φ‖u(t)− c1‖ · · ·φ‖u(t)− cq‖]T , (1)

where ci is the chosen center for the ith neuron, ‖.‖ denotes norm that is usually Eu-
clidean, and φi is the nonlinear radial basis function for the ith neuron, given by

φi(t) = exp

(
−‖u(t)− ci‖2

2σ2

)
, (2)

where σ is the spread of the Gaussian function φi(t). If the set of output layer weights
of the RBF network is given by

w = [w1 w2 · · ·wq]
T , (3)

the RBF output v(t) is given by

v(t) = wTφ(t). (4)

Considering a system with a single input and output, the output of the RBF network
v(t) in turn acts as input to the state space model translating it into final output y(t).
The equation for y(t) is given by discrete-time state space equation

x(t+ 1) = Ax(t) + Bv(t) + w̃(t), (5)

y(t) = Cx(t) + Dv(t) + z(t), (6)

where v(t) and y(t) are input and output of the state space system at discrete-time index
t, z(t) and w̃(t) are the measurement and process noise.

The problem of Hammerstein modeling is therefore formulated as follows. Given a
set of m measurements of noisy inputs u(t) and outputs y(t), the problem is reduced to
finding the weights of the RBF network and the matrices of the state space model.

334 S.Z. Rizvi and H.N. Al-Duwaish

For the estimation of state space matrices, N4SID numerical algorithm for subspace
identification [19] is used. The algorithm determines the order n of the system, the
system matrices A ε n×n, B ε n×p, C ε r×n, D ε r×p, covariance matrices Q
ε n×n, R ε 1×1, S ε n×1, and the Kalman gain matrix K, where p denotes the
number of inputs and r denotes the number of outputs of the system, without any prior
knowledge of the structure of the system, given that a large number of measurements
of inputs and outputs generated by the unknown system of equations (5) and (6) is
provided. In N4SID, Kalman filter states are first estimated directly from input and
output data, then the system matrices are obtained [19].

For Hammerstein identification problem, it is desired that the error between the out-
put of the actual system, and that of the estimated model be minimized. Therefore, in a
way this becomes an optimization problem where a cost index is to be minimized. For
the system described in equations (1)-(6), the cost index is given by

J =

m∑
t=1

e2(t) =

m∑
t=1

(y(t)− ŷ(t))2, (7)

where y(t) and ŷ(t) are the outputs of the actual and estimated systems at time index
t. The weights of the RBF network are therefore updated so as to minimize this cost
index. For this purpose, PSO used.

PSO is a heuristic optimization algorithm which works on the principle of swarm
intelligence [21]. It imitates animals living in a swarm collaboratively working to find
their food or habitat. In PSO, the search is directed, as every particle position is updated
in the direction of the optimal solution. It is robust and fast and can solve most complex
and nonlinear problems. It generates globally optimum solutions and exhibits stable
convergence characteristics. In this work, PSO is used to train the RBF network. Each
particle of the swarm represents a candidate value for the weight of the output layer of
RBF network. The fitness of the particles is the reciprocal of the cost index given in
equation (7). Hence, the smaller the sum of output errors, the more fit are the particles.
Based on this principle, PSO updates the position of all the particles moving towards
an optimal solution for the weights of RBF neural network.

The ith particle of the swarm is given by a k-dimension vector x̃i = [x̃i1 · · · x̃ik],
where k denotes the number of optimized parameters. Similar vectors p̃i and ṽi denote
the best position and velocity of the ith particle respectively. The velocity of the ith

particle is updated as

ṽi(t+ 1) = χ[wṽi(t) + c1r1(t){p̃i(t)− x̃i(t)}

+ c2r2(t){p̃g(t)− x̃i(t)}], (8)

and the particle position is updated as

x̃i(t+ 1) = x̃i(t) + ṽi(t+ 1). (9)

In the above equations, p̃g denotes global best positions, while c1 and c2 are the cog-
nitive and social parameters respectively, and are both positive constants. Parameter w
is the inertia weight and χ is called the constriction factor [22]. The value of cognitive

Use of Swarm Intelligence in Nonlinear Dynamical Identification 335

parameter c1 signifies a particle’s attraction to a local best position based on its past ex-
periences. The value of social parameter c2 determines the swarm’s attraction towards
a global best position.

3 Learning Algorithm

Given a set of m observations of input and output, uε 1×m and yε 1×m, a hybrid
PSO/Subspace identification algorithm is proposed below.

1. Estimate state space matrices A0, B0, C0 and D0 (initial estimate) from original
non linear data using N4SID.

2. Iteration = k = 1.
3. Initialize RBF network with neuron centers evenly distributed in the input space.
4. Initialize PSO with random population of possible RBF network weights.
5. wk = argmin wεq J (Ak−1,Bk−1,Ck−1,Dk−1,w).
6. With optimum weights obtained above, estimate set of RBF neural network outputs

vkε 1×m

vk = wT
k Φ

= [w1k · · ·wqk]

⎡
⎢⎣φ1(1) · · ·φ1(m)

...
φq(1) · · ·φq(m)

⎤
⎥⎦ .

7. Estimate state space matrices Ak, Bk, Ck and Dk from [vk y]T . This estimate of
state space model would be an improvement on the previous estimate.

8. Regenerate ŷkε 1×m.
9. If minimum goal is not achieved, k = k + 1. Repeat steps 4 to 7.

4 Simulation Results

4.1 Example 1

The first example considers the following Hammerstein type nonlinear process whose
static nonlinearity is given by

v(t) = sign (u(t))
√
|u(t)|. (10)

The dynamic linear part is given by a third order discrete-time state space system

A =

⎡
⎣ 1.80 1 0
−1.07 0 1
0.21 0 0

⎤
⎦ ,B =

⎡
⎣4.80
1.93
1.21

⎤
⎦ ,

C =
[
1 0 0

]
.

336 S.Z. Rizvi and H.N. Al-Duwaish

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

input

ou
tp

ut

original
estimated

Fig. 3. Estimate of square root nonlinearity of example 1

The eigenvalues of the linear subsystem lie at λ1 = 0.7, λ2 = 0.6, and λ3 = 0.5.
Desired outputs are generated by exciting the process model with a rich set of uniformly
distributed random inputs in the interval [−1.75, 1.75]. An RBF network of 25 neurons
is initialized with random synaptic weights, and centers uniformly distributed in the
input interval. The choice of the number of neurons is non-trivial. A suitable number
of neurons can be chosen while designing based on experience. Repeated simulations
can then be run to test the performance increasing the number of neurons each time
until no appreciable performance improvement is noticed. PSO social and cognitive
parameters c1 and c2 are kept almost equal to each other with c1 slightly larger than
c2 and c1 + c2 ≥ 4 as proposed in [23]. This allows trusting past experiences slightly
more than those of one’s neighbors. Constriction factor is kept close to 1 to enable slow
convergence with better exploration. Number of particles amount to 25 for the synaptic
weights of 25 neurons. A swarm population size of 50 is selected and the optimization
process is run for 100 iterations.

The algorithm shows promising results and mean squared output error between nor-
malized outputs of actual and estimated systems converges to a final value of 4× 10−4

in 10 iterations of the algorithm. Figure 3 shows the nonlinearity estimate. An easy way
to evaluate the estimate of linear dynamic part lies in comparing the eigenvalues of the
estimated subsystem with true ones. The eigenvalues of the estimated subsystem lie at
λ̂1 = 0.72, λ̂2 = 0.53 and λ̂3 = 0.53. Figure 4 shows the step response of the dynamic
linear part.

To evaluate the performance of the proposed algorithm in noisy environment,
zero mean Gaussian additive noise is included at the output of the system such
that the signal-to-noise ratio (SNR) is 10dB. The algorithm performs well in estimating
the system despite low output SNR. The final mean squared error between normalized
outputs converges to 1.4 × 10−3 in 13 iterations. Nonlinearity estimate is shown in

Use of Swarm Intelligence in Nonlinear Dynamical Identification 337

0 50 100 150 200
−150

−100

−50

0

50

100

150

time samples

ou
tp

ut

original
estimated

Fig. 4. Step response of linear dynamic subsystem of example 1

Figure 5. The eigenvalues of the estimated system lie at λ̂10dB
1 = 0.73, λ̂10dB

2 = 0.73

and λ̂10dB
1 = 0.58.

The results presented above are obtained from a single run of estimation algorithm.
To further ensure the reliability and repeatability of the algorithm, Monte-Carlo simu-
lation is carried out and ensemble statistics are tabulated in Table 1. The statistics show
encouraging convergence of normalized output squared error and estimation of linear
subsystem. Parameters of the nonlinearity cannot be compared because of the nonpara-
metric nature of estimation. At best, the estimates of nonlinearity can be judged from
the shapes of estimated nonlinear function as presented in Figures 3 and 5.

4.2 Example 2

The second example considers the following Hammerstein type nonlinear process whose
static nonlinearity is given by

v(t) = tanh [2u(t)] 1.5 ≥ u(t),

v(t) =
exp(u(t))− 1

exp(u(t)) + 1
4 > u(t) > 1.5.

The dynamic linear part is given by the following second order discrete-time state space
system

A =

[
1.0 1.0

−0.5 0.0

]
,B =

[
1
0.5

]
,

C =
[
1 0

]
.

338 S.Z. Rizvi and H.N. Al-Duwaish

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

input

ou
tp

ut

original
estimated

Fig. 5. Estimate of square root nonlinearity of example 1 with output SNR 10dB

0 0.5 1 1.5 2 2.5 3 3.5

−1

−0.5

0

0.5

1

input

ou
tp

ut

original
estimated

Fig. 6. Estimate of tangent-hyperbolic nonlinearity of example 2

The linear part of the system has eigenvalues at λ1,2 = 0.5± 0.5i. Desired outputs are
generated by exciting the process model with a rich set of uniformly distributed random
input in the interval [0, 4]. An RBF network with 25 neurons is initialized with random
synaptic weights and uniformly distributed centers chosen within the input interval.
PSO social and cognitive parameters and constriction factor are kept similar to example
1. The number of particles is equal to the number of neurons and a population size of
50 gives good results again. The algorithm performs well and estimates the system in

Use of Swarm Intelligence in Nonlinear Dynamical Identification 339

Table 1. Monte-Carlo simulation statistics for example 1

Estimation results without output noise

Total number of runs 200

Magnitude of actual eigenvalue λ1 of linear subsystem 0.7

Mean magnitude of estimated eigenvalue λ̂1

of linear subsystem 0.713

Variance of eigenvalue estimate λ̂1 8× 10−4

Magnitude of actual eigenvalue λ2 of linear subsystem 0.6

Mean magnitude of estimated eigenvalue λ̂2

of linear subsystem 0.62

Variance of eigenvalue estimate λ̂2 4.5 × 10−3

Magnitude of actual eigenvalue λ3 of linear subsystem 0.5

Mean magnitude of estimated eigenvalue λ̂3

of linear subsystem 0.481

Variance of eigenvalue estimate λ̂3 5.7 × 10−3

Average number of iterations required for every run 8.26

Average mean squared output error (MSE)

normalized over [0,1] 9.8 × 10−4

Estimation results with output SNR 10dB

Total number of runs 200

Magnitude of actual eigenvalue λ1 of linear subsystem 0.7

Mean magnitude of estimated eigenvalue λ̂1

of linear subsystem 0.75

Variance of eigenvalue estimate λ̂1 1.6 × 10−3

Magnitude of actual eigenvalue λ2 of linear subsystem 0.6

Mean magnitude of estimated eigenvalue λ̂2

of linear subsystem 0.68

Variance of eigenvalue estimate λ̂2 6× 10−3

Magnitude of actual eigenvalue λ3 of linear subsystem 0.5

Mean magnitude of estimated eigenvalue λ̂3

of linear subsystem 0.4

Variance of eigenvalue estimate λ̂3 6× 10−2

Average number of iterations required for every run 8.02

Average mean squared output error (MSE)

normalized over [0,1] 6.6 × 10−3

340 S.Z. Rizvi and H.N. Al-Duwaish

0 50 100 150 200
−5

−4

−3

−2

−1

0

1

2

3

4

5

time samples

ou
tp

ut

original
estimated

Fig. 7. Step response of linear dynamic subsystem of example 2

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.5

−1

−0.5

0

0.5

1

1.5

input

ou
tp

ut

original
estimated

Fig. 8. Estimate of tangent-hyperbolic nonlinearity of example 2 with output SNR 10dB.

12 iterations. The mean squared output error between normalized values of actual and
estimated outputs converges to a final value of 8 × 10−4. The estimate of nonlinearity
shape is shown in Figure 6. Eigenvalues of the estimated system lie at λ̂1,2 = 0.497±
0.5i. Step response of linear subsystem is shown in Figure 7.

Estimation is then carried out in noisy environment, with zero mean Gaussian addi-
tive noise included at the output of the system such that the signal-to-noise ratio (SNR)

Use of Swarm Intelligence in Nonlinear Dynamical Identification 341

is 10dB. The algorithm performs well in noisy environment. The final mean squared
error converges to 1.8× 10−3 in 13 iterations. Nonlinearity estimate is shown in Figure
8. The eigenvalues of the estimated system lie at λ̂10dB

1,2 = 0.493± 0.499i.
Table 2 shows ensemble statistics of Monte-Carlo simulation for example 2. The

statistics show encouraging convergence of normalized output squared error and esti-
mation of linear subsystem. As mentioned before, parameters of the nonlinearity cannot
be compared due to the nonparametric nature of estimation. At best, the estimates of
nonlinearity can be judged from the shapes of estimated nonlinear function as presented
in Figures 6 and 8.

Table 2. Monte-Carlo simulation statistics for example 2

Estimation results without output noise
Total number of runs 200

Magnitude of actual eigenvalues λ1,2 of linear subsystem 0.7071
Mean magnitude of estimated eigenvalues λ̂1,2

of linear subsystem 0.7071
Variance of eigenvalue estimates 2× 10−5

Average number of iterations required for every run 9
Average mean squared output error (MSE)

normalized over [0,1] 7× 10−4

Estimation results with output SNR 10dB
Total number of runs 200

Magnitude of actual eigenvalues λ1,2 of linear subsystem 0.7071
Mean magnitude of estimated eigenvalues λ̂1,2

of linear subsystem 0.7079
Variance of eigenvalue estimates 6 × 10−5

Average number of iterations required for every run 21
Average mean squared output error (MSE)

normalized over [0,1] 2 ×10−3

5 Further Enhancement to the Learning Algorithm

Seeking further improvement, we propose searching for optimum basis function cen-
ters, as opposed to initializing them with an even distribution in the input space and then
keeping them fixed throughout the neural network learning. This way, particle swarm
would be used to find the optimum combination of synaptic weights and basis function
centers. A slight modification is therefore made to the learning algorithm of Section 3.
For a similar set of m observations of input and output, uε 1×m and yε 1×m, the
modified learning algorithm would stand similar to the previous algorithm of Section
3, except that in the modified algorithm, the number of particles in the swarm would
amount to the sum of the number of synaptic weights and neuron centers. Step 4 of the
algorithm would change to

[wk, ck] = argmin wεq, cεq J (Ak−1,Bk−1,Ck−1,Dk−1,w, c).

342 S.Z. Rizvi and H.N. Al-Duwaish

Table 3. Monte-Carlo simulation statistics for example 1. Algorithm 1 represents algorithm of
Section 3. Algorithm 2 represents enhanced learning algorithm of Section 5.

Estimation results Alg. 1 Alg. 2
Total number of runs 200 200

Magnitude of actual eigenvalue λ1 of linear subsystem 0.7 0.7
Mean magnitude of estimated eigenvalue λ̂1

of linear subsystem 0.713 0.7031
Variance of eigenvalue estimate λ̂1 8× 10−4 7.9× 10−4

Magnitude of actual eigenvalue λ2 of linear subsystem 0.6 0.6
Mean magnitude of estimated eigenvalue λ̂2

of linear subsystem 0.62 0.6136
Variance of eigenvalue estimate λ̂2 4.5× 10−3 3.7× 10−3

Magnitude of actual eigenvalue λ3 of linear subsystem 0.5 0.5
Mean magnitude of estimated eigenvalue λ̂3

of linear subsystem 0.481 0.4934
Variance of eigenvalue estimate λ̂3 5.7× 10−3 3.3× 10−3

Average number of iterations required for every run 8.26 8.64
Average mean squared output error (MSE)

normalized over [0,1] 9.8× 10−4 2.9× 10−4

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

input

ou
tp

ut

original
estimated

Fig. 9. Estimate of square root nonlinearity of example 1 with enhanced learning

It is observed that searching for optimum neuron centers along with the weights yields
much improved identification results. Problem of Example 1 is tested again with
enhanced learning algorithm. Figure 9 shows an improved nonlinearity estimate. Ta-
ble 3 compares Monte-Carlo simulations statistics for both the algorithms. Estimates
of all eigenvalues of the linear subsystem are closer to actual values in the enhanced

Use of Swarm Intelligence in Nonlinear Dynamical Identification 343

learning algorithm. Most noteworthy is the improvement in the overall average output
mean squared error. Improved accuracy of identification however, comes at the price
of computation complexity, since the enhanced learning algorithm involves learning of
both the neuron centers and the weights. In order to reduce computation complexity,
different variants of swarm intelligence-based algorithms present in the literature can
be used.

6 Conclusions

A subspace and swarm intelligence-based identification algorithm is presented here.
The combined algorithm reaps the benefits of both techniques. The convergence prop-
erties of the presented algorithm are directly related to the convergence properties of
PSO and subspace algorithms. PSO has been usually known to perform better than
most evolutionary algorithms (EA)s in finding global optimum provided its parameters
are tuned properly according to the application. The subspace algorithm is also known
for having no convergence problems. Its numerical robustness is guaranteed because
of well understood linear algebra techniques like QR decomposition and singular value
decomposition (SVD). As a consequence, it does not experience problems like lack of
convergence, slow convergence or numerical instability [19]. To gauge the ability of the
combined algorithm to converge substantially, and to assure its repeatability and relia-
bility, Monte-Carlo simulations have been carried out. Statistics presented in Tables 1, 2
and 3 show strong convergence and consistent performance of the proposed algorithms.
The effect of noise is also studied, and the algorithm is seen to converge sufficiently in
the presence of noisy data as shown in the simulation results.

Acknowledgements. The authors would like to acknowledge the support of King Fahd
University of Petroleum & Minerals, Dhahran, Saudi Arabia. This work also benefit-
ted immensely from the valuable comments of ICNC 2010 conference referees and
attendants.

References

1. Fruzzetti, K.P., Palazoglu, A., McDonald, K.A.: Nonlinear model predictive control using
Hammerstein models. J. Proc. Control 7, 31–41 (1997)

2. Eskinat, E., Johnson, S.H., Luyben, W.L.: Use of Hammerstein models in identification of
nonlinear systems. AIChE Journal 37, 255–268 (1991)

3. Haddad, A.H., Thomas, J.B.: On optimal and suboptimal nonlinear filters for discrete inputs.
lEEE Trans. Information Theory 14, 16–21 (1968)

4. Abonyi, I., Nagy, L., Szeifert, E.: Hybrid fuzzy convolution modelling and identification of
chemical process systems. Int. J. Systems Science 31, 457–466 (2000)

5. Narendra, K.S., Gallman, P.: An iterative method for the identification of nonlinear systems
using Hammerstein model. IEEE Trans. Automatic Control 11, 546–550 (1966)

6. Billings, S.: Identification of nonlinear systems - A survey. IEEE Proc. 127, 272–285 (1980)
7. Al-Duwaish, H.: A Genetic Approach to the Identification of Linear Dynamical Systems with

Static Nonlinearities. Int. J. Systems Science 31, 307–314 (2001)

344 S.Z. Rizvi and H.N. Al-Duwaish

8. Vörös, J.: Modeling and Paramter Identification of Systems with Multisegment Piecewise-
Linear Characteristics. IEEE Trans. Automatic Control 47, 184–188 (2002)

9. Wenxiao, Z.: Identification for Hammerstein Systems Using Extended Least Squares Algo-
rithm. In: 26th Chinese Control Conference, pp. 241–245. IEEE Press, China (2007)

10. Greblicki, W.: Non-parametric orthogonal series identification of Hammerstein systems. Int.
J. Systems Science 20, 2335–2367 (1989)

11. Al-Duwaish, H., Nazmulkarim, M., Chandrasekar, V.: Hammerstein model identification by
multilayer feedforward neural networks. Int. J. Systems Science 28, 49–54 (1997)

12. Zhao, W., Chen, H.: Recursive identification for Hammerstein systems with ARX subsystem.
IEEE Trans. Automatic Control 51, 1966–1974 (2006)

13. Katayama, T.: Subspace Methods for System Identification. Springer, London (2005)
14. Luo, D., Leonessa, A.: Identification of MIMO Hammerstein Systems with Nonlinear Feed-

back. In: American Control Conference 2002, pp. 3666–3671. IEEE Press, Galesburg (2002)
15. Verhaegen, M., Westwick, D.: Identifying MIMO Hammerstein systems in the context of

subspace model identification methods. Int. J. Control 63, 331–349 (1996)
16. Goethals, I., Pelckmans, K., Suykens, J.A.K., Moor, B.D.: Identification of MIMO Ham-

merstein Models using Least Squares Support Vector Machines. Automatica 41, 1263–1272
(2005)

17. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International Conference
on Neural Networks, pp. 1942–1948. IEEE Press (1995)

18. Haykin, S.: Neural Networks - A Comprehensive Foundation. Prentice-Hall, New Jersey
(1999)

19. Overschee, P.V., Moor, B.D.: N4SID: Subspace algorithms for the identification of combined
deterministic-stochastic systems. Automatica 30, 75–93 (1994)

20. Overschee, P.V., Moor, B.D.: Subspace Identification for Linear Systems: Theory-
Implementation-Applications. Kluwer Academic Publishers, Dordrecht (1996)

21. Kennedy, J., Eberhart, R.: Swarm Intelligence. Academic Press (2001)
22. Eberhart, R., Shi, Y.: Parameter Selection in Particle Swarm Optimisation. In: Evolutionary

Programming VII, pp. 591–600 (1998)
23. Carlisle, A., Dozier, G.: An Off-The-Shelf PSO. In: The Particle Swarm Optimization Work-

shop, pp. 1–6 (2001)

Practical Graph Isomorphism for Graphlet Data Mining
in Protein Structures

Carsten Henneges1, Christoph Behle2, and Andreas Zell1

1 Center for Bioinformatics Tübingen, Eberhard Karls Universität Tübingen
Sand 1, Tübingen, Germany

2 Lehrstuhl für Theoretische Informatik, Eberhard Karls Universität Tübingen
Sand 13, Tübingen, Germany

carsten.henneges@uni-tuebingen.de
behlec@informatik.uni-tuebingen.de

Abstract. The tertiary structure of proteins is composed of α-helices and β-
sheets being referred to as Secondary Structure Elements (SSE). SSE are evo-
lutionary conserved and define the overall fold of a protein. Therefore they can
be used to classify protein families. SSE form pairwise energetical interactions
which can be described by graphs. Neighbourhood graphs employ edge condi-
tions to filter relevant interactions out of a set of pairwise relations. Graphlet
analysis then employs stochastic sampling of subgraphs to identify overrepre-
sented interaction patterns. To distinguish graphlets while sampling requires an
efficient algorithm for graph isomorphism.

In this Chapter, we describe a graph isomorphism algorithm that is easy to
implement. In a preprocessing phase, the presented algorithm combines marks
assigned to vertices to more informative marks. Propagated over edges, marks
collect information about the structure of the graph and hence allow to efficiently
find isomorphisms in a subsequent backtracking step.

Applying graphlet analysis to neighbourhood graphs for structures from the
ICGEB Protein Benchmark database and the Super-Secondary Structure database
(SSSDB), we identify 627 significant graphlets. Subsequently trained decision
trees on these features predict the four SCOP levels and SSSDB classes with
a mean Area Under Curve (mAUC) better than 0.89 (5-fold CV). Regulariz-
ing these decision trees to avoid overfitting reveals that for reliable prediction
of structural features about 20 graphlets are sufficient. Especially, we find that
graphlets composed of five secondary structure elements are most informative
for classification. Conversely, using decision trees trained on the mere sequence
of SSE obtained from the protein sequence we are also able to predict graphlets
directly from secondary structure annotation. Optimal prediction performance
thereby reaches up to a Matthews Correlation Coefficient (MCC) of 0.7.

From our experiments in this Chapter, we conclude that SSE interactions form
patterns significantly different from random. These patterns are both useful to
predict structural protein features as well as they can be predicted from protein
sequence. Therefore they can be used as constraints to facilitate the de novo pre-
diction of unknown protein structures.

Keywords: Graphlets, Data Mining, Relative Neighbourhood Graph, Secondary
Structure Elements, Decision Tree Model Selection.

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 345–360.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

346 C. Henneges, C. Behle, and A. Zell

1 Introduction

Secondary structure elements (SSEs), β-sheets and α-helices, are important building
blocks of proteins and interactions between these SSEs stabilize protein tertiary struc-
tures. Many categorization schemes are based on these SSEs like the SCOP [1] or CATH
[2] databases. For example, the SCOP categorization scheme has four levels, each one
giving more detailed information about the SSEs of a protein domain and the arrange-
ment of its SSEs.

An important question, especially in the context of SSE-based categorization
schemes, is whether there are interaction patterns between these SSEs that occur
preferably in native protein structures or in protein structures of a given fold or su-
perfamily. As SSEs are complex three-dimensional structures, whose relative states are
hard to encode, analysing SSE interactions in full atomic detail can become complex.
However, encoding energetic interaction between SSEs as graphs makes this problem
amenable for graph-based analysis of protein structures. Thereby the SSEs of a struc-
ture are mapped to vertices of a graph, and interactions between SSEs are represented
by edges. Graph mining methods [3] then can be applied on these reduced representa-
tions of protein structures.

At the heart of each graph mining application lies the problem of graph isomorphism
(GI). For any pair of graphs having equal number of nodes and edges, it consists of
deciding whether the two graphs are structurally equal, i.e., if there exists an adjacency
preserving mapping between both sets of nodes. This mapping is referred to as the
isomorphism.

