

K. Schoeffmann et al. (Eds.): MMM 2012, LNCS 7131, pp. 574–584, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Forward Wyner-Ziv Fast Video Decoding Using
Multicore Processors

Alberto Corrales-Garcia1, José Luis Martínez2,
Gerardo Fernández-Escribano1, and Francisco Jose Quiles1

1 Instituto de Investigación en Informática de Albacete (I3A),
University of Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain

{albertocorrales,gerardo,paco}@dsi.uclm.es
2 Architecture and Technology of Computing Systems Group. Complutense University

Ciudad Universitaria s/n, 28040 Madrid, Spain
joseluis.martinez@fdi.ucm.es

Abstract. With the aim of providing low complexity encoders, Wyner-Ziv
video coding provides a new paradigm where the complexity of the encoder is
moved to the decoder. However, this high decoding complexity could involve a
problem in some applications which have delay restrictions. Nowadays parallel
computing is a growing field into the computation market. In particular, most of
personal computers and hardware for video coding includes multicore
processors, which allows a parallel execution by means of several independent
cores in a same chip. As a consequence, several DVC parallel decoding
approaches are beginning to appear. This work proposes a parallel DVC
decoding scheme for multicore processors, which decodes each GOP in an
independent and parallel way. This scheme achieves above 70% time reduction
without any rate-distortion penalty.

Keywords: Distributed Video Coding, Parallel Computing, Multicore
Processors, OpenMP.

1 Introduction

Traditionally, the digital video codecs adopted by all MPEG and ITU-T video coding
Standards have based their design in architectures where encoders are more complex
than decoders [1]. Nowadays, new devices (such as surveillance systems, sensor
networks, micro cameras, etc) with low-cost hardware can integrate cameras, but they
should carry out a low-cost encoding. For this kind of applications, Wyner-Ziv (WZ)
video coding [2] (which is a particular case of Distributed Video Coding (DVC) [3])
is an attractive paradigm since it provides a framework where the complexity of the
encoder is displaced to the decoder allowing low cost encoding. This low-complexity
is achieved because the encoding process does not exploit the temporal correlation to
compress more the video information. In addition, DVC can achieve theoretically a
similar Rate-Distortion (RD) performance than the joint video coding. At the same
time, it provides robustness over noisy channel (as it often happens in wireless
networks). Despite all this advantages, the complexity of the decoder is highly

 Forward Wyner-Ziv Fast Video Decoding Using Multicore Processors 575

increased. Most of this complexity is caused by the iterative turbo decoding
algorithm. In particular, the feedback channel contributes to a large degree in the cost
of the decoder [4]. Although the amount of time taken by the decoder could not seem
important, for many applications which the decoding delay plays an important role
(such as WZ to H.264 video transcoding [3]), a fast decoding is desired and
sometimes mandatory.

On the other hand, the technological advancement in microprocessors has
introduced new architectures, which allow high-performance computing [5]. In
particular, regarding processors, the new architectures tend to include several
processors (called cores) in the same chip. This kind of processors is called Multicore
Processors and nowadays they are widely extended in the market. However, although
multicore processors can help to reduce the time spent by high-complex tasks, most of
applications are designed to be executed in a sequential way. As a consequence, high
complex tasks follow spreading much time and they do not take advance of the
available computational capacity. To exploit this research field, the researching
community should invest effort to propose new architectures and methods to take
advance of the parallel computing to use efficiently the computational capacity that
the new hardware offers to us.

At that point, this paper proposes to reduce the complexity of the WZ decoder (the
WZ decoding complexity is even higher than traditional video coding algorithms [4])
by means of a multicore processor system. As a first attempt to achieve this, each
Group of Pictures (GOP) is decoded in each processing unit. This provides good
trade-off between the time reduction and the RD loss. The simulations results offer an
acceptable time reduction up to 71% without any RD penalty. Moreover, the present
proposal is scalable for a higher number of cores.

Accordingly, this paper is organized as follows: Section 2 presents an overview of
the WZ codec and multicores; section 3 shows the previous works related to reducing
WZ decoding complexity and some parallel DVC decoding approaches; section 4
proposes the parallel WZ decoder based on multicore; section 5 presents experimental
results for the proposed architecture; and, finally, some final remarks are presented in
Section 6.

