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Abstract. Ambient Assisted Living requires easy to use interfaces, making 
usability a critical feature. Because usability evaluations are resource and time 
consuming, several automation efforts have been made, one of which is the 
simulation of users interacting with UIs. In this article, we present ongoing 
work of a tool for automated usability simulations that allows simulating age-
related deficits. The tool is specifically intended to be used by IT practitioners, 
i.e. in difference to cognitive architectures that allow similar simulations, this 
tool does not require extensive knowledge in cognitive science. A core 
component of the simulation tool is its rule-based User Model (UM). During a 
simulated interaction, the UM selects actions causing a model of the UI to 
change states until a specified task goal is satisfied or the UM “gives up”. 
Interactions of the UM are calculated from probabilities which are informed by 
rules drawing on user and UI attributes. Using a Monte Carlo approach, the 
simulation is iterated, resulting in a set of task solutions where non-optimal 
solutions may indicate usability problems. By analyzing which rules led the 
UM to interact non-optimally, our approach can offer hints on how to improve 
the UI. While our approach cannot render user-based evaluations unnecessary, 
our aim is to substantially reduce the effort involved in usability testing of UIs 
as well as to provide an automated tool that can be used early on in the 
development process. 

1   Introduction 

Ambient Assisted Living (AAL) solutions are often highly distributed and aim at 
integration into the “natural” environment of their users. As a result, they exhibit a 
wide variety of User Interfaces (UI), e.g. showing information on video screens and 
ambient displays, or providing control through touch displays and Speech Dialogue 
Systems (SDS). Easy to use UIs are a central aspect for AAL solutions which makes 
usability a critical feature. But conducting usability evaluations is a time and resource 
consuming process. This is especially true, if the system under evaluation is aimed to 
be used by elderly people as in the case of the majority of AAL systems. Not only is 
the group of elderly users more diverse than younger users – showing significant 
differences in their sensory, motor and cognitive abilities as well as in their 
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knowledge and attitudes towards technology – but due to their deficits, lifestyles, and 
motivations they are also harder to recruit for usability tests (see e.g. [7, 13, 22]). 

One way to reduce both costs and effort for evaluations is automated usability 
testing by model-based evaluations that use simulations [14]. This article describes 
ongoing work of a rule-based User Model (UM) for simulating user interactions that 
are affected by deficits e.g. impaired vision – and general age-related characteristics 
(e.g. vision, hearing, tremor, affinity for technology, computer anxiety, domain 
expertise, cognitive skill; see [9] for a detailed list) – which can bear significant 
impact on interactions with UIs. An implementation of our UM is used in the MeMo 
workbench [8], which is a prototype for rule-based simulations of user interactions for 
conducting automated usability evaluations. The areas of application include 
evaluation of classic window-based UIs1 , web-based UIs and voice-based UIs2. By 
these means, the approach is also intended to be generally feasible to model the use of 
different interaction devices. Moreover, the workbench is aimed to enable usage by 
practitioners that are involved in the creation of UIs. Therefore, controlling 
simulations for (age-related) impairments is intended to be mostly intuitive (e.g. by 
specifying “the user has good/bad visual perception”) and does not require the 
practitioner to have expert knowledge in cognitive science. Our UM is designed to be 
as task-independent as possible in order to reduce the cost and effort for its 
application: to find usability problems in different UIs and with different tasks. 
Similarly, our model is intended to facilitate the analysis of simulations, e.g. finding 
user-specific usability issues or even provide critique [14], i.e. give suggestions for 
improving the UI by highlighting interaction problems. 

 

 

Fig. 1. The general process for employing the rule engine during interaction simulations: The 
rule engine manipulates the probabilities for potential UM interactions. The UM decides its 
next step probabilistically according to the distribution. Note that conceptually, the rule set is a 
component of the UM, since the caused probability manipulations are an integral part of the 
UM’s decision making process. 

