
Chapter 4
Post-silicon Speed-Path Analysis in Modern
Microprocessors through Genetic Programming

The incessant progress in manufacturing technology is posing new challenges to
microprocessor designers. Nowadays, comprehensive verification of a chip can only
be performed after tape-out, when the first silicon prototypes are available. Several
activities that were originally supposed to be part of the pre-silicon design phase
are migrating to this post-silicon time as well. This chapter describes a post-silicon
methodology that can be exploited to devise functional failing tests. Such tests are
essential to analyze and debug speed paths during verification, speed-stepping, and
other critical activities. The proposed methodology is based on the Genetic Pro-
gramming paradigm, and exploits a versatile toolkit named μGP. The chapter de-
scribes how an evolutionary algorithm can successfully tackle a significant and still
open industrial problem. Moreover, it shows how to take into account complex hard-
ware characteristics and architectural details of such complex devices. The experi-
mental evaluation clearly demonstrate the potential of this line of research. Results
of this work have been accepted for publication in [137].

4.1 Background

Nowadays, manufacturing technology is advancing at a faster pace than designing
capability, posing unprecedented challenges in the arena of integrated circuits. The
so-called verification gap denotes the inability to fully verify the correctness of de-
vices that could be built, and indeed are actually built. Practice surpasses theory:
comprehensive verification of a chip can only be performed after tape-out. Once
manufacturing is completed and first silicon is produced, the early chips are sent
back to their design teams. This process is called post-silicon verification to distin-
guish it from the traditional, pre-silicon, one. More generally, several activities that
were originally supposed to be part of the pre-silicon design phase are nowadays
migrating to the post-silicon time. The cost of manufacturing prototypical devices
is enormous, but this practice is not an option. Designers candidly acknowledge

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 31–44.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012



32 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

that “very few chips ever designed function or meet their performance goal the first
time” [106].

Microprocessors are a paradigmatic example of the current trend: devices for
the desktop market contain billions of transistors, implement complex architec-
tures1, and operate into the microwave frequency range. To give some examples, in
a pipelined architecture, assembly instructions are executed as in a production line.
Consequently, whereas the single instruction is not sped up, the global throughput
is significantly increased. Even more, a superscalar architecture exploits duplicated
functional units by executing two or more different instructions in parallel. The
branch prediction unit guesses which way of a conditional branch will be taken,
thus the execution may continue without waiting for the actual outcome of the test.
Whether the conjecture was mistaken, a mechanism of speculative execution enables
to efficiently roll back and undo changes.

Since last decade, desktop microprocessors also include hardware support to ef-
ficiently execute multiple threads, that is, independent flows of instructions. These
architectures allow to increase the overall throughput in a multitasking environment,
even when it would be impossible to further speed up the single program with the
precedent techniques. Simultaneous multithreading2 architectures enable multiple
threads to be executed concurrently exploiting superscalar designs. More recently,
in a multicore architecture, or chip-level multiprocessor, two or more independent
processing units work side by side packaged in the same chip and sharing the same
memory. Indeed, in modern multicore microprocessors each individual core also
exploits simultaneous multithreading.

Besides this bewildering complexity, electric signals do propagate inside a mi-
croprocessor through different paths. To guarantee a correct behavior, all signals
must reach a stable value within the current clock cycle, regardless the length or the
complexity of their routes. It must be remembered that when a microprocessor is
reported to operate at 3 GHz, the time available for signals to stabilize is slightly
above 3 x 10-10 seconds. It may be hard to visualize such a frantic activity, for in
this interval of time light covers only 10 cm (almost 4 inches).

Non-deterministic effects, such as manufacturing variability, are posing even
greater challenges to the designers. It has been long known that several physical
defects only appear when the device operates at full speed [152], but nowadays de-
sign criticalities also become apparent only at high frequencies. Even worse, they
appear only occasionally, and possibly only in a percentage of the manufactured
chips. “Finding the root cause of at-speed failures remains one of the biggest chal-
lenges in any high-performance design”, stated Rob Aitken in his editor’s note for
[83].

1 Some texts emphasize the difference between the specification of the machine language
and its implementation, calling the former “instruction set architecture” and the latter
“microarchitecture”.

