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State-of-the-Art of TOF Range-Imaging
Sensors

Dario Piatti, Fabio Remondino and David Stoppa

1 Introduction

The 3D information of a surveyed object or scene can be recorded with different
types of sensors and measuring techniques. Contactless measuring techniques
suitable to estimate the target distance exploit micro-, ultrasonic- or light- waves
[1, 2]. However only the latter technique allows achieving good angular resolution
performance, in a compact measuring setup, as required for a 3D imaging system
[3]. In the common practice, the two ways to acquire an object’s geometry are: (i)
passive, by using multi-view image data or (ii) active, exploiting optical distance
measurement techniques.

The multi-view image acquisition method, coupled with the triangulation
measurement principle, is already known and used for decades in the research
community [4]. One of the advantages of the image approach with respect to other
range measuring devices (such as LiDAR, acoustic or radar sensors) is the
reachable high resolution and simultaneous acquisition of the surveyed area
without energy emission or moving parts. Still, the major disadvantages are the
correspondence problem, the processing time and the need of adequate illumina-
tion conditions and textured surfaces in the case of automatic matching
procedures.

Active optical measuring techniques using light-waves can be further classified
in three main categories, namely: interferometry, triangulation and Time-Of-Flight
(TOF) [5–7]. Triangulation techniques normally determines an unknown point
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within a triangle by means of a known optical basis and the related side angles
pointing to the unknown point. This principle is used by active sensors based on
structured illumination as well as by passive digital cameras.

Continuous wave and pulse TOF techniques measure the time of flight or the
phase shift of a modulated optical signal. These techniques usually apply inco-
herent optical signals. Typical examples of TOF are the optical rangefinder of total
stations or classical LiDAR instruments (terrestrial or aerial) [8, 9]. In this latter
case, actual laser scanners allow to acquire almost one million of points per
second, thanks to fast scanning mechanisms. Their measurement range can vary to
a great extent according to the instruments, varying between some decimeters up
to some kilometers, with an accuracy ranging from less than one millimeter to
some tens of centimeters respectively. Nevertheless, the main drawbacks of
LiDAR instruments are their high costs and dimensions.

Interferometry methods measure depths by means of the Time-Of-Flight tech-
niques too. In this case, however, the phase of the optical wave itself is used. This
requires coherent mixing and correlation of the wave-front reflected from the object
with a reference wave-front. Many variants of the optical interferometry principle
have been developed, such as multi-wavelength interferometry, holographic
interferometry, speckle interferometry and white light interferometry. The high
accuracy of the interferometry methods mainly depend on the coherence length of
the light source: interferometry is not suitable for ranges greater than few centi-
meters since the method is based on the evaluation of very short optical wavelength.

In the last few years a new generation of active sensors has been developed,
which allows to acquire 3D point clouds without any scanning mechanism and
from just one point of view at video frame rates. The working principle is the
measurement of the TOF of an emitted signal by the device towards the object to
be observed, with the advantage of simultaneously measuring the distance infor-
mation for each pixel of the camera sensor. Many terms have been used in the
literature to indicate such devices, normally called Time-Of-Flight (TOF) cameras,
Range IMaging (RIM) cameras, 3D range imagers, range cameras or a combi-
nation of these terms. In the following sections and chapters the term TOF cameras
will be prevalently employed, which is more related to the working principle of
this technology. Such a technology is possible because of the miniaturization of
the semiconductor technology and the evolvement of the CCD/CMOS processes
that can be implemented independently for each pixel. Thus it is possible to
acquire distance measurements for each pixel at high frame rate and with accu-
racies up to few centimeters. While TOF cameras based on the phase-shift mea-
surement usually have a working range limited to ten/thirty meters, TOF cameras
based on the direct TOF measurement can measure distances up to 1500 m.
Moreover, TOF cameras are usually characterized by low resolution (no more than
a few thousands of tens of pixels), small dimensions, costs that are an order of
magnitude lower with respect to LiDAR instruments and a lower power con-
sumption with respect to classical laser scanners. In contrast to multi-view image
acquisitions, the depth accuracy is practically independent of textural appearance,
but limited to about one centimeter in the best case.

2 D. Piatti et al.



Recently a great alternative to TOF cameras came on the market: it is the line of
sensors based on real-time pattern projection and triangulation technique which
enable simultaneous acquisition of geometry and texture, at low-cost, high frame
rate and with ranges up to 4–5 m. The most well know sensor of this family is the
Microsoft Kinect [10, 11]. This book will not touch such devices as they are not
based on the TOF measurement principle.

In order to give an overview on the TOF cameras technology, this chapter will
provide a quick introduction of the TOF cameras operation principle and a
description of their main building blocks. Then, the main technologies available
today for the realization of TOF detectors will be described and compared and
finally some conclusions and future perspective will be given.

2 Working Principle of TOF Cameras

2.1 TOF Detection System

A typical TOF measuring setup is sketched in Fig. 1, and it consists of several
building blocks: (a) a pulsed/modulated light source, typically based on LASER
or LED in the infrared part of the spectrum to make the illumination unobtru-
sive, (b) an optical diffuser to spread the emitted light onto the scene, (c) a
collection lens aimed at gathering the light echo back-reflected by the target. An
optical band-pass, properly tuned onto the wavelength of the light source, allows
improving the background noise rejection. Finally, the core of the measuring
system is represented by the solid-state range sensor (d), composed of an array
of photo-detectors (pixels) capable of measuring, in a direct on indirect way, the
TOF needed by the light pulse to travel from the light source to the target and
back to the sensor. The system requires also a suitable sensor interface providing
to the sensor the power supply, required biasing voltage/current signals, digital
control phases, and reading out from the sensor the data stream, which typically
requires further minor processing to obtain the 3D volume data. Finally, the
sensor interface is responsible for the communication with the external world (to
a PC, or a processing unit).

2.2 TOF Measurement Techniques

In a classical TOF measurement, referred in the following as Direct-TOF (D-
TOF), the detector system starts a highly accurate stopwatch synchronously with
the emitter light pulse generation. As the light echo from the target is detected, the
stopwatch is stopped and the roundtrip time sTOF is directly stored. The target
distance z can be estimated by means of the simple equation:

State-of-the-Art of TOF Range-Imaging Sensors 3



Z ¼ c

2
� sTOF ð1Þ

where c = 2.9979 9 108 m/s represents the speed of the light propagating through
the air.

D-TOF is commonly used for single-point range systems, but only recently
implemented in scannerless TOF systems, because of the difficulties in imple-
menting at pixel level sub-nanosecond electronic stopwatch. This technique is
particularly suited to SPAD-based TOF systems [12–23] and details about its
implementation will be described in Chap. 2.

An alternative solution to D-TOF is the so-called Indirect-TOF (I-TOF), where
the roundtrip trip time is indirectly extrapolated from a time-gated measurement of
the light intensity. In this case, there is no need of precise stopwatch, but of time-
gated photons counters or charge integrators, which can be implemented at a pixel
level with less efforts and silicon area. I-TOF is the natural solution for electronic-
and photo-mixing devices-based TOF cameras.

The operation principle of D-TOF and an example of a four-gates I-TOF are
illustrated in Fig. 2 considering both pulsed and modulated light sources, although
many other implementations of I-TOF are possible. I-TOF will be extensively
described in Chaps. 3 and 4 together with its circuital implementation.

3 Time-Resolved Image Sensor Technologies

Although there are many TOF systems based on laser scanner available on the
market for top-class 3D measurement apparatus, there has been in the last decade
an emerging interest toward scannerless, all-solid-state, TOF cameras. Many

Modulated/Pulsed
LED/LASER Source

TOF Sensor

Target

(b) (a)

(c)
(d)

(e)

Emitter
Trigger

3D Data
Output

Time-resolved
pixel

Z
Sensor Control
and Interface

Fig. 1 TOF detection system
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full-custom detectors have been developed for this class of systems. They can be
mainly classified in three categories:

(a) In-Pixel Photo-mixing Devices. This approach exploits photo-demodulators, in
which the photo-generated charge is mixed toward two or more collection
electrodes thus achieving an intrinsic photo-mixing effect.

(b) Standard photodiodes coupled to dedicated processing circuitry. This
approach exploits the extensive use of switched-capacitors electronics (either
in the pixel or at the periphery) to recover the distance information from the
current photo-generated by the photodiode.

(c) Single-Photon Avalanche Diodes (SPADs) coupled to proper processing cir-
cuitry. With respect to (b), an avalanche diode, operating in Geiger regime to
achieve sensitivity to individual photons, is used to collect the light echo and
coupled to a readout and processing electronics aimed at extracting the Time-
Of-Flight information.

The most mature solution is represented by sensors belonging to a), and most of
the 3D cameras available on the market are actually based on this concept [24–39].
The main advantage of this approach is the read-out channel simplicity, which
results in a small pixel size; the main problems are the sensitivity to the ambient
light and the cost of non-standard technologies (e.g. CCD/CMOS, customized
CMOS, high resistivity substrate, etc.), that are often required.

The use of complex in-pixel electronics, used to properly process and accu-
mulate the photo-generated charge, makes sensors belonging to b) being charac-
terized by large pixel pitch and relatively high power consumption [40–48].
Moreover, they typically exhibit lower precision with respect to (a) and (c)
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because of the noise contribution introduced by the numerous transistors intro-
duced in the signal path. On the other hand, ad hoc processing structures can be
implemented at pixel- or column-level to successfully remove most of the com-
mon mode signal, thus implementing background resilient sensors that can be used
for outdoor operation such as automotive and security.

Finally, sensors based on category (c) have been widely used in high-perfor-
mance single-point scanner systems since the 80s, using avalanche photodiodes
(APDs) fabricated within dedicated technologies coupled to discrete-components
read out and processing electronics or measurement instruments. However, only
recently, the possibility of implementing good performance APDs/SPADs in
CMOS technologies opened the way to the realization of range image sensors
based on this approach [12–23, 49–51].

The great advantage of this solution is the extremely high sensitivity of the
photodetector, capable of detecting down to single-photon, and the intrinsic low-
noise performance that allows operating at the shot-noise limit.

The above mentioned sensor categories will be extensively described in
Chaps. 2, 3 and 4 where the state-of-the-art for each approach will be analyzed
through circuital and device implementations peculiar of each sensor architecture.

4 Conclusions

Image sensors capable of detecting arrival times of impinging light signals with
sub-nanosecond time resolution are becoming more and more important in many
applications. Among them, TOF 3D cameras represent one of the markets having
the largest possibilities of expansion thanks to the numerous sectors of exploitation
of such a technology. The extra information provided by 3D cameras, with respect
to standard 2D imagers, is fundamental to acquire a reliable model of the scene
under measurement, opening the way to new detection paradigms in the field of
machine vision. Industrial control, next generation user interfaces based on gesture
recognition, advanced vision systems for automotive, etc. are just a few examples
of important sectors using 3D-imaging technology.

In this chapter the operation principle of TOF cameras has been described and
the main TOF sensor architectures presented so far have been reviewed. This is
mainly an introduction to extended descriptions provided in Chaps. 2, 3 and 4 that
will deal with TOF sensors based on SPAD, electronic shutter and photo-mixing
devices respectively.

Regardless of the numerous solutions proposed in the scientific literature in the
last few years and although several commercial products are now available in the
field of TOF 3D cameras, there are still several aspects that can be improved.
Ambient light immunity and dynamic range enhancement are two key features for
the next generation of 3D cameras, while as in conventional cameras, there is a
continuous demand of higher resolution and frame rate, as well as reduced power
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consumption. The addition of color in the same sensor is also a very appealing
feature, and the first attempts to implement this functionality are being carried out.

The development of TOF technology should also take into account competing
technologies, such as those based on pattern projection and stereo imaging. Those
systems successfully demonstrated that accessing consumer market could dra-
matically reduce the system cost. In fact, the building blocks of system like [11]
are quite similar to the ones needed by TOF cameras, i.e. illuminator, custom
image sensor, and optics, however, the final cost of this system is one order of
magnitude lower than the cost of TOF camera products.

The main drawbacks of systems based on pattern projection and stereo image
matching with respect to TOF technology are: (i) the limited scalability of the
system size due to the need of a baseline (ii) the high computational effort required
to extract the depth information that limits the sensor frame rate and the minimum
power consumption, and finally (iii) the generation of artifacts under some mea-
surement conditions.

The next three to five years will demonstrate all the potential of TOF tech-
nology and will reveal if the evolution of TOF cameras will follow the same
amazing expansion experienced by conventional CMOS cameras in the 2000s.
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SPAD-Based Sensors

Edoardo Charbon, Matt Fishburn, Richard Walker,
Robert K. Henderson and Cristiano Niclass

1 Introduction

3D imaging and multi-pixel rangefinding constitute one of the most important and
innovative fields of research in image sensor science and engineering in the past
years. In rangefinding, one computes the Time-Of-Flight of a ray of light, gen-
erated by a mono-chromatic or wide-spectral source, from the source through the
reflection of a target object and to a detector. There exist at least two techniques to
measure the Time-Of-Flight (TOF): a direct and an indirect technique. In direct
techniques (D-TOF), the time difference between a START pulse, synchronized
with the light source, and a STOP signal generated by the detector is evaluated. In
indirect techniques (I-TOF), a continuous sinusoidal light wave is emitted and the
phase difference between outgoing and incoming signals is measured. From the
phase difference, the time difference is derived using well-known formulae.

Single-photon avalanche diodes (SPADs) or Geiger-mode avalanche photodi-
odes (GAPDs) are detectors capable of capturing individual photons with very
high time-of-arrival resolution, of the order of a few tens of picoseconds. They
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may be fabricated in dedicated silicon processes or in standard CMOS technolo-
gies. Most SPADs generally operate at room temperature, but they may also be
cooled for better noise performance. Even though solid-state SPADs implemented
in III–V materials exist, and the literature on the subject is extensive, in this
chapter, we limit our attention to silicon devices.

Cova and McIntyre started advocating the use of SPADs for fast timing appli-
cations in the 1980s [1, 2]. Thanks to their picosecond timing resolution, SPADs are
a natural candidate for D-TOF techniques. If one wants a distance resolution of, say,
1 mm, one needs to discriminate light pulses with a resolution of 6.6 ps (a round-
trip Time-Of-Flight is assumed). However, such a time uncertainty is not achiev-
able with a room temperature SPAD implemented in any silicon technology. Thus,
averaging and multi-measurement techniques must be employed. A common
choice is the use of time-correlated single-photon counting (TCSPC). The tech-
nique assumes that a START or synchronization signal is always present at the
beginning of each measurement cycle, while the STOP signal is provided by the
detector, in our case a SPAD, at a much smaller frequency, typically 104–106

smaller than that of the synchronization. If this condition is satisfied—and it is often
required to minimize pile-up effects—several thousands of time-of-arrival evalu-
ations are needed for each frame to achieve an accurate Time-Of-Flight measure-
ment. A reverse START-STOP arrangement is also possible, depending upon the
architecture of the imager, whereas a higher jitter of the measurement system might
incur if high intra-optical-pulses jitter is present in the light source.

SPADs may also be used in I-TOF mode of operation. In this chapter two
complementary techniques are presented. The common principle is that of quickly
switching the SPAD to divert its output signal appropriately, depending on the
time-of-arrival. Indirect detection techniques may also be handled in a completely
digital environment, thus simplifying the electronics and control signals and
enabling large arrays of pixels to be implemented in standard CMOS technologies.

The chapter is organized as follows. After an introduction to the physical
mechanisms underlying SPADs, an overview of SPAD fabrication techniques is
given, followed by a detailed description of direct and indirect techniques for
Time-Of-Flight measurement; the description is complemented by examples of
SPAD array implementations in CMOS and relative characterization. An outlook
concludes the chapter.

2 The Physics of SPADs

An avalanche photodiode (APD) is a p-n junction that relies on impact ionization
effects to multiply photon-generated electrons and holes. APDs output a pulse of
electric current synchronous, with some time uncertainty, to the arrival of a single
photon. In APD-based, Time-Of-Flight detectors and image sensors, external cir-
cuitry senses and analyzes this current pulse to find the photon’s time-of-arrival, thus
inferring the range; this process, known as rangefinding, enables the reconstruction
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of 3D scenes non-destructively. This section gives an overview of the fundamental
mechanisms governing the avalanche pulse, focusing on the factors that contribute to
the time uncertainty and ultimately the distance estimation accuracy.

Generally, when electrical engineers think of the I–V characteristics of a p-n
junction, they think of the steady state curve, shown in Fig. 1. However, there is a
pseudo-steady-state in the breakdown operating condition—a voltage above1 the
breakdown voltage can be applied so long as no carriers exist in the diode’s
depletion region. As soon as a carrier is injected into the depletion region, impact
ionization may cause an avalanche to occur, and the diode will shift operating
points to the steady-state curve. Impact ionization’s underlying statistical process,
which is dependent on the electric field, material, and ambient conditions, governs
the probability that an avalanche will occur. If the electric field magnitude is high
enough, then both electrons and holes are expected to cause significant ionization,
the avalanche will become self-sustaining, and the avalanche photodiode is
operating in Geiger mode.2

If the field magnitude is only sufficient for electrons to cause significant ioni-
zation but not holes, the APD is in linear mode. Quantitatively a diode is in Geiger
mode when it meets the condition

1�
Z W

0
a � exp

Z W

x
ðb� aÞdx0

� �
dx; ð1Þ

Fig. 1 Steady-state I–V characteristics for a p-n junction with Geiger and avalanche mode of
operation (left). Passively quenched SPAD (right). VE is known as the excess bias voltage at
which a diode must be biased in Geiger mode; it represents the voltage in excess of or above the
breakdown voltage VBD. A comparator or inverter is used to shape the output pulse of the
detector

1 The preposition ‘‘above’’ is used because researchers working with APDs consider the cathode
to be the terminal with the higher voltage.
2 Termed after the similarity to a Geiger counter.
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with a and b representing the impact ionization rates (per m) of electrons and
holes, respectively, and W is the depletion width. The bias at which Eq. (1) is an
equality is called the breakdown voltage, VBD. The bias applied to the diode, VOP,
exceeds breakdown by a voltage known as excess bias voltage, VE. Henceforth the
discussion will be restricted to SPAD technologies [3].

A SPAD is able to detect more than a single carrier by the inclusion of external
circuitry, which quenches an avalanche by: sensing an avalanche; lowering the
voltage applied to the SPAD; and after some time, raising the applied voltage
above the breakdown voltage. The simplest such circuit is a resistor placed in
series with the diode, also known as ballast resistor. The circuit works as follows.
First, when there are no free carriers in the junction, the applied voltage on the
diode is VOP. When light injects a carrier into the junction, impact ionization may
or may not cause the rapid build-up of free carriers in a small part of the diode. If
significant ionization does not occur and all free carriers are swept out of the
depletion region, the incident photon is not detected. If ionization does occur, it
will continue until the space-charge phenomena limits the local carrier concen-
tration. The avalanche will spread to other regions of the diode via a multiplica-
tion-assisted diffusion process. The decrease in voltage across the diode,
dependent on both any parasitic capacitances and the quenching resistor, will
eventually reach the excess bias. At this point the diode is quenched—no further
current should flow from impact ionization and there are no free carriers in the
diode itself. The voltage will then be recharged by the flow of electric current
through the quenching resistor into the parasitic capacitances, with the diode being
ready to detect another carrier after this dead time [4].

The probability that a single photon’s generated carriers are detected is called
the photon detection probability (PDP). A number of factors influence the PDP,
including electric field conditions, doping levels, whether electrons or holes pri-
marily initiate avalanches, and the applied voltage. Photons are not the only source
of initial carriers; uncorrelated or correlated noise can also cause free carrier
injection and undesirable avalanches. Uncorrelated noise sources include: ambient
light; tunneling from an electric field that is too high; and fabrication defects which
ease valence-to-conduction band transitions, such as thermally generated or tun-
neling carriers. The last factor, fabrication defects, can also cause afterpulsing, a
type of time-correlated noise. Traps in the forbidden energy band can fill, only to
release free carriers on the time scale of tens of nanoseconds following an ava-
lanche. Afterpulsing prevents an instant recharge phase in SPADs, and places
constraints on the minimum dead time.

There are other sources of correlated noise besides afterpulsing—optical and
electrical crosstalk are the most common, but in practice afterpulsing is the
dominant type of correlated noise. Whether the initial carrier is photon-generated
or not, several factors cause time uncertainty between the injection time and the
sense time. The most important timing factor is whether the carrier is generated in
the depletion region itself, or if it must diffuse into the depletion region. Carriers
that successfully diffuse into the depletion region do so following an exponential
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time distribution [5]. Once the initial carrier is in the depletion region, the statistics
of impact ionization will create a time uncertainty that is roughly a normal dis-
tribution. The overall timing response of a SPAD to a pulsed laser can be described
as a background noise plus a normal distribution convolved with the addition of an
impulse function (describing carriers generated in the depletion region) with an
exponential distribution.

3 CMOS SPAD Design

Building SPADs in CMOS substrates requires knowledge of the process and layers
available to the designer to implement junctions that can be reverse-biased at high
voltages. Figure 2 shows a generic pn junction implemented in a planar process.
The figure shows the depletion region, as it forms upon reverse biasing the
junction (assuming a large doping differential between the p and n regions).

Implementing a pn junction in a planar process first involves finding a way to
prevent premature edge breakdown (PEB). Several techniques exist to implement
PEB prevention. In essence, the techniques have in common the reduction of the
electric field or the increase of the breakdown voltage at the edges of the junction,
so as to maximize the probability that the avalanche is initiated in the center of the
multiplication region, i.e. the region where the critical electric field for impact
ionization is reached and, possibly, exceeded.

Figure 3 illustrates four of the most used structures. In (a) the n+ layer maxi-
mizes the electric field in the middle of the diode. In (b) the lightly doped p-
implant reduces the electric field at the edge of the p+ implant. In (c) a floating p
implant locally increases the breakdown voltage. A polysilicon gate is usually
drawn to prevent the creation of a shallow trench, however, it can also be used to
further extend the depletion region.

Shallow trench isolation (STI) can also be used to delimit the junction, provided
that it is surrounded by a multi-layer of doped silicon so as to force recombination
of those charges generated in the defect-rich STI as shown in structure (d) [6].
These structures are usually shaped as a ring around the junction; they are known
as guard rings. Guard rings can also be defined implicitly by proper definition of
drawn layers [7].

Fig. 2 Cross-sections of a generic pn junction in a planar process with the depletion region (gray
line) forming in the structure upon reverse-biasing, assuming a large doping differential between
the p and n regions

SPAD-Based Sensors 15



There exist a variety of avalanche quenching techniques, partitioned in active
and passive methods. The literature on these variants is extensive [8]. In active
methods, the avalanche is detected and stopped by acting on the bias. In passive
methods the pn junction bias is self-adjusted e.g. by a ballast resistor. Recharge
methods can also be active and passive. In active methods, the bias across the
diode is re-established by a switch activated by an avalanche detector. In passive
methods the recharge occurs through the ballast.

Upon photon detection, the device generates a current pulse that is converted to
a digital voltage level by means of a pulse shaping circuitry, also shown in the
figure. The pulse shaper is also acting as an impedance adapter to drive the load of
the column readout often employed in a SPAD matrix.

The main parameters characterizing individual SPADs are sensitivity, measured
as photon detection probability (PDP), noise, measured as the rate of spurious
pulses due to thermal events or dark count rate (DCR). Other parameters include
timing jitter, also known somewhat inappropriately as timing resolution, af-
terpulsing probability and the aforementioned dead time. These parameters have
been used in the literature for a variety of CMOS processes [9–17].

When implemented in an array, other performance measures become relevant to
the quality of the imager. Dead time uniformity relates to the variability in dead
time, which determines the dynamic range of each detector. Timing jitter uni-
formity and PDP uniformity, as well as DCR uniformity and crosstalk have to be
accounted for and properly characterized [9]. PDP of course will also be a function
of the input wavelength. In CMOS SPAD implementations, the sensitivity range is
mostly in the visible spectrum, with a somewhat reduced near infrared and near
ultraviolet PDP.

Crosstalk is also a chip-level effect similar to PDP and DCR non-uniformities;
it relates to the interaction between an aggressor pixel and a victim pixel, where
the aggressor may cause a spurious avalanche in a victim. The effect can be
electrical and/or optical. Electrical crosstalk is due to electrical interference
through substrate or supply noise. Optical crosstalk may occur when an avalanche
is triggered in the aggressor; by impact ionization, several photons may be emitted,
thus causing the victim to detect them. While electrical crosstalk is strongly
dependent on the design of supply lines and of substrate noise rejection measures,
optical crosstalk may only be influenced by the number of carriers involved in an
avalanche and by pixel pitch.

Fig. 3 Cross-sections of doping profiles that may be used to prevent premature edge breakdown
in planar processes

16 E. Charbon et al.



4 TCSPC Based TOF Camera Systems

Using TCSPC for optical rangefinding in D-TOF mode has been proposed several
decades ago, since the introduction of the LIDAR concepts. SPAD based single-
pixel detectors, in combination with scanning, powerful pulsed light sources. One
of the first examples of this combination was proposed in [18, 19]. In this work, the
light source is synchronized to the SPAD to produce an accurate evaluation of the
Time-Of-Flight of the reflected photons and thereby of the distance to the target.

In [20] this concept was made scannerless thanks to the use of monolithic arrays
of SPADs implemented in CMOS technology. The concept, described in Fig. 4, is
enabled by the use of a cone of light reaching approximately simultaneously the
target source.

The photons reflected by the surface are imaged through a lens system to the
array. With the use of an accurate chronometer or stop watch, it is possible to
derive the distance of the reflecting point using the following relation

d ffi c

2
� sTOF ; ð2Þ

where sTOF is the Time-Of-Flight or the time difference between the light pulse
synchronization signal and the time-of-arrival in the detector, and c is the speed of
light in vacuum. Since SPADs are dynamic devices, they generate a digital pulse
upon detection of a photon, and thus, unlike conventional diodes, they cannot hold
a charge proportional to the overall photon count. Thus, the Time-Of-Flight must
be computed in situ (either on pixel, on column, or on chip) or outside the image
sensor. The same holds with integrated time-of-arrival evaluation: it can only be
(1) in-pixel, (2) in-column, or (3) on-chip. To address this limitation, researchers
have adopted a number of architectures that take advantage of the low propagation
delay or high level of miniaturization achievable in standard submicron and deep-
submicron CMOS technologies.

The simplest readout architecture implementing photon counting on-chip in
combination with random-access single-photon detection, was demonstrated for
the first time in a matrix of 32 9 32 pixels, each with an independent SPAD, a

Fig. 4 Time-correlated single-photon counting (TCSPC) for optical rangefinding and 3D
imaging
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quenching mechanism, a pulse shaping and column access circuitry [20]. In this
readout scheme, all time-sensitive operations had to be performed sequentially.
This design has the main drawback in that it can only ‘‘see’’ one pixel at any point
in time, while all the other pixels are operating but their output is lost. The
micrograph of the chip is shown in Fig. 5; the chip was implemented in a 0.8 lm
high-voltage CMOS process.

Addressing the readout bottleneck required some degree of sharing. The col-
umn is the obvious place to start from, since it is a repetitive structure that touches
all pixel rows. The first known such approach involved interpreting the column as
a bus. The bus is used as transfer time and address over the same hardware. The
time is coded in partially processed pulses generated in the pixel of which the
time-of-arrival is evaluated. The address is coded as a unique combination over the
lines present in the bus sent to the bottom of the column where the time-of-arrival
is evaluated, either off or on chip [11].

The second approach, known as latchless pipelined readout, has a passive type
of coding, whereas time-of-arrival also contain the information of the row position
where the pulse was generated. Every photon triggers a pulse that is injected onto
the pipeline at a precise location that corresponds to the physical place where the
pixel is located. Since the propagation time is across the column is too short to
enable any time-based discrimination, a timing-preserving delay line is added to
the column. At the bottom of the column time discrimination is performed by a
column-based TDC that also returns the row code [21]. The photomicrograph

Fig. 5 The first large SPAD
array with random access
readout. The chip was
implemented in 0.8 lm
CMOS technology
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shown in Fig. 6 illustrates the actual implementation of the concept for a latchless
pipelined 128 9 2 SPAD array fabricated in 0.35 lm CMOS.

An important step towards full parallelism was achieved with LASP [10], a
128 9 128 SPAD array, where a bank of 32 column-parallel time-to-digital
converters (TDCs) was used to simultaneously process 128 in-line SPADs using an
event-driven 4-to-1 column-multiplexer (one per column). Figure 7 shows the
block diagram of LASP. Each TDC in the 32-array can generate 10 MS/s with a
time resolution of 97 ps. The resolution can be further increased to 70 ps by acting
on the clock frequency. Each TDC in LASP is a 3-tier partial TDC based on three
different architectures: a clocked counter (2 MSBs, 25 ns resolution), a phase

Fig. 6 CMOS version of a latchless pipeline based readout fabricated in 0.35 lm CMOS
technology [21]

Fig. 7 Schematic and micrograph of LASP; an array of 32 TDCs processes the pulses generated
by 128 SPADs at any time by means of a 4-to-1 event-driven multiplexer (one for each TDC)
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interpolator controlled by a temperature-compensated DLL (4 intermediate bits,
1.56 ns resolution), and a 16-taps Vernier line (4 LSBs, 97.6 ps resolution). The
total time resolution of 10bits is routed outside the chip through a high-speed
digital network operating at 3.2 Gb/s. The differential non-linearity (DNL) and
integral non-linearity (INL) were recently improved to ±0.1LSB and ±0.25LSB,
respectively [22].

The chip was tested in TCSPC mode to compute a scene’s depth via a pixel-by-
pixel Time-Of-Flight evaluation of a defocused beam hitting the target. The results
of the experiment are shown in the histogram of Fig. 8. The jitter is dominated by
the SPAD timing uncertainty, whereas the characteristic tail of the device also
appears from the picture.

The distance evaluation result is shown in Fig. 9 as a function of the real
distance measured using a precision device from 40 cm to 3.75 m. Each distance
measurement was derived from the centroid of the corresponding histogram,
whereas the uncertainty as a function of distance is plotted in also plotted in the
figure.

In Fig. 10 the resulting 3D image of a mannequin illuminated by a cone of
pulsed laser light with a wavelength of 637 nm is shown after a 1 s exposure. The
3D points represent the centroid of the histograms of each pixel.

The integration of time-resolving electronics on a per-column or per-chip basis
represents a trade-off between fill-factor, processing bandwidth and circuit area.
Unlike integrating image sensors based on photodiodes, photons falling on SPAD
pixels which are not multiplexed to available time-resolving channels are lost. In
an efficient SPAD sensor operating in D-TOF mode, a time-stamp must be gen-
erated for every impinging photon at every pixel detector. This necessitates the
combination of per-pixel time-digitization circuitry and high speed array readout.

The integration of a large array of in-pixel TDCs or time-to-amplitude con-
verters (TACs) poses several challenges with respect to single channel architec-
tures found in the literature [23–26]:

1. Circuit area is limited to a few 100 lm2 to achieve practical pixel fill-factor and
pitch.

2. Power consumption cannot exceed a few 100 lA per pixel, in order to allow
array size to be scaled to 10’s of kilopixels without excessive heating.

Fig. 8 TCSPC experiment.
The laser pulse is pointed
toward a SPAD in the array
and the time-of-arrival of the
first detected photon is
evaluated by the
corresponding TDC. The
resulting histogram, shown in
the plot in logarithmic scale,
is then computed [10]
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Fig. 9 Actual distance versus estimated distance computed in LASP at room temperature (top);
average error versus distance (middle); standard deviation versus distance (bottom) [10]

Fig. 10 Target image
computed by LASP in 1 s
exposure at room temperature
[10]
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3. Uniformity requires around 1 percent matching of time resolution for accept-
able image quality without requiring a frame store for pixel calibration.

4. Throughput must assure conversion of photon arrivals within typical pulsed
illumination period of 100’s of nanoseconds to avoid statistical distortions
leading to non-linearity.

5. Time resolution is required to be a few 10’s picoseconds in a full-scale range of
around 25–50 ns resolution for indoor applications where human body features
are to be distinguished at a maximum distance of a few meters.

These stringent specifications discount many of the conventional TDC archi-
tectures which achieve sub gate-delay resolution. Two scalable in-pixel TDC
approaches were proposed in [27] and [28], differing by the adoption of an internal
clock (IC-TDC) or an external clock (EC-TDC) as a source of timing accuracy
(Fig. 11). Both converters operate in reverse START-STOP mode whereby they
are started by a photon detected by the SPAD front-end circuit and stopped by a
global clock synchronous with the pulsed optical source.

The IC-TDC integrates a gigahertz gated ring oscillator within each pixel,
which clocks an n-bit ripple counter providing coarse photon arrival time esti-
mates. Fine time estimates are obtained by decoding the frozen internal state of the
ring providing the 3 least significant bits, which represent single inverter delays.
A four-stage differential ring oscillator is chosen with a binary number of internal
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states for simplicity of decoding logic. Two implementations have been studied, a
chain of tri-stateable inverters provide static internal state memory [29] while the
second, a chain of inverters connected by pass-gates provide a dynamic internal
state memory [27]. Care must be taken to avoid metastability when gating the ring
oscillator clock to the ripple counter, by employing hysteresis in the clock input
stage. Tuning of the ring oscillator loop delay is achieved by current starving the
differential inverters through a NMOS regulating transistor. This is also effective
in diminishing the effect of supply noise induced jitter. IC-TDCs have the
advantage of consuming power only when activated by an impinging photon, thus
the power consumption of a large array is directly proportional to photon flux. This
in turn has the potential disadvantage of introducing a light-flux-dependency of the
TDC resolution, due to variable IR drops.

The EC-TDC achieves coarse time measurement in the similar manner to the
IC-TDC, by means of an n-bit counter, clocked by an external high frequency
clock distributed to the entire pixel array. Fine resolution is determined by the
propagation delay of the SPAD pulse through an inverter chain. The state of
inverter chain is frozen by the subsequent rising edge of the clock that is syn-
chronized with the STOP signal and decode logic converts the thermometer code
into a k-bit binary number. The STOP signal also halts the coarse counter. Time
resolution calibration is performed by current-starving the inverter chain, through
a feedback loop [28]. EC-TDCs consume an almost constant power level irre-
spective of input illumination but provide good global time resolution accuracy
and negligible resolution dependency on photon flux.

Scaling of the per-pixel TDC approach from early prototypes of 32 9 32 to
160 9 128 pixels has been demonstrated with good performance. Characterization
of a large IC-TDC image array has shown good DNL, INL, and pixel-to-pixel
uniformity [29].

Fig. 12 Time of flight measurements with IC-TDC array
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In Fig. 12, a TOF experiment is conducted for a single column of pixels, using a
pulsed laser at a constant distance from the sensor. Future implementations of
these architectures in advanced nanoscale CMOS technologies bring the prospect
of considerable gains in fill factor, time resolution, power consumption, and pixel
pitch.

Figure 13 shows an analog approach to per-pixel time estimation, employing an
in-pixel TAC and ADC converter [30]. A current source (IbiasP) charges a
capacitor Cs when the switch-structure, composed of Mp1, Mp2, Mp3, and IbiasN,
is enabled. Three layout-matched replicas of the ramp-generator building block are
employed: Stage1 and Stage2 are used alternately to measure the number of events
or the event arrival time in a time interleaved way as Vo1 (or Vo2); StageREF is
used to generate a reference voltage ramp VoREF for the embedded single-slope
ADC. Analog time encoding is started on detection of a photon, by the charging of
capacitor Cs, and stopped by the subsequent STOP clock rising edge. At the end of
this interval, a voltage has accumulated on capacitor Cs that is proportional to the
photon arrival time.

After an exposure time, the pixel array is switched over to analogue to digital
conversion mode. The clock signal CNT and an n-bit Gray code count sequence
operate synchronously and are globally distributed to the pixel array. The Stage-
REF block generates a stepped analog ramp voltage VoREF, which is compared to

Fig. 13 Time-to-amplitude converter pixel architecture
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Vo1 (or Vo2) by an in-pixel comparator. When VoREF exceeds Vo1 (or Vo2) the
voltage comparator toggles, sampling the Gray code into the memory. Hence the
stored value of the Gray code is directly proportional to the analog voltage
determined previously by the time-to-analog conversion process. Two memories
are employed to allow one to participate in conversion while the other is being
read-out. While the performance of the per-pixel TAC array was less favorable
than the TDC counterparts (Table 1), this architecture shows greater promise in
terms of scaling for area and power without the need for advanced nanoscale
CMOS technology.

Highly parallel readout schemes must be employed to handle the extremely
high volumes of per-pixel timestamp data generated by both per-pixel TDC and
TAC image arrays. Single-photon detectors produce events at each pixel at much
greater rates than conventional integrating image sensors, especially those gen-
erated by ambient lighting or DCR distribution. Data rates of several Gbps have
been attained in recent imagers [29, 31].

Per-pixel time-resolving arrays, which integrated the TAC/TDC in same CMOS
substrate as the SPAD detector face, have two practical drawbacks:

1. The bandgap of silicon limits detection to wavelengths below 1125 nm.
Common CMOS SPADs have poor PDP (below 5 %) at suitable NIR wave-
lengths (850 or 930 nm) due to the shallow active junction.

2. The pixel fill factor is low due to the large insensitive area devoted to the time-
resolving electronics; around 1–2 % have been demonstrated in the above
research.

Hybrid 3D wafer technology offers a solution to this dilemma. Itzler et al. [32]
have developed InGaAs/InP avalanche diode structures in the wavelength range of
0.92 to 1.67 lm, which are hybridized to CMOS read-out integrated circuits
(ROICs) that enable independent laser radar Time-Of-Flight measurements for
each pixel. The 9 % fill-factor of the SPAD array is improved to 75 % by
employing a micro lens array and an average photon detection efficiency (PDE3) of

Table 1 Performance comparison of per-pixel TAC/TDC arrays

Parameter TAC [30] TDC-EC [28] TDC-IC [27] Unit

Technology node 130 130 130 nm
Pixel pitch 50 50 50 lm
Bit resolution 6 10 10 bits
Time resolution (LSB) 160 119 178/52 ps
Uniformity ±2 ±2 8 LSB
INL 1.9 ±1.2 ±0.4/1.4 LSB
DNL 0.7 ±0.4 ±0.5/2.4 LSB
Time jitter \600 185 107/32 ps @ FWHM
Power consumption 300 94 28/38 lW @ 500kframe/sec

3 PDE is defined as the multiplication of fill facto and PDP.
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39 % is obtained. The ROIC consists of an array of 100 lm pitch pixels containing
pseudorandom counters in a 0.18 lm CMOS process clocked from an external
PLL distributed to all pixels. The power consumption of the array is only 50 mW
at 20 kHz frame rate and 320 mW at 200 kHz. Aull et al. reported a similar
64 9 64, 50 lm pitch ROIC in 0.18 lm CMOS for a similar 3D stacked tech-
nology with a time resolution of 110 ps [33].

5 Single-Photon Synchronous Detection

The technique known as single-photon synchronous detection (SPSD) is an I-TOF
measurement, the SPAD-digital equivalent of lock-in detection [34–38]. In SPSD,
proposed for the first time in [39], the scene is illuminated with a sinusoidal or
pseudo-sinusoidal light intensity and the phase of the return photons. As in lock-in
systems, distance d is computed as

d ffi cu
2 � 2pf0

; ð3Þ

where c is the speed of light in vacuum, f0 is the modulation frequency, and u is
the measured phase difference between outgoing signal and measured signal. In
SPSD, unlike in lock-in systems, the phase u is computed directly by counting
photons in a structured way.

In SPSD the period of the illumination is discretized in NC uniform time seg-
ments DT0, DT1,…, DTk,…, DTNC�1 . At the end of the integration period, every
counter stores a value Ck, corresponding to the counted photons in the time period
DTk during the integration period. For each segment the SPAD’s output is directed
to a counter that is activated only during that segment, the photon counter results
Ck. shows how the illumination source is modulated and discretized. The figure
also shows how the SPAD’s output is distributed to the various counters to

Fig. 14 Possible discretization of a period of illumination, with resulting partial counts (left);
block diagram of the pixel in an SPSD camera as described in [39] (right)
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generate C0 through CNC�1 in a possible block diagram implementation of the
technique on pixel (Fig. 14).

For the case NC = 4, with only four partial counters C0, C1, C2 and C3, the
phase becomes

u ¼ arctan
C3 � C1

C0 � C2

� �
: ð4Þ

As a byproduct of this computation we also achieve an estimate of the offset
and amplitude of the illumination intensity, as

A0 ¼ C3 � C1ð Þ2þ C0 � C2ð Þ2

2
;

B0 ¼ C0 þ C1 þ C2 þ C3

4
:

ð5Þ

The parameters A0 and B0 are illustrated in Fig. 15 which shows a sequence of
photon detection where the partial counts are progressively building up the
waveform corresponding to a single period by superimposing adjacent measure-
ments, thus enabling the computation of phase, offset, and amplitude.

A SPSD image sensor based on the concept outlined in Fig. 15 was imple-
mented in an array of 60 9 48 pixels operating in real-time with an integration
period as low as 10 ms and a frame rate as high as 100fps. A block diagram and a
photomicrograph of the image sensor is shown in Fig. 16, whereas the pixel in this
design comprises two 8-bit counters to compute alternatively C0/C2 and C1/C3.

Fig. 15 Principle of operation of SPSD cameras. Impinging photons are detected and
‘‘assigned’’ to the appropriate bin depending upon the time-of-arrival with respect to the
outgoing optical signal
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The pixel has a pitch of 85 lm and a fill factor of 1%, which can be compensated
to a partial extent by the use of a microlens array [40].

The chip was used in several experiments to test its robustness to ambient light
and interferences. The illuminator used was an array of 48 850 nm LEDs (Osram
GmBH, Germany) located in three concentric circles as shown in Fig. 17.

The plots shown in Fig. 18 show the estimated distance versus the actual dis-
tance measured in a similar distance range as in the TCSPC experiments. The
figure also shows mean errors and standard deviations as a function of the distance.

The same mannequin used in LASP was also used in the SPSD experiments.
The results confirmed the estimated error. Figures 19 and 20 show a target at two
exposure times, evidencing the relation between exposure, or number of the
counting iterations, and overall distance error at the pixel level.

The images show the expected dependency of accuracy from exposure time.
This behavior can be quantitatively analyzed looking at the demodulation contrast.
Let us consider the statistical error of the distance measurement,

rError ¼
c

2 � 2pf0
ru; ð6Þ

Fig. 16 Block diagram (left) and photomicrograph of the SPSD image sensor (right) proposed in
[39] for the first time and fabricated in 0.35 lm CMOS technology

Fig. 17 Illuminator used in
combination with the
integrated SPSD image
sensor. The total optical
power emitted by the
illuminator is 800 mW. The
frequency of operation is
30 MHz, with a 3rd harmonic
component suppressed at
37 dB
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where ru is the standard deviation of the phase measured using SPSD. Assuming
NC = 4, Eq. (6) can be rewritten in terms of the illumination parameters, as

rError ¼
RDffiffiffi
8
p

p

ffiffiffiffiffi
B0
p

A0
;with RD ¼

c

2f0
: ð7Þ

Rearranging the terms and substituting, we obtain the following equality

rError ffi
RDffiffiffi
8
p

pcD

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � SBR � SR
p ; ð8Þ

where T is the integration period, SBR is the signal-to-background ratio, and SR is
the signal count rate (the sum of all counters) on the image sensor. The term cD is
known as demodulation contrast, defined as

cD ¼ sinc p
DT

T0

� �
; ð9Þ

Fig. 18 Estimated versus actual distance using a SPSD pixel (top). Mean error versus distance
(middle) and standard deviation of the error versus distance (bottom). All the data are reported at
room temperature [39]

SPAD-Based Sensors 29



where DT is the mean time segment duration, in this case � of the total modulation
period T0 = 1/f0. In this configuration, the demodulation contrast is 0.9, whereas
1.0 is the maximum achievable value. By increasing the number of samples to, say
8, the demodulation contrast would only increase to 0.974, but at a cost extra
hardware and thus fill factor. Also note that the actual demodulation contrast
decreases with modulation frequency. However, in SPSD it reduces very slowly
while in lock-in systems it quickly degrades due to the limits in transit time in the
pixels. The plot of Fig. 21 shows the relation between the demodulation contrast

Fig. 19 3D image of mannequin in real-time exposure (30fps) at room temperature [39] at a
different integration times

Fig. 20 Target image computed by SPSD in real-time exposure (30fps) at a shorter (50 ms) and
longer (500 ms) integration times
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and the availability of the signal SR, as the target is further and the Time-Of-Flight
increases.

6 Phase-Domain Delta-Sigma TOF Imaging

As has been discussed, phase-demodulating systems typically generate two or
more bin values per frame requiring readout and external processing in order to
produce a depth map. This IO and processing burden can result in a significant
portion of the complete system’s power consumption and computational load.
Recent trends have seen an increasing level of complexity integrated into the
sensor’s focal plane to boost acquisition speed and reduce the required external
circuitry. For example, while the first TOF 3D imaging systems were based on
scanned single point range sensors comprising a discrete APD and external time-
stamping circuitry, recent sensors have combined arrays of SPADs with on-chip
time-stamping or binning logic, such as the TDC and SPSD systems discussed
earlier in this chapter.

A natural extension of this theme of integration is the use of modern CMOS
processes to construct sensors with additional focal-plane logic to allow the on-
chip creation of depth-maps, reducing the IO and external processing needs of
such systems. One such approach is to place a Phase-Domain Delta-Sigma
(PDDR) loop in the pixel. Figure 22 below compares the architecture of a simple
DR ADC with its phase-domain equivalent. While the DR ADC measures the
magnitude of an input voltage with respect to two reference voltages, the phase-
domain implementation instead measures the mean phase of its input with respect
to a pair of reference phases. This approach has been successfully demonstrated in
applications including magnetic flux [41] and temperature [42] sensing, where the
particular sensing elements used created a phase shift in response to the property to
be measured.

