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Abstract. H.264/AVC is the most recent predictive video compression standard 
to outperform other existing video coding standards by means of higher 
computational complexity. In recent years, heterogeneous computing has 
emerged as a cost-efficient solution for high-performance computing. In the 
literature, several algorithms have been proposed to accelerate video 
compression, but so far there have not been many solutions that deal with video 
codecs using heterogeneous systems. This paper proposes an algorithm to 
perform H.264/AVC inter prediction. The proposed algorithm performs the 
motion estimation, both with full-pixel and sub-pixel accuracy, using CUDA to 
assist the CPU, obtaining remarkable time reductions while maintaining rate-
distortion performance. 
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1 Introduction 

Most of the applications which have recently appeared in the multimedia community, 
such as digital TV, streaming, video conferencing or DVDs, require a video coding 
algorithm to meet their requirements and operate. The most recent video coding 
standard is H.264/AVC [1], which is able to outperform the video codecs of previous 
coding standards [2]. The compression gains are mainly related to the variable and 
smaller block size motion compensation, improved entropy coding, motion estimation 
with multiple reference frames, and smaller block transforms, among others. 
However, these new/improved video coding tools increase both the encoder and 
decoder complexity substantially.  

Fortunately, heterogeneous computing has emerged as a real solution for high-
performance computing [3]. There are many examples of this kind of systems, but 
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possibly the systems composed of one or more Graphics Processing Units (GPUs) and 
one or more multi-core Central Processing Units (CPUs) are the most widely used. 
GPUs are small devices with hundred of similar processing cores organized to 
achieve higher performance. GPUs are highly parallel and are normally used as a 
coprocessor to assist the CPU for computing massive data. GPUs have a parallel 
architecture that focuses on executing many concurrent threads slowly, rather than 
executing a single thread very quickly. In order to assist programmers, the main GPU 
manufacturers provide them with different tools. For example, Nvidia® proposes a 
powerful GPU architecture called Compute Unified Device Architecture (CUDA) [4]. 
CUDA is basically a Single Instruction Multiple Data (SIMD) computing device. 

Therefore, it is mandatory to explore new and efficient implementations of 
H.264/AVC video coding systems on different computing platforms in order to 
support these applications. At this point, this paper proposes an algorithm to perform 
the inter prediction carried out in H.264/AVC using CUDA to assist the CPU. The 
present approach performs the Motion Estimation (ME) with both full-pixel and sub-
pixel accuracy over the GPU. It should be pointed out that the ME algorithm is one of 
the most computationally expensive tasks in an H.264/AVC encoder; it performs the 
same operations (Sum of Absolute Differences) over a large amount of data (over the 
search area). Therefore, ME fits well in the SIMD programming model. On the other 
hand, the ME algorithms implemented in the H.264/AVC reference software are 
sequential, where each MacroBlock (MB) is encoded based on its neighboring MBs. 
One of the major issues of our proposed algorithm is how to remove or mitigate these 
dependencies between MBs in order to minimize the Rate-Distortion (RD) penalties. 
Performance evaluation is carried out for High Definition (HD) video sequences. The 
results show a remarkably time reduction of up to 99% with a negligible RD penalty. 
Moreover, the proposed algorithm outperforms the fastest ME algorithms included in 
the H.264/AVC reference software as well as some of the approaches available in the 
literature in terms of coding efficiency and time savings. 

The rest of the paper is organized as follows: Section 2 contains a brief overview 
of H.264/AVC and GPU programming; in Section 3 some related proposals are 
shown; Section 4 shows details about the approach presented in this paper; Section 5 
describes the performance evaluation and, finally, conclusions are given in Section 6. 

