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Klaus Höllig, Jörg Hörner, and Axel Hoffacker

Universität Stuttgart, IMNG
Pfaffenwaldring 57, 70569 Stuttgart,

Germany

Abstract. Weighted and isogeometric methods use b-splines to con-
struct bases for FEM. They combine the computational efficiency of
regular grids with the geometric flexibility of CAD representations. We
give a brief description of the key ideas of the two approaches, present-
ing them in a unified framework. In particular, we use b-spline nodes,
to visualize the free parameters. Moreover, we explain how to combine
features of both techniques by introducing weighted isogeometric finite
elements. An error estimate for the resulting mixed method is given, and
the performance of weighted approximations is illustrated by numerical
examples.
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1 Introduction

B-splines play an important role in many areas of applied mathematics and
engineering. With weighted1 and isogeometric2 methods, the advantages of the
b-spline calculus are made available also to finite element techniques. Moreover,
the new concepts provide a natural link from numerical simulation to geometric
modeling where b-splines have long become a standard tool.

The two approaches are described in detail in the books Finite Element Meth-
ods with B-Splines [10] and Isogeometric Analysis [7], respectively. We also refer
to [8,3,1,4] for a small sample of recent developments. In this paper, we give a
brief introduction to some key ideas of both techniques, illustrating their basic
features in the simplest possible setting. Moreover, we explain when a com-
bination of both methods might be useful. We propose weighted isogeometric
approximations which can, in particular, handle trim curves and surfaces effi-
ciently. Of course, we would like to stimulate the interest of the reader to learn
about all aspects of b-spline based finite elements, to implement algorithms for
further applications, and to participate in the future development of the theory.
1 Weighted extended b-splines (web-splines) were introduced by U. Reif, J. Wipper

and the first author [12], cf. also http://www.web-spline.de
2 Isogeometric Analysis was founded by T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs

[14] .
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We begin by reviewing basic facts about finite elements and b-splines (cf., e.g.,
[20,21,5,18]). In particular, we describe the concept of b-spline nodes, which is
convenient for visualizing the degrees of freedom of numerical approximations.
Then, weighted b-spline bases, isogeometric elements, and a new mixed method
are discussed in turn. Moreover, we show that weighted isogeometric (mixed)
elements approximate with optimal order. Finally, examples are presented which
illustrate the performance of b-spline based simulations.

2 Finite Element Approximation

Many physical or engineering problems admit a variational formulation. This
means that the function

x �→ u(x) ∈ R

describing a phenomenon or process on a domain D ⊂ R
d minimizes an energy

functional
u �→ Q(u) =

∫
D

F (x, u,∇u, . . .) dx

over a suitable Hilbert space H , which incorporates boundary conditions if nec-
essary.

A finite element approximation

uh =
∑

k

ckBk

minimizes Q over a finite dimensional subspace Vh = spankBk of H :

Q(uh) = min
vh∈Vh

Q(vh) ,

where the discretization parameter h usually denotes a grid width. Clearly, the
choice of Vh as well as of the basis functions or finite elements Bk is crucial for
the accuracy and the efficiency of the resulting method. An enormous number
of different possibilities is available – we will add several further choices in the
next sections!

As a basic example, we consider Poisson’s problem corresponding to

F =
1
2
|∇u|2 − f(x)u ,

with a given function f . If no boundary condition is imposed, the normal deriva-
tive of a solution u vanishes on the boundary ∂D. This so-called natural bound-
ary condition does not have to be incorporated into the finite element subspace.
A typical essential boundary condition is

u(x) = 0, x ∈ ∂D . (1)

It must be satisfied (at least approximately) by all elements of Vh, in particular
by the basis functions Bk.
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Fig. 1. Quadratic Lagrange elements on a triangulation

The standard classical finite element approximation of Poisson’s problem on
a two-dimensional domain D employs Lagrange elements on triangles. As is
depicted in Figure 1, the degrees of freedom can be visualized by nodes at the
positions of the interpolated values. To each node xk corresponds a basis function
Bk with Bk(xk) = 1 and Bk(x�) = 0 for � �= k. The supports of two such finite
elements are highlighted in the figure. The boundary condition (1) is imposed
simply by assigning the value 0 to the boundary nodes (circles), leaving merely
the values at the interior nodes (dots) as free parameters.

3 B-Splines

A (standard) d-variate b-spline bk is a positive, bell-shaped, piecewise polynomial
function of coordinate degree n. As is illustrated in Figure 2, smoothness and
support are determined by the knots. The left figure visualizes the values of the
b-spline by coloring the support on the grid. This style of graphic representation
will be frequently used in the following. As shown on the right figure, cross
sections of the graph coincide with scaled univariate b-splines.

It is convenient to associate a node xk equal to the Greville abscissa with a
b-spline bk, i.e., xk

ν is the average of the interior knots in the ν-th coordinate
direction (ν = 1, . . . , d), counting multiplicities. The index k = (k1, ..., kd) cor-
responds to the position of bk on the grid separating the polynomial segments.
Intuitively, the location of the node coincides with the point of strongest influ-
ence of the b-spline. The nodes will be used later on to visualize the degrees of
freedom for spline approximations.