                                                           
1 Windows, Icons, Menus, and Pointing devices (WIMP). 
2 Speech Dialog Systems (SDS). 
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Rule-based usability simulations in MeMo follow a Monte Carlo approach: 
repeatedly, user interaction is simulated with a given goal of solving a defined user 
task. Each single iteration of this interaction simulation starts in a specified state of 
the UI and continues until the task is solved or the UM “gives up”. Until then, in each 
step, probability distributions are calculated in order to decide the next action of the 
UM and thus causing the UI model to change to the next state. The probability 
distributions are calculated using a set of rules, in which for example, a rule 
concerning the Graphical UI (GUI) may state that “if button X has a high contrast, 
then increase its probability-to-be-used”. Rules are specified with the help of an 
Extensible Markup Language (XML) syntax, which allows the set of rules to be easily 
extended and modified. 

The simulation results give multiple task-solutions which potentially reveal a 
broader spectrum of usability problems as compared to a single task-solution, e.g. 
expert interaction. In addition, the frequency of specific task-solutions is a further 
indicator for their importance. Finally, by analyzing the applied rules in each iteration 
step, semantically relevant reasons for the UM’s choice can be provided. This allows 
deriving hints on how to improve the UI. 

In [15] former work on the MeMo workbench is described based on a correct 
solution path for specified user tasks, which had to be provided by the practitioner. In 
this approach, errors are simulated by automatically introducing deviations from the 
correct solution path and error corrections are simulated by returning to this correct 
path. This strategy of producing usability problems shares similarities with 
approaches described in [20] and [17]. However, it is limited in that only foreseen 
error types at certain key points in the task solution can be simulated. In difference, 
the current approach described in this article, computes correct solution paths 
automatically but only uses them as post hoc measure for the correctness (i.e. 
determining deviations) and the successful completion of simulated solutions (i.e. 
reaching the goal condition). 

The current concept and architecture of the MeMo workbench were introduced in 
[8] including a brief description of the rule mechanism and giving a short summary 
for using the workbench to replicate an experiment in which a SDS was tested. The 
set of rules was derived from user experiments and literature research. The article [9] 
describes the modeling of a SDS using the workbench. With addition of a statistical 
model, experimental data is replicated in simulations. The article also features a short 
high-level description for the rule mechanism. 

In the following article we discuss this rule mechanism of the MeMo Workbench 
in more detail. First, we will give a short summary of the simulation process (for a 
more detailed discussion we refer to [9]). Then we describe the rule mechanism 
illustrated by an example and followed by a discussion. 

2   Related Work 

Automated usability evaluation is usually carried out with computer-aided tools and 
models of the intended user and the system to be evaluated. In most approaches the 
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evaluation process consists of a simulation of user interactions while performing 
specified tasks. With GOMS-based methods [16], evaluation results typically provide 
execution time predictions and learning rates. Cognitive architectures [25], e.g. ACT-
R [2] and EPIC [18], allow creating more detailed and consistent models of human 
information processing, e.g. for uncovering cognitive load. However, these 
simulations are highly task dependent and the creation of models usually requires 
extensive knowledge in the domain of cognitive modeling.  

CogTool [25] mitigates the effort involved in developing specialized ACT-R 
models. A model representation for the user interaction is derived from input 
sequences which a practitioner demonstrates on a mock-up of the UI. Then CogTool 
compiles and executes an ACT-R model for expert interaction, i.e. an ideal interaction 
path for the task is simulated. This primarily allows evaluating the efficiency (“how 
long does it take?”) for the demonstrated task solution. Deviations from the 
demonstrated interaction path are not considered. This is addressed by an extension to 
CogTool, the CogTool-explorer [27]. Building on the work of SNIF-ACT [11], 
CogTool-explorer implements a model for information seeking behavior that uses a 
label-following strategy [21] driven by semantic similarity measures.  

Similarly, MeMo [8] addresses the simulation of exploratory user behavior, i.e. 
simulations of users finding different task-solutions. This allows investigating 
efficacy (“is it possible to fulfill the task?”) as well as efficiency (“how many steps 
are needed?”). UI models are created by the practitioner, which may be based on real 
systems or early prototypes. MeMo also provides an import-feature for web pages 
which allows creating the required UI elements automatically, while the interaction 
logic needs to be added afterwards. Due to the nature of exploratory behavior, time 
prediction is not an integral feature of MeMo and thus other tools as, for example, 
CogTool, currently are more appropriate for predicting execution time of tasks.  