2 Technical Background 

In the H.264/AVC standard [1] inter prediction is carried out by means of the process 
of variable block size ME, which is able to eliminate the temporal redundancy 
between two or more adjacent frames. This approach supports motion compensation 
block sizes ranging between 16x16, 16x8, 8x16 and 8x8, where each of the sub-
divided regions is an MB partition. If the 8x8 mode is chosen, each of the four 8x8 
block partitions within the MB may be further split in 4 ways: 8x8, 8x4, 4x8 or 4x4, 
which are known as sub-MB partitions. The ME is carried out for each of these 
partitions. Furthermore, Motion Vectors (MVs) from spatially adjacent blocks and 
from other MB partitions are used to initialize the search area for the current partition. 
These are known as Motion Vector predictors (MVp). In addition, to compute the rate 
term R in the Lagrangian cost the MVs of the neighboring MBs are required [5].  
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In terms of Multi-Core graphics processors, GPUs are small accelerator devices 
with hundreds of cores which are organized in several SIMD blocks. GPUs are 
characterized by a high level of parallelism and are usually used as a coprocessor to 
assist the CPU in computing massive data. For instance, the architecture of the 
Nvidia® GPUs consists of a set of SIMD multiprocessors called Stream 
Multiprocessors (SM). Each SM has up to 48 processing elements called cores and a 
set of resources shared by all cores, such as 32-bit registers, local shared / texture 
memory or caches. More detail about the Nvidia GPU architecture can be found in [4]. 

3 Previous Work 

Most of the proposals available in the literature for accelerating the H.264/AVC 
encoding algorithm are sequential-based approaches, but so far there have not been 
many solutions which make use of Many-Core graphics hardware to accelerate this 
highly complex algorithm. At this point, the main objective of this paper is to 
combine powerful Multi-Core architectures to accelerate traditional video coding 
algorithms, such as H.264/AVC. In 2007, Lee et al. [6] presented a multi-pass and 
frame parallel algorithm to accelerate H.264/AVC ME using a GPU. They unroll and 
rearrange the multiple nested loops by using the multi-pass method. The multiple 
reference frames method is implemented at frame parallel level by the use of SIMD 
vector operations of the GPU. In 2008, Ryoo et al. in [7] and Chen and Hang [8] 
presented some optimization principles of a multithreaded GPU using CUDA. In [8] 
the algorithm is based on an efficient block-level parallel algorithm for the variable 
block size motion estimation in H.264/AVC. They decompose the H.264/AVC ME 
algorithm into 5 steps so that they can achieve highly parallel computation. The major 
failing of all these approaches is that they do not analyze the RD performance, they 
only show timing results; although the speedup and time reduction are acceptable, 
they are only valid if they keep the RD as close as possible to the sequential approach.  

More recently, in 2010, Cheung et al. proposed a GPU implementation of the 
simplified Unsymmetrical Multi-Hexagon search (smpUMHexagonS) [9] ME 
algorithm, which is a fast ME technique implemented in the H.264/AVC reference 
software. The authors divide the current frame into multiple tiles. Each tile is 
processed by a single GPU thread, and different tiles are processed by different 
independent threads concurrently on the GPU. They report significant bitrate 
increases (12%) with a penalty in quality (0.4dB) depending on the sequence and the 
tile length.   

Many-Core architectures have been also used for accelerating other modules of the 
H.264/AVC encoding algorithm, such as the Intra Prediction [10]. Based on a 
dependency analysis of intra-mode decision. they propose to encode the video blocks 
following the greedy order, leading to highly parallel RD cost computations.  They 
obtain an speed of up to 80 with negligible RD penalty. 

4 Proposed GPU-Based Motion Estimation Algorithm 

This section describes the algorithm for implementing the inter prediction performed 
by the H.264/AVC encoding algorithm via a system composed of a CPU with the 
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support of a GPU. The ME as part of the inter prediction process has been 
implemented in the JM v17.2 reference software [11], but this algorithm can be easily 
adapted to other H.264 implementation such as x264 [12]. The present approach is 
based on the Full Search (FS) ME algorithm implemented in the JM reference 
software. At this point, this paper proposes a modified GPU-based FS ME algorithm 
with quarter-pixel accuracy. 