2 Called “hyper-threading” in Intel designs.



4.2 Introduction 33

4.2 Introduction

To meet today’s performance requirements, the design flow of a modern micropro-
cessor goes through several iterations of frequency pushes prior to final volume
production. Such a process is called speed stepping. A speed path (or speedpath) is
a path that limits the performance of a chip because a faster clock would cause an
incorrect behavior. Speed paths may be the location where potential design fixes
should be applied, and may indicate places where potential holes in the design
methodologies exist.

At design time, the slowest logic path in a circuit is termed the critical path,
and it can be easily determined. However, for complex high-performance designs, it
has been recognized that critical paths reported from the pre-silicon timing analysis
tools rarely correlate well to the actual speed paths. The reason is that any pre-silicon
analysis tool is only as accurate as the model and the algorithms it uses. Obtaining
100% accurate process models for nanometer processes is difficult, if not nearly
impossible. Analysis algorithms are also approximated because of the complexity
involved. Moreover, timing behavior on the silicon is a result of several factors min-
gled together. But in the pre-silicon phase it would not be computationally feasible
to consider all these factors simultaneously, and they are analyzed separately [164]
[82] [25].

The identification of failing tests, i.e., sequences of operations that uncovers in-
correct behaviors when run at high frequency, is highly related with speed path
identification. Failing tests may be, for example, sequence of inputs to be applied
to the microprocessor pins by an automatic test equipment (ATE). Such test are
usually crafted with care by engineers starting from the pre-silicon verification test
suite; generated by pre-silicon specialized tools, or automatic test pattern generators
(ATPGs); or also created post silicon3, tackling the actual devices [96] [165].

Interestingly, the instruction sets of microprocessors has been successfully ex-
ploited to tackle path-delay faults, i.e., manufacturing defects that slow down the
signals covering a specific path inside the device [93] [35]. The underlying idea of
these works is that executing a set of carefully designed programs may uncover tim-
ing issues. The main strength of the methodology is that the execution of such test
programs is per se at-speed and requires no additional hardware, or complex and
expensive ATEs. No attempts, however, have been reported to devise failing tests
directly at the instruction level. No one has yet proposed a post-silicon methodol-
ogy able to automatically generate a test program that stresses a speed path causing
a detectable functional failure.

A software-based speed-path failing test is defined as an assembly-language
program that produces the correct result only while the microprocessor operating
frequency is below a certain threshold. As soon as the frequency is pushed
above the threshold, the result yielded by the program becomes incorrect. Let us
denote the threshold for a given program as its functional frequency threshold,
because the incorrect behavior is functionally observable. That is, it can be

3 The expressions “on silicon” and “silicon based” are also used.



34 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

theoretically detected without an ATE or other special equipment, simply by ob-
serving the values stored in the main memory and registers. Clearly, the diagnos-
tic capability of a software-based speed-path failing test increases as its functional
frequency threshold decreases. A test that produces a failure at a relatively low fre-
quency is preferable to a test that fails only at very high frequencies.

This chapter shows how software-based speed-path failing tests with low func-
tional frequency thresholds can be automatically generated by an evolutionary
algorithm. Moreover, it demonstrates that the technologies already available in mod-
ern microprocessors can completely cut out the need of external equipments at the
expense of a slight decrease in accuracy. The first result advocates for the exploita-
tion of the methodology inside the manufacturer’s facility during speed stepping
phase. The second calls for coarse-grained, but quite inexpensive, incoming inspec-
tion campaigns.

Sections 3 and 4 describe the proposed methodology, detailing the adopted evo-
lutionary algorithm. Sections 5 illustrates the feasibility study and report the ob-
tained results. Section 6 concludes the chapter, sketching the future directions of the
research.

4.3 Generation and Evaluation of Test Programs

The proposed approach for generating software-based speed-path failing tests is
pseudo-random and simulation-based, or, more exactly, feedback-based. Candidate
test programs are created without a rigid scheme, and evaluated on the target micro-
processor. The data gathered are fed back to the generator and used to generate a
new, enhanced set of candidate solutions. The process is then iterated.

To exploit such a mechanism it is indispensable to evaluate the goodness of each
candidate test. As stated before, a software-based speed-path failing test is as good
as it fails at low frequencies, and the key parameter in evaluating a test is its func-
tional frequency threshold. However, it should not be forgotten that variability vexes
verification engineers. A failing test may not fail always at the same frequency, even
if all controllable parameters are exactly reproduced. The variability of speed paths
may be caused by non-deterministic factors, such as noise, die temperature or small
fluctuation in the external power. Some design criticalities may appear only under
particularly unfavorable conditions. All experiments need to be repeated at least
several times, when not on different devices.

