
Rule-Based Approach for Simulating Age-Related
Usability Problems

Aaron Ruß1, Michael Quade2, Michael Kruppa1, and Mathias Runge2

1 DFKI (German Research Center for Artificial Intelligence) GmbH
{aaron.russ,michael.kruppa}@dfki.de

2 Technische Universität Berlin, DAI-Labor
{michael.quade,mathias.runge}@dai-labor.de

Abstract. Ambient Assisted Living requires easy to use interfaces, making
usability a critical feature. Because usability evaluations are resource and time
consuming, several automation efforts have been made, one of which is the
simulation of users interacting with UIs. In this article, we present ongoing
work of a tool for automated usability simulations that allows simulating age-
related deficits. The tool is specifically intended to be used by IT practitioners,
i.e. in difference to cognitive architectures that allow similar simulations, this
tool does not require extensive knowledge in cognitive science. A core
component of the simulation tool is its rule-based User Model (UM). During a
simulated interaction, the UM selects actions causing a model of the UI to
change states until a specified task goal is satisfied or the UM “gives up”.
Interactions of the UM are calculated from probabilities which are informed by
rules drawing on user and UI attributes. Using a Monte Carlo approach, the
simulation is iterated, resulting in a set of task solutions where non-optimal
solutions may indicate usability problems. By analyzing which rules led the
UM to interact non-optimally, our approach can offer hints on how to improve
the UI. While our approach cannot render user-based evaluations unnecessary,
our aim is to substantially reduce the effort involved in usability testing of UIs
as well as to provide an automated tool that can be used early on in the
development process.

1 Introduction

Ambient Assisted Living (AAL) solutions are often highly distributed and aim at
integration into the “natural” environment of their users. As a result, they exhibit a
wide variety of User Interfaces (UI), e.g. showing information on video screens and
ambient displays, or providing control through touch displays and Speech Dialogue
Systems (SDS). Easy to use UIs are a central aspect for AAL solutions which makes
usability a critical feature. But conducting usability evaluations is a time and resource
consuming process. This is especially true, if the system under evaluation is aimed to
be used by elderly people as in the case of the majority of AAL systems. Not only is
the group of elderly users more diverse than younger users – showing significant
differences in their sensory, motor and cognitive abilities as well as in their

150 A. Ruß et al.

knowledge and attitudes towards technology – but due to their deficits, lifestyles, and
motivations they are also harder to recruit for usability tests (see e.g. [7, 13, 22]).

One way to reduce both costs and effort for evaluations is automated usability
testing by model-based evaluations that use simulations [14]. This article describes
ongoing work of a rule-based User Model (UM) for simulating user interactions that
are affected by deficits e.g. impaired vision – and general age-related characteristics
(e.g. vision, hearing, tremor, affinity for technology, computer anxiety, domain
expertise, cognitive skill; see [9] for a detailed list) – which can bear significant
impact on interactions with UIs. An implementation of our UM is used in the MeMo
workbench [8], which is a prototype for rule-based simulations of user interactions for
conducting automated usability evaluations. The areas of application include
evaluation of classic window-based UIs1 , web-based UIs and voice-based UIs2. By
these means, the approach is also intended to be generally feasible to model the use of
different interaction devices. Moreover, the workbench is aimed to enable usage by
practitioners that are involved in the creation of UIs. Therefore, controlling
simulations for (age-related) impairments is intended to be mostly intuitive (e.g. by
specifying “the user has good/bad visual perception”) and does not require the
practitioner to have expert knowledge in cognitive science. Our UM is designed to be
as task-independent as possible in order to reduce the cost and effort for its
application: to find usability problems in different UIs and with different tasks.
Similarly, our model is intended to facilitate the analysis of simulations, e.g. finding
user-specific usability issues or even provide critique [14], i.e. give suggestions for
improving the UI by highlighting interaction problems.

Fig. 1. The general process for employing the rule engine during interaction simulations: The
rule engine manipulates the probabilities for potential UM interactions. The UM decides its
next step probabilistically according to the distribution. Note that conceptually, the rule set is a
component of the UM, since the caused probability manipulations are an integral part of the
UM’s decision making process.

1 Windows, Icons, Menus, and Pointing devices (WIMP).
2 Speech Dialog Systems (SDS).

 Rule-Based Approach for Simulating Age-Related Usability Problems 151

Rule-based usability simulations in MeMo follow a Monte Carlo approach:
repeatedly, user interaction is simulated with a given goal of solving a defined user
task. Each single iteration of this interaction simulation starts in a specified state of
the UI and continues until the task is solved or the UM “gives up”. Until then, in each
step, probability distributions are calculated in order to decide the next action of the
UM and thus causing the UI model to change to the next state. The probability
distributions are calculated using a set of rules, in which for example, a rule
concerning the Graphical UI (GUI) may state that “if button X has a high contrast,
then increase its probability-to-be-used”. Rules are specified with the help of an
Extensible Markup Language (XML) syntax, which allows the set of rules to be easily
extended and modified.