A spline is a linear combination of b-splines which have support on a grid-
conforming hyper-rectangle R:

p =
∑
k∼R

ckbk ,
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�

Fig. 2. Bi-quadratic b-spline with grid and node

where k ∼ R ⇔ kν = 1, . . . , mν with mν + n + 1 the number of knots in the
ν-th coordinate direction. We can associate the free parameters or coefficients
ck with the b-spline nodes. Figure 3 shows two standard situations. Uniform
splines (left) are spanned by translates of a single b-spline with obvious compu-
tational advantages. In particular, the node pattern is completely regular. For a
boundary-conforming spline space (right), the boundary grid hyperplanes coin-
cide with the boundary of the hyper-rectangle and have multiplicity n + 1. This
implies that the values of p along any of the hyper-rectangle boundaries are de-
termined by the coefficients corresponding to the boundary nodes. For example,
if all of these coefficients are 0, then p vanishes along the entire boundary of R.

Fig. 3. Uniform and boundary-conforming bi-quadratic spline spaces

If the coefficients of a spline Φ are points Ck ∈ R
d, then

ξ �→ x = Φ(ξ) =
∑
k∼R

Ckbk(ξ), ξ ∈ R ,

describes a transformation of the parameter hyper-rectangle R. The control
net formed by the array of points Ck provides a qualitative description of the
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Φ
−→

Fig. 4. Bi-quadratic b-spline parametrization with control net and grid

deformation caused by Φ, as does the isoparametric grid (image of the partition
of the spline space under Φ).

Usually, boundary-conforming spline spaces are used for modeling parameter
transformations as is the case for the example in Figure 4. The advantage is that
the boundary of the image is determined entirely by the points Ck corresponding
to the boundary nodes.

4 Weighted B-Splines

In order to approximate a function u on a domain D we can simply use splines
defined on a hyper-rectangle R containing D:

u ≈ uh =
∑
k∼R

ckbk .

To emphasize that only those b-splines with some support in D are relevant, we
set irrelevant coefficients to 0. In the example of Figure 5, uniform bi-quadratic
b-splines are used; the solid relevant nodes correspond to the free parameters ck,
k ∼ D.

Perhaps somewhat surprisingly, the simple procedure works well for uncon-
strained variational problems. Just restricting the b-splines to the simulation
region D, provides very accurate finite element approximations uh for problems
with natural boundary conditions.

To incorporate essential boundary conditions, we resort to an idea already
proposed by Kantorovich and Krylov [15]. We represent the domain D in implicit
form via a weight function w,

D : w > 0 ,

as illustrated on the left of Figure 5. Multiplying the b-splines bk by w, we obtain
a suitable finite element basis for constrained problems:

Bk = wbk, k ∼ D . (2)

By construction, any of the weighted elements satisfy w(x)bk(x) = 0, x ∈ ∂D.
The precise adaptation to the boundary is apparent from the sample elements
highlighted on the right of the figure.
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Fig. 5. Weight function and weighted bi-quadratic b-splines with grid and nodes

Weight functions can be constructed in various ways. For example, the smooth-
ed distance to the boundary provides a general purpose solution. An elegant
procedure is Rvachev’s R-function method [17]. It combines elementary weight
functions according to Boolean operations and is thus particularly well suited for
simulations in conjunction with constructive solid geometry. The weight function
on the left of Figure 5 was constructed in this fashion.

The weighted basis functions wbk share all properties of standard finite ele-
ments, except for stability. For b-splines bj, which do not have at least one of the
grid cells of their support in D, the norm of wbj is very small. For moderate grid
widths this does not present any problems. In fact, the weighted basis (2) usually
provides adequate approximations. However, for certain algorithms stability can
be crucial, as h → 0. To obtain stable finite elements, we combine neighboring
b-splines with support near the boundary, forming so-called weighted extended
b-splines (web-splines), introduced by U. Reif, J. Wipper, and the first author
in [12]:

Bi =
∑

k

ei,k(wbk), i ∈ I .

The set I comprises all indices of inner b-splines, i.e., those bi with at least one
grid cell of their support in D.

The mathematics leading to the proper choice of the extension coefficients ei,k

is somewhat subtle. However, the basis change wbk → Bi can be implemented
efficiently. In effect, the work amount is comparable to a sparse precondition-
ing procedure, since the (generalized) matrix (ei,k)i∈I,k∼D has few off-diagonal
entries.

In two variables, this construction is not even necessary. B. Mößner and U.
Reif have made the surprising discovery that b-splines can be stabilized simply
by scaling [16]. This is in agreement with many of our numerical experiments
which indicated that stabilization can often be omitted. The scaling, proposed by
B. Mößner and U. Reif, is inherent to most preconditioners for iterative solvers.

We reviewed in this section just the basic idea of the web-method, providing
the prerequisites for the new mixed method, described in Section 6. A more
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detailed introduction can be found on the web-site www.web-spline.de which
also provides examples and further references.

5 Isogeometric Elements

Often it is possible to decompose a domain into simple patches which can be
described as images of hyper-rectangles:

D =
⋃
α

Φα(Rα) .