Consequently, besides the lowest functional frequency threshold detected
amongst the repeated experiments, an additional parameter in evaluating a test is
the percentage of runs that actually failed at that frequency. It is intuitively plausible
that a test failing half of the times at a certain frequency is more useful that a test
that fails only every thousands experiments.

Changing the operating frequency of a microprocessor, however, is not an easy
task. To ensure proper synchronization between all the components of the system,
only a very limited set of operating clock speeds are available to the end users. While



4.4 Evolutionary Approach 35

the microprocessor is connected to an ATE after production, such an evaluation
is perfectly feasible. However, outside manufacturer laboratories the large steps in
frequencies would likely impair the overall usability. Notably, outside manufacturer
laboratories, the final aim would hardly be speed stepping. Conversely, end users
may be quite interested in performing an incoming inspection on purchased devices.
Tacking this latter goal, this chapter shows how to adapt the methodology in order
to require no test equipment and no additional hardware whatsoever.

The architecture of modern microprocessors includes dynamic performance scal-
ing technologies. Intel branded it as SpeedStep. Similar mechanisms are available
as Advanced Micro Devices PowerNow! and Cool’n’Quiet, or VIA Technologies
LongHaul. Such technologies are designed to save power and reduce heat, thus they
allow to decrease the operating frequency and the power supply voltage supplied to
the microprocessor. Reducing the CPU core voltage is known as undervolting.

Roughly speaking, desktop microprocessors are made using the complementary
metal-oxide-semiconductor (CMOS) technology, based on field-effect transistors
(FETs). In such devices, reducing the voltage increases the time required to switch
between logic values [14]. Thus, the effects of reducing voltage may be reason-
able related to the effects of increasing the operating frequency. As a matter of fact,
whenever a microprocessor is undervolted, its operating frequency is also reduced to
guarantee proper functionalities. Manufactures define sets of safe operating states,
sometime called performance states or p-states. While the exact meaning of these p-
states is implementation dependent, P0 is always the highest-performance state, with
the following P1 to Pn being successively lower-performance and less-consuming
states.

Following the discussion, it appears evident that undervolting a microproces-
sor emphasizes speed-path criticalities. Moreover, reducing the core voltage cannot
damage a device. Thus, to stress speed paths the behavior of a microprocessor could
be analyzed intentionally outsides the predetermined p-states. Let us define the func-
tional core voltage of a failing test as the lower voltage required not to fail the test at
a given operating frequency. Conversely to functional core frequency, a failing test
is as good as its functional core voltage is high. That is, all tests would fail with a
very low core voltage, but only the interesting ones truly require full power.

Thus, an alternative evaluation of a candidate test could be based on its functional
core voltage, and on the percentage of runs that actually failed.

4.4 Evolutionary Approach

The proposed test-program generator exploits a versatile evolutionary toolkit called
μGP developed at Politecnico di Torino, and available under the GNU Public Li-
cense from Sourceforge [146]. Unlike usual genetic programming (GP) implemen-
tations, μGP specific target is to produce realistic assembly-language programs. Its
original purpose was to assist designers in the generation of programs for the test



36 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

and verification of different microprocessors, hence, the Greek letter micro in its
name.

μGP was designed to support assembly peculiarities, like various conditional
branches, different addressing modes, or instruction asymmetries. Generated pro-
grams take advantage of syntactic structures as global and local variables, subrou-
tines and interrupts. Since its creation, the tool underwent three main revisions [40],
[149] and [134]. The latest version internally encodes individuals as directed multi-
graphs, and this enable the handling of a quite wide range of problems.

μGP is asked to devise an assembly program to be used as a software-based
speed-path failing test. Following the previous discussion, a population of candidate
test programs is evolved, and the evaluation of their goodness is used as fitness
function to drive the process. However, the specificity of the task calls for several
different problem-specific knacks.

4.4.1 Fitness Function

During experiment the system frequency is first increased using the so-called over-
clocking features of modern main boards. An excessive increase of the frequency
may cause overheating or otherwise irreparably damage the microprocessor, but in-
creasing it slightly is usually perfectly safe. Then the evaluation is performed by
reducing the core voltage, only.

