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Abstract. In this study, we examine approaches to the problem of assembling 
large, contiguous sections of genetic code from short reads generated from 
laboratory techniques. We explore the Eulerian Path approach in detail, utilizing 
a de Bruijn Graph, and demonstrate current software technologies and 
algorithms using a sample genome. We investigate the input parameters of 
Velvet and discuss their implications.     
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1  Introduction 

Since the discovery of the DNA double helix in 1953 [1], science has sought to fully 
understand the information contained within it [2]. In a macro view, understanding an 
organism's genome can help reveal its phylogeny and origins, while the micro view 
can uncover information about disease susceptibility and cure. Small sections of an 
individual organism's genetic fingerprint that indicate the presence or absence of a 
particular trait are called genetic biomarkers. These biomarkers can be used to, for 
example, determine relation between organisms, gauge exposure to a particular 
genetic toxicant, predict inherited disease, or determine an optimal treatment 
approach. In order to understand genetic information, one must find a way to read the 
information contained within DNA or RNA. Genetic sequencing techniques were first 
developed in the early 1970's [3]. These complex methods, including the wandering-
spot technique were very labor intensive.  

Fredrick Sanger [4] and Gilbert [3] independently published research in 1977 that 
greatly simplified the sequencing process.  The Sanger method is a chain terminating 
technique that uses of dideoxynucleotide triphosphates (ddNTPs) to selectively 
terminate long strands of genetic material [5]. In this method, single stranded, 
denatured DNA source material is cloned and separated into four separate solutions 
containing one of ddATP, ddTTP, ddCTP, or ddGTP each. The dideoxynucleotides 
terminate the multiple copies of the DNA strand at each location of the target base, 
resulting in strands that begin at the origin and have length of the base location index. 
The output of the four dideoxynucleotide solutions is then separated by gel 
electrophoresis or flourescent absporption if dyes were used. The result is an index 
location of each base in the source DNA to a one-base resolution. Sanger sequencing 
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generates long reads of about one thousand bases, but requires weeks to months of 
costly laboratory time [6]. This technique is susceptible to cloning error [7], as parts 
of the cloning vector may enter the resulting sequence. 

An alternative to Sanger sequencing, pyrosequencing was developed by Nyrén and 
Ronaghi at the Royal Institute of Technology in Stockholm in 1998 [8]. This method 
involves iterative addition of bases in an enzymatic solution of Sulfurylase, 
Luciferase and Apryase. As each base bonds to the source material, a measurable 
amount of light is released per base. Repeat bases yield proportionately more light. 
After each base is introduced and bound, an enzyme is added to remove all unused 
bases before the next base is added. 

Pyrosequencing results in short length reads with an upper limit of approximately 
500 bases, however commercial implementations are constantly increasing the 
maximum read length. Pyrosequencing is also less expensive to perform than 
traditional techniques, with companies such as 454 Life Sciences producing all-in-one 
units [9]. This technique can produce approximately 25Mbp/4hr [10]. As this 
technique does not require traditional cloning, it is not susceptible to vector cloning 
error. It is, however, potentially less accurate in homopolar regions with a long series 
of repeating bases. Pyrosequencing techniques normally result in many copies of 
overlapping short reads. After the laboratory work is complete, the reads must then be 
assembled into a representation of the source sequence. Although various solutions 
exist for this problem, all require some amount of a priori assumption and reliance on 
yet to be fully verified metrics. The challenge, algorithmically, is to determine how 
each of the reads fits into the larger sequence. Information to support the selection 
amongst candidate solutions can come from existing, reference genomes, statistical 
models, or sheer read coverage. Once sequenced, data can be added to large, 
publically accessible genome databases such as NCBI [11] or GenomeNet [12]. The 
NCBI Basic Local Alignment Search Tool (BLAST) can be used to find regions of 
local similarity between sequences. The program [13] compares nucleotide or protein 
sequences to sequence databases and calculates the statistical significance of matches. 
BLAST can be used to infer functional and evolutionary relationships between 
sequences as well as help identify members of gene families.  

