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Abstract. In this paper, we have described the Active Cleaning approach that
was used to complete the active learning approach in the TRECVID collabora-
tive annotation. It consists of using a classification system to select the samples to
be re-annotated in order to improve the quality of the annotations. We have eval-
uated the actual impact of our active cleaning approach on the TRECVID 2007
collection, using full annotations collected from the TRECVID collaborative an-
notations and the MCG-ICT-CAS annotations.

From our experiments, a significant improvement of our annotation systems
performance was observed when selecting a small fraction of samples to be re-
annotated by our cleaning strategy, denoted as Cross-Val, than using the same
fraction to annotate more new samples. Furthermore, it shows that higher per-
formance can be reached with double annotations of 10% of negative samples,
or 5% of all the annotated samples that were selected by the proposed cleaning
strategy.

Keywords: Corpus annotation, active learning, annotation cleaning.

1 Introduction

Concept indexing in image and video documents is very important for content-based
retrieval. It is a fundamental image/video retrieval problem: given a data set of images
and a query (visual concept), which images do present the given visual concept? Gen-
erally, classical keyword based search is not possible due to the frequent absence of
appropriate text annotation. Signal-level descriptions (e.g. color and texture) are also
known to be inappropriate for the task since they do not represent the semantic content
well, and are not easy to handle for users. Automatic concept indexing has been one
of the main focus of the TRECVID campaigns (evaluation of video retrieval systems,
[12]) since 2002.

Most concept indexing systems use a supervised learning approaches [7,13], in which
concepts are learned from sets of positive and negative samples. The models and train-
ing algorithms are important for systems’ performance, but the training data also play
an important role. While it is quite easy and cheap to get large amounts of raw data, it
is usually very costly to have them annotated, due to the involvement of human inter-
vention for judging the “ground truth”.
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While the volume of data that can be manually annotated is limited due to the cost
of manual intervention, it still possible to select the data samples that will be annotated,
so their annotation is “as useful as possible” [1]. Deciding which samples will be the
most useful is not trivial. Active learning is an approach in which an existing system
is used to predict the usefulness of new samples. This approach is a particular case of
incremental learning in which the system is trained several times with a growing set of
labeled samples. The objective is to select as few samples as possible to be manually
annotated so that these annotations lead to better classification performance.

The quantity of the annotated samples is important for system’s performance, Their
quality is also very important since most advanced classification methods are sensitive
to mislabeled training examples. Using crowd-sourcing [3,14] methods leads to quickly
changing the landscape for the quantity and the quality of labeled data available to su-
pervised learning. While such data can now be obtained more quickly and cheaply than
ever before, the generated labels also tend to be far noisier due to limitations of quality
control mechanisms. The quality of the labels obtained from annotators varies. Some
annotators provide random or bad quality labels in the hope that they will go unnoticed
and still be paid, and yet others may have good intentions but completely misunderstand
the task at hand or they become distracted or tired over time. The standard solution to
the problem of “noisy” labels is to assign the same labeling task to annotators, in the
hope that at least a few of them will provide high quality labels or that a consensus
emerges from a great number of labels. In either case, a large number of labels is nec-
essary, and although a single label is cheap, the costs can accumulate quickly. It can be
observed, that if one is aiming to produce a quality labels within minimum time and
money, it makes more sense to dynamically decide on the number of labelers needed.
For instance, if an expert annotator provides a label, we can probably rely on it being
of high quality, and we may not need more labels for that particular task. On the other
hand, if an unreliable annotator provides a label, we should probably ask for more la-
bels until we find an expert or until we have enough labels on which we can apply the
majority vote to decide the final label.

Given the substantial human effort required to gather good training sets -as well
as the expectation that more data is almost always advantageous-, researchers have
begun to explore new ways to collect labeled data. Both active learning and crowd-
sourced labeling are promising ways to efficiently build up training sets for concept
indexing and retrieval. The active learning techniques aim to minimize human effort
by focusing label requests on those that appear to be the most informative samples
to the classifier [8,4,15,10,2], whereas crowd-sourcing work explores how to package
annotation tasks in such a way that they can be dispersed effectively [15,5,11]. The
interesting questions raised in these areas - such as dealing with noisy labels, measuring
reliability, mixing strong and weak annotations - make it clear that data collection is no
longer an ordinary necessity, but a thriving research area in itself.