2 Technical Background

2.1 Distributed Video Coding

Theoretical fundaments of DVC depart from the information theory [6]. However, is
in [3] where one of the first practical DVC architecture was proposed by Stanford
University. It is based on turbo codes as Slepian-Wolf encoder/decoder and a
feedback channel used by the decoder to manage the rate control. Over the Stanford
architecture many research and improvement have been carried out in the literature.
Later, in [7] was proposed the DISCOVER codec architecture as a result of a
European project and it could be considered as a reference codec in the DVC
paradigm. In addition, DISCOVER codec was later improved by VINET-II team [8].
These codecs are focus on achieving the best RD results without considering the time
spent. In this work, our architecture is an improved version of VISNET-II codec
which is depicted in Figure 1.

576 A. Corrales-Garcia et al.

Fig. 1. Block diagram of the reference DVC architecture

The Figure 1 presents a scheme of the architecture employed in this paper. To sum
up the basic WZ video coding architecture operation, we should know WZ video
coding deals with two kinds of frames: Key Frames (K) and Wyner-Ziv Frames
(WZ). Each frame of the sequence is sent to a different channel by means of the
splitting module (1). At the encoder side, the K frames are encoded using a
H.264/AVC Intra encoder [1] (2). On the other hand, the WZ frames are sent to a
Wyner-Ziv Encoder (3). On the first stage, the frame information is quantized (3a).
Afterwards, over the resulting quantized symbol stream, a bitplane extraction is
performed per bitplanes (3b). Each bitplane is then independently channel encoded,
starting with the most significant bitplane (3c). The parity bits produced by the
channel encoder are stored in the buffer and transmitted in small amounts upon
decoder request via the feedback channel; the systematic bits are discarded (3d).

On the other hand, in the decoder side, firstly the K frames are decoded using a
H.264/AVC Intra decoder [1] (4). Then, in (5) the decoder uses each both frames like
previous and next temporary references to create a Side Information (SI) frame. SI
represents an estimation for each non-present original WZ frame. From each SI in (6)
a Laplacian distribution models the residual statistics between corresponding WZ
frame and SI. Then, the SI and the statistic model associated are used in an iterative
decoding algorithm (7b) to obtain the decoder quantized symbol. In this module, each
bitplane is decoded in a sequential order. Every decoding iteration new parity bits are
requested to the encoder by means of the feedback channel. To decide if more parity
bits are requested, a stopping criterion is defined based on error probabilities. When
the decoding is considered successfully another bitplane is being decoded. Finally, the
reconstructed pixels are obtained using the decoded quantized pixels, the correlation
noise model estimated in (7a) and the quantized SI pixels.

2.2 Multicore Processor System

As a consequence of the computation limit of single processors, some time ago was
introduced successfully the idea of having multiple cores in a same chip. Nowadays

 Forward Wyner-Ziv Fast Video Decoding Using Multicore Processors 577

the usage of multicore processors is growing more and more. In fact, most of
commercial computers include a multicore processor to increase the performance of
the computers. In a muticore processor each core can execute a different application
or they can work in a collaborative way to accelerate the execution of one application.
However, due to heritage of simple processors, most of complex applications are
designed to be executed in a sequential way and then the computational capacity of
multicore systems are not fully exploited. In the particular case of multimedia
applications, multicore processors can help to accelerate complex tasks. In fact, many
multimedia hardware solutions are based on this kind of architectures. However, new
methods and algorithms should be proposed to support the parallel execution as
efficiently as possible.

In the architecture of a multicore processor, several cores share the same chip and
they have some shared memory and some private memory. Regarding commercial
multicore processors, the highest performance is reached by the multicore processors
based on Intel Nehalem Micro-architecture [9]. In particular, this paper is based on
this multicore processor Intel i7-940. The most important features of this processor
are the following: four cores, clock speed of 2.93 GHz, 45nm manufacturing process,
new point-to-point processor interconnect, Intel QuickPath Interconnect (QIP),
Simultaneous Multi-Threading (SMT) by multiple cores which enables two threads
per core (hyper-threading) and three levels of cache (32 KB L1 instruction and 32 KB
L1 data cache per core, 256 KB L2 cache per core and 8 MB L3 cache shared by all
cores).