ME is tackled in two steps, full-pixel and sub-pixel accuracy ME; each one is 
performed following a highly-parallel procedure over the GPU. Firstly, the image to 
be processed (with full-pixel accuracy) is moved from CPU to GPU and it performs 
the full-pixel ME. Then, the GPU is able to generate the sub-pixel image from the 
reference image. Finally, the GPU performs the sub-pixel ME. In other words, once 
the frame is moved to the GPU, all the computations relating to the ME are carried 
out over the GPU. In this way, we avoid memory transfers between the CPU and 
GPU, which is the bottleneck in this kind of systems. The proposed GPU-based ME 
algorithm is performed concurrently for the complete image at the beginning of 
coding each P frame, where the inter prediction is applied. Figure 1 shows a 
simplified activity diagram of our parallel ME proposal. 

 

Fig. 1. Activity Diagram of Proposal 

4.1 Full-Pixel Motion Estimation 

The proposed Full-pixel ME process is divided into three steps. The goal of the first 
step is to obtain the Sum Absolute Differences (SAD) calculation between the current 
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MB (split into sixteen 4x4 partitions) and all MB positions in the reference frame 
inside the search area. Then, the second step, using the previous 4x4 block SAD 
calculations, is able to obtain the SAD costs for all other MB partitions. Finally, the 
last step reduces the SAD costs to one SAD cost for each one of the 41 MB partitions 
of each MB. This three-step algorithm is implemented using two GPU kernels.  

In the first kernel, all threads from a thread block cooperate to copy its assigned MB 
and corresponding search area from texture memory to multiprocessor local shared 
memory. Shared memory is defined as an integer and it allows contiguous multiprocessor 
threads to read from contiguous memory banks without access conflicts in the memory 
banks. The SAD calculations are carried out in 4x4 blocks, therefore each MB is divided 
into sixteen 4x4 blocks for each search area position. These SAD costs are stored in 
registers to build the structured motion tree (4x4 SAD sub-matrix in Figure 2). The 
complete search area is computed by rows, one or more rows corresponding to a thread 
block, so contiguous search area positions for a certain MB are computed by the same 
thread block, with normally 256 positions for each thread block. 

 

Fig. 2. Proposed Full-pixel ME Algorithm 

In the same GPU kernel used to obtain the 4x4 SAD costs, the structured motion 
tree is obtained. Using the information previously stored in registers (4x4 SAD costs) 
our algorithm is able to obtain the SAD costs for higher partitions. As depicted in 
Figure 2, by adding two 4x4 SAD costs it is able to obtain the 4x8 and 8x4 SAD 

best
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costs, by adding two 4x8s it is able to obtain the 8x8 SAD costs and so on. 
Intermediate results are stored in multiprocessor shared memory for faster memory 
accesses. 

Finally, this kernel also carries out a first reduction due to the large amount of data 
generated. The reduction starts with 256 SAD costs per MB partition and finishes 
with 1 SAD cost per MB partition (Reduced tree-structured matrix in Figure 2). For 
this reduction procedure, a binary reduction has been implemented. Note that this 
kernel performs the reduction procedure over the 256 positions configured in a thread 
block; the final reduction is performed by an independent kernel. This last kernel 
obtains the best SAD cost for each one of the MB partitions in each MB, using the 
same binary reduction procedure as the previous kernel. 

Our GPU-based algorithm is executed concurrently for a complete frame, but each 
MB coding depends on their neighbors in two ways: 1) to compute the Lagrangian 
cost and, 2) to locate the search area (MVp). These dependencies mean that the 
optimal MV may not be found, resulting in a bitrate increase and in a PSNR drop. 

