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Role of PGPR Under Different Agroclimatic

Conditions

Anju Rani and Reeta Goel

9.1 Introduction

• Despite an unprecedented increase in agricultural productivity during the twentieth

century, the world faces uncertainty over global food security. The most pressing

issue is the predicted increase in global population. Currently, the global popu-

lation could be fed by the present level of agricultural output, and the global

production of food is 145% greater today than it was in 1960 (Pretty 2008).

However, it is unlikely that this growth in agricultural productivity can continue

to keep pace with the rising population. In addition, increases in productivity

over the last 50 years mask significant variations within developing regions that

reflect political, economic, and social challenges for the 1.2 billion people who

currently live in poverty (Hazell and Wood 2008). Moreover, most developing

countries have environmental constraints that will impede the development of

agricultural systems able to meet these challenges. These include lack of water,

desertification, and insufficient cultivable land. Potentially, such problems could

be further exacerbated by climate change. This in turn will place an increased

pressure on the available agricultural land and its management (Cummings

2009). During last few decades, agricultural production has increased due to

the use of high yielding varieties and enhanced consumption of chemicals,

which are used both as fertilizers to provide nutrition and as protection agents

to control the damage caused by phytopathogens. Although the use of chemicals

has several advantages, such as ease of handling and yielding predictable results,

yet several problems related to the continuous export of fertility of the soil,

yielding great amount of ecological disastrous soil damage, health problems, and

high irrigation demand, etc., came into existence (Harmen 1992). Excessive use
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of chemicals and change in traditional cultivation practices have resulted in the

deterioration of physical, chemical, and biological health of the cultivable soil

(Paroda 1997). Therefore, the productivity including production of a wide range

of agricultural commodities under conditions of shrinking land resources and

diminution of both biological potential of soil and biological wealth need to be

increased. The objective of agriculture in coming decades is to optimize soil

productivity (inclusive of stressed soils) while preserving its capacity to function

as a healthy system. In this context, there is a strong case for using

microorganisms for improved plant performance in integrated plant manage-

ment systems. The use of soil microorganisms, which can stimulate plant

growth, will be environmentally benign approach for nutrient management and

ecosystem functions. This may ensure that nature is not exploited in the produc-

tion process but is, instead, harmonized so that the entropy of environment

decreases and sustainability in agricultural production is promoted (Khan et al.

2007). The management of agricultural soil is fundamental to ensuring a sus-

tainable agricultural system. Consequently, there is increasing interest in devel-

oping and implementing the potential contribution of PGPR that are indigenous

or inoculated into soils.

9.2 Plant Growth-Promoting Rhizobacteria

The use of microorganisms with the aim of improving nutrients availability for plants

is an important practice and necessary for agriculture (Freitas et al. 2007). During the

past couple of decades, the use of plant growth-promoting rhizobacteria (PGPR) for

sustainable agriculture has increased tremendously in various parts of the world.

Significant increases in growth and yield of agronomically important crops in

response to inoculation with PGPR have been reported (Kloepper et al. 1980; Silva

et al. 2006; Figueiredo et al. 2008; Arau´jo 2008). Studies have also shown that the

growth-promoting ability of some bacteria may be highly specific to certain plant

species, cultivar, and genotype (Bashan and Holguin 1998; Lucy et al. 2004).

PGPR can affect plant growth by different direct and indirect mechanisms (Glick

1995; Gupta et al. 2000). Some examples of these mechanisms, which can probably

be active simultaneously or sequentially at different stages of plant growth, are (1)

increased mineral nutrient solubilization and nitrogen fixation, making nutrients

available for the plant; (2) repression of soilborne pathogens (by the production of

hydrogen cyanide, siderophores, antibiotics, and/or competition for nutrients); (3)

improving plant stress tolerance to drought, salinity, and metal toxicity; and (4)

production of phytohormones such as indole-3-acetic acid (IAA) (Gupta et al.