Computing isomorphism for two given graphs G and H is a combinatorial search
task. In the worst case, it amounts to searching all |V |! combinations of nodes v ∈ V .
While the problem of subgraph isomorphism is known to be NP-complete, this question
is still open for GI. Nonetheless there exist polynomial algorithms for special classes
of graphs (e.g. planar graphs) as well as practical implementations for general graphs
(e.g. nauty, VF/VF2), written in highly optimised C. However, both alternatives, the
restriction to a class of graphs as well as the usage of the hard to integrate implemen-
tations of GI solvers, is often not practical when working with graphlets. Here, we
complement our previous paper [4] by a description of a practical graph isomorphism
method that applicable for any class of graphs, is easy to implement and reveals fast
runtime behaviour.

Using this algorithm, we mine graph representations of protein structures for sub-
graphs, termed graphlets, that preferably occur in native protein structures. The sig-
nificance of a graphlet is statistically tested using a randomised graphs, serving as a
background model [5]. This background model allows us to identify graphlets that oc-
cur more often in protein graphs than in random graphs. The value of the extracted
graphlets is then demonstrated by using them in predictors for SCOP levels and SSSDB
motifs.

Practical Graph Isomorphism 347

2 Materials and Methods

Databases

We perform our experiments using protein structures from the SCOP40mini dataset
from the ICGEB database and the database of super-secondary structures SSSDB [6,7].

Protein Preparation

We use C++ routines and the BALL library [8] to analyze protein structures. As a first
step, hydrogen atoms are added. After a consistency check of each residue, we assign
partial charges and atom radii to atoms according to the AMBER force field. Finally,
all hetero residues are removed from the structure.

To be independent from protein annotation, all SSEs are recomputed using the DSSP
algorithm [9], afterwards all residues within loops are removed.α-helices are not further
modified, whereas all connected components of β-strands linked by hydrogen bonds are
merged into β-sheets. In this way, each β-sheet is treated as a complete 3D structure
during the computation of interaction energies.

Graphical Encoding of Energetic SSE Interactions

To prepare the graph construction, we compute the pairwise matrix of SSE interaction
energies. Let A and B be any secondary structures in a protein, and let E[A,B, ...] be
the AMBER energy of a set of SSEs, then the pairwise interaction energy I[A,B] is
given as

I[A,B] = E[A,B]− E[A]− E[B]. (1)

Graph construction serves for structural normalization as well as extracting the inter-
action model. It filters needless relations, while being independent from the computed
amount of I[A,B] energy and the relative distance of the SSEs. Therefore, it makes
proteins having different numbers of SSEs comparable.

One convenient graph for this task is the Relative Neighbourhood Graph (RNG) [10].
The RNG connects two labelled SSE nodes if the following edge condition

I[A,B] ≤ max
C
{I[A,C], I[B,C]} , (2)

holds, where A,B,C are SSEs from the protein and A �= B �= C. The RNG is a
connected proximity graph and, therefore, also connects SSEs that are too distant for
direct protein residue contacts. As its edge condition resembles an ultra-metric [11], the
RNG has shown great robustness in practice and is a powerful tool to extract meaningful
perceptual structures [10].

348 C. Henneges, C. Behle, and A. Zell

A Practical Graph Isomorphism Method

To prepare the subsequent graphlet analysis, we describe our variant of the Weisfeiler-
Lehmann refinement method for graph isomorphism [12], which is easy to implement
and offers practical runtime performance.1 It consists of two phases, a preprocessing
phase that extracts connectivity information out of each graph and a backtracking search
for the isomorphism. By precomputing marks encoding the connectivity of a graph
first, the algorithm is able to prune unnecessary comparisons as well as search space
when computing isomorphisms in the second phase. We will show that the precom-
puted marks guarantee a valid mapping with respect to marks, but not necessarily an
isomorphism.

First, we define the initialisation of marks for vertices by a function as

Definition 1. Let G = (V,E) be an undirected graph with nodes V and edges E =
{{u, v} | u ∈ V, v ∈ V : u �= v}. Let the marks M be a possibly infinite set of distinct
elements. Then, let c : V !→ M be a function, that assigns each node u ∈ V the same
label m ∈M iff they are equal with respect to some specification.

Possible choices for c could be tuples comprising, for instance, the number of cycles or
the length of the longest path in a nodes neighbourhood as well as the number of nodes
having no connections to any other direct neighbour. Additionally, c can make use of
prior information assigned to a node such as labels or statistics related to the object
represented by the node. The only constraint is that any two nodes mapped to the same
mark can be matched to each other by a possible isomorphism. All marks assigned to
a graph form a mark distribution. The distribution of marks for a graph will later be
used to determine the end of the preprocessing phase. A distribution is referred to as
degenerated iff it consists of only one type of marks.

After each node was initialised by c with a mark computed, we compute higher-order
marks for each node using the following recursion. The idea is that the marks are spread
over edges and thus connectivity contributes to the improvement of information saved
in the marks assigned to each node.

Definition 2. Let (Mi) be a family of marks, let G = (V,E) be a graph and N(u) =
{v | {u, v} ∈ E} the neighbourhood of u (excluding u). Furthermore, let c be defined
as in definition 1 and M0 its codomain. Then the generalized recursion gi : V !→Mi is
defined as

g0(u) ≡ c(u) (3)

gi(u) ≡ h
(
{gi−1(u)} ∪ {d(gi−1

i (v)) | v ∈ N(u)}
)
. (4)

The function h is an injective function of finite multisets of marks from Mi into Mi+1.
Furthermore, d is an injective function d : Mi !→Mi identifying those marks within the
argument set of hi that are travelled over edges and is referred to as distance function.

gi can be efficiently evaluated using dynamic programming based on the memoized
marks of level i − 1 to compute level i. The maximal recursion depth n is found when

1 A white paper on www.itgi-algorithm.de provides a detailed runtime comparison as well as its
source code.

Practical Graph Isomorphism 349

the mark distributions for gi and gi−1 are equal, i.e., their vectors of frequency counts
are equal. From an information-theoretic point of view we now have maximized the
mutual information between the two recursion levels. However a full-discussion of this
topic is beyond the scope of this Chapter.

We next show that equal marks computed by the generalized recursion imply a pos-
sible mapping of nodes that is at least consistent with the marks assigned by g0 and also
ranges over more distant nodes. In this way, the marks of g0 and higher recursion levels
can be used as guidance information while searching for isomorphisms.

Because h and d are injective, it follows that if two nodes have equal marks, their
marks and those of their neighbourhood in the prior recursion step were also equal.
This represents the basis for computing a mark-consistent mapping. We formulate this
observation

Lemma 1. For any u, u∗ having gi+1(u) = gi+1(u∗) follows

gi(u) = gi(u∗) (5)

and
∀v ∈ N(u)∃v∗ ∈ N(u∗) : gi(v) = gi(v∗). (6)

Based on this, we show that equal marks allow for the computation of a mapping consis-
tent with the g0 marks by giving a constructive algorithm. This guarantees the compu-
tation of valid mappings during isomorphism search and therefore avoids unnecessary
computations.

Theorem 1. Let n be the actual recursion level and u, u∗ be nodes with gn(u) =
gn(u∗). Then a g0 mark-consistent mapping can be computed for all nodes v, v∗ with
distance n to u, u∗, respectively.

Proof. To prove the theorem we define a constructive algorithm AAA and its invariant
I (Algorithm 1). The invariant relates to an internal data structure of the algorithm
consisting of triples (a, b, c) that contains the desired mapping b !→ c and the recursion
level a. We prove the theorem by showing that the invariant holds during initialization
and within each iteration. Furthermore, we show that the algorithm terminates.

Initialization: In line 4 the data structureA is initialized with input (i+1, u, u∗). Then,
the invariant holds due to k ← i + 1 and the start nodes u and u∗ have the same mark
because of the input condition in line 2. Therefore, the invariant holds prior to the main
loop in line 6.

Iteration: Within each loop iteration for each triple (k, v, v∗) ∈ A is tested, whether v
has a neighbour w ∈ N(v) without a triple (a, b, c) : b = w in A. Let w be such a
neighbour, then there exists w∗ ∈ N(v∗) : gk−1(w) = gk−1(w∗) such that I holds for
gk(v) = gk(v∗) and Lemma 1. Hence, M = M∗. The sets M,M∗ can be decomposed
to

M =MA ∪M¬A

={w ∈ N(v) : ∃(a, b, c) ∈ A : b = w} ∪ {w ∈ N(v) :� ∃(a, b, c) ∈ A : b = w}
M∗ =M∗

A ∪M∗
¬A

={w∗ ∈ N(v∗) : ∃(a, b, c) ∈ A : c = w∗} ∪ {w∗ ∈ N(v∗) :� ∃(a, b, c) ∈ A : c = w∗}.

350 C. Henneges, C. Behle, and A. Zell

All nodes enter pairwise into A and the invariant I holds, therefore it follows

(M = M∗ ∧MA = M∗
A)⇒M¬A = M∗

¬A. (7)

And thus

gk−1(w) = m ∈M¬A ⇒ ∃w∗ ∈ N(v∗) : gk−1(w∗) = m∗ ∈M∗
¬A. (8)

Consequently, at any time an appropriate w∗ can be chosen by AAA and stored in A as
triple (k− 1, w, w∗) such that the invariant remains valid. Thus, I remains valid in line
10 and, therefore, in line 13. We obtain g0 consistency using equation 5.

Termination: The algorithm AAA terminates because |k| is set to i + 1 in line 3, is decre-
mented in line 13 and the loop iterates while 0 ≤ |k|.I holds during each iteration,
therefore it is still valid when AAA terminates.

Having computed information about the graphs topology encoded in the marks, we
can search for graph isomorphisms. To this end, we specify a backtracking Algorithm
3 that is guided by the computed marks. We improve the search by precomputing an
optimized testing order for edges such that wrong assignments are found as early as
possible (see Algorithm 2).

The algorithm starts by selecting a node having a mark with minimal probability
and maximal degree. Then, all edges are ordered using a BFS traversal such that cross-
edges are checked prior to forward edges. This assures that the search space is first
tested for consistency prior expansion. Using this order, all mark-preserving relations
between the graphs of both nodes are enumerated and checked for isomorphisms. Both
algorithms are called from the top-level routine 4 that first checks the mark distributions
for equality and degeneracy.

Algorithm 1. The algorithm AAA(g, i+ 1, u, u∗) for the proof of Theorem 1

1: {Inputs are mapping g of marks, recursion level i+ 1.}
2: {and two nodes u, u∗ with gi+1(u) = gi+1(u∗)}
3: k ← i+ 1
4: A ← {(k, u, u∗)}
5: Invariant I : A contains triple (k, v, v∗) : gk(v) = gk(v∗) for 0 ≤ k ≤ i+ 1
6: while 0 ≤ k do
7: for all (k, v, v∗) ∈ A do
8: for all w ∈ N(v) :� ∃(a, b, c) ∈ A : b = w do
9: Let w∗ ∈ N(v∗) : gk−1(w) = gk−1(w∗)∧ � ∃(a, b, c) ∈ A : c = w∗

10: A ← A∪ {(k − 1, w,w∗)}
11: end for
12: end for
13: k ← k − 1
14: end while

For c we generated marks that were tuples composed of the degree and label (α-
helix/β-sheet) of a node.

In our implementation of the generalized recursion we followed a semi-arithmetical
idea when defining d and h. As each mark is unique and distinguishable from others,
they can be used to form the basis of a number system. Therefore, we defined digits
consisting of marks and coefficients as well as the addition.

Practical Graph Isomorphism 351

Algorithm 2. calculate-visiting-order(G, pg) Given a set of computed marks, this
algorithm computes an optimized visiting order of the nodes of a graph such that wrong assign-
ments are uncovered as early as possible. The idea is to explore the graph from one node by BFS
and check cross-edges before forward edges. The algorithm starts with a maximal informative
node having minimal probability Pn

c and maximal node degree. The symbol �� represents the list
concatenation operation.

1: Let pg be the mark distribution for recursion g of G
2: Let start ∈ V be node with pg(X = start) minimal

and degree(start) maximal
3: queue← (start)
4: visited(start) ← true
5: list ← ()
6: while not-empty(queue) do
7: node ← removeFirst(queue)
8: append← ()
9: for e ∈ AdjacentEdges(node) do

10: if not-visited(e) then
11: Let e = {u, v}
12: if visited(u) ∧ visited(v) then
13: {append cross-edges at front}
14: append← (e) �� append
15: else
16: {append forward-edges at end}
17: if not-visited(u) then
18: visited(u) ← true
19: queue← queue �� (u)
20: end if
21: if not-visited(v) then
22: visited(v) ← true
23: queue← queue �� (v)
24: end if
25: append← append �� (e)
26: end if
27: visited(e) ← true
28: end if
29: end for
30: list← list �� append
31: end while
32: return list

Definition 3. Let M be the codomain of a c and k ∈ N any natural number. Then, a
digit is denoted by k •m with base m ∈M and coefficient k. We define the addition of
two digits a •m and b •m to be

a •m+ b •m ≡ (a+ b) •m. (9)

A number is then given by x =
∑

m∈M k•m and denoted by the term mark number. Two
mark numbers x, y having coefficients a(x), b(y) are added by adding corresponding
coefficients.

352 C. Henneges, C. Behle, and A. Zell

Algorithm 3. backtrack(list,i) This Algorithm describes the backtracking procedure for
searching isomorphisms. The data structure iso stores the constructed isomorphism, while list
contains the optimized visiting order from Algorithm 2. To keep the algorithm neat m(.) denotes
the mark assigned by gn to a node and ⊥ represents an undefined value.
1: if size(list) = i then
2: {recursion base}
3: print “isomorphism found!”; STOP
4: else
5: {recursion step}
6: Let eG = {uG, vG} be i.th edge from list
7: if iso(eG) = ⊥ then
8: if non-is-visited(uG, vG) then
9: {Check all edges with appropriate marks m(uH),m(vH)}

10: for all eH = {uH , vH} ∈ E : m(vG) = m(vH) ∧m(uG) = m(uH) do
11: {Each undirected edge fits this condition twice!}
12: iso(eG) ← e;iso(uG) ← uH ;iso(vG) ← vH

13: call backtrack(list,i+1)
14: iso(eG) ← ⊥;iso(uG) ← ⊥;iso(vG) ← ⊥
15: end for
16: else if one-is-visited(uG, vG) then
17: Let uG be visited node and uH corresponding node
18: for all eH ∈ AdjacentEdges(uH) : m(vG) = m(vH) do
19: iso(eG) ← eH ;iso(uG) ← uH ;iso(vG) ← vH

20: call backtrack(list,i+1);
21: iso(eG) ← ⊥;iso(uG) ← ⊥;iso(vG) ← ⊥
22: end for
23: else
24: {both nodes are visited}
25: Let uH , vH be the assigned nodes to uG, vG

26: if exists-edge(uH , vH) then
27: Let eH = {uH , vH} be this edge
28: iso(eG) ← eH ;iso(uG) ← uH ;iso(vG) ← vH

29: call backtrack(list, i+ 1);
30: iso(eG) ← ⊥;iso(uG) ← ⊥;iso(vG) ← ⊥
31: end if
32: end if
33: end if
34: end if

x+ y ≡
(∑

m∈M

a(x) •m
)

+

(∑
m∈M

b(y) •m
)

=
∑
m∈M

(a(x) + b(y)) •m. (10)

Using Definition 3, we define h to be the mark number addition, d the identity and
obtain.

Practical Graph Isomorphism 353

Algorithm 4. graph-isomorphism(G,H) The main procedure is designed to efficiently fil-
ter candidates that can not match. First the mark distributions for both graphs are computed and
tested. The expensive backtracking step is only carried out if the distributions are not degenerate
and are equal. In the degenerated case a real implementation should warn or switch to another im-
plementation of c. Only if no degenerate distributions for both graphs are available the expensive
backtracking search is carried out using the optimized visiting order.

1: Calculate converged gnG, g
n
H mark distributions

2: if Mark distributions are not degenerated and are equal then
3: list ← calculate-visiting-order(G, pnG)
4: call backtrack(list,0)
5: end if
6: print “G and H are not isomorph”

Definition 4. Let G = (V,E) be a graph, u ∈ V any node and c : V !→ M . Then the
mark number recursion is defined by

g0(u) ≡ 1 • c(u) (11)

gi(u) ≡ gi−1(u) +
∑

v∈N(u)

gi−1(v). (12)

This definition efficiently generates new marks as needed.
The presented generalized variant of the Weisfeiler-Lehmann algorithm facilitates

subsequent graphlet analysis for a collection of graphs in three ways: First, it allows for
the precomputation of highly informative marks for each graph. Those precomputed
marks prevent unnecessary graph comparisons and hence reduce runtime in the case of
unequal graphlets. Secondly, by construction on the other hand they facilitate the com-
putation of an isomorphism by narrowing the search space. And third, they allow for
the detection of degenerate graphs, i.e., those graphs that produce a degenerate mark
distribution providing no structural connectivity information. In this case the imple-
mentation should switch to another definition for c (e.g. rely on more computational
intensive marks based on Breath-First-Search or Centrality metrics).

Although our presented method brings in practical advantages (e.g. easy to imple-
ment, practical performance), it does not implicate any complexity statements about
the GI problem itself. Users should be aware of that we have presented a practical
heuristic for which degenerate cases exist, but seldom occur in real world problems.
From an information-theoretic perspective it can be shown that the presented recur-
sion for computing marks maximizes the mutual information between two subsequent
mark distributions. Hence, we can assure that generated marks can not be improved any
more, except by changing to another c. A full treatment of this topic however is beyond
the scope of this Chapter. We thus proceed to the description of the high-level graphlet
analysis in the next subsection.

Graphlet Analysis

Graphlet analysis makes use of subgraph sampling and, therefore, relies on a graph iso-
morphism test, presented in the previous section. Each sampled subgraph is referred to

354 C. Henneges, C. Behle, and A. Zell

as graphlet. Its frequency or probability within a network is estimated by repeated sam-
pling. In addition, statistical graphlet analysis requires the knowledge of a background
distribution to compute the probability of an observation. As no analytical distribu-
tion function for graphlets is known, their probabilities are in general estimated from
random graphs.

To obtain a random model resembling the input graph distribution, each protein
graph is randomized. We used a random rewiring method where each edge is split into
two half-edges. Then, all half-edges are randomized and rewired. This is repeated until
a connected graph is obtained or a maximum number of iterations is reached. In the
latter case, the last sample is saved. In summary, random rewiring conserves important
graph properties (e.g. the node degree). By randomizing each graph once, we obtain a
collection of random graphs that closely resembles the test distribution.

Next, we estimate the graphlet distribution by random sampling connected sub-
graphs. The goal of the sampling is twofold: First, all existent graphlets should be de-
tected and, second, their distribution should be estimated correctly. If all graphlets were
known in advance, drawing a fixed number of samples would yield the maximum like-
lihood estimate of the graphlet distribution, which is a multinomial distribution [13,14].
To achieve this estimate, we employ a two-pass approach.

In the first pass, the data is exploratory sampled. For counting the graphlet frequen-
cies, we make use of a Move-to-Front (MF) list that holds a counter for each graphlet
type. We need the graph isomorphism algorithm when searching this list. While sam-
pling, each sampled graphlet is first searched in the MF list for counting its occurrence
and inserted in the case it is not found. Therefore, the MF list length increases during
this pass. We draw 1000 samples per graph of the database to minimize the possibility
of missing patterns.

In the second pass, we keep the MF list fixed during sampling to compute the max-
imum likelihood estimates. Again, we draw a total of 1000 samples, 5 repetitions with
200 samples, from each graph and, thus, obtain 5 independent distribution estimates. If
sampling detects an unknown graphlet within the second pass, a counter for unknown
patterns is increased. Finally, we compute the distribution estimate by averaging and
normalizing all samplings for a graph.

We choose a sampling size of 1000 graphlets in each phase because only a small
fraction of the RNG comprises more than 40 nodes, i.e., only a small fraction of the
database proteins are large. As the number of graphlets increases exponentially with
pattern size, a trade-off between estimation accuracy and runtime is required. We found
that a sampling size of 1000 is sufficient to accurately estimate the graphlet distribution
within a reasonable runtime.

To determine significant graphlets, we employ permutation testing, which is a non-
parametric technique to efficiently test the equality of two distributions g, h [15]. It re-
quires no assumptions on the true probability distributions. By resampling new random
distributions from the input distribution and evaluating a test statistic T , it infers the
distribution of T under H0 : g = h. This denotes the case where g and h are equal and,
therefore, allows to compute the p-value for the hypothesis that the input distributions
are equal. In our experiments, we use the coin package implemented in R [16].

Practical Graph Isomorphism 355

Fig. 1. The graphlet analysis workflow using a random control and permutation testing

Table 1. Results of the Graphlet Analysis

Graphlet Found Significant Filter
Size Graphlets Graphlets Ratio

4 427 22 0.05
5 1,731 77 0.04
6 5,366 212 0.04
7 16,904 316 0.02

For each graphlet, we employ permutation testing to compute the likelihood that
its distribution on the protein graphs equals its distribution on the randomized graphs.
Hence, we determine those graphlets that are significantly over or under-represented in
random graphs. To account for the multiple-testing problem, we afterwards adjust the
p-values according to the method of [17]. Finally, all graphlets below a significance
threshold of 0.05 and having a frequency ratio at least 10-fold larger on protein graphs
than on the random graphs are retained for further analysis. Figure 1 illustrates this
analysis step.

Decision Tree Analysis

Here, we relate the extracted graphlets to global protein structure properties, e.g. the
SCOP classification of each structure.

Therefore, we employ decision trees as they facilitate a better understanding of
the data set. Inspection of leafs and their associated samples allows relating specific
graphlets to proteins and, thus, facilitates the analysis of structures with respect to inter-
action patterns. In addition, decision trees are native multi-class prediction algorithms
and are thus a convenient choice for the prediction of various protein classes. However,
decision trees tend to overfit and therefore require careful complexity regularization.

An alternative to decision trees are neural network predictors. Neural networks rep-
resent a non-linear class of regression functions that are estimated by gradient descent.
For each class a single output neuron can be integrated into the network and, thus, a sin-
gle neural network can model the posterior probability of each class using a common
basis of hidden neurons. However, neural networks are pure highly non-linear predic-
tion models and, therefore, hard to interpret. Consequently, they are less suited for data
mining purposes and do not provide much insight into the dataset.

Using the graphlet distributions, we encode each protein as a binary vector of
graphlet occurrences. Whenever a graphlet is found for a protein, it is encoded as 1 and
as 0 else. In addition, we integrate the SCOP level information from ICGEB as well as
the SSSDB Motif class information as a prediction target. SCOP has four hierarchical

356 C. Henneges, C. Behle, and A. Zell

levels: the class, fold, superfamily and family of a protein domain. Similarly, the SSSDB
Motif Class encodes the super-secondary structure super class, while the SSSDB Motif
Subclass denotes a more precise subdivision.

We use the partition platform from JMP [18] for learning. JMP is a reduced
version of the SAS Enterprise Miner software suite, which is extensively used for pro-
fessional data analysis in industry, and provides various platforms that facilitate data
analysis tasks. Especially, the ability of the partition platform to easily inspect
each prediction node is helpful during the analysis of the inferred graphlets.

In our experiments, the Minimum Split Size (MSS) parameter is chosen to be 5, 10,
15, 20, 25 and 50, while training on graphlets of size 4 to 7. For each model, the pre-
diction performance is evaluated using 5-fold cross-validation to compute AUC values
for each class. Then, all AUC values are averaged to yield the mean AUC (mAUC) for
each combination of graphlet size and MSS. For comparison purposes, we also employ
the neural nets platform.

Regularization

However, to obtain regularized decision trees, we follow the work of [19]. There, the
space of decision tree hypotheses is regularized by their number of leafs and their pre-
diction error. Let T be the hypothesis space of decision trees and |T | denote the num-
ber of leafs of a tree T . Furthermore, let n be the number of data samples and λ be
a weighting factor between tree complexity and prediction error, then the Complexity
Regularization CR for decision tree selection is given as

CR = argmin
T

⎧⎪⎪⎨
⎪⎪⎩ R̂︸︷︷︸

Empirical risk

+λ

√
|T |
n︸ ︷︷ ︸

Bound on bias

⎫⎪⎪⎬
⎪⎪⎭ (13)

where R̂ denotes the prediction error and n the number of training samples. In our case,
we set R̂ = 1 −mAUC, because we are dealing with multi-class predictions and the
mAUC is a performance measure between 0 and 1 that can be converted into an error by
subtracting it from 1. This error is then compared to its theoretical bound, the Uniform
Deviation Bound UDBn, which upper bounds the true risk of a decision tree and is
given as

UDBn = arg min
T∈T

{
R̂(T) +

√
3|T |+ log(n)

2n

}
. (14)

The remaining task is to find a valid λ for regularization. We choose λ to minimize

λ = argmin
λ

∑
T

(CR − UDBn)
2 (15)

for all considered decision trees, trained with MSS of 5, 10, 15, 20, 25, and 50.

Practical Graph Isomorphism 357

3 Results and Discussion

Graphlet Extraction

We convert 1357 proteins from the ICGEB SCOP40mini database and 744 proteins
from the SSSDB into the described graphical representation. Figure 2 illustrates the
result of a conversion. This results in a total of 2101 graphs left for graphlet anal-
ysis. Two other datasets from ICGEB, PCB00020 (11,944 structures from SCOP95)
and PCB00026 (11,373 structures from CATH95), are convenient for our experiments.
However, the enormous number of graphlets found in this data sets leads to infeasible
computation times. Therefore, we restrict our analysis to the smallest ICGEB collection
and included the SSSDB instead.

Table 1 summarizes our sampling results. It shows that increasing the graphlet pat-
tern size also increases the number of detected graphlets as well as the number of signif-
icant graphlets. However, the ratio between significant and detected graphlets remains
below 5%. Hence, we extract only a small amount of significant patterns from a large
collection of graphlets (see Table 1).