Therefore, the proposed algorithm also tries to mitigate the effect of MVp, which is 
one the biggest challenges of performing the ME process in parallel. The idea for 
solving these impairments consists of reusing the MV of the previous frame to adjust 
the MB search area. The MVp does not have a big impact on low resolution and/or 
low motion sequences, but the lack of MV predictors for higher resolutions (such as 
HD) and/or high motion sequences may result in a big impact on RD performance. 
After a large set of experiments, we conclude that the best way to estimate the motion 
is to use the MV from the higher partition (16x16) for the MB located in the same 
position in the reference frame, but with the constraint that the MVp cannot be higher 
than the search range to ensure that the MV (0,0) is inside the search area. 

Furthermore, to compute the Lagrangian cost, the MVp is required. The 
Lagrangian cost is defined as ܵܦܣ௖௢௦௧ ൅ ߣ כ  ௕௜௧௦, where vectorbits is the numberݎ݋ݐܿ݁ݒ
of bits required to encode the ܸܯ െ ܯ ௉ܸ. Nevertheless, the MVp is required to obtain 
the final cost for all positions inside the search area, which is affected by the 
dependencies between neighboring MBs. 

4.2 Sub-pixel Accuracy Motion Estimation 

In order to further improve compression, the H.264 /AVC standard assumes that the 
best match can be found at a region offset from the current MB (search area)  by an 
integer number of pixels. However, for many MBs a better match can be obtained by 
searching a region interpolated to sub-pixel accuracy; for this case, a new prediction 
pixel is created by means of an interpolation of its neighbor. H.264/AVC reference 
software supports quarter-pixel accuracy, which means that the image sizes are 
multiplied by four on each dimension or, in other words, one pixel is converted into 
sixteen sub-pixels. One of these sub-pixels is the pixel with full-pixel accuracy; three 
of them are the sub-pixels with half-pixel accuracy and the other twelve pixels are the 
sub-pixels with quarter-pixel accuracy. 

As mentioned at the beginning of this section, the images are located in GPU 
DRAM with full-pixel accuracy. So, we need firstly to extend the reference images to 
sub-pixel accuracy. The sub-pixels with half-pixel accuracy are obtained by means of 
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a 6-tap filter and the sub-pixels with quarter-pixel accuracy are obtained by a bilinear 
filter. A GPU thread per pixel is generated and it applies both filters to obtain the 
fifteen sub-pixels. 

The sub-pixel accuracy ME is performed in two steps: the first one is the half pixel 
refinement and the second one is the quarter pixel refinement, both of which are 
performed for all partitions. The best matching obtained for full-pixel accuracy 
becomes the center point for half-pixel refinement, and the best matching for half-
pixel refinement becomes the center for quarter-pixel refinement. The algorithm for 
half- and quarter-pixel refinement is the same, but applied over different data. 

The algorithm for sub-pixel ME is similar to the algorithm used for full-pixel ME: 
we divide the MB into sixteen 4x4 blocks and each one takes as its starting point the 
appropriate MV, i.e., all 4x4 blocks will take the same MV to perform the 16x16 
partition and the final cost will be obtained using atomic GPU operations. On the 
other hand, all 4x4 blocks will take different MVs to perform the 4x4 partition and no 
extra operations will be needed. The same reduction procedure used for full-pixel 
accuracy ME is used to obtain the best MV. However, there are two main aspects to 
take into account. First, we cannot reuse the motion information from the smallest 
partition to obtain the Lagrangian cost of the higher partition because each partition 
has a different starting point (Full-pixel MV or Half-pixel MV). We have to 
recalculate the 4x4 cost for each partition. Second, the metric to compute the 
Lagrangian cost is the Hadamard SAD instead of SAD, as configured for the baseline 
profile in the H.264/AVC JM 17.2 [11] reference software used. 

