
Chapter 5
Atomic Force Acoustic Microscopy

U. Rabe, M. Kopycinska-Müller and S. Hirsekorn

Abstract This chapter shortly reviews the scientific background of Atomic Force
Acoustic Microscopy (AFAM), the basic theoretical models, the experimental tech-
niques to obtain quantitative values of local elastic constants, and non-linear AFAM.
Analytical and finite element models describing transverse flexural vibrations of
AFM cantilevers with and without tip-surface contact are recapitulated. The mod-
els are suitable for micro fabricated silicon cantilevers of approximately rectangular
cross section which are typically used in AFAM. Experimental methods to obtain
single-point as well as array measurements and full spectroscopy images are dis-
cussed in combination with the respective reference methods for calibration. In a
non-linear AFAM experiment, the vibration amplitudes of the sample surface and
the cantilever are measured quantitatively with an interferometer at different excita-
tion amplitudes, and the full tip-sample interaction force curve is reconstructed using
a frequency dependent transfer function.

5.1 Introduction

In the beginning of the 1990s, atomic force microscopy (AFM) [1] became increas-
ingly well known, commercial instruments were available and relatively easy to
handle, and images demonstrating nanometer scale and even “atomic resolution”
were published. On the other hand, the emerging progress in nanotechnology pro-
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vided a need to examine materials non-destructively at nanometer scale. A common
non-destructive inspection method is ultrasonic microscopy [2], which is used to
reveal flaws and inhomogeneities inside components and materials and to measure
elastic properties with high precision. However, as implied by Abbe’s principle,
a conventional acoustic microscopy can hardly reach nanometer local resolution.
Therefore, a variety of combinations of AFM with acoustic microscopy were devel-
oped with the aim to make atomic or nanometer local resolution available to ultrasonic
probing. Examples for such inventions are atomic force acoustic microscopy (AFAM)
[3], Ultrasonic Force Microscopy (UFM) [4], ultrasonic atomic force microscopy
(UAFM) [5], scanning acoustic force microscopy (SAFM) [6], and scanning microde-
formation microscopy (SMM) [7]. The main difference to conventional microscopy
is that—instead of using a focusing lens or transducer—the ultrasonic waves are
detected or excited locally with the tip of a scanning force microscope. In this case,
the local resolution is determined by the tip-sample contact radius of a few nanome-
ters, and not by the acoustic wavelength, which can be orders of magnitude larger.
One general limitation of such near-field microscopes is that the high local resolu-
tion is only attained in the near field, i.e., in close proximity to the tip. This means
that AFAM and related techniques provide mainly information on the sample sur-
face or sample regions in close proximity to the surface—in contrast to conventional
ultrasonic techniques using propagating waves. Ongoing research on subsurface con-
trast using mixing and heterodyning techniques is currently extending these limits
(Chap. 10).

Different strategies are possible to detect ultrasonic vibration with an AFM. In
techniques like UFM (Chap. 9) and SAFM the AFM sensor is treated as an oscillator
having a resonant frequency that is considerably lower than the ultrasonic frequency.
The nonlinearity of the tip-sample interaction forces is exploited to down-convert
the high-frequency ultrasonic signal into a frequency range, which is detectable by
the AFM cantilever. In techniques like AFAM, UAFM (Chap. 6), or SMM (Chap. 8)
ultrasonic sample surface vibration is directly detected by exciting vibration modes
of the cantilever beams with frequencies equal to the excitation frequencies. A variety
of other dynamic operation modes of the AFM are known, in which the cantilever is
vibrated while the sample surface is scanned, and the amplitude, phase, or resonant
frequency is recorded. In AFAM and related modes, the sensor tip of the AFM is
constantly in contact with the sample surface while the cantilever vibrates (Fig. 5.1).
The flexural and torsional resonance frequencies of commercial cantilevers with
lengths of a few hundreds micron are predominantly higher than 20 kHz, and hence
in the ultrasonic frequency range. The tip-sample forces in the contact area influence
the mechanical boundary conditions of the cantilever, and therefore its frequencies
increase considerably compared to the frequencies in air. The shift of the resonance
frequencies is evaluated to measure lateral and normal sample surface stiffness and
elasticity, and the width of the resonance peaks is used to measure viscoelasticity
[8] and internal friction [9] (Chap. 14) in the sample. If the amplitude of vibration
is increased above a critical threshold, the resonance curves develop plateaus or
asymmetries, which are typical for nonlinear oscillators (Sect. 5.5).
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Fig. 5.1 AFM cantilever vibrating in contact with a sample surface. The vibration of the cantilever
is excited by an out-of-plane sample surface vibration. The mechanical forces of the tip-sample
contact area influence the resonance frequencies of the system. The repulsive tip-sample contact is
visualized on the right hand side

In the AFAM-mode, an ultrasonic wave is excited inside the sample by a conven-
tional transducer (a piezoelectric element) attached to one side of the sample. The
ensuing out-of-plane or in-plane sample surface vibration transfers to the tip of the
AFM and excites a forced flexural (Fig. 5.1), lateral bending, or torsional vibration
of the cantilever, respectively. Wave phenomena in the sample such as reflection and
interference are not exploited in AFAM, in contrast, multiple reflections in the sam-
ple should be avoided because interference patterns at the sample surface can lead
to sample surface areas with low vibration amplitudes. A sample surface amplitude
as homogeneous as possible in the scanned area is favorable. AFAM is a contact-
resonance technique, which probes the local elastic properties of the sample. In the
last years, the term contact-resonance AFM (CR-AFM) [10, 11] has been intro-
duced as a generic term comprehending all methods, in which the contact-resonance
frequencies of the cantilevers are measured as a function of position and evaluated
to obtain elastic and inelastic sample surface properties. Some authors understand
CR-AFM as an extension of force modulation microscopy [12] to higher frequencies
[13, 14]. Contact resonances can not only be used to measure mechanical properties
of the sample surface, but they are also proved to be useful for signal enhancement
in other contact techniques such as piezo-mode AFM [15, 16].

5.2 Analytical and Finite-Element Models for AFAM

AFM cantilevers are small flexible beams, which are suspended at one end and free
at the other end that carries the sensor tip (Fig. 5.2). As a response to dynamic exci-
tation, AFM cantilevers exhibit different sets of vibration modes, such as transverse
and lateral flexural and torsional modes. All types of modes show an infinite set
of resonance frequencies, which depend on the shape, the geometrical dimensions,
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Fig. 5.2 Scanning electron micrographs showing a a side-view of an AFM cantilever made of
single crystal silicon, b a view from the bottom side where the tip is mounted, and c the mechanical
model of an AFM cantilever with constant cross-section (clamped-free beam)

the material of the cantilever, and on its mechanical boundary conditions. A vari-
ety of microfabricated cantilevers are available. Cantilevers with triangular shape
(V -shape) were used for contact-resonance spectroscopy [17], and their vibration
modes were studied with analytical and finite-element models [18, 19]. In the follow-
ing, only cantilevers with approximately rectangular shape will be treated, because
their vibration can be described with relatively simple analytical models. Lateral
contact-modes of rectangular cantilevers with bending vibration in width direction
[20] and torsional modes can be used to measure in-plane elastic tip-sample forces
and friction [21, 22]. If torsional contact-resonances are evaluated quantitatively in
addition to flexural modes, a second elastic constant of the sample, the Poisson’s
ratio, can be obtained [10]. However, this chapter will restrict to transverse flexural
modes, i.e., flexural modes with deflections in thickness direction of the cantilever.