Fig. 21 Measured demodulation contrast as a function of distance in SPSD at room temperature
[39]
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I-TOF 3D imaging systems also of course depend on the measurement of a
phase shift. Crucially, an all-digital PDDR loop may be constructed which locally
processes the SPAD pulses created within a pixel and converges to estimate this
depth related phase shift directly. This approach was employed in the 128 9 96
pixel sensor reported in [31], as illustrated in the architecture block diagram and
die micrograph shown in Figs. 23 and 24 below.

The loop operates in a similar fashion to existing two-bin demodulating
approaches [43], dividing the returning pulse energy into two bins: in phase and
180� out of phase with the transmitted modulated light. However, instead of
simply integrating the energy in these bins over a period of time and transmitting
their contents for external processing, the loop continually seeks to drive its
internal integrator towards zero by integrating positively during u1 and negatively
during u2, as the timing diagram contained in Fig. 25 below illustrates. The
resulting bitstream density, r, indicates the mean phase of the input pulses, as
governed by Eq. 10, where Nu1 and Nu2 represent the number of photons counted
in bins u1 and u2 respectively.

r ¼ N/2

N/1
þ N/2

ð10Þ

This calculation is of course influenced by the DC component of the detected
light, which must be corrected, for example by subtracting the DC component

Fig. 22 Comparison of: conventional DR ADC (top), phase-domain DR converter for 3D
imaging (bottom)
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from each bin value using an integration of equal exposure time with the illumi-
nation source disabled.

Characterization data for the PDDR, including INL and repeatability error
characterization was presented in [31]. Relatively low illumination power and
pulse rates were used at the expense of repeatability error. However, the PDDR
approach achieved an excellent linearity of ±5 mm over a 0.4–2.4 m range, with
photon pile up being the dominant effect limiting accuracy at very short distances.

Figure 26 shows example images captured using the PDDR sensor, serving as
the first demonstration of the on-chip creation of depth-maps with only simple
inter-frame averaging and defect correction being applied externally before
rendering.

The use of an in-pixel, phase-domain DR loop to directly sense the mean phase
of incident photons detected synchronously to the modulation of the outgoing
illumination light is one approach to the management of the large volumes of data
produced by single-photon 3D imagers and the associated computational burden
on the host system. With the increasing commercial relevance of 3D imaging
systems, such techniques seem likely to continue to develop, facilitated by the

Fig. 23 Architecture of 128 9 96 pixel, all-digital, phase-domain DR based sensor reported
in [31]
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capabilities of modern CMOS imaging processes to yield highly integrated
imaging systems.

7 Perspectives and Outlook

More recently, scanned 3D cameras have appeared based on relatively small arrays
of relatively large pixels whose core is a so-called silicon photomultiplier (SiPM).
SiPMs are essentially an array of non-imaged SPADs connected so as to sum all
avalanche currents in one point. The more recent digital SiPM replaces the analog
summing node with an OR operation. The advantage of d-SiPMs is a faster
response to photon bunches and the capability of turning off individual noisy

Fig. 24 Die micrograph of 128 9 96 pixel, all-digital, phase-domain DR based sensor reported
in [31]

Fig. 25 Timing diagram of all-digital, phase-domain DR based pixel [31]
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SPADs. An example of this trend has been reported by [44], where four 10 9 10
mini SiPMs have been implemented in 0.18 lm HV CMOS technology in com-
bination with a mirror to scan large areas in TCSPC mode.

The use of mini SiPMs is spreading to other fields and applications. An example
is that of medical sensors for positron emission tomography that rely on time-of-
arrival detection. Borrowing technologies developed in 3D camera technology,
more TDC integration together with SPADs and SPAD arrays is a clear trend.

Recent SPAD structures demonstrated in nanoscale CMOS exhibit improving
DCR and spectral efficiency, as well as compatibility with TSV and backside
processing [45–47]. Adoption of these advanced processes brings the prospect of
simultaneous improvements in time resolution, fill factor, pixel pitch as well as the
capacity to integrate on-chip Time-Of-Flight computation to ease I/O data rate
demands. Analog approaches to time-resolved SPAD pixels offer a route to the
smallest pixel pitch provided uniformity issues are addressed [48].

On another front, the emergence of III-V materials in configurations that are
fully compatible with a CMOS fabrication line may bring these materials to the
mainstream in 3D imaging. Examples of this trend are two independent works
reporting the first Ge-on-Si SPADs fabricated in a way that is fully compatible
with a conventional CMOS technology [49, 50]. More activity in this domain is
expected, especially in the creation of larger and more compact arrays.

Fig. 26 Example images captured using PDDR sensor [31]: a 20 second exposure showing
mannequin at 1m distance. b 1 second exposure showing objects at 0.75m, 1.1m, and 1.8m
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Finally, 3D integration of CMOS devices is becoming a commercial reality,
hence, we expect that it will extend to 3D image sensors based on SPADs where
through silicon via and backside illuminated devices will become routine in the
near future. This will have an immediate impact on fill factor and imager sizes.
Later cost will be positively impacted and packaging simplified.
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Electronics-Based 3D Sensors

Matteo Perenzoni, Plamen Kostov, Milos Davidovic, Gerald Zach
and Horst Zimmermann

The conventional photodiode, available in every CMOS process as a PN junction,
can be enriched by smart electronics and therefore achieve interesting performance
in the implementation of 3D Time-Of-Flight imagers. The high level of integration
of deep submicron technologies allows the realization of 3D pixels with interesting
features while keeping reasonable fill-factors.

The pixel architectures described in this chapter are ‘‘circuit-centric’’, in con-
trast with the ‘‘device-centric’’ pixels that will be introduced in the chapter talking
about photo-mixing devices chap. 4. The operations needed to extract the 3D
measurement are performed using amplifiers, switches, and capacitors. The chal-
lenges to face with this approach are the implementation of per-pixel complex
electronic circuits in a power- and area-efficient way.

Several approaches have been pursued, based on modulated or pulsed light,
with pros and cons: the modulated light allows exploiting the high linearity of the
technique while the pulsed light enables fast 3D imaging and increased signal-to-
noise ratio. Different techniques will be introduced aimed at improving the
rejection to background light, which is a strong point of the electronics-based 3D
pixels.
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1 Pulsed I-TOF 3D Imaging Method

In the following a detailed theoretical analysis of 3D imaging based on pulsed
indirect Time-Of-Flight (I-TOF) will introduce the operating principle and the
main relationships between the physical quantities. The first pioneering work on
electronics-based sensors for 3D is described in [1] and employed the pulsed
indirect TOF technique explained in the following paragraphs.

1.1 Principle of Operation

Pulsed I-TOF 3D imagers rely on the indirect measurement of the delay of a
reflected laser pulse to extract the distance information. Several integration win-
dows can be defined, leading to a number of integrated portions of the reflected
laser pulse: each window, properly delayed, can map a different distance range [2].

In particular, as depicted in Fig. 1, the principle of operation exploits the
integration of a ‘‘slice’’ of the reflected pulse during a temporal window (W1),
whose beginning determines the spatial offset of the measurement. So, the more
the laser pulse is delayed (the farther the object), the larger will be the integrated
value. Since the pulse amplitude depends also on the object reflectivity and dis-
tance, the same measure must be done also with a window that allows complete
integration of the laser pulse (W0), for either near or far objects. Then the latter
value can be used to normalize the integral of the sliced pulse and to obtain a value
that is linearly correlated to the distance. Note that in W1 also the complementary
part of the pulse can be used, with similar results [3].

Fig. 1 Description of the
pulsed Time-Of-Flight
waveforms
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The removal of background light can be performed by changing the polarity of
the integration during the windows W0 and W1: the background contribution is
cancelled at the end of the integration.

The realization of a 3D frame is obtained by accumulation of several laser
pulses for each window in order to increase the signal-to-noise ratio of the inte-
grated voltage: for a given frame rate this number of accumulations is typically
limited by the specifications of the illuminator, which usually are lasers with a
maximum duty-cycle of about 0.1 %.

Ideally, if the laser pulse, of length Tp, is fired with no delays with respect to the
beginning of window W0, the following equation allows the distance measurement
to be extracted:

zTOF ¼
c � Tp

2
� VW1

VW0
¼ zmax �

VW1

VW0
ð1Þ

The maximum measurable distance zmax with two integration windows is
defined by the length of the pulse and requires a minimum delay between W0 and
W1 of Tp, while the length of the integration windows is at minimum equal to 2Tp

if the background subtraction is implemented.

1.2 Signal and Noise Analysis

The performance of an electronics-based pulsed I-TOF system can be theoretically
predicted; the considerations start from the power budget and optics: given a
power density Pd on a surface, the power hitting the pixel is obtained as follows:

Ppix ¼
soptApixFF

4F#2
Pd ð2Þ

where FF is the pixel fill-factor, Apix is the area, sopt is the optics transmission and
F# is the optics f-number.

While the background power density depends on the illumination level, the
reflected laser pulse amplitude depends on the reflectivity q, distance z and beam
divergence h; so, with the hypothesis that the laser beam projects the total power
Plaser on a square, the power density on the target can be expressed as:

Pdlaser ¼
q � Plaser

2z tan h=2ð Þ2
ð3Þ

Background and laser pulses contribute each other to the generated electrons:

N Tintð Þ ¼ QE kð Þ � Tint

hc=k
ð4Þ

where the wavelength k, quantum efficiency QE and integration time Tint may be
different for the two contributions. As already shown in (1), since the output
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voltage is obtained integrating on the same capacitance, the distance can be cal-
culated from the charge integrated during W0 and W1:

zTOF ¼ zmax �
QW2

QW1
ð5Þ

.
The background contributes ideally with zero charge to the total amplitude, so

for m accumulations the number of electrons Nlaser from eq. (4) gives:

QW0 ¼ mqNlaserðTpÞ ð6Þ

QW1 ¼
z

zmax

mqNlaserðTpÞ ð7Þ

These values are affected by the photon shot noise [4]; in particular, the
background contribution to the noise is not null and has an equivalent integration
time of 4Tp, obtaining:

rQW0 ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m qNlaserðTpÞ þ qNbgð4TpÞ
� �q

ð8Þ

rQW1 ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

z

zmax

qNlaserðTpÞ þ qNbgð4TpÞ
� �s

ð9Þ

Using the known formula for the ratio error propagation, the distance uncer-
tainty is obtained, taking into account only quantum noise of generated electrons:

rzTOF ¼ zmax

QW1

QW0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rQW0

QW0

� �2

þ rQW1

QW1

� �2
s

ð10Þ

This equation allows calculating the shot noise limit of a pulsed light I-TOF
imager, and also to evaluate the effect of the background light on the sensor
precision, assuming that the cancellation is perfect. However, electronics noise
typically dominates in this kind of 3D imager and cannot be neglected: on the
other hand, the electronics noise strongly depends on the actual implementation of
the sensor.

2 Case Study 1: 50 3 30-Pixel Array with Fully
Differential 3D Pixel

The sensor described in [1], called ‘‘3DEye’’, is a 3D image sensor of 50 9 30
pixels and implements a fully differential structure in the pixel to realize the
operations previously described in Fig. 1.
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2.1 Sensor Design

The 3DEye pixel can be described with the picture of Fig. 2. The input is provided
by two photodiodes, where one is active and receives the incoming light, while the
other is a blind dummy to keep the symmetry of the circuit.

Applying the results of the previous paragraph to the 3DEye pixel, the INT
signal determines the observation window allowing the photogenerated current to
be integrated onto the capacitors and the chopper at the input allows cancellation
of the background signal through integration of the input with alternating sign.

Due to the relatively large time between accumulations (a single accumulation
lasts only hundreds of nanoseconds), to avoid common mode drift at the input, as
well as undesired charge integration, the INT switches are opened and the RES
switches are closed. The RES switches are closed together with INT only once, at
the beginning of the accumulation.

The architecture of Fig. 2 has some clear advantages that can be summarized in
the following list:

• The circuit is simple and clean and is easy to analyze
• The fully-differential topology guarantees reliability and low offsets
• The background cancellation is very effective

On the other side, there are some drawbacks that must be considered before
scaling the architecture:

• The area used by the dummy photodiode is somehow ‘‘wasted’’
• The noise is quite high due to kTC that adds each accumulation
• The output swing is limited due to undesired charge sharing and injection

Fig. 2 Principle of operation
of the 3DEye pixel
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The data that will be used in the calculations is referred to the measurement
conditions of the 3DEye demonstrator and is summarized in Table 1.

2.1.1 Theoretical Limit

The graphs of Fig. 3 show the absolute and relative error of the measured distance,
with 32 accumulations, in the specific case 20 fps operation, with the data of
Table 1 and Eq. (10). Each chart presents the precision without background light,
and with 50 klx of background light. The integration of each component has been
considered to be respectively 4Tp, Tp, Tp�z/zmax, as stated before.

As it can be seen, the error increases with the distance due to the weakening of
the reflected laser pulse; moreover the background acts as a noise source, wors-
ening the performance.

2.2 Circuit Analysis

The main source of uncertainty in the circuit of Fig. 2 is the kTC noise of the
switches [5]. When a switch opens on a capacitor, it samples its thermal noise onto
that capacitor which results to be independent from the switch resistance and with
a standard deviation of HkT/C: to obtain the noise expression, each switch must be
considered individually.

The switches of the chopper exchange the sign four times each measurement,
but if this happens when the RES is active, their contribution is not added.

The reset switch acts during the initial reset sampling its noise on the inte-
gration capacitances, and during its opening before each accumulation. The total
noise at the output due to reset switch is:

Table 1 3DEye
measurement parameters

Parameter Value

Plaser 240 W
Tp 30 ns
hlaser 15 deg
F# 1.4
QE@klaser 0.2@900 nm
QE@kbg 0.3@550 nm
sopt 0.9
q 0.9
Apix 1600 lm2

FF 20 %
CINT 56 fF
CPD 160 fF

44 M. Perenzoni et al.



V2
kTC�RES ¼ 2

kT

CINT
þ 2m

C2
PD

C2
INT

kT

CPD

� �
¼ 2þ 4m

CPD

CINT

� �
kT

CINT
ð11Þ

The integration switches open twice per accumulation (laser and background),
and sample on one side onto the integration capacitances and on the other onto the
photodiodes; the latter is then cancelled by the RES switch. After the last accu-
mulation the INT switch remains closed while all the chopper switches open, in
such a way that it is possible to read-out the pixel. The final noise due to inte-
gration switch is:

V2
kTC�INT ¼ 2 2m� 1ð Þ kT

CINT
ð12Þ

Another contribution is the thermal noise of the operational amplifier that in the
same way of the kTC is sampled and added to the total output noise during each
release of the INT switch. So the fully-differential OTA noise (see [6]) can be
expressed as:

V2
OTA ¼ 2 2m� 1ð ÞCPD þ CINT

CINT

kT

CINT
ð13Þ

2.3 Measurements and Outlook

Using Eqs. (6) and (7) for the calculation of the integrated charge during the two
windows, Eqs. (8) and (9) for the shot noise, and Eqs. (11–13) for the electronics
noise, it is possible to obtain all the necessary data in the case of medium illu-
mination (50 lx or 0.073 W/m2, typical living room condition).

Fig. 3 Absolute and relative error with 32 accumulations (20 fps)
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At the same time, it is possible to measure and compare the actual and expected
values at different distances.

As it can be seen from Table 2, the noise amplitude due to the quantum nature
of electrons is lower than the electronics noise. Taking into account all noise
sources and using the formula for the error propagation, the predicted distance
uncertainty results in very good agreement with the measurements and shows a
large electronics noise contribution.

Example of the operation of the sensor in a 3D imaging system can be seen in
Fig. 4, where sensor output of a hand indicating number ‘‘3’’ in front of a reference
plane is shown. Both grayscale back-reflected light and color-coded 3D are given.

2.3.1 Improving the Sensor

The analytic tools developed in the last paragraphs allow prediction of future
improvements of the 3DEye architecture by exploiting scaling with deep submi-
cron technologies.

Table 2 Calculated and measured values for [1]

z = 1 m z = 2 m z = 3 m z = 4 m

VW0 1140 mV 284 mV 126 mV 71 mV
rVW0 1.35 mV 0.67 mV 0.45 mV 0.33 mV
VW1 153 mV 126 mV 84 mV 63 mV
rVW1 0.64 mV 0.45 mV 0.37 mV 0.32 mV
rVel 8.51 mV 8.51 mV 8.51 mV 8.51 mV
rzcalc 4 cm 15 cm 37 cm 73 cm
rzmeas 6 cm 20 cm 44 cm 82 cm

Fig. 4 Hand in both intensity and color-coded 3D mode captured with the 50 9 30-pixel fully-
differential sensor
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Starting with the optimistic hypothesis of the feasibility of the same electronics
in 30 lm pitch with 30 % fill factor, the new performances of the hypothetic
scaled sensor can be calculated, with enhanced range up to 7.5 m (50 ns laser
pulse).

In Fig. 5 the forecast of the performance limit is plotted against the distance: it
can be seen that the reduction of the pixel size strongly affects the precision.

With an integration capacitance CINT of 10 fF (for a 0.18 lm technology it is
almost the minimum that can be reliably implemented), and an estimated photo-
diode capacitance of 70 fF, also the electronics noise can be taken into account.
The integrated voltage and the shot noise in the case of medium illumination
(50 lx or 0.073 W/m2, typical living room condition) and for two different dis-
tances is shown in Table 3.

The obtained numbers tell that the improvements in fill-factor and integration
capacitance are not enough to compensate for the weaker signal. Therefore, it is
clear that a scaling of the pixel is only possible with a different architecture.

Fig. 5 Scaled pixel limits (240 W-50 ns pulse, 30 lm pitch, 30 % fill-factor, 32 accumulations)

Table 3 Voltages for the
scaled pixel

z = 4 m z = 6 m

VW0 140.2 mV 62.3 mV
rVW0 1.5 mV 1.0 mV
VW1 74.8 mV 49.9 mV
rVW1 1.1 mV 0.9 mV
rVel 29.2 mV 29.2 mV
rz 1.77 m 4.52 m
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3 Case Study 2: 160 3 120-Pixel Array
with Two-Stage Pixel

From the analysis of the previous paragraph, it becomes clear that the main point is
to reduce the electronics noise contribution. This can be achieved by pursuing
several objectives:

• Increase the number of accumulations, and speed-up the readout of the sensor
• Maximize the fill-factor and the gain of the integrator
• Perform pixel-level correlated double sampling (CDS) to remove reset noise

3.1 Sensor Design

In order to accumulate the integrated value, without repeatedly sampling and
summing noise on a small integration capacitance, the value must be transferred
from the integrator to an accumulator stage using a larger capacitance. Such a
circuit can be implemented in a single ended fashion, simplifying the complexity
and optimizing the SNR, and can also be used as a CDS to remove most of the
integrator’s noise contribution.

The resulting two-stage architecture can be seen in Fig. 6: the two stages have a
reset signal, and are connected by a switch network. The network operates in three
modes that are identified by the control signals:

• INT: the integrator is connected to C1 which is charged to VINT

• FWD: C1 is connected to the 2nd stage and summed to the value in C2

• BWD: C1 is connected to the 2nd stage and subtracted to the value in C2

To achieve the I-TOF behavior the phases should be arranged in such a way that
the difference between the end and start of the observation windows is calculated:
this can be done also including the CDS for the first stage.

Fig. 6 Schematic representing the two-stage 3D pixel
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As Fig. 7 shows, with proper arrangement of FWD and BWD it is possible to
perform a true CDS and background light removal: the waveforms can be repeated
without resetting the second stage, so accumulating the signal on VOUT. The result
is that only the portion of laser pulse that arrives between the first and second
falling edges of the INT signal is integrated and summed to the output.

Figure 8 shows the block schematic of the sensor architecture, which includes
logic for addressing, column amplifiers for fast sampling and readout, and driving
electronics for digital and analog signal distribution.

3.2 Circuit Analysis

The same noise analysis done on the fully-differential pixel can be performed for
the two-stage pixel. The contributions to be considered are the first and second
stage kTC noise, and the first and second stage OTA noise. Thanks to the CDS
operation, the first stage kTC noise is cancelled, so only the second stage kTC
noise is relevant. There are three terms in the second stage kTC noise:

Fig. 7 Waveforms for the in-pixel pulses accumulation

Fig. 8 Architecture of the 3D image sensor
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• one-shot sampling on C2 when resetting the second stage
• kTC due to INT opening on C1 capacitor, 4 times for each accumulation
• kTC due to FWD/BWD on the ‘‘-’’node of the OTA, 4 9 for each accumulation

The total kTC noise is then:

V2
kTC1 ¼ 0

V2
kTC2 ¼

kT

C2
þ 4m

C2
1

C2
2

kT

C1
þ 4m

kT

C2
¼ 1þ 4m 1þ C1

C2

� �� �
kT

C2

ð14Þ

As far as the OTA noise is of concern, in the first stage it is given by the OTA
noise sampled onto the C1 capacitor at the end of each INT signal, while the OTA
noise sampled during the reset is removed by the CDS. The equation takes into
account a single-input amplifier and the transfer function to the output C1/C2. The
second stage samples the OTA noise once during reset, then at FWD/BWD
opening, 4 times for each accumulation.

V2
OTA1 ¼ 4mkT

CPD þ CINT

CINT CINT þ C1ð Þ
C1

C2

� �2

V2
OTA2 ¼ 2 1þ 4mð ÞC1 þ C2

C2

kT

C2

ð15Þ

3.2.1 Two-Stage Pixel Simulation

The implementation of the pixel uses the following capacitances of CINT = 9.5 fF,
C1 = 65 fF, C2 = 130 fF, while the estimated photodiode capacitance, at 0.9 V
bias results CPD = 80 fF. A complete distance measurement simulation can be
carried out, with the conditions of Table 4, which refer to the final testbench for
the sensor.

Table 4 Parameters used for
simulation of measurement

Parameter Value

Plaser 250 W
Tp 50 ns
hlaser 15 deg
F# 1.4
QE@klaser 0.2@900 nm
QE@kbg 0.3@550 nm
sopt 0.9
q 0.9
Apix 846.8 lm2

FF 34 %
CINT 9.5 fF
CPD 80 fF
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Using the parameter of Table 4, together with the calculations at the beginning
of the chapter and Eqs. (14) and (15), it is possible to extract some performance
forecast. In Fig. 9 the calculated distance, compared with the ideal one, is plotted:
at small distances the higher number of accumulations saturates (W0 saturates
first), while the line has a smaller slope with respect to the ideal characteristics due
to the non-ideal response of the integrator in time. In Fig. 10 the precision of the
distance measurement is extracted.

3.3 Test Setup and Measurement Results

The sensor, implemented in a CMOS 0.18 lm technology, is visible in Fig. 11: a
detail of the pixels is shown in the inset.

The size of the chip is 5 9 5 mm2 and it contains 160 9 120 pixels with pitch
of 29.1 lm implementing the circuit of Fig. 6.

Fig. 9 Simulated distance with 16, 23, 64, 128 accumulations

Fig. 10 Simulated precision from calculated noise and simulated voltages
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3.3.1 Description of Setup

The camera board has to be mounted on an optical bench; the 905 nm laser source
is installed immediately above the optics to ensure good matching between
excitation and captured image, as visible in Fig. 12: it allows 50 ns-wide pulses at
a maximum duty-cycle of 0.1 %. Each of the three modules has a peak power of
75 W, for a total peak power of 225 W.

Fig. 11 Chip micrograph of
the 160 9 120-pixels 3D
sensor

Fig. 12 Photograph of the
setup on the optical bench
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A large panel white panel with estimated reflectivity of 40 % is used as a target
and placed in front of the camera-laser system.

3.3.2 Distance Measurements

The charts of Figs. 13 and 14 show the measured distance and the achievable
precision, respectively, for different number of accumulations. In particular, from
16 to 128 accumulations the frame rate results to be of 65.0 fps down to 27.8 fps,
with an average illuminator power from 26 to 89 mW.

The measurements compare well with the estimation of previous paragraphs,
taking into account the reduced reflectivity of the target employed in the experi-
mental conditions.

A scene showing a teddy bear and an apple, acquired averaging several frames
for a total acquisition time of 7 s, is shown in Fig. 15.

Fig. 13 Measured distance for 16, 32, 64, 128 accumulations

Fig. 14 Measured precision for 16, 32, 64, 128 accumulations
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4 Correlation I-TOF 3D Imaging Method

The time of flight correlation method implies that an optical signal with phase
shifted rectangular sequence modulation illuminates the scenery, whereby a small
part of it reflects back to the sensor. The backscattered light is subsequently in each
pixel correlated with internally generated signal, which is also of rectangular shape
but with fixed phase. The correlation function of these two (presumably rectan-
gular) signals is of a triangular shape, formed by N discrete phase steps that are
applied to the illumination source. Due to the usage of digital devices for the signal
generation, it makes sense for N to be a power of two, and is here chosen to be
N = 16. The continuous-time correlation function is now defined as

CF sð Þ ¼
Z

sREC tð ÞsCLK t þ sð Þdt ð16Þ

where sREC represents received optical power, and sCLK internal generated signal.
In order to sample the correlation triangle at N points, the phase of the modulation
signal that controls the light source is shifted throughout equally spaced phase

steps so that sMOD tð Þ ¼ sCLK t � n
NfMOD

	 

with n as a phase step counter. The cor-

relation process (multiplication and integration) is performed in each pixel sepa-
rately and will be discussed in detail in the next section.

For the calculation of the distance information, the phase displacement infor-
mation uTOF is essential. The extraction of uTOF is done by applying a discrete
Fourier transform (DFT) on the correlation triangle and recovering thereby the
phase of the fundamental wave. Figure 16 depicts the control signal timings as well
as the differential pixel output DVOUT, which is the correlation triangle function.

The corresponding fundamental wave of the correlation triangle is sketched
additionally. All control signals shown in Fig. 16 are generated and controlled by
means of an FPGA and applied to the illumination source and to the sensor as
shown in Fig. 17. Each phase step begins with a reset for providing the same initial

Fig. 15 Scene composed by
teddy bear, apple and
background at different
distances
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conditions prior to every integration process. After the reset process is completed,
an integration interval takes place defining the differential voltage. Eventually, a
read cycle is applied for the read out purpose. The corresponding phase step output

reset
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Fig. 16 Signal timing with corresponding pixel output of a complete correlation triangle and one
phase step in detail
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voltage of the sensor is thereby only applied to the output during the read cycle.
An additional control signal (refresh) that eliminates the extraneous light contri-
butions interrupts the integration process after every 1.6 ls consequently provid-
ing initial common mode voltages (see pixel output signals in Fig. 16).

4.1 Sensors Architecture

The full optical distance measurement system consists of three main components,
which are located on separated PCBs: the sensor itself as an optoelectronic inte-
grated circuit (OEIC); the illumination source, which is implemented as a red laser
for single pixel characterisation and as a LED source for full sensor character-
isation; and an FPGA PCB for control and signal processing. Figure 17 shows a
block diagram of these units and the interconnection setup. As mentioned in the
previous section, the sent optical signal must undergo a phase shift of 16 phase
steps in order to obtain a correlation triangle, whereby, the signal that is applied to
the correlation circuit in each pixel remains the same for all 16 phase steps.
Previous results based on this approach used a bridge correlator circuit that served
for the background light extinction (BGLX) as reported in [7] or an operational
amplifier in [8]. Both designs suffered from relatively high power consumption and
in the later approach also large pixel area, amounting to 109 9 241 lm2. In the
following, a radical improvement in terms of background light suppression
capability, as well as power consumption will be presented.

This section describes two TOF pixel sensors reported in [9] and [10] with
different implementations of BGLX techniques. The first approach, consisting of
2 9 32 pixels configured in a dual line architecture, is described in Sect. 5. In Sect.
6, another technique for BGLX comprising 16 9 16 pixel array is shown. Both
sensors are fabricated in a 0.6 lm BiCMOS technology including photodiodes
with anti-reflection coating. However, in both chips only CMOS devices are
exploited for the circuit design.

4.2 Signal and Noise Analysis

The received optical signal is converted by the photodiode into a photocurrent in
the TOF sensor. The hereby generated current IMOD is a function of the photo-
diode’s responsivity R and the light power Ppix of the received optical signal. The
relationship between the received light power Ppix at the pixel and the transmitted
light power Plaser is

Ppix

Plaser
/ q

w2

F#2z2
TOF

FF ð17Þ
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taking into account that any atmospheric attenuation was neglected. In Eq. (17) q
is the reflection property of the target, w is the edge length of the squared pixels,
zTOF is the distance between pixel and object and FF is the optical pixel fill factor.
Considering that a responsivity R amounts to 0.33 A/W at 850 nm and received
light power Ppix is in the nanowatts range, a photocurrent IMOD in the nanoampere
range can be expected. This current is accompanied by the photon noise current

iMOD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qIMOD=TD

p
, where q is the electron charge and TD is the effective inte-

gration time in a complete correlation triangle covering all 16 phase steps. The
noise current IMOD is the limiting factor of optical systems which is caused by
photon noise [11]. Further noise components based on background light iBGL, bias
current i0, A/D-conversation iA/D, switching process during correlation (kT/C) ikT/C

and other electrical noise contributions iEL like output buffer noise, substrate noise,
power supply noise, can be transferred to the input of the circuit. At the cathode of
the photodiode DPD a signal-to-noise ratio (SNR) of a single correlation triangle
SNRD can be given by

SNRD ¼
I2
MOD

i2
MOD þ i2

BGL þ i20 þ i2
A=D þ i2kT=C þ i2

EL

� I2
MOD

i20 þ i2kT=C

ð18Þ

The dominating parts of the upper equation are the kT/C-noise and the noise
current due to the bias which is expected to be in the same order of magnitude as the
switching noise. The measurement accuracy is primarily determined by the bias
current I0, since this current is about 5 to 10 times higher than the current due to
background light illumination IBGL. It should be noted that Eq. (18) is an implicit
function of the total time spent for integration TD behind the noise components.
However, this equation is absolutely independent of the number of the phase steps
within TD. The standard deviation for distance measurements is given by

rzTOF ¼
ffiffiffiffiffiffi
2p
p

32
c0

fMOD

1ffiffiffiffiffiffiffiffiffiffiffiffi
SNRD
p ð19Þ

This equation is based on SNRD as the characteristic number for the influence
of stochastic sources of errors. For non-perfect rectangular modulation the pre-
factor in Eq. (19) is not valid and has to be adapted. By means of this equation
measurement accuracy at a certain distance can be predicted in advance.

5 Case Study 3: 2 3 32 Dual-Line TOF Sensor

In this subsection a dual line TOF sensor with a 2 9 32 pixel array and a total chip
area of 6.5 mm2 (see Fig. 18) is presented. Additional parts like output buffers for
driving the measurement equipment, a logic unit for processing the smart bus
signals and a phase-locked-loop (PLL) based ring-oscillator for optional genera-
tion of the shifted modulation signals on-chip in combination with a 50 X-driver
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dedicated to drive the illumination source, are included in the chip. The required
signals for the chip can be internally generated by the PLL or in an FPGA. The
main drawback of using the internally generated signals is that substrate and power
supply noise affect the performance of the sensor. Each pixel covers an area of
109 9 158 lm2 including an optical active area size of 100 9 100 lm2, which
results in an fill-factor of *58 %. The pixel consumes 100 lA at a supply voltage
of 5 V, whereby, the internal OPA dominates the pixel power consumption. The
power consumption of the whole chip is nearly 80 mW, whereof 92 % are used by
the output buffers and the on-chip phase generator.

5.1 Sensor Circuit

The circuit of a single pixel used in the dual line sensor is shown in Fig. 19. It
features fully differential correlation according to the underlying double-correlator
concept presented in [12]. The received photocurrent IPH is directed through
transistors T1 and T2 to the corresponding integration capacitors CI1 and CI2.
Dummy transistors T1d and T2d were added in the path to compensate charge
which is injected during the integration interval. Two memory capacitors CM1 and
CM2 with the transistors T3–T9 form the circuit part for the BGLX. The BGLX
process is controlled by the bglx signal, which is deduced from the refresh signal.
During the read process the voltages at the integration capacitors CI1 and CI2 are
buffered to the output by activating the select signal. Afterwards, throughout the
readout process, the OPA output voltage has to be defined. This is done by transistor
T10 and a XNOR logic gate. Transistor T10 and the XNOR are also used during the

Fig. 18 Chip micrograph of the 2 9 32 pixel sensor
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reset cycle, where they provide a short to the integration capacitors. The 2-stage
OPA has to provide an output swing of ±1.5 V with a fast slew rate for regulating
the cathode voltage of the photodiode DPD according to VPD at the positive input. A
gain of 68 dB and a transit frequency of 100 MHz of the OPA are adequate for
achieving the requested regulation.

Before starting with the integration, a reset is applied to the circuit by forcing
U1 and U2 to high and bglx to low. Thereby CI1 and CM1 as well as CI2 and CM2 are
cleared via T1–T6 in combination with activating T9 and T10. After the circuit
reset is performed, the accumulation of the photocurrent IPH starts by setting
U1 = U2 and bglx to high. Depending on the level of U1 and U2 and thus on the
modulation clock, the photogenerated current is collected either in CI1 or CI2. The
two memory capacitors CM1 and CM2 are switched during the integration in par-
allel. Hence, the half of photogenerated charge is stored in them, presupposing that
all four capacitors are of the same size. Thereby the integrated photocurrent IPH

consists of two parts due to intrinsic modulated light IMOD and the background
light IBGL. The charge stored in each memory capacitor is (IBGL ? IMOD)/2, while
the charge stored in CI1 and CI2 is an identical amount of IBGL/2 and the portion of
IMOD due to the correlation.

BGLX technique is necessary since the current due to background light IBGL is
in the lA range for light conditions of around 100 klx and thus more than 1000
times larger than the part of the modulated light IMOD, which is in the nA or even
pA range. The BGLX process is provided in periodic refresh intervals during one
system clock period. Thereby the bglx signal is set to low, while the modulation
signals U1 and U2 continue with operation as during the integration period. The
common node of DPD, CM1 and CM2 is connected to VPD due to the low state of the
bglx signal. As in the integration phase transistors T1 and T2 continue passing the
photocurrent to the integration capacitors CI1 and CI2 during the half-cycles.
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Additionally transistors T3 and T4 are controlled with the same clock like T1 and
T2. The load of the capacitors CM1 and CM2 is sensed by the OPA through the
low-ohmic switching transistors T5 and T6. Afterwards the OPA compensates
with ICOMP for the charge applied to its differential input. This process leads to
subtraction of charges due to ambient light in the integration capacitors CI1 and
CI2. Since each memory capacitor is loaded with a charge proportional to IBGL/
2 ? IMOD/2, only a part originating from IMOD/2 is subtracted from the integration
capacitors. This involves a common-mode-corrected integration at both capacitors
after each BGLX cycle, enabling a background light suppression up to 150 klx.

5.2 Test Setup and Measurement Results

As depicted in Fig. 17 the setup for characterizing the sensor performance consists
of three components. The illumination PCB is mounted on a small aluminium
breadboard in front of the PCB carrying the TOF sensor. For the dual line pixel
sensor a 1-inch lens with a focal length of 16 mm and an F number of 1.4 was
used. Since a strong background light source for illuminating a complete sensor’s
field of view up to 150 klx was not available, single pixel measurements were
done for characterizing the pixel under high background light conditions. In this
case a collimated light from a red laser at 650 nm with an average optical output
power of 1 mW was employed as an illumination source. Furthermore the usage of
a laser spot illumination would be of advantage due to a high modulation band-
width of the laser diode. The applied modulation frequency was fMOD = 10 MHz,
leading to a non-ambiguity range of 15 m. For measurements with the dual line
TOF pixel sensor a field of illumination according to the sensor’s field of view
(FOV) is necessary. Therefore, a laminar illuminated FOV is provided by a
modulated LED source with a total optical power of nearly 900 mW at 850 nm.
The LED source consists of four high-power LED devices of type SFH4230 in
combination with 6� collimator lenses each, whereby each LED is supplied with
1 A at 10 MHz and emits an optical power of 220 mW. Each LED has its own
driver circuit, consisting of a buffer which drives the capacitive load of the gate of
an NMOS switching transistor with a low on-resistance and a serial resistance for
operating point stabilisation. Due to the angular field of illumination, this illu-
mination source has a lower light power compared to the laser spot illumination
source used for the characterisation of a single pixel. By means of the 6� colli-
mator lenses an optical power density of 8 W/m2 is achieved at a distance of 1 m.
Therefore, eye safety conditions are achieved for distances d [ 10 cm. A circular
cut-out between the LED pairs was made for mounting a lens system along the
optical axis. Furthermore, a 50 X terminated differential input converts the mod-
ulation clock to a single-ended signal for the level converter, which provides the
signal for the following LED driver circuit. The modulation clock for the illu-
mination source is provided by the FPGA.
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As an object, a 10 9 10 cm2 non-cooperative white paper target with about
90 % reflectivity was used for characterization in single-pixel measurements.
Thereby the target was moved by a motorized trolley with a linear range of 0.1 to
3.2 m. The upper range is limited by the laboratory room and thus the length of the
linear axis. For characterizing the dual line TOF pixel sensor a moving white paper
target and a laboratory scenery where used, respectively. The robustness to
extraneous light was verified by a cold-light source with a colour temperature of
3200 K that illuminated the white paper target with up to 150 klx. After the
digitalization of the correlation triangle the digitalized data pass the DFT-block in
the FPGA, whereby the amplitude and phase of the fundamental wave are
extracted. Once the phase acquisition is done, the distance can be calculated
presupposing known measurement conditions as explained in [12].

5.2.1 Single Pixel Characterization

For characterizing a single pixel, measurements with 100 measured distance points
are recorded at a step size of 10 cm, while the measurement time for a single point
was 50 ms. The collected data were analysed and the standard deviation rzTOF as
well as the linearity error elin were obtained. Figure 20a depicts the results of these
measurements. The accuracy is deformed in the near field due to defocusing of the
sensor. Excluding this region, a standard deviation of a few centimetres and a
linearity error within ±1 cm is characteristic for this measurement range. The
impact of background light, which leads to an about 1000 times larger photo-
current compared to the photocurrent due to the modulation light is depicted in
Fig. 20b for measurements at a distance of 1 m. In this figure Dz is the relative
displacement. The best result Dz = 10 cm for 150 klx is achieved by setting the
BGLX period to 0.4 ls as depicted in the figure. Here, it should be again men-
tioned that no optical filters where used to supress the undesired light.
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Fig. 20 Measurement results for the 2 9 32 sensor. a Error analysis of single pixel distance
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5.2.2 Dual Line Sensor Array Characterization

For the measurements of the multi pixel sensor the illumination source described
in the corresponding section was used. The measurements show a standard devi-
ation which is about 3.5 times higher than the single pixel results with the red laser
as a direct consequence of lower reception power. Furthermore the linearity error
also increases within a range of ±2 cm. Measurement results with the 2 9 32
pixel sensor are illustrated in Fig. 21, whereby the 10 9 10 cm2 white paper target
was moved back out of the sensor axis. For each position 100 records are sampled,
whereby a total measurement time of 50 ms was used for each point. In this
depiction, pixels with amplitudes below 1 mV were masked out. The amplitude
value at a distance of 3.5 m corresponds to a current IMOD = 23 pA.

6 Case Study 4: 16 3 16 Pixel Array TOF Sensor Design

In this subsection a 16 9 16 TOF sensor is presented. A micrograph of the chip is
shown in Fig. 22. The sensor is based on another approach that can supress
150 klx, as well as the approach presented before. The whole chip covers an area
of about 10 mm2, whereby a single pixel consisting of the photodiode and the
readout circuitry has a size of 125 9 125 lm2 and an optical fill factor of *66 %.
Furthermore, some pixel logic, a reference pixel and a 12-bit analogue-to-digital
converter are included in the chip. The A/D converter can be used for readout with
1 MS/s. The offset problem due to propagation delay of signals in the measure-
ment setup can be fixed by means of the reference pixel, which is located outside
the array. All 256 ? 1 pixels are addressed by the select line. Thereby the readout
mechanism is managed by a shift register, which is clocked by the select signal.
This signal passes a ‘‘1’’ from pixel column to pixel column [13]. For digitalizing,
the output voltage can be either converted by using the built-in ADC or by means
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of an external ADC. Since no OPA is used for BGLX, the consumed current per
pixel is 50 times smaller compared to the 2 9 32 pixel sensor presented above,
amounting to only 2 lA at a supply voltage of 5 V. A disadvantage of the low
current consumption is a decreased bandwidth of the pixel circuit. However, the
bandwidth is still high enough to meet the TOF requirements at 10 MHz square-
wave modulation.

6.1 Sensor Circuit

Figure 23 depicts the single pixel circuit. The pixel performs the correlation
operation, which implies, similarly as in the first approach, a reset at the beginning
of each phase step, an integration interval of several fundamental clock cycles
afterwards, and readout at the end. The generated photocurrent from the photo-
diode DPD is directed through transistors T6 and T7 to the integration capacitors C1

and C2. Both mentioned transistors are switched by the modulating clock signals
U1 and U2 while the refresh signal is at low level. During the integration, a refresh
process occurs periodically for removing the background light contribution that is
stored onto capacitors C1 and C2. After 95 ls of repeated interchange of corre-
lating integration and refresh activities, the differential voltages DVOUT is read out.
Thereby, the read signal forces U1 and U2 to ground which leads in directing IPH

over T5. With the pixel’s select signal the output buffers are enabled and the
differential output voltage DVOUT is traced. During the integration process, tran-
sistors T10 and T11 regulate the voltage at the cathode of the photodiode to a
constant value, suppressing thereby the influence of the photodiode capacitance
CPD. Transistor T10 needs to be biased with I0 = 1 lA to ensure a sufficiently

Fig. 22 Chip micrograph of the 16 9 16 pixel sensor
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large regulation bandwidth of 100 MHz for the 10 MHz square-wave modulation
signals. This current is supplied by an in-pixel current source and mirrored by the
transistors T11–T13. Since the current is mirrored, another 1 lA is drawn by the
amplifying transistor T11 so that in total the pixel consumption can be kept at, as
low as, 2 lA.

The BGLX operation is in this circuit ensured with the refresh signal. After
some integration cycles refresh is activated to process the background light
extinction. In addition to it, U1 and U2 are forced to ground. As a consequence, the
transistor pairs T1 and T2 as well as T6 and T7 are switched in the high-ohmic
region and isolate the integration capacitors. The still generated photocurrent IPH is
thereby bypassed over transistor T5. Transistors T3 and T4 force an anti-parallel
connection of the integration capacitors due to the high state of the refresh signal,
as described in [14]. Hence, the charge caused by background light is extinguished
while keeping the differential information in each capacitor, which is depicted in
Fig. 16. The refresh time interval is in this approach only half of a clock cycle of
the double line sensor approach described earlier. After the background light
extinction process the reset signal is forced to the low level and the integration can
be continued.

6.2 Test Setup and Measurement Results

The test setup for the single pixel sensor was the same as presented already in Sect.
5.2. Also the test setup for the 16 9 16 TOF pixel array sensor was nearly the
same as for the dual line TOF pixel sensor. The only difference was in the used
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lens for the light collection. Here, a commercial aspheric 0.5-inch lens with a focal
ratio F & 1 was used. The lens’ focal length of 10 mm guarantees a blur free
picture over the total measurement range from 0 to 3.2 m. Furthermore, for
characterizing the 16 9 16 TOF pixel array sensor a laboratory scenery was used.

6.2.1 Single Pixel Characterization

Similarly as by the dual line pixel sensor, a single pixel characterization for the
16 9 16 array sensor was performed, exploiting the same 10 9 10 cm2 white
paper target under the same measurement conditions (100 measurements at each
step and 10 cm steps). The results are depicted in Fig. 24a. A standard deviation
rzTOF is below 1 cm up to 1 m and below 5 cm up to 3 m while the linearity error
elin remains within –1/+2-cm band. The influence of background light at a distance
of 1.5 m is depicted in Fig. 24b, achieving a displacement of Dz = 5 cm for
background light of 100 klx and Dz = 15 cm for background light of 150 klx. The
increase of Dz can be explained by a shift of the pixel’s operating point due to the
BGL-induced photocurrent.

6.2.2 Pixel Sensor Array Characterization

Laboratory scenery consisting of a black metal ring (at 0.4 m), a blue pen (at
0.6 m), a blue paper box (at 1.3 m) and the right arm of the depicted person which is
wearing a red pullover at a distance of 2.2 m has been captured. Figure 25 clearly
shows the 3D plot of this scenery and the colour coded distance information. The
sensor chip is able to provide range images in real-time with 16 frames per second.
Rough information about background light conditions can be extracted out of the
common-mode information in the output signal, which could be used for correcting
the effects on distance measurements in future implementations.
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7 Discussion and Comparison

In this chapter, two techniques for the implementation of indirect Time-Of-Flight
imaging sensors have been described in detail. Both methods adapt well to
implementations making extensive use of electronics inside the pixel to perform
extraction of the 3D information.

While the pulsed method allows obtaining a simple way to extract the 3D
image, with a minimum of two windows measurement, the correlation method
balances the need for more acquisitions and complex processing with a higher
linearity of the distance characteristics. At the same time, the pulsed technique can
perform background removal few hundreds of nanoseconds after light integration,
while the correlation method performs the operation after several integration
cycles, which may introduce bigger errors in case of bright moving objects. Both
techniques allow achieving a very good rejection to background light signal, up to
the value of 150 klux measured for the correlation method, which is a fundamental
advantage of electronics-based 3D sensors.

Implementations of imaging sensors for both methods demonstrate the potential
of the techniques to obtain moderate array resolutions, from 16 9 16 pixels up to
160 9 120 pixels at minimum pixel pitch of 29.1 lm. In all implementations,
efforts in the optimization of electronics can bring to satisfactory fill-factors, and
power consumption down to 2 lA per pixel in the case of the correlation-based
pixel array. Integrated circuits are designed using different technologies without
any special option, thus making this an attractive point for these techniques: no
special process optimizations are needed, allowing easy scaling and porting of the
circuits to the technology of choice.