Similarly to software-based self test [132], candidate test programs include a
mechanism that help checking their own correctness: all the results of the calcula-
tions performed by the test program are compacted in a single signature using a hash
function. The evaluator runs the test program in safe conditions, i.e., at full power,
and store the signature. Then it runs the program again at decreasing CPU core volt-
ages, checking that the signature is not modified. As soon a difference is detected,
the functional voltage threshold is recorded. The whole process is repeated R times
to tackle variability.

In μGP the fitness function may be specified as a vector of positive numbers.
The components of the vector are strictly hierarchical, with the first being the most
important. The first component of the fitness value is simply the functional voltage
threshold. The second is the number of failures detected over the R repetitions at the
maximum voltage. It must be stressed out that the actual result of the calculations
is of no interest, the only relevant detail is that it changes when the test is executed
undervolting the CPU below the functional core voltage.

4.4.2 Individual Evaluation

μGP creates assembly functions, that are assembled and linked with a manager
module. These functions contain a loop that execute L times a set of instructions.



4.4 Evolutionary Approach 37

The instructions themselves are devised by the evolutionary core, while the frame-
work is fixed. At the end of the loop, before the next iteration, the values in the
registers are used to update the signature.

In the proposed methodology the very same microprocessor is used both for gen-
erating candidate tests, i.e., for running μGP , and for their evaluation. Using the
same processing unit to evolve individuals and calculate their fitness is quite a stan-
dard procedure in GP. In most μGP application, conversely, the interesting data is
not the result of the computation, but how the test program is actually computed by
the specific device. And the evaluation of the assembly-language test programs is
usually carried out on an different unit, physically, by emulation, or by simulation.
Extracting information from the microprocessor currently executing μGP may be
quite tricky. It has been first attempted 2004, during a collaboration with Intel [97].

When it is required to calculate the fitness of the newly generated offspring, indi-
viduals are compiled to stand-alone executable and run. The manager also takes care
of invoking the evolved fragment of code while varying the CPU core voltage, and
creating a text file with the results. Eventually, the execution of μGP is resumed.

4.4.3 Evolution Start

Evolution advances through the accumulation of slight but useful variations [47].
Thus, if all individuals in the initial population are indistinguishable, it is hard for
the process to start. Unfortunately, this is not an uncommon situation. The computer
used for generating and evaluating the test programs is almost completely working.
It is able to perform nearly all operations, and indeed finding an incorrect behavior
requires elaborate sequences of instructions. Thus, in the first step it is not infrequent
to have a population of test programs not able to fail at any voltage, with exactly the
same fitness value.

To overcome this problem the first population is significantly larger than the usual
ones. μGP uses the parameter ν (the Greek letter nu) to control the number of
randomly generated individual in the beginning of the evolution.

4.4.4 Internal Representation, Multithreading and Multicore

In μGP , the individual is internally encoded as a directed multigraph. With the
adopted scheme, disregarding all the details, each node encodes a line of the assem-
bly program. Edges represent syntactic or semantic relationship. For instance one
edge connects every two adjacent lines; an additional edge connects a branch in-
struction with its target; another edge connects a node referring to a global variable
with the line defining the data.

Modern processors may implement a multithreaded design; or they can exploit
a multicore architecture; or even both. From the perspective of the test-program



38 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

generator details are not relevant, but it is vital to create multiple independent in-
struction flows.

A single individual is composed of different independent functions. The man-
ager activates them as different threads on different cores using appropriate oper-
ating system calls, or directly whether no operating system is used. Such blocks,
in the individual, are represented as disjoint subgraphs. Notably, different blocks
may be forced to have different structural characteristics, or use different subsets of
instructions.

4.4.5 Assembly Language

For the generation of failing test is performed during speed stepping or an incom-
ing inspection, it is essential to test all possible instructions, and especially the
newest. The assembly instructions made available to μGP can be divide in three
main classes.

