

Ernesto Sanchez, Giovanni Squillero, and Alberto Tonda

Industrial Applications of Evolutionary Algorithms

Intelligent Systems Reference Library, Volume 34

Editors-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Prof. Lakhmi C. Jain
University of South Australia
Adelaide
Mawson Lakes Campus
South Australia 5095
Australia
E-mail: Lakhmi.jain@unisa.edu.au

Further volumes of this series can be found on our homepage:
springer.com

Vol. 10. Andreas Tolk and Lakhmi C. Jain
Intelligence-Based Systems Engineering, 2011
ISBN 978-3-642-17930-3

Vol. 11. Samuli Niiranen and Andre Ribeiro (Eds.)
Information Processing and Biological Systems, 2011
ISBN 978-3-642-19620-1

Vol. 12. Florin Gorunescu
Data Mining, 2011
ISBN 978-3-642-19720-8

Vol. 13. Witold Pedrycz and Shyi-Ming Chen (Eds.)
Granular Computing and Intelligent Systems, 2011
ISBN 978-3-642-19819-9

Vol. 14. George A. Anastassiou and Oktay Duman
Towards Intelligent Modeling: Statistical Approximation
Theory, 2011
ISBN 978-3-642-19825-0

Vol. 15. Antonino Freno and Edmondo Trentin
Hybrid Random Fields, 2011
ISBN 978-3-642-20307-7

Vol. 16. Alexiei Dingli
Knowledge Annotation: Making Implicit Knowledge
Explicit, 2011
ISBN 978-3-642-20322-0

Vol. 17. Crina Grosan and Ajith Abraham
Intelligent Systems, 2011
ISBN 978-3-642-21003-7

Vol. 18. Achim Zielesny
From Curve Fitting to Machine Learning, 2011
ISBN 978-3-642-21279-6

Vol. 19. George A. Anastassiou
Intelligent Systems: Approximation by Artificial Neural
Networks, 2011
ISBN 978-3-642-21430-1

Vol. 20. Lech Polkowski
Approximate Reasoning by Parts, 2011
ISBN 978-3-642-22278-8

Vol. 21. Igor Chikalov
Average Time Complexity of Decision Trees, 2011
ISBN 978-3-642-22660-1

Vol. 22. Przemys�law Rżewski,
Emma Kusztina, Ryszard Tadeusiewicz,
and Oleg Zaikin
Intelligent Open Learning Systems, 2011
ISBN 978-3-642-22666-3

Vol. 23. Dawn E. Holmes and Lakhmi C. Jain (Eds.)
Data Mining: Foundations and Intelligent Paradigms, 2011
ISBN 978-3-642-23165-0

Vol. 24. Dawn E. Holmes and Lakhmi C. Jain (Eds.)
Data Mining: Foundations and Intelligent Paradigms, 2011
ISBN 978-3-642-23240-4

Vol. 25. Dawn E. Holmes and Lakhmi C. Jain (Eds.)
Data Mining: Foundations and Intelligent Paradigms, 2011
ISBN 978-3-642-23150-6

Vol. 26. Tauseef Gulrez and Aboul Ella Hassanien (Eds.)
Advances in Robotics and Virtual Reality, 2011
ISBN 978-3-642-23362-3

Vol. 27. Cristina Urdiales
Collaborative Assistive Robot for Mobility Enhancement
(CARMEN), 2011
ISBN 978-3-642-24901-3

Vol. 28. Tatiana Valentine Guy, Miroslav Kárný and
David H. Wolpert (Eds.)
Decision Making with Imperfect Decision Makers, 2012
ISBN 978-3-642-24646-3

Vol. 29. Roumen Kountchev and Kazumi Nakamatsu (Eds.)
Advances in Reasoning-Based Image Processing Intelligent
Systems, 2012
ISBN 978-3-642-24692-0

Vol. 30. Marina V. Sokolova and Antonio
Fernández-Caballero
Decision Making in Complex Systems, 2012
ISBN 978-3-642-25543-4

Vol. 31. Ludomir M. Laudański
Between Certainty and Uncertainty, 2012
ISBN 978-3-642-25696-7

Vol. 32. José J. Pazos Arias, Ana Fernández Vilas,
and Rebeca P. Dı́az Redondo
Recommender Systems for the Social Web, 2012
ISBN 978-3-642-25693-6

Vol. 33. Jie Lu, Lakhmi C. Jain, and Guangquan Zhang
Handbook on Decision Making, 2012
ISBN 978-3-642-25754-4

Vol. 34. Ernesto Sanchez, Giovanni Squillero,
and Alberto Tonda
Industrial Applications of Evolutionary Algorithms, 2012
ISBN 978-3-642-27466-4

Ernesto Sanchez, Giovanni Squillero, and Alberto Tonda

Industrial Applications of
Evolutionary Algorithms

123

Authors

Prof. Ernesto Sanchez
Politecnico di Torino - DAUIN
Italy

Prof. Giovanni Squillero
Politecnico di Torino - DAUIN
Italy

Dr. Alberto Tonda
Politecnico di Torino - DAUIN
Italy

ISSN 1868-4394 e-ISSN 1868-4408
ISBN 978-3-642-27466-4 e-ISBN 978-3-642-27467-1
DOI 10.1007/978-3-642-27467-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2011945155

c© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

My mother was a very simple plain person, with a hearth of gold. She was proud
of my academic successes and research career; she often asked me “But what does
your work consist of?”. I am an expert in Computational Intelligence, i.e., neural
networks, fuzzy logic and evolutionary computation, and although I am a full pro-
fessor at the Faculty of Engineering of the University of Pisa, it was not easy to
answer my mother’s question. She used to think that her world (“the real world”)
and my world (“the artificial, intellectual world”) were so far from each other that
no means could ever exist to let these worlds interact. But one day, by chance, evo-
lutionary computation made the miracle happen! Yes, that day I went to visit my
mother and found her completely busy doing a lot of things. So I proposed her a
sort of game. I said to her: “You have to perform a set of tasks (such as cleaning up
the house, cooking the dinner, etc), each consisting of a series of more elementary
operations, which can be performed in parallel or sequentially. You need an opera-
tion sequence plan that specifies the collection and the order of operations to carry
out. Actually, not all the combinations of operations are feasible, e.g., you cannot
start cooking the pasta before putting a saucepan on to cook. Further, some feasible
and valid sequences can be better, e.g., less time-consuming or demanding fewer
tool changes, than others. Of course your desire is to finish your work as good and
as early as possible. How do you choose the operation plan?”

“I do not follow any rule, it is just habit”, she answered.
“Then, consider all the single operations making the specific tasks to perform,

and write down on a piece of paper a few randomly-generated sequences of these
operations. Now rank the generated operation sequences based, e.g., on feasibility
and time/fatigue effort requirements. If the best sequence satisfies your desire, fol-
low that operation plan. Otherwise let an Evolutionary Algorithm (EA) generate a
new list of operation sequences obtained by automatically combining the current
sequences in an appropriate way. Check if the best sequence is good for you, oth-
erwise repeat the process again, and so on. You can be sure that the EA will find a
good solution sooner or later.”

She looked at me astonished, without speaking. I went on saying “This is a simple
way to mimic natural evolution, and EAs do exactly this in an automatic way.”

VI Foreword

What had happened that day? I and my mother had simply managed to make
our worlds interact, a thing that appeared impossible up to that moment. It is like
Columbus’s egg.

Probably this is the right and only way to fill the gap between apparently different
worlds like that of modern industrial applications and that of EAs. EAs can perform
systematic random search in order to improve the likelihood of finding globally opti-
mal solutions. On the other hand experience has shown that awareness of real-world
industrial problems and knowledge of traditional computation techniques are not
always enough to cope with the growing complexity of modern industrial processes
and products. Then, why not to use the potentiality of EAs? Probably industrial ex-
perts are simply not aware of how EAs could be applied to solve their problems. In
fact the key point to applying EAs to solve otherwise intractable problems is just
representing and assessing the candidate solutions to a problem in an appropriate
way.

It is just like Columbus’s egg. Let the experts of EAs show industrial engineers
and operators what EAs can do! The current book makes exactly this by presenting
a collection of real significant industrial problems and their EA-based solutions. The
considered case studies help the reader learn to employ EAs with a minimal invest-
ment in time and effort. This is what makes the current book useful and valuable for
effective technology transfer into industrial organizations. Described applications
include automatic software verification, test program generation for microproces-
sors, test generation for hardware and circuits, antenna array synthesis and opti-
mization, drift correction of chemical sensors, and generation of test sets for on-line
test of microprocessors.

Now that EAs represent a pretty mature field this is the right book for all post-
graduates, research scientists and practitioners who want to tackle challenging in-
dustrial problems, of whatever complexity, with the most up-to-date, powerful and
easy-to-use optimization technology.

Pisa, Italy, September 2011 Beatrice Lazzerini

Preface

The increasing complexity of products and processes leads directly to the growing
intricacy of the problems and issues the industrial world is facing. More and more
often, traditional computational techniques prove unable to cope with real world sit-
uations, either because the time needed to reach an optimal solution is not compat-
ible with the frantic development processes of a company, or because the modeling
of complex systems to the degree of precision needed is unfeasible. Evolutionary
Algorithms (EA) comprehend a wide class of stochastic bio-inspired optimization
techniques, firstly developed by J. H. Holland, L. J. Fogel, I. Rechenberg and H.
Schwefel during the late 1960s and early 70s. Over the course of the last 35 years,
EAs demonstrated their effectiveness in an extended variety of problems, ranging
from airfoil design to credit card fraud detection. The industrial world, however, is
still reluctant to introduce these powerful techniques into real procedures, mainly
due to the sensation of insufficient controllability, scarce repeatability of the results,
and the lack of experts with deep knowledge of both EAs and modern industrial
needs. This book presents different case studies of EAs successfully applied to real
world problems, hopefully showing the untapped potential of these techniques in
various industrial fields.

Chapter 1 comprehends a description of typical complex industrial problems, a
brief history of EAs, a comparison with traditional methods, and a discussion on the
application of evolutionary techniques to real world problems.

Chapter 2 presents what is meant to be a surely incomplete, but extremely useful
list of resources relevant for further elaboration and understanding of the multi-
faceted world of EAs.

The first section groups industrial problems related to the verification of hardware
and software working prototypes.

The case study presented in chapter 3 deals with the software verification of a
whole operative system and all applications running on a mobile phone prototype.
The chapter focus specifically on the problems concerning the application of an EA
to a “needle in a haystack” kind of problem; on how to make the EA perform; and
on how EAs can complete human expertise in the software verification field. The
activity is carried out in cooperation with Motorola Research Labs, Torino, Italy.

VIII Preface

The verification of microprocessors is a growing field of study, mainly because
design capability outperforms current verification techniques. Most studies on the
correct behavior of a microprocessor are thus run on working prototypes, in the at-
tempt to locate critical paths by making the device fail its computations. In chapter
4, an EA-based method to identify critical speed-paths in a multi-core microproces-
sor, exceeding the performance of state-of-the-art stress tests, is described.

The second section presents a collection of real-world case studies pertaining
design and reliability.

The design of an antenna array is the topic of chapter 5. When devising such
a complex system, often manual or automatic optimization methods do not yield
satisfactory results, being either too labour-intensive or unsuitable for some specific
class of problems. When an evolutionary algorithm is used to optimize parameters
of the antenna array, the results show that these techniques are able to obtain better
results than both manual and automatic approaches.

In chapter 6, an EA-based technique to lengthen the lifespan of electronic noses,
complex olfactory sensor arrays, is presented. Sensor arrays are affected by the drift
problem, a degenerative error in the measurements, hard to model and predict. The
proposed solution is to dynamically adjust the sensor readings with a state-of-the art
Evolutionary Strategy proves to be effective. The experience is performed with the
collaboration of Sensor CNR-INFM Lab, Brescia, Italy.

Chapter 7 tackles the problem of automatically devising online test sets for
microprocessor-based systems. While existing manufacturing test set can be used
for this purpose, several additional constraints must be considered for an online ap-
plication, including test length, duration, and intrusiveness. The proposed method-
ology, here applied to an Intel 8051 microcontroller, exploits an EA to create online
test sets starting from tests devised by the manufacturer.

The third section introduces results obtained through the application of EAs to
test generation problems for hardware and circuits.

Chapter 8 concerns the study of path delay faults in electronic devices, mis-
behaviors where a device produces a correct result without conforming to time
specifications. Devising test to uncover the presence of these faults is challenging,
exspecially when only a high-level description of the device is provided. To tackle
this problem, where the ideal result is a set of equally feasible solutions, a Multi-
Objective Evolutionary Algorithm (MOEA) is employed.

In chapter 9, EAs are applied to the field of Software-Based Self Testing (SBST),
an established test technique for various hardware architectures. SBST’s principle is
to apply a suitable series of stimuli to the device under test, comparing the produced
output to the expected one. Finding a minimal set of stimuli to thoroughly excite a
device is not a trivial problem: EAs prove successful once again, showing that the
proposed methodology is effective on a wide range of hardware peripherals.

Chapter 10 deals again with stimuli generation for SBST, this time tackling a
much more complex system, such as a microprocessor pipeline. Using a high-level
representation of the target device, and a dynamically built Finite State Machine
(FSM), fault coverage of the candidate stimuli are evaluated without resorting to
time-expensive simulations on low-level models. Experimental results show that

Preface IX

the evolved test obtains a nearly complete fault coverage against the targeted fault
model.

Acknowledgments

The authors would like to express their gratitude towards their families and col-
leagues for their invaluable support, useful ideas and intriguing discussion. A partic-
ular thank to A. Aimo, P. Bernardi, A. Cerato, K. Christou, S. Di Carlo, S. Drappero,
M. Falasconi, G. Fisanotti, M. Grosso, S. Loiacono, M. K. Michael, L. Manetta, A.
Moscatello, L. Motta, L. Ollino, D. Ravotto, T. Rosato, W. Ruzzarin, M. Schillaci,
A. Scionti and M. Sonza Reorda; without their help, this book would have not been
possible.

Contents

1 Introduction . 1
1.1 Industrial Problems . 1
1.2 A Brief History of Evolutionary Algorithms 2

1.2.1 Natural and Artificial Evolution . 3
1.2.2 Genetic Algorithms . 5
1.2.3 Evolutionary Programming . 6
1.2.4 Evolution Strategies . 7
1.2.5 Genetic Programming . 9

2 Resources . 11
2.1 Books . 11
2.2 Journals . 12
2.3 International Conferences and Workshops . 12
2.4 Software . 13
2.5 Suggested Readings on Natural Evolution and Biology 13

Part I Prototype-Based Validation Problems

3 Automatic Software Verification . 17
3.1 Introduction . 17
3.2 Background . 18

3.2.1 Mobile Phones . 18
3.2.2 Verification Techniques . 19

3.3 Proposed Approach . 22
3.3.1 Model . 23
3.3.2 Candidate Solutions . 25
3.3.3 Evaluator . 25

3.4 Experimental Results . 27
3.4.1 Video Recording Bug . 28
3.4.2 Voice Call Bug . 28

XII Contents

3.4.3 Incorrect Menu Behavior . 29
3.5 Conclusions . 30

4 Post-silicon Speed-Path Analysis in Modern Microprocessors
through Genetic Programming . 31
4.1 Background . 31
4.2 Introduction . 33
4.3 Generation and Evaluation of Test Programs 34
4.4 Evolutionary Approach . 35

4.4.1 Fitness Function . 36
4.4.2 Individual Evaluation . 36
4.4.3 Evolution Start . 37
4.4.4 Internal Representation, Multithreading and Multicore 37
4.4.5 Assembly Language . 38
4.4.6 Cache . 39

4.5 Experimental Evaluation . 39
4.5.1 Overclockers’ Stress Tests . 40
4.5.2 Target System . 41
4.5.3 Experimental Results . 41

4.6 Conclusions and Future Works . 44

Part II Design and Reliability Problems

5 Antenna Array Synthesis with Evolutionary Algorithms 47
5.1 Introduction . 47
5.2 Antenna Arrays . 48
5.3 Evolutionary Algorithm . 49
5.4 Experimental Setup . 50
5.5 Experimental Results . 51
5.6 Conclusions . 54

6 Drift Correction of Chemical Sensors . 55
6.1 Introduction . 55
6.2 Method and Theory . 58

6.2.1 Correction Factor . 59
6.2.2 Classification . 60
6.2.3 Correction Factor Optimization . 60
6.2.4 Distance Functions . 62

6.3 Case Studies and Experimental Results . 63
6.3.1 Artificial Dataset . 63
6.3.2 Real Dataset . 68

6.4 CMA-ES . 72
6.5 Conclusions . 73

Contents XIII

7 Development of On-Line Test Sets for Microprocessors 75
7.1 Introduction . 75
7.2 Proposed Methodology . 77

7.2.1 Spore Generator Description . 79
7.2.2 Set Covering . 81

7.3 Case Study . 82
7.4 Conclusions . 84

Part III Test Generation Problems

8 Uncovering Path Delay Faults with Multi-Objective EAs 89
8.1 Introduction . 89
8.2 Background . 90

8.2.1 Software-Based Path Delay Testing . 90
8.2.2 Exploiting Gate- and RT Level Descriptions for

Path-Delay Testing . 91
8.2.3 BDDs for Structural Path Delay Fault Tests 92
8.2.4 Basic Concepts on MOEAs . 93

8.3 Proposed Approach . 93
8.4 Experimental Data . 96
8.5 Conclusions . 99

9 Software-Based Self Testing of System Peripherals 101
9.1 Introduction . 101
9.2 Peripheral Testing . 102

9.2.1 Basics . 102
9.2.2 Previous Works . 103

9.3 Proposed Approach . 104
9.3.1 Evolutionary Tool . 105
9.3.2 Evaluator . 107

9.4 Experimental Analysis . 108
9.4.1 Test Case . 108
9.4.2 Experimental Results . 108

9.5 Conclusions . 110

10 Software-Based Self-Testing on Microprocessors 111
10.1 Introduction . 111
10.2 Background . 112

10.2.1 Software-Based Self Testing . 112
10.2.2 Evolutionary Algorithms on Software-Based Self Testing . 114

10.3 Proposed Approach . 115
10.3.1 μGP . 117
10.3.2 FSM Extractor . 118

10.4 Case Study and Experimental Results . 119
References . 121

Chapter 1
Introduction

This first chapter provides the reader with a survey of current industrial problems,
hinting at their complexity and variety. It is shown how traditional computational
techniques often fail to deliver the expected results in modern real-world applica-
tions, while computational intelligence show an increasing amount of interesting
results. Some background and a brief history of Evolutionary Algorithms (EAs) are
then provided, introducing these interesting stochastic optimization techniques.

1.1 Industrial Problems

In the modern industrial world, the complexity of problems faced by companies is
growing accordingly with the complexity of products they sell. This holds particu-
larly true for the IT field: considering hardware components, the number of connec-
tions per silicon wafer is doubling each year, following closely the famous “Moore’s
Law”; and with a more and more inexpensive and powerful hardware at disposal, the
number of applications manageable by operative systems, even on mobile devices,
is increasing at almost the same rate.

Such a growth in complexity directly leads to difficulties in every step of product
development, starting from the design step. Even determining the correct combina-
tion of parameters to obtain the desired behavior for a device is not a straightforward
process, because each choice could have intricate and sometimes not foreseeable
repercussions. More and more, industry must resort to heuristic and meta-heuristic
techniques to find the best alternative between different possibilities. Evolutionary
algorithms proved successful in solving several design-related issues, from anten-
nas optimization [101] to fine-tuning of product details to maximize its recycling
possibilities [163].

Verification and testing, for which considerable amounts of time and money
are invested during the development of a new product, are also heavily influenced
by the increasing complexity of devices: microprocessors’ designers, for example,
candidly acknowledge that “very few chips ever designed function or meet their

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 1–10.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

2 1 Introduction

performance goal the first time” [106]. In practice, production capacity outperforms
testing capacity by several orders of magnitude, and activities once performed on
models are now applied to physical prototypes, despite the enormous costs involved
in prototyping.

When the single parts of a device become so intricate, the interaction between
them could also lead to extreme difficulties in making predictions on the behavior
and the lifespan of the device itself. Time to market is a pressing issue for the indus-
try, and the possibilities of studying throughly a system are often limited. Issues in
the functionalities of a product can arise in an unexpected way, at unexpected mo-
ments: thus, the necessity arises for ways to solve unexpected problems when they
appear.

Even when reliable models of devices are available, developing efficient veri-
fication sets is not trivial. Often the methodologies applied must adhere to strict
constraints of time and memory occupation, since their results could be used under
different conditions. In other contexts, some crucial parts of a device are so embed-
ded that even observing the tests’ result becomes a non-trivial activity. An example
are peripherals in Systems-on-Chip, devices that integrate all components of a com-
puter or other electronic system into a single integrated circuit.

When the product is a software application, although development steps are sig-
nificantly different, the call for complexity is still in place, transposed to algorithmic
level. Image analysis, for example, is one of the fields where traditional techniques
are lagging behind: computational intelligence, on the other hand, showed promis-
ing results in complicate tasks such as fractal approximation [37], pattern recogni-
tion [24] and tracking of moving objects in videos [117].

Classification and data mining also suffer from the increment of available data: in
a heavily connected world, statistics obtained from social networks and other web-
sites can be of great interest for companies which desire to advertise their products to
a specific audience. Identifying meaningful patterns in such a huge amount of infor-
mation, however, is a hard problem, and even here classical approaches are showing
their limits and the first applications of computational intelligence are appearing in
fields such as credit card fraud detection [19].

Several other interesting industrial applications of computational intelligence can
be found among the case studies reported in [163], ranging from design of optical
fibers to optimization of store performances, from planning of railway track inter-
vention to applications in chemical industries.

1.2 A Brief History of Evolutionary Algorithms

The Theory of evolution postulates that all living organisms have their origin in
other preexisting beings: differences between current lifeforms have their origin in
modifications inherited through successive generations. Evolutionary computation
is the branch of Computer Science that focuses on algorithms inspired by the natural
world and the theory of evolution: while this definition may seem vague, the field

1.2 A Brief History of Evolutionary Algorithms 3

of study has boundaries that are not, and cannot be, defined clearly. Evolutionary
computation is included in the broader group of bio-inspired heuristics, which are
in turn a sub-section of computational intelligence. In the following, the distinction
between natural evolution and artificial evolution will be stressed out for clarity
whenever necessary.

This section is meant to be a brief presentation of the basics of evolutionary com-
putation and its terminology: a thorough description of the topic is out of the scope
of this book, and most concepts are detailed only to the extent they are required in
the following. Readers interested in a comprehensive coverage of the field will find
several fascinating books on the topic, for example [56]. For a survey of the vast
and alluring world of biology studies, [48] and [66] can be two interesting starting
points.

1.2.1 Natural and Artificial Evolution

Scientists show a remarkable consensus on the theory of natural evolution, which is
considered a cornerstone of modern biology. The current theory is the sum of several
concepts: evolution and natural selection were introduced almost concurrently and
independently by Charles Robert Darwin and Alfred Russel Wallace in 19th century;
selectionism is an idea of Charles Weismann [160]; genetics have been analyzed first
by Gregor Mendel [159]. This coherent corpus, often referred to as Neo-Darwinism,
is able to explain the variety and characteristics of life on Earth starting from a
limited number of relatively simple and plausible ideas: reproduction, variation,
competition, and selection. In this context, reproduction is the process of generating
an offspring from parents where the progeny inherit traits of their predecessors.
Variation is the unexpected alteration of a trait. Competition and selection are the
inevitable results of the strive for survival caused by an environment with limited
resources.

By these concepts, evolution appears to be a set of random forces shaped by
deterministic pressures: or, in other words, a sequence of steps, some mostly deter-
ministic and some mostly random [105]. It is interesting to notice how similar ideas
have been applied to describe phenomena not pertaining to biology, for example
alternatives conceived during learning [26], ideas striving to survive in our culture
[48], or even possible universes [167] [143].

Eminent biologists, such as Richard Dawkins and Stephen Jay Gould in recent
times, repeatedly warned the non-specialist community against mistaking evolution
for a process of improvement or optimization, going from raw to perfected features.
Nevertheless, assuming for an instant that evolution is in fact a force pushing to-
wards an objective, its results are astonishing: over the course of billion years, it
turned unorganized groups of cells into startlingly complex structures such as wings
and eyes, without the need of any a-priori design. Following this idea, the neo-
Darwinistic paradigm itself can be seen as an effective optimization tool, producing

4 1 Introduction

great results from scratch, advancing without a plan, exploiting a mix of random
and deterministic techniques.

Setting aside biologists’ warnings, evolutionary computation makes use of these
powerful ideas to search for optimal solutions in various sets of problems. All these
problems often have one common feature: the best way to reach the optimum is not
known, at least not in detail. By exploiting neo-Darwinian principles, sets of can-
didate solutions are cultivated in artificial environments, modified in discrete steps,
and selected by an environment defined by the characteristics of the problem itself.
Good solutions at a given step inherit positive traits from their ancestors, and op-
timal results eventually arise from the artificial primordial soup. Unlike evolution,
this process has a precise goal; also, these simulated evolutions are often simpli-
fied to the extent that they become unrealistic: nevertheless, scientific literature rou-
tinely reports success stories of evolutionary computation applied to a vast number
of fields.

A small set of terms specific to evolutionary computation is now introduced,
since they will be consistently used in the following chapters. Most of the termi-
nology follows closely that of biology. A single candidate solution to a considered
problem is called individual; a population is a group of individuals; and each step
of the simulated evolution is termed a generation. The fitness function measures the
effectiveness of an individual in solving the problem. Individuals with high fitness
values are more likely to propagate their characteristics to the next generation. The
word genome always denotes all the genetic information of the individual, even if
different approaches use different techniques to store and manage this data. The
smallest fragment of the genome that can be modified during the evolution is called
gene: a gene can also be seen as the functional unit of inherited characteristics. The
specific position where a gene is placed in the genome is known as locus (plural
loci). The alternative genes that may appear in a given locus are called alleles.

While in biology there is a significant difference between genotype, all the ge-
netic material of an organism, and phenotype, the observable characteristics that
emerge from the interaction between the genotype and its environment, in evolu-
tionary computation this distinction is often disregarded. Genotype and phenotype
often coincide, even if sometimes the numerical value representing the fitness of an
individual is assimilated to its phenotype.

When the offspring of individuals in evolutionary computation must be produced,
often the algorithms exploit the paradigms of sexual and asexual reproduction in na-
ture. Sexual reproduction is usually referred to as recombination or crossover: the
resulting individual will inherit different characteristics from two or more parent in-
dividuals. Asexual reproduction is named replicaton or mutation: a copy of a parent
individual is created and slightly altered. Some implementations consistently com-
bine the two approaches, using mutation only after sexual recombination. Very few
evolutionary algorithms assign distinct reproductive roles to individuals, so gender
is almost never taken into account. Other implementations do not store a collec-
tion of individuals, but only a set of statistical parameters that describe the current
population: in that case reproduction is performed by altering the parameters. All

1.2 A Brief History of Evolutionary Algorithms 5

algorithmic techniques used to model natural reproduction can be called evolution-
ary operators or genetic operators, since they influence the genotype of individuals.

It is clear how variability in the evolutionary process is introduced by mutation
and recombination; parent selection also uses a stochastic approach, even if often
weighted by the fitness values of individuals in the population, e.g. fittest individ-
uals have a greater probability of being selected. In population-based evolutionary
algorithms, the number of individuals in the system varies regularly at each gener-
ation: first, offspring is generated, adding new individuals to the population; then,
the less fit individuals are discarded. This last step is deterministic: it models the
struggle for survival in a hostile environment and it is often referred to as survivor
selection, selection or slaughtering.

Evolutionary algorithms may be classified as local search algorithms, since they
explore a portion of the search space which is dependent on their actual state, with
the offspring loosely defining the concept of neighborhood. Also, since they make
use of a trial and error paradigm, and that they are not usually able to mathemati-
cally guarantee to find an optimal solution in a finite amount of time, evolutionary
algorithms can be put into the group of heuristic algorithms: over the years, however,
experts of the field have demonstrated the presence of several useful mathematical
properties in their processes.

It is noticeable how the definition of evolutionary computation has no clear
boundaries, and this branch of computational intelligence also lacks a single rec-
ognizable origin. In 1950, the great computer scientist Alan Turing was probably
the first to point out the similarities between the processes of learning and evolution
[154]. Near the end of the same decade, inspiring ideas in that direction began to
appear [61] [111] [18], even if their diffusion among the broader scientific commu-
nity was blocked by the lack of computational power available at the time. While
some scholars point at this time frame as the origin of evolutionary computation,
most of them agree that its birth is to be placed in the 1960s, with the appear-
ance of three independent research lines: genetic algorithms, evolutionary compu-
tation, and evolution strategies. While an unanimous consensus on the matter is
hard to reach, the fundamental importance of these contributions is unquestionable.
A fourth paradigm, that appeared in the 1980s, must be also considered for both its
novelty and its closeness to the aforementioned ideas.

1.2.2 Genetic Algorithms

Genetic algorithms (GA) are probably the most popular technique in evolutionary
computation: they are so renowned that in non-specialized literature the term is
sometimes used to denote any kind of evolutionary algorithm. John Holland attested
the importance of this paradigm in his 1975 book [75], but the methodology was
used and described in previous years by a great number of researchers, including
many of Holland’s students [59] [60] [20]. In the beginning, genetic algorithms have
been used as a step in the process of classifier systems, a technique also devised by

6 1 Introduction

Holland, and they have been exploited more to study the mechanisms of evolution,
than to solve actual problems. In the first experiments a set of simple test benches,
e.g. trying to set a number of bits to a specific value, were used to analyze different
strategies and schemes.

In a genetic algorithm, an individual (i.e., the evolving entity), is represented as a
sequence of bits. This is probably the only feature that was common to all the early
implementations, while other choices may vary: the offspring produced at each step
usually outnumbers the original population, various crossover and combination op-
erators have been exploited by different researchers, and parents are often selected
throughout a fitness-based probability distribution. During the selection of parents,
highly fit individuals are favored by a bigger or smaller factor, depending on the
selective pressure adopted in the algorithm. After the evaluation of new individu-
als, the population is shrank back to its original size. Several techniques to perform
survivor selection have been used, but interestingly all methods to determine the
survival of individuals are deterministic. Sometimes, all parents in the population
are discarded, regardless of their fitness: if that cases, the approach is called gen-
erational. Conversely, if all individuals compete for survival independently from
their age, the approach is named steady-state. All mechanisms that preserve the best
individuals through subsequent generations fall under the scope of elitism.

1.2.3 Evolutionary Programming

Lawrence J. Fogel, in a series of works published at the beginning of 1960s [57]
[58], proposed an algorithm that he called evolutionary programming (EP). The
focus of Fogel’s work was the evolution of predictive capabilities, since he was ar-
guing that intelligent behavior requires the ability to forecast modifications in the
environment: he used finite state machines (also called automata) as evolving en-
tities, trying to evolve individuals able to anticipate the next symbol in an input
sequence provided to them, thus showing a predictive capability. In later years, the
same technique was successfully used to solve several combinatorial problems.

The original algorithm proposed by Fogel considered a set of P finite state ma-
chines: each individual in the set was tested against a sequence of symbols in in-
put, i.e., its environment. The predictive capability was mapped to a single numeri-
cal value called fitness through different payoff functions that considered a penalty
for too complex machines. Individuals were then ranked according to their fitness
values, and subsequently P new automata were added to the population. Offspring
generation was accomplished by mutation, whose type and extent were regulated by
given probability distributions, so each new individual was obtained by modifying
one existing automaton. In the first version of the algorithm, each selected parent
created exactly one offspring, but the same automaton could be selected multiple
times as the parent of different new individuals. Finally, half of the population was
preserved and half discarded, so that its size returned to P. Survivors were chosen
at random, with a probability related to their fitness value. The selective pressure

1.2 A Brief History of Evolutionary Algorithms 7

in evolutionary programming is thus represented by the likeliness of a highly fit
individual to be preserved in the next generation.

The steps described above were repeated until a specified number of generation
had elapsed: at that moment, the best individual in the population was used to predict
the actual next symbol, which was then added to the environment while the process
restarted from the last population.

1.2.4 Evolution Strategies

Evolution strategies (ES) were proposed by Ingo Rechenberg and Hans-Paul Schwe-
fel in the early 1960s [139] [128]. Originally developed as an optimization tool to
solve practical problems, evolution strategies describe each individuals as a set of
parameters, usually encoded as integer or real numbers. The mutation operator si-
multaneously modifies all parameters of a selected individual, with a high probabil-
ity of inserting tiny alterations and a smaller probability of major modifications. On
the other hand, several techniques are possible for the recombination operator: for
example, copying a subset of parameters from each parent or computing an average
of all the numbers. Interestingly, the very first experiment with evolution strategies
featured a population of one individual and all random operations performed with a
roll of six-sided dice.

A unique formalism was developed to describe the characteristics of evolution
strategies. The Greek letter mu (μ) commonly denotes the size of the population,
while for the size of the offspring generated at each generation the Greek letter
lambda (λ) is used. A (μ +λ)-ES is an evolution strategy where the offspring is
added to the current population before survivor selection for the next generation. In
this case, a particularly good solution could survive throughout several generations,
as it could happen in a steady-state genetic algorithm or in evolutionary program-
ming. The label (μ ,λ)-ES, on the other hand, denotes an evolution strategy where
the offspring completely replaces the current population before survivor selection.
The latter approach has several similarities with a generational genetic algorithm or
evolutionary programming, as the optimal solution may be discarded during the run.
In a commonly used notation, the two approaches are called plus(+) and comma(,)
respectively. These two terms spread in the evolutionary computation community,
and in recent year they have been used in the description of various evolutionary
algorithm, not necessarily related to evolution strategies. When comma selection is
used, μ < λ must hold. In almost all the implementations of evolution strategies,
however, the size of the offspring is much larger than the size of the population at
each step.

When the recombination operator is implemented, the number of parents required
is denoted with the Greek letter rho (ρ), and the algorithm with (μ/ρ +, λ)-ES. The
number of parents is always smaller than the size of the population, i.e., ρ < μ .
(μ +, 1)-ES are sometimes referred to as steady-state evolution strategies.

8 1 Introduction

An interesting approach, almost unique to evolution strategies, is nesting: in-
stead of performing offspring generation with conventional operators, an evolution
sub-strategy is started and its result is used as offspring for the main strategy. The
inner strategy is in fact acting as a tool for local optimizations, and commonly it
adopts parameters unrelated to those of the outer strategy. In different applications,
this technique has been named nested evolution strategies, hierarchical evolution
strategies and meta evolution strategies. An algorithm that exploits a sub-strategy
running for γ generations is referred to as (μ/ρ +, (μ/ρ +, λ)γ)-ES, with γ is often
called isolation time. A deeper nesting may be theoretically possible, but usually
only one level of recursion is implemented. Such a technique is almost never used
in evolutionary programming or genetic algorithms, but in rare cases has been suc-
cessfully exploited in peculiar approaches [148].