2000). Moreover, some PGPR have the enzyme 1-aminocyclopropane-1-carboxylate

(ACC) deaminase, which hydrolyses ACC, the immediate precursor of ethylene in

plants (Glick 1995). By lowering ethylene concentration in seedlings and thus its

inhibitory effect, these PGPR stimulate seedlings root length (Glick et al. 1999). The

bacteria presenting one or more of these characteristics are known as PGPR.
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9.3 Rhizosphere Colonization

Plant growth-promoting rhizobacteria (PGPR) colonize the roots of plants

following inoculation onto seed and that enhance plant growth. The following

are implicit in the colonization process: ability to survive inoculation onto seed, to

multiply in the spermosphere (region surrounding the seed) in response to seed

exudates, to attach to the root surface, and to colonize the developing root system

(Kloepper 1993). The ineffectiveness of PGPR in the field has often been

attributed to their inability to colonize plant roots (Bloemberg and Lugtenberg

2001). A variety of bacterial traits and specific genes contribute to this process,

but only a few have been identified (Benizri et al. 2001; Lugtenberg et al. 2001).

These include motility, chemotaxis to seed and root exudates, production of pili or

fimbriae, production of specific cell surface components, ability to use specific

components of root exudates, protein secretion, and quorum sensing (Lugtenberg

et al. 2001). Using molecular markers such as green fluorescent protein or

fluorescent antibodies, it is possible to monitor the location of individual

rhizobacteria on the root using confocal laser scanning microscopy (Sorensen

et al. 2001). This approach has also been combined with an rRNA-targeting probe

to monitor the metabolic activity of a rhizobacterial strain in the rhizosphere and

showed that bacteria located at the root tip were most active (Lubeck et al. 2000;

Sorensen et al. 2001).

An important aspect of colonization is the ability to compete with indigenous

microorganisms already present in the soil and rhizosphere of the developing

plant. The factors involved in these interactions has been hindered by inability to

culture and characterize diverse members of the rhizosphere community and to

determine how that community varies with plant species, plant age, location on the

root, and soil properties. Phenotypic and genotypic approaches are now available

to characterize rhizobacterial community structure. Phenotypic methods that rely

on the ability to culture microorganisms include standard plating methods on

selective media, community level physiological profiles (CLPP) using the

BIOLOG system (Garland 1996), phospholipid fatty acid (PLFA) (Tunlid and

White 1992), and fatty acid methyl ester (FAME) profiling (Germida et al.

1998). Culture-independent molecular techniques are based on direct extraction

of DNA from soil and 16S-rRNA gene sequence analysis, bacterial artificial

chromosome, or expression cloning systems (Rondon et al. 1999). These are

providing new insight into the diversity of rhizosphere microbial communities,

the heterogeneity of the root environment, and the importance of environmental

and biological factors in determining community structure (Smalla et al. 2001).

These approaches can also be used to determine the impact of inoculation of plant

growth-promoting rhizobacteria on the rhizosphere community (Ciccillo et al.

2002; Steddom et al. 2002).
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9.4 Mechanisms of Action

PGPR enhance plant growth by direct and indirect means (Glick 1995). Direct

mechanisms of plant growth promotion by PGPR can be demonstrated in the

absence of plant pathogens or other rhizosphere microorganisms, while indirect

mechanisms involve the ability of PGPR to reduce the deleterious effects of plant

pathogens on crop yield. PGPR have been reported to directly enhance plant growth

by a variety of mechanisms: fixation of atmospheric nitrogen that is transferred

to the plant, production of siderophores that chelate iron and make it available to

the plant root, solubilization of minerals such as phosphorus, and synthesis of

phytohormones (Glick 1995). Direct enhancement of mineral uptake due to

increases in specific ion fluxes at the root surface in the presence of PGPR

has also been reported (Bashan and Holguin 1998; Bertrand et al. 2000). PGPR

strains may use one or more of these mechanisms in the rhizosphere. Molecular

approaches using microbial and plant mutants altered in their ability to synthesize

or respond to specific phytohormones have increased understanding of the role of

phytohormone synthesis as a direct mechanism of plant growth enhancement by

PGPR (Glick 1995; Persello-Cartieaux et al. 2003). PGPR that synthesize auxins

and cytokinins or that interfere with plant ethylene synthesis have been identified

(Garcia de Salamone et al. 2001).

PGPR that indirectly enhance plant growth via suppression of phytopathogens

do so by a variety of mechanisms. These include the ability to produce siderophores

that chelate iron, making it unavailable to pathogens; the ability to synthesize

antifungal metabolites such as antibiotics, fungal cell wall-lysing enzymes, or

hydrogen cyanide, which suppress the growth of fungal pathogens; the ability to

successfully compete with pathogens for nutrients or specific niches on the root;

and the ability to induce systemic resistance (Bloemberg et al. 2000; Glick 1995).