Decision Tree Learning

For each target variable the decision tree minimizing CR − UDBn is selected as the
regularized model and saved for final analysis. We find that λ = 1.3 fulfils equation
(15) for each target variable. We choose λ such that the total squared deviation from the
UDBn was minimal when averaged over all models using any size of graphlets and any
number of splits. Consequently, all models are regularized and have maximal expressive
power along with a reduced probability of overfitting. Table 2 lists the MSS, graphlet
size, number of splits, as well as the mAUC of the final models for each target variable.
We find that simple models suffice to achieve mAUC better than 0.82. In addition, at
least 20 samples can be summarized in a leaf to result in a decision tree predicting one
category without sacrificing prediction performance. Finally, we find that graphlets of
size 5 are in most cases superior to others. Also graphlets of size 4 and 7 are used for
decision tree learning and, therefore, provide useful information (Table 2).

Fig. 2. Structure (left) and RNG (right) of ICGEB structure d1pmma . Box nodes denote β-
sheets, whereas round nodes refer to α-helices.

358 C. Henneges, C. Behle, and A. Zell

Table 2. Regularized Decision Trees for each target variable

Target Variable # classes Graphlet MSS Performed mAUC Neural Net
Size Splits mAUC

SCOP class 5 5 20 23 0.87 0.92
SCOP fold 19 5 20 24 0.87 0.84
SCOP superfamily 7 4 20 24 0.85 0.83
SCOP family 48 5 20 16 0.83 0.87
SSSDB Motif Class 32 7 10 22 0.93 0.99
SSSDB Motif Subclass 153 5 15 21 0.96 0.96

We also compare the performance of decision trees to the performance of neural
networks, also implemented in JMP. The last column of Table 2 shows the mean AUC
achieved by the neural nets platform using cross-validation on a random selection
of 40% of the samples, which are held out as external validation set. The platform
was trained using the default values. We find that the neural network is superior to
our regularized decision trees in predicting the SCOP class and SCOP family, as well
as the SSSDB Motif Class. However, the performance difference does not exceed a
value of 0.06 mAUC points. Consequently, decision trees and neural networks achieve
a comparable performance and, therefore, support the descriptive value of our graphlet
features.

Next, we extract all graphlets from the selected regularized decision tree models to
analyse their usages with respect to all target variables. Here, we find graphlets that are
used several times for the prediction of various target variables, while other graphlets
are specific to one class.

While 66 graphlets are used only for the prediction of one target variable, we find two
graphlets of size 5 that are used to predict 4 different target variables (Figure 3). Note
that this is the maximum number achievable because two target variables are predicted
using graphlets of size 4 and 7.

In Figure 4 all SCOP superfamily graphlets are shown. Within the decision tree for
the SCOP superfamily, the graphlets (a) and (b) in Figure 4 are more relevant for classi-
fication, because they are used in three and two splits, respectively. Interestingly, (a) and
(b) are paths of helices containing one or two sheets, while the other graphlets consist
mainly of star topologies.

Finally, we predict all detected graphlets from secondary structure sequence. There-
fore, we convert each protein sequence into strings of symbols h,s, l encoding whether
a residue is within a helix, strand or loop. We design a set of 439 features describing
lengths, as well as densities, normalized to protein length, of helices, strands, loops. In
addition, we design regular expressions for SSE sequence patterns, which result in bi-
nary features. Then, we train decision trees, implemented in the rpart package of R,
and use 5-fold cross-validation using the bootstrap package to estimate the MCC
[20]. We find that chains of SSEs and star topologies can be best predicted by decision
trees.

Practical Graph Isomorphism 359

(a) (b)

Fig. 3. Graphlet 3(a) predicts 4 targets and is predictable with MCC=0.6, while graphlet 3(b)
predicts 4 targets and is predictable with MCC=0.5 from secondary-structure information

Fig. 4. This figure shows all extracted graphlets used for the prediction of the SCOP superfamily

4 Conclusions

In summary, we find that significantly overrepresented patterns in energetic SSE inter-
actions exist and can be found using graphlet analysis. Regularized decision tree learn-
ing on the mined patterns predicts SCOP levels and SSSDB Motifs with great accuracy
(mAUC > 0.8) using about 20 graphlets. Also, the presence of a specific graphlet can
be predicted from secondary structure sequence of a protein with MCC values up to
0.7. Finally, we demonstrate that the combination of graphlet analysis using permu-
tation testing and decision tree learning facilitates automatic categorization of protein
structures.

We have shown that graphlets are predictable from the secondary structure sequence,
therefore graphlets can be used as constraints for the placement of predicted secondary
structure elements, when predicting the tertiary structure from the protein sequence
alone. Thus, future work should focus on the usage of the predictable graphlets to im-
prove ab initio protein structure prediction.

360 C. Henneges, C. Behle, and A. Zell

References

1. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: Scop: A structural classification of
proteins database for the investigation of sequences and structures. Journal of Molecular
Biology 247, 536–540 (1995)

2. Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH–
a hierarchic classification of protein domain structures. Structure 5, 1093–1108 (1997)

3. Vacic, V., Iakuoucheva, L., Lonardi, S., Radivojac, P.: Graphlet kernels for prediction of
functional residues in protein structures. Journal of Computational Biology 17, 55–72 (2010)

4. Graphlet data mining of energetical interaction patterns in protein 3D structures. In: Interna-
tional Confererence on Neural Computation (ICNC) (2010)

5. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs:
Simple Building Blocks of Complex Networks. Science 298, 824–827 (2002)

6. Sonego, P., Pacurar, M., Dhir, S., Kertesz-Farkas, A., Kocsor, A., Gaspari, Z., Leunissen,
J.A.M., Pongor, S.: A Protein Classification Benchmark collection for machine learning.
Nucleic Acids Res. 35, D232–D236 (2007)

7. Chiang, Y.S., Gelfand, T.I., Kister, A.E., Gelfand, I.M.: New classification of supersec-
ondary structures of sandwich-like proteins uncovers strict patterns of strand assemblage.
Proteins 68, 915–921 (2007)

8. Kohlbacher, O., Lenhof, H.P.: BALLrapid software prototyping in computational molecular
biology. Bioinformatics 16, 815–824 (2000)

9. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: Pattern recognition of
hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

10. Toussaint, T.G.: The relative neighbourhood graph of a finite planar set. Pattern Recogni-
tion 12, 261–268 (1980)

11. Milligan, G.W., Isaac, P.D.: The validation of four ultrametric clustering algorithms. Pattern
Recognition 12, 41–50 (1980)

12. Weisfeiler, R. (ed.): On Construction and Identification of Graphs. Number 556. Lecture
Notes in Math. Springer (1976)

13. Wassermann, L.: All of statistic. Springer (2004), theorem 14.5.
14. Georgii, H.O.: Stochastik, 2nd edn., p. 198. de Gruyter (2004)
15. Wald, A., Wolfowitz, J.: Statistical tests based on permutations of the observations. The An-

nals of Mathematical Statistics 15, 358–372 (1944)
16. R Development Core Team: R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria (2009) ISBN 3-900051-07-0
17. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal of

Statistics 6, 65–70 (1979)
18. SAS Institute Inc.: Jmp 8.0.1 (2009), http://www.jmp.com
19. Scott, C., Nowak, R.: On the adaptive properties of decision trees. In: Advances in Neural

Information Processing Systems, vol. 17. MIT Press (2005)
20. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing the accuracy of

prediction algorithms for classification: an overview. Bioinformatics 16, 412–424 (2000)

http://www.jmp.com

Learning from Data as an Optimization and Inverse
Problem

Věra Kůrková

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodárenskou věžı́ 2, Prague 8, Czech Republic

vera@cs.cas.cz

Abstract. Learning form data is investigated as minimization of empirical error
functional in spaces of continuous functions and spaces defined by kernels. Using
methods from theory of inverse problems, an alternative proof of Representer
Theorem is given. Regularized and non regularized minimization of empirical
error is compared.

Keywords: Learning from data, Minimization of empirical error, Inverse prob-
lems, Reproducing kernel Hilbert spaces.

1 Introduction

Supervised learning can be formally described as an optimization problem of minimiza-
tion of error functionals over parameterized sets of input-output functions computable
by a given computational model. Various learning algorithms iteratively modify param-
eters of the model until sufficiently small values of error functionals are achieved and
the corresponding input-output function of the model fits sufficiently well to the training
data (see, e.g., [1,2]).

Error functionals are determined by training data and loss functions. Training data
are sets of pairs of inputs and outputs. A loss function measures how much is lost when
the system computes f(x) instead of y. The most common loss function is the quadratic
loss which has been used over two hundred years since the invention of the least square
method by Gauss and Legendre.

Traditionally, the least square method has been applied to finding among elements of
linear sets of functions those best fitting to data. In distributed connectionistic compu-
tational models (such as neural and kernel networks), best fitting functions are searched
for in non linear sets of input-output functions. Learning algorithms optimize besides
of coefficients of linear combinations of computational units also their inner parameters
(such as input weights, centers, biases, widths).

Such algorithms in their best only achieve good fit to the training data. It was proven
that for typical computational units such as sigmoidal perceptrons and Gaussian ker-
nels, sufficiently large network can interpolate a given training data exactly, i.e., error
functionals can achieve the value zero [3,4]. However, networks perfectly fitting to ran-
domly chosen noisy training samples may be too much influenced by the noise and may
not perform well on data that were not chosen for training. Thus various attempts to mod-
ify error functionals to improve so called “generalization capability” has been proposed.

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 361–372.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

362 V. Kůrková

Girosi and Poggio [5] introduced into learning theory a method of regularization as a
means of improving generalization. They considered modifications of error functionals
based on Tikhonov regularization which adds to an error functional an additional func-
tional, called stabilizer, penalizing undesired properties of input-output functions such as
high-frequency oscillations [6]. In practical applications, various simple stabilizers have
been successfully used, e.g., seminorms based on derivatives [7] or sums of squares or
absolute values of output weights (so called output weight regularization) [1,2].

Girosi, Jones and Poggio [6] characterized minima of empirical errors regularized
by stabilizers in the form of squares of weighted Fourier transforms over computational
model with kernel units. Later, Girosi [8] found that these stabilizers belong to a wider
class of functionals formed by squares of norms on a special class of function spaces
called reproducing kernel Hilbert spaces (RKHSs). These spaces were defined by Aron-
szajn [9], introduced to data analysis by Parzen [10], and applied to data interpolation
by splines by Wahba [11]. RKHSs became popular in soft-computing due to the use of
kernels in classification algorithm called support vector machine (SVM) [12,13] (see,
also, [14]). A unifying framework for theory of learning in RKHSs as ambient function
spaces was presented in [15].

Regularization was developed in 1970s as a method of improving stability of solu-
tions of certain problems from physics called inverse problems, where unknown causes
(shapes of functions, forces or distributions) of known consequences (measured data)
have to be found. These problems has been studied in applied science, such as acous-
tics, geophysics and computerized tomography (see, e.g., [16]). To solve such a prob-
lem, one needs to know how unknown causes determine known consequences, which
can often be described in terms of an operator. In problems originating from physics,
dependence of consequences on causes is usually described by integral operators (such
as those defining Radon or Laplace transforms [17,18]). Kůrková [19,20] and DeVito
et al. [21] represented minimization of error functionals with quadratic loss function as
inverse problems defined by evaluation and inclusion operators. Theory of inverse prob-
lems provides tools for characterization of solutions of problems defined by continuous
operators with Hilbert spaces as their domains and ranges. As RKHSs satisfy this con-
dition, theory of inverse problems can be applied to minimization of error functionals
over RKHSs.

In this paper, we investigate learning as minimization of error functionals over
RKHSs and over spaces of continuous functions. We survey and extend results on appli-
cations of theory of inverse problems to minimization of empirical error functional with
the quadratic loss. Using methods from theory of inverse problems, we give an alter-
native proof of so called “Representer Theorem” [15] holding also for non continuous
kernels, and show that regularized solutions of the minimization task differ from a non
regularized ones merely in coefficients of linear combinations of computational units.
Combining characterization of optimal solutions of learning tasks over RKHSs with
density results holding for Gaussian kernel networks with fixed widths, we describe a
class of argminima of empirical error functional over the whole space of continuous
functions.

The paper is organized as follows. Section 2 presents some properties of empiri-
cal error functional and its representation as a distance functional. In section 3, basic

Learning from Data as an Optimization and Inverse Problem 363

terminology and results from theory of inverse problems are recalled and minimiza-
tion of empirical error functional is reformulated as an inverse problem. In section 4,
these tools are applied to description of theoretically optimal input-output functions in
learning from data over spaces defined by kernels. In section 5, their consequences to
minimization of empirical error over spaces of continuous functions are der ived.

2 Properties of Empirical Error

Supervised learning can be theoretically studied as an optimization problem of min-
imization of a suitable error functional defined by a training sample over a set of
input-output functions of a given computational model. The most widespread functional
minimized by various learning algorithms (such as back-propagation or genetic algo-
rithms) is called an empirical error. It is determined by a sample z = {(ui, vi) ∈
X × Y | i = 1, . . . ,m}, where X ⊆ Rd and Y ⊆ R, of input-output pairs of data and a
loss function V . The empirical error functional is denoted Ez,V and defined as

Ez,V (f) =
1

m

m∑
i=1

V (f(ui), vi).

We denote by Ez the empirical error with the quadratic loss function, i.e.,

Ez(f) =
1

m

m∑
i=1

(f(ui)− vi)
2. (1)

One of many advantages of the quadratic loss function is that it enables to reformulate a
minimization of empirical error as minimization of a weighted Euclidean distance. For
a sample z = ((u1, v1), . . . , (um, vm)), let u = (u1, . . . , um), v = (v1, . . . , vm), and
‖.‖2,m denote the weighted �2-norm on Rm defined as

‖x‖2,m =

√√√√ 1

m

m∑
i=1

x2
i .

Then for every f : X → R we have

Ez(f) = ‖(f(u1), . . . , f(um))− (v1, . . . , vm)‖22,m. (2)

So minimization of the empirical error Ez over any space of functions on X ⊆ Rd such
that {u1, . . . , um} ⊆ X is equivalent to minimization of the ‖.‖2,m-distance between
the vector of the output data v = (v1, . . . , vm) and the vector (f(u1), . . . , f(um))
obtained by evaluating the function f at the input data u = (u1, . . . , um).

Learning algorithms aim to minimize error functional over hypothesis sets of input-
output functions of suitable computational models. These model consist of units, which
can be formally described as functions of two variables

φ : X ×A→ R,

364 V. Kůrková

where X ⊆ Rd is a set of inputs and A ⊆ Rs is a set of parameters. The set

Gφ(A) = {φ(., a) | a ∈ A}

is called a dictionary. The most widespread computational model used in soft-computing
is a one-hidden-layer network with a linear output. Such network computes input-output
functions from the set

spann Gφ(A) = {
n∑

i=1

wiφ(., ai) |wi ∈ Rd, ai ∈ A}.

Many classes of neural networks have so called “universal approximation property”
which is defined as density of sets of input-output functions in spaces (C(X), ‖.‖sup) of
continuous functions with the supremum norm ‖f‖sup = supx∈X |f(x)| or in (Lp(X),
‖.‖p) with X compact. So for a rich variety of hidden unit functions φ, the sets span
Gφ(A) =

⋃∞
n=1 spann Gφ(A) are dense in (C(X), ‖.‖sup) for all X ⊂ Rd compact.

It is easy to show that for any sample z, the empirical error Ez is continuous on
(C(X), ‖.‖sup).

Proposition 1. Let X ⊆ Rd, z = (u, v), where u = (u1, . . . , um) ∈ Xm and v =
(v1, . . . , vm) ∈ Rm. Then Ez is continuous on (C(X), ‖.‖sup).

Proof. Let f, h ∈ C(X) be such that ‖f − h‖sup < δ. Then

|Ez(f)− Ez(h)| =
1

m

∣∣∣∣∣
m∑
i=1

((f(ui)− h(ui)(f(ui) + h(ui)− 2vi))

∣∣∣∣∣ ≤ δ(C +mδ),

where C = maxi=1,...,m 2f(ui). So Ez is continuous at f . �

So for φ continuous, Ez is also continuous on the linear subspace spanGφ(A) of C(X).
The next proposition shows that any argminimum of a continuous functional over a
dense subset is also an argminimum over the whole space.

Proposition 2. Let Y be a dense subset of a normed linear space (X , ‖.‖X), T :
(X , ‖.‖X) → R be a continuous functional, and f ∈ Y be an argminimum of T over
Y . Then f is an argminimum of T over X .

Proof. Assume by contradiction that there exists g ∈ X such that T (g) < T (f). Let
η > 0 be such that T (g) + η < T (f). By continuity of T at g, there exists δ > 0 such
that for all g′ ∈ X , ‖g − g′‖X < δ implies |T (g)− T (g′)| < η. By density of Y , there
exist g′ ∈ Y with ‖g − g′‖X < δ and so |T (g) − T (g′)| < η. As g′ ∈ Y , we have
T (g) + η < T (f) ≤ T (g′) which gives a contradiction. �

Thus for any dictionary Gφ(A) for which spanGφ(A) is dense in (C(X), ‖.‖sup), an
argminimum of Ez over spanGφ(A) is also an argminimum over C(X).

Learning from Data as an Optimization and Inverse Problem 365

3 Minimization of Empirical Error as an Inverse Problem

The representation (2) of empirical error with the quadratic loss function as a distance
functional allows us to apply to learning theory results from theory of inverse problems.

For a linear operator A : (X , ‖.‖X) → (Y, ‖.‖Y) between two Hilbert spaces (in
finite-dimensional case, a matrix A) an inverse problem determined by A is to find for
g ∈ Y (called data) some f ∈ X (called solution) such that

A(f) = g

(see, e.g., [17]).
To reformulate minimization of Ez as an inverse problem, define for the input sample

u = (u1, . . . , um) ∈ Rm and any space S of functions on some X ⊆ Rd such that
{u1, . . . , um} ⊆ X an evaluation operator Ju : S → Rm as

Ju(f) = (f(u1), . . . , f(um)). (3)

The representation (2) implies that

Ez(f) = ‖Ju(f)− v‖22,m. (4)

Thus minimizing the empirical error Ez with the quadratic loss function over S is equiv-
alent to solving an inverse problem given by the evaluation operator Ju for the data v.

An inverse problem is called well-posed if for every g ∈ Y there exists a unique
solution f ∈ X , which depends continuously on data. So by the Banach open map
theorem [22], for a well-posed inverse problem there exists a unique continuous inverse
operator A−1 : Y → X . However, a continuous dependence of solutions on data may
not always guarantee robustness against a noise. A condition number defined for a well-
posed problem given by an operator A as cond(A) = ‖A‖ ‖A−1‖ measures stability.
Problems with large condition numbers are called ill-conditioned.

When for some g ∈ Y no solution exists, at least one can search for a pseudosolution
fo, for which A(fo) is a best approximation to g among elements of the range of A,
i.e.,

‖A(fo)− g‖Y = min
f∈X

‖A(f)− g‖Y .

The unique pseudosolution with minimal norm ‖.‖X is called normal pseudosolution
and denoted f+.

Theory of inverse problems overcomes ill-conditioning by using various regularized
solutions. Tikhonov’s regularization [23] replaces the problem of minimization of the
functional ‖A(.)− g‖2Y with minimization of

‖A(.)− g‖2Y + γΨ,

where Ψ is a functional called stabilizer and the regularization parameter γ plays the
role of a trade-off between an emphasis on a proximity to data and a penalization of
undesired solutions expressed by Ψ . A typical choice of a stabilizer is the square of the
norm on X , ‖.‖2X , for which Tikhonov regularization minimizes the functional

‖A(.)− g‖2Y + γ‖.‖2X . (5)

366 V. Kůrková

Originally, properties of pseudoinverse and regularized inverse operators were described
for operators between finite dimensional spaces, where such operators can be repre-
sented by matrices [24,25]. In 1970s, the theory of pseudoinversion was extended to
infinite-dimensional spaces – it was shown that similar properties as the ones of Moore-
Penrose pseudoinverses of matrices also hold for pseudoinverses of continuous linear
operators between Hilbert spaces [26]. Continuous operators have adjoint operators
A∗ : Y → X satisfying the equation

〈A(f), g〉Y = 〈f,A∗(g)〉X

[22]. The adjoints play an important role in a characterization of pseudosolutions and
regularized solutions.

The next paragraph summarizes basic results from theory of inverse problems from
[17, pp.68-70] and [26, pp.74-76]. For every continuous linear operator A : (X , ‖.‖X)
→ (Y, ‖.‖Y) between two Hilbert spaces there exists a unique continuous linear pseu-
doinverse operator A+ : Y → X when the range R(A) is closed, otherwise A+ is
defined only for those g ∈ Y , for which the projection πclR(A)(g) ∈ R(A). The pseu-
doinverse A+ satisfies for every g ∈ Y ,

‖A+(g)‖X = min
fo∈S(g)

‖fo‖X ,

where S(g) = argmin(X , ‖A(.)− g‖Y), and for every g ∈ Y , AA+(g) = πclR(g) and

A+ = (A∗A)+A∗ = A∗(AA∗)+. (6)

For every γ > 0, there exists a unique operator

Aγ : Y → X

such that for every g ∈ Y ,

{Aγ(g)} = argmin(X , ‖A(.) − g‖2Y + γ‖.‖2X)

and
Aγ = (A∗A+ γIX)−1A∗ = A∗(AA∗ + γIY)

−1 (7)

where IX , IY denote the identity operators. For every g ∈ Y , for which A+(g) exists,

lim
γ→0

Aγ(g) = A+(g). (8)

4 Minimization of Empirical Error over RKHSs

The representation (4) of minimization of an empirical error functional as an inverse
problem defined by an evaluation functional offers a possibility of characterization of
argminima of empirical error. However, properties of solutions of inverse problems (6),
(7), and (8) were derived under an assumption that the operator defining the inverse
problem is a continuous operator between Hilbert spaces. Aronszajn [9] introduced a

Learning from Data as an Optimization and Inverse Problem 367

class of function spaces called Reproducing Kernel Hilbert Spaces (RKHSs) as Hilbert
spaces of point-wise defined functions on which all evaluation functionals are contin-
uous. His definition implies that a RKHS is uniquely determined by a symmetric posi-
tive semidefinite kernel K : X ×X → R, i.e., K satisfying for all n and all n-tuples
{x1, . . . , xm} ⊆ X and all {a1, . . . , am} ⊂ R,

n∑
i,j=1

aiajK(xi, xj) ≥ 0.

A RKHS determined by K , denotedHK(X), contains all linear combinations of func-
tions of the form Kx : X → R, x ∈ X , defined as Kx(y) = K(x, y) (these functions
are called representers and limits of Cauchy sequences in the norm ‖.‖K induced by the
inner product defined on representers as 〈Kx,Ky〉K = K(x, y). An important feature
of RKHSs is so called reproducing property which guarantees that for all f ∈ HK(X)
and all x ∈ X

〈f,Kx〉K = f(x). (9)

A paradigmatic example of a kernel is the Gaussian kernel K(x, y) = e−‖x−y‖2

. A
RKHS defined by the Gaussian kernel contains all linear combinations of translations
of Gaussians, so it contains input-output functions of radial-basis-function networks
with the Gaussian radial function with a fixed width equal to one.

Continuity of evaluation functionals on RKHSs allows application of results from
theory of inverse problems to minimization of empirical error over kernel networks.
First, we describe properties of evaluation operators on RKHSs.

Proposition 3. Let X ⊆ Rd, K : X × X → R be a symmetric positive semidefinite
kernel. Then for every positive integer m and every u ∈ Xm

(i) Ju : (HK(X), ‖.‖K)→ (Rm, ‖.‖2,m) is continuous;
(ii) R(Ju) is closed in (Rm, ‖.‖2,m);
(iii) Ju is compact;
(iv) the adjoint J∗

u : (Rm, ‖.‖2,m) → (HK(X), ‖.‖K) satisfies for all x ∈ X and all
w ∈ Rm,

J∗
u(w)(x) =

1

m

m∑
i=1

wiK(x, ui).

Proof. (i) Continuity of Ju follows from the definition of a RKHS.
(ii) Every linear subspace of a finite dimensional space is closed and so is R(Ju).
(iii) As every continuous operator with a finite range is compact [22, p. 188], so is Ju.
(iv) By the reproducing property (9) and the definition of an adjoint operator, for every
x ∈ X and every w ∈ Rm we have J∗

u(w)(x) = 〈J∗
u(w),Kx〉K = 〈w, Ju(Kx)〉2,m =

1
m

∑m
i=1 wiK(x, ui). �

We denote by
Ez,γ,K = Ez + γ‖.‖2K

368 V. Kůrková

the Tikhonov regularization of the empirical error Ez with the stabilizer ‖.‖2K and the
regularization parameter γ. The role of kernel norms as stabilizers in Tikhonov’s regu-
larization (5) can be intuitively well understood in the case of convolution kernels, i.e.,
kernels K(x, y) = k(x−y) defined as translations of a function k ∈ L1(Rd)∩L2(Rd),
for which the Fourier transform k̂ is positive. For such kernels, the value of the stabilizer
‖.‖2K at any f ∈ HK(Rd) can be expressed as

‖f‖2K =
1

(2 π)d/2

∫
Rd

f̂(ω)
2

k̂(ω)
dω (10)

[8,27]. So when lim‖ω‖→∞ 1/k̂(ω) = ∞, the stabilizer ‖.‖2K plays a role of a high-
frequency filter. An example of a convolution kernel with a positive Fourier transform
is the Gaussian kernel.

The next theorem describes argminima of empirical error Ez and its regularized mod-
ification Ez,K,γ . For a kernel K : X ×X → R and a vector u ∈ Xm, K[u] denotes the
Gram matrix of the kernel K with respect to the vector u, i.e., the matrix

K[u]i,j = K(ui, uj),

Km[x] denotes the matrix 1
mK[u], and Im the identity m×m matrix.

Theorem 1. Let X ⊆ Rd,K : X×X → R be a symmetric positive semidefinite kernel,
m be a positive integer, z = (u, v) with u = (u1, . . . , um) ∈ Xm, v = (v1, . . . , vm) ∈
Rm, then
(i) there exists an argminimum f+ of Ez over HK(X), which satisfies

f+ = J+
u (v) =

m∑
i=1

ciKui , (11)

where
c = (c1, . . . , cm) = K[u]+v,

and for all fo ∈ argmin(HK(X), Ez), ‖f+‖K ≤ ‖fo‖K;
(ii) for all γ > 0, there exists a unique argminimum fγ of Ez,γ,K over HK(X), which
satisfies

fγ = Jγ
u (v) =

m∑
i=1

cγi Kui , (12)

where
cγ = (cγ1 , . . . , c

γ
m) = (Km[u] + γ Im)−1 v ;

(iii) limγ→0 ‖fγ − f+‖K = 0.