In [3] a simulator is presented that aims specifically at  the evaluation of assistive 
user interfaces by predicting likely interaction patterns for disabled and able-bodied 
users. The simulation is based on mappings between descriptions of the device space 
and “knowledge” from the specified user space, which both need to be supplied by the 
evaluator. Tool support for learning of “first time users” is provided by an interactive 
simulation process. 

Similar to ACT-R, the UM of the programmable modeling approach described in 
[4], is based on SOAR production rules [19] and follows the assumption that human 
users interact rationally. 

While the simulation of explorative behavior with cognitive architectures aims at 
highly verifiable models for user strategies, this also demands highly task-dependent 
models. In difference to these approaches, the work described here is intended to 
simulate explorative behavior with as little task-dependence as possible. As a result, 
the simulated user strategy may not match as precisely, but may only approximate the 
actual user strategy. In addition, parameters of our UM (e.g. for controlling deficits) 
are more abstract than that of most UMs in cognitive architectures and GOMS-based 
approaches. Yet, these differences to cognitive architectures allow for a broader area 
of application and, most of all, further the main goal of our approach: the specific 
application of uncovering usability problems in UIs by IT practitioners. 
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3   Rule-Based User Simulations 

The next sections describe our approach for interaction simulations. First, we describe 
the interaction between UM and UI model and the concepts to achieve a goal driven 
interaction. Then, we elaborate on the role of rules in the simulation: how they are 
used to model variations in the simulation process based on characteristics of the user, 
interaction history and the UI under evaluation. 

3.1   Simulation Process 

The interaction process between user model and UI model is primarily driven by 
concepts of speech act theory [24]. Specifically, this means that interactions between 
both models are characterized by information exchange, i.e. information is exchanged 
in a question-answer structure by speech acts of request and inform. Accordingly, the 
user model initially requires user task knowledge for this information exchange, 
which needs to be specified by the practitioner in advance of each simulation. This 
user task knowledge consists of information particles for a successful accomplishment 
of the specific user task. Each information particle contains an attribute which 
specifies the domain of the information and a value which defines a specific 
assignment to that attribute, as for example the <attribute, value> pair: <action, 
turn_on>.  

For exchanging user task knowledge, UI elements – e.g. buttons and text fields – 
are specified in the context of UI states as part of the UI model. These UI elements 
offer input and output interactions, e.g. the label of a button represents an output 
interaction and the click on that button is an input interaction. By means of these 
specific interactions, the user model is able to receive information from the UI model 
and to manipulate the UI model according to its own task knowledge. This procedure 
is similar to the concept of label following [21] which serves as a basis in similar 
approaches, e.g. [27]. As an illustration for such an interaction process, take a security 
guard who asks (request) for a name and password and letting someone enter only 
after validating the information that was provided (inform). A login screen of an 
application serves an equivalent function by requesting users to enter their name and 
password.  

In the modeled interaction process, the UI facilitates the transfer of the requested 
information by providing necessary UI elements. Accordingly, the UM attempts to 
exchange user task knowledge with the UI model by employing input interactions 
which best fit the completion of the task goal in each UI state.  

In order to realize this goal-oriented process, the UM enters a reasoning phase (see 
Fig. 1) during each step of the interaction process. In the reasoning phase the UI 
state’s output and input interactions are processed, resulting in a selection of input 
interactions that the UM determines to further the task completion. Then the UM 
decides which action to take next, based on probability distributions (e.g. executing 
an input interaction, “giving up”, or “asking for help”). The decision is highly 
influenced by numerous dependencies between attributes of the UM and features of 
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the UI model. These dependencies are handled by employing a rule engine in each 
interaction step. The rule engine triggers specific rules if their conditions are met. 

The process of selecting input interactions is iterated until the task has been 
fulfilled or the UM "gives up", e.g. if the UM is not able to find relevant input 
interactions that correspond to the user task knowledge in the current UI state of the 
simulation.  

In the next section we describe the structure of these rules and their effect on the 
interaction process in more detail. 

