
Chapter 3
Automatic Software Verification

The complexity of cell phones is continually increasing, with regards to both hard-
ware and software parts. As many complex devices, their components are usually
designed and verified separately by specialized teams of engineers and program-
mers. However, even if each isolated part is working flawlessly, it often happens
that bugs in one software application arise due to the interaction with other mod-
ules. Those software misbehaviors become particularly critical when they affect the
residual battery life, causing power dissipation. An automatic approach to detect
power-affecting software defects is proposed. The approach is intended to be part
of a qualifying verification plan and complete human expertise. Motorola, always
at the forefront of researching innovations in the product development chain, ex-
perimented the approach on a mobile phone prototype during a partnership with
Politecnico di Torino. Software errors unrevealed by all human-designed tests have
been detected by the proposed framework, two out of three critical from the power
consumption point of view, thus enabling Motorola to further improve its verifica-
tion plans. Details of the tests and experimental results are reported.

3.1 Introduction

Verifying all the software running on a given apparatus is a complex problem, es-
pecially when the system under test is a mobile device, in which a software misbe-
havior can affect residual battery life. Traditional software verification techniques
are often unable to work on a great number of applications at the same time, and
since some software modules could be developed by third parties, verification engi-
neers could not always have access to all data needed for the verification process.
Evolutionary computation techniques proved able to tackle difficult problems with
relevant degrees of success [43], even if some data of the problem is not completely
known. Specialized literature routinely reports techniques that deliver high-return
human-competitive machine intelligence simply starting from a high-level statement
of what needs to be done and subsequently solving the problem without further need

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 17–30.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012



18 3 Automatic Software Verification

of human intervention [86]. In the industrial world, however, the majority of exist-
ing processes employ no machine intelligence techniques, even if such approaches
have been reported able to provide reliable results when facing complex problems.

The resistance in incorporating evolutionary computation in industrial processes
may arise from the lack of experts with deep knowledge in both the machine
intelligence and the industrial field. Automatic methodologies are perceived as
scarcely controllable, and computational-intelligence techniques are regarded as
“black magic”, able to deliver impressive results sometimes, but definitely not reli-
able. In recent years, however, the interest of the industrial world towards automatic
techniques has been steadily growing and some computational intelligence tech-
niques have been successfully applied to some niche cases (e. g. credit card fraud
detection performed by neural networks [19]).

An automatic approach based on an Evolutionary Algorithm (EA) is proposed,
to add content to a human-designed verification plan for a mobile phone software
system. The approach makes use of the EA to effectively [85] generate stimuli for a
physical prototype of a cell phone, running simulations whose results are fed back
to the EA and used to generate new stimuli. Data obtained from the simulations in-
clude physical measures and logs of all running applications. To explore effectively
the solutions space, measures extracted from the prototype are integrated with data
obtained from a model of the phone dynamically derived from simulation results.

Three different software misbehaviors, previously unrevealed by human-designed
tests, are detected by the proposed approach. Incorporating this procedure in an
existing set of tests allows Motorola [109] to further improve the effectiveness of
qualifying verification plans. Preliminary results have been presented in [63] and
[64].

3.2 Background

3.2.1 Mobile Phones

Since 1997, the mobile devices market has been steadily growing. Market researches
projected that shipments of cell phones exceeded 1 billion units in 2009, so that
mobile phones could become the most common consumer electronic device on the
planet. Esteems from Gartner, shown in Fig. 3.1, predicted that there will be 2.6
billion mobile phones in use by the end of 2009 [161].

A great share of mobile devices sold nowadays is represented by the so-called
smartphones, able to offer PC-like functionalities at the expense of an ever-growing
complexity at both hardware and software level. Devices support more and more
functions, running a great number of different applications: hardware miniaturiza-
tion improves constantly, and thus battery life and power consumption related is-
sues become more and more critical [36]. Thus, prediction of battery life [55] and



3.2 Background 19

Fig. 3.1 Projection of cell phone sales by Gartner

improvement of energy supplies for mobile devices [90] [129] are research topics
of great interest with significant contributions in literature.

