
Chapter 9
Software-Based Self Testing of System
Peripherals

Traditional test generation methodologies for peripheral cores are performed by a
skilled test engineer, leading to long generation times. In this paper a test generation
methodology based on an evolutionary tool which exploits high level metrics is
presented. To strengthen the correlation between high-level coverage and the gate-
level fault coverage, in the case of peripheral cores, the FSMs embedded in the
system are identified and then dynamically extracted via simulation, while transition
coverage is used as a measure of how much the system is exercised. The results
obtained by the evolutionary tool outperform those obtained by a skilled engineer
on the same benchmark. Preliminary results have been published in [127].

9.1 Introduction

A system-on-chip (SoC) can integrate into a single device one or more proces-
sor cores with standard peripheral memory and application-oriented logic modules.
This high integration of many components leads to an increased complexity of the
test process since it decreases the accessibility of each functional module into the
chip. Thus, the ever increasing usage of such devices demands for cheap testing
methodologies.

The Software-based Self-test (SBST), whereby a program is executed on the pro-
cessor core to extract information about the functioning of the processor or other
SoC modules and provide it to the external test equipment [87] meets this demands
since: it allows cheap at-speed testing of the SoC; it is relatively fast and flexible; it
has very limited, if any, requirements in terms of additional hardware for the test; it
is applicable even when the structure of a core is not known, or can not be modified.
Even though SBST is currently being increasingly employed, the real challenge of
software-based testing techniques is to generate effective test programs.

Many SBST techniques have been developed for the test of microprocessor cores;
traditional methodologies resort to functional approaches based on exciting specific
functions and resources of the processor [151]. New techniques, instead, differ on

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 101–110.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012



102 9 Software-Based Self Testing of System Peripherals

the basis of the kind of description they start from: in some cases only the infor-
mation coming from the processor functional descriptions are required [41]; other
simulation-based approaches require a pre-synthesis RT-level description [33] or the
gate-level description [39].

Simulation-based strategies are heavily time consuming, thus, the use of RT-level
descriptions to drive the generation of test sets is preferable to allow much faster
evaluation. Relying on high-level models not only helps the user of the SoC to per-
form more simulations increasing the confidence in the generated tests, but is also of
value to the manufacturer allowing early generation of a significant part of the final
test set. Whereas the correlation between RT-level code coverage metrics (CCM)
and gate-level fault coverage is not guaranteed in the general case, several RT-level
based methodologies maximize the CCMs to obtain a good degree of confidence on
the quality of the generated test set.

This paper describes the application of an evolutionary algorithm in test set gen-
eration process for different types of peripheral cores embedded in a SoC. Further-
more the generation process is fully automated and requires a very low human effort.
The generation process is driven by the transition coverage on the peripheral’s finite
state machine (FSM) and by the RT-level Code Coverage Metrics (CCMs).

Exploiting the correlation between high-level and low-level metrics, during the
generation process only logic simulation is performed allowing the reduction of
the generation time. The results are finally validated running a gate-level fault
simulation.

Results show that the combination of the FSM transition coverage and CCMs can
effectively guide the test block generation and a high fault coverage can be achieved.
Moreover, we show that the new approach makes the test generation process more
robust, improving the relationship between high- and low-level metrics.

The rest of the chapter is organized as follows: section 2 recalls some background
concepts in peripheral testing; section 3 outlines the methodology adopted for the
generation of test sets and details the evolutionary tool. Section 4 introduces the
experimental setup, describing the case study and presents the experimental results.
Finally, section 5 draws some conclusions.

9.2 Peripheral Testing

9.2.1 Basics

A typical SoC is composed of a microprocessor core, some peripheral components,
memory modules, and possibly customized cores. An external ATE is supposed to
be available for test application: its purpose is to load a test program in the memory,
start execution, and interact with the peripherals applying data to the input ports and
collecting values from the outputs while the program is running.