On the other hand, Open Multi-Processing (OpemMP) has been proposed to
develop parallel programs over this kind of multicore processors [10]. OpemMP is an
Application Programming Interface (API) that supports multi-platform shared
memory multiprocessing programming. It provides a portable and scalable model
which consists of a set of compiler directives, library routines, and environment
variables that influence run-time behavior.

Fig. 2. Proposed Parallel DVC GOP decocing architecture

3 Related Work

DVC framework is based on displacing the complexity from the encoders to the
decoders; however, a reduction of the complexity into the decoders is desirable. In

578 A. Corrales-Garcia et al.

traditional feedback-based DVC architectures [3], the rate control is done at the
decoder and it is controlled by means of feedback channel; this is the main reason of
the decoder complexity just because once a parity chunk arrives to the decoder, the
turbo decoding algorithm (one of the most computational task [4]) is called. Taking
this fact into account, there are several approaches which try to reduce de complexity
of the decoder, which usually induces RD penalty. However, due to the technology
advance, new parallel hardware is being introduced in practical video coding
solutions. These new features of computers offer a new challenge for the research
community to integrate its algorithms into the parallel framework; this opens a new
door in the multimedia research. On the one hand, regarding the traditional standards
several approaches have been proposed since multicores appeared in the market but,
this paper focuses on parallel computing applied to the DVC framework.

On the other hand, in 2010 have been proposed different parallel solutions for
DVC. In particular, in [11] Oh et al. proposed a DVC parallel execution carried out
by Graphic Processing Units (GPUs). In this proposal, authors focus on design a
parallel distribution for a Slepian-Wolf decoder based on rate Adaptative Low
Density Check Code (LDPC) with Accumulator (LDPCA). LDPC codes are
composed by many bit-nodes which do not have many dependencies between each
node, so they propose a parallel execution in three kernels (steps): “kernels for check
nodes calculations”, “kernels for bit nodes calculations”, and “kernels for termination
condition calculations”. In a NVIDIA GeForce GTX260 216SP GPU they achieve a
decoding 4~5 times faster for QCIF and 15~20 for CIF. On the other hand, in [12]
Momcilovic et al. proposed a DVC LDPC parallel decoding based on multicore
processors. In this work, the authors parallelize several LDPC approaches (Sum-
Product, Min-Sum, and Algorithm E). In a Quad-Core machine, they reach and
speedup up to 3.5. Both previous approaches propose a low level parallelism for a
particular LDPC/LDPCA implementation.

However, the current work presents a higher level parallel WZ video decoding
algorithm implemented over a multicore system. The reference WZ decoding
algorithm is adapted by means of a GOP parallel decoding. In addition, the proposed
algorithm is scalable because it does not depend on the hardware architecture neither
the number of cores or on the implementation of the internal Wyner-Ziv decoder.
Therefore, the time reduction can be increased simply by increasing the number of
cores, as technology advance. Furthermore, the algorithm depicted in this paper could
be extended by using another level of parallelism (frame or bitplane) as well as GPUs.

4 Proposed Wyner-Ziv GOP Parallel Decoding

Although most of commercial computers include multiple core processors, several
cores are inactive regularly, while other are overloaded. As a result, the computation
capacity is wasted and the complex tasks spend more time to finish. In the DVC
framework, the fist aim is providing simple encoders, which are suitable to encode
sequences in low cost devices. However, the decoder complexity is highly increased
and sometimes, this high decoding delay does not allow including DVC in real

 Forward Wyner-Ziv Fast Video Decoding Using Multicore Processors 579

environments. The first goal of this work is providing a simple and practical solution,
which will be allow to execute WZ decoding in a parallel way, saving much decoding
time and tanking advance of the computation capacity of whatever multicore
processor.