Evolution strategies’ offspring generation is mainly based on mutations: thus,
different solution to determine the optimal amplitude of the perturbations were ex-
tensively explored during years of research. In real-valued search spaces, mutation is
usually described as a random perturbation that follows a normal probability distri-
bution centered on zero. In this way, small alterations are more probable than larger
ones, while the variance may be used to tweak the average magnitude. This variance
be evolved concurrently with individuals’ parameters, and a dedicated variance may
even be assigned to each parameter, since sometimes the same problem needs dif-
ferent amplitudes in different loci. In several implementations, this variance vector
is modified using a fixed scheme, while the object parameter vector, i.e. the values
that should be optimized, is modified using the variance vector: both vectors are
then evolved concurrently as different parts of the same individual. This idea has
been extended to take into account the correlation between optimal magnitudes of
mutation, and modern evolution strategies often exploit a covariance matrix.

The capability to adapt to different problems is common to all evolutionary al-
gorithms: thus, they can be sensibly called adaptive. When an evolutionary algo-
rithm is able to adapt the mechanism of its adaptation, i.e., its internal parameters,
is labeled as self-adaptive. Self-adapted parameters are sometimes called endoge-
nous, from the term that describes hormones synthesized within an organism. Self-
adaptation mechanisms have been exhaustively explored both in evolution strate-
gies and evolutionary programming, and sometimes they appeared also in genetic
algorithms.

From the 2000s there has been a growing interest in the use of evolution strate-
gies as numerical optimization tools for continuous problems. Several versions of
the most popular evolution strategies are freely available, with implementations
ranging from general-purpose programming languages to commercial mathemati-
cal toolboxes, such as MatLab. Evolutionary programming also enjoyed a relatively
widespread adoption as a numerical optimization tool, and the practical implementa-
tions of the two have mostly converged, even if the respective scientific communities
remain deeply distinct.

This hybridization is not unique to evolution strategies and evolutionary
programming. Ideas developed for one paradigm, if not directly applicable in
other evolutionary algorithms, are at least a source of inspiration of the whole

1.2 A Brief History of Evolutionary Algorithms 9

community. The various original approaches may be too different to interbreed, but
many key ideas are now shared, and a great number of intermediate algorithms, not
easily classifiable, have been described over the years. The scope of genetic algo-
rithm also broadened, and researchers applied them to problems with highly struc-
tured solutions, e.g. the traveling salesman problem, whose solution is a permutation
of nodes in a graph. The term genetic algorithm, however, remained strongly linked
to the idea of bit strings of fixed length.

1.2.5 Genetic Programming

Genetic programming (GP) is the last paradigm appeared in the field of evolutionary
computation, in order of time. John Koza, who applied for a patent in 1989, described
this approach and made it popular in the community. The goal of the methodology
is to automatically create computer programs, applying neo-Darwinistic concepts as
optimization techniques. The first version of genetic programming was developed in
Lisp, an interpreted computer language that dates back to the end of the 1950s. One of
the characteristics of Lips it the capability to handle fragments of code as data, mak-
ing it possible for a program to build up subroutines before evaluating them. Except
variables and constants, everything in Lisp is treated as a prefix expression: since the
first individuals in genetic programming were blocks of Lisp code, they were also
prefix expressions. While the flexibility of Lisp has its advantages, the language is
plagued by a severe inefficiency: during the development of genetic programming,
researchers moved to alternative solutions, mostly featuring compiled languages.
Since the origin of this paradigm, actually, the need for computational power and
the effort to acquire efficiency have been important factors in the advancement of
research. In these later implementations, the difference between a program and an
expression became more evident than in Lisp: genetic programming algorithms in
literature tackle mainly expressions.

Individuals in genetic programming are almost always internally represented as
trees, despite the differences in the computer languages adopted. In the simplest
forms, leaves (terminal nodes) encode numbers, while internal nodes describe op-
erations. Variables, functions and programming structures appear in more complex
variations. Offspring may be generated via recombination or mutation: the former
is modeled as a swap of sub-trees between parents; the latter appears only in re-
cent implementations, and usually involves a random modification of the tree, the
promotion of a sub-tree to a new individual or the collapse of a sub-tree to a single
terminal node. The first versions of genetic programming featured huge populations
and made an extensive use of recombination, with a scarce presence of mutations:
the substitution of a sub-tree may introduce a significant amount of novelty, since
it is a potentially disruptive operation; while populations of significant size ensure
that all possible symbols are available in the gene pool.

In recent years, many researchers have been attracted by the genetic programming
paradigm. Various topics have been tackled, including representation of individuals,

10 1 Introduction

behavior of selection in numerous populations, techniques to avoid excessive growth
of trees and different types of initializations. Results of these research lines has been
used as test benches for practical techniques, or for foundation of theoretical studies.
The genetic programming paradigm stimulated and brought new ideas to the whole
evolutionary computation community.

Chapter 2
Resources

2.1 Books

T. Back, D. Fogel, Z. Michalewicz, Handbook of Evolutionary Computation, Oxford
University Press, 1997

M. Bushnell, V. Agrawal, Essentials of Electronic Testing for Digital, Memory, and
Mixed-Signal VLSI Circuits, Springer, 2000

D. Dumitrescu, B. Lazzerini, L.C. Jain, A. Dumitrescu, Evolutionary Computation,
CRC Press, 2000

D. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intel-
ligence, Wiley, 2005

D. Gizopoulos (Ed.), Advances in Electronic Testing, Springer, 2006

D. Gizopoulos, A. Paschalis, A., T. Zorian, Embedded Processor-Based Self-Test,
Springer, 2004

E. Sanchez, M. Schillaci, G. Squillero, Evolutionary Optimization: the μGP toolkit,
Springer, 2011

J. D. Kraus, Antennas, McGraw-Hill Companies, 1988

J. W. Gardner, P. N. Bartlett, Electronic Noses: Principles and Applications, Oxford
University Press, 1999

J. O. Smith III, Introduction to Digital Filters: with Audio Applications, W3K Pub-
lishing, 2007

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 11–13.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

12 2 Resources

2.2 Journals

Genetic Programming and Evolvable Machines
http://www.springer.com/computer/ai/journal/10710

IEEE Design and Test of Computers
http://www.computer.org/portal/web/dt

IEEE Transactions on Computers
http://www.computer.org/portal/web/tc

IEEE Transactions on Evolutionary Computation
http://www.ieee-cis.org/pubs/tec/

IEEE Transactions on Very Large Scale Integration Systems
http://www.ieee.org

Journal of Electronic Testing
http://www.springer.com/engineering/
circuits+%26+systems/journal/10836

2.3 International Conferences and Workshops

CEC: Congress on Evolutionary Computation
<website changes every year>

DAC: Design Automation Conference
http://www.dac.com/

DATE: Design Automation & Test in Europe
http://www.date-conference.com/

EvoSTAR: The main European events on Evolutionary Computation
http://www.evostar.org/

GECCO: Genetic and Evolutionary Computation Conference
http://www.sigevo.org/gecco-XXXX/ (changes every year)

ITC: International Test Conference
http://www.itctestweek.org/about

2.5 Suggested Readings on Natural Evolution and Biology 13

2.4 Software

Eureqa
http://creativemachines.cornell.edu/eureqa download

MicroGP (μGP)
http://ugp3.sourceforge.net/

Starting Points on the Web

http://www.genetic-programming.com/

http://www.kesinternational.net/

2.5 Suggested Readings on Natural Evolution and Biology

C. Darwin, On the Origin of Species by Means of Natural Selection, or the Preser-
vation of Favoured Races in the Struggle for Life, John Murray, 1859

R. Dawkins, The Selfish Gene, Oxford University Press, 1976

R. Dawkins, The Extended Phenotype, Oxford University Press, 1982

S. Gould, Ever Since Darwin, W. W. Norton & Company Incorporated, 1977

S. Gould, Punctuated Equilibrium, Belknap Press of Harvard University Press, 2007

Part I
Prototype-Based Validation Problems

Chapter 3
Automatic Software Verification

The complexity of cell phones is continually increasing, with regards to both hard-
ware and software parts. As many complex devices, their components are usually
designed and verified separately by specialized teams of engineers and program-
mers. However, even if each isolated part is working flawlessly, it often happens
that bugs in one software application arise due to the interaction with other mod-
ules. Those software misbehaviors become particularly critical when they affect the
residual battery life, causing power dissipation. An automatic approach to detect
power-affecting software defects is proposed. The approach is intended to be part
of a qualifying verification plan and complete human expertise. Motorola, always
at the forefront of researching innovations in the product development chain, ex-
perimented the approach on a mobile phone prototype during a partnership with
Politecnico di Torino. Software errors unrevealed by all human-designed tests have
been detected by the proposed framework, two out of three critical from the power
consumption point of view, thus enabling Motorola to further improve its verifica-
tion plans. Details of the tests and experimental results are reported.

3.1 Introduction

Verifying all the software running on a given apparatus is a complex problem, es-
pecially when the system under test is a mobile device, in which a software misbe-
havior can affect residual battery life. Traditional software verification techniques
are often unable to work on a great number of applications at the same time, and
since some software modules could be developed by third parties, verification engi-
neers could not always have access to all data needed for the verification process.
Evolutionary computation techniques proved able to tackle difficult problems with
relevant degrees of success [43], even if some data of the problem is not completely
known. Specialized literature routinely reports techniques that deliver high-return
human-competitive machine intelligence simply starting from a high-level statement
of what needs to be done and subsequently solving the problem without further need

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 17–30.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

18 3 Automatic Software Verification

of human intervention [86]. In the industrial world, however, the majority of exist-
ing processes employ no machine intelligence techniques, even if such approaches
have been reported able to provide reliable results when facing complex problems.

The resistance in incorporating evolutionary computation in industrial processes
may arise from the lack of experts with deep knowledge in both the machine
intelligence and the industrial field. Automatic methodologies are perceived as
scarcely controllable, and computational-intelligence techniques are regarded as
“black magic”, able to deliver impressive results sometimes, but definitely not reli-
able. In recent years, however, the interest of the industrial world towards automatic
techniques has been steadily growing and some computational intelligence tech-
niques have been successfully applied to some niche cases (e. g. credit card fraud
detection performed by neural networks [19]).

An automatic approach based on an Evolutionary Algorithm (EA) is proposed,
to add content to a human-designed verification plan for a mobile phone software
system. The approach makes use of the EA to effectively [85] generate stimuli for a
physical prototype of a cell phone, running simulations whose results are fed back
to the EA and used to generate new stimuli. Data obtained from the simulations in-
clude physical measures and logs of all running applications. To explore effectively
the solutions space, measures extracted from the prototype are integrated with data
obtained from a model of the phone dynamically derived from simulation results.

Three different software misbehaviors, previously unrevealed by human-designed
tests, are detected by the proposed approach. Incorporating this procedure in an
existing set of tests allows Motorola [109] to further improve the effectiveness of
qualifying verification plans. Preliminary results have been presented in [63] and
[64].

3.2 Background

3.2.1 Mobile Phones

Since 1997, the mobile devices market has been steadily growing. Market researches
projected that shipments of cell phones exceeded 1 billion units in 2009, so that
mobile phones could become the most common consumer electronic device on the
planet. Esteems from Gartner, shown in Fig. 3.1, predicted that there will be 2.6
billion mobile phones in use by the end of 2009 [161].

A great share of mobile devices sold nowadays is represented by the so-called
smartphones, able to offer PC-like functionalities at the expense of an ever-growing
complexity at both hardware and software level. Devices support more and more
functions, running a great number of different applications: hardware miniaturiza-
tion improves constantly, and thus battery life and power consumption related is-
sues become more and more critical [36]. Thus, prediction of battery life [55] and

3.2 Background 19

Fig. 3.1 Projection of cell phone sales by Gartner

improvement of energy supplies for mobile devices [90] [129] are research topics
of great interest with significant contributions in literature.

Since the introduction of smartphones, the increasing number of applications run
by mobile systems led to a great number of possible misbehaviors caused by soft-
ware bugs. The most displeasing errors for the user are obviously those related to
battery life, and in particular incorrect behaviors happening during the state where
the cell phone consumes a minimal quantity of energy, called deep sleep. A mobile
device enters deep sleep mode when it is left idle for a given amount of time or
when a certain signal is given by the user (e. g. when the cap of a mobile phone is
closed). Errors that arise in deep sleep can completely exhaust the battery of a cell
phone while the user is oblivious to what is happening: a customer could find out
that her mobile phone is discharged even if it was fully charged a few hours before.

3.2.2 Verification Techniques

Verification is the process that aims at guaranteeing the correctness of the design.
Verification techniques exploit different paradigms, but, roughly speaking, it is pos-
sible to state that almost all can be classified either as formal or simulation-based.
The former exploits mathematical methodologies to prove the correctness of the de-
sign with respect to a formal specification or property, while the latter is based on
a simulation that aims at uncovering incorrect behaviors. Exploiting formal meth-
ods allows to verify the module with all possible inputs passing through all possible
states. Therefore, these techniques in theory guarantee the highest levels of confi-
dence in the correctness of the results, but when a formal method fails to prove a
property, nothing can be determined about it, not even with a low amount of con-
fidence. The human and computational effort required to apply formal verification

20 3 Automatic Software Verification

techniques, severely limit their applicability. Such methods, as a result, are applied
in the industrial field only when facing few software or hardware modules, when
validation task can be significantly constrained by boundary conditions or when
oversimplified models are employed, thus significantly impairing the confidence of
the results [50]. Systems composed of a great number of modules usually cannot be
tackled by formal verification, due to the growth of complexity of these techniques.
To maximize their efficiency, formal verification techniques are usually applied to
the source code of the model description. However, in the mobile phone prototyping
arena, the very first time a mobile phone prototype is implemented, some applica-
tions running on the phone are developed by third parties and their original code
is often non accessible [3]. Therefore, it is not always feasible to exploit formal
verification techniques during the verification plan of a mobile phone.

Simulation-based techniques rely on the generation of a set of stimuli able to thor-
oughly excite the device under verification: the stimuli set is simulated exploiting
the considered module. Subsequently, all data obtained from the simulation is gath-
ered and analyzed, aiming to unearth misbehaviors by comparison with the expected
results. A simulation-based approach may be able to demonstrate the presence of a
bug even in frameworks with a great number of applications or hardware modules
running simultaneously, but will never be able to prove its absence. Indeed, verifica-
tion engineers may assume that no bugs exist depending on the level of confidence
related to the quality of the simulated test set. Stimuli sets can be applied to either
a physical prototype or a simulable model of the device. Both approaches have ad-
vantages and disadvantages: while models often describe only some aspects of the
system, they may allow verification engineers to control all details of the simulation
and gather a large amount of information. On the other hand, a physical prototype
may be more difficult to control, but results of the physical emulation are completely
unbiased, and the computational time required to apply the stimuli set is lower com-
pared to model simulation. Either using a model or a prototype, the generation of a
qualifying set of stimuli is the key problem with simulation-based techniques.

As mentioned by Piziali in [122], the real success of a simulation-based veri-
fication process relies on the adequacy of the initial verification route-map, called
functional verification plan. A verification plan must define important test cases tar-
geting specific functions of the design, and it must also describe a specific set of
stimuli to apply to the design model. The verification plan can also allocate specific
tasks to specialized engineers.

One of the most important tasks of the verification plan is the generation of the
stimuli that thoroughly exercise the device, obeying the directives defined in the
route-map.

According to the defined plan, different methodologies may be used to prop-
erly generate verification stimuli sets, for example deterministic, pseudo-random,
or constrained-random. The generation of stimuli can be driven by past experience
of the verification engineers or by exploiting the extracted information of a given
model of the system. The latter technique is called model-based testing, and for
complex software systems it is still an actively evolving field [52].

3.2 Background 21

A typical verification plan usually starts by tackling corner cases with hand-
written tests. The verification stimuli set is then improved by adding information
automatically generated exploiting simulation-based approaches. At last, the auto-
matically generated test set requires an additional analysis by the verification en-
gineers. Tests developed in such a way require a considerable amount of expertise
related to the device under test, they are not always portable, and their preparation
is time-consuming and expensive.

Completely automated approaches for stimuli generation can follow several
methodologies: constrained-random generation, sometimes simply referred to as
random or pseudo-random test generation, and feedback-based generation are the
most widely adopted.

In a constrained-random test generation [69], random stimuli set are created by
following a constrained generation process. Templates and constraints previously
specified are exploited to define the structure of each stimuli fragment which is then
randomized. When targeting real designs, such techniques have been proved to be
really challenging, and are outperformed by feedback-based approaches [114].

Feedback-based approaches initially apply stimuli to the system, check the out-
put produced and obtain information that is eventually exploited to produce new, and
probably better, stimuli. This process is repeated, generating a set of stimuli able to
stress the system very effectively: considerable proofs support the predominance of
feedback-based techniques over other simulation-based ones [145]. Another impor-
tant advantage of feedback-based approaches is that at the end of the process, a very
compact set of data is produced: even though a large number of stimuli is simu-
lated, most of the results are fed back to the system and exploited internally. Thus,
verification engineers are required to analyze smaller quantities of information.

In a typical hand-written test for a new mobile phone, the phone is woken up
from deep sleep mode, a sequence of key pressures is given in input to it, it is turned
back to deep sleep and power consumption is eventually determined. Frequently,
these sequences of keys mimic actions that will be likely performed on the phone, e.
g. starting a video call, inserting a new field in the address book, etc. Once a number
of similar devised tests are completed, a test set is created thanks to an automated
approach that generates stimuli similarly structured to the hand-written ones.

Fig. 3.2 Flowchart of a generic EA. During the evaluation step, individuals with lowest val-
ues of goodness are removed from the population.

22 3 Automatic Software Verification

Verification plans focused on simulation-based techniques are developed by in-
dustries to provide a set of stimuli able to excite completely the functionalities of
the device under verification, consequently locating possible software bugs. When
tackling the software of mobile phones, first of all verification engineers perform
module-oriented verification procedures on single software application: this process
is often developed separately for each component. In a second step, different appli-
cations are run at the same time, studying reciprocal influences among the modules
and performing new verification tests on the whole system. In a third step, technical
experts use the device, trying to locate weaknesses of the complete framework. Dur-
ing each step, verification engineers may rely on techniques available in literature
on a single phase.

Among feedback-based techniques, Evolutionary Algorithms (EAs) are stochas-
tic search techniques that mimic the metaphor of natural biological evolution to
solve optimization problems [107]. Initially conceived at the end of 1960s, the term
EAs now embraces genetic algorithms, evolutionary strategies, evolutionary pro-
gramming, and genetic programming. Scientific literature reports several success
stories in different domains, for instance [131].

Despite great differences, all EAs have many properties in common. EAs oper-
ate on a population of individuals; underlying each individual encodes a possible
solution for the given problem. The goodness of every solution is expressed by a
numeric value called fitness, usually obtained through an evaluator able to estimate
how well the solution performs when applied to the problem. An evolutionary step,
called generation, always consists of two phases: a stochastic one where some of the
best individuals are chosen at random to generate new solutions; and a deterministic
one, where solutions are ranked by their fitness and the worst ones are removed from
the population. The process is then repeated until a user-defined stop condition is
met. Fig. 3.2 shows a classical flow for an EA. When facing verification problems,
stimuli created by an EA explore the solution space very efficiently. Moreover, the
solutions found by EAs are somewhat very different from, and thus complementary
to, human-made solutions [97].

3.3 Proposed Approach

The objective of the proposed approach is to find a set of stimuli able to detect
errors triggered by the interaction of software applications on a mobile phone by
stressing the functionalities of all the modules as much as possible. The approach
is feedback-based, driven by an EA that evolves a population of candidate stimuli,
coded as sequences of key pressures and pauses, similar to hand-written tests de-
vised by expert engineers. The approach is also model-based: a finite-state machine
(FSM) representing the system under verification is exploited to extract measures
for the goodness of each solution. The FSM is automatically generated from scratch
thanks to the data obtained by running simulations with the stimuli as an input to
a physical prototype of the phone itself. The model supplies information on the

3.3 Proposed Approach 23

number of different applications’ features activated by each stimulus; this data is
later used to assign a value to the stimulus, expressing its goodness. Fig. 3.3 shows
a schema of the proposed framework: the EA manages a population of individuals
that map stimuli. Such stimuli are evaluated by the model dynamically extracted
from the physical device.

CONTROL PC

POWER SUPPLY

RADIO
TESTER

POWER
SPLITTER

PHONE

BATTERY
ELIMINATORRELAY BOARD

GPIB-USB cableUSB-USB cable

Ethernet cable

GPIB-USB cable

RF cable

RF cable pair

Output 1Output 2

USB-USB cable

Individuals

EA

INTERFACE

MODEL

Fig. 3.3 Schema of the proposed framework

3.3.1 Model

The device under verification is modeled with a FSM, where each state defines a sit-
uation in which all active software modules are waiting for new inputs. A transition
is a series of inputs that connect a state to another, turning on/arresting different ap-
plications or exciting some functionalities of the active ones. The FSM is exploited
to evaluate the number of distinct states traversed and the transitions activated dur-
ing the simulation of a stimulus [127].

Creating a complete model of all the software running on the mobile phone with
the classical methodologies of software engineering would be impractical, requir-
ing an excessive amount of time: the source code of each software module on the
device should be provided and analyzed. Since some applications are developed by

24 3 Automatic Software Verification

third parties, not all the software modules’ source code is obtainable, thus critical
data to build a complete model is missing. On the contrary, the FSM in the proposed
framework is created as the simulations go on, and each time a new state is discov-
ered the model is dynamically updated. Since this approach does not rely on a-priori
knowledge, errors that could occur in the model-building phase are avoided.

The Operating System (OS) and most applications on mobile phones can run in a
test mode where they write a log of their execution to ease the debugging process. By
reading system messages recording applications starting and closing, called events
in the following, it is possible to create a list of states. Each state is identified by a
status word, obtained by parsing the debug logs. Every time an event is raised or a
new feature of an active application is activated, the debug log register the changes.
When all applications active on the phone are waiting for new input, the status word
is collected by parsing the logs.

Starting with an empty FSM, new states and transitions are added each time a
new status word is discovered. Old status words are stored, thus the framework can
add transitions returning to states already known. Since the proposed framework
makes mainly use of the number of different transitions fired, it does not require the
supporting model to be complete or perfect.

μGP [149] [134], a general-purpose tool developed by the CAD Group of Po-
litecnico di Torino, is the EA chosen to be included in the framework. μGP is avail-
able as a GPL tool [146]. Candidate solutions of a problem in μGP are represented
as graphs, while the problem itself is encoded as an external program or script that
evaluates each candidate solution and supplies the tool with a measure of its good-
ness. Since the evolutionary core is loosely coupled with the evaluation, μGP can
be used in a wide range of different problems with no modifications needed.

While the tool was originally exploited to generate Turing-complete programs in
assembly language, over the years μGP handled different problems whose solutions
had complex structures.

Genetic operators, such as classical mutation and cross-over, modify the graph
that encode the individuals. The tool architecture is designed to handle a large num-
ber of genetic operators, to ease the addition of new ones and to let the user choose
the operators to apply to the problem. Each operator is associated with an activation
probability, that is managed internally by μGP, and an endogenous parameter called
strength that defines the differences between the parents chosen and the offspring
generated.

In μGP version 3, individuals are represented as constrained tagged graphs, i. e.
graphs with added information to nodes and edges, while the possible structures are
limited by the user. Thanks to the constrained graphs, the tool can handle problems
where the solution has structures simpler than Turing-complete assembly problems,
like linear graphs, linear genomes or fixed-length bit strings.

The fitness of each candidate solution is computed by a script or program that
runs a simulation using the individual as input and feeds back the results to μGP.
The fitness in the tool is described by a vector of floating point numbers followed
optionally by a comment. Each position of the vector is considered more important
that the following: fitness A is greater than fitness B if the number in the nth position

3.3 Proposed Approach 25

of vector A is greater than number in the nth position of vector B, and all the number
in previous positions (if any) are equal; if all components are equal then the two
fitness are considered equal.

The proposed framework makes use of μGP in its basic version, with no changes
or additions to the original code. Configuration files in eXtensible Markup Lan-
guage (XML) describe individuals’ structure and all necessary parameters such as
population size, stop conditions, number of genetic operators activated at each step.
Since in the specific problem individuals map sequences of keys, the related graphs
are linear genomes.

In the architecture of μGP, the evaluator is completely separated from the evo-
lutionary core, so the evaluation program is designed from scratch and it is specific
for each problem.

3.3.2 Candidate Solutions

Stimuli candidates to solve the problem are handled as a population of individuals
by the EA. Each individual is a small program in Java that encodes sequences of
keys and pauses: the programming language is chosen for the ease of compatibility
with the OS running on the cell phone. The first part of each individual inscribes
procedures of device initialization, while the last part makes the phone revert to an
idle state to subsequently trigger deep sleep mode.

The initial population provided to the EA contains both individuals encoding
random sequences of keys and pauses, and individuals encoding the most common
actions performed by a user on the mobile device, e. g. selecting a number in the
address book, making a video call, etc. Making the EA discover autonomously those
sequences is possible, but it would take a great amount of time. Since human-devised
tests have been already run on the prototype when the proposed methodology is
used, starting the evolution from scratch is redundant. Individuals encoding common
actions are derived from human-written tests cases used in other verification steps
with an ad-hoc tool.

The EA manipulates and reassembles user-defined sequences and random in-
dividuals, mixing and modifying them to create new individuals with the aim to
maximize the goodness of an individual. For example, a sequence derived from
human-designed tests in the initial population may be later mixed with a different
sequence and mutated by adding, removing or changing random lines of code.

3.3.3 Evaluator

Detecting a software bug that affects negatively battery life is the final goal of the
evolution. Unlike other problems, where the goal leads straightforwardly to the defi-
nition of a continuous evaluation function, the presence of a bug cannot be expressed

26 3 Automatic Software Verification

with such a function. A software error can be either detected or silent, with no other
values. As natural evolution, EA “can act only by the preservation and accumula-
tion of infinitesimally small inherited modifications, each profitable to the preserved
being” [47]. The evaluation function of the specific problem needs consequently to
be refined using heuristic methods.

The measure of the power consumption in deep sleep mode is surely included
in the goodness value of each individual, because of the goal of the experience, but
since most individuals use the same amount of energy, it is not enough to smoothen
the landscape of the evaluation function. Parameters that lead to a quicker location
of bugs must be taken into account as well.

The more an individual activates different software applications or different func-
tionalities of the same application, the greater the probability that it will trigger a
bug: consequently, individuals which excite more phone applications should be re-
warded with a higher value when evaluating their goodness.

Three contributions (Pi, Ti, Ei) are taken into account for the global goodness
value of individual i:

1. The mean value of power consumption while the cell phone prototype is in deep
sleep mode, measured over 30 s and defined as

Pi =
∑30s

t=0s P(t)
30

where P(t) is the power consumption at time t;
2. The number of transitions covered in the FSM that models all the software ap-

plications running on the phone, as described in 3.3.1, defined as

Ti =
T R

∑
tr=0

1

where T R is the total number of transitions fired. A transition is defined as a
passage from one state to another;

3. The number of different events activated, defined as

Ei =
E

∑
e=0

1

where E is the number of events raised from different applications.

The structure composed of these three contributes aims at discovering as many
states as possible in the FSM built dynamically and at activating the maximum pos-
sible number of transitions. As in the initial idea, a high value is associated to so-
lutions that excite a great number of different software modules on the phone, and
have an extreme power drain in deep sleep mode.

As the measure of the goodness of the solutions is conceived, rewarding candi-
date solutions that activate more software applications could lead to the exclusion of
an individual that targets only one module: that module, however, could be ignored

3.4 Experimental Results 27

by the rest of the population. In a similar way, the population in the long run could
be filled with individuals very much alike. μGP, the EA chosen for the experience,
has features enforcing diversity preservation in a population which help to avoid
both those risks [43].

3.4 Experimental Results

The proposed framework was tested on a cell phone prototype running a Motorola
P2K OS. The phone had been analyzed by verification engineers and passed all
human-designed test. Thus, there were no known misbehaviors in the phone soft-
ware modules when the proposed approach was applied to the device. The features
of each component involved in the experience are summarized in Table 3.1. The
experiments made use of the phone prototype, a radio tester, a power supply and a
computer to control the instruments.

To measure the power consumption in deep sleep mode and to keep the phone
powered during the experiments, a battery eliminator was connected to the phone.
The battery eliminator is made of a battery whose contacts are disconnected from the
inner cells and attached to a power supply. A relay board managed the connection
between the PC and the device under verification: the phone does not enter deep
sleep mode as long as it is connected to a PC. The relay board switched the phone
from a state where it is in use to a state where it is no longer in use and can thus
enter deep sleep.

To simulate a mobile network providing voice, video and data packet services, a
radio analyzer was linked to the phone, thus producing an environment completely
under the user’s control.

By means of an ad-hoc tool, human-devised tests written in Java were converted
to an XML representation later used as part of the initial population used by μGP.
Such Java programs described every possible command that a user could issue to
the mobile device, and each test was converted by μGP into a sequence of macro
instances. The tool is problem-specific and it was developed in Motorola Research
Laboratories located in Torino, Italy.

Since not all the applications stopped their execution when the mobile phone’s
flip was closed, the cell phone was sometimes blocked from entering deep sleep.
For example, the software manager for the photo camera shows what the camera is
shooting on the external monitor even if the flip is closed. Constraints were conse-
quently modified to solve the issue. During the experience, every test was performed
with a population of 50 individuals and an average of 40 new individuals generated
at each generation. Each test took up to 100 generations of evolution.

With these parameters, it is clear that a great number of evaluations are performed
during each experiment, so one of the first goals of the experience was to shorten the
temporal length of a single evaluation as much as possible. Instead of setting the pa-
rameters of the phone by browsing through the menus, a time-expensive activity, by
using seem elements, similar to configuration bits for the P2K OS, the duration of a

28 3 Automatic Software Verification

test was reduced by 30 seconds. A time-out coded in the Java class that manages the
logs of the phone was removed to further improved the performance by 20 seconds
more. Nevertheless, some of the most dilatory steps could not be shortened: it took
the phone roughly 60 seconds to enter deep sleep mode after the flip was closed,
and the master clear needed to return the phone to its initial state after each test took
35 seconds.

Even with the improvements achieved, the average evaluation time of a candidate
solution during the experiments was between 6 and 7 minutes, and thus it took
about 5 hours to complete a single generation step. A significant saving of time was
obtained thanks to the features of μGP, that keep the number of evaluations to a
minimum.

To avoid the generation of multiple individuals triggering the same software er-
rors, μGP constraints were altered after each discovery of a bug.

All the experiments had been completed in the Motorola Research Labs in Turin.

3.4.1 Video Recording Bug

During the first evolution, the majority of individuals showed a deep sleep power
consumption between 2,5 and 3,2 mA. It took 16 hours of computation and 150
candidate solutions evaluated to find three individuals with a deep sleep consump-
tion of about 7,0 mA which is 2,5 times the normal value.

The shortest of the three was composed by 100 lines of Java code, defining pres-
sures of keys and pauses. It was analyzed through a series of runs on the framework
already developed for the experiments, and the cause of the bug was uncovered: the
pressure of specific buttons while the phone was in video recording mode caused
a warning dialog to pop up on the display and froze the OS completely, thus keep-
ing the phone from entering deep sleep. The error was caused by the interaction of
the software controlling the video recording and the software managing the address
book.

Further analyses on the two other candidate solutions uncovered the same sub-
sequence of keys that caused the error in the first one.

3.4.2 Voice Call Bug

It took additional 120 hours of computation and the evaluation of about 1120 indi-
viduals to find out a second power-related bug. The best candidate solution found
during this experience let the phone enter deep sleep, but the power measurements
revealed a consumption of 50 mA, more than 16 times the expected use of power in
deep sleep mode.

The mobile phone did not show messages or exhibit unexpected behaviors: it was
necessary to analyze the individual’s code line by line, but the cause of the error was

3.4 Experimental Results 29

eventually located. If the video call button was pressed along with a special series of
keys during a voice call, the phone camera was powered up and it kept being active
even when the device returned to deep sleep mode, thus consuming an extreme
quantity of power. This error was triggered by an interaction between the software
controlling the camera and the software controlling the voice call.

3.4.3 Incorrect Menu Behavior

The experiments uncovered a third misbehavior, not affecting battery life but not
previously located by human-devised tests. By entering a specific settings menu and
exiting hereupon without making modifications, the device reset some of its settings
to their initial values. A candidate solution with this pattern made the following tests
fail. The end user would probably not affected greatly by this misbehavior, but the
problem had to be taken into account during the experience.

Table 3.1 Hardware involved in the experience

Device Details Description

Motorola mobile phone
prototype

P2K Platform Runs the tests

Personal computer OS: Microsoft Windows XP, Primary
Memory: 512 MB, Ports: USB 2.0

Controls the power supply, the radio
tester and the phone; provides packet
data services to the radio tester

Power supply Double-output with measurement capa-
bilities; VISA interface and SCPI pro-
tocol support

Controls the relay board; performs cur-
rent drain measurement of the phone
during tests

Anritsu MT8802A
Radio Communication
Analyzer

Model with the proper installed options
(see below)

Simulates the cellular network provid-
ing voice, video and data packet ser-
vices

Two VISA bus cables Any supported VISA interface Connect the control PC to the power
supply and the radio tester

Power splitter 500 - 5000 MHz Joins the signals of the two antennas of
the phone (required only to test simul-
taneously GSM and 3G)

RF cable N type connector (to the radio tester) Connects the radio analyzer to the
power splitter

Two short RF cables QMA type connector (to the phone) Connect the two antennas of the phone
to the power splitter (actually only
one cable is required if testing only
WCDMA or GSM standard)

Battery eliminator Built in house Bypasses the phone battery, feeding the
phone with the power provided by the
power supply

USB relay board Allows computer controlled switching Switches on/off the USB connection
between the phone and the PC

30 3 Automatic Software Verification

3.5 Conclusions

A framework for automated verification is proposed to attest the correct behavior
of a cell phone, uncovering software defects not detected by human-devised tests,
searching specifically for bugs affecting power consumption. The approach makes
use of feedback from the device under verification to produce new stimuli, with an
EA providing the necessary intelligence. The quantity of final data is limited to a
small significant amount.

The effectiveness of the system is demonstrated on a mobile phone prototype im-
plementing the P2K OS. The framework successfully locates software misbehaviors
previously undetected by standard human-supervised verification. Two of the bugs
uncovered are critical with regards to power consumption in deep sleep mode, thus
making them high-priority from the user’s point of view.