5.2.1 Analytical Model of the Cantilever Vibrating in Air

The Euler–Bernoulli equation describes transverse flexural vibration of a straight
beam with constant cross-section [23]:

E I
∂4 y

∂x4 + ηρA
∂y

∂t
+ ρA

∂2 y

∂t2 = 0. (5.1)

Here, x is the coordinate in length direction of the beam (Fig. 5.2c), E is the Young’s
modulus of the cantilever, ρ is its mass density, A is the area of its cross-section, I
is the area moment of inertia, and η is a damping constant expressing the internal
friction in the cantilever and dissipation caused by air. In case of a rectangular cross-
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section of the cantilever with width w and thickness b, the area moment of inertia
is I = wb3/12. A harmonic solution in time with angular frequency ω = 2π f is
searched for the local deflection y(x, t) at position x:

y(x, t) = y(x) · y(t) = (a1eαx + a2e−αx + a3eiαx + a4e−iαx )eiωt , (5.2)

where a1, a2, a3, and a4 are constants and i is the imaginary unit. By substituting
the general solution Eq. 5.2 into the equation of motion Eq. 5.1, one obtains the
dispersion relation for a flexural wave with complex wave number α:

E Iα4 + iρAηω − ρAω2 = 0 ⇒ α± = ± 4

√
ρA

E I
(ω2 ∓ iηω). (5.3)

If the second term in the partial differential Eq. 5.1, which contains the damp-
ing is omitted, the wave number k = 2π/λ is real, and the dispersion equation
simplifies to:

E I k4 − ρAω2 = 0 ⇒ k = 4

√
ρA

E I
ω2 ⇒ f = (kL)2

2π

1

L2

√
E I

ρA
. (5.4)

The boundary conditions of the beam of finite length L depend on its suspension and
on the tip-sample forces. Without surface contact a cantilever can be considered as
a clamped-free beam Fig. 5.2c, the small mass of the sensor tip is neglected. In this
case, the mechanical boundary condition at the clamped end (x = 0) and at the free
end (x = L) are as follows:

x = 0 :
{

y(x) = 0

∂y(x)
∂x = 0

x = L :
⎧⎨
⎩

∂2 y(x)

∂x2 = 0

∂3 y(x)

∂x3 = 0
. (5.5)

By substituting the general solution 5.2 into the boundary conditions, a characteristic
equation is found, which defines the discrete wave numbers kn, n = {1, 2, 3, · · · } of
the resonant modes of the system:

cos kn L cosh kn L + 1 = 0. (5.6)

The first seven roots of Eq. 5.6 are listed in Table 5.1.
The resonance frequencies of the clamped-free beam are obtained by using the

normalized wave numbers in Table 5.1 and the dispersion Eq. 5.4. For a beam with
rectangular cross-section (A = wb) the result is:

fn = (kn L)2

2π

b

L2

√
E

12ρ
= (kn L)2

c2
C

. (5.7)
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Table 5.1 The first seven normalized wave numbers kn L of the clamped-free beam and the corre-
sponding resonance frequency ratio fn / f1

n 1 2 3 4 5 6 7

kn L 1.875 4.694 7.855 10.996 14.137 17.279 20.420
fn/ f 1 1 6.27 17.55 34.39 56.84 84.91 118.60

The geometrical and material data of the cantilever can be combined in a constant
cC defined as:

cC = L

√
2π

√
12ρ

b2 E
. (5.8)

The resonance frequencies fn are proportional to the square of the wave numbers,
which means that the phase velocity of the flexural modes is not constant, i.e., the
modes are dispersive and not equidistant. However, equation 5.7 shows that the
frequency ratio of the flexural modes is independent of the material and geometry
data of the cantilever. The ratio of the higher resonance frequencies to the first flexural
frequency is shown in the third row of Table 5.1.

The resonance frequencies of the clamped-free cantilever play an important role in
quantitative AFAM. The geometrical data of the commercial cantilevers made of sin-
gle crystal silicon are subject to unavoidable deviations caused by the batch fabrica-
tion process. These geometrical variations cause wide frequency and spring-stiffness
ranges for the same type of cantilever (up to 100 % variation is possible depending
on the beam type). It is time consuming to measure the geometrical dimensions of
individual beams by optical or electron microscopy. Furthermore, the errors in the
obtained geometry data are so high that the resonance frequencies calculated with
these data are not precise enough. It is relatively easy to measure the first few flexural
resonance frequencies of a cantilever in air either using forced vibration excited at the
cantilever holder or just by observing the noise spectrum. In spite of the air damping
the Q-values of the lower modes are generally much higher than 50 [24], therefore
the free resonance frequencies can be measured with high precision, and they can
be used to calculate the cantilever constant cC. Some authors suggest to retrieve the
geometrical cantilever dimensions from the frequencies of their higher modes and
use these data for calibration of the spring constants [25–27].

A comparison of the experimental frequency ratio to the theoretical one shows how
well commercial rectangular cantilevers fit the model [24, 28]. The Euler–Bernoulli
beam equation does not take into account shear deformation and rotary inertia, which
is only a good assumption if thickness b and width w are much smaller than the length
L. Thin, long, and soft cantilevers like the ones used for contact and lateral force
mode obey much better this requirement than the thicker, shorter, and stiffer can-
tilevers with static spring constants of 20 N/m and more that are used for intermittent
contact and non-contact techniques. Furthermore, the geometry of real cantilevers
differs from the model, for example the cross-section is not exactly constant and of
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Fig. 5.3 Mechanical model of
an AFM cantilever with con-
stant cross-section vibrating
in contact with a sample sur-
face (clamped spring-coupled
beam)

trapezoidal form, and the suspension is not infinitely stiff and symmetrical [29] but
made of silicon like the cantilever (see Fig. 5.2). For example, the higher resonance
frequencies of silicon cantilevers of the approximate dimensions (225 µm × 30 µm
× 7 µm [30]) are slightly lower than the frequencies predicted by the flexural beam
model [28]. The same tendency and order of magnitude of frequency deviation from
the Euler model is obtained theoretically when the flexural vibration frequencies of
AFM cantilevers are calculated with the more precise Timoshenko beam model [31].
The difference between the Euler–Bernoulli model and the Timoshenko model was
examined theoretically for the free resonance frequencies and the contact-resonance
frequencies including damping [32].

5.2.2 Contact-Resonance Models

In linear AFAM, the vibration amplitude of the tip is assumed to be small, and the
tip-sample forces such as elastic forces, adhesion forces and viscoelastic forces are
represented by linear springs and dashpots. The complete mechanical model for
linear contact resonance vibration is shown in Fig. 5.3.

The length of the cantilever from the clamped end to the free end is L. The sensor
tip is located at position L1, and L2 = L − L1 is the distance between the sensor tip
position and the free end. Forces normal to the surface are represented by the normal
contact stiffness k∗ and the contact damping γ, and forces lateral to the surface are
represented by the lateral contact stiffness k∗

Lat and a lateral contact damping γLat.
For technical reasons the cantilever is tilted with respect to the surface by an angle
α0 (11–15◦). The characteristic equation of the model defined in Fig. 5.3 can be
found by defining two solutions for the two parts of the cantilever. The boundary
conditions at the clamped end (zero displacement and slope) and the free end (zero
bending moment and shear force) are the same as in Eq. 5.5. At the tip position
x = L1, additional boundary conditions arise, which contain the shear force and the
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bending moment caused by the tip-sample forces, and which ensure the continuity
of displacement and slope at x = L1 where the two partial solutions meet.