4.1 Proposed Architecture

The traditional WZ decoding presents several sequential dependences such as the
updating of CNM between bitplanes. Basically, once a bitplane is successfully
decoded, the correlation model is updating by the following bitplanes.

Depending on the parallelism level, it is necessary to break these dependences,
which could affect increasing the bitrate needed or decreasing the quality of the
decoded frame. This is because a poor SI or a bad correlation model deals with a loss
of performance. However, the WZ video coding offers an independent GOP decoding
so we could execute each WZ GOP decoding in an independent core. In this way, we
achieve a parallel decoder, which carries out a fast parallel decoding without any rate
RD penalty. Figure 2 shows the proposed scheme, where the number of decoders is
equal than the number of available cores, and then each decoder will decode one
independent GOP. This involves that the architecture is not fixed for a specific
hardware. In other words, it is architecture scalable.

 In addition, the architecture has a module splitter and joiner. The first one carries
out the task of splitting the key frame sequence by sending each key frame to the
corresponding core. In addition, the joiner module includes the execution schedule.
Each decoded GOP could have different delay due to the complexity of the scene and
thus the number of the iterations needed. In addition, during a sequential execution
there is one core in use and the rest are idle.

Taking this fact into account, the best schedule is a dynamic schedule (Figure 3),
which assigns new tasks when any core finishes the current task. In this way, if there
are GOPs to be decoded, all cores will be working and the capacity of the multicore
processor will be utilized fully. In the end of the sequence, some cores could be idle,
but this period is insignificant comparing with the whole sequence time decoding.

Fig. 3. DVC parallel GOP decoding time line execution for a 4 cores processor

580 A. Corrales-Garcia et al.

On the other hand, the joiner module carries out the task of join each GOP in a
suitable sequential way, because the parallel decoding could not maintain the source
order.

In addition, as the decoding could be carried out without following a sequential
order, the parity data could be also requested without a sequential order. To consider
this case, the decoder sends a few bits in a header of the request to the encoder, which
includes a module to estimate the relative position of the parity data related to each
GOP. The Parity Position (PP) is calculated by the Equation 1, where I is the Intra
period, P is position of the current GOP and Q is the quantification parameter. On the
other hand W is the width of the image and H the height.

1 28 1 (1)

Fig. 4. Distribution of GOPs en each core and data shared for GOPs 2, 4 and 8

The WZ video coding only needs two reference frames to build any GOP length.
Therefore, for consecutive frames, the same K frame is shared, as it is shown in
Figure 4.Normally, in the WZ video coding the GOP sizes used are 2, 4 and 8.

In a nutshell, initially the parallel decoder needs to store several frames. This
number of frames will depend on the number of available cores, but it does not
depend on the GOP length. In general terms, the Number of Frames (NF) needed in
the key frame buffer at the beginning is defined by the Equation 2, where c is the
number of cores. c 1 (2)

Finally, the structures created at the beginning for each core are reused for every GOP
decoding, saving time and reusing the allocated memory.

 Forward Wyner-Ziv Fast Video Decoding Using Multicore Processors 581

5 Experimental Results

In order to evaluate the proposed parallel DVC decoding, four QCIF sequences were
considered. These sequences have different motion and complexity features. For each
sequence 150 frames were encoded by using the DVC VISNET-II codec [8]. The
parallel implementation departs from the VISNET-II codec and was implemented by
using Intel C++ compiler (version 11.1) [9] which combines a high-performance
compiler as well as Intel Performance Libraries to support multi-threading
applications. In addition, it provides support for OpenMP 3.0 [10]. In order to study
the performance of the DVC parallel decoder, the sequences were encoded by using
quantification from 1 to 4 bitplanes in pixel domain. In addition, to analyze the impact
in different GOPs, several lengths of GOP were selected (2, 4 and 8).

The Time Reduction achieved (TR) is calculated by the Equation 3, where
is the time spent by the sequential decoding and the time spent by the
proposed parallel version. Additionally, the speedup is calculated as the reference
time divided by the parallel time.