The research team at Motorola Research Laboratories in Torino finds a way to
further improve the qualifying verification plan for mobile devices.

Chapter 4
Post-silicon Speed-Path Analysis in Modern
Microprocessors through Genetic Programming

The incessant progress in manufacturing technology is posing new challenges to
microprocessor designers. Nowadays, comprehensive verification of a chip can only
be performed after tape-out, when the first silicon prototypes are available. Several
activities that were originally supposed to be part of the pre-silicon design phase
are migrating to this post-silicon time as well. This chapter describes a post-silicon
methodology that can be exploited to devise functional failing tests. Such tests are
essential to analyze and debug speed paths during verification, speed-stepping, and
other critical activities. The proposed methodology is based on the Genetic Pro-
gramming paradigm, and exploits a versatile toolkit named μGP. The chapter de-
scribes how an evolutionary algorithm can successfully tackle a significant and still
open industrial problem. Moreover, it shows how to take into account complex hard-
ware characteristics and architectural details of such complex devices. The experi-
mental evaluation clearly demonstrate the potential of this line of research. Results
of this work have been accepted for publication in [137].

4.1 Background

Nowadays, manufacturing technology is advancing at a faster pace than designing
capability, posing unprecedented challenges in the arena of integrated circuits. The
so-called verification gap denotes the inability to fully verify the correctness of de-
vices that could be built, and indeed are actually built. Practice surpasses theory:
comprehensive verification of a chip can only be performed after tape-out. Once
manufacturing is completed and first silicon is produced, the early chips are sent
back to their design teams. This process is called post-silicon verification to distin-
guish it from the traditional, pre-silicon, one. More generally, several activities that
were originally supposed to be part of the pre-silicon design phase are nowadays
migrating to the post-silicon time. The cost of manufacturing prototypical devices
is enormous, but this practice is not an option. Designers candidly acknowledge

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 31–44.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

32 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

that “very few chips ever designed function or meet their performance goal the first
time” [106].

Microprocessors are a paradigmatic example of the current trend: devices for
the desktop market contain billions of transistors, implement complex architec-
tures1, and operate into the microwave frequency range. To give some examples, in
a pipelined architecture, assembly instructions are executed as in a production line.
Consequently, whereas the single instruction is not sped up, the global throughput
is significantly increased. Even more, a superscalar architecture exploits duplicated
functional units by executing two or more different instructions in parallel. The
branch prediction unit guesses which way of a conditional branch will be taken,
thus the execution may continue without waiting for the actual outcome of the test.
Whether the conjecture was mistaken, a mechanism of speculative execution enables
to efficiently roll back and undo changes.

Since last decade, desktop microprocessors also include hardware support to ef-
ficiently execute multiple threads, that is, independent flows of instructions. These
architectures allow to increase the overall throughput in a multitasking environment,
even when it would be impossible to further speed up the single program with the
precedent techniques. Simultaneous multithreading2 architectures enable multiple
threads to be executed concurrently exploiting superscalar designs. More recently,
in a multicore architecture, or chip-level multiprocessor, two or more independent
processing units work side by side packaged in the same chip and sharing the same
memory. Indeed, in modern multicore microprocessors each individual core also
exploits simultaneous multithreading.

Besides this bewildering complexity, electric signals do propagate inside a mi-
croprocessor through different paths. To guarantee a correct behavior, all signals
must reach a stable value within the current clock cycle, regardless the length or the
complexity of their routes. It must be remembered that when a microprocessor is
reported to operate at 3 GHz, the time available for signals to stabilize is slightly
above 3 x 10-10 seconds. It may be hard to visualize such a frantic activity, for in
this interval of time light covers only 10 cm (almost 4 inches).

Non-deterministic effects, such as manufacturing variability, are posing even
greater challenges to the designers. It has been long known that several physical
defects only appear when the device operates at full speed [152], but nowadays de-
sign criticalities also become apparent only at high frequencies. Even worse, they
appear only occasionally, and possibly only in a percentage of the manufactured
chips. “Finding the root cause of at-speed failures remains one of the biggest chal-
lenges in any high-performance design”, stated Rob Aitken in his editor’s note for
[83].

1 Some texts emphasize the difference between the specification of the machine language
and its implementation, calling the former “instruction set architecture” and the latter
“microarchitecture”.

2 Called “hyper-threading” in Intel designs.

4.2 Introduction 33

4.2 Introduction

To meet today’s performance requirements, the design flow of a modern micropro-
cessor goes through several iterations of frequency pushes prior to final volume
production. Such a process is called speed stepping. A speed path (or speedpath) is
a path that limits the performance of a chip because a faster clock would cause an
incorrect behavior. Speed paths may be the location where potential design fixes
should be applied, and may indicate places where potential holes in the design
methodologies exist.

At design time, the slowest logic path in a circuit is termed the critical path,
and it can be easily determined. However, for complex high-performance designs, it
has been recognized that critical paths reported from the pre-silicon timing analysis
tools rarely correlate well to the actual speed paths. The reason is that any pre-silicon
analysis tool is only as accurate as the model and the algorithms it uses. Obtaining
100% accurate process models for nanometer processes is difficult, if not nearly
impossible. Analysis algorithms are also approximated because of the complexity
involved. Moreover, timing behavior on the silicon is a result of several factors min-
gled together. But in the pre-silicon phase it would not be computationally feasible
to consider all these factors simultaneously, and they are analyzed separately [164]
[82] [25].

The identification of failing tests, i.e., sequences of operations that uncovers in-
correct behaviors when run at high frequency, is highly related with speed path
identification. Failing tests may be, for example, sequence of inputs to be applied
to the microprocessor pins by an automatic test equipment (ATE). Such test are
usually crafted with care by engineers starting from the pre-silicon verification test
suite; generated by pre-silicon specialized tools, or automatic test pattern generators
(ATPGs); or also created post silicon3, tackling the actual devices [96] [165].

Interestingly, the instruction sets of microprocessors has been successfully ex-
ploited to tackle path-delay faults, i.e., manufacturing defects that slow down the
signals covering a specific path inside the device [93] [35]. The underlying idea of
these works is that executing a set of carefully designed programs may uncover tim-
ing issues. The main strength of the methodology is that the execution of such test
programs is per se at-speed and requires no additional hardware, or complex and
expensive ATEs. No attempts, however, have been reported to devise failing tests
directly at the instruction level. No one has yet proposed a post-silicon methodol-
ogy able to automatically generate a test program that stresses a speed path causing
a detectable functional failure.

A software-based speed-path failing test is defined as an assembly-language
program that produces the correct result only while the microprocessor operating
frequency is below a certain threshold. As soon as the frequency is pushed
above the threshold, the result yielded by the program becomes incorrect. Let us
denote the threshold for a given program as its functional frequency threshold,
because the incorrect behavior is functionally observable. That is, it can be

3 The expressions “on silicon” and “silicon based” are also used.

34 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

theoretically detected without an ATE or other special equipment, simply by ob-
serving the values stored in the main memory and registers. Clearly, the diagnos-
tic capability of a software-based speed-path failing test increases as its functional
frequency threshold decreases. A test that produces a failure at a relatively low fre-
quency is preferable to a test that fails only at very high frequencies.

This chapter shows how software-based speed-path failing tests with low func-
tional frequency thresholds can be automatically generated by an evolutionary
algorithm. Moreover, it demonstrates that the technologies already available in mod-
ern microprocessors can completely cut out the need of external equipments at the
expense of a slight decrease in accuracy. The first result advocates for the exploita-
tion of the methodology inside the manufacturer’s facility during speed stepping
phase. The second calls for coarse-grained, but quite inexpensive, incoming inspec-
tion campaigns.

Sections 3 and 4 describe the proposed methodology, detailing the adopted evo-
lutionary algorithm. Sections 5 illustrates the feasibility study and report the ob-
tained results. Section 6 concludes the chapter, sketching the future directions of the
research.

4.3 Generation and Evaluation of Test Programs

The proposed approach for generating software-based speed-path failing tests is
pseudo-random and simulation-based, or, more exactly, feedback-based. Candidate
test programs are created without a rigid scheme, and evaluated on the target micro-
processor. The data gathered are fed back to the generator and used to generate a
new, enhanced set of candidate solutions. The process is then iterated.

To exploit such a mechanism it is indispensable to evaluate the goodness of each
candidate test. As stated before, a software-based speed-path failing test is as good
as it fails at low frequencies, and the key parameter in evaluating a test is its func-
tional frequency threshold. However, it should not be forgotten that variability vexes
verification engineers. A failing test may not fail always at the same frequency, even
if all controllable parameters are exactly reproduced. The variability of speed paths
may be caused by non-deterministic factors, such as noise, die temperature or small
fluctuation in the external power. Some design criticalities may appear only under
particularly unfavorable conditions. All experiments need to be repeated at least
several times, when not on different devices.

Consequently, besides the lowest functional frequency threshold detected
amongst the repeated experiments, an additional parameter in evaluating a test is
the percentage of runs that actually failed at that frequency. It is intuitively plausible
that a test failing half of the times at a certain frequency is more useful that a test
that fails only every thousands experiments.

Changing the operating frequency of a microprocessor, however, is not an easy
task. To ensure proper synchronization between all the components of the system,
only a very limited set of operating clock speeds are available to the end users. While

4.4 Evolutionary Approach 35

the microprocessor is connected to an ATE after production, such an evaluation
is perfectly feasible. However, outside manufacturer laboratories the large steps in
frequencies would likely impair the overall usability. Notably, outside manufacturer
laboratories, the final aim would hardly be speed stepping. Conversely, end users
may be quite interested in performing an incoming inspection on purchased devices.
Tacking this latter goal, this chapter shows how to adapt the methodology in order
to require no test equipment and no additional hardware whatsoever.

The architecture of modern microprocessors includes dynamic performance scal-
ing technologies. Intel branded it as SpeedStep. Similar mechanisms are available
as Advanced Micro Devices PowerNow! and Cool’n’Quiet, or VIA Technologies
LongHaul. Such technologies are designed to save power and reduce heat, thus they
allow to decrease the operating frequency and the power supply voltage supplied to
the microprocessor. Reducing the CPU core voltage is known as undervolting.

Roughly speaking, desktop microprocessors are made using the complementary
metal-oxide-semiconductor (CMOS) technology, based on field-effect transistors
(FETs). In such devices, reducing the voltage increases the time required to switch
between logic values [14]. Thus, the effects of reducing voltage may be reason-
able related to the effects of increasing the operating frequency. As a matter of fact,
whenever a microprocessor is undervolted, its operating frequency is also reduced to
guarantee proper functionalities. Manufactures define sets of safe operating states,
sometime called performance states or p-states. While the exact meaning of these p-
states is implementation dependent, P0 is always the highest-performance state, with
the following P1 to Pn being successively lower-performance and less-consuming
states.

Following the discussion, it appears evident that undervolting a microproces-
sor emphasizes speed-path criticalities. Moreover, reducing the core voltage cannot
damage a device. Thus, to stress speed paths the behavior of a microprocessor could
be analyzed intentionally outsides the predetermined p-states. Let us define the func-
tional core voltage of a failing test as the lower voltage required not to fail the test at
a given operating frequency. Conversely to functional core frequency, a failing test
is as good as its functional core voltage is high. That is, all tests would fail with a
very low core voltage, but only the interesting ones truly require full power.

Thus, an alternative evaluation of a candidate test could be based on its functional
core voltage, and on the percentage of runs that actually failed.

4.4 Evolutionary Approach

The proposed test-program generator exploits a versatile evolutionary toolkit called
μGP developed at Politecnico di Torino, and available under the GNU Public Li-
cense from Sourceforge [146]. Unlike usual genetic programming (GP) implemen-
tations, μGP specific target is to produce realistic assembly-language programs. Its
original purpose was to assist designers in the generation of programs for the test

36 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

and verification of different microprocessors, hence, the Greek letter micro in its
name.

μGP was designed to support assembly peculiarities, like various conditional
branches, different addressing modes, or instruction asymmetries. Generated pro-
grams take advantage of syntactic structures as global and local variables, subrou-
tines and interrupts. Since its creation, the tool underwent three main revisions [40],
[149] and [134]. The latest version internally encodes individuals as directed multi-
graphs, and this enable the handling of a quite wide range of problems.

μGP is asked to devise an assembly program to be used as a software-based
speed-path failing test. Following the previous discussion, a population of candidate
test programs is evolved, and the evaluation of their goodness is used as fitness
function to drive the process. However, the specificity of the task calls for several
different problem-specific knacks.

4.4.1 Fitness Function

During experiment the system frequency is first increased using the so-called over-
clocking features of modern main boards. An excessive increase of the frequency
may cause overheating or otherwise irreparably damage the microprocessor, but in-
creasing it slightly is usually perfectly safe. Then the evaluation is performed by
reducing the core voltage, only.

Similarly to software-based self test [132], candidate test programs include a
mechanism that help checking their own correctness: all the results of the calcula-
tions performed by the test program are compacted in a single signature using a hash
function. The evaluator runs the test program in safe conditions, i.e., at full power,
and store the signature. Then it runs the program again at decreasing CPU core volt-
ages, checking that the signature is not modified. As soon a difference is detected,
the functional voltage threshold is recorded. The whole process is repeated R times
to tackle variability.

In μGP the fitness function may be specified as a vector of positive numbers.
The components of the vector are strictly hierarchical, with the first being the most
important. The first component of the fitness value is simply the functional voltage
threshold. The second is the number of failures detected over the R repetitions at the
maximum voltage. It must be stressed out that the actual result of the calculations
is of no interest, the only relevant detail is that it changes when the test is executed
undervolting the CPU below the functional core voltage.

4.4.2 Individual Evaluation

μGP creates assembly functions, that are assembled and linked with a manager
module. These functions contain a loop that execute L times a set of instructions.

4.4 Evolutionary Approach 37

The instructions themselves are devised by the evolutionary core, while the frame-
work is fixed. At the end of the loop, before the next iteration, the values in the
registers are used to update the signature.

In the proposed methodology the very same microprocessor is used both for gen-
erating candidate tests, i.e., for running μGP , and for their evaluation. Using the
same processing unit to evolve individuals and calculate their fitness is quite a stan-
dard procedure in GP. In most μGP application, conversely, the interesting data is
not the result of the computation, but how the test program is actually computed by
the specific device. And the evaluation of the assembly-language test programs is
usually carried out on an different unit, physically, by emulation, or by simulation.
Extracting information from the microprocessor currently executing μGP may be
quite tricky. It has been first attempted 2004, during a collaboration with Intel [97].

When it is required to calculate the fitness of the newly generated offspring, indi-
viduals are compiled to stand-alone executable and run. The manager also takes care
of invoking the evolved fragment of code while varying the CPU core voltage, and
creating a text file with the results. Eventually, the execution of μGP is resumed.

4.4.3 Evolution Start

Evolution advances through the accumulation of slight but useful variations [47].
Thus, if all individuals in the initial population are indistinguishable, it is hard for
the process to start. Unfortunately, this is not an uncommon situation. The computer
used for generating and evaluating the test programs is almost completely working.
It is able to perform nearly all operations, and indeed finding an incorrect behavior
requires elaborate sequences of instructions. Thus, in the first step it is not infrequent
to have a population of test programs not able to fail at any voltage, with exactly the
same fitness value.

To overcome this problem the first population is significantly larger than the usual
ones. μGP uses the parameter ν (the Greek letter nu) to control the number of
randomly generated individual in the beginning of the evolution.

4.4.4 Internal Representation, Multithreading and Multicore

In μGP , the individual is internally encoded as a directed multigraph. With the
adopted scheme, disregarding all the details, each node encodes a line of the assem-
bly program. Edges represent syntactic or semantic relationship. For instance one
edge connects every two adjacent lines; an additional edge connects a branch in-
struction with its target; another edge connects a node referring to a global variable
with the line defining the data.

Modern processors may implement a multithreaded design; or they can exploit
a multicore architecture; or even both. From the perspective of the test-program

38 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

generator details are not relevant, but it is vital to create multiple independent in-
struction flows.

A single individual is composed of different independent functions. The man-
ager activates them as different threads on different cores using appropriate oper-
ating system calls, or directly whether no operating system is used. Such blocks,
in the individual, are represented as disjoint subgraphs. Notably, different blocks
may be forced to have different structural characteristics, or use different subsets of
instructions.

4.4.5 Assembly Language

For the generation of failing test is performed during speed stepping or an incom-
ing inspection, it is essential to test all possible instructions, and especially the
newest. The assembly instructions made available to μGP can be divide in three
main classes.

Integer instructions include all usual instructions, such as logical and arithmetical
ones. They operate on internal registers or memory. In the adopted scheme, only two
registers are employable, while the others are used by the manager. However, this
restriction should not impair the global result. Comparisons, tests and branches are
also included in this class. To avoid endless loops, μGP was forced to create only
forward branches in the generated code.

x87 instructions are the subset of the Intel 32-bit architecture (IA32) related to the
floating point unit (FPU). The name stems from the old separate floating point co-
processors, like 80287 and 80387. They provides single precision, double precision
and 80-bit double-extended precision binary floating-point arithmetic according to
the IEEE 754-1985 standard. x87 instructions operates on a stack of eight 80-bit
wide registers, but some instruction modifiers allow the use of the stack as a set of
registers. In the actual version, μGP uses x87 instructions in only one thread.

The third class of instructions requires a slightly longer introduction. In 1996, In-
tel introduced single-instruction/multiple-data (SIMD) instructions in the Pentium
microprocessor, its first superscalar implementation of the x86 instruction set archi-
tecture. In a SIMD instruction, multiple processing elements perform the very same
operation simultaneously on different data. Matter-of-factly, the technique is called
data-level parallelism. Pentium SIMD instructions were originally branded as MMX
extension, and operate on eight 64-bit wide registers. Advanced Micro Devices of-
fered its own enhanced version of the SIMD instructions two years later, marketing
them as 3DNow!. In 1999, Intel outbid with the so-called Streaming SIMD Exten-
sions, or SSE. Followed in 2001 by SSE2, in 2004 by SSE3, and finally in 2006
by SSE4. Not mentioning the Supplemental Streaming SIMD Extensions 3 (SSSE3,
with three “S”) included in Intel microprocessors from 2006. Advanced Micro De-
vices is planning to include SSE5 in its Bulldozer processor core in 2011.

Not surprisingly, SIMD instructions are particularly critical during speed step-
ping. The complex calculations involved by these instructions cause data to go

4.5 Experimental Evaluation 39

through several functional units, and the resulting datapaths are prone to be source
of problems when the operating frequency is increased.

4.4.6 Cache

Cache memories are small, expensive and fast memories placed near the processor
core. The rationale is to read and write the most frequently accessed data as effi-
ciently as possible. Modern microprocessors exploit a hierarchy of cache memories,
or multi-level caches, with the level-1 (L1) cache being the smallest, more expensive
and fastest. And, indeed, the closest to the central processing unit.

When the memory is accessed, the L1 cache checks whether the data is cached,
i.e., if it contains the specified location. In this case, called cache hit, the L1 swiftly
replies to the request. If the data is not present, termed cache miss, the L1 cache
delivers the request to the L2 cache and so on. Considering only the first level, there
is a significant difference in performance and power consumption between a L1
cache hit and a L1 cache miss. Such effects may be significant for the generation of
a failing test, and must be taken into account.

The internal design of a cache is complex, and the policies for determining which
data to store and which to discard are different. In a fully-associative cache, every
memory location may be cached in every location of the cache. However, such a
design is too complex and slow if the size of the cache increases. Thus, usually, the
architecture imposes that a specific memory location may be stored only in a subset
of cache locations. In a direct-mapped cache each memory location can be cached in
only one location, while in a k-way set associative cache, in k alternative locations.

In order to give the μGP the possibility to generate cache hits and cache misses, a
special set of C variables was defined. The variables are carefully spaced so that all
their memory locations will be cached in the very same cache location. If the micro-
processor uses a k-way set associative L1 cache and C > k, a shrewd sequence of
read and write operations on such variables may generate the desired cache activity.

It must be noted that the goal of adding such variables is to let the evolutionary
core to control the cache activity, but no suggestions are given on how to exploit
them. μGP would devise which sequence of operations is more useful to generate a
failing test.

4.5 Experimental Evaluation

While no working attempts of functional failing-test generation has been reported
in the specialized literature, a related problem is faced by a community of computer
enthusiasts. Overclockers try to push the performance by increasing the operating
frequencies of their microprocessors and the CPU core voltages [38]. However, after
pushing their computers to astonishing frequencies, they need to assess the stability

40 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

of their systems. The test suites that are used to stress the systems and highlight
criticalities may be regarded as generic fail tests not focused on a specific micro-
processor. Thus, they can be used as a baseline to evaluate the performances of the
proposed methodology.

While all the stability tests are quite different, a common point is that modern
ones do extensive SIMD calculation. Another common point is their ability to in-
crease the temperature of the microprocessor. It is well known that high temperature
may cause both reversible and irreversible effects on electronic devices. Heating
may increase the skew of the clock net and alter hold/setup constraints, causing
design criticalities to become manifest and the circuit to operate incorrectly [27].

However, while such an effect is sensible when assessing the stability of a system,
it may not be desirable when the goal is to find a failing test during speed stepping.
The main reason is that the failing test should be as repeatable as possible, while in-
creasing the temperature also increase non-deterministic phenomena. Nevertheless,
since no other comparison is possible, the proposed approach was tested against the
state-of-the-art stress tests used by the overclocking community.

4.5.1 Overclockers’ Stress Tests

Most of the information about stability stress tests is available through forums and
web sites on the internet, with few or none official sources. However, there is quite
a generalized agreement in the overclockers community on these tools.

SuperPI is a version of the program used by Yasumasa Kanada in 1995 to com-
pute π to 232 digits. It is based on the Gauss-Legendre algorithm. SuperPI imple-
mentation makes use of x87 instructions only, it exploits no SIMD instructions, and
it is strictly single threaded. CPU BurnIn is a stress test developed by Michal Mienik
in the beginning of 2000s. Like SuperPI it uses no SIMD instructions and is single
threaded. These two programs are rather old, but have been included for the sake of
comparison.

Prime95 is the name of an application written by George Woltman and used by
a project for finding Mersenne prime numbers4 [1]. It makes extensive use of the
fast Fourier transform, or FFT, with a highly efficient implementation that exploits
SIMD instructions. Over the years, it has become extremely popular among over-
clockers as a stability test. It includes a “Torture Test” mode designed specifically
for testing systems and highlight problems. In the overclocking community, the rule
of thumb is to run it for some tens of hours.

LINPACK is a software library for performing numerical linear algebra on dig-
ital computers. It was originally written in Fortran in the 1970s and early 1980s.

4 A Mersenne number is a positive integer that is one less than a power of two: M = 2p − 1.
The name came from the French theologian, philosopher, mathematician and music theorist
Marin Mersenne, sometimes referred to as the “father of acoustics”. As of August 2010, only
47 Mersenne prime numbers are known. Remarkably, the largest known prime number is also a
Mersenne number: N = 243,112,609 −1.

4.5 Experimental Evaluation 41

Newer implementation of LINPACK exploits SIMD and are highly optimized. Sig-
nificantly, Intel includes a benchmark based on an optimized version of LINPACK
in its Math Kernel Library [2]. Different applications exploited such benchmark to
assess the stability. The most common are LinX5, IntelBurnTest6, and OCCT7. The
last one, also includes a proprietary stress test.

4.5.2 Target System

Experiments were run on an Intel Pentium Core 2 Duo E2180, MSI motherboard
NEO2-FR with the Intel chipset P35. The system was equipped with 3 GiB RAM
memory DDR2-800, and a Sparkle Nvidia 8800GT graphic card. While the default
clock was 2GHz, for the purpose of the experiments the system was overclocked
to 2.93GHz. The only non-standard device was an in-house manufactured water
cooling system (Fig. 4.1).

The E2180 is a dual-core microprocessor. It has a 32 KiB L1 cache for data
implementing an 8-way set associative architecture. An identical cache is for in-
structions. The L2 cache is 1 MiB, 4-way set associative, and it is used for both data
and instructions. The Core architecture can be traced back to the P6, introduced in
1995 with the Pentium PRO and revived in 2000 with the Pentium M line. It sup-
ports SIMD instructions up to SSE3 and SSSE3, and the Enhanced Intel SpeedStep
(EIST) technology. Unlike its predecessor NetBurst and its successor Nehalem, the
Core 2 Duo architecture does not exploit simultaneous multithreading.

Given the goal of the feasibility study, the difference between multicore and mul-
tithread may be regarded as a marginal detail. From the perspective of μGP there
is no difference whether the different threads are evaluated on the same core or on
multiple cores.

4.5.3 Experimental Results

The failing test devised by the proposed approach on the target system was com-
pared with the state-of-the-art stress tools used by overclocking community. Results
are reported in Table 4.2 and Table 4.3. Columns are labeled with the name of the
program used to test the system. The last column reports data of the test generated
by μGP. Rows indicate the CPU core voltage at which the experiments were run.
Cells shows the time required for the given stress test to report a failure. To re-
duce overheating effects, all tests were stopped after 10 minutes. Thus “more than

5 Originally posted on http://forums.overclockers.ru/
6 http://www.ultimate-filez.com/
7 http://www.ocbase.com/perestroika en/

42 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

Fig. 4.1 The system used for the experiments.

10 minutes” means that no failure has been detected. All experiments have been
repeated 10 times. μGP parameters are shown in Table 4.1.

Table 4.1 μGP parameters

Parameter Meaning Value

μ Size of the population 30
ν Size of the initial (random) population 100
λ Genetic operators applied in each generation 20
R Repetitions of each test to tackle variability 10
L Repetitions inside each test 5,000,000

Table 4.2 compares the proposed methodology with older stress tests. Since mul-
tiple threads are not supported by SuperPI and CPU BurnIn they were disabled
in μGP as well. It can be noted that the critical functional voltages are quite low,
thus the microprocessor needs to be undervolted significantly in order to originate a

4.5 Experimental Evaluation 43

problem. Table 4.3, on the other side, reports the comparison against newer stress
tests. All these programs uses two threads, that is, one for each core.

Table 4.2 Failing-test duration for single thread

CORE V SuperPI CPU BurnIn μGP

1.2625 ... 5’ 1"
1.2750 10’ > 10’ 1"
1.2875 > 10’ > 10’ ...
1.3000 > 10’ > 10’ ...
1.3125 > 10’ > 10’ ...
1.3250 > 10’ > 10’ ...

Failing tests devised with the proposed methodology clearly outperform all the
other approaches. However, it must be noted that the comparison is not completely
fair, since the goal of the programs were different. μGP was asked to find a very
fast failing test for a specific microprocessor, and there is no guarantee that they
would fail on different models. Moreover, the test was required to be very short, to
avoid heating effects. On the contrary, the adopted stress tests intentionally exploit
overheating and are designed to work with different architectures.

Table 4.3 Failing-test duration for multiple threads

CORE V Prime95 IntelBurnTest LinX OCCT μGP

1.2625 2"
1.2750 2"
1.2875 4’ 7’ 2"
1.3000 >10’ 7’ 7’ >10’ 10"
1.3125 >10’ >10’ >10’ >10’ 8’
1.3250 >10’ >10’ >10’ >10’

The final failing test is 614 line long. The two functions executed by the two
cores are respectively 280 and 235 line long. The remaining lines are mainly used
to define and initialize variables or other program parts. It should also be noted
that μGP requires about 50’ to generate a test failing at a core voltage of 1.2625V;
6h to find a test failing at a core voltage of 1.2750V; additional 5h for 1.2875V;
and additional 5h for the 1.3000V. For the sake of experimentation, the failing test
devised for 1.3000V was run at a core voltage of 1.3125V and consistently failed
in about 8’. Interestingly, the temperature of the microprocessor during this last
experiments never exceeded 40◦C, while running LINPACK-based stress tests it is
permanently above 45◦C.

44 4 Post-silicon Speed-Path Analysis in Modern Microprocessors

4.6 Conclusions and Future Works

An efficient post-silicon methodology for devising functional failing tests is pro-
posed. The result of the chapter is twofold: first, it demonstrates the possibility for
an evolutionary algorithm to generate assembly-level failing tests, tackling the most
advanced microprocessor designs; second, it shows that the methodology can pro-
duce interesting results with negligible, or even nil, hardware overhead.

The proposed methodology could be exploited by microprocessor manufacturers,
during verification or speed stepping. Or it could be used to generate a fast test able
to check the reliability of a system. The latter can be important for the incoming
inspection of a set of purchased devices.

Future works include enhancing the evolutionary algorithm, letting it tuning the
number of repetitions in each test L. The interaction between x87 and SIMD instruc-
tions also deserves a closer examination. A customized version of the μGP requiring
no operating systems can be devised in order to more easily run experiments on the
microprocessor. Also, the signature could be improved by including more informa-
tion on the state of the execution, such as the internal performance monitor.

Part II
Design and Reliability Problems

Chapter 5
Antenna Array Synthesis with Evolutionary
Algorithms

This chapter describes an evolutionary approach to the optimization of element an-
tenna arrays. Classic manual or automatic optimization methods do not always yield
satisfactory results, being either too labour-intensive or unsuitable for some specific
class of problems. The advantage of using an evolutionary approach is twofold:
on the one hand it does not introduce any arbitrary assumptions about what kind
of solution shows the best promise; on the other hand, being intrinsically non-
deterministic, it allows the whole process to be repeated in search of better solutions.
A generic evolutionary tool originally developed for a totally different application
area, namely test program generation for microprocessors, is employed for the op-
timization process. The results show both the versatility of the tool (it is able to
autonomously choose the number of array elements) and the validity of the evolu-
tionary approach for this specific problem.

The experience described in this chapter has been presented in [101].

5.1 Introduction

Antenna arrays have long been used to achieve performance impossible to obtain
from a single antenna. High-directivity antennas and shaped beam arrays are exam-
ples of products that take advantage of the array concept. Uniform arrays, however,
may be unsuitable for a given specification. This drives us to the need for array
synthesis and optimization, in order to obtain a given functional specification at a
reduced cost. Numerous manual or automatic methods exist to achieve this goal:
Conjugate Gradient [34], Fourier series and Woodward- Lawson methods [53] first
explored the concept of automatic array synthesis; Monte Carlo method follow as a
statistical approach [130] and finally genetic algorithms are used.

Previous work in this field includes the use of GAs [102], evolutionary program-
ming [29] and hybrid methods [76].

Marcano and Duran [102] introduce the use of GAs for the optimization of
linear and planar arrays. However, the problems presented do not seem to be

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 47–54.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

48 5 Antenna Array Synthesis with Evolutionary Algorithms

particularly stressful to the method employed. Chellapilla and Hoorfar [29] present
an EP method for the generation of optimally thinned linear arrays, showing in-
creased performance with respect to GAs. Hoorfar and Zhu [76], finally, show that
hybrid methods perform better than pure GA or EP algorithms on some problems.

A rather generic evolutionary tool was used to address the problem of array syn-
thesis and optimization. One peculiarity of the proposed approach is indeed the use
of a tool developed for a totally different application area, namely test program gen-
eration for microprocessors. This not only allows us to critically assess the validity
of the evolutionary approach to array synthesis, but also helps the development of
the tool itself. Some of its new features, in fact, have been added on the considera-
tion of their usefulness for this specific application, and are also being used in the
original context.It is interesting to note that the used tool shows hybrid GA/EP prop-
erties since it employs both mutation and crossover. The tool itself will be described
later. The chapter is organized as follows: a brief introduction on antenna arrays is
given in section 2; section 3 introduces the evolutionary computation paradigm and
describes in more detail the evolutionary tool used; in section 4 the workflow and
the performed numerical experiments are described; section 5 reports the obtained
results; finally, the conclusions are reported in section 6.

5.2 Antenna Arrays

particular actuators and sensors: the antennas. High gain applications require high
directivity antennas; this can be achieved by arranging them in an array: more an-
tennas are placed near each other to fuse their individual irradiation diagrams to
obtain a collective diagram more fitted to specified application. Also it is possible
to design antenna arrays with a shaped beam; these arrays irradiate in a particular
space zone according to a pre-arranged form (for example: for a satellite which must
irradiate a country one must design an antenna that has a shaped beam which covers
only the desired territory). However the design of this type of antennas presents,
unfortunately, various problems.

The problems which one meets during the design of a shaped beam antenna are
substantially due to the fact that the design operation is of inverse type: from the
normalized array factor that must be passed, to the position of radiators and to their
feeding phase. To represent the array factor rigorously it is possible to express it as
a polynomial whose roots represent the feed coefficients of the radiators. Changing
the modulus or the phase of a root changes the overall shape. Another important
problem is that the various radiators must furthermore be in such positions that
their mutual coupling be minimum. With all these constraints the problem becomes
quickly intractable. Also in the past the problem was relegated to the most expert
designers; they started with different mathematical methods to do the synthesis of
the antenna and, with little shifting of the various radiators, were able to obtain good
approximate results; however the cost in terms of time was huge. The development

5.3 Evolutionary Algorithm 49

of the computer technology gives us, today, various methods with which it is possi-
ble to automatically design this type of antennas, and with good results.

In the past the growth of the antennas was of evolutionary type, from the first sys-
tems to the more sophisticated ones. For example, going from the first ground plane
antennas which presents an impedance of 38 Ω , passing on to the ground plane with
folded arms with a 50 Ω impedance, to finish with the skirt dipole. Imitating this
process, it is possible to get working and well approximated solutions, beginning
from inefficient ones, with an evolutionary method.

5.3 Evolutionary Algorithm

Evolutionary computation is a computer-based problem solving paradigm based on
Darwin’ evolution theory [9]. In this paradigm possible solutions to a given prob-
lem are seen either as individuals inside a larger population or as species within an
environment. These compete against each other and periodically undergo a selec-
tion process. The best solutions, i.e. the ’fittest’ ones, survive the selection and are
allowed to reproduce, that is to produce other solutions similar, but not completely
identical, to themselves. These offspring are in turn subjected to the same selection
process as their ancestors. This process leads, in turn, to an increment in the average
fitness. The term fitness is historically used to denote a measure of the compliance
of a candidate solution with its goals. An increment in the average fitness usually
goes together with an increase in its maximum value. Evolutionary computation
itself has evolved over time, producing many different kinds of evolutionary algo-
rithms. The best-known ones are Genetic Algorithms, Evolutionary Programming,
Evolution Strategies, Classifier Systems and Genetic Programming. None of these
methods is perfect for all problems, but they offer a large choice of approaches for
the user to try. Evolutionary methods are particularly suited to solve computation-
ally hard problems for which no good heuristic is known.

The main goal of an evolutionary method is to make a computer obtain an exact
or, more often, approximate solution to a problem without being explicitly told how
to do so.

