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Abstract. Protein Structure Prediction (PSP) is a challenging problem in 
bioinformatics and computational biology research for its immense scope of 
application in drug design, disease prediction, name a few. Developing a 
suitable optimization technique for predicting the structure of proteins has been 
addressed in the paper, using Differential Evolutionary (DE) algorithm applied 
in the square 2D HP lattice model. In the work, we concentrate on handling 
infeasible solutions and modify control parameters like population size (NP), 
scale factor (F), crossover ratio (CR) and mutation strategy of the DE algorithm 
to improve its performance in PSP problem. The proposed method is compared 
with the existing methods using benchmark sequence of protein databases, 
showing very promising and effective performance in PSP problem. 

1   Introduction 

One of the greatest challenges in bioinformatics research is to solve protein folding 
problem, called protein structure prediction from its primary amino acids sequences. 
A protein is represented by a sequence of 20 different amino acids, joined end to end 
by formation of peptide bonds. Fig. 1 shows the peptide bond between two amino 
acids. 

 

Fig. 1. Peptide Bonds among two amino acids 
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The 3D structure (native structure) of a protein describes biological functions, 
which play an important role in drug design, disease prediction and so on. Biological 
scientists predict the structure of proteins by experiments like X-ray crystallography 
and nuclear Magnetic Resonance (NMR) [1]. However, these processes are very time 
consuming and expensive too, so researchers concentrate on protein structure 
prediction using computational strategies. 

Even for a small protein sequence, exhaustive search is impossible due to the 
exponential growth in the number of possible conformations with the number of 
amino acids. Moreover, the computational analysis of the prediction of structures is 
intractable by using simple lattice models [2]. To overcome the limitations, 
researchers use a heuristic optimization method, in particular evolutionary algorithms 
[3, 4, 5] to predict 3D protein structure. In this work, simple 2D HP lattice model [6] 
has been considered where amino acids are characterized by polar (P) and non-polar 
(H) residues of amino acid. In this model, each H and P is embedded on 2-D square 
lattice with non-overlapping amino acids, called feasible conformation. In infeasible 
conformation, amino acids are overlapping on lattice. The total numbers of 
hydrophobic contacts i.e., H-H non local contacts between the amino acids, which are 
not adjacent in the sequence are used as energy function in this model. 

In the paper, a Differential Evolutionary (DE) algorithm for protein structure 
prediction (PSP) problem based on the 2D HP lattice model has been presented. First 
infeasible conformation is converted to feasible conformations by checking possible 
relative movement of the amino acids. To improve the performance of the DE 
algorithm, selections of control parameters such as NP, F, and CR are modified. 
Finally, results produced by this algorithm are compared with previously published 
results. 
The paper is structured as follows: Section 2 presents the preliminaries of 2D HP 
lattice model and section 3 describe the Differential Evolutionary Algorithm briefly. 
Methodology for applying DE algorithm to PSP problem is described in section 4. In 
section 5, the experimental results are compared against other known algorithms. 
Finally, conclusion and future direction is summarized in section 6. 

2   2D HP Model 

The most widely used discrete model for protein structure prediction is 2D HP lattice 
model [6]. In this model each amino acid is classified as hydrophobic or non-polar 
(H) or a hydrophilic or polar (P) based on their hydrophobicity. Conformation of a 
protein is then represented as a self-avoiding walk i.e., a feasible conformation in a 
2D HP square lattice. The basic concept of this model is that the hydrophobic (H) 
amino acids lying in its core to provide more stable structure with minimum free 
energy. Each hydrophobic (H) amino acids tend to avoid interact with solvent 
environment and hence tend to move inside the structure where polar amino acids 
remain on the outside of the structure. 

An H-H non local bond is a pair of Hs that are adjacent in the lattice but not in the 
sequence. The native conformation of a protein corresponds to the minimum free 
energy conformation for that protein. The optimal feasible conformation in the square 
2D HP lattice model is one that has the maximum number of H-H non local bonds, 
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4.2   Initial Population 

Initial population has been generated randomly using the relative internal coordinate 
encoding scheme. Therefore, the conformation of a protein is represented by a string 
of alphabets F, L, and R. Using this scheme, the conformations of proteins may be 
feasible (non overlapping of amino acids on the lattice) or infeasible (overlapping of 
amino acids). Thus, using the above defined genotype-phenotype mapping we convert 
the string of conformation to real valued vector, because in Differential Evolutionary 
algorithm every individual is real valued vector. When evaluating the fitness 
(maximum number of H-H non local bonds) of a conformation, again the individual 
(real valued vector) is converted to string of alphabets F, L, and R using the same 
genotype-phenotype mapping. We assume, the infeasible conformations are given a 
fitness of -1 and a mechanism is proposed to convert the infeasible conformation to 
feasible one. 