The simulation results give multiple task-solutions which potentially reveal a
broader spectrum of usability problems as compared to a single task-solution, e.g.
expert interaction. In addition, the frequency of specific task-solutions is a further
indicator for their importance. Finally, by analyzing the applied rules in each iteration
step, semantically relevant reasons for the UM’s choice can be provided. This allows
deriving hints on how to improve the UI.

In [15] former work on the MeMo workbench is described based on a correct
solution path for specified user tasks, which had to be provided by the practitioner. In
this approach, errors are simulated by automatically introducing deviations from the
correct solution path and error corrections are simulated by returning to this correct
path. This strategy of producing usability problems shares similarities with
approaches described in [20] and [17]. However, it is limited in that only foreseen
error types at certain key points in the task solution can be simulated. In difference,
the current approach described in this article, computes correct solution paths
automatically but only uses them as post hoc measure for the correctness (i.e.
determining deviations) and the successful completion of simulated solutions (i.e.
reaching the goal condition).

The current concept and architecture of the MeMo workbench were introduced in
[8] including a brief description of the rule mechanism and giving a short summary
for using the workbench to replicate an experiment in which a SDS was tested. The
set of rules was derived from user experiments and literature research. The article [9]
describes the modeling of a SDS using the workbench. With addition of a statistical
model, experimental data is replicated in simulations. The article also features a short
high-level description for the rule mechanism.

In the following article we discuss this rule mechanism of the MeMo Workbench
in more detail. First, we will give a short summary of the simulation process (for a
more detailed discussion we refer to [9]). Then we describe the rule mechanism
illustrated by an example and followed by a discussion.

2 Related Work

Automated usability evaluation is usually carried out with computer-aided tools and
models of the intended user and the system to be evaluated. In most approaches the

152 A. Ruß et al.

evaluation process consists of a simulation of user interactions while performing
specified tasks. With GOMS-based methods [16], evaluation results typically provide
execution time predictions and learning rates. Cognitive architectures [25], e.g. ACT-
R [2] and EPIC [18], allow creating more detailed and consistent models of human
information processing, e.g. for uncovering cognitive load. However, these
simulations are highly task dependent and the creation of models usually requires
extensive knowledge in the domain of cognitive modeling.

CogTool [25] mitigates the effort involved in developing specialized ACT-R
models. A model representation for the user interaction is derived from input
sequences which a practitioner demonstrates on a mock-up of the UI. Then CogTool
compiles and executes an ACT-R model for expert interaction, i.e. an ideal interaction
path for the task is simulated. This primarily allows evaluating the efficiency (“how
long does it take?”) for the demonstrated task solution. Deviations from the
demonstrated interaction path are not considered. This is addressed by an extension to
CogTool, the CogTool-explorer [27]. Building on the work of SNIF-ACT [11],
CogTool-explorer implements a model for information seeking behavior that uses a
label-following strategy [21] driven by semantic similarity measures.

Similarly, MeMo [8] addresses the simulation of exploratory user behavior, i.e.
simulations of users finding different task-solutions. This allows investigating
efficacy (“is it possible to fulfill the task?”) as well as efficiency (“how many steps
are needed?”). UI models are created by the practitioner, which may be based on real
systems or early prototypes. MeMo also provides an import-feature for web pages
which allows creating the required UI elements automatically, while the interaction
logic needs to be added afterwards. Due to the nature of exploratory behavior, time
prediction is not an integral feature of MeMo and thus other tools as, for example,
CogTool, currently are more appropriate for predicting execution time of tasks.

In [3] a simulator is presented that aims specifically at the evaluation of assistive
user interfaces by predicting likely interaction patterns for disabled and able-bodied
users. The simulation is based on mappings between descriptions of the device space
and “knowledge” from the specified user space, which both need to be supplied by the
evaluator. Tool support for learning of “first time users” is provided by an interactive
simulation process.

Similar to ACT-R, the UM of the programmable modeling approach described in
[4], is based on SOAR production rules [19] and follows the assumption that human
users interact rationally.

While the simulation of explorative behavior with cognitive architectures aims at
highly verifiable models for user strategies, this also demands highly task-dependent
models. In difference to these approaches, the work described here is intended to
simulate explorative behavior with as little task-dependence as possible. As a result,
the simulated user strategy may not match as precisely, but may only approximate the
actual user strategy. In addition, parameters of our UM (e.g. for controlling deficits)
are more abstract than that of most UMs in cognitive architectures and GOMS-based
approaches. Yet, these differences to cognitive architectures allow for a broader area
of application and, most of all, further the main goal of our approach: the specific
application of uncovering usability problems in UIs by IT practitioners.

 Rule-Based Approach for Simulating Age-Related Usability Problems 153

3 Rule-Based User Simulations

The next sections describe our approach for interaction simulations. First, we describe
the interaction between UM and UI model and the concepts to achieve a goal driven
interaction. Then, we elaborate on the role of rules in the simulation: how they are
used to model variations in the simulation process based on characteristics of the user,
interaction history and the UI under evaluation.

