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Abstract. Frequency Estimation methods have the ability to resolve complex 
exponentials that are closely spaced in frequency. The estimation of the 
frequencies is based on the eigen decomposition of the autocorrelation matrix of 
the input data. The autocorrelation matrix after eigen decomposition produces 
two subspaces, namely noise subspace and signal subspace. The methods that 
are based on the estimation of frequencies using noise subspace of the 
autocorrelation matrix are called Noise subspace methods of Frequency 
Estimation. Pisarenko Harmonic Decomposition, MUSIC method, Eigen Vector 
method and the Minimum Norm methods belongs to the category of Noise 
subspace methods. This paper investigates the performance evaluation of all the 
Noise Subspace methods of frequency estimation techniques for a common 
Synthetic Power signal having harmonics at 600Hz, 900Hz and 1500Hz with a 
sampling frequency of 3000Hz. Extensive Monte-Carlo simulation is carried 
out for ten numbers of times and the simulated figures are shown. The values 
obtained after the application of Noise subspace methods are compared with 
that of the actual inputs and are tabulated. The simulation of all methods is 
performed by using MATLAB software. 

Keywords: Autocorrelation matrix, Eigen decomposition, Eigen Vector 
method, Minimum Norm method, MUSIC method, Noise Subspace, Pisarenko 
Harmonic Decomposition. 

1   Introduction 

The methods of Spectrum Estimation which have the ability to resolve complex 
exponentials that are closely spaced in frequency are known as Harmonic or 
Frequency Estimation methods [1, 2]. These methods use models in estimating the 
power spectrum of a WSS random process.  The estimation of frequencies depends on 
the eigen decomposition of the autocorrelation matrix into subspaces, a signal 
subspace and a noise subspace. The Pisarenko Harmonic Decomposition method, 
MUlti SIgnal Classification (MUSIC) method, Eigen Vector method and Minimum 
Norm method belongs to the category of Noise subspace methods of frequency 
estimation. Section 1.1 describes the eigen decomposition of the autocorrelation 
matrix. 
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In order to motivate the use of an eigendecomposition of the autocorrelation matrix 
as an approach that may be used for frequency estimation, consider the first-order 
process 
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That consists of a single complex exponential in white noise. The amplitude of the 

complex exponential is  1
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φjeAA =  where 1φ  is a uniformly distributed random 

variable, and ω(n) is white noise that has a variance of 2
ωσ , the autocorrelation 

sequence of x(n) is  
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where P1 = |A1|
2 is the power in the complex exponential. Therefore, the M M×  

autocorrelation matrix for x(n) is a sum of an autocorrelation matrix due to the signal, 
Rs, and an autocorrelation matrix due to the noise, Rn, 

    Rx = Rs + Rn (3)

It is possible to extract all of the parameters of interest about x(n) from the 
eigenvalues and eigenvectors of 

xR  as follows: 

1. Perform an eigendecomposition of the autocorrelation matrix, 
xR . The largest 

eigenvalue will be equal to 2
1 wMP σ+  and the remaining eigenvalues will be equal 

to 2
wσ . 

2. Use the eigenvalues of 
xR to solve for the power 1P  and the noise variance as 

follows: 
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3. Determine the frequency 1ω from the eigenvector maxv that is associated with the 

largest eigenvalue using, for example, the second coefficient of maxv , 

    maxarg{ (1)}i vω =  (5)

2   Mathematical Modeling 

The Frequency Estimation methods use models in estimating the power spectrum of a 
WSS random process. Various models are used for estimating the frequencies of 
complex exponentials in noise using the noise subspace of the eigen decomposed 
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autocorrelation matrix. The following sections give the detailed mathematical 
modeling of the noise subspace methods of frequency estimation techniques. 

2.1   Pisarenko Harmonic Decomposition 

This method is based on the determination of frequencies that are derived from the 
eigenvector corresponding to the minimum eigenvalue of the autocorrelation matrix. 
The steps involved in the determination of frequencies using Pisarenko Harmonic 
Decomposition method are summarized as follows: 

Step 1: Given that a process consists of p complex exponentials in white noise, find 

the minimum eigenvalue minλ and the  corresponding eigenvector minv of 

the ( 1) ( 1)p p+ × +  autocorrelation  matrix 
xR . 