Furthermore, biochemical and molecular approaches are providing new insight into

the genetic basis of these traits, the biosynthetic pathways involved, their regula-

tion, and importance for biological control in laboratory and field studies

(Bloemberg and Lugtenberg 2001; Bowen and Rovira 1999; Persello-Cartieaux

et al. 2003).

9.4.1 Enhancing Phosphorus Availability for Plant Growth by
Rhizobacteria

Phosphorus (P) is an essential plant nutrient with low availability in many agricul-

tural soils. Today many agricultural soils have a high total P content due to the

application of P fertilizers over long periods of time. On the other hand, much of

this P is in mineral forms and is only slowly available to plants (Rodriguez et al.
2006; Richardson et al. 2009). Most of the insoluble P forms are present as

aluminum and iron phosphates in acid soils (Mullen 2005) and calcium phosphates
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in alkaline soils (Goldstein and Krishnaraj 2007). The ability of rhizosphere bacteria

to solubilize insoluble P minerals has been attributed to their capacity to reduce pH by

the excretion of organic acids (e.g., gluconate, citrate, lactate and succinate) and

protons (during the assimilation of NH4+) (Gyaneshwar et al. 1999; Mullen 2005).

These bacteria have been characterized as members of the Bacillus, Burkholderia,
Enterobacter, Klebsiella, Kluyvera, Streptomyces, Pantoea, and Pseudomonas
genera (Chung et al. 2005; Hariprasad and Niranjana 2009; Oliveira et al. 2009).

These microorganisms grow in media with tricalcium phosphate or similar insoluble

materials as the only phosphate source and not only assimilate the element but also

solubilize quantities in excess of their nutritional demands, thereby making it avail-

able for plants (Martı́nez-Viveros et al. 2010).

Microorganisms with phosphate-solubilizing potential increase the availability

of soluble phosphate and enhance the plant growth (Kucey et al. 1989; Ponmurugan

and Gopi 2006). Pseudomonas spp. NBRI 4014 enhanced the root and shoot

elongation in soybean crop at a significant level in the presence of heavy metals

(Gupta et al. 2002). Similarly, phosphate-solubilizing bacteria enhanced the seed-

ling length of Cicer arietinum (Sharma et al. 2007), while co-inoculation of PSM

and PGPR reduced P application by 50% without affecting corn yield (Yazdani

et al. 2009). In another study by Kaur (2008), it has been found that inoculation of

spinach with two psychrotolerant stain Pseudomonas putida 710 A and

Commamonas aquatica 710 B resulted an increase P content (Fig. 9.1) in soil as

well as in plants (Table 9.1).

Fig. 9.1 Comparative “P” content in soil in presence of bioinoculants 710A and 710B
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The major limitation today for use of these organisms is the lack of consistent

effects in mobilizing P under field conditions. This is likely due to competition with

the native microflora and environmental factors that limit either the population size

or activity of the PGPR. However, it is now clear that evaluation and ranking of

P-solubilizing bacteria under laboratory conditions do not necessarily correspond to

the efficacy of the PGPR for enhancing plant P uptake under field conditions

(Richardson 2001).

9.4.2 Facilitated Absorption of Iron by Production of
Siderophores

Iron is an essential nutrient of plants, but it is relatively insoluble in soil solutions.

Plant roots prefer to absorb iron as the more reduced ferrous (Fe2+) ion, but the

ferric (Fe3+) ion is more common in well aerated soil although it is easily

precipitated in iron-oxide forms (Verma et al. 2010).

Siderophores are low-molecular-weight iron-binding molecules that are

synthesized by many microorganisms (Neilands 1981). These compounds are

produced by various types of bacteria in response to iron deficiency which normally

occurs in neutral to alkaline pH soils, due to low iron solubility at elevated pH

(Sharma and Johri 2003). Iron is essential for cellular growth and metabolism, such

that Fe acquisition through siderophore production plays an essential role in

determining the competitive fitness of bacteria to colonize plant roots and to

compete for iron with other microorganisms in the rhizosphere (Crowley 2006).