3.1 Simulation Process

The interaction process between user model and UI model is primarily driven by
concepts of speech act theory [24]. Specifically, this means that interactions between
both models are characterized by information exchange, i.e. information is exchanged
in a question-answer structure by speech acts of request and inform. Accordingly, the
user model initially requires user task knowledge for this information exchange,
which needs to be specified by the practitioner in advance of each simulation. This
user task knowledge consists of information particles for a successful accomplishment
of the specific user task. Each information particle contains an attribute which
specifies the domain of the information and a value which defines a specific
assignment to that attribute, as for example the <attribute, value> pair: <action,
turn_on>.

For exchanging user task knowledge, UI elements – e.g. buttons and text fields –
are specified in the context of UI states as part of the UI model. These UI elements
offer input and output interactions, e.g. the label of a button represents an output
interaction and the click on that button is an input interaction. By means of these
specific interactions, the user model is able to receive information from the UI model
and to manipulate the UI model according to its own task knowledge. This procedure
is similar to the concept of label following [21] which serves as a basis in similar
approaches, e.g. [27]. As an illustration for such an interaction process, take a security
guard who asks (request) for a name and password and letting someone enter only
after validating the information that was provided (inform). A login screen of an
application serves an equivalent function by requesting users to enter their name and
password.

In the modeled interaction process, the UI facilitates the transfer of the requested
information by providing necessary UI elements. Accordingly, the UM attempts to
exchange user task knowledge with the UI model by employing input interactions
which best fit the completion of the task goal in each UI state.

In order to realize this goal-oriented process, the UM enters a reasoning phase (see
Fig. 1) during each step of the interaction process. In the reasoning phase the UI
state’s output and input interactions are processed, resulting in a selection of input
interactions that the UM determines to further the task completion. Then the UM
decides which action to take next, based on probability distributions (e.g. executing
an input interaction, “giving up”, or “asking for help”). The decision is highly
influenced by numerous dependencies between attributes of the UM and features of

154 A. Ruß et al.

the UI model. These dependencies are handled by employing a rule engine in each
interaction step. The rule engine triggers specific rules if their conditions are met.

The process of selecting input interactions is iterated until the task has been
fulfilled or the UM "gives up", e.g. if the UM is not able to find relevant input
interactions that correspond to the user task knowledge in the current UI state of the
simulation.

In the next section we describe the structure of these rules and their effect on the
interaction process in more detail.

3.2 Rule Definition

The rule engine calculates probability distributions that represent plausible behavioral
choices of the simulated user. The basic idea is to capture typical behaviors of specific
user groups in specific situations in a set of rule definitions. These rules are applied to
the interaction process and modify the probability that the simulated user behaves one
way or the other.

The rules follow a typical IF-THEN schema (see Listing 1): A single rule is
defined by a description of a specific situation with regard to a specific user and a
running system (condition) and a description of the typical reaction of the user when
confronted with the situation (consequence). During simulation, the rule engine
applies the rules according to their conditions (see Fig. 1). In this process, the UM
queries the rule engine which then determines the probabilities to be modified – and
also how they are modified – based on the current state: the rule engine checks the
rule conditions against the current properties of UI elements and attributes of the UM
and applies the probability modifications defined by the rules accordingly.

More specifically, in order to query the rule engine for the current simulation step,
the UM provides initial probabilities for the interactions that are applicable in the
current UI state (see Fig. 1). These initial probabilities may be, for instance, equally
distributed for all interactions, or the UM may have increased the probabilities for
some interactions that are considered to match the current task goal. We will not go
into further detail about the initial probabilities, since they are part of the UM’s
reasoning process and not the rule mechanism (see e.g. [9, 26]).

After applying the rules, the rule engine returns a probability distribution matrix
for all possible user interactions at the given system state of the UI model. This
probability distribution is used by the UM to probabilistically select an interaction.
Afterwards, the interaction is executed on the UI model and the simulation advances
to the next simulation step.

In the remainder of this section, we will describe the structure and definition of rules
in more detail. On an abstract level, we differentiate between three types of rules:

1. Interaction rules modify the interaction probability distribution matrix during
simulations. These rules influence the interaction selection of the UM – most
rules that are currently used in the MeMo workbench are interaction rules.

2. History rules are triggered by events – or sequences of events – during the
simulation and are strictly speaking an extension of interaction rules. Here,

 Rule-Based Approach for Simulating Age-Related Usability Problems 155

Fig. 2. Schema for XML rule definitions. DpprType is the main XML element that contains the
rule’s Declaration (required), Condition (optional, see sect. 3.2), and Consequence (required)
sections.

Listing 1. Example for a rule definition in XML format (for more details see Table 2)

<?xml version="1.0" encoding="UTF-8"
 standalone="yes"?>
<dppr xmlns="de/dfki/rules/template">
 <declaration>
 <name>Button with low contrast to button
 background, small …
 </name>
 <description>Rule fires … </description>
[…]
 <elementGroup>
 <ID>ButtonGr</ID>
 <type>BUTTON</type>
 <concreteQuantity>1</concreteQuantity>
 <detail>
 <attribute>labelContrast</attribute>
 <concreteValue>low</concreteValue>
 </detail>
 <detail>
 <attribute>fontsize</attribute>
 <concreteValue>small</concreteValue>
 </detail>
 </elementGroup>
 </declaration>
 <condition>
 <userCharacteristic>
 <attribute>vision</attribute>
 <concreteValue>bad</concreteValue>
 </userCharacteristic>
 </condition>
 <consequence>
 <elementRelativeProbability>
 <elementGroupID>ButtonGr</elementGroupID>
 <modifier>---</modifier>
 </elementRelativeProbability>
 </consequence>

User attribute condition

consequence

UI element conditions

156 A. Ruß et al.

events refer to property values of previous UI states, so rules of this category
modify probabilities depending on previous UI states of the simulation.