Since the introduction of smartphones, the increasing number of applications run
by mobile systems led to a great number of possible misbehaviors caused by soft-
ware bugs. The most displeasing errors for the user are obviously those related to
battery life, and in particular incorrect behaviors happening during the state where
the cell phone consumes a minimal quantity of energy, called deep sleep. A mobile
device enters deep sleep mode when it is left idle for a given amount of time or
when a certain signal is given by the user (e. g. when the cap of a mobile phone is
closed). Errors that arise in deep sleep can completely exhaust the battery of a cell
phone while the user is oblivious to what is happening: a customer could find out
that her mobile phone is discharged even if it was fully charged a few hours before.

3.2.2 Verification Techniques

Verification is the process that aims at guaranteeing the correctness of the design.
Verification techniques exploit different paradigms, but, roughly speaking, it is pos-
sible to state that almost all can be classified either as formal or simulation-based.
The former exploits mathematical methodologies to prove the correctness of the de-
sign with respect to a formal specification or property, while the latter is based on
a simulation that aims at uncovering incorrect behaviors. Exploiting formal meth-
ods allows to verify the module with all possible inputs passing through all possible
states. Therefore, these techniques in theory guarantee the highest levels of confi-
dence in the correctness of the results, but when a formal method fails to prove a
property, nothing can be determined about it, not even with a low amount of con-
fidence. The human and computational effort required to apply formal verification



20 3 Automatic Software Verification

techniques, severely limit their applicability. Such methods, as a result, are applied
in the industrial field only when facing few software or hardware modules, when
validation task can be significantly constrained by boundary conditions or when
oversimplified models are employed, thus significantly impairing the confidence of
the results [50]. Systems composed of a great number of modules usually cannot be
tackled by formal verification, due to the growth of complexity of these techniques.
To maximize their efficiency, formal verification techniques are usually applied to
the source code of the model description. However, in the mobile phone prototyping
arena, the very first time a mobile phone prototype is implemented, some applica-
tions running on the phone are developed by third parties and their original code
is often non accessible [3]. Therefore, it is not always feasible to exploit formal
verification techniques during the verification plan of a mobile phone.

Simulation-based techniques rely on the generation of a set of stimuli able to thor-
oughly excite the device under verification: the stimuli set is simulated exploiting
the considered module. Subsequently, all data obtained from the simulation is gath-
ered and analyzed, aiming to unearth misbehaviors by comparison with the expected
results. A simulation-based approach may be able to demonstrate the presence of a
bug even in frameworks with a great number of applications or hardware modules
running simultaneously, but will never be able to prove its absence. Indeed, verifica-
tion engineers may assume that no bugs exist depending on the level of confidence
related to the quality of the simulated test set. Stimuli sets can be applied to either
a physical prototype or a simulable model of the device. Both approaches have ad-
vantages and disadvantages: while models often describe only some aspects of the
system, they may allow verification engineers to control all details of the simulation
and gather a large amount of information. On the other hand, a physical prototype
may be more difficult to control, but results of the physical emulation are completely
unbiased, and the computational time required to apply the stimuli set is lower com-
pared to model simulation. Either using a model or a prototype, the generation of a
qualifying set of stimuli is the key problem with simulation-based techniques.

As mentioned by Piziali in [122], the real success of a simulation-based veri-
fication process relies on the adequacy of the initial verification route-map, called
functional verification plan. A verification plan must define important test cases tar-
geting specific functions of the design, and it must also describe a specific set of
stimuli to apply to the design model. The verification plan can also allocate specific
tasks to specialized engineers.

One of the most important tasks of the verification plan is the generation of the
stimuli that thoroughly exercise the device, obeying the directives defined in the
route-map.

According to the defined plan, different methodologies may be used to prop-
erly generate verification stimuli sets, for example deterministic, pseudo-random,
or constrained-random. The generation of stimuli can be driven by past experience
of the verification engineers or by exploiting the extracted information of a given
model of the system. The latter technique is called model-based testing, and for
complex software systems it is still an actively evolving field [52].



