
Chapter 14

Interactions of Plant-Parasitic Nematodes

and Plant-Pathogenic Bacteria

Zaki A. Siddiqui, Rukshima Nesha, Neelu Singh, and Subha Alam

14.1 Introduction

Plant-parasitic nematodes are cosmopolitan parasites, exploit all parts of the host

plant, and affect virtually every crop. Plant-parasitic nematodes are devastating

parasites of crop plants, reducing the overall yield or lowering the market value of

crops (Sasser and Freckman 1987; Barker et al. 1994). It has been estimated that

overall yield loss averages 12.3% annually; this figure approaches 20% for some

crops (Sasser and Freckman 1987; Koenning et al. 1999). Plant-parasitic nematodes

range from 250 mm to 12mm in length, averaging 1mm, to about 15–35 mm inwidth.

There are two main types of plant-parasitic nematodes: ectoparasitic and endopara-

sitic. The ectoparasitic type lives outside the plant, feeding on roots with the ability

to move about 3 ft to find a host, depending on the soil and species. Endoparasitic

types penetrate the root, then enter and live inside it. Each type goes through

development stages: starting from an egg, then four juvenile stages (molting after

each one), and an adult stage. In addition to the more well-known root-knot

nematode, there are many others, most of them named for physical characteristics.

They include ring, dagger, sheath, stubby-root, spiral, pin, lesion, stem and bulb,

and foliar nematodes. In fact, nematodes occupy all parts of vascular plants

including leaves (Aphelenchoides spp.), stems (Bursaphelenchus xylophilus), tubers
(Globodera rostochiensis), corms (Radopholus similis), and roots (Heterodera and

Meloidogyne). To date, most attention has been focused on the root-parasitic

species, and various classification schemes based on the site of feeding within the

root have been developed (Dropkin 1969; Hussey and Grundler 1998; Wyss 1997).
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Nematodes deploy a broad spectrum of feeding strategies, ranging from simple

grazing to establishment of complex cellular structures including galls in host tissues

(Bird and Koltai 2000). Various models of feeding site formation have been pro-

posed, and a role for phytohormones has long been speculated, although whether

they perform a primary or secondary function is unclear (Bird and Koltai 2000).

Sedentary endoparasitic nematodes are root parasites that interact with their hosts in

a remarkable way. These obligate biotrophic pathogens establish an intimate rela-

tionship with their host plants, inducing the redifferentiation of root cells into

specialized feeding cells. The successful establishment of feeding cells is essential

for nematode development. Root-knot nematodes, of the genus Meloidogyne, have
evolved strategies enabling them to induce feeding cell formation in thousands of

plant species, probably by manipulating fundamental elements of plant cell devel-

opment (Caillaud et al. 2008).

Many of the bacteria that are associated with plants are actually saprotrophic and

do no harm to the plant itself. However, a small number, around 100 species, are

able to cause diseases (Jackson 2009). Bacteria pathogenic for plants are responsi-

ble for devastating losses in agriculture and are a major problem worldwide

for agriculture. There are 21 phyla within the domain Bacteria. Plant-pathogenic

bacteria are found in three phyla: the Firmicutes, the Actinobacteria, and

the Proteobacteria. The important genera include Clavibacter, Curtobacterium,
Rathayibacter, Leifsonia, Nocardia, Rhodococcus, Streptomyces, Bacillus, Clos-
tridium, Spiroplasma, Agrobacterium, Sphingomonas, Acidovorax, Burkholderia,
Ralstonia, Xylophilus, Erwinia, Pseudomonas, Xanthomonas, and Xylella. List of
plant-pathogenic bacteria is maintained by the International Society for Plant

Pathology Committee on the Taxonomy of Plant Pathogenic Bacteria (Bull et al.

2008; ISPP-CTPPB; http://www.isppweb.org/about_tppb.asp).

14.2 Interactions of Plant-Parasitic Nematodes with Bacteria

Since the first report of an interaction ofMeloidogyne sp. with Fusarium oxysporum
on cotton (Atkinson 1892), numerous interactions of plant-parasitic nematodes with

the plant-pathogenic fungi, viruses, bacteria, and nematodes have been described.