In the proposed approach, a tool named μGP is used. μGP [134] is an evolution-
ary approach to generic optimization problems with a focus on the generation of
test programs for microprocessors, similar to both Evolutionary Programming and
Evolution Strategies. It is not strictly a genetic algorithm since it does not employ
a fixed-size chromosome setting, but a graph structure, to describe the individuals
it cultivates. In Evolutionary Algorithms parlance, it is a steady-state evolutionary
method that implements a variation of the (μ +λ) strategy on a single population of
individuals. This means that, given an initial population of μ individuals, λ genetic
operators are applied on it to produce a variable number of offspring; the parents
and offspring are then merged into a single population, which undergoes selection:
the μ individuals with the highest fitness are selected for survival, and the rest are
discarded. Individuals with high fitness may remain indefinitely in the population.

50 5 Antenna Array Synthesis with Evolutionary Algorithms

It is different from Evolutionary Programming mainly because it employs cross-
over, currently in two forms; additionally, mutation operators are not implemented
in many forms for strength selection, but rather a great variety of operators is im-
plemented. Additionally, population selection is always deterministic. In common
with Evolutionary Programming there is no requirement that a single offspring be
generated from each parent. It is also different from Evolution Strategies in that it
(currently) only employs the (μ + λ) strategy. It is, however, conceptually similar
since its evolutionary basis is the individual, not the species. It finally differs from
both since it dynamically self-adapts many of its parameters.

One of the main peculiarities of μGP is the fact that the focus during the re-
production process is not so much on the reproducing individual as on the genetic
operator employed. In fact, the λ in the (μ + λ) expression is not the number of
generated offspring as the standard terminology dictates, but the number of genetic
operators used.

Although its original focus is the generation of test programs, μGP is a very ver-
satile tool that can be employed to successfully approach a number of other prob-
lems, on the only condition that a solution can be expressed with the syntactical
constraints as an assembly program. So, for example, any problem whose solution
can be represented with a table, a tree, or a directed graph is eligible for approach.

The evolutionary core is continually being developed, and many features have
been added to it over time, many of which may seem somewhat odd, to improve its
performance: clone detection and optional extermination to avoid the evaluation of
identical individuals and to improve genetic variety; a fitness hole in tournament se-
lection, that is a small but nonzero probability that the tournament selection criterion
is not the fitness but the entropy value of the individuals, again to improve genetic
variability; parallel fitness evaluations; an initial population size optionally greater
than μ , to better exploit the initial random search phase. In this chapter the support
for real numbers in the individuals and a new form of mutation for μGP have been
developed, and new features can be expected to appear in the near future.

5.4 Experimental Setup

The main goal of the numerical experiments was to obtain a working environment
through which an automatic process of array synthesis and optimization could be
performed. One of the main objectives is to reduce as much as possible the manual
effort of the human designer, while still obtaining an acceptable solution. To set
up the environment a very simple instruction library was implemented for μGP,
specifying the allowed range for the roots of the array factor. The only thing the
designer is left to do is specifying a wanted array factor, and optionally a desired
maximum number of elements.

In the experimental setting, μGP is used to minimize a measure of distance
between an objective array factor and the synthesized antenna’s own array fac-
tor. Three different measures of distance are employed to evaluate the effect of

5.5 Experimental Results 51

various criteria on the quality of the result. The objective array factor is passed
directly to the fitness evaluator, in the form of a series of (ψ ,F(ψ)) values. The
evaluator reads and normalizes this series, builds a second series containing the
corresponding values of the current array factor, with the same normalization, then
computes one of the three distances between the two series, as configured in a pa-
rameter file. The distances implemented so far are the classic sum of absolute differ-
ences, root-mean-square and maximum absolute difference between the two series.

The obtained results are rather different from each other, as will be shown in
the next section. This reflects the importance of a careful selection of the fitness
function.

As the parameter that most critically influences the quality of the solution found
by an evolutionary method is the population size, very big populations are used in
the proposed experiments. Also, a less hard selection scheme was employed , to
let the evolutionary core explore a greater portion of the search space. To test the
suitability of the approach, two types of experiments were performed: in the first
one the objective was to approximate the array factor of an uniform array, while
the second concerned the synthesis of a rectangular array factor. Approximating
the uniform array is seemingly trivial, but, since the evolutionary tool starts from
random solutions, it is not granted that it will quickly converge to the exact solution.
The approximation of a well-known array type, moreover, gives us confidence in
the employed methodology and lets us assess the quality of the obtained solutions.
The rectangular array factor, on the other hand, allows us to push the method used
to its limits, evidences the differences in performance between the various measures
of distance and provides us further insight on the best ways to improve the fitness
evaluator. While performing the optimization, it become noticeable that the choice
of the initial number of roots has a noticeable effect on the achieved quality of
the solution. This is due to the fact that the initial phase of the evolutionary method
consists of a random search: giving the right number of roots allows the algorithm to
randomly hit promising regions of the search space that would remain hidden during
a normal search process that starts from a low number of roots. In this latter case,
in fact, the evolutionary algorithm may generate solutions with the right number of
roots when it is already in the exploitation phase, with a very uniform population,
and thus unable to broadly explore the resulting higher-dimensional search space.
Only the most significant results are therefore provided.

5.5 Experimental Results

The optimization on the uniform array approximation was conducted with a popu-
lation of 300 individuals, applying 200 genetic operators per generation and carried
on for 100 generations. The obtained results clearly show that even the approx-
imation of an array factor is not a trivial operation. The best fit is obtained us-
ing the root-mean-square measure of difference between the objective function and
the approximating function. The sum of absolute values yields a somewhat worse

52 5 Antenna Array Synthesis with Evolutionary Algorithms

performance since it does not discriminate between small and large deviations from
the objective, but lumps everything together with the final sum. The worst result of
all is obtained using the maximum absolute difference between the two functions;
this happens because the fitness landscape has large flat regions in it. To give a hint
of why it is so, consider an objective function and a given candidate solution that
has a specific value in point ψ0 (named FC), where the difference between FC and
the corresponding value of the objective function (named FO) is maximum; call M
this maximum; there obviously exists an infinite number of functions that pass the
(ψ0,FC) and remain within distance M from the objective function and therefore
exhibit the same fitness as the first one. This makes it extremely difficult to find
a path even to local maxima. Figure 5.1 shows the results obtained with the three
fitness measures. For the case of the rectangular objective function, a large popu-
lation of 3000 individuals is used, applying 2000 genetic operators per generation
and allowing the evolution to proceed for 1000 generations. The rectangular array
factor proves a much harder problem to solve than the uniform array factor, not only
needing more elements for an acceptable approximation, but also showing a poorer
quality of the solution (Figure 5.2).

Fig. 5.1 Approximations of the uniform array factor

For a comparison, a similar numerical experiment performed approximating the
uniform array leads to a result visually indistinguishable from the objective. Again

5.5 Experimental Results 53

the performance of the three fitness measures shows the same order. The root-mean-
square difference measure leads to an imperfect approximation of the low level of
the objective function, but to the overall better approximation of the high level; the
sum of absolute differences yields the best approximation for the low level but a
slightly worse aproximation of the high level; finally, for the same reasons outlined
above, the maximum absolute difference gives us the worst performance, and the
resulting evolutionary process is unable to satisfactorily approximate the objective.

Fig. 5.2 Approximation of the constant array factor with a 15 roots polynomial.

It is noteworthy that the evolutionary method autonomously choose the number
of roots used to approximate the objective function: while this is meant to increase
the quality of the obtained solution, it also greatly increases the size of the search
space, making it more difficult to find an exact solution. One significant advantage
of an evolutionary method over the deterministic ones is that the latter ones generate
very critical solutions, that is, solutions that cannot be modified, even slightly, with-
out degrading their quality. The evolutionarily generated ones, instead, can undergo
greater modifications before losing as much quality as the deterministic ones. This
is most probably the effect of these solutions belonging to a population of similar
candidate solutions which, during the search process, are selected and mutated: the
evolutionary core has a natural tendency to concentrate its population around lo-
cal maxima which cover large parts of the search space, while very narrow peaks
in the fitness function are harder to be detected. The solutions generated with the

54 5 Antenna Array Synthesis with Evolutionary Algorithms

evolutionary method may undergo further manual optimization. While this is not a
desired situation, it may be necessary for some particularly critical problem, anyway
comparing this evolutionary approach versus classical methods, it is observable that
the latter allows the designer to minimize design time (Figure 5.3).

Fig. 5.3 Comparison between different approachs.

5.6 Conclusions

A working environment to perform array antenna synthesis and optimization using
an evolutionary approach was presented. A series of experiments were performed,
trying to approximate two different objective array factors using different perfor-
mance measures. The obtained results clearly indicate the need for careful selection
of the fitness function within the evolutionary process. They also show that accept-
able solutions can be obtained rather quickly and, most importantly, with little hu-
man intervention.

The evolutionary tool itself proved very versatile, being able to successfully cope
with a problem totally outside of its original application area. This encourages both
further investment in the application of evolutionary methods to antenna array syn-
tesis and optimization and development of the tool itself.

Future works will add support for mask specification as well as new fitness mea-
sures in the quest for higher-quality solutions. Later on, a graphic interface for sim-
plified usage will be also introduced.

Chapter 6
Drift Correction of Chemical Sensors

Artificial olfaction systems that try to mimic human olfaction by using arrays of gas
chemical sensors combined with pattern recognition methods represent a potentially
economic tool in many areas of industry such as: perfumery, food and drinks pro-
duction, clinical diagnosis, health and safety, environmental monitoring and process
control. However, successful applications of these systems are still largely limited to
specialized laboratories. Among others, sensor drift, the lack of stability over time
still limit real industrial setups. This chapter presents and discusses an evolution-
ary based adaptive drift-correction method designed to work with state-of-the-art
classification algorithms. The proposed system exploits a leading-edge evolution-
ary strategy to iteratively tweak the coefficients of a linear transformation able to
transparently transform raw sensors measures in order to mitigate negative effects
of the drift. The optimal correction strategy is learned without a-priori models or
other hypothesis on the behavior of physical-chemical sensors. Preliminary results
have been published in [49].

6.1 Introduction

The human sense of smell is a valuable tool in many areas of industry such as: per-
fumery, food and drinks production, clinical diagnosis, health and safety, environ-
mental monitoring and process control [65] [156]. Artificial olfaction tries to mimic
human olfaction by using arrays of gas chemical sensors combined with pattern
recognition (PaRC) methods [121]. When a volatile compound contacts the surface
of the sensor array, a set of physical changes modify the electrical properties of each
sensor material. Such an electronic disturb can be measured and digitalized to be
used as a feature for the specific compound. A preliminary calibration phase is used
to train the PaRCalgorithm in order to map each gas concentration or class to the
responses from the sensor array. The trained model is then used for identification
during later measurements. The classification rate of the PaRCsystem determines
the final performance of the electronic olfaction system.

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 55–74.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

56 6 Drift Correction of Chemical Sensors

Gas sensor arrays represent a potentially economic and fast alternative to con-
ventional analytical instruments such as gas chromatographs. Considerable research
into new technologies is underway, including efforts to use nano-engineering to en-
hance the performance of traditional resistive Metal Oxide (MOX) sensors. How-
ever, successful applications of gas sensor arrays are still largely limited to special-
ized laboratories [118]. Among others, lack of stability over time and high cost of
recalibration still limit the widespread adoption of artificial olfaction systems in real
industrial setups [115].

The gas sensor drift consists of small and non deterministic temporal variations
of the sensor response when it is exposed to the same analytes under identical con-
ditions [115]. This problem is generally attributed to sensors aging [140], but it
could be also influenced by a variety of sources including environmental factors or
thermo-mechanical degradation and poisoning [79]. As a result, sensors’ selectiv-
ity and sensitivity decrease, changing the way samples distribute in the data space
and thus limiting the ability of operating over long periods. PaRCmodels built in
the calibration phase become useless after a period of time, in some cases weeks
or a few months. After that time the artificial olfaction system must be completely
re-calibrated to ensure valid predictions [5]. Up to now, it is impossible to fabri-
cate chemical sensors without drift. In fact, drift phenomena afflict almost all kinds
of sensors [123][31][113]. Sensor drift should be therefore taken into account and
compensated in order to achieve reliable measurement data from the sensor array.

Algorithms to mitigate negative effects of the gas sensor drift are not new in the
field, with the first attempt to tackle this problem dated back to the early 90s [121,
chap. 13]. Notwithstanding, the study of the sensor drift is still a challenging task for
the chemical sensor community [121][115]. Solutions proposed in the literature can
be grouped in three main categories: (i) periodic calibration, (ii) attuning methods,
and (iii) adaptive models.

Retraining the PaRCmodel by using a single calibrant or a set of calibrants is
perhaps the only robust method to mitigate drift effects even in presence of sensor
drift over an extremely long period of time [142]. However, calibration is the most
time-intensive method for drift correction since it requires system retraining and ad-
ditional costs. Hence, it should be used sparingly. Moreover, while this approach is
rather simple to implement for physical sensors where the quantity to be measured
is exactly known, chemical sensors pose a series of challenging problems. Indeed,
in chemical sensing, the choice of the calibrant strongly depends on the specific ap-
plication especially when the sensing device is composed of a considerable number
of cross-correlated sensors [74][73]. This leads to loss of generalization and lack
of standardization which, on the contrary, would be highly required by industrial
systems.

Attuning methods try to separate and reject drift components from real responses.
They can provide significant improvements in the classification rate over a fixed
time period, and may also allow to obtain real responses to be used in gas quan-
titative analysis. Attempts to attune the PaRCmodel by performing component
correction based on Principal Component Analysis (PCA) [7][153], Independent
Components Analysis (ICA) [110], Canonical Correlation Analysis (CCA), or

6.1 Introduction 57

Partial Least Squares (PLS) [68] have received considerable attention in the sen-
sor community. Orthogonal Signal Correction (OSC) was recently demonstrated
to be one of the best methods to attune PaRCmodels and to compensate drift ef-
fects [115]. However, such techniques do not completely solve the problem. One of
the main drawbacks is the need of a set of calibration data containing a significant
amount of drift allowing to precisely identify the set of components to be corrected
or rejected. This might be not the case in industrial setups where calibration data
are collected over a short period of time. Moreover, adding new analytes to the
recognition library represents a major problem since rejected components might be
necessary to robustly identify these new classes. Finally, these methods contain no
provisions for updating the model and thus may ultimately be invalidated by time
evolving drift effects.

Adaptive models try to adapt the PaRCmodel by taking into account pattern
changes due to drift effects. Neural networks such as self-organizing maps (SOMs)
[103][166] or adaptive resonance theory (ART) networks [157][99] have been
frequently used in the past. They have the advantage of simplicity because no recal-
ibration is required. Yet, two main weaknesses can be identified. First, a discontinu-
ity in response between two consecutive exposures (regardless of the time interval
between the exposures) would immediately invalidate the PaRCmodel and would
prevent adaptation. Second, a key to obtain reliable results is to set appropriate
thresholds for choosing the winning neuron, and this typically requires a high num-
ber of training samples owing the complexity of the network topology. Moreover,
they are limited to gas classification applications. Whenever both classification and
gas quantitative analysis is required, current adaptive methods can be hardly applied
to obtain reliable gas concentration measurements [78].

In this chapter we present and discuss an evolutionary based adaptive unsuper-
vised drift-correction methodology designed to work with state-of-the-art classifi-
cation algorithms. The term unsupervised refers to the fact that drift correction is
obtained without considering any specific drift model. Drift effects are directly
learned from the set of unlabeled raw measures obtained from the sensor array.
This work improves our previous attempt to apply evolutionary methods in the drift
correction process [49]. A linear transformation is applied to raw sensor’s features
to compensate drift effects. Such linear transformation is continuously and slowly
evolved to follow drift effects. Evolution is achieved through a covariance matrix
adaptation evolutionary strategy (CMA-ES), perfectly suited for solving difficult
optimization problems in continuous domain. Compared to existing adaptive solu-
tions, the proposed approach is able to transparently adapt to changes in the sensors’
responses even when the number of available samples is not high and new classes of
elements are introduced in the classification process at different time frames. Exper-
imental results demonstrate that the suitability of the proposed methodology does
not depend on the exploited classifier.

58 6 Drift Correction of Chemical Sensors

6.2 Method and Theory

he basic steps and concepts of the proposed drift correction process are summarized
in Figure 6.1.

START

Calibration

STOP

Correct samples
with current CM

CORRECTED
SAMPLES

CLASSIFICATION
RESULTS

Classification

Update CM
(CMA-ES)

For each window
Terminate

Continue

Classification

Correct samples
with updated CM

FINAL
CORRECTED

SAMPLES

FINAL
CLASSIFICATION

RESULTS

Fig. 6.1 Conceptual steps of the drift correction process

As common in artificial olfaction systems a preliminary calibration phase is used
to collect a set of training samples for m different classes yi (i ∈ [1,m]), each one
identifying a specific gas compound. Training samples are used to train a classifier
able to map a generic sample x ∈R

n (where n is the number of sensors in the array)
into one of the m available classes:

C : x → {y1,y2, . . . ,ym} (6.1)

Any type of classification algorithm can be theoretically plugged into this system.
The idea behind the proposed drift correction method is to reduce variations in the
sensors response caused by the sensor drift, thus augmenting the validity window of
the classification model.

6.2 Method and Theory 59

Once the calibration phase is concluded the system is ready to accept samples
to be analyzed and classified. The analysis is performed considering windows of
samples. A window (W) is a collection of k consecutive measurements obtained by
the same sensor array, where the drift may be assumed linear. Windows are not
necessarily associated to measurement sessions: a single measurement session may
be split into multiple windows; and multiple sessions may be grouped into a single
window depending on the specific application and measurement setup. For example,
in a laboratory where the same expensive equipment is shared between different re-
search groups, consecutive sessions of measurements could be grouped in the same
window, while sessions for the same project that take place after the equipment has
been used for another research could be put in a separate window. We denote with
xi, j ∈R

n the jth sample of the ith window Wi. Within a window samples are ordered
with ascending sampling time and the same happens for different windows.

According to the definition of Section 6.1 we assume that the sensor drift causes
changes in the sensors’ response slowly over the time and that both its direction and
intensity for each considered sample are not randomly distributed.

For each window Wi the drift correction process performs five computational
steps:

1. Each sample xi, j ∈ Wi is corrected by applying a correction factor (c f) able to
mitigate the drift effect (see Section 6.2.1). The result is a set of corrected sam-
ples denoted as: xci, j ∈R

n);
2. Each corrected sample xci, j is classified using the classifier C of equation 6.1

trained during the calibration phase (see Section 6.2.2);
3. Corrected samples and classification results are used in an evolutionary process

to adapt the current correction factor to the changes of the sensor drift observed
in the current window (see Section 6.2.3);

4. Each sample xi, j ∈Wi is corrected again by applying the updated correction factor
computed during step 4;

5. Corrected samples are classified again, and the final classification results are pro-
vided as outcome of the system.

The following subsections provide details on how the different steps are
implemented.

6.2.1 Correction Factor

By considering a sample xi, j ∈R
n as a point in the n-dimensional space of the sensor

array features, the drift effect represents a translation of the point along a preferred
direction. Under the hypotheses that in the very short term the variation imposed
by the drift is small we can approximate it with a linear translation [7] and we can
therefore envision to correct it by applying a linear transformation.

Given a sample xi, j ∈Wi the corrected sample xci, j is therefore computed as :

60 6 Drift Correction of Chemical Sensors

xci, j = xi, j + xi, j ×Mi
︸ ︷︷ ︸

correction factor

(6.2)

where Mi ∈ R
n×n is the correction matrix for the window Wi generating a correc-

tion factor for each feature of the sample obtained as a linear combination of the
values of all features in the sample. Considering all features when computing the
correction factor allows us to take into account correlations among sensors in the
drift phenomena.

The correction factor of feature i of a sample x can be therefore computed as:

c fi = x [1] ·M [1] [i]+ . . .+ x [n] ·M [n] [i] (6.3)

The correction matrix for the first window (M1) is initially set to the null matrix,
i.e., no correction is applied immediately after calibration.

6.2.2 Classification

Once the drift has been compensated, corrected samples can be classified. State-of-
the-art classifiers (e.g., k-NN , Random Forests , etc. [51]) can be applied in this
phase without need of modifications to the standard implementations . The possibil-
ity of working with any type of external classifier represents one of the strengths of
the proposed method, allowing to choose the best PaRCmodel based on the specific
application.

6.2.3 Correction Factor Optimization

The correction matrix Mi, used to correct samples of a window Wi, is continuously
adapted when passing from a window to the next one. The overall goal of this op-
timization process is to update Mi on the basis of the information provided by the
samples of Wi in order to follow the evolution of the drift and therefore be prepared
for the analysis of the next window Wi+1.

The adaptation is obtained using the CMA-ES, a stochastic population-based
search method in continuous search spaces, aiming at minimizing an objective func-
tion f : S ⊆ R

p →R in a black-box scenario (see 6.4 for specific details).
In our specific application the solution computed by the CMA-ES during the

elaboration of the window Wi identifies the candidate correction matrix for the win-
dow Wi+1 (Mi+1). We denote with Ms the correction matrix obtained from the solu-
tion s ∈ S ⊆ R

p=n·n by computing each element as follows:

Ms [i] [j] = s [(i− 1) ·n+ j] ,(i ∈ [1,n] , j ∈ [1,n]) (6.4)

6.2 Method and Theory 61

The objective function applied in the optimization process, computed considering
the set of samples belonging to window Wi, is expressed as:

fi(s) =
|Wi|−1

∑
j=0

D
(

xi, j +Ms × xi, j,μC (xi,j)

)

(6.5)

It computes the sum of the distances (D) of each corrected sample in Wi (xi, j+Ms×
xi, j) from the centroid of the related class in the training set (μC (xi,j)). The centroid

of a class y is computed as follows:

μy =
∑|y|

i=1 ty
i

|y| (6.6)

where |y| is the number of training samples for the class y and ty
i is the ith training

sample for the class. The function fi(s) tries to measures how corrected samples tend
to deviate from the class distributions learnt by the classifier during the calibration
phase.

The evolutionary process stops the optimization based on the following stop
conditions:

1. The optimum value of the objective function has been reached. Depending on
the type of distance function D considered in equation 6.5 (see Section 6.2.4),
the optimal value of the objective function can be set to zero or to a lower bound
indicating that all corrected samples have been collapsed into a region closed
to the the centroid of the class they belong to. Due to the complexity of the
optimization process this condition cannot be always reached;

2. During the optimization all candidate solutions in the current population Pc have
a value of the objective function differing from that of the other candidates less
than a predefined threshold ωmin:

fi(sx)− fi(sy)< ωmin ∀x,y ∈ Pc (6.7)

3. The step size σcur of the CMA-ES (see 6.4) increases more than a predefined
threshold σ̄max with respect to its initial value σini, i.e., the optimization process
is trying to explore an area in the search space that is too large; or σcur decreases
more than a predefined threshold σ̄min, i.e., the optimization process is trying to
explore a local minima:

{ |σini −σcur|> σ̄max

|σini −σcur|< σ̄min
(6.8)

The initial step size σini is used to sample the search space around an initial
search point (i.e., a randomly chosen value or a previous solution).

Together with the three defined stop conditions, the optimization is also inter-
rupted if a maximum number of generations has been reached.

62 6 Drift Correction of Chemical Sensors

6.2.4 Distance Functions

Four types of distances have been used in this work to compute the objective func-
tion of equation 6.5:

• Mahalanobis distance: the Mahalanobis distance computes the distance between
two samples by taking into account how samples distribute in the space. It allows
to overcome problems deriving by non spherical distributions of samples:

Dm (x,μc) =

√

(x− μc) ·Cov−1 · (x− μc)
T (6.9)

where Cov−1 is the inverse of the covariance matrix for the samples of the train-
ing set of class c.

• Exponential distance: the Mahalanobis distance of the sample x is exponentially
scaled, as follows:

Dx(x,μc) = eDm(x,μc) (6.10)

It exponentially penalizes samples that are moved far from the related centroid.
• Linear step distance: the distance of the sample x from the centroid of its class is

computed as a step function as follows:

Dls(x,μc) =

⎧

⎪
⎨

⎪
⎩

0 0 ≤ Dm(x,μc)≤ Dc
mmax

Dm(x,μc)
Dc

mmax)
− 1 Dc

mmax
< Dm(x,μc)≤ 2Dc

mmax

103 2Dc
mmax

< Dm(x,μc)

(6.11)

where Dc
mmax

is the maximum Mahalanobis distance of samples of the training
set of the class c from the related centroid. This step function gives maximum
importance to samples close to the centroid of the related class (Dls(x,μc) = 0)
while strongly penalizes samples that are moved far from the centroid of the
related class (Dls(x,μc) = 103). In the region between the two cases the distance
is increased linearly.

• Exponential step distance: similarly to Dls the distance is computed as a step
function as follows:

Dxs(x,μc) =

⎧

⎨

⎩

0 0 ≤ Dm(x,μc)≤ Dc
mmax

eDm(x,μc) Dc
mmax

< Dm(x,μc)≤ 2Dc
mmax

e2Dmc
max 2Dc

mmax
< Dm(x,μc

(6.12)

the main difference w.r.t. Dls is the way samples far from the centroid are
penalized.

The choice of the best distance function to use depends on the considered dataset.
This represents a degree of freedom that allows to tune the drift correction system
for the specific application.

6.3 Case Studies and Experimental Results 63

6.3 Case Studies and Experimental Results

The proposed methodology has been validated on a set of experiments performed
on two datasets: the first composed of simulated data artificially generated, while
the second composed of samples obtained from a real application.

The full correction system has been implemented as a combination of Perl and C
code. A pool of four classifiers have been considered: k-Nearest Neighbors (kNN),
Partial Least Square Discriminant Analysis (PLS), Neural Networks (NNET) and
Random Forest (RF). All classifiers have been implemented using the Classification
And REgression Training (CARET) package of R, a free and multi-platform pro-
gramming language and software environment widely used for statistical software
development and data analysis. Details on the specific implementation of the clas-
sifiers are available in [92]. The performance of the prediction model of each clas-
sifier has been tuned and optimized by performing leave-group-out-cross-validation
(LGOCV). For each classifier 50 folds of the training set have been generated with
95% of samples used to train the model while the remaining ones used as test data.
The size of the grid used to search the tuning parameters space for each classifier
(e.g., k for KNN) has been set to 5. This represents a good compromise in terms of
computational time of the training phase and optimization results.

Table 6.1 Parameters resulting from the tuning of each classifier

Optimal classifiers parameters for artificial data set
Classifier Parameter Description Value
kNN k Number of nearest neighbors 37
PLS ncomp Number of components one wishes to fit 4
NNET size Number of units in the hidden layer 3

decay Parameter of weight decay 0.1
RF mtry Number of variables randomly sampled as candidates at each split 2

Optimal classifiers parameters for real data set
Classifier Parameter Description Value
kNN k Number of nearest neighbors 21
PLS ncomp Number of components one wishes to fit 6
NNET size Number of units in the hidden layer 5

decay Parameter of weight decay 0.03
RF mtry Number of variables randomly sampled as candidates at each split 4

The optimal parameters obtained from the classifiers tuning phase are reported in
table 6.1.

6.3.1 Artificial Dataset

For a preliminary evaluation study we tested the proposed drift correction method-
ology on simulated data composed of a given number of independent, uncorrelated
and randomly distributed Gaussian clusters. The Gaussian model is often regarded
as a benchmark in literature for gas chemical sensors data analysis [54]. It therefore
provides an effective platform for testing the validity of the proposed approach.
Simulated data allow to control the parameters influencing the drift correction

64 6 Drift Correction of Chemical Sensors

capability such as, feature space dimensionality n, number of classes m, separation
among clusters α (given in standard deviation units) and drift direction/intensity.

6.3.1.1 Experimental Setup

We considered a data set of 1000 samples belonging to 5 different classes (m = 5).
Each sample includes 6 features (n = 6) simulating a sensor array composed of 6
sensors. The centroid of each class c is randomly drawn according to a multivariate

normal distribution in n dimensions μc =N
(

0, α2

2n I
)

(α = 12 in our specific case).

Using the term α2

2n as scaling factor of the variance, the expectation value of the
square distance between any two centroids is equal to α2 independently of n. This
allows to have enough separation among classes to build efficient classifiers. In order
to control the minimum clusters separation we discarded simulations where, due to
the randomness of the process, any two centers are closer than α/2. For each class,
we generated 250 Gaussian distributed samples with unit variance affected by a drift
linear in time according to the following equation:

x(c, t) = N (μc,I)+
(t

h
·ud

)

︸ ︷︷ ︸

drift effect

(6.13)

where h represents a scaling factor for the discrete time t (h has been set to 40 in
our specific case to guarantee a significant amount of drift). The term ud represents
a randomly generated unitary vector in the n-dimensional space describing the di-
rection of the drift applied to each sample of the dataset. In our simulated data all
classes are linearly drifted in the same direction, and samples of the different classes
are uniformly distributed in time to present similar drift conditions. The effect of the
drift is evident by looking at the projection over the first two principal components
of the PCA reported in Figure 6.2.

The experimental session included 100 runs of the drift-correction process for
each of the four objective functions based on the distances introduced in Section
6.2.4. The first 100 samples of the data set have been used as training data for the
PaRCmodel, while the remaining 900 samples have been used as test set to be ana-
lyzed. The test set has been processed splitting the data in windows of 50 samples.

6.3.1.2 Results and Discussion

Table 6.2 shows the performance of the proposed system for the five considered clas-
sifiers and the four considered objective functions. Results are provided in terms of
classification rate on each of the 18 windows and total classification rate (T. Cr.).
To better highlight the benefits of the correction process, Table 6.2 reports both
the classification rate of each classifier when no correction is applied and the one

6.3 Case Studies and Experimental Results 65

Ta
bl

e
6.

2
P

er
fo

rm
an

ce
of

th
e

dr
if

tc
or

re
ct

io
n

sy
st

em
in

te
rm

s
of

cl
as

si
fi

ca
ti

on
ra

te
on

th
e

ar
ti

fi
ci

al
da

ta
se

t

C
la

ss
ifi

er
C

la
ss

ifi
ca

ti
o
n

ra
te

o
v
er

w
in

d
o
w

s
W

i
T

.C
r

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
1
0

W
1
1

W
1
2

W
1
3

W
1
4

W
1
5

W
1
6

W
1
7

W
1
8

C
la

ss
ifi

er
s

w
it

h
o
u

t
d

ri
ft

co
rr

ec
ti

o
n

kN
N

1.
00

0.
96

0.
98

0.
88

0.
88

0.
80

0.
90

0.
78

0.
78

0.
68

0.
66

0.
62

0.
68

0.
60

0.
60

0.
62

0.
60

0.
58

0.
75

N
N

E
T

1.
00

1.
00

1.
00

0.
96

1.
00

0.
98

1.
00

0.
98

0.
98

0.
94

0.
94

0.
82

0.
92

0.
90

0.
86

0.
86

0.
86

0.
82

0.
93

PL
S

1.
00

0.
96

0.
98

0.
88

0.
92

0.
82

0.
86

0.
80

0.
64

0.
64

0.
56

0.
52

0.
38

0.
32

0.
26

0.
30

0.
26

0.
24

0.
63

R
F

0.
86

0.
88

0.
86

0.
80

0.
80

0.
80

0.
78

0.
76

0.
76

0.
74

0.
64

0.
62

0.
62

0.
56

0.
48

0.
48

0.
44

0.
46

0.
68

D
ri

ft
co

rr
ec

ti
o
n

u
si

n
g

th
e

M
a
h

a
la

n
o
b

is
d

is
ta

n
ce

D
m

Δ
T

.C
r

kN
N

A
vg

1.
00

1.
00

0.
96

0.
99

0.
96

0.
97

0.
95

0.
95

0.
97

0.
95

0.
94

0.
91

0.
89

0.
86

0.
84

0.
81

0.
79

0.
78

+0
.1

7
C

.I.
.0

06
.0

15
.0

12
.0

15
.0

16
.0

20
.0

19
.0

21
.0

24
.0

26
.0

26
.0

27
.0

27
.0

28
.0

30
.0

29
.0

29
.0

30
N

N
E

T
A

vg
0.

98
1.

00
0.

99
0.

96
0.

97
0.

99
0.

98
0.

99
0.

99
0.

95
0.

97
0.

92
0.

94
0.

91
0.

91
0.

89
0.

84
0.

85
+0

.0
2

C
.I.

.0
02

.0
00

.0
03

.0
03

.0
03

.0
02

.0
04

.0
02

.0
02

.0
13

.0
12

.0
15

.0
15

.0
15

.0
17

.0
20

.0
26

.0
29

P
L

S
A

v
g

1
.0

0
1
.0

0
1
.0

0
0
.9

6
0
.9

9
0
.9

7
0
.9

8
0
.9

8
0
.9

9
0
.9

8
0
.9

9
0
.9

6
0
.9

4
0
.9

4
0
.9

0
0
.8

4
0
.8

0
0
.8

0
+

0
.3

1
C

.I
.
.0

0
1

.0
0
0

.0
0
1

.0
0
5

.0
0
4

.0
0
5

.0
0
6

.0
0
5

.0
0
2

.0
0
4

.0
0
6

.0
1
3

.0
1
5

.0
1
7

.0
2
0

.0
2
5

.0
3
0

.0
3
1

R
F

A
vg

0.
99

0.
97

1.
00

0.
99

0.
91

0.
88

0.
84

0.
93

0.
87

0.
85

0.
84

0.
81

0.
83

0.
82

0.
81

0.
82

0.
80

0.
79

+0
.1

9
C

.I.
.0

02
.0

02
.0

01
.0

02
.0

07
.0

06
.0

05
.0

11
.0

08
.0

07
.0

06
.0

05
.0

06
.0

06
.0

09
.0

06
.0

10
.0

11
D

ri
ft

co
rr

ec
ti

o
n

u
si

n
g

th
e

li
n

ea
r

st
ep

d
is

ta
n

ce
D

ls
Δ

T
.C

r

kN
N

A
vg

0.
98

0.
92

0.
94

0.
88

0.
92

0.
89

0.
88

0.
86

0.
88

0.
85

0.
83

0.
81

0.
79

0.
78

0.
76

0.
76

0.
73

0.
73

+0
.0

9
C

.I.
.0

06
.0

15
.0

12
.0

15
.0

16
.0

20
.0

19
.0

21
.0

24
.0

26
.0

26
.0

27
.0

27
.0

28
.0

30
.0

29
.0

29
.0

30
N

N
E

T
A

vg
0.

97
0.

92
0.

94
0.

88
0.

89
0.

87
0.

87
0.

85
0.

86
0.

82
0.

82
0.

78
0.

79
0.

77
0.

76
0.

76
0.

73
0.

71
-0

.1
0

C
.I.