Proof. (i) By the representation (4), argminimum of Ez over HK(X) is a pseudoso-
lution of an inverse problem given by the operator Ju for the data v. By Proposi-
tion 3 (i) and (ii), Ju is continuous and has a closed range, thus by (6), we obtain
J+
u = J∗

u(JuJ
∗
u)

+. Proposition 3(iii) implies that JuJ∗
u : Rm → Rm can be expressed

by the matrix Km[u]. So f+ = J+
u (v) =

∑m
i=1 ciKui , where c = Km[u]+v.

Learning from Data as an Optimization and Inverse Problem 369

(ii) By (7), fγ = Jγ
u (v) = J∗

u(JuJ
∗
u + γIm)−1v, where Im denotes the identity opera-

tor on Rm. Thus fγ =
∑m

i=1 c
γ
i Kui , where cγ = (Km[u] + γIm)−1v.

(iii) By (8), limγ→0 ‖fγ − f+‖K = limγ→0 ‖Jγ
u (v) − J+

u (v)‖K = 0 �

Theorem 1(ii) became well-known under the name “Representer Theorem” [15]. For
X compact and K continuous, several authors derived it using Fréchet derivatives
(see, e.g., [11], [15], [28]). Our proof of Theorem 1 based on theory of inverse prob-
lems needs neither compactness nor continuity and it also includes non regularized
case. Comparison of regularized and non regularized case shows that regularization
merely modifies coefficients of the linear combination of functions composing the
argminimum.

Theorem 1 shows that for every symmetric positive semidefinite kernel K and every
sample of empirical data z, the argminimum f+ of the empirical error functional Ez
over the whole space HK(X) is formed by a linear combination of the representers
Ku1 , . . . ,Kum of the input data u1, . . . , um. The pseudosolution f+ can be interpreted
as an input-output function of a network with one hidden layer with kernel units and a
single linear output unit. The coefficients c = (c1, . . . , cm) of the linear combination
(corresponding to the output weights of the network) satisfy c = Km[u]+v, so the
output weights can be obtained by solving the system of linear equations.

As the operator Ju has finite dimensional range, it is compact and thus its pseudoin-
verse J+

u is unbounded. So the optimal solution f+ of minimization of the empirical
error Ez is unstable with respect to a change of output data v. Stability can be im-
proved by replacing the pseudosolution f+ = J+

u (v) with the regularized solution
fγ = Jγ

u (v), which is a linear combination of the same functions Ku1 , . . . ,Kum . But
the coefficients of these two linear combinations are different: in the regularized case
cγ = (Km[u] + γI)−1 v, while in the non-regularized one c = Km[u]+v.

For a convolution kernel K(x, y) = k(x − y), all functions of the form f =∑m
i=1 wiKui , which are computable by one-hidden layer networks with kernel units

computing translations of k, satisfy

‖f‖K ≤
m∑
i=1

|wi| ‖Kui‖K =

m∑
i=1

|wi|K(ui, ui) =

m∑
i=1

|wi| k(0) =
m∑
i=1

|wi|.

So

‖f‖2K ≤
(

m∑
i=1

|wi|
)2

. (13)

In practical learning tasks, an output-weight regularization which penalizes input-output
functions with large �1 or �2-norms of output-weight vectors has been widely used for
its simplicity (see, e.g., [1]). The inequality (13) shows that an output-weight regular-
ization also penalizes solutions with large ‖.‖K-norms.

In typical applications, networks with much smaller number n of units than the size
of the training sample of data m are used. However, characterization of theoretically
optimal solutions achievable over networks with the numbers of units equal to the sizes
m of training data can be used to estimate speed of convergence of suboptimal solutions
of the optimization task to the optimal ones. Some estimates of this speed were derived
in [29,30].

370 V. Kůrková

5 Minimization of Empirical Error over Spaces of Continuous
Functions

A continuous kernel K : X ×X with X ⊂ Rd compact is called universal if HK(X)
is dense in the space of continuous functions with the supremum norm (C(X), ‖.‖sup)
[31]. By Propositions 1 and 2, all argminima of the empirical error Ez over spaces
HK(X) with universal kernels K are also argminima over the whole space C(X).

The concept of universal kernel is related to universal approximation property of
a class of networks. A one-hidden layer network with units from a dictionary Gφ(A)
has a universal approximation property in (C(X), ‖.‖sup) if spanGφ(A) is dense in
(C(X), ‖.‖sup). As the set of representers GK(X) = {Kx |x ∈ X} is a subset of
HK(X), universal approximation property of a class of networks with units from the
dictionary GK(X) implies that K is a universal kernel.

The next theorem by Mhaskar [32] states that Gaussian networks with any fixed
width are universal approximators. Let Sb

d : Rd × Rd → R denotes the d-dimensional
Gaussian kernel i.e.,

Sb
d(x, y) = e−b‖x−y‖2

,

and Sb
d[u] denote the Gramm matrix of the kernel Sb

d with respect to the vector u.

Theorem 2. Let d be a positive integer and X ⊂ Rd be compact. Then for all b > 0,
spanSb

d(X) is dense subspaces of (C(X), ‖.‖sup).

As spanSb
d(X) is dense in and HSb

d
(X), also HSb

d
(X) is dense in (C(X), ‖.‖sup).

Note that proof of this theorem employs properties of derivatives of Gaussians (which
are products of Hermite polynomials with the Gaussian) and thus it cannot be extended
to other kernels. Examples of universal kernels are exponential kernel K(x, y) = ex·y

on all compact X ⊂ Rd and binomial kernel K(x, y) = (1− x · y)−α on the unit disk
in Rd [31].

The next theorem describes a set of argminima of empirical error over the space
C(X). For a set A, convA denotes the convex hull of A.

Corollary 1. Let X be a compact subset of Rd, z = (u, v), where u = (u1, . . . , um) ∈
Xm, v = (v1, . . . , vm) ∈ Rm. Then the set of argminima of Ez over C(X) contains the
set conv{f+

b | b > 0 }, where f+
b =

∑m
i=1 c

b
iS

b
dui

with cb = Sb
d[u]

+v.

Proof. By Theorem 1(i) for every b > 0, f+
b =

∑m
i=1 c

b
iS

b
dui

is an argminimum of
Ez over HSb

d
(X). By Theorem 2 (i), spanSb

d(X) is dense in (C(X), ‖.‖sup) and by

Proposition 1, Ez is continuous on (C(X), ‖.‖sup). As f+
b ∈ spanSb

d(X), by Proposi-
tion 2, f+

b is an argminimum of Ez over C(X). As the set of argminima is convex, the
statement holds. �

Corollary 1 shows that in the space of continuous functions C(X), for each width b > 0
of the Gaussian kernel, there exists an argminimum of Ez formed by a linear combi-
nation of Gaussians with the width b. All these Gaussians have the same centers given
by the input data. It was proven in [33] that the set {e−b‖.−y‖ | b ∈ R+, y ∈ Rd} of
all Gaussians with varying widths and centers is linearly independent. So the set of all

Learning from Data as an Optimization and Inverse Problem 371

these argminima of Ez is linearly independent and all their convex combinations are also
argminima. As Gaussians are known to interpolate the data exactly [4], the empirical
error achieves the value zero at a large convex set.

The next theorem describes a relationship of kernel norms for Gaussian kernels with
different widths.

Corollary 2. For all b > 0, HSb
d
(Rd) = {f ∈ L2(Rd) | ‖f‖Sb

d
<∞}, where

‖f‖2Sb
d
=

(
b√
π

)d ∫
Rd

f̂(s)2

e−‖ s
2b‖2 ds

and for all b ≥ a > 0

‖f‖Sb
d
≤
(
b

a

)d/2

‖f‖Sa
d
.

Proof. By (10) and the formula

ê−a‖.‖2(s) = (
√
2a)−de−‖ s

2a‖2

one gets
‖f‖2

Sb
d

‖f‖2Sa
d

=

(
b

a

)d ∫
Rd f̂(s)

2 e‖
s
2b ‖

2

ds∫
Rd f̂(s)2 e

‖ s
2a ‖2

ds
.

As a ≤ b implies e‖
s
2b‖

2 ≤ e‖
s
2a‖2

, we have
‖f‖

Sb
d

‖f‖Sa
d

≤
(
b
a

)d/2
. �

So Corollary 2 shows that with sharpening the Gaussian, the size of the norm on the
induced RKHS is decreasing exponentially fast. The ratio of sizes of stabilizers in the
form of squares of norms on Gaussian RKHSs with width a and b such that a < b,

grows with increasing dimension exponentially as
(
b
a

)d
. Thus for high dimensions d,

choice of a width of the Gaussian kernel strongly influences regularization.

Acknowledgements. This work was partially supported by by GA ČR grant P202/11/
1368 and the Institutional Research Plan AV0Z10300504.

References

1. Fine, T.L.: Feedforward Neural Network Methodology. Springer, Heidelberg (1999)
2. Kecman, V.: Learning and Soft Computing. MIT Press, Cambridge (2001)
3. Ito, Y.: Finite mapping by neural networks and truth functions. Mathematical Scientist 17,

69–77 (1992)
4. Michelli, C.A.: Interpolation of scattered data: Distance matrices and conditionally positive

definite functions. Constructive Approximation 2, 11–22 (1986)
5. Girosi, F., Poggio, T.: Regularization algorithms for learning that are equivalent to multilayer

networks. Science 247(4945), 978–982 (1990)

372 V. Kůrková

6. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures.
Neural Computation 7, 219–269 (1995)

7. Bishop, C.: Training with noise is equivalent to Tikhonov regularization. Neural Computa-
tion 7(1), 108–116 (1995)

8. Girosi, F.: An equivalence between sparse approximation and support vector machines. Neu-
ral Computation 10, 1455–1480 (1998)

9. Aronszajn, N.: Theory of reproducing kernels. Transactions of AMS 68, 337–404 (1950)
10. Parzen, E.: An approach to time series analysis. Annals of Math. Statistics 32, 951–989

(1966)
11. Wahba, G.: Splines Models for Observational Data. SIAM, Philadelphia (1990)
12. Boser, B.E., Guyon, I.M., Vapnik, V.: A training algorithms for optimal margin classifiers.

In: Haussler, D. (ed.) Proceedings of the 5th Annual ACM Workshop on Computational
Learlung Theory, pp. 144–152. ACM Press, Pittsburg (1992)

13. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)
14. Schölkopf, B., Smola, A.J.: Learning with Kernels – Support Vector Machines, Regulariza-

tion, Optimization and Beyond. MIT Press, Cambridge (2002)
15. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bulletin of AMS 39,

1–49 (2002)
16. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)
17. Bertero, M.: Linear inverse and ill-posed problems. Advances in Electronics and Electron

Physics 75, 1–120 (1989)
18. Engl, E.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dor-

drecht (1999)
19. Kůrková, V.: Learning from data as an inverse problem. In: Antoch, J. (ed.) COMPSTAT

2004 - Proceedings on Computational Statistics, pp. 1377–1384. Physica-Verlag/Springer,
Heidelberg (2004)

20. Kůrková, V.: Neural network learning as an inverse problem. Logic Journal of IGPL 13,
551–559 (2005)

21. Vito, E.D., Rosasco, L., Caponnetto, A., Giovannini, U.D., Odone, F.: Learning from exam-
ples as an inverse problem. Journal of Machine Learning Research 6, 883–904 (2005)

22. Friedman, A.: Modern Analysis. Dover, New York (1982)
23. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-posed Problems. W.H. Winston, Washington

(1977)
24. Moore, E.H.: Abstract. Bulletin of AMS 26, 394–395 (1920)
25. Penrose, R.: A generalized inverse for matrices. Proceedings of Cambridge Philosophical

Society 51, 406–413 (1955)
26. Groetch, C.W.: Generalized Inverses of Linear Operators. Dekker, New York (1977)
27. Loustau, S.: Aggregation of SVM classifiers using Sobolev spaces. Journal of Machine

Learning Research 9, 1559–1582 (2008)
28. Poggio, T., Smale, S.: The mathematics of learning: dealing with data. Notices of AMS 50,

537–544 (2003)
29. Kůrková, V., Sanguineti, M.: Error estimates for approximate optimization by the extended

Ritz method. SIAM Journal on Optimization 15, 461–487 (2005)
30. Kůrková, V., Sanguineti, M.: Learning with generalization capability by kernel methods with

bounded complexity. Journal of Complexity 13, 551–559 (2005)
31. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008)
32. Mhaskar, H.N.: Versatile Gaussian networks. In: Proceedings of IEEE Workshop of Nonlin-

ear Image Processing, pp. 70–73 (1995)
33. Kůrková, V., Neruda, R.: Uniqueness of functional representations by Gaussian basis func-

tion networks. In: Proceedings of ICANN 1994, pp. 471–474. Springer, London (1994)

A Cortically Inspired Learning Model

Atif Hashmi and Mikko Lipasti

Department of Electrical and Computer Engineering, University of Wisconsin
1415 Engineering Drive, Madison, WI - 53706, U.S.A.
ahashmi@wisc.edu, mikko@engr.wisc.edu

http://www.ece.wisc.edu/∼pharm

Abstract. We describe a biologically plausible learning model inspired by the
structural and functional properties of the cortical columns present in the mam-
malian neocortex. The strength and robustness of our model is ascribed to its
biologically plausible, uniformly structured, and hierarchically distributed pro-
cessing units with their localized learning rules. By modeling cortical columns
rather than individual neurons as our fundamental processing units, we get hi-
erarchical learning networks that are computationally less demanding and better
suited for studying higher cortical properties like independent feature detection,
plasticity, etc. Another interesting attribute of our model is the use of feedback
processing paths to generate invariant representation to robustly recognize vari-
ations of the same patterns and to determine the set of features sufficient for
recognizing different patterns in the input dataset. We train and test our hierarchi-
cal networks using synthetic digit images as well as a subset of handwritten digit
images obtained from the MNIST database. Our results show that our cortical net-
works use unsupervised feedforward processing as well as supervised feedback
processing to robustly recognize handwritten digits.

Keywords: Cortical algorithms, Cortical columns, Invariant representation,
Feedforward and feedback processing, Pruning, Automatic abstraction, Fault
tolerance.

1 Introduction

Understanding of the structural and operational aspects of various components of the
mammalian neocortex has significantly increased over the past few decades [1,2,3,4].
This has led to the development of both low level biologically realistic as well as high
level biologically inspired computational models. Low level biologically realistic mod-
els include the blue brain project [5], DARPA’s SyNAPSE project [6], etc. These models
use neurons as their basic implementation abstraction and simulate detailed low level
behavior of these neurons. Most of these models use Hebbian learning rules [7,8] along
with Spike Timing Dependent Plasticity (STDP) [9] for learning and information pro-
cessing. This makes them quite complex and computationally very expensive. To cope
with these issues, high level learning models inspired by the neocortical properties have
been proposed. These models implement various neocortical attributes like uniform
structure, hierarchy, spatial pooling, temporal pooling, etc. Some of these models in-
clude ART [10], HTM [11], Bayesian networks [12], and deep belief networks [13].

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 373–388.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

374 A. Hashmi and M. Lipasti

Even though these models are computationally quite efficient and implement some be-
havioral aspects of the neocortex, they are quite divorced from the actual biological
structure and properties of the neocortex.

We hypothesize that to develop intelligent models as powerful as the brain, we must
adhere to structural and functional properties of the biological example. In this arti-
cle, we describe a cortical model that uses cortical columns, found in the mammalian
neocortex [14], as its basic structural and functional processing units. Since cortical
columns are our basic implementation abstraction, our model is inherently computa-
tionally efficient and is biologically plausible as well. Our model uses unsupervised
feedforward processing and plasticity principles to learn and extract independent fea-
tures from the input patterns and it uses supervised feedback processing, object per-
manence, and temporal associativity to develop invariant representations for variations
of the same pattern. Using the feedback from higher levels, our model is also able to
determine the set of independent features that are sufficient to recognize the different
patterns. This is in accordance with the biological studies which show that the human
brain relies on a small subset of features in the visual scene to recognize objects [15,16].

To test and validate our cortical model, we use synthetic digit images as well as a
subset of handwritten digit images obtained from the MNIST database [17]. Our results
show that our cortical networks learn to identify each of the unique digits present in
the sample set and also pools variations of the same digit together to develop invariant
representations. Moreover, using the feedback from higher levels, our model is also able
to determine the set of features that is sufficient to differentiate between digits.

2 Cortical Structures, Organization, and Processing

The human brain can be divided into two main parts: the old brain and the new brain.
The old brain mainly constitutes those parts of brain that developed early in evolution.
These include pathways from sensory modalities to the new brain, spinal cord, and
other parts that deal with instinctual behavior. The new brain, also referred to as the
neocortex, is part of the brain which is unique to mammals and is highly developed for
humans; it accounts for about 77% of the human brain (in volume) [18]. The neocortex
is responsible for perception, language, imagination, mathematics, arts, music, plan-
ning, and all the other aspects necessary for an intelligent system. It contains virtually
all our memories, knowledge, skills, and experiences.

A very intriguing property of the neocortex is its apparent structural and func-
tional uniformity [14,19], i.e. the regions of the neocortex that process auditory inputs,
appear very similar to the regions that handle visual and other inputs. This
uniformity suggests that even though different regions specialize in different tasks,
they employ the same underlying algorithm. In essence, the neocortex is a hierarchy
of millions of seemingly-identical functional units that are called cortical columns. The
concept of cortical columns was introduced by Mountcastle in his seminal paper in
1957 [20]. Since then, this concept has been widely accepted and studied. Later studies
showed that cortical columns could further be classified into minicolumns and hyper-
columns [21,14,3]. A hypercolumn contains about 50 to 100 minicolumns, and each of
these minicolumns consists of around 200 to 500 neurons. The term cortical column is

A Cortically Inspired Learning Model 375

sometimes used for both types of columns, though, in literature, it usually refers to
hypercolumns. The minicolumns within the same hypercolumn share the same recep-
tive field (set of input connections) and are strongly connected with each other via in-
hibitory lateral connections. Studies [21,22] hypothesize that the minicolumns use these
inhibitory paths to learn unique/independent features from the input patterns. These hy-
percolumns are then arranged in the form of a hierarchy throughout the neocortex. In-
formation flows up this hierarchy via excitatory feedforward paths and flows down the
hierarchy through feedback paths.

It is believed that cortical regions operate by progressively abstracting and manipu-
lating increasingly complex notions throughout the neural hierarchy [23]. For instance,
from a visual scene, the visual cortex first identifies segments of different orientations,
then elementary shapes such as angles and intersections, and increasingly complex com-
binations, such as objects found in our environment [24]. This automatic abstraction ca-
pability for various inputs (visual, auditory, olfactory) partly explains why the neocortex
still outperforms traditional computers on a number of tasks, such as object recognition,
language learning, and motor control. Emulating such capability is thus a major step in
building computing systems that can compete with the processing characteristics of the
brain.

Although there exists a monumental amount of literature explaining the aforemen-
tioned properties of the neocortex, certain alternative properties of the neocortex have
not been sufficiently explored. One of these properties is the ability to determine the
set of features that the neocortex uses to recognize objects. Obviously, the neocortex
does not require all of the object’s features to recognize it. For example, Maw et.al [15]
show that while recognizing a human face, subjects tend to gaze more at the eyes, lips,
and nose. Thus, out of all the features that constitute a human face the neocortex uses a
small subset to process the facial recognition task. Sigala et.al [16] shows similar results
in more details. Thus, within the neocortex, there exists of notion of a sets of features
that are sufficient to differentiate visual patterns.

3 Cortical Model Description

3.1 Hypercolumn Abstraction

As mentioned in Section 1, we model cortical columns as our basic structural and func-
tional implementation abstraction. Figure 1 shows the architecture of the basic func-
tional unit in our cortical model. A hypercolumn consists of multiple minicolumns that
are strongly connected with each other via horizontal inhibitory connections. All of the
minicolumns within a hypercolumn share the same receptive field. A receptive field is
defined as the region within sensory input that is associated to a hypercolumn.

3.2 Unsupervised Feedforward Processing and Independent Feature Learning

In our model each of the minicolumns within a hypercolumn learns to identify inde-
pendent features from the input patterns using lateral inhibitory paths. This is in accor-
dance with the biological discussion presented in Section 2. In this section, we provide
detailed discussion on how each of the minicolumns learns to identify unique patterns
without any supervision.

376 A. Hashmi and M. Lipasti

Fig. 1. Mapping between hypercolumn network and feedforward circuitry of a hypercolumn in the
neocortex. Left: A hypercolumn network in our model with four minicolumns. Right: Structure
of a biological hypercolumn.

Random Activations and Initial Learning. Initially all the minicolumns within a
hypercolumn are initialized with very weak random weights. Thus, they show no pref-
erence for any pattern that might occur within their receptive field. Since our mini-
columns also model the stochastic nature of neurons by including random neocortical
firing behavior [25,26], they exhibit high activations over random intervals. When the
random activation of a specific minicolumn coincides frequently with various stable oc-
currences of the same pattern, the minicolumn adjusts its weights so that the correlation
between the weights and the input patterns increases. Thus over time, that minicolumn
develops a firing preference for that specific pattern. While this random activation of
minicolumns may not initially seem productive, this behavior is harnessed to make the
model fault-tolerant, improves the model’s training time, and mimics the behavior of its
biological inspirations.

Evaluating Output of Minicolumns. Each of the minicolumns contains a set of
weights W initialized to random values which are close to zero. During each train-
ing epoch, each of the minicolumns evaluates the dot-product DP =

∑N
i=1 Xi.Wi

between its weights W and the input X . The result of the dot-product becomes the
input to the activation function given by,

1.0

1.0 + e(−
DP−cutoff

β)
+ α×

∑
|Wi| (1)

Here, cutoff = φ ×
∑
|Wi|. φ determines the error tolerance of the minicolumn. β

defines the sharpness of the activation function while α controls the effect of weight
strength of a minicolumn on its output. The minicolumn is said to fire if the value of its
activation function is greater than a determined threshold.

Lateral Inhibition and Independent Feature Identification. When an input X is
presented to the hypercolumn, none of the untrained minicolumns fire for that input.

A Cortically Inspired Learning Model 377

However, if the random firing activity of a minicolumn coincides with the occurrence
of an input pattern, that minicolumn adjusts its weights so that the dot-product between
the input and the weights is improved. This is achieved by strengthening the weights
corresponding to the inputs Xi that are currently active. Thus, over multiple iterations
a minicolumn learns to identify a feature that initially coincided with the random activ-
ity of the minicolumn. At the same time, each minicolumn inhibits neighboring mini-
columns from firing via lateral inhibitory connections for the pattern it has already
learned to recognize. If multiple minicolumns fire at the same time, the one with the
strongest response inhibits the ones with weaker responses. The inhibited minicolumns
then weaken their weights corresponding to highly active Xi so that their dot-product
with the input is minimized. As a result of this process, the hypercolumn network is able
to recognize unique patterns without any supervision. A very interesting byproduct of
having minicolumns learn independent features through lateral inhibition is inherent
fault tolerance i.e. if a minicolumn that was firing for a feature suddenly dies (perma-
nent hardware or software error in a future synthetic application), over time, another
available neighboring minicolumn will start firing for that feature. This makes our hy-
percolumn structure inherently tolerant to permanent faults.

Weight Update Rules. Each time a minicolumn fires it modifies its weights so that
its correlation with the input pattern that has caused it to fire increases. Weights are
strengthened using the following update rule.

Wi = Xi ×
(
Wi +

(
C1 + γ × 1.0

1.0 + e(−
Wi−C2

β)

))
(2)

Here, Xi is the input corresponding to Wi, C1 defines the minimum amount of update
added to the current Wi and C2 defines how the present Wi will affect the weight
update. In our weight strengthening rule, the update added to Wi is dependent upon the
present value of Wi as well. This means that if Wi is strong it will get a higher update
value. This is in accordance with biological data [26,27].

In the case when a minicolumn is inhibited, it modifies the weights using the follow-
ing update rule.

Wi = Xi × (Wi − δ) (3)

Here, δ defines the weight update rate in the presence of inhibition.

3.3 Hierarchical Arrangement of Hypercolumns

To perform complex tasks the hypercolumns can be arranged in the form of a hierar-
chy. Lower hierarchical levels identify simple features and communicate their output to
the higher levels via feedforward paths. Each of the higher level hypercolumns receives
inputs from multiple lower level hypercolumns. In this manner the activations flow up
the hierarchy and the minicolumns in the top-level hypercolumns train themselves to
identify each of the complex unique pattern from the input. Each level of this hierarchy
behaves the same way as different levels of the visual cortex i.e. lower level hyper-
columns detect edges, and the hypercolumns at the higher levels detect progressively
complex features. It should be noted that our hierarchical model supports any complex
hierarchical arrangement of hypercolumns.

378 A. Hashmi and M. Lipasti

3.4 Supervised Feedback Processing and Invariant Representations

Our feedforward learning process enables our cortical hierarchy to learn unique features
from the input patterns. Each of the minicolumns can withstand and fire for patterns
with small variations but patterns with significant variations are recognized as different
features. This means that two variations of the same pattern might be recognized as
two different features. To resolve this issue and generate invariant representation for
variations of the same pattern, we make use of our supervised feedback processing
algorithm.