In fact, CAD descriptions in solid geometry provide spline parametrizations of
the form described in Section 3. A generalization of the classical isoparametric
concept suggests itself. Isogeometric analysis, founded by T.J.R. Hughes, J.A.
Cottrell, and Y. Bazilevs, provides a natural link from CAD models to FEM
simulations. We briefly scetch the main idea of this powerful technique in a very
simple setting, just providing sufficient detail to introduce a possible combination
with weighted methods in the following section. For a comprehensive description
of isogeometric analysis, we refer to [7].

As is illustrated in Figure 6, we can transform boundary-conforming b-splines
defined on each of the hyper-rectangles Rα, with the aid of the mappings Φα. In
other words, we use the basis functions

D � x �→ Bk,α(x) = bk,α(ξ), ξ = Φ−1
α (x) ,

the so-called isogeometric b-splines. Clearly, to ensure continuity, consistency
at patch boundaries is crucial. This means that the restrictions of b-splines to
a common patch boundary must coincide (nodes connected by red lines in the
figure) and share the same coefficient.

We visualize the degrees of freedom by transforming the nodes associated with
the b-splines to D,

ξk,α �→ xk,α = Φα(ξk,α) ,

as is illustrated in Figure 6. In particular, in view of consistency, nodes xk,α on a
common patch boundary are shared by the b-splines of the neighboring patches.
Moreover, if essential boundary conditions are imposed as in the example in the
figure, coefficients associated with nodes on outer boundaries (marked by circles)
are set to 0.

It is convenient to also use boundary-conforming b-splines to represent the
parametrizations Φα. Typically, the grid for the isogeometric elements then is
a refinement of the grid for the parametrization. The degrees do not have to
match. In the example in Figure 6, bi-quadratic b-splines are used throughout,
which is, of course, a slight computational advantage. The basis functions Bk,α

are slight perturbations of standard b-splines adapting to the grid determined
by the mappings Φα.
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Φ1

−→

Φ2

−→

Fig. 6. Domain parametrization and bi-quadratic isogeometric b-splines with grid and
nodes

Despite the nonlinear transformations involved, isogeometric methods can be
implemented efficiently. Finite element integrals of the form∫

D

F (x, B(x),∇B(x), . . .) dx, B(x) = b(ξ), ξ = Φ−1(x) ,

are computed over the relevant parameter hyper-rectangle R. By the chain rule
and the formula for changing integration variables, the integral equals∫

R

F (Φ(ξ), b(ξ),∇b(ξ)(JΦ(ξ))−1 , . . .) |detJΦ(ξ)| dξ , (3)

where JΦ denotes the Jacobi matrix of the transformation. Hence, matrix as-
sembly does not require inverting the transformations of the parameter hyper-
rectangles, a key feature familiar from classical isoparametric methods.

6 Weighted Isogeometric Approximation

Some commonly used CAD representations employ patches parametrized over
trimmed parameter hyper-rectangles. A simple example is shown in Figure 7.
To apply the standard isogeometric method, the image domain would have to
be partitioned into deformed hyper-rectangles. As is already apparent from the
elementary shape in the figure, it is not always easy to find a natural partition,
in particular with few, only moderately distorted patches.

A possible remedy is a combination of the weighted and isogeometric ap-
proaches described, for the sake of simplicity, only for a single patch. We use
weight functions to represent the trim curves or surfaces. The constraints can be
specified either in the parameter hyper-rectangle R or the physical domain D.
If both variants are used as in the example of Figure 7, the active portion Ra of
the parameter domain consists of the points ξ = Φ−1(x) with

wR(ξ) > 0 , wD(x) > 0
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Φ
−→

Fig. 7. Trimmed parameter rectangle and domain with bi-quadratic weighted isogeo-
metric b-splines

(Γ1 : wR = 0, C2 : wD = 0) . Forming products with the boundary-conforming
b-splines, we obtain the weighted isogeometric b-splines

x �→ Bk(x) = wR(ξ)wD(x)bk(ξ), x = Φ(ξ) .

These basis functions are suited for problems with essential boundary conditions
on the image of the trim curves or surfaces. If essential boundary conditions are
also prescribed on the outer boundary of D, then the coefficients associated
with the boundary nodes are set to 0. In Figure 7, the degrees of freedom are
visualized in the usual way. The nodes ξk ∈ R are transformed to the physical
domain via Φ : xk = Φ(ξk).

Several weighted isogeometric b-splines Bk are highlighted on the right of
Figure 7. As in the previous examples, degree 2 was used for the parametrization
of the domain as well as for the b-spline basis. The weight functions coincide
with the standard implicit representations of a circle and a parabola.

Trimming will usually lead to weighted isogeometric b-splines with small sup-
port within the domain D. To avoid the resulting instabilities, the stabilization
measures, which were briefly mentioned at the end of Section 4, can be applied:
simple scaling in two and extension in three variables [16,12]. This yields a sta-
ble basis if Φ and Φ−1 are smooth. It seems, however, that stabilization can be
omitted in many cases. We have found (cf. the example at the end of the next
section and the remark in connection with the first example in Section 8) that
the accuracy of approximations is affected by instability only for extremely small
grid widths.