The characteristic equation of the complete system including tip position, lateral
forces and damping can be found in the literature [28]. Four simpler versions of
models for quantitative AFAM without contact damping are shown in Fig. 5.4. The
models and their characteristic equations are special cases of the complete solution
in [28]. The characteristic equations of these models are as follows:

(a) Simple model (24):

1

3

kC

k∗ (kn L)3 (1+ cos kn L cosh kn L) + (sin kn L cosh kn L − sinh kn L cos kn L)=0

(5.9)

(b) Tip-position model [8, 24, 33]:

2

3

kC

k∗ (kn L1)
3 (1 + cos kn L cosh kn L)

+ (sin kn L1 cosh kn L1 − sinh kn L1 cos kn L1) · (1 + cos kn L2 cosh kn L2)

− (sin kn L2 cosh kn L2− sinh kn L2 cos kn L2) · (1− cos kn L1 cosh kn L1) =0
(5.10)

(c) Lateral force model without tip position [13, 34]

1

3

kC

k∗ (kn L)4 A + (kn L)3 h2

L2

(
sin2 α0 + k∗

Lat

k∗ cos2 α0

)
D

+ 2 (kn L)2 h

L
sin α0 cos α0

(
k∗

Lat

k∗ − 1

)
sin(kn L) sinh(kn L)

+ kn L

(
cos2 α0 + k∗

Lat

k∗ sin2 α0

)
B + 3

k∗
Lat

kC

h2

L2 C = 0 (5.11)

(d) Lateral force and tip-position model [10]:

2

3

kC

k∗ (kn L1)
4 A + (kn L1)

3 h2

L2
1

(
sin2 α0 + k∗

Lat

k∗ cos2 α0

)
· [D1 A2 − D2C1]

+ 2 (kn L1)
2 h

L1
sin α0 cos α0

(
k∗

Lat

k∗ − 1

)

· [sin(kn L1) sinh(kn L1)A2 + sin(kn L2) sinh(kn L2)C1]

+ kn L1

(
cos2 α0 + k∗

Lat

k∗ sin2 α0

)
[B1 A2 − B2C1]

+ 3
k∗

Lat

kC

h2

L2
1

C1 A2 = 0, (5.12)
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Fig. 5.4 Mechanical models without damping for contact-resonance vibration. a simple model b
tip-position model c lateral force model d tip-position and lateral force model

where

A = 1 + cos(kn L) cosh(kn L)

B = sin(kn L) cosh(kn L) − sinh(kn L) cos(kn L)

C = 1 − cos(kn L) cosh(kn L)

D = sin(kn L) cosh(kn L) + sinh(kn L) cos(kn L). (5.13)

The subscripts 1, 2 are used in cases where the argument is kn L1, or kn L2,
respectively. For example:

A1 = 1+cos(kn L1) cosh(kn L1) and A2 = 1+cos(kn L2) cosh(kn L2). (5.14)

The same holds for B, C, and D. The static flexural spring constant kC of the cantilever
is used to normalize the contact stiffness k∗. A variety of methods are known to
determine the static spring constant kC [35, 36].

The contact-resonance frequencies are obtained numerically by finding the roots
kn L of the characteristic equations, and by using the dispersion relation 5.7 to cal-
culate the resonance frequencies fn . In a contact-resonance experiment, the inverse
problem arises: contact-resonance frequencies fn are measured, and the aim is to
calculate the contact stiffness. As already discussed above, it is favorable to use the
resonance frequencies of the clamped-free beam and the known wave numbers in
Table 5.1 to calculate the cantilever parameter cC . In cases where the frequency
ratio of the modes deviates from the Euler model, each contact-resonance frequency
should be used in combination with the free resonance frequency of the same mode
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number:

(kn L)Cont = cC
√

fn,Cont = (kn L)Free

√
fn,Cont

fn,Free

for example: (k1L)Cont = 1.8751

√
fn,Cont

fn,Free
(5.15)

Equation 5.9 describing the model in Fig. 5.4a can then be solved for the normal-
ized contact stiffness k∗/kC :

(a) Simple model:

k∗
kC

= (kn L)3 (1 + cos kn L cosh kn L)

3(− sin kn L cosh kn L + sinh kn L cos kn L)

=
(
cC

√
fn,Cont

)3 [
1 + cos

(
cC

√
fn,Cont

)
cosh

(
cC

√
fn,Cont

)]
3

[− sin
(
cC

√
fn,Cont

)
cosh

(
cC

√
fn,Cont

) + sinh
(
cC

√
fn,Cont

)
cos

(
cC

√
fn,Cont

)] .

(5.16)

Tip position as a parameter to fit the analytical model to the real cantilever
has been discussed in different publications [37, 38]. The tip position L1/L has
either to be estimated from optical micrographs or it can be determined by fitting
the tip position using at least two different contact-resonance frequencies. The
wave numbers of the two parts of the cantilever are:

(kn L1)Cont = L1

L
(kn L)Free

√
fn,Cont

fn,Free
(kn L2)Cont = L2

L
(kn L)Free

√
fn,Cont

fn,Free
.

(5.17)
The contact stiffness for the tip-position model is obtained by solving the char-
acteristic Eq. 5.10 for k∗/kC .

(b) Tip-position model:
k∗

kC
= 2 (kn L1)

3 A

3(−B1 A2 + B2C1)
(5.18)

With increasing complexity of the models, more parameters are needed for the
evaluation. The height of the sensor tip h (typical values 10–17µm) is usually
specified by the cantilever manufacturers, and the cantilever tilt angle α0 is a
technical parameter of the AFM instrument. Models (c) and (d) contain two
unknown tip-sample spring constants, the normal contact stiffness k∗, and the
lateral contact stiffness k∗

Lat. The ratio k∗
Lat/k∗ ranges between 2/3 and 18/19

for most materials with an average value of 0.85 (13). If one assumes the ratio
k∗

Lat/k∗to be known, Eqs. 5.11 and 5.12 can be solved for k∗/kC :
(c) Lateral force model without tip position (k∗

Lat �= 0):
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(
k∗

kC

)
1;2

= − ςL2

6cP h2C
±

√(
ςL2

6cP h2C

)2

− (kn L)4 L2 A

9cP L2C
, (5.19)

where cP = k∗
Lat/k∗ is the known lateral to normal contact stiffness ratio and

ς = (kn L)3 h2

L2

(
sin2 α0 + cP cos2 α0

)
D

+ 2 (kn L)2 h

L
sin α0 cos α0

(
cP − 1

)
sin(kn L) sinh(kn L)

+ kn L
(

cos2 α0 + cP sin2 α0

)
B (5.20)

(d) Lateral force and tip-position model (k∗
Lat �= 0)

(
k∗

kC

)
1;2

= − υL2
1

6cP h2C1 A2
±

√√√√
(

υL2
1

6cP h2C1 A2

)2

− 2 (kn L1)
4 h2 A

9cP h2C1 A2
, (5.21)

where cP is again the lateral to normal contact stiffness ratio and

υ = (kn L1)
3 h2

L2
1

(
sin2 α0 + cP cos2 α0

)
[D1 A2 − D2C1]

+ 2 (kn L1)
2 h

L1
sin α0 cos α0

(
cP − 1

)

· [sin(kn L1) sinh(kn L1)A2 + sin(kn L2) sinh(kn L2)C1]

+ kn L1

(
cos2 α0 + cP sin2 α0

)
[B1 A2 − B2C1] (5.22)

The advantage of analytical models is that they can be directly solved for the
contact stiffness and that they can be quickly evaluated with varying parameters.
Analytical models become increasingly complicated if more details in the shape of
the cantilever like the triangular end (dagger shaped cantilever) [39], the suspension
[29] or shear stiffness and rotary inertia are considered [32].