Integer instructions include all usual instructions, such as logical and arithmetical
ones. They operate on internal registers or memory. In the adopted scheme, only two
registers are employable, while the others are used by the manager. However, this
restriction should not impair the global result. Comparisons, tests and branches are
also included in this class. To avoid endless loops, μGP was forced to create only
forward branches in the generated code.

x87 instructions are the subset of the Intel 32-bit architecture (IA32) related to the
floating point unit (FPU). The name stems from the old separate floating point co-
processors, like 80287 and 80387. They provides single precision, double precision
and 80-bit double-extended precision binary floating-point arithmetic according to
the IEEE 754-1985 standard. x87 instructions operates on a stack of eight 80-bit
wide registers, but some instruction modifiers allow the use of the stack as a set of
registers. In the actual version, μGP uses x87 instructions in only one thread.

The third class of instructions requires a slightly longer introduction. In 1996, In-
tel introduced single-instruction/multiple-data (SIMD) instructions in the Pentium
microprocessor, its first superscalar implementation of the x86 instruction set archi-
tecture. In a SIMD instruction, multiple processing elements perform the very same
operation simultaneously on different data. Matter-of-factly, the technique is called
data-level parallelism. Pentium SIMD instructions were originally branded as MMX
extension, and operate on eight 64-bit wide registers. Advanced Micro Devices of-
fered its own enhanced version of the SIMD instructions two years later, marketing
them as 3DNow!. In 1999, Intel outbid with the so-called Streaming SIMD Exten-
sions, or SSE. Followed in 2001 by SSE2, in 2004 by SSE3, and finally in 2006
by SSE4. Not mentioning the Supplemental Streaming SIMD Extensions 3 (SSSE3,
with three “S”) included in Intel microprocessors from 2006. Advanced Micro De-
vices is planning to include SSE5 in its Bulldozer processor core in 2011.

Not surprisingly, SIMD instructions are particularly critical during speed step-
ping. The complex calculations involved by these instructions cause data to go



4.5 Experimental Evaluation 39

through several functional units, and the resulting datapaths are prone to be source
of problems when the operating frequency is increased.

4.4.6 Cache

Cache memories are small, expensive and fast memories placed near the processor
core. The rationale is to read and write the most frequently accessed data as effi-
ciently as possible. Modern microprocessors exploit a hierarchy of cache memories,
or multi-level caches, with the level-1 (L1) cache being the smallest, more expensive
and fastest. And, indeed, the closest to the central processing unit.

When the memory is accessed, the L1 cache checks whether the data is cached,
i.e., if it contains the specified location. In this case, called cache hit, the L1 swiftly
replies to the request. If the data is not present, termed cache miss, the L1 cache
delivers the request to the L2 cache and so on. Considering only the first level, there
is a significant difference in performance and power consumption between a L1
cache hit and a L1 cache miss. Such effects may be significant for the generation of
a failing test, and must be taken into account.

The internal design of a cache is complex, and the policies for determining which
data to store and which to discard are different. In a fully-associative cache, every
memory location may be cached in every location of the cache. However, such a
design is too complex and slow if the size of the cache increases. Thus, usually, the
architecture imposes that a specific memory location may be stored only in a subset
of cache locations. In a direct-mapped cache each memory location can be cached in
only one location, while in a k-way set associative cache, in k alternative locations.

In order to give the μGP the possibility to generate cache hits and cache misses, a
special set of C variables was defined. The variables are carefully spaced so that all
their memory locations will be cached in the very same cache location. If the micro-
processor uses a k-way set associative L1 cache and C > k, a shrewd sequence of
read and write operations on such variables may generate the desired cache activity.

It must be noted that the goal of adding such variables is to let the evolutionary
core to control the cache activity, but no suggestions are given on how to exploit
them. μGP would devise which sequence of operations is more useful to generate a
failing test.

4.5 Experimental Evaluation

While no working attempts of functional failing-test generation has been reported
in the specialized literature, a related problem is faced by a community of computer
enthusiasts. Overclockers try to push the performance by increasing the operating
frequencies of their microprocessors and the CPU core voltages [38]. However, after
pushing their computers to astonishing frequencies, they need to assess the stability



40 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

of their systems. The test suites that are used to stress the systems and highlight
criticalities may be regarded as generic fail tests not focused on a specific micro-
processor. Thus, they can be used as a baseline to evaluate the performances of the
proposed methodology.

While all the stability tests are quite different, a common point is that modern
ones do extensive SIMD calculation. Another common point is their ability to in-
crease the temperature of the microprocessor. It is well known that high temperature
may cause both reversible and irreversible effects on electronic devices. Heating
may increase the skew of the clock net and alter hold/setup constraints, causing
design criticalities to become manifest and the circuit to operate incorrectly [27].