Any weighted approximation requires special integration routines for bound-
ary cells. This is straightforward in two dimensions (cf. [10], Section 8.4) for any
degree and in three dimensions for degree 1, where an interesting preprocess-
ing technique can be used (cf. [13]). Routines for three dimensional integration
over cell intersections with general NURBS-domains have been developed (cf. the
MIND project: www.imng.uni-stuttgart.de/LstNumGeoMod/Hoerner/mind/ ),
and perform sufficiently well for smooth boundary portions. For complicated in-
tersection patterns, as produced by curved edges and corners, integration can
be time consuming. Fortunately, asymptotically (for small grid width), the per-
centage of these cases becomes small.
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7 Error Estimate

We show in this section that weighted isogeometric approximations have, in
general, the optimal approximation order for standard elliptic problems with
smooth solutions. As a typical case, we consider Poisson’s equation

−Δu = f

with mixed boundary conditions on a bounded domain D ⊂ R
d of the form shown

in Figure 8 for d = 2. On the inner boundary C or trim surface, which encloses
a simply connected subdomain, homogeneous Dirichlet boundary conditions are
prescribed (u|C = 0) and, on the outer boundary ∂D\C, the solution satisfies
the Neumann condition ∂⊥u = 0 (vanishing normal derivative).

Γ

Ω
1

Ω2

···

Φ
−→

C

Fig. 8. Regularly parametrized domain D = Φ(Ω), Ω ⊂ R, with a smooth inner
boundary C = Φ(Γ )

We assume that the untrimmed domain is the image of a hyper-rectangle R
under an (n + 1) times continuously differentiable bijective transformation Φ
with nonsingular Jacobian and denote by Ω = Φ−1(D) the trimmed parameter
domain. Moreover, the trim surface C should be smooth, i.e., representable in
implicit form via a smooth weight function wD (or via wR = wD ◦ Φ on the
parameter hyper-rectangle R) with wD = 0 ∧ gradwD �= 0 on C and wD > 0
in D and on the outer boundary. Under these hypotheses, the following error
estimate holds.

Theorem (Error of Weighted Isogeometric Finite Elements). The weighted iso-
geometric Ritz-Galerkin approximation uh of degree ≤ n to a solution u ∈
Hn+1(D) of the mixed Poisson problem described above satisfies

‖u − uh‖1,D ≤ const(D, wD, Φ, n)hn ‖u‖n+1,D ,

where ‖ ‖�,D denotes the norm for the Sobolev space H�(D) of functions with
square integrable �-th order partial derivatives.
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Proof. To simplify notation we use the symbols �,� for inequalities with generic
constants in one and both directions, which may depend on D, wD, Φ, and n
but neither on u nor on h. Moreover, we use a tilde for functions defined on the
trimmed parameter hyper-rectangle Ω = Φ−1(D):

u(x) = ũ(ξ), uh(x) = ũh(ξ), . . . , x = Φ(ξ), ξ ∈ Ω ⊂ R ,

etc.
The proof relies on results and techniques from isogeometric analysis [2,7]

and the theory of weighted approximations [12,10]; after all, the theorem per-
tains to a combination of key features of the two approaches. Moreover, the (by
now!) standard error estimates for splines (c.f. the classical books by C. de Boor
and L.L. Schumaker [5,18]) are crucial for our arguments. We refer also to [9],
where a weaker version of the theorem was obtained, for some of the preliminary
arguments.

We begin by noting that the composition with Φ or Φ−1 and multiplication
by a smooth weight function w are bounded operations with respect to Sobolev
norms:

‖p‖�,D � ‖p̃‖�,Ω � ‖p‖�,D, ‖wp‖�,D � ‖p‖�,D . (S)

This elementary observation follows from the chain rule, the formula for trans-
formation of multiple integrals, Leibniz’ rule, and the fact that Φ, Φ−1, and w
are sufficiently smooth.

Now we observe that, by Cea’s Lemma, the error of uh can be bounded, up to
a constant factor, by the error of the best approximation from the finite element
subspace. Hence, it suffices to construct a linear combination

wDvh =
∑

k

ck wD(bk ◦ Φ−1)

of weighted isogeometric finite elements Bk = wD(bk ◦Φ−1), which approximates
u ∈ Hn+1(D) with the desired order:

‖u − uh‖1,D � ‖u − wDvh‖1,D ,

as just noted in the preceeding sentence.
By the first inequalities in (S), the change of variables induced by the

parametrization Φ is bounded with respect to Sobolev norms. In particular,

‖u − wDvh‖1,D �(S) ‖ũ − wRṽh‖1,Ω, ‖ũ‖n+1,Ω �(S) ‖u‖n+1,D .

Hence, we may construct the approximation on the parameter hyper-rectangle
R.

An appropriate linear combination of weighted b-splines

wRṽh =
∑

k

ck wRbk ≈ ũ
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(wRṽh = (wDvh) ◦ Φ, wRbk = Bk ◦ Φ) is simply obtained by choosing for ṽh =∑
k ckbk a quasi-interpolant of

ṽ = ũ/wR .