3. The third category of rules deals with the number of information particles that are
selected by the UM for information transfer in the current simulation step. This
type of rule is most relevant for SDS where more than one information particle
can be transferred from user to system by a single speech act (i.e. “filling input
slots of the SDS”).

The structure of rule definitions is specified in an XML Schema Document (XSD,

see Fig. 2). The top level structure divides a rule into three main sections, namely
declaration, condition and consequence.

In the declaration part, general information about the rule is stated. It allows
setting a name and a description for the rule. In addition, the relevant objects for the
rule’s application have to be declared: interaction widgets of a simulated UI form
element-groups that describe the (group of) UI elements in all necessary details. After
declaring element-groups, they can be referenced from the condition and consequence
part of the rule (by the element-group ID). The declaration of element-groups is an
implicit condition for their existence. In other words, a rule may only be triggered if –
in addition to the other conditions – there exists a matching element-group in the
current UI state.

The condition part limits the execution of rules according to the stated constraints.
Conditions may relate to

a) attributes of the UM (user characteristics):
The application of the rule depends on specific values, or a range of values of

a user attribute, e.g. that the attribute “vision” has the value “bad”.
b) previous events in the course of the simulation-run (history):

The application of the rule depends on specific values or a range of values of
properties in previous UI states. For each history condition (event), we need to
state (i) how many simulation steps back this condition refers to and (ii) the
property in question. The property has to be described in two separate detail-
statements: one stating the property and value (or range of values) this condition
refers to and one stating the element-group i.e. the “owner” of the property. For
example, that the rule depends on the fact, that in the previous simulation step
there was a SDS prompt that articulated a long output text, e.g. a condition
referring to the UI prompt property “numberOfSyllables” with “minQuantity” 30.

c) dependencies between element-groups (relation):
The application of the rule depends on the relation between declared element-

groups, e.g. that the property “size” of element-group A is greater than that of
element-group B.

It should be mentioned that the current implementation allows no conditions
concerning the non-existence of UI elements, e.g. a rule that depends on the non-
existence of a button with certain properties. However, this is no principle restriction
of the approach and will be addressed in future developments.

 Rule-Based Approach for Simulating Age-Related Usability Problems 157

Finally, the consequences part of a rule defines the effects of the rule on element-
groups. An effect may be either relative or absolute. Relative effects manipulate the
probability of the referenced element-group based on its current value. In contrast,
absolute effects overwrite the current probability value of the element-group.
Additionally, the effect may be restricted to a specific interaction of the element-
group, i.e. the rule may only modify the probability of the interaction “LeftClick”.

Table 1. Excerpt from the available UI properties and user attributes (only entries relevant for
the example in sect. 0 are listed here, for more details see e.g. [Error! Reference source not
found.]). The GUI property labelDistance is used for checkboxes, and conventional for icons.
The other GUI properties are used for annotating labels (links, icon-, and checkbox-labels).

Name Value Range
GUI Properties

contrast 5 levels
fontsize 5 levels
coding consistent, inconsistent
colorCoding true, false
underlineCoding true, false
boldFontCoding true, false
graphicalCoding true, false
layoutGroup [left,right,upper] navigation, content
labelDistance high, low
conventional true, false

User Attributes
vision good, bad
domainExpertise high, low

Currently the rule mechanism is implemented with the Java Rule Engine System

(JESS). In addition to a basic framework of JESS rules, the XSD rule definitions are
compiled into the system internal JESS representation. During simulation, the current
context description – i.e. the UI state and UM – are converted into JESS facts to allow
the rules access to them.

In difference to the JESS rules, the XSD-based syntax allows for more accessible
rules with regard to comprehension and manipulation. For example, the XSD format
can be used to automatically generate GUI editors so that practitioners who are
unfamiliar with XML can also work with the rules (e.g. using the Eclipse Modeling
Framework (EMF), see [1]).

4 Example

In the following section we will describe an artificial example to illustrate the rule
mechanism. For this example we use a minimal UI model consisting of one GUI
dialog. The dialog contains several GUI elements that were chosen to illustrate the
effect of rules caused by various different properties and values (see Fig. 3 and

158 A. Ruß et al.

Table 1). No user task knowledge is modeled in order to avoid increased or decreased
probabilities for GUI elements due to the UM’s reasoning phase: the input for the rule
engine is equally distributed and differences in the output reflect solely the influence
of the rule mechanism on the probabilities.