.0
05

.0
13

.0
11

.0
15

.0
19

.0
22

.0
21

.0
24

.0
25

.0
25

.0
29

.0
28

.0
31

.0
29

.0
31

.0
32

.0
34

.0
36

PL
S

A
vg

0.
98

0.
91

0.
93

0.
88

0.
91

0.
87

0.
84

0.
84

0.
82

0.
78

0.
76

0.
74

0.
70

0.
67

0.
66

0.
66

0.
62

0.
61

+0
.1

6
C

.I.
.0

06
.0

16
.0

13
.0

16
.0

20
.0

23
.0

25
.0

26
.0

32
.0

34
.0

37
.0

39
.0

40
.0

41
.0

43
.0

43
.0

44
.0

45
R

F
A

vg
0.

98
0.

92
0.

94
0.

92
0.

87
0.

85
0.

81
0.

81
0.

79
0.

78
0.

77
0.

75
0.

74
0.

73
0.

72
0.

72
0.

69
0.

68
+0

.1
2

C
.I.

.0
06

.0
08

.0
09

.0
12

.0
15

.0
16

.0
14

.0
18

.0
16

.0
17

.0
17

.0
17

.0
20

.0
19

.0
21

.0
24

.0
26

.0
26

D
ri

ft
co

rr
ec

ti
o
n

u
si

n
g

th
e

ex
p

o
n

en
ti

a
l

d
is

ta
n

ce
D

x
Δ

T
.C

r
kN

N
A

vg
1.

00
0.

99
0.

98
0.

92
0.

95
0.

92
0.

90
0.

88
0.

88
0.

84
0.

83
0.

80
0.

77
0.

77
0.

76
0.

75
0.

70
0.

69
+0

.1
0

C
.I.

.0
00

.0
02

.0
03

.0
15

.0
15

.0
16

.0
18

.0
22

.0
24

.0
28

.0
28

.0
31

.0
32

.0
32

.0
33

.0
33

.0
35

.0
35

N
N

E
T

A
vg

1.
00

1.
00

1.
00

0.
94

0.
96

0.
92

0.
80

0.
75

0.
77

0.
72

0.
70

0.
66

0.
66

0.
64

0.
64

0.
62

0.
60

0.
59

-0
.1

6
C

.I.
.0

00
.0

02
.0

02
.0

07
.0

14
.0

20
.0

34
.0

40
.0

38
.0

39
.0

39
.0

37
.0

38
.0

35
.0

37
.0

35
.0

35
.0

37
PL

S
A

vg
1.

00
1.

00
0.

99
0.

93
0.

95
0.

89
0.

83
0.

79
0.

77
0.

74
0.

72
0.

67
0.

65
0.

66
0.

63
0.

60
0.

57
0.

55
+0

.1
4

C
.I.

.0
00

.0
00

.0
03

.0
13

.0
14

.0
24

.0
31

.0
34

.0
37

.0
38

.0
37

.0
40

.0
38

.0
37

.0
40

.0
41

.0
40

.0
38

R
F

A
vg

0.
92

0.
90

0.
91

0.
90

0.
84

0.
82

0.
80

0.
83

0.
78

0.
76

0.
74

0.
72

0.
70

0.
69

0.
66

0.
67

0.
64

0.
62

+0
.0

9
C

.I.
.0

06
.0

08
.0

11
.0

16
.0

15
.0

16
.0

13
.0

21
.0

20
.0

24
.0

22
.0

28
.0

28
.0

29
.0

29
.0

30
.0

31
.0

32
D

ri
ft

co
rr

ec
ti

o
n

u
si

n
g

th
e

ex
p

o
n

en
ti

a
l

st
ep

d
is

ta
n

ce
D

xs
Δ

T
.C

r
kN

N
A

vg
1.

00
0.

99
0.

98
0.

92
0.

92
0.

90
0.

91
0.

88
0.

89
0.

87
0.

86
0.

81
0.

80
0.

79
0.

78
0.

76
0.

73
0.

74
+0

.1
1

C
.I.

.0
00

.0
03

.0
06

.0
11

.0
16

.0
16

.0
16

.0
19

.0
21

.0
23

.0
24

.0
27

.0
25

.0
28

.0
28

.0
26

.0
27

.0
28

N
N

E
T

A
vg

0.
98

0.
98

0.
98

0.
93

0.
94

0.
94

0.
94

0.
93

0.
92

0.
89

0.
88

0.
82

0.
82

0.
81

0.
80

0.
80

0.
77

0.
76

-0
.0

5
C

.I.
.0

01
.0

04
.0

05
.0

07
.0

14
.0

16
.0

15
.0

16
.0

16
.0

19
.0

25
.0

26
.0

28
.0

30
.0

30
.0

32
.0

33
.0

37
PL

S
A

vg
0.

99
0.

99
0.

99
0.

94
0.

93
0.

91
0.

91
0.

90
0.

88
0.

87
0.

85
0.

82
0.

79
0.

75
0.

73
0.

72
0.

69
0.

67
+0

.2
2

C
.I.

.0
02

.0
03

.0
03

.0
13

.0
17

.0
20

.0
19

.0
23

.0
26

.0
26

.0
28

.0
32

.0
32

.0
34

.0
37

.0
36

.0
38

.0
41

R
F

A
vg

0.
99

0.
96

0.
99

1.
00

0.
95

0.
95

0.
92

0.
95

0.
91

0.
89

0.
87

0.
83

0.
83

0.
83

0.
80

0.
81

0.
79

0.
76

+0
.2

1
C

.I.
.0

02
.0

02
.0

03
.0

02
.0

08
.0

11
.0

13
.0

12
.0

17
.0

17
.0

15
.0

16
.0

15
.0

19
.0

19
.0

19
.0

17
.0

19

66 6 Drift Correction of Chemical Sensors

considering the correction system. Results for the correction system are produced
in terms of average classification rate over the 100 considered runs (Avg). In order
to evaluate the stability of the results over the different runs, for each average value
is reported the related confidence interval (C.I.), computed considering 95% level
of confidence. The total classification rate is expressed in this case as the variation
w.r.t. the one of the classifier without correction.

Fig. 6.2 Projection of the first two principal components of the PCA computed for the artifi-
cially generated dataset.

Results provided in Table 6.2 confirm that in general, for all considered classi-
fiers, the drift correction process allows to improve the classification rate with results
that are quite stable over the different runs. In particular, the two objective functions
based on the Mahalanobis distance (Dm) and the exponential step distance (Dxs)
seem to provide better results. Among the different classifiers, NNET gained lower
improvement due to the fact that the classification rate was already quite high even
without applying any correction. On the contrary, we observed the most significant
improvement w.r.t. the classifier, when applied on raw measures, with PLS system
corrected with the objective function based on the Mahalanobis distance.

6.3 Case Studies and Experimental Results 67

Figure 6.3 graphically compares the performance of the proposed drift correc-
tion method with the Orthogonal Signal Correction (OSC) that, as introduced in
Section 6.1, represents a state-of-the-art attuning method to perform drift correc-
tion. OSC has been implemented using the osccalc.m function of the PLS toolbox
package (ver. 5.5) for MATLAB environment (64 bit, ver. 7.9). For the experiments
we chose to remove one orthogonal component. Results are evaluated considering
the PLS classifier corrected with the objective function based on the Mahalanobis
distance. Since the size of the training set strongly influences the effectiveness of
this approach, we provided results considering different values for the training set
size (100 samples for osc-100 and 200 samples for osc-200) [115]. The proposed
results clearly show how the proposed method outperforms the OSC requiring a
reduced set of training data.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18
0

0.2

0.4

0.6

0.8

1

1.2

Windows

cl
as

si
fic

at
io

n
ra

te

classifier without correction
classifier with drift correction
osc−100
osc−200
osc−300

Fig. 6.3 Comparison of the proposed drift correction systems with the OSC for the PLS
classifier with the objective function using the Mahalanobis distance Dm.

Finally, to show the ability of the correction process to actually remove the drift
component from the considered samples, Figure 6.4 graphically shows the projec-
tion over the first two principal components for the corrected dataset for one of
the runs performed with the PLS classifier using the Mahalanobis distance(Figure
6.4-a) and for the original data without drift (Figure 6.4-b). The last set of data was
stored during the generation of the artificial dataset before inserting the drift compo-
nent (see equation 6.13). Both plots have been generated using the same projection

68 6 Drift Correction of Chemical Sensors

to allow comparison. The figure confirms how the drift observed in Figure 6.2 has
been strongly mitigated allowing a distribution of samples that approximate the one
without drift. This is an important results allowing to perform quantitative gas anal-
ysis and further examinations on the corrected data overcoming one of the main
problems of previous adaptive correction methods (see Section 6.1).

Fig. 6.4 Comparison of the corrected data set (a) with the original data without drift for the
artificial data set (b), using PLS classifier

6.3.2 Real Dataset

To additionally validate the proposed approach we also performed a set of experi-
ments on a real data set collected at the SENSOR Lab, an Italian research laboratory
specialized in the development of chemical sensor arrays1. All data have been col-
lected using an EOS835 electronic nose composed of 6 chemical MOX sensors:
further information on sensors and equipment used can be found in [118] and its
references. The goal of the experiment is to determine whether the EOS835 can
identify five pure organic vapors: ethanol (class 1), water (class 2), acetaldehyde
(class 3), acetone (class 4), ethyl acetate (class 5). All these are typical chemical
compounds to be detected in real-world applicative scenarios.

6.3.2.1 Experimental Setup

A total of five different sessions of measurements were performed over one month
to collect a dataset of 545 samples, a high value compared to other real datasets re-
ported in the literature. While the period of time was not very long, it was enough to
obtain data affected by a certain amount of drift. Not all classes of compounds have
been introduced since the first session mimicking a common practice in real-world
experiments: samples of classes 1 and 2 have been introduced since the beginning;

1 http://sensor.ing.unibs.it/

6.3 Case Studies and Experimental Results 69

class 3 is first introduced during the second session, one week later; first occurrences
of classes 4 and 5 appear only during the third session, 10 days after the beginning
of the experiment. Classes are not perfectly balanced in terms of number of sam-
ples, with a clear predominance of classes 1, 2 and 3 over classes 4 and 5. All these
peculiarities make this dataset complex to analyze allowing us to stress the capabil-
ity of the proposed correction system. The effect of the drift is evident by looking
at the projection over the first two principal components of the PCA reported in
Figure 6.5.

Fig. 6.5 Projection of the first two principal components of the PCA computed for the real
dataset.

As for the artificial dataset the experimental session included 100 runs of the
drift-correction process for each of the four considered objective functions. The first
20 samples of each class have been used as training data for the PaRCmodel, while
the remaining 445 samples have been used as test set. The drift correction process
has been applied to windows of 100 samples, with the last one of 45 samples. The
bigger size of the windows compared to the artificial dataset is required to tackle the
additional complexity of the real data.

70 6 Drift Correction of Chemical Sensors

6.3.2.2 Results

Table 6.3 summarizes the performance of the drift correction system on the real data
set.

Results immediately highlight how the correction process for this particular ex-
periment is harder than that for the artificial data. Main difficulties are connected
to the fact that samples from different classes are introduced non homogeneously
over the time and the initial interclass distance among the centroids is not enough to
avoid partial overlapping of the classes. Moreover, the increased size of the windows
increases the effort required by the CMA-ES to compute the appropriate correction
matrices. However, the exponential step distance steal produces interesting improve-
ments in the classification rate. Looking also at the results of the artificial dataset
this distance seems the best compromise to work with generic data.

PLS corrected with the objective function based on the exponential step distance
is the classifier that gained better improvements. Figure 6.6 compares again the
results for this case with the correction obtained applying the OSC. This time due to
the limited amount of samples, a single case with 100 samples of training has been
considered. Again the proposed drift correction approach performs better than the
OSC.

W1 W2 W3 W4 W5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Windows

cl
as

si
fic

at
io

n
ra

te

classifier without correction
classifier with drift correction
osc−100

Fig. 6.6 Comparison of the proposed drift correction systems with the OSC for the PLS
classifier with objective function using the exponential step distance Dxs

6.3 Case Studies and Experimental Results 71

[!
h]

Ta
bl

e
6.

3
P

er
fo

rm
an

ce
of

th
e

dr
if

tc
or

re
ct

io
n

sy
st

em
in

te
rm

s
of

cl
as

si
fi

ca
ti

on
ra

te
on

th
e

ar
ti

fi
ci

al
re

al
se

t

C
la

ss
ifi

er
C

la
ss

ifi
ca

ti
o
n

ra
te

o
v
er

w
in

d
o
w

s
W

i
T

.C
r

C
la

ss
ifi

er
C

la
ss

ifi
ca

ti
o
n

ra
te

o
v
er

w
in

d
o
w

s
W

i
T

.C
r

W
1

W
2

W
3

W
4

W
5

W
1

W
2

W
3

W
4

W
5

C
la

ss
ifi

er
s

w
it

h
o
u

t
d

ri
ft

co
rr

ec
ti

o
n

D
m

kN
N

0.
63

0.
54

0.
35

0.
32

0.
31

0.
45

N
N

E
T

0.
56

0.
65

0.
63

0.
47

0.
36

0.
55

PL
S

0.
56

0.
61

0.
35

0.
23

0.
22

0.
42

R
F

0.
86

0.
86

0.
82

0.
70

0.
69

0.
80

D
ri

ft
co

rr
ec

ti
o
n

u
si

n
g

th
e

M
a
h

a
la

n
o
b

is
d

is
ta

n
ce

D
m

Δ
T

.C
r

D
ri

ft
co

rr
ec

ti
o
n

u
si

n
g

th
e

ex
p

o
n

en
ti

a
l

d
is

ta
n

ce
D

x
Δ

T
.C

r

kN
N

A
vg

0.
66

0.
62

0.
53

0.
55

0.
52

+0
.1

3
kN

N
A

vg
0.

20
0.

24
0.

28
0.

22
0.

27
-0

.2
1

C
.I.

.0
04

.0
25

.0
15

.0
27

0.
32

C
.I.

.0
00

.0
09

.0
21

.0
17

.0
20

N
N

E
T

A
vg

0.
28

0.
54

0.
52

0.
50

0.
49

-0
.0

9
N

N
E

T
A

vg
0.

02
0.

41
0.

26
0.

31
0.

28
-0

.3
0

C
.I.

.0
09

.0
09

.0
16

.0
22

.0
26

C
.I.

.0
10

.0
22

.0
18

.0
29

.0
22

PL
S

A
vg

0.
40

0.
41

0.
28

0.
30

0.
37

-0
.0

7
PL

S
A

vg
0.

20
0.

26
0.

29
0.

26
0.

30
-0

.1
6

C
.I.

.0
16

.0
15

.0
18

.0
21

.0
24

C
.I.

.0
00

.0
15

.0
21

.0
20

.0
22

R
F

A
vg

0.
90

0.
78

0.
80

0.
80

0.
80

+0
.0

2
R

F
A

vg
0.

60
0.

64
0.

22
0.

28
0.

40
-0

.3
6

C
.I.

.0
03

.0
03

.0
02

.0
00

.0
00

C
.I.

.0
04

.0
23

.0
20

.0
29

.0
37

D
ri

ft
co

rr
ec

ti
o
n

u
si

n
g

th
e

li
n

ea
r

st
ep

d
is

ta
n

ce
D

ls
Δ

T
.C

r
D

ri
ft

co
rr

ec
ti

o
n

u
si

n
g

th
e

ex
p

o
n

en
ti

a
l

st
ep

d
is

ta
n

ce
D

xs
Δ

T
.C

r

kN
N

A
vg

0.
89

0.
72

0.
55

0.
56

0.
49

+0
.2

1
kN

N
A

vg
0.

71
0.

74
0.

53
0.

53
0.

51
+0

.1
6

C
.I.

.0
06

.0
22

.0
23

.0
33

.0
33

C
.I.

.0
13

.0
13

.0
12

.0
18

.0
21

N
N

E
T

A
vg

0.
81

0.
70

0.
71

0.
68

0.
54

+0
.1

6
N

N
E

T
A

vg
0.

70
0.

78
0.

72
0.

82
0.

64
+0

.1
9

C
.I.

.0
13

.0
23

.0
30

.0
46

.0
38

C
.I.

.0
02

.0
06

.0
07

.0
22

.0
34

PL
S

A
vg

0.
86

0.
67

0.
53

0.
55

0.
41

+0
.2

1
P

L
S

A
v
g

0
.7

4
0
.7

9
0
.7

4
0
.7

2
0
.5

3
+

0
.3

1

C
.I.

.0
07

.0
17

.0
25

.0
31

.0
29

C
.I.

.0
11

.0
13

.0
14

.0
31

.0
29

R
F

A
vg

0.
95

0.
91

0.
86

0.
85

0.
83

+0
.0

8
R

F
A

vg
0.

88
0.

77
0.

81
0.

81
0.

90
+0

.0
2

C
.I.

.0
02

.0
12

.0
10

.0
23

.0
31

C
.I.

.0
04

.0
02

.0
03

.0
05

.0
19

72 6 Drift Correction of Chemical Sensors

6.4 CMA-ES

The covariance matrix adaptation evolution strategy (CMA-ES) is an optimization
method first proposed by Hansen, Ostermeier, and Gawelczyk [72] in mid 90s, and
further developed in subsequent years [71], [70].

Similar to quasi-Newton methods, the CMA-ES is a second-order approach es-
timating a positive definite matrix within an iterative procedure. More precisely,
it exploits a covariance matrix, closely related to the inverse Hessian on convex-
quadratic functions. The approach is best suited for difficult non-linear, non-convex,
and non-separable problems, of at least moderate dimensionality (i.e., n∈ [10,100]).
In contrast to quasi-Newton methods, the CMA-ES does not use, nor approxi-
mate gradients, and does not even presume their existence. Thus, it can be used
where derivative-based methods, e.g., Broyden-Fletcher-Goldfarb-Shanno or con-
jugate gradient, fail due to discontinuities, sharp bends, noise, local optima, etc.

In CMA-ES, iteration steps are called generations due to its biological founda-
tions. The value of a generic algorithm parameter y during generation g is denoted
with y(g). The mean vector m(g) ∈ R

n represents the favorite, most-promising so-
lution so far. The step size σ (g) ∈ R+ controls the step length, and the covariance
matrix C(g) ∈ R

n×n determines the shape of the distribution ellipsoid in the search
space. Its goal is, loosely speaking, to fit the search distribution to the contour lines
of the objective function f to be minimized. C(0) = I

In each generation g, λ new solutions x(g+1)
i ∈ R

n are generated by sampling a
multi-variate normal distribution N (0,C) with mean 0 (see equation 6.14).

x(g+1)
k ∼ N

(

m(g),
(

σ (g)
)2

C(g)
)

, k = 1, . . . ,λ (6.14)

Where the symbol · ∼ · denotes the same distribution on the left and right side.
After the sampling phase, new solutions are evaluated and ranked. xi:λ denotes

the ith ranked solution point, such that f (x1:λ) ≤ . . . ≤ f (xλ :λ). The μ best among
the λ are selected and used for directing the next generation g+ 1. First, the distri-
bution mean is updated (see equation 6.15).

m(g+1) =
μ

∑
i=1

wix
(g)
i , w1 ≥ . . .≥ wμ > 0,

μ

∑
i=1

wi = 1 (6.15)

In order to optimize its internal parameters, the CMA-ES tracks the so-called evolu-
tion paths, sequences of successive normalized steps over a number of generations.

p(g)
σ ∈ R

n is the conjugate evolution path. p(0)
σ = 0.

√
2

Γ (n+1
2)

Γ (n
2)

≈√
n+O

(

1
n

)

is the

expectation of the Euclidean norm of a N (0,I) distributed random vector, used to

normalize paths. μeff =

(μ
∑

1=1
w2

i

)−1

is usually denoted as variance effective selec-

tion mass. Let cσ < 1 be the learning rate for cumulation for the rank-one update of

6.5 Conclusions 73

the covariance matrix; dσ ≈ 1 be the damping parameter for step size update. Paths
are updated according to equations 6.16 and 6.17.

p(g+1)
σ = (1− cσ)p

(g)
σ +

√

cσ (2− cσ)μeffC
(g)− 1

2
m(g+1)−m(g)

σ (g)
(6.16)

σ (g+1) = σ (g) exp

⎛

⎜

⎝

cσ
dσ

⎛

⎜

⎝

∥

∥

∥p(g+1)
σ

∥

∥

∥

√
2

Γ (n+1
2)

Γ (n
2)

− 1

⎞

⎟

⎠

⎞

⎟

⎠ (6.17)

p(g)
c ∈ R

n is the evolution path, p(0)
c = 0. Let cc < 1 be the learning rate for cumu-

lation for the rank-one update of the covariance matrix. Let μcov be parameter for
weighting between rank-one and rank-μ update, and ccov ≤ 1 be learning rate for
the covariance matrix update. The covariance matrix C is updated (equations 6.18
and 6.19).

p(g+1)
c = (1− cc)p

(g)
c +

√

cc(2− cc)μeff
m(g+1)−m(g)

σ (g)
(6.18)

C(g+1) = (1−ccov)C(g) +
ccov

μcov

×
(

p(g+1)
c p(g+1)

c
T
+δ

(

h(g+1)
σ

)

C(g)
)

+ccov

(

1− 1
μcov

) μ

∑
i=1

wi OP

⎛

⎝

x(g+1)
i:λ −m(g)

σ (g)

⎞

⎠ (6.19)

where OP(X) = XXT = OP(−X).
Most noticeably, the CMA-ES requires almost no parameter tuning for its appli-

cation. The choice of strategy internal parameters is not left to the user, and even λ
and μ defaults to acceptable values. Notably, the default population size λ is com-
paratively small to allow for fast convergence. Restarts with increasing population
size has been demonstrated [8] useful for improving the global search performance,
and it is nowadays included an an option in the standard algorithm.

6.5 Conclusions

In this chapter, we propose an evolutionary based approach able to deal with the
drift problem affecting gas sensor arrays. The presented methodology is based on
a 5-step flow that corrects and classifies the samples affected by sensor drift by
applying a correction factor that mitigates the undesired effects on gas sensors. The
correction factor is continuously adapted exploiting an evolutionary process, thus
following the changes underwent by the sensor array due to the drift problem.

74 6 Drift Correction of Chemical Sensors

The proposed approach is flexible enough to work with different state-of-the-
art classification algorithms, as experimentally demonstrated, and there is no need
of relying upon complex drift models in order to exploit the proposed technique.
Moreover, gathered results on artificial and real data sets experimentally corroborate
that the proposed methodology performs better than state of the art methods, such
as OSC.

Chapter 7
Development of On-Line Test Sets for
Microprocessors

In software-based self-test (SBST) a microprocessor executes a set of test programs
devised for detecting the highest possible percentage of faults. The main advantages
of this approach are its high defect fault coverage (being performed at-speed) and the
reduced cost (since it does not require any change in the processor hardware). SBST
can also be used for on-line test of a microprocessor-based system. However, some
additional constraints exist in this case (e.g. in terms of test length and duration, as
well as intrusiveness). This paper faces the issue of automatically transforming a test
set devised for manufacturing test in a test set suitable for on-line test. Experimental
results are reported on an Intel 8051 microcontroller. Preliminary results have been
published in [133].

7.1 Introduction

On-line testing has been defined as the process where faults are detected and/or
corrected while the system is working in its natural environment. On-line test is
required by most safety-critical applications, since a faulty behavior could lead to
customers’ inconveniences, economic loss and even casualties.

In concurrent on-line testing the detection of operational faults is performed at
the same time the device is working. This means, more precisely, that the detection
of operational faults must be performed keeping the system in normal or safety
operational state. Concurrent online testing usually exploits specific hardware, such
as data redundancy and voters, with a costly overhead for the final system.

Differently, in non-concurrent on-line testing, the detection of operational faults
is performed while the normal operations are temporarily suspended [4]. The test
procedure is either interruptible or composed of small subparts, and a test man-
ager schedules it in order to minimize its intrusiveness. Non-concurrent testing usu-
ally needs less additional hardware. The development of an effective on-line test
strategy is a major issue for designers of processor-based safety critical applica-
tions. Today, this task is becoming even more critical due to the growing number of

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 75–85.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

76 7 Development of On-Line Test Sets for Microprocessors

System-On-a-Chip’s (SOCs) and other devices that embed microprocessor cores.
Even though these systems are not yet used in mission-critical applications, their
wide availability is often pushing producers to equip them with suitable solutions
for on-line test.

Most non-critical applications are characterized by strict space/time constrains
and high error latencies. The non-concurrent testing scheme may be preferred due
to the limited hardware overhead required.

Several papers investigated different structures for on-line test. In [89], the au-
thors propose the insertion of an ad-hoc test processor able to execute the on-line
testing within the system. The processor has been developed and implemented look-
ing for maximizing its performance regarding test; this means that internally the
processor counts on special hardware structures such as Multiple Input Signature
Registers (MISRs) and Linear Feedback Shift Registers (LFSRs) to improve test
performance. The presented experience is mostly oriented to test the internal buses
of the SOC. But the test processor could be empowered by additional subroutines
able to test SOC peripherals and even functional processors. In [12] the main idea
is to adopt an internal testing structure reusing the Infrastructure IPs (I-IPs), em-
bedded into the SOC for manufacturing test to perform on-line testing. The strategy
also includes a special I-IP named test controller to manage the test procedure. At
the same time, several approaches have been developed for test program genera-
tion for manufacturing test of microprocessors (for instance [151], [32], [42] and
[88]), exploiting the so-called Software-Based Self-Test (SBST) technique: the test
of the processor is performed by letting it execute a suitable test program, whose
results are analyzed in order to detect the existence of possible faults. This approach
owns several advantages, including the fact that the test can be performed at-speed,
and no special hardware is required within the processor. On the other side, the
method effectiveness clearly depends on the quality of the adopted test program. In
principle, the SBST approach could be extended to on-line test: a test set suitable
for non-concurrent periodic on-line test could be composed of a certain number of
small test programs. These test programs should cumulatively reach the target fault
coverage, and they should be executed with a frequency suitable to guarantee the
required fault latency and not to interfere with the normal functioning. The guide-
lines for writing an effective on-line test set may be found in [120]. Such test set
may be composed of small programs that are activated during the idle periods of
the system, or at specific time intervals (some programs may be even activated only
at the system bootstrap and shutdown). If an operating system is available, the test
can be handled by a single low-priority task that, each time is activated, launches a
single test program and stores the result if accomplished without being interrupted,
otherwise waits the next activation to relaunch the test. Such approach may only
guarantee that on average the whole test is performed in a given amount of time,
but performance degradation is negligible. On simpler systems, test programs can
be handled by a scheduler. In any case, test programs should cumulatively guarantee
the highest possible fault coverage, and should be characterized by

7.2 Proposed Methodology 77

• a small code size, in order to reduce their impact in terms of memory occupation
• a short duration, in order to more easily fit into the available idle slots of the

system (or to reduce their impact on the system performance)
• a minimal invasiveness, so that data variables used by the application are not

affected by their execution.

Generally speaking, the number and size of test programs may be trade off for
their intrusiveness.

This chapter presents a novel methodology that automatically generates a test
set suitable for on-line test (according to the above requirements) starting from
one devised for manufacturing test. The generated programs are suitable for non-
concurrent periodic on-line test as well as for shutdown or startup testing, according
to the constraints listed above. The generated test set could be applied to a micro-
processor embedded into a SOC resorting to a test structure such as that described
in [12], introducing low hardware overhead and avoiding performance degradation.

The chapter is organized as follows: section 2 describes the developed approach
and section 3 presents a case study confirming the suitability of the approach. Fi-
nally, section 4 concludes the chapter and sketches future works.

7.2 Proposed Methodology

The proposed methodology is based on an automatic procedure which generates a
test set suitable for a non-concurrent on-line testing starting from a conventional
test set developed for post-production test. The approach is fully automated and
guarantees to attain the same gate-level fault coverage (FC%) of the original test
set.

The approach is based on an in-house developed instruction set simulator able
to analyze existing test programs and split them up into a large number of frag-
ments called spores. Each spore has some minimal test capability and owns the nice
property of being small (in terms of code size and test duration). Then, using an
evolutionary algorithm, the minimum set of such spores is chosen as the final test
set. The proposed methodology is presented in the Figure 7.2. Remarkably, some
older approaches like [45], exploited a structure called macro, very similar to spore,
as a building block for constructing a test program. However, spores are the result
of an analysis process, and not building blocks. While it may be maintained that
every program can be broken into spores automatically, the opposite does not hold
sensibly true. Later works showed that macros were inadequate to devise effective
tests and proposed an enhanced structure based on graphs [88].

It must be noted that certain faults, like the ones affecting the address-related
parts of the processor such as the logic that controls the program counter, may be
detectable only by specific programs placed in specific memory locations. However,
such tests are usually already small and fast, and therefore suitable for on-line test.
On the contrary, the fault coverage is guaranteed on functional blocks, such as the
multiplier unit, where the conversion is mostly needed.

78 7 Development of On-Line Test Sets for Microprocessors

In order to split the initial test set, each assembly program is executed by a special
instruction set simulation (denoted as Spore Generator Program or SGP in Figure
7.2) able to infer each instruction data flow graph and to generate a small program
able to thoroughly replicate the processor behavior while executing the referenced
instruction. Each small program is named spore. Each spore represents a completely
independent test program, able to excite some processor function, observe the re-
sults, and possibly signal fault occurrence. It is worth noting that the SGP module
does not generate spores from scratch, but rather “learns” from the original test set
how to test the processor modules, and extracts small groups of instructions, build-
ing a spore out of it.

Clearly, for each simulated program a huge set of spores is created. Then, using
an evolutionary algorithm, the best set of programs able to guarantee at least the
same FCattained by the original set is chosen as the final test set (On-line Test Set).
Further information about the methodology is presented below.

The initial test set must guarantee a high FC%, but it does not need to be devised
for online test. The method is independent on the origin of the initial test set, that
could be generated by hand following some deterministic approach (as in [88]), or
be the result of an automatic procedure (as in [42]), or even coming from a random
generation. Additionally, functional programs used as specific tests to cover corner
cases can also be used to increase the profits of the initial test set. Test programs for

Fig. 7.1 General Methodology

7.2 Proposed Methodology 79

post-production test are not devised to be executed sharing the processor resources;
therefore, their effectiveness may be reduced if they are arbitrarily interrupted by
task switching or other interruptions. Thus, they are incompatible with other appli-
cations working in background or, even worse, waiting for the processor to compute
its tasks.

However, post-production test sets contain valuable information regarding FC%,
and this information could be reused for the benefits of on-line testing. Finally, it
must be noted that our method is independent on the way and frequency the online
test is activated: our goal is only to transform the original test set into a new one
which guarantees the same FC, but satisfies the requirements for on-line test, i.e.,
is composed of a minimal number of short test programs, which can be activated
independently at different times.

The techniques used for activating the test and scheduling test programs depend
specifically on the user requirements. All related issues, like the trade-off between
test intrusiveness and error latency, are out of the scope of this work.

7.2.1 Spore Generator Description

The Spore Generator Program (SGP) is based on an instruction set simulator able
to trace the execution data flow of each instruction of the test program. Its goal is the
generation of independent and small programs able to exactly replicate the behavior
of the processor while executing a target instruction.

To fit testing requirements, a spore program must be structured as shown in
Figure 7.2.1. The program initialization regards controllability: the processor is set
in a specific state waiting for the execution of the target instruction. At this point,
the target instruction is executed and then appropriate instructions are added to make
the results visible. These instructions depend on the chosen architecture and on the
hardware exploited for on-line test, and are likely to be more restrictive than the
observability points utilized in post-production tests.

To generate the set of spores, the Spore Generator uses the following components:

• The set of all elements required to emulate the current processor status, e.g.,
accumulators, flag registers and address registers

• The assembly syntax, addressing modes, and relationships between processor
registers

• The mechanism used to observe results, such as moving the data to a specific
processor output port or even just to a specific memory location.

The Spore Generator does not require to be time accurate.
An example of the approach operation is shown in Figure 7.2.1. A test program

based on a loop is presented as initial test program. Then, the Spore Generator emu-
lates its execution and for each simulated instruction (in this case the target instruc-
tion is MUL AB) a spore is generated. Resorting to the processor status and the data

80 7 Development of On-Line Test Sets for Microprocessors

Fig. 7.2 Spore Structure

Fig. 7.3 Spore Generator, example.

flow graph the Spore Generator is able to create a spore that carefully emulates the
processor behavior when the specific MUL AB instruction is executed.

To generate a spore set, it is important to properly configure the Spore Gener-
ator components expressing the particularities of the on-line testing scheme. For
instance, the preceding example uses the processor ports P0, P1 and P2 to observe
results. The spores set is able to achieve at least the same FC% the initial test pro-
gram did, because the generated programs reflect step by step the behavior the pro-
cessor underwent while it executed the initial test.

Despite the execution time required to compute the whole set of spores is larger
than that required to execute the initial program, these programs are suitable for

7.2 Proposed Methodology 81

on-line testing because they comply with the characteristics mentioned before. How-
ever, the number makes their deployment prohibitive.

Therefore, it is necessary to rely on an automatic technique able to effectively
choose a reduced set of test programs for on-line testing.

7.2.2 Set Covering

The problem of selecting a minimum sub set of the spores while still guaranteeing
unmodified fault coverage is a mere set-covering, a well-known NP-hard problem
for which several acceptable heuristics were developed in the past. The Selfish-Gene
(SG) algorithm is an evolutionary heuristic algorithm developed in 1998 [46] and it
was chosen mainly for its flexibility.

Differently from usual evolutionary algorithm, the SG uses the gene as unit of
selection, and the selection mechanism guarantees gene correlations, i.e., the fact
that a gene can be good or bad depending on the context of the other genes, exactly
as the biological process does according to some researchers [48].

The Selfish Gene algorithm considers the whole population as a container of
genetic material instead of storing a discrete set of individuals. At each step of the
evolution process, two individuals are extracted from the population and their fitness
is compared (fitness calculations are always performed at the level of individuals)
simulating a conflict. Then, the population is updated to reflect the result of the
battle.

From a practical point of view, the SG algorithm shares several advantages with
common evolutionary algorithm, but since it does not store an explicit set of indi-
viduals, it is more easily scalable. Moreover, tuning the initial probabilities of the
allele (a process called polarization), the behavior of the SG can be shaped from
pure evolutionary to strongly hill climbing-like [44].

The SG was used to evolve a genome on n loci, where n is the number of spores.
For each locus there are two possible alleles: 0 and 1, encoding that the test program
is, respectively, included or not included in the on-line test set.

As final result, the set covering solver delivers a reduced set of programs able to
achieve high FC% without large memory space requirements.

Finally, to manage this set of programs, a scheduler should be used. This sched-
uler must be additionally able to save and evaluate the testing signature properly
to possibly stop the system operation in the case an error occurs. For instance, the
on-line testing structure presented in [12] is appropriate for this task and does not
introduce excessive hardware overheads.