Here, we use an extension of ṽ to all of R
d (also denoted by ṽ) to avoid technical

difficulties in the construction of quasi-interpolant functionals near the bound-
aries of Ω. The existence of bounded extensions with respect to Sobolev norms,

‖ṽ‖�,Rd � ‖ṽ‖�,Ω , (E)

was established by Calderon and Stein [6,19].
Summarizing, after these preliminaries, to prove the theorem we have to show

that
‖wRṽ − wRṽh‖1,Ω � hn‖ũ‖n+1,Ω, wRṽ = ũ . (A)

It seems as if we are done (cf. also the remark after the proof) since multiplication
by wR is a bounded operation and the quasi-interpolant ṽh ≈ ṽ approximates
smooth functions in the H1-norm with order O(hn). This is indeed the case
for pure one-patch isogeometric approximations (no weighting, wR ≡ 1, ṽ = ũ)
in a very special setting. The main difficulty we are facing in the presence of
essential boundary conditions on a trim surface is that ũ ∈ Hn+1(Ω) does not
imply ṽ ∈ Hn+1(Ω), i.e., ṽ is not sufficiently regular to yield the maximal quasi-
interpolation order. The division by wR in the definition of ṽ causes the loss of
roughly one order of differentiation as is already apparent from univariate exam-
ples. This problem is overcome with techniques developed in [12] (cf. also [10],
Section 5.5), in particular with two fundamental inequalities, which we restate
for convenience of the reader in a form appropriate for the mixed boundary value
problem under consideration.

For any subdomain U ⊂ Ω with distance δ > 0 to the inner boundary Γ =
Φ−1(C), the functions ṽ and ũ = wRṽ satisfy

‖ṽ‖n+1,U � δ−1 (‖ũ‖n+1,U + ‖ṽ‖n,U ) . (R1)

Moreover,
‖ṽ‖n,Ω � ‖ũ‖n+1,Ω . (R2)

In the references cited, the estimates were given for a smooth weight function
which vanishes to first order on the entire boundary (no Neumann part). They
also apply in the present context since, in a neighborhood Ω′ of the Neumann
boundary ∂R, the weight function wR is bounded from below by a positive
constant. This implies that ‖ṽ‖n+1,Ω′ �(S) ‖ũ‖n+1,Ω′ , i.e., near the Neumann
boundary both estimates, which essentially pertain to boundary behavior, are
trivial.

Proceeding with the estimate of the error of the quasi-interpolant ṽh ≈ ṽ
(assertion (A)), we have to take the two different types of boundary conditions,
Dirichlet and Neumann, into account; the inner and outer boundary have to be
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treated in a slightly different fashion. To this end, we split the function ṽ to be
approximated with the aid of a partition of unity into two parts:

ṽ = ṽD + ṽN .

As is indicated by the superscripts, the support ΩD of ṽD contains a neighbor-
hood of the Dirichlet boundary Γ and the Neumann boundary ∂R is covered by
supp ṽN = ΩN . More precisely, we choose ΩD ⊂ R with positive distance from
∂R and ΩN ⊂ (Ω ∪ cR) with positive distance from Γ (cf. Figure 8). Moreover,
the Sobolev norms of ṽD and ṽN are bounded in terms of the corresponding
Sobolev norms of ṽ. To accomplish this splitting, we choose two smooth non-
negtive functions (e.g., linear combinations of b-splines!) χD and χN with the
appropriate supports and

χD(ξ) + χN(ξ) = 1, ξ ∈ R
d .

Then we set ṽD = χDṽ, ṽN = χN ṽ. Clearly, by linearity, we have the same
decomposition for the quasi-interpolants, i.e., ṽh = ṽD

h + ṽN
h (ṽ∗h is a quasi-

interpolant of χ∗ṽ).
As a final preparation for the main argument, we recall a standard estimate

for quasi-interpolants p̃h with uniform b-splines bk of functions p̃, defined on R
d:

‖p̃ − p̃h‖m,U � hn+ν−m‖p̃‖n+ν,Uh
, 0 ≤ m ≤ n, ν = 0, 1 , (Q)

where Uh denotes the union of all b-spline supports overlapping the set U (ac-
tually, ν = m − n, . . . ,−1 is possible; but not needed here). There exist many
constructions for quasi-interpolants p̃h; any of them which has the above ap-
proximation property is adequate for our purposes.

Referring to assertion (A), we now estimate each part (Neumann and Dirich-
let) of the error

wRṽ − wRṽh = (wRṽN − wRṽN
h ) + (wRṽD − wRṽD

h )

(wRṽ = ũ) in turn.
The estimate of the error for the Neumann part is straightforward:

‖wRṽN − wRṽN
h ‖1,Ω �(S) ‖ṽN − ṽN

h ‖1,ΩN
h
�(Q) hn ‖ṽN‖n+1,ΩN

�(E) hn ‖ṽN‖n+1,Ω �(S) hn ‖ũ‖n+1,Ω ;
(N)

the first inequality because supp(ṽN − ṽN
h ) ⊆ ΩN

h , the second inequality because
supp ṽN ⊆ ΩN , the last inequality because ṽN = χN ṽ = χN ũ/wR, χN is smooth,
and wR ≥ c > 0 on Ω ∩ ΩN = Ω ∩ supp χN , noting that this set has a positive
distance from Γ .