As example GUI dialog we use a Hyper Text Markup Language (HTML) web page
containing various style variations of web links, icons and checkboxes. Fig. 3 shows
the automatically imported UI model of the example web page: the type and locations
of links, icons and checkboxes are automatically detected and annotated. Other
properties of the GUI elements have to be manually annotated. Including some
additional modifications, it took us (i.e. skilled users) about 5 minutes to create the
final UI model for the example – excluding the time needed to create the HTML web
page. Table 1 shows an overview for the GUI properties as well the user attributes
that were manipulated when modeling the example. Besides the more obvious
modifications and annotations (Fig. 3), we added the text on the right hand side of the
2 checkboxes as their labels where the upper checkbox label (“wide distance”) has
high labelDistance and the lower one (“normal distance”) a low labelDistance. For
the icons we marked the one on the left as conventional (true) icon and the other icon
on the right as not conventional (false).

As UM, we modeled two different user groups – that of stereotypical “young
experts” and “older users” – by varying the 2 user attributes vision and
domainExpertise: the group for Experienced Users receives good vision and high
domainExpertise while the group for the Trust Guided Users, i.e. “old users”, get bad
vision and low domainExpertise.

For the rules that are used in this example, we draw on the current set that was
developed for the MeMo workbench. The relevant rules that modify the probability
distribution in the examples are listed in simplified form in Table 2: If the table row
contains effects for both user groups, this implies two rule definitions. Effects that
mark a relative increase of probabilities are marked with the symbol + and decreasing
effects are marked with -. The strength of the effect is marked using 1 to 3 of the
respective symbols for weak, medium, and strong effects. Some attributes in the
column GUI attribute conditions have two values assigned which is signified by the |
separator. In this case, the table row reflects (at least) two rule definitions in which all
other attribute-value pairs stay constant for both rules except for the two-valued
attribute. Since each row may reflect more than one rule definition, the last table
column gives the amount of rule definitions that the corresponding row describes; the
table summarizes 35 rules.

The corresponding rule definitions in their XML representation have similar form
and complexity as the example rule in Listing 1. The rules described in Table 2 were
derived from user experiments for web site navigating; they are based on
experimental data augmented with expert knowledge (in analogy to [8]). While in
principle the rule mechanism is open for MeMo workbench users to modify and
create new rules, our goal is to establish a base set of broadly applicable and reusable
rules so that users of the workbench do not have to create their own rules (see also
sect. 5.2). For this reason, we used preexisting rules and do not report details
concerning the time involved in creating the rules.

 Rule-Based Approach for Simulating Age-Related Usability Problems 159

Table 2. Overview of rules that are used for the example. The columns Experienced and Trust
Guided mark the effect of rules for the respective groups where vis + and exp + correspond to
the user attribute conditions of vision = good and domainExprtise = high. Similarly, vis - and
exp - correspond to the conditions vision = bad and domainExpertise = low.

Fig. 3. Automatically imported UI model of a web page with annotated locations for GUI
elements (hyper links, icons, checkboxes)

Element
Type

GUI Attribute Conditions Experienced
vis + | exp +

Trust Guided
vis - | exp -

Rule
Definitions

Link colorCoding = true, layoutGroup = content | left_navigation + + + + 4
contrast = high, layoutGroup = content + + + + + 2
contrast = low, layoutGroup = content - - - - 2
contrast = low, layoutGroup = left_navigation NA - - - 1
fontsize = big, layoutGroup = content | left_navigation + + + + + + 4
fontsize = normal, layoutGroup = content | left_navigation + + + NA 2
fontsize = small, layoutGroup = content - - - - 2
graphicalCoding = true, layoutGroup = content | left_navigation + + + + + 4
underlineCoding = true, layoutGroup = left_navigation NA - 1
underlineCoding = true, layoutGroup = content | left_navigation + + + + 4
contrast = low - - 1
contrast = medium - 1
fontsize = small - - - 2

Icon conventional = false, layoutGroup = content - - NA 1
conventional = true, layoutGroup = left_navigation + + + NA 1

Check
Box

labelDistance = high, layoutGroup = content NA - - - 1
labelDistance = low, layoutGroup = content NA - - 1
layoutGroup = content - - - NA 1

160 A. Ruß et al.

Fig. 4. Probabilities modified by the rule engine superposing a screenshot of the example web
page: (a) Experienced Users, (b) Trust Guided Users. Note that the probabilities for the
checkboxes and their labels – as well as for the icons and their labels – are shown separately;
the according total probability is the sum of the probabilities of the element and its label.

Fig. 4 shows the probabilities returned by the rule engine displayed over a
screenshot of the example web page. The figure shows the probabilities for the icon-
links and their labels, as well the checkboxes and their labels separately, i.e. the total
probability for the icon-links and the checkboxes is the sum of their own probability
and the probability of the corresponding label. In Fig. 4 we can see distinct
differences for the probabilities in the lower right group of GUI elements (with low
contrast, small font size properties) between the 2 modeled user groups as well as for
the 2 checkboxes. The diagram in Fig. 5 highlights the differences between the two
modeled user groups with the highest difference on the left. The diagram confirms the
impression from Fig. 4, that the modeled “older users” are more likely to leave GUI
elements with low contrast and small font size unused and “profit” more from large
font sizes, while the “young experts” tend to ignore checkboxes for the navigation
task. Also, in difference to the “old users”, the “young experts” make a clear
distinction between conventional and unconventional icons.