3.2 Background 21

A typical verification plan usually starts by tackling corner cases with hand-
written tests. The verification stimuli set is then improved by adding information
automatically generated exploiting simulation-based approaches. At last, the auto-
matically generated test set requires an additional analysis by the verification en-
gineers. Tests developed in such a way require a considerable amount of expertise
related to the device under test, they are not always portable, and their preparation
is time-consuming and expensive.

Completely automated approaches for stimuli generation can follow several
methodologies: constrained-random generation, sometimes simply referred to as
random or pseudo-random test generation, and feedback-based generation are the
most widely adopted.

In a constrained-random test generation [69], random stimuli set are created by
following a constrained generation process. Templates and constraints previously
specified are exploited to define the structure of each stimuli fragment which is then
randomized. When targeting real designs, such techniques have been proved to be
really challenging, and are outperformed by feedback-based approaches [114].

Feedback-based approaches initially apply stimuli to the system, check the out-
put produced and obtain information that is eventually exploited to produce new, and
probably better, stimuli. This process is repeated, generating a set of stimuli able to
stress the system very effectively: considerable proofs support the predominance of
feedback-based techniques over other simulation-based ones [145]. Another impor-
tant advantage of feedback-based approaches is that at the end of the process, a very
compact set of data is produced: even though a large number of stimuli is simu-
lated, most of the results are fed back to the system and exploited internally. Thus,
verification engineers are required to analyze smaller quantities of information.

In a typical hand-written test for a new mobile phone, the phone is woken up
from deep sleep mode, a sequence of key pressures is given in input to it, it is turned
back to deep sleep and power consumption is eventually determined. Frequently,
these sequences of keys mimic actions that will be likely performed on the phone, e.
g. starting a video call, inserting a new field in the address book, etc. Once a number
of similar devised tests are completed, a test set is created thanks to an automated
approach that generates stimuli similarly structured to the hand-written ones.

Fig. 3.2 Flowchart of a generic EA. During the evaluation step, individuals with lowest val-
ues of goodness are removed from the population.



22 3 Automatic Software Verification

Verification plans focused on simulation-based techniques are developed by in-
dustries to provide a set of stimuli able to excite completely the functionalities of
the device under verification, consequently locating possible software bugs. When
tackling the software of mobile phones, first of all verification engineers perform
module-oriented verification procedures on single software application: this process
is often developed separately for each component. In a second step, different appli-
cations are run at the same time, studying reciprocal influences among the modules
and performing new verification tests on the whole system. In a third step, technical
experts use the device, trying to locate weaknesses of the complete framework. Dur-
ing each step, verification engineers may rely on techniques available in literature
on a single phase.

Among feedback-based techniques, Evolutionary Algorithms (EAs) are stochas-
tic search techniques that mimic the metaphor of natural biological evolution to
solve optimization problems [107]. Initially conceived at the end of 1960s, the term
EAs now embraces genetic algorithms, evolutionary strategies, evolutionary pro-
gramming, and genetic programming. Scientific literature reports several success
stories in different domains, for instance [131].

Despite great differences, all EAs have many properties in common. EAs oper-
ate on a population of individuals; underlying each individual encodes a possible
solution for the given problem. The goodness of every solution is expressed by a
numeric value called fitness, usually obtained through an evaluator able to estimate
how well the solution performs when applied to the problem. An evolutionary step,
called generation, always consists of two phases: a stochastic one where some of the
best individuals are chosen at random to generate new solutions; and a deterministic
one, where solutions are ranked by their fitness and the worst ones are removed from
the population. The process is then repeated until a user-defined stop condition is
met. Fig. 3.2 shows a classical flow for an EA. When facing verification problems,
stimuli created by an EA explore the solution space very efficiently. Moreover, the
solutions found by EAs are somewhat very different from, and thus complementary
to, human-made solutions [97].