Hunger (1901) first reported the possible association between plant-parasitic

nematodes and plant-pathogenic bacteria. He noted that tomato plants cultivated

in nematode-infested soil were severely attacked by Pseudomonas solanacearum,
in comparison to those cultivated in nematode-free soil remained healthy. Carne

(1926) established that Anguina tritici is a carrier of Corynebacterium tritici, the
causal agent of yellow slime bacteriosis of wheat.

Plant-parasitic nematodes alone can sap the vitality of a plant, but they can also

facilitate infection of additional pathogens. Plant-parasitic nematodes as primary

pathogens favor establishment of secondary pathogens which alone cannot infect

plant under normal condition. Primary pathogens induce changes in the host

whereas secondary pathogens after infection by primary pathogen participate
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actively and alter the process of pathogenesis. Secondary pathogens generally

colonize dead cells induced by primary pathogens (Mayol and Bergeson 1969).

Nematodes are of tremendous important as a component of disease complexes

because when plant is infected by one pathogen, its response to additional invaders

is altered. These alterations exert significant influence upon disease development,

etiology of pathogens involved, and ultimately on disease control. It is therefore

important to consider the role of primary pathogen and its relationship with

secondary pathogen and their ultimate effect on host plant. Reviews and book

chapters on the interactions of plant-parasitic nematodes with bacteria (Pitcher

1963, 1965; Sitaramaiah and Pathak 1993), other plant pathogens (Riedel 1988;

Taylor 1990), and root-nodule bacteria (Siddiqui and Mahmood 1995) have

appeared in last few decades. Ways in which nematodes participate in disease

complexes include serving as vectors or agents of pathogen transmission, providing

portals of entry, inducing necrotic infection courts, modifying the physiology of

host, breaking of host resistance to other pathogens, etc. Disease development in

complex diseases may also be controlled by changes in rhizosphere microflora

mediated by the nutritional quality and quantity of exudates from nematode-

parasitized roots which enhance or suppress growth of other organisms. By limiting

host root development, nematodes may induce drought stress in the host, a factor

thought to influence development of some plant diseases. Interactions between

plant-parasitic nematodes and bacteria on different plants have been summarized

in Table 14.1. Plant disease complexes involving nematodes and bacteria have two

types of relationships:

(a) The expression of disease symptoms occurs only when both nematodes and

bacteria are present together; neither pathogen inoculated separately reproduced

the disease.

(b) Each pathogen acts independently and not directly influenced by others; gener-

ally, nematodes enhance the incidence of disease.

14.3 The Role of Nematodes in Interactions

with Bacterial Pathogens

Interactions of plant-parasitic nematodes with host plants exhibit most elaborate

feeding sites and evolutionary most advance form of parasitism (Bird and Koltai

2000). All parasitic nematodes should be considered to be equally evolved, and

differences between parasitic strategies reflect adaptations to exploit different

ecological niches within the host. Root parasites (Meloidogyne and Heterodera
spp.) hatch in soil as L2 larva which penetrates and migrates within a host root to

establish permanent feeding sites that are characterized by extensive modifications

to host cells. The nematode undergoes dramatic developmental and morphological

changes and adopts a sedentary life style. Eggs are either released in masses on the

surface of the root gall or encased in the body of the female forming cyst.
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Depending on the particular nematode and host as well as environmental

conditions, there are between one to four generations per year (Bird and Koltai

2000). Nematodes participate in disease complexes in following ways.

14.3.1 Nematodes as Vector

Phytoparasitic nematodes transmit certain bacteria which can incite diseases.