3.2   Rule Definition 

The rule engine calculates probability distributions that represent plausible behavioral 
choices of the simulated user. The basic idea is to capture typical behaviors of specific 
user groups in specific situations in a set of rule definitions. These rules are applied to 
the interaction process and modify the probability that the simulated user behaves one 
way or the other. 

The rules follow a typical IF-THEN schema (see Listing 1): A single rule is 
defined by a description of a specific situation with regard to a specific user and a 
running system (condition) and a description of the typical reaction of the user when 
confronted with the situation (consequence). During simulation, the rule engine 
applies the rules according to their conditions (see Fig. 1). In this process, the UM 
queries the rule engine which then determines the probabilities to be modified – and 
also how they are modified – based on the current state: the rule engine checks the 
rule conditions against the current properties of UI elements and attributes of the UM 
and applies the probability modifications defined by the rules accordingly. 

More specifically, in order to query the rule engine for the current simulation step, 
the UM provides initial probabilities for the interactions that are applicable in the 
current UI state (see Fig. 1). These initial probabilities may be, for instance, equally 
distributed for all interactions, or the UM may have increased the probabilities for 
some interactions that are considered to match the current task goal. We will not go 
into further detail about the initial probabilities, since they are part of the UM’s 
reasoning process and not the rule mechanism (see e.g. [9, 26]). 

After applying the rules, the rule engine returns a probability distribution matrix 
for all possible user interactions at the given system state of the UI model. This 
probability distribution is used by the UM to probabilistically select an interaction. 
Afterwards, the interaction is executed on the UI model and the simulation advances 
to the next simulation step. 

In the remainder of this section, we will describe the structure and definition of rules 
in more detail. On an abstract level, we differentiate between three types of rules:  

1. Interaction rules modify the interaction probability distribution matrix during 
simulations. These rules influence the interaction selection of the UM – most 
rules that are currently used in the MeMo workbench are interaction rules.  

2. History rules are triggered by events – or sequences of events – during the 
simulation and are strictly speaking an extension of interaction rules. Here, 
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Fig. 2. Schema for XML rule definitions. DpprType is the main XML element that contains the 
rule’s Declaration (required), Condition (optional, see sect. 3.2), and Consequence (required) 
sections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Listing 1. Example for a rule definition in XML format (for more details see Table 2) 
 

<?xml version="1.0" encoding="UTF-8"
      standalone="yes"?> 
<dppr xmlns="de/dfki/rules/template"> 
  <declaration> 
    <name>Button with low contrast to button  
          background, small … 
    </name> 
    <description>Rule fires … </description> 
[…] 
    <elementGroup> 
      <ID>ButtonGr</ID> 
      <type>BUTTON</type> 
      <concreteQuantity>1</concreteQuantity> 
      <detail> 
        <attribute>labelContrast</attribute> 
        <concreteValue>low</concreteValue> 
      </detail> 
      <detail> 
        <attribute>fontsize</attribute> 
        <concreteValue>small</concreteValue> 
      </detail> 
    </elementGroup> 
  </declaration> 
  <condition> 
    <userCharacteristic> 
      <attribute>vision</attribute> 
      <concreteValue>bad</concreteValue> 
    </userCharacteristic> 
  </condition> 
  <consequence> 
    <elementRelativeProbability> 
      <elementGroupID>ButtonGr</elementGroupID> 
      <modifier>---</modifier> 
    </elementRelativeProbability> 
  </consequence> 

User attribute condition 

consequence 

UI element conditions
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events refer to property values of previous UI states, so rules of this category 
modify probabilities depending on previous UI states of the simulation. 

3. The third category of rules deals with the number of information particles that are 
selected by the UM for information transfer in the current simulation step. This 
type of rule is most relevant for SDS where more than one information particle 
can be transferred from user to system by a single speech act (i.e. “filling input 
slots of the SDS”). 

 
The structure of rule definitions is specified in an XML Schema Document (XSD, 

see Fig. 2). The top level structure divides a rule into three main sections, namely 
declaration, condition and consequence. 