3.3 Proposed Approach

The objective of the proposed approach is to find a set of stimuli able to detect
errors triggered by the interaction of software applications on a mobile phone by
stressing the functionalities of all the modules as much as possible. The approach
is feedback-based, driven by an EA that evolves a population of candidate stimuli,
coded as sequences of key pressures and pauses, similar to hand-written tests de-
vised by expert engineers. The approach is also model-based: a finite-state machine
(FSM) representing the system under verification is exploited to extract measures
for the goodness of each solution. The FSM is automatically generated from scratch
thanks to the data obtained by running simulations with the stimuli as an input to
a physical prototype of the phone itself. The model supplies information on the



3.3 Proposed Approach 23

number of different applications’ features activated by each stimulus; this data is
later used to assign a value to the stimulus, expressing its goodness. Fig. 3.3 shows
a schema of the proposed framework: the EA manages a population of individuals
that map stimuli. Such stimuli are evaluated by the model dynamically extracted
from the physical device.

CONTROL PC

POWER SUPPLY

RADIO 
TESTER

POWER 
SPLITTER

PHONE

BATTERY 
ELIMINATORRELAY BOARD

GPIB-USB cableUSB-USB cable

Ethernet cable

GPIB-USB cable

RF cable

RF cable pair

Output 1Output 2

USB-USB cable

Individuals

EA

INTERFACE

MODEL

Fig. 3.3 Schema of the proposed framework

3.3.1 Model

The device under verification is modeled with a FSM, where each state defines a sit-
uation in which all active software modules are waiting for new inputs. A transition
is a series of inputs that connect a state to another, turning on/arresting different ap-
plications or exciting some functionalities of the active ones. The FSM is exploited
to evaluate the number of distinct states traversed and the transitions activated dur-
ing the simulation of a stimulus [127].

Creating a complete model of all the software running on the mobile phone with
the classical methodologies of software engineering would be impractical, requir-
ing an excessive amount of time: the source code of each software module on the
device should be provided and analyzed. Since some applications are developed by



24 3 Automatic Software Verification

third parties, not all the software modules’ source code is obtainable, thus critical
data to build a complete model is missing. On the contrary, the FSM in the proposed
framework is created as the simulations go on, and each time a new state is discov-
ered the model is dynamically updated. Since this approach does not rely on a-priori
knowledge, errors that could occur in the model-building phase are avoided.

The Operating System (OS) and most applications on mobile phones can run in a
test mode where they write a log of their execution to ease the debugging process. By
reading system messages recording applications starting and closing, called events
in the following, it is possible to create a list of states. Each state is identified by a
status word, obtained by parsing the debug logs. Every time an event is raised or a
new feature of an active application is activated, the debug log register the changes.
When all applications active on the phone are waiting for new input, the status word
is collected by parsing the logs.

Starting with an empty FSM, new states and transitions are added each time a
new status word is discovered. Old status words are stored, thus the framework can
add transitions returning to states already known. Since the proposed framework
makes mainly use of the number of different transitions fired, it does not require the
supporting model to be complete or perfect.

μGP [149] [134], a general-purpose tool developed by the CAD Group of Po-
litecnico di Torino, is the EA chosen to be included in the framework. μGP is avail-
able as a GPL tool [146]. Candidate solutions of a problem in μGP are represented
as graphs, while the problem itself is encoded as an external program or script that
evaluates each candidate solution and supplies the tool with a measure of its good-
ness. Since the evolutionary core is loosely coupled with the evaluation, μGP can
be used in a wide range of different problems with no modifications needed.

While the tool was originally exploited to generate Turing-complete programs in
assembly language, over the years μGP handled different problems whose solutions
had complex structures.

Genetic operators, such as classical mutation and cross-over, modify the graph
that encode the individuals. The tool architecture is designed to handle a large num-
ber of genetic operators, to ease the addition of new ones and to let the user choose
the operators to apply to the problem. Each operator is associated with an activation
probability, that is managed internally by μGP, and an endogenous parameter called
strength that defines the differences between the parents chosen and the offspring
generated.

