
S.C. Satapathy et al. (Eds.): Proceedings of the InConINDIA 2012, AISC 132, pp. 265–272.
springerlink.com © Springer-Verlag Berlin Heidelberg 201

GP Boosting Classification on Concept
Drifting Data Streams

Dirisala J. Nagendra Kumar1, J.V.R. Murthy2,
Suresh Chandra Satapathy3, and S.V.V.S.R. Kumar Pullela4

1 BVRICE, Bhimavaram, India
2 JNTUCE, Kakinada, India

3 ANITS, Visakhapatnam, India
4 VS Lakshmi Engg. College, Kakinada

{nagendrakumardj,mjonnalagedda,
sureshsatapathy,ravipullela}@gmail.com

Abstract. Genetic Programming is an evolutionary soft computing approach.
Data streams are the order of the day input sources. In general, data streams
exhibit a peculiar behavior of drifting the concepts as time passes by. Here is a
study of GP Classifier on Concept Drifting Data Streams. GP classifier
performance is compared to that of other state-of-the-art data mining and stream
classification approaches. Boosting is a machine learning meta-algorithm for
performing supervised learning. A weak learner is defined to be a classifier
which is only slightly correlated with the true classification. In contrast, a
strong learner is a classifier that is arbitrarily well-correlated with the true
classification. Boosting combines a set of weak learners to create a strong
learner. It is observed that the Boosting GP approach is beating Boosting Naïve
Bayes classification on Concept Drifting Data Streams. Hence it is found that
GP is a competent algorithm for Concept Drifting Data Stream classification.

Keywords: Genetic Programming, Classification, Multi-class, Boosting, Data
Stream, Stream Mining, Concept Drifting Data Stream.

1 Introduction

Many organizations are being dumped with tremendous amount of continuous flow of
data, due to a sequence of events from different locations of the organization.
Telephone records, credit/debit card transactions, sensor networks, network event
logs, web log data, online sales transactions are some examples of data streams.
Traditional approach for mining data is known as batch processing, as it assumes data
as a static entity. Now data streams stresses the need of online and incremental data
mining techniques, of course should be able to deal with concepts drifts in some
cases.

Classification is a major data mining technique [6][13]. Genetic Programming
(GP) is one of the famous classification techniques, which has its roots in Genetic
Algorithms (GA) [7-9]. Bagging and Boosting are two meta learners in data mining
[6][12][13].

2

266 D.J. Nagendra Kumar et al.

Data stream classification is studied in [15-20]. Mohammad M. Masud et. al.
studied Mine Class Algorithm for automatic detection of a novel class in presence of
concept-drift [15]. Gianluigi Folino et. al. has studied a StreamGP approach with
adaptive boosting ensemble algorithm for classifying homogeneous distributed data
streams [16]. Hussein A. Abbass et. al. made a detailed study of online adaption in
learning classifier systems for stream data mining based on Genetic Algorithms [17].
Yi Zhnag and Xiaoming Jin built an ensemble classification technique on data
streams [18]. New ensemble methods for evolving data streams are studied by Albert
Bifet et. al.[20]. Wenyan Wu and Le Gruenwald studied various issues involved in
simultaneous mining of multiple data streams [19].

Most of the work on classification concentrates on binary classification problems.
Traditionally Maximum Likelihood Classifier (MLC) [10], Bayesian networks [10],
and Neural networks (NN) [11] are the most successful approaches for multi-class
classification.

Genetic Programming (GP) is a stochastic approach, derived from Genetic
Algorithms (GA), to solve various computer related problems by automatically
constructing programs simulating the biological evolution [8]. GP is a nice approach
for solving the binary and multi-class classification problems. It guarantees good
classification accuracy if enough training time is given to evolve a higher accuracy
GP classifier [2]. An attempt is made to reduce this training time to a reasonable
degree. The goals that are tried to meet are simplicity, scalability, and high accuracy.
The GP classifier has to find fitness for all fitness cases, which may not be stored in
main memory for larger datasets. In order to achieve scalability, the size of training
data set sampled at a time is restricted to a portion of main memory available. Topon
Kumar Paul, and Hitoshi Iba [5] implemented the ensemble approach of Boosting
based on GP and called it “a majority voting genetic programming classifier”.

T. Loveard and V. Ciesielski [1] proposed five alternative methods to perform GP-
based multi-class classification, viz., Binary decomposition, Static range selection,
dynamic range selection, class enumeration and evidence accumulation.