For analyzing the Dirichlet part in the decomposition of the error wRṽ−wRṽh,
we introduce the abbreviation

wRṽD − wRṽD
h = wRẽh ,
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i.e., ẽh is the error of the quasi-interpolant of ṽD. To estimate the H1-norm of
wRẽh, we have to take the weight function more explicitly into account. We use
the inequality

‖wRẽh‖1,U � sup
ξ∈U

|wR(ξ)| ‖ẽh‖1,U + ‖ẽh‖0,U (I)

which follows directly from the definition of the H1- and L2-norm and is valid
for any subset U of Ω. Indeed, with ‖ ‖0 denoting the L2-norm and by ∂ν the
partial derivative with respect to the ν-th variable,

‖we‖2
1,U = ‖we‖2

0,U +
∑

ν

‖∂ν(we)‖2
0,U

�(S) { ‖e‖2
0,U +

∑
ν

sup
U

|∂νw|2 ‖e‖2
0,U } +

∑
ν

sup
U

|w|2 ‖∂νe‖2
0,U ,

where {. . .} �(S) ‖e‖2
0,U and the last term is ≤ supU |w|2 ‖e‖2

1,U .
To capture the interplay between the smallness of w and the lack of regularity

of ṽ near Γ , we cover Ω ∩ ΩD
h (recall that ΩD contains Γ and has a positive

distance from the Neumann boundary ∂R) by strips Ω1, Ω2, . . . with widths
proportional to h and at least twice as large as the diameter of a b-spline support
(cf. Figure 8). Using the inequality (I), we estimate wRẽh on each of these strips
in turn. To this end the two terms on the right of the inequality are bounded
with the aid of (Q), taking also the size of the supremum into account.

strip Ω1: Since wR is smooth and vanishes on Γ , we have wR(ξ) � h on Ω1.
This implies

‖wRẽh‖1,Ω1 �(I,Q) h hn−1‖ṽD‖n,Ω1
h

+ hn‖ṽD‖n,Ω1
h�(E,S) hn‖ṽ‖n,Ω �(R2) hn‖ũ‖n+1,Ω .

(D1)

Here, (Q) was used with m = 1, ν = 0 (first term) and m = 0, ν = 0 (second
term). We see that the inferior order for the H1-norm of the error ẽh = ṽD − ṽD

h

of the quasi-interpolant (first term) is compensated by the fact that wR is small
near the inner boundary Γ .

strips Ω�, � > 1: By construction,

δ = dist(Γ, Ω�
h) � dist(Γ, Ω�) � �h .

To this end we note that the width of Ω1 is at least twice as large as a b-spline
support, so that this assertion is valid in particular for Ω2

h; the enlarged set does
not touch Γ . Moreover, by our assumptions on the weight function, wR � �h on
Ω�

h. Hence, since δ−1 � (�h)−1,

‖wRẽh‖1,Ω� �(I,Q) (�h)hn‖ṽD‖n+1,Ω�
h

+ hn+1‖ṽD‖n+1,Ω�
h

�(S) �hn+1‖ṽ‖n+1,Ω�
h
�(R1) hn

(
‖ũ‖n+1,Ω�

h
+ ‖ṽ‖n,Ω�

h

)
.
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Here, (Q) was used with m = 1, ν = 1 (first term) and m = 0, ν = 1 (second
term). The fact that, for � > 1, Ω� and Ω�

h have a positive distance from Γ is
crucial. This is the reason why the case � = 1 has to be treated differently.

Squaring the inequality, noting that (α + β)2 � α2 + β2, and summing over
� > 1, we obtain the error bound also on the remaining part of the support ΩD

h

of ẽh within Ω:

‖wRẽh‖2
1,∪�>1Ω� � h2n

(‖ũ‖2
n+1,Ω + ‖ṽ‖2

n,Ω

) �(R2) h2n ‖ũ‖2
n+1,Ω , (D2)

noting that Ω�
h ⊂ Ω for small enough h and these enlarged strips overlap at

most twice; Ω�
h ∩ Ω�′

h = ∅ for |� − �′| > 1. Since

Ω ∩ supp ẽh = Ω ∩ ΩD
h ⊂ ∪�≥1Ω

� ,

combining the estimates (D1,D2) yields the desired bound also for the Dirichlet
part of the error. Together with the estimate (N) this proves (A) and thereby
the theorem. �

The arguments have been somewhat technical. This reflects the complexity of
the approximation process which involves b-splines of arbitrary degree, curved
boundaries, parametrizations, and weight functions. However, we note that a
substantially simpler argumentation is possible if one is content with an error
estimate of the form

‖u − uh‖1,D = O(hn) ,

which does not show the precise dependence on the regularity of u. A result
of this type neither requires the splitting of the error nor the regularity results
(E), (R1), and (R2). With the aid of (Q) a relatively short proof is possible if
one assumes, e.g., that u has continuous partial derivatives up to order n + 2.
While we think that the above estimate is adequate for many purposes, usually,
in finite element analysis, bounds with optimal regularity are preferred. They
are essential for certain applications, e.g., the convergence analysis for multigrid
algorithms, and certainly more appealing from an aesthetic point of view.