In μGP version 3, individuals are represented as constrained tagged graphs, i. e.
graphs with added information to nodes and edges, while the possible structures are
limited by the user. Thanks to the constrained graphs, the tool can handle problems
where the solution has structures simpler than Turing-complete assembly problems,
like linear graphs, linear genomes or fixed-length bit strings.

The fitness of each candidate solution is computed by a script or program that
runs a simulation using the individual as input and feeds back the results to μGP.
The fitness in the tool is described by a vector of floating point numbers followed
optionally by a comment. Each position of the vector is considered more important
that the following: fitness A is greater than fitness B if the number in the nth position



3.3 Proposed Approach 25

of vector A is greater than number in the nth position of vector B, and all the number
in previous positions (if any) are equal; if all components are equal then the two
fitness are considered equal.

The proposed framework makes use of μGP in its basic version, with no changes
or additions to the original code. Configuration files in eXtensible Markup Lan-
guage (XML) describe individuals’ structure and all necessary parameters such as
population size, stop conditions, number of genetic operators activated at each step.
Since in the specific problem individuals map sequences of keys, the related graphs
are linear genomes.

In the architecture of μGP, the evaluator is completely separated from the evo-
lutionary core, so the evaluation program is designed from scratch and it is specific
for each problem.

3.3.2 Candidate Solutions

Stimuli candidates to solve the problem are handled as a population of individuals
by the EA. Each individual is a small program in Java that encodes sequences of
keys and pauses: the programming language is chosen for the ease of compatibility
with the OS running on the cell phone. The first part of each individual inscribes
procedures of device initialization, while the last part makes the phone revert to an
idle state to subsequently trigger deep sleep mode.

The initial population provided to the EA contains both individuals encoding
random sequences of keys and pauses, and individuals encoding the most common
actions performed by a user on the mobile device, e. g. selecting a number in the
address book, making a video call, etc. Making the EA discover autonomously those
sequences is possible, but it would take a great amount of time. Since human-devised
tests have been already run on the prototype when the proposed methodology is
used, starting the evolution from scratch is redundant. Individuals encoding common
actions are derived from human-written tests cases used in other verification steps
with an ad-hoc tool.

The EA manipulates and reassembles user-defined sequences and random in-
dividuals, mixing and modifying them to create new individuals with the aim to
maximize the goodness of an individual. For example, a sequence derived from
human-designed tests in the initial population may be later mixed with a different
sequence and mutated by adding, removing or changing random lines of code.

3.3.3 Evaluator

Detecting a software bug that affects negatively battery life is the final goal of the
evolution. Unlike other problems, where the goal leads straightforwardly to the defi-
nition of a continuous evaluation function, the presence of a bug cannot be expressed



26 3 Automatic Software Verification

with such a function. A software error can be either detected or silent, with no other
values. As natural evolution, EA “can act only by the preservation and accumula-
tion of infinitesimally small inherited modifications, each profitable to the preserved
being” [47]. The evaluation function of the specific problem needs consequently to
be refined using heuristic methods.

The measure of the power consumption in deep sleep mode is surely included
in the goodness value of each individual, because of the goal of the experience, but
since most individuals use the same amount of energy, it is not enough to smoothen
the landscape of the evaluation function. Parameters that lead to a quicker location
of bugs must be taken into account as well.

The more an individual activates different software applications or different func-
tionalities of the same application, the greater the probability that it will trigger a
bug: consequently, individuals which excite more phone applications should be re-
warded with a higher value when evaluating their goodness.

Three contributions (Pi, Ti, Ei) are taken into account for the global goodness
value of individual i:

1. The mean value of power consumption while the cell phone prototype is in deep
sleep mode, measured over 30 s and defined as

Pi =
∑30s

t=0s P(t)
30

where P(t) is the power consumption at time t;
2. The number of transitions covered in the FSM that models all the software ap-

plications running on the phone, as described in 3.3.1, defined as

Ti =
T R

∑
tr=0

1

where T R is the total number of transitions fired. A transition is defined as a
passage from one state to another;

3. The number of different events activated, defined as

Ei =
E

∑
e=0

1

where E is the number of events raised from different applications.