The resulting probabilities for high contrast links in the content area show that “old
users” are less likely to use them. This difference is caused by the second rule in
Table 2. The rule definition is based on the analysis of a web navigation experiment
(analogous to [8]) that states that Experienced Users are more likely than Trust
Guided Users to use a high contrast link in the content area. A possible explanation
could be that, on the one hand, the visually impaired Trust Guided Users may still
profit more than the unimpaired group from the high contrast in the sense of
perceptual improvement. But, that on the other hand, the expert users, due to their
experience, interpret high contrast links as especially important and consequently are
more likely to use them.

In summary, the example illustrates that the MeMo workbench supports rapid
creation of UI models and UMs reflecting different user groups. Additionally, the rule
mechanism applies complex modifications to the interaction probabilities depending
on the UI element properties and the UM attributes for the modeled groups.

(a) (b)

 Rule-Based Ap

Fig. 5. The resulting probabil
Guided Users for GUI elemen
between the groups is to the l
elements of the same type (e.
shown in this diagram.

5 Discussion and Fut

The main intention of th
practitioners to test their a
Therefore, we describe me
interaction for the purpose
rules take user attributes an
state or from previous sta
modify the probability-to-b

In [9] the modeling of a
data gives support for the
modeling and predicting
concerning the application
investigation and are therefo

5.1 Description Level of R

The description level of th
attributes and (observable)
rules take behavioristic obs
effect.

Still there is some varia
validity of simulations as w
by simulations: rules can d
contrast perception) as we
technology). Accordingly,

pproach for Simulating Age-Related Usability Problems

lities of the two modeled user groups of Experienced and T
nts in the example. The GUI element with the highest differe
left, and the rest is ordered correspondingly. When several G
g. “normal link”) have the same probabilities, only one entr

ture Work

he approach described in this paper is to enable
pplications in an early stage of the development proc
echanisms to define and execute rules on simulated u
e of automated usability evaluation. Conditions of th

nd UI element properties from the current simulated syst
ates into account. Consequences of the rules are used
e-used of UI elements.
software system and replication of observed experimen

 general feasibility of the described rule mechanism
usability problems. However, a number of questi

n of the rule mechanism and its advantages need furt
fore discussed in more detail in the following.

Rules

he rules is rather abstract: rules operate on (abstract) u
 UI element properties. In terms of the “real world”,
servable properties into account in order to determine th

ance for the level of abstraction that directly affects
well as the kinds of usability questions that can be answe

raw on low-level user attributes (e.g. the user’s lumina
ell as highly abstract attributes (e.g. the user’s affinity
analyses of rules that fired during simulation allow o

161

Trust
ence
GUI
ry is

IT
ess.
user
hese
tem
d to

ntal
for

ions
ther

user
the

heir

the
ered
ance

for
only

162 A. Ruß et al.

inferences – regarding usability problems and solutions – on the same abstraction
level as the rules that were used for the simulation.

Rule mechanisms for similar applications, i.e. for the simulation of exploratory
behavior, are mostly employed in the context of cognitive architectures. In general,
rule mechanisms in cognitive architectures are less abstract. They are mostly
concerned with inner cognitive processes, i.e. they operate on and influence inner
cognitive properties and variables that are not directly observable. As a result,
applying cognitive architectures in the context of usability simulations usually
requires very specific and task dependent rules. These specific rules function as
hypothesis for user strategies and – if sufficiently verified against experimental data –
can provide explanations for user behavior and for the cause of non-optimal user
decisions that may signify usability problems.

In contrast, the more abstract rules from our approach relate usability problems to a
set of user attributes and UI properties. Here we argue that in the context of
uncovering usability problems, this is usually sufficient information to investigate and
fix problems with the UI and underlying tasks. Especially under the premise that a
high abstraction level makes rules more readily intelligible to non-experts of cognitive
science and can thus provide sufficient information for IT practitioners to further
investigate highlighted usability issues. This can be achieved by analyzing aberrant
task solutions (with regard to the optimal solution) and examining the rules that
caused aberrations which then provide information for possible usability problems on
the same description level as they were specified.

Currently, we also explore, if and how inner cognitive attributes of the UM can be
integrated into our rule mechanism. In an experimental implementation, rules can
access and manipulate intentions and Dynamic User Attributes (DUA). In difference
to “normal” static user attributes (e.g. visual acuity, tremor, education), DUA
(e.g. attention, irritation, time pressure) can change their value in the course of the
interaction simulation. For instance, a history rule may state that the DUA irritation
will rise, when in a certain sequence of interactions, the UM fails to find a particular
information particle. Or, during a simulation, the UM may first have the intention to
accomplish the given task, but then temporarily change the intention to ask for help,
due to a rule that checks, if the irritation of the UM surpasses a certain threshold.

5.2 Creating Rule Sets

A basic assumption in our approach is that the complex influences of properties and
attributes on the probability distribution can be modeled using a large number of rules
which themselves are comparatively simple (see example in Listing 1). The creation
of a rule set that reflects complex influences can be managed by iteratively extending
the set and adding individual comprehensible rules.