Nematodes mainly carry pathogens from soil to plant or from plant organs to

meristematic tissues. Kalinenko (1936) has proved that various nematodes such

as Pratylenchus pratensis, Helicotylenchus multicinctus, and Aphelenchus avenae
are vectors of bacteria. Nematodes extracted from the roots of Scorzonera tau-
saghyz were washed in distilled water and transferred to an agar culture; the

resultant bacterial growth was identified. The same species of bacteria were

found in the culture medium as were found in the roots of the plant, namely,

Erwinia carotovora, Xanthomonas phaseoli, X. necrosis, Pseudomonas fluorescens,
and Bacillus mesentericus. Fungus Dilophospora alopecuri is introduced into

apical meristem of wheat by Anguina tritici. Attempts to produce the disease in

the absence of the nematode have been unsuccessful (Atanasoff 1925; Leukel

1948). Lordello and Joly (1961) investigated simultaneous attack of artichoke by

a nematode Protorhabditis oxyuris and four bacterial species and concluded that

nematodes are not primary pathogens but are carriers of bacteria. Similarly,

Ditylenchus dipsaci sometimes transmits the causal agent of bacterial wilt of

alfalfa, Corynebacterium insidiosum, and feeding by nematode results in greater

wilt severity than when the bacterium occurs alone (Hawn 1971). In general,

nematodes parasitizing the roots, stems, leaves, and seeds of plants facilitate the

penetration and transmission of bacteria. More often, the bacteria are first transmit-

ted from the soil to plant tissues, where they spread throughout the infested plant;

they are less often transmitted from plant to plant.

14.3.2 As Wounding Agent

Nematodes feeding cause physical damage to host plant and provide direct passage

for pathogenic bacteria especially when the pathogen is not strong enough to break

mechanical barriers of the host. Stewart and Schindler (1956) concluded that

endoparasitic and ectoparasitic nematodes aggravated bacterial wilt by wounding

the roots and allow bacteria to enter the plant. Wilt inducing bacteria depends

mainly on wounds for penetration and establishment of an infection court (Good-

man et al. 1967). The stylet opening of plant-parasitic tylenchid nematodes ranges

from 0.2 to 1 mm in diameter and restricts the passage of pathogenic bacteria into

intact plant cell. Number of bacterial pathogens normally inhabit soil and may

become pathogenic on roots. At low nematode population levels, crown gall
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symptoms were no more severe than those occurring in plants inoculated with

bacterium alone after wounding (Nigh 1966). Similarly, initial damage by

Rotylenchulus reniformis facilitates entry and establishment of A. tumefaciens
and disease development. Bookbinder et al. (1982) reported that M. hapla,
Pratylenchus penetrans, and Helicotylenchus dihystera produced wounds in alfalfa
roots which were invaded by Pseudomonas spp. Numbers of studies explain that

mechanical root injury or root wounding of plant cell by nematodes is important

factor for introduction of bacterial pathogen in host (Libman et al. 1964; Johnson

1966; Johnson and Powell 1969; Jatala and Martin 1977a, b; Sitaramaiah and Sinha

1984a, b). Pitcher (1965) noted that wounds created by nematodes apparently favor

bacteria more than fungi because bacteria are less adapted for penetrating the host’s

epidermis. Disease symptoms similar to those which occur in nematode-bacterium

wilt interactions were simulated by substituting mechanical injury for nematode

feeding (Libman et al. 1964; Lucas et al. 1955). Predisposing effect of nematodes

has been attributed to the creation of wounds which leak nutrients and allow soil

bacteria to multiply both in the lesions and in the rhizosphere (Kurppa and Vrain

1985). Lucas et al. (1955) demonstrated that wounding of roots by penetration of

M. incognita larvae facilitates infection of tobacco roots by Pseudomonas
solanacearum. There are strong indications that nematodes, especially root-knot

nematodes, may induce physiological and/or biochemical changes in their hosts

which enhance the development of pathogenic bacteria and/or predispose their host

to bacterial pathogens. Griffin et al. (1968) demonstrated that M. hapla was

necessary for establishment of A. tumefaciens in raspberry tissue. However, these

authors referred to other works that wounding of roots by other agents permits the

infection of the bacteria. Nematodes improve bacterial growth (Weischer 1968) but

mostly measured by plant symptoms and not by qualitative analyses of bacteria.

14.3.3 Nematode Infection Causes Necrosis

Wounding of a host, by some species of nematodes, results in decay of root tissues,

which may favor ingress of certain additional pathogens (Baldwin 1977). These

pathogens are often unspecialized and may be facultative parasites, i.e., they

generally survive on dead plant tissues, but are also capable of invading living

tissue. Generally, lesion nematodes produce characteristic necrotic lesions (dark-

ened areas of dead tissue) on the surface and throughout the cortex of infected roots.