The structure composed of these three contributes aims at discovering as many
states as possible in the FSM built dynamically and at activating the maximum pos-
sible number of transitions. As in the initial idea, a high value is associated to so-
lutions that excite a great number of different software modules on the phone, and
have an extreme power drain in deep sleep mode.

As the measure of the goodness of the solutions is conceived, rewarding candi-
date solutions that activate more software applications could lead to the exclusion of
an individual that targets only one module: that module, however, could be ignored



3.4 Experimental Results 27

by the rest of the population. In a similar way, the population in the long run could
be filled with individuals very much alike. μGP, the EA chosen for the experience,
has features enforcing diversity preservation in a population which help to avoid
both those risks [43].

3.4 Experimental Results

The proposed framework was tested on a cell phone prototype running a Motorola
P2K OS. The phone had been analyzed by verification engineers and passed all
human-designed test. Thus, there were no known misbehaviors in the phone soft-
ware modules when the proposed approach was applied to the device. The features
of each component involved in the experience are summarized in Table 3.1. The
experiments made use of the phone prototype, a radio tester, a power supply and a
computer to control the instruments.

To measure the power consumption in deep sleep mode and to keep the phone
powered during the experiments, a battery eliminator was connected to the phone.
The battery eliminator is made of a battery whose contacts are disconnected from the
inner cells and attached to a power supply. A relay board managed the connection
between the PC and the device under verification: the phone does not enter deep
sleep mode as long as it is connected to a PC. The relay board switched the phone
from a state where it is in use to a state where it is no longer in use and can thus
enter deep sleep.

To simulate a mobile network providing voice, video and data packet services, a
radio analyzer was linked to the phone, thus producing an environment completely
under the user’s control.

By means of an ad-hoc tool, human-devised tests written in Java were converted
to an XML representation later used as part of the initial population used by μGP.
Such Java programs described every possible command that a user could issue to
the mobile device, and each test was converted by μGP into a sequence of macro
instances. The tool is problem-specific and it was developed in Motorola Research
Laboratories located in Torino, Italy.

Since not all the applications stopped their execution when the mobile phone’s
flip was closed, the cell phone was sometimes blocked from entering deep sleep.
For example, the software manager for the photo camera shows what the camera is
shooting on the external monitor even if the flip is closed. Constraints were conse-
quently modified to solve the issue. During the experience, every test was performed
with a population of 50 individuals and an average of 40 new individuals generated
at each generation. Each test took up to 100 generations of evolution.

With these parameters, it is clear that a great number of evaluations are performed
during each experiment, so one of the first goals of the experience was to shorten the
temporal length of a single evaluation as much as possible. Instead of setting the pa-
rameters of the phone by browsing through the menus, a time-expensive activity, by
using seem elements, similar to configuration bits for the P2K OS, the duration of a



28 3 Automatic Software Verification

test was reduced by 30 seconds. A time-out coded in the Java class that manages the
logs of the phone was removed to further improved the performance by 20 seconds
more. Nevertheless, some of the most dilatory steps could not be shortened: it took
the phone roughly 60 seconds to enter deep sleep mode after the flip was closed,
and the master clear needed to return the phone to its initial state after each test took
35 seconds.

Even with the improvements achieved, the average evaluation time of a candidate
solution during the experiments was between 6 and 7 minutes, and thus it took
about 5 hours to complete a single generation step. A significant saving of time was
obtained thanks to the features of μGP, that keep the number of evaluations to a
minimum.

To avoid the generation of multiple individuals triggering the same software er-
rors, μGP constraints were altered after each discovery of a bug.

All the experiments had been completed in the Motorola Research Labs in Turin.

3.4.1 Video Recording Bug

During the first evolution, the majority of individuals showed a deep sleep power
consumption between 2,5 and 3,2 mA. It took 16 hours of computation and 150
candidate solutions evaluated to find three individuals with a deep sleep consump-
tion of about 7,0 mA which is 2,5 times the normal value.