9.2 Peripheral Testing 103

To make effective use of the test setup both the test programs and the peripheral
input/output data have to be specified; therefore, a complete set for testing peripheral
cores is composed of some test blocks [17], defined as basic test units composed of
two parts: a configuration and a functional part. The configuration part includes
a program fragment that defines the configuration modes used by the peripheral,
and the functional part contains one or more program fragments that exercise the
peripheral functionalities as well as the data set or stimuli set provided/read by the
ATE.

Researchers have long sought high-level methodologies to generate high qual-
ity test sets; this is possible only if a correlation between high-level metrics and
gatelevel fault coverage exists. Differently from the general case, where the correla-
tion is vague, in the case of peripheral cores this correlation actually exists. It is not
complete but, as experimentally shown in [15], suitable for test set generation.

Therefore, an automatic methodology for the generation of test sets for peripheral
cores that uses a high-level model of the peripheral in the generation phase is an
interesting solution to overcome new testing issues on SoCs.

As mentioned in [17], traditional code coverage metrics suitable for guiding the
development of the test sets for peripheral cores are: Statement coverage (SC),
Branch coverage (BC), Condition coverage (CC), Expression coverage (EC), Tog-
gle coverage (TC). Maximizing all the coverage metrics allows to better exercise
the peripheral core. It is not possible to accept a single coverage metric as the most
reliable and complete one [98]; thus different metrics must be exploited in order to
guarantee better performance of the test sets [144].

9.2.2 Previous Works

An attempt to provide effective solutions for peripheral test set generation is pre-
sented in [17]; the process is performed by hand and mainly relies on the experi-
ence of a test engineer, who maximizes sequentially the various coverage metrics,
generating one or more test blocks for every metric. This process is repeated until
sufficiently high coverage values are obtained for all the chosen metrics. In [80] a
pseudo-exhaustive approach to generate functional programs for peripheral testing
was presented. The proposed method generates a functional program for each pos-
sible operation mode of the peripheral core in order to generate control sequences
which would place the peripheral in all possible functional modes. The pseudo-
exhaustive approach produces a large number of functional programs, since one has
to be written for every operation mode.

In [6] the authors describe a generic and systematic flow of SBST application on
two communication peripheral cores. The methodology achieves high fault coverage
but needs a deep knowledge of the peripheral core leading to long test development
time with a high human effort. In [15] the peripheral test set generation has been
automated using an evolutionary algorithm, called μGP.



104 9 Software-Based Self Testing of System Peripherals

The test block generation was supported by the construction of couples of tem-
plates: one for program and the other for data generation. The evolutionary algo-
rithm is used to optimize parameter values, leaving the structure of the test block
fixed. The obtained results compare favorably with respect to the manually gener-
ated [17].

In [16] an improved version of the evolutionary algorithm has been described,
able to optimize both the structure and the parameters. The same results as [15] are
obtained with no need of the rigid templates used previously, reducing significantly
the required generation time.

9.3 Proposed Approach

As stated above, traditional CCMs extracted at the RT-level do not, in general, show
a tight correlation with gate-level fault coverage. Furthermore, the RT-level descrip-
tions use, especially in the case of complex cores, many modules that interact among
each other in order to perform the core functionalities. The traditional CCMs do not
consider these interactions and only aim at maximizing the coverage metrics in each
module. After the synthesis process, at the gate level, the distinction between mod-
ules of a core is less clear and therefore it is important to consider the interactions
to enforce a correlation between high-level metrics and low level ones.

One way to model a system is to represent it with a FSM. Coverage of all the
possible transitions in the machine ensures thoroughly exercising the system func-
tions. Additionally, the use of FSM transition coverage has the additional advantage
that it makes the interactions between functional modules in the peripheral explicit.
Figure 9.3 sketches the proposed methodology.

The evolutionary approach generates test blocks starting from information about
the peripheral core and the processor assembly syntax only. Every new test block
generated is evaluated using a high-level simulator. The evaluation stage assigns a
fitness to every individual. The procedure ends when a time limit is elapsed or when
a steady state is detected, that is, a predefined number of test blocks are generated
without any improvement of the coverage metrics. At the end of the evolutionary
run a single test block is provided as output.