However, while such an effect is sensible when assessing the stability of a system,
it may not be desirable when the goal is to find a failing test during speed stepping.
The main reason is that the failing test should be as repeatable as possible, while in-
creasing the temperature also increase non-deterministic phenomena. Nevertheless,
since no other comparison is possible, the proposed approach was tested against the
state-of-the-art stress tests used by the overclocking community.

4.5.1 Overclockers’ Stress Tests

Most of the information about stability stress tests is available through forums and
web sites on the internet, with few or none official sources. However, there is quite
a generalized agreement in the overclockers community on these tools.

SuperPI is a version of the program used by Yasumasa Kanada in 1995 to com-
pute π to 232 digits. It is based on the Gauss-Legendre algorithm. SuperPI imple-
mentation makes use of x87 instructions only, it exploits no SIMD instructions, and
it is strictly single threaded. CPU BurnIn is a stress test developed by Michal Mienik
in the beginning of 2000s. Like SuperPI it uses no SIMD instructions and is single
threaded. These two programs are rather old, but have been included for the sake of
comparison.

Prime95 is the name of an application written by George Woltman and used by
a project for finding Mersenne prime numbers4 [1]. It makes extensive use of the
fast Fourier transform, or FFT, with a highly efficient implementation that exploits
SIMD instructions. Over the years, it has become extremely popular among over-
clockers as a stability test. It includes a “Torture Test” mode designed specifically
for testing systems and highlight problems. In the overclocking community, the rule
of thumb is to run it for some tens of hours.

LINPACK is a software library for performing numerical linear algebra on dig-
ital computers. It was originally written in Fortran in the 1970s and early 1980s.

4 A Mersenne number is a positive integer that is one less than a power of two: M = 2p − 1.
The name came from the French theologian, philosopher, mathematician and music theorist
Marin Mersenne, sometimes referred to as the “father of acoustics”. As of August 2010, only
47 Mersenne prime numbers are known. Remarkably, the largest known prime number is also a
Mersenne number: N = 243,112,609 −1.



4.5 Experimental Evaluation 41

Newer implementation of LINPACK exploits SIMD and are highly optimized. Sig-
nificantly, Intel includes a benchmark based on an optimized version of LINPACK
in its Math Kernel Library [2]. Different applications exploited such benchmark to
assess the stability. The most common are LinX5, IntelBurnTest6, and OCCT7. The
last one, also includes a proprietary stress test.

4.5.2 Target System

Experiments were run on an Intel Pentium Core 2 Duo E2180, MSI motherboard
NEO2-FR with the Intel chipset P35. The system was equipped with 3 GiB RAM
memory DDR2-800, and a Sparkle Nvidia 8800GT graphic card. While the default
clock was 2GHz, for the purpose of the experiments the system was overclocked
to 2.93GHz. The only non-standard device was an in-house manufactured water
cooling system (Fig. 4.1).

The E2180 is a dual-core microprocessor. It has a 32 KiB L1 cache for data
implementing an 8-way set associative architecture. An identical cache is for in-
structions. The L2 cache is 1 MiB, 4-way set associative, and it is used for both data
and instructions. The Core architecture can be traced back to the P6, introduced in
1995 with the Pentium PRO and revived in 2000 with the Pentium M line. It sup-
ports SIMD instructions up to SSE3 and SSSE3, and the Enhanced Intel SpeedStep
(EIST) technology. Unlike its predecessor NetBurst and its successor Nehalem, the
Core 2 Duo architecture does not exploit simultaneous multithreading.

Given the goal of the feasibility study, the difference between multicore and mul-
tithread may be regarded as a marginal detail. From the perspective of μGP there
is no difference whether the different threads are evaluated on the same core or on
multiple cores.

4.5.3 Experimental Results

The failing test devised by the proposed approach on the target system was com-
pared with the state-of-the-art stress tools used by overclocking community. Results
are reported in Table 4.2 and Table 4.3. Columns are labeled with the name of the
program used to test the system. The last column reports data of the test generated
by μGP. Rows indicate the CPU core voltage at which the experiments were run.
Cells shows the time required for the given stress test to report a failure. To re-
duce overheating effects, all tests were stopped after 10 minutes. Thus “more than

5 Originally posted on http://forums.overclockers.ru/
6 http://www.ultimate-filez.com/
7 http://www.ocbase.com/perestroika en/



42 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

Fig. 4.1 The system used for the experiments.