J. K. Kishore et al.[2] modeled the n-class pattern classification problem as an n
two-class problems. A Genetic programming classifier expression (GPCE) is evolved
as a discriminant function for each class. Each GPCE recognizes data samples
belonging to its own class and rejects samples belonging to other classes. In [2]-[4],
[14] the authors designed a classifier with n binary-trees for the n-class classification
problem.

D.P. Muni et al. [3] improved the approach of J.K. Kishore et al.[2] by generating
the classifier in one pass. D.P. Muni et al. extended their earlier work to suit for
feature selection (FS) in [4], proposing a wrapper approach for FS.

Topan Kumar Paul, and Hitoshi Iba [5] proposed a majority voting technique,
which evolves multiple GP rules and apply those rules to test samples to determine
their labels and count their votes in favor of a particular class. Then the sample is
assigned to the class that gets the highest number of votes in favor of it.

T. Loveard and V. Ciesielski[1] used the total training set as exemplar set. In [3],
[4], D.P. Muni et al. used step-wise learning, which takes a smaller exemplar set
initially, and gradually increases the exemplar set to the whole training set.

 GP Boosting Classification on Concept Drifting Data Streams 267

2 Data Streams

The recent advances in hardware and software have enabled the capture of various
measurements of data in a wide range of fields. These measurements are generated
continuously and in a very high fluctuating data rates. Examples include sensor
networks, web logs, and computer network traffic. The storage, querying and mining
of such data sets are highly computationally challenging tasks. Mining data streams is
concerned with extracting knowledge structures represented in models and patterns in
non stopping streams of information. The research in data stream mining has gained a
high attention due to the importance of its applications and the increasing generation
of streaming information. Applications of data stream analysis can vary from critical
scientific and astronomical applications to important business and financial ones.
Algorithms, systems and frameworks that address streaming challenges have been
developed over the past decade. There is a real need inspired by the potential
applications in astronomy and scientific laboratories as well as business applications.

3 GP Boosting Approach for Data Stream Classification

Once a GP classification program predicting the class labels is built, it can be used
directly for classification, or combine the GP programs into a more efficient solution.
There are several ways to combine classifiers. For example, one can use a voting
system for the results of several classifiers.

In the case of a classification problem with n classes, there are several approaches
to build classifiers. The three most common approaches are:

1. Develop a single classifier that gives, as output, the class of the new sample as
input.
2. Develop n classifiers. Each classifier is responsible for recognizing a particular
class.
3. Develop a classifier for each pair of classes. Each classifier is responsible to decide
between two classes in particular.

The method 2, n-classifier approach, is the best approach [23]. Thus a variant of
method 2 is used in this study. With this method, the classifiers obtained by the GP
must have some type of output value. Two approaches were again proposed:

1. Binary classifier

If the classifier result is 0, it predicts that the sample is not part of the class, or if 1
predicts that the sample belongs to the class.

2. Classifier with Continuous Output

The result is a decimal value (eg between 0.0 and 1.0) that represents the confidence
with which the classifier links the sample with the designated class.

When a new sample is introduced, each classifier must predict whether the sample
belongs to the class for which it was trained. The combined classifier has the output
value that determines the largest class of the new sample. In the event of a tie, the
classifier that has the highest probability will be identified as the class of new sample.

268 D.J. Nagendra Kumar et al.

The present work integrates the boosting meta learner with the evolutionary
process of GP. Boosting algorithm is applied on n-class GP classifiers. Here each
classifier predicts the confidence with which the classifier is assigned the class.
Several studies on the implementation of a method for boosting the GP have reported
significant gains in terms of classifier accuracy and computation time of the algorithm
[21-22]. The integration of the principles of boosting even within the GP process
allows greater economy of resources. Here is the pseudo code of the Boosting GP
approach adapted here:

C = number of classes of the problem
P = number of necessary programs for boosting
Training set, T = all training data available
N = total number of samples in T
For all Cj (j = 1 to C)
 Empty the GP population, POP
 Initialize the weight of each sample W with Wi = 1/N
 For all Pk (k = 1 to P)
 If POP is empty, fill POP with a new set of programs.
 Changing a program that recognizes the class C (the calculation of
fitness uses the weight Wi of each sample to classify), using T and POP.
 Calculate the error of the best program, Ejk on the training set, a

factor αjk and then the weight of each sample Wi using AdaBoost method.

 End for P
End for C

A sample can be classified using the strongest response in a weighted sum of the
outputs of programs by class (using equation 1).