The sketched procedure is iteratively repeated to generate a complete test set.
In the steps following the first one, the evaluation phase is modified in order to
only take into account the additional coverage provided by the new test blocks. The
rationale for this methodology is that in general it is not possible to completely solve
the problem with one single test block. The end result of the process is a set of test
blocks that cumulatively maximize the targeted coverage metrics.



9.3 Proposed Approach 105

Fig. 9.1 Evolutionary generation loop.

9.3.1 Evolutionary Tool

For the automatic generation of the test blocks an evolutionary tool named ı̀GP3
[146] has been employed. μGP is a general-purpose approach to evolutionary
computation, derived from a previous version specifically aimed at test program
generation.

The tool is developed following the rules of software engineering and was imple-
mented in C++. All input/output, except for the individuals to evaluate, is performed
using XML with XSLT. The use of XML with XSLT for all input and output allows
the use of standard tools, such as browsers, for inspection of the constraint library,
the populations and the configuration options. The current version of the μGP com-
prises about 50,000 lines of C++ code, 113 classes, 149 header files and 170 C++
files.

Evolution Unit

μGP bases its evolutionary process on the concept of constrained tagged graph, that
is a directed graph every element of which may own one or more tags, and that
in addition has to respect a set of constraints. A tag is a name-value pair whose
purpose is to convey additional information about the element to which it belongs,
such as its name. Tags are used to add semantic information to graphs, augmenting
the nodes with a number of parameters, and also to uniquely identify each element



106 9 Software-Based Self Testing of System Peripherals

during the evolution. The constraints may affect both the information contained in
the graph elements and its structure. Graphs are initially generated in a random fash-
ion; subsequently, they may be modified by genetic operators, such as the classical
mutation and recombination, but also by different operators, as required by the spe-
cific application. The tool architecture has been specially thought for easy addition
of new genetic operators as needed by the application. The activation probability
and strength for every operator is an endogenous parameter.

The genotype of every individual is described by one or more constrained tagged
graphs, each of which is composed by one or more sections. Sections allow to de-
fine a global structure for the individuals that closely follows the structure of any
candidate solution for the problem.

Constraints

The purpose of the constraints is to limit the possible productions of the evolution-
ary tool, and also provide them with semantic value. The constraints are provided
through a user-defined library that provides the genotype-phenotypemapping for the
generated individuals, describes their possible structure and to define which values
the existing parameters (if any) can take.

Constraint definition is left to the user to increase the generality of the tool. The
constraints are divided in sections, every section of the constraints matching a cor-
responding section in the individuals. Every section may also be composed of sub-
sections and, finally, the subsections are composed of macros.

Constraint definition is flexible enough to allow the definition of complex enti-
ties, such as the test blocks described above, as individuals. Different sections in the
constraints, and correspondingly in the individual, can map to different entities. In
this specific case the constraints define three sections: a program configuration part,
a program execution part and a data part or stimuli set. The first two are composed
of assembly code, the third is written as part of a VHDL testbench. Though syntac-
tically different, the three parts are interdependent in order to obtain good solutions.
Fitness. Individual fitnesses are computed by means of an external evaluator: this
may be any program able to provide the evolutionary core with proper feedback.

The fitness of an individual is represented by a sequence of floating point num-
bers optionally followed by a comment string. This is currently used in a prioritized
fashion: one fitness A is considered greater than another fitness B if the n-th com-
ponent of A is greater than the n-th component of B and all previous components
(if any) are equal; if all components are equal then the two fitnesses are considered
equal.

Evolutionary Scheme

The evolutionary tool is currently configured to cultivate all individuals in a single
panmictic population, although it can be configured to use an island model. The



9.3 Proposed Approach 107

population is ordered by fitness. Choice of the individuals for reproduction is per-
formed by means of a tournament selection; the tournament size τ is also endoge-
nous. The population size ı̀ is set at the beginning of a run, and the tool employs a
variation on the plus (μ +λ ) strategy: a configurable number λ of genetic opera-
tors are applied on the population. Since different operators may produce different
number of offspring the number of individuals added to the population is variable.
All new unique individuals are then evaluated, and the population resulting from the
union of old and new individuals is sorted by decreasing fitness. Finally, only the
first μ individuals are kept.