Step 2: Set the white noise power equal to the minimum eigenvalue, 2
min wλ σ= , and 

set the frequencies equal to the angles of the roots of the eigenfilter 

    
min min
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or the location of the peaks in the frequency estimation function 
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e v
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Step 3: Compute the powers of the complex exponentials by solving the linear 
equations (8). 
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2.2   MUSIC Method 

This method determines the frequencies of complex exponentials in noise by reducing 
the effects of spurious peaks. To see how the MUSIC algorithm works, assume that x(n) 
is a random process consisting of p complex exponentials in white noise with a variance 

of 2
wσ , and let xR  be the M M× autocorrelation matrix with 1M p> + . If the 

eigenvalues of  xR  are arranged in decreasing order, 1 2 Mλ λ λ≥ ≥ ≥… , and if 

1 2, , , Mv v v…  are the corresponding eigenvectors, then we may divide these 

eigenvectors into two groups: the p signal eigenvectors corresponding to the p largest 

eigenvalues, and the M-p noise eigenvectors that, ideally, have eigenvalues equal to 2
wσ . 
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Although we could consider estimating the white noise variance by averaging the M-p 
smallest eigenvalues 
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Estimating the frequencies of the complex exponentials is a bit more difficult. Since 

the eigenvectors of xR are of length M, each of the noise subspace eigenfilters 
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will have M-1 roots (zeros). Ideally, p of these roots will lie on the unit circle at the 
frequencies of the complex exponentials, and the eigen spectrum 
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associated with the noise eigenvector iv will exhibit sharp peaks at the frequencies of 

the complex exponentials. However, the remaining (M-p-1) zeros may lie anywhere 
and, infact, some may lie close to the unit circle, giving rise to spurious peaks In the 
eigenspectrum. Furthermore, with inexact autocorrelations, the zeros of ( )iV z  that are 

on the unit circle may not remain on the unit circle. Therefore, when only one noise 
eigenvector is used to estimate the complex exponential frequencies, there may be 
some ambiguity in distinguishing the desired peaks from the spurious ones[1,4]. In 
the MUSIC algorithm, the effects of these spurious peaks are reduced by averaging, 
using the frequency estimation function 
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The frequencies of the complex exponentials are then taken as the locations of the p 
largest peaks in ˆ ( )j

MUP e ω . Once the frequencies have been determined the power of 

each complex exponential may be found using Eq.(12). 

2.3   Eigen Vector Method 

The Frequency Estimation method in which the frequencies of complex exponentials 
in noise are determined by reducing the effects of spurious peaks by averaging and 
this procedure also involves multiplication of the inverse of eigenvalues associated 
with the eigen vectors is known as Eigen Vector method. Specifically, the EV method 
estimates the exponential frequencies from the peaks of the eigenspectrum 
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where iλ  is the eigenvalue associated with the eigenvector iv  

2.4   Minimum Norm Method 

The minimum norm algorithm uses a single vector a  that is constrained to lie in the 
noise subspace, and the complex exponential frequencies are estimated from the 
peaks of the frequency estimation function, 
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(14)

With a  constrained to lie in the noise subspace, if the autocorrelation sequence is 

known exactly, then 
2He a will have nulls at the frequencies of each complex 

exponential. Therefore, the z-transform of the coefficients in a  may be factored as 
follows:  
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where kz  for 1, , 1k p M= + −…  are the spurious roots that do not, in general, lie 

on the unit circle. The problem then is to determine which vector in the noise 

subspace minimizes the effects of the spurious zeros on the peaks of ˆ ( )j
MNP e ω . The 

approach that is used in the minimum norm algorithm is to find the vector a  that 
satisfies the following three constraints: 

1. The vector a  lies in the noise subspace. 
2. The vector a  has minimum norm. 
3. The first element of a  is unity. 

3   Selection Criteria for Performance Evaluation 

An important factor in the selection of a spectrum estimation technique is the 
performance of the estimator. In comparing one non-parametric method to another, 
there is a trade-off between resolution and variance. The variability,ν of the estimate 
is represented as,  
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The variability must be as low as possible in order to determine the given non-
parametric method as the best method. 

Resolution, wΔ  of the estimate is represented as, 

    12 ffw −=Δ  (17)

where 12 ff −  is the bandwidth of the mainlobe [4,5]. 

The resolution must be high in order to determine the given non-parametric method 
as the best method. 