100 (3)

The Table 1 shows the results for a GOP length = 2. It displays the results for several
bitplanes (BPs) for each sequence. The Reference Time per frame column represents
the decoding time spent by one WZ frame (on average). The reference version is
composed by the VISNET-II sequential version. In the proposed parallel version a
four-core processor was used (more details in section 2.2). As this multicore
processor allows hyperthreading, each core runs 2 threads sharing the same core. In
general, time reduction is higher in more complex sequences (such as foreman and
soccer) reaching a mean of 71.05%. In most of the cases the speedup is between 3.5
and 4 (the maximum theoretically by using four core is 4). The RD results are not
included due to for both versions (reference and proposed) are exactly the same.

On the other hand, tables 2 and 3 show the results for GOP length 4 and 8
respectively. As it is expected, the decoding time is a little higher for the middle
frames because the distance of their references is higher and then, the SI generated is
worse. To correct a worse initial SI, the decoding needs more interactions and then
the decoding time per frame is increased. However, for longer GOP lengths similar
conclusions are observed when sequential and parallel versions are compared.

In addition, a study about the influence of the number of cores and threads was
done. Figure 5 shows the decoding time and the speedup factor (for Foreman
sequence with GOP length = 2 and 3 BPs) when different threads are used in a 4 core
processor with hyperthreading. As it is observed, the first 4 obtain a more significant
time reduction whereas following 4 threads reach less time reduction. This is caused
by the hyperthreading effect: when more than 4 threads are running, they are sharing
the same physical cores and then the time reduction is lower.

582 A. Corrales-Garcia et al.

Table 1. Parallel Decoder performance for GOP 2

Sequence BP
Reference
Time per
frame (s)

Parallel
Time per
frame (s)

TR(%) SpeedUp

Foreman

1 4.33 1.21 72.01 3.57
2 7.49 1.94 74.12 3.86
3 13.41 3.49 74.01 3.85
4 20.05 5.39 73.13 3.72

Hall

1 3.18 1.21 62.07 2.64
2 4.63 1.43 69.19 3.25
3 8.35 2.18 73.88 3.83
4 11.14 2.89 74.03 3.85

CoastGuard

1 3.05 1.22 59.95 2.50
2 6.26 1.83 70.77 3.42
3 11.97 3.37 71.82 3.55
4 18.09 4.98 72.45 3.63

Soccer

1 7.18 2.07 71.21 3.47
2 12.02 3.41 71.60 3.52
3 19.47 5.24 73.06 3.71
4 26.04 6.91 73.46 3.77

Mean 11.04 3.05 71.05 3.51

Table 2. Parallel Decoder performance for GOP 4

Sequence BP
Reference
Time per
frame (s)

Parallel
Time per
frame (s)

TR(%) SpeedUp

Foreman

1 4.33 1.21 72.01 3.57
2 7.49 1.94 74.12 3.86
3 13.41 3.49 74.01 3.85
4 20.05 5.39 73.13 3.72

Hall

1 3.18 1.21 62.07 2.64
2 4.63 1.43 69.19 3.25
3 8.35 2.18 73.88 3.83
4 11.14 2.89 74.03 3.85

CoastGuard

1 3.05 1.22 59.95 2.50
2 6.26 1.83 70.77 3.42
3 11.97 3.37 71.82 3.55
4 18.09 4.98 72.45 3.63

Soccer

1 7.18 2.07 71.21 3.47
2 12.02 3.41 71.60 3.52
3 19.47 5.24 73.06 3.71
4 26.04 6.91 73.46 3.77

Mean 11.04 3.05 71.05 3.51

 Forward Wyner-Ziv Fast Video Decoding Using Multicore Processors 583

Table 3. Parallel Decoder performance for GOP 8

Sequence BP
Reference
Time per
frame (s)

Parallel
Time per
frame (s)

TR(%) SpeedUp

Foreman

1 5.89 1.64 72.24 3.60
2 10.71 2.65 75.26 4.04
3 17.94 4.32 75.94 4.16
4 25.72 6.40 75.10 4.02

Hall

1 2.81 1.19 57.6 2.36
2 4.10 1.53 62.75 2.68
3 6.75 2.12 68.66 3.19
4 10.54 2.99 71.67 3.53