5.2.3 Finite-Element Models (FEM)

Several publications can be found in the literature presenting numerical models and
finite-element (FE) calculations of AFM cantilevers and their vibrations [14, 26]
[17, 27] (Chap. 4). In order to improve quantitative evaluation of AFAM by FEM,
important details in the geometric shape, the elastic anisotropy of single crystal
silicon cantilevers, and the elasticity of the suspension of AFM cantilevers should be
considered in the model. An FE model was created, which considers the geometrical

http://dx.doi.org/10.1007/978-3-642-27494-7_4


134 U. Rabe et al.

Fig. 5.5 Schematic sketch
of the cantilever a with its
coordinate system {x′,y′,z′}
inclined by an angle θ relative
to the sample surface coor-
dinate system {X,Y,Z}. The
tip-sample forces are modeled
by three springs with spring
constants k∗ and k∗

Lat for
vertical and lateral contact
stiffness, respectively; b FE
model of the cantilever after
meshing [40]

shape of the cantilevers with a trapezoidal cross-section and a triangular free end, the
cubic symmetry of silicon single crystal, and the elastic coupling of the cantilevers to
the holder [40]. Figures 5.2a and 5.2b show scanning electron micrographs (SEM) of
a commercial single crystal silicon cantilever. For the geometrical model, a Cartesian
coordinate system with the x ′-, y′-, and z′-axes in the cantilever length, thickness,
and width directions, respectively, was used (Fig. 5.5). These axes coincide with the
crystallographic axes [110], [001], and [11̄0] of the cubic single crystal material,
respectively. Figure 5.5b shows the FE model of the cantilever after meshing. It
comprises 3D tetrahedral elements with linear dimensions of about 1.5 µm in average
for both the beam and the tip. In the regions where higher strain was to be expected,
the density of the grid elements was increased. The tip-sample contact forces were
modeled as three springs in a coordinate system {X, Y, Z} aligned to the sample
surface (Figs. 5.5b). The coordinate system {X, Y, Z} was chosen to coincide with
the cantilever system {x ′, y′, z′} for θ = 0◦. The spring constants k∗ and k∗

Lat are the
tip-sample contact stiffness values in out-of-plane (Y -axis) and in-plane direction
(X - and Z -axes), respectively. The FE model was fitted to the experiments in a two-
step iterative procedure. In a first step, the measured free resonance frequencies of
the lowest bending, torsional, and lateral bending modes of an individual cantilever
were used to fit the geometrical cantilever dimensions. Subsequently, tip length and
cantilever inclination α0 were fitted to match the measured CR frequencies of the
first and the third bending mode. The FE model also allows a precise calculation
of the spring constant kC of the cantilever. With the obtained FE cantilever model,
the remaining free bending as well as the torsional resonances were predicted and
compared to the experimental spectra. For the first three bending modes and for the
first free torsional mode errors less than 1 % were achieved [40], which means that
the model presented in Fig. 5.5 is able to simulate the free resonance frequencies of
the cantilevers more precisely than the usual analytical models.
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In order to investigate the influences of the different geometrical parameters on
the resonance frequencies, several cantilevers of similar shape with only small differ-
ences in their geometrical dimensions were examined. It was shown that the modeling
of the shape and elasticity of the sensor tip and of its contact to the sample surface
are the most critical points rather than the differences in the analytical and the more
realistic FE model of the cantilever geometry.

AFAM measurements on fused silica and nickel were numerically modeled to
obtain values of out-of-plane, k∗, and in-plane, k∗

Lat, stiffness [40]. The normal
spring constant for a cantilever inclined relative to the sample surface was determined
by FEM, and used to calculate the static force from the static cantilever deflection.
The obtained normal contact stiffness values were within the range covered by the
theoretical values for nickel and for fused silica calculated with the Hertzian contact
model and a tip radius of 80 nm. The values obtained for the in-plane surface stiffness
k∗

Lat were too low as compared to those calculated from contact mechanics theories.
This was probably due to tip-sample interactions involving contamination layers that
were not included in the model.

5.3 Experimental Methods for Quantitative AFAM

The AFAM technique employs the contact-resonance frequencies of an AFM can-
tilever for quantitative measurement of elastic properties of sample surfaces. In the
last years, several methods have been developed to measure the contact-resonance
frequencies and to determine the sample surface properties. An important aspect of
quantitative AFAM is the strategy to determine the geometrical and material para-
meters of the tip and the cantilever [41], which have to be known in order to calculate
the sample surface properties.

5.3.1 Experimental Setup

A schematic sketch of a typical AFAM setup is shown in Fig. 5.6. In the configurations
discussed here, the investigated sample is placed on top of an ultrasonic transducer.
The amplitude of the cantilever vibrations is measured with the laser beam deflection
detector of the AFM. The frequency and the amplitude of the longitudinal wave that
propagates in the sample are controlled by a waveform generator. Contact-resonance
spectra are measured by recording the amplitude of the cantilever vibration as a
function of the excitation frequency.

As indicated in Fig. 5.6, one can utilize different approaches to acquire a contact-
resonance spectrum. One can use a lock-in amplifier to analyze the photodiode sig-
nal at the excitation frequency. In this case, the transducer is excited with a single
frequency. To create the contact-resonance spectrum, the frequency is changed step-
wise, and the amplitude component of the lock-in output signal is digitized, sent to
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Fig. 5.6 Schematic representation of the AFAM experimental set-up

a computer and plotted as a function of the excitation frequency. A lock-in amplifier
can be easily combined with AFM instruments, and it can be used for the real-time
acquisition of qualitative AFAM images, where the amplitude of the cantilever vibra-
tions at a fixed frequency is evaluated as a function of position and used as an imaging
quality. However, even in combination with a down-converter [37], lock-in amplifiers
are relatively slow when used in the spectroscopy mode. A short sweep time is essen-
tial for the acquisition of a statistically significant amount of data. For a fast spectral
analysis, an analog frequency modulation detector [42] and a digital-signal-processor
based resonance tracking system were developed [43]. Furthermore, one can excite
the transducer with a pulse and extract the spectrum by fast fourier transformation
(FFT) of the cantilever vibration signal. It is favorable to tailor the frequency content
of the pulse in such a way that its spectrum comprehends an appropriate interval
around the center frequency of the contact resonance, like in the band excitation
method [44].