However, with increasing number of rules, their combined effects become harder
to judge by practitioners when extending the rule set: given a set of attribute and
property values, it becomes harder to foresee the effect of the rules on the probability
distribution. For small rule sets or simulations that are intended to approximate user
behavior only roughly, this manual process may still be feasible. In order to reach

 Rule-Based Approach for Simulating Age-Related Usability Problems 163

sufficiently faithful and plausible simulations, considerable effort to validate the
effect strength of rule definitions is necessary, e.g. by using machine learning for
deriving the strength from experimental data. Although we were able to apply the
GUI-related rule set and make predictions for 3 UI models in the context of the
SmartSenior3 project, so far we have not been able to validate the GUI-related rule set
against experimental results due to lack of usable experimental data from user tests.

A further problem for large rule sets is that modeling the dependencies between
properties and between attributes quickly becomes cumbersome. In principle, each
possible value of the dependent attribute – or property – requires its own rule definition,
potentially resulting in an exponential number of rules for representing the dependency.

There is no tool support yet, but for the most part this could be overcome by
allowing the practitioner to specify a condensed definition of the dependency and then
use this to compile the necessary rule definitions.

Despite these issues, we propose that the high abstraction level of the rules makes
them good candidates to be used and reused in simulations for different UIs: They
exhibit a comprehensible syntax and work with generic definitions of UI elements and
user attributes, which offer the possibility to adapt them to new areas of application.
However, specific criteria that allow deciding if a specific rule can be reused in other
simulations still need further investigation.

Due to these considerations, we are planning to establish a base set of validated
and reusable rules that are applicable to a wide variety of UIs and that provide
reasonable results for uncovering usability problems with these UIs.

5.3 Interpretation and Use of Distributions

In terms of the Model Human Processor (MHP, see [5]), the use of the rule engine is
applied during the cognitive processing phase. The modified probability distribution
is then directly used to compute the UM’s interaction decision during that phase.

Several studies exploring the effect of age in web browsing tasks suggest that the
difference between younger and older users is less pronounced in task success but
more in completion time and necessary steps [6, 10, 12, 28].

Consequently it seems more likely, that e.g. GUI elements with low contrast have
not per se a lower probability to be used, but are less likely to be looked at and
therefore evaluated. For instance, such UI elements might not be perceived due to
“overlooking” or prematurely selecting another interaction before inspecting all
available UI elements. In terms of the probabilistic simulation process, this implies
that first a probability distribution for the perception is calculated and then one for the
cognitive processing.

As a work in progress, we extended the MeMo workbench to incorporate three
processing phases following the MHP for perception, cognition, and motion [23, 26].
As a result, probability distributions calculated by the rule engine employing
appropriate sets of rules are used separately in the different phases. This allows
modeling sequential dependencies more naturally than using a single probability
distribution for calculating the UM’s decision making.

3 http://www.smart-senior.de/enEN/

164 A. Ruß et al.

6 Conclusion

In this article, we presented our ongoing work on model-based automated usability
evaluations with the help of the MeMo workbench. We focused on the description of
user simulations that are affected by deficits characteristic for old age. The main goal
of these simulations is to find usability problems related to these specific needs.
Therefore, we have incorporated a rule-based approach which employs user attributes
and UI properties in rules for calculating probability distributions. These probabilities
are then used to determine user interactions of exploratory behavior. In difference to
existing approaches, e.g. cognitive architectures, the rules capture more general
aspects of usability knowledge. Accordingly, our approach is less task-dependent and
can be transferred to other tasks and even UIs more easily while maintaining
reasonable precise predictions about usability problems.

We conclude by asserting that our approach, as well as other existing approaches,
cannot replace user testing. Instead, our approach aims to considerably reduce time
and effort by enabling early simulations and provide early usability feedback for
practitioners during the UI development.

Acknowledgments. This paper presents work of the SmartSenior project funded by
the German Federal Ministry of Education and Research (BMBF, FKZ 16KT0902).
The authors gratefully acknowledge the implementations and inventions contributed
to the MeMo workbench by Klaus-Peter Engelbrecht, Jens Haupert, Britta Hofmann,
Marc Hümmer, Maximilian Kern, Dorothea Kugelmeier, Wai-Lung Lee, Stefan
Schaffer, Stefan Schmidt, Matthias Schulz, Peter Steinnökel, and Carsten Wirth.

References

[1] Generating an EMF Model using XML Schema (XSD) (May 2008),
http://help.eclipse.org/ganymede/topic/
org.eclipse.emf.doc/tutorials/xlibmod/xlibmod.html
(accessed August 26, 2011)

[2] Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An
integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)

[3] Biswas, P., Robinson, P.: Automatic evaluation of assistive interfaces. In: Proc. 13th
International IUI, pp. 247–256. ACM (2008)

[4] Blandford, A., Butterworth, R., Curzon, P.: Models of interactive systems: a case study
on programmable user modelling. Int. J. Hum.-Comput. Stud. 60(2), 149–200 (2004)

[5] Card, S., Moran, T., Newell, A.: The psychology of human-computer interaction. L.
Erlbaum Associates, Hillsdale (1983)