The shortest of the three was composed by 100 lines of Java code, defining pres-
sures of keys and pauses. It was analyzed through a series of runs on the framework
already developed for the experiments, and the cause of the bug was uncovered: the
pressure of specific buttons while the phone was in video recording mode caused
a warning dialog to pop up on the display and froze the OS completely, thus keep-
ing the phone from entering deep sleep. The error was caused by the interaction of
the software controlling the video recording and the software managing the address
book.

Further analyses on the two other candidate solutions uncovered the same sub-
sequence of keys that caused the error in the first one.

3.4.2 Voice Call Bug

It took additional 120 hours of computation and the evaluation of about 1120 indi-
viduals to find out a second power-related bug. The best candidate solution found
during this experience let the phone enter deep sleep, but the power measurements
revealed a consumption of 50 mA, more than 16 times the expected use of power in
deep sleep mode.

The mobile phone did not show messages or exhibit unexpected behaviors: it was
necessary to analyze the individual’s code line by line, but the cause of the error was



3.4 Experimental Results 29

eventually located. If the video call button was pressed along with a special series of
keys during a voice call, the phone camera was powered up and it kept being active
even when the device returned to deep sleep mode, thus consuming an extreme
quantity of power. This error was triggered by an interaction between the software
controlling the camera and the software controlling the voice call.

3.4.3 Incorrect Menu Behavior

The experiments uncovered a third misbehavior, not affecting battery life but not
previously located by human-devised tests. By entering a specific settings menu and
exiting hereupon without making modifications, the device reset some of its settings
to their initial values. A candidate solution with this pattern made the following tests
fail. The end user would probably not affected greatly by this misbehavior, but the
problem had to be taken into account during the experience.

Table 3.1 Hardware involved in the experience

Device Details Description

Motorola mobile phone
prototype

P2K Platform Runs the tests

Personal computer OS: Microsoft Windows XP, Primary
Memory: 512 MB, Ports: USB 2.0

Controls the power supply, the radio
tester and the phone; provides packet
data services to the radio tester

Power supply Double-output with measurement capa-
bilities; VISA interface and SCPI pro-
tocol support

Controls the relay board; performs cur-
rent drain measurement of the phone
during tests

Anritsu MT8802A
Radio Communication
Analyzer

Model with the proper installed options
(see below)

Simulates the cellular network provid-
ing voice, video and data packet ser-
vices

Two VISA bus cables Any supported VISA interface Connect the control PC to the power
supply and the radio tester

Power splitter 500 - 5000 MHz Joins the signals of the two antennas of
the phone (required only to test simul-
taneously GSM and 3G)

RF cable N type connector (to the radio tester) Connects the radio analyzer to the
power splitter

Two short RF cables QMA type connector (to the phone) Connect the two antennas of the phone
to the power splitter (actually only
one cable is required if testing only
WCDMA or GSM standard)

Battery eliminator Built in house Bypasses the phone battery, feeding the
phone with the power provided by the
power supply

USB relay board Allows computer controlled switching Switches on/off the USB connection
between the phone and the PC



30 3 Automatic Software Verification

3.5 Conclusions

A framework for automated verification is proposed to attest the correct behavior
of a cell phone, uncovering software defects not detected by human-devised tests,
searching specifically for bugs affecting power consumption. The approach makes
use of feedback from the device under verification to produce new stimuli, with an
EA providing the necessary intelligence. The quantity of final data is limited to a
small significant amount.

The effectiveness of the system is demonstrated on a mobile phone prototype im-
plementing the P2K OS. The framework successfully locates software misbehaviors
previously undetected by standard human-supervised verification. Two of the bugs
uncovered are critical with regards to power consumption in deep sleep mode, thus
making them high-priority from the user’s point of view.

The research team at Motorola Research Laboratories in Torino finds a way to
further improve the qualifying verification plan for mobile devices.


	Automatic Software Verification
	Introduction
	Background
	Mobile Phones
	Verification Techniques

	Proposed Approach
	Model
	Candidate Solutions
	Evaluator

	Experimental Results
	Video Recording Bug
	Voice Call Bug
	Incorrect Menu Behavior

	Conclusions