Siderophore-producing PGPR can prevent the proliferation of pathogenic

microorganisms by sequestering Fe3+ in the area around the root (Siddiqui 2006).

Marschner and R€omheld (1994) reported that plants may also utilize

siderophores synthesized by microorganisms colonizing the rhizosphere; this

would be a source of soluble iron for the host plant. Growth of cucumber in the

presence of microbial siderophores resulted in increased plant biomass and

chlorophyll content (Ismande 1998). Similarly, the growth of mungbean and

pigeon pea enhanced in terms of increased root length, shoot length, and chloro-

phyll content in the presence of siderophore-producing Pseudomonas putida

Table 9.1 Comparative “P” content in plants and soil in presence of bioinoculants 710A and

710B with respect to control

Strain P solubilization

(in vitro)

Treatments P content in

soil (ppm)

P content in

plants (ppm)

– – Plants (control) 6.11 � 0.32 6.62 � 0.18

Pseudomonas
putida 710A

(1.76 mg/ml) Plants + P. putida
710A

6.41 � 0.12

(4.9%) "
15.35 � 0.20

(131.8%) "
Pseudomonas

putida 710B

(240 mg/ml) Plants + C. aquatica
710B

11.1 � 0.52

(81.6%) "
18.79 � 0.44

(183.8%) "
" % increase with respect to control

� values are SEM
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KNP9 and Proteus vulgaris KNP3 strain, respectively (Tripathi et al. 2005; Rani

et al. 2008). Uptake of microbial siderophores by plants has been attributed to

microorganisms living.

9.4.3 Production of Phytohormones

The production of phytohormones by PGPR is now considered to be one of the most

important mechanisms by which many rhizobacteria promote plant growth

(Spaepen et al. 2007). Phytohormones are signal molecules acting as chemical

messengers and play a fundamental role as growth and development regulators in

the plants. Phytohormones are organic compounds that in extremely low concen-

trations influence biochemical, physiological, and morphological processes in plants,

and their synthesis is finely regulated (Fuentes-Ramı́rez and Caballero-Mellado

2006). Numerous fungal and bacterial species can produce phytohormones

(Tsavkelova et al. 2006). The phytohormone-producing ability is widely distributed

among bacteria associated with soil and plants. Studies have demonstrated that the

PGPR can stimulate plant growth through the production of auxins (indole acetic

acid) (Spaepen et al. 2008), gibberellins (Bottini et al. 2004), and cytokinins

(Timmusk et al. 1999) or by regulating the high levels of endogenous ethylene in

the plant (Glick et al. 1998).

9.5 Survival of PGPR Under Different Agroclimatic Conditions

The rhizosphere is a complex habitat: there, the action of a growing root responding

to its environment combines with that of the biotic (mostly the resident

microorganisms) and abiotic soil components, which also respond to their

environments. The introduction of a large amount of exogenous bacteria as an

inoculant has the potential to affect these resident microorganisms, and similarly,

an inoculant may be affected by them. Such interferences may result in increased,

decreased, or no effect on PGPR effectiveness. Other stresses like desiccation,

salinity, metals (Fig. 9.2), and temperature have direct effect on microbial popula-

tion (Rani et al. 2009).

The salt pH and temperature-tolerant phosphate-solubilizing bacteria have been

reported to be maximum in the rhizoplane followed by the rhizosphere and root-free

soil in alkaline soils. The PSM strains with these stressed properties should there-

fore serve as an excellent model for studying the physiological, biochemical, and

molecular mechanism of phosphate solubilization under stressed ecosystems (Khan

et al. 2007).

In a study, screening and selection of cold-tolerant mutants of Pseudomonas
fluorescens strains GRS1, PRS9, and ATCC13525 based on P-solubilization

ability and subsequent effect on plant growth promotion under in vitro and in situ
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condition was conducted. It has been found that there was 21-fold increase in

CRPF2 (GRS1 mutant), and subsequent greenhouse trials revealed that CRPF2
was a good rhizosphere colonizer as marked by a significant increase in root and

shoot length of mungbean (Katiyar and Goel 2003).