4.3   Proposed Mechanism 

Basically, there is no fixed technique for converting infeasible conformation to 
feasible ones. In this mechanism, an infeasible protein conformation (string of 
characters F, L, R) is taken as inputs. First, we check a movement of the string one by 
one from the starting movement to end of infeasible conformation to check whether 
conflict (existences of overlapping) is occurred or not. If any conflict occurred with 
the movement, then we check the possible movement except the current movement 
resulting nonoccurrence of conflict. If one possible movement exists, we replace the 
current movement by finding new movement and rest of the movements is unchanged 
in which no conflict occurs. If there is two possible movements exist, select any one 
arbitrarily. This checking procedure is repeated through the rest of the movements in 
the infeasible conformation. If there is no possible movement, we consider this 
conformation is an infeasible conformation and assign the fitness to -1. Since, our 
objective is to maximize the number of H-H non local bonds using the DE therefore, 
after some generation infeasible conformation has been removed from the population. 
The proposed algorithm is shown in Fig. 3. In Fig. 4, (a) is an infeasible conformation 
with string ‘FFLLRLLFLR’. The movement F creates a conflict with 1st and 9th 
amino acids. There are two movements: L and R are to be checked. But L movement 
also creates a conflict with 5th amino acid. Therefore, only R movement is possible as 
shown in (b) where the feasible conformation is FFLLRLLRLR. In Fig. 4, (c) is the 
infeasible conformation where (d) and (e) are the two possible feasible conformations. 
In Fig. 4, (f) is an infeasible conformation with string ‘FLFLFLLFF’. The movement 
F creates a conflict with 3rd and 9th amino acids. Two movements L and R conflict 
with 5th and 1st amino acid and so this remains as infeasible conformation. 

4.4   DE control Parameters 

The mutation strategy, crossover strategy and control parameters such as the 
population size (NP), crossover ratio (CR) and the scale factor (F) are strongly 
influence the performance [10, 13] of the DE algorithm. Therefore, it is necessary 
for appropriate combination of strategy and their associated parameter values to 
solve specific optimization problems. In DE, larger population size explores the 
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search space but decrease the probability to find the correct search direction. In this 
work, we used the population size (NP) from 5D to 10D (D is the dimension of the 
problem) [8]. 

 

Fig. 3. Algorithm for converted infeasible conformation to feasible conformation 

The exploration and exploitation of the DE algorithms is very sensitive to the 
selection of mutation strategy. The donor vectors are created using mutation strategy. 
The most widely used strategy are DE/rand/1/- and DE/best/1/-. The first strategy is 
responsible for exploring the search space and the other is used for fast convergence to 
global optima. Initially, we used DE/best/1/- strategy but if no improvement in best 
fitness have been seen with N number of generations, then change to strategy 
DE/rand/1/- up to M number of generations. If fitness is improved within M 
generations, back to the initial strategy, otherwise back to the initial strategy after M 
generations. Here, we also consider one difference vector to be perturbed because more 
difference vectors increase the convergence speed at the cost of possibility to trap at 
local optima. The scale factor (F) has great importance to the DE algorithm. The large 
values of F are used for escaping the solution from a local optimum and small values 
provide rapid convergence but high probability to trap to local optima. Therefore, we 
used F value from 0.5 to 0.9 at each generation to generate the donor vector. If some 
components of the donor vector violate its limits, then set the corresponding 
component to a random value within the specified limits of that component. 

In this paper, exponential crossover with crossover probability (CR) from 0.8 to 1. 
Since, large crossover rate speed up the convergence [11]. Here objective is to find 
the maximum number of H-H non local contacts. 

5   Results and Discussion 

In this section, we explain the results obtained by the improved DE algorithm on various 
benchmark sequence [14] and compare them with the results of protein structure 
prediction by Genetic algorithm [14], Multimeme Algorithm [15], DE approach [5] and 
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hybrid DE [16]. We are considering 50 runs for each benchmark sequence using 
different random seeds. For the experiments, we used the following parameters: NP ∈ 
[5D, 10D], F ∈ [0.5, 1] and CR ∈ [0.8, 1]. To explore the search space, alternatively use 
the strategy DE/best/1/exp. and DE/rand/1/exp. Using the above strategy adaption, we 
consider N=50 and M=70. The algorithm was developed in MatLab 2010b and run on a 
PC 2.26 GHz core 2 duo with 2 GB RAM under Windows XP. 