Recent years have seen significant growth in label aggregation researches. For exam-
ple, Vijayanarasimhan et al. presented an approach for live learning of object detectors
[15], in which the system autonomously refines its models by actively requesting crowd-
sourced annotations on images crawled from the worldwide web. Kumar et al. showed
that generating additional labels for labeled examples reduces the potential label noise
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[5], and faster learning can be achieved by incorporating knowledge of worker accura-
cies into consensus labeling. Sheng et al. in [11] presented repeated-labeling strategies
of increasing complexity, and their results show clearly that when labeling is not per-
fect, selective acquisition of multiple labels is a strategy that data miners should have
in their repertoire; and for certain label-quality/cost regimes, the benefit is substantial.

Using multiple annotations to reduce labeling noise have also been used in the con-
text of crowd-sourcing; although a full double or triple annotation is even more costly
than a simple full one; and it is not in the spirit of data annotation based active learn-
ing approaches, in which we do not need to annotate all the samples in the data set.
In this paper, we propose to use an active learning approach for selecting samples for
second or third annotations. We call this approach Active Cleaning. Using the simulated
active learning approach and all the available annotations on TRECVID 2007 develop-
ment set, we have designed different experiments in order to evaluate the benefits of the
active cleaning approach, as well as the relative efficiency of the associated strategies.

The outline of the paper continues as follows: the annotation type is presented in
section 2; the active cleaning approach is discussed in section 3; section 4 describes the
experimental results, while Section 5 presents concluding remarks.

2 Annotation Type

We consider the binary annotations, which are often used for image/video classifica-
tion, such as “Does the video-shot contain an instance of the given visual concept C
or not?”. Let tx the target value for the sample x and yxk the kth label for the sample
x given by an annotator. The set of target values T and the set of labels Y are binary
scalars, hence yxk, tx ∈ {−1, 1}. T values are decided by applying the majority vote
on Y values. In the collaborative annotation we have a third case that we call skipped:
the user already saw the shot but he/she was confused of its label. Three possible an-
notations were considered: Positive, Skipped and Negative we name them pos, skip and
neg respectively.

3 Active Cleaning

Active cleaning is the method of using an existing classification system for selecting
samples for re-annotation, in order to improve the quality of an annotated corpus. It may
be implemented in an incremental way, in conjunction with an active learning based
annotation algorithm. In this case, the annotations may be cleaner and more correct,
which makes the active learning more effective and efficient. Active cleaning may also
be used for cleaning an already existing annotation, which can be either complete or
partial. In this case, the benefits are only at the level of the resulting annotation.

Cleaning during active learning is the approach that was used in TRECVID collab-
orative annotation system. The active cleaning algorithm based concept annotation is
detailed in Algorithm 1, which applies the classical active learning algorithm in which
we added the cleaning process. Let D be the data set which needs to be labeled as con-
taining a target concept (e.g. Airplane, Person..); L, U the labeled and unlabeled subsets
respectively, thus L ∪ U = D and L ∩ U = φ. N a set of the possible choices of the
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user to label sample x as containing a given concept or not. Three possible choices are
allowed by the annotation system: Positive, Skipped and Negative, (see section 2). We
denote Qal and Qcl to be the selection strategies of the active learning and cleaning
respectively (see section 3.1). Before explaining the algorithm let us introduce some
definitions in order to facilitate the understanding of our algorithm:

1. The set of available annotations: Y = {yxk ∈ N : x ∈ L; k ∈ {1, 2, . . . , t}},
where yxk defines the kth label of sample x given from an annotator. Hence we
ask, orderly, for up to three annotations for each sample, we set t = 3.

2. The subset of conflicting samples: ConfANN = {x ∈ L : yx1, yx2 ∈ Y ∧ yx1 �=
yx2}, a subset of L that have two different annotations for each sample.