5.3.2 Single Point Measurements

In the early work in AFAM single point measurements were performed, i.e., the
contact-resonance spectra were acquired at a single position on the sample surface at
several static loads [33, 39, 45, 46]. The CR frequencies of at least two contact modes
are needed to allow for the tip-position determination required for models Fig. 5.4c
and d. Figure 5.7 presents the CR frequencies measured on fused silica and single
crystal silicon samples for the first and the second contact modes. A commercially
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Fig. 5.7 a Contact-resonance frequencies f1,Cont and f2,Cont measured on the single crystal silicon
(Si) and fused silica reference samples. b Normalized contact stiffness k∗/kC calculated from the
resonance frequencies presented in a

available AFM beam (L = 225 µm, b = 8 µm, w = 38 µm) was used, with free
resonance frequencies of 175 kHz and 1,081 kHz for the first and the second mode,
respectively. The spring constant of the cantilever was about 45 N/m. The static load
applied to the tip increased from 90 nN to 1350 nN in 20 steps.

As can be seen in Fig. 5.7a, the contact-resonance frequencies recorded for the
fused silica sample are significantly lower than those measured on the single crystal
silicon sample because the elastic constants of fused silica are lower than those of
silicon. Accordingly, the values of the normalized contact stiffness k∗/kC calculated
for fused silica are lower than those calculated for silicon for each value of the applied
static load (Fig. 5.7b). In addition, the dependence of the resonance frequency values
on the applied static load contains information about the tip-sample geometry. A
systematic record of stiffness–load curves during a series of measurements also
holds information on the changes in the tip shape and dimension.

Usually, the single point measurements are done in a precisely defined sequence.
First, the contact-resonance frequencies are measured on a reference sample for at
least two contact modes at several values of the static load. Then, the resonance
frequencies are measured on the unknown sample at exactly the same values of the
static loads like those used on the reference sample. The recurrence of the refer-
ence measurement closes the sequence, which is usually repeated several times. The
repetition with recurrence to the reference sample is necessary to account for the
influence of the tip wear on the accuracy of the AFAM measurement.

The single point measurements must be repeated at several random locations on the
sample surface to create a statistically significant data base. The tip-sample contact
occurs at an area of few tens of nanometers squared. Small local differences in the
surface morphology and the unpredictable progress of the tip wear [47] influence the
measurement of the CR frequency values (Chap. 13). In typical AFAM measurements
with a stiff cantilever (kC = 30 – 40 N/m), the contact-resonance frequencies can be
measured with an accuracy of about 0.2 and 1 % for the first and the second mode,

http://dx.doi.org/10.1007/978-3-642-27494-7_13
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Fig. 5.8 Grid measurements of the contact-resonance frequencies performed on surfaces of Au
and MgF2 samples for the (a) first and (b) second mode. Histograms of the occurrence of a contact-
resonance frequency value for the (c) first and (d) second contact mode (49). The data used to create
the images and histograms were provided by G. Stan, NIST, Gaithersburg, Maryland, USA

respectively [48]. These relatively small values of the measurement error may lead
to about 5–10 % of uncertainty in the calculated values of the tip-sample contact
stiffness k∗.

5.3.3 Grid Measurements

An alternative to the single point measurements are grid measurements, where an
array of measurement points is distributed over a certain area [49]. Figures 5.8a and
b present the grid images obtained on Au and MgF2 samples for the first and the
second mode, respectively.

The images consist of 10 × 10 points measured on an area of 3×3 µm. The free
resonance frequencies of the cantilever used in this experiment were 114 and 725 kHz
for the first and the second mode, respectively. The contact-resonance frequency data
were evaluated statistically to obtain a histogram of occurrence of a given frequency
value. Examples of such histograms calculated form the grid images presented in
Fig. 5.8a and b are presented in Fig. 5.8c and d for the first and the second mode,
respectively. As can be easily seen, the distribution of the contact-resonance fre-
quency values measured for the first mode on Au and for the first and second modes
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on MgF2 can be described by a Gaussian curve. The values of the second contact-
resonance frequency measured for the gold sample show a bimodal distribution. In
this case, the split in the values of the CR can be associated with a sudden change
in the tip shape, which also explains the sudden change in the contrast of the corre-
sponding grid image (Fig. 5.8b). The CR frequency value with the highest occurrence
count is determined from the histograms and used to calculate the tip-sample contact
stiffness k∗.

Grid measurements deliver low resolution images, which inform immediately on
the uniformity of the samples in their elastic properties. Furthermore, the grid mea-
surement yields values of the contact resonance-frequencies that are representative
for the tested area. However, the tip scans the sample surface while relatively high
static loads are applied. Continuous scanning of the sample promotes tip wear, which
changes the contact-resonance frequencies. Therefore, the tip should be worn inten-
tionally to a certain amount prior the grid measurement such that the progress in wear
is less pronounced than in the case of a new, sharp tip [50]. As all the measurements
are performed at the same static load, no additional information on the tip geometry
is available. Such information can be either obtained by performing additional single
point measurements on a reference sample or by for example SEM studies of the tip
geometry [33, 51].

5.3.4 Contact-Resonance Frequency Images

Single-point or grid measurements work well on flat, homogenous samples. However,
in case of multiphase materials, such as polycrystalline samples or composites con-
taining phases with different elastic properties, difficulties arise in the interpretation
of the frequency statistics.

Therefore, the number of points in the frequency image must be increased to
generate a more detailed map. In most of the reported studies the CR images consist
of 128 × 128 points or more [34, 53–58]. In most of the cases, the images are acquired
for the first and the second contact mode. The contact-resonance frequencies of the
two modes are used later for calculation of the contact stiffness image. Figure 5.9
shows topography (a) and contact-resonance frequency images (b, c) of a blanket
film of organosilicate glass (SiOC) containing trenches filled with deposited copper
lines [52]. The SiOC film was approximately 280 nm thick. The topography image
shows the blanket film and the copper “fingers.” The contact-resonance frequency
images clearly reveal the areas corresponding to the glass and copper “fingers.”

5.4 Contact Mechanics and Calibration Methods

The previous sections dealt with the experimental procedures to measure contact-
resonance frequencies. The contact-resonance frequencies and one of the mod-
els describing the cantilever dynamics that are explained in detail in Sect. 5.2 are



140 U. Rabe et al.

Fig. 5.9 a Topography and contact-resonance frequency images obtained for b the first and c the
second mode for an organosilicate glass containing copper filled trenches [52]. The images were
provided by D.C. Hurley, NIST, Boulder, Colorado, USA

utilized to calculate the normalized contact stiffness k∗/kC . In order to obtain elastic
constants of the sample surface from the local contact stiffness, contact mechanics
models, such as for example Hertz or Maugis models [59] are needed. The Hertzian
model describes the contact between two nonconforming elastic bodies of general
anisotropy [60]. In the simplest case, the bodies are mechanically isotropic, the
sample is considered as flat and the sensor tip is represented by a hemisphere with
radius R (see Fig. 5.1). If a normal force Fn acts, a circular contact area forms with
radius aC :

aC = 3
√

3Fn R/4E∗. (5.23)

It is important for the validity of the model that the contact area is small compared
to the tip radius, i.e. aC � R. If the adhesion forces are so small that they can
be neglected, the normal force Fn is given by the static deflection of the cantilever
multiplied with the spring constant of the cantilever Fn = dkC , where d is the
cantilever deflection. The normal contact stiffness k∗ is in this case:

k∗ = 2aC E∗ = 3
√

6E∗2 RFn . (5.24)

E∗ is the reduced Young’s modulus that combines the elastic properties of the tip (t)
and the sample (s) in the following equations:

1

E∗ = 1 − ν2
t

Et
+ 1 − ν2

s

Es
, (5.25)

where Es , Et , νs , νt , are the Young’s moduli and the Poisson’s ratios of the surface
and the tip, respectively. AFM sensor tips made of single crystalline silicon are not
elastically isotropic, and this holds for other tip and sample materials as well. In
special cases of symmetry Eqs. 5.24 and 5.25 remain valid if the isotropic reduced
elastic modulus E /(1-ν2) is replaced by an indentation modulus that is calculated
numerically from single crystal elastic constants [61, 62]:

1

E∗ = 1

Mt
+ 1

Ms
, (5.26)



5 Atomic Force Acoustic Microscopy 141

where Ms and Mt are the indentation modulus of the sample and the tip, respectively.
The required symmetry holds for silicon sensor tips, which are oriented in (001)
crystallographic direction.