Looking at the 3D camera system point of view, pulsed TOF requires the use of
laser illuminator due to the high required power of the single pulse, while the
correlation method has a relaxed requirement which allows the use of LEDs with a
lower peak power. On the contrary, pulsed laser allows better signal-to-noise ratio
thanks to the strong signal, while using modulated LEDs the signal amplitude
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becomes a very critical point, thus settling pixel pitch on 109 lm for the linear
sensor and 125 lm for the array sensor. Anyway, both systems assess the average
illuminator power requirements on similar orders of magnitude, and in such
conditions both easily reach distance precision in the centimetres range.

The trend of electronics-based 3D sensors follows the reduction of pixel pitch
and increase of resolution: it is likely to happen that these types of sensors will find
applications where their strong points are needed, such as high operating frame-
rate and high background suppression capability. Still several improvements can
be done, like parallelization of acquisition phases and optimization of the circuit
area occupation, which can bring to better distance precision. Therefore, appli-
cations in the field of robotics, production control, safety and surveillance can be
envisaged, and future improvements could further enlarge this list.
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Sensors Based on In-Pixel Photo-
Mixing Devices

Lucio Pancheri and David Stoppa

1 Introduction

The first Time-Of-Flight (TOF) 3D scanning systems were realized in the 1970s
for military and space applications [1]. Both pulsed operation and CW modulation,
either AM or FM, were used. Scanning systems have steadily improved in the
following decades [2–4], evolving into commercial products for 3D metrology and
modelling applications, although their cost remains high due to the requirements of
the scanning mechanics.

The first technology enabling the realization of a scannerless range camera
based on (TOF) principle is modulated image intensifier [5, 6], offering both high
resolution and sub-mm precision at video rates. The cost of this technology,
however, prevents this concept to be used in consumer applications.

A breakthrough in the field of 3D vision was observed with the introduction of
devices capable of performing simultaneously light detection and demodulation.
This class of detectors perform high frequency signal demodulation directly in the
charge domain through semiconductor potential modulation, avoiding complex in-
pixel mixing electronics. In this way, a very compact pixel layout can be obtained.
The first successful charge demodulators were fabricated in CCD/CMOS tech-
nologies and presented in the 90s with the names of lock-in pixels or Photonic
Mixing Devices (PMD) [7–9].

Although the first versions of demodulating devices were based on photogates,
and thus required specialized CMOS/CCD technologies, other detector designs
compatible with standard CMOS or CIS technologies have been presented in the
last years, opening the way to the extension of the demodulation pixel principle to
more advanced technology nodes [10–12]. In addition, two alternative
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demodulation pixel concepts have successively been developed. The first one
makes use of standard photodiodes coupled with switched-capacitor in-pixel
electronics [13–15], while the second one exploits gated Single-Photon Avalanche
Diodes [16, 17]. Although promising, the development of these last two approa-
ches has not yet lead to commercial products. In fact, all the TOF 3D cameras
currently on the market are based on charge-domain demodulation detectors
approach [18].

The general principle of operation of monolithic TOF sensors based on charge-
domain demodulation pixels will be illustrated in Sect. 2. The basic device
structures starting from simple photogate demodulators to devices implemented in
deep submicron and imaging technologies will be reviewed in Sect. 3, while pixel
architectures will be covered in Sect. 4.

2 Basic Principle of Operation

In an Indirect TOF camera, each pixel independently performs homodyne
demodulation of the received optical signal, and is therefore capable of measuring
both its phase delay and amplitude. This kind of pixels are often referred to as
demodulation pixels [19], correlating pixels [9] or lock-in pixels [7]. In this sec-
tion, the general operation of a demodulation pixel will be illustrated, without
entering the detail of the device physical structure.

An electro-optical demodulation pixel performs the following functions:

(a) Light detection
(b) Fast shutter or correlation
(c) Charge storage for multiple accumulations

An ideal correlating pixel can be modeled with a photo-current generator, a
charge-flux control gate and a storage capacitor CS, as shown in Fig. 1. If p(t) is
the optical power incident on the pixel and g(t) is the transfer function of the
control gate, the correlation function between p(t) and g(t) is defined by

cðsÞ ¼ lim
T!1

1
T

Z T

0
pðtÞgðt þ sÞdt; ð1Þ

where s is the time delay between p(t) and g(t).
The output voltage on the storage capacitor after an integration time Tint is

given by:

VðsÞ ¼ R

CS

Z Tint

0
pðtÞgðt þ sÞdt ¼ R � Tint

CS
cðsÞ ð2Þ

where R is the detector responsivity. The pixel output voltage V(s) is therefore
proportional to the correlation function c(s) as defined in Eq. 1.
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While in general g(t) can be a complex non-linear function of time, in most
practical cases the control gate can be modeled as a fast shutter, and g(t) can be
ideally described with a square wave switching between 0, when the charge is not
integrated by the capacitor, and 1, when all the photo-charge is transferred to the
capacitor. For a real device, the shutter efficiency is lower than 100 % and is a
function of wavelength, frequency and angle of incidence of light on the detector
[20]. Therefore, in general g(t) can range from a minimum value gmin to a max-
imum value gmax, and the non-ideality can be described with the detector
demodulation contrast vD, defined as

vD ¼
gmax � gmin

gmax þ gmin

; ð3Þ

The optical power as a function of time p(t) can often be modeled as a sine-
wave in a first approximation. The presence of higher-order harmonic components
causes a measurement linearity distortion which needs to be corrected for an
accurate result. The modulation depth vM of the light source, defined as the ratio
between amplitude and offset, affects the measurement precision and must be
taken into account. In fact, at the frequencies used in TOF cameras, which are in
the tens of MHz range, it is difficult to modulate a high-power emitter with 100 %
modulation depth.

The correlation function c(s) between sine-wave optical signal p(t) and square-
wave gating function g(t) is a sine wave function having amplitude A, offset B and
a phase delay u proportional to the time delay of the received optical signal, as
shown in Fig. 2.

The overall demodulation contrast v, defined as the ratio between amplitude A
and offset B, measures the demodulation performance of the entire system
including the illumination unit. In addition to the effects of detector, described by
vD, and light source modulation depth vM, v depends also on the ratio between
sampling time and modulation period T. This effect, referred to as natural sampling

Fig. 1 Schematic illustration
of a demodulation pixel
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[21], can be taken into account with an additional term vS. If the sampling time is
much smaller than T, vS approaches 1 while with a sampling time of T/4 and T/2,
which are more used in practice, vS is reduced to 0.9 and 0.64, respectively [21, 22].
The overall demodulation contrast v of the system can be expressed as

v ¼ vDvSð ÞvM ¼ vPvM: ð4Þ

The pixel demodulation contrast vP, which combines detector and sampling-
related contrast terms, can be used as a figure of merit to quantify the pixel
demodulation performance independently from the used light source.

The simplest approach to retrieve the phase delay of the optical signal consists
in sampling the correlation function at four quadrant phase values (0�, 90�, 180�
and 270�), as illustrated in Fig. 2. Using the four sampled values A1-A4 it is
possible to calculate phase delay u, amplitude A and offset B according to the
following equations [23]:

u ¼ arctan
A1 � A3

A2 � A4

� �
: ð5Þ

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 � A3ð Þ2þ A2 � A4ð Þ2

q

2
ð6Þ

B ¼ A1 þ A2 þ A3 þ A4

4
ð7Þ

A pixel with four shutters feeding four charge storage nodes allows the simul-
taneous acquisition of the four samples needed for the calculations in Eqs. 5, 6 and
7. The simplified schematic and the operation of a four-tap pixel are shown in
Fig. 3. The light detection function is represented by a photo-current generator,
where the current Iph is proportional to the incident optical signal p(t) through the
responsivity R. The four shutters are activated one at a time for a time equal to T/4,

Fig. 2 Schematic illustration of the correlation function evaluation by 4-sample acquisition
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and the shutter activation sequence is repeated for the whole integration time, which
usually includes hundreds of thousands modulation periods.

A more commonly used structure in TOF cameras is the symmetric two-tap
pixel, illustrated in Fig. 4. This pixel has only two shutters and two storage
capacitors. Although with this configuration a compact pixel layout can be
obtained, there are some drawbacks: in order to acquire the four samples required
for phase calculation, two measurements have to be done: the first one to sample
A1 and A3, and the second one for A2 and A4. Moreover, if background illumi-
nation is changing or the observed scene is moving during the acquisition, the
measurement will be affected by motion artifacts.

An even simpler pixel can be obtained by removing one of the storage
capacitance from the two-tap pixel and draining the corresponding charge out of
the pixel. In this way, however, four measurements are necessary for phase cal-
culation, thus reducing the overall frame rate and further increasing the problems
of motion artifacts.

Although we have so far considered only the case of a sine-wave modulated
illumination light, other solutions have been considered in the literature. Pulsed
operation with low duty cycle can be conveniently employed to reduce the effect
of ambient light [10]. Pseudo-noise modulation can be used to extend the non-
ambiguous operation range [24] and in case of simultaneous operation of multiple
cameras, to avoid interference between different systems [25].

Fig. 3 Four-tap demodulation pixel operation principle and schematic diagram

Fig. 4 Two-tap symmetric demodulation pixel operation principle and schematic diagram
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While the most common transfer scheme can be represented with a two-valued
transfer function g(t), in some cases g(t) can be sine-wave modulated, and the pixel
is working as a sine-wave mixer [26]. This operation leads to a good measurement
linearity, although the theoretical demodulation contrast that can be obtained in
this case is smaller than for shutter operation.

In the next section, several types of demodulation pixels presented so far will be
reviewed. Where possible, the main characteristics such as demodulation contrast,
bandwidth, pixel size and fill factor, will be given, in order to give an idea of the
quality of the device.

3 Charge-Domain Electro-Optical Demodulators

3.1 Basic Gate-Based Demodulators

The first demodulation pixels were developed in the 90s at PSI (Zürich, CH) [7],
Carnegie Mellon University (Pittsburgh, US) [8] and University of Siegen (Siegen,
DE) [9]. In all these works, the pixels were implemented in CMOS-CCD tech-
nologies, exploiting the fast charge transfer between CCD gates to obtain optical
signal demodulation in the charge domain.

Although different gate topologies and pixel configurations have been proposed
in subsequent works, two basic structures can be identified: namely the central-
gate and the two-gate demodulator, which are shown in Fig. 5.

The central-gate demodulator consists of a photo-sensitive gate and two or
more lateral transfer gates. In the earlier versions [7, 8] only the central gate is
illuminated, while the lateral gates are covered with a metal shield. This structure

Fig. 5 Cross-section and potential profile of (a) central-gate demodulator with integration and
transfer gates (b) two-gate demodulator
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is shown in Fig. 5a, where two charge integration gates IG1 and IG2 and two
output gates OG1 and OG2 are also present.

The potential profile is shown in Fig. 5a, when the voltage at transfer gate TG1

is low and the voltage at TG2 is high. Thanks to the potential energy gradient,
electrons are collected by IG2, while the electron flow can be directed towards IG1

by inverting the transfer gates voltages.
The electrons at the border of the central gate are driven towards the integration

nodes by drift due to the presence of a fringing field [20], while electrons far from
the active transfer gate, where the lateral electric field is absent, move mainly by
diffusion. The transfer time therefore increases with the size of the central gate: a
small central electrode is thus needed in order to obtain a large demodulation
bandwidth [20]. On the other hand, a smaller central gate determines a lower pixel
fill factor and thus a lower sensitivity. A tradeoff between sensitivity and band-
width is therefore present for this pixel.

Although the first demodulating pixels were fabricated using surface-channel
CCD gates, successive designs have switched to buried channel CCD/CMOS
processes. The presence of a buried channel enables a faster charge transfer due to
the larger fringing field extension with respect to a surface-channel CCD [20].

Pixel design based on central gate demodulators having four transfer gates have
also been proposed in [7, 27]. With this configuration, pixel-level sampling and
storage of the correlation function at four quadrant phases is possible. The four-
gate pixels presented so far feature a small fill factor, due to the area occupation of
the additional gates and readout electronics. Moreover, before the phase delay is
calculated using Eq. 5, a calibration needs to be performed to correct the gain non-
uniformity due to geometrical mismatches [7].

Several modified versions of the central-gate pixel, fabricated in CMOS/CCD
technologies, have been presented. A compact version featuring two transfer gates,
but only an integration gate and an output gate was conveniently employed to
realize one of the first TOF 3D camera prototypes [21]. In this pixel, one of the
transfer gates is connected to the integration gate, while the other is used to
transfer the charge to a draining diffusion. A 64 x 25 pixel sensor was implemented
in a 2.0 lm CMOS/CCD process, with a 65 x 21 lm pixel size, a fill factor larger
than 20 % and a 25 % demodulation contrast at 20 MHz in the near infrared. In
this last implementation, the fill factor was enhanced by extending the illuminated
region to the transfer gates, at the expense of a reduction of the detector
demodulation contrast, which can be at most 67 % [21]. Moreover, the camera
needs to acquire 4 successive 2D images to compute a 3D image.

The two-gate demodulator, known as Photonic Mixing Device (PMD) from the
original works published in the late 90s [9], is a symmetric device with two equal
polysilicon gates which are both illuminated and modulated. The photo-generated
electrons move towards the two floating diffusions FD1 and FD2, according to the
potential profile determined by gate voltages. A schematic cross section of the
device is shown in Fig. 5b together with the potential profile. According to Fig. 5,
in DC operation � of the total photo-charge move towards one floating diffusion,
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while the remaining � move towards the other one. Thus, a maximum demodu-
lation contrast of 50 % can be obtained with this device.

Commercial products based on this device have been on the market from
several years [23]. An optimized design allowed obtaining demodulation contrast
approaching 50 % at 100 MHz with 31 % fill factor in 40 x 40 lm pixels.

One of the requirements of gate-based demodulation pixels is obtaining a good
demodulation contrast at high frequency. In order to obtain a good bandwidth, it is
necessary to avoid the presence of any regions in the charge demodulation path
where electrons move by diffusion. A demodulator structure addressing this issue
is shown in Fig. 6a [22, 28]. A continuous high-resistivity gate is present on top of
the device. The channel lateral potential varies continuously across the pixel, so
that the electron transport is dominated by drift.

A four-tap version of this device fabricated in a surface-channel CCD/CMOS
technology is described in [22]. The central polysilicon gate is a square with
25 x 25 lm area and the four modulation contacts and integration gates are placed
at the edges. An average drift time of 3.4 ns was estimated for the implemented
device, which could be theoretically reduced to 200 ps. Although DC shutter
efficiency exceeds 70 % using infrared illumination, a demodulation contrast of
only 26 % at 20 MHz was measured. This difference was ascribed to the slow
diffusion of carriers from the substrate to the surface of the device, and could be
improved by using a buried-channel CCD technology. The main disadvantages of
this device are the static and dynamic power consumption related to the gate
resistance and capacitance, which can cause local heating problems and require
powerful driving electronics for large pixel arrays.

Fig. 6 Cross-section and potential profile of (a) high-resistivity gate demodulator (from [22])
(b) central-gate demodulator with gates on field oxide in 0.35 lm technology (from [10])
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All the pixels described so far have been fabricated in dedicated CMOS/CCD
technologies. Standard and imaging CMOS technologies do not provide CCD
capabilities such as overlapping gates and buried channels. Therefore, scaling the
device concepts developed in CCD technologies to advanced technology nodes
require a process modification in the technology itself. However, in the last years
several attempts have been done to implement demodulation pixels in standard and
imaging CMOS technologies.

A CMOS version of the central-gate demodulator with photogates on top of
field oxide was demonstrated in a 0.35 lm CMOS technology [10]. An additional
processing step was used to create a buried channel below the field oxide. A cross
section of the pixel is shown in Fig. 6b, where two draining electrodes, also
present in the pixel, are not shown. A QVGA image sensor was fabricated, having
a pixel size of 15 x 15 lm with 19 % fill factor. The sensor used 1 MHz modu-
lation frequency with 10 % duty cycle, and could achieve a best-case range res-
olution of 2.35 cm.

Another CMOS-compatible photogate demodulator was demonstrated in a
0.18 lm CIS technology [11]. A cross section of the device is shown in Fig. 7
together with the potential profile along the cut-lines A-A’and B-B’. An n-type
buried channel was obtained exploiting the tail of the buried diode nwell
implantation through the polysilicon gates. A lightly doped surface p layer arising
from the threshold adjustment implantation is present below the gate oxide. As can
be observed in the potential profile plot, both a surface channel and a buried
channel are present in this device. During the integration phase, most of the photo-
generated electrons are collected in the buried channel, where a lateral electric
field enables fast lateral charge transfer. The charge is then transferred from the
buried channel to the surface channel of the gate with high bias voltage, and finally
moves to the floating diffusion.

Fig. 7 Cross-section and potential profile of buried channel demodulator in 0.18 lm CIS
technology
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A 60 x 80 pixel array based on this structure with 10-lm pixel pitch was
fabricated in a 0.18 lm CMOS imaging technology. The pixel, having 24 % fill
factor, could achieve a demodulation contrast of 40 % at 20 MHz and a bandwidth
exceeding 50 MHz.

3.2 Current-Assisted Demodulators

While photogate-based pixels use gate voltage modulation to control the potential
gradients at the semiconductor surface, an alternative approach exploits the
electric field formed in the silicon substrate by modulating the voltage applied at
two p+ substrate contacts [29]. Since a majority carrier current is associated to this
field, the device exploiting this principle has been originally called Current
Assisted Photonic Demodulator (CAPD).

A basic CAPD cross-section having two modulation electrodes M1-2 and two
floating diffusions FD1-2 is shown in Fig. 8. The structure is compatible with
standard CMOS technologies, provided that low-doped surface regions free from
both n-wells and p-wells can be implemented. The electric field penetration depth
into the substrate is proportional to the distance between the modulation elec-
trodes. A good responsivity for near-infrared light wavelengths can thus be
obtained with pixel sizes of a few tens of micrometers.

The main disadvantage of this pixel is the power consumption due to the
majority current flow, which can be minimized using a high-resistivity silicon
substrate [29, 30].

A 32 x 32 3D camera sensor based on this pixel was presented in a 0.35 lm
CMOS technology [31]. The 30-lm pixels in this camera have a substrate contact
along the border, while two floating diffusion surrounded by two ring-shaped

Fig. 8 Cross-section of Current Assisted Photonic Demodulator as originally presented in [29]
and implemented in a 0.18 lm technology ([32])
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modulation contacts are placed in the center of the pixel. The pixel features a 66 %
fill-factor and reaches 51 % demodulation contrast at 20 MHz with a power
consumption of 1.4mW per pixel, due to the modulation current.

A version of the CAPD demodulator realized in a 0.18 lm CMOS imaging
technology is shown in Fig. 8b [32]. In the proposed device, fabricated in an
epitaxial layer, two minimum-sized pwell diffusions are present under the mod-
ulation electrodes. A grounded pwell surrounding the device is used to host the n-
type MOSFET readout electronics. Although the device was fabricated using a
standard epitaxial layer doping, a demodulation contrast of 40 % at 20 MHz and a
bandwidth larger than 45 MHz were obtained with a power consumption of only
10uW per pixel. A 120 x 160 pixel TOF sensor based on CAPD pixels was
presented, having 10 lm pixel pitch and 24 % fill factor [33].

3.3 Pinned-Photodiode Demodulators

The idea of exploiting a pinned photodiode with multiple transfer gates for light
demodulation was patented in the first 2000s [34]. While pinned photodiodes have
been used in CMOS image sensors for more than a decade [35], one of the most
demanding tasks in their design is the optimization of the transfer gate to obtain
fast charge transfer. Residual potential barriers present between pinned diode and
floating diffusion when the gate is on cause image lag [36] and make the device
unsuitable for fast shutter operation. Moreover, the lack of a lateral electric field
slows down the charge transfer through the gate and limits the maximum modu-
lation frequency that can be achieved [37]. Several advancements have been done
in the last years to improve the charge transfer speed of pinned photodiodes and
make them suitable for TOF range imaging.

A symmetric pinned photodiode demodulator pixel with 10 lm pitch and 24 %
fill factor fabricated in a 0.18 lm imaging technology was presented in [37]. A
cross section of the device is shown in Fig. 9a. The device showed a demodulation
contrast close to 100 % at DC, but its bandwidth was lower than 1 MHz.

A 12-lm pixel with 62 % fill factor was recently demonstrated using a 0.18 lm
imaging process [37]. The pixel, using a single ended readout channel and a charge
drain, features a demodulation contrast 35 % at 5 MHz.

The benefits of pixel scaling on device bandwidth are evident from another
work presented by the same group [12], where the same pixel concept is ported to
a 6-um pitch using a 0.11 lm imaging technology. In this work, a VGA RGB
sensor capable of working as an IR range camera was presented. In range camera
operation, 4 RGB pixels are binned to form a single range pixel thus obtaining a
QVGA range image resolution. The presented pixels have 32.5 % fill factor and
are operated at 10 MHz modulation frequency.

The optimization of pinned photodiodes for fast charge transfer applications has
been recently studied by different research groups. Besides optical ranging, another
application requiring fast shutter is time-resolved fluorescence spectroscopy.
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The dependence of the pinning potential on the diode lateral size was exploited to
obtain a fast charge transfer from a small size pinned diode to a large size pinned
diode [39]. A cross section of the pixel together with a potential profile is shown in
Fig. 9. The use of another pinned diode for charge storage enables also the pos-
sibility to perform CDS operation, which would be lost if the charge were trans-
ferred directly to the floating diffusions. A drawback of this pixel is the reduced fill
factor due to the small size of the illuminated diode.

The charge transfer speed in pinned photodiodes can be boosted by careful
design of the transfer gate. In [40], the transfer time obtained using different
transfer gate topologies is compared. It is experimentally demonstrated that the
fastest transfer speed, with a complete charge transfer in less than 80 ns, is
obtained with an U-shaped transfer gate, while using a linear transfer electrode
similar to the one presented in [12], a complete charge transfer takes hundreds of
ns. Thanks to the electrode U-shape, the residual potential barrier at the transfer
gate is minimized, and a large charge demodulation bandwidth can be obtained.

3.4 Static Drift Field Demodulators

In the devices presented so far, electric field modulation affects the whole photo-
sensitive pixel area, thus requiring modulation electrodes as large as the active area
itself. Therefore, a high-power driving electronics needs to be implemented to

Fig. 9 Cross-section of (a) pinned photodiode demodulator [37] (b) two-stage pinned
photodiode transfer pixel [39]
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drive their large capacitance at high modulation frequencies. Moreover, in these
pixels it is difficult to combine a high fill factor with a large demodulation
bandwidth.

A powerful device concept addressing these issues is the static drift field
demodulator [19], which is illustrated in Fig. 10. In this device, the large photo-
sensitive area is physically separated from the small modulation region. In the
former region, a static drift field is present, driving the photo-generated electrons
towards the latter. The modulation region, implemented with a central-gate
demodulator in Fig. 10, can be minimized to achieve a high bandwidth, high fill
factor and small modulation capacitance.

The first implementation of a static drift field demodulator used a sequence of
CCD gates biased at increasing voltage to generate the static drift field [19]. A
simplified layout of the pixel is shown in Fig. 11a. The pixel, having 40 lm pitch,
was implemented in a 0.6 lm CMOS/CCD technology, achieved 25 % fill factor
and an estimated cutoff frequency of 105 MHz.

A static drift field pixel using a pinned photodiode was implemented by Tubert
et al. [41]. Because of the dependence of pinning voltage on the diode size [39], a
triangular shaped pinned photodiode has a built-in static drift filed, driving the
photo-charges towards two transfer electrodes. The device, whose layout is shown
in Fig. 11b, can achieve an estimated transit time of about 10 ns. A 128 9 128 test
pixel array with a pitch of 11.6 lm was fabricated in a 90 nm CIS technology.

A similar approach using a different transfer gate geometry was demonstrated
by Takeshita et al. [42]. Estimated charge transfer times are lower than 2 ns for
triangle and horn-shaped pixels, compared to 500 ns for a rectangular diode of

Fig. 10 Simplified layout and potential profile of Static Drift Field Demodulator
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similar size. Test pixels with 15 x 7.5 lm pixel size were implemented in a
0.18 lm CIS technology. Electro-optical tests performed with near IR LEDs have
shown a demodulation bandwidth lower than expected due to the slow diffusion of
photo-charges from the substrate.

Another approach that can be used to create a static drift field using pinned
photodiodes is the creation of a pinning voltage gradient by means of a doping
gradient in the n-well layer. Different methods have been proposed to create the
required doping gradient. The most straightforward one is the use of three different
n-type implantations, which however requires a non-standard modified process
[43].

Another way to create a doping gradient in a pinned photodiode is using a
striped mask to define the nwell implantation [44]. After annealing, the nwell
stripes join in a unique nwell having a gradient in the doping profile, thus creating
a lateral static drift filed. A 128 x 96 pixel range image sensor using this approach
has been recently demonstrated in a modified 0.35 lm process [45]. Each pixel,
having 40-lm pitch with 38 % fill factor, was based on a gradient-profile pinned
photodiode feeding a central-gate demodulator with four transfer gates. The pro-
posed pixel achieves a complete charge transfer from the pinned layer to the
floating diffusion in less than 30 ns.

Engineering of pinning voltage gradients by combined geometry and doping
effects has been demonstrated in a fast shutter pixel [46]. An additional p-type
implantation has been used to reduce the potential of a pinned photodiode with
respect to a pinned storage diode, while geometrical effects were used to create a
linear potential gradient between the two. A draining gate along the channel
enables an efficient and fast shutter mechanism with nanosecond resolution.

Fig. 11 Simplified layout of (a) photogate-based [19] and (b) triangle-shaped pinned photodiode
[41] static drift field demodulators
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3.5 Other Concepts

Among the demodulating detectors presented so far for optical ranging applica-
tions there are Metal–Semiconductor-Metal (MSM) detectors, consisting of a pair
of rectifying Metal–Semiconductor contacts (Schottky diodes) connected in series
back-to-back [47]. In practice, MSM photosensors normally feature an interdigi-
tated structure, that, in order to be operated properly, requires the applied voltage
to be large enough to fully deplete the semiconductor surface region between the
two electrodes. In this operating conditions, the capacitance between the two
electrodes is very low, allowing a very fast operation of the detector. The cross
section of a typical MSM device is shown in Fig. 12a.

In a MSM demodulator, the same electrodes are used to perform both voltage
modulation and charge collection [24]. The photo-generated current enters from
the positively-biased electrode (anode) and exits from the negatively-biased one
(cathode). The photocurrent direction can be reversed by simply inverting the bias.

MSM devices operated as EOM in a range-finding system have been demon-
strated in [26, 48]. Although this device is appealing for its excellent demodulation
bandwidth and intrinsic background suppression characteristics, its non-compati-
bility with standard CMOS processes has prevented the fabrication of monolithic
image sensors based on its principle.

Among less-explored demodulating device concepts there is the idea of using
the space charge region modulation of two closely spaced junction diodes to direct
the photo-generated electrons towards one or the other diode. A cross section of a
device exploiting this concept is illustrated in Fig. 12b. This method has been
described in a few works [24, 49–51], although a fully characterized range cameras
has not been demonstrated so far. As in the case of the MSM device, the same
electrodes are used for voltage modulation and charge collection. Therefore, it is
not possible to use a standard active-pixel circuit, but it is necessary to implement
in-pixel low-pass filtering stages to decouple the readout electronics from the
modulation signal injected through decoupling capacitors.

Fig. 12 Cross-section of (a) MSM demodulator (b) modulated space-charge region device
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A low-doped substrate or epitaxial layer is needed in order to obtain a good
demodulation contrast from the variation of the space charge region widths. A
metal shield must cover the n-type regions from direct illumination to reduce
common-mode signal. In [24], the metal shield voltage is also modulated, to help
the creation of a uniform potential gradient between the two electrodes.

4 Pixel Architectures

In most of the pixel concepts presented in this chapter, including photogate,
current-assisted and pinned photodiode demodulators, the readout electrodes are
different from the modulation electrodes. In this case, a simple 3T readout elec-
tronic channel can be implemented at the pixel level to perform charge-to-voltage
conversion and buffering [10, 12, 21, 33].

Less explored demodulating detectors concepts, like MSM and modulated
junction devices, require a more complex in-pixel readout electronics to decouple
modulation and readout and to keep the electrode voltage at a constant common
mode value [24, 50, 51]. In this case, area occupation and electronics power
consumption limit the scalability of these pixel concepts and the implementation
of high resolution arrays.

In photogate–based demodulators it is possible to perform Correlated Double
Sampling (CDS) operation to reduce kTC noise thanks to the presence of an
intermediate storage gate. This operation is not feasible if the demodulating device
feed directly the floating diffusions. Pinned photodiode demodulators such as the
ones presented in [12] use the transfer gate for charge demodulation and have
therefore lost this possibility. However, CDS can be performed if a pinned storage
diode with higher pinning voltage is implemented, as in [39].

Although most of the sensors use a sine-wave illumination, in some works a
pulsed illumination with low duty cycle is used to improve ambient light immunity
at the expense of sensor output linearity [10]. To exploit this possibility, it is
necessary to implement a draining electrode on the pixel. Symmetric pixels can
either be read-out differentially, thus achieving and enhanced dynamic range, or
one of the two charge collection nodes can work as a charge drain, thus enabling
the use of pulsed illumination. However, this second option can be usefully
implemented only if the device has a shutter efficiency close to 100 %. As an
alternative, a dedicated additional draining electrode can be implemented on-pixel,
thus combining the benefits of multiple pixel outputs and low-duty cycle illumi-
nation [7, 10].

A fundamental characteristic affecting the sensor ultimate range resolution is
the presence of an in-pixel offset subtraction circuit. Usually, only part of the
sensor dynamic range is exploited to store the demodulated signal, while the
remaining part is wasted by a common mode signal arising from dark current,
ambient light and demodulation contrast lower than 100 %. An offset subtraction
circuit allows to use all the available dynamic range to store the demodulated
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signal, and hence improves the sensor dynamic range, best range resolution and
ambient light immunity.

A first approach for offset removal was proposed in [52], where an offset control
gate was introduced. The control gate performs charge skimming operation on the
integrated charge, subtracting a fixed amount of signal on each charge packet.
Although an increased dynamic range is demonstrated, the amount of charge
skimmed is fixed and not dynamically determined. The proposed implementation
is therefore not useful in the case of strong variations either in the active signal or
in background signal.

An evolution of this circuit is presented in [53], where a column-wise control
circuit determines the amount of charge transferred to the sense nodes. In this
implementation, the pixel has two integration gates, with a capacitance much
larger than the one of the floating diffusion. At the end of the charge integration
phase, the transfer gate voltage is increased slowly, allowing a gradual charge
transfer from the integration gates to the floating diffusions. When a charge
transfer from both integration gates is sensed, the transfer is stopped and the
voltage difference is read out and digitized. This technique allows a factor 15
increase in the robustness against background light. The main disadvantages are an
increased complexity of the pixel and column-level electronics and an decreased
fill-factor.

Another technique employed to reduce the effect of background illumination is
the injection of matched charge packets into the floating diffusions of a symmetric
pixel. This method is schematically described in [22], although the details of the
circuit are not disclosed. In this way, the difference signal is preserved, although
the absolute value is destroyed. To be effective a pixel-level or column-level
control circuit needs to be implemented to control the amount of injected charge.

Sensor dynamic range can be improved using pixel-wise integration. This
method, described in [54], requires an in-pixel comparator and memory element, and
is therefore suitable for large pixels only. This circuit solution needs to be imple-
mented in a 4-tap pixel, so that an integration time common to all the taps is used.

5 Conclusion

In this chapter, the main demodulation pixel architectures presented so far have
been reviewed, mainly focusing on the pixel core, the electro-optical demodulating
detector. A transition can be observed from the first implementations in dedicated
CMOS/CCD technologies to solutions using standard and CIS deep-submicron
technology nodes. In particular, there is an effort to adapt the pinned photodiode,
which is still not perfectly suited to the high frequency demodulation needs of TOF
technique, by pushing its demodulation bandwidth through geometrical and
technological modifications. Other promising approaches combining fast charge
collection through static drift fields and high speed demodulation in a small mixing
device are being experimented.
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Each one of these approaches has his strengths and weaknesses, and there is not
a clearly preferred embodiment suitable for all the potential applications. In the
technology choice other factors should be considered in addition to quantum
efficiency, fill factor, demodulation contrast, sensitivity and power consumption.
The amount of non-standard processing steps to be implemented in a technology
and the device portability and scalability for example are also important in
perspective.

Even in the best commercial camera implementations, several aspects need to
be improved. Ambient light immunity and dynamic range enhancement are two
key features that can be handled at the device level, circuit level or system level, as
well as the reduction of motion artifacts. As in conventional cameras, there is a
demand of higher resolution and frame rate, as well as reduced power consump-
tion. The addition of color in the same sensor is also a very appealing feature, and
the first attempts to implement this functionality are being carried out.

The development of TOF technology should also take into account competing
technologies, such as those based on pattern projection and stereo imaging.
Although requiring heavy computation, they have already appeared on the market
and have shown even more competitive than TOF in consumer applications,
mainly because of their lower cost. The developments that TOF cameras will face
in the next few years will surely show all the potential of this technology and will
reveal if the evolution of TOF cameras in the 2010s will follow the same
expansion experienced by conventional CMOS cameras in the 2000s.
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Understanding and Ameliorating Mixed
Pixels and Multipath Interference
in AMCW Lidar

John P. Godbaz, Adrian A. Dorrington and Michael J. Cree

1 Introduction

With the advent of cheap full-field amplitude modulated continuous wave
(AMCW) lidar systems range-imaging has become a technology with the potential
for widespread applications in fields such as gaming, human-computer interface
design, process-line quality control and vehicular warning systems. While off-the-
shelf commercial systems offer centimetre level precision, the accuracy of mea-
surements is frequently an order of magnitude worse due to uncalibrated sys-
tematic errors, resulting primarily from mixed pixels and multipath interference. In
order to fully utilise the range-images produced by AMCW lidar range-cameras it
is important to understand the limitations of the measurement process and the most
common approaches to mitigation of these errors.

AMCW lidar systems are fundamentally limited in that each pixel in a full-field
system, or point-sample for a point scanning system, is capable of measuring the
range to only a single object. If there are multiple returns, due to sampling near the
edge of an object or due to crosstalk between measurements, then erroneous range
and amplitude data are produced. This is the mixed pixel/multipath interference
problem, and forms the subject of this chapter.

In the remainder of Sect. 1.1 we explain the AMCW measurement technique in
the context of sampling the spatial frequencies of backscattered signal returns
within each pixel and the conditions for the occurrence of the systematic errors
caused by multiple returns within a pixel. By developing a detailed model of
measurement formation in Sect. 2, we explain the nature of the perturbations
introduced by mixed pixels and multipath interference. In Sects. 3 and 4, starting
from the first reports of mixed pixels in point-scanning AMCW systems, we cover
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the gamut of research over the past two decades into mixed pixels and multipath
interference, including a variety of detection and mitigation techniques that can be
applied to range-data from standard commercial cameras.

1.1 Time of Flight Measurement Techniques

All lidar systems operate using the Time-Of-Flight (TOF) principle. Because light
travels at a known finite speed, it is possible to determine the range to an object
using an active illumination source and measuring the range-dependent propaga-
tion delay induced in the illumination signal as it travel to and from objects in the
scene.

A basic overview of the TOF principle is illustrated in Fig. 1. An illumination
source sends out pulses of light; for the light to be measured by a sensor co-located
with the illumination source it must travel twice the distance to the target object
(the stick figure in Fig. 1). The backscattered signal intensity, as a function of
range, can be represented by the backscattering function fnðrÞ, as shown in Fig. 2a
for the case of a single backscattering source such as the stick figure. Lidar systems
operate by indirectly sampling this function in different ways depending on the
type of lidar system. If another object is placed half way between the target and the
illumination source, then the light from the nearer object is reflected back to the
camera and arrives before light from the stick figure; fnðrÞ for this case is shown in
Fig. 2b. This is the multiple return case; depending on the modulation technique,
not all systems can correctly interpret this situation.

Illumination

(a)

Sensor

(b)

Fig. 1 The Time-Of-Flight
principle. a Illuminating the
scene. b Measuring the Time-
Of-Flight to determine range
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In order to understand mixed pixels and multipath interference it is necessary to
first understand how lidar systems sample the backscattering function fnðrÞ.
Examples of three different types of modulation are plotted in Fig. 3: the first is
amplitude modulated continuous wave (AMCW, Fig. 3a), the second is frequency
modulated continuous wave (FMCW, Fig. 3c) and the last is range-gating or pulsed
modulation (Fig. 3e). As the illumination modulation, Wi, travels from the camera
to the objects in the scene and back, reflections from different objects are super-
imposed. As a result, the illumination signal over time at the sensor is given by,

WmðtÞ ¼ fn �Wi; ð1Þ

or in the Fourier domain

WmðuÞ ¼ FnðuÞWiðuÞ; ð2Þ

where ‘�’ represents convolution. Depending on the spectral content of the illumi-
nation modulation waveform over time, one can make inferences about the nature of
the backscattering function. Only the spatial frequencies of the backscattering
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Fig. 2 The backscattered illumination waveforms for different modulation techniques in the two
component case. a A single backscattering source. b Two backscattering sources. c Measured
illumination (range-gating, two returns). d Measured illumination (AMCW, two returns)

Understanding and Ameliorating Mixed Pixels and Multipath Interference 93



function that are also present in the illumination modulation waveform are capable
of being measured by the sensor. Therefore if the illumination modulation is per-
fectly sinusoidal, as in ideal AMCW, it is only possible to reconstruct a single spatial
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Fig. 3 A comparison of the illumination waveforms and the spatial frequencies they implicitly
sample for different lidar modulation techniques. a AMCW illumination waveform. b AMCW
spatial frequencies. c FMCW illumination waveform. d FMCW spatial frequencies. e Range-
gating illumination waveform. f Range-gating spatial frequencies
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frequency of the signal returns. While this is enough to recover the range and
amplitude to a single backscattering source, it is not enough information to separate
out two superimposed returns.

Figure 2c, d show the backscattered illumination modulation, as measured at
the sensor, for the range-gating and AMCW techniques given the backscattering
function of Fig. 2b. Whereas the two returns are clearly separated in the range
gating case, in the AMCW case the superposition of two sinusoids results in
another sinusoid, which is indistinguishable from that produced by a single return
(see Fig. 2d). When the phase and amplitude of the illumination are sampled, the
estimated amplitude and range will be erroneous and correspond to neither of the
backscattering sources.

Even though lidar modulation techniques are exactly the same as those utilised
in radar, no practical radar systems appear to use AMCW: one of the primary
reasons is the issue of multipath interference. Multipath interference and mixed
pixels result when a single range measurement contains light from more than one
backscattering source; in an AMCW system this leads to erroneous range and
amplitude measurements. The details of formation are explained in Sect. 1.2
below. The radar community has moved away from ACMW to more sophisticated
techniques, and as a result little has been published on its intricacies outside of the
lidar literature. For full-field systems, however, AMCW offers advantages over
FMCW and range-gating systems because it requires much lower data rates. This
is particularly crucial to producing full-field range images at a high frame rate.

1.2 The Formation of Mixed Pixels and Multipath
Interference

Errors due to mixed pixels and multipath interference occur in AMCW systems,
but rarely in FMCW systems or range-gating systems, because AMCW systems
only sample a single discrete spatial frequency. The terms mixed pixel and mul-
tipath interference distinguish different mechanisms that lead to the same end
result. Mixed pixels occur because of the imaging nature of full-field systems or
due to the finite size of the illumination spot in point-scanning systems. In full-
field systems, if the image formed on the senor is out of focus, two objects can blur
together onto one pixel, hence multiple AMCW returns are combined in that pixel.
This is a reasonably common situation because the quality of the range estimate is
generally linked to the received optical power, thus there is a temptation to use
large apertures in order to collect more light, thereby degrading depth-of-field.
Even if the image is in perfect focus, mixed pixels can still occur at object edges,
where both the foreground and background objects are integrated by a single pixel.

Figure 4 is a range-image of a scene suffering from both mixed pixels and
multipath interference. Region A is the edge of an object outside of the depth-of-
field of the current focal parameters, thus resulting in defocus induced mixed pixels.
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Region C also suffers from mixed pixels; in this case the fan and the background are
almost 180� out of phase, thus the mixed pixels result in amplitude cancellation.
Common causes of mixed pixel and multipath interference are shown in Fig. 5, and
include integration over an object edge and integration over a region subject to
defocus blurring. It is also possible to get mixed pixels from thin structures that are
thinner than the width of a pixel. In some cases transverse motion may be deliber-
ately encoded as mixed pixels by using multiple accumulators on the sensor; by
alternating between accumulation of each phase step it is possible convert the
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Fig. 4 An example scene, captured using a full-field AMCW range-imager, suffering from both
mixed pixels (A, C) and multipath interference (B). a Amplitude. b Phase
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Fig. 5 Common causes of mixed pixels (top row) and multipath interference (bottom row)
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motion problem to a mixed pixel restoration problem. This is particularly suited to
multifrequency methods (see Sect. 4.6).

Multipath interference refers to the situation where light from one part of the
scene is scattered onto pixels imaging a different part of the scene, causing
interference. This occurs in full-field systems due to the simultaneous illumination
of the entire scene. The interfering light can originate from a variety of sources/
mechanisms and can be easily observed in high contrast scenes where bright
objects cause erroneous measurements in darker objects. Although multipath
interference still occurs in lower contrast scenes, it is not as obvious. Intra-camera
lens scattering is one common cause, where light impinging on one region of the
sensor is not completely absorbed and is reflected back towards the lens. The
surface of the lens then reflects and scatters a portion of this light back onto other
areas of the sensor, causing interference.

Multipath interference can also be caused by scattering and reflections in the
scene. Ideally, objects in the scene are illuminated directly and solely from the
illumination source, but scattering can occur from bright or reflective objects,
causing additional interfering illumination with larger path lengths, perturbing the
measurement data. Region B in Fig. 4 corresponds to multipath interference
induced by highly localised scattering within the optics of the imaging system;
generally intra-camera scattering is relatively homogeneous but the particular
system [1, 2] used to capture Fig. 4 has non-standard characteristics due to an
image-intensifier based design. The two most common causes of multipath
interference are shown in the bottom row of Fig. 5. In the intra-scene scattering
case, measurements of region B are perturbed due to illumination scattered onto
region B by region A. In the intra-camera scattering case, regions A and B are
imaged onto different parts of the sensor. In an ideal situation they would be
completely independent measurements, however, in practice light scattering
results in crosstalk between the measurements of A and B.

Although we concentrate on signal/image processing approaches to handling
mixed pixels and multipath interference, it is also possible to ameliorate these
effects using hardware. For example, by using anti-reflection coatings on lenses
and by matching the angular width of the illumination to the camera field-of-view,
to avoid perturbations from outside the field-of-view. Theoretically, one could
decrease the incidence of mixed pixels by decreasing the fill-factor/sensitive
region of each pixel in a full-field system, attempting to approach the ideal of
sampling over an infinitesimal solid angle, but this would reduce SNR
unacceptably.

2 Modelling Mixed Pixels and Multipath Interference

In this section we develop a detailed model of measurement formation, basing our
notation on the model of Godbaz et al. [3] and continuing from the description in
Sect. 1.
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2.1 The Formation of Range Measurements

Each pixel on the sensor integrates over a particular solid angle of the scene: the
intensity of the backscattered signal within an arbitrary pixel as a function of range
is notated as fnðrÞ, where r is the radial distance from the camera. The standard
operating assumption is that there is a single component return within the pixel,
namely

fnðrÞ ¼ a0dðr � r0Þ ð3Þ

FnðuÞ ¼ a0e�2pjur0 ; ð4Þ

where FnðuÞ is the Fourier transform of the backscattered signal return intensity
versus range, j is the imaginary unit, and where a0, is the amplitude and r0 is the
range to the backscattering source.

AMCW lidar systems operate by indirectly measuring the backscattered illu-
mination signal. In CMOS sensor designs, the backscattered illumination is cor-
related at the sensor with a sensor modulation waveform. The measured intensity
at the sensor as a function of the relative phase, /, of the illumination and sensor
modulation signals can be written as

hð/Þ ¼
Z p

�p

Z p

�p
fn

k
4p
ðh0 þ /0Þ

� �
Wið�h0ÞWsð/0 þ /Þ dh0d/0 ð5Þ

HðuÞ ¼ Fn
4p
k

u

� �
WiðuÞW�s ðuÞ; ð6Þ

where Wið/Þ is the illumination modulation waveform as a function of phase,
Wsð/Þ is the sensor modulation waveform and k is the modulation wavelength.
The waveform hð/Þ is often referred to as the correlation waveform and is the
device through which AMCW lidar measurements are achieved.

In the ideal case of a perfectly sampled correlation waveform with a modulation
wavelength of k, a complex domain range measurement is given by

n ¼ Hð�1=2pÞ
Wið�1=2pÞW�s ð�1=2pÞ ð7Þ

¼ Fn �
4p
k

� �
; ð8Þ

which encodes a particular spatial frequency of the backscattered illumination
intensity. In this case �1=2p is the frequency corresponding to the negative
fundamental of the modulation waveform; the negative fundamental frequency is
used because it encodes phase delay, rather than phase shift, so that the complex
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argument is proportional to range rather than negatively proportional. Equation 7
consists of a measurement of the negative fundamental Fourier bin of the measured
correlation waveform, divided by the negative fundamental Fourier bin of the
correlation waveform that would be expected in the ideal unity amplitude, zero
range case. In the perfect single component return case the original amplitude and
phase can be determined by

a0 ¼ jnj ð9Þ

and

r0 ¼
4p
k

argðnÞ þ 2
k

m; ð10Þ

where m 2 Z is an arbitrary constant. To avoid explicit discussion of this cyclic
ambiguity, this paper typically considers distance notated as phase rather than true
range.

The most common approach to sampling the correlation waveform is the four
differential phase step homodyne approach. In this case, an estimated complex
domain range measurement is given by

~n ¼ p
2Wsð�1=2pÞW�i ð�1=2pÞ ðhð0Þ � hðpÞ þ jðhðp=2Þ � hð3p=2ÞÞ; ð11Þ

where hð0Þ, hðpÞ, hðp=2Þ and hð3p=2Þ are each discrete differential measurements of
the correlation waveform. This non-ideal sampling process is subject to systematic
errors such as aliasing induced non-linearity [3] which are not considered further.