3. The subset of second-annotations: SANNQcl
= {x ∈ L : yx1 ∈ Y ∧ yx2 /∈ Y },

a subset of L that have only one annotation for each sample, selected according to
the cleaning strategy Qcl.

4. The subset of primary-annotations: PANNQal
= {x ∈ U} samples have no avail-

able annotations, selected according to the active learning strategy Qal.

Algorithm 1. Active Cleaning Algorithm Based Concept Annotations
D: all data samples.
Li, Ui: labeled and unlabeled subsets of S, (Li ∪ Ui = D).
A=(train, predict): the elementary learning algorithm.
Qal, Qcl: the selection strategies, respectively, for the active learning and cleaning.
Yi: available annotations for Li.
Initialize L0 and Y0.
while D \ Li �= ∅ do

mi ← Train(A, Li, Yi)
Pu ← Predict(Ui,mi)
Pl ← Predict(Li,mi)
(*) Select the subset ConfANN ⊂ Li

(**) Apply Qcl on Pl in order to select the subset SANN ⊂ Li.
(***) Apply Qal on Pu in order to select subset PANN ⊂ Ui.
Ỹ = (Label (ConfANN)) ∪ (Label (SANN)) ∪ (Label (PANN))
Yi+1 ← Yi ∪ Ỹ
Li+1 ← Li ∪ PANN
Ui+1 ← Ui \ PANN

end while

The algorithm is iterative, for implementation purposes, the elementary learning al-
gorithm A is split into two parts: train and predict. The algorithm starts by initializing
the L0 set, which can be done by collecting initial labels Y0 for some samples of D,
through the annotators. Iteratively, the development set D is split into two parts: labeled
samples Li, and unlabeled samples Ui. Then classifier A is trained using Li with its as-
sociated labels Yi and obtains the model mi, which is then used to predict the scores
- likeliness to contain the target concept - Pl and Pu of the samples in Li and Ui sets
respectively. These predicted scores are used to select the samples to be labeled in the
next iteration. However, the selection is done in three steps: first the algorithm chooses
the samples with conflicting labels ConfANN (*); then it apply the cleaning strategy Qcl
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on the predicted scores Pl of the samples in Li, and selects the samples of the SANN set
to be re-annotated by different users (**). Finally, the predicted scores Pu of unlabeled
samples in Ui are passed to the Qal strategy, which selects the PANN set (***). The
annotators are asked to annotate all the samples in these three sets, taking into account
that a data sample x can be examined maximum once by the same annotator, and anno-
tators cannot access the judgments of other annotators. When the new annotations set
Ỹ is completed, it will be added to the global annotations set Y . The set PANN is added
to the Li set to produce the set Li+1, and it is also removed from the Ui set to produce
the Ui+1 set. Thus a new iteration is started.

3.1 Active Learning and Cleaning Strategies, Qal and Qcl

In this paper, the selection strategy of the active learning, Qal has been chosen to imple-
ment the relevance sampling, which selects the most probable positive samples regard-
ing to their classification scores (samples with high prediction scores). It was observed
that this is a good strategy for sparse concepts [2,10] where the objective is to find as
many positive samples as possible from the unlabeled set U to be annotated.

For the active cleaning, several strategies Qcl can be used for the selection of samples
to be re-annotated. They may depend upon the type of annotation (number of possible
judgments for instance) and the problem of highly imbalanced dataset, which is a very
frequent case in video indexing. Furthermore, these strategies can depend on whether
the first annotations were done incrementally or at once. We propose here a cleaning
strategy, denoted Cross-Val. It is based on re-annotating the wrongly labeled samples
due to an error of the annotator (for instance if the annotator missed the change of the
concept to annotate). Detecting the wrongly labeled samples is done by training classi-
fiers on these labeled samples and using the trained models to predict the correctness of
these labeled samples. Thus, through the predicted score of each sample we can expect
if the sample has a correct label or not. The wrongly labeled samples are then those hav-
ing positive labels with low scores, or negative labels with high scores. Basically, this
strategy selects fractions of the labeled samples. These fractions denoted as P%, N%
and S% and refer to annotated samples as positive, negative and skipped respectively,
(see section 2). Furthermore, the selected samples are then proposed to annotators for
a second annotation round.