To promote diversity, the individuals genetically equal to already existing ones,
called clones, may have their fitness scaled by a fixed value in the range [0.0,1.0].
The possible termination conditions for the evolutionary run are: a target fitness
value is achieved by the best individual; no fitness increase is registered for a prede-
fined number of generations; a maximum number of generations is reached.

At the end of every generation the internal state of the algorithm is saved in a
XML file for subsequent analysis and for providing a minimal tolerance to system
crashes.

9.3.2 Evaluator

The proposed approach is based on modeling the entire system as a FSM which is
dynamically constructed during the test generation process. Thus, differently from
other approaches, the FSM extraction is fully automated, and requires minimum
human effort: the approach only requires the designer to identify the state registers
in the RT-level code; every global state in the peripheral represents a possible con-
figuration of values of all the state registers. Thus, whenever a state register in any
module changes its value, also the global state of the peripheral is affected. Given
the dynamic nature of the FSM construction, it is not possible to assume known the
maximum number of reachable states, not to mention the possible transitions. For
this reason it is impossible to determine the transition coverage with respect to the
entire FSM.

As experimentally demonstrated [98], maximizing more than one metric usually
leads to better quality tests. Thereby, the simulation-based method proposed here
exploits the FSM transition coverage, that enforce a maximum interaction between
peripheral modules, and all the available CCMs to thoroughly exercise the periph-
eral functionalities.

The implemented evaluator collects the output of the simulation and dynamically
explores the FSM; it assesses the quality of the test block considering the transition
coverage on the FSM and the CCMs.

The fitness fed back to the evolutionary tool is composed of many parts: the FSM
transition coverage followed by all the others CCMs (SC, BC, CC, EC, TC). As we
mentioned before the metrics are considered in order of importance. In this way it is



108 9 Software-Based Self Testing of System Peripherals

possible, during the generation process, to select more thoroughly those test blocks
that are able to better excite the peripheral.

9.4 Experimental Analysis

9.4.1 Test Case

The benchmark is a purposely designed SoC which includes a Motorola 6809 micro-
processor, a Universal Asynchronous Receive and Transmit (UART), a Peripheral
Interface Adapter (PIA), a Video display unit (VDU) and a RAM memory core. The
system derives from one available on an open source site [112]. The methodology
is used to test the UART, the PIA and the VDU in the targeted SoC.

The peripherals are described at RT-level in VHDL code and are composed
of different modules. The SoC was synthesized using a generic home-developed
library.

Table 9.1 Implementation characteristics

Description Measure PIA VDU UART

RT-level

statements 149 153 383
branches 134 66 182
condition 75 24 73
expression 0 9 54

toggle 77 199 203

Gate level
Gates 1,016 1,321 2,247
Faults 1,938 2334 4,054

Table 9.1 shows details of the targeted peripherals, including information at high
and low level. Rows labeled with RT-level present CCM information while the re-
maining rows illustrate the number of gates counted on the synthesized devices and
the number of collapsed faults for the stuck-at model, respectively.

At the end of the generation process, some gate-level fault simulation were per-
formed only to validate the proposed methodology; the gate-level fault coverage
figures reported in the following sections target the single stuck-at fault model.

9.4.2 Experimental Results

All the reported experiments have been performed on a PC with an Athlon XP3000
processor, 1GB of RAM, running Linux.



9.4 Experimental Analysis 109

The algorithm parameters for the evolutionary experiments are the same both
when targeting only the CCMs, and when the number of transitions in the FSM is
also taken into account: for the PIA and the VDU experiments, μ = 50 and λ = 70;
and as the UART is more complex than the PIA the evolutionary parameters were
set to perform a lower number of simulations: μ was set to 30 and λ to 40.

In order to provide the reader with a reference value, we recall that the fault cov-
erage obtained by the manual approach presented in [17] is 80.96% for the UART
and 89.78% for the PIA.