Algorithm 1. Pseudo code for generating invariant representations within a minicolumn using
supervised feedback

if feedback > 0 then
if hasNotF ired then

if hasMaxFiringHistory then
UpdateSynapticWtsExcitatory(feedback)

end if
else

if hasMaxFiringHistory then
UpdateSynapticWtsExcitatory(feedback)
if isStable then

for i = 1 to N do
if IsActive(child[i]) then

SendFBToChild(i, feedback)
end if

end for
end if

else
UpdateSynapticWtsInhibitory(feedback)

end if
end if

end if

Lets assume that our hierarchical network has started to recognize a pattern. Now it
is exposed to another variation of the same patterns that is quite different from the pre-
vious one e.g. two different variations of a handwritten digit. At this point, only some of
the minicolumns within the hierarchy might fire. As a result, the top level minicolumn
that is supposed to fire for that pattern might not fire. If this behavior persists, new mini-
columns will train themselves to recognize features in the new variation that are quite
different from the original pattern. Over time, that new variation will be identified as a
new pattern. This will be marked by firing of a minicolumn in the top level of the hierar-
chy. At this point, the top level hypercolumn receives a feedback signal. This feedback
signal forces the minicolumn firing for the original pattern to fire and also inhibits the
minicolumn that is firing for the new variation. Now, the minicolumn receiving excita-
tory feedback also adjusts its weights so that it fires for the new variation as well while
the inhibited minicolumn changes its weights so that it does not fire for that input pat-
tern. Thus over multiple exposures, the minicolumn firing for the original pattern will
also start to fire for the new variation. Once the top level minicolumn starts to give a

A Cortically Inspired Learning Model 379

stable activation for both the variations, it will start to send the feedback signal down so
that lower level minicolumns can also create invariant representations. The amount of
feedback sent to each of the lower level minicolumns is proportional to its firing history
i.e. if a minicolumn has been firing a lot in the past, it will get stronger feedback. Thus,
over time most active minicolumn ends up pooling its child minicolumns to generate
invariant representations and inhibits its neighbors from firing. This results in signifi-
cant resource optimization. The process of generating invariant representations within a
minicolumn using feedback is explained in the pseudo-code provided in Algorithm 1. In
Algorithm 1, UpdateSynapticWtsExcitatory models the functionality of Equation
2 while UpdateSynapticWtsInhibitory models Equation 3.

3.5 Learning Spatial Correlations from Past Experiences

To determine the set of features sufficient for recognition of unique images, we consider
the spatial correlations that exist among the occurrence of different independent features
constructing the objects in the dataset. Since each of the minicolumns trains itself to
identify independent features from its input, we can determine the spatial correlation
among various minicolumns by observing their firing patterns.

Table 1. Location of minicolumns in the hypercolumn hierarchy identifying different features
and shapes

Level Hypercolumn Minicolumn Recognizes
0 0 0 Feature a
0 0 1 Feature b
0 0 2 Feature c
0 1 0 Feature a
0 1 1 Feature b
0 1 2 Feature c
1 0 0 Shape A
1 0 1 Shape B
1 0 2 Shape C
1 0 3 Shape D
1 0 4 Shape E

To illustrate our methodology for determining the spatial correlations, we use a sim-
ple 2-level hierarchical network shown in Figure 2. Assume that this network is trained
using the dataset shown in Figure 3. Each of the four elements of the dataset is a syn-
thetic image of size 2x4. Each image can be divided into two halves, i.e. the first 2x2
grid and the second 2x2 grid separated by the dotted line in Figure 3. Within each of
the two grids, only three unique features occur: a horizontal line across the top (Feature
a), a vertical line on the left (Feature b), and a diagonal line (Feature c). Once the net-
work is trained with each of the 2x4 images, each of the minicolumns within the Level
0 hypercolumns start to recognize any one of the three unique features. At the same
time, each of the four minicolumns at Level 1 starts to recognize any one of the four

380 A. Hashmi and M. Lipasti

Fig. 2. Block level diagram of a 2-level hierarchical hypercolumn network

Fig. 3. Set of features used to train 2-level hierarchical network

different shapes. Table 1 shows the details about the patterns identified by each of the
minicolumns in different hypercolumns in the 2-level hierarchy.

Once the 2-Level hierarchy is in a stable state i.e. all the four shapes are recognized
by the Level 1 hypercolumn, the Level 1 hypercolumn starts to create spatial corre-
lations among the occurrences of different features recognized by the minicolumns in
each of the Level 0 hypercolumns. These spatial correlations help in determining the set
of features sufficient for recognition of each of the unique shapes. A spatial correlation
is created between two features if they co-occur frequently. Once a spatial correlation
has been created, occurrence of a feature can be predicted by any occurrence of the fea-
ture it is spatially correlated to. For example, in Figure 3 feature a in the first 2x2 grid
always occurs with features a and b in the second 2x2 grid. This means that a spatial
correlation between feature a on the left 2x2 grid and features a and b on the right 2x2
grid is developed. Feature b on the left 2x2 grid co-occurs with features a and c on the
right 2x2 grid. Thus, a spatial correlation is maintained among these features. Finally,
feature c on the left 2x2 grid only co-occurs with feature b on the right 2x2 grid so there
is just one spatial correlation for feature c i.e. feature b.

Figure 4 shows the associations among various features that are created due to the
spatial correlations that exist among them. In the figure, we can see that Level 0 Hyper-
column 0 Minicolumn 0 (L0H0M0) is connected to L0H1M0 through L1H0M0 which
detects Shape A. Similarly, L0H0M0 is connected to L0H1M1 through L1H0M1 which
detects Shape B. Other associations in Figure 4 are also created in the same manner. Fig-
ure 4 details an association graph that shows the spatial correlations which exist among
different features that are detected by the Level 0 minicolumns.

A Cortically Inspired Learning Model 381

Fig. 4. A graphical representation of spatial correlations created among various features recog-
nized by the Level 0 minicolumns after the hierarchical network reaches a steady state

4 Determining the Set of Features Sufficient for Recognition of
Unique Shapes

To determine the set of features sufficient for identifying the shapes exposed to the
network, we use the spatial correlation graph like the one shown in Figure 4. At each
level of the hierarchy, the spatial correlations between different minicolumns are ob-
served and the associations that provide redundant information are pruned. For exam-
ple, if minicolumn A is just spatially associated to minicolumn B and minicolumn B
is spatially associated to some other minicolumn a well, then the feature recognized by
minicolumn A is sufficient enough to identify the shape typically recognized by mini-
columns A and B together. Thus, the association from minicolumn B can be pruned.
Finally, if a minicolumn has no associations coming out of it, then that minicolumn can
also be pruned.

To better explain our algorithm, we apply it to the spatial correlation graph shown in
Figure 4. Initially, L0H0M0 is selected. Since there are two edges out of L0H0M0 it is
left as is. Then L0H0M1 is selected. Since there is just one association from L0H0M1,
the association between L0H1M2 and L1H0M2 is declared useless and is pruned.
For L0H0M2, there is again just one edge connecting L0H0M2 to L0H1M1 through
L1H0M3. Thus, the edge from L0H1M1 to L1H0M3 is pruned because L1H0M3 can
recognize Shape 4 just by using the information provided by L0H0M2. The same is
true for L0H1M0. Thus, the edge between L0H0M0 and L1H0M0 is pruned. Note
that in many cases the pruning algorithm has the freedom to choose which redundant
connections to retain, and which to prune. After this no more changes to the network
connectivity take place because all of the remaining edges provide useful information
to recognize each of the unique shapes. The resultant graph after applying the spatial
correlation based algorithm is shown in Figure 5.

In Figure 5, we see that after applying our algorithm, five out of ten edges between
Level 0 and Level 1 are pruned. Furthermore, L0H1M2 has no more feed-forward edges
to the next level of the hierarchy which renders it totally useless. Thus, L0H1M2 can

382 A. Hashmi and M. Lipasti

Fig. 5. Pruned graph obtained after applying the spatial correlation based algorithm on the graph
shown in Figure 4

be pruned. This reduces the amount of computations required as pruning connections
means less number of computations are required to recognize a shape by the mini-
columns at Level 1 as the unnecessary connections are not considered for recognition.

5 Experiments and Results

To test and validate different properties of our cortical architecture and to evaluate its
learning and recognition performance, we used a subset of handwritten digit images
obtained from the MNIST database [17]. For this digit recognition task, we created a
hierarchical network with 6 levels. We initialized this network as described in Table 2.
Level 0 corresponds to the lowest level in the hierarchy. All the digits in the MNIST
database are in the form of 28x28 pixel wide black and white images. Out of the 28
rows, top 2 and bottom 2 rows were always black. Thus, in our experiments, we ignored
these rows to save on execution time. Each of the remaining rows becomes the input to
one of the twenty four Level 0 hypercolumns.

Table 2. Detailed description of the hierarchical network created for recognition of handwritten
digit images

Level Hypercolumns (HC) Minicolumns/HC
5 1 100
4 1 200
3 3 200
2 6 200
1 12 300
0 24 500

5.1 Experiment 1: Independent Feature Recognition

In the first experiment, we validate our feedforward information processing and learn-
ing algorithm. For this experiment, we disable the feedback processing and study how
the network learns independent features from the input patterns. Since there was no

A Cortically Inspired Learning Model 383

feedback, we anticipate that in Level 5 (top most level) of the hierarchy, variations of
same digits will be recognized by different minicolumns. For this experiment, we took
100 handwritten digit images (10 variations of each digit) from the MNIST database
and trained and tested our network with them till it achieved 100% recognition rate. In
steady state, top level hypercolumn contains 89 minicolumns that learned to recognize
various digit patterns present in the input dataset. 11 digit variations are pooled with
some other variation of the same digit due to spatial similarities.

5.2 Experiment 2: Feedback Processing and Invariant Representation

To test how our feedback processing algorithm generates invariant representations, we
use the same hierarchical network mentioned above. For the input dataset, we use the
same 100 digit images (10 variations for each digit) for training as used in Experiment
1 and train the network with these images till the network achieved 100% recognition
rate. At this point, we notice that there were only 10 minicolumns in the top level hy-
percolumn that were firing in response to the digits being exposed to the network. This
means that there is just one minicolumn firing for all the different variations of the same
digit. We also evaluate the resource optimization achieved through feedback processing.
To do that we calculate the number of active minicolumns in the hierarchical network
with and without feedback. In steady state, without feedback the network uses 3876
minicolumns while with feedback it only uses 1283 minicolumns. Thus, our feedback
processing algorithm results in about 3x resource optimization.

5.3 Experiment 3: Robustness to Test Images

In this experiment, we test the robustness of our cortical network to the patterns not
present in the training dataset. For this experiment we again use the same hierarchical
network described above. We use 400 handwritten digits images (40 variations of each
digit) training images and 40 test images (4 variations of each digit). We then train
the network with the images in the training dataset till the network achieves 100%
recognition rate and is in a stable state i.e. all the levels in the hierarchy have generated
invariant representations for all the input digit variations. Figure 6 shows the recognition
rate of the network as the number of images in the training dataset is increased from 10
to 400. For this experiment, recognition rate is defined as the percentage of the images
in the test dataset that were recognized correctly.

In the future we are planning to extend our cortical architecture so that it can run on
NVidia GPUs. This will let us create and test large hypercolumn based networks and
will improve the recognition rates further.

5.4 Experiment 4: Inherent Fault Tolerance

This experiment validates the inherent fault-tolerant property of our cortical network.
For this experiment, we use the same hierarchy as described above and use 200 hand-
written digit images for training. To reduce the execution time for each epoch, we limit
the feedback processing to Level 5 (top-most level) of the hierarchy only. Initially, we

384 A. Hashmi and M. Lipasti

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 40 70 100
 130

 160
 190

 220
 250

 280
 310

 340
 370

 400

R
ec

og
ni

tio
n

R
at

e
(%)

Number of Training Handwritten Images

Fig. 6. Recognition rate of the network for handwritten test digit images as the number of training
images is increased

train the hierarchy with all the 200 images till it achieves 100% recognition rate. At
this point we corrupt 5% of the total number of minicolumns throughout the hierarchy.
This was done by randomly selecting minicolumns and forcing their output to stay 0
permanently. Then we evaluate the recognition rate of the hierarchy with all the 200
training images to determine the amount of loss in recognition. Then we train the dam-
aged hierarchy with the same training images and evaluate the peak recognition rate for
the training images. We repeat this cycle multiple times corrupting 5% of the original
number of minicolumns every time to observe how the hierarchy behaves as we inject
more and more permanent faults. Table 3 shows the behavior of our cortical network in
the presence of permanent faults.

Table 3. Evaluation of the inherent fault tolerance property of our cortical network. Initial Recog-
nition Rate means the recognition rate (percentage) measured immediately after the faults are
injected. Peak Recognition Rate means the maximum recognition rate achieved through training
the damaged network.

Fault Injection
Attempt

Initial Recog-
nition Rate
(%age)

Peak Recog-
nition Rate
(%age)

1 92 100
2 89 100
3 90 100
4 88 100
5 88 94
6 82 82
7 71 71
8 65 65

When Fault Injection Attempt is 5 that means that we have damaged 25% of the
total minicolumns originally present in the hierarchy. For this attempt, after retrain-
ing the damaged hierarchy, it achieves the peak recognition rate of 94%. This is due
to the fact that some of the hypercolumns ran out of the minicolumns that were idle.

A Cortically Inspired Learning Model 385

As a result the features being recognized by the minicolumns that were damaged could
not be relearned. This experiment also shows that as long as there are idle resources
available in the network, it can recover from permanent faults.

5.5 Experiment 5: Determining Set of Sufficient Features

For this experiment, we create a 3 level hierarchical network. Each of the hypercolums
in hierarchy is initialized to have 12 minicolumns. This network is initially expose it
to synthetic digit images from 0 to 9 shown in Figure 7. Each of the rows in the 7x7
digit image is exposed to one of the hypercolumns in Level 0 of the hierarchy. For
example, the highlighted row in Figure 7 is exposed to the first hypercolumn in Level 0.
Similarly, the second row is exposed to the second hypercolumn in Level 0 and so on.
Once the hierarchical network achieves the steady state, ten of the twelve minicolumns
available in the Level 2 hypercolumn fire for a unique digit image. The remaining two
minicolumns keep on thrashing because they do not have any new digit to recognize.

Fig. 7. Input dataset exposed to the hierarchical network to determine the set of sufficient features

Fig. 8. Set of features sufficient enough to recognize each unique shape. The features sufficient
enough to identify a digit are overlaid in black on top of the actual image.

Figure 8 shows the set of features sufficient to recognize each of the ten digits. The
sufficient features are shown in black. For example, to recognize a zero, the only feature
that matters is the horizontal line on top of zero. Similarly, to recognize the one, the
shorter horizontal line on the top is sufficient enough. In the absence of our spatial
correlation based algorithm to determine the set of features sufficient for recognition of
each of the digits, a total of 55 minicolumns are utilized to identify all the ten digits.
With the spatial correlation based algorithm, only 33 minicolumns are required. Thus,
there is an approximate 40% savings in computational resources.

Next, we again create a 3 level hierarchical network and initialize each of the hy-
percolumns to have 40 minicolumns. The input to this hierarchical network consists
of 36 7x7 synthetic images (10 digits + 26 alphabets). To evaluate the increase in the
sufficient set of features and in the number of minicolumns utilized in the presence and
absence of our spatial correlation based algorithm with an increase in the unique shapes
in the dataset, we exposed alphabets from A to Z to the hierarchical network along with
the digits from 0 to 9.

386 A. Hashmi and M. Lipasti

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

N
u
m

b
e
r

o
f
p
ix

e
ls

 s
u
ff
ic

ie
n
t
fo

r
re

c
o
g
n
it
io

n

Number of unique shapes in dataset

Fig. 9. Increase in the number of features
sufficient to recognize all the shapes in the
dataset as the number of unique shapes in the
dataset is increased

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40

N
u
m

b
e
r

o
f
m

in
ic

lu
m

n
s
 u

s
e
d
 f
o
r

re
c
o
g
n
it
io

n

Number of unique shapes in dataset

of minicolumns used with pruning
of minicolumns used without pruning

Fig. 10. Increase in the number of mini-
columns required to recognize all the shapes
in the dataset as the number of unique shapes
in the dataset is increased

The graph in Figure 9 shows the increase in the set of features sufficient for recogni-
tion as the number of unique shapes in the dataset is increased. In this graph, the number
of unique shapes in the dataset are along the x-axis while the number of sufficient fea-
tures identified by the hierarchical network is along the y-axis. A linear increase in the
number of sufficient features identified suggests that each of the new unique shapes
adds contains at least one sufficient feature.

The graph in Figure 10 shows the increase in the number of minicolumns as the
number of unique shapes in the dataset is increased. The solid line shows the number of
minicolumns in all the levels of the hierarchy identified as sufficient by our spatial cor-
relation based algorithm while the dotted line shows the total number of minicolumns
used by the hierarchical network to recognize the same set of shapes if the spatial cor-
relation based algorithm is not used. We see that the number of minicolumns required
when the spatial correlation based algorithm is used is far less than the number of mini-
columns used in the absence of the spatial correlation algorithm. A linear increase in the
solid line in Figure 10 suggests that almost all the unique shapes in the dataset introduce
a feature that is not being used by any other shape.

6 Conclusions

We describe a biological plausible learning model that implements the working of cor-
tical columns as its basic structural and functional abstraction. We demonstrate that
building models based on the properties of cortical columns can be computationally
efficient as well as biologically plausible. Using these models, we can study various
neocortical properties like independent feature identification, feedback, plasticity, in-
variant representation, and resource management. Our results show that such models
are inherently tolerant to permanent faults (either in hardware or in software). Using
our spatial correlation based pruning algorithm, we significantly improve the resource
utilization of our hierarchical hypercolumn networks.

A Cortically Inspired Learning Model 387

References

1. Nicholls, J., Martin, A., Wallace, B., Fuchs, F.: From Neuron To Brain. Sinauer Associates
Ins., 23 Plumtree Road, Sunderland, MA, USA (2001)

2. Hawkins, J., Blakeslee, S.: On Intelligence. Henry Holt & Company, Inc. (2005)
3. Hirsch, J., Martinez, L.: Laminar processing in the visual cortical column. Current Opinion

in Neurobiology 16, 377–384 (2006)
4. Aimone, J., Wiles, J., Gage, F.: Computational influence of adult neurogenesis on memory

encoding. Neuron 61, 187–2002 (2009)
5. Markram, H.: The blue brain project. In: SC 2006: Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing, vol. 53. ACM, New York (2006)
6. DARPA: Systems of neuromorphic adaptive plastic scalable electronics (synapse) (2008),

http://www.darpa.mil/dso/thrusts/bio/biologically/synapse/
7. Clopath, C., Longtin, A., Gerstner, W.: An online hebbian learning rule that performs in-

dependent component analysis. In: Proceedings of Neural Information Processing Systems
(2007)

8. Martinetz, T.: Competitive hebbian learning rule forms perfectly topology preserving maps.
In: International Conference on Artificial Neural Networks, ICANN, pp. 427–434 (1993)

9. Arthur, J., Boahen, K.: Learning in silicon: Timing is everything. In: Proceedings of Ad-
vances in Neural Information Processing Systems. Advances in Neural Information Process-
ing Systems, vol. 18, pp. 75–82 (2006)

10. Carpenter, G., Grossberg, S., Rosen, D.: Art2-a: An adaptive resonance algorithm for rapid
category learning and recognition. Neural Networks 4, 493–504 (1991)

11. Hawkins, J., George, D.: Hierarchical temporal memory (2006),
http://www.numenta.com/numenta_htm_concepts.pdf

12. George, D., Hawkins, J.: A hierarchical bayesian model of invariant pattern recognition in the
visual cortex. In: Proceedings of International Joint Conference on Neural Networks. IEEE
International Joint Conference on Neural Network, vol. 3, pp. 1812–1817 (2005)

13. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural
Comput. 18, 1527–1554 (2006)

14. Mountcastle, V.: An organizing principle for cerebral function: The unit model and the dis-
tributed system. In: Edelman, G., Mountcastle, V. (eds.) The Mindful Brain. MIT Press,
Cambridge (1978)

15. Maw, N., Pomplun, M.: Studying human face recognition with the gaze-contingent window
technique. In: Proceedings of the Twenty-Sixth Annual Meeting of Cognitive Science Soci-
ety, pp. 927–932 (2004)

16. Sigala, N., Logothetis, N.: Visual categorization shapes feature selectivity in the primate
temporal cortex. Nature 415, 318–320 (2002)

17. Lecun, Y., Cortes, C.: The mnist database of handwritten digits (1998),
http://yann.lecun.com/exdb/mnist/

18. Swanson, L.: Mapping the human brain: past, present, and future. Trends in Neuro-
sciences 18, 471–474 (1995)

19. Mountcastle, V.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)
20. Mountcastle, V.: Modality and topographic properties of single neurons of cat’s somatic sen-

sory cortex. Journal of Neurophysiology 20, 408–434 (1957)
21. Hubel, D., Wiesel, T.: Receptive fields, binocular interactions and functional architecture in

cat’s visual cortex. Journal of Physiology 160, 106–154 (1962)

http://www.darpa.mil/dso/thrusts/bio/biologically/synapse/
http://www.numenta.com/numenta_htm_concepts.pdf
http://yann.lecun.com/exdb/mnist/

388 A. Hashmi and M. Lipasti

22. Hubel, D., Wiesel, T.: Receptive fields and functional architecture of monkey striate cortex.
Journal of Physiology 195, 215–243 (1968)

23. Peissig, J., Tarr, M.: Visual object recognition: do we know more now than we did 20 years
ago? Annu. Rev. Psychol. 58, 75–96 (2007)

24. Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S., Itzchak, Y., Malach, R.: A sequence
of object-processing stages revealed by fmri in the human occipital lobe. Hum. Brain Map. 6,
316–328 (1998)

25. Freeman, W.: Random activity at the microscopic neural level in cortex (”noise”) sustains and
is regulated by low-dimensional dynamics of macroscopic activity (”chaos”). International
Journal of Neural Systems 7, 473–480 (1996)

26. Rokni, U., Richardson, A., Bizzi, E., Seung, H.: Motor learning with unstable neural repre-
sentations. Neuron 64, 653–666 (2007)

27. Seung, H.: Learning in spiking neural networks by reinforcement of stochastic synaptic trans-
mission. Neuron 40, 1063–1073 (2003)

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 389–403.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Computational Study of Rhythm Propagation Induced
by TMS Stimuli in Different Brain Regions

Filippo Cona1, Melissa Zavaglia1, Marcello Massimini2,
Mario Rosanova2, and Mauro Ursino1

1 Department of Electronics, Computer Science and Systems, University of Bologna
Via Venezia 52, 47521 Cesena, Italy

{filippo.cona2,melissa.zavaglia@unibo.it,
mauro.ursino}@unibo.it

2 Department of Clinical Science, “Luigi Sacco”, University of Milan
Via Grossi 74, 20157 Milan, Italy

{marcello.massimini,mario.rosanova}@unimi.it

Abstract. Recent data [1] suggest that different regions in the brain may exhibit
distinct rhythms when perturbed by Transcranial Magnetic Stimulation (TMS).
Knowledge of these rhythms may be of value to understand how the brain
realizes its functions and to assess brain connectivity. In this work we
implemented a neural mass model [2] of three interconnected cortical regions
(Brodmann Area (BA) 19 (occipital lobe), BA 7 (parietal lobe) and BA 6
(frontal lobe)) to fit the impulse responses in three ROIs during an experiment
of TMS stimulation on a single subject. First, the natural rhythm of each region
was mimicked acting on the local parameters, which reproduce the number of
synaptic contacts among neural populations. Then, rhythm propagation from
one region to another was simulated (at three different intensities of TMS
stimulation) acting on infra-region connectivity parameters. Results show that
the model can reproduce the natural rhythms of the three regions, and most
rhythm changes induced by stimulation of another region, by using quite a
simple connectivity pattern. This pattern is scarcely affected by the stimulus
intensity.

Keywords: Transcranial magnetic stimulation, Neural mass models, Cortical
rhythms.

1 Introduction

Brain activity normally exhibits several superimposed rhythms, which cover many
frequency bands and may vary depending on the particular task or subjective status. This
phenomenon has been known for many decades, starting from the early
electroencephalographic recordings in the mid twenties [3]; only recently, however, brain
rhythms have received sufficient attention in cognitive neuroscience. A consolidated
point of view, supported by many neurophysiological data, is that these rhythms are nor
simply epiphenomena emerging from the complex non-linear brain dynamics, but rather
they play an important role in many perceptual, motor or cognitive tasks. Researchers

390 F. Cona et al.

found that when activity of two neuron populations is synchronized, their communication
and reciprocal influence is stronger. Rhythmic activity changes have been found to play a
role in memory consolidation and retrieval, in grouping and segment different features of
objects, in allocating attention resources, and in processing perceptual and motor
information [4; 5; 6; 7].

The previous short analysis suggests that rhythms are essential to allow efficient
communication between brain regions involved in the same task. Hence, estimation of
the intrinsic rhythm of regions, and of how these rhythms can be transmitted from one
region to another as a consequence of inter-region connectivity, may be of the greatest
importance to analyze integrative brain functioning during complex motor or
cognitive functions.

A new method to achieve this information is to use the Transcranial Magnetic
Stimulation (TMS) combined with EEG recordings. TMS, indeed, can be used to
elicit changes in the synchronization of the brain oscillatory activities, and thus in the
rhythms power [8; 9]. This technique allows the measurement of cortical reactivity
and effective connectivity [10]. Moreover, TMS has been used to perturb cortical
regions in order to map the different cognitive and motor functions over the brain [11]
and to link these functions to characteristic oscillatory activities [12].

In a recent work, Rosanova et al. [13] observed the oscillation rate in three regions
of interest (ROIs) (occipital, parietal, and frontal cortices) following TMS stimulation
at different intensities in a group of healthy volunteers. Results show that the natural
frequency can be directly measured in virtually any area of the cerebral cortex.
Moreover, these natural rhythms seem to be transmitted, at least in part, from one
region to another.

The results by Rosanova et al. [13], and more generally brain activity evoked by
TMS impulses, are particularly suitable for an analysis with neurocomputational
models. Indeed, computational models aim at clarifying the dynamical aspects of
brain activity, to elucidate possible mechanisms of rhythm generation and rhythm
transmission, and to suggest how brain regions (or specific neuronal populations
within a region) can be involved in a given task. On the other hand, the response to an
impulse stimulus represents the classical challenge to identify the structure of a model
in a straightforward way, and to assign values to its parameters. A single impulse
response, however, allows model identification in case of linear systems only. In case
of strongly non-linear systems (as is certainly the case of neural dynamics) responses
to impulse of different amplitudes should be tested to identify non-linearities and
assess possible non-linear behaviors.