2.2 Modelling Mixed Pixels

While the single component return assumption is useful, in practice pixels at object
boundaries integrate over more than one backscattering source. These are called
mixed pixels.

The mixed pixel problem is not specific to range imaging. It may occur in any
imaging science, where a pixel or integration/sampling region contains data from
more than one discrete source. For example, Chang et al. [4] discusses the problem
of decomposing mixed pixels in multispectral/hyperspectral images as linear
combinations of discrete signatures. One possible application is the determination
of precise land use statistics from LandSat images, despite significant quantities of
mixed pixels. The difference between the LandSat decomposition problem and the
AMCW decomposition problem is that each component return within a mixed
AMCW measurement is composed of continuously variable amplitude and range
values.

Mixed pixels are problematic for non-AMCW lidar systems as well: while
range-gating [5] and full-waveform systems [6] are capable for the most part of
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separating out multiple returns within each pixel, if two returns are very close to
each other then they cannot be separated. Erroneous range values due to multiple
backscattering sources have been demonstrated in data captured using a pulsed
system [7, 8].

One model for the backscattering function in the case of mixed pixel/multipath
interference is a sparse spike train [9]: the sum of scaled and translated Dirac delta
functions. In this case the backscattered signal intensity as a function of range is
modelled as

fnðrÞ ¼
XM� 1

i¼ 0

aidðr � riÞ ð12Þ

FnðuÞ ¼
XM� 1

i¼ 0

aie
�2pjuri : ð13Þ

This allows the range measurement to be written as the sum of backscattering
components, gi 2 C, within the pixel measured at some modulation wavelength k,
viz

n ¼
XM� 1

i¼ 0

gi: ð14Þ

2.3 Perturbations Due to Multiple Returns

The simplest possible mixed case occurs when a primary return with an amplitude
of one and a phase of zero is perturbed by a secondary return with a relative
amplitude of b and a relative phase of h. This case is modelled by the function

Kf ðb; hÞ ¼ 1þ bejh: ð15Þ

Assuming that the primary component/first term is the intended subject and that
h 6¼ 0, as the relative amplitude of the secondary component increases Kf ðb; hÞ
diverges from one. As a result, Kf ðb; hÞ can be considered to be the perturbation of
the primary component return by the secondary component return. The behaviour
of Kf ðb; hÞ is demonstrated in Fig. 6. Similar to aliasing perturbation, the ampli-
tude and phase perturbations are ninety degrees out of phase.

One of the most frustrating aspects of multipath interference is that objects
outside the field of view can scatter light onto the sensor; this can surreptitiously
influence measurements such as phase/amplitude linearity calibrations.1

1 Although primarily intended to mitigate aliasing of correlation waveform harmonics, these
linearity calibrations also allow correction for systematic errors due to other effects like crosstalk.
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A standard approach to calibration for range-dependent phase and amplitude errors
is to take measurements at different distances from the camera using a translation
stage. As a practical example of multipath, we now model the impact of scattered
light on a linearity calibration using a translation stage in the same manner as [3].
Because the relative amplitude of the scattering light increases as the translation
stage moves away from the camera, the resultant linearity curve shape can be quite
complicated. One possible model is

n ¼ a0

d2
0

e4pjd0=k þ a1e4pjd1=k; ð16Þ
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where a1 and d1 are the amplitude and range to a static, perturbing return and a0 is
the amplitude of the translation stage return at a range d0 ¼ 1, where the amplitude
is assumed to decay with the inverse squared law. An example is plotted in Fig. 7.
As a general rule, if a linearity calibration is not cyclic over each ambiguity
interval, it is probably due to either temperature drift or multipath interference.

3 Point Scanning Systems and Detection Approaches

There are a number of existing detection and amelioration approaches for mixed
pixels/multipath interference reported in the literature. The first instance of
AMCW mixed pixels in the literature appears to occur in the early nineties with
regards to point scanning systems [10–12]. Much of the more recent research into
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full-field multipath appears unaware of this early work, perhaps partly due to the
choice of terminology and change in technology (for example, [13, 14]). We begin
by addressing this early work and then progress to full-field specific research.

Kweon et al. [10] deal with the experimental characterisation of a point scan-
ning AMCW system and makes the first known (passing) reference to the AMCW
lidar mixed pixel problem. Nevertheless, probably the most widely referenced
early paper discussing mixed pixels is that of Hebert and Krotkov [11]. They
present a detailed characterisation of the systematic errors that point scanning
systems are subject to, such as distortion due to scanning and temperature induced
temporal measurement drift. As part of this analysis, the mixed pixel and range-
intensity crosstalk problems are introduced. While Hebert and Krotkov suggest
that the electrical design and dynamic range/detector saturation issues are
responsible for range-intensity crosstalk, depending on the precise detector design
it is possible that multipath interference could be a contributing factor. Hebert and
Krotov explain the fundamental formation process for mixed pixels including the
symptoms such as non-interpolative/wraparound range estimates due to jhj[ p.

As a solution to the mixed pixel problem Hebert and Krotov [11] suggest the
application of median filters; unfortunately in practice, this is a limited fix. While
wraparound blurring results in extreme range measurements, also referred to by
some authors as ‘flying pixels’ [15], that are removed by a median filtering pro-
cess, interpolative blurring when jhj\p results in intermediate range estimates
which are not necessarily removed. Later work has described median filtering as
‘failing catastrophically’ in many cases [16]. Reliable mixed pixel detection/
removal requires more advanced techniques.

3.1 Normal Angle and Edge Length Detection

There are a number of quite simple approaches suitable for mixed pixel detection;
Tang et al. [17] provides a performance comparison of several related methods.
They utilise a 2D matrix of 3D coordinates, thus retaining elementary connectivity
information. Generating a 3D mesh and removing edges that are detected as dis-
continuities, any isolated pixels can be considered to be erroneous values. Tang
et al. applies three discontinuity detection methods: the first thresholds edge
length. In general, triangles formed between mixed pixels and neighbouring
unperturbed pixels have longer edge lengths. Thus thresholding edge length allows
detection of improbable surfaces. The second method thresholds the normal angle
of triangles; in general, even if pixels are not strictly mixed, the range information
measured for surfaces with a high angle of incidence is poor, so removal of these
points is often advantageous. One obvious limitation is that subtly mixed pixels
cannot be detected with these approaches.

The third algorithm is based around detecting specific pixels, rather than tri-
angles at discontinuities. The number of adjacent pixels that fall within a specified
angular domain relative to the pixel in question are counted. An explanatory
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diagram is given in Tang et al. [17]. While the algorithm is restricted to the eight-
connected neighbourhood of the pixel using the known connectivity information, a
similar approach could be extended to a wider neighbourhood. In general, Tang
et al. found that none of the methods were completely reliable, but that the normal
angle method performed best. In practice, normal angle detection appears to be
one of the most common approaches. The downside is that cleaning data of all
mixed pixels can result in systematic errors, such as underestimation of column
widths in architectural modelling [18]. As with all these detection methods, there
is a difficult trade-off between sensitivity and specificity.

3.2 Adam’s Detection Algorithm

Adams/Adams and Probert [12, 16] developed a method for detecting range and
reflectance discontinuities in point scanning systems, although only the range
discontinuities typically result in erroneous range estimates. Simplifying his
notation, for a range measurement given by a linear interpolation between two
backscattering sources, namely

n ¼ ð1� qÞg0 þ qg1; ð17Þ

where q 2 ½0; 1� is an interpolation constant, the value s given by the derivative

s ¼ d2jnj2

dq2
; ð18Þ

is a fixed constant, calculable by

s ¼ 2jg0jð1þ b2 � 2b cosðhÞÞ; ð19Þ

where b ¼ jg1j=jg0j. By modelling the manner in which the region integrated by
the circular cross-section of the illumination changes as the point is scanned across
the scene, Adams numerically determined and thresholded s, thus identifying both
range and reflectance discontinuities. Unfortunately, this is a pretty difficult pro-
cess to implement and most scanners are designed to produce discrete independent
measurements, rather than continuously varying overlapped measurements. In
theory a very similar algorithm could potentially be applied to images subject to
defocus limitations by modelling the defocus point spread function (PSF) as
integrating over a region in a manner similar to the point scanner illumination
cross-section.

Another detection approach by Adams [19] involves using a Kalman filter to
predict range values for a scanning system, which allows for the detection of
statistically significant edges. By applying this to range data, potentially mixed
pixels near edges can be discarded. Other work on general edge detection in range-
data includes that of Sappa and Devy [20] in the context of image segmentation.
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Because of the substantial body of literature on edge detection and segmentation,
we do not address these approaches any further.

3.3 Classification Based Detection

An approach demonstrated by Tuley et al. [7, 8] involves classifying points in a
point cloud within particular regions of interest. By performing Principal Com-
ponents Analysis on the points within the region of interest, it is possible to
classify the points as being either a surface, a linear formation or randomly dis-
tributed; a classification approach first demonstrated by Vandapel et al. [21]. For
eigenvalues of the covariance matrix, k0� k1� k2, it was found that k0; k1 � k2

generally indicates a surface, k0 � k1; k2 indicates a linear formation and k0 	
k1 	 k2 indicates a disorganised group of points. By training a classifier on hand-
labelled data, surfaceness, linearness and randomness metrics were automatically
calculated [21]. Choosing regions with relatively low angular width, Tuley et al.
[7, 8] found high surfaceness and surface normals near orthogonal to the camera to
be useful indicators of mixed pixels. The primary advantage of this method
appears to be the applicability to pure point clouds, rather than solely 2D matrices
of 3D Cartesian points.

3.4 Characterising Error at Spatial Discontinuities

Tang et al. [18] characterise the systematic error in measurements of object size/
width using point scanning systems, although the concepts can be easily extended
to the full-field case. Tang et al. [18] analyses two different types of point scanner:
first response pulsed2 and AMCW systems. Given knowledge of the spot size and
the spacing between spots, it is possible to place bounds on the accuracy of the
estimated width or height of a scanned object, such as a column: this is extremely
important for engineering metrology applications. Let the angular width of the spot
for sample i be notated as hwðiÞ and the location of each spot be hsðiÞ. As scanning
in a line across an object such as a pillar, if a non-mixed foreground measurement,
i, is followed immediately by a non-mixed background measurement, iþ 1, then
the location of the transition between the two is known to exist at a location b,
bounded by

hsðiÞ þ
hwðiÞ

2
\b\hsðiþ 1Þ � hwðiþ 1Þ

2
: ð20Þ

2 In other words, a pulsed system which only returns the range to the closest backscattered
return.
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However, if the first measurement is known to be mixed then the transition must
occur within the region measured by sample i, giving

hsðiÞ �
hwðiÞ

2
\b\hsðiÞ þ

hwðiÞ
2

: ð21Þ

Depending on how the scene is sampled and the sensitivity of the mixed pixel
detection method there are a number of possible enhancements to the model; for
example, Tang et al. models the impact of angle of incidence. First response pulsed
systems have very different behaviour: assuming that the foreground return is
bright enough to be detected, then without mixed pixel detection the true boundary
could occur either within sample i or in the void between samples, that is

hsðiÞ �
hwðiÞ

2
\b\hsðiþ 1Þ � hwðiþ 1Þ

2
: ð22Þ

4 Restoration and Full-Field Systems

Because of the subtle perturbations that mixed pixels introduce into range-images,
the existence of an intensity-coupled range error in full-field systems has been
known for a long time, although it has generally not been connected to the mixed
pixel problem in point-scanning systems. A number of authors have attempted to
calibrate for these errors without fully characterising the origin. For example,
Oprisescu et al. [13] identified an intensity related distance error and attempted a
fixed calibration using the assumption that the calibration is scene independent.
Because of the lack of further characterisation, it is difficult to know whether the
authors have ended up with a global characterisation for mixed pixel effects,
despite the scene dependence, or whether they could have possibly conflated
distance as a function of amplitude with distance and amplitude and a function of
distance, due to the impacts of aliasing on both amplitude and phase. It is notable
that the paper does not mention aliasing at all.

A more advanced calibration was performed by Lindner et al. [15, 22]. He
calibrated for radial distortion, perspective projection, aliasing non-linearity and
reflectivity induced errors, the latter using B-Splines. Like Oprisescu, Lindner does
not posit a cause for the reflectivity based errors. A similar calibration was per-
formed by Abdo et al. [23] using a lookup table.

Gudmundsson et al. [14] was one of the first papers to identify the impact of
scene structure on range measurements. Using an example of the corner of a room,
he found that the measured surfaces became non-planar as the light scattered off
the neighbouring surfaces resulted in systematic overestimation of range: a clear
case of intra-scene multipath interference, although no attempt was made to restore
the systematic error. Other work, such as that of Karel et al. [24] and Falie et al.
[25] have sought to characterise the impact of intra-camera scattering, due to
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subtle scattering and reflection effects. Karel et al. [24] experimentally demon-
strated that the amplitude of the scattering point spread function (PSF) was
independent of range3 and that the PSF is generally rotationally symmetric around
the principal point.

Another paper, by Jamtsho and Lichti [26] empirically characterises intra-lens
scattering and then applies two different, albeit fairly limited, spline-based fixed-
calibration compensation methods using SwissRanger imagers (SR-3000 and SR-
4000).

4.1 Scattering Restoration Using Scene Texture, Structured
Light or Calibration Squares

One approach to removing the perturbations from scattered light from range
images is to use texture or patterning in the scene. Godbaz et al. [27] present an
algorithm using scene texture to make local estimates of scattered light.

In general, scattering PSFs in practical range-imaging systems are large and the
scattered light can be modelled as locally homogeneous. Using the approach of
Godbaz et al. [27] for a fixed perturbation, k 2 C, the complex domain mea-
surement at any pixel can be written as

n ¼ kþ g ð23Þ

¼ kþ aejh: ð24Þ

If range—hence phase, h—is assumed to be fixed over the local region, for
example a surface orthogonal to the camera, then Eq. 24 can be rewritten as

RðnÞ ¼ RðkÞ þ a cosðhÞ ð25Þ

IðnÞ ¼ IðkÞ þ a sinðhÞ; ð26Þ

where RðxÞ and IðxÞ are the real and imaginary operators. Equations 25 and 26
can be rearranged to give

IðnÞ ¼ tanðhþ pNÞðRðnÞ �RðkÞÞ þ IðkÞ ð27Þ

¼ aþ bRðnÞ; ð28Þ

where a 2 R encodes the influence of the scattered light upon the data, b 2 R

encodes the phase of the primary return and N 2 Z is a disambiguation constant

3 Strictly, the scattering PSF is complex domain, and the phase of the complex number is a linear
function of range. It is important to distinguish the scattering PSF, which is independent of range,
from the defocus PSF, which is not.
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for the tangent function. Determination of a and b corresponds to trying to fit a
linear model to the data, where the imaginary parts of the range measurements are
modelled as a function of the real parts. In the ideal unperturbed case, a ¼ 0, and
the line goes through the origin. As the amount of scattered light increases, the line
is usually perturbed in such a manner that it no-longer passes through the origin,
resulting in erroneous estimates of phase.

Godbaz et al. [27] fit Eq. 28 simultaneously across the entire image for each
pixel using a Fourier implementation of linear least squares. Given values of b for
each pixel it is possible to estimate the phase for each pixel using texture. If the
mean signal intensity (including signal and the offset from ambient light) is
known, then it is also possible to remove the phase ambiguity and determine N. If
v is the mean signal intensity, then disambiguated phase estimates can be made by
calculating the covariance of v with the real part of n, viz

j ¼ covðv;RðnÞÞ ð29Þ

ĥ ¼ atan2ðbj; jÞ; ð30Þ

giving an estimate of the true underlying phase, ĥ.
It is also possible to estimate the scattered light, k, at each pixel. Whereas

Eq. 30 operates by using a region containing (hopefully) only a single object, by
combining multiple estimates of a and b from objects at different ranges, deter-
mination of k can be achieved by an additional linear fit. The relationship between

values of a, b and the estimate k̂ is found by fitting

Iðk̂Þ þRðk̂Þb ¼ a; ð31Þ

over a large spatial region.
It is not necessary for scenes to be highly textured: for example, Falie and

Buzuloiu [28, 29] used calibration squares with known reflectivities on objects in
the scene to remove the impact of any relatively homogeneous scattering. In the
simplest case, given a known, perfectly non-reflective calibration square, a mea-
surement of the square could simply be subtracted from the entire image.

Another related approach is to use structured illumination, as first suggested by
Falie [30]. This approach is aimed primarily at intra-camera scattering, although it
could be theoretically applied to certain types of intra-scene multipath interference
in limited situations; it is definitely not suitable for mixed pixels. Using a second
modulated illumination source to provide additional illumination of a small sub-
region of the camera field-of-view, Falie [31] found that it is possible to determine
both the correct range measurements and the perturbing measurement for the
subregion of the image. The approach relied upon the magnitude of the correct
return increasing in a known manner with the addition of a second illumination
source, while the light scattered from other parts of the scene remained relatively
constant. Whereas Godbaz et al. [27] relied upon spatial variation in intensity,
Falie [31] achieved the same goals using temporal variation in intensity over a
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subregion of the image; these are closely related approaches. While the former is
fundamentally limited by the high frequency spatial content of the range-image,
the latter could be extended to dense sampling of the scattered light using pattern
projection equipment, for example a micromirror array or LCD screen, although
this has yet to be demonstrated.

4.2 Restoration by Spatial Deconvolution

Rather than attempting to deduce the nature of the scattering within the scene by
analysing the variation in complex domain range measurements, it is also possible
to directly model the scattering process as the convolution of an image with a PSF.
By structuring the intra-camera scattering problem as a deconvolution problem, it
is possible to apply off-the-shelf deconvolution algorithms in order to reconstruct a
less perturbed scene. In actuality, the restorations can only be partial at best, due to
factors such as light scattered from outside the field-of-view and difficulties
involved in modelling the full spatial variance of the scattering PSF.

One of the biggest difficulties is simply measuring the PSF in an off-the-shelf
ranging system. While some authors [32] have used have used retroreflective dots,
others have been forced to resort to blind estimation of the PSF by an expert [33,
34]. Ideally, a perfect point source should be used for PSF estimation. In practice,
high quality measurements require a second illumination source other than the
array of LEDs utilised by the vast majority of commercial systems. Because most
systems use differential measurements, which are designed to cancel out ambient
light, it is not possible to use a non-modulated point source. Godbaz et al. [27]
used a laser ducted down an optical fibre as a point source for a custom-built
system.

In general, one can model the measured range values as a linear transformation
of the underlying true complex phasors, viz

n0

n1

..

.

nn�1

0
BBBB@

1
CCCCA ¼ H

g0

g1

..

.

gn�1

0
BBBB@

1
CCCCA: ð32Þ

In the isoplanatic (non-spatially variant PSF) case, H is a block Toeplitz matrix
and the vector of unperturbed measurements can generally be solved for in the
Fourier domain, depending on the assumed prior distribution.4 However, in
practice, the PSF changes greatly across the field-of-view. Anisoplanatic (spatially
varying) PSFs generally require the application of iterative techniques, such as the

4 For example, from a Bayesian perspective Tikhonov regularisation corresponds to the
assumption of a Gaussian distribution of intensity values.
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Landweber [35] and Lucy-Richardson [36, 37] algorithms. Typically, this results
in a significant increase in computational complexity. It has not yet been proven
whether there is a significant improvement provided by modelling the spatial-
variance, although this is likely to be scene dependent.

Mure-Dubois and Hügli [33, 34] implemented a restoration method capable of
operating in real-time. This was achieved by designing an special inverse filter.
They modelled the PSF as the sum of several 2D Gaussian distributions, each with
different width parameters and weightings. Through clever choice of parameters, it
is possible to model such a PSF as separable convolutions: one vertical and one
horizontal. The authors demonstrated the algorithm on data produced by a Mesa
SR-3000, where light from a foreground object was scattered onto a dark back-
ground, resulting in erroneous range measurements.

Kavli et al. [32], developed a restoration method for removing the impact of
scattering on an image using the assumption of an anisoplanatic scattering function
and a simple iterative method. The proposed method was demonstrated on a
SwissRanger SR-3000, sampling the scattering PSF using retroreflective dots. The
algorithm was clearly shown to mitigate range-intensity coupling in example
scenes.

Because mixed pixels can be caused by limited depth-of-field, one mitigation
approach is to use the range data to determine defocus blur scale and perform a
spatially variant deconvolution to refocus the image and sharpen the object tran-
sitions. Godbaz et al. [2] used a coded aperture to increase the bandwidth of the
modulation transfer function more broadband and demonstrate a proof-of-concept
restoration algorithm.

4.3 Restoration by Modelling Intra-Scene Scattering

Fuch [38] developed what is probably the most advanced multipath interference
model in the current literature. Intra-scene multipath reflections are modelled
within the FOV by assuming that each surface in the FOV is a Lambertian reflector
and scatters light onto all the other objects in the scene. Using the perturbed range
and amplitude measurements it is possible to estimate the multipath perturbation
for each pixel and subtract it from the range-image.

There are several significant flaws with this approach, including the use of
perturbed range data, which may result in erroneous estimates of the sum reflected
light. Even using an iterative approach, where the corrected range-data is used to
reestimate the scattered light, convergence is not necessarily guaranteed, espe-
cially for highly perturbed points. Other issues include specular reflection,
reflections and scattered light from objects outside the camera FOV and execution
time (approximately ten minutes per image for the reported implementation).
There is no discussion of occlusion in the paper, so accurate restorations are most
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probably limited to simple scene configurations like the internal corners of rooms;
a more advanced approach would probably require ray tracing. Despite these
issues it is an interesting and original approach, but it does not have the utility of,
for example, the intra-camera scattering deconvolution approaches.

4.4 Mixed Pixel Restoration by Parametric Surface
Modelling

One of the biggest problems with the mixed pixel algorithms most commonly
applied to point scanners is that they generally detect mixed pixels and throw them
away. Because full-field systems integrate over large spatial regions there is an
increased occurrence of mixed pixels, particular when one factors in limited depth-
of-field. Larkins et al. [39] developed a new approach that detects mixed pixels
using a variation of the normal-angle filter described in Sect. 3.1. Once all the
mixed pixels in the image have been detected, Larkins et al. thresholds the
neighbouring pixels into two groups, being a foreground and background object,
using the Otsu method [40]. A bivariate second order polynomial is then fit to each
of the classified points using a linear least squares approach in order to model the
shape of the surface. Each pixel is then projected onto the closest surface to
estimate corrected values.

This sort of projection approach can be considered to be an improvement over
the simple mixed pixel removal approaches, however like all restoration algo-
rithms runs the risk of introducing other errors depending on the particular shape
of objects in the scene.

4.5 Correlation Waveform Deconvolution/Waveform Shape
Fitting

Given that each AMCW range measurement is equivalent to sampling a particular
spatial frequency of the backscattered signal returns, by taking large sequences of
measurements at different modulation frequencies it is possible to recover a model
for the signal returns. Simpson et al. [41] achieved this by taking a sequence of 20
measurements between 10 and 200 MHz in an harmonic sequence; using an
inverse Fourier transform it was possible to recover an extremely low resolution
model. While this frequency stepped AMCW technique is highly limited due to the
extremely large number of measurements and the modulation frequency band-
width required, this approach nevertheless suggests that taking multiple mea-
surements at different modulation frequencies may be the key to separating out
different backscattering sources. In this section we discuss the implicit sampling of
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multiple modulation frequencies using the harmonics of the correlation waveform;
in the next section we discuss the explicit sampling of different modulation
frequencies.

Whereas a single isolated complex domain range measurement is only able to
represent the properties of a single backscattering source, or at best the relationship
between two backscattering components, by analysing the correlation waveform in
greater depth it is possible to separate out multiple backscattering components
within each pixel.

From Eq. 6 the measured correlation waveform is a convolution with a refer-
ence waveform, w ¼ wiIws, where I represents correlation. In order for a fre-
quency to be present in the reference waveform, it must be present in both WiðuÞ
and WsðuÞ. From a spatial frequency content perspective, if the reference wave-
form contains harmonics other than the fundamental then every AMCW lidar
measurement is implicitly sampling multiple spatial frequencies of the backscat-
tered signal returns.5 Thus one can infer a lot more about the backscattering
sources from the correlation waveform than is typically assumed. This means that
like FMCW and range-gating/pulsed measurements, in certain circumstances it is
possible to separate out multiple returns. In practice, while the reference waveform
is relatively band-limited, there is enough harmonic content to pose the multiple
return separation problem as a deconvolution problem. That is, determination of
fnðrÞ, when given fn � wiIws.

Perhaps the greatest parallels are in full-waveform lidar. A significant amount
of research has been performed into fitting models in full-waveform lidar: for
example, Hofton et al. [42] and Chauve et al. [43] use numerical methods to fit
Gaussian and generalised Gaussian models respectively to the measured wave-
form. Stilla and Jutzi [6] discuss a variety of different techniques, including:
additional models for the waveform pulse, such as rectangular functions; analysis
of component returns, parameterising them by time, width and amplitude; com-
ponent return detection methods, including peak detection, leading edge detection,
constant fraction detection, centre of gravity detection; and the application of
deconvolution methods. The main problem with the most common approaches to
fitting distributions to recorded waveforms is that they necessitate iterative solu-
tions, which are highly computationally intensive when performed across a 2D
matrix of measurements. Also, the majority of the models rely on the shape being a
nicely-defined continuous function, like a Gaussian distribution; the correlation
waveform is often better modelled by a piecewise model, such as a truncated
triangle waveform [44].

Another technique, often utilised for the processing of FMCW range-data, is
matched filter processing [45, 46]. However, matched filter processing does not
reconstruct missing spatial frequencies in the same manner that well-designed

5 This manifests as aliasing if only a small number of samples are taken of the correlation
waveform, hence the importance of harmonic cancellation techniques.

112 J. P. Godbaz et al.



deconvolution methods do. From the point-of-view of a typical AMCW correlation
waveform, application of a matched filter to estimate fnðrÞ is utterly useless.

A number of attempts have been made to use the harmonic content of the
correlation waveform to separate out multiple returns. Godbaz et al. [9] poses the
problem as a sparse spike train deconvolution problem, implicitly posing the
problem as a discrete variation of Eqs. 12 and 13. By applying the Levy-Fullagar
deconvolution algorithm [47] it was possible to separate out multiple components
within each pixel; the method was also found to improve precision by 30 % in the
single return case. However, from a practical perspective this is not an advanta-
geous approach because an AMCW waveform is not designed for harmonic
content; in fact most systems try deliberately to minimise it. As a result, long
integration times and high data rates were required. If one is willing to accept
those, then specialist modulation techniques like FMCW and range-gating are
probably more worthwhile.

Other work attempts to directly fit the correlation waveform shape. Godbaz
et al. [44] fit two different piecewise models to the correlation waveform shape: a
truncated triangle model derived from the correlation of two rectangular function
and another model based on linear interpolation between two known basis vectors.
The models were fit using a Poisson maximum likelihood numerical optimisation
method and the separation of components within a pixel was demonstrated.

4.6 Multifrequency Methods

Whereas the correlation waveform models in the second above implicitly sampled
multiple spatial frequencies of the signal returns, it is also possible to explicitly
sample different spatial frequencies of the signal returns by taking several
sequential measurements at different modulation frequencies. In the simplest case
this involves taking two measurements with a frequency ratio of 2:1 in order to
separate out two component returns.

For two coprime relative frequencies r0 and r1, where the underlying compo-
nent returns, g0; g1 2 C are notated at a relative frequency of one,6 the measure-
ments n0 and n1 can be written in terms of g0 and g1 as

n0 ¼
gr0

0

jg0jr0�1 þ
gr0

1

jg1jr0�1 ð33Þ

n1 ¼
gr1

0

jg0jr1�1 þ
gr1

1

jg1jr1�1 : ð34Þ

6 For example, if using frequencies of 30 and 20 MHz, the component returns, g0 and g1, would
be notated as if captured at a frequency of 10 MHz. This means that there is no cyclic
ambiguity, and enables the representation in Eqs. 33 and 34.
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This corresponds to an extremely non-linear optimisation problem and has no
obvious trivial closed-form solution. However, using numerical optimisation
techniques it is possible to separate out the different components within each pixel.
Dorrington et al. [48] demonstrate this using the Mesa Imaging SR-4000 and
Canesta XZ-422 cameras for a frequency ratio of 2:1, with encouraging results.
Nevertheless, this technique remains highly experimental.

5 Conclusion

While mixed pixels are relatively well-understood and can be easily removed from
range-images, the multipath interference problem remains fundamentally
unsolved. Currently, intra-camera scattering can be adequately compensated for by
use of deconvolution techniques, however intra-scene scattering is far more
challenging. In terms of future potential, attempting to model scene structure,
while interesting, appears to be a fundamentally limited approach. It is too easy for
light to be scattered from outside the field-of-view of the camera. Perhaps one of
the more useful potential innovations would be a reliable method to determine the
degree of perturbation, thus place accurate bounds on the true value of any
measurements.

Functional and practical intra-scene multipath compensation may require the
use of more advanced modulation techniques, possibly simultaneous capture of
multiple frequencies. Ultimately as technology improves, FMCW and range-gat-
ing techniques may become better options, as has occurred for radar. For the
moment, despite claims of high precision, full-field AMCW lidar systems remain
fundamentally accuracy limited and it is quite important for the experimenter to be
aware of the fundamental limitations of the technology in order to achieve reliable
results.

6 Understanding Mixed Pixels and Multipath Interference

6.1 Lidar Modulation Techniques

Multipath interference is a more general term than the mixed pixel problem and
refers to the broader case including intra-scene reflections. For example, when
imaging the corner of a room it is common for light to be reflected several times,
resulting in blurry range-data. Multipath interference is also caused by reflections
within the optics of full-field range-imagers, resulting in crosstalk between
measurements.
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3D Cameras: Errors, Calibration
and Orientation

Nobert Pfeifer, Derek Lichti, Jan Böhm and Wilfried Karel

1 Introduction

In this chapter range cameras and especially the data they provide are investigated.
Range cameras can be considered to provide a 3D point cloud, i.e. a set of points in
3D, for each frame. The overall aim of this chapter is to describe techniques that
will provide point clouds that:

• Are ‘‘free’’ of systematic errors (definition to follow); and
• Are registered together from multiple images or an image stream into one

superior coordinate system.

In order to achieve this goal, the quality of range camera data has to be ana-
lyzed. The error sources need to be studied and grouped into random and sys-
tematic errors. Systematic errors are errors that can be reproduced under the same
measurement conditions, e.g. a range measurement may be systematically affected
by the brightness of the scene. Random errors are independent of each other and of
the scene. Their influence can be reduced by averaging. Systematic errors can be
reduced if additional aspects of the measurement instrument or the scene are
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exploited to extend the model describing the relation of the quantities of interest,
i.e. the point coordinates, and the raw measurements. This calibration approach is
called data-driven, and needs to be distinguished from those that aim to modify the
camera physically.

As range cameras have a field of view in the order of 45� by 45�, one frame is
often not sufficient to record an entire object. This holds true for building interiors,
cultural heritage artefacts, statues, urban objects (city furniture, trees, etc.), and
many other objects. Thus frames from different positions and with different
angular attitude need to be recorded in order to cover the whole object. This task is
called registration and usually requires finding the orientation of the camera.

In the following sections, the basic models used in data acquisition and ori-
entation will first be presented. Next we will concentrate on error sources and split
them into random and systematic. In that section also the mitigation of errors will
be discussed. The topic of the following section will be orientation of 3D camera
frames. In the last section the calibration of range camera data is presented.

Range imaging is a field of technology that is developing rapidly. We con-
centrate on TOF cameras here, i.e., cameras that measure range directly and not by
triangulation. Furthermore, we restrict ourselves to commercially available cam-
eras that can reliably provide range information over the entire field of view.

2 Geometric Models

Photogrammetry is the scientific discipline concerned with the reconstruction of
real-world objects from imagery of those objects. It is natural to extend the geo-
metric modelling approaches developed and adopted by photogrammetrists for
passive cameras to TOF range cameras. The well-accepted basis for that modelling
is the pinhole camera model in which the compound lens is replaced (mathe-
matically) by the point of intersection of the collected bundle of rays, the per-
spective centre (PC). The collinearity condition,

ri ¼ rc
j þ kijR

T
j pij ð1Þ

that a point on the object of interest, ri ¼ X Y Zð ÞTi , its homologous point in

the positive image plane, pij ¼ xij � xpj
yij � ypj

�cj

� �T
, and the camera’s

perspective centre, rc
j ¼ Xc Yc Zcð ÞTj , lie on a straight line holds true if the

incoming light rays are undistorted (Fig. 1).
Two basic sets of parameters are needed to model the central perspective

imaging geometry. The first is the exterior orientation (extrinsic) parameter (EOP)
set that models the camera pose, more specifically the position and angular ori-
entation of the image space relative to object space. The EOP set thus comprises
the three-element position vector of the PC, rc

j , and three independent angular

parameters, often Euler angles xj;/j; jj

� �
. However parameterized, the angular

elements are encapsulated in a 3 9 3 rotation matrix, e.g.
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Rj ¼ R3 jj

� �
R2 /j

� �
R1 xj

� �
ð2Þ

The determination of the EOPs for a TOF range camera is the subject of Sect. 3.
The second is the interior orientation (intrinsic) parameter (IOP) set that models

the basic geometry inside the camera and comprises three elements. The first two
are the co-ordinates of the principal point, xpj

; ypj

� �
, the point of intersection of the

normal to the image plane passing through the perspective centre. The third is the
principal distance, cj, the orthogonal distance between the image plane and the PC,
which is not necessarily equal to the focal length.

In passive-camera photogrammetry the unique scale factor kij is unknown and,
as a result, 3D co-ordinates cannot be estimated from a single view without
additional constraints. A TOF range camera allows extension of the collinearity
model with the condition that the length of the line between the PC and an object
point is equal to the measured range. Thus 3D object space co-ordinates can be
uniquely determined from a single range camera view

ri ¼ rc
j þ

qij

pij

�� ��RTpij ð3Þ

Following the usual convention in photogrammetry that is well suited to Gauss-
Markov model formulation and least-squares estimation techniques, the extended
collinearity condition can be recast from the direct form of Eq. 3 into observation
equations of image point location, xij; yij

� �
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Fig. 1 TOF range camera geometric model
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xij þ exij
¼ xpj

� cj

Uij

Wij

þ Dxij ð4Þ

yij þ eyij
¼ ypj

� cj

Vij

Wij

þ Dyij ð5Þ

where

ðU V WÞijT ¼ Rjðri � rc
j Þ ð6Þ

and range, qij

qij þ eqij
¼ ri � rc

j

���
���þ Dqij ð7Þ

These equations have been augmented with systematic error terms

Dxij;Dyij;Dqij

� �
and random error terms exij

; eyij
; eqij

� �
that account for imper-

fections in the imaging system, which are described in Sect. 4.

3 Orientation

Commonly several separate stations are required to entirely capture the geometry
of a scene with a range camera. This might be necessary because of the limited
field of view of the sensor as mentioned, its limited range, the extent of the object,
self-occlusion of the object or occlusions caused by other objects. Before the data
can be passed down the processing pipeline to successive steps, such as meshing
and modelling, the alignment of the range measurements into a common reference
frame has to be performed, often referred to as registration. Mathematically we
seek the rigid body transformation defining the six parameters of translation and
rotation which transforms points from the sensor coordinate system to the common
or global coordinate system. As we assume the camera to be calibrated with the
procedures described in Sect. 5, the scale parameter is known. Since the common
coordinate system for a range camera is seldom a geodetic coordinate system, we
do not specifically consider the issue of georeferencing.

There exist various approaches to solve the problem of orientation. The
approaches differ in their prerequisites on the scene, prior knowledge, extra sensor
measurements and the level of automation and robustness. The approaches can be
categorized into (1) marker-based approaches, which require the placement of
markers (e.g. planar targets, spheres, etc.) in the scene, either as control or tie
points, (2) sensor-based approaches, which require additional sensors (e.g. IMU,
external trackers, etc.) to be attached to the scanner in order to directly determine
the position and orientation of the sensor and (3) data-driven approaches, which
use the geometry and other properties of the acquired data to determine the
transformations in-between scans.
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The orientation of range measurements acquired with a 3D camera shares many
properties with orientation of other range data, e.g. acquired with terrestrial laser
scanners. Therefore many of the known solutions [1] can be applied to the ori-
entation of 3D cameras. One property that makes 3D cameras distinctly different is
the higher frame rate which offers additional processing possibilities.

3.1 Marker-Based Orientation

The marker-based registration is expected to achieve the highest accuracy. It uti-
lises artificial targets which must be inserted into the scene. Artificial targets are
well known from photogrammetry and classical surveying. Artificial targets either
represent control points which are linked to some reference coordinate system or tie
points. Since most TOF cameras provide both an intensity and a depth channel, both
two-dimensional flat targets and three-dimensional shapes can be used as markers.
The dominant shape for two-dimensional targets is white circles on a contrasting
background, although checker-board patterns are also used. The dominant three-
dimensional shape is spheres. Using artificial targets has the advantage of enabling
measurements on ‘cooperative’ surfaces, i.e. surfaces of chosen reflectance prop-
erties. This removes any measurements errors due to disadvantageous material
properties. Due to the limited pixel-count of many TOF cameras it can be a problem
to provide markers in sufficient numbers and with sufficient size in the image
domain. This problem occurs specifically in calibration. Reference [2] used infrared
LEDs as markers. They are both small in image space and yet deliver precise
measurements. The software tools for extracting markers from the image data can
be directly adopted from close-range photogrammetric software (for two-dimen-
sional markers) or from terrestrial laser scanning (for three-dimensional markers).

However accurate, it must be noted that marker-based approaches require extra
effort for the placement and measurement of the targets. The placement of such
targets may be prohibited for certain objects. For these reasons marker-less
approaches are of high interest both form a practical point of view and from an
algorithmic point of view.

3.2 Sensor-Based Orientation

Well-known in aerial photogrammetry, sensor-based orientation involves the
integration of additional sensors to measure the pose of the camera. Typically a
GNSS sensor and an inertial measurement unit (IMU) are integrated for estimation
of position and orientation parameters. However as most TOF cameras are used
indoors we rarely find this integration. Rather we see sensor-assisted orientation,
where an IMU is used to stabilize the estimation of the orientation parameters.
This approach is common in robotics [3].
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3.3 Data-Driven Orientation

Data-driven registration attempts to find the transformation parameters in-between
the camera stations from the sensed point cloud and intensity data itself. Some
approaches reduce the complexity of the dataset by using feature extraction. Again
as we can use both intensity and range data, several feature operators are available
most well-known from purely image-based approaches. Reference [4] gives a
comparison of some standard feature operators on TOF camera images and reports
the SIFT to provide the best results. Recent work in robotics has produced novel
local feature descriptors which purely use the 3D information, such as the Point
Feature Histogram [5] and the Radius-based Surface Descriptor [6].

The group of algorithms for using the full point cloud geometry is the Iterative
Closest Point (ICP) algorithms. The ICP has originally been proposed by Besl and
McKay [7] for the registration of digitized data to an idealized geometric model, a
typical task in quality inspection. The ICP can also be used on a sparse cloud of
feature points. In its most basic form the ICP is restricted to pair-wise registration
of fully overlapping datasets. Several extensions and improvements to the original
algorithm have been proposed since its original publication. An overview is given
by Eggert et al. [8] (we also recommend the extended version of the article which
is available online) and Rusinkiewicz and Levoy [9]. It should be noted that the
ICP has progressed to be the dominant registration algorithm for multi-station
point cloud alignment.

4 Error Sources

Three types of errors can be distinguished and used to characterize the behaviour
of instruments including TOF cameras. These are random errors, systematic errors,
and gross errors.

The random errors are independent of each other (see also [10]). This applies,
on the one hand, to the errors of all pixels within a frame, but on the other hand
also to the errors in each pixel through the frames. Random errors in range cameras
have their cause in shot noise and dark current noise. Repeating an experiment
with a TOF camera will result in slightly different ranges being recorded, which
are caused by the random errors. By averaging, their influence can be reduced. One
way of averaging is to perform the (complex) averaging of frames if the exterior
orientation as well as the scene is stable and the warm-up period of the camera has
passed. In this case, averaging is performed in the time domain. Another way of
averaging, performed in the spatial domain, is the modeling of the scene using
geometric primitives, for example. This requires prior knowledge of the suitability
and existence of these primitives within the scene. However, a group of mea-
surements belonging to one primitive visible in one frame will have independent
random errors. By applying an optimization technique, parameters of the
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primitives can be estimated such that the errors between measurement and scene
model are minimized. This results in a scene model of better precision than the
original measurements. By increasing the number of measurements, either spa-
tially or temporally in the averaging process, the precision improves.

However, averaging does not necessarily lead to more and more accurate
values, especially because of the existence of systematic errors. Those errors may
stay constant during the repetition of an experiment or they may vary slowly, e.g.,
because of the temperature of the chip. In first instance, quantifying these errors is
of interest, because it describes how much the measurement may deviate from the
‘‘true’’ value even if the random errors were eliminated. However, those errors can
also be modeled, which is in fact an extension of the models described in Sect. 2.
Among those errors are lens distortion and range errors caused by electronic cross
talk. While the causes and suitable modeling strategies for these effects are known,
reproducible errors for which neither the origin nor an appropriate modelling
approach are known are also encountered. In this context, the distinction will be
made between the physical parameters and the empirical parameters used to
extend the basic models of Sect. 2.

Finally, gross errors, also called blunders, are defined as errors which do not fit
to the measurement process at all. They have to be identified with suitable
mathematical approaches, typically robust methods of parameter estimation, and
eliminated. Those errors will not be further discussed here, but their detection and
elimination is an area of ongoing research [11].

The systematic errors described in the following are camera internal errors,
errors related to the operation of the camera, or errors related to the scene
structure.

• Lens distortions: camera internal errors modelled with physical parameters
• Range finder offset, range periodic error and signal propagation delay: camera

internal errors modelled with physical parameters
• Range error due to position in the sensor and range errors related to the recorded

amplitude: camera internal error, modelled empirically
• Internal scattering: camera internal error modelled empirically and physically,

respectively, by different authors
• Fixed pattern noise: camera internal error, not modelled
• Integration time errors: related to the operation of the camera, resulting in

different sets of error models (e.g. for range) for different integration times
• Camera warm up errors and temperature effects during measurement: related to

the operation of the camera, quantified, not modelled
• Range wrapping errors: related to the distances in the scene, modelled

physically
• Scene multi-path errors: related to the scene structure, quantified by some

experiments.

Motion blur, caused by the movement of the TOF camera or the movements in
the scene, is a further effect. If the range to a target within a pixel’s instantaneous
field of view is not constant during the acquisition of a frame, then the recorded
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range corresponds to an average distance. Likewise, multiple objects at different
distances may be within a pixel’s instantaneous field of view, which will lead to an
averaged distance (the mixed pixels effect). It is not appropriate to term these
errors of the measurement because the measurement itself is performed as an
integral over the entire pixel. However, the recorded range does not necessarily
correspond to a distance from the sensor to the target which can be found in the
scene itself. Therefore, these measurements should be treated as gross errors.

4.1 Lens Distortions

Radial lens distortion, or simply distortion, is one of the five Seidel aberrations and
is due to non-linear variation in magnification. The systematic effect of radial lens
distortion is isotropic and is zero at the principal point. Many TOF range cameras
exhibit severe (i.e. tens of pixels at the edge of the image format) negative or barrel
distortion. The mathematical model for radial lens distortion, Drrad, is an odd-
powered polynomial as a function of radial distance, r, the Gaussian distortion
profile

Drrad ¼ k1r3 þ k2r5 þ k3r7 ð8Þ

where k1, k2, k3 are the radial lens distortion model coefficients and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xp

� �2þ y� yp

� �2
r

ð9Þ

The correction terms for the image point co-ordinates are easily derived from
similar triangle relationships

Dxrad ¼ x� xp

� �
k1r2 þ k2r4 þ k3r6
� �

ð10Þ

Dyrad ¼ y� yp

� �
k1r2 þ k2r4 þ k3r6
� �

ð11Þ

Often only one or two coefficients are required to accurately model the
distortion.

Decentring lens distortion arises due to imperfect assembly of a compound lens
in which the centres of curvature of each lens element are not collinear due to
lateral and/or angular offsets. It can be caused by inaccurate alignment of the
sensor relative to the lens mount, i.e., the optical axis is not orthogonal to the
detector array [12]. The effect is asymmetric having both radial and tangential
components. Conrady’s model for decentring distortion, which is expressed in
terms of the radial and tangential terms, can be recast into Cartesian components

Dxdec ¼ p1 r2 þ 2 x� xp

� �2
� �

þ 2p2 x� xp

� �
y� yp

� �
ð12Þ
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Dydec ¼ p2 r2 þ 2 y� yp

� �2
� �

þ 2p1 x� xp

� �
y� yp

� �
ð13Þ

The effect of decentring distortion is typically an order of magnitude lower than
that of radial lens distortion.

4.2 Scene-Independent Range Errors Modelled Physically

Three error sources in the range measurements are discussed in this subsection: the
rangefinder offset (d0), periodic errors (d2 to d7) and signal propagation delay
errors (e1 and e2). The common thread among these is that they are instrumental
errors that are independent of the scene structure. This is in contrast to the scat-
tering range error (Sect. 4.4) that is also an instrumental source but it is very
strongly dependent on the nature of the imaged scene.

Dq ¼ d0 þ
X3

m¼1

d 2mð Þsin
2mp
U

q

� 	
þ d 2mþ1ð Þcos

2mp
U

q

� 	
 �
þ e1 x� xp

� �

þ e2 y� yp

� �
ð14Þ

In other rangefinding technologies, such as tacheometric equipment, the offset
parameter d0 models the offset of the range measurement origin from the instru-
ment’s vertical axis. It can also be a lumped parameter that models internal signal
propagation delays and its value may be temperature dependent [13]. In the
context of a TOF range camera, the offset represents the difference between the
range measurement origin and the PC of the pinhole camera model. The first
approximation is that the rangefinder offset d0 is constant, but deviations from this
may be modelled with a pixel-wise look-up table or a position-dependent ‘‘sur-
face’’ model.