2  The EULERIAN Approach 

In this section, we describe the application of the EULERIAN path to short read 
assembly and its differences as compared to earlier methods. We discuss one 
available implementation – Velvet, and provide insight into its algorithm. Older 
approaches to the problem of read assembly were designed around the assembly of 
few, long reads. Many available programs utilized the “overlap-layout-consensus” 
paradigm which tests each possible read pair combination to determine the best 
matches. Each read is represented as a node, and each detected overlap is drawn as an 
arc between the overlapping nodes. Once matches are scored, the assembly is 
generated based on overlap scoring. Unfortunately, determining the layout leads to the 
NP-complete Hamiltonian Path Problem [14]. The difficulty of the Hamiltonian Path 
Problem is exacerbated when attempting to operate on an increased number of reads. 
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Pevzner proposed an alternative solution to the read assembly problem for 
sequencing by hybridization [15]. By making use of the de Bruijn Graph, he reduced 
read assembly to a solvable Eulerian Path Problem. Further work by Idury and 
Waterman [16] applied the Eulerian path to short fragment assembly by treating short 
fragment assembly as Sequencing by Hybridization problem. Pevzner, Tang and 
Waterman refined their Eulerian graph techniques in 2001 to include methods of error 
correction and repeat handling in data [15]. A de -Bruin graph is a directed, n-
dimensional graph of m symbols that represents overlaps between sequences of 
symbols. In graph theory, an n-dimensional de Bruijn graph of m symbols is a 
directed graph representing overlaps between sequences of symbols. It has mn 
vertices, consisting of all possible length-n sequences of the given symbols (the same 
symbol may appear multiple times in a sequence). If one of the vertices can be 
expressed by shifting all symbols by one place to the left and adding a new symbol at 
the end of another vertex, then the latter has a directed edge to the former vertex.  
Although de Bruijn graphs are named after Nicolaas Govert de Bruijn, they were 
discovered independently both by de Bruijn (1946) and I. J. Good (1946). Much 
earlier, Flye Sainte-Marie (1894) implicitly used their properties.   

Zerbino and Birney released a set of algorithms called “Velvet” [17] to manipulate 
de Bruijn graphs for genomic sequence assembly. In their implementation of the 
graph, a k-mer is defined as a substring of length k, extracted from a read. Each node 
contains a series of overlapping k-mers, with each overlap having length k-1 bases. 
Each node is attached to another, “mirror” node which contains the reverse series of 
k-mers. These mirror nodes take into account the complementary nature of genetic 
material. Nodes whose last k-mer overlaps with the first k-mer of another node are 
connected by a directed arc. (Fig 2.1) The assembled contiguous sequence or “contig” 
is represented by a traversal from the first k-mer of the first node through connected 
arcs to each other node. 

Once the input reads have been hashed into k-mers and assembled into nodes and 
arcs, the resulting graph must be simplified and cleared of errors. Velvet simplifies 
the graph by combining adjacent nodes with only one incoming and outgoing arc. 
This reduces the node count to only nodes with multiple arcs. Error correction is 
performed by eliminating “tips” and “bulges.” A “tip” is defined as a chain of nodes 
connected at only one end, and Velvet removes tips that do not meet minimum length 
and coverage requirements. A “bulge” is a redundant path that starts and ends at the 
same nodes as other paths with similar sequences. Velvet again employs a length 
threshold and simple sequence identity to condense or merge a bubble. Velvet is thus 
composed of four stages: hashing the reads into k-mers, constructing the de Bruijn 
graph, correcting errors, and resolving repeats. The first stage, graph construction, is 
memory intensive. The time complexity of error correction depends mainly on 
number of nodes in the graph, which is a result of read coverage, error rate, and 
number of repeats in the source material. The graph search used during error detection 
and correction employs the Dijkstra algorithm which has a time complexity of 
O(NlogN) when implimented with a Fibonacci heap [18]. Repeat resolution also 
depends on the number of nodes present in the graph and the average length of those 
nodes.  
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3  Methods 

To illustrate the operation of Velvet, we chose a specific, active coding gene of 
Escherichia coli str. K-12 substr. MG1655. This gene, NP_415534, codes for the 
enzyme proline dehydrogenase/pyrroline-5-carboxylate dehydrogenase which 
functions as a fused DNA-binding transcriptional regulator [12]. The E. coli genome 
has been extensively studied and fully sequenced [19] allowing for comparison of our 
assembly results with established sequence data. The NP_415534 gene sequence was 
obtained from GenomeNet [12] in its full form as an ASCII formatted fasta file [11]. 
This reference gene contains a total of 3963 ordered nucleotides. 