82 7 Development of On-Line Test Sets for Microprocessors

7.3 Case Study

As a case study, we evaluated the presented methodology targeting an Intel i8051
processor. Only the processor primary output ports P0, P1 and P2 were chosen to
observe results, making the on-line test strategy realistically applicable with limited
hardware.

We exploited a synthetizable model of the processor described at RTL in about
14K VHDL code lines. The processor was synthesized using the Synopsys De-
sign Analyzer and mapped on a standard library. Table 7.1 summarizes its main
characteristics.

Table 7.1 Intel 8051 description

Primary Inputs 41
Primary Outputs 45
Gates 39,154
Flip-Flops 1,326
Stuck-at Faults 72,672

The processor core could be roughly divided in three units: Memory, Control and
ALU. Table 7.2 shows the stuck-at faults (S@F) belonging to each part.

Table 7.2 Main processor parts

UNIT S@F
Memory 43,960
Control 15,328
ALU 13,384

As it is well known, the test of the processor memory could be performed fol-
lowing a March test as described in [155]. Therefore, the experiments presented
here target only the Control and ALU units of the processor, excluding the proces-
sor memory. The Spore Generator described previously was developed and imple-
mented in about 3K lines of ANSI C code. The set covering algorithm has been
implemented in about 1.5K lines of C code.

All the experiments have been performed on a Sun Enterprise 250 running at 400
MHz and equipped with 2 GBytes of RAM.

We considered an initial test set, developed in house and suitable for post-
production testing, composed of 35 test programs. Five out of thirty five programs
were devised following the methodology described in [88] and targeted the micro-
processor Arithmetic and Logic Unit (ALU), while the remaining programs specif-
ically targeted the Control Unit (CU).

7.3 Case Study 83

Table 7.3 Initial test set figures

UNIT #Prog Size [bytes] CC FC%
ALU 5 220 136M 95.30

Control 30 4.3K 21K 90.1
TOTAL 35 4.5K 136M 92.52

Table 7.3 presents the figures obtained by the initial test set. The column “# Prog”
shows the number of programs devised to tackle each unit; Column “Size” reports
the size of the test programs in bytes; Column “CC” reports the number of clock
cycles required to run the tests, and the final column labeled “FC%” reports the
obtained fault coverage.

Stemming from the initial test set, two experiments were devised targeting the
ALU and the CU separately. Experimental results are summarized in Table 7.4 for
the ALU and in Table 7.5 for the CU.

On both of the tables, lines marked with I, S and F represent the Initial, Interme-
diate (Spores), and Final test sets, respectively. The column “#” shows the number
of test programs, and as presented in the Table 7.3, figures regarding on program
size and execution time are shown. In the block “Size [bytes]” the column “Max”
shows the size of the longest test program, and the column “Tot” the cumulative size
of the test set. Column block “CC” reports the number of clock cycles required to
run the tests. Column “Max” shows the time to execute the longest test program and
column “Tot” the time needed for running the whole test set. The column marked
“FC%” details the fault coverage attained by each test set. The reader can see that
the method was able to automatically generate a set of test programs attaining the
same total fault coverage of the original one, with a significant reduction in the
maximum size and duration of each test program, thus matching the requirements
of on-line test.

Concerning the ALU experiments, the initial test set generates a huge number of
spores cumulatively attaining the same fault coverage than the original test set on
the target unit (95.3%). It must be observed that the final test set contains “only”
415 test programs (less than 0.1% of the full spore set) while still guaranteeing the
same fault coverage. Compared with the initial test set, the on-line test set is larger
in code size, but requires far less time to be completed. Moreover, it is composed of
totally independent spores, none of them requiring more than 150 clock cycles to be
run.

Table 7.4 ALU

#
Size [bytes] CC

FC%
Max Tot Max Tot

I 5 53 220 40M 136M 95.3
S 6M 18 90M 150 178M 95.3
F 415 18 6,213 150 51,245 95.3

84 7 Development of On-Line Test Sets for Microprocessors

Table 7.5 Control Unit

#
Size [bytes] CC

FC%
Max Tot Max Tot

I 30 160 4.3k 1k 21k 90.1
S 2.2k 47 66k 170 280k 83.2
F 250 47 7.5k 170 37k 83.2

In the case of the CU, the results obtained by the final test set report an increment
in the size of the final test set as well as in the execution time and the data present a
decrement in the fault coverage attained by the set. This reduction in the FC% can
be explained by the fact that the spores are too small to fully stress the control logic
regarding the address-related parts of the processor. However, it could be noted that,
differently from the test programs targeting the ALU, the programs testing the CU
do not need high quantities of CPU time to be executed. Thus, the final on-line test
set for the whole microprocessor core could be composed of the test set generated
for the ALU (415 spores), the test set for the CU (250 spores) and some of the
initial programs targeting the CU, guaranteeing the same FC%. If time constrains
are really strict, this additional content of the test set may be executed at startup or
shutdown. As for the ALU, the obtained test programs show a significant reduction
in their maximum size and duration.

The Spore Generator required few minutes to split the original test programs, and
the selfish gene used few hours to optimize the test set. Interestingly, being based
on an evolutionary approach, the user may reduce the computational effort lowering
the quality of the result. The fault simulation of all the spores required about 10
days. Assessing the efficacy of all test programs is the most time consuming step of
the approach, but it is an easily parallelizable task.

As a result, a test set devised for manufacturing test was automatically trans-
formed in a new one suitable to be applied on-line. The initial test set is compact,
requires a long time to be executed and is usually designed to be run without regard-
ing sharing constraints. The final one is larger, but composed of small and extremely
fast programs that can be freely scheduled. Both test sets guarantee the same fault
coverage on the target units.

7.4 Conclusions

This chapter presented a fully automatic methodology able to transform a test set
originally developed for manufacturing test in a test set suitable for on-line test.
While the new test set is likely to contain a larger number of programs, these pro-
grams are shorter and completely independent (i.e., they can be executed at different
times and do not rely each on the results of the previous ones), and thus perfectly fit
a non-concurrent on-line test scheme.

7.4 Conclusions 85

The transformation of the test set is performed in two phases: first the original
programs are simulated with a special instruction-set simulator that for each instruc-
tion generates a spore, i.e., a small program able to fully replicate the processor be-
havior. Second, an evolutionary algorithm is used to collapse the set of spores into
a test set.

The proposed approach is able to guarantee the same fault coverage on all func-
tional units. The experimental evaluation clearly shows the potentiality of the ap-
proach. Additionally, the time required to execute the final test set is lower than the
one for the initial test set, leading to an improvement in the fault latency.

The approach may be extended to pipelined architectures: given a pipeline on N
stages, each spore must load the required status and then execute the N-1 instruc-
tions preceding the target one. As a result, the target instruction should be executed
exactly in the same condition of the original one. Authors are currently extending
the approach to deal with such microprocessors.

Part III
Test Generation Problems

Chapter 8
Uncovering Path Delay Faults with
Multi-Objective EAs

This chapter presents an innovative approach for the generation of test programs de-
tecting path-delay faults in microprocessors. The proposed method takes advantage
of the multiobjective implementation of a previously devised evolutionary algorithm
and exploits both gate- and RT-level descriptions of the processor: the former is used
to build Binary Decision Diagrams (BDDs) for deriving fault excitation conditions;
the latter is used for the automatic generation of test programs able to excite and
propagate fault effects, based on a fast RTL simulation. Experiments on an 8-bit
microcontroller show that the proposed method is able to generate suitable test pro-
grams more efficiently compared to existing approaches. Preliminary results have
been published in [10].

8.1 Introduction

In order to guarantee product quality for today’s microprocessor cores, traditional
stuck-at tests are no longer sufficient and more complex fault models have to be
considered when devising test strategies. At-speed delay fault testing, in particular,
has been widely addressed by academia and is becoming common practice in indus-
try [100][28][84]. Among all existing delay fault models, the path-delay fault model
is considered the most accurate since it can detect both lumped and distributed de-
lays [28][91], but also the most challenging, due to the enormous number of faults
(paths). Delay test has been approached adopting different strategies, purely relying
on an external tester or applying structural self-testing methodologies such as Built-
In Self-Test (BIST), or exploiting the execution of suitable self-test programs. The
latter strategy is usually referred to as Software-Based Self-Test (SBST) and is gen-
erally more affordable, as it exploits the processor instructions in the normal mode
of operation; it can be used in stand-alone modules as well as when the processors
are deeply embedded in a System on Chip (SoC) and their accessibility is reduced.

Regarding test generation addressing path-delay faults, several techniques exist
for enhanced full-scan circuits, based on either structural ATPG tools [62][150] or

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 89–99.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

90 8 Uncovering Path Delay Faults with Multi-Objective EAs

function-based tools using Binary Decision Diagrams (BDDs) [13][108][21] and
Boolean-SAT [30][162] implementations. Some work on software-based test gener-
ation has been done exploiting deterministic techniques [141][94][67]. Evolutionary
algorithms have been successfully exploited for the automatic generation of program
sets for verification, test [43], and diagnosis [135] for processors described at differ-
ent levels of abstraction. In most cases, the evolutionary algorithm faces the test set
generation as a single-objective optimization problem, e.g., resorting to a multi-run
strategy.

However, hardware optimization techniques belong to a real-world classification
of problems that usually require the simultaneous optimization of many objectives.
Therefore, hardware optimization problems could be addressed resorting to multiob-
jective optimizers. Multiobjective Evolutionary Algorithms (MOEAs) were initially
introduced in 1985, by the implementation of the first evolutionary algorithm deal-
ing with multiobjective optimization problems [138]. Roughly speaking, MOEAs
produce a set of potentially optimal solutions, rather than an unique solution, that
represents a subset of the Pareto optimal set.

This paper presents an innovative approach for the automatic generation of
pathdelay functional test programs for microprocessors exploiting both gate- and
RT-level descriptions. The former is used to select the set of critical paths to be con-
sidered and to obtain path excitation requirements based on BDD analysis; the latter
is used for effectively identifying the test programs able to reproduce the conditions
activating the targeted fault (excitation), and to make the fault effect(s) visible on
the processor outputs (propagation). For automatically generating test programs,
the new implementation of an evolutionary algorithm addressing multiobjective op-
timization is employed. The main advantage introduced is the improvement in the
flow performances compared to other approaches based only on gate-level simula-
tion [11].

The organization of this chapter is as follows: Section 2 provides the needed
background; Section 3 details the proposed methodology; Section 4 presents the
case of study. Finally, in Section 5 some conclusions are drawn.

8.2 Background

8.2.1 Software-Based Path Delay Testing

A path-delay fault occurs when a defect in a circuit causes the cumulative delay of a
combinational path to exceed some specified duration [91][23]. The combinational
path begins at a primary input or a clocked flip-flop (startpoint), includes a con-
nected chain of gates, and ends at a primary output or a clocked flip-flop (endpoint)
(Fig. 1). The specified time duration can be the duration of the clock period (or
phase), or the vector period. The propagation delay is the time that an event (i.e., a
transition) takes to traverse the path. For each combinational path in a circuit, there

8.2 Background 91

are two path-delay faults, corresponding to rising and falling transitions on the start-
point. Signals that compose the path and feed the traversed gates are called on-path
signals; signals that are not on the path but feed the gates on the path are called
off-path signals. In order to examine the timing operation of a circuit we should ex-
amine signal transitions: delay tests consist of vector pairs (V1 → V2) to be applied
on the inputs feeding the path (a, b, c, d and e in Figure 8.2.1), so that an input
transition on the startpoint propagates to the endpoint.

Fig. 8.1 Example of a path-delay fault: on-path signals indicated by thick lines (a, f , h, k);
b, g and i are off-path signals.

Path-delay test application can be performed resorting to suitable scan-chains
or by employing functional techniques. In scan-based test methodologies, the pat-
terns are serially loaded into the scan chains (at reduced speed if necessary). Conse-
quently, the two test vectors are applied in succession with a defined timing and the
test results are shifted out through the scan chains, thus achieving full observability.
In the case of Software-Based path-delay testing the test vectors V1 → V2 reach the
targeted path inputs during the normal at-speed circuit operations, hence depending
on the sequence of data feed (instructions in case of processors) and allowing con-
tinuous application of test vectors. When targeting microprocessors, a test program
must be made to ensure that the excitement conditions of the targeted path-delay
fault are met in a consecutive pair of clock cycles, and that the fault effect(s) propa-
gate to suitable observable points (e.g., output ports).

If a test can be applied in the normal operations of a circuit, we refer to it as a
functional test. A path is functionally testable if there exists a functional test for that
path. Otherwise, the path is functionally untestable [94]. Functionally untestable
faults never determine the performance in normal operations of the circuit, and if
detected during testing may lead to overkill (i.e., discarding functioning chips). On
the other hand, defects on functional testable paths may degrade the circuit per-
formance when path-delay faults occur. Software-based testing concentrates on the
latter class, intrinsically avoiding over-testing redundant paths.

8.2.2 Exploiting Gate- and RT Level Descriptions for Path-Delay
Testing

Commonly adopted solutions for path-delay test generation in sequential circuits
are mostly based on the analysis of gate-level descriptions. Addressing a fault list

92 8 Uncovering Path Delay Faults with Multi-Objective EAs

provided by timing analysis tools, test patterns for path excitation are calculated. At
this phase it is seldom possible to assess whether the faults are functionally testable.
The test patterns correspond to two consecutive vectors to be applied at speed to the
inputs of the combinational circuit partition including the selected path. From this
point forward, they will be referred as V1 and V2.

When dealing with functional test (in the absence of scan structures) V1 and V2
are functionally justifiable iff they can be consecutively reproduced on the mem-
ory elements and primary inputs feeding the path by a sequence of instructions and
data. In this case, the processor RT-level description may be employed to establish
whether an instruction sequence is able to apply V1 and V2 to the selected combi-
national part. Since the observation of flip-flop values is required, only, it is possible
to relate each considered flip-flop in the gate-level description to a signal in the RTL
one.

8.2.3 BDDs for Structural Path Delay Fault Tests

Rather than devising a specific couple of vectors V1 and V2 that excite a specific
fault, through BDD analysis of the gate-level netlist it is possible to derive a wider
set of requirements for the combinational subcircuit inputs to excite the path it
contains.

A reduced ordered Binary Decision Diagram (referred to as a BDD here) is a
canonical graphical representation of a Boolean function [21]. BDDs have been
widely used in test generation, for various fault models. For the case of path-
delay faults in enhanced scan designs [13][108][116], given one (or more) fault(s)
a Boolean function can be formulated whose solution space is all the possible pairs
of test vectors that can detect the fault(s). This function is derived based on all the
necessary values on on-path and off-path signals of the path-delay fault(s). The vari-
ables of the function correspond to the primary inputs of the circuit. When such a
function is given by a BDD, we have a very compact (due to the suppression of
variables with the x value) and implicit (non-enumerative) representation of the en-
tire solution space. This is of high importance for several issues in test generation:
untestable faults are very easily determined; hard-to-detect faults, that require a lot
of time in structural-based ATPG tools, are also efficiently handled (BDD is very
small since it contains a small number of cubes); fault simulation, for fault dropping,
can be trivially performed on the BDD and not on the gate-level netlist. Moreover,
if an input pattern is not a valid test, the BDD can be used to quickly determine how
far the input pattern is from becoming a valid test (% of bits that must be changed
in the input pattern). The latter is of particular importance in the proposed method-
ology, since it can quickly and accurately guide the evolutionary engine to generate
the necessary path-delay fault tests.

8.3 Proposed Approach 93

8.2.4 Basic Concepts on MOEAs

Multiobjective evolutionary algorithms, as their single-objective counterpart, are
population-based searching algorithms that mimic natural evolution. However, dif-
ferently from single-objective algorithms, MOEAs exploit the population of indi-
viduals to simultaneously evolve solutions to multiple and usually conflicting goals
[95][77]. The expected result from a MOEA is a set of trade-off individuals called
nondominated solutions, Pareto-optimal solutions, or Pareto optimal set. For each
individual into the population, a fitness vector fi = (x1,x2, ...,xn) represents the fig-
ures of merit obtained by the individual regarding to the n pursued objectives.

Pareto optimality is defined using the concepts of domination: given two individ-
uals A and B, A dominates B iff A is at least as good as B in all objectives, and better
in at least one. A is equivalent to B iff results on A and B are identical in all objec-
tives. A covers B if A either dominates or is equivalent to B. Similarly, given two
sets of individuals Y and Z, Y dominates Z if every individual of Z is dominated by
some individual of Y . Similar definitions relative to sets of individuals can be made
for equivalence and coverage concepts. Thus, the Pareto optimal set is the set of all
Pareto optimal individuals, and the corresponding set of fitness vectors is the Pareto
optimal front. Individuals belonging to the Pareto optimal set are equally important.
Indeed, for the individuals belonging to the Pareto optimal set, no improvement is
possible in any objective without harming at least one of the other objectives.

Different strategies have been proposed in order to properly sort individuals be-
longing to the population; for example: aggregation-based approaches, lexicograph-
ical ordering, target-vector approaches, criterion-based approaches, and Pareto-
based approaches. Some of them do not incorporate directly the concept of opti-
mality outlined before, whereas others not only exploit it but include additional
mechanisms to guarantee the diversity of the population. One of the most popular
strategies used by MOEAs is based on a ranking scheme that divides the whole pop-
ulation on different sets, in such a way that each set contains only non-dominated in-
dividuals, and lower ranked sets are dominated by higher ones [95]. It is interesting
to highlight that in a successful experiment the highest set contains the individuals
belonging to the Pareto optimal set.

8.3 Proposed Approach

The proposed approach targets the automatic generation of test programs (i.e., in-
struction sequences) for processors addressing the path-delay fault model. This low-
cost generation procedure exploits both gate- and RT-level descriptions.

Four main steps have been devised to approach the generation process:

Path list grouping A preliminary step, aimed at reducing the cost of the following
generation step. The path list provided by timing analysis tools is analyzed and
a set of shorter fault lists is produced, each one corresponding to a coherent set

94 8 Uncovering Path Delay Faults with Multi-Objective EAs

of critical paths in the processor netlist, i.e., a set of paths related to the same
processor elements. As a matter of fact, excitation conditions for faults belonging
to the same structurally coherent fault group are likely to be stressed by the same
instructions. Details on this topic can be found in [11].

Circuit subdivision and BDD analysis Given the gate-level netlist and the ad-
dressed path list, for each path a combinational subcircuit (or chunk) is auto-
matically extracted, which contains the path and, therefore, all the information
needed for the analysis of its excitation conditions. A BDD is then derived that
contains all the possible input vectors that bring necessary excitation values at
the inputs of the path under consideration. Structurally untestable faults are re-
moved in this phase. The BDD representation will be used in the sequential fault
excitation step for evaluating the ability of each program to excite specific faults:
the fitness function depends on the minimum hamming distance of the vectors
applied from the set of vectors that can excite the path. It can be computed opti-
mally and quickly when the set of vectors is represented by a BDD.

Sequential fault excitation This step aims at generating the test programs that ef-
fectively excite the considered path-delay faults. A MOEA is exploited to au-
tomatically generate instruction sequences, whose fitness is evaluated through
RT-level simulation, avoiding highly expensive gate-level simulations, and rely-
ing on the already available BDDs. This step will be analyzed in detail.

Sequential Error propagation This step targets error propagation to the processor
output ports and uses an evolutionary algorithm implementing a single-objective
strategy. For this task, during the RTL simulation of the test program execution,
the values of the flip-flops feeding the investigated path are analyzed at each
clock cycle in order to check for the excitation conditions (both on on-path and
off-path); whenever they are met, a faulty value is forced on the path endpoint
for one clock cycle (fault injection, [11]). From that point in time, the state of all
flip-flops is saved at each clock cycle and compared to the original (fault-free)
simulation: if the simulation of the already generated program on the sabotaged
RTL introduces a change on the processor output ports at any time following the
fault injection, the test program achieves excitation and observation of the ad-
dressed fault and is complete. Otherwise, the number of flip-flops with different
contents with respect to the fault-free simulation is used as a fitness function to
be maximized, until the fault effects are propagated to the outputs.

The purpose of the sequential fault excitation phase (Figure 8.3) is the generation
of suitable instruction sequences that excite the path-delay faults in coherent lists.
This process is based on the usage of a new implementation of a well known evo-
lutionary algorithm (EA), called μGP, able to automatically generate suitable test
programs.

Roughly speaking, an EA is a population-based optimizer that imitates the nat-
ural process of biological evolution. Following this perspective, a test program is
an individual and the tool handles a population of individuals (i.e., a collection of
assembly programs). The initial population is generated randomly, then iteratively
refined mimicking the Darwinian Theory: new individuals are generated either by
mutation (an individual is slightly modified) or by recombination (two or more

8.3 Proposed Approach 95

Fig. 8.2 Sequential fault excitation phase.

individuals are mixed in some way); the best performing individuals are selected
for survival. The process is blocked after a certain number of steps, called genera-
tions, or when a steady state is reached. The best individual is eventually provided
as output.

Differently from the standard approach described in [100], the evolutionary tool
implements a MOEA [95] able to deal with several path-delay faults at a time. In
this case the main goal of the evolutionary process is not to obtain a single best
program but a set of best programs able to correctly excite the targeted faults. The
main idea behind the MOEA implementation of μGP is to simultaneously optimize
a complete functionally coherent group. As mentioned before, faults belonging to
the same structurally coherent fault group are probably excited by similar test pro-
grams. Thus, the MOEA will evolve a population of individuals working on a spe-
cific portion of the processor core rather than a single program focusing on a unique
fault.

μGP bases its evolutionary process on a constrained tagged graph, which is a
directed graph whose elements may own one or more tags, and that in addition
has to respect a set of constraints. The constraints may affect both the information
contained in the graph elements and its structure. Graphs are initially generated in a
random fashion; subsequently, they may be modified by genetic operators (e.g., the
classical mutation and recombination, but also by different operators, as required;
the tool architecture has been specially thought for easy addition of new genetic
operators).

The purpose of the constraints is to limit the possible productions of the evolu-
tionary tool, and also provide them with semantic value. The constraints are pro-
vided through a user-defined library that provides the genotype-phenotype mapping
for the generated individuals, describes their possible structure and defines which
values the existing parameters (if any) can take. Constraint definition is left to the
user to increase the generality of the tool; it is flexible enough to allow the defini-
tion of complex entities to easily describe a wide range of processor instruction sets
architectures (ISA).

The evolutionary core reads the constraint library in order to adequately gen-
erate assembly programs. For each generated program, a vector of fitness values

96 8 Uncovering Path Delay Faults with Multi-Objective EAs

are computed by the external evaluator considering the targeted faults provided by
the functionally coherent fault list. Differently from the classical approach, the se-
quence of values in the fitness vector does not represent a priority list but each of
them describes the figure of merit obtained by the individual regarding to a specific
fault.

The task of the μGP core is to progressively improve the population of individ-
uals or test programs. Thus, the population is ordered following a ranking strategy
based on the Pareto-dominance principles described before. Choice of the individ-
uals for reproduction is performed by means of a tournament selection based on
the ranking position. However, since individuals belonging to the same group are
by definition non-dominated ones, the selection is performed resorting to the delta
entropy value of the individual [43]. The purpose of the entropy value is not to rank
a population in absolute terms, but to detect whether the amount of genetic diversity
in a set of individuals is increasing or decreasing. The tournament size £n is also
endogenous. The population size μ is set at the beginning of a run, and the tool
employs a variation on the plus (μ + λ) strategy: a configurable number λ of ge-
netic operators are applied on the population. Since different operators may produce
different number of offspring, the number of individuals added to the population is
variable; the activation probability and strength for every operator is an endogenous
parameter. All new unique individuals are then evaluated, and the population result-
ing from the union of old and new individuals is ordered resorting to the ranking
approach described previously. Clearly, if a new individual dominates the complete
population, a new individuals set is created and it is placed at the top of the rank list.
Finally, only the first μ individuals are kept.

In order to customize this architecture to the specific goal we address here, we
use the BDD-based fitness function described above, which is effective in guiding
the algorithm towards the solution, and can be computed in reasonable times.

In this case, the evaluation of the generated test programs (or instruction se-
quences) is performed on the RT-level microprocessor core description by means
of a logic simulation: during the simulation, at each clock cycle the vectors feeding
the path are passed to the fitness function, and the maximum value obtained during
the program run identifies the program’s fitness.

8.4 Experimental Data

The proposed flow has been preliminary evaluated on a description of an 8051 mi-
crocontroller, addressing non-robust path-delay testing. The processor reads the test
programs from an external memory and its output ports are directly accessible.

The critical timing analysis of the synthesized architecture has been performed
utilizing the Synopsys PrimeTime suite ver. X-2005.12. The 92,430 worst paths
were selected. This data is related to an in-house developed library. For each path,
a combinational subcircuit is automatically extracted from the circuit and the BDD
representation is generated and used to remove structurally untestable faults.

8.4 Experimental Data 97

The set of structurally testable paths contains 10,394 faults. They have been auto-
matically divided in classes depending on their structural coherence, using a simple
tool based on set covering principles, and obtaining 96 coherent fault lists, each one
including an average of about 108 faults.

The sequential fault excitation step has been performed resorting to the new
MOEA implementation of μGP [100], which also includes a new operator called
local-scan mutation, whose purpose is the generation of a reduced set of individuals
in the neighborhood of the selected parent by performing slight mutations to only
one determined parameter. In this case the fitness evaluator comprised a commer-
cial logic simulator (Mentor Graphics ModelSim v.6.2h) and an ad-hoc C-language
software monitor implemented in the simulator environment. The evolutionary ex-
periment has been set up with the aim of performing a multi-objective optimization.
The initial population is composed of 300 random individuals; the population size is
100 and at each generation 80 genetic operators are applied. For each of the coherent
fault lists, the evolutionary experiment was set up in the following manner:

1. the first 20 faults in the list are initially considered (in order not to slow exces-
sively the simulation, not all faults in the list are addressed together) and the EA
is started, evaluating the excitation fitness (20 paths implies 20 fitness values);

2. whenever a test program fitness hits 100% for one of the inspected faults, that
fault is removed from the experiment and replaced from a new one from the
same list (fault dropping strategy). The obtained test program is saved;

3. if the algorithm does not improve the fitness for a set number of generations (10
in this case), the 20 paths are replaced with the following 20 in the list.

The process continues until all paths in the coherent fault list have been consid-
ered. This phase took about 110 hours for the whole fault list.

The error propagation step took about 35 hours. The fitness has been evaluated
resorting to the ModelSim simulator running a script performing fault injection and
to an ad-hoc tool elaborating the simulation dump. The majority of the test program
set achieves test observability without modification; for the ones whose fault effects
are still not propagated, the EA modifies the original test program maximizing the
observability fitness, making sure that the excitation conditions are still met.

The obtained coverage values (Table 8.1) are comparable to the ones obtained
using other approaches [94][11]. It must be noted that not-covered faults include
functionally untestable ones, which do not determine the circuit performances and
cannot be tested functionally. The required time computation compares favorably
with the time required in [11]. The experiments run on an Intel E6400 @2.13 GHz.

In order to detail the behavior of the approach, the following pictures describe the
evolution of an experiment targeting one coherent fault list that contains 84 faults.
Figure 8.4 shows the first 300 steps of the evolutionary process: the continuous dark
line represents the average of the 20 considered fitness values (mean value on the
population), while vertical bars indicate the maximum fitness obtained at each step.
For this coherent fault list, the final coverage is 50%. It is important to notice that
whenever excitation is found for a fault (e.g., step 28), the average fitness falls down
due to the fault dropping strategy. Similarly, this average value undergoes a big

98 8 Uncovering Path Delay Faults with Multi-Objective EAs

depression each time the steady state is reached and all targeted faults are replaced
(steps 68, 118 and 189). Nevertheless, the average fitness tends to increase along the
experiment. Figure 8.4 shows the first 50 steps of the same experiment; in this case,
5 out of the 20 evaluated fitness values are shown (average values on the population).
Fitness 5 and 7 show that when a 100% is found the fitness value decreases, due to
the substitution of the path-delay fault under inspection; however, the other fitness
values seem not to be considerably affected by the replacement mechanism. It is
also interesting to note that fitness 9 is continuously increased without finding a
100%. Finally, fitness 0 and 2 describe a very similar trajectory during the first 50

Table 8.1 Excitation and propagation figures on the case study.

of faults
Complete path set 92,430
Structurally Justified paths 10,394
Excited path-delay faults 2,731
Propagated faults (before error prop.) 1,536
Propagated faults (final) 2,489

Fig. 8.3 Fitness behavior on a coherent path list, average and maximum values.

Fig. 8.4 Trajectories of 5 fitness values during the first 50 steps.

8.5 Conclusions 99

step, thus demonstrating the advantage of evolving coherent fault lists in the same
experiment.

8.5 Conclusions

We presented an innovative approach to fully-automatic generation of path-delay
test programs for microprocessors exploiting a MOEA.

Preliminary experimental results show that this methodology allows reducing the
test generation time, by concentrating on suitably classified structurally coherent
fault lists and avoiding computation-intensive gate-level simulations. The employed
evolutionary algorithm takes advantage of the introduced BDD-based fitness eval-
uation functions for directing the test programs generation flow towards optimal
solutions. The obtained coverage results are comparable to manual/deterministic
approaches in literature.

Chapter 9
Software-Based Self Testing of System
Peripherals

Traditional test generation methodologies for peripheral cores are performed by a
skilled test engineer, leading to long generation times. In this paper a test generation
methodology based on an evolutionary tool which exploits high level metrics is
presented. To strengthen the correlation between high-level coverage and the gate-
level fault coverage, in the case of peripheral cores, the FSMs embedded in the
system are identified and then dynamically extracted via simulation, while transition
coverage is used as a measure of how much the system is exercised. The results
obtained by the evolutionary tool outperform those obtained by a skilled engineer
on the same benchmark. Preliminary results have been published in [127].

9.1 Introduction

A system-on-chip (SoC) can integrate into a single device one or more proces-
sor cores with standard peripheral memory and application-oriented logic modules.
This high integration of many components leads to an increased complexity of the
test process since it decreases the accessibility of each functional module into the
chip. Thus, the ever increasing usage of such devices demands for cheap testing
methodologies.

The Software-based Self-test (SBST), whereby a program is executed on the pro-
cessor core to extract information about the functioning of the processor or other
SoC modules and provide it to the external test equipment [87] meets this demands
since: it allows cheap at-speed testing of the SoC; it is relatively fast and flexible; it
has very limited, if any, requirements in terms of additional hardware for the test; it
is applicable even when the structure of a core is not known, or can not be modified.
Even though SBST is currently being increasingly employed, the real challenge of
software-based testing techniques is to generate effective test programs.

Many SBST techniques have been developed for the test of microprocessor cores;
traditional methodologies resort to functional approaches based on exciting specific
functions and resources of the processor [151]. New techniques, instead, differ on

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 101–110.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

102 9 Software-Based Self Testing of System Peripherals

the basis of the kind of description they start from: in some cases only the infor-
mation coming from the processor functional descriptions are required [41]; other
simulation-based approaches require a pre-synthesis RT-level description [33] or the
gate-level description [39].

Simulation-based strategies are heavily time consuming, thus, the use of RT-level
descriptions to drive the generation of test sets is preferable to allow much faster
evaluation. Relying on high-level models not only helps the user of the SoC to per-
form more simulations increasing the confidence in the generated tests, but is also of
value to the manufacturer allowing early generation of a significant part of the final
test set. Whereas the correlation between RT-level code coverage metrics (CCM)
and gate-level fault coverage is not guaranteed in the general case, several RT-level
based methodologies maximize the CCMs to obtain a good degree of confidence on
the quality of the generated test set.

This paper describes the application of an evolutionary algorithm in test set gen-
eration process for different types of peripheral cores embedded in a SoC. Further-
more the generation process is fully automated and requires a very low human effort.
The generation process is driven by the transition coverage on the peripheral’s finite
state machine (FSM) and by the RT-level Code Coverage Metrics (CCMs).

Exploiting the correlation between high-level and low-level metrics, during the
generation process only logic simulation is performed allowing the reduction of
the generation time. The results are finally validated running a gate-level fault
simulation.

Results show that the combination of the FSM transition coverage and CCMs can
effectively guide the test block generation and a high fault coverage can be achieved.
Moreover, we show that the new approach makes the test generation process more
robust, improving the relationship between high- and low-level metrics.

The rest of the chapter is organized as follows: section 2 recalls some background
concepts in peripheral testing; section 3 outlines the methodology adopted for the
generation of test sets and details the evolutionary tool. Section 4 introduces the
experimental setup, describing the case study and presents the experimental results.
Finally, section 5 draws some conclusions.

9.2 Peripheral Testing

9.2.1 Basics

A typical SoC is composed of a microprocessor core, some peripheral components,
memory modules, and possibly customized cores. An external ATE is supposed to
be available for test application: its purpose is to load a test program in the memory,
start execution, and interact with the peripherals applying data to the input ports and
collecting values from the outputs while the program is running.

9.2 Peripheral Testing 103

To make effective use of the test setup both the test programs and the peripheral
input/output data have to be specified; therefore, a complete set for testing peripheral
cores is composed of some test blocks [17], defined as basic test units composed of
two parts: a configuration and a functional part. The configuration part includes
a program fragment that defines the configuration modes used by the peripheral,
and the functional part contains one or more program fragments that exercise the
peripheral functionalities as well as the data set or stimuli set provided/read by the
ATE.

Researchers have long sought high-level methodologies to generate high qual-
ity test sets; this is possible only if a correlation between high-level metrics and
gatelevel fault coverage exists. Differently from the general case, where the correla-
tion is vague, in the case of peripheral cores this correlation actually exists. It is not
complete but, as experimentally shown in [15], suitable for test set generation.

Therefore, an automatic methodology for the generation of test sets for peripheral
cores that uses a high-level model of the peripheral in the generation phase is an
interesting solution to overcome new testing issues on SoCs.

As mentioned in [17], traditional code coverage metrics suitable for guiding the
development of the test sets for peripheral cores are: Statement coverage (SC),
Branch coverage (BC), Condition coverage (CC), Expression coverage (EC), Tog-
gle coverage (TC). Maximizing all the coverage metrics allows to better exercise
the peripheral core. It is not possible to accept a single coverage metric as the most
reliable and complete one [98]; thus different metrics must be exploited in order to
guarantee better performance of the test sets [144].

9.2.2 Previous Works

An attempt to provide effective solutions for peripheral test set generation is pre-
sented in [17]; the process is performed by hand and mainly relies on the experi-
ence of a test engineer, who maximizes sequentially the various coverage metrics,
generating one or more test blocks for every metric. This process is repeated until
sufficiently high coverage values are obtained for all the chosen metrics. In [80] a
pseudo-exhaustive approach to generate functional programs for peripheral testing
was presented. The proposed method generates a functional program for each pos-
sible operation mode of the peripheral core in order to generate control sequences
which would place the peripheral in all possible functional modes. The pseudo-
exhaustive approach produces a large number of functional programs, since one has
to be written for every operation mode.