 

Fig. 4. (a) infeasible conformation of 11 lengths protein sequence; (b) feasible  conformation of 
(a); (c) infeasible conformation with two possible movements; (d) and (e) are the two feasible 
conformations of (c) and (f) infeasible conformation 

The benchmark sequences are shown in Table 1. These sequences of proteins are 
not the real world proteins but benchmark for 2D HP square lattice model. In Table 1, 
Hi, Pi and (HP)i represents the repetitions of the respective amino acids while Cmax 
represents the maximum number of H-H non local contacts known to date. 

Table 2 shows the results of the proposed approach and other evolutionary algorithmic 
approaches. In this table, 1st, 2nd and 3rd column shows the sequence number, length of 
the sequence and maximum (Cmax) H-H non local contacts respectively. The 4th, 5th, 6th 
and 7th column represent Cmax using Genetic Algorithms [14], Multimem Algorithms 
(MMA) [15], Differential Evolution approach [5] and hydrid DE [16]. Blank space in 5th 
column represents that the corresponding sequence is not considered. Last column, split 
by two: first, maximum H-H contacts are obtained and the number of times this 
maximum was found within the parenthesis in 50 independent runs. Next, the average 
number over 50 independent runs is listed in the last column. 

Result using the proposed approach is better or equal than the GA technique for all 
the sequences. For the sequence S1, S3, S4, S6 and S8 have equal Cmax in both MMA 
and the proposed one. For S5, we obtained better result over MMA while Cmax are 
same with the results by hybrid DE and DE approach except for the sequence S8. 
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Table 1. Benchmark sequence for 2D HP square lattice 

Seq.No
. 

HP Chain Length Cmax 

S1 HPHP2H2PHP2HPH2P2HPH 20 9 

S2 H2P2HP2HP2HP2HP2HP2HP2H2 24 9 

S3 P2HP2H2P4H2P4H2P4H2 25 8 

S4 P3H2P2H2P5H7P2H2P4H2P2HP2 36 14 

S5 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 23 

S6 H2PHPHPHPH4PHP3HP3HP4HP3HP3HPH4PHPHPHPH2 50 21 

S7 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 36 

S8 H12PHPHP2H2P2H2P2HP2H2P2H2P2HP2H2P2H2P2HPHPH12 64 42 

Table 2. Comparison of Results using different approaches 

Seq. No. Length Cmax GA[14] MMA 
[15] 

Hybrid 
DE[16] 

DE[5] Our Approach 

Max Average 
S1 20 9 9 9 9 9 9(50) 9.00 
S2 24 9 9  9 9 9(50) 9.00 
S3 25 8 8 8 8 8 8(50) 8.00 
S4 36 14 14 14 14 14 14(50) 14.00 

S5 48 23 22 22 23 23 23(45) 22.88 
S6 50 21 21 21 21 21 21(50) 21.00 
S7 60 36 34  35 35 35(42) 34.82 
S8 64 42 37 39 42 42 39(40) 38.80 

 
In this work, we considered smaller population size (NP), random scale factor (F) and 

random crossover rate (CR) within the defined range. These are the different from hybrid 
DE and DE approach in which they considered large population size and fixed F and CR 
value. Also, we proposed a mechanism which is different from the repair process in hybrid 
DE that converts the infeasible conformations to feasible conformations. consequently, our 
algorithms took few seconds to complete one run up to the 50 length sequence and for 60 
and 64 took average time 150 to 1000 seconds per run. 

6   Conclusion and Future Work 

In this paper, we proposed an improved DE algorithm for protein structure prediction 
using the 2D HP square lattice model. Our algorithm combines with the mechanism 
that converts infeasible conformation to feasible conformation. Random values of 
Scale Factor (F) and Crossover Ratio (CR) within the specific limits improves the 
performance of DE algorithm. Selection of small population size (NP) gives faster run 
within a specific generation. Experimental results on the benchmark sequences show 
that the proposed approach is promising and effective than GA and MMA and also  
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from standard DE approach with respect to NP and number of generations. We would 
like to improve the performance of DE algorithm using Neighborhood Search 
concepts for large sequence length of proteins and like to use the DE to predict the 
structure of a protein on the triangular lattice model. 
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