))*((max
1

α jkjk

P

k
a∑

=

 (1)

By the end of the routine, P*C programs (where P programs for each class of the C
classes) are obtained. The classification score for class j is obtained by the weighted
sum by αjk output of each program jk. The class that scores the highest indicates the

class of the given sample:

4 Fitness Function for GP Boosting Approach

The fitness is the measure of GP program performance in the prediction of output
values from input samples. It is therefore an indication of relevance of the program
for classifying the samples in training dataset. Fitness is a numeric value, allowing us
to compare the performance of programs. Fitness is used to select programs in the
population to transform further.

Fitness function is the result of classifications on the training data. This function
compares the value of predicted class and actual class provided in the training data.
The fitness function depends on the approach used in the combination of classifiers.

 GP Boosting Classification on Concept Drifting Data Streams 269

1. For a single classifier approach, fitness is simply the number of correct predictions
of the program. This value can be normalized (between 0.0 and 1.0) by dividing the
number of matching samples in the data set by the total number of samples in training
dataset.
2. In the case of an approach of n-class classifier, the calculation of the fitness
depends on the classifier chosen:

a) Binary Classifier: It is as in the single classifier approach.
b) Classifier with Continuous Output: The output of the program P is a value of
limited trust between -1.0 and 1.0. Fitness is calculated from the sum of S values of
confidence of Pi for each sample, depending on the class C provided by the training
data set.

∑=
j

iCiPS)(*)((2)

C (i) is 1.0 if the sample i belongs to the class recognized and -1.0 otherwise. Finally,
fitness is the sum of S values, normalized between 0.0 and 1.0.
c) Classifier output continues to boosting algorithm built: The technique is essentially
the same as (b), but the weight W of training samples is taken into account:

∑=
j

iCiWiPS)(*)(*)((3)

As the weight of the samples is also normalized (total weight is 1.0), the sum S can be
normalized in the same way as in (b). So for a classification problem, the more fit, the
more the program is effective. A perfect prediction rate is obtained when the fit is 1.0.
Here 2(c) approach is followed. Every Genetic Programming approach needs some
parameters to be specified. In this approach, the GP parameters used are given in
Table 1.

Table 1. The default GP parameters used for GP Classifier Construction

Parameter Values
Population size 100
Maximum depth 5
Stopping Criteria Fitness=99%, Max. Generations=100, Max. Time=5 min.
Population Initialization Ramped-half-and-half
Selection Roulette wheel
GP operator proportions Crossover=90%, Mutation=7%, New Program=3%

5 Results

The data on which the classifiers are executed are 2-class and 5-class Concept Drift
Random trees each with 10 Million rows and the evaluation is through interleaved test
then train evaluation. The result of GP classification on the above datasets is as
follows:

270 D.J. Nagendra Kumar et al.

Table 2. The time taken and classifier accuracy % of various classifiers on 2-class Concept
Drift Random trees

Classifier Functions Time in sec. Accuracy %
AdaBoost M1+ NB -- 1h4m55s 72.02
GP +, -, *, / 59m38s 73.01
GP +,-,*,/,If, <, > 1h4m34s 73.85
GP If, <, > 31m18s 57.82
GP If,<,>,!,&,| 30m32s 71.17

Table 3. The time taken and classifier accuracy % of various classifiers on 5-class Concept
Drift Random trees

Classifier Functions Time in sec. Accuracy %
Adaboost M1+ NB -- 1h40m19s 54.20
GP +, -, *, / 1h42m37s 54.73
GP +,-,*,/,If,<,> 2h5m12s 45.31
GP If, <, > 50m28s 37.54
GP If, <, >, !, &, | 1h20m11s 43.43

In case of the above 2-class Random tree dataset, Boosting GP with +,-,*, /, If, <, >

functions classifying with 73.85% accuracy is better than that of the combination of
AdaBoostM1 and Naïve Bayes Classification with 72.02% accuracy. And for 5-class
Random tree dataset, Boosting GP with functions +, -, *, / classifying with 54.73%
accuracy is above that of the combination of AdaBoostM1 and Naïve Bayes classifier
with 54.20% accuracy. The only disadvantage is that there is no single combination of
GP functions and parameters suitable for all datasets. Hence in general, this Boosting
GP is a good candidate for Concept Drifting Stream classification and is suitable for
further work.

6 Conclusions

It is found that Boosting GP Classifier is a competent approach for classifying
concept drifting data streams. The issue is changing accuracies of GP classifier with
functions and GP parameters. The next goal is to improve the GP approach in two
respects: accuracy and reducing execution time. Trying various proportions of GP
functions like crossover, mutation, selection, and etc, may result in better accurate GP
programs. Applying some statistical methods like Principal Component
Analysis(PCA) as preprocessing step and applying some clustering, like Expectation
Maximization clustering, may make this approach faster. The further research work
will be in the above direction.