In a screening of 4,800 bacterial isolates from the root-free soil, rhizosphere and

rhizoplane of P. juliflora growing in alkaline soils, 857 morphotypes solubilized

phosphate in agar. Phosphate-solubilizing ability of strain NBRI4 was higher than

the control in the presence of salts (NaCl, CaCl2, and KCl) at 30�C, and it further

increased at 37�C (Gaur et al. 2004). Strain NBRI2601 (Nautiyal et al. 2000)

isolated from the rhizosphere of chickpea and alkaline soils could solubilize

phosphorus in presence of 10% salt, pH 12, at 45�C suggesting that extensive

diversity searches in appropriate habitats may lead to recovery of effective bacteria.

The mechanism of osmotic stress adaptation in P. aeruginosa PAO1 was

investigated by D’Souza-Ault et al. (1993). By using natural abundance 13C

nuclear magnetic resonance spectroscopy, osmotically stressed cultures were

found to accumulate glutamate, trehalose, and N-acetylglutaminylglutamine

amide, an unusual dipeptide previously reported only in osmotically stressed

Rhizobium meliloti and P. fluorescens. The intracellular levels of these osmolytes

were dependent on the chemical composition and the osmolality of the growth

medium. It was also demonstrated that glycine betaine, a powerful osmotic stress

protectant, participated in osmoregulation in this organism (Tilak et al. 2005).

Another problem which is recently increasing is the contamination of soils with

heavy metals through a variety of anthropogenic sources such as mining, the

combustion of fossil fuels, metal-working factories, and the application of

agrochemicals. Heavy metals tend to accumulate in the surface soil layer and can

Fig. 9.2 (a) Effect of cadmium-resistant P. putida 62BN and P. monteilli 97AN bioinoculants on

soybean growth in acidic soil, wherein (1) plants, (2) plant + cadmium, (3) P. putida 62BN, (4) P.
putida 62BN + cadmium, (5) P. monteilli 97AN, and (6) P. monteilli 97AN + cadmium, respec-

tively. (b) Comparative cadmium accumulation in soybean in the presence of P. putida 62BN and

P. monteilli in acidic soil, respectively (n ¼ 3, mean � SEM)
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reach concentrations that are toxic for plants and living organisms (Gupta et al.

2002; Tripathi et al. 2005; Rani et al. 2008). One way to relieve heavy metal

toxicity to plants might involve the use of growth-promoting bacteria. Considering

our expertise in heavy metal and cold resistance, it was found that many bacterial

strains which have shown ability for rescuing plant from metal toxicity and

enhanced the plant growth in heavy metal-contaminated microcosm system

(Table 9.2).

9.6 Challenges in Selection and Characterization of PGPR

One of the challenges in developing PGPR for commercial application is ensuring

that an effective selection and screening procedure is in place, so that the most

promising organisms are identified and explored. In the agricultural chemical

industry, thousands of prospective compounds are screened annually in efficient

high-throughput assays to select the best one or two compounds for further devel-

opment. Similar approaches are not yet in place for PGPR. Effective strategies for

initial selection and screening of rhizobacterial isolates are required. It may be

important to consider host plant specificity or adaptation to a particular soil,

climatic conditions, or pathogen in selecting the isolation conditions and screening

assays (Bowen and Rovira 1999; Chanway et al. 1989). One approach for selection

of organisms with the potential to control soilborne phytopathogens is to isolate

from soils that are suppressive to that pathogen (Weller et al. 2002). Other

approaches involve selection based on traits known to be associated with PGPR

such as root colonization (Silva et al. 2003), 1-aminocyclopropane-1-carboxylate

(ACC) deaminase activity (Glick 1995), antibiotic (Giacomodonato et al. 2001),

Table 9.2 Metal-resistant bioinoculants with diverse physiological profile

Strain Physiological

profile

Metal tolerance

level

Growth promotory

property

Crop used Reference

NBRI4014 Alkalophile

(30�C)
Cd (0.18 mM) P solubilization

(277 mg/ml),

siderophore

production

(143.87 mg/ml)

Soybean Gupta et al.

(2002)

KNP3 Mesophile

(30�C)
Cd (1 mM)

Pb (1.3 mM)

Cu (1.3 mM)

Siderophore

production

(126.3 mg/ml)

Pigeon

pea

Rani et al.

(2008)

KNP9 Mesophile

(30�C)
Cd (0.5 mM)

Pb (1.5 mM)

Siderophore

production

(96.6 mg/ml)

Mungbean Tripathi et al.