5.4.1 Single Reference Method

The expression for the contact stiffness presented in Eq. 5.24 contains two unknown
parameters, namely, the tip radius R and the reduced Young’s modulus E∗ of the sam-
ple. One method to obtain these data involves using a reference sample with known
elastic properties [45]. The contact stiffness k∗ is determined at several static loads
for the reference sample. These values of k∗ will be referred to as “reference contact
stiffness” k∗

ref . They are compared to the values of the contact stiffness obtained for
the sample with unknown elastic properties k∗

s at the same static load Fn as used for
the reference measurements. Using Eqs. 5.24–5.26, an expression for the indentation
modulus of the sample Ms can be derived that is independent of the tip radius and
the static load:

k∗
s

k∗
ref

= 3

√
6RFn E∗2

s

6RFn E∗2
ref

= 3

√
E∗2

s

E∗2
ref

, (5.27)

E∗
s = E∗

ref

(
k∗

s

k∗
ref

)3/2

, (5.28)

Ms =
(

1

E∗
s

− 1

Mt

)−1

. (5.29)

As already mentioned in Sect. 5.3.2, the contact stiffness variation as a function of
static load contains information on the tip geometry. An increase of the contact stiff-
ness k∗ with the static load Fn , follows from Eq. 5.24 if the tip apex has hemispherical
geometry. As the tips wear and break, different tip shapes arise (see Fig. 5.10). If the
values of k∗ remain constant, a flat punch geometry can be assumed, and the radius
of the contact area aC can be assumed to be constant. Different tip shapes can be
considered by introducing a tip geometry factor n, changing between 1 and 3/2 for
a flat punch and a sphere, respectively. Equation 5.28 is replaced by

E∗
s = E∗

ref

(
k∗

s

k∗
ref

)n

. (5.30)

SEM images of various AFM tips used in AFAM experiments confirmed that the
contact stiffness—load dependence is strongly influenced by the tip geometry and
that consideration of the geometry factor n may improve the accuracy of the AFAM
measurement [33]. Figure 5.10 shows examples of the normalized contact stiffness
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Fig. 5.10 a Normalized contact stiffness k∗/kC as a function of cantilever deflection d. The data
sets were obtained with tips with geometries of b flat punch and c hemisphere confirmed by corre-
sponding scanning electron micrographs [51]

values obtained for a fused silica sample with two cantilevers with very similar spring
constants kC but sensor tips of different geometries [51].

The single reference sample calibration does not only allow for efficient elimina-
tion of the dependence of the contact stiffness on the tip geometry but also eliminates
the static spring constant of the cantilever. However, a detailed analysis of AFAM
experimental data showed that the values obtained for the indentation modulus Ms

were either too large if the reference sample was much stiffer than the unknown
sample or too low if the reference sample was more compliant than the tested sample
[48, 63]. Furthermore, the elastic constants of the sensor tips were not always known,
especially in cases where the tip was coated for example with a diamond layer or
diamond like carbon layer to improve its wear resistance.

5.4.2 Dual Reference Method

If two different reference samples are available, each of the samples can be used
for calibration, and the results can be averaged, or the contact stiffness data can be
used to eliminate not only the tip geometry parameter, but also the tip indentation
modulus Mt . The two reference samples are chosen such that their elastic constants
bracket the elastic properties of the unknown samples. By comparing the values of
the contact stiffness k∗

1 and k∗
2 measured for two reference samples at the same static

load and using Eqs.5.24 and 5.26, the expression for the indentation modulus Mt

takes the following form [48]:

Mt =
M1 M2

(
1 −

(
k∗

1
k∗

2

)n)
((

k∗
1

k∗
2

)n
M2 − M1

) , (5.31)
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Table 5.2 AFAM results for the indentation modulus of a niobium film

Sample Literature values [GPa] AFAM results [GPa]
Reference: Glass Reference: Si Average
n = 1 n = 3/2 n = 1 n = 3/2 n = 1 n = 3/2

Niobium 116–133 88 ± 9 90 ± 14 127 ± 7 122 ± 10 106 ± 12 105 ± 18

The values were obtained using the single reference method for each of the two reference sam-
ples individually and subsequent averaging. Two different tip geometries, flat punch (n = 1) and
hemisphere (n = 3/2) [39], were used

where M1 and M2 are the indentation moduli of the two different reference samples.
With this method, the elastic properties of diamond coated tips [62] were determined,
using silicon and strontium titanate single crystal samples as a reference. Hurley et al.
[39] used two reference samples of borosilicate glass (Mg = 85 GPa) and silicon single
crystal (MSi = 139 GPa) that bracketed the expected values of the indentation modulus
for a tested niobium sample (MNb = 116–133 GPa). The indentation modulus of
niobium was calculated by using each reference material individually and subsequent
averaging of the results. As can be seen from the data presented in Table 5.2, the values
of the indentation modulus MNb obtained for niobium films depended strongly on
the choice of the reference material. Employing the glass reference sample yielded
values of MNb that were much lower than those expected from the literature values.
On the other hand, using silicon as a reference sample, the values of MNb were
close to the upper limit expected for the indentation modulus of niobium. Averaging
yielded results that were in good agreement with the literatures data as well as the
indentation modulus MNb obtained by nanoindentation measurements performed on
the same niobium film.

Several authors observed an increasing difference between the expected inden-
tation modulus and the value obtained by AFAM with increasing difference in the
elastic properties of the unknown and the reference samples [48, 63]. This prob-
lem is especially pronounced for sharp tips. Stan et al. [49] used the dual reference
method and Eq. 5.31 to determine the indentation modulus of a silicon tip. A variety
of samples such as Au (111), CaF2 (100), Si (100), and MgF2 (001) were used and
yielded results in the range from 60 to 180 GPa, depending on the choice of the ref-
erence sample, the tip position parameter, the influence of the lateral stiffness, and
the tip geometry. The authors explained these large variations in the values of Mt by
discrepancy in the actual shape of the AFM tip and the assumptions of the existing
models for the contact mechanics. Despite these variations, the reason of which will
have to be examined in future, it was also shown in this study that the dual reference
method allows to measure the indentation modulus with an accuracy of about 3 %.
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Fig. 5.11 a Normalized contact stiffness and b indentation modulus images obtained for SiOC
thin film sample with copper filled trenches [52]. The images were provided by D.C. Hurley, NIST,
Boulder, Colorado, USA

5.4.3 AFAM Image Calibration

During the last ten years, the development of methods for fast acquisition of contact-
resonance spectra [43, 42] opened the possibility to take contact-resonance frequency
images with an increasing number of points. Once such contact-resonance frequency
images are obtained for at least two modes, the calibration techniques discussed in the
previous sections can be applied to create a contact stiffness image. Figure 5.11 shows
(a) the normalized contact stiffness and (b) the indentation modulus obtained for the
SiOC glass thin-film sample with the copper filled trenches presented in Fig. 5.9.