In the declaration part, general information about the rule is stated. It allows 
setting a name and a description for the rule. In addition, the relevant objects for the 
rule’s application have to be declared: interaction widgets of a simulated UI form 
element-groups that describe the (group of) UI elements in all necessary details. After 
declaring element-groups, they can be referenced from the condition and consequence 
part of the rule (by the element-group ID). The declaration of element-groups is an 
implicit condition for their existence. In other words, a rule may only be triggered if – 
in addition to the other conditions – there exists a matching element-group in the 
current UI state. 

The condition part limits the execution of rules according to the stated constraints. 
Conditions may relate to 

a) attributes of the UM (user characteristics): 
The application of the rule depends on specific values, or a range of values of 

a user attribute, e.g. that the attribute “vision” has the value “bad”. 
b) previous events in the course of the simulation-run (history): 

The application of the rule depends on specific values or a range of values of 
properties in previous UI states. For each history condition (event), we need to 
state (i) how many simulation steps back this condition refers to and (ii) the 
property in question. The property has to be described in two separate detail-
statements: one stating the property and value (or range of values) this condition 
refers to and one stating the element-group i.e. the “owner” of the property. For 
example, that the rule depends on the fact, that in the previous simulation step 
there was a SDS prompt that articulated a long output text, e.g. a condition 
referring to the UI prompt property “numberOfSyllables” with “minQuantity” 30. 

c) dependencies between element-groups (relation):  
The application of the rule depends on the relation between declared element-

groups, e.g. that the property “size” of element-group A is greater than that of 
element-group B.  

It should be mentioned that the current implementation allows no conditions 
concerning the non-existence of UI elements, e.g. a rule that depends on the non-
existence of a button with certain properties. However, this is no principle restriction 
of the approach and will be addressed in future developments. 
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Finally, the consequences part of a rule defines the effects of the rule on element-
groups. An effect may be either relative or absolute. Relative effects manipulate the 
probability of the referenced element-group based on its current value. In contrast, 
absolute effects overwrite the current probability value of the element-group. 
Additionally, the effect may be restricted to a specific interaction of the element-
group, i.e. the rule may only modify the probability of the interaction “LeftClick”. 

Table 1. Excerpt from the available UI properties and user attributes (only entries relevant for 
the example in sect. 0 are listed here, for more details see e.g. [Error! Reference source not 
found.]). The GUI property labelDistance is used for checkboxes, and conventional for icons. 
The other GUI properties are used for annotating labels (links, icon-, and checkbox-labels). 

Name Value Range 
GUI Properties 

contrast 5 levels 
fontsize 5 levels 
coding consistent, inconsistent 
colorCoding true, false 
underlineCoding true, false 
boldFontCoding true, false 
graphicalCoding true, false 
layoutGroup [left,right,upper] navigation, content
labelDistance high, low 
conventional true, false 

User Attributes 
vision good, bad 
domainExpertise high, low 

 
Currently the rule mechanism is implemented with the Java Rule Engine System 

(JESS). In addition to a basic framework of JESS rules, the XSD rule definitions are 
compiled into the system internal JESS representation. During simulation, the current 
context description – i.e. the UI state and UM – are converted into JESS facts to allow 
the rules access to them. 

In difference to the JESS rules, the XSD-based syntax allows for more accessible 
rules with regard to comprehension and manipulation. For example, the XSD format 
can be used to automatically generate GUI editors so that practitioners who are 
unfamiliar with XML can also work with the rules (e.g. using the Eclipse Modeling 
Framework (EMF), see [1]).  

4   Example 

In the following section we will describe an artificial example to illustrate the rule 
mechanism. For this example we use a minimal UI model consisting of one GUI 
dialog. The dialog contains several GUI elements that were chosen to illustrate the 
effect of rules caused by various different properties and values (see Fig. 3 and  
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Table 1). No user task knowledge is modeled in order to avoid increased or decreased 
probabilities for GUI elements due to the UM’s reasoning phase: the input for the rule 
engine is equally distributed and differences in the output reflect solely the influence 
of the rule mechanism on the probabilities. 