5 Performance Evaluation 

In order to show the performance of the proposed algorithm, it was implemented in 
the H.264/AVC JM v17.2 reference software encoder. The parameters used in the 
H.264/AVC encoder configuration file were those included in the baseline profile of 
the mentioned reference software. However, some parameters were changed in the 
configuration file: the number of reference frames was set to 1 in order to keep the 
complexity as low as possible because higher values imply excessive time 
consumption, but higher number of reference frames can be used; RD-Optimization 
was disabled for the same reason as the NumberReferenceFrames parameter; the GOP 
pattern was set to one I frame followed by eleven P frames (I11P); the tests were 
carried out with popular sequences in 720p format (1280 x 720) and 1080p format 
(1920 x 1080); the frame rate parameter was set to 50 because sequences were 
sampled at 50Hz; the parameter FramesToBeEncoded was adjusted according to the 
sequence, in order to encode the full sequence; the Quantization Parameter (QP) 
called QPISlice and QPPSlice was varied among 28, 32, 36 and 40 according to [13]. 

The performance evaluation of our proposal for H.264/AVC based on the JM v17.2 
encoder was carried out on a system composed of an Intel® Core™ i7 @930 running 
at 2.80 GHz, with 6GB DDR3 memory and the GPU Nvidia GTX480. The operating 
system was Ubuntu 10.4 with the Nvidia GPU driver 260.19 and CUDA SDK 3.2 was 
used. 
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5.1 Metrics 

In order to evaluate the time saved by the proposed algorithm with respect to the 
reference H.264/AVC encoder, two metrics were used: Time Reduction (TR), which 
is based on Equation 1, and Speedup, which is based on Equation 2. 

 ܴܶ ሺ%ሻ ൌ ்಻ಾି்ಷ಺்ಷ಺  (1) 100 ݔ 

݌ݑ݀݁݁݌ܵ  ൌ ்಻ಾ்ಷ಺  (2) 

where TJM denotes the coding time used by the reference software, and TFI is the time 
taken by the algorithm proposed in this paper. The times measured by TJM and TFI  
refer to the time employed to carry out the ME. TFI also includes all the computational 
costs for the operations needed in order to prepare the information required by our 
proposal. 

5.2 Results 

Table 1 shows the RD performance and time reduction of our proposed GPU-based 
ME algorithm for 720p sequences against three of the most well-known ME 
algorithms implemented by the reference H.264/AVC encoder (Full search (FS), 
Unsymmetrical Multi-Hexagon search (UMHexagonS) and simplified Unsymmetrical 
Multi-Hexagon search (smpUMHexagonS) [14])). The results show that the RD 
performance obtained by our proposed ME algorithm is very similar to the sequential-
based implementations. Our GPU-based ME algorithm compared with FS ME and 
smpUMHexagonS ME have a PSNR drop of up to 0.1 dB for a given bitrate, and a 
bitrate increase of up to 3.52% for a given PSNR. On the other hand, our algorithm 
has a PSNR increase of up to 0.199 dB for a given bitrate and a bitrate drop of up to 
7.07% for a given bitrate, compared with UMHexagonS ME. 

Table 1. RD Performance and TR of the proposed GPU-Based Algorithm. 720p sequences. 

 

Sequence 

Full Search UMHexagonS smpUMHexagonS 

ME 

TR 

ΔPSNR 

(dB) 

ΔBitrate 

(%) 

ME 

TR 

ΔPSNR 

(dB) 

ΔBitrate 

(%) 

ME 

TR 

ΔPSNR 

(dB) 

ΔBitrate 

(%) 