It is clear, that we can obtain analogous estimates for any standard elliptic
second order problem with smooth solutions and smooth Dirichlet boundaries.
More delicate (not done also for pure weighted approximations) is the analysis
for problems with singularities due to reentrant corners or discontinuities and
incompatible boundary conditions. As is well known, solutions are generally not
smooth in these cases, unless the data satisfy appropriate conditions. Also not
covered are singular parametrizations as well as non-smooth weight functions.
The latter arise when applying Rvachev’s technique for domains with corners (at
least if the simplest R-function system is used). In this case one is confronted
with lack of regularity of solutions as well and should note that using high de-
gree b-splines (isogeometric or weighted) will not pay off for non-smooth prob-
lems (corners, discontinuities, singularities, etc.) unless suitable enhancements
are used (e.g., additional special basis functions or adaptive refinement).

We have considered a single parametrization Φ since this is the case which is
most relevant for the weighted isogeometric method. With our handling of trim
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surfaces one can often avoid partitioning the domain. When several parametriza-
tions are used (cf. Figure 6), the quasi-interpolation error has to be estimated sep-
arately for each deformed hyper-rectangle. Since, in general, parametrizations will
merely join continuously, composition with Φ or Φ−1 is no longer globally bounded
with respect to Sobolev norms. Hence, the arguments become much more elabo-
rate, already without a weight function (see [2] for a comprehensive error analysis
as well as a number of open questions mentioned in the introduction).

linear
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Fig. 9. Logarithmic plots of H1-errors (left) and condition numbers (right) of weighted
isogeometric Ritz-Galerkin approximations for the mixed Poisson problem with f = 1

We confirm the asserted convergence rates experimentally. The left diagram of
Figure 9 shows the expected increase in accuracy with the degree. The logarith-
mic errors log ‖u − uh‖1,D are plotted as functions of log h; the labels show the
decimal exponents. From the slopes we obtain estimates for the average rate, e.g.,
the rate approaches 5 for quintic approximations (degree 5). The computations
were performed without extension, i.e., with the simple weighted isogeometric
basis. We note that the instability has virtually no effect on the accuracy, despite
huge condition numbers, as shown in the right diagram (solid lines). For exam-
ple, the condition, estimated with the MATLAB condest command, exceeds
1070 for degree 6. This limited relevance of stability has been noticed in other
examples. The phenomenon is probably due to the fact that preconditioning is
inherent in many iterative solvers like the pcg-ssor routine used for this example.
A theoretical explanation is given by B. Mößner and U. Reif [16], who showed
that bivariate b-splines can be stabilized simply by scaling. Hence, at least in
two variables, the extension procedure described at the end of Section 4 is, also
from a theoretical point of view, not necessary.

The right diagram also shows the condition numbers for stabilized weighted
extended isogeometric bases for degrees 1 to 6 (dashed lines at the bottom of
the diagram). As expected the values are drastically smaller, reflecting the pre-
dicted order O(h−2) for the condition of the Ritz-Galerkin system. In all cases,
the condition numbers for the extended bases are ≤ 1020. Perhaps somewhat
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surprisingly, not only the errors but also the number of pcg-ssor iterations are
roughly identical for the stable and unstable case in this example; another indi-
cation of inherent preconditioning.

8 Applications

The true measure for comparing finite element software are complicated three-
dimensional problems. We give examples for the weighted and weighted isoge-
ometric b-spline techniques. For the pure isogeometric method we refer to the
literature (cf., e.g., [7] and the references cited therein) since we have at this
point only the simple one-patch discretization implemented which cannot han-
dle complex geometrical structures.

Figure 10 shows a domain D with many holes, which is defined implicitly by
a randomly generated piecewise trilinear weight function

D : wh =
∑

k

wkbk > 0 .

Clearly, only the weighted method will handle the complicated boundary pattern
efficiently. As a test case, we solve the Poisson problem with essential homoge-
neous boundary conditions and

Q(u) =
1
2

∫
D

|gradu|2 − 2u .

Due to the irregular boundary, the regularity of the solution is poor. Hence,
linear b-splines provide an adequate approximation:

uh = whph, ph =
∑

k

ukbk .

Using the same representation for the weight function wh as well as for the
spline ph, leads to an appealing data structure. On each grid cell (cube with edge
length h), the approximation uh is determined by 2 × 23 values at the corners
which coincide with the b-spline coefficients in this case. As a consequence, as is
described in [13], a very efficient solution procedure is possible. For example, on
a grid of 5773 = 192, 100, 033 unknowns, a dynamic vectorized multigrid solver
on a NEC SX8 with 8 CPUs on one node reaches a relative residual less than
1E − 8 in < 50 seconds of real time. Perhaps even more striking is that the
time for assembling the discrete finite element system (usually the bottle neck in
simulations) is comparable to the time required by the solver. This demonstrates
the excellent performance of assembly algorithms for b-spline based methods.