In recent years, we developed a neural mass model to study how rhythms can be
generated within a cortical region and how rhythms can be transmitted from one
region to another thanks to brain connectivity. The model was built starting from
equations proposed by Jansen and Rit [14] and Wendling et al. [15], with inclusion of
a new loop to simulate the role of fast GABA-ergic interneurons in the genesis of
gamma oscillations [16]. With this new loop, the model is able to generate a gamma
rhythm which can co-exist with a slower rhythm (alpha or beta) generated by a
feedback loop between pyramidal neuron and slower inhibitory interneurons.
Furthermore, the model is able to generate rhythms in different frequency bands, and
simulate the transmission of rhythms from one region to another, by simply

 Computational Study of Rhythm Propagation Induced by TMS Stimuli 391

modulating a few parameters which represent short-range connections within a region
and inter-area long-range connectivity [16].

Aim of the present work is to test whether the model can be used to reproduce and
analyze some aspects of the experimental results by Rosanova et al. [13]. In fact,
model predictions (the presence of intrinsic rhythms in individual ROIs and the
possibility to transmit rhythms via a few effective connections among ROIs) agree at
least qualitatively with these experimental data.

Hence, the present study was designed with the following main purposes:

i) To analyze whether the response of individual ROIs to direct TMS stimulation
can be simulated with sufficient accuracy with the model, by modifying just a
few internal parameters of that region. This means that we are looking for
different cortical modules, which share the same basal structure but have
different parameter values, and are able to reproduce different natural rhythms
experimentally observed;

ii) To analyze whether a model of interconnected ROIs can at least approximately
explain how natural rhythms can be transmitted or modified as a consequence of
inter-region connections;

iii) To analyze whether the response to TMS and the estimated parameters vary
significantly as a function of stimulus intensity, in order to emphasize the
possible role of non-linearities.

In this work, we simulated the behavior of Brodmann Area (BA) 19 (occipital lobe), BA
7 (parietal lobe) and BA 6 (frontal lobe) with a network of three interconnected regions.
Parameters are given to reproduce the effect of TMS stimulation at three different
intensities in one representative subject.

2 Methods

In this section we will describe the experimental setup (2.1), the cortical source
reconstruction procedure (2.2), the neural mass model used for a single area (2.3), the
extension for multiple interconnected areas (2.4), the simulation of TMS/EEG experiment
using the model and the fitting procedure (2.5).

2.1 Experimental Data Recording (TMS/EEG)

During the experiment, subjects were lying on an ergonomic chair, relaxed, and with
their eyes open and looking at a fixation point on a screen. A focal bipulse, figure-of-
eight coil with 60mm wing diameter driven by a biphasic stimulator (eXimia TMS
Stimulator; Nexstim) was used to stimulate the subjects’ cortex. Three cortical sites
(middle or superior occipital gyrus, superior parietal gyrus, and middle or caudal
portion of the superior frontal gyrus) were selected based on an atlas of brain regional
anatomy [17], anatomically identified on a T1-weighted individual MRI (resolution 1
mm) acquired with a 1 T Philips scanner and were targeted by means of a Navigated
Brain Stimulation (NBS) system (Nexstim). We recorded high-density EEG using a
TMS-compatible 60-channel amplifier (Nexstim) which gates the TMS artifact and
prevents saturation by means of a proprietary sample-and-hold circuit [18]. The EEG

392 F. Cona et al.

signals, referenced to an additional electrode on the forehead, were filtered (0.1–500
Hz) and sampled at 1450 Hz with 16-bit resolution. Two extra sensors were used to
record the electrooculogram. In most cases, no TMS-induced magnetic artefacts were
detected, and in all cases, the EEG signals were artefact-free starting from 8 ms after
the stimulus. TMS trials containing noise, muscle activity, or eye movements were
automatically detected and rejected. The event related potentials were obtained by
averaging across all the trials of each session (100-200 per session). More technical
details on the procedure can be found in Rosanova et al. [13]. In each subject, we
stimulated every cortical area at eight different TMS intensities (range, 20–160 V/m).
Firstly we defined the EEG-threshold for each subject (on average around 50 V/m),
then we used the three intensities above this threshold (medium, medium/strong and
strong) for the analysis with the model. The TMS-evoked Potentials (TEPs) under the
threshold were not significant with respect to the baseline activity and so they could
not be used to attempt a reliable parameter fitting (see Section 3 Results).

In this work, we focus on a single subject in order to analyze the effect of the
different stimulation intensities. The fitting of the whole data set will be the subject of
a future work.

2.2 Cortical Sources Reconstruction

Source modelling was performed following a multiple step procedure: the free licence
package SPM [19] was used to create the cortical mesh by adapting an average Montreal
Neurological Institute (MNI) cortex to the subject’s MRI data; skull and scalp meshes
were also co-registered with EEG sensors positions into the subject’s MRI space; a 3-
spheres BERG method was obtained to calculate the Lead Field Matrix by using the free
access Brainstorm software package [20]; the inverse solution was calculated on a single
trial basis by applying an empirical Bayesian approach with estimation of covariance
components using Restricted Maximum Likelihood [21]. In order to compute the overall
current evoked by TMS in different cortical areas, cortical sources were attributed to
different Brodmann areas using an automatic tool of anatomical classification [22].
Currents recorded within each area were cumulated in order to produce a new time series.

2.3 Model of a Single Cortical Area

The model of a cortical region consists of four neural populations, which represent
pyramidal neurons, excitatory interneurons, and inhibitory interneurons with slow and fast
synaptic kinetics (GABAA,slow and GABAA,fast respectively). Each population represents a
group of neurons of the same type, which approximately share the same membrane
potential and so can be lumped together. All populations are described with a similar
mathematical formalism. Briefly, each population receives an average postsynaptic
membrane potential (say v) from other neural populations, and converts this membrane
potential into an average density of spikes fired by the neurons. In order to account for the
presence of inhibition (when potential is below a given threshold) and saturation (when
potential is high) this conversion is simulated with a static sigmoidal relationship.
Moreover, each population sends synapses to other populations (or, in case of pyramidal
neurons, to other regions too). Each synaptic kinetics is described with a second order
system, but with different parameter values.

 Computational Study of Rhythm Propagation Induced by TMS Stimuli 393

In the following, a quantity which belongs to a neural population will be denoted
with the subscript p (pyramidal), e (excitatory interneuron), s (slow inhibitory
interneuron) and f (fast inhibitory interneuron). To model a whole cortical region, the
four populations are connected via excitatory and inhibitory synapses, with impulse
response he(t), hs(t) or hf(t), assuming that pyramidal neurons and excitatory
interneurons synapses have similar dynamics. The average numbers of synaptic
contacts among neural populations are represented by eight parameters, Cij (see Fig.
1), where the first subscript represents the target (post-synaptic) population and the
second subscript refers to the pre-synaptic population. These connections agree with
those proposed by Wendling et al. [15] but with the addition of the new self-loop Cff.
The model is displayed in Fig. 1. For more details see Ursino et al. [16].

Fig. 1. Model layout of a single cortical region

2.4 Model of Connectivity among Areas

To simulate cortical connectivity between two regions (the pre-synaptic and post-synaptic
regions will be denoted with the superscript k and h, respectively), we assumed that the
average spike density of pyramidal neurons of the pre-synaptic area affects the target
region via a weight factor, Wj

hk (where j = p or f, depending on whether the synapse
targets pyramidal neurons or GABAA,fast interneurons) and a time delay Dhk. This is

Cpe

Cpf

Cps

vp
+

-

-

Cep

ve

Csp

vs

zp

he(t)
Ge, ωe

zs

+

up(t)/Cpe

+

he(t)
Ge, ωe

ye

yp

hs(t)
Gs, ωs

ze

ys

Cfs

vf
Cfp

Cff

hf(t)
Gf, ωf

+

+

-

-

zf

he(t)
Ge, ωe

uf(t)
yl

yf

394 F. Cona et al.

achieved by modifying the membrane potential of the target region, with the time
dynamics of an excitatory synapse. Long range synapses which target to slow inhibitory
interneurons or to excitatory interneurons have not been considered since they have a
minor role in model dynamics [16].

2.5 Simulation of TMS/EEG Experiment and Parameters Fitting

In order to simulate the TMS/EEG experiment described above, we implemented a model
of connectivity among three cortical regions. These regions wish to simulate the
Brodmann Area (BA) 19 (occipital lobe), BA 7 (parietal lobe) and BA 6 (frontal lobe).

An automatic fitting between simulated EEG and real data has been achieved in the
time domain. In particular, we focused attention on the 200 ms following the TMS
impulse. Experimental time series were compared with membrane potentials of pyramidal
neurons simulated with the model. Since the two quantities have a different scale, all
experimental time series were multiplied by a constant gain to have the same scale as the
simulated signals. It is worth noting that, in the present model, we used the sum of
postsynaptic potentials of pyramidal neurons to calculate the source of the EEG signal.
Although this assumption is usually adopted in neural mass models [14; 15] recent studies
suggest that EEG waves are generated by synaptic currents [23; 24]. We think that the use
of potentials instead of currents may be acceptable in the present study, since we are
especially interested in the frequency content of activity evoked by the TMS pulse.
Moreover, the model works in the linear region of the sigmoidal function, where current
and potential are almost proportional.

In the present work, the fitting procedure has been performed only in a frequency range
above 8 Hz (i.e., theta and delta rhythms have been excluded, since they probably require
a more complex model including thalamic regions, see Section 4 Discussion). As a
consequence, the real TEPs were preprocessed with a high-pass filter (Chebyshev 2nd type
with cutoff frequency ft = 8Hz). Furthermore, oscillations in the experimental signals
occuring in the first 8 ms after the perturbation were also neglected, because they can be
affected by artefacts [13]. After fitting, model and real signals were also compared in the
time frequency domain. To this end, time frequency maps were obtained using the
continuous wavelet transform with Morlet wavelets [25].

The fitting procedure has been subdivided into two steps:

Step 1. In the first step, we fitted the impulse response of a single region when the same
region receives the TMS stimulus (this step was repeated three times, once for each BA).
The effect of the TMS stimulus in the single cortical area was simulated as a step change
(say Δyp) in the membrane potential of pyramidal cells, in accordance with other TMS
implementations in neural models [26]. The estimated parameters were the synaptic
contacts among the neural populations (Cij) and the intensity of the stimulus Δyp. To
reduce the number of variables for the fitting, we used as free variables only those internal
connection strengths (Cps, Cfp, Cpf, Cff, Cfs, see Table 2) that most influenced the frequency
content of the model output, according to our previous study [16], for a total of 6
parameters per ROI. The optimization procedure was a combination of a Genetic
Algorithm (GA) (for a similar application of GA to neural mass models see Cona et al.
[27]) and the simplex method (Matlab’s fminsearch). We used a GA in order to arrive at
an optimal solution, independently of the initial guess [28]. To facilitate the convergence
of the GA we used Dynamic Time Warping (DTW) [29] to compare the simulated TEPs

 Computational Study of Rhythm Propagation Induced by TMS Stimuli 395

with the experimental ones. DTW has been used as a generalization of the Mean Square
Error (MSE) because it is less influenced by time shifts and by limited deformations when
comparing waveforms. The simplex method was applied once every 50 generations of the
GA, in order to explore various local minima, and as the final step of the fitting procedure.

Since activities evoked by TMS at all stimulation intensities above threshold were
quite repeatable in the frequency domain (i.e., TMS evoked similar natural rhythms),
this step was applied only once to the data obtained with the medium stimulation and
the results were thereafter used in the second step for all the three stimulation
intensities. In other words, across the three stimulation intensities, we used the same
internal architecture for the three regions and varied only the inter-region connectivity
and the amplitude of the input.

Table 1. Model parameters that do not change during the optimization

Parameter Value
ωe (rad/s) 75
ωs (rad/s) 30
ωf (rad/s) 75
Ge (mV) 5.17
Gs (mV) 4.45
Gf (mV) 57.1
Cep 5
Cpe 25
Csp 60
e0 (Hz) 2.5
r (mV-1) 0.56

Step 2. In the second step we used the same fitting algorithm (GA and simplex method) to
find a unique cortical connectivity pattern that could describe the experimental TEPs of all
regions both directly and indirectly triggered by TMS (i.e., all 9 signals simultaneously).
This time, the algorithm acted not only on the number of synaptic contacts within each
region, but also on the inter-regional connectivity strengths (directed to pyramidal cells,
Wp, and to GABAA,fast interneurons, Wf, for a total of 12 free parameters) and on their time
delays, Dhk. The delays between any pair of regions were forced to be equal, thus reducing
their number from 6 to 3, resulting in 15 more free parameters (33 parameters in total).
The fixed parameters are found in Table 1 (note that these parameters are equal for all of
the ROIs).

The results from the first step were used here as the starting points for the internal
parameters in order to boost the convergence. The internal parameters and the conduction
delays were forced to be equal for all the stimulation intensities in order to preserve the
regions architecture (see Table 2). In this second step we used MSE as the error function
instead of DTW, which is more computationally expensive, since the initial guess was
sufficiently accurate. To handle the multi-objective optimization with the GA (we had to
find a unique set of parameters for 9 different signals) we followed a particular strategy
that makes use of more than a cost function. More precisely, we ranked every set of
parameters with 9 ‘specific’ cost functions, that rewarded those individuals that best fit
especially one out of the 9 signals, and 1 ‘mixing’ function that rewarded those individuals
that best fit the 9 signals altogether. The probabilities for each individual to enter the

396 F. Cona et al.

mating pool (individuals who will produce children) are equally distributed between the
10 cost functions, so an individual that fits one of the 9 signals very well has nearly the
same probability to reproduce itself as an individual that fits all signals quite well. In this
way the 9 signals are fitted in parallel with the goal of reaching a global minimization. The
output of the GA is the set of parameters given by the individual with the lowest value for
the ‘mixing’ cost function. For the simplex method we used a single cost function which is
the ‘mixing’ cost function of the GA.

Table 2. Model parameters that do not change across the three stimulation intensities

Parameter BA 19 BA 7 BA 6
Cps 54 57 31
Cfp 81 98 137
Cfs 0.1 39 21
Cpf 4.7 10.5 11.5
Cff 16 16 17.8
D19,X (ms) - 1 8.3
D7,X (ms) 1 - 16.6
D6,X (ms) 8.3 16.6 -

3 Results

In this section we will show the general behavior of the three BAs by presenting the data
from the medium stimulation intensity in detail (3.1) and how data change when the
intensity grows or decreases (3.2).

3.1 Parameter Fitting of the Data from the Medium Stimulation Intensity

Real and simulated signals were compared both in time and frequency domains. In
particular, Figs. 2-4 display the time patterns and the time-frequency maps of the
simulated and real signals in response to TMS stimulation on BA 19 (Fig. 2), on BA 7
(Fig. 3) and on BA 6 (Fig. 4). Results show that the model can reproduce the main
experimental patterns of cortical activity quite satisfactorily.

The main result is that each region exhibits a different intrinsic rhythm, and this
rhythm exhibits evident changes as a consequence of the stimulation of another
region. The model can explain both these aspects, ascribing the first to the internal
parameters of the region, and the second to the mutual long-range connections among
regions. Focusing on BA 19, one can observe that this region exhibits an activity
mainly in the alpha range when it is directly stimulated by TMS, although with
components also in the beta and gamma ranges (Fig. 2), while it oscillates in the beta
and in the gamma range respectively when BA 7 (Fig. 3) and BA 6 (Fig. 4) are
stimulated. BA 7 exhibits an activity in beta range when directly stimulated (Fig. 3),
while it oscillates mostly in alpha and gamma range respectively when the BA 19
(Fig. 2) and BA 6 (Fig. 4) are stimulated. BA 6 oscillates mostly in gamma range
when it is stimulated by the TMS (Fig. 4), and it oscillates in beta range and in alpha
range respectively when BA 7 (Fig. 3) and BA 19 (Fig. 2) are stimulated.

The parameters peculiar to this simulation (TMS intensity ad inter-regional
connections) are shown in Table 3.

 Computational Study of Rhythm Propagation Induced by TMS Stimuli 397

Fig. 2. Stimulation of BA 19. Simulated (solid line) and experimental time responses (dashed
line) are shown in the first column The second and third column show the simulated and the
experimental time-frequency maps, respectively.

Fig. 3. Stimulation of BA 7. The panels represent the same quantities as in Figure 2.

0.8 1 1.2
-5

0

5

Potential
BA 19

0.8 1 1.2
-2

0

2
BA 7

po
te

nt
ia

l
(m

V
)

0.8 1 1.2
-1

0

1
BA 6

Simulated
wavelet maps

BA 19

0.8 1 1.2
10

30

50

BA 7
fr

eq
ue

nc
y

(H
z)

0.8 1 1.2
10

30

50

BA 6

time (s)
0.8 1 1.2

10

30

50

Experimental
wavelet maps

BA 19

0.8 1 1.2
10

30

50

BA 7

fr
eq

ue
nc

y
(H

z)

0.8 1 1.2
10

30

50

BA 6

0.8 1 1.2
10

30

50

0

10

20

30

40

50

60

70

0.8 1 1.2
-1

0

1

Potential
BA 19

0.8 1 1.2
-0.5

0

0.5
BA 7

po
te

nt
ia

l
(m

V
)

0.8 1 1.2
-0.5

0

0.5
BA 6

Simulated
wavelet maps

BA 19

0.8 1 1.2
10

30

50

BA 7

fr
eq

ue
nc

y
(H

z)

0.8 1 1.2
10

30

50

BA 6

time (s)
0.8 1 1.2

10

30

50

Experimental
wavelet maps

BA 19

0.8 1 1.2
10

30

50

BA 7

fr
eq

ue
nc

y
(H

z)

0.8 1 1.2
10

30

50

BA 6

0.8 1 1.2
10

30

50

0

5

10

15

20

25

30

398 F. Cona et al.

Table 3. Model parameters peculiar to the fitting of the data from the medium stimulation
intensity

Parameter BA 19 BA 7 BA 6
Δyp 54 57 31
Wp

19,X (ms) - 0 16.5
Wp

7,X (ms) 94.5 - 0
Wp

6,X (ms) 0.57 25.5 -
Wf

19,X (ms) - 81 24.5
Wf

7,X (ms) 75.5 - 11.5
Wf

6,X (ms) 0 0 -

3.2 Generalization to All Stimulation Intensities

The previous results suggest that each region exhibits a different natural frequency when
stimulated with TMS. This intrinsic rhythm can be ascribed to the internal parameters of
the region. Moreover, these rhythms can be propagated from one region to another thanks
to the extrinsic connectivity.

Fig. 4. Stimulation of BA 6. The panels represent the same quantities as in Figure 2.

The next step was to assess the effect of the stimulation intensity of TMS response. To
this end, we fitted the data obtained using two stronger intensities (medium/strong and
strong) as described in section “Methods”.

0.8 1 1.2
-0.5

0

0.5

Potential
BA 19

0.8 1 1.2
-0.5

0

0.5
BA 7

po
te

nt
ia

l
(m

V
)

0.8 1 1.2
-2

0

2
BA 6

Simulated
wavelet maps

BA 19

0.8 1 1.2
10

30

50

BA 7

fr
eq

ue
nc

y
(H

z)

0.8 1 1.2
10

30

50

BA 6

time (s)
0.8 1 1.2

10

30

50

Experimental
wavelet maps

BA 19

0.8 1 1.2
10

30

50

BA 7

fr
eq

ue
nc

y
(H

z)

0.8 1 1.2
10

30

50

BA 6

0.8 1 1.2
10

30

50

0

10

20

30

40

50

60

70

 Computational Study of Rhythm Propagation Induced by TMS Stimuli 399

Fig. 5. Response of BA 6 when it is stimulated with strong (160 V/m), medium (120 V/m) and
weak (60 V/m) stimulation intensities. The dashed lines indicate the instant in which the TMS
impulse is administered.

In the present work we did not fit the data obtained with weaker stimulations. The
reason is that TMS stimulation at low intensity did not evoke significant EEG changes
compared with baseline activity. Fig. 5 shows the TEP in BA 6 when this region is
stimulated with different TMS intensities. One can see that the TEP decreases with
the intensity of the TMS stimulus, but in a non-linear fashion: the response becomes
indistinguishable from baseline activity below a certain threshold.

Fig. 6. Comparison of model parameters obtained from medium (white bars), medium/strong
(gray bars) and strong (black bars) stimulation intensity. The upper panel shows the inputs Δyp
to BA 6, BA 7 and BA 19. The lower panel shows the inter-regional connection strengths.

0.8 1 1.2
-2

0

2
Strong

po
te

nt
ia

l
(m

V
)

0.8 1 1.2
-2

0

2
Medium

time (s)
0.8 1 1.2

-2

0

2
Weak

0 0.05 0.

TMS intensities

Δ yp
19

Δ yp
7

Δ yp
6

0 50 100

Connectivity strengths

Wp
19,7

Wp
19,6

Wp
7,19

Wp
7,6

Wp
6,19

Wp
6,7

Wf
19,7

Wf
19,6

Wf
7,19

Wf
7,6

Wf
6,19

Wf
6,7

400 F. Cona et al.

The results are summarized in Fig. 6. The upper panel shows that the estimate impulse
actually increases with the strength of the TMS stimulation. The lower panel shows that
the inter-region connectivity remains quite stable across the different intensities, i.e. it is
not easy to detect a clear dependence of connectivity on the impulse strength.

4 Discussion

The main objective of the present work was to investigate whether a recent neural
mass model of interconnected regions [16], can explain the patterns of neural rhythms
evoked by TMS, in three different cortical regions (occipital, parietal and frontal).
Results are reliable and underline the following fundamental aspects:

i) The impulsive response evoked in a cortical region via a TMS stimulus can be
fitted quite well acting just on a few parameters internal to the region, which
represent the number of synaptic connections between the neural populations
involved.

ii) Different regions exhibit different natural rhythms when directly stimulated by
TMS (roughly in the alpha band for the BA19, in the beta band for the BA7 and
in the gamma band for the BA6). This result, which was well evident in the
former work by Rosanova et al. [13], is now explained in terms of differences in
the internal connections between the neural populations, without the need to
hypothesize changes in synaptic dynamics (i.e., all synapses which refer to a
given class of neurons have the same dynamics in the model, independently of
the cortical region). This explanation is physiologically reliable, since internal
connections within cortical columns are probably different among different
Brodmann areas. We suggest that these differences are reflected in differences of
the natural rhythms, and these can be evoked by short impulsive perturbations as
those induced by TMS. The relationship between internal connectivity among
neural populations and natural rhythm represents an interesting testable
prediction.

iii) The natural rhythms in a ROI are modified if another region is stimulated. The
present model can simulate these rhythm changes fairly well, ascribing them to
effective connectivity among ROIs. Substantially, the main new result of this
study is that a pattern of connectivity among the ROIs (targeting pyramidal
neurons and/or fast interneurons) can explain how a natural frequency can be
modified and/or a new rhythm can be received following stimulation of another
ROI. In general, the simple connectivity pattern shown in Table 3 can mimic
many of the rhythm changes observed during the experiment in the three regions
(occipital, parietal and frontal). In perspective, this result may have important
implications for neuroscience. On one hand, the way a natural rhythm is
transmitted from one region to another may play an important role in many
perceptive, motor or cognitive brain functions [30; 31; 32]. Furthermore, the
observation of rhythm changes in different brain regions may provide important
clues to assess brain connectivity from high resolution scalp EEG, a problem of
large relevance in contemporary cognitive neuroscience.

 Computational Study of Rhythm Propagation Induced by TMS Stimuli 401

iv) The model can simulate the responses to different intensities (medium, medium-
strong, strong) using a single set of parameters for the internal regions, and
assuming only moderate changes in infra-region connectivity. This signifies that
non-linear behaviors are not fully evident in this range of stimulus intensities. In
particular, we could not find a clear trend of variation in connectivity strength
when passing from one stimulus intensity to another, apart from a progressive
increase in the input (which was an estimated parameter of the fitting algorithm).
Conversely, an abrupt non-linearity is evident when the stimulus intensity falls
below a threshold (see Fig. 5). We did not reproduce this non-linearity since we
set the working point of the model in the central region of the sigmoid activation
function (a choice shared by many other authors which used neural mass models
[33]). Perhaps a best simulation on non linear activation of ROIs may be
achieved in future works assuming a working point in basal condition closer to
the bottom portion of the sigmoid. In this way, a significant activation arises only
when TMS stimulus exceeds a given threshold, thus paralleling experimental
results at low intensity. In this work we have chosen to work at the central point
of the sigmoid assuming that ROIs are naturally active to some extent as a
consequence of normal brain functioning. As discussed below, a threshold
mechanism may also be mimicked including a thalamic module in the model.

v) Parameter estimation seems quite robust, as demonstrated by the moderate
changes in connectivity strength from one trial to the next. In particular, our
results suggest, independently of the stimulus intensity, the existence of a strong
feedback loop between ROI 19 and ROI 7, a significant but less strong loop
between ROI7 and ROI6, and a reentrant connection from ROI6 to ROI19
(although the latter exhibits a greater variability among trials). Finally, it is
observable that connections directed from pyramidal cells toward fast GABA-
ergic interneurons are stronger on the average then those directed toward
pyramidal neurons. We do not think that this result signifies that excitatory
pyramidal-pyramidal connections are unimportant in brain connectivity. Rather,
this result underlines that fast inhibitory interneurons play an essential role in
rhythm transmission, especially at high EEG frequencies (high beta and gamma).
This is probably a consequence of their fast dynamics. A similar conclusion was
achieved, via a sensitivity analysis, in another modeling paper [16].

Although the results attained in the present work are quite satisfactory, the study also
exhibits several limitations, which may become the target of future improvements or
extensions. First, there is no warranty that the parameter values obtained in this study are
unique. Probably, different combinations of parameters do exist which provide similar
results. The problem of the uniqueness of parameter estimates is very complex in all non-
linear fitting procedures. The solution will require the inclusion of additional knowledge,
to constrain parameter estimates (for instance, the use of additional anatomical or
neurophysiological knowledge, and the use of Bayesian estimation techniques).

The experiment was performed on 7 subjects, but in this pilot study we used data
recorded just from one of them. Fitting to all available data will be attempted in future
works. Comparison between the connectivity patterns obtained on different subjects
will be of the greatest value to check the repeatability of the obtained results, and to
understand which connectivity parameters are more subject dependent.