Dolphins 98.82 -0.072 2.59 83.01 0.199 -7.07 68.60 -0.039 1.35 

Mobcal 99.06 -0.037 1.15 81.64 0.031 -1.12 74.46 -0.073 2.35 

Parkrun 99.28 -0.043 1.40 86.31 -0.018 0.57 80.72 -0.049 1.59 

Shields 98.94 -0.043 1.38 83.50 -0.038 1.00 73.95 -0.100 3.21 

Stockholm 98.96 -0.040 1.35 82.67 -0.021 0.45 74.74 -0.097 3.52 

Average 99.01 -0.047 1.57 83.43 0.031 -1.23 74.50 -0.072 2.40 

Table 2 shows the RD performance and time reduction of our proposed algorithm 
for 1080p sequences. The RD performance conclusions are similar to those obtained 
for 720p format. Our GPU-based algorithm obtains slightly worse results than the FS 
ME algorithm and the smpUMHexagonS ME algorithm (the bitrate increases and the 
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PSNR drops) and it obtains slightly better results than UMHexagonS ME (the bitrate 
drops and the PSNR increases).  However, for both resolutions our proposal obtains 
considerable time reductions. The average ME time reduction comparing with FS ME 
is better than 99% (Speedup over 100), the average ME time reduction comparing 
with UMHexagonS ME is better than 81% (Speedup over 5) and finally, the average 
ME time reduction comparing with smpUMHexagonS ME is better than 74.5% 
(Speedup close to 4). At this point, the negligible RD penalty is an acceptable solution 
because of the very high time reductions achieved. 

Table 2. RD Performance and TR of the proposed GPU-Based Algorithm. 1080p sequences. 

 

Sequence 

Full Search UMHexagonS smpUMHexagonS 

ME TR ΔPSNR 

(dB) 

ΔBitrate 

(%) 

ME TR ΔPSNR 

(dB) 

ΔBitrate 

(%) 

ME TR ΔPSNR 

(dB) 

ΔBitrate 

(%) 

Crowd 99.15 -0.118 3.86 83.14 0.035 -1.25 78.57 -0.103 3.32 

Ducks 99.31 -0.037 1.20 84.19 -0.002 -0.12 81.18 -0.036 1.05 

IntoTree 99.13 -0.074 3.66 84.19 0.026 -1.18 77.56 -0.113 5.00 

OldTown 98.92 -0.048 2.31 80.15 -0.017 0.36 71.17 -0.102 3.78 

ParkJoy 99.25 -0.077 2.33 85.10 0.017 -0.61 79.38 -0.087 2.61 

Average 99.15 -0.071 2.67 81.89 0.012 -0.56 77.57 -0.088 3.15 

Figure 3 shows the RD graphic (PSNR against bitrate) results for the reference 
algorithms and the proposed approach, using different 1080p sequences. In general, 
the PSNR against bitrate curves are quite similar to those achieved by the reference 
algorithm while our proposal is always much faster than the reference 
implementations. Due to space limitations only 1080p sequences are shown. Similar 
RD results are obtained for 720p sequences. 

5.3 Comparison with Other Known Results 

In this section, a comparative performance evaluation in terms of the RD performance 
and execution time is presented. We compare the results of the proposed algorithm 
with those shown in one of the papers available in the literature with the most 
promising results. In [9], the authors proposed a GPU-based implementation of the 
well-know smpUMHexagonS ME algorithm. They partition each frame into multiple 
tiles, where each tile contains one or more MBs and each tile is processed by a single 
GPU thread.  

Table 3 shows the RD results for their algorithm as well as our RD results using 
the same encoding conditions. We have employed the same 720p sequences sampled 
at 60Hz, selecting 64 as the search range and all pictures are encoded as P-frames 
except the initial I-frame. The comparison is achieved when comparing our results 
against the reference smpUMHexagonS (implemented in JM) with their results 
against smpUMHexagonS too. In their implementation, they obtain more degradation 
as many tiles are used due to the dependencies between neighboring MBs. However, 
we mitigate the degradation in our approach. Our algorithm outperforms the RD 
performance obtained by their fastest configurations (90 or more tiles); our algorithm 
has lower bitrate increments and lower PSNR losses than their algorithm for all video 
sequences. 
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Fig. 3. RD results comparing the performance of the proposal and the H.264 reference. 1080p 
Sequences. 