In [6] the authors describe a generic and systematic flow of SBST application on
two communication peripheral cores. The methodology achieves high fault coverage
but needs a deep knowledge of the peripheral core leading to long test development
time with a high human effort. In [15] the peripheral test set generation has been
automated using an evolutionary algorithm, called μGP.

104 9 Software-Based Self Testing of System Peripherals

The test block generation was supported by the construction of couples of tem-
plates: one for program and the other for data generation. The evolutionary algo-
rithm is used to optimize parameter values, leaving the structure of the test block
fixed. The obtained results compare favorably with respect to the manually gener-
ated [17].

In [16] an improved version of the evolutionary algorithm has been described,
able to optimize both the structure and the parameters. The same results as [15] are
obtained with no need of the rigid templates used previously, reducing significantly
the required generation time.

9.3 Proposed Approach

As stated above, traditional CCMs extracted at the RT-level do not, in general, show
a tight correlation with gate-level fault coverage. Furthermore, the RT-level descrip-
tions use, especially in the case of complex cores, many modules that interact among
each other in order to perform the core functionalities. The traditional CCMs do not
consider these interactions and only aim at maximizing the coverage metrics in each
module. After the synthesis process, at the gate level, the distinction between mod-
ules of a core is less clear and therefore it is important to consider the interactions
to enforce a correlation between high-level metrics and low level ones.

One way to model a system is to represent it with a FSM. Coverage of all the
possible transitions in the machine ensures thoroughly exercising the system func-
tions. Additionally, the use of FSM transition coverage has the additional advantage
that it makes the interactions between functional modules in the peripheral explicit.
Figure 9.3 sketches the proposed methodology.

The evolutionary approach generates test blocks starting from information about
the peripheral core and the processor assembly syntax only. Every new test block
generated is evaluated using a high-level simulator. The evaluation stage assigns a
fitness to every individual. The procedure ends when a time limit is elapsed or when
a steady state is detected, that is, a predefined number of test blocks are generated
without any improvement of the coverage metrics. At the end of the evolutionary
run a single test block is provided as output.

The sketched procedure is iteratively repeated to generate a complete test set.
In the steps following the first one, the evaluation phase is modified in order to
only take into account the additional coverage provided by the new test blocks. The
rationale for this methodology is that in general it is not possible to completely solve
the problem with one single test block. The end result of the process is a set of test
blocks that cumulatively maximize the targeted coverage metrics.

9.3 Proposed Approach 105

Fig. 9.1 Evolutionary generation loop.

9.3.1 Evolutionary Tool

For the automatic generation of the test blocks an evolutionary tool named ı̀GP3
[146] has been employed. μGP is a general-purpose approach to evolutionary
computation, derived from a previous version specifically aimed at test program
generation.

The tool is developed following the rules of software engineering and was imple-
mented in C++. All input/output, except for the individuals to evaluate, is performed
using XML with XSLT. The use of XML with XSLT for all input and output allows
the use of standard tools, such as browsers, for inspection of the constraint library,
the populations and the configuration options. The current version of the μGP com-
prises about 50,000 lines of C++ code, 113 classes, 149 header files and 170 C++
files.

Evolution Unit

μGP bases its evolutionary process on the concept of constrained tagged graph, that
is a directed graph every element of which may own one or more tags, and that
in addition has to respect a set of constraints. A tag is a name-value pair whose
purpose is to convey additional information about the element to which it belongs,
such as its name. Tags are used to add semantic information to graphs, augmenting
the nodes with a number of parameters, and also to uniquely identify each element

106 9 Software-Based Self Testing of System Peripherals

during the evolution. The constraints may affect both the information contained in
the graph elements and its structure. Graphs are initially generated in a random fash-
ion; subsequently, they may be modified by genetic operators, such as the classical
mutation and recombination, but also by different operators, as required by the spe-
cific application. The tool architecture has been specially thought for easy addition
of new genetic operators as needed by the application. The activation probability
and strength for every operator is an endogenous parameter.

The genotype of every individual is described by one or more constrained tagged
graphs, each of which is composed by one or more sections. Sections allow to de-
fine a global structure for the individuals that closely follows the structure of any
candidate solution for the problem.

Constraints

The purpose of the constraints is to limit the possible productions of the evolution-
ary tool, and also provide them with semantic value. The constraints are provided
through a user-defined library that provides the genotype-phenotypemapping for the
generated individuals, describes their possible structure and to define which values
the existing parameters (if any) can take.

Constraint definition is left to the user to increase the generality of the tool. The
constraints are divided in sections, every section of the constraints matching a cor-
responding section in the individuals. Every section may also be composed of sub-
sections and, finally, the subsections are composed of macros.

Constraint definition is flexible enough to allow the definition of complex enti-
ties, such as the test blocks described above, as individuals. Different sections in the
constraints, and correspondingly in the individual, can map to different entities. In
this specific case the constraints define three sections: a program configuration part,
a program execution part and a data part or stimuli set. The first two are composed
of assembly code, the third is written as part of a VHDL testbench. Though syntac-
tically different, the three parts are interdependent in order to obtain good solutions.
Fitness. Individual fitnesses are computed by means of an external evaluator: this
may be any program able to provide the evolutionary core with proper feedback.

The fitness of an individual is represented by a sequence of floating point num-
bers optionally followed by a comment string. This is currently used in a prioritized
fashion: one fitness A is considered greater than another fitness B if the n-th com-
ponent of A is greater than the n-th component of B and all previous components
(if any) are equal; if all components are equal then the two fitnesses are considered
equal.

Evolutionary Scheme

The evolutionary tool is currently configured to cultivate all individuals in a single
panmictic population, although it can be configured to use an island model. The

9.3 Proposed Approach 107

population is ordered by fitness. Choice of the individuals for reproduction is per-
formed by means of a tournament selection; the tournament size τ is also endoge-
nous. The population size ı̀ is set at the beginning of a run, and the tool employs a
variation on the plus (μ +λ) strategy: a configurable number λ of genetic opera-
tors are applied on the population. Since different operators may produce different
number of offspring the number of individuals added to the population is variable.
All new unique individuals are then evaluated, and the population resulting from the
union of old and new individuals is sorted by decreasing fitness. Finally, only the
first μ individuals are kept.

To promote diversity, the individuals genetically equal to already existing ones,
called clones, may have their fitness scaled by a fixed value in the range [0.0,1.0].
The possible termination conditions for the evolutionary run are: a target fitness
value is achieved by the best individual; no fitness increase is registered for a prede-
fined number of generations; a maximum number of generations is reached.

At the end of every generation the internal state of the algorithm is saved in a
XML file for subsequent analysis and for providing a minimal tolerance to system
crashes.

9.3.2 Evaluator

The proposed approach is based on modeling the entire system as a FSM which is
dynamically constructed during the test generation process. Thus, differently from
other approaches, the FSM extraction is fully automated, and requires minimum
human effort: the approach only requires the designer to identify the state registers
in the RT-level code; every global state in the peripheral represents a possible con-
figuration of values of all the state registers. Thus, whenever a state register in any
module changes its value, also the global state of the peripheral is affected. Given
the dynamic nature of the FSM construction, it is not possible to assume known the
maximum number of reachable states, not to mention the possible transitions. For
this reason it is impossible to determine the transition coverage with respect to the
entire FSM.

As experimentally demonstrated [98], maximizing more than one metric usually
leads to better quality tests. Thereby, the simulation-based method proposed here
exploits the FSM transition coverage, that enforce a maximum interaction between
peripheral modules, and all the available CCMs to thoroughly exercise the periph-
eral functionalities.

The implemented evaluator collects the output of the simulation and dynamically
explores the FSM; it assesses the quality of the test block considering the transition
coverage on the FSM and the CCMs.

The fitness fed back to the evolutionary tool is composed of many parts: the FSM
transition coverage followed by all the others CCMs (SC, BC, CC, EC, TC). As we
mentioned before the metrics are considered in order of importance. In this way it is

108 9 Software-Based Self Testing of System Peripherals

possible, during the generation process, to select more thoroughly those test blocks
that are able to better excite the peripheral.

9.4 Experimental Analysis

9.4.1 Test Case

The benchmark is a purposely designed SoC which includes a Motorola 6809 micro-
processor, a Universal Asynchronous Receive and Transmit (UART), a Peripheral
Interface Adapter (PIA), a Video display unit (VDU) and a RAM memory core. The
system derives from one available on an open source site [112]. The methodology
is used to test the UART, the PIA and the VDU in the targeted SoC.

The peripherals are described at RT-level in VHDL code and are composed
of different modules. The SoC was synthesized using a generic home-developed
library.

Table 9.1 Implementation characteristics

Description Measure PIA VDU UART

RT-level

statements 149 153 383
branches 134 66 182
condition 75 24 73
expression 0 9 54

toggle 77 199 203

Gate level
Gates 1,016 1,321 2,247
Faults 1,938 2334 4,054

Table 9.1 shows details of the targeted peripherals, including information at high
and low level. Rows labeled with RT-level present CCM information while the re-
maining rows illustrate the number of gates counted on the synthesized devices and
the number of collapsed faults for the stuck-at model, respectively.

At the end of the generation process, some gate-level fault simulation were per-
formed only to validate the proposed methodology; the gate-level fault coverage
figures reported in the following sections target the single stuck-at fault model.

9.4.2 Experimental Results

All the reported experiments have been performed on a PC with an Athlon XP3000
processor, 1GB of RAM, running Linux.

9.4 Experimental Analysis 109

The algorithm parameters for the evolutionary experiments are the same both
when targeting only the CCMs, and when the number of transitions in the FSM is
also taken into account: for the PIA and the VDU experiments, μ = 50 and λ = 70;
and as the UART is more complex than the PIA the evolutionary parameters were
set to perform a lower number of simulations: μ was set to 30 and λ to 40.

In order to provide the reader with a reference value, we recall that the fault cov-
erage obtained by the manual approach presented in [17] is 80.96% for the UART
and 89.78% for the PIA.

Table 9.2 summarizes the results obtained for the targeted peripherals, reporting
the number of FSM transitions covered, the high-level CCMs and the stuck-at fault
coverage (FC) in percentage. The reader should note that the value of traditional
CCMs are expressed as absolute values (instead of percentages).

Table 9.2 Results for considered peripherals

PIA VDU UART
FSM Transition 115 191,022 142

Statement 149 153 383
Branch 129 66 180

Condition 68 23 72
Expression 0 9 51

Toggle 77 191 203

FC(%) 91.4 90.8 91.28

For every peripheral considered the methodology is able to reach a good value of
gate-level fault coverage. In the case of the VDU the number of transition is very
high; this is due to the state registers that hold the current position on the screen.

To experimentally demonstrate that the use of the FSM transition coverage is
essential to strengthen the correlation between high an low level metrics 100 exper-
iments on the UART are performed, using both the evolutionary approach presented
in [16] and the generation process detailed above.

Table 9.3 Comparison between the two methodologies

FSM SC BC CC EC TC FC

[16]
Average NA 381.8 178.7 70.7 50.7 201.3 84.8
std.dev. NA 0.36 0.39 0.30 0.32 0.40 6.37

New methodology
Average 141.0 382.2 179.3 71.8 50.8 202.2 90.9
std.dev. 1.49 0.28 0.33 0.22 0.24 0.36 1.10

Table 9.3 reports a comparison between the results of the experiments performed
following the methodology presented in [16] and the current one; the table illustrates

110 9 Software-Based Self Testing of System Peripherals

the average and standard deviation of the different CCMs and of the stuck-at fault
coverage (FC). In all cases the CCMs are very near to the absolute maximum, and
both methodologies lead to small standard deviations on the considered metrics. In
the first case, however, the standard deviation in the fault coverage of each test set
is relatively high. Although the methodology obtains good results, it is not as robust
as desirable, and the obtained solution may not exhibit the expected quality.

Using the new methodology the average fault coverage is increased by more than
6% and, more importantly, the standard deviation of the fault coverage is dramat-
ically reduced. This clearly shows that the robustness of the methodology is in-
creased, and solutions of consistent quality can be obtained.

Table 9.4 Comparison between the two methodologies

FC TGEN TAPP Size
[16] 90.7 5.1 28,842 1,953/72

New Methodology 91.3 2.2 32,762 2,345/87

Table 9.4 synthetically reports a comparison between the two methodologies in
the case of the UART, highlighting the obtained fault coverage (FC) in percent-
age, the average generation time (TGEN) expressed in hours, the average applica-
tion time (TAPP) in clock cycles, and the average size of the test sets, reported as
program bytes and data bytes. The results clearly show that the new methodology
outperforms the previous one in terms of fault coverage and generation time. The
latter, in particular, is less than a half with respect to the previous methodology,
highlighting the efficiency of the new approach.

Other approaches [80][6] to peripheral test are not directly comparable with our
methodology since they are referred to different devices, although their complexity
and the results are similar to the devices analyzed here. Furthermore, our method-
ology only needs RT-level simulation and does not need the time-expensive fault-
simulations.

9.5 Conclusions

In this chapter, a successful application of the evolutionary tool for the generation
of sets of test blocks for different types of peripheral modules in SoCs driven by the
FSM transition coverage and the high-level CCM has been described.

The evolutionary tool is able to generate test blocks where the relation between
high-level coverage metrics and low level one is much stronger; this better relation
has been experimentally demonstrated with a experimental analysis where many test
blocks are generated and evaluated.

The experimental results on different type of peripheral cores, communication pe-
ripherals and VDU controller, show the effectiveness of the proposed methodology.

Chapter 10
Software-Based Self-Testing on Microprocessors

Microprocessor testing is becoming a challenging task, due to the increasing com-
plexity of modern architectures. Nowadays, most architectures are tackled with a
combination of scan chains and Software-Based Self-Test (SBST) methodologies.
Among SBST techniques, evolutionary feedback-based ones prove effective in mi-
croprocessor testing: their main disadvantage, however, is the considerable time re-
quired to generate suitable test programs. A novel evolutionary-based approach,
able to appreciably reduce the generation time, is presented. The proposed method
exploits a high-level representation of the architecture under test and a dynamically
built Finite State Machine (FSM) model to assess fault coverage without resorting
to time-expensive simulations on low-level models. Experimental results, performed
on an OpenRISC processor, show that the resulting test obtains a nearly complete
fault coverage against the targeted fault model.

Results of this work have been accepted for publication in [136].

10.1 Introduction

In the last years, the market demand for a higher computational performance in em-
bedded devices has been continuously increasing for a wide range of application
areas, from entertainment (smart phones, portable game consoles), to professional
equipment (palmtops, digital cameras), to control systems in various fields (automo-
tive, industry, telecommunications). The largest part of today’s Systems-on- Chip
(SoCs) includes at least one processor core. Companies have been pushing design
houses and semiconductor producers to increase microprocessor speed and compu-
tational power while reducing costs and power consumption. The performance of
processor and microprocessor cores has impressively increased due to technologi-
cal and architectural aspects. Microprocessor cores are following the same trend of
high-end microprocessors and quite complex units may be easily found in modern
SoCs.

E. Sanchez et al.: Industrial Applications of Evolutionary Algorithms, ISRL 34, pp. 111–120.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

112 10 Software-Based Self-Testing on Microprocessors

Technology advancements impose new challenges to microprocessor testing: as
device geometries shrink, deep-submicron delay defects are becoming more promi-
nent [100], thereby increasing the need for at-speed tests; as core operating frequency
and speed of I/O interfaces rise, more expensive external test equipment is required.

The increasing size and complexity of microprocessor architectures directly re-
flects in more demanding test generation and application strategies. Modern de-
signs contain intricate architectures that increase test complexity. Indeed, pipelined
and superscalar designs demonstrated to be random pattern resistant [42]. The
use of hardware-based approaches, such as scan chains and BIST, even though
consolidated in industry for integrated digital circuits, has proven to be often in-
adequate, since these techniques introduce excessive area overhead [22], require
extreme power dissipation during the test application [158], and are often ineffec-
tive when testing delay-related faults [147].

As a consequence, academy is looking for novel paradigms to respond to the
new testing issues: one promising alternative to hardware-based approaches is to
exploit the processor to execute carefully crafted test programs. The goal of these
test programs is to uncover possible design or production flaws in the processor.
This technique, called Software-Based Self-Test (SBST), has been already used in
different problems with positive results.

In this paper, we propose a SBST simulation-based framework for the generation
of post-production test programs for pipelined processors. The main novelty of the
proposed approach is its ability to efficiently generate test programs, exploiting a
high level description of the processor under test, while the evolution of the gen-
eration is driven by the transition coverage of a FSM created during the evolution
process itself.

10.2 Background

10.2.1 Software-Based Self Testing

SBST techniques have many advantages over other testing methodologies, thanks to
their features: the testing procedure can be conducted with very limited area over-
head, if any; the average power dissipation is comparable with the one observable in
mission mode; the possibility of damages due to excessive switching activity, non-
negligible in other methods, is virtually eliminated; test programs can be run at the
maximum system speed, thus allowing testing of a larger set of defects, including
delay-related ones; the approach is applicable even when the structure of a module
is not known or cannot be modified.

SBST approaches proposed in literature do not necessarily aim to substitute other
established testing approaches (e.g., scan chains or BIST) but rather to supplement
them by adding more test quality at a low cost. The objective is to create a test
program able to run on the target microprocessor and test its modules, satisfying

10.2 Background 113

the target fault coverage requirements. Achieving this test quality requires a proper
test program generation phase, which is the main focus of most SBST approaches in
recent literature. The quality of a test program is measured by its coverage of the de-
sign errors or production defects, its code size, and time required for its execution.
The available approaches for test program generation can be classified according
to the processor representation that is employed in the flow. High-level representa-
tions of the processor Instruction Set Architecture (ISA) or state transition graphs
are convenient for limiting the complexity of the architecture analysis, and provide
direct correlation with specific instruction sequences, but cannot guarantee the de-
tection of structural faults. Lower-level representations, such as RT and gate-level
netlists, describe in greater detail the target device and allow to focus on structural
fault models, but involve additional computational effort.

A survey on some of the most important techniques developed for test program
generation is presented in [125]. Due to modern microprocessors’ complex archi-
tectures, automatic test program generation is a challenging task: considering differ-
ent architectural paradigms, from pipelined to multithreaded processors, the search
space to be explored is even larger than that of classic processors. Thus, it becomes
crucial to devise methods able to automate as much as possible the generation pro-
cess, reducing the need for skilled (and expensive) human intervention, and guaran-
teeing an unbiased coverage of corner cases.

Generation techniques can be classified in two main groups: formal and
simulation-based. Formal methodologies exploit mathematical techniques to prove
specific properties, such as the absence of deadlocks or the equivalence between two
descriptions. Such a proof implicitly considers all possible inputs and all accessible
states of the circuit. Differently, simulation-based techniques rely on the simulation
of a set of stimuli to unearth misbehaviors in the device under test. A simulation-
based approach may therefore be able to demonstrate the presence of a bug, but
will never be able to prove its absence: however, the user may assume that the bug
does not exist with level of confidence related to the quality of the simulated test
set. The generation of a qualifying test set is the key problem with simulation-based
techniques. Different methodologies may be used to add contents to such test sets,
ranging from deterministic to pseudo-random.

Theoretically, formal techniques are able to guarantee their results, while
simulation-based approaches can never reach complete confidence. However, the
former require considerable computational power, and therefore may not be able to
provide results for a complex design. Moreover, formal methodologies are routinely
applied to simplified models, or used with simplified boundaries conditions. Thus,
the model used could contain some differences with respect to the original design,
introducing a certain amount of uncertainty in the process [124].

Nowadays, simulation-based techniques dominate the test generation arena for
microprocessors, with formal methods bounded to very specific components in the
earliest stages of the design. In most of the cases, simulation-based techniques ex-
ploit feedback to iteratively improve a test set in order to maximize a given target
measure. Nevertheless, simulation of low-level descriptions could require enormous
efforts in terms of computational time, memory occupation and hardware.

114 10 Software-Based Self-Testing on Microprocessors

The main drawback of feedback-based simulation methods, is the long elabora-
tion time required during the evolution. When dealing with a complete processor
core, for example in [144], the generation time increases when low abstraction de-
scriptions are used as part of the evolution: the growth of computation times is
mainly due to the inclusion of fault simulation in the process. For every possible
fault of the design, the original circuit is modified including the considered fault;
then, a complete simulation is performed in order to understand whether the fault
changes the circuit outputs. Even though lots of efforts are spent on improving this
process [104], several minutes are still required to perform a fault simulation on a
processor core with about 20k faults.

10.2.2 Evolutionary Algorithms on Software-Based Self Testing

Several approaches that face test program generation by exploiting an automated
methodology have been presented in recent years: in [81] a tool named VERTIS,
able to generate both test and verification programs based on the processor’s in-
struction set architecture only, is proposed. VERTIS generates many different in-
struction sequences for every possible instruction being tested, thus leading to very
large test programs. The test program generated for the GL85 processor following
this approach is compared with the patterns generated by two Automatic Test Pattern
Generator (ATPG) tools: the test program achieves a 90.20% stuck-at fault cover-
age, much higher than the fault coverage of the ATPG tools, proving the efficacy of
SBST for the first time. The VERTIS tool works with either pseudo-random instruc-
tion sequences and random data, or with test instruction sequences and heuristics to
assign values to instruction operands specified by the user in order to achieve good
results. In more complex processors, devising such heuristics is obviously a non-
trivial task.

In [119], an automated functional self-test method, called Functional Random In-
struction Testing at Speed (FRITS), is presented. FRITS is based on the generation
of random instruction sequences with pseudorandom data. The authors determine
the basic requirements for the application of a cache-resident approach: the proces-
sor must incorporate a cache load mechanism for the test program downloading and
the loaded test program must not produce either cache misses or bus cycles. The
authors report some results on an Intel Pentium c©4 processor: test programs auto-
matically generated by the FRITS tool achieve 70% stuck-at fault cover-age for the
entire chip, and when these programs are enhanced with manually generated tests,
the fault coverage increases by 5%.

Differently from the previously described functional methods, in [45] the authors
propose a two-steps methodology based on evolutionary algorithms: firstly a set of
macros encrypting processor instructions is created, and in a second step an evolu-
tionary optimizer is exploited to select macros and data values to conform the test
program. The proposed approach is evaluated on a synthesized version of an 8051
microprocessor, achieving about 86% fault coverage. Later, in [42], a new version of

10.3 Proposed Approach 115

the proposed approach is presented. The authors exploit a simulation-based method
that makes use of a feedback evaluation to improve the quality of test programs: the
approach is based on an evolutionary algorithm and it is capable of evolving small
test programs that capture target corner cases for design validation purposes. The
effectiveness of the approach is demonstrated by comparing it with a pure instruc-
tion randomizer, on a RTL description of the LEON2 processor. With respect to the
purely random method, the proposed approach is able to seize three additional in-
tricate corner cases while saturating the available addressed code coverage metrics.
The developed validation programs are more effective and smaller in code size.

10.3 Proposed Approach

The previously described test generation cases show that evolutionary algorithms
can effectively face real-world problems. However, when exploiting a low-level de-
scription of the processor under evaluation, simulation-based approaches require
huge elaboration times.

We propose a methodology able to exploit a high-level description of a pipelined
processor core in the generation process: the required generation time is thus re-
duced with respect to techniques that use a low-level description during the gen-
eration phase, such as the gate-level netlist, as reported in [144]. In the proposed
approach, it must be noticed that the processor netlist is only used at the end of the
generation process to assess the methodology results, performing a complete fault
simulation. The generation process is supported by the on-time automated gener-
ation of a FSM that models the excited parts of the processor core and drives the
evolution process by indicating the unreached components on the processor core. In
addition, we consider also high-level coverage metrics to improve the evolution.

It is possible to simply define a pipelined microprocessor as the interleaving of se-
quential elements (data, state and control registers), and combinational logic blocks.
The inputs of the internal combinatory logic blocks are dependent on the instruction
sequence that is executed by the processor and on the data that are processed. One
way to model a microprocessor is to represent it with a FSM. Coverage of all the
possible transitions in the machine ensures thoroughly exercising the system func-
tions. Additionally, the use of the FSM transition coverage has the additional advan-
tage that it explicitly shows the interactions between different pipeline stages. Thus,
we define the state word of a pipelined processor FSM model as the union of all
logic values present in the sequential elements of the pipeline, excluding only the
values strictly related to the data path. Consequently, the FSM transits to a new state
at every clock cycle, because at least one bit in the state word is changed due to the
whole interaction of the processor pipeline.

Figure refframework shows the proposed framework. The evolutionary core,
called ı̀GP3 [146], is able to generate syntactically correct assembly programs by

116 10 Software-Based Self-Testing on Microprocessors

acquiring information about the processor under evaluation from an user-defined
file called Constraint Library. When the process starts, the evolutionary core gen-
erates an initial set of random programs, or individuals, exploiting the information
provided by the library of constraint. Then, these individuals are cultivated follow-
ing the Darwinian concepts of natural evolution. Every test program is evaluated
resorting to external tools that simulate the high level description of the processor
core, resorting to a logic simulator at RTL, and generate a set of high-level measures.
Contemporary, during the logic simulation, the FSM status is captured at every clock
cycle, and for every evaluated test program the visited states and the traveled tran-
sitions are reported back to the evolutionary core as part of the evaluation of the
goodness of an individual, called fitness value. The interaction between the differ-
ent elements composing the fitness value guarantees good quality regarding the fault
coverage against a specific fault model at gate level. Fitness values gathered during
the logic simulation, for example code coverage metrics such as Statement coverage
(SC), Branch coverage (BC), Condition coverage (CC), Expression coverage (EC),
Toggle coverage (TC), are suitable for guiding the evolution of test programs. Si-
multaneously, maximizing the number of traversed transitions of the FSM model,
assures a better result at gate level.

Fig. 10.1 Test generation framework.

Only the best individual is fault simulated in order to assess its fault cover-
age properties, reducing generation times. In the following paragraphs, we briefly
describe in more detail the most significant elements present in the described
framework.

10.3 Proposed Approach 117

10.3.1 μGP

μGP represent individuals, in this case candidate test programs, as constrained
tagged graphs; a tagged graph is a directed graph every element of which may own
one or more tags, and that in addition has to respect a set of constraints. A tag is a
namevalue pair used to add semantic information to graphs, augmenting the nodes
with a number of parameters, and also to uniquely identify each element during the
evolution. Graphs are initially generated in a random fashion; subsequently, they
may be modified by genetic operators, such as the classical mutation and recom-
bination. The genotype of an individual is described by one or more constrained
tagged graphs.

The purpose of the constraints is to limit the possible productions of the evolu-
tionary tool, also providing them with semantic value. The constraints are provided
through a user-defined library that supplies the genotype-phenotype mapping for
the generated individuals, describes their possible structure and defines which val-
ues the existing parameters (if any) can assume. To increase the generality of the
tool, constraint definition is left to the user.

In this specific case the constraints define three distinct sections in an individual:
a program configuration part, a program execution part and a data part or stimuli
set. The first two are composed of assembly code, the third is written as part of a
VHDL testbench. Though syntactically different, the three parts are interdependent
in order to obtain good solutions.

Individual fitness values are computed by means of one or more external eval-
uator tools. The fitness of an individual is represented by a sequence of floating
point numbers optionally followed by a comment string. This is currently used in
a prioritized fashion: one fitness A is considered greater than another fitness B if
the nth component of A is greater than the n-th component of B and all previous
components (if any) are equal; if all components are equal then the two fitnesses are
considered equal.

The evolutionary tool is currently configured to cultivate all individuals in a sin-
gle panmictic population. The population is ordered by fitness. Choice of the in-
dividuals for reproduction is performed by means of a tournament selection; the
tournament size τ is also endogenous. The population size μ is set at the beginning
of a run, and the tool employs a variation on the plus (μ+λ) strategy: a configurable
number λ of genetic operators is applied on the population. All new unique individ-
uals are then evaluated, and the population resulting from the union of old and new
individuals is sorted by decreasing fitness. Finally, only the first μ individuals are
kept.

The possible termination conditions for the evolutionary run are: a target fitness
value is achieved by the best individual; no fitness increase is registered for a prede-
fined number of generations; a maximum number of generations is reached.

118 10 Software-Based Self-Testing on Microprocessors

10.3.2 FSM Extractor

The proposed methodology is based on modeling the entire processor core as a
FSM which is dynamically constructed during the test generation process. Thus,
differently from other approaches, the FSM extraction is fully automated, and de-
mands minimum human effort: the approach only requires the designer to identify
the memory elements of the pipeline registers in the RTL processor description that
will determine state characteristics of the FSM. The key point behind the FSM ex-
tractor is to guide the evolution trough a high-level model of the processor core that
summarizes the capacity of excitation of the considered test program. The FSM in-
formation extractor receives from the external evaluator (e.g., a logic simulator) the
activity of the pipeline registers of the processor core at every clock cycle, then,
it computes for every clock cycle the processor state word and extracts the visited
states and the traversed transitions.

Given the dynamic nature of the FSM construction, it is not possible to assume
as known the maximum number of reachable states, not to mention the possible
transitions. For this reason, it is impossible to determine the transition coverage
with respect to the entire FSM.

The implemented evaluator, that includes the logic simulator and the FSM infor-
mation extractor, collects the output of the simulation and dynamically explores the
FSM; it assesses the quality of test program considering the transition coverage on
the FSM and the code coverage metrics. The fitness fed back to the evolutionary
tool

is composed of many parts: the FSM transition coverage followed by all other
highlevel metrics (SC, BC, CC, EC, TC).

Let us consider the mechanisms related to hazard detection and forwarding acti-
vation in a pipelined processor: in order to thoroughly test them, it requires to stim-
ulate the processor core with special sequences of strongly dependent instructions
able to activate and propagate possible faults on these pipelined mechanisms. Fac-
ing this problem by hand requires a very good knowledge about the processor core
to carefully craft a sequence of instructions able to actually excite the mentioned
pipelined elements. Additionally, this process may involve a huge quantity of time.
On the other hand, state-of-the-art test programs usually do not target such pipeline
mechanisms, since their main concern is exciting a targeted functional unit through
carefully selected values, and not to activate the different forwarding paths and other
mechanisms devoted to handle data dependency between instructions [126].

As a matter of fact, it is possible to state that a feedback based approach able to
collect information about the interaction of the different instructions in a pipelined
processor as the one described before, allows the evolution of sequences of depen-
dent instructions that excite the mentioned pipeline mechanisms.

10.4 Case Study and Experimental Results 119

10.4 Case Study and Experimental Results

The effectiveness of the EA-based proposed methodology has been experimentally
evaluated on a benchmark SoC that contains the OpenRISC processor core and some
peripheral cores, such as the VGA interface, PS/2 interface, Audio interface, UART,
Ethernet and JTAG Debug interface. The SoC uses a 32 bit WISHBONE bus rev.
B for the communication between the cores. The operating frequency of the SoC is
150 MHz. The implemented SoC is based on a version publicly available at [112].

The OpenRISC processor is a 32 bit scalar RISC architecture with Harvard mi-
croarchitecture, 5 stages integer pipeline and virtual memory support. It includes
supplementary functionalities, such as programmable interrupt controller, power
management unit and high-resolution tick timer facility. The processor implements a
8Kbyte data cache and a 8Kbyte instruction cache 1-way direct mapped; the instruc-
tion cache is separated from the data cache because of the specifics of the Harvard
microarchitecture.

In our experiments we decide to tackle specifically the processor integer unit
(IU) that includes the whole processor pipeline. This unit is particularly complex
and important in pipelined processors, since it is in charge of handling the flow of
instructions elaborated in the processor core.

The pipelined processor is described by eight verilog files, counting about 4,500
lines of code. Table 1 describes some figures that are used to compute RTL code
coverage and toggle metrics. Additionally, the final line shows the number of stuck-
at faults (S@ faults) present in the synthesized version of the targeted module. The
state word is defined as the union of all memory elements composing the processor
pipeline, excluding only the registers that contain data elements. Data registers are
excluded because we are mainly interested in the control part of the pipeline, and
not in the data path.

Table 10.1 Details of the Integer Unit.

OR1200 IU

Lines 4,546
Statements 466
Branches 443
Condition 53
Expression 123
Toggle 3,184
S@ faults 13,248

Thus, considering the registers available in every stage of the processor pipeline,
a state word contained 237 bits is saved at every clock cycle during the logic sim-
ulation of a test program allowing us to dynamically extract the processor FSM. In
order to monitor the elements contained in the state word of the pipeline at every
clock cycle, we implemented a Programming Language Interface module, called

120 10 Software-Based Self-Testing on Microprocessors

PLI, that captures the information required during the logic simulation of the RTL
processor. The PLI module is implemented in C language, counting about 200 lines
of code. The module is compiled together with the RTL description of the processor
core, exploiting a verilog wrapper.

Once a test program is simulated, a PERL script extracts the information re-
garding the number of visited states as well as the number of traversed transitions
obtained by the considered program. This information is collected together to the
high-level coverage metrics provided by the logic simulator and the complete set
of values is fed back to the evolutionary engine in the form of fitness value of the
test program. The configuration files for the evolutionary optimizer are prepared in
XML and count about 1,000 lines of code. Finally, additional perl scripts are devised
to close the generation loop.

A complete experiment targeting the OR1200 pipeline requires about 5 days. At
the end of the experiment, an individual counting 3,994 assembly lines that almost
saturate the high level metrics is created; the same individual obtains about 92%
fault coverage against the targeted fault model.

Compared to manual approaches reported in [126], that achieve about 90% fault
coverage in the considered module, the results obtained in this paper improve the
fault coverage by about 2%, and can be thus considered promising.

With the specifications given above, a complete FSM could theoretically compre-
hend a maximum of 2237 states. It is interesting to note that the final FSM actually
counts only about 104, and despite this, the fault coverage is extremely high. This
interesting result will be explored to gain further information on the layout of the
complete FSM.

The final FSM could also be exploited to analyze the behavior of the device
from a functional point of view, and it could be used to integrate the developed test
program: deterministic programs could be created to reach the states untouched by
the execution of the final best individual in the population.