The lesions turn from reddish-brown to black and are initially spotty along the root

surface. As the nematodes continue to migrate and feed within the roots, the lesions

can coalesce to become large necrotic areas of tissue that may eventually girdle the

root. Tissue distal to the lesion is frequently sloughed off. Severe damage from high

populations of lesion nematodes can result in a stunted and necrotic plant root

system. The extent of lesion formation can be accelerated during concomitant root

invasion by other soil-borne plant pathogens, and sometimes, these interactions can

develop into synergistic disease complexes. The wounds inflicted on plant roots and
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other belowground plant parts by lesion nematodes can serve as infection courts for

pathogenic soil microbes (Davis and MacGuidwin 2000). This appears to be

particularly true in disease complexes that involve lesion nematodes and wilt

inducing bacteria.

14.3.4 Nematodes Act as Modifier of Substrate

All parasitic nematodes have extensive stylet that is connected to a well-developed

pharynx containing three or five gland cells. Marked changes in the shape and

volume of the pharyngeal glands were observed that appeared to correlate with key

events in establishment of the parasitic interaction. In root-knot and cyst

nematodes, the subventral glands seem to be more active before host penetration,

with the reduction of secretary activity coordinated with onset of parasitism (Endo

1987; Endo and Wegin 1988) at which time activity of the dorsal gland increases

(Bird 1983). Similarly, phytohormones play a role in feeding site formation and,

indeed, may be the key factors in modulating the host-parasite interaction. Direct

biochemical methods have shown that root-knot nematode-induced galls have

elevated levels of auxin and its precursors (Balasubrama and Rangaswami 1962;

Viglierchio and Yu 1968). In addition, cytokinin levels were found to be increased

in nematode-infected roots (Bird and Loveys 1980). Root-knot nematodes have

been shown to produce biologically active cytokinin (Bird and Loveys 1980).

Powell and Nusbaum (1960) first demonstrated the modification in the substrate

due to nematode infestation provide an advantage to pathogen. Creation of an

infection court is one way in which nematodes modify a host to enhance infection

by additional pathogens. However, there is increasing evidence that nematodes

modify host substrates in more subtle ways. Changes in biochemistry of the host are

probably the most important factors favoring disease complexes involving

nematodes (Slack 1963). Nematodes may induce production of host metabolites

which are favorable to other pathogens, or they may destroy host metabolites that

provide resistance to potential pathogens (Pitcher 1965). Johnson and Powell

(1969) reported that root-knot nematodes act as modifiers of infested tissues so

that infected tissue and surrounding cells become more suitable for bacterial

colonization. The plants inoculated with the nematodes 3 to 4 weeks prior to

bacterial inoculation develop bacterial wilt symptoms to a greater extent than plants

inoculated with nematodes and bacteria simultaneously. Meloidogyne sp. induces

gross physiological changes in a host. Thus, infection with root-knot nematodes

prior to inoculation with bacterial pathogen is more likely to result in a synergistic

disease complex, than when inoculations are simultaneous. The nematodes sub-

stantially alter host physiology so that a subsequently introduced pathogen is

favored (Powell 1971; Yang et al. 1976).
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14.3.5 Nematodes as Breakers of Disease Resistance

It is observed that a resistant cultivar to bacterial pathogen becomes susceptible in

the presence of plant-parasitic nematodes as nematodes bring about physiological

changes favoring the bacterial pathogen. Using tobacco variety Dixie Bright 101

which is resistant to bacterial wilt, Lucas et al. (1954) obtained similar results in

experiments on infestation by gall nematodesM. incognita acrita and infection with
bacteria P. solanacearum. Three variants of these causative agents were added to

experimental pots of cultivated tobacco plants: a suspension of bacteria, soil

infested with gall nematodes, and lastly both components. Within 21 days, 10%,

0%, and 100% of the tobacco plants were infested with bacterial wilt, respectively.