Table 9.2 summarizes the results obtained for the targeted peripherals, reporting
the number of FSM transitions covered, the high-level CCMs and the stuck-at fault
coverage (FC) in percentage. The reader should note that the value of traditional
CCMs are expressed as absolute values (instead of percentages).

Table 9.2 Results for considered peripherals

PIA VDU UART
FSM Transition 115 191,022 142

Statement 149 153 383
Branch 129 66 180

Condition 68 23 72
Expression 0 9 51

Toggle 77 191 203

FC(%) 91.4 90.8 91.28

For every peripheral considered the methodology is able to reach a good value of
gate-level fault coverage. In the case of the VDU the number of transition is very
high; this is due to the state registers that hold the current position on the screen.

To experimentally demonstrate that the use of the FSM transition coverage is
essential to strengthen the correlation between high an low level metrics 100 exper-
iments on the UART are performed, using both the evolutionary approach presented
in [16] and the generation process detailed above.

Table 9.3 Comparison between the two methodologies

FSM SC BC CC EC TC FC

[16]
Average NA 381.8 178.7 70.7 50.7 201.3 84.8
std.dev. NA 0.36 0.39 0.30 0.32 0.40 6.37

New methodology
Average 141.0 382.2 179.3 71.8 50.8 202.2 90.9
std.dev. 1.49 0.28 0.33 0.22 0.24 0.36 1.10

Table 9.3 reports a comparison between the results of the experiments performed
following the methodology presented in [16] and the current one; the table illustrates



110 9 Software-Based Self Testing of System Peripherals

the average and standard deviation of the different CCMs and of the stuck-at fault
coverage (FC). In all cases the CCMs are very near to the absolute maximum, and
both methodologies lead to small standard deviations on the considered metrics. In
the first case, however, the standard deviation in the fault coverage of each test set
is relatively high. Although the methodology obtains good results, it is not as robust
as desirable, and the obtained solution may not exhibit the expected quality.

Using the new methodology the average fault coverage is increased by more than
6% and, more importantly, the standard deviation of the fault coverage is dramat-
ically reduced. This clearly shows that the robustness of the methodology is in-
creased, and solutions of consistent quality can be obtained.

Table 9.4 Comparison between the two methodologies

FC TGEN TAPP Size
[16] 90.7 5.1 28,842 1,953/72

New Methodology 91.3 2.2 32,762 2,345/87

Table 9.4 synthetically reports a comparison between the two methodologies in
the case of the UART, highlighting the obtained fault coverage (FC) in percent-
age, the average generation time (TGEN) expressed in hours, the average applica-
tion time (TAPP) in clock cycles, and the average size of the test sets, reported as
program bytes and data bytes. The results clearly show that the new methodology
outperforms the previous one in terms of fault coverage and generation time. The
latter, in particular, is less than a half with respect to the previous methodology,
highlighting the efficiency of the new approach.

Other approaches [80][6] to peripheral test are not directly comparable with our
methodology since they are referred to different devices, although their complexity
and the results are similar to the devices analyzed here. Furthermore, our method-
ology only needs RT-level simulation and does not need the time-expensive fault-
simulations.

9.5 Conclusions

In this chapter, a successful application of the evolutionary tool for the generation
of sets of test blocks for different types of peripheral modules in SoCs driven by the
FSM transition coverage and the high-level CCM has been described.

The evolutionary tool is able to generate test blocks where the relation between
high-level coverage metrics and low level one is much stronger; this better relation
has been experimentally demonstrated with a experimental analysis where many test
blocks are generated and evaluated.

The experimental results on different type of peripheral cores, communication pe-
ripherals and VDU controller, show the effectiveness of the proposed methodology.


	Software-Based Self Testing of SystemPeripherals
	Introduction
	Peripheral Testing
	Basics
	Previous Works

	Proposed Approach
	Evolutionary Tool
	Evaluator

	Experimental Analysis
	Test Case
	Experimental Results

	Conclusions