The contact stiffness image was calculated pixel-by-pixel from the contact res-
onance images of the two modes. To obtain a calibrated image of the indentation
modulus, one can use the single or dual reference method [55, 62]. However, a cali-
bration before or after taking an image with 16,000 points and more is problematic, as
the tip shape might change because of wear. The elastic constant image in Fig. 5.11b
was obtained using a part of the contact stiffness image with known elastic constants
for calibration [64]. For this “self calibration,” additional single point measurements
were performed directly on the SiOC film using a borosilicate glass as a reference
material. Then, the value of the reduced Young’s modulus of 44 GPa obtained for the
SiOC film was used as a reference E∗

re f for the rest of the image. In order to obtain
a value for the reference contact stiffness k∗

re f /kC , an average value was calculated
directly from the contact stiffness image in the SiOC region. A similar self-calibrating
approach was used in Refs. [53, 57].

5.5 Nonlinear AFAM

In most of the quantitative contact-resonance spectroscopy measurements the
tip-sample contact is modeled as a system of linear springs and dashpots. However,
the various physical forces acting between the tip and the surface depend nonlinearly
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on the distance. Linear approximations are restricted to tip-sample displacements
covering small parts of the interaction force curve, i.e., to small vibration amplitudes
of the tip-sample distance. If operated beyond these limits the nonlinearity of the sys-
tem becomes noticeable. In the regime of small nonlinearity, when the tip remains
in contact with the sample surface during its vibration cycle, the contact resonance
curves become asymmetric. They develop a steep edge at frequencies below the
contact resonances, and the maximum shifts to lower frequencies in case of soften-
ing nonlinearity [65]. Hardening nonlinearity causes a reversed behavior. Nonlinear
effects are further noticeable by higher or subharmonics in the spectrum of the can-
tilever vibration [66–68]. An experimental procedure based on perturbation analysis
and higher order spectra measurements was proposed [67, 68] to identify the inter-
action force in a third-order polynomial approximation around the static set-point.
Single mode excitation [67] and modal interactions in the presence of two-to-one
auto-parametric resonance between two modes [68] was considered.

The downwards shift of the contact- resonance frequency as well as the genera-
tion of higher and subharmonics in the cantilever vibration with increasing excitation
amplitude were numerically simulated for a pure Hertzian contact [69, 70] and for
a Hertzian contact with adhesion forces added [71]. Experimental investigations of
contact-resonance frequency variations and higher harmonics generation caused by
the nonlinear part of a Hertzian contact were carried out by a scanning microde-
formation microscope [72]. Different vibration amplitudes and static loads were
considered.

An analytical model of the nonlinear dynamics of cantilever tip-sample inter-
actions for various acoustic AFM modes treats the cantilever and the substrate as
independent linear systems coupled by a nonlinear force acting between the sensor
tip and a small sample volume [73] (Chap. 3). Equations for the maximum nonlinear-
ity regime, i.e. around the minimum of the force curve, were obtained by perturbation
theory using a second order polynomial expansion of the force curve. Equations for
the hard contact (linear) regime were also derived.

5.5.1 Evaluation of the Full Force Curve

The nonlinear AFAM methods mentioned above have access only to a small part
of the tip-sample interaction force curve around the static set-point. A more gen-
eral approach allows the reconstruction of the full curve as a function of the tip-
sample distance [74, 75]. A frequency dependent transfer function (T ω) was derived
for the flexural contact modes of an AFM cantilever modeled as a beam with
constant cross-section. The cantilever contact-vibration amplitudes were measured
quantitatively at increasing amplitudes of excitation. The time signals were Fourier
transformed to obtain the spectra of the cantilever vibration. By multiplying the
measured cantilever vibration spectra with the transfer function and subsequent
Fourier back-transformation, the nonlinear contact and adhesion forces were calcu-
lated as a function of time. Additionally, the sample surface vibration was measured

http://dx.doi.org/10.1007/978-3-642-27494-7_3
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Fig. 5.12 a Set-up of a commercial AFM combined with a heterodyne interferometer to measure
absolute vibration amplitudes of the cantilever and the sample surface; b Examples for calibrated
spectra Y(f) of the cantilever vibration obtained by FFT [74]

in close proximity to the cantilever tip. With these data the tip-sample interaction
forces as a function of the tip-sample distance were reconstructed.

A schematic sketch of the experimental setup is shown in Fig. 5.12. Like in linear
AFAM the cantilever was forced to flexural vibrations by vertical sample surface
vibrations excited with an ultrasonic transducer below the sample. The static set-point
of the cantilever was controlled by the beam-deflection detector and the feedback loop
of the AFM. A heterodyne Mach–Zehnder interferometer (bandwidth: ∼100 kHz–
80 MHz) was used for calibrated detection of ultrasonic vibrations. By a dichroic
beam splitter added to the AFM the green beam of the interferometer was directed
to the cantilever. Two mirrors were used to position the focal spot on the surface of
the cantilever. The mirrors and the focusing lens were mounted on a motor-driven
translation stage. In this way, the focal spot could be exactly positioned and the entire
cantilever could be scanned during experiments to examine the shapes of the modes.

Figure 5.13 shows scans of the surface of the cantilever during nonlinear contact
vibration. A single crystal silicon cantilever (Nanosensors, NanoWorld, Neuchâtel,
Switzerland, length ∼485 µm, static spring constant ∼0.2 N/m) and a polished PZT
ceramic sample were used for these experiments. For reconstruction of the force
curve, the focal spot of the interferometer was directed to a fixed position on the
cantilever as close to the tip position as possible. The calibrated time signal of the
interferometer y(t) was stored by a fast digitizer card and subsequently filtered and
Fourier transformed. Thus, the spectral representation of the cantilever deflection
Y(f) was obtained. Examples for spectra at different amplitudes of excitation are
shown in Fig. 5.12b. The spectra contain the amplitude of the excitation frequency,
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Excitation frequency 175 kHz,
2nd flexural eigen-mode

2nd Harmonic 3rd Harmonic

4th Harmonic 5th Harmonic 6th Harmonic

Fig. 5.13 Measured cantilever vibration in contact with a PZT sample, excitation at the 2nd flexural
contact eigen-mode of 175 kHz; the mode shapes of the vibration of the 1st to the 6th harmonic
were detectable

and it can be clearly seen that the amplitudes of the harmonics increase with increas-
ing amplitude of excitation. In order to improve the signal-to-noise ratio multiple
spectra were acquired and averaged continuously. By repositioning the focal spot of
the interferometer, the amplitudes and phases of the sample surface vibration were
measured in the vicinity of the sensor tip. Fourier transformation revealed a spectrum
containing only the excitation frequency proving that there was no signal distortion
by the transducer.

The frequency dependent transfer function (T ω) follows from the theory of
flexural vibrations of a rectangular beam of constant cross-section [74, 76]. The
deflection y(x, t) of the beam is a function of the spatial coordinate x in longitudinal
direction and of the time t described by the Euler–Bernoulli equation 5.1. Due to
the linearity of this differential equation the principle of superposition is valid, and
the general solution may be written as the sum of a part constant in time (the static
deflection of the beam) and an infinite number of harmonic oscillations of circular
frequency ω [77, 78]:

y(x, t) =
3∑

v=0

Bνxν+
∑
ω

[
Y (x,ω)eiωt +

(
Y (x,ω)eiωt

)∗]
,

y(t) = y(L1, t), L1 = tip position; (5.32)

Y (x,ω) =
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Aν(ω)eiνα(ω)x

]
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η

ω

)
, Y (ω) = Y (L1,ω).