As example GUI dialog we use a Hyper Text Markup Language (HTML) web page 
containing various style variations of web links, icons and checkboxes. Fig. 3 shows 
the automatically imported UI model of the example web page: the type and locations 
of links, icons and checkboxes are automatically detected and annotated. Other 
properties of the GUI elements have to be manually annotated. Including some 
additional modifications, it took us (i.e. skilled users) about 5 minutes to create the 
final UI model for the example – excluding the time needed to create the HTML web 
page. Table 1 shows an overview for the GUI properties as well the user attributes 
that were manipulated when modeling the example. Besides the more obvious 
modifications and annotations (Fig. 3), we added the text on the right hand side of the 
2 checkboxes as their labels where the upper checkbox label (“wide distance”) has 
high labelDistance and the lower one (“normal distance”) a low labelDistance. For 
the icons we marked the one on the left as conventional (true) icon and the other icon 
on the right as not conventional (false). 

As UM, we modeled two different user groups – that of stereotypical “young 
experts” and “older users” – by varying the 2 user attributes vision and 
domainExpertise: the group for Experienced Users receives good vision and high 
domainExpertise while the group for the Trust Guided Users, i.e. “old users”, get bad 
vision and low domainExpertise. 

For the rules that are used in this example, we draw on the current set that was 
developed for the MeMo workbench. The relevant rules that modify the probability 
distribution in the examples are listed in simplified form in Table 2: If the table row 
contains effects for both user groups, this implies two rule definitions. Effects that 
mark a relative increase of probabilities are marked with the symbol + and decreasing 
effects are marked with -. The strength of the effect is marked using 1 to 3 of the 
respective symbols for weak, medium, and strong effects. Some attributes in the 
column GUI attribute conditions have two values assigned which is signified by the | 
separator. In this case, the table row reflects (at least) two rule definitions in which all 
other attribute-value pairs stay constant for both rules except for the two-valued 
attribute. Since each row may reflect more than one rule definition, the last table 
column gives the amount of rule definitions that the corresponding row describes; the 
table summarizes 35 rules. 

The corresponding rule definitions in their XML representation have similar form 
and complexity as the example rule in Listing 1. The rules described in Table 2 were 
derived from user experiments for web site navigating; they are based on 
experimental data augmented with expert knowledge (in analogy to [8]). While in 
principle the rule mechanism is open for MeMo workbench users to modify and 
create new rules, our goal is to establish a base set of broadly applicable and reusable 
rules so that users of the workbench do not have to create their own rules (see also 
sect. 5.2). For this reason, we used preexisting rules and do not report details 
concerning the time involved in creating the rules. 
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Table 2. Overview of rules that are used for the example. The columns Experienced and Trust 
Guided mark the effect of rules for the respective groups where vis + and exp + correspond to 
the user attribute conditions of vision = good and domainExprtise = high. Similarly, vis - and 
exp - correspond to the conditions vision = bad and domainExpertise = low. 

 
 
 

 

Fig. 3. Automatically imported UI model of a web page with annotated locations for GUI 
elements (hyper links, icons, checkboxes) 

 

Element 
Type 

GUI Attribute Conditions Experienced 
vis + | exp + 

Trust Guided
vis - | exp - 

Rule  
Definitions

Link colorCoding = true,  layoutGroup = content | left_navigation + + + + 4
contrast = high,  layoutGroup = content + + + + + 2
contrast = low,  layoutGroup = content - - - - 2
contrast = low, layoutGroup = left_navigation NA - - - 1
fontsize = big,  layoutGroup = content | left_navigation + + + + + + 4
fontsize = normal,  layoutGroup = content | left_navigation + + + NA 2
fontsize = small,  layoutGroup = content - - - - 2
graphicalCoding = true,  layoutGroup = content | left_navigation + + + + + 4
underlineCoding = true, layoutGroup = left_navigation NA - 1
underlineCoding = true,  layoutGroup = content | left_navigation + + + + 4
contrast = low - - 1
contrast = medium - 1
fontsize = small - - - 2

Icon conventional = false,  layoutGroup = content - - NA 1
conventional = true,  layoutGroup = left_navigation + + + NA 1

Check 
Box 

labelDistance = high, layoutGroup = content NA - - - 1
labelDistance = low,  layoutGroup = content NA - - 1
layoutGroup = content - - - NA 1
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Fig. 4. Probabilities modified by the rule engine superposing a screenshot of the example web 
page: (a) Experienced Users, (b) Trust Guided Users. Note that the probabilities for the 
checkboxes and their labels – as well as for the icons and their labels – are shown separately; 
the according total probability is the sum of the probabilities of the element and its label. 