(2005)

710A Psychrotolerant

(10�C)
Cd (1 mM) P solubilization

(1.76 mg/ml)

Spinach Kaur (2008)

710B Psychrotolerant

(10�C)
Cd (0.5 mM) P solubilization

(240 mg/ml)

Spinach Kaur (2008)
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and siderophore production. Further, the development of high-throughput assay

systems and effective bioassays will facilitate selection of superior strains (Mathre

et al. 1999).

9.7 Practical Consideration in the Use of PGPR

The concept of PGPR is now well established for both growth promotion as well as

biocontrol; still the technology is not commercially successful, mainly because of

the lack of reproducibility between trials conducted under controlled conditions

(laboratory or glasshouse or greenhouse) and the fields. This happens so as in most

cases the microbial inoculants are usually taken from one environment and

introduced in another.

A common problem in much research on PGPR has been the failure to monitor

the cell density of the introduced bacteria over time to confirm that inoculation

was effective. In such cases, it is not possible to determine whether PGPR

are responsible for the observed effects or to explain variations in efficacy of

the inoculants that may be caused by management or environmental factors

(Martı́nez-Viveros et al. 2010).

Mathematical modeling of the behavior of PGPR soil inoculants has been used

to predict how various environmental factors affect the survival and activity of

PGPR soil inoculants (Strigul and Kravchenko 2006). Supporting much experimen-

tal work, the model by Strigul and Kravchenko illustrates that survival and growth

of newly introduced bacteria are strongly limited by competition for organic

substrates with the resident microflora. PGPR are predicted to be the most effective

in soils with low organic matter or stressed soils where growth of the indigenous

population is restricted.

9.8 Rhizoengineering

Rhizoengineering includes strategies for manipulating plants and their root-

associated microorganisms to improve plant health and productivity. Some

strategies directly target plant processes that impact on growth, while others are

based on our knowledge of interactions among the components of the rhizosphere

(roots, microorganisms, and soil). For instance, plants can be engineered to modify

the rhizosphere pH or to release compounds that improve nutrient availability,

protect against biotic and abiotic stresses, or encourage the proliferation of benefi-

cial microorganisms. Rhizobacteria that promote plant growth have been

engineered to interfere with the synthesis of stress-induced hormones such as

ethylene, which retards root growth, and to produce antibiotics and lytic enzymes

active against soilborne root pathogens. Rhizosphere engineering also can involve

the selection by plants of beneficial microbial populations. For example, some crop

species or cultivars select for and support populations of antibiotic-producing
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strains that play a major role in soils naturally suppressive to soilborne fungal

pathogens. The fitness of root-associated bacterial communities also can be

enhanced by soil amendment, a process that has allowed the selection of bacterial

consortia that can interfere with bacterial pathogens. Plants also can be engineered

specifically to influence their associated bacteria, as exemplified by quorum-quenching

strategies that suppress the virulence of pathogens. New molecular tools and

powerful biotechnological advances will continue to provide a more complete

knowledge of the complex chemical and biological interactions that occur in the

rhizosphere, ensuring that strategies to engineer the rhizosphere are safe, beneficial

to productivity, and substantially improve the sustainability of agricultural systems

(Ryan et al. 2009).

9.9 Future Prospects

As our understanding of the complex environment of the rhizosphere, of the

mechanisms of action of PGPR, and of the practical aspects of inoculant formula-

tion and delivery increases, we can expect to see new PGPR products becoming

available. The success of these products will depend on our ability to manage the

rhizosphere to enhance survival and competitiveness of these beneficial

microorganisms. Rhizosphere management will require consideration of soil and

crop cultural practices as well as inoculant formulation and delivery. Genetic

enhancement of PGPR strains to enhance colonization and effectiveness may

involve addition of one or more traits associated with plant growth promotion.

Genetic manipulation of host crops for root-associated traits to enhance establish-

ment and proliferation of beneficial microorganisms is being pursued.

The use of PGPR inoculants in agriculture is already proceeding and offers many

opportunities to improve plant nutrition, crop yields, and disease management,

while improving sustainability by reducing the need for chemical inputs. Neverthe-

less, as our understanding of the ecology of these bacteria improves, it should be

possible to obtain a more informed explanation of the mechanisms that are involved

in plant growth promotion and identify situations in which bioaugmentation with

soil inoculants may be useful for increasing crop yields.
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