The periodic range errors are caused by odd-harmonic multiples of the fun-
damental frequency contaminating the modulating envelope, which results in a
slightly square waveform. The physical cause of this is the non-ideal response of
the illuminating LEDs [14]. The errors have wavelengths equal to fractions of
the unit length, U (half the modulation wavelength). Pattinson [15] gives the
mathematical explanation for the existence of the U/4-wavelength terms. The
origins of the U/4- and U-wavelength errors that have been observed experi-
mentally are not completely clear. Some (e.g. [16]) favour non-sinusoidal bases
to model the periodic errors such as B-splines or algebraic polynomials (e.g.,
[17]).

The e1 and e2 terms are the signal propagation delay errors [18], also known as
the clock-skew errors [19]. They are caused by the serial readout from the detector
array. Their effect is a linearly-dependent range bias, a function of the column and
row location, respectively.
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4.3 Range Errors Depending on Position in the Focal Plane
and Range Errors Related to the Recorded Amplitude

Systematic range errors depending on the recorded amplitude and the position in
the focal plane are reported in ([20–23]). While arguments are brought forward for
the physical relation between recorded amplitude and a range error related to
individual diodes (rise and fall time of IR diodes, [21]), the assembly of many
diodes for illumination of the scene prevents physical modeling.

The TOF cameras investigated with respect to the dependence of the range error
on the position in the image plane feature a notable light fall-off from the center to
the image borders. As no physical cause is given for this error, the relation of the
range error sources amplitude and position in image plane are not resolved.

The recorded amplitude a is a function of the distance from the sensor to the
illuminated footprint on the object and the object brightness itself. Furthermore,
objects which are neither perfect retro-reflectors nor isotropic scatterers feature a
dependence of the remitted energy on the incidence angle. Thus, object brightness
(at the wavelength of the diodes) and angle of incidence may appear to have an
influence on the range error, but primarily this relates to the influence on the
backscattered energy.

Reference [20] reports for the SR3000 range errors of 40 cm for low ampli-
tudes. Additional maximum errors of 25 cm depending on the position in the
image plane are shown. However, these image plane errors are concentrated
strongly in the corners.

The models to describe these systematic offsets need to be developed since no
physical basis exists. The functions are typically chosen to have as few parameters as
possible in order to prefer a simple model. On the other hand, the remaining errors,
after subtraction of the modelled systematic behaviour should only be random. In
[20] a hyperbolic function with parameters h1, h2, h3 is chosen. This model fits to the
general observations that range errors are positive and large for low amplitudes,
rapidly become smaller for larger amplitudes and do not change much for higher
amplitudes. The equation for relating the range error to the observed amplitude is:

Dq ¼ � h2

h3
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

2

h2
3

a2 � 2
h1

h3
aþ 1

h3

s
ð15Þ

It has to be noted that these descriptions should only be used for one range
camera, as no physical principle applicable to all range cameras builds the basis.
See Fig. 2 for an example.

4.4 Internal Scattering

The echo of the emitted optical signal is, in the geometrical model of the camera,
focused by the lens onto the individual pixels. In reality, however, the signal focused
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onto one pixel is scattered partially within the camera and distributed over the sensor
area. This is caused by multiple reflections within the camera: between the lens, the
optical filter, and the sensor. Therefore, the signal observed at an individual pixel is a
mixture of the focused light, returned from the geometrically corresponding pixel
footprint on the object, and the scattered light reflected at other pixels and thus
corresponding to other parts of the object. This is illustrated in Fig. 3. Three targets
at different distances, and therefore with different phase angles, are imaged by the
range camera. Because target 1 is a strong reflector and close to the sensor, a notable
portion of the focused light is scattered and influences the focused light backscat-
tered from targets 2 and 3. Because target 3 in the given example features a low
amplitude due to the larger distance, the scattered light from target 1 will influence
the derived range stronger than for the ‘‘brighter’’ target 2. The impact on the
observed amplitudes may be small, but phase angle measurements and derived
distances are strongly affected in images with high amplitude and depth contrast.
Such high contrasts are typical for systems with active illumination.

Scattering can be described by the convolution of a point spread function (PSF)
with the ‘‘unscattered’’ image. This assumes that scattering in TOF cameras can be
described as a linear phenomenon, which is – experimentally – verified by dif-
ferent studies [25]).

[26] Conducted experiments with an SR3000 and images with a high contrast in
depth (0.73 to 1.46 m) and target reflectivity (retro-reflective foil). Scenes with
and without the target in the foreground were subtracted in the complex domain.
Maximum distortions in the distance were found to be 40 cm. Reference [27]
performed experiments with an SR3000 and an SR4000 using two planar objects.
The foreground object covered half the scene. The scattered signal from the
foreground object to the pixel which images (geometrically) the background
resulted in ‘‘errors’’ as large as the distance between the two objects. For the
SR4000 scattering was more than one order of magnitude smaller. Differently, [28]
could not assert scattering effects in their experiments.

Fig. 2 Systematic range
errors as function of the
observed amplitude. The
dashed line represents the
differences between the
observed and the reference
distance. The solid line is the
model that describes the
systematic range error [20]
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4.5 Fixed Pattern Noise

Each pixel can be considered to be individually the cause of a systematic range
error. This is called fixed pattern noise. Piatti [29] attributes it to the ‘‘imperfect
manufacturing process and different material properties in each sensor gate, which
yields a pixel-individual fixed measurement offset’’. In [30] it is argued that
modeling this error for the PMD-camera does not lead to an increase in precision.

4.6 Errors Dependent on Integration Time

In the focal plane of the TOF camera the backscatter of the emitted light is
collected. In order to have a high signal-to-noise ratio (SNR) for precise mea-
surement at each pixel, the measurement period should be as long as possible. On
the one hand, this can lead to saturation effects, and on the other hand, moving
objects in the scene or movement of the camera may motivate a short integration
time in order to avoid motion blur effects. Thus, the integration time can typically
be set by the user and is adjusted to the observed scene. The SR4000 allows, e.g.,
setting the integration time approximately between 0.3 and 25 ls, whereas the
PMD CamCube bounds it approximately by 0.01 and 50 ls.

Fig. 3 Targets at different distances and having different amplitudes of the geometrically
recorded signal. Left: the amplitude and phase angle are shown as a complex number. Right:
scattering from target 1 to targets 2 and 3 is illustrated [24]
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Different authors have reported that the systematic errors described above
depend on the integration time selected by the user ([20], [23]). The influence on
the range errors of the chosen integration time is shown in Fig. 4.

4.7 Camera Warm Up Errors

Controlled tests conducted by [23, 31] show that range measurements between a
stationary camera and a stationary target exhibit a significant transient error
response as a function of time after the camera is powered up due to strong
temperature dependence. The magnitude of this drift in the older SR3000 model
of the SwissRanger camera is reported to be on the order of several centimetres
[23]. They also show that this effect can be reduced to the centimetre level by
introducing an optical reference into the camera. The known internal path of
light passing through an optical fibre allows correction of measured ranges for
the temperature-caused drifts. The warm-up transient effect in the newer SR4000
is reported by [31] to be smaller, i.e. on the order of several millimetres, but
takes tens of minutes to decay. They suggest that a warm-up period of 40 min be
observed prior to camera use. An example of the warm-up effect is given in
Fig. 5.

Fig. 4 Observed distances vs. range error for different integration times of the SR3000, between
0.4 and 200 ls. The periodic range measurement errors (see 6.4.2) are clearly visible, but also
that the integration time has an impact on the phase of the periodic errors. The deviations from a
harmonic originates in other error sources (recorded intensity), which also varied in the acquired
data. The period of these range errors is 1.75 m, which is an eighth of the modulation wavelength
of 15 m. [20]
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The temperature of the camera does not only vary when the camera is switched
on, but also depends on the work load of the camera which is shown in Fig. 6, [15].
Three distinct phases are depicted and separated by vertical bars: a first phase of
low frame rate, then a phase of high frame rate (up to 10 fps) and then a phase of
low frame rate again. The distance which is measured to fixed targets varies for
several centimeters depending on the frame rate (and consequently the temperature
of the camera) at which the camera is driven.

4.8 Ambiguity Interval

Ranges determined by the phase-difference method are inherently ambiguous since
the phase measurements are restricted to [0, 2p). For a single-tone system, the
maximum unambiguous range or ambiguity interval, U, is determined by the
modulation frequency, fmod,

U ¼ c

2fmod

ð16Þ

For the SR3000 the nominal modulation frequency and maximum unambiguous
range are 20 MHz and 7.5 m, respectively. The SR4000 features the ability to set
the frequency to one of several pre-defined values; the default is 30 MHz, for
which U is 5 m.

The range to a target beyond the ambiguity interval is mapped onto [0, U),
resulting in a discontinuous wrapped range image or wrapped phase map (Fig. 7).
Phase unwrapping must be performed to estimate the integer ambiguity—the
number of whole cycles between the camera and target—at each pixel location,
thereby removing the discontinuities. Jutzi [32] has demonstrated that it is possible

Fig. 5 Range error, Dd, due to the camera warm-up effects in SR4000 data collected every
30 ms for 5 h. A diffusely-reflecting, planar target was imaged at normal incidence from a range
of 2.1 m. The range of the 60 s moving-average trend is 2.6 mm. In this example the transient
dies out after about 60 min but the long-term stability thereafter is very good
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to unwrap the phase of a range camera image with unwrapping 2D algorithms. He
suggests making use of the measurement-confidence value available with some
cameras’ output to guide the unwrapping.

4.9 Multi-Path Effects in Object Space

Similar to the scattering of the signal inside the camera (Sect. 4.4), parts of the
emitted signal may be scattered in object space by closer objects, casting the signal
further to other objects, and from there to the corresponding pixel in the focal
plane. Thus, the footprint of the pixel on the object is illuminated twice: once
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Fig. 6 Range measurements to multiple targets at varying frame rate [15]

Fig. 7 Left: SR4000 amplitude image captured in a hallway. Right: corresponding wrapped
range image showing two discontinuities
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directly, and once via a longer object multi-path. Again, the relative strength of the
multi-path signal to the direct illumination signal determines the size of the range
error. The final range and amplitude is found by the complex addition of all direct
and multi-path signals incident onto each pixel. Descriptions of this phenomenon
are found in [33, 34].

5 System Calibration

5.1 Purpose of Calibration

The geometric positioning models given by Eqs. 4, 5 and 7 are mathematical
simplifications of the imaging process. In reality the many influencing variables
described in Sect. 4 cause perturbations from the idealized geometric conditions,
which if ignored can degrade the accuracy of a captured 3D point cloud. In
calibration one seeks to estimate the coefficients of the models for the instrumental
systematic errors. In doing so the influence of other error sources, such as the
ambient atmospheric conditions and scene-dependent artefacts like multi-path and
scattering, must be eliminated as best as possible to prevent biases. Currently the
estimable parameter set includes the lens distortions, rangefinder offset, periodic
range errors, clock skew errors as well as amplitude-dependent range errors.

Förstner [35] breaks down the camera calibration (and orientation) problem into
four central tasks. The first is sensor modelling, treated in Sects. 2 and 4, in which
an understanding of the physics of image formation, possibly guided by model
identification procedures, is transformed into the mathematical models. The sec-
ond is geometric network design where the goal is to maximize the accuracy of
coefficient estimation through the judicious choice of a configuration of sensor and
calibration primitive locations. This subject is touched upon briefly in this section;
greater detail can be found in the cited references. The third and fourth tasks are
error handling (i.e. procedures for outlier identification) and automation, respec-
tively, neither of which is treated here. However, there is ongoing research to
address these problems also in neighbouring disciplines [11].

5.2 Calibration Approaches

Two basic approaches to TOF range camera calibration can be considered. The
first is laboratory calibration, the name of which implies that it is conducted in a
controlled setting. Specialized facilities (e.g. a geodetic calibration track) are used
to very accurately determine (usually) a subset of calibration model parameters.
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Multiple calibration procedures (e.g. range error calibration over a baseline and
lens distortion calibration over a target field) are generally required for complete
system characterization. The principal advantage of this approach is that the
network design tightly is controlled by the specialized observation conditions, so
no parameter correlation problems are explicitly encountered.

The rather restrictive requirement for special facilities has been a driving force
behind the development of self-calibration methods. Though several variants
(described below) exist for TOF range cameras, they share a common underlying
premise: a strong network of geometric primitives (structured point targets and/or
planar surfaces) is imaged and all model variables (the IOPs augmented with
systematic error model terms, the EOPs and the object primitive parameters) are
simultaneously estimated from the redundant set of observations according to
some optimality criterion (e.g. the weighted least-squares principle). It is a very
flexible approach in that all information sources (system observations and external
constraints) can be incorporated and a holistic method in which both individual
component errors and system assembly errors are included in the models. Absolute
knowledge of the object space primitive parameters is not required, though it can
be readily included in the solution. Since the facility requirements are minimal,
self-calibration may be performed in a laboratory for pre- (or post-) calibration or
at a job site if the stability of the camera’s interior geometry is in question.

5.3 Self-Calibration Methods

The available self-calibration methods are first categorized as being range-camera-
only methods or joint-setup (with a passive camera) methods. Three variants of the
former are first described: the two-step independent method; the two-step
dependent method; and the one-step integrated method. Data acquisition for either
category may comprise still images or video sequences, which allow for greater
random error mitigation via image averaging and greater redundancy.

In the two-step independent method, the camera-lens and range-error calibra-
tions are performed as separate processes using separate facilities. First, an
established procedure is used for the camera-lens calibration from x and y
observations of targets in a network of convergent images [36]. Convergent
imaging is needed to lower functional dependencies between the EOPs and IOPs;
see [37]. Then, a planar target is imaged at normal incidence to determine the
range-error parameters. Kahlmann and Ingensand [23] use a small, planar target
moved along an interferometric calibration track whereas [31] use an extended
planar target positioned with parallel tape measures. The orientation can also be
performed by space resection of the camera from independently-surveyed targets
on the plane. Regardless of the orientation method used, reference ranges between
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each image’s PC and the target plane, described by the unit surface normal vector
n and distance parameter d, are computed as follows

qref ¼
d� nTrc

j

nTRT
j pij

pij

�� �� ð17Þ

The reference ranges are compared with the observed ranges to derive a dense set
of range differences from which the range-error parameters are estimated by least-
squares.

A common facility is used for both calibration processes in the two-step
dependent method. The camera-lens calibration is first performed with an estab-
lished procedure using the x and y observations of targets on a planar surface
observed in a network of both convergent and orthogonal images. The camera-
plane orientation is established by the camera calibration so there is no need for an
independent orientation means. The reference ranges can then be computed from
the orthogonal camera stations to points on the plane [38, 39] or to the target
centers [40] and used for the range-error calibration as described above.

The third approach is the one-step integrated method in which both sets of
calibration parameters (camera-lens and range-error) are estimated simultaneously
[27]. A planar target field is imaged from both convergent and orthogonal camera
locations. To prevent scattering errors from biasing the solution, the range
observations from the convergent stations are excluded from the bundle adjust-
ment. In this approach the camera orientation is performed concurrently and there
is no explicit computation of reference ranges.

In the joint-setup methods a high-resolution, pre-calibrated passive digital
camera is used to aid the range camera calibration. The two cameras are rigidly
mounted together in a frame such that there is a high degree of overlap of their
fields-of-view and their relative orientation is invariant. Reference [16] presents a
two-step (i.e. camera-lens calibration followed by range calibration) joint-setup
method while [17] proposes an integrated joint-setup approach that incorporates
both convergent and normal images in the network.

The principal advantage of the range-camera-only methods is that no auxiliary
equipment is required to perform the self-calibration. Though in principle a more
rigorous method, the one-step integrated approach suffers from high correlation
between the rangefinder offset and the PC position brought about by the use of
normal-incidence imaging of the planar target field. This correlation exists in the
two-step methods as well, just not explicitly. However [41] have demonstrated that
the precision and accuracy differences between the three range-camera-only
methods were not of any practical significance. The advantage of the joint-setup
approach is the decoupling of the IOPs and EOPs parameters. Furthermore, it is a
logical procedure to pursue if one wishes to colourize point clouds captured with
the range camera with colour imagery from the passive digital camera.
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5.4 Model Formulation and Solution

Regardless of the exact self-calibration procedure, the first step in the numerical
model solution is formulation of the deterministic part of the linearized Gauss-
Markov model:

Ax ¼ bþ v ð18Þ

where x denotes the vector of unknown parameters; b is the vector of observations;
A is the Jacobian of the observations with respect to the parameters; and v is the
vector of error estimates (residuals). If, for example, one considers the point-based,
one-step self-calibration procedure, then this system can be partitioned row-wise
according to observation group (x,y,q) and column-wise according to parameter
group (e: EOPs; i: IOPs; o: object point co-ordinates)
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The stochastic model is defined by

E vf g ¼ 0 ð20Þ

and

E vvT
� 

¼ C ð21Þ

where C is symmetric, positive-definite and diagonal if uncorrelated observational
errors are assumed.

The system of Eq. (19) must be subjected to a set of minimum object space
datum constraints such as the inner constraints, represented by the design matrix
G, imposed on object points only (e.g. [42]).

GT
o xo ¼ 0 ð22Þ

The least-squares solution of this system of equations is performed iteratively in
order to obtain optimal parameter estimates. Their covariance matrix quantifying
parameter solution quality is obtained directly from the solution. Further details
about the least-squares solution and quality measures can be found in Kuang [43],
for example.

6 Summary

This chapter summarized approaches to estimate the orientation of TOF cameras
and model the imaging process. The geometric principles of the imaging process
are based on the collinearity of the object point, the camera perspective centre, and
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the image point. This is augmented by the direct range observation performed by
TOF cameras, providing the distance from the perspective centre to the object
point.

However, systematic deviations from this model exist. Thus, range cameras
need to be calibrated. Depending on the range camera used and the experimental
design, errors may be larger than 10 cm. If possible, the physical cause for these
systematic errors should be found and modelled. This was shown for periodic
range errors. In other cases, an empirical modelling approach must be chosen, as
the cause for reproducible systematic errors is not known or too complicated for
modelling (e.g. error related to amplitude). Other causes of error are range wrap
and scattering. Range wrapping can be corrected with weak assumptions on the
scene. Scattering, however, needs to be treated differently. Its removal by
deconvolution techniques is the first step in processing range data, i.e. before
orientation and calibration.

Orientation and calibration are not independent of each other. If the stability of
a range camera does not allow determining calibration parameters once for a
longer time period (e.g. one year), self-calibration by exploitation of project data is
necessary. In such a case, the orientation and calibration are solved
simultaneously.

With the on-going development of TOF camera technology, the set of systematic
errors becomes smaller and smaller. Still calibration remains important because it is
the appropriate means of quantifying both random and systematic errors.

The on-going development with respect to TOF camera resolution and reduced
noise in range and amplitude observation will also increase the accuracy of esti-
mating the orientation.
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TOF Cameras for Architectural Surveys

Filiberto Chiabrando and Fulvio Rinaudo

1 Introduction

Digital photogrammetry developments and the massive use of LiDAR technology
have led to a radical change in metric survey approaches for the documentation of
Cultural Heritage. In particular, a rapid change has been taken place from 2D
representations, which were always considered the only way of obtaining archi-
tectural knowledge, to 3D geometric and photorealistic representations.

Before the development of fully 3D acquisition systems, and the improvement
in digital photogrammetric techniques (which are more and more oriented towards
the automatic image-matching algorithms and therefore towards dense point cloud
acquisition), the goal of the surveyors of architectural objects was to extract the
geometric shape ofthe surveyed item using traditional systems, such as total sta-
tions, levels, close-range photogrammetry or direct measurements. These tech-
niques, and the related recorded data, were usually used to create conventional 2D
drawings, such as plans, elevations and sections.

The above mentioned approach could be defined as intelligent, rational and
manual since because the surveyor selected the points that were needed to describe
the shape of the surveyed object during the acquisition of the primary data (angles,
distances, plotting of stereo-images).

Today the scenario has changed: the new acquisition systems allow surveyors to
work with point clouds that have been acquired without any understanding of the
shape of the object. The user has to interpret and describe the searched shapes on
the basis of this ‘‘unintelligent’’ geometry.
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This radical change, which started with the introduction of Terrestrial Laser
Scanners (TLS) at the end of the nineties, has undergone an interesting develop-
ment over the last ten years with the introduction of new TLS systems, thanks to
the recent developments in image-matching techniques (digital photogrammetry
[13, 14, 33, 35]) and to new instruments: e.g. Time of Flight (TOF) cameras.

Unfortunately, the data acquired or extracted from the above mentioned
systems and techniques cannot be used directly to produce 2D representations,
due to the difficulty involved in extracting the geometric primitives (e.g. lines,
surfaces, volumes etc.) from a 3D point cloud. Moreover, several manual
interventions usually have to be performed on the extracted data, since no
automatic or reliable procedures are so far available. In order to represent the
correct object geometries, it is necessary to measure and extract the break-lines
from the 3D survey data that allow the artefact to be described at the requested
representation scale.

On the contrary the new 3D acquisition systems allow surveyors to be supplied
during the 3D modelling phase. The creation of these models is actually based on
different techniques (Tin, Splines, Nurbs etc.) that allow the shape of the objects to
be described with a very accurate metric precision.

Hence, each survey technique has pros and cons and each allows an object to be
surveyed with a different accuracy; therefore, in order to achieve a more accurate
and complete survey, it is usually necessary to integrate information from more
than one of the aforementioned techniques.

In the following sections, TOF cameras are analysed to check their capacity to
produce point clouds of the same quality as those produced by TLS and to point
out their expected applications but also to show their limits, due to the current
technology developments, in terms of hardware and software.

2 TOF Camera Analysis for Architectural Surveys

TOF cameras allow 3D point clouds which are almost comparable with those of
traditional LiDAR instruments to be acquired at video frame rates. Using these
cameras, a bundle of distances of a two-dimensional array is determined simul-
taneously for each pixel. The measured distances are obtained from the time that
an emitted signal takes to return to the camera. A near infra-red light, modulated in
amplitude at a radio frequency, is emitted by a set of integrated light emitting
diodes (LEDs) to illuminate the scene. The back-scattered light is focused on a
detector array and demodulated at each detector site. The acquisition of cross-
correlation measurements from four successive integration periods allows the
phase difference from which the range is derived, the amplitude and the offset of
the received signal to be determined. The range camera outputs are usually an
amplitude image and a co-located 3D point cloud, which is computed from the
image of the ranges.
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Two main variations of the TOF principle have been implemented above all:
one measures the distance by means of direct measurement of the runtime of a
travelled light pulse using arrays of single-photon avalanche diodes (SPADs) [1].
The other method uses amplitude modulated light, and obtains distance informa-
tion by measuring the phase difference between a reference signal and the reflected
signal [19].

While complex readout schemes and low frame rates have so far prevented the
use of SPAD arrays in commercial 3D-imaging products, the latter category has
already been implemented successfully in several commercially available 3D
camera systems.

Only few application of TOF cameras for metric surveys have been published
up to now [11, 12, 38] and all the tests were developed on small sized objects: in
those papers the modeling phase was not analyzed and TOF cameras was used as
LiDAR instruments without considering the different origin of the measurements.

Therefore in the following a short but exhaustive analysis of the possible
systematic errors which affect TOF measurements will be described in order to
allow a correct use of TOF cameras in architectural metric surveying.

The error sources of primary TOF data can be classified in four groups [24].
The first group includes random errors due to shot noise and dark noise [20].
The second group, (scene-dependent errors) comprises systematic effects due to

the ambient imaging conditions (e.g. external temperature) as well as effects due to
the scene structure, including mixed pixels, multi-path reflections and the scat-
tering artifact. The latter is a bias in both the amplitude and phase of the measured
signal from background targets which is caused by the internal scattering of light
reflected from a bright, foreground object [29]. The phase error is realized as a
range bias.

The third group includes errors due to camera operating conditions, such as the
warm-up time [9] and the selected integration time. The integration time can have
a direct effect on the rangefinder offset parameter [16] and, when changed, can
cause short and long-period temporal effects on the range measurements [17].
These effects are managed by warming up the camera for a sufficient period prior
to data acquisition, and using a constant integration time. The final group com-
prises scene-independent errors, such as lens distortions, rangefinder offset, range
scale error, periodic errors and latency errors [22].

The aforementioned scene-dependent or scene-independent errors, which could
be defined as systematic errors, need to be corrected using suitable pre-calibration
procedures [15, 23, 25, 34, 41] or some post-processing solutions [9] in order to
refine the measurement accuracy.

A Swiss-Ranger-4000 (SR-4000) camera was employed in the following tests
and examples. This camera is characterized by a 176 9 144 pixel array, and a
working range of 0.3–5 m (Table 1). For more details about the camera specifi-
cations see www.mesaimaging.com.

A study on the influence of distance measurements of the camera orientation,
with respect to the observed object, and an investigation on the influence of object
reflectivity on the camera distance measurement accuracy and precision have been
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carried out for architectural survey purposes in order to understand the possible
problems that could arise concerning a decrease in accuracy during a survey on
real objects.

2.1 Pre-calibration and Data Acquisition Methodology

According to some previous works reported in [9, 15, 39, 41], TOF camera
measurements are affected by the internal temperature of the measurement system;
for this reason, a warm up period of the camera of least 40 min is necessary.

After the warm up, the camera, mounted on a topographic or photographic
tripod, acquires at least thirty frames with an integration time that is equal to the
‘‘auto integration time’’ suggested by the SR_3D_View software. These frames are
than averaged in order to reduce the measurement noise.

After averaging the acquired frames for each camera position, each pixel distance
measurement is corrected using a distance error model [9] in order to obtain the final
range images that are useful for the survey purposes. This procedure has been used in
all the tests and applications that are presented in the following sections.

Before starting with applications on real objects it is necessary to evaluate the
performance of the TOF camera, considering the influence of the incidence angle
and the influence of object reflectivity on distance measurement accuracies: both
phenomena represent typical conditions that occur when the objective of the
survey is an architectural object or an artefact (usually built with different mate-
rials and surfaces).

Table 1 The Swiss ranger SR-4000 TOF camera

Technical specifications SR-
4000

Focal length [mm] 10
Pixel array size [-] 176 (h) 9 144 (v)
Pixel pitch [mm] 40
Field of view [�] 43.6 (h) 9 34.6 (v)
Working range with standard

settings [m]
0.3–5.0

Repeatability (1r) [mm] 4 (typical)—7 (maximum) (@ 2 m working range and 100 %
target reflectivity)

Absolute accuracy [mm] ±10 (@ 100 % target reflectivity)
Frame rate [fps] Up to 54 (depending on the camera settings)
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2.2 Influence of the Angle of Incidence on Distance
Measurements

The signal emitted by the camera impinges the observed object with an angle
which depends on the camera orientation with respect to the normal of the object
surface. We can define a as the angle between the optical axis of the camera and
the normal to the object surface, as shown in Fig. 1.

Some works have already examined the influence of the emitted signal angle of
incidence on distance measurement precision [2, 18]. In the following, this aspect
is analyzed from a more practical point of view: the analysis deals with data
acquired with the SR_3D_View software using the ‘‘auto integration time’’, thus
changing the integration time for each object position, as a generic user could do,
and acquiring data of the object to be surveyed.

In order to evaluate whether there is any influence of the a values on the
precision of the distance measurements acquired in this way, the following system
is considered.

The camera was positioned on a photographic tripod, with the camera front
parallel to a Plexiglas panel covered with a white sheet, which was fixed to the top
of a total station (Fig. 2, left). After the camera warm up, the panel was accurately
rotated using the total station, by two degrees at a time in the 0� 7 45� range
(Fig. 2, right), in both clockwise and anticlockwise directions, while the SR-4000
camera was fixed. Fifty consecutive frames were acquired for each panel position,
using an integration time equal to the ‘‘auto integration time’’ suggested by the
SR_3D_View software. The distance between the panel and the camera was about
1.6 m.

In order to accurately estimate the distribution of the distance measurements
around their mean value, a reference plane was estimated for each panel position,
after outlier elimination, from the acquired range images using a robust estimator
(Least Median Squares (LMS), [37]).

This estimator has a high breakdown point, which means that it can discrimi-
nate outliers and leverage points which can be up to 50 % of the considered data.

α = 0
α = 10°

Fig. 1 Alpha angle between
the optical axis of the camera
and the normal to the object
surface
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The parameter which has most influence on the LMS is the threshold value of
rejection L, which offers a preliminary hypothesis on the percentage of outlier
contamination. After testing this estimator on several randomly generated range
images, containing different percentages of outliers, we adopted a threshold value
of rejection of L = 1.5.

The LMS estimator was applied to a sub-image of 65 9 61 pixel dimensions,
which was centred with respect to the centre of the panel in each position. Using
this estimator, it was possible to select some reliable points in the sub-image that
were necessary for a robust plane estimation. The differences between the range
image (obtained after averaging fifty frames) and the estimated reference plane
were then calculated for each panel position, always considering the sub-image of
65 9 61 pixel dimensions. The mean and standard deviation values of these dif-
ferences are reported in Fig. 3 on the left and right, respectively. In the case of
a[ 45�, the panel area was too small for a reliable estimation of a reference plane,
therefore the analysis was limited to 45� in both directions.

The left side of Fig. 3 shows that the mean value of the differences between the
estimated plane and the SR-4000 distance measurements undergoes small fluctu-
ations around the zero value according to the a values: these small fluctuations are
less than 2 mm in both the clockwise and anticlockwise directions. The standard
deviation values vary according to the a values (Fig. 3 right): this variation is
limited to about 2 mm. This trend is justified by the adopted procedure: since the
data were acquired with the ‘‘auto integration time’’ mode for each panel position,
the reduction in the amount of reflected light from the panel is limited to about
20 %, with respect to the reflected light from the initial position (a = 0�). The
standard deviation of distance measurement is in inverse proportion to the
amplitude of the reflected light [4, 7, 39]; therefore, an amplitude reduction of
about 20 % will result in an approximate increment of about 25 % of the standard
deviation of the distance measurement. Since the typical standard deviation value

0° 10° 20°

30° 40° 50°

Fig. 2 System used to evaluate the influence of the alpha angle on camera distance
measurements (left); some positions of the panel during the acquisition (in false colour right)
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of the distance measurements is 4 mm (see www.mesaimaging.com), a 25%
increment of that value can be considered negligible. This aspect can be confirmed
from the previously reported results. In conclusion, if the ‘‘auto integration time’’
is adopted for data acquisition, there is no appreciable variation in the distance
measurement accuracy for camera orientations that fall within the considered
interval of a values.

2.3 Influence of Object Reflectivity on Distance
Measurements

The standard deviation of distance measurement is in inverse proportion to the
amplitude of the reflected light, which in turn depends on the reflectivity of the
object to the signal emitted by the camera when all the other parameters (inte-
gration time, distance between camera and object, background illumination) are
kept constant. Therefore, a study on the influence of object reflectivity on distance
measurements is necessary in order to investigate the potentiality of the camera for
architectural metric surveys. For this purpose, the system represented in Fig. 4 left
was considered.

This system allows planar objects of different dimensions to be positioned in
order to be tested, and offers high stability compared to displacements induced
by changing the objects, thanks to the use of appropriate supports. The camera
is positioned on a photographic tripod, parallel to the wooden panel of the
system.

The materials to be tested are positioned from one at a time on the system,
while the camera is fixed. Fifty frames were acquired for each material (Fig. 4,
right) and then averaged in order to reduce the measurement noises. This proce-
dure was repeated with several distances (from 1.30 to 1.80 m) between the
camera and the tested objects, moving the camera rather than the system.

The camera positions (defined using 5 points) and the object surface positions
(defined using 6 points—see Fig. 5, left) were estimated in an arbitrary coordinate

Fig. 3 Mean values of the differences between the range image and the estimated reference
plane (left); standard deviation values of the differences between the range image and the
estimated reference plane (right)
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system thanks to accurate topographic measurements, using two total stations
(Fig. 5 right) in a direct intersection scheme.

The tested materials and the integration times (I.T.) adopted for the data
acquisition in the considered case (1.80 m from the camera) are reported in
Table 2: the tested planar objects were chosen from among common building
materials which can be found in the case of both indoor scene reconstruction and
architectural element surveying. The same tests can be run using the specific
materials of the object that have be surveyed.

Only the data acquisition and processing details relative to a distance of 1.80 m
between the camera and system are reported in Table 2. Fifty frames were
acquired twice for each material, with two different integration times: ‘‘I.T. auto’’
(‘‘auto integration time’’), which shows small variations that depend on the
material reflectivity and ‘‘I.T. ref.’’, which corresponds to the ‘‘auto integration
time’’ for the Kodak R27 grey card, and which was adopted as the reference
integration time for the considered distance. In this way, it was possible to com-
pare the reflectivity of the tested materials with the ‘‘standard reflectivity’’
obtained for the Kodak R27 grey card.

In order to avoid noise effects, caused by the presence of the wooden panel and
of the depth discontinuity between the wooden panel and the surface to be tested,

Fig. 4 Purpose-built system used to position planar objects of different dimensions (left); some
of the tested material (right)

Fig. 5 Points measured for each material in order to estimate the spatial position (left);
Topographic measurements for the estimation of the camera and tested object positions (right)
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the analysis of the SR-4000 distance measurements was limited to a square area
inside the surface of the tested materials. The differences between the estimated
plane (using the points acquired with the topographic survey) and the camera
distance measurements were estimated for each of these materials, considering
both ‘‘I.T. auto’’ and the ‘‘I.T. ref.’’. The mean and standard deviation values of the
differences for ‘‘I.T. auto’’ are reported in Table 2. Similar results were obtained
for ‘‘I.T. ref.’’.

It is possible to observe, in Table 2, that the mean value of the calculated
differences shows small variations, between the tested materials, which are of the
same order as the camera distance measurement accuracy. It is worth nothing that
the mean value of the differences (raw data accuracy) of all the considered
materials is 3 mm; the same variations are observed using ‘‘I.T. ref.’’. The standard
deviation value of the calculated differences is less than 2 mm for all the materials,
except for ‘‘Balmoral Red Granite’’, ‘‘Antigorio Scuro’’ and ‘‘Marble Pietra Or-
sera’’. For these materials, in fact, there was a high percentage of saturated pixels,
due to their high reflectivity to the camera signal, and the distance measurements
were quite heterogeneous, but after the elimination of the saturated pixel, the
values of the Standard Deviation of the differences concerning the three previously
mentioned materials returned to very similar values to the other ones (0.51, 0.53,
0.14 cm respectively).

On the basis of the obtained results, it is possible to state that there is no
decrease in the camera accuracy of distance measurements for the typical building
materials employed in the architectural Cultural Heritage.

Table 2 Results considering data acquired in ‘‘I.T. auto’’ mode (1.80 m)

Material [-] I. T. auto
[ms]

I.T. ref.
[ms]

Mean of the
differences
[m]

St.d. of the
differences
[m]

Kodak R27 dark 106 106 0.002 0.001

Kodak R27 bright 102 106 0.001 0.001

Hardboard 107 106 0.002 0.001

Black paper 107 106 0.001 0.001

Laminated wood 105 106 0.006 0.001

Bright plasterboard 104 106 0.001 0.001

Painted metal sheet 99 106 0.008 0.001

Marble Pietra Etrusca 108 106 0.002 0.001

Balmoral red granite 107 106 0.003 0.721

Granite 107 106 0.004 0.781

Marble Pietra Orsera 105 106 0.007 0.739

Stone 107 106 0.000 0.001
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2.4 Tests, Data Processing, Comparisons and Results
in Cultural Heritage Architectural Surveying

Some results are here presented in order to show the potentiality of TOF cameras
in Cultural Heritage architectural surveying and of their integration with other
techniques. First, a complete survey of an architectural frieze was conducted
(Fig. 6, left) and the TOF camera accuracy was evaluated with a Laser Scanner
survey on the same object (60 9 20 9 40 cm). Moreover, two windows
(3 9 6 m) containing different materials (Fig. 6, centre and right), were surveyed
in order to create 2D architectural drawings and 3D models which are useful to
obtain knowledge and the documentation of the objects. The results, the
encountered problems and the final results are reported hereafter.

2.5 An Architectural Frieze, Survey and Accuracy
Evaluation of TOF Camera Performances

As can be seen in Fig. 7 (left), the frieze was positioned on a table in front of the
SR-4000 camera at a distance of 2 m (Fig. 7, centre).

Seven purpose-built cubic targets, covered with a white sheet, were distributed
around the object that had to be acquired in order to obtain some reference points
which are necessary to define a known coordinate system for the two acquired
datasets.

The camera was mounted on a photographic tripod in front of the frieze and
fifty frames were acquired with the TOF camera adopting the auto integration time
suggested by the SR-3D-View software and then averaged in order to reduce
measurement noise. The Z coordinate (orthogonal distance between the front of
the camera and the object) of the surveyed points was then corrected with the
distance calibration model [9] in order to obtain more reliable coordinates.

Fig. 6 The architectural frieze (left); windows of the Valentino Castle (centre and right)
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The limited dimensions of the architectural frieze made it possible to acquire
the entire shape of the object with a single acquisition (Fig. 7, right). The step
between the points using the SR-4000 camera at 2.0 m was about 3 mm, which
can be considered a good rate to obtain a complete 3D model of the object. The
different products that were achieved are reported in the following figures (Fig. 8).

A complete survey was conducted after the TOF data acquisition using the
MENSI S10 triangulation based laser scanner in order to test the accuracy of the
camera for real object survey (Fig. 9, left). As the S10 scanner has sub-millimetre
accuracy, the data acquired with this instrument (Fig. 9, centre and right) can be
used as a reference since the MENSI S10 accuracy is less than 1/10th of the
expected accuracy of the SR-4000 camera.

In order to perform the comparison between the two ‘‘point clouds’’, the data
acquired with S10 were inserted into the same coordinate system as the TOF
camera using the previously mentioned cubic targets.

Finally, the difference between the distance of the corresponding point in the
MENSI S10 data (reference data) and the distance measured by each pixel of the
SR-4000 camera (TOF original data) were estimated.

Figure 10 shows that the estimated differences vary when objects that are at
different distances from the camera are considered since the error function depends
on the distance between the camera and the object. Since the SR-4000 data and the
MENSI S10 data were acquired from slightly different positions, some areas in
Fig. 10 show very different values, which can be considered wrong. The mean
value of the differences in the object area considering the original TOF data was

Fig. 7 The position of the architectural frieze (left), data acquisition with the SR-4000 camera
(centre), and the acquired TOF point cloud (right)

Fig. 8 Point cloud (left); mesh (centre); 3D textured model of the surveyed architectural frieze
(right)
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0.6 cm, instead when a distance calibration model is applied [9], the mean value of
the differences became 0.1 cm. These results demonstrate the efficacy of the
distance calibration model and show the high potentiality of using TOF cameras
for metric surveys of architectural artefacts without strong break-lines and for 3D
object reconstruction.

2.6 Data Acquisition and Processing of Two Windows

After the test on a real object in indoor conditions a first outdoor test was carried
out concerning a survey on two windows pertaining to the Valentino Castle, Turin,
Italy (one in the main building and the other in the Chevalley building). The aim of
this test was first to evaluate the performance of the TOF cameras during a
complete architectural survey of an object which required strong break-lines to
describe it correctly and, at the same time, to estimate the capability of these
instruments in outdoor conditions.

Fig. 9 Data acquisition of a frieze with the MENSI S10 laser scanner (left); the complete
acquired point cloud (centre) and details of the decoration (right)

Fig. 10 Differences
(expressed in metres)
between the distances
obtained from the Mensi S10
point cloud and the SR-4000
point cloud
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After the camera warm-up, the SR-4000 camera was positioned on a photo-
graphic tripod and moved to different positions in order to achieve complete
coverage of both windows (Fig. 11).

Some problems emerged in the acquisition data (pixels too saturated) during the
central hours of the day, when the sunlight illuminated the objects of the survey.
For this reason, the surveys were performed in the early hours of the day and in the
late afternoon, after the sun had gone down. This problems has shown that at the
moment it is not possible to acquire reliable range images with the camera that was
employed when constant, persistent and direct sunlight is present.

When the environment conditions were favourable, thirty frames were acquired
from each position using the software supplied with the camera (SR_3D_View
software), and adjusting the integration time in order to obtain the minimum
possible number of saturated pixels and a low noise level of the distance mea-
surements (when the ‘‘auto-integration time’’ suggested by the software was used
too many pixels were saturated and, as a consequence, the data were not suitable
for use).

The TOF data were acquired from several different positions in order to obtain a
complete 3D model of each window and the acquired range images were over-
lapped by about 50 %.

Six range images were acquired for the first window (Fig. 11, left) at a taking
distance of between 2 and 4 m. The step between each point of the recorded point
clouds was about 15 mm with acquired area dimensions of about 3.00 9 2.50 m
for each range image.

The thirty frames acquired from the different positions were then averaged as is
usual practice. The distance recorded for each pixel of the averaged frames was
then corrected with the same distance error model used in the previous tests. Some
range images of the first acquired window are reported in Fig. 12.

The second window (Fig. 11, right), which is characterized by a brick deco-
ration and has a very large glass surface, was acquired using the same previously
described strategy. In this case, eight range images were acquired (Fig. 13).

Fig. 11 TOF data acquisition of the two windows at the Valentino Castle
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On the basis of the resolution of the camera, the step between each point was
about 15 mm.

After the first processing steps, which allowed the TOF scans to be obtained
without any systematic errors, the next phases were focused on obtaining the
complete model of the windows. Adopting the typical approach used for Laser
Scanner data processing, all the point clouds were first cleaned (the outliers and the
occlusions were deleted), and then the range images were registered using the ICP
algorithm (Geomagic Studio Software was used) in order to obtain a 3D model for
each window. This process is time consuming because, during the first step, it is
necessary to manually measure the homologous points in each scan, and after this
first approximation, the algorithm is then able to start and to conduct the regis-
tration. The final models of the surveyed windows are reported in Fig. 14.

The registration process of the first window was successful (average discrep-
ancies on check-points were of about 4 mm) thanks to the excellent definition of
the geometric shape of the surveyed windows (Fig. 14, left and centre).

However the ICP algorithm did not delivery very good results for the second
window; the shape of the windows (only a few geometric edges) and the large
windows panes, which increased the noise of the TOF data, required a great deal of
manual effort (more than a few homologous points were necessary) to realize the
final point cloud. Despite the problems encountered regarding the second window,
the final result was acceptable (average discrepancies on check-point were 25 mm)
and a 3D modelling was obtained.

The final point clouds were imported into a modelling software and some tests
were conducted on the modelling of the object in order to analyse the suitability of

Fig. 12 Three parts of the first window surveyed using the TOF camera

Fig. 13 Three parts of the second window surveyed using the TOF camera
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these data for a correct 3D model (Fig. 15) and for break-line extraction to obtain
typical 2D representations.

As can clearly be seen from Fig. 15, on the left, it is not possible to recognise
the real shape of the surveyed object from the model; in this case, the problems
arose because of the geometry of the window. The shape of the plaster (the main
decorative feature of the window) in particular shows several well defined edges
and when the aforementioned point cloud step (15 mm) was introduced, the
geometry was not recognizable from the TOF camera data. As a result, the 3D
model was too smoothed and, when only the data obtained from the camera were
used, it was impossible to reconstruct the correct shape of the windows.

The model of the second window (Fig. 15, right) also failed to represent the
correct shape of the surveyed object. In this case, the problem was the afore-
mentioned high noise of the TOF point cloud, which produced a noisy 3D model.
In this case, during the modelling phase, some attempts could be made to reduce
the noise rate, but this would result in a large smoothing of the window which
would loose all of its characteristic shape. The model was not able to show the real
profile of the surveyed object.

On the basis of the obtained results, it is possible to state that in the case of
objects with well-defined break-lines, it is not possible to obtain the typical
products of an architectural survey, such as 2D drawings or 3D models using only
the data acquired with the TOF camera.

For these reasons, the approach followed in the second part of the test was
focused on the integration of the TOF data with digital photogrammetric data
derived from multi-image matching (break-line extraction), in order to obtain the
required products and to obtain a more accurate shape description of the object that
would be useful for the creation of architectural products (drawings and 3D
models).

Fig. 14 Screen-shots of the complete 3D TOF point cloud (first window left and centre, second
window right)
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2.7 Digital Photogrammetry Multi-Image Matching
Approach for Break-Line Extraction

It is well known that in order to improve the potentiality of an image-matching
algorithm for break-line extraction it is important to have an approximate surface
available of the object that has to be surveyed. The proposed approach has
therefore been based on the use of TOF data, during the multi-image matching data
processing, in order to provide an accurate digital surface model of the afore-
mentioned extraction.

The algorithm which can be summarized in several steps, is shown in Fig. 16
left (the additional information of the TOF camera for the multi-image matching
approach is highlighted in dark grey).

The images were acquired adopting an ad hoc taking configuration (Fig. 16,
right): several images were acquired and the most central one was considered as a
reference image during the matching process. The TOF point cloud was registered
from a central position, with respect to the image acquisition, in order to have
approximately the same occluded areas in the TOF data and in the reference
image.

Fig. 15 The 3D model obtained using the TOF data of the window of the main building of the
Valentino Castle (left) and the Chevalley building window (right)
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All the images were previously restored and then enhanced. The image resto-
ration was performed by means of Adaptive Gaussian Smoothing [30] which filters
the image according to the noise level evaluated on the uniform areas of the image.
Image enhancement was then obtained using a Wallis filter [40]. Image pre-pro-
cessing generally allows the number of detected edges to be increased, compared
to the original image.

The orientation was performed in a proper reference system in order to have the
z-coordinate normal to the main plane of the façade. In this step, the A2SIFT
(Auto-Adaptive Scale Invariant Feature Transform) operator [27] was adopted in
the tie-point extraction, and a robust (Least Median Square) relative orientation
was then performed in order to eliminate the mismatches [26]. Finally, a bundle
block adjustment was performed. The edge extraction was then performed using
the Canny operator [8] on the reference image. The extracted edges were then
approximated, by identifying the pixels in which the edge changed in direction as
knots and linking these dominant points with straight lines.