 GP Boosting Classification on Concept Drifting Data Streams 271

References

1. Loveard, T., Ciesielski, V.: Representing classification problems in genetic programming.
In: Proc. Congr. Evolutionary Computation, May 27-30, pp. 1070–1077 (2001)

2. Kishore, J.K., Patnaik, L.M., Mani, V., Agrawal, V.K.: Application of genetic
programming for multicategory pattern classification. IEEE Transaction on Evolutionary
Computation 4, 242–258 (2000)

3. Muni, D.P., Pal, N.R., Das, J.: A novel approach for designing classifiers using genetic
programming. IEEE Trans. Evolut. Comput. 8(2), 183–196 (2004)

4. Muni, D.P., Pal, N.R., Das, J.: Genetic programming for simultaneous feature selection
and classifier design. Systems, Man, and Cybernetics, IEEE Transactions on Systems,
Man, and Cybernetics, Part B 36(1), 106–117 (2006)

5. Paul, T.K., Iba, H.: Prediction of Cancer class with Majority Voting Genetic Programming
Classifier Using Gene Expression Data. 2009 IEEE/ACM Trans. on Computational
Biology and Bioinformatics 6(2), 363–367 (2009)

6. Han, J., Kamber, M.: Data Mining Concepts and Techniques, 2nd edn. Elsevier (2006)
7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, Reading (1989)
8. Koza, J.R.: Genetic Programming: On the programming of Computers by Means of

Natural Selection. M.I.T. Press, Cambridge (1992)
9. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to Genetic Programming (March

2008), http://www.gp-field-guide.org.uk
10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley and Sons

(2001)
11. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representation by error

propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing.
MIT Press (1986)

12. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
13. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Person Education

(2006)
14. Nagendra Kumar, D.J., Satapathy, S.C., Murthy, J.V.R.: A scalable genetic programming

multi-class ensemble classifier. In: World Congress on Nature & Biologically Inspired
Computing, NaBIC 2009, pp. 1201–1206 (2009), doi:10.1109/NABIC.2009.5393788

15. Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham, B.: Integrating Novel Class
Detection with Classification for Concept-Drifting Data Streams. In: Buntine, W.,
Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS,
vol. 5782, pp. 79–94. Springer, Heidelberg (2009)

16. Folino, G., Pizzuti, C., Spezzano, G.: An Adaptive Distributed Ensemble Approach to
Mine Concept-Drifting Data Streams. In: ICTAI 2007 Proceedings of the 19th IEEE
International Conference on Tools with Artificial Intelligence, vol. 02 (2007)

17. Abbass, H.A., Bacardit, J., Butz, M.V., Llorà, X.: Online Adaptation in Learning
Classifier Systems: Stream Data Mining (2004)

18. Zhang, Y., Jin, X.: An automatic construction and organization strategy for ensemble
learning on data streams. ACM SIGMOD Record Homepage archive 35(3) (September
2006)

19. Wu, W., Gruenwald, L.: Research issues in mining multiple data streams. In: Stream KDD
2010 Proceedings of the First International Workshop on Novel Data Stream Pattern
Mining Techniques (2010)

272 D.J. Nagendra Kumar et al.

20. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble methods for
evolving data streams. In: 15th ACM SIGKDD Intl. Conference on Knowledge Discovery
and Data Mining (KDD 2009), Paris, France (June 2009)

21. Folino, G., Pizzuti, C., Spezzano, G.: Boosting Technique for Combining Cellular GP
Classifiers. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP
2004. LNCS, vol. 3003, pp. 47–56. Springer, Heidelberg (2004)

22. Paris, G., Robilliard, D., Fonlupt, C.: Genetic Programming with Boosting for
Ambiguities in Regression Problems. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K.,
Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, Springer, Heidelberg (2003)

23. Teredesai, A., Govindaraju, V.: Issues in Evolving GP based Classifiers for a Pattern
Recognition Task. In: Proceedings of the 2004 IEEE Congress on Evolutionary
Computation, pp. 509–515. IEEE Press (2004)

	GP Boosting Classification on ConceptDrifting Data Streams
	Introduction
	Data Streams
	GP Boosting Approach for Data Stream Classification
	Fitness Function for GP Boosting Approach
	Results
	Conclusions
	References