Alfalfa cultivars with high resistance to wilt by Corynebacterium insidiosum may

be diseased by this bacterium when Ditylenchus dipsaci is present (Hawn and

Hanna 1967). Field resistance in potato to P. solanacearum was broken down

when plants were infected with M. incognita acrita (Jatala and Martins 1977a, b).

Similarly, Reddy et al. (1979) observed that when eggplant cultivar “Pusa purple

cluster” highly resistant to P. solanacearum was inoculated together with

M. incognita a greater number of plants wilted. Nematodes may alter hosts to

such an extent that such plants may become susceptible to organisms to which

they are otherwise resistant.

14.3.6 Nematode Infection Changes Rhizosphere Microflora

Nematodes seem to favor all stages of bacterial infection and development by

modifying the composition of the root leachates. They can promote the growth of

microorganisms in the rhizosphere. Moreover, these modifications of the

rhizospheric environment may limit the development of organisms antagonistic to

the pathogenic bacteria. Their feeding sites and the cells they modify, especially the

giant cells induced by root-knot nematodes, may serve as a favorable substrate

which helps the bacteria to establish within the plant and promote their development.

Nematode-induced or nematode-produced factors appear to be translocated from the

nematode feeding sites to other parts of their host, especially in the above ground

parts. These factors seem to modify the resistance of the host to the bacteria and/or

directly stimulate bacterial growth. The balance between the rhizosphere microflora

and plant pathogens and soil microflora and plant pathogens is important in host-

pathogenic relationship. The biochemical qualities of root exudates and the presence

of antagonistic microorganisms play an important role in the proliferation and

survival of root infecting pathogens in soil either through soil fungistasis, inhibition,

or antibiosis of pathogens in the rhizosphere. Disease development in complex

diseases may be controlled by changes in rhizosphere flora mediated by the

nutritional quality and quantity of exudates from nematode-parasitized roots

which enhance or suppress growth of organisms antagonistic to plant pathogens
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(Riedel 1988). Such exudates may also overcome fungistasis. By these mechanisms,

nematodes also exert influence on their own reproduction and cohabitation in host

plants.

14.4 Effect of Bacterial Pathogens on Plant-Parasitic Nematode

Relatively few interactions involving nematodes and bacteria have been investi-

gated as because bacterial pathogens are less in number as compared to fungi and

viruses. Agrobacterium, Clavibacter (Corynebacterium), Ralstonia, Pseudomonas,
and Xanthomonas are the most common genera of bacteria commonly associated

with nematodes in disease complexes. Effect of bacteria on disease complexes may

be of following types.

14.4.1 Toxin Production by Bacteria

Limited information is available on the production of toxins by bacteria. The

association between Anguina funesta (Anguina agrostis) and Clavibacter sp. (Cory-
nebacterium rathayi) infesting Lolium rigidum produces toxin. Galls produced by A.
funesta in annual ryegrass become toxic to nematodes when colonized by the

bacterium (Stynes et al. 1979). Pitcher (1963) in his studies on the interaction of

Aphelenchoides fragariae and Corynebacterium fascians found that bacteria at first
increase but then decrease the rate of population growth of nematodes. The mecha-

nism of this interaction is unknown, and the possible production by toxins

by bacteria had adverse effect on nematodes. Infection of tobacco roots by

P. solanacearum caused decrease of M. incognita in roots (Lucas et al. 1955;

Johnson and Powell 1969). The contents of giant cells degenerated following

bacterial invasion, leaving virtually empty cells resulting into the death of root-

knot nematodes. The strong antagonistic effect of A. tumefaciens on the reproduc-

tion of P. penetrans was observed on raspberry (Vrain and Copeman 1987). Similar

result has been observed in another interaction study (Pitcher and Crosse 1958). Bird

et al. (1980) concluded that toxin production is associated with an interaction

between nematode-infected plant cells and the bacterium.