The point cloud was registered in the photogrammetric reference system using a
spatial similarity transformation. In this way, it was possible to share the infor-
mation between the images and the point cloud. A multi-image matching algo-
rithm was then set up. The algorithm is a modification of the Geometrically
Constrained Cross Correlation (GC3) [42]: it uses a multi-image approach, that is,
it considers a reference image and projects the image patch (of each dominant

Fig. 16 Workflow of the break-line extraction (left) and ad hoc image taking configuration
(right)

TOF Cameras for Architectural Surveys 155



point) of the reference image onto the DSM (TOF point cloud), and then, using the
approximate z-value achieved by the DSM, back-projects it onto the other images.
Through this algorithm, the dominants points of each edge were matched in all the
images in order to reconstruct the break-line positions in 3D. The images were
preliminarily undistorted (using the camera calibration) in order to ease them into
a central perspective. The epipolar constraint limited the search space in the
images. The length of this line was achieved considering the z-value given by the
TOF point cloud; then, in order to find the homologous point in all the images, this
value was varied in a Dz range. This work was enforced and improved through the
use of the position of already matched points: the z-value of two adjacent domi-
nant points on the same edge had to be similar. In this way, it was possible to
reduce the run of the epipolar line on the façade to a few centimetres. A relational
matching was developed to improve the rate of the successfully matched points.
This algorithm integrates the figural continuity constraint through a probability
relaxation approach [10] and is able to solve several ambiguities of the matching
process. The method uses the already matched dominants points as anchors and, in
an iterative way, defines the most suitable match between candidates imposing a
smoothing constraint. Finally, a Multi-Image Least Square Matching (MILSM) [3]
was performed for each extracted point, in order to improve the accuracy to a sub-
pixel dimension.

Some blunders were generated during the matching process. These blunders
were first deleted from the extracted edges using a filter which considered the
reciprocal point positions on the same edge: the position of a point was predicted
considering the neighbouring points of the edge and the difference between the
predicted and the real position of the point was then evaluated. If the difference
value was higher than a predefined threshold, the point was deleted. This filter is
not robust: it works well if the blunders are isolated from each other. For this
reason, a second filter could be used to clean the edges when several blunders are
close together; this algorithm uses the TOF information to verify the correctness of
each dominant point: when it is further than a defined threshold from the point
cloud, it is deleted [30].

Image matching allows radiometric edges to be extracted. Most of these edges
are due to shadows or radiometric changes, but they do not have a geometric
correspondence. Only geometric boundaries are of interest in the surveying of
graphic drawings and for modelling purposes. For this reason, the position of each
dominant point on the extracted edges was considered with respect to the TOF
point cloud: it was verified whether a geometric discontinuity occurred in the TOF
data close to the edge point.

The edges extracted by the matching algorithm were affected by random noise
and they could not be used directly in the drawing production. For this reason, the
noisy edges were split into basic elements (linear and curved elements) and each
element was smoothed and eased, in an automatic way, into lines and second-order
curves by means of a polynomial fitting. The basic elements were then recollected
in a single smoothed edge [31].
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Finally, the geometric edges were exported into CAD in order to obtain pre-
liminary data for the graphic drawings of the survey and for a rough evaluation of
the achieved results.

2.8 Results and Discussions

Starting from the images acquired using a calibrated Canon Eos 5D digital camera
with a 24 mm lens, in the ad hoc configuration reported in Fig. 16 right, the
images of the two windows of the Valentino Castle (Fig. 17) were processed using
the proposed image matching algorithm.

The integration between the TOF data and the digital images was performed
according to the aforementioned workflow (Fig. 16, left). The edge extraction
allowed a complete set of lines to be defined from the reference image of each
case: Figs. 18 and 19 shows the extracted edges, which could be useful for the
realization of to obtain the final architectural products.

In order to achieve a complete product of the surveyed object, the last phase of
the data processing is usually the production of 2D drawing and/or 3D models to
improve architectural knowledge and documentation. These products, which allow
a semi-realistic view of the object, can be derived in different ways, such as using
the principal geometry of the object [21, 28], derived from a photogrammetric
plotting, or a traditional topographic survey, or even from LiDAR data [5, 6, 35] or
using other instruments that allow 3D point clouds to be obtained (for instance
TOF cameras).

In the present case, the approach was based on the integration of the smoothed
edges (break-lines), obtained after multi-image matching, with the 3D data derived
from the TOF camera.

Fig. 17 Some images acquired for the multi-image matching process (Above: three shots of the
first window; Below: six shoots of the second window)
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The obtained data (break-lines and TOF point cloud) were first integrated
(Fig. 20 left), and the modelling phase was then realized. In this way a complete
3D model was obtained (Fig. 20 centre and left). Finally, the model was textured
in order to create some photorealistic views of the object (Fig. 21).

Fig. 18 The window of the main building of the Valentino Castle: extracted edges on the
reference image (left) and smoothed edges (centre and right)

Fig. 19 The Chevalley building window at the Valentino Castle: extracted edges on the
reference image (left) and smoothed edges (centre and right)
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Another fundamental product that is required as a final representation, after an
architectural survey, is a typical 2D representation. Whatever techniques is used
for the survey: 3D data acquisition systems, photogrammetric image matching
techniques or typical topographic systems (Total stations etc.), the most important
element that allows correct and comprehensive drawings to be obtained, is the

Fig. 20 TOF and break-line data integration (left); views of the final 3D model (wireframe
visualization, centre, triangulated surface, left)

Fig. 21 Photo-realistic views of one of the surveyed windows
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knowledge of the architecture. It is therefore important to involve several pro-
fessional figures (Historians, Architects, Engineers) in an architectural survey in
order to achieve correct metrical products.

It is of fundamental importance to analyse and study the object. An accurate
knowledge of the geometric shape of the object is necessary and, using all the
acquired cognitions, it is finally possible to realize a final 2D representation.

The methodology reported in the examples was based on this multidisciplinary
approach and, thanks to the involved various forms of expertise, using the
extracted break-lines, the TOF data and the derived models the following 2D
representation were realized (Fig. 22).

The accuracy of the final drawings and 3D models was checked using several
ground control points acquired with a Total Station. The measured discrepancies
(less than 2 cm for each point) show that these representations respect the typical
precision of a drawing at a 1:100 scale.

The achieved products shown that, through an interesting integrations of dif-
ferent survey methodologies it is possible to obtain complete metric documenta-
tion of an architectural object. However it is important to underline that, at the
moment, the low resolution of the employed TOF camera (SR-4000) does not
allow autonomous surveys to be performed at a typical architectural scale
(1:100–1:50) and that it is necessary to improve the achieved TOF data of these
devices with other metrical information derived from different techniques or
instruments.

Fig. 22 The final 2D representation of the surveyed windows
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3 Conclusions

Architectural metric surveying essentially requires the creation of 2D represen-
tations in order to describe an object, but in recent years an important increase has
been witnessed in the realization of 3D models for architectural knowledge and
documentation purposes.

A geometric break-line definition is needed to create traditional 2D drawings
while point clouds of regular surfaces are generally not useful: point clouds can
only satisfy metric survey requirements when irregular and smoothed surfaces
have to be described. Only high resolution point clouds, acquired using last
generation TLS or multi-image matching approaches in digital photogrammetry,
seem be able to give better answers at medium scales (e.g. 1:100).

Unfortunately, as it is well known, although these new instruments and meth-
odologies can speed up the acquisition phase and register a great deal of infor-
mation very quickly, the processing of point clouds for the creation of 2D
representations is not easy and is very time consuming.

In the past, the selection of points by a human operator using total stations,
distance measurements or photogrammetric plotting, made it necessary for the user
to select only the necessary information during the acquisition and processing
phases: the geometric points and break-lines that delimitated the surveyed objects
were usually selected.

TOF data are usually affected by some systematic errors that can be partially
corrected using a suitable calibration procedure. In this way, complete 3D point
clouds are obtained that are comparable with those of traditional TLS acquisitions.

When the object has smoothed and irregular surfaces (see previously analysed
architectural frieze), the results are excellent and could be considered suitable to
obtain knowledge of small objects and for documentation purposes (e.g. decorative
features, archaeological relicts, etc.). Instead, when the dimension of the object
increases and the geometry is well defined (which is typical in Cultural Heritage
architecture), and a better definition of the break-lines is necessary, TOF data
alone are not enough to set up 3D models or 2D drawings at an architectural scale.

For these reasons, the integration of these data with a multi-image matching
approach is necessary. Using this approach, it is possible to drastically reduce both
the data acquisition and processing times for 2D and/or rough 3D drawing gen-
eration. Moreover, a combination of the two techniques allows typical and met-
rically correct architectural representation to be obtained.

On the basis of the encouraging results that have been obtained, the necessity
has emerged, of having to refine some procedures and processing steps; first the
acquisition phase and the registration process need to be improved (for instance,
using the proposed approach for automatic registration and mixed pixel removal of
TOF data [32]). The performances of the integration algorithm also need to be
refined to improve the completeness of the achievable results obtained from the
multi-image matching techniques.
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Considering the possible and foreseeable upgrading of the TOF camera hard-
ware, more resolution and larger taking distances are necessary, and the possibility
of recording RGB information on the same CCD array (or in a different one with a
calibrated location inside the same body) is one result metric surveyors are waiting
for.

Currently, the quality of a single frame does not seem able to a give correct
response, therefore TOF cameras are used in a static way. The development of ad-
hoc software and hardware solutions to reduce and eliminate noises and the reg-
istration strategies of each frame with the adjacent ones will allow the TOF camera
to be used as a 3D video camera, which could speed up point cloud acquisition in a
significant way for all indoor applications.
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Indoor Positioning and Navigation Using
Time-Of-Flight Cameras

Tobias K. Kohoutek, David Droeschel, Rainer Mautz
and Sven Behnke

1 Introduction

The development of indoor positioning techniques is booming. There is a significant
demand for systems that have the capability to determine the 3D location of objects
in indoor environments for automation, warehousing and logistics. Tracking of
people in indoor environments has become vital during firefighting operations, in
hospitals and in homes for vulnerable people and particularly for vision impaired or
elderly people [1]. Along with the implementation of innovative methods to increase
the capabilities in indoor positioning, the number of application areas is growing
significantly. The search for alternative indoor positioning methods is driven by the
poor performance of Global Navigation Satellite Systems (GNSS) within buildings.
Geodetic methods such as total stations or rotational lasers can reach millimeter
level of accuracy, but are not economical for most applications. In recent years,
network based methods which obtain range or time of flight measurements between
network nodes have become a significant alternative for applications at decimeter
level accuracy. The measured distances can be used to determine the 3D position of a
device by spatial resection or multilateration. Wireless devices enjoy widespread
use in numerous diverse applications including sensor networks, which can consist
of countless embedded devices, equipped with sensing capabilities, deployed in all
environments and organizing themselves in an ad-hoc fashion [2]. However,
knowing the correct positions of network nodes and their deployment is an essential
precondition. There are a large number of alternative positioning technologies
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(Fig. 1) that cannot be detailed within the scope of this paper. An exhaustive
overview of current indoor position technology is given in [3]. Further focus will be
on optical methods.

Optical indoor positioning systems can be categorized into static sensors that
locate moving objects in the images and ego-motion systems whose main purpose
is the position determination of a mobile sensor (i.e. the camera) [4]. Some optical
system architectures do not require the deployment of any physical reference
infrastructure inside buildings, which can be a requirement for a widespread
implementation.

This article investigates the use of Time-Of-Flight (TOF) cameras for ego-
motion determination in indoor environments. TOF cameras are suitable sensors
for simultaneous localization and mapping (SLAM), e.g. onboard of autonomous
Unmanned Vehicle Systems (UVS), or the detection and localization of objects in
indoor environments. They are an attractive type of sensor for indoor mapping
applications owing to their high acquisition rate collecting three-dimensional (3D)
data. TOF cameras consist of compact, solid-state sensors that provide depth and
reflectance measurements at high frame rates of up to 50 Hz independent from
surrounding light.

The approximate 3D position accuracy for objects seen by the used MESA�

TOF camera SwissRanger SR-4000 (in terms of a 1-r standard deviation) is 1 cm

Fig. 1 Today’s positioning systems in dependence to accuracy and coverage [1]
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for distances of up to 5 m and 1 dm for distances up to 15 m. Such a level of
accuracy is sufficient for some indoor applications, e.g. collision avoidance.
Currently, ranges larger than 15 m and accuracies better than 1 cm are not
applicable to TOF cameras. In these cases 3D laser scanners or stereo/multiple
camera systems need to be used instead. As a drawback of two-dimensional (2D)
cameras, the prerequisite for multiple views induces a high computational load
since point correspondences between at least two images from different perspec-
tives have to be determined. In addition, distances to structureless surfaces cannot
be measured, because the correspondence problem [5] cannot be solved. Fur-
thermore, passive 2D vision suffers from shadowing effects and sensitivity to
changes in illumination. The use of 3D laser range finders [6] that actively illu-
minate the scene can avoid these issues but needs mechanical moving parts and
have high power consumption as well as a low frame rate due to sequential point
acquisition.

Our procedure is as follows. Image features, e.g. edges, corners or flat surfaces
are detected based on reflectance data for object recognition in the indoor envi-
ronment. In Sect. 2 we will show how the indoor positioning with the TOF camera
can be realized. As a novelty, the proposed method combines absolute and relative
orientation of a TOF camera without the need for dedicated markers or any other
locally deployed infrastructure. This can be achieved, because in comparison to
other methods range imaging directly provides 3D point clouds that are compared
with a spatio-semantic 3D geoinformation model offered by the City Geographic
Markup Language (CityGML) that supports any coordinate system and enables the
missing link between the indoor and outdoor space. As higher the level of semantic
information as more accurate is the geometrical integration. The entrance door of a
building for example is always connected to a walkable surface. The camera
motion is estimated based on depth data and will be explained within the mapping
process in Sect. 3. Collision avoidance becomes important if the navigation path is
unknown. Section 4 will show that TOF cameras are ideally suited for that task. A
welcome side effect of our approach is the generation of 3D building models from
the observed point cloud.

2 Positioning Inside the Room Based on a CityGML Model

The standard CityGML [7] defines a data model and an XML data format for 3D
city and topography models. CityGML defines several Levels of Detail (LoD) with
the highest LoD 4 having the capability for modeling the interior of buildings. In
particular for the purpose of indoor modeling, the semantic model provides an
object class ‘Room’ that can capture semantic data [8], including attributes for the
intended and current use of the room such as ‘Living Room’ or ‘Office’. An object
of the class ‘Room’ can be associated with its geometry in two different ways. In
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one way the outer shell of a room can be defined by establishing a link to a
geometric object of type Solid or MultiSurface (both types are defined by the GML
3.1.1 specification [9]). Alternatively, the outer shell can be decomposed into
semantic objects of the types InteriorWallSurface, CeilingSurface and FloorSur-
face, which are referred to geometric objects of type MultiSurface. Openings in the
outer shell of a room can be modeled with the object classes ‘Window’ and ‘Door’
that can belong to one or two InteriorWallSurfaces. This data structure can be used
to express topological relationships between rooms.

The semantic object class IntBuildingInstallation can be used to model per-
manent fixed objects belonging to a room e.g. radiators, columns and beams. In
order to model the mobile components of a room such as desks and chairs, the
object class BuildingFurniture can be used. IntBuildingInstallation and Build-
ingFurniture provide the attribute class for semantic description of the objects
(Fig. 2). The geometry of these fixed installed objects can be defined by the
standard GML 3.1.1. So-called implicit geometries are used to model simplified
shapes of the movable objects in a room. Hereby the shape of an object is stored
only once in the library even if multiple objects of the same shape are present (e.g.
pieces of furniture). The shapes could be obtained directly from the 3D CAD
drawings of pieces of furniture in the manufacturer’s catalog. For each occurrence
of such an object, only the local coordinates of an insertion point and the object’s
orientation are stored. The orientation parameters are linked to the geometry that
has become an object of CityGML.

Nowadays, Building Information Models (BIMs) are created within the plan-
ning and construction phase of a building [10]. The acquisition of BIMs for
already existing buildings requires manual measurements using total stations,
terrestrial laser scanners or photogrammetric techniques. Figure 3 illustrates
semantic classification of CityGML exemplified with an indoor model of a room
that has been obtained by total station survey.

Fig. 2 Decision tree for room identification
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2.1 Room Identification Through Object Detection

Object detection is the key challenge for the correct identification of the room
where the sensor is located. The detection of objects can be achieved by exploiting
the amplitude image. In order to identify objects such as chairs, tables, etc., the
known or ‘‘learned’’ primitives, features and image templates that have previously
stored in the database are matched with the current image. The detected object
properties such as the size, geometry or quantity of a certain object are the main
criteria for the comparison with the database. This way, the unknown camera
position can be limited to a small number of possible rooms in the building. The
room can be identified uniquely by detecting its distinct properties, e.g. position of
installations. After a successful identification additional semantic and geographic
information can be extracted from the 3D geo database.

2.2 Accurate Positioning Using Distance Measurements

This step compares and transforms the in real time acquired Cartesian 3D coor-
dinates of the objects into the reference coordinate system of the database. All
room and object models in the CityGML database are saved as Virtual Reality
Modeling Language (VRML) files. Suitable reference points for the transformation
(with 6 degrees of freedom) are the corners of the room, vertices of doors, win-
dows and other fixed installations. The accuracy of the objects in CityGML should
be at centimeter level and should lead to position determination of the camera with

Fig. 3 ETH Zurich lecture room modeled in CityGML [11]
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centimeter-accuracy using a least squares adjustment with a redundant number of
reference points to determine the 3D camera position. One requirement for the
camera is that its interior orientation has been determined previously. The exterior
camera orientation (3 translations and 3 rotations) is determined by a Cartesian 3D
coordinate transformation with 3 shift and 3 rotational parameters. There is no
need to estimate a scale parameter, since calibrated TOF cameras measure the
absolute distance.

3 Mapping and Ego-Motion Estimation

Dense depth measurements from TOF cameras enable the generation of 3D maps
of the camera’s environment. However, the accuracy of measurements in unknown
scenes varies considerably, due to error effects inherent to their functional prin-
ciple. Therefore, a set of preprocessing steps to discard and correct noisy and
erroneous measurements need to be applied in order to achieve accuracy according
to the specification.

3.1 Sensor Data Processing

First, mixed pixels at so-called jump edges are filtered out. Mixed pixels are a
result of false measurements that occur when the signal from the TOF camera hits
an edge of an object. Then, the signal is partially reflected at the foreground, but
also at the background. Both signal parts arrive at the same CCD element. The true
distance changes suddenly at the object border, but the values of the mixed pixels
consist of an average between the foreground and background distance. In the
point cloud, these pixels appear as single unconnected points that seem to float in
the air and that do not belong to any object. This is also a common problem in
terrestrial laser scanning. Jump edges are filtered by local neighborhood relations
comparing the opposing angles of a point pi and its eight neighbors pi, n, [12]. From
a set of 3D points P = pi 2 R3ji ¼ 1; . . .;Np

� �
, jump edges are detected by

comparing opposing angles hi;n of the triangle spanned by the focal point f = 0
and its eight neighbors Pn¼ pi;n 2 R3ji ¼ 1; . . .Np : n ¼ 1; . . .; 8

� �
and filtered

with a threshold hth:

hi ¼ max arcsin
pi;n

�� ��
pi;n � pi

�� �� sin u

 !
; ð1Þ

J ¼ pijhi [ hthf g; ð2Þ
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where u is the apex angle between two neighboring pixels. Since the jump edge
filter is sensitive to noise, a median filter is applied to the distance image
beforehand. Besides mixed pixels, measurements with low amplitude are
neglected since the accuracy of distance measurements is dependent on the amount
of light returning to the sensor.

TOF cameras gain depth information by measuring the phase shift between
emitted and reflected light, which is proportional to the object’s distance modulo
the wavelength of the modulation frequency. As a consequence, a distance
ambiguity arises: measurements beyond the sensor’s wavelength are wrapped back
causing artifacts and spurious distance measurements. Wrapped distance mea-
surements can be corrected by identifying a number of so-called phase jumps in
the distance image, i.e., the relative wrappings between every pair of neighboring
measurements. Droeschel et al. proposed attempt a probabilistic approach that
detects discontinuities in the depth image to infer phase jumps using a graphical
model [13]. Every node in the graphical model is connected to adjacent image
pixels and represents the probability of a phase jump between them. Belief
propagation is used to detect the locations of the phase jumps which are integrated
into the depth image by carrying out the respective projections, thereby correcting
the erroneously wrapped distance measurements. The application of phase
unwrapping for an indoor scene is shown in Fig. 4.

3.2 Mapping and Ego-Motion Estimation

To estimate the camera’s motion between two consecutive frames, image features
in the reflectance image of the TOF camera are extracted to determine point
correspondences between the frames. To detect image features, the Scale Invariant

Fig. 4 Phase unwrapping of an indoor scene. a Image of the scene. b and c 3D point clouds that
have been generated based on the camera’s depth image. Color of the points indicates the result
of the algorithm; wrapped measurements are shown in red. Brightness encodes distance to the
camera center. b Point cloud without unwrapping. Measured distances beyond the sensor’s non-
ambiguity range are wrapped into it, which results in artifacts between distances of 0 and 3
meters. c Unwrapped depth image
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Feature Transform (SIFT) [14] is used. SIFT features are invariant in rotation and
scale and are robust against noise and illumination changes.

In order to estimate the camera motion between two frames, the features of one
frame are matched against the features of the other frame. The best match is the
nearest neighbor in a 128-dimensional keypoint descriptor space. To determine the
nearest neighbor, the Euclidean distance is used. In order to measure the quality of
a match, a distance ratio between the nearest neighbor and the second-nearest
neighbor is considered. If both are too similar, the match is rejected. Hence, only
features that are unambiguous in the descriptor space are considered as matches.

Figure 5a and b show the reflectance image of two consecutive frames with
detected features. Figure 5c shows the matching result of the two images. Each
match constitutes a point correspondence between two frames. By knowing the
depth of every pixel, a point correspondence in 3D is known.

The set of points from the current frame is called the data set, and the set of
corresponding points in the previous frame is called the model set. The scene is
translated and rotated by the sensor’s ego motion. Thus, the sensor’s ego motion
can be deduced by finding the best transformation that maps the data set to the
model set. A common approach for estimating a rigid transformation uses a closed
form solution for estimating the 3 9 3 rotation matrix R and the translation vector
t, which is based on singular value decomposition (SVD) [15]. The distances
between corresponding points, after applying the estimated transformation are
used to compute the root mean square error (RMSE) which is often used in range
registration to evaluate the scene-to-model consistency. It can be seen as a measure
for the quality of the match: if the RMSE is significantly high, the scene-to-model
registration cannot be consistent. On the other hand, a low RMSE does not imply a
consistent scene-to-model registration, since it also depends on the number and
distribution of the point correspondences.

With the estimated ego motion between consecutive frames, accumulating 3D
points of every frame generates a point-based map. A resulting map is shown in
Fig. 6.

Fig. 5 SIFT feature extraction and matching applied on two consecutive camera frames on a
TOF reflectance image. The numbers of detected features are 475 (a) and 458 (b). c Matching
result: 245 features from image (a) are matched to features from image (b). White lines indicate
feature displacement
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4 3D Collision Avoidance

If the navigation path is unknown in dynamic environments, collision avoidance
becomes important. TOF cameras are ideally suited for collision avoidance since
they measure distances to surfaces at high frame rates.

A typical example of a point cloud taken in an indoor environment is shown in
Fig. 7a. This point cloud can be used to build a so-called height image as shown in
Fig. 7b. A point pi, j is classified as belonging to an obstacle if

ðWmax - WminÞ [ H, ð3Þ

where Wmax and Wmin are the maximum and minimum height values from a local
window W, spanned by the eight-connected neighborhood around pi, j. The
Threshold H thereby corresponds to the minimum tolerable height of an obstacle.

Fig. 6 The resulting 3D map based on the estimated trajectory (red). The colors of the points
correspond to the distance of the point from the ground plane

Fig. 7 a 3D Point cloud of an exemplary scene. The color of the points corresponds to the
distance, brighter color relates to shorter distances and darker color to farther distances. b The
generated height image. The grayscale value of every pixel corresponds to the z-coordinate of the
respective point in the point cloud. c The resulting obstacle points (red)
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It needs to be chosen appropriately since it should not be smaller than the sensor’s
measurement accuracy. Due to evaluating a point’s local neighborhood, floor
points are inherently not considered as obstacles. Points classified as belonging to
obstacles are shown in Fig. 7c.

The resulting obstacle points are used to extract a 2D virtual scan similar to an
obstacle map by (1) projecting the 3D data into the xy-plane and (2) extracting
relevant information.

The number of range readings in the virtual scan as well as its apex angle and
resolution correspond to the acquired 3D data. For the SR4000, the number of
range readings is 176, which is the number of columns in the image array. The
apex angle and the angular resolution are 43 and 0.23�, which correspond to the
camera’s horizontal apex angle and resolution. For every column of the TOF
camera’s distance image, the obstacle point with the shortest Euclidean distance to
the robot is chosen. This distance constitutes the range reading in the scan. If no
obstacle point is detected in a column, the scan point is marked invalid.

The resulting virtual scan is fused with a 2D laser range scan obtained at 30 cm
height yielding a common obstacle map modeling the closest objects in both
sensors. The obstacle map from the 2D laser range finder and the TOF camera for
the aforementioned example scenario is visualized in Fig. 8. By fusing the
information of both sensors, the robot possesses correct information about tra-
versable free space (light gray) in its immediate vicinity.

Fig. 8 The resulting virtual scan of the scene is compared with the scan from the laser range
finder. The dashed green line illustrates the base laser scan. The red line illustrates the virtual
laser scan. The chair shows only a few points in the base laser scan since only the legs of the chair
are in the scan plane, whereas the virtual scan outlines the contour of the chair
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5 Conclusions and Outlook

Efficient and precise position determination of a TOF camera is possible based on
kinematic object acquisition in form of 3D Cartesian coordinates. The absolute
position of the camera can be obtained by a transformation from the camera
coordinate system into the reference coordinate system, i.e. the coordinate system
of the spatio-semantic 3D model. Positions of detected objects are reported in
respect to the coordinate system of the 3D model. The described mapping
approach can also be used for data acquisition of such 3D building models. The
advantage of such models is the use of the VRML file text format allowing data
compression for the purpose of quick Internet transfer and maintenance of a small-
sized database. We conclude that rooms can be identified by detection of unique
objects in images or point clouds. Such method is to be implemented in further
research based on a data set, which includes multiple rooms.

Due to their measurement of a volume at high frame rates, TOF cameras are
well suited for applications where either the sensor or the measured objects move
quickly, such as 3D obstacle avoidance, measured or gesture recognition [16].

Difficulties of the proposed method arise from TOF cameras suffering from a
set of error sources that hamper the goal of infrastructure-free indoor positioning.
Current range imaging sensors are able to measure distances unambiguously
between 5–15 m at an accuracy level of centimeters. Until now so-called mixed
pixels posed a problem in the literature. Filtering methods presented in Sect. 3
could solve this problem.
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TOF Cameras and Stereo Systems:
Comparison and Data Fusion

Carlo Dal Mutto, Pietro Zanuttigh and Guido M. Cortelazzo

Time-Of-Flight range cameras and stereo vision systems (for simplicity called TOF
cameras and stereo systems now on) are both depth acquisition devices capable to
collect 3D information of dynamic scenes. In spite they can be used for similar tasks
in many applications, it would not be appropriate to view the two systems as
alternate or even competitive choices, since their characteristics and actual capa-
bility are markedly different. Indeed synergically combining together TOF cameras
and stereo systems is a rather intriguing and useful option. This chapter firstly
compares TOF range cameras and stereo vision systems, and then addresses the
problem of fusing the data produced by the two systems. Because of the many
aspects involved, the comparison is all but straightforward and could be certainly
organized in different ways. The proposed one represents a systematic approach.

This chapter is organized in three sections. The first section reviews stereo
systems (TOF technology has already been covered in detail in this book). The
basic ingredients of a stereo system essentially are a pair of cameras and a specific
implementation of the computational stereopsis procedure (for simplicity just
called stereo algorithm from now on). The basic geometrical properties of the
acquisition systems are first introduced in order to analyse their influence on the
final quality of the stereo measurements. Some classical stereo algorithms are
subsequently introduced. Because of the great number of stereo algorithms the
selected subset represents the methods currently considered of greatest interest.

The second section of the chapter compares TOF cameras and the stereo
measurements. Among other things TOF depth data are generally more robust than
the ones from stereo systems, particularly in case of texture-less scenes. In case
one needs high spatial resolution, stereo systems are probably the best choice.

The third and last part of the chapter covers the various methods proposed in
literature for the fusion of TOF and stereo data and with the double purpose of both
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reviewing the literature and of offering our own view on how to improve upon
current approaches.

1 Stereo Vision Systems

An image-based stereo system employs images from a pair of standard video-
cameras in order to derive a depth map of the scene simultaneously framed by the
two cameras. All stereo systems exploit the triangulation measurement principle of
the photogrammetric technique [1, 2]: given two cameras pointing towards an
object, the difference between the positions of the object in the two acquired
images (the so called parallax) is inversely proportional to the distance of the
object from the cameras (as later formalized in this chapter). Two examples of
commercial stereo vision systems are delivered by Point Gray [3] and TZYX [4].

1.1 Basic Geometry of a Stereo Vision System

The ‘‘hardware component’’ of the stereo system is mainly constituted by a pair of
standard video-cameras and optionally by a synchronization circuit rather useful in
case of dynamic scenes. The depth information computed by the stereo system is
relative to the point of view of one of the two cameras, usually called the reference
camera, while the other one is usually called target camera. In this chapter the
reference camera will be the left one (denoted by L) and the target the right one
(denoted by R). The acquired images are called either reference or target images
depending on the camera acquiring them (Fig. 1).

A stereo acquisition system can exploit either grayscale or colour cameras. Of
course colour acquisition systems may run stereo algorithms accounting for colour
information, typically more robust and precise than grayscale stereo algorithms

L R

Fig. 1 Left (reference)
camera L and right (target)
camera R with their optical
axes
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(currently the top ranking algorithms according to the Middlebury evaluation
website [5] exploit also colour information). Colour stereo comes at an increase of
the computational cost with respect to grayscale stereo. The trade-off between
robustness and computational complexity is a fundamental issue for stereo systems.

Since the general idea behind stereo vision is to compare the reference and the
target images, it is mandatory that such images refer to the same temporal scene
configuration, i.e., the two cameras need to be synchronized. This can be obtained
via hardware by a synchronization circuit or via software. In presence of fast
motion if the two cameras are not well synchronized, the reference and the target
images do not refer to the same position of the objects moving in the scene,
resulting therefore in several 3D geometry estimation artefacts. Hardware syn-
chronization is strongly recommended against motion artefacts with fast dynamic
scenes. Epipolar geometry clearly shows how the final depth estimation quality
directly depends on the geometrical configuration of a stereo system. Unfortu-
nately in this chapter there is no room for epipolar geometry which is however
treated in many books about stereo vision and photogrammetry, such as [2, 6, 7].

The acquisition system needs to be characterized in order to estimate the
intrinsic and extrinsic parameters of both cameras. Several camera calibration
tools are available in the vision community to retrieve both the intrinsic and
extrinsic parameters of a camera. In particular, [8, 9] are state-of-the-art open
source projects in this field. In this chapter, the vision system is always supposed
calibrated and the parameters were computed using the tool available in [9].

Given a calibrated stereo system, it is usual to apply an undistortion and rec-
tification procedure to the images acquired by the two cameras in order to simplify
the task of stereo vision algorithms. The procedure, which leads to a so-called
rectified vision system, takes as input the images acquired by L and R and per-
forms the following operations:

(1) Correction of the radial and tangential distortion introduced by the camera
lenses.

(2) Compensation of the focal length differences between L and R.
(3) Compensation of the differences in the other intrinsic parameters of the L and

R cameras.
(4) Compensation of the relative rotation between the two cameras in order to

obtain images as if they were acquired by cameras with parallel optical axes
orthogonal to the line through the optical centre of L and R.

For details on stereo vision system rectification, the reader is referred to [6, 7, 10].
Some notation used in the rest of the chapter is afterwards introduced. Each one

of the two stereo cameras is associated to a standard 3D reference system, cantered
at the centre of projection or nodal point of the camera, with z-axis oriented along
the camera optical axis, x-axis horizontally oriented and y-axis vertically oriented
as shown in Fig. 2. The image acquired by L, after rectification is called rectified
reference image, and denoted by IL. The image acquired by R, after the
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rectification process is called rectified target image, and denoted by IR. The two
images IL and IR are associated each one to a standard 2D reference system, with
horizontal axis u pointing rightward and vertical axis v pointing downward as
shown in Fig. 2.

It is worth pointing out that for a rectified stereo system no rotation is assumed
between the 3D reference systems associated with L and R as well as no trans-
lation along the y and z directions.

A scene point P ¼ x; y; z½ �T with coordinates expressed with respect to the L 3D

reference frame, if visible from both cameras, is projected to point pL ¼ u; v½ �T on
IL with coordinated expressed with respect to the IL 2D reference system and to

point pR ¼ u� d; v½ �T on IR with coordinated expressed with respect to the IR 2D
reference system. It can be shown that the difference d between the coordinates of
the two 2D points, called disparity, and the depth value z of P are related as:

d ¼ bf

z
ð1Þ

where b is the baseline, i.e., the distance between the nodal points of L and R, and
f is the focal length (assumed equal for both rectified cameras). Points pL and pR,
called conjugate points, share the same vertical coordinate v. One can associate a
disparity value to each pixel pL and obtain an image of disparity values, denoted as
ID and called disparity image or disparity map. From (1) it is clear that high values
of d correspond to points close to the cameras, i.e., to points with low z value.
Also, since d is generally quantized and there is an inverse relationship between
z and d, the accuracy of the stereo vision systems does not decrease linearly, but
quadratically with respect to z according to the following equation [4]:

L R

RIL
I

L
u R

u

L
v

R
v

L
z

L
x

L
y

R
z

Rx

R
y

Fig. 2 Acquisition system
(camera L and camera R),
rectified reference image IL;
rectified target image IR and
their relative 3D and 2D
reference systems
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Dz ¼ z2

fb
Dd ð2Þ

where Dd is the disparity quantization step and Dz the depth quantization step. As
the image pair has been rectified, there are no negative values of d are valid and
d = 0 corresponds to points with depth value z ¼ 1. It is customary to limit the
range of the values that d may take on the basis of geometrical considerations. If
the minimum and the maximum depth values (respectively zMIN and zMAX) of the
scene are known, the disparity excursion, can be confined to d 2 ½dMIN ; dMAX �, with
dMIN ¼ bf

zMAX
and dMAX ¼ bf

zMIN
.

1.2 Stereo Vision Algorithms

It has been shown in the previous section that for a rectified stereo system, the

value of the depth distribution z of the scene points P ¼ x; y; z½ �T visible from both
cameras can be obtained by (1) from the estimation of disparity distribution d

between all the pairs of conjugate points pL ¼ u; v½ �T2 IL and

pR ¼ u� d; v½ �T 2 IR. Hence the information about the depth distribution of a
scene is coded by the disparity image ID, which is a typical intermediate output of
stereo algorithms. The computation of the depth distribution of the framed scene is
typically called computational stereopsis [6] and encompasses two steps, the first
is a point matching procedure corresponding to a linear search meant to detect
conjugate points along each horizontal line of IL, row by row and the second is the
computation of the depth distribution z from the disparity image ID by (1). The
point matching is a rather critical step since wrong matches inevitably lead to
wrong scene depth estimates. Manual point selection ensures correct points
association at the expenses of considerable labour. Computer vision exclusively
focuses on automatic point matching procedures with the advantage that they can
be made by machines without any human intervention but with the risk of
incorrect matches. Stereo matching can be performed in many ways, essentially
trading speed against robustness, and it is a distinctive element differentiating the
various stereo methods. A wide class of stereo algorithms, called local methods,
exploits local similarity in order to detect, given pL in IL, the point pL on the
corresponding line of IR with neighbourhood most similar to that of pL (of course
similarity can be defined in many ways). Other algorithms, called global methods,
adopt a global model of the scene, by implicitly or explicitly imposing constraints
on the overall scene depth configuration. Semi-global methods use scene models
imposing constraints only on parts of the scene depth. The following subsections
review three examples of these methods currently in great consideration and usage:
namely, the most classical local algorithm, i.e., Fixed Window (FW); a widely
adopted global algorithm, i.e., Loopy Belief Propagation (LBP); and Semi Global
Matching (SGM), a state of the art semi-global algorithm. The literature on stereo
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vision algorithms is extremely vast. The ones presented in this chapter are widely
used and implemented in the OpenCV computer vision library [9]. A more detailed
analysis of stereo vision methods can be found in [6, 11]. The Middlebury
benchmark website [5], reporting and updating the performance ranking of the
latest stereo vision algorithms, is an important source of information.

1.3 Local Stereo Algorithms

The FW algorithm is a classical local stereo algorithm still widely used in practical
implementations for its simplicity. For each pixel pL ¼ ðu; vÞ 2 IL its conjugate
pR ¼ ðu� d�; vÞ 2 IR (and equivalently its disparity value d�) is computed as
follows:

(1) A squared (or rectangular) window WL is centred around pL, and other win-
dows of the same size Wi

R are cantered around each candidate conjugate point
pi

Rðu� i; vÞ; i ¼ 1; . . .; dMAX � dMIN as shown in Fig. 3.
(2) The cost ci of matching pL against each one of the candidate conjugate points

pi
R is computed by comparing IL on WL and IR on each Wi

R. An example of
such a costs and type of comparisons is the Sum of Absolute Differences
(SAD), i.e., ci ¼ 1

jWLj
P

p2WL;q2Wi
R

jIL pð Þ � IRðqÞj, where jWLj is the number of

pixels in WL. Clearly many other different measures could be used in this task,
e.g., the correlation, the sum of squared differences [11] or more complex
measures such as Adaptive Least Squares Correlation [12].

(3) Pixel pi
R corresponding to the minimum matching cost ci is selected as con-

jugate of pL, and d� ¼ di.

Such a local method considers a single pixel of IL at the time, it adopts a
Winner-Takes-All (WTA) strategy for disparity optimization, and it does not
explicitly impose any model on the depth distributions. Like most local approa-
ches, cost aggregation within fronto-parallel windows implicitly assumes the same
disparity for all the points within the window. This is clearly not true if the window
includes a scene depth discontinuity. Indeed FW is well known not to perform well
across depth discontinuities. Moreover, as most local algorithms, FW performs
poorly in texture-less regions. Nevertheless, since incremental calculation

Fig. 3 Fixed Window (FW)
stereo algorithm
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schemes, e.g. [13, 14], can make FW very fast, it is widely used in practical
applications despite its notable limitations. The larger the window size the better
the robustness against image noise and low texture situations, at the expense of the
precision in presence of discontinuities.

Evolutions of FW focus on the shape of the coupling window [15], on the usage
of multiple coupling windows for a single pair of candidate conjugate points [16],
on weighting the contribution of the different pixels within a window according to
suitable weights, given for instance by a bilateral filter [17] or derived from
segmented versions of IL and IR [18]. These modifications of the classical fixed
window strategy improve its performance, especially in presence of depth
discontinuities, but significantly increase computation/execution time.

An interesting variant of FW applies the SAD strategy to colour images IR and
IT (assumed available) by separately treating their colour channels.

1.4 Global Stereo Algorithms

While local stereo algorithms estimate the disparity image ID almost indepen-
dently for each pixel by a WTA strategy applied to costs computed on local
portions of the reference and target images, global stereo vision algorithms
compute the whole disparity image ID at once by imposing a smoothness model on
scene depth distribution.

Such global algorithms generally adopt a Bayesian framework and model the
disparity image as a Markov Random Field (MRF) in order to include within a
unique framework cues coming from local comparisons between reference and
target image and smoothness constraints. Global stereo vision algorithms typically
estimate the disparity image by minimizing a cost function made by two terms:

ÎD ¼ argminD Cdata IL; IR; IDð Þ þ Csmooth IDð Þ½ � ð3Þ

Cdata IL; IR; IDð Þ is the so-called ‘‘data term’’, representing the cost of a local
matches (similar to the one of local algorithms). The sum of such costs over all the
reference image points defines the cost of a disparity image ID � Csmooth IDð Þ, called
‘‘smoothness term’’, defines the level of smoothness of disparity image ID, by
explicitly or implicitly accounting for discontinuities. Csmooth IDð Þ takes into
account that scenes generally have quite flat disparity distributions except in
presence of depth discontinuities, by penalizing disparity images that do not
respect this type of behaviour. With a MRF model of the disparity image,
Csmooth IDð Þ can be computed as sum of local terms accounting for the smoothness
of neighbouring pixels. Other terms can be added to Eq. (3), in order to explicitly
model occlusions and other a priori knowledge on the scene depth distribution.

Minimization (3) is not trivial, because of the great number of variables involved,
i.e., nrow � ncol disparity values of ID, which can assume dMAX � dMIN þ 1 possible
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values within range dmin; dMAX½ �. Therefore there are nrows � ncolð ÞdMAX � dMINþ1 pos-
sible configurations of ID. Since images acquired by current cameras can easily have
millions of pixels within the range of hundreds of values, it is easy to understand how
a greedy search for the minimum over all the possible configurations of ID is not
feasible. A classical solution to this is LBP, which searches for the minimum cost
solution of (3) in a probabilistic sense. The disparity image is considered as a random
field made by the juxtaposition of random variables (one for each pixel in ID).
Instead of optimizing the global probability density function defined on the whole
random field, LBP marginalizes it, obtaining a probability density function for the
disparity distribution of each point of ID. The final optimization is performed by
independently maximizing the marginalized probability density function at each
point of ID. The application of LBP to stereo vision has been proposed in [19]. An
extensive description of LBP can be found in [20, 21]. An interesting perspective for
the algorithms used for solving huge problems such as minimization (3) can be
found in [20].

Global stereo vision algorithms are typically slower than local algorithms.
However, by explicitly modelling the smoothness constraints (and by possibly
including other constraints), they are able to cope with depth discontinuities and
are more robust in texture-less regions.

1.5 Semi-Global Stereo Algorithm

Another very interesting class of stereo algorithms are the semi-global stereo
approaches, which similarly to global methods adopt a global disparity model, but
differently than global methods do not compute it on the whole disparity image in
order to reduce the computational effort. More precisely the minimization of the
cost function is computed on a reduced model for each point of ID, differently than
global approaches which estimate a whole disparity image ID at once. For instance,
the simplest semi-global methods, such as Dynamic Programming or Scan line
Optimization [22] work in a 1D domain and optimize each horizontal image row
by itself.

The so-called SGM algorithm [23] is a more refined semi-global stereo algo-
rithm. It explicitly models the 3D structure of the scene by means of a point-wise
matching cost and a smoothness term. Several 1D energy functions computed
along different paths are independently and efficiently minimized and their costs
summed up. For each point, the disparity corresponding to the minimum aggre-
gated cost is selected. In [23] the authors propose to use 8 or 16 different inde-
pendent paths. The SGM approach works well near depth discontinuities, however,
due to its (multiple) 1D disparity optimization strategy, produces less accurate
results than more complex 2D disparity optimization approaches. Despite its
memory footprint, this method is very fast and potentially capable to deal with
poorly textured regions.
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2 Comparison of TOF Cameras and Stereo System

TOF cameras and stereo systems are both able to estimate the depth distribution of
the acquired scene. Their estimates have different characteristics and clear-cut
comparisons are not easy. Basic metrological quantities, such as accuracy, pre-
cision and resolution offer a systematic comparison ground considered in this
section. The first part of the section recalls basic metrological definitions. The
second part adapts them to the case of matricial depth measurements as produced
by TOF cameras and stereo systems. Since actual comparisons between TOF
cameras and stereo systems can only be made with respect to specific reference
objects or scenes under the same illumination conditions, the last part of this
section considers a practical example examined in this section in terms of well-
known metrological quantities, i.e., accuracy, precision and measurement resolu-
tion. The performances of the stereo vision algorithms presented in the first section
of this chapter (FW, LBP, SGM) and the metrological properties of the adopted
sensors are analysed. Tests on real data are reported at the end of this section.

2.1 Fundamental Metrological Quantities

Let us first briefly recall the concepts of accuracy, precision and measurement
resolution. For a more detailed presentation, the reader is referred to [24, 25].

Consider a measurement system S measuring a physical quantity Q. Assume the
actual value of Q to be q�. System S performs a series of n independent mea-
surements of Q, all in the same experimental conditions. The values measured by
S at each step are: q1; q2; . . .; qN .

Definition 1 The accuracy A of a measurement system S is the degree of close-
ness of measurements qn to the actual value q� of the quantity Q. It can be
computed as the difference between the average on a set of measures of the same

quantity and the actual value, i.e. ¼ �q� q�j j, where �q ¼ 1
N

PN
n¼1

qn.

In the specific case of acquisition of depth maps, i.e., of depth information zðpi;jÞ
organized as an I � J matrix, as produced by TOF cameras and stereo vision
systems, assume there are znðpi;jÞ, n ¼ 1; 2; . . .;N depth map measurements of the
scene Q available. In this case the accuracy of the measurement system is defined as

A ¼ 1
I � J

XI

i¼1

XJ

j¼1

�z pi;j

� �
� z�ðpi;jÞ

�� �� ð4Þ

where �z pi;j

� �
¼ 1

N

PN
n¼1

zðpi;jÞ and z�ðpi;jÞ is the ground truth depth map.
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Definition 2 The precision (or repeatability) P of a measurement system S is the
degree to which repeated measurements under unchanged conditions show the
same result. A common convention is to calculate the precision P of the system
S in the measure of Q as the standard deviation of the measurement distribution rq

of the measurements q1; q2; . . .; qN , i.e., P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
n¼1

qn��qð Þ2
s

, where �q ¼ 1
N

PN
n¼1

qn.

The precision of a depth acquisition system can be computed by performing
several depth measurements zn pi;j

� �
; n ¼ 1; 2; . . .;N and computing the standard

deviation averaged over the whole depth map:

P ¼ 1
I � J

XI

i¼1

XJ

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1

zn pi;j

� �
� �z pi;j

� �� �2

vuut ð5Þ

where �z pi;j

� �
is defined as above.