CoastGuard

1 3.61 1.41 60.86 2.56
2 7.42 2.43 67.25 3.05
3 13.36 4.11 69.27 3.25
4 20.15 6.42 68.14 3.14

Soccer

1 8.89 2.26 74.51 3.92
2 15.20 3.75 75.36 4.06
3 23.12 5.72 75.26 4.04
4 31.16 7.70 75.28 4.05

Mean 12.96 3.54 70.32 3.48

Fig. 5. DVC sequential decoding time line execution

6 Conclusions

The WZ video decoding is highly complex and this could be a problem for
applications which have delay requirements. This work presents a WZ parallel
decoding scheme by means of muticore processors. In this approach each GOP is
decoding in an independent and parallel way, so that this scheme could be used in
different WZ implementations without taking into account the implementations

584 A. Corrales-Garcia et al.

details of a particular approach. In addition, our proposed decoder maintains the same
RD results than the sequential version. The time reduction reached is above 70% on
average and it is extensible for longer GOP lengths with similar results. In spite of the
feedback channel is still a bottleneck in DVC decoding, this proposed scheme could
be used without modifications with more core architectures (following the current
market tendency) and even in architectures without feedback channel.

Acknowledgments. This work was supported by the Spanish MEC and MICINN, as
well as European Commission FEDER funds, under Grants CSD2006-00046,
TIN2009-14475-C04. It was also supported by JCCM funds under grant PEII09-
0037-2328 and PII2I09-0045-9916, and the University of Castilla-La Mancha under
Project AT20101802. The work presented was performed by using the VISNET2-
WZ-IST software developed in the framework of the VISNET II project.

References

1. ISO/IEC International Standard 14496-10:2003: Information Technology – Coding of
Audio – Visual Objects – Part 10: Advanced Video Coding

2. Aaron, A., Rui, Z., Girod, B.: Wyner-Ziv coding of motion video. In: Asilomar Conference
on Signals, Systems and Computers, pp. 240–244 (2002)

3. Girod, B., Aaron, A.M., Rane, S., Rebollo-Monedero, D.: Distributed Video Coding.
Proceedings of the IEEE 93, 71–83 (2005)

4. Brites, C., Ascenso, J., Quintas Pedro, J., Pereira, F.: Evaluating a feedback channel based
transform domain Wyner-Ziv video codec. Signal Processing: Image Communication 23,
269–297 (2008)

5. Feng, W.-C., Manocha, D.: High-performance computing using accelerators. Parallel
Computing 33, 645–647 (2007)

6. Wyner, A.: Recent Results in the Shannon Theory. IEEE Trans. on Information Theory 20
(1974)

7. Artigas, X., Ascenso, J., Dalai, M., Klomp, S., Kubasov, D., Ouaret, M.: The DISCOVER
codec: architecture, techniques and evaluation. In: Picture Coding Symposium (PCS),
pp. 1-4. Citeseer (2007)

8. Ascenso, J., Brites, C., Dufaux, F., Fernando, A., Ebrahimi, T., Pereira, F., Tubaro, S.: The
VISNET II DVC Codec: Architecture, Tools and Performance. In: European Signal
Processing Conference, EUSIPCO (2010)

9. Intel Processor Core family, http://www.intel.com/
10. The OpenMP API specification for parallel programming, http://openmp.org
11. Ryanggeun, O., Jongbin, P., Byeungwoo, J.: Fast implementation of Wyner-Ziv Video

codec using GPGPU. In: IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting (BMSB), pp. 1–5 (2010)

12. Momcilovic, S., Yige, W., Rane, S., Vetro, A.: Toward realtime side information decoding
on multi-core processors. In: IEEE International Workshop on Multimedia Signal
Processing (MMSP), pp. 321–326 (2010)

	Forward Wyner-Ziv Fast Video Decoding Using Multicore Processors
	Introduction
	Technical Background
	Distributed Video Coding
	Multicore Processor System

	Related Work
	Proposed Wyner-Ziv GOP Parallel Decoding
	Proposed Architecture

	Experimental Results
	Conclusions
	References