The overall figure of merit μ  is defined as the product of the variability, ν  and 

the resolution wΔ . 

    wΔ= νμ  (18)

As the figure of merit decreases the performance of the non-parametric method 
increases, so the figure of merit should be as low as possible [6].  

4   Monte-Carlo Simulation of a Synthetic Signal Consisting  
of Harmonics 

For the purpose of simulation a signal x(n) consisting of three complex exponentials 
in white noise is considered. It is represented as, 
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=
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where the amplitudes kA are equal to one, the frequencies 

 are 0.2 , 0.3  and 0.5kω π π π (the denormalized frequencies are 200Hz, 300Hz and 

500Hz) , the phases are uncorrelated random variables that are uniformly distributed 
over the interval [0,2 ]π , and the variance of the white noise is 2 0.5wσ = . Using ten 

different realizations of x(n) with 64N = values, overlay plots of the frequency 
estimation functions using Pisarenko’s method, the MUSIC algorithm, the 
eigenvector method, and the minimum norm algorithm are shown in the Fig.s  1(a), 
2(a), 3(a) and 4(a) respectively. The average of the Monte-Carlo simulated plots are 
shown in Fig.s 1(b), 2(b), 3(b) and 4(b) respectively.  
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Fig. 1(a). Monte-Carlo simulated Pisarenko’s estimates of x(n) 
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Fig. 1(b). Avg of Monte-Carlo simulated Pisarenko’s estimates of x(n) 
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Fig. 2(a). Monte-Carlo simulated MUSIC estimates of x(n) 
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Fig. 2(b). Avg of Monte-Carlo simulated MUSIC estimates of x(n) 
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Fig. 3(a). Monte-Carlo simulated Eigen Vector estimates of x(n) 
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Fig. 3(b). Avg of Monte-Carlo simulated Eigen Vector estimates of x(n) 
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Fig. 4(a). Monte-Carlo simulated Minimum Norm estimates of x(n) 
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Fig. 4(b). Avg of Monte-Carlo simulated Minimum Norm estimates of x(n) 
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The estimated frequencies are compared with the true values and are represented in 
Table 1. 

Table 1. Comparison of Estimated Vs True Frequencies for Various Noise Subspace based 
Methods 

 
Method Used 

 
Frequency (Hz) 

 
Frequency (Hz) 

 
Frequency (Hz) 

True Estimated True Estimated True Estimated 

 
Pisarenko 
Harmonic 

Decomposition 

 
600 

 
 

732.3000 
 

 
900 

 
750 

 
1500 

 
1500 

 
MUSIC 

 
600 

 
597.6000 

 
900 

 
908.4000 

 
1500 

 
1500 

 
Eigen Vector 

 
600 

 
591.9000 

 
900 

 
 

906.1000 
 

 
1500 

 
1500 

 
Minimum Norm 

 
600 

 
 

597.6000 
 

 
900 

 
 

902.4000 
 

 
1500 

 
 

1500 
 

 
Performance Evaluation of Noise subspace methods of Frequency Estimation is 

done according to the selection criteria and is represented in Table 2. Since the 
estimation of frequencies can be compared with the true values, one more parameter 
named accuracy is added in the evaluation process which gives the closeness of the 
estimated result to the true value.  

Table 2. Performance Evaluation of Noise subspace based Frequency Estimation methods 

Method Used Variability Resolution Figure of merit Accuracy 
Pisarenko 1.4876 0.6 0.8926 33.33% 
MUSIC 0.0108 0.9 0.0097 92% 

Eigen Vector 0.0901 0.75 0.0676 92% 
Minimum Norm 0.0471 0.7 0.0330 94% 

5   Conclusion 

A synthetic power signal having harmonics at 600Hz, 900Hz and 1500Hz with a 
sampling frequency of 3000Hz is simulated using extensive Monte-Carlo simulation 
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for ten times.  It is observed from the simulated results and Tabular forms 1.0 and 2.0 
that the performance of MUSIC method is best when compared to all other Noise 
subspace based Frequency Estimation techniques, as it produced least variability, 
figure of merit, good accuracy and highest resolution. It is also observed from the 
simulated results that the effect of spurious peaks which gives ambiguity regarding 
the detection of exact harmonic frequencies is least with the MUSIC method and 
highest with the Pisarenko Harmonic Decomposition. Therefore, the MUSIC method 
exactly suits in predicting the presence of harmonic frequencies as well as 
magnitudes. 
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