10 minutes” means that no failure has been detected. All experiments have been
repeated 10 times. μGP parameters are shown in Table 4.1.

Table 4.1 μGP parameters

Parameter Meaning Value

μ Size of the population 30
ν Size of the initial (random) population 100
λ Genetic operators applied in each generation 20
R Repetitions of each test to tackle variability 10
L Repetitions inside each test 5,000,000

Table 4.2 compares the proposed methodology with older stress tests. Since mul-
tiple threads are not supported by SuperPI and CPU BurnIn they were disabled
in μGP as well. It can be noted that the critical functional voltages are quite low,
thus the microprocessor needs to be undervolted significantly in order to originate a



4.5 Experimental Evaluation 43

problem. Table 4.3, on the other side, reports the comparison against newer stress
tests. All these programs uses two threads, that is, one for each core.

Table 4.2 Failing-test duration for single thread

CORE V SuperPI CPU BurnIn μGP

1.2625 ... 5’ 1"
1.2750 10’ > 10’ 1"
1.2875 > 10’ > 10’ ...
1.3000 > 10’ > 10’ ...
1.3125 > 10’ > 10’ ...
1.3250 > 10’ > 10’ ...

Failing tests devised with the proposed methodology clearly outperform all the
other approaches. However, it must be noted that the comparison is not completely
fair, since the goal of the programs were different. μGP was asked to find a very
fast failing test for a specific microprocessor, and there is no guarantee that they
would fail on different models. Moreover, the test was required to be very short, to
avoid heating effects. On the contrary, the adopted stress tests intentionally exploit
overheating and are designed to work with different architectures.

Table 4.3 Failing-test duration for multiple threads

CORE V Prime95 IntelBurnTest LinX OCCT μGP

1.2625 2"
1.2750 2"
1.2875 4’ 7’ 2"
1.3000 >10’ 7’ 7’ >10’ 10"
1.3125 >10’ >10’ >10’ >10’ 8’
1.3250 >10’ >10’ >10’ >10’

The final failing test is 614 line long. The two functions executed by the two
cores are respectively 280 and 235 line long. The remaining lines are mainly used
to define and initialize variables or other program parts. It should also be noted
that μGP requires about 50’ to generate a test failing at a core voltage of 1.2625V;
6h to find a test failing at a core voltage of 1.2750V; additional 5h for 1.2875V;
and additional 5h for the 1.3000V. For the sake of experimentation, the failing test
devised for 1.3000V was run at a core voltage of 1.3125V and consistently failed
in about 8’. Interestingly, the temperature of the microprocessor during this last
experiments never exceeded 40◦C, while running LINPACK-based stress tests it is
permanently above 45◦C.



44 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

4.6 Conclusions and Future Works

An efficient post-silicon methodology for devising functional failing tests is pro-
posed. The result of the chapter is twofold: first, it demonstrates the possibility for
an evolutionary algorithm to generate assembly-level failing tests, tackling the most
advanced microprocessor designs; second, it shows that the methodology can pro-
duce interesting results with negligible, or even nil, hardware overhead.

The proposed methodology could be exploited by microprocessor manufacturers,
during verification or speed stepping. Or it could be used to generate a fast test able
to check the reliability of a system. The latter can be important for the incoming
inspection of a set of purchased devices.

Future works include enhancing the evolutionary algorithm, letting it tuning the
number of repetitions in each test L. The interaction between x87 and SIMD instruc-
tions also deserves a closer examination. A customized version of the μGP requiring
no operating systems can be devised in order to more easily run experiments on the
microprocessor. Also, the signature could be improved by including more informa-
tion on the state of the execution, such as the internal performance monitor.


	Post-silicon Speed-Path Analysis in ModernMicroprocessors through Genetic Programming
	Background
	Introduction
	Generation and Evaluation of Test Programs
	Evolutionary Approach
	Fitness Function
	Individual Evaluation
	Evolution Start
	Internal Representation, Multithreading and Multicore
	Assembly Language
	Cache

	Experimental Evaluation
	Overclockers' Stress Tests
	Target System
	Experimental Results

	Conclusions and Future Works