Fig. 4 shows the probabilities returned by the rule engine displayed over a 
screenshot of the example web page. The figure shows the probabilities for the icon-
links and their labels, as well the checkboxes and their labels separately, i.e. the total 
probability for the icon-links and the checkboxes is the sum of their own probability 
and the probability of the corresponding label. In Fig. 4 we can see distinct 
differences for the probabilities in the lower right group of GUI elements (with low 
contrast, small font size properties) between the 2 modeled user groups as well as for 
the 2 checkboxes. The diagram in Fig. 5 highlights the differences between the two 
modeled user groups with the highest difference on the left. The diagram confirms the 
impression from Fig. 4, that the modeled “older users” are more likely to leave GUI 
elements with low contrast and small font size unused and “profit” more from large 
font sizes, while the “young experts” tend to ignore checkboxes for the navigation 
task. Also, in difference to the “old users”, the “young experts” make a clear 
distinction between conventional and unconventional icons. 

The resulting probabilities for high contrast links in the content area show that “old 
users” are less likely to use them. This difference is caused by the second rule in 
Table 2. The rule definition is based on the analysis of a web navigation experiment 
(analogous to [8]) that states that Experienced Users are more likely than Trust 
Guided Users to use a high contrast link in the content area. A possible explanation 
could be that, on the one hand, the visually impaired Trust Guided Users may still 
profit more than the unimpaired group from the high contrast in the sense of 
perceptual improvement. But, that on the other hand, the expert users, due to their 
experience, interpret high contrast links as especially important and consequently are 
more likely to use them. 

In summary, the example illustrates that the MeMo workbench supports rapid 
creation of UI models and UMs reflecting different user groups. Additionally, the rule 
mechanism applies complex modifications to the interaction probabilities depending 
on the UI element properties and the UM attributes for the modeled groups. 

(a) (b)
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inferences – regarding usability problems and solutions – on the same abstraction 
level as the rules that were used for the simulation. 

Rule mechanisms for similar applications, i.e. for the simulation of exploratory 
behavior, are mostly employed in the context of cognitive architectures. In general, 
rule mechanisms in cognitive architectures are less abstract. They are mostly 
concerned with inner cognitive processes, i.e. they operate on and influence inner 
cognitive properties and variables that are not directly observable. As a result, 
applying cognitive architectures in the context of usability simulations usually 
requires very specific and task dependent rules. These specific rules function as 
hypothesis for user strategies and – if sufficiently verified against experimental data – 
can provide explanations for user behavior and for the cause of non-optimal user 
decisions that may signify usability problems. 

In contrast, the more abstract rules from our approach relate usability problems to a 
set of user attributes and UI properties. Here we argue that in the context of 
uncovering usability problems, this is usually sufficient information to investigate and 
fix problems with the UI and underlying tasks. Especially under the premise that a 
high abstraction level makes rules more readily intelligible to non-experts of cognitive 
science and can thus provide sufficient information for IT practitioners to further 
investigate highlighted usability issues. This can be achieved by analyzing aberrant 
task solutions (with regard to the optimal solution) and examining the rules that 
caused aberrations which then provide information for possible usability problems on 
the same description level as they were specified. 

Currently, we also explore, if and how inner cognitive attributes of the UM can be 
integrated into our rule mechanism. In an experimental implementation, rules can 
access and manipulate intentions and Dynamic User Attributes (DUA). In difference 
to “normal” static user attributes (e.g. visual acuity, tremor, education), DUA  
(e.g. attention, irritation, time pressure) can change their value in the course of the 
interaction simulation. For instance, a history rule may state that the DUA irritation 
will rise, when in a certain sequence of interactions, the UM fails to find a particular 
information particle. Or, during a simulation, the UM may first have the intention to 
accomplish the given task, but then temporarily change the intention to ask for help, 
due to a rule that checks, if the irritation of the UM surpasses a certain threshold. 