[6] Chin, J., Fu, W.T., Kannampallil, T.: Adaptive information search: age-dependent
interactions between cognitive profiles and strategies. In: Proc. of the 27th International
CHI, pp. 1683–1692. ACM Press, New York (2009)

[7] Dickinson, A., Arnott, J., Prior, S.: Methods for human-computer interaction research
with older people. Behaviour & Information Technology 26(4), 343–352 (2007)

 Rule-Based Approach for Simulating Age-Related Usability Problems 165

[8] Engelbrecht, K.P., Kruppa, M., Möller, S., Quade, M.: MeMo workbench for semi-
automated usability testing. In: Proc. 9th Interspeech, Australia, pp. 1662–1665 (2008)

[9] Engelbrecht, K.P., Quade, M., Möller, S.: Analysis of a new simulation approach to
dialog system evaluation. Speech Communication 51(12), 1234–1252 (2009)

[10] Fairweather, P.G.: Influences of Age and Experience on Web-Based Problem Solving
Strategies. In: Stephanidis, C. (ed.) UAHCI 2009. LNCS, vol. 5614, pp. 220–229.
Springer, Heidelberg (2009)

[11] Fu, W., Pirolli, P.: Snif-act: A cognitive model of user navigation on the world wide web.
Human-Computer Interaction 22(4), 355–412 (2007)

[12] Grahame, M., Laberge, J., Scialfa, C.: Age differences in search of web pages: The
effects of link size, link number, and clutter. Human Factors: The Journal of the Human
Factors and Ergonomics Society 46(3), 385 (2004)

[13] Gregor, P., Newell, A.: Designing for dynamic diversity: making accessible interfaces for
older people. In: Workshop on Universal Accessibility of Ubiquitous Computing: Proc.
of the 2001 EC/NSF Workshop on Universal Accessibility of Ubiquitous Computing:
Providing for the Elderly. Association for Computing Machinery, New York (2001)

[14] Ivory, M., Hearst, M.: The state of the art in automating usability evaluation of user
interfaces. ACM Computing Surveys (CSUR) 33(4), 470–516 (2001)

[15] Jameson, A., Mahr, A., Kruppa, M., Rieger, A., Schleicher, R.: Looking for Unexpected
Consequences of Interface Design Decisions: The MeMo Workbench. In: Winckler, M.,
Johnson, H. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp. 279–286. Springer,
Heidelberg (2007)

[16] John, B.E., Kieras, D.E.: The goms family of user interface analysis techniques:
comparison and contrast. ACM Trans. Comput. 3(4), 320–351 (1996)

[17] Kasik, D., George, H.: Toward automatic generation of novice user test scripts. In: Proc.
of the SIGCHI Conference, pp. 244–251. ACM (1996)

[18] Kieras, D.E., Meyer, D.E.: An overview of the epic architecture for cognition and
performance with application to human-computer interaction. Hum.-Comput.
Interact. 12(4), 391–438 (1997)

[19] Newell, A.: Unified theories of cognition. Harvard University Press, Cambridge (1990)
[20] Palanque, P., Basnyat, S.: Task patterns for taking into account in an efficient and

systematic way both standard and erroneous user behaviours. Human Error, Safety and
Systems Development, 109–130 (2004)

[21] Rieman, J., Young, R.M., Howes, A.: A dual-space model of iteratively deepening
exploratory learning. International Journal of Human-Computer Studies 44(6), 743–775
(1996)

[22] Rogers, W., Fisk, A.: Toward a psychological science of advanced technology design for
older adults. The Journals of Gerontology Series B: Psychological Sciences and Social
Sciences 65(6), 645 (2010)

[23] Ruß, A.: Modeling Visual Attention for Rule-Based Usability Simulations of Elderly
Citizen. In: Harris, D. (ed.) Engin. Psychol. and Cog. Ergonomics, HCII 2011. LNCS,
vol. 6781, pp. 72–81. Springer, Heidelberg (2011)

[24] Searle, J.R.: Speech acts: An essay in the philosophy of language. Cambridge University
Press (1969)

[25] Sears, A., Jacko, J.A.: The Human-Computer Interaction Handbook, 2nd edn. L. Erlbaum
Associates (2007)

166 A. Ruß et al.

[26] Steinnökel, P., Scheel, C., Quade, M., Albayrak, S.: Towards an enhanced semantic
approach for automatic usability evaluation. In: Proc. of the Computational Linguistics-
Applications Conference (October 2011) (accepted)

[27] Teo, L., John, B.E.: Cogtool-explorer: towards a tool for predicting user interaction. In:
CHI 2008 Extended Abstracts on Human Factors in Computing Systems, CHIEA 2008,
pp. 2793–2798. ACM, New York (2008)

[28] Wagner, N., Hassanein, K., Head, M.: Review: Computer use by older adults: A multi-
disciplinary review. Comput. Hum. Behav. 26, 870–882 (2010)

	Rule-Based Approach for Simulating Age-Related Usability Problems
	Introduction
	Related Work
	Rule-Based User Simulations
	Simulation Process
	Rule Definition

	Example
	Discussion and Future Work
	Description Level of Rules
	Creating Rule Sets
	Interpretation and Use of Distributions

	Conclusion
	References