Appendix A
References

1. Great internet mersenne prime search, http://www.mersenne.org/
2. Intel math kernel library,

http://software.intel.com/en-us/intel-mkl/
3. Richards Adrion, W., Branstad, M.A., Cherniavsky, J.C.: Validation, verification, and

testing of computer software. ACM Comput. Surv. 14, 159–192 (1982)
4. Al-Asaad, H., Murray, B.T., Hayes, J.P.: Online bist for embedded systems. IEEE De-

sign Test of Computers 15(4), 17–24 (1998)
5. Aliwell, S.R., Halsall, J.F., Pratt, K.F.E., O’Sullivan, J., Jones, R.L., Cox, R.A., Utembe,

S.R., Hansford, G.M., Williams, D.E.: Ozone sensors based on wo3: a model for sensor
drift and a measurement correction method. Measurement Science & Technology 12(6),
684–690 (2001)

6. Apostolakis, A., Psarakis, M., Gizopoulos, D., Paschalis, A.: A functional self-test ap-
proach for peripheral cores in processor-based socs. In: 13th IEEE International On-
Line Testing Symposium, IOLTS 2007, pp. 271–276 (2007)

7. Artursson, T., Eklov, T., Lundström, I., Mårtensson, P., Sjöström, M., Holmberg, M.:
Drift correction for gas sensors using multivariate methods. Journal of Chemometrics,
Special Issue: Proceedings of the SSC6 14(5-6), 711–723 (1999)

8. Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population size.
In: Proc. IEEE Congress Evolutionary Computation, vol. 2, pp. 1769–1776 (2005)

9. Baeck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computa-
tion. IOP Press (1997)

10. Bernardi, P., Christou, K., Grosso, M., Michael, M.K., Sánchez, E., Reorda, M.S.: Ex-
ploiting MOEA to Automatically Geneate Test Programs for Path-Delay Faults in Mi-
croprocessors. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler,
R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill,
M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops
2008. LNCS, vol. 4974, pp. 224–234. Springer, Heidelberg (2008); 10.1007/978-3-540-
78761-7 23

11. Bernardi, P., Grosso, M., Sanchez, E., Reorda, M.S.: On the automatic generation of
test programs for path-delay faults in microprocessor cores. In: 12th IEEE European
Test Symposium, ETS 2007, pp. 179–184 (May 2007)

12. Bernardi, P., Rebaudengo, M., Reorda, M.S.: Exploiting an i-ip for in-field soc test. In:
19th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems,
DFT 2004, pp. 404–412 (2004)

http://www.mersenne.org/
http://software.intel.com/en-us/intel-mkl/

122 A References

13. Bhattacharya, D., Agrawal, P., Agrawal, V.D.: Test generation for path delay faults us-
ing binary decision diagrams. IEEE Transactions on Computers 44(3), 434–447 (1995)

14. Bhattacharyya, A.B.: Compact MOSEFT Models for VLSI Design. Wiley Publishing
(2008)

15. Bolzani, L., Sanchez, E., Schillaci, M., Reorda, M.S., Squillero, G.: An automated
methodology for cogeneration of test blocks for peripheral cores. In: 13th IEEE In-
ternational On-Line Testing Symposium, IOLTS 2007, pp. 265–270 (2007)

16. Bolzani, L., Sanchez, E., Schillaci, M., Squillero, G.: Co-evolution of test programs
and stimuli vectors for testing of embedded peripheral cores. In: IEEE Congress on
Evolutionary Computation, CEC 2007, pp. 3474–3481 (2007)

17. Bolzani, L.M.V., Sanchez, E.E., Reorda, M.S.: A software-based methodology for the
generation of peripheral test sets based on high-level descriptions. In: Proceedings of
the 20th Annual Conference on Integrated Circuits and Systems Design, SBCCI 2007,
pp. 348–353. ACM, New York (2007)

18. Box, G.E.P.: Evolutionary operation: A method for increasing industrial prouctivity.
Applied Statistics VI(2), 81–101 (1957)

19. Brause, R., Langsdorf, T., Hepp, M.: Neural data mining for credit card fraud detection.
In: 11th IEEE International Conference on Tools with Artificial Intelligence (1999)

20. Bremermann, H.J.: Optimization through Evolution and Recombination. Spartan Books
(1962)

21. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers C-35(8), 677–691 (1986)

22. Bushard, L., Chelstrom, N., Ferguson, S., Keller, B.: Dft of the cell processor and its
impact on eda test software. In: Asian Test Symposium, pp. 369–374 (2006)

23. Bushnell, M.L., Agrawal, V.D.: Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits. Kluwer, Boston (2000)

24. Cagnoni, S., Dobrzeniecki, A.B., Poli, R., Yanch, J.C.: Genetic algorithm-based interac-
tive segmentation of 3d medical images. Image and Vision Computing 17(12), 881–895
(1999)

25. Callegari, N., Wang, L.-C., Bastani, P.: Speedpath analysis based on hypothesis pruning
and ranking. In: Proceedings of the 46th Annual Design Automation Conference, DAC
2009, pp. 346–351. ACM, New York (2009)

26. Cannon, W.D.: The Wisdom of the body. W.W.Norton (1932)
27. Chakraborty, A., Duraisami, K., Sathanur, A., Sithambaram, P., Benini, L., Macii, A.,

Macii, E., Poncino, M.: Dynamic thermal clock skew compensation using tunable de-
lay buffers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16(6),
639–649 (2008)

28. Chakraborty, T.J., Agrawal, V.D., Bushnell, M.L.: Delay fault models and test genera-
tion for random logic sequential circuits. In: Proceedings of 29th ACM/IEEE Design
Automation Conference 1992, pp. 165–172 (June 1992)

29. Chellapilla, K., Hoorfar, A.: Evolutionary programming: an efficient alternative to ge-
netic algorithms for electromagnetic optimization problems. In: IEEE Antennas and
Propagation Society International Symposium 1998, vol. 1, pp. 42–45 (June 1998)

30. Chen, C.-A., Gupta, S.K.: A satisfiability-based test generator for path delay faults in
combinational circuits. In: Proceedings of 33rd Design Automation Conference 1996,
pp. 209–214 (June 1996)

31. Chen, D.Y., Chan, P.K.: An intelligent isfet sensory system with temperature and
drift compensation for long-term monitoring. IEEE Sensors Journal 8(12), 1948–1959
(2008)

References 123

32. Chen, L., Dey, S.: Defuse: a deterministic functional self-test methodology for proces-
sors. In: Proceedings of 18th IEEE VLSI Test Symposium 2000, pp. 255–262 (2000)

33. Cheng, C., Lim, C.-C., Parashkevov, A.: A software test program generator for verifying
system-on-chips. In: Tenth IEEE International on High-Level Design Validation and
Test Workshop 2005, pp. 79–86 (2005)

34. Choi, S., Sarkar, T.K., Choi, J.: Adaptive antenna array for direction-of-arrival estima-
tion utilizing the conjugate gradient method. Signal Processing 45(3), 313–327 (1995)

35. Christou, K., Michael, M.K., Bernardi, P., Grosso, M., Sanchez, E., Reorda, M.S.: A
novel sbst generation technique for path-delay faults in microprocessors exploiting
gate- and rt-level descriptions. In: 26th IEEE VLSI Test Symposium, VTS 2008, April
27-May 1, pp. 389–394 (2008)

36. Cinque, M., Cotroneo, D., Kalbarczyk, Z., Iyer, R.K.: How do mobile phones fail? a
failure data analysis of symbian os smart phones. In: 37th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, DSN 2007, pp. 585–594
(2007)

37. Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Polar ifs+parisian genetic program-
ming=efficient ifs inverse problem solving. Genetic Programming and Evolvable Ma-
chines 1, 339–361 (2000), doi:10.1023/A:1010065123132

38. Colwell, B.: The zen of overclocking. Computer 37(3), 9–12 (2004)
39. Corno, F., Cumani, G., Sonza Reorda, M., Squillero, G.: An rt-level fault model with

high gate level correlation. In: Proceedings of IEEE International on High-Level Design
Validation and Test Workshop, pp. 3–8 (2000)

40. Corno, F., Cumani, G., Sonza Reorda, M., Squillero, G.: Efficient machine-code test-
program induction. In: Proceedings of the 2002 Congress on Evolutionary Computa-
tion, CEC 2002, vol. 2, pp. 1486–1491 (2002)

41. Corno, F., Cumani, G., Sonza Reorda, M., Squillero, G.: Fully automatic test program
generation for microprocessor cores. In: Design, Automation and Test in Europe Con-
ference and Exhibition 2003, pp. 1006–1011 (2003)

42. Corno, F., Sanchez, E., Reorda, M.S., Squillero, G.: Automatic test program generation:
a case study. IEEE Design Test of Computers 21(2), 102–109 (2004)

43. Corno, F., Sanchez, E., Squillero, G.: Evolving assembly programs: How games help
microprocessor validation. IEEE Transactions on Evolutionary Computation, Special
Issue on Evolutionary Computation and Games 9, 695–706 (2005)

44. Corno, F., Sonza Reorda, M., Squillero, G.: A New Evolutionary Paradigm for Culti-
vating Cellular Automata for Built-In Self Test of Sequential Circuits. In: Evolutionary
Algorithms for Embedded System Design, pp. 143–173. Kluwer Academic Publishers
(2002)

45. Corno, F., Sonza Reorda, M., Squillero, G., Violante, M.: On the test of microprocessor
ip cores. In: Proceedings of Design, Automation and Test in Europe, Conference and
Exhibition 2001, pp. 209–213 (2001)

46. Corno, F., Sonza Reorda, M., Squillero, G.: The selfish gene algorithm: a new evo-
lutionary optimization strategy. In: Proceedings of the ACM Symposium on Applied
Computing, SAC 1998, pp. 349–355. ACM, New York (1999)

47. Darwin, C.: On the origin of species, ch. IV, p. 502. John Murray (1859)
48. Dawkins, R.: The Selfish Gene. Oxford University Press (1976)
49. Di Carlo, S., Falasconi, M., Sánchez, E., Scionti, A., Squillero, G., Tonda, A.: Exploit-

ing Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing. In: Di Chio,
C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K.,
Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons
2010. LNCS, vol. 6024, pp. 412–421. Springer, Heidelberg (2010)

124 A References

50. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques for
formal software verification. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 27(7), 1165–1178 (2008)

51. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience
(2000)

52. El-Far, K.I., Whittaker, J.A.: Model-Based Software Testing. In: Encyclopedia of Soft-
ware Engineering. Wiley-Interscience, New York (1994)

53. Elliot, R.S. (ed.): Antenna theory and design. Prentice-Hall, Inc. (1981)
54. Falasconi, M., Gutierrez, A., Pardo, M., Sberveglieri, G., Marco, S.: A stability based

validity method for fuzzy clustering. Pattern Recogn. 43(4), 1292–1305 (2010)
55. Flautner, K., Patel, D.I.: Intelligent energy managementTM for portable embedded sys-

tems. In: Proceedings of IEEE International Conference on SOC, p. 415 (2003)
56. Fogel, D.B.: Evolutionary computation: toward a new philosophy of machine intelli-

gence. IEEE Press, Piscataway (1995)
57. Fogel, L.J.: Autonomous automata. Industrial Research 4, 14–19 (1962)
58. Fogel, L.J.: Toward inductive inference automata. In: Proceeding of the International

Federation for Information Processing Congress, pp. 395–400 (1962)
59. Frazer, A.S.: Simulation of genetic systems by automatic digital computers (part 1).

Australian Journal of Biological Science 10, 484–491 (1957)
60. Frazer, A.S.: Simulation of genetic systems by automatic digital computers (part 1).

Australian Journal of Biological Science 10, 492–499 (1957)
61. Friedberg, R.M.: A learning machine: Part i. IBM Journal 2(1), 2–13 (1958)
62. Fuchs, K., Pabst, M., Rossel, T.: Resist: a recursive test pattern generation algorithm

for path delay faults considering various test classes. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 13(12), 1550–1562 (1994)

63. Gandini, S., Ravotto, D., Ruzzarin, W., Sanchez, E., Squillero, G., Tonda, A.: Auto-
matic detection of software defects: an industrial experience. In: Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, GECCO 2009, pp.
1921–1922. ACM, New York (2009)

64. Gandini, S., Ruzzarin, W., Sanchez, E., Squillero, G., Tonda, A.: A framework for au-
tomated detection of power-related software errors in industrial verification processes.
Journal of Electronic Testing, 1–9 (2010); doi:10.1007/s10836-010-5184-5

65. Gobbi, E., Falasconi, M., Concina, I., Mantero, G., Bianchi, F., Mattarozzi, M., Musci,
M., Sberveglieri, G.: Electronic nose and alicyclobacillus spp. spoilage of fruit juices:
An emerging diagnostic tool. Food Control 21(10), 1374–1382 (2010)

66. Gould, S.J.: The Dinosaur in the Haystack. Harmony Books (1995)
67. Gurumurthy, S., Vemu, R., Abraham, J.A., Saab, D.G.: Automatic generation of in-

structions to robustly test delay defects in processors. In: 12th IEEE European Test
Symposium, ETS 2007, pp. 173–178 (May 2007)

68. Gutierrez-Osuna, R.: Drift reduction for metal-oxide sensor arrays using canonical cor-
relation regression and partial least squares. In: Proceedings of the 7th International
Symp. on Olfaction and Electronic Nose, July 20-24, p. 147. Institute of Physics Pub-
lishing (2000)

69. Hamlet, D.: Random Testing. In: Encyclopedia of Software Engineering. Wiley-
Interscience, New York (1994)

70. Hansen, N., Müller, S.D., Petrosnf, P.K.: Reducing the time complexity of the deran-
domized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary
Computation 11, 1–18 (2003)

71. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9, 159–195 (2001)

References 125

72. Hansen, N., Ostermeier, A., Gawelczyk, A.: On the adaptation of arbitrary normal muta-
tion distributions in evolution strategies: The generating set adaptation. In: Proceedings
6th International Conference on Genetic Algorithms, pp. 312–317. Morgan Kaufmann
(1995)

73. Haugen, J.-E., Tomic, O., Kvaal, K.: A calibration method for handling the temporal
drift of solid state gas-sensors. Analytica Chimica Acta 407(1-2), 23–39 (2000)

74. Hines, E.L., Llobet, E., Gardner, J.W.: Electronic noses: a review of signal processing
techniques. IEEE Proceedings Circuits, Devices and Systems 146(6), 297–310 (1999)

75. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge
(1992)

76. Hoorfar, A., Zhu, J.: A novel hybrid ep-ga method for efficient electromagnetics opti-
mization. In: IEEE Antennas and Propagation Society International Symposium, vol. 1,
pp. 310–313 (2002)

77. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test prob-
lems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computa-
tion 10(5), 477–506 (2006)

78. Ding, H., Liu, J.-H., Shen, Z.-R.: Drift reduction of gas sensor by wavelet and principal
component analysis. Sensors and Actuators B: Chemical 96(1-2), 354–363 (2003)

79. Ionescu, R., Vancu, A., Tomescu, A.: Time-dependent humidity calibration for drift
corrections in electronic noses equipped with sno2 gas sensors. Sensors and Actuators
B: Chemical 69(3), 283–286 (2000)

80. Jayaraman, K., Vedula, V.M., Abraham, J.A.: Native mode functional self-test gen-
eration for systems-on-chip. In: Proceedings of International Symposium on Quality
Electronic Design, pp. 280–285 (2002)

81. Jayaraman, K., Vedula, V.M., Abraham, J.A.: Native mode functional self-test gen-
eration for systems-on-chip. In: Proceedings of International Symposium on Quality
Electronic Design, pp. 280–285 (2002)

82. Killpack, K., Kashyap, C., Chiprout, E.: Silicon speedpath measurement and feedback
into eda flows. In: 44th ACM/IEEE Design Automation Conference, DAC 2007, pp.
390–395 (2007)

83. Killpack, K., Natarajan, S., Krishnamachary, A., Bastani, P.: Case study on speed failure
causes in a microprocessor. IEEE Design Test of Computers 25(3), 224–230 (2008)

84. Kim, K.S., Mitra, S., Ryan, P.G.: Delay defect characteristics and testing strategies.
IEEE Design Test of Computers 20(5), 8–16 (2003)

85. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Nat-
ural Selection. MIT Press (1992)

86. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Pro-
gramming IV: Routine Human-Competitive Machine Intelligence. Springer, Heidelberg
(2003)

87. Kranitis, N., Paschalis, A., Gizopoulos, D., Xenoulis, G.: Software-based self-testing
of embedded processors. IEEE Transactions on Computers 54(4), 461–475 (2005)

88. Kranitis, N., Xenoulis, G., Gizopoulos, D., Paschalis, A., Zorian, Y.: Low-cost
software-based self-testing of risc processor cores. In: Design, Automation and Test
in Europe Conference and Exhibition, pp. 714–719 (2003)

89. Kretzschmar, C., Galke, C., Vierhaus, H.T.: A hierarchical self test scheme for socs. In:
Proceedings of 10th IEEE International On-Line Testing Symposium, IOLTS 2004, pp.
37–42 (2004)

90. Krintz, C., Ye, W., Wolski, R.: Application-level prediction of battery dissipation, low
power electronics and design. In: Proceedings of the 2004 International Symposium on
Low Power Electronics and Design, ISLPED 2004, pp. 224–229 (2004)

126 A References

91. Krstic, A., Cheng, K.: Delay fault testing for VLSI circuits. Kluwer Academic Publish-
ers (1998)

92. Kuhn, K.: Building predictive models in r using the caret package. Journal of Statistical
Software 28(5), 1–26 (2008)

93. Lai, W.-C., Krstic, A., Cheng, K.-T.: On testing the path delay faults of a microprocessor
using its instruction set. In: Proceedings of 18th IEEE VLSI Test Symposium, pp. 15–
20 (2000)

94. Lai, W.-C., Krstic, A., Cheng, K.-T.: Test program synthesis for path delay faults in
microprocessor cores. In: Proceedings of International Test Conference, pp. 1080–1089
(2000)

95. Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-
Objective Problems. Kluwer Academic Publishers, Norwell (2002)

96. Lee, L., Wang, L.-C., Parvathala, P., Mak, T.M.: On silicon-based speed path identifi-
cation. In: Proceedings of 23rd IEEE VLSI Test Symposium, pp. 35–41 (May 2005)

97. Lindsay, W., Sanchez, E., Reorda, M.S., Squillero, G.: Automatic test programs gen-
eration driven by internal performance counters. In: Proceedings of 5th International
Workshop on Microprocessor Test and Verification, pp. 8–13 (2004)

98. Liu, C.-N.J., Chang, C.-Y., Jou, J.-Y., Lai, M.-C., Juan, H.-M.: A novel approach for
functional coverage measurement in hdl. In: Proceedings of IEEE International Sym-
posium on Circuits and Systems, ISCAS 2000, Geneva, vol. 4, pp. 217–220 (2000)

99. Llobet, E., Brezmes, J., Ionescu, R., Vilanova, X., Al-Khalifa, S., Gardner, J.W., Bârsan,
N., Correig, X.: Wavelet transform and fuzzy artmap-based pattern recognition for fast
gas identification using a micro-hotplate gas sensor. Sensors and Actuators B: Chemi-
cal 83(1-3), 238–244 (2002)

100. Mak, T.M., Krstic, A., Cheng, K.-T., Wang, L.-C.: New challenges in delay testing of
nanometer, multigigahertz designs. In: IEEE Design Test of Computers, vol. 21(3), pp.
241–248 (2004)

101. Manetta, L., Ollino, L., Schillaci, M.: Use of an Evolutionary Tool for Antenna Ar-
ray Synthesis. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R.,
Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.)
EvoWorkshops 2005. LNCS, vol. 3449, pp. 245–253. Springer, Heidelberg (2005),
doi:10.1007/978-3-540-32003-6 25

102. Marcano, D., Duran, F.: Synthesis of antenna arrays using genetic algorithms. IEEE
Antennas and Propagation Magazine 42(3), 12–20 (2000)

103. Marco, S., Ortega, A., Pardo, A., Samitier, J.: Gas identification with tin oxide sensor
array and self-organizing maps: adaptive correction of sensor drifts. IEEE Transactions
on Instrumentation and Measurement 47(1), 316–321 (1998)

104. May, G.S., Spanos, C.J.: Fundamentals of Semiconductor Manufacturing and Process
Control. John Wiley & Sons, Inc. (2006)

105. Mayr, E.W.: Toward a new Philosophy of Biological Thought: Diversity, Evolution and
Inheritance. Belknap, Harvard (1982)

106. McLaughlin, R., Venkataraman, S., Lim, C.: Automated debug of speed path failures
using functional tests. In: 27th IEEE VLSI Test Symposium, VTS 2009, pp. 91–96
(May 2009)

107. Michael, C.C., McGraw, G., Schatz, M.A.: Generating software test data by evolution.
IEEE Transactions on Software Engineering 27(12), 1085–1110 (2001)

108. Michael, M.K., Tragoudas, S.: Function-based compact test pattern generation for path
delay faults. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13(8),
996–1001 (2005)

109. Motorola, http://www.motorola.com

http://www.motorola.com

References 127

110. Di Natale, C., Martinelli, E., D’Amico, A.: Counteraction of environmental distur-
bances of electronic nose data by independent component analysis. Sensors and Ac-
tuators B: Chemical 82(2-3), 158–165 (2002)

111. Friedberg, R.M., Dunham, B., North, J.H.: A learning machine: Part ii. IBM Jour-
nal 3(7), 282–287 (1959)

112. OpenCores, http://www.opencores.org
113. Owens, W.B., Wong, A.P.S.: An improved calibration method for the drift of the con-

ductivity sensor on autonomous ctd profiling floats by theta–s climatology. Deep-Sea
Research Part I-Oceanographic Research Papers 56(3), 450–457 (2009)

114. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test genera-
tion. In: 29th International Conference on Software Engineering, ICSE 2007, pp. 75–84
(May 2007)

115. Padilla, M., Perera, A., Montoliu, I., Chaudry, A., Persaud, K., Marco, S.: Drift com-
pensation of gas sensor array data by orthogonal signal correction. Chemometrics and
Intelligent Laboratory Systems 100(1), 28–35 (2010)

116. Padmanaban, S., Tragoudas, S.: Efficient identification of (critical) testable path de-
lay faults using decision diagrams. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 24(1), 77–87 (2005)

117. Paravati, G., Sanna, A., Pralio, B., Lamberti, F.: A genetic algorithm for target tracking
in flir video sequences using intensity variation function. IEEE Transactions on Instru-
mentation and Measurement 58(10), 3457–3467 (2009)

118. Pardo, M., Sberveglieri, G.: Electronic olfactory systems based on metal oxide semi-
conductor sensor arrays. MRS Bulletin 29(10), 703–708 (2004)

119. Parvathala, P., Maneparambil, K., Lindsay, W.: Frits - a microprocessor functional bist
method. In: Proceedings of International Test Conference, pp. 590–598 (2002)

120. Paschalis, A., Gizopoulos, D.: Effective software-based self-test strategies for on-line
periodic testing of embedded processors. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 24(1), 88–99 (2005)

121. Pearce, T.C., Shiffman, S.S., Nagle, H.T., Gardner, J.W.: Handbook of machine olfac-
tion. Wiley-VHC, Weinheim (2003)

122. Piziali, A.: Functional Verification Coverage Measurement and Analysis, 1st edn.
Springer Publishing Company, Heidelberg (2007)

123. Polster, A., Fabian, M., Villinger, H.: Effective resolution and drift of paroscientific
pressure sensors derived from long-term seafloor measurements. Geochem. Geophys.
Geosyst. 10 (2009)

124. Pradhan, D.K., Harris, I.G.: Practical Design Verification. Cambridge University Press
(2009)

125. Psarakis, M., Gizopoulos, D., Sanchez, E., Reorda, M.S.: Microprocessor software-
based self-testing. IEEE Design Test of Computers 27(3), 4–19 (2010)

126. Psarakis, M., Gizopoulos, D., Hatzimihail, M., Paschalis, A., Raghunathan, A., Ravi,
S.: Systematic software-based self-test for pipelined processors. In: Proceedings of the
43rd annual Design Automation Conference, DAC 2006, pp. 393–398. ACM, New York
(2006)

127. Ravotto, D., Sanchez, E., Schillaci, M., Squillero, G.: An evolutionary methodology
for test generation for peripheral cores via dynamic fsm extraction. In: Giacobini, M.,
Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar,
A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F.,
Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp.
214–223. Springer, Heidelberg (2008)

http://www.opencores.org

128 A References

128. Rechenberg, I.: Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution (PhD thesis) (1971) (Reprinted by) Fromman-Holzboog

129. Robion, A., Sadarnac, D., Lanzetta, F., Marquet, D., Rivera, T.: Breakthrough in energy
generation for mobile or portable devices. In: 29th International Telecommunications
Energy Conference, INTELEC 2007, pp. 460–466 (2007)

130. Rubinstein, R.Y. (ed.): Simulation and the Monte Carlo method. John Wiley and Sons
(1981)

131. Saab, D.G., Saab, Y.G., Abraham, J.A.: Automatic test vector cultivation for sequential
vlsi circuits using genetic algorithms. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 15(10), 1278–1285 (1996)

132. Sanchez, E., Sonza Reorda, M., Squillero, G., Violante, M.: Automatic generation of
test sets for sbst of microprocessor ip cores. In: 18th Symposium on Integrated Circuits
and Systems Design, pp. 74–79 (2005)

133. Sanchez, E., Reorda, M.S., Squillero, G.: On the transformation of manufacturing test
sets into on-line test sets for microprocessors. In: 20th IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, DFT 2005, pp. 494–502 (October
2005)

134. Sanchez, E., Schillaci, M., Squillero, G.: Evolutionary Optimization: the μGP toolkit,
1st edn. Springer, Heidelberg (to be published in July 2011)

135. Sanchez, E., Schillaci, M., Squillero, G., Sonza Reorda, M.: An enhanced technique for
the automatic generation of effective diagnosis-oriented test programs for processor. In:
Design, Automation Test in Europe Conference Exhibition, DATE 2007, pp. 1–6 (2007)

136. Sanchez, E., Squillero, G., Tonda, A.: Evolution of Test Programs Exploiting a FSM
Processor Model. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq,
M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tetta-
manzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS,
vol. 6625, pp. 162–171. Springer, Heidelberg (2011)

137. Sanchez, E., Squillero, G., Tonda, A.: Post-silicon speed-path failing-test generation
through evolutionary computation. Accepted for Publication in 16th IEEE European
Test Symposium, ETS (2011)

138. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algo-
rithms. In: Proceedings of the 1st International Conference on Genetic Algorithms, pp.
93–100. L. Erlbaum Associates Inc., Hillsdale (1985)

139. Schwefel, H.-P.: Cybernetic Evolution as Strategy for Experimental Research in Fluid
Mechanics (Diploma Thesis in German). Hermann Föttinger-Institute for Fluid Me-
chanics, Technical University of Berlin (1965)

140. Sharma, R.K., Chan, P.C.H., Tang, Z., Yan, G., Hsing, I.-M., Sin, J.K.O.: Investiga-
tion of stability and reliability of tin oxide thin-film for integrated micro-machined gas
sensor devices. Sensors and Actuators B: Chemical 81(1), 9–16 (2001)

141. Singh, V., Inoue, M., Saluja, K.K., Fujiwara, H.: Instruction-based delay fault self-
testing of processor cores. In: Proceedings of 17th International Conference on VLSI
Design 2004, pp. 933–938 (2004)

142. Sisk, B.C., Lewis, N.S.: Comparison of analytical methods and calibration methods for
correction of detector response drift in arrays of carbon black-polymer composite vapor
detector. Sensors and Actuators B: Chemical 104(2), 249–268 (2005)

143. Smolin, L.: The Life of the Cosmos. Weidenfeld and Nicolson, London (1997)
144. Sánchez, E., Reorda, M.S., Squillero, G.: Test program generation from high-level mi-

croprocessor descriptions. In: Reorda, M.S., Peng, Z., Violante, M. (eds.) System-level
Test and Validation of Hardware/Software Systems. Springer Series in Advanced Mi-
croelectronics, pp. 83–106. Springer, London (2005), doi:10.1007/1-84628-145-8 6

References 129

145. Sánchez, E., Reorda, M., Squillero, G.: Efficient techniques for automatic verification-
oriented test set optimization. International Journal of Parallel Programming 34, 93–109
(2006); doi:10.1007/s10766-005-0005-7

146. Source Forge. Host of μgp3, http://sourceforge.net/projects/ugp3
147. Speek, H., Kerkhoff, H.G., Sachdev, M., Shashaani, M.: Bridging the testing speed gap:

design for delay testability. In: Proceedings of IEEE European Test Workshop, pp. 3–8
(2000)

148. Corno, F., Sonza Reorda, M., Squillero, G.: Exploiting the selfish gene algorithm for
evolving cellular automata. In: Proceedings of the IEEE-INNS-ENNS International
Joint Conference on Neural Networks, IJCNN 2000, vol. 6, pp. 577–581 (2000)

149. Squillero, G.: Microgp - an evolutionary assembly program generator. Genetic Pro-
gramming and Evolvable Machines 6, 247–263 (2005); doi:10.1007/s10710-005-2985-
x

150. Tafertshofer, P., Ganz, A., Antreich, K.J.: Igraine-an implication graph-based engine for
fast implication, justification, and propagation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 19(8), 907–927 (2000)

151. Thatte, S.M., Abraham, J.A.: Test generation for microprocessors. IEEE Transactions
on Computers 29(6), 429–441 (1980)

152. Thompson, K.M.: Intel and the myths of test. IEEE Design Test of Computers 13(1),
79–81 (1996)

153. Tomic, O., Eklöv, T., Kvaal, K., Haugen, J.-E.: Recalibration of a gas-sensor array sys-
tem related to sensor replacement. Analytica Chimica Acta 512(2), 199–206 (2004)

154. Turing, A.M.: Computing machinery and intelligence. Mind 9, 433–460 (1950)
155. van de Goor, A.J.: Testing semiconductor memories: theory and practice. John Wiley

& Sons, Inc., New York (1991)
156. Vezzoli, M., Ponzoni, A., Pardo, M., Falasconi, M., Faglia, G., Sberveglieri, G.: Ex-

ploratory data analysis for industrial safety application. Sensors and Actuators B:
Chemical 131(1), 100–109 (2008); Special Issue: Selected Papers from the 12th In-
ternational Symposium on Olfaction and Electronic Noses - ISOEN 2007, International
Symposium on Olfaction and Electronic Noses

157. Vlachos, D.S., Fragoulis, D.K., Avaritsiotis, J.N.: An adaptive neural network topology
for degradation compensation of thin film tin oxide gas sensors. Sensors and Actuators
B: Chemical 45(3), 223–228 (1997)

158. Wang, S., Gupta, S.K.: Atpg for heat dissipation minimization during scan testing. In:
Design Automation Conference, p. 614 (1997)

159. Weiling, F.: Historical study: Johann gregor mendel 1822-1884. American Journal of
Medical Genetics 40(26), 1–25 (1991)

160. Weismann, A.: Evolution Theory. Arnold, London (1904)
161. Wood, B., Milanesi, C., Liang, A., De La Vergne, H.J., Nguyen, T.H., Mitsuyama, N.:

Forecast: Mobile terminals, worldwide, 2000-2009. Mobile Communications World-
wide (2005)

162. Yang, K., Cheng, K.-T., Wang, L.-C.: Trangen: a sat-based atpg for path-oriented tran-
sition faults. In: Proceedings of the ASP-DAC 2004, Asia and South Pacific Design
Automation Conference, pp. 92–97 (2004)

163. Yu, T., Davis, L., Baydar, C.M., Roy, R.: Evolutionary Computation in Practice. SCI,
vol. 88. Springer, Heidelberg (2008)

164. Zeng, J., Abadir, M., Bhadra, J., Abraham, J.: Full chip false timing-path identification.
In: IEEE Workshop on Signal Processing Systems, SiPS 2000, pp. 703–711 (2000)

http://sourceforge.net/projects/ugp3

130 A References

165. Zeng, J., Wang, J., Chen, C.-Y., Mateja, M., Wang, L.-C.: On evaluating speed path de-
tection of structural tests. In: 2010 11th International Symposium on Quality Electronic
Design (ISQED), pp. 570–576 (2010)

166. Zuppa, M., Distante, C., Siciliano, P., Persaud, K.C.: Drift counteraction with multiple
self-organising maps for an electronic nose. Sensors and Actuators B: Chemical 98(2-
3), 305–317 (2004)

167. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Re-
views of Modern Physics 75 (2003)

	Title
	Foreword
	Preface
	Contents
	Introduction
	Industrial Problems
	A Brief History of Evolutionary Algorithms
	Natural and Artificial Evolution
	Genetic Algorithms
	Evolutionary Programming
	Evolution Strategies
	Genetic Programming

	Resources
	Books
	Journals
	International Conferences and Workshops
	Software
	Suggested Readings on Natural Evolution and Biology

	Part I: Prototype-Based Validation Problems
	Automatic Software Verification
	Introduction
	Background
	Mobile Phones
	Verification Techniques

	Proposed Approach
	Model
	Candidate Solutions
	Evaluator

	Experimental Results
	Video Recording Bug
	Voice Call Bug
	Incorrect Menu Behavior

	Conclusions

	Post-silicon Speed-Path Analysis in Modern Microprocessors through Genetic Programming
	Background
	Introduction
	Generation and Evaluation of Test Programs
	Evolutionary Approach
	Fitness Function
	Individual Evaluation
	Evolution Start
	Internal Representation, Multithreading and Multicore
	Assembly Language
	Cache

	Experimental Evaluation
	Overclockers' Stress Tests
	Target System
	Experimental Results

	Conclusions and Future Works

	Part II: Design and Reliability Problems
	Antenna Array Synthesis with Evolutionary Algorithms
	Introduction
	Antenna Arrays
	Evolutionary Algorithm
	Experimental Setup
	Experimental Results
	Conclusions

	Drift Correction of Chemical Sensors
	Introduction
	Method and Theory
	Correction Factor
	Classification
	Correction Factor Optimization
	Distance Functions

	Case Studies and Experimental Results
	Artificial Dataset
	Real Dataset

	CMA-ES
	Conclusions

	Development of On-Line Test Sets for Microprocessors
	Introduction
	Proposed Methodology
	Spore Generator Description
	Set Covering

	Case Study
	Conclusions

	Part III: Test Generation Problems
	Uncovering Path Delay Faults with Multi-Objective EAs
	Introduction
	Background
	Software-Based Path Delay Testing
	Exploiting Gate- and RT Level Descriptions for Path-Delay Testing
	BDDs for Structural Path Delay Fault Tests
	Basic Concepts on MOEAs

	Proposed Approach
	Experimental Data
	Conclusions

	Software-Based Self Testing of System Peripherals
	Introduction
	Peripheral Testing
	Basics
	Previous Works

	Proposed Approach
	Evolutionary Tool
	Evaluator

	Experimental Analysis
	Test Case
	Experimental Results

	Conclusions

	Software-Based Self-Testing on Microprocessors
	Introduction
	Background
	Software-Based Self Testing
	Evolutionary Algorithms on Software-Based Self Testing

	Proposed Approach
	GP
	FSM Extractor

	Case Study and Experimental Results

	Appendix A References