Definition 3 The measurement resolution R of a measurement system S is the
smallest change dq in the underlying physical quantity with actual value q� that
produces a response in the measurement system.

2.2 Accuracy, Precision and Resolution of TOF Cameras
and Stereo Systems

TOF cameras and stereo systems are rather different with respect to accuracy,
precision and measurement resolutions as shown next.

2.2.1 Accuracy

With respect to accuracy, it is well known that TOF cameras depth measurements
are characterized by a systematic offset caused by the harmonic distortion of the
illuminators and camera pixels circuitry which generally varies with the distance
and can be up to some tenths of centimetres (e.g., 400 mm, as reported in [26]).
This means that in order to account for this artefact, one should provide an
accuracy value for each distance value in the range of the measurable distances
(e.g., in 500� 5000 mm). However, for system characterization purposes, it is
customary to synthetize the accuracy by a single value obtained by averaging the
accuracy of the instrument over the range of measurable distances.

The TOF depth measurement offset due to harmonic distortion is of systematic
nature and it can be reduced by a Look-Up-Table (LUT) correction independently
applied to each pixel. However, since the measurement error depends also on the
scene geometry and reflectance distribution, the LUT correction does not
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completely cancel the measurement error. The LUT-improved accuracy of a TOF
camera is therefore limited. For example, according to the producer, the MESA
Imaging SR4000 [27] is characterized by an accuracy of about 10 mm:

The accuracy of stereo vision systems depends both on the geometry of the
setup and on the characteristics of the acquired scene (i.e., its geometry and the
amount of texture information in the scene surfaces). The great variability of
possible geometry and textures leads to non-systematic measurement errors which
cannot benefit from simple strategy such as LUT-compensation. In order to better
understand the origin of stereo systems error, let us consider the case of the FW
stereo algorithm which, as shown in Fig. 3, for each reference image point tries to
identify a conjugate point in a segment of the epipolar line in the target image. As
already said, each couple of candidate conjugate points is characterized by a
matching likelihood, quantified by a cost function (e.g., TAD). The more the two
images are similar near to candidate conjugate points, the lower is their cost
function and the more likely is the matching. The best case for stereo vision
systems is when the scene characteristics are such that the local similarity between
the L and the R images is high only in correspondence of the actual conjugate
points pair (and low for the other candidate points pairs). In this case, the cost
function has a minimum in correspondence of the conjugate points pair actually
estimated by the WTA algorithm. This lucky situation requires that the reference
and the target image satisfy the following two conditions:

• Reference and target image should exhibit an adequate amount of colour
information (texture) near the actual conjugate points pair (‘‘aperture problem’’)

• No other region of the target image along the epipolar line should be similar to
the one corresponding to the actual target conjugate point (‘‘repetitive texture
pattern’’).

In case of insufficient texture or of multiple candidate conjugate points locally
similar to the local reference image, there might be a disparity estimation mis-
match with a consequent depth estimation error. Scene illumination greatly
influences the possibility of this type of mismatches. Such depth measurement
error does not grow regularly with the image noise, but tends to sudden bursts
when the scene characteristics make the system unable to find the correct cost
function minimum. The accuracy of the depth measurements produced by a stereo
system is very hard to characterize by a single parameter since it strongly depends
on the scene characteristic and on the used algorithms. All one can do is to define
the accuracy of a stereo vision system for a specific scene or specific reference
objects under specific illumination conditions (from different acquisitions of the
same scene under the same conditions, and by computing the difference between
the averaged estimated depth value at each pixel with respect to its actual depth
value) as shown in Sect. 2.3. In general local stereo algorithms, totally dependent
from the scene colour distribution, with respect to accuracy perform poorer than
global and semi-global techniques less dependent on scene characteristics, because
of the assumed smoothness model. At the same time it is clear that in case the
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actual scene does not match the assumed model, the assumptions behind global
and semi-global methods turn against performance accuracy.

2.2.2 Precision

Since, as well known, the noise of TOF depth measurements can be assumed
Gaussian [26], the depth measurement accuracy of TOF cameras relates directly to
the mean of this Gaussian process, while the depth measurement precision is
defined as its standard deviation. The standard deviation of the measurements is
generally dependent on the actual depth and reflectance characteristics of the scene
and on the background illumination at the IR wavelength at which the TOF camera
operates. In particular, the standard deviation of the measurements increases as the
distance from the object or the background illumination increase or the object
reflectance decreases. For instance in the case of high reflectivity targets and low
IR background illumination, the precision of the MESA Imaging SR4000 [27],
according to the producer, is less than20 mm.

For the analysis of the precision of stereo systems let us consider the simple FW
stereo algorithm. For simplicity denote by Dl ¼ Zl pi;j

� �
; i ¼ 1; 2; . . .; I; j ¼

1; 2; . . .; J the l-th depth map measurement. Assume, as shown in Fig. 4 that the
scene is acquired Ntimes under same conditions giving the N images I1

L; I
2
L; . . .; IN

L

from L, the N images I1
R; I

2
R; . . .; IT

R from R from which the N corresponding depth
maps D1;D2; . . .;DN are computed by the FW stereo vision algorithm.

Fig. 4 Acquired stereo images and relative depth maps
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The N depth maps are usually similar, but not identical due to the noise
affecting images I1

L; I
2
L; . . .; IN

L and I1
R; I

2
R; . . .; IN

R . Hence for a given point pL the
matching cost with respect to each candidate conjugate points varies for each
acquisition. Noise fluctuations changing the conjugates pair that minimizes the
matching cost change also the estimated depth map. The noise amount needed for
changes of this nature clearly depends on the amount of texture in the scene. Low
textured scenes are highly affected by image acquisition noise, while high textured
scenes are less affected by it. The precision of FW stereo algorithm is directly
related to scene reflectance characteristics and illumination conditions. Other
stereo algorithms, such as SGM and BP are less noise-prone than FW, because the
imposed scene model is generally capable to mitigate the noise influence.

The precision of a stereo vision system, with respect to a specific scene or
reference object can be obtained from N acquisitions (as shown in Fig. 4) by
computing the standard deviation of the measurements for each depth map point
according to (5) as exemplified in Sect. 2.3.

2.2.3 Resolution

The measurement resolution of a matricial depth acquisition system, such as TOF
cameras and stereo systems is characterized by spatial and depth resolution. The
spatial resolution (or lateral resolution) for a fixed field-of-view (uniquely iden-
tified by the optics) is determined by the number image pixels and it represents the
measurements resolution in the x� y scene coordinates. The depth resolution, or
resolution in the scene z coordinates, is the smallest scene variation dz capable to
produce a depth response.

The spatial resolution of TOF cameras, i.e., the number of pixels in the sensor
matrix, is currently considered one of their limitations, and it is one of the targets
of TOF technology advancement. For instance, in the case of the MESA Imaging
SR4000, the sensor matrix has 176� 144 pixels. The analysis of a TOF camera
depth resolution can be experimentally made as follows. Consider a set of
N measurements of the TOF camera T positioned at a known distance z from a
reference object, typically a plane of metrologically known characteristics. The
minimum depth difference dZðzÞ that produces a noticeable difference in the
average of the depth measurements of two depth measures is the depth resolution
of the camera T. Various factors may influence dZðzÞ, i.e., the sensitivity of the
TOF cameras pixels, the precision of the sensor hardware and the final quanti-
zation grain of the depth measurements. Such a quantization grain is usually very
fine. For example, the MESA Imaging SR4000 samples a depth interval of
5000 mm with 214 values, i.e., with a quantization step of 0:3 mm. The other
elements conditioning depth resolution cannot be treated analytically, and depth
resolution must be estimated. As a practical example, the TOF resolution, for
instance at z ¼ 1000 mm, can be measured by taking a planar object and moving it
from z to zþ dz for smaller and smaller values of dz and by taking N measurement
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for each value of dz (e.g. with N ¼ 105). If, for instance, at dz\ 1 mm the average

of the TOF measurements at z and zþ dz coincides and at d
0

z ¼ 1 mm they do not

coincide, it is possible to state that d
0

z ¼ 1 mm is the resolution.
In the case of stereo systems the analysis of the measurements resolution can be

done analytically. The spatial resolution of a stereo vision system is just given by
the number of pixels of the left camera image sensor matrix. Since such matrices
have a great number of pixels (e.g., 1032� 778) stereo systems are considered
high spatial resolution systems. This is certainly true, but it is also important to
remind that stereo systems cannot estimate the depth value of all the points in their
images and especially in presence of depth discontinuities they are not very pre-
cise. Furthermore it is possible to compute a disparity value only for samples
visible by both cameras, e.g., usually the disparity cannot be estimated for the first
columns on the side of the image or for points occluded with respect to one of the
two cameras.

Concerning the depth resolution of stereo vision systems it is important to recall
from (1) that the relationship between disparity and depth is not linear. Since the
disparity is linearly sampled (the disparity for each pixel is an integer in the
interval ½dMIN ; dMAX �), the relative depth values are non-linearly sampled.

Furthermore the quadratic dependence from depth values z of the depth
increments Dz given by (2) has important consequences on depth resolution.
Suppose that a point at depth z� is acquired by a stereo system characterized by a
focal f and a baseline b. The actual disparity value of that point is d� ¼ bf

z� . The

estimate d̂ of d� assumes only an integer value in ½dMIN ; dMAX � which will be either

bd̂c if d̂ � bd̂c� 0:5, or otherwise dd̂e Consequently the estimate ẑ of z might
assume either value ẑ ¼ bf

bd̂c or ẑ ¼ bf
dd̂e and the minimum depth increment that the

system can measure for a point at distance z� is Dz ¼ bf
bdc �

bf
dde. From (2)

Dz ¼ z�2

fb Dd, where in this case Dd ¼ dde � bdc ¼ 1. In other words the depth

resolution decreases quadratically with the depth of the measured objects. Depth
resolution can be improved by sub-pixel stereo matching, but the benefits are
limited by classical interpolation artefacts. Sub-pixel techniques allow to reduce
the value of Dd in (2) (e.g. Dd� 0:1), but cannot change the quadratic dependence
of Dz with respect to depth z. Therefore TOF cameras usually have a better depth
resolution Dz than stereo systems for distant objects and worse resolution than
stereo systems for close objects.

Another important element to take into account is the computation time of the
different scene depth estimation systems. While TOF cameras operation is simple
and can be efficiently implemented in hardware, stereo algorithms, especially the
global ones are computational complex. Rates of tents of depth estimates per
second (e.g., 50 times per second) are typical of TOF cameras, while rates of few
depth estimates per second are typical of software implementations of current
stereo algorithms. Needless to say, the stereo vision algorithms speed can be
greatly improved by hardware implementations.
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2.3 Experimental Comparisons

In order to clarify the previous discussion some experimental comparisons of the
performances of TOF cameras and stereo vision systems on a sample dataset are
presented next. The reference scene showed by Fig. 5 has been acquired by both
the TOF camera and the stereo acquisition system of the setup shown in Fig. 7.
The scene depth map has then been estimated by three different stereo vision
algorithms, namely, FW, SGM and LBP. The goal of this experiment is to give an
example of how comparisons of this kind can be made in practice.

The implementations of the considered stereo vision algorithms can be found in
the OpenCV library [9]. In particular, FW and SGM implementations are classical
CPU stereo vision algorithms, while the considered LBP implementation exploits
also GPU. A matching window of size 21� 21 has been adopted for FW and SGM
stereo vision algorithms, while a small 1� 1 window for LBP. The scene was
acquired N ¼ 10 times by both the stereo system and the TOF camera. The three
considered stereo vision algorithms have been applied to each stereo acquisition.
In order to have a ground truth depth measurement the scene was also acquired by
an active space-time stereo vision system [28, 29], with an accuracy of about
3 mm, way superior to that of both the stereo and the TOF camera. Fig. 6 shows
three examples of estimated depth maps (one for each stereo algorithm) and the
ground-truth depth-map computed by the space-time stereo.

Note that a depth measurement is not available for the pixels associated to 0 depth
(black pixels) due to matching failure and occlusions in the case of the passive stereo
algorithms and due only to occlusions in the case of space-time stereo.

The accuracy A and the precision P of the two systems were computed
according to Eqs. (4) and (5) respectively using the space-time stereo data as
ground truth and are shown in Table 1 together with the resolution characteristics.

Table 2 reports the execution times of the considered stereo algorithms:
It is worth reminding that the presented results apply to the considered refer-

ence scene and not to general scenes. Nevertheless they allow for some concrete

Fig. 5 Undistorted data acquired by the trinocular acquisition system of Fig. 7 made by a stereo
acquisition system and a TOF camera. Starting from the left, Fig. 5 shows the color image IL

acquired by the left camera L of the stereo acquisition system, the depth map ZT acquired by the
TOF camera T and the color image IR acquired by the right camera R of the stereo acquisition
system
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and reasonable considerations of general kind based on quantitative data. Namely
TOF cameras are typically faster and their results do not depend on the amount of
texture information in the scene (with respect to the considered implementations).
On the other side, stereo vision systems have better spatial resolution and allow
more precise edge localization. Stereo depth resolution can be better than TOF
resolution for closer objects. TOF cameras depth resolution is less dependent on
the object distance than the one of stereo systems. In the case of stereo vision it is

Fig. 6 Examples of depth maps estimated by FW (up-left), SGM (up-right) and LBP (bottom-
left) stereo systems and ground truth depth-map acquired by space-time stereo (bottom-right)

Fig. 7 An example of
trinocular acquisition setup
made by a TOF camera and a
stereo vision system
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possible to change the baseline and focal in order to improve the resolution. The
execution times of CPU and GPU stereo algorithms do not allow obtaining frame
rates as high as those of TOF cameras.

Such complementary characteristics of the two systems open the way to the
idea of fusing their data. A panoramic on the current state-of-the-art in TOF and
stereo data fusion techniques is presented in the next section.

3 Fusion of Time-Of-Flight and Stereo Data

Section 2 shows that the characteristics of Time-Of-Flight cameras and of stereo
systems are complementary in several aspects. The possibility of overcoming the
limitations of the two kinds of acquisition systems by fusing their data has already
received considerable attention. Since current stereo systems are relatively inex-
pensive with respect to the current TOF cameras this concept is rather attractive
also for practical purposes.

Since the ultimate goal of fusing TOF and stereo information should be a
system capable to provide depth information with high accuracy, precision and
resolution, it is fair to say that the methods proposed so far can only fulfil a subset
of such desired features.

The first part of this section considers the basic requirements of a set-up for
jointly combining TOF and stereo data. Essential issues are geometrical

Table 1 Experimental comparison between the TOF cameras and the stereo vision systems.
Accuracy and precision are computed with respect to the scene shown in Fig. 5. Spatial resolution
and depth resolution are characteristic of the considered acquisition system. The considered
stereo system has focal f ¼ 856:3 pxlð Þ and baseline b ¼ 176:8 mmð Þ

Stereo FW Stereo SGM Stereo LBP TOF (MESA SR4000)

Accuracy 60 ½mm� 35 ½mm� 41 ½mm� 30 ½mm�
Precision 13 ½mm� 2 ½mm� 12 ½mm� 2:6 ½mm�
Spatial resolution 777� 778 777� 778 777� 778 176� 144
Depth resolution z�2

fb
z�2

fb
z�2

fb
0:3½mm�\dz\1½mm�

Table 2 Execution times of the stereo algorithms. FW and SGM are implemented on CPU,
while LBP is implemented on GPU. The experiments were run on a machine with a 4 core Intel
i7, 3:06½GHz� CPU and NVIDIA NVS 3100 M GPU

Stereo algorithm Execution time [ms]

FW � 130
SGM � 2400
LBP � 1600
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configuration and mutual calibration between the two different acquisition sys-
tems. The rest of this section reviews the state-of-the-art fusion methods. The
considered fusion algorithms are subdivided into local, global and semi-global.

3.1 Characteristics of the Acquisition Setup

The simplest acquisition setup for the joint exploitation of stereo vision and TOF
information is a trinocular system made by a TOF camera and a pair of color
cameras on a rig, as in the example of Fig. 7 made by a MESA Imaging SR4000
TOF camera together with two Basler video cameras. The TOF camera is normally
between the two video cameras (usually closer to the reference camera) in order to
reduce occlusions and to ensure the largest possible common region for the depth
data acquired by the two systems. A schematic representation of the considered
setup made by left camera L, right camera R and TOF sensor T in between them is
shown in Fig. 8.

Left camera L and right camera R respectively act as reference and target
camera also for the trinocular system of Fig. 8. The baseline of the stereo vision
system and the focal of the stereo cameras are important factors for the final depth
estimation quality. They can be selected upon the same considerations seen for
stereo systems.

Synchronization, which can be made either by hardware or software, is very
important for the performance of the trinocular system. Indeed one encounters

Fig. 8 Scheme of the
trinocular acquisition setup
made by a TOF camera and a
stereo vision system
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artefacts similar to the ones of stereo systems if the three cameras are not perfectly
synchronized. The synchronization of the trinocular system is complicated by the
fact that the acquisition frame-rate of L and R is generally different from that of T.
The acquisition frame-rate of the trinocular system cannot be above the minimum
between the acquisition frame-rate of the TOF and the acquisition frame-rate of
the stereo cameras (without accounting for the execution time of the stereo
algorithms). Either color or grayscale cameras can be used for L and R. Color
cameras allow fusion algorithms that exploit color information. Color fusion
algorithms are generally more precise and accurate but more resource-consuming
than gray-level fusion algorithms, as already seen for stereo vision algorithms.

For information fusion purposes the TOF and the stereo system must be jointly
calibrated. Each of the three cameras L, R and T is associated to its own 3D
reference system as shown in Fig. 6. Each camera has specific projection prop-
erties and TOF cameras can be assumed similar to standard cameras in this respect.
The systematic error of the TOF depth measurements must be taken into account
for the calibration step. The calibration of the trinocular system requires to esti-
mate the intrinsic parameters of L, R and T, the relative positions and orientations
(rototranslations) of their reference systems (or extrinsic parameters) and the
systematic error of the depth measurements of T. The intrinsic and extrinsic
parameters of cameras L and R, can be obtained by classical stereo calibration
tools. Standard camera calibration methods are not effective for estimating the
intrinsic parameters of TOF cameras due to issues like their limited spatial reso-
lution, the poor quality of the acquired images (just grayscale reflectance maps at
the TOF wavelength), the high noise levels and the severe lens distortion. How to
properly calibrate the intrinsic parameters of a TOF camera can be found in Chap.
5.

The relative roto translations between the colour cameras and the TOF camera
reference system in principle can be estimated by standard stereo calibration
techniques applied to the three possible couples of cameras. In practice this does
not lead to accurate calibrations because of the differences in the pairs made by a
standard camera and a TOF camera (image resolution, distortion, image noise).
Better results can be obtained by jointly registering the three devices. The accuracy
of this global optimization approach is limited by the localization accuracy of the
TOF camera. The best results are obtained by exploiting the 3D information from
the TOF camera. The approaches of [30] and [31] perform first a standard stereo
calibration for the stereo system. The calibrated stereo system is then used to
acquire the 3D location of the corners of a target checkerboard. The TOF camera is
also used to acquire the 3D location of the checkerboard corners. The two point
clouds corresponding to the checkerboard corners, one coming from the stereo
system and the other from the TOF camera, expressed with respect to the two
reference systems are then registered together by Horn algorithm [32] within a
RANSAC [33] framework. This procedure gives good estimates of the roto
translation between the two reference systems. Mirroring the structure adopted in
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the presentation of stereo vision algorithms, the rest of this section first presents
local fusion algorithms, then global fusion algorithms, and finally semi-global
fusion algorithms.

3.2 Local Approaches

A first simple way of fusing TOF and stereo data, presented in [34] is to just
average the depth measures of the two subsystems. In this approach, the depth map
acquired by the TOF and the one acquired by the stereo pair are separately
obtained, then registered on a unique reference system and finally averaged. The
quality of the final results obtained by this method is rather limited, since the errors
of the two acquisition systems add up. Furthermore, averaging does not take into
account the different reliability of TOF data and of stereo reconstruction in dif-
ferent scene context (e.g., stereo reconstruction is more reliable for textured than
for non-textured surfaces, etc.). The final spatial resolution increases up to the
resolution of the stereo vision system only fictitiously, since the TOF depth-map is
simply interpolated, and interpolation artefacts propagate to the final depth map
through the averaging operation.

In the more interesting method proposed by [35] the depth map acquired by the
TOF is firstly upsampled by a hierarchical application of bilateral filtering. A
plane-sweeping stereo algorithm is then applied to the acquisition volume defined
with respect to the TOF reference system. Finally the depth measures acquired
from both the TOF camera and the stereo algorithm are fused together by means of
a confidence based strategy. This approach is quite interesting and suited for GPU
implementation, but the simple plane-sweeping stereo algorithm does not improve
much upon the results obtained just by interpolating the TOF data by bilateral
filtering. Such a method provides a scene depth estimate characterized by high
spatial resolution. Accuracy and precision are also improved (up to extents,
comparable with what is at reach of global and semi-global methods).

As previously said the precision and accuracy of the data coming from stereo
systems and from the TOF cameras depend on many different factors and an
effective fusion approach should take into account the different reliability of the
data of the two systems in different scene contexts. Some local [30] and global
methods [31] exploit a probabilistic framework in order to achieve this target. The
idea is to build for each sample in the scene two probability functions representing
the likelihood of a given depth measure Z given by the TOF camera and by the
stereo system. Let us denote with P½ZjMT � the probability of having a certain depth
value Zgiven the measureMT by the TOF camera and with P½ZjMS� the probability
of Z given the measure MS by the stereo system. The fusion problem can be
expressed in a maximum a posteriori (MAP) formulation as the search for the
depth value Zthat maximizes the posterior probability given the TOF and the
stereo measures MT and MS, i.e.,:
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Ẑ ¼ argmaxZðP½ZjMT ;MS�Þ ð6Þ

In most practical situation it is possible to assume independent the TOF and
stereo measures [27] and to compute the estimated depth as the value that maxi-
mizes the product of the TOF and stereo system probabilities, i.e.:

Ẑ ¼ argmaxZðP½ZjMT �P½ZjMS�Þ ð7Þ

As expected the critical issue for this kind of approaches is the construction of
the two probability functions P½ZjMT � and P½ZjMS�.

The TOF probability function depends on the precision of the TOF measures
that, as already discussed in this book, is a function of the different sources of noise
that affects the TOF camera and of the scene geometry and reflectance charac-
teristics. As pointed out in [26] the TOF noise can be approximated by a Gaussian
distribution. In order to estimate the standard deviation of the distribution it is
necessary to take into account the properties of the employed TOF camera but also
the fact that the signal-to-noise ratio depends on the strength of the received signal
which is a function of the object reflectance. In [34] this issue is solved by a
statistical analysis of the TOF measures reliability with different reflectances that
is then used to build a function that represents the standard deviation of the noise
as a function of the reflectance. Some TOF cameras like the MESA Imaging
SR4000 also return a confidence map (that in fact mostly depends on the strength
of the returned signal) associated to the measurements reliability, used for example
in [30] to compute the standard deviation of the Gaussian probability distribution
of the TOF noise. It is also important to remind that TOF measures are usually less
accurate near scene depth discontinuities because of limited spatial resolution and
scattering. In order to take this issue into account one may take into account the
local variance in the computation of the probability function.

The stereo probability model depends on the employed stereo algorithm. Since
most stereo algorithms associate a matching cost to the disparity of each candidate
(e.g., TAD) the probability of each depth value can be computed as a function of
the matching cost. Note how this approach implicitly takes into account the reli-
ability of the stereo algorithm, e.g., in uniform texture-less areas the matching cost
and the probability function are quite low forcing the use of TOF data in these
regions while in highly textured areas it is just the opposite.

Once the two probability functions are available, for each sample it is possible
either to just select the depth value that maximizes their product or to include them
into any global probabilistic approach, as it will be shown in the next sub-section.
The fusion algorithm proposed in [30] aims at improving the depth accuracy and
resolution of both the stereo and the TOF depth measurements. Since it intrinsi-
cally accounts for the confidence of the measurements produced by the two sub-
systems, it also improves accuracy and precision (Fig. 9 shows an example of the
results of this approach). It does not improve though the spatial resolution of the
estimated depth map which remains the one of the TOF.
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3.3 Global Approaches

The method proposed in [31] and its extension proposed in [36] are based on a
global MRF formulation, in which a belief propagation algorithm optimizes a
global energy function. This method aims at increasing both resolution and
accuracy of the depth measurements performed by each single subsystem.
Unfortunately the global optimization procedure makes it rather slow. It does not
clearly improve upon depth resolution.

The approach previously introduced can easily incorporate probabilistic
frameworks such as MRF models usually employed in global stereo vision algo-
rithms. Global stereo vision algorithms usually rely on a MRF model where the
employed probability functions model the likelihoods given by the different clues.
With respect to the Bayesian model of Eq. (3), the basic idea in order to include
the TOF measures is to add a further data probability cost function that models the
TOF probability. In this way, together with the smoothness term, there are two
data terms, one depending on the stereo matching cost and one on the TOF data.
The final cost problem can be expressed as:

D̂ ¼ argminD½CT MTð Þ þ CSðMSÞ þ Csmooth Dð Þ� ð8Þ

where D̂ is the depth map produced by the fusion algorithm, CT the cost of the
TOF camera T, function of the measures MT of T, CS the cost of the stereo system
S, that depends on the cost function MS of the adopted stereo algorithm S, and
Csmooth the smoothness term cost, that depends on the actual scene depth-map
D. Problem (8) can be solved by the same techniques used in stereo vision methods
such as Graph-Cuts or LBP.

A temporal extension of this method, proposed in [37], forces the consistency
between current, previous and subsequent frames by computing the matching cost
of the corresponding pixels in the three frames after optical flow estimation. The
optimization in this case is solved by LBP (Fig. 10).

(a) (b) (c) (d)

Fig. 9 Fusion of stereo and TOF data exploiting the local approach of [29]: a picture of the
framed scene; b depth map acquired by the TOF camera; c depth map after the fusion of the two
data sources; d difference between the two depth maps
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3.4 Semi-Global Approaches

A first simple semi-global approach is the one by [38], in which the depth map
acquired by the TOF is firstly reprojected on the reference image of the stereo pair,
it is then interpolated and finally used as initialization for the application of a
dynamic programming stereo algorithm. The main limit of this method is that it
enforces the so-called ordering constraint that is not always satisfied. A violation
of such a constraint usually leads to severe artefacts. Such a method therefore
produces high spatial resolution, but it does not considerably improve accuracy
and precision.

Similarly to [30] also the approach of [39] builds a cost function for each
sample that depends both on the TOF measures and on the stereo matching cost
(computed in this case by the method of [40]). The algorithm firstly reprojects the
depth measures coming from the TOF on the two cameras images and then
computes the stereo matching cost. If the matching cost is below a pre-defined
threshold the TOF measure is considered valid and the cost function for that
sample is approximated by a reverse Gaussian distribution centered at the TOF
measurement. Otherwise the TOF measure is considered wrong and the cost is
computed only from the matching cost of the stereo algorithm. Differently from
[30] there is also a final cost aggregation stage based on the semi-local method of
[23] that employs a smoothness constraint and aggregates the costs over 16 sur-
rounding 1D directions as described in Sect. 1.5. This approach propagates the
depth measures of the TOF on the high resolution lattice of the stereo cameras and
is able to produce high resolution depth maps. It is also quite robust but differently
from other schemes it basically uses stereo data only to replace the TOF measures
when not available or not reliable instead of really combining the two measures.
This makes this method suitable for situations where the TOF data are more
reliable than the stereo ones. When the two systems have similar performances it is
probably not the best solution.

(a) (b) (c) (d)

Fig. 10 Fusion of stereo and TOF data exploiting the global approach of Zhu et Al. [36]
(courtesy of the authors): a picture of the framed scene; b depth map acquired by the TOF
camera; c depth map acquired by the stereo system; d depth map after the fusion of the two data
sources
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4 Conclusions

TOF cameras are emerging depth measurement instruments. They are very
attractive because of their speed and their robust behaviour in terms of dependence
from scene characteristics (e.g., texture distribution). Stereo systems are classical
depth measurement instruments, very attractive for the inexpensiveness of their
hardware components and the large body of stereo algorithms available in the
literature. The variety of stereo algorithms gives great flexibility to stereo systems.

The comparison of these conceptually and technologically different depth
measurement methods is the first issue considered by this chapter. It is first
approached on the basis of classical metrological concepts such as accuracy,
precision and resolution. However because of the great number of involved sys-
tem, environment and scene factors, the comparison can only be experimentally
made as exemplified at the end of Sect. 2.

The data obtained by the two depth measurement systems, as shown in Sect. 2,
have characteristics making worthwhile considering their fusion. Section 3
reviews state-of-the-art techniques for combining data coming from both a TOF
camera and a stereo system. In this connection stereo vision algorithms can be
revisited and extended in order to profitably take into account the characteristics of
TOF data. As seen from Sect. 3, the investigation of the fusion between TOF
camera and stereo data has already received considerable attention, but there is
still plenty of room for improvements.

It is worth noting that the comparison between TOF camera and stereo data and
their fusion are deeply related topics since a data fusion approach is profitable only
if it concerns data with substantial differences and possibly somehow comple-
mentary characteristics.
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TOF Cameras in Ambient Assisted Living
Applications

Alessandro Leone and Giovanni Diraco

1 Introduction

In the recent years, the phenomenon of population ageing is receiving increasing
attention firstly for healthcare and social impacts (rising health-care costs, life-
style changes, etc.) and secondly as an opportunity to leverage the full potential of
technology in making automated services for lonely elderly people. In this vision,
AAL has been introduced as a term describing solutions based on advanced ICT
technologies to support conduct of life. Relevant applications in this field relate,
for instance, to the prevention and detection of potential dangerous events such as
falls in the elderly, integrated in a wider emergency system which may help in
saving lives. On the other hand, many AAL applications, especially in the
homecare field, exploit the inference of human activities in order to support the
everyday living of elderly people. Applications herein are devoted to support a
wide range of needs from specific rehabilitation exercises to better insights into
how perform the so called Activities of Daily Living (ADLs), helping geriatricians
to evaluate the autonomy level of older adults by employing a variety of electronic
aids and sensors [1]. The design of such AAL applications is normally based on
paradigms of ambient intelligence and context-awareness providing intelligent
environments in which various kind of sensors are deployed. Typical adopted
sensors are accelerometers, gyroscopes, video cameras, microphones, pressure
switches, and so on. Solutions based on these sensors can roughly be grouped on
the basis of their operation modality into three main categories: ambient-based,
wearable-based and camera-based solutions [2, 3]. The ambient category relates to
those sensors that are embedded into appliances or furniture in order to detect
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presence, door open/close, etc. They require typically an ad hoc design or redesign
of the home environment. Wearable devices are based essentially on accelerometer
and/or gyroscope sensors. This solution does not require any environmental
modification since devices are worn by the user; however wearable devices are
prone to be forgotten or worn in a wrong body position, exhibiting a low accep-
tance rate. Camera-based solutions require the installation of at least one camera in
each monitored room allowing the capture of the most of the activities performed
and avoiding, at the same time, a large number of ambient-based sensors. Fur-
thermore, apart from being non-invasive camera provides a rich and unique set of
information that cannot be obtained from other types of sensors.

Aiming to highlight the benefits of TOF-based RIM in relevant AAL contexts,
this chapter focuses on two central AAL scenarios, namely the critical event
detection and the analysis of human activities. In particular, the fall detection is
considered as the main representative application within the first scenario, whereas
the problem of posture recognition is faced within the second one since it is a
fundamental prerequisite to all kind of human activity inferences. The main
principles of the different approaches are discussed with less of a focus on theo-
retical details, instead methodologies and their integration into practical imple-
mentations are suggested, giving realistic hints on how to handle the main
technical issues typical of AAL contexts. The presented methodologies are
implemented by using a state-of-the-art TOF range camera and a very compact
embedded PC. The design of the suggested system takes into account the ethical
aspects in order to maximize the user’s acceptance rate and minimize the risk of
loss of privacy.

The chapter is organized as follows. In Sect. 2, the active vision is compared
with the passive vision and the advantages of the first in AAL contexts are
highlighted. A full automated system for detection of falls in the elderly by using
TOF vision is presented in Sect. 3, in which both methodological and technical
issues are considered. In Sect. 4, the presented framework is extended suggesting a
TOF-based solution for human posture recognition well suited for AAL contexts.
Finally, the Sect. 5 concludes the chapter by discussing the proposed framework
and giving some final considerations.

2 Advantages of Active Vision in AAL Contexts

Generally, the usage of monocular vision for surveillance and monitoring purpose
is considerably troublesome since a single camera view can be strongly affected by
perspective ambiguity when the viewpoint is unfavorable [4, 5]. The stereo vision
(or in general the multiple view vision in which two cameras or more capture the
same scene) overcomes perspective problems exploiting 3D geometric represen-
tation of human shape. However, stereo/multiple view vision deals with the ill-
posed problem of the stereo correspondences strongly affected by poor textured
regions and violation of brightness constancy assumption. In addition, the usage of
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multiple cameras requires both intrinsic and extrinsic camera calibrations that
unfortunately are time consuming and error prone activities [6, 7]. Moreover, both
monocular and stereo/multiple view vision systems fall within the so called pas-
sive vision in which the vision system measures the visible radiation already
present in the scene due to natural or artificial illuminations. In general passive
vision is well-known to be demoted by many factors such as the presence of
shadows, camouflage effects (overlapped regions having similar colors), brightness
fluctuations, few surface cues (poor textured regions) and occlusion handling.
Recently, the active vision, mainly by using TOF cameras, is increasingly inves-
tigated in order to overcome the drawbacks of passive vision systems [8–16]. The
manufacture costs of active vision systems in general and TOF cameras in par-
ticular are decreasing thanks to a lot of researches in progress especially gained by
gaming industry strongly interested in new Natural User Interface: in a near future
these devices are likely to be as cheap as webcams are today [11, 17]. Table 1
synthesizes the most important characteristics of TOF sensors in comparison with
passive stereo vision systems. The main advantage in the use of TOF is the
description of a scene with a more detailed information, since both depth map and
intensity image can be used at the same time. In particular, previously mentioned
problems of passive vision (foreground camouflage, shadows, partial occlusions,
etc.) can be overcome by using depth information that is not affected by illumi-
nation conditions and objects appearance. Although the passive stereo vision
provides depth information in a less expensive way, this approach presents high
computational costs and it fails when the scene is poorly textured or the illumi-
nation is insufficient; vice versa, active vision provides depth maps even if
appearance information is poor textured and in all illumination conditions [18, 19].
However, it is important to note that both distance and amplitude images delivered
by the TOF camera have a number of systematic drawbacks that must be com-
pensated. The main amplitude-related problem comes from the fact that the power
of a wave decreases with the square of the distance it covers. For the previous
consideration, the light reflected by imaged objects rapidly decreases with the
distance between object and camera. In other words, objects with the same
reflectance located at different distances from the camera will appear with different
amplitudes in the image. Furthermore, in several situations active vision may
exhibit unwanted behaviors due to limitations of specific 3D sensing technology
(limited depth range due to aliasing, multi path, reflection object properties) [20].
Benefits of TOF sensors in surveillance contexts are summarized in Table 2,
whereas drawbacks are reported in Table 3.

In order to understand the advantages in the use of range imaging in surveil-
lance, a qualitative comparison between intensity-based and depth-based seg-
mentation is presented in Fig. 1, using the same well-known segmentation
approach (Mixture of Gaussians-based background modelling and Bayesian
framework for segmentation) [21]. The two images, intensity and range respec-
tively, are taken by the same TOF camera at the resolution of 176 9 144 pixels.
The better segmentation is achieved by using the depth image, whereas the same
segmentation approach applied on the intensity image suffers of mimetic effects.
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Moreover, the use of only depth images for measuring allows to improve the pre-
processing process and, at the same time, to guarantee the person’s privacy since
chromatic information is not acquired: only depth measurements are sufficient to
detect body movements and postures.

Table 1 Comparison of important characteristics of TOF cameras and stereo vision systems

TOF sensor Stereo (passive) vision

Depth resolution Sub-centimetre (if chromaticity
conditions are satisfied)

Sub-millimetre (if images are
highly textured)

Spatial resolution Medium (QCIF, CIF) High (over 4CIF)
Portability Dimensions are the same of a

normal camera
Two video cameras are needed and

also external light source
Computational

efforts
On-board FPGA for phase and

intensity measurement
High workload (the calibration

step and the correspondences
search process are hard)

Cost High for a customizable prototype
(1000–3000€)

It depends on the quality of stereo
vision system

Table 2 Advantages in the use of TOF sensors in surveillance contexts

TOF sensor Passive vision

Illumination conditions Accurate depth measurement in all
illumination conditions

Sensible to illumination variations
and artificial lights. Unable to
operate in dark environments

Shadows presence It does not affect principal steps of
monitoring applications

Reduced performances in
segmentation, recognition, etc

Objects appearance Camouflage is avoided but
appearance could affect depth
precision (chromaticity
dependence)

Camouflage effects are presented
when foreground/background
present same appearance
properties

Extrinsic calibration Not needed when only one camera
is used

Always needed

Table 3 Drawbacks in the use of TOF sensors in surveillance contexts

Drawback description

Aliasing It affects the non-ambiguity range i.e., the maximum achieved depth is
reduced (up to 7.5 m)

Multi-path effects Depth measurement is strongly corrupted when the target surface presents
corners

Objects reflection
properties

Materials having different colors exhibit dissimilar reflection properties
that affect reflected light intensity and, therefore, depth resolution

Field of view Usually it is limited so that an accurate positioning of the sensor is
needed. A pan-tilt architecture could be useful
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3 A TOF Camera-Based Framework for Fall Detection

Actually, the problem of falls in the elderly has become a healthcare priority in all
industrialized countries around the world due to the related high social and eco-
nomic costs [22]. The consequences of falls in elderly may lead to psychological
trauma [23], physical injuries [24], hospitalization and death in the worst case [25].
The medical importance of automatic fall-detection is apparent if the two fol-
lowing aspects are taken into account: (a) the involuntarily remaining on the floor
for a long period after a fall is related with the morbidity/mortality rate [26]; (b)
the elderly may not be able to activate a Personal Emergency Response Systems
(PERS) due to the potential loss of consciousness [27]. The most investigated
camera-based approach is the monocular one in which a camera alone captures the
image frames. A monocular approach was investigated by Shaou-Gang et al. [28],
detecting falls by measuring the aspect ratio of the bounding box of the body.
Instead, Jansen and Deklerck [29] used depth maps obtained by a stereo camera
system to detect inactivity by estimating the orientation change of the body.

Fig. 1 Segmentation results are shown (b, d) when the segmentation approach in [39] is applied
on depth (a) and intensity (c) information, respectively. The better segmentation is achieved
starting from the depth image, whereas the same segmentation approach applied on the intensity
image suffers of mimetic effects (sweater and wall present the same brightness)
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A manually calibrated multiple camera approach was used by Cucchiara et al. [30]
in order to detect a fall by inspection of the 3D body shape. Since passive vision
(both monocular and stereo based) systems suffer of previously discussed draw-
backs, recently authors start to investigate the problem of detection of falls by
using active vision [12, 16] also in conjunction with other kind of sensors [14]. The
suggested methodology for fall detection is discussed in the following subsections
starting with the description of the hardware platform.

3.1 The Hardware Platform

The hardware platform used in the fall-detection framework includes two main
components: an embedded PC equipped with an Intel

�
AtomTM Processor and

managed by a Linux-based OS, and the MESA SR3000 [31] TOF camera installed
in a wall mounting static setup as discussed in the following subsection. The
extrinsic camera calibration is performed in a fully automated way by using a self-
calibration procedure (see Sect. 3.2) in order to meet the easy-to-install require-
ment, whereas the intrinsic calibration is not required since the camera comes
intrinsically calibrated by manufacturer.

3.2 Camera Mounting Setup

In this subsection the mounting setup of a TOF camera is discussed. The best
camera mounting setup can be defined taking into account the following con-
straints: (1) the camera is static to limit the computational cost of a pan/tilt han-
dling algorithm; (2) a people height of 1.75 ± 0.20 m is assumed. The two camera
mounting configurations investigated were both ceiling and wall mounting setup.
The Fields-of-View FoVw (for wall mounting) and FoVc (for ceiling mounting)
can be quantitatively compared assuming that the following quantities are given:
the covered room length L, the room height H, the average people height h. The
two planes q and p are considered in order to evaluate the effective camera Field-
of-View (Fig. 2): the first plane is referred to the ground floor, whereas the second
one is referred to the people head position. In particular FoVw and FoVc are
constrained in order to capture the whole p plane. Defined the ratio between the
room length L and the distance H–h from the people head position to the ceiling,
that is L0 = L/(H–h), the FoVw and FoVc are computed by using the following
relations:

FoVc L0ð Þ ¼ 2 tan�1 L0

2

� �
; FoVw L0ð Þ ¼ p

2
� tan�1 1

L0

� �
: ð1Þ
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In Fig. 3 FoVc and FoVw are plotted by using Eq. 1 for three typical room
having L dimensions of 3, 5 and 7 m. The distance H–h in indoor environments
ranges typically from 1 to 2 m, hence a wall mounted camera requires a narrower
FoV than a ceiling mounted one. The ceiling mounting configuration is less sen-
sitive to occlusion issues, multiple reflections and flickering effects due to high
reflectivity surfaces (windows, mirrors, etc.). On the other hand, in the wall
mounting configuration the maximum achievable distance from the camera is
greater than that achievable in the ceiling mounting configuration. However, the
wall mounting configuration is more sensitive to occlusion problems and spikes
may appear in the depth map due to high-reflectivity surfaces. Although ceiling
mounting configuration offers many advantages, it does not allow to monitor a
wide area, especially when the active sensor is positioned at a limited height from
the floor plane. The previous considerations and the narrow FoV typical of TOF
cameras motivate the preference of wall mounting setups in AAL contexts.

3.3 Self-Calibration of Extrinsic Parameters

Despite TOF cameras are normally intrinsically calibrated by manufacturers, the
external calibration parameters must be estimated. In this section a camera self-
calibration algorithm is presented, allowing to achieve a very simple installation
process, in agreement with the easy-to-use feature typically required in AAL
contexts. The external calibration refers to the estimation of the camera position
and orientation (i.e. the camera pose) with respect to a world reference frame fixed
at floor level. Both world reference frame (Ow, X, Y, Z) and camera reference
frame (Oc, x, y, z) are represented in Fig. 4a in which the camera is accommo-
dated in a wall mounting static configuration at height H from the floor plane.

Fig. 2 Two possible camera
mounting setups were
considered: ceiling mounting
and wall mounting
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In order to define the camera calibration algorithm, the following assumptions
seem to be reasonable for indoor environments:

(A.1) the camera is oriented to capture a relatively large floor plane surface;

Fig. 3 The fields-of-view FoVc and FoVw are plotted by using Eq. 1 for three typical room
dimensions (L=3 meters, L=5 meters and L=7 meters), in function of the distance H-h between
person’s head and ceiling. In indoor applications the wall mounting setup requires a narrower
FoV than the ceiling mounting one

Fig. 4 (a) (Ow,X,Y,Z) and (Oc,x,y,z) are world and camera reference frames respectively. The
camera is accommodated in a wall-mounting static setup. (b) Also camera dimensions are
provided
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(A.2) the floor plane could be covered by carpet-like surfaces;
(A.3) the presence of little objects like poufs, boxes, etc., is very limited: the floor

is not entirely covered by little objects;
(A.4) the camera could capture other planar surfaces (tables, walls, etc.).

Given the previous A.1, A.2, A.3 and A.4 assumptions, a camera calibration
procedure based on floor plane detection is defined. The camera orientation can be
defined in terms of pan (a), tilt (h) and roll (b) angles with respect to a world
reference frame as represented in Fig. 5. Following the well known z–x–z con-
vention the camera orientation can be represented as a composition of three
rotations, starting from the world coordinated axes (Fig. 5a) and performing: (1) a
rotation around the z-axis of a (Fig. 5b), (2) a rotation around the x-axis of
n = p-h (Fig. 5c), and finally (3) a rotation around the z-axis of b (Fig. 5d). In
homogeneous coordinates the transformation matrix from the camera reference
frame into the world reference frame can be written as follows:

Fig. 5 The camera orientation is defined in terms of Pan (a), Tilt (h) and Roll (b) angles by using
the well known z-x-z convention. Starting from the camera reference frame aligned with the
world reference one (a), the first rotation is performed around the z-axis of an angle a (b); the
second rotation around the x-axis of on angle n = p-h (c); and finally the third rotation around the
z-axis of a b angle
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M ¼ R �T
�0T 1

� �
; where �T ¼

0
0
H

0
@

1
A�0 ¼

0
0
0

0
@

1
A; and ð2Þ

R ¼
cos a � sin a 0
sin a cos a 0

0 0 1

0
@

1
A �

1 0 0
0 cos n � sin n
0 sin n cos n

0
@

1
A �

cos b � sin b 0
sin b cos b 0

0 0 1

0
@

1
A:
ð3Þ

Defining the camera orientation with respect the world reference frame (that is
fixed at the floor level) is the same as defining the floor plane orientation in camera
coordinates. Hence, the floor plane can be written in camera coordinates by means
of the Eq. 2 transforming its normal vector (0, 0, 1, 0) from world homogeneous
coordinates into camera ones as follows:

n̂ ¼M�1

0
0
1
0

0
BB@

1
CCA ¼

sin b sin h
cos b sin h
� cos h

0

0
BB@

1
CCA: ð4Þ

It is clear from the Eq. 4 that the pan angle a is irrelevant in order to define the
floor plane orientation in camera reference frame. At the same conclusion one can
reach from Fig. 5b since the first rotation around the z-axis of a does not change
the floor plane orientation with respect the camera reference frame. The previous
consideration guarantees that the only useful camera calibration parameters are (H,
h, b). In order to detect the floor plane correctly (as it will be detailed below) it is
useful to express the camera parameters (H, h, b) in terms of floor plane coeffi-
cients. Given the estimated floor plane pF in camera coordinates:

pF: aFxþ bFyþ cFzþ dF ¼ 0 ð5Þ

and its normal vector (aF, bF, cF) (it is assumed that a2
F þ b2

F þ c2
F ¼ 1, otherwise it

can be normalized), from Eq. 4 the following relations arise:

sin b sin h ¼ aF

cos b sin h ¼ bF

� cos h ¼ cF

8><
>: ð6Þ

By using simple trigonometric considerations the camera parameters can be
derived from Eqs. 5 and 6 as follows:
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h ¼ arccos �cFð Þ

b ¼ arcsin
aFffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2
F

p
 !