14.4.2 Inhibits Nematode Development

Pitcher (1963) suggested that the bacteria modify host tissues which do not favor

nematode multiplication. Lucas et al. (1955) reported that infection of tobacco roots

by the P. solanacearum caused a decrease of M. incognita in roots. The adverse

effects on nematode are expected as these pathogens share and compete for same
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host substrate. The unfavorable effect of bacteria pathogen on nematode may also

be due to the destruction of feeding sites, impaired nutrition, and harmful

byproducts produced by bacterial colonization. Similarly, Swain et al. (1987)

reported inhibitory effect of R. solanacearum on M. incognita. Inoculation of

M. incognita alone produces more galls and egg masses compared to its association

with R. solanacearum (Hussain and Bora 2009). It may be due to the reason that

establishment of the bacteria induces certain changes in root system which are not

favorable for nematodes. Bhagawati et al. (1996) and Hazarika (2003) reported

significant poor galls and egg masses in jute whenM. incognita was associated with
R. solanacearum.

14.4.3 Nematodes and Bacteria Together May Result
in a Different Disease

Symptoms of disease of the host plant usually appear much faster and are more

pronounced when two pathogens are present, than when just one infested the host.

The host reaction may or may not be synergistic. This is largely influenced by

environmental factors; the effect of these factors on nematode injury to plants was

reviewed by Smart (1964). Sometimes, the presence of both the nematode and the

other pathogen is necessary for production of certain types of symptoms, as it has

been shown by Pitcher and Crosse (1958) and Blinov (1969) in their work on the

association of Aphelenchoides fragariae and Corynebacterium fascians in “cauli-

flower” disease of strawberries. The expression of “cauliflower” symptoms depends

also upon the cultivar studied. Interaction of P. penetrans and A. tumefaciens on
raspberry might be causing the sudden decline, which is not a symptom character-

istic of either pathogen alone (McElroy 1977). The yellow ear rot or tundu disease

requires both the nematodes A. tritici and Clavibacter tritici for the expression of

complex disease. Surface-sterilized nematode larvae alone caused only ear-cockle

disease; the bacterium alone was not capable of causing disease (Gupta and

Swarup 1972).

14.5 No Effect of Nematodes on Disease Complexes

Despite rapid advances on certain aspects of plant-pathogenic bacteria, many

economically important pathosystems are largely unexplored, and biologically

relevant life stages of even familiar systems remain poorly understood. We know

remarkably little about interactions between microbes in a plant, and the effects of

quantitative virulence factors. Not all species of nematodes assist in the develop-

ment of bacterial wilt; in few cases, no effect of nematodes in diseases complexes

was observed. Experiments conducted by Lucas and Krusberg (1956) stated the
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ectoparasitic root nematode Tylenchorhynchus claytoni exerted no influence on the
appearance of bacterial wilt in tobacco variety Dixie Bright 101. Neither did the

ectoparasitic nematode Xiphinema diversicaudatum on the severity of bacterial wilt

in carnation caused by Pseudomonas caryophylli (Stewart and Schindler 1956).

Generally, plant age, cultivar (resistant or susceptible), nematode inoculums levels,

type of nematode parasitism (ecto or endo), environmental conditions, and their

interaction with the type of microorganism have significant effect in determining

the role of nematode in disease complexes.

14.6 Conclusion

In nature, plants are rarely exposed to the influence of only a single pathogen,

particularly in soil environment. Roots are constantly exposed to a wide range of

microorganisms which are likely to influence one another because they occupy the

same habitat. It is reasonable to expect the infection by one pathogen may alter the

host response to subsequent infection by another. It is apparent that plant-parasitic

nematodes are involved in disease complexes and play a major role in synergistic

interactions. Disease complexes are major economic hazards posed by nematodes,

and interaction studies involving nematodes and bacteria should receive more

attention of plant pathologists. The understanding of nematode-induced physiolog-

ical and biochemical changes induce in their hosts that are responsible for the

predisposition of the host plants to bacterial pathogens could be the necessary bases

to develop control strategies against these parasites. More multidisciplinary

research between biochemists, geneticists, and pathologists is necessary to under-

stand the interrelationships between nematodes, bacteria, and plants. The improved

understanding of relationship among host plant, nematodes, and bacteria will

enhance our ability to control these plant diseases and the damage caused by them.
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