It is interesting to note that the multigrid iteration has been programmed
without stabilization via extension. While stability of the basis is (to date!)
essential for the convergence theory, our solver does not seem to require it; a
simple diagonal preconditioning suffices, at least for this particular application
(cf. also the remarks at the end of Section 7 and [16]).
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Matrix
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Fig. 10. Randomly generated domain for Poisson’s problem and relative computing
time of program components

In our second example, we consider the deformation of an elastic solid occu-
pying a volume D ⊂ R

3 under gravity. The displacement

(u1(x), u2(x), u3(x)), x ∈ D ,

satisfies the Navier-Lamé system and minimizes the energy functional

Q(u) =
1
2

∫
D

σ(u) : ε(u) − fu ,

where σ is the stress and ε the strain tensor.
We choose a geometric form which is neither ideally suited for weighted nor

for isogeometric b-spline approximations. The curved bridge shown in Figure
12 has a relatively simple shape. Nevertheless both, the weighted and the iso-
geometric method, do not provide good discretizations as is illustrated in Fig-
ure 11. A straightforward description of the domain with a global weight function
leads to unnecessary many boundary cells. On the other hand, while the princi-
pal shape is an absolutely elementary example of a deformed cuboid (a Bézier
parametrization of coordinate degree (1, 1, 2) suffices), the trim surfaces prevent
the representation with a simple parametrization. Instead, a partition into de-
formed cubes is required (cf. [7], Figure 2.29 for a similar example), which does
not reflect the simplicity of the geometry. As a consequence, one loses some of the
computational efficiency; a vectorizable assembly routine is no longer applicable
in a straightforward fashion.

The mixed method described in Section 6 suggests itself. We use a single
polynomial parametrization Φ in Bézier form on a rectangle R and model the
trim surfaces by a product of three elementary weight functions. In other words,
we use finite elements of the form

eν

(
3∏

α=1

wα(ξ)

)
bk(ξ), ν = 1, 2, 3, k ∼ R ,

where the multiplication by the unit vectors eν takes the vector-valued form of
the approximation uh into account. As a consequence, we obtain fairly accurate
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Fig. 11. Weighted (left, top view) and isogeometric (right, side view) discretization of
a curved bridge

Φ
−→

Fig. 12. Deformation of an elastic solid

numerical results with relatively few parameters. Figure 12 visualizes the mag-
nified deformation for concrete (Young’s modulus: E = 50kN/mm2, Poisson’s
ratio: 0.2). It was computed with 3 · 50 · 5 · 9 triquadratic finite elements (3 · 90
of them are outside the trimmed domain). Only a section of the grid in the xz-
plane is shown. Using a pcg solver, the system was solved to a relative accuracy
of < 1E − 10 in less than 600 iterations.

The efficiency of b-spline algorithms, demonstrated by the above examples, is
also reflected in the simplicity of finite element codes. The beauty of b-spline pro-
gramming is particularly evident for multigrid techniques [11], where subdivision
serves as canonical grid transfer.

9 Conclusion

Comparing Figures 5, 6, and 7, the various basis functions are qualitatively very
similar. Perhaps this is not too surprising; after all, each of the slightly different
concepts is based on b-splines. As a consequence, the finite elements share many
advantages:

– free choice of smoothness and order of accuracy
– efficient recurrences for basic operations
– flexible geometry representation
– vectorized algorithms and multilevel techniques
– simple data structure with one node per grid point
– natural adaptive refinement via hierarchical bases
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With many common favorable features, weighted and isogeometric methods both
perform well for a broad range of applications. However, there are some pros and
cons which we would like to point out below.

If a natural weight function is available, like for constructive solid geometry
models or for many problems in linear elasticity, weighted approximations sug-
gest themselves. Another ideal application are free boundary problems, where
the unknown boundary can be implicitly represented by a spline serving as a
weight function which changes with time.

On the negative side, the numerical construction of weight functions from
boundary representations can be difficult, particularly in three dimensions. Gen-
eral purpose schemes have to rely on efficient algorithms for computing the dis-
tance function in a neighborhood of the domain boundary.

Isogeometric techniques are the method of choice if a CAD description of the
domain D as solid model without trimming is available. This means that D is
already partitioned into moderately deformed rectangles and cubes, respectively.
If this is not the case, depending on the topological structure of D, the domain
decomposition can be nontrivial. There is some similarity to the generation of
coarse hexahedral meshes. Of course, we could also allow triangles and tetrahedra
as additional parameter domains. But then, the isogeometric method loses some
of its computational efficiency.

Numerical integration is crucial for both techniques. Isogeometric methods re-
quire only integration over grid cells, an ideal situation. However, the evaluation
of integrands of the form (3) is time consuming. Hence, minimal node formulas
are especially important. Weighted methods have simpler integrands. Yet, the
integration over boundary cells is nontrivial. To preserve the high accuracy of
the b-spline approximations, cells which are intersected by the domain bound-
ary must be partitioned into smooth images of standard domains. Fortunately,
topologically difficult intersection patterns are less frequent so that they do not
have a significant impact on the overall computing time.

The mixed method introduced in this paper eliminates some of the difficulties
mentioned above. Figure 7 serves as a typical example. Boundary integration is
necessary only for grid cells with relatively simple intersection patterns. Moreover,
despite the nontrivial shape of the domain, computations use a parametrization
over a single rectangle.

As is apparent from the above remarks, there are numerous topics for future
research. With a joint effort, continued progress will be made, and we believe that
b-splines have the potential to become a standard in finite element analysis, too.
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