H ¼ dF

8>>>><
>>>>:

ð7Þ

when: 0\h\p; � p
2 � b� p

2 ; a2
F þ b2

F þ c2
F ¼ 1: Given the Eq. 5 of the esti-

mated floor plane pF and the person’s centroid ~C ¼ cx; cy; cz

� �
in camera coor-

dinates, the distance of ~C from the floor plane can be evaluated as follows:

h ~C
� �

¼ aFcx þ bFcy þ cFcz þ dF

		 		: ð8Þ

The estimation of the external calibration parameters (h, b, H) is accomplished
during the installation of the device. Assuming that the camera is adjusted in order
to look toward the floor (see A.1), the calibration plane is detected by a three-steps
strategy: (1) detection; (2) filtering; (3) selection. The first step deals with the
detection of enough large planes in the 3D point cloud, whereas in the second step
detected planes are filtered out on the basis of some assumptions on camera
orientation (defined by the given below Eq. 11). Finally, the third step selects the
floor plane among all filtered planes. The planes detection algorithm searches
iteratively the largest plane in the 3D point cloud removing points belonging to the
detected plane at each iteration, as explained by the pseudo-code in Algorithm 1.

Algorithm 1 Self-calibration Algorithm: Planes detection

Hence at a given iteration, the algorithm works with a subset of the 3D points
used in the previous iteration. The detection procedure finishes when the size of
the subset is lower than a prefixed percentage p (greater than 30) of the starting
points. Since measured distances are normally affected by noise, planes are
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detected by using a RANSAC-based approach [32] which is robust to outliers. Let
the i-th iteration of the algorithm, the RANSAC plane detector provides four
parameters (ai, bi, ci, di) describing the implicit model of the i-th fitted plane pi in
camera coordinates:

aipx þ bipy þ cipz þ di ¼ 0; ð9Þ

with a2
i þ b2

i þ c2
i ¼ 1; for each point P = (px, py, pz) belonging to the detected

plane pi. For each detected plane pi the camera tilt and roll angles (hi, bi) are
evaluated by using Eqs. 7 and 9:

hi ¼ arccos �cið Þ

bi ¼ arcsin
aiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2
i

p
 !

8>><
>>:

ð10Þ

The (hi, bi) angles are used in the second step to filter out planes not satisfying
the following constraints:

�20� � bi� 20�

23:75� � hi� 66:25�

(
ð11Þ

Since not only the floor plane satisfies Eq. 11 but even all coplanar planes, the
floor plane is selected as the farthest plane from the camera. Therefore, in the third
algorithmic step the floor plane pF is selected such that the subscript index F is:

F ¼ arg max
1� i�m

dij j: a2
i þ b2

i þ c2
i ¼ 1


 �
: ð12Þ

The self-calibration procedure was validated by using a MEMS-based Inertial
Measurement Unit (IMU) [33] and a Laser Measurement System (LMS) both
attached to the 3D range camera in order to derive ground truth data. The IMU
sensor provided drift-free 3D orientation with a static accuracy better than 0.5�,
whereas the LMS measures distances with accuracy of ± 1.0 mm. The calibration
procedure was evaluated in several typical household environments such as living
room, kitchen, bedroom, corridor and bathroom, and varying the following
parameters:

(P.1) the percentage of floor occupancy by using three groups of objects: (a)
carpet-like surfaces with thickness no greater than 5 cm, (b) furniture with
height greater than 50 cm (like chairs, beds, nightstands, etc.), and (c) little
objects (like poufs) having height ranging from 10 to 30 cm;

(P.2) the camera height from the floor plane, ranging from 2.00 to 2.70 m;
(P.3) the camera orientation b and h angles, with -20� B bB20� and

23.75� B h B 66.25�.
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The camera height range was defined considering that normally the ceiling
height is lower than 2.70 m and it is not recommended to install camera at a height
lower than 2.00 m (to prevent both safety problem and saturation effects). The
range for b seems to be reasonable, since in surveillance application usually one
tries to accommodate camera without strong roll rotations. The maximum camera
FoV is 47.5�, hence it was not useful to wall mount the camera with tilt angle
lower than FoV/2 = 23.75� in order to prevent wall being captured by camera.
The geometry involved into definition of h lower bound is shown in Fig. 6a.
Moreover, the maximum value of h angle was defined considering that normally in
surveillance applications it is not useful camera captures more than 2.00 m on the
opposite wall and for this reason the maximum useful value for h is 90�-FoV/
2 = 66.25� as shown in Fig. 6b. Camera orientation and position values indicated
by the previously mentioned P.2 and P.3 parameters allow to monitor virtually any
floor portion inside a typical sized household room of about 4 9 4 m. The values
of (H, h, b) taken into account during the validation of the self-calibration pro-
cedure are summarized in Table 4 for a total amount of 324 camera configurations.

Since the measurement of people movements could be demoted by errors in
camera calibration, the performance of self-calibration algorithm was evaluated.
The calibration procedure was validated considering the relative errors EH, Eh and
Eb defined as follows:

EH ¼
H � Ĥ
		 		

H
; Eh ¼

h� ĥ
			

			
h

; Eb ¼
b� b̂
			

			
b

; ð13Þ

Fig. 6 The geometries involved into the definition of h lower bound and upper bound are
reported in a) and b) respectively. In order to avoid that camera captures same portion of wall the
h must be greater than FoV/2 that is 23.75�. On the other hand, given that in surveillance
applications it is not useful camera captures more than 2.00 m on the opposite wall, the maximum
useful value for h is 90�-FoV/2 that is 66.25�
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where H, h and b are the calibration parameters measured with camera attached

IMU and LMS, while Ê; ĥ and b̂ are the calibration parameters estimated by the
self-calibration algorithm. Furthermore, the precision of the calibration procedure
was evaluated for different percentage of available floor surface. The environments
were arranged in order to obtain several percentage of floor occupancy considering
both uncovered and covered floor with carpet surfaces in percentages ranging from
20 to 80 %.

3.4 Background Modeling, People Segmentation
and Tracking

All kind of vision-based recognition applications require that some pre-processing
tasks are performed before that features are extracted. At this purpose a well-
established framework is adopted including early vision algorithms for back-
ground modeling, foreground segmentation and people tracking. Since the adopted
pre-processing framework is based on well-known concepts, only practical
implementation details are given in this subsection omitting further theoretical
details. Interested readers in pre-processing aspects can refer to [34] for further
details. A Bayesian segmentation is used to detect the 3D elderly silhouette in
depth images. In order to perform an automatic foreground extraction, an
improved version [35] of the method proposed by Stauffer and Grimson [36]
(Mixture of Gaussians—MoGs method) has been enhanced by considering depth
information. In the traditional formulation of MoGs method, the probability that a
pixel belongs to the foreground is modeled as a sum of K normal functions. For
each pixel some of these Gaussians model the background and the others the
foreground. In the suggested formulation, at each frame the model parameters are
updated by using the Expectation Maximization (EM) algorithm and a pixel is
considered to belong to the foreground if its depth does not belong to any of the
Gaussians. The EM algorithm allows to update the Gaussian parameters according
to a fixed learning rate that controls the adaptation speed. The well-known problem
of this approach is the balancing between model convergence speed and stability.
The MoGs scheme improves the convergence rate without compromising model
stability: the background model is updated online and the global static retention
factor of the traditional formulation is replaced with an adaptive learning rate
calculated for each Gaussian at every frame. The segmentation involves a binary

Table 4 Camera calibration parameters. Values used during tests

Parameter Tested values

Height, H (m) 2.00, 2.14, 2.28, 2.42, 2.56, 2.70
Tilt angle, h (deg) 23.75, 32.25, 40.75, 49.25, 57.75, 66.25
Roll angle, b (deg) -20.00, -15.00, -10.00, -5.00, 0, 5.00, 10.00, 15.00, 20.00
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classification problem based on P(B|z), where z is the depth value at time t and B
the background class. According to the background model process, let g(z; lk; rk)
the probability that a particular depth belongs to the k-th Gaussian function Gk

having weight xk (P(Gk) = xk). With an explicit representation of the distribution
P(z) as a mixture:

PðzÞ ¼
XK

k¼1

PðGkÞPðzjGkÞ ¼
XK

k¼1

xk � gðz; lk; rkÞ ð14Þ

the posterior probability can be expressed in terms of the mixture components
P(Gk) and P(z|Gk). Therefore, by using the Bayes rule the density P(B|Gk) can be
expressed as:

P Bjzð Þ ¼
XK

k¼1

PðBjGkÞPðGkjzÞ ¼
PK

k¼1 PðzjGkÞPðGkÞPðBjGkÞPK
k¼1 PðzjGkÞPðGkÞ

ð15Þ

To estimate P(B|Gk) a sigmoid function on x/r is trained using the logistic
regression:

P̂ðBjGkÞ ¼ f
xk

rk
; a; b

� �
¼ 1

1þ e�a
xk
rk
þb

ð16Þ

with a = 96 and b = 3, evaluated by training. Once P(z) and P(B|Gk) are esti-
mated, foreground regions are those for which the relation P(B|z) \ 0.5 is satis-
fied. The default threshold 0.5 worked quite well with a fitted sigmoid trained on
representative data.

The whole segmentation process was implemented in C++ with the support of
OpenCv library [37], guarantying real-time functioning. Once person’s silhouette
has been detected and its centroid (i.e., approximately near the center-of-mass) has
been estimated, a tracking strategy allows to link people silhouettes in different
time instants. A widely used approach for tracking is the Kalman filter [38] applied
to each segmented object. This approach requires a high complexity management
system to deal with the multiple hypotheses necessary to track objects. Due to the
non-linear nature of human motion, a stochastic approach is used based on the
ConDensation scheme (Conditional Density Propagation over time [39]) that is
able to perform tracking with multiple hypotheses directly in range images (500
samples are used for people tracking). The 3D centroid is predicted frame-by-
frame in range data, according to a state vector defined by merging position and
velocity vectors of the centroid. The tracker is realized by thresholding the
Euclidean distance between the predicted centroid position and its measured
version in the adjacent time step. As discussed for the segmentation step, the
ConDensation algorithm implementation in OpenCv library was used allowing to
exploit the advantages of a low-level implementation.
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3.5 The Fall Detection Strategy

A fall event is detected when the following events happen:

(1) the distance of the person’s centre-of-mass (approximated with the silhouette’s
centroid) with respect the floor plane decreases below to 0.40 m within a time
window of about 900 ms;

(2) the people silhouette movements remain negligible within a time window of
about 4 s.

The centroid position vector over time ~C tð Þ ¼ cx tð Þ; cy tð Þ; cz tð Þ
� �

is estimated
from range images by using the previously described algorithms for segmentation
and tracking. The distance h(t) of the centroid from the floor plane is equal to the z
coordinate of the centroid in the world reference frame and hence it can be cal-
culated by using the Eq. 8 as follows:

h tð Þ ¼ sin b sin h � cx tð Þ þ cos b sin h � cy tð Þ � cos h � cz tð Þ þ H ð17Þ

where (h, b, H) are the previously described calibration. The proposed scheme for
fall detection works when a whole human silhouette is detected and also when a
partial occlusion occurs. The centroid height estimation was validated by using a
test object with known height of 0.40 m and accommodated in nine different
positions within a surface of 4 9 4 m as shown in Fig. 7. The height measure-
ments were repeated for each camera position and orientation value reported in the
previously discussed Table 4. For each measurement the following quantity was
evaluated:

Dh ¼ ĥ� 0:4
		 		 ð18Þ

where ĥ is the estimated height. The implemented fall detector is able to process
range data real-time (up to 25 fps). Fall-detection performance was evaluated by

Fig. 7 Accuracy and precision of centroid height estimation by 3D camera was validated by
using a test object with known height of 0.40 m and accommodated in 9 different positions within
a surface of 4 9 4 m
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using data collected during the simulation of falls in real-home scenarios such as
living room, kitchen, bed room and bathroom. The performance of the overall
system is quantified as suggested by Noury et al. [22] by using sensitivity and
specificity measures, defined as follows:

Sensitivity ¼ True Positives = True Positives þ False Negativesð Þ; ð19Þ

Specificity ¼ True Negatives = True Negatives þ False Positivesð Þ: ð20Þ

3.6 The Simulation Setup

The simulation of realistic fall events was performed with the involvement of 13
stuntmen. All participants were healthy male, from 30 to 40 years old and height
between 1.55 and 1.95 m. A total amount of 460 actions were simulated of which
260 were falls in all directions (backward, forward and lateral) and with/without
recovery post fall. The simulated falls were compliant with those categorized by
Noury et al. [40] and they can be grouped into the following seven categories:

(F1) backward fall ending lying (FBRS),
(F2) backward fall ending lying in lateral position (FBRL),
(F3) backward fall with recovery (FBWR),
(F4) forward fall with forward arm protection (FFRA),
(F5) forward fall ending lying flat (FFRS),
(F6) forward fall with recovery (FFWR),
(F7) lateral fall (FL).

Each participant was involved in two sequences simulating ten falls (one for
each type from F1 to F6 and four times the type F7) for each sequence. Since the
falls in the lateral direction are associated with a high risk of hip fractures in
elderly people [41], the simulation of this type of fall (F7) was mainly stressed.
Moreover, in order to stress the reliability of the framework, the fall detector was
validated in presence of occluding objects; each participant performed at least one
half of falls (i.e. five falls in each sequence) occluded by a table, a chair or a sofa.

3.7 Experimental Results

3.7.1 Floor Detection

The precision of the self-calibration procedure was evaluated by repeating the
procedure at increasing percentage of available floor both with and without carpet
covering. Results without carpet are reported in Table 5.
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When the percentage of available floor was greater than 30 % the relative errors
EH, Eh and Eb were less than 2 % with uncertainty less than 1.23 % (according to
the 3r rule in the theory of errors), whereas the measure inaccuracy of the centroid
height was less than 5.0 cm and its uncertainty was less than 10.2 mm. The
calibration procedure was evaluated also with carpet-like surfaces covering par-
tially the floor plane. Mean and standard deviation of relative errors reported in
Table 6 were estimated in correspondence of variable percentages of available
floor surface (not occupied by furniture) and carpet-like surfaces. In the worst case
in which many carpets were arranged in various positions and with long pile
thickness (near to 5 cm) it was needed a percentage of available planar surface at
floor level greater than 40 % in order to relative errors EH, Eh and Eb went below
the 2 % with an uncertainty less than 1.35 %. In the same situation the measure
inaccuracy of the centroid height was less than 6.0 cm with uncertainty less than
14.7 mm.

Some range images used by self-calibration algorithm during data collection in
typical dwelling rooms are shown in Fig. 8. Column (a) reports intensity images

Table 5 Mean and standard deviation of EH, Eh and Eb for percentage of available floor

Floor occupancy EH Eh Eb Dh (m)

% Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.

20.00 0.4070 0.0302 0.1324 0.0311 0.0232 0.0072 0.3196 0.0456
30.00 0.0209 0.0027 0.0181 0.0035 0.0180 0.0029 0.0502 0.0034
40.00 0.0189 0.0028 0.0167 0.0038 0.0151 0.0030 0.0420 0.0030
50.00 0.0150 0.0028 0.0154 0.0039 0.0128 0.0028 0.0414 0.0028
60.00 0.0142 0.0033 0.0131 0.0041 0.0130 0.0029 0.0228 0.0024

Table 6 Mean and standard deviation of EH, Eh and Eb at different percentages of available floor
and different percentages of carpet covering

Floor Occ
(%)

Carpet Occ
(%)

EH Eh Eb Dh (m)

Mean Std
dev

Mean Std
dev

Mean Std
dev

Mean Std
dev

30.00 20.00 0.3484 0.0298 0.1159 0.0223 0.0219 0.0050 0.1256 0.0085
30.00 40.00 0.3477 0.0308 0.1167 0.0222 0.0232 0.0055 0.1244 0.0068
30.00 60.00 0.3490 0.0305 0.1155 0.0216 0.0213 0.0049 0.1080 0.0056
30.00 80.00 0.3480 0.0300 0.1172 0.0221 0.0227 0.0055 0.0858 0.0045
40.00 20.00 0.0208 0.0028 0.0187 0.0033 0.0176 0.0027 0.0570 0.0033
40.00 40.00 0.0216 0.0030 0.0176 0.0037 0.0175 0.0037 0.0534 0.0049
40.00 60.00 0.0199 0.0018 0.0185 0.0032 0.0182 0.0026 0.0596 0.0038
40.00 80.00 0.0209 0.0016 0.0177 0.0035 0.0172 0.0028 0.0542 0.0028
50.00 20.00 0.0187 0.0025 0.0167 0.0038 0.0147 0.0030 0.0522 0.0026
50.00 40.00 0.0194 0.0033 0.0161 0.0045 0.0154 0.0039 0.0560 0.0021
50.00 60.00 0.0187 0.0031 0.0178 0.0037 0.0153 0.0038 0.0380 0.0007
50.00 80.00 0.0193 0.0029 0.0177 0.0041 0.0140 0.0029 0.0218 0.0009
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whereas column (b) reports corresponding range images. Floor planes correctly
identified by self-calibration algorithm are shown in column (c), whereas rejected
planes are shown in column (d). The first two rows in the figure are referred to
rooms with a carpet as it is visible by corresponding intensity images. However,
the carpet was not detected by 3D camera since its thickness of about 0.5 cm was
lower than the maximum accuracy achievable at the distance of 4 m.

3.7.2 People Detection and Tracking

The position of the people centroid is estimated from the segmented silhouette in
the range image and its evolution over time is pursued by using the tracking
algorithm detailed in the previous section. Segmentation results are illustrated, as
anticipated in the previous section, in Fig. 1 by reporting a critical situation in
which passive vision is effected by camouflage effects. Since range camera is not
sensitive to illumination or shadows, the elderly silhouette has been accurately
segmented from range images (Fig. 1b). In order to emphasize the goodness of
range images for segmentation, the same segmentation scheme has been applied to
intensity images and the corresponding result is shown (Fig. 1d): the poor quality
of the segmentation is due to both the inability of the system to model the
background and the presence of camouflage effects (the garment presents chro-
matic information similar to the wall at the back). The presented results are

Fig. 8 Some range images used by self-calibration algorithm during data collection in typical
dwelling rooms. Figure shows intensity images (column a), range images (column b), floor planes
correctly detected in range images (column c) and rejected planes in range images (column d)
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obtained by using K = 3 Gaussian functions in the background modeling process
with a = 0.005 as learning coefficient. The time needed for segmentation is about
of 15 ms whereas the classification step requires about 10 ms.

3.7.3 Fall Detection

The 3D centroid height profile over time allows to distinct falls from other
activities by thresholding the centroid height and unmoving time interval as shown
in Fig. 9. In Fig. 10 the typical trend of the centroid height during a fall is
reported. During a fall, at least three phases can be distinguished [22]: the pre fall
phase (indicated with I0 in Fig. 10), the critical phase (indicated with I1 in
Fig. 10), the post fall phase (indicated with I2 in Fig. 10) and the recovery phase
(indicated with I3 in Fig. 10). Simulated falls were detected by using three fea-
tures: (1) the person’s centroid height, (2) the critical phase duration, and (3) the
post fall phase duration. The three thresholds identified during the analysis of
recorded falls are reported in Table 7.

Fall-detection performance was evaluated by using the previously described
dataset of simulated falls, with and without the presence of occluding objects such
as tables, chairs, sofas, etc. Firstly, results without occlusions will be presented in
the following. The first threshold TH1 alone was able to detect correctly all
simulated falls achieving a sensitivity of 100 %, although it was not able to dis-
tinguish between a fall and a ‘‘fall with recovery’’ or between a fall and a ‘‘vol-
untary lying down on floor’’. A statistical visualization of results related to the
threshold TH1 is shown in Fig. 11. The threshold TH1 alone correctly identified

Fig. 9 Centroid height trend analyzed in order to detect falls. The first seven events are correctly
classified as fall, whereas the last one is correctly classified as a non-fall since the unmoving
duration is too short
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63.5 % of ADLs as non-falls achieving a specificity of 63.5 %. By adding the
second threshold TH2 a specificity of 79.4 % was obtained, since the threshold
TH2 allowed to discriminate correctly a ‘‘voluntary lying down on floor’’ from an
involuntary fall characterized by a shorter duration of the critical phase. The
statistical visualization of TH2 discrimination capability is shown in Fig. 12. By
using the TH1, TH2 and TH3 thresholds simultaneously a specificity of 100 % was
achieved, since the threshold TH3 allowed to detect correctly falls with recovery
as non-falls by considering the duration of the post fall phase shorter than 4 s in
case of recovery. Conversely, in presence of occluding objects it was not possible
to detect correctly all simulated falls. Although partial occluded falls happened
behind a small object such as a chair were correctly handled, others seriously
occluded falls such as those occurred behind a large table were prone to generate
false negatives. Similarly, simulated falls with recovery gave rise to false positives
due to the impossibility to detect occluded post fall movements. By using the three
thresholds TH1, TH2 and TH3 defined in Table 7 a specificity of 97.3 % and a
sensitivity of 80.0 % where obtained when falls were occluded by furniture. The
previously discussed fall-detection performance is summarized in the following
Table 8.

Fig. 10 The typical trend of
the centroid height during a
fall is shown. During a fall
can be distinguished the
following phases: the pre fall
phase (I0), the critical phase
(I1), the post fall phase (I2)
and the recovery phase (I3)

Table 7 Fall-detection threshold values

Threshold TH1 TH2 TH3

Measure Centroid height Critical phase duration Post fall phase duration
Unit Meters Milliseconds Seconds
Value 0.40 900 4
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Fig. 11 Statistical
visualization with boxplot of
minimum centroid height
value during falls and ADLs.
The threshold TH1 alone
correctly identified SITC,
SITF, LYB and BND as non-
falls, but it was unable to
distinguish falls, falls with
recovery (FFWR, FBWR)
and voluntary ‘‘lying down
on floor’’ (LYF)

Fig. 12 Statistical
visualization with boxplot of
critical phase duration during
falls. The threshold TH2
allowed to discriminate
correctly a voluntary ‘‘lying
down on floor’’ (LYF) from
an involuntary fall
characterized by a shorter
duration of the critical phase
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4 A TOF Camera-Based Framework for Posture
Recognition

The human posture analysis is a highly active research area in computer vision,
dealing with the ill-posed problem of inferring the pose and motion of a highly
articulated and self-occluding non-rigid 3D object (a human body) from images.
Traditionally, posture analysis algorithms are categorized on whether a body
model is employed (either directly or indirectly) or not [42]. Model-based tech-
niques use a priori information about human body shape in order to reconstruct the
entire posture kinematics. Within this approach the body is usually represented
with a stochastic region model or a stick figure model [4, 43]. Model-based
approaches are quite expensive in term of computational resources and they are
generally well suited for human motion capture in which the motion of significant
segments of the human body must be tracked (i.e. head, arms and legs). On the
other hand, model-free techniques estimate body posture directly on individual
images without any preliminary information about the body shape and so allowing
to overcome limitations of tracking features over long sequences [44, 45]. Within
the model-free category two different approaches are investigated in literature: the
probabilistic assemblies of parts and the example-based methods. In the first
approach individual body parts are first detected and then assembled to infer the
body posture [46]; whereas the second approach directly learns the mapping from
image space to 3D body space [47]. Concerning the vision system, monocular and
stereo/multiple view systems are the most investigated in literature of human
posture recognition. Here similar considerations previously made for fall detection
apply. Posture estimation from a monocular view is considerably more difficult
than estimation from stereo/multiple cameras since a single view image can be
strongly affected by perspective ambiguity making troublesome to correctly dis-
criminate posture from unfavorable point-of-view [4, 5]. Furthermore, about one
third of all DOFs are almost unobservable by using a monocular camera system
[47]. Stereo and multiple view vision systems overcome perspective problems
exploiting 3D geometric representation of human shape [48, 49]. However, stereo
and multiple view vision are affected by many drawbacks discussed in the previous
section concerning vision systems used in fall detection literature. Hence, the
adoption of TOF vision is increasingly investigated also for human posture rec-
ognition [8–11, 15]. TOF cameras provide dense depth measurements at every

Table 8 Fall-detection performance

Thresholds Sensitivity Specificity

Without
occlusions (%)

With partial
occlusions

Without
occlusions (%)

With partial
occlusions

TH1 100 – 63.5 –
TH1, TH2 100 – 79.4 –
TH1, TH2, TH3 100 80.0 % 100 97.3 %
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point in the scene at high frame rates, allowing to disambiguate poses with similar
appearance that can confuse monocular systems or overload stereo/multiple view
systems due to the correspondence search between two or more views.

In this section, two different feature extraction approaches are presented,
satisfying different requirements exhibited by AAL applications. In fact, gathered
posture details and operational distance from the camera are usually inversely
proportional: rehabilitation exercises can be performed at few meters from the
camera (e.g., less than 3 m when the camera is upper pose on a television
screen) and many postural details are required in order to check the correctness
of exercise execution; while, conversely, critical events can occur at a greater
distance from the camera but few postural detail are sufficient for critical event
detection. This motivates the investigation of two feature extraction approaches
having different discrimination capabilities in terms of gathered human postural
information. The first is a topological approach in which the Morse theory is
exploited in order to extract a Reeb graph-based skeleton representation of the
human body [15]. A high level of detail can be achieved within a distance from
camera up to 4 m. On the other hand, the second feature extraction approach
advantages execution speed against details pursing a volumetric strategy based
on the analysis of the 3D spatial distribution of the human body [50]. The
discrimination capabilities of the two feature extraction approaches are evaluated
by using a statistical learning methodology and compared on the basis of a
common dataset of four basic human postures: standing, bent, sitting and lying
down.

The pre-processing framework (background modeling, foreground segmenta-
tion, people tracking, and so on) is the same of those presented in the previous
section devoted to detection of falls. Moreover, the same considerations apply for
camera mounting setup and the self-calibration procedure. Instead, the TOF
camera is the new MESA SR4000. Several improvements put the MESA SR4000
at the state-of-the-art in the field of TOF RIM over the previous MESA SR3000;
for example the new camera is full noiseless (0 db), the power consumption has
been reduced of about 50 % under normal operation, two highly accurate (man-
ufacturer recommended) non-ambiguity ranges are now available (5.0 m at
30 MHz, and 10 m at 15 MHz) instead of one (7.5 m at 20 MHz), the camera
focus is now adjustable in order to obtain accurate 3D data whereas the SR3000
does not have adjustable focus, only to cite a few of them. Further details on
cameras comparison can be found in the comparative sheet provided by the
manufacturer [31].

4.1 The Experimental Setup

Four main postures, standing, sitting, bent and lying down were simulated during
basic Activities of Daily Living (ADLs) involving the interaction with common
objects (i.e., tables, sofas, chairs, room/furniture doors, kitchen units, etc.) in order
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to evaluate the reliability of extracted features in typical home environments. The
four main postures are simulated during the following five basic ADLs:

(A1) sitting down on a chair (height, 47 cm) and then stand up (SITC),
(A2) sitting down on floor and then stand up (SITF),
(A3) lying down on a bed (height, 52 cm) and then stand up (LYB),
(A4) lying down on floor and then stand up (LYF),
(A5) bent down to catch something on the floor (BND).

Postures simulation involved only ten subjects among the 13 previously said,
ranging in age from 35 to 40 years and height from 1.72 to 1.95. Each subject
performed four times every action from A1 to A5 for a total amount of 200
simulated tasks chosen from those actions that mainly might be confused with
falls. Other actions in addition to those listed from A1 to A5 were performed such
as walking around and dropping objects on floor.

4.2 The Topological Approach

The topological features describe the human posture at a high level of detail; many
body segments can be discriminated such as head, trunk, arms and legs, exploiting
the full potential offered by range imaging. The intrinsic topology of a generic
shape, such as a human body scan captured by a range camera, can be encoded in a
graph as suggested by Werghi et al. [51]. A Reeb graph represents the hierarchical
evolution of level-set curves on a manifold (that is a mathematical object more
general than a classic surface) providing a powerful tool to understand intrinsic
topology of any shape [52]. Moreover, defined a real-valued function on a man-
ifold, the Reeb graph nodes represent the level-set curves of the function on the
manifold. This function is called Morse function if it has no degenerated critical
points on the manifold. Several Morse functions can be defined of which a few are
depicted in Fig. 13. The directional height function is shown in Fig. 13a, b along
horizontal and oblique directions, respectively. The radial distance function is
shown in Fig. 13b and the geodesic distance function in Fig. 13d. For each
function the respective level-set curves are highlighted with white colored lines or
curves. In recognition applications the main aspect related to the Reeb graph
concerns the invariance property under some transformations such as scale and
rotation. Among all Morse functions reported in Fig. 13 only the radial distance
and the geodesic distance are invariant under affine (translation, scale, rotation)
transformations. In addition, the geodesic distance function is invariant under
isometric transformations, i.e. those transformations that preserve the length of the
path joining two generic points. The isometric invariance is very useful for posture
recognition as shown in Fig. 13e in which the path joining the centroid C with the
silhouette’s left hand remains of the same length after a postural change. Fur-
thermore, geodesic distance function allows to exploit the full potential offered by
range imaging since it can be defined on a 3D mesh surface. Otherwise, by using
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monocular passive vision the geodesic distance map is defined on a flatten fore-
ground that can be affected by self-occlusions. This situation is depicted in Fig. 14,
in which the geodesic distance map of Fig. 14c is defined on the flatten foreground
of Fig. 14b obtained segmenting the original image in Fig. 14a: the mannequin’s
left hand results confused with the body trunk in the geodesic distance map. On the
other hand, by using the range image shown in Fig. 14d a geodesic distance map
can be computed without perspective ambiguity as shown in Fig. 14e.

Therefore, in this study the Reeb graph is extracted by using the geodesic
distance function as described in the following. Given a range image, the Reeb
function is defined as f ¼ G x; yð Þ with x; yð Þ 2 I; where G is the geodesic distance
map generated starting from the range image and I is the segmented image region.
The geodesic distance map is generated in a two steps procedure: a connected
mesh is computed from the range image and then geodesic distances are estimated
by using the well-known Dijkstra algorithm on the connected mesh [53]. In Fig.
15c the geodesic map related to depth map of Fig. 15a is reported. Colors represent
the distance of each surface point from the starting point (dark blue region):
nearest points are blue, farthest ones are red. Whereas, Fig. 15b reports the con-
nected mesh from which the geodesic map is computed.

Hence, starting from the geodesic-based Morse function (i.e., the geodesic map)
the Reeb graph is extracted according to the methodology suggested by Werghi
et al. [54]. Firstly, the co-domain of the real-valued Morse function f is subdivided
in regular intervals as follows:

Fig. 13 Three Morse functions: Directional Height Function along the a) horizontal and b)
oblique directions with level-sets depicted in white; c) Radial Distance Function with level-sets in
white; d) Geodesic Distance Function with length paths in white and e) the same Geodesic
Distance Function under a postural change
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z0 ¼ min
x;yð Þ2I

f x; yð Þ; zN ¼ max
x;yð Þ2I

f x; yð Þ; zk ¼ z0 þ k
zN � z0

N
; 8k 2 0; . . .;Nf g ð21Þ

Then, <k support regions and Sk level-sets are defined, at the previously fixed
intervals, as follows:

<k ¼ x; yð Þ 2 Ijzk � f x; yð Þ\zkþ1f g; Sk ¼ f <kð Þ; 8k 2 0; . . .;Nf g: ð22Þ

The Reeb graph is obtained by associating each level-set Sk to a graph node and
linking together two graph nodes when the corresponding support regions are
connected. More precisely, two support regions <k and <i are connected if the
following condition is satisfied:

9 xk; ykð Þ 2 <k; 9 xi; yið Þ 2 <i 30 Pk � Pik k� d; ð23Þ

Pi ¼
X xi; yið Þ
Y xi; yið Þ
Z xi; yið Þ

2
4

3
5; Pk ¼

X xk; ykð Þ
Y xk; ykð Þ
Z xk; ykð Þ

2
4

3
5 ð24Þ

where �k k denotes the Euclidean distance between points Pi and Pk; whereas X(�,�),
Y(�,�), Z(�,�) are the world coordinates of each range image point indexed by
x; yð Þ 2 I and d is a threshold defined according to the maximum distance between

connected points and depends on the choice of N in Eq. 21. Figure 15d reports the
Reeb graph related to the range image shown in Fig. 15a.

In order to define the feature vector, the Reeb graph is inspected looking for the
graph nodes having the greater degree (i.e. the number of edges incident on a

Fig. 14 Starting from the original image a), geodesic distance maps in c) and e) are computed
from the flatten foreground b) and the range image d), respectively. Grayscale levels in the range
image d) represent the distance of each point from camera: nearest points are dark, farthest are
light. Colors in geodesic maps c) and e) represent the distance of each point from the starting
point (dark blue region): nearest points are blue, farthest ones are red
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node) named T and W in the Reeb graph shown in Fig. 15e, and the graph node
having the minor height indicated as E in the same Fig. 15e. Hence, the topo-
logical feature vector is defined as follows:

tT ¼ hC;\TW ;\TC;\TF
� �

ð25Þ

where hC is the centroid’s height with respect the floor plane and \PQ is the angle
of 3D line segment PQ with respect the floor plane.

4.3 The Volumetric Approach

In order to discuss the volumetric-based feature extraction process, the 3D point
cloud U computed by the range camera is defined as follows:

U ¼ Pi ¼ Xi; Yi; Zið Þ 2 R3ji ¼ 1; . . .;M

 �

ð26Þ

where Xi, Yi, Zi are the 3D world coordinates of the point Pi. The volumetric
features exploit global information included into the 3D point cloud by considering
two 3D cylindrical volumes VUP and VDW of radius Ri; as shown in Fig. 16,
centered on the centroid C of the point cloud U and having world coordinates
C = (XC,YC,hC) in which hC [ 0 is the centroid height with respect the floor plane.
Given the following subdivision of the cylinder’s ray in regular intervals,
8k 2 0; . . .;Nf g:

R0 ¼ min
i2 1;...;Mf g

Xi; Yið Þ � XC; YCð Þk k; RN ¼ max
i2 1;...;Mf g

Xi; Yið Þ � XC; YCð Þk k; Rk

¼ R0 þ k
RN � R0

N
ð27Þ

Fig. 15 Topological feature extraction approach. a) Original range image. b) Connected mesh
computed starting from the 3D point cloud. c) Geodesic distance map. d) Reeb graph-based
skeleton superimposed to the original range image. e) Line segments measured on skeleton
during the feature extraction
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the total amount of points included in each cylinder is given by the following
functions:

FUP kð Þ ¼ i 2 1; . . .;Mf gj Xi; Yið Þ � XC;YCð Þk k�Rk ^ Zi [ hCf gj j ð28Þ

FDW kð Þ ¼ i 2 1; . . .;Mf gj Xi; Yið Þ � XC; YCð Þk k�Rk ^ Zi\hCf gj j ð29Þ

where |�| denotes the cardinality of a set. The volumetric feature vector can now be
defined as follows:

tV ¼ hc; FUPðNÞ � FDWðNÞ max
1� k\N

DFUPðkÞ; max
1� k\N

DFDWðkÞ
� �

ð30Þ

where the operator D is the discrete derivative defined as follows:

DF kð Þ¼: F k þ 1ð Þ � F kð Þ ð31Þ

In Fig. 17 the two functions defined by Eqs. 28 and 29 are plotted in corre-
spondence of a 3D point cloud sampled for each main posture. The feature vector
defined by Eq. 30 allows to keep very low the computational complexity of the
feature extraction process although it is sufficient to discriminate reliably the four
main postures since the spatial distribution of the 3D point cloud is dependent on
the particular posture. Moreover, the computational simplicity is paid in terms of
achievable level of detail in posture discrimination. Indeed, the feature vector tV is

Fig. 16 3D cylindrical volumes used during the volumetric feature extraction
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Fig. 17 Plotting of cylindrical volume cardinalities at the varying of ray values. a) 3D point
clouds of the four main postures (from up to bottom): Standing, Bent, Sitting, Lying. b) Plots of
the FUP function in correspondence of each posture. c) Plots of the FDW function in
correspondence of each posture
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unable to account for the position of body’s segments like the tT feature vector
does. However, the choice of the feature vector depends on the specific AAL
application. If the positions of arms and legs are relevant (e.g., during the moni-
toring of rehabilitation exercises) then the topological approach is necessary; if it
is needed to detect ADLs then the volumetric approach is sufficient (for fall-
detection can be sufficient even the only hC as it is discussed in the previous
section).

4.4 Experimental Results

A good generalization ability during classification is definitely relevant since
postures are not perfectly repeatable, the acquisition viewpoint varies in function
of subject’s position and some level of variation in range data is expected due to
noise effects. This motivated the choice of a multi-class SVM classifier in con-
junction with affine/isometric invariant features in order to discriminate the four
main postures. Based on the principle of risk minimization, Support Vector
Machines (SVMs) outperform other classifiers in terms of good performance in
resolving non-linear and high dimensional problems with limited samples (high
generalization ability). Moreover, SVMs try to find discriminative hyper-planes
that maximize the margin between the classes overcoming, in a more natural way,
the problem of over-fitting [54, 55]. The binary nature of SVM is adapted to the
multi-class nature of the posture classification problem by using a one-against-one
strategy. Since good results are documented in scientific literature related to
posture recognition, a Radial Basis Function (RBF) kernel is used [56] and the
associated parameters, namely regularization constant K and the kernel argument
c, are tuned according to a grid search procedure.

The best classification rates is experimentally found with the optimal param-
eters (K;c) = (1;32) for the topological approach and (K;c) = (1;64) for the vol-
umetric one. A large dataset of 1200 samples, 300 for each posture, is collected in
order to evaluate the classification performance. Postures are taken at various
distances from the camera, ranging from 2.5 to 5 m. Confusion matrices are
reported in Fig. 18 for both topological and volumetric features at distances of 2.5
and 5 m, whereas classification rates are reported in Fig. 19 for all intermediate
distance values. As it is shown by reported results, topological features exhibit the
best classification rate up to 3 m, whereas for distances greater than 3 m results are
comparable with those of volumetric features. The training phase is done by using
200 samples, 50 samples for each posture, taken from only one viewpoint (the
frontal view) in order to evaluate the generalization performance of the classifi-
cation. Instead, the test phase is done by using the remaining 1000 samples taken
from various viewpoints turning around the subject. The good generalization
performance can be inferred by the reduced number of training samples adopted as
support vectors, indeed about 40 % of the training set is used as support vectors.
Results show the suggested features, both topological and volumetric, are suitable
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to exploit the full potential of range imaging most notably if used in conjunction
with a classifier having good generalization capabilities (like SVM). Both topo-
logical and volumetric approaches (feature extraction and classification module)
have been implemented on the embedded PC in c/c++ language achieving exe-
cution speed compliant with monitoring and surveillance purpose. When topo-
logical features were used the system worked at 5 fps with 87 % of execution time
devoted to the feature extraction process. Instead, the system worked at 15 fps by
using the volumetric features with an execution time of 60 % taken by the feature
extraction process.

5 Discussion and Conclusion

The usage of TOF vision allows to solve some of the classic issues in back-
ground modeling and people segmentation, since depth information are not
sensitive to illumination or shadows and can be used to detect more easily
occlusions by exploiting the depth gap between people and occluding objects.
Results shows the goodness of the proposed methods in real-time implementa-
tion and real AAL applications. The TOF camera experimented in this study is a
state-of-the-art technology characterized by a very low noise and medium pixel
resolution. Moreover, in order to keep this study as more general as possible,
during data collection the TOF camera was set to a low integration time of 6 ms
achieving so a noise level comparable with that of cheap cameras. The used
camera is very compact and exploiting the proposed self-calibration algorithm it

Fig. 18 Confusion matrices for topological features a) at 2.5 meters and c) 5 meters. Confusion
matri-ces for volumetric features b) at 2.5 meters and d) 5 meters
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can be installed simply without particular requirements or constraints. The
suggested self-calibration procedure proved to be well suited for AAL applica-
tion since it allowed to calibrate camera effectively without requirement of
special calibration objects or user intervention but using only an automatic
detection of floor plane that appeared to be always sufficiently visible (greater
than 60 %) during falls recording in real dwelling rooms such as living room,
kitchen, bed room, corridor and bathroom. The performance of the self-cali-
bration algorithm was related to the amount of 3D points of the scene belonging
to the floor plane. Better calibration estimations was obtained when at least the
30 % of the captured points belonged to the floor plane without floor covering
and 40 % with carpet covering.

The presented fall-detector exploits the centroid height trend in order to detect
fall events, thus the measurement precision is more important than accuracy. In
other words, the systematic error does not affect fall-detection performance. The
maximum estimated uncertainty in height measurement was less than 1.47 cm

Fig. 19 Classification rates at varying of camera distance from 2.5 to 5 meters for both a)
topological and b) volumetric features
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when camera was calibrated with floor plane variously covered by carpet and when
at least 40 % of the captured points belonging to the floor plane. Moreover,
between the TH1 threshold and the largest centroid peak value (35 cm) among all
fall events was a difference of 5 cm (see dashed line in Fig. 11) that was definitely
grater than the maximum uncertainty of 1.47 cm due to self-calibration procedure.
The effect of the height measurement uncertainty on TH2 threshold was also
evaluated. Taking into account all critical phase durations recorded during falls,
the uncertainty in height measurement of 1.47 cm leaded to an uncertainty in the
critical phase duration measurement less than 26 ms that was lower than the
difference between the threshold TH2 and the maximum critical phase duration
(860 ms) recorded during falls that was of 40 ms (see dashed line in Fig. 12).
Since the third threshold TH3 was set to a very large time duration (at least of 4 s),
the achieved precision did not play a critical role even in this case. Thus, the
proposed threshold levels TH1, TH2 and TH3 provided a sufficient margin for
successful detection of falls with respect to the height measurement precision. The
three threshold in conjunction were able to detect all simulated falls without
misdetection of ADLs as falls and vice versa, providing a 100 % of sensitivity and
100 % of specificity when occluding objects did not obstruct the camera’s view.
The tracking prediction mechanism allowed to estimate correctly the centroid
height trend during simulated falls when some silhouette’s portion was visible
during critical and post fall phases (refer to Fig. 10). Fully occluded person
movements during critical phase or during post fall phase gave rise to misdetec-
tions due to the impossibility to distinguish between a fall and a voluntary ‘‘lying
down on floor and then stand up’’ (LYF) (critical phase occluded and post fall
phase visible) or between a fall and a ‘‘fall with recovery’’ (FBWR or FFWR)
(critical phase visible and post fall phase occluded). Instead, partial occlusions are
correctly detected by evaluating the distance of the lower part of the segmented
silhouette from the floor plane according to Eq. 11, allowing to adjust the position
estimated by the particle filter. Thus, previously said misdetections demoted
performance in presence of occluding objects leading to 97.3 % specificity and
80.0 % sensitivity. Segmentation and classification activities require about 25 ms
per frame that seems reasonable since the minimum duration of the critical phase
is about of 500 ms as indicate by Noury et al. [22]. Thus, a frame rate of 8 fps is
fast enough for fall-detection purpose leaving available processing resources to be
located for multiple 3D camera monitoring in order to deal with occlusions and
limited FoV. It could be considered a limitation of presented studies that the trend
of person’s centroid height was determined from simulated falls in subjects with
height greater than 1.55 m. However, the TH1 threshold not should be an issue for
persons with height lower than 1.55 m, since they have a centroid height on
average lower than taller persons. The TH2 threshold measured the critical phase
duration. For persons with height lower than 1.55 m the critical phase duration
could be shorter than that for person with higher height, thus TH2 should work
correctly even for lower height. The TH3 threshold not should be an issue in any
case since it works when the centroid height stays below the TH2 threshold.
Results have been shown the feasibility to detect falls by using TOF camera
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highlighting related strength and weakness. The proposed fall-detector shows good
performance also compared with other studies. In absence of occlusions perfor-
mance is very similar to fall-detection system proposed by Bourke and Lyons [57]
based on a bi-axial gyroscope sensor.

Other than for detection of falls, the capabilities of active vision have been
demonstrated also for posture recognition in AAL contexts. Two feature extraction
approaches, topological and volumetric, for the classification of four main postures
(standing, bent, sitting and lying down) have been presented. The discrimination
capabilities of the two feature extraction approaches are evaluated by using a
machine learning approach and compared on the basis of a common dataset of
simulated postures during simple ADLs. The different discrimination capabilities
and execution speeds offered by the two approaches allow to satisfy different
requirements exhibited by AAL applications. In fact, gathered posture details and
operational distance from the camera are usually inversely proportional. For
instance, rehabilitation exercises can be performed at few meters from the camera
(e.g., less than 3 m) and many postural details are required in order to check the
correctness of exercise execution, whereas critical events can occur at a greater
distance from the camera (more than 3 m) but few postural detail are usually
sufficient for detection of critical events. The topological features describe the
human posture at a high level of detail exploiting the full potential offered by range
imaging: many body segments can be discriminates such as head, trunk, arms and
legs. As it is shown by reported results, topological features exhibit the best
classification rate up to 3 m, whereas for distances greater than 3 m results are
comparable with those of volumetric features. However, the high level of postural
detail achieved with the topological features is paid in terms of computational
workload (up to 5 fps). Volumetric features reflecting the spatial distribution of 3D
point cloud provide a lower level of detail in posture discrimination, but they have
the advantage to be less computationally expensive (up to 15 fps). The choice for
one or the other depends on the specific AAL application. The results suggest high
accuracy of topological features at distances up to 3 m, whereas beyond volu-
metric and topological approaches give similar classification performance (greater
than 96.5 % in both cases).
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