In the present study, we did not consider connections between cortical regions and
the thalamus. Conversely, cortico-thalamic connections are known to play a pivotal

402 F. Cona et al.

role in generating brain oscillations [32] as well as in the transmission of information
among cortical regions. The choice of not including thalamic regions in the model
was motivated by a parsimony reason: we wished to realize a parsimonious model of
a TMS stimulation experiment, with a reduced number of regions and of connectivity
parameters. Consequently, a single ROI in the model can be considered representative
not only of cortical dynamics, but more generally of an entire cortico-thalamic circuit.
Inclusion of an explicit description of the thalamus may represent a possible model
extension. However, we expect that this enlarged model would require more data to
fit individual parameters in both cortical and thalamic regions altogether.

An important role played by a thalamic module may be that of increasing the non
linear behavior in the integrate model, especially for what concerns the mechanisms at
the basis of oscillation genesis and oscillation transmission. In fact, the thalamus
plays a critical role in controlling cortical activity and establishing cortico-cortical
connections: this role is frequently assimilated to that of a “gating mechanism”. For
instance, the different responses observed at low and medium stimulus intensities
might be better explained assuming a positive loop between a ROI and a thalamic
nucleus: the thalamic nucleus would emphasize the stimulus response via a feedback
loop only when intensity overcomes a given threshold. A further important function
of the thalamus is that of inducing low-frequency rhythms (especially in the delta and
theta ranges) superimposed on the natural rhythms of the ROIs. Indeed, in the present
work we neglected these low-frequency oscillations (see for instance the small power
at low frequencies in Fig. 4) and focused attention only on the alpha, beta and gamma
ranges. Low-frequency oscillations may be analyzed in future works after insertion of
one or more a thalamic nuclei in the model. Furthermore, the thalamic neurons exhibit
a further mechanism of activation (named “bursting”) i.e., they fire at high frequency
when the membrane potential is depolarized from a relatively hyperpolarized value.
Some authors assumed that these bursts serve as a ‘‘wake-up call’’ to the cortex to
signal a change in the outside world. This aspect too may become relevant, for
instance to signal a TMS stimulus of sufficient intensity.

References

1. Rosanova, M., Casali, A., Bellina, V., Resta, F., Mariotti, M., Massimini, M.: Natural
Frequencies Of Human Corticothalamic Circuits. J. Neurosci. 29, 7679–7685 (2009)

2. Ursino, M., Cona, F., Zavaglia, M.: The Generation Of Rhythms Within A Cortical
Region: Analysis Of A Neural Mass Model. Neuroimage 52, 1080–1094 (2010)

3. Berger, H.: Über Das Elektrenkephalogramm Des Menschen. Arch. Psychiatr.
Nervenkr. 87, 527–570 (1929)

4. Fries, P., Nikolic, D., Singer, W.: The Gamma Cycle. Trends Neurosci. 30, 309–316 (2007)
5. Jensen, O., Kaiser, J., Lachaux, J.P.: Human Gamma-Frequency Oscillations Associated

With Attention And Memory. Trends Neurosci. 30, 317–324 (2007)
6. Thut, G., Miniussi, C.: New Insights Into Rhythmic Brain Activity From Tms-Eeg Studies.

Trends Cogn. Sci. 13, 182–189 (2009)
7. Wang, X.J.: Neurophysiological And Computational Principles Of Cortical Rhythms In

Cognition. Physiol. Rev. 90, 1195–1268 (2010)
8. Brignani, D., Manganotti, P., Rossini, P.M., Miniussi, C.: Modulation Of Cortical

Oscillatory Activity During Transcranial Magnetic Stimulation. Hum. Brain Mapp. 29,
603–612 (2008)

 Computational Study of Rhythm Propagation Induced by TMS Stimuli 403

9. Fuggetta, G., Pavone, E.F., Fiaschi, A., Manganotti, P.: Acute Modulation Of Cortical
Oscillatory Activities During Short Trains Of High-Frequency Repetitive Transcranial
Magnetic Stimulation Of The Human Motor Cortex: A Combined Eeg And Tms Study.
Hum. Brain Mapp. 29, 1–13 (2008)

10. Miniussi, C., Thut, G.: Combining Tms And Eeg Offers New Prospects In Cognitive
Neuroscience. Brain Topogr. 22, 249–256 (2010)

11. Hallett, M.: Transcranial Magnetic Stimulation: A Primer. Neuron 55, 187–199 (2007)
12. Thut, G., Miniussi, C.: New Insights Into Rhythmic Brain Activity From Tms-Eeg Studies.

Trends Cogn. Sci. 13, 182–189 (2009)
13. Rosanova, M., Casali, A., Bellina, V., Resta, F., Mariotti, M., Massimini, M.: Natural

Frequencies Of Human Corticothalamic Circuits. J. Neurosci. 29, 7679–7685 (2009)
14. Jansen, B.H., Rit, V.G.: Electroencephalogram And Visual Evoked Potential Generation In

A Mathematical Model Of Coupled Cortical Columns. Biol. Cybern. 73, 357–366 (1995)
15. Wendling, F., Bartolomei, F., Bellanger, J.J., Chauvel, P.: Epileptic Fast Activity Can Be

Explained By A Model Of Impaired Gabaergic Dendritic Inhibition. Eur. J. Neurosci. 15,
1499–1508 (2002)

16. Ursino, M., Cona, F., Zavaglia, M.: The Generation Of Rhythms Within A Cortical
Region: Analysis Of A Neural Mass Model. Neuroimage 52, 1080–1094 (2010)

17. Tamraz, J., Comair, Y.: Atlas Of Regional Anatomy Of The Brain Using Mri., Berlin (2000)
18. Virtanen, J., Ruohonen, J., Naatanen, R., Ilmoniemi, R.J.: Instrumentation For The

Measurement Of Electric Brain Responses To Transcranial Magnetic Stimulation. Med.
Biol. Eng Comput. 37, 322–326 (1999)

19. Statistical Parametric Mapping, http://Www.Fil.Ion.Bpmf.Ac.Uk/Spm
20. Brainstorm, http://Neuroimage.Usc.Edu/Brainstorm
21. Friston, K., Henson, R., Phillips, C., Mattout, J.: Bayesian Estimation Of Evoked And

Induced Responses. Hum. Brain Mapp. 27, 722–735 (2006)
22. Advanced Neuroscience Imaging Research Laboratory,

http://Www.Ansir.Wfubmc.Edu
23. Avitan, L., Teicher, M., Abeles, M.: Eeg Generator-A Model Of Potentials In A Volume

Conductor. J. Neurophysiol. 102, 3046–3059 (2009)
24. Nunez, P.L., Srinivasan, R.: Electric Fields Of The Brain: The Neurophysics Of Eeg, 2nd

edn., New York (2006)
25. Tallon-Baudry, C., Bertrand, O., Delpuech, C., Pernier, J.: Stimulus Specificity Of Phase-

Locked And Non-Phase-Locked 40 Hz Visual Responses In Human. J. Neurosci. 16,
4240–4249 (1996)

26. Esser, S.K., Hill, S.L., Tononi, G.: Modeling The Effects Of Transcranial Magnetic
Stimulation On Cortical Circuits. J. Neurophysiol. 94, 622–639 (2005)

27. Cona, F., Zavaglia, M., Astolfi, L., Babiloni, F., Ursino, M.: Changes In Eeg Power
Spectral Density And Cortical Connectivity In Healthy And Tetraplegic Patients During A
Motor Imagery Task. Comput. Intell. Neurosci., 279–515 (2009)

28. Holland, J.: Adaptation In Natural And Articial Systems (1975)
29. Sakoe, H., Chiba, S.: Dynamic Programming Algorithm Optimization For Spoken Word

Recognition. Trans. On Assp. 26, 43–49 (1978)
30. Fries, P., Nikolic, D., Singer, W.: The Gamma Cycle. Trends Neurosci. 30, 309–316 (2007)
31. Kaiser, J., Lutzenberger, W.: Human Gamma-Band Activity: A Window To Cognitive

Processing. Neuroreport 16, 207–211 (2005)
32. Steriade, M.: Grouping Of Brain Rhythms In Corticothalamic Systems. Neuroscience 137,

1087–1106 (2006)
33. David, O., Harrison, L., Friston, K.J.: Modelling Event-Related Responses In The Brain.

Neuroimage 25, 756–770 (2005)

Smart Growing Cells:
Supervising Unsupervised Learning

Hendrik Annuth and Christian-A. Bohn

Wedel University of Applied Sciences, Wedel, Germany
{annuth,bohn}@fh-wedel.de
http://cg.fh-wedel.de

Abstract. In many cases it is reasonable to augment general unsupervised learn-
ing by additional algorithmic structures. Kohonens self-organzing map is a typ-
ical example for such kinds of approaches. Here a 2D mesh is superimposed on
pure unsupervised learning to extract topological relationships from the training
data. In this work, we propose generalizing the idea of application-focused modi-
fication of ideal, unsupervised learning by the development of the smart growing
cells (SGC) based on Fritzke’s growing cells structures (GCS). We substantiate
this idea by presenting an algorithm which solves the well-known problem of
surface reconstruction based on 3D point clouds and which outperforms the most
classical approaches concerning quality and robustness.

Keywords: Neural networks, Unsupervised learning, Self-organization, Grow-
ing cell structures, Surface reconstruction.

1 Introduction

The idea of developing the smart growing cells approach is driven by the need of an
algorithm for robust surface reconstruction from 3D point sample clouds.

The demand for efficient high quality reconstruction algorithms has grown signif-
icantly in the last decade, since the usage of 3D point scans has widely been spread
into new application areas. These include geometric modeling to supplement interac-
tive creation of virtual scenes, registering landscapes for navigation devices, tracking of
persons or objects in virtual reality applications, medicine, or reverse engineering.

3D points, retrieved by laser scanners or stereo cameras, introduce two vital ques-
tions. First, how can one recognize a topology of the originating 2D surfaces just from
independent 3D sample points and without any other information from the sampled
objects? Second, for further processing, how is it possible to project this topological
information on a data structure like a triangle mesh — meeting given constraints con-
cerning mesh quality and size?

Although this issue has intensely been tackled since the early eighties [1] a general
concept that addresses all the problems of surface reconstruction has not been deter-
mined up to now. Noise contained in the sample data, anisotropic point densities, holes
and discontinuities like edges, and finally, handling vast amounts of sampling data are
still a big challenge.

K. Madani et al. (Eds.): Computational Intelligence, SCI 399, pp. 405–420.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

http://cg.fh-wedel.de

406 H. Annuth and C.-A. Bohn

Previous Work. The issue of surface reconstruction is a major field in computer graph-
ics. There are numerous approaches with different algorithmic concepts. In [6] and [12]
an implicit surface is created from point clouds which then is triangulated by the march-
ing cubes approach. [2] and [14] reduce a delaunay tetrahedralization of a point cloud
until the model is carved out. Approaches like [16] or [7] utilize techniques based on
the Bayes’ theorem.

In the area of artificial neural networks a famous work is [13]. They propose the Self
Organizing Map (SOM) which iteratively adapts its internal structure — a 2D mesh —
to the distribution of a set of samples and enables clustering or dimensionality reduction
of the sample data. While a SOM has a fixed topology, the growing cells structures
concept [3,4] allows the network for dynamically fitting its size to the sample data
complexity. SOM and GCS are suitable for processing and representing vector data like
point samples on surfaces. [5] uses a SOM and [18] and [20] a GCS for the purpose of
surface reconstruction. Further improvements are made by [8] where constant Laplacian
smoothing [17] of surfaces is introduced, and in [9] the curvature described by the input
sample distribution is taken to control mesh density. In [11] the GCS reconstruction
process is further enhanced in order to account for more complex topologies. [10] use
several meshes of the same model for a mesh optimization process, and [19] present
a concept for combining common deterministic approaches and the advantages of the
GCS approach.

In the following, we outline the basis of our approach — the growing cells
structures — and then derive our idea of the smart growing cells, which matches the
specific requirements of reconstruction. Afterwards, an analysis is compiled discussing
mesh quality and performance of our approach, and finally, we close with a summary
and a list of future options of this work.

2 Reconstruction with Smart Growing Cells

Classical growing cells approaches for reconstruction tasks are based on using the inter-
nal structure of the network as a triangulation of the object described by a set of surface
sample points. A 2D GCS with 3D cells is trained by 3D sample points. Finally, the
cells lie on the object surface which the 3D points represent. The network structure —
a set of 2D simplices (triangles) — is directly taken as triangulation of the underlying
3D object. The reason for using a GCS for reconstruction are its obvious advantages
compared to deterministic approaches.

– They can robustly handle arbitrary sample set sizes and distributions which is im-
portant in case of billions of unstructured points.

– They are capable of reducing noise and ply discontinuities in the input data.
– They are capable of adaption — it is not required to regard all points of the sample

set on the whole. Incrementally retrieved or stored samples can be used for retrain
without starting the triangulation process from scratch.

– They guarantee to theoretically find the best solution possible. Thus, approximation
accuracy and mesh quality are automatically maximized.

Smart Growing Cells: Supervising Unsupervised Learning 407

Place k reference vectors ci ∈ Rn, i ∈ {0..k − 1} randomly in input space.

repeat

Chose sample sj ∈ Rn randomly from the input set.

Find reference vector cb closest to sj (“best matching” or “winning unit”).

Move cb into the direction of sj according to a certain strength εbm, like cnew
b = cold

b (1−
εbm) + sjεbm.

Decrease εbm.

until εbm ≤ certain threshold ε0.

Fig. 1. The general unsupervised learning rule

Nevertheless, these advantages partly clash with the application of reconstruction. On
the one hand, discontinuities are often desired (for example, in case of edges or very
small structures on object surfaces). On the other hand, smoothing often destroys im-
portant aspects of the model under consideration (for example, if holes are patched, if
separate parts of the underlying objects melt into one object, or if the object has a very
complex, detailed structure). In such cases, GCS tend to generalize which mostly lets
vanish visually important features which the human is sensitized to.

The presented smart growing cells approach accounts for these application-focused
issues and emphasizes that modification of the general learning task in the classical
GCS is suitable for many novel application fields.

2.1 Unsupervised Learning and Growing Cells Structures

General unsupervised learning is very similar to k-means clustering [15] which is
capable of placing k n-dimensional reference vectors in a set of n-dimensional input
samples such that they may be regarded as means of those samples which lie in the n-
dimensional Voronoi volume of the reference vectors. Unsupervised learning is based
on iteratively adapting reference vectors by comparing them to the n-dimensional input
samples set, described with the algorithm in Fig. 1.
Surface reconstruction with pure unsupervised learning would place a set of reference
vectors on the object but does not determine information about the underlying surface
topology, which leads to the Kohonen Self Organizing Map.

The Kohonen self organizing map is based on reference vectors which now are con-
nected through a regular 2D mesh. The general unsupervised learning rule is extended
to account for the direct neighborhood of a best matching unit with the loop from
Fig. 2.

Insertion into the general unsupervised learning algorithm (after moving of cb) in
Fig. 1 leads to the phenomenon that the reference vertices now are moved by account-
ing for the regular 2D mesh topology of the SOM. Training a plane-like sample set
leads to an adaption of the SOM grid to this implicit plane — the sample topology is
recognized and finally represented by the SOM mesh.

408 H. Annuth and C.-A. Bohn

for all cnb ∈ neigborhood of cb do

Move cnb in the direction of sj according to a certain strength εnb, like
cnew
nb = cold

nb(1− εnb) + sjεnb.

Decrease εnb.

end for

Fig. 2. Accounting for the cell topology by introducing the neighborhood of a winning unit in the
general training from Fig. 1

Nevertheless, the mesh size of a SOM is fixed and cannot adjust to the sample struc-
ture complexity. The growing cells structures overcome this drawback.

The Growing cells structures — to a certain degree — may be seen as SOM which
additionally are capable of growing and shrinking according to the problem under con-
sideration which is defined by the sample distribution. This mechanism is based on a so
called resource term contained in every reference vector and which — in the original
approach — is a simple counter. It counts how often a certain reference vector has been
detected being a best matching unit. A big counter value signalizes the requirement for
insertion of new reference vectors.

With a GCS one could train a sample set lying on a certain object surface and the
network structure would fit the object surface at a certain approximation error. The
problem is that in reconstruction tasks sample distributions are often not uniform.
The represented surfaces usually contain discontinuities like sharp edges and holes,
and the objects to be reconstructed are not that simple like a plane or a tetrahedron. The
latter usually are chosen as initial networks and can hardly adapt to complex topolo-
gies, since only objects which are homeomorphic the start object can be represented
satisfactorily.

Thus, general unsupervised learning must evolve to a kind of constrained unsuper-
vised learning which detects and adapts to certain structures which the sample set im-
plicitly contains.

2.2 Smart Growing Cells

Let’s have a “biological view” on a network of neural cells. Here, growing cells would
expose a typical unicellular organism — all cells are identical, they possess the same
abilities.

Now, smart growing cells break this limitation, like it happens in “real world”. Dur-
ing training they change their capabilities according to the tasks they will have to fulfill
and which is implicitly determined by the training input — in case of the SGC, the
underlying sample distribution. This changes the abilities of the general unsupervised
neural network significantly. In contrast to common GCS networks where the cell be-
havior is limited to rules that concern Euclidian distance only, the behavior of an SGC
network can precisely be modelled but without breaking the favorable, iterative, unsu-
pervised characteristics of the GCS training rules.

The SGC basic structure is identical to general GCS, i.e., there are n-dimensional
cells which — from now on — are termed neural vertices connected by links through an

Smart Growing Cells: Supervising Unsupervised Learning 409

repeat

for j = 1 to kdel do
for i = 1 to kins do

Select sample s from point cloud randomly, find closest neural vertex and move
it together with neighbor vertices towards s.

Increase signal counter at s (the resource term mentioned above) and decrease the
signal counters of all other vertices.

end for

Find best performing neural vertex (with highest signal counter value) and add new
vertex at this position (see Fig. 4).

end for

Find worst performing neural vertices, delete them and collapse regarding edges (see
Fig. 4).

until certain limit like approximation error, or number of vertices is reached.

Fig. 3. Classical growing cells structures algorithm

m-dimensional topology. Let n = 3 since neural vertices are directly taken as vertices
of the triangulation mesh and m = 2 since we aim at 2D surfaces to be reconstructed.

The main training loop is outlined in Fig. 3. Here kdel and kins are simple counter
parameters defined below (see section 2.3). Movements of vertices and their neighbors
slightly differ from the classical SOM. Again, there are two parameters for the learning
rates, εbm for the winner and εnb for its neighbors, but these are not decreased during
learning since vertex connections automatically become smaller together with the learn-
ing rates. For drawing the neighboring vertices, a smoothing process like described in
[8] and [17] is applied, which replaces the classical movement, and which makes the
adaption of the topology more robust.

As initial network, usually a tetrahedron or a plane with random vertices is suitable.
Two operations enable the network to grow and shrink — “vertex split” and “edge
collapse”.

The vertex split operation adds three edges, two faces, and a new neural vertex. The
longest edge at the neural vertex with the highest resource term is split and a new vertex
is added in the middle. The signal counter value is equally spread between the two
vertices (see Fig. 4).

Edge collapse removes all neural vertices with resource terms below a certain threshold
rmin together with three edges and two connected faces (see Fig. 4). The determina-
tion of the edge to be removed is driven by connectivity irregularities as proposed in [8].

It follows the adaption of the cell behavior driven by the application needs of surface
reconstruction. It leads to our proposal of lifting cell capabilities above that of general
unsupervised learning described in the following paragraphs.

410 H. Annuth and C.-A. Bohn

Fig. 4. Neural vertex split operation (read from left to right) to increase mesh granularity locally,
and edge collapse (read from right to left) to shrink mesh locally

A) Cell Weeding. Deleting neural vertices which are not part of a sound underlying
mesh structure is the most important new training rule of the SGC approach. It is essen-
tial for giving the network the chance of adapting to any topology despite of its initial
topology (overcoming the homomorphic restriction). Before the edge collapse opera-
tion is applied at a vertex, it will be tested if the vertex is contained in a degenerated
mesh region (definition follows below). If so, an aggressive cut out of the vertex and its
surrounding vertices is started.

It has been shown that degeneration of a part of a mesh serves as perfect indica-
tor for a mesh topology which does not fit the underlying sample structure correctly.
For example, consider a region where sample densities equal zero. Although vertices
are not directly drawn into it by training adjustment, their neighbors may be moved
there through their mesh connections. Due to their resource terms, these vertices will
be deleted by edge collapse operations, but their links remain and mistakenly represent
the existence of some topology. In this case, the structure of the links is degenerated,
i.e., it usually shows a surpassing number of edges with acute-angled1 vertices (see
Fig. 5).

The reason for terming this deletion ”aggressive” are the triggering properties which
are quite easy to match — suspicious neural vertices will be cut out early.

A Criterion for degenerated mesh regions is already proposed in [11] where a large area
of a triangle is taken as sign for a degenerated mesh structure. But it has been shown that
this criterion warns very late. Also, anisotropic sample densities are mistakenly inter-
preted as degenerated mesh regions. Our proposal is a combination of vertex valence2,
triangle quality, and quality of neighboring vertices. If all of the following conditions
hold, deleting of the mesh structure at that vertex is triggered.

1. Vertex valence rises above a certain threshold ndegvalence.
2. Vertex is connected to at least ndegacute acute-angled triangles.
3. Vertex has more than ndegnb neighbors for which conditions (1) or (2) hold.

1 A triangle is termed acute-angled if the ratio of its area and the area which is spanned by a
second equilateral triangle built from the longest edge of the first lies below a certain threshold
εacute.

2 Vertex valence is the number of connected vertices.

Smart Growing Cells: Supervising Unsupervised Learning 411

Fig. 5. Statue’s bottom is not represented by samples. On the right, the acute-angled triangles
expose a degenerated mesh region.

Curing a “spike” Cut out of a “nasty vertex”.

Fig. 6. Two types of unwanted vertices and their extinction

The latter condition says that deletion is only started if at least one or two neighbors have
the same inconsistencies in their local mesh structure. This is reasonable since single
degenerated vertices do not necessarily expose a problem but may arise by accident.

Curing boundaries after weeding is needed, since, after an aggressive extinction of a
neural vertex and its surrounding faces has happened, usually a boundary will be left
which may consist of unfavorable mesh structure elements. Curing finds these structures
along the boundary and patches them discriminating between four cases, described in
the following.

i) The Spike. A boundary vertex with a valence of 2 (see left part of Fig. 6) is termed
a spike. This type of vertex is very unlikely to support a correct reconstruction process
since it will be adjusted to an acute-angled triangle after few iteration steps. A spike
must be deleted completely.

ii) The Nasty Vertex. A nasty vertex is a neural vertex with at least nnastyacute acute-
angled triangles and/or triangles with a valence greater than nnastyval (see Fig. 6). It is
suspected to be part of a degenerated mesh region and is deleted.

iii) The Needle Eye. A needle eye is a neural vertex that is connected to at least two
boundaries (see Fig. 7, on the left). At these locations the mesh does not have a valid
mesh structure. To delete a needle eye, all groups of connected faces are determined —
the group with the most faces survives, all others are deleted.

412 H. Annuth and C.-A. Bohn

Cut out of “needle eye” Curing of a “bridge”

Fig. 7. Two types of unwanted connections between separate topologies

iv) The Bridge. A bridge is very likely to be part of a degenerated mesh region. A mesh
with a hole consisting of three vertices would soon be closed by a coalescing process
(see section 2.2). This is not allowed if exactly one of the edges of this hole would
additionally be connected to a face (which we term a “bridge”, see Fig. 7) since an
invalid edge with three faces would arise. The entire bridge structure is deleted and the
hole will be closed by generating a new face.

B) Coalescing Cells. Like a mesh can be split through deletion of vertices, it must also
be possible to merge two mesh boundaries during training. For that, a coalescing test is
accomplished each time a vertex at a mesh boundary is moved.

The coalescing test determines if two boundaries are likely to be connected to one
coherent area. For that, a sphere is created with the following parameters. Given the
neigboring boundary vertices v1 and v2 of cb, then let c = 1/2(v1 +v2). A boundary
normal nc is calculated as the average of all vectors originating at c and ending at
neighbors of cb, where v1 and v2 are not taken into account. The boundary normal can
be seen as a direction pointing to the opposite side of the boundary. We define a sphere
with the center at c+ ncr with radius r as the average length of the edges at cb.

The coalescing condition at two boundaries hold, i.e., merging of the boundaries
containing cb and q on the opposite side happens, if

– q is contained in the defined sphere, and
– scalar product of the boundary normals at cb and q is negative.

The Coalescing process is required since after detecting the neural vertex q to be con-
nected with cb, the according faces must be created starting with one edge from cb to
q. There are two cases which have to be considered.

i) Corner. A corner of the same boundary arises when cb an q have one neighboring
vertex in common (see Fig. 8). A triangle of the three participating vertices is created.

ii) Long side. Here, two boundaries appear to be separated. After determining the new
edge, there are four possibilities for insertion of a new face containing the edge (see
second picture in Fig. 9). The triangle with edge lengths which vary fewest is taken in
our approach (see third picture in Fig. 9) since it is the triangle with the best features
concerning triangle quality. Finally, to avoid a needle eye, a further triangle must be
added — again, the face with the greatest edge similarity is taken (see fourth picture in
Fig. 9).

Smart Growing Cells: Supervising Unsupervised Learning 413

Fig. 8. Coalescing process at a mesh corner. On the left, the search process of a coalescing candi-
date. In the middle, one edge is created, on the right, the only face capable of being added is the
corner face.

Fig. 9. Coalescing of two separate boundaries. In the second picture, the edge is determined, in the
third, the triangle with smallest variance of edge lengths is added, in the fourth, another triangle
must be added to avoid a needle eye.

C) Roughness Adaption. Up to now, the SGC are able to approximate an arbitrary
sample set by a 2D mesh. What remains is an efficient local adaption of the mesh density
in a way that areas with a strong curvature are modeled by a finer mesh resolution (see
Fig. 10). This also relieves the influence of the sample density on the mesh granularity
making the SGC less vulnerable to sampling artefacts like holes or regions which are
not sampled with a uniform distribution.