From the reference file, we used the read simulation function of MetaSim [20] to 
output two sets of simulated reads. The first set represents an “exact” or reference set 
in which, 5000 reads were taken directly from the source gene without introduced 
error. The output reads have a normal distribution across the source gene and an 
average read length of 997.87 base pairs. To illustrate real world data, we also 
generated a set of reads modeling the read output of the LifeSciences 454 sequencer 
[9]. These 5000 simulated reads contained 29890 insertions and 7321 deletions. Each 
insertion is the addition of an extra base not present in the original material. Each 
deletion is the removal of one base from the original material. Locations of these 
induced errors are based on characteristics of pyrosequencing such difficulties 
accurately reading homopolar regions. Average Read Length was 258.21 base pairs. 
Each of the simulated read sets were run through the Velvet Assembler using varying 
values of k-mer length (k), expected coverage (exp_cov) and coverage cutoff 
(cv_cut). Automation of parameter variation and report generation was assisted by the 
standardized velvet assembly report script project [21]. Expected coverage is the 
expected frequency of repeats of each source base. This is a function of the source 
material and the depth at which the sequencing was performed.  

Table 1 shows the parameter permutations used and their results for the simulated 
454 reads. “kmer” is the selection of k or kmer length. “cvCut” is coverage cutoff, a 
threshold used to determine if a node in the constructed de Bruijn graph should be 
included as part of the final assembly. “exp,” expected coverage, is the expected 
frequency of repeats of each source base. “ctgs” is the number of contigs. “asmLg,” 
“mean,” and “max” refer to the total length, mean, and maximum length of all 
assembled contigs respectively. “N50” refers to the length of the shortest contig in an 
assembly such that the sum of contigs of equal length or longer is at least 50% of the 
total length of all contigs. “1k” is the number of contigs over 1000 bases long. “tiles” 
is the number of reads that are used in an assembly. “rdPc” is percentage of input 
reads used in the assembly. Lower frequency nodes with coverage below the coverage 
cutoff value are suspected to be erroneous and are subsequently removed during 
graph error correction, especially during tip and bulge removal. This threshold 
specifies how many read k-mers must overlap for each contig kmer. The number of 
kmers per read is a function of read length L and k-mer length K (L-K+1) [21]. 
AMOS files of selected final assemblies were generated with velvet and opened for 
analysis with Hawkeye [22]. 
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experiment demonstrates how heavily parameter selection influences final assembly, 
thus consideration must be made when designing an experiment and performing the 
assembly. The value of k depends primarily on the nature of the source genome, 
particularly the length and abundance of repeats. With sufficiently high k, read 
utilization and resultant contig length increases with coverage cutoff, due to the 
removal of lower coverage nodes, however this elimination can lead to mis-
assemblies. A delicate balance exists between easing coverage limits to increase final 
assembled contig length and a reduction in accuracy. Some experiments, such as 
preliminary genome sequencing may seek wider coverage and fewer but longer nodes 
at the expense of 100% accuracy of individual bases, whereas small target sequencing 
of short gene segments may obtain the higher accuracy required by increasing read 
coverage. As the algorithms continue to mature, research into the automated choice of 
parameters will assist scientists when faced with the challenge of read assembly. 
Obtaining and integrating the various scripts and applications was a chore, as each 
had its own set of dependencies and special setup instructions. Velvet assembly and 
the associated tools would benefit from a cloud implementation, similar to that of 
NCBI's BLAST to provide a full suite of assembly tools with minimal or no 
configuration. Further efforts to understand the parameterization of short read 
assembly using Velvet should expand both the source data and selected parameter 
value set, possibly to include eukaryotic data. A more detailed study of k-mer length 
selection could also include recursive scanning of a reference genome for maximum 
repeat length and a priori comparison to the genomes of similar organisms. Continued 
effort to understand and evaluate the decisions used when simplifying or error 
correcting the de Bruijn graph will lead to higher quality assemblies and serve to 
unify the field. This includes statistical decision making as well as reference to 
biological markers and archived genomic data.    
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