Table 3. RD comparison with Cheung et al. results[9] 

 Sequence 

Crew City Harbor Night 

Number of Tiles ΔBitrate 

(%) 

ΔPSNR 

(dB) 

ΔBitrate 

(%) 

ΔPSNR 

(dB) 

ΔBitrate 

(%) 

ΔPSNR 

(dB) 

ΔBitrate 

(%) 

ΔPSNR 

(dB) 

3,600 3.14 -0.082 12.93 -0.407 5.58 -0.221 4.64 -0.170 

900 3.08 -0.079 11.12 -0.352 2.39 -0.094 3.55 -0.130 

225 3.12 -0.080 11.17 -0.350 2.25 -0.089 3.42 -0.125 

90 3.22 -0.083 10.82 -0.339 2.21 -0.087 3.40 -0.124 

12 0.63 -0.016 1.41 -0.044 0.57 -0.022 1.19 -0.043 

3 0.09 -0.003 0.26 -0.008 0.07 -0.003 0.16 -0.006 

Our algorithm 3.08 -0.071 6.68 -0.309 0.88 -0.028 1.55 -0.047 

 
Table 4 shows the execution time for the experiments carried out to fill the 

previous table. Table 4 also shows the average execution time for each configuration. 
Note that the peak performance for our GPU is 1350 GFlops and the peak 
performance for the GPU used in [9] is 345.6 GFlops, which means that our GPU is 
3.9 times more powerful. For this reason and for a fair comparison, we have included 
the column labeled as Index in Table 4, which shows the ratio between the average 
execution time obtained by their implementation for a certain encoder configuration 
and the average execution time by our implementation using the same encoder 
configuration. Higher values than 3.9 for this index mean that our algorithm is faster 

28

29

30

31

32

33

34

35

36

37

0 20000 40000 60000 80000 100000 120000

P
S

N
R

 [D
B

]

Bit rate [kbit/s]

Sequences 1080p (1920x1080, 50 Hz)

Full Search
UMHexagons
GPU

Crowd

Ducks

IntoTreeOldTown
ParkJoy



 A Fast GPU-Based Motion Estimation Algorithm for H.264/AVC 561 

than their algorithm. In conclusion, our algorithm is as fast as their best configuration 
(index of 3.85) and it outperforms the execution time for the other configurations 
(higher index than 3.9). The execution time using 3 and 12 tiles is not specified in [9]; 
however we expect a higher execution time than the other tile configuration since they 
use less GPU threads. 

Table 4. Execution time comparison with Cheung et al. results[9] 

 Sequence  

Average GPU 

time (ms) 

 

Index Crew City Harbor Night 

Number of 

Tiles 

GPU 

Time 

(ms) 

GPU Time 

(ms) 

GPU Time 

(ms) 

GPU Time 

(ms) 

3,600 835.05 927.32 1,248.95 1,688.50 1,174.95 3.85 

900 959.16 1,005.55 1,341.45 1,975.95 1,320.53 4.33 

225 2,169.25 2,108.71 2,763.79 4,175.44 2,804.30 9.19 

90 4,373.63 4,165.28 5,318.38 6,920.73 5,194.51 17.02 

12 Unknown   

3   

Our algorithm 305.09 306.16 304.96 304.71 305.23  

6 Conclusions 

This paper proposes an algorithm to perform the inter prediction carried out in 
H.264/AVC using a system composed of a CPU with the support of a GPU. The 
proposed algorithm performs the ME over a GPU by means of an efficient 
distribution of complexity and management of GPU resources. The algorithm 
includes the ME with full-pixel and sub-pixel accuracy, as well as sub-pixel 
interpolation. Furthermore, the proposed approach is further adapted to avoid coding 
dependencies between MBs, which is one of the major issues when the ME is carried 
out in parallel. The results show that the proposed algorithm achieves almost the same 
coding efficiency but outperforms all the ME algorithms available in the JM reference 
software in terms of time. The performance is also compared with the state-of-the-art 
approach available in the literate, achieving a faster execution time together with 
better coding efficiency. 
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