5.2   Creating Rule Sets 

A basic assumption in our approach is that the complex influences of properties and 
attributes on the probability distribution can be modeled using a large number of rules 
which themselves are comparatively simple (see example in Listing 1). The creation 
of a rule set that reflects complex influences can be managed by iteratively extending 
the set and adding individual comprehensible rules. 

However, with increasing number of rules, their combined effects become harder 
to judge by practitioners when extending the rule set: given a set of attribute and 
property values, it becomes harder to foresee the effect of the rules on the probability 
distribution. For small rule sets or simulations that are intended to approximate user 
behavior only roughly, this manual process may still be feasible. In order to reach 
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sufficiently faithful and plausible simulations, considerable effort to validate the 
effect strength of rule definitions is necessary, e.g. by using machine learning for 
deriving the strength from experimental data. Although we were able to apply the 
GUI-related rule set and make predictions for 3 UI models in the context of the 
SmartSenior3 project, so far we have not been able to validate the GUI-related rule set 
against experimental results due to lack of usable experimental data from user tests. 

A further problem for large rule sets is that modeling the dependencies between 
properties and between attributes quickly becomes cumbersome. In principle, each 
possible value of the dependent attribute – or property – requires its own rule definition, 
potentially resulting in an exponential number of rules for representing the dependency. 

There is no tool support yet, but for the most part this could be overcome by 
allowing the practitioner to specify a condensed definition of the dependency and then 
use this to compile the necessary rule definitions. 

Despite these issues, we propose that the high abstraction level of the rules makes 
them good candidates to be used and reused in simulations for different UIs: They 
exhibit a comprehensible syntax and work with generic definitions of UI elements and 
user attributes, which offer the possibility to adapt them to new areas of application. 
However, specific criteria that allow deciding if a specific rule can be reused in other 
simulations still need further investigation. 

Due to these considerations, we are planning to establish a base set of validated 
and reusable rules that are applicable to a wide variety of UIs and that provide 
reasonable results for uncovering usability problems with these UIs. 

5.3   Interpretation and Use of Distributions 

In terms of the Model Human Processor (MHP, see [5]), the use of the rule engine is 
applied during the cognitive processing phase. The modified probability distribution 
is then directly used to compute the UM’s interaction decision during that phase. 

Several studies exploring the effect of age in web browsing tasks suggest that the 
difference between younger and older users is less pronounced in task success but 
more in completion time and necessary steps [6, 10, 12, 28]. 

Consequently it seems more likely, that e.g. GUI elements with low contrast have 
not per se a lower probability to be used, but are less likely to be looked at and 
therefore evaluated. For instance, such UI elements might not be perceived due to 
“overlooking” or prematurely selecting another interaction before inspecting all 
available UI elements. In terms of the probabilistic simulation process, this implies 
that first a probability distribution for the perception is calculated and then one for the 
cognitive processing. 

As a work in progress, we extended the MeMo workbench to incorporate three 
processing phases following the MHP for perception, cognition, and motion [23, 26]. 
As a result, probability distributions calculated by the rule engine employing 
appropriate sets of rules are used separately in the different phases. This allows 
modeling sequential dependencies more naturally than using a single probability 
distribution for calculating the UM’s decision making. 

                                                           
3 http://www.smart-senior.de/enEN/ 
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6   Conclusion 

In this article, we presented our ongoing work on model-based automated usability 
evaluations with the help of the MeMo workbench. We focused on the description of 
user simulations that are affected by deficits characteristic for old age. The main goal 
of these simulations is to find usability problems related to these specific needs. 
Therefore, we have incorporated a rule-based approach which employs user attributes 
and UI properties in rules for calculating probability distributions. These probabilities 
are then used to determine user interactions of exploratory behavior. In difference to 
existing approaches, e.g. cognitive architectures, the rules capture more general 
aspects of usability knowledge. Accordingly, our approach is less task-dependent and 
can be transferred to other tasks and even UIs more easily while maintaining 
reasonable precise predictions about usability problems.  

We conclude by asserting that our approach, as well as other existing approaches, 
cannot replace user testing. Instead, our approach aims to considerably reduce time 
and effort by enabling early simulations and provide early usability feedback for 
practitioners during the UI development. 
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