(5.33)

The constants Bv and Av(ω), v = {0, 1, 2, 3}, are determined by the mechanical
boundary conditions of the beam.

Once the tip is in contact to the vibrating sample surface the cantilever is forced
to vibrations via the tip-sample interaction forces F. The forces depend on the tip-
sample distance and on the relative tip-sample velocity, which in turn are time-
dependent because of the vibration. As a consequence the force acting onto the tip
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Fig. 5.14 a Tip vibration ydyn(t); b amplitude and c phase of the transfer function T(ω);
d reconstructed force F(t). The four different signals in figures (a) and (d) correspond to four
different amplitudes of excitation (0.5, 2, 5, and 10 Vpp), which were applied to the ultrasonic
transducer

and indirectly onto the cantilever becomes a function of time, F(t), which may be
expressed in terms of a Fourier series f(ω). Note, F is not directly, but indirectly
time-dependent due to its distance and velocity dependency. The described relations
yield the frequency dependent transfer function T(ω). A detailed derivation is given in
[74]. Multiplication of the cantilever vibration spectra Y(ω) with the transfer function
T(ω) yields the Fourier components f(ω) of the force F(t), which then follows by
Fourier back-transformation. This procedure is schematically depicted in Fig. 5.14.
Figure 5.14a shows a small time interval of filtered tip vibration signals ydyn(t),
Figs. 5.14b and c show amplitude ‖T ‖ and phase θ(T) of the transfer function T(ω),
and Fig. 5.14d shows a small time interval of the force F(t). The four signals in
Figs. 5.14a and d were obtained with the same static deflection of the cantilever, but
with different amplitudes of excitation applied to the transducer.

Dynamic interaction forces as function of the tip-sample distance can be obtained
by correlating the difference of the measured cantilever vibration and sample surface
vibration, i.e., the dynamic part of the tip-sample distance zdyn(t) = ydyn(t) – a(t),
(see Figs. 5.14a and 5.15a) and the force F(t) (Fig. 5.14d). As shown in Fig. 5.15c
for several different excitation amplitudes, dynamic force–distance hysteresis loops
were obtained. The extrema in distance of the loops are reversal points in the relative
sample surface–sensor tip movement, i.e., points with a relative sample surface–
sensor tip velocity of zero. Those points cannot contain damping forces, i.e., can be
used to reconstruct the quasistatic force curve from dynamic force–distance hystere-
sis loops. This means that each force hysteresis loop will yield at least two points
of the quasistatic force curve. The map of all extrema of 20 force loops is shown
in Fig. 5.16a. The force loops were obtained from a measurement series with 20
different amplitudes of excitation ranging from 0.5 to 10 V [75].

Due to the lower cutoff frequency of 100 kHz of the heterodyne interferometer, it
was not possible to measure the absolute static cantilever and sample surface posi-
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Fig. 5.15 a Surface vibration amplitude a(t); b dynamic part of the tip-sample distance zdyn(t) =
ydyn(t) − a(t), and c time-dependent force as a function of tip-sample distance. The four different
signals in the figures correspond to four different amplitudes of excitation 0.5, 2, 5, and 10 Vpp,
which were applied to the ultrasonic transducer. The points with zero tip-sample velocity correspond
to the maxima and minima of zdyn(t) and are marked with arrows in c [75]

Fig. 5.16 Reconstructed force curve, a quasistatic forces obtained from the turning points of the
hysteresis loops some of which are shown in Figs. 5.15c and 5.15b corrected force curve obtained
by shifting each pair of turning points in horizontal direction as indicated by the arrows in a
[74, 75]

tions. The static cantilever deflection was kept constant during the measurements by
the feedback loop of the AFM. Only ac-signals were applied to the ultrasonic trans-
ducer. However, the nonlinearity of the interaction forces can cause an increase of
the mean tip-sample distance with increasing ultrasonic excitation amplitudes. The
feedback loop of the AFM compensates for this additional static tip deflection as it
does for thermal drifts. The distance between the cantilever and the rest position of
the sample surface is unknown. Therefore, the force curve reconstructed as described
above (Fig. 5.16a) has to be corrected with respect to an unknown static shift. In a
simple tentative approach, it was assumed that the contact stiffness was approxi-
mately constant in the repulsive region entailing a force curve being approximately
linear at high loads in the repulsive region. The slope of the linear force curve was
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defined by the pair of turning points deduced from the elliptic hysteresis loop with
the lowest amplitude of excitation stemming from a vibration, which covers only an
approximately linear range of the interaction force curve. Each pair of data points
from the other hysteresis loops was shifted parallel to the horizontal axis, so that the
left points of the pairs formed a straight line corresponding to the contact stiffness
in the repulsive region. The arrows in Fig. 5.16a show an example of how one pair
of points was shifted. The quasistatic force curve corrected in this way is plotted in
Fig. 5.16b. The center of the linear hysteresis loop generated by the low amplitude
excitation was chosen as zero-point of the horizontal axis displaying the corrected
tip-sample distance z∗. As the vibration is sinusoidal and consequently symmetric to
the origin, this zero-point corresponds to the initially chosen static set-point position.

A direct and quantitative measurement of the cantilever vibrations was achieved
by combining an AFM with a heterodyne Mach–Zehnder interferometer. No a pri-
ori assumptions about the shape of the force curve and the kind of forces were
required. The force curve shown in Fig. 5.16c was obtained with a soft cantilever
with a spring constant of approximately 0.15 N/m. In quasistatic measurements the
cantilever jumps into contact when the tip-sample force gradient becomes larger than
the spring constant of the cantilever. The dynamic approach presented here allows
one to reconstruct intervals of the force curve which are not accessible in quasistatic
measurements.

5.6 Conclusions

In this chapter frequently used mechanical models and experimental methods were
reviewed, which have been used in quantitative AFAM. In many different applica-
tions AFAM or CR-AFM has proven to be a very useful tool for measurement of
elastic constants with high local resolution. Since the invention of AFAM, there has
been strong progress in its theoretical as well as in its experimental aspects. For
example, the analytical and finite-element models for the theoretical description of
the cantilever vibrations have been improved, the influence of the different parame-
ters on the quantitative results, and various aspects of sensitivity have been examined.
While the first quantitative AFAM results were obtained with single point measure-
ments, the acquisition of contact-resonance frequency images is now state of the art
due to the development of methods for fast acquisition of contact-resonance spectra.
However, despite the advantages of CR imaging, AFAM amplitude imaging can be
the technique of choice in cases where the contact-resonance frequency variations
in the scanned area are small. In addition to linear AFAM, nonlinear AFAM tech-
niques were treated. With an approach based on a transfer function of the cantilever
beam, the full non-linear tip-sample force curve can be reconstructed from mea-
surements with soft cantilevers with spring constants of approximately 0.2 N/m. In
contrast to linear contact-resonance spectroscopy, which exploits the shift of the res-
onant frequencies, the reconstruction of the nonlinear forces is based on amplitude
measurements, which are more difficult in AFM than frequency measurements.
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