Each time a vertex is adapted by a new sample the estimated normal nk at a neural
vertex vk is calculated by the average of the normals at the surrounding faces. The
curvature ck ∈ R at a vertex is determined by

ck = 1− 1

|Nk|
∑

∀n∈Nk

nk · n (1)

with the set Nk containing the normals of the neighboring neural vertices of vk . Each
time a neural vertex is selected as winner, its curvature value is calculated and a global
curvature value c is adjusted. Finally, the curvature dependent resource term rk at vk is
adapted through rnewk = roldk +Δrk, and

Δrk =

{
1, if (ck < c+ σrk)
[ck/(c+ σrk)] (1− rmin) + rmin else,

(2)

with the deviation σrk of the resource term rk, and a constant resource rmin that guar-
antees that the mesh does not completely vanish at plane regions with a very small
curvature.

D) Discontinuity Cells. A sampled model that exposes discontinuities like edges is
difficult to be approximated by the neural network mesh. Discontinuities are smoothed

414 H. Annuth and C.-A. Bohn

Fig. 10. Roughness adaption correlates surface curvature with mesh density, details of the model
are accentuated

out since the network tries to create a surface over them. This might be acceptable in
many application areas since the approximation error is fairly small, but this effect is
unfavorable in computer graphics since it is clearly visible. And even worse: edges are
quite common in real world scenarios.

Therefore, we propose discontinuity neural vertices which, first, are only capable of
moving in the direction of an object edge to represent them more properly, and second,
the smoothing process is not applied to them.

Recognizing those vertices is accomplished as follows. The curvature values of those
neighbors which have a distance of two connections from the vertex (the “second ring”
of neighbors) are determined. Then the average δring of the squared differences of
consecutive curvature values on the ring is calculated.

If a curvature value clearly deviates from the average curvature value, it is assumed
being a discontinuity vertex if the average of the neighbors’ (second ring) curvature
gradient differs to a certain amount. Thus, a vertex vk is defined a discontinuity vertex
if

(ck > 2σck) ∧ (∀c ∈ Ck : δring > 4σ2
ck) (3)

with Ck the set of curvature values of the second ring of neighbors.
For approximating the edge normal the average of the normals of two of the neigh-

boring vertices of vk are taken, either those with the highest curvature value, or those
which are already marked as discontinuity vertex. Finally, the normal is mirrored if the
edge angle lies above 180◦ indicated by the average of the surrounding vertex normals;
in the first case it points in the direction of vk.

An Edge swap operation is applied if two connected discontinuity vertices grow into
an edge, they nicely represent this edge by a triangle edge. But if the line is interrupted
by a non-discontinuity vertex, a dent arises since this vertex is not placed on the edge.
In this case an edge swap process is proposed which minimizes this effect.

Smart Growing Cells: Supervising Unsupervised Learning 415

Fig. 11. A dent (left picture) on a sharp edge is solved (right picture) by an edge swap operation.
Finally, connections of discontinuity vertices model object edges.

Fig. 12. Discontinuity vertices focus on edges. Edge swap operations let mesh edges map to object
edges.

Each time a discontinuity vertex is moved towards a sample, the need for an edge
swap operation will be determined by collecting the three consecutive faces with the
most differing face normals. In case of a dent, the face in the middle is assumed to be
the one which is misplaced and an edge swap operation is applied (see Fig. 11). Then,
if the difference of the normals is now lower than before, edge swap is accepted, if not,
the former structure is held.

Edge swap results in models where finally edges are represented by mesh boundaries
(see Fig. 12).

Fig. 13. Mesh boundary due to the missing bottom of the statue is represented exactly by bound-
ary cells

416 H. Annuth and C.-A. Bohn

E) Boundary Cells. Similar to discontinuity vertices which are capable of moving to
object edges, boundary vertices are able to move to the outer border of a surface (see
Fig. 13). They are recognized by being part of a triangle edge which is connected to one
face only.

Then, these vertices are moved only into the direction of the boundary normal like
described in section 2.2 for avoiding vertices just lying in the average of the surrounding
samples but directly match the surface boundaries at their locations.

Adjust samples regarding roughness.

Calculate average curvature and deviations.

Recognize and sign discontinuity and curvature cells.

for all Boundary cells do
if ∃ coalescing candidate then

Melt boundary.
for all Weeding candidates do

Weeding process.
end for

end if
end for

if Edge collapse operation triggered then
Collapse edge.
for all Weeding candidates do

Weeding process
end for

end if

if Vertex split operation triggered then
Split vertex.

end if

Fig. 14. Outline of the complete SGC algorithm

Samples 36K 438K 544K 14,028K 5,000K 511K 38K 346K
Vertices 30K 100K 260K 320K 500K 10K 5K 346K

Time [m:s] 0:39 2:47 9:15 12:17 21:5 0:11 0:6 0:6
Quality 95.6 95.5 93.1 98.5 95.9 99.8 99 98.3

RMS/Size 4.7e-5 3.3e-5 1.7e-5 1.3e-5 2.7e-5 6.6e-5 15e-5 0.7e-5

Fig. 15. Results with sample sets from the Stanford 3D Scanning Repository. “Quality” means
percentage of triangles which hold the Delaunay criterion. RMS/Size is the root of the squared
distances between original point samples and the triangle mesh, divided by the diameter of the
sample set.

Smart Growing Cells: Supervising Unsupervised Learning 417

Fig. 16. Upper lines: mesh training stages with number of vertices, lower lines, assorted pictures
of reconstructed models.

418 H. Annuth and C.-A. Bohn

2.3 Results

For the full algorithm of this approach see the pseudocode in Fig. 14. To keep it com-
prehensive, the outermost loop of the algorithm is neglected, and vertex split and edge
collapse operations are triggered by counters.

Parameters which have been proven to be reliable for almost all sample sets we took
for reconstruction are εbm = 0.1, εnb = 0.08, rmin = 0.3, εacute = 0.5, ndegacute = 4,
kins = 100, kdel = 5, ndegnb = 1, nnastyacute = 4, nnastyval = 3.

The following results have been produced on a Dell R©Precision M6400 Notebook
with Intel R©Core 2 Extreme Quad Core QX9300 (2.53GHz, 1066MHz, 12MB) proces-
sor with 8GB 1066 MHz DDR3 Dual Channel RAM. The algorithm is not parallelized.

Visual results are exposed in Fig. 16. All pictures are drawn from an SGC mesh.
Most models stem from the Stanford 3D Scanning Repository. Besides visual results,
reconstruction with SGC comes up with impressive numbers compared to classical ap-
proaches, which are listed in the table in Fig. 15. It can be seen that mesh quality, i.e.
the percentage of perfect triangles in the mesh lies at 96% at average. This is an out-
standing but expected result, when using an approach from the field of unsupervised
learning, since this guarantees an ideal representation of the underlying training sample
distribution.

Further, the distance (RMS/object size) between samples and mesh surface is neg-
ligible low — far below 1% of the object size at average. This is even more pleasant,
since usually the problem at edges generate big error terms. Also the computing times
needed are very short, just few minutes in common cases.

All those measurements are far better than those from classical approaches, in so far
as these are revealed in the specific papers. Our algorithm works very robustly. There
are nearly no outliers visible in the mesh.

3 Conclusions

We presented smart growing cells as an expansion of general unsupervised learning.
The novel core skill of a smart growing cell is the added intelligence — cells may
not only adapt to the sample distribution but can also use application-focused aspects
of the data they operate on. This extension is consistently injected into the standard
unsupervised learning rule avoiding the extinction of its beneficial properties.

As a proof of concept a surface reconstruction algorithm was presented that over-
comes the well-known problems of approaches that use the standard growing cells
structures concept. Features like creases and corners are preserved, the triangle den-
sity relates to the curvature and arbitrary topologies are reconstructed. Our approach
even outperforms classical surface reconstruction approaches.

For evaluation purposes, several sample sets were used which provide different re-
construction challenges (see table in Fig. 15). The average deviation of the mesh from
the sample points is 2 · 10−3 % compared to the diameter of the object under consider-
ation, and about 96% of the triangles fulfil the Delaunay criterion for triangle quality.

Smart Growing Cells: Supervising Unsupervised Learning 419

A further important feature of SGC is their robustness. The network is able to handle
arbitrary topologies and billions of samples easily. It recognizes and solves disconti-
nuities in the sample data and it is capable of adapting to varying sample distributions
without the need for training from the scratch.

The network is able to match arbitrary surface structures like single objects, land-
scapes, or even separate objects with very complex topologies. The final triangulation
is directly taken from the network structure. No additional triangulation or cleaning
processes are required.

Future Work. We propose three directions for ongoing work on SGC. First, currently,
the additional intelligence of a cell is purely defined on heuristics. A great improvement
would be to use a separate neural network which detects and realizes cell behavior au-
tomatically. Second, in the area of surface reconstruction smart growing cells produced
great results which is a proof of concept. To establish the flexibility of smart growing
cells new applications cases will be realized. Third, the movement of a cell is indepen-
dent from other cells. This offers great opportunities concerning the parallelisation of
the presented approach. With a decent speed up real time application should be in reach.

References

1. Boissonnat, J.-D.: Geometric structures for three-dimensional shape representation. ACM
Trans. Graph. 3(4), 266–286 (1984)

2. Edelsbrunner, H., Mcke, E.P.: Three-dimensional alpha shapes (1994)
3. Fritzke, B.: Growing cell structures - a self-organizing network for unsupervised and super-

vised learning. Neural Networks 7, 1441–1460 (1993)
4. Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S.,

Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632.
MIT Press, Cambridge (1995)

5. Hoffmann, M., Vrady, L.: Free-form surfaces for scattered data by neural networks. Journal
for Geometry and Graphics 2, 1–6 (1998)

6. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J.A., Stuetzle, W.: Surface reconstruction
from unorganized points. In: Thomas, J.J. (ed.) SIGGRAPH, pp. 71–78. ACM (1992)

7. Huang, Q.-X., Adams, B., Wand, M.: Bayesian surface reconstruction via iterative scan align-
ment to an optimized prototype. In: SGP 2007: Proceedings of the fifth Eurographics Sympo-
sium on Geometry Processing, pp. 213–223. Aire-la-Ville, Switzerland (2007); Eurographics
Association

8. Ivrissimtzis, I.P., Jeong, W.-K., Seidel, H.-P.: Using growing cell structures for surface re-
construction. In: SMI 2003: Proceedings of the Shape Modeling International 2003, p. 78.
IEEE Computer Society, Washington (2003)

9. Ivrissimtzis, I., Jeong, W.-K., Seidel, H.-P.: Neural meshes: Statistical learning methods in
surface reconstruction. Technical Report MPI-I-2003-4-007, Max-Planck-Institut fr Infor-
matik, Saarbrücken (April 2003)

10. Ivrissimtzis, I., Lee, Y., Lee, S., Jeong, W.-K., Seidel, H.-P.: Neural mesh ensembles. In:
3DPVT 2004: Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd
International Symposium, pp. 308–315. IEEE Computer Society, Washington (2004)

11. Ivrissimtzis, I.P., Jeong, W.-K., Lee, S., Lee, Y., Seidel, H.-P.: Neural meshes: surface recon-
struction with a learning algorithm. Research Report MPI-I-2004-4-005. Max-Planck-Institut
für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany (October 2004)

420 H. Annuth and C.-A. Bohn

12. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the
Fourth Eurographics Symposium on Geometry Processing, SGP 2006, pp. 61–70. Aire-la-
Ville, Switzerland (2006); Eurographics Association

13. Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps. Biological
Cybernetics 43, 59–69 (1982)

14. Kolluri, R., Shewchuk, J.R., O’Brien, J.F.: Spectral surface reconstruction from noisy point
clouds. In: SGP 2004: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium
on Geometry Processing, pp. 11–21. ACM, New York (2004)

15. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations,
pp. 281–297 (1967)

16. Storvik, G.: Bayesian surface reconstruction from noisy images. In: Interface 1996 (1996)
17. Taubin, G.: A signal processing approach to fair surface design. In: SIGGRAPH, pp. 351–

358 (1995)
18. Vrady, L., Hoffmann, M., Kovcs, E.: Improved free-form modelling of scattered data by

dynamic neural networks. Journal for Geometry and Graphics 3, 177–183 (1999)
19. Yoon, M., Lee, Y., Lee, S., Ivrissimtzis, I., Seidel, H.-P.: Surface and normal ensembles for

surface reconstruction. Comput. Aided. Des. 39(5), 408–420 (2007)
20. Yu, Y.: Surface reconstruction from unorganized points using self-organizing neural net-

works. In: IEEE Visualization 1999, Conference Proceedings, pp. 61–64 (1999)

Author Index

Alba, Enrique 21
Al-Duwaish, Hussain N. 331
Alexandre, Frédéric 317
Alonso, César L. 49
Annuth, Hendrik 405

Behle, Christoph 345
Bernardino, Anabela Moreira 81
Bernardino, Eugénia Moreira 81
Bezdek, James C. 3
Bohn, Christian-A. 405
Boley, Harold 167
Borges, Cruz Enrique 49
Bye, Robin T. 131

Cadenas, J.M. 151
Casanova, Isidoro J. 183
Castro-Company, Francisco 261
Collier, Robert 99
Cona, Filippo 389

De, Arijit 197
Diaz, Elizaebeth 197
Du, Weichang 167

Echeandı́a, Marina de la Cruz 49

Fernandes, Carlos M. 115
Fidanova, Stefka 21
Frijns, Arjan J.H. 307

Garrido, M.C. 151
Gómez-Pulido, Juan Antonio 81
Guller, Dušan 211

Hashmi, Atif 373
Havens, Timothy C. 3

Henneges, Carsten 345
Hilderman, Robert 31

Kawashima, Masato 287
Kingma, Boris R.M. 307
Kroha, Petr 247
Kůrková, Věra 361

Lauschke, Marcus 247
Li, Yongtao 287
Lichtenbelt, Wouter D. van Marken 307
Lipasti, Mikko 373
Lopez-Garcia, P. 229

Marinov, Pencho 21
Martı́nez, R. 151
Massimini, Marcello 389
Matsumoto, Mitsuharu 277
Merelo, Juan Julián 115
Miyahara, Naoya 287
Montaña, José Luis 49
Morlino, Giuseppe 67
Muñoz-Hernández, S. 229

Nabeta, Kei-ichiro 287
Nara, Shigetoshi 287
Nicolai, Garrett 31

Palaniswami, Marimuthu 3
Puente, Alfonso Ortega de la 49

Rizvi, Syed Z. 331
Romaguera, Salvador 261
Rosa, Agostinho C. 115

422 Author Index

Rosanova, Mario 389
Rougier, Nicolas 317

Sánchez-Pérez, Juan Manuel 81
Saris, Wim H. 307

Takamura, Yuta 287
Taouali, Wahiba 317
Tirado, Pedro 261
Trianni, Vito 67
Tuci, Elio 67

Ursino, Mauro 389

van Steenhoven, Anton A. 307
Vega, T. Trigo de la 229
Vega-Rodrı́guez, Miguel Angel 81

Wineberg, Mark 99

Yamaguchi, Hitoshi 287
Yoshinaka, Ryosuke 287

Zavaglia, Melissa 389
Zell, Andreas 345
Zhao, Jidi 167

	Title Page
	Preface
	Conference Committee
	Contents
	Invited Paper
	Incremental Kernel Fuzzy c-Means
	Introduction
	The Clustering Problem
	FCM
	Related Work on FCM for VL Data
	KFCM
	Weighted KFCM

	Incremental Algorithms
	rseKFCM
	spKFCM
	oKFCM

	Experiments
	Evaluation Criteria

	Discussion and Conclusions
	References

	Part I: Evolutionary Computation
	Ant Algorithm for Optimal Sensor Deployment
	Introduction
	Problem Formulation
	Ant Colony Optimization Framework
	Related Work
	Experimental Results
	Conclusions
	References

	Countering Evolutionary Forgetting in No-Limit Texas Hold’em Poker Agents
	Introduction
	Rules of No-Limit Texas Hold’em
	Related Work
	Limit Texas Hold’em Poker
	No-Limit Texas Hold’em Poker
	Games and Evolutionary Neural Networks

	Methodology
	Input to the Neural Network
	The Hidden Layer
	The Output Vector
	Evolution
	Alternate Fitness Functions
	Evolutionary Forgetting
	Halls of Fame
	Co-evolution
	Duplicate Tables

	Experimental Results
	Evolutionary Progress
	Conclusions
	References

	Model Regularization in Coevolutionary Architectures Evolving Straight Line Code
	Introduction
	GP with Straight Line Programs
	SLP-Crossover
	Mutation
	Fitness Functions

	The EA to Adjust the Constants
	Crossover
	Mutation

	The Coevolutionary Architecture
	Experimentation
	Experimental Settings
	Experimental Results

	Conclusions
	References

	Evolution of Collective Perception in a Group of Autonomous Robots
	Introduction
	Experimental Setup
	The Robots and the Environment
	The Controller and the Evolutionary Algorithm
	The Fitness Function

	Results
	Analysis of the Excitatory Strategy
	Analysis of the Inhibitory Strategy

	Discussions and Conclusions
	References

	Solving SONET Problems Using a Hybrid Scatter Search Algorithm
	Introduction
	Problems Definition
	Weighted Ring Edge-Loading Problem
	SONET Ring Assignment Problem
	Intraring Synchronous Optical Network Design Problem

	Related Literature
	Hybrid Scatter Search Algorithm
	Initialisation Parameters
	Generation of Solutions
	Evaluation of Solutions
	Generation of Reference Set
	Subset Selection
	Combination Method
	Improvement Method
	Reference Set Update
	Regeneration of Reference Set
	Diversification Mechanism
	Termination Criterion

	Benchmark Instances
	Results
	WRELP
	SRAP and IDP

	Conclusions
	References

	Investigating a Measure of the Recombinational Distance Traversed by the Genetic Algorithm
	Introduction
	Genetic Operators
	Distance Measurement
	Recombinational Distances

	Recombination Arity
	Unary Recombination Definition
	Digraph Representation

	Possible Offspring
	Fixed Parent General Case
	Digraph Representation Properties

	Complexity Impressions and Analyses
	Actual Complexity Analysis

	Discussion
	Recent Advances
	Conclusions
	References

	Enhancing the Adaptive Dissortative Mating Genetic Algorithm in Fast Non-stationary Fitness Functions
	Introduction
	Background Review
	ADMGA and Replacement Strategies
	ADMGA
	Replacement Strategies

	Experimental Setup
	Functions
	Problem Generator and Methodology

	Results and Discussion
	Conclusions
	References

	A Receding Horizon Genetic Algorithm for Dynamic Resource Allocation: A Case Study on Optimal Positioning of Tugs
	Introduction
	The Tug Positioning Problem
	Problem Formulation

	Method
	The Genetic Algorithm
	Receding Horizon Control
	Simulation Study

	Results
	Simulation Example
	Main Study
	Conclusions

	Discussion
	Evaluation of Performance
	Choice of Cost Function
	Optimisation
	Real-Time Requirements
	Other Simulation Scenarios
	Other Applications
	Concluding Remarks

	References

	Part II: Fuzzy Computation
	Generating Optimized Fuzzy Partitions to Classification and Considerations to Management Imprecise Data
	Introduction
	Discretization Methods
	OFPCLASS: An Algorithm to Generate Optimized Fuzzy Partitions to Classificatio
	Nomenclature and Basic Expressions
	A Fuzzy Decision Tree
	First Stage: Looking for Crisp Intervals
	Second Stage: Constructing and Optimizing Fuzzy Partitions

	Extending OFP CLASS to Incorporate Interval Values
	Experiments
	Conclusions
	References

	A Fuzzy Logic Based Approach to Expressing and Reasoning with Uncertain Knowledge on the Semantic Web
	Introduction
	The Fuzzy DL fZSI
	Reasoning Algorithm for Building a Fuzzy Tableau of fZSI
	Conclusions
	References

	Portfolio Investment Decision Support System Based on a Fuzzy Inference System
	Introduction
	Literature Review
	Investment Portfolio
	Artificial Intelligence and Investment Portfolio
	Fuzzy Inference Systems

	Research Framework
	Intelligent System for Tactical Asset Allocation
	Stock Picking Based on a Fuzzy Inference System

	Experiments and Results
	Conclusions
	References

	Fuzzy Analytical Network Models for Metasearch
	Introduction
	Previous Work
	Borda-Fuse and Weighted Borda-Fuse Models
	OWA Model for Metasearch
	Shortcomings of the OWA Model

	Proposed Model
	Analytical Network Process
	Linguistic Quantifiers
	The Fuzzy ANP Model
	Weighted Fuzzy ANP

	Experiments and Results
	Experiments
	Results

	Conclusions
	References

	On the Satisfiability and Validity Problems in the Propositional G¨odel Logic
	Introduction
	Propositional G¨odel Logic
	Translation to Clausal Form
	$DPLL$ Procedure
	Tautology Checking
	Conclusions
	References

	A Fuzzy Approach to Resource Aware Automatic Parallelization
	Introduction
	The Granularity Control Problem
	The Conservative Approach
	The Fuzzy Approach
	Decision Making

	Experimental Assessment
	Prototype Implementation
	Heuristic Comparison
	Selected Fuzzy Condition
	Decisions Progression
	Experiments with Real Programs

	Conclusions
	References

	Fuzzy and Fractal Technology in Market Analysis
	Introduction
	Related Work
	The System Developed
	Technical Indicators Component
	Fuzzy Component
	Technical Indicators as Input for the Fuzzy Component
	Convergence Module - More Input Parameters
	Fuzzyfication, Fuzzy Processing, and Defuzzyfication

	Fractal Analysis Component
	Synthesis of Component Results
	Decision Strategies

	Goals of Our Investigation
	Implementation, Experiments, and Results
	Non-gaussian Distribution Used in the Fuzzy Component Contribution
	Technical Indicators Component and Its Contribution
	Fractal Component and Its Contribution
	Synthesis of Components and Their Contributions
	Comparison with the Strategy Buy and Hold

	Conclusions
	References

	The Banach Contraction Principle in Fuzzy Quasi-metric Spaces and in Product Complexity Spaces: Two Approaches to Study the Cost of Algorithms with a Finite System of Recurrence Equations
	Introduction
	Fuzzy Approach to the Algorithms Cost Analysis
	Background
	The Banach Fixed Point Theorem on Fuzzy Quasi-metric Spaces Applied to Algorithms Cost Analysis

	Complexity Spaces Approach to the Algorithms Cost Analysis
	Background
	The Banach Fixed Point Theorem on Product Complexity Spaces Applied to Algorithms Cost Analysis

	References

	Part III: Neural Computation
	SVM-Based Object Detection Using Self-quotient ε-Filter and Histograms of Oriented Gradients
	Introduction
	Proposed Algorithm
	Experiments
	Experiments on Human Detection
	Experiments on Car Detection

	Conclusions
	References

	Adaptive Control of Robot Systems with Simple Rules Using Chaotic Dynamics in Quasi-layered Recurrent Neural Networks
	Introduction
	Main Algorithm of Control System Using Chaos
	Context Setting of Solving Mazes

	Neural Chaos Simulator
	Recurrent Neural Network Model
	Quasi-layered Recurrent Neural Network Model
	Quasi-layered Recurrent Neural Network Model Consisting of Sensory- ,Inter-, and Motor-Neurons

	Designing Attractors for Control
	Motion Functions
	Attractors for ControlMechanisms

	Control Algorithms in Roving Robot
	Experiments with Hardware Implementations
	Developing Hardware Implementations and Pseudo-neuron Devices
	Roving Humanoid Robot and Arm Robot Driven by Chaos
	A Pseudo-neuron Device and Diffusively Coupled Network

	Experiments Using Quasi-layered Recurrent Neural Network with Sensory-, Inter-, and Motor-Neurons
	Concluding Remarks
	References

	Mathematical Modeling of Human Thermoregulation: A Neurophysiological Approach to Vasoconstriction
	Introduction
	Methods
	Physiology of Vasoconstriction
	Modeling of Vasoconstriction
	Validation
	Experimental Setup
	Data Handling

	Results
	Discussion
	Limitations

	Conclusions
	References

	Visual Target Selection Emerges from a Bio-inspired Network Topology
	Introduction
	At the Functional Level
	At the Physiological Level
	At the Operational Level

	Model
	Model Architecture
	CorticalMagnification
	Dynamic Neural Field Theory

	Results
	Output Decoding
	Target Selection from Exogenous Information
	Natural Images Processing

	Discussion
	References

	Use of Swarm Intelligence for the Identification of a Class of Nonlinear Dynamical Systems
	Introduction
	Identification Scheme
	Learning Algorithm
	Simulation Results
	Example 1
	Example 2

	Further Enhancement to the Learning Algorithm
	Conclusions
	References

	Practical Graph Isomorphism for Graphlet Data Mining in Protein Structures
	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	References

	Learning from Data as an Optimization and Inverse Problem
	Introduction
	Properties of Empirical Error
	Minimization of Empirical Error as an Inverse Problem
	Minimization of Empirical Error over RKHSs
	Minimization of Empirical Error over Spaces of Continuous Functions
	References

	A Cortically Inspired Learning Model
	Introduction
	Cortical Structures, Organization, and Processing
	Cortical Model Description
	Hypercolumn Abstraction
	Unsupervised Feedforward Processing and Independent Feature Learning
	Hierarchical Arrangement of Hypercolumns
	Supervised Feedback Processing and Invariant Representations
	Learning Spatial Correlations from Past Experiences

	Determining the Set of Features Sufficient for Recognition of Unique Shapes
	Experiments and Results
	Experiment 1: Independent Feature Recognition
	Experiment 2: Feedback Processing and Invariant Representation
	Experiment 3: Robustness to Test Images
	Experiment 4: Inherent Fault Tolerance
	Experiment 5: Determining Set of Sufficient Features

	Conclusions
	References

	Computational Study of Rhythm Propagation Induced by TMS Stimuli in Different Brain Regions
	Introduction
	Methods
	Experimental Data Recording (TMS/EEG)
	Cortical Sources Reconstruction
	Model of a Single Cortical Area
	Model of Connectivity among Areas
	Simulation of TMS/EEG Experiment and Parameters Fitting

	Results
	Parameter Fitting of the Data from the Medium Stimulation Intensity
	Generalization to All Stimulation Intensities

	Discussion
	References

	Smart Growing Cells: Supervising Unsupervised Learning
	Introduction
	Reconstruction with Smart Growing Cells
	Unsupervised Learning and Growing Cells Structures
	Smart Growing Cells
	Results

	Conclusions
	References

	Author Index