In Cross-Val strategy, the N%, P% and S% correspond to the percentage of the la-
beled samples as Negative, Positive and Skipped. This includes the baseline (no second
annotations), when N=P=S=0, re-annotating all skipped and positive samples (Skip-
Pos) by P=S=100 and N=0, and the extreme fully cleaning N=P=S=100. In this paper,
we evaluated the Cross-Val strategy with different fractions and several ways of re-
annotations as in table 1. Our goal is to study the system performance with the Cross-
Val strategy for cleaning annotations, furthermore to find the best fraction values for
this process.

3.2 A Posteriori Cleaning

In the case of a posteriori cleaning, we assume that first annotations have been done,
thus we have one annotation for each sample, and they will be cleaned globally with
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a single iteration. A system is trained using the available annotations and the samples
are ranked according to their probability of being positive by the system. The given
fractions P%, S% and N% of samples annotated as positive, skipped and negative will
be used respectively to select the samples for second annotation round. For the positive
samples, the system chooses the P% of positive samples with false prediction (have
lowest predicted scores). For the negative samples, it chooses the first N% of negatives
samples with the highest predicted scores annotated. For the skipped samples we chose
the S% of the skipped samples that have uncertainty scores (predicted score is close to
the classifier boundaries). In all cases, a third annotation is required from the annotators
when conflicting is detected, between the first and second annotations.

4 Experiments

We have evaluated the active cleaning approach based on the Cross-Val (Qcl) strat-
egy in a variety of contexts. It has been applied with a classification system using four
types of image descriptors, which are taken from IRIM GDR-ISIS partners [9], includ-
ing the combination of Histogram and Gabor, Global-Tlep, Global-Qwm and Bow-Sift.
The multiple-SVM classifiers with RBF kernel was applied as the classification algo-
rithm, which was implemented as in [10]. The evaluations were conducted using the
TRECVID 2007 collection metrics and protocol. The TRECVID 2007 collection con-
tains two main sets: the development set consists 21532 sub-shots with 36 concepts (or
“high level features”) selected from the LSCOM-lite [6] set for annotation, and the test
set which consists of 22084 sub-shots. In TRECVID 2007, the evaluation was done on
the test set using only 20 concepts which were chosen by the National Institute of Stan-
dards and Technology (NIST). In order to carry out the experiments on the simulated
active cleaning, three annotations are needed for each concept (c )× sub-shot (x) in this
dataset. We have collected and completed all the annotations, which were produced by
the collaborative annotation on the considered database, that we get at least two labels
for each c × x. In addition, we used a complete set of annotations: one label for each
video shot, produced independently by a group from the Multimedia Content Group,
Institute of Computing Technology, Chinese Academy of Sciences (MCG-ICT-CAS).

Since our goal, in this work, is to study the system performance with the Cross-Val
(Qcl) strategy for cleaning annotations, we present the different fractions that were used
in our experiments in table 1. In which E1 is the baseline, E8 refers to the cleaning of
all skipped and positive samples, and (E2, E3, . . . , E7) indicates the cross-validation
strategy with different (N%, P%, S%) fractions.

Table 1. The (P%,N%,S%) fraction values that were used in our experiments with our active
cleaning strategy

Qcl E1 E2 E3 E4 E5 E6 E7 E8
pos % 0 10 0 0 5 10 20 100
neg % 0 0 0 10 5 10 20 0
skip % 0 0 10 0 5 10 20 100
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4.1 The Active Learning Steps and the Cold-Start

In calculating the number of the required annotations at each active learning iteration
(including the third, second and first annotations), a variable step size function can be
used. In practice we used 30 steps in total, considering the geometric scale function
with the following formula: sk = s0 × (n/s0)k/K , where n is the total size of the
development set, s0 is the size of the training set at the cold-start, K is the total number
of steps and k is the current step. At each step (or iteration) the algorithm calculates
the sk to be the size of the new training set and it chooses the number of samples
that needs to be cleaned clk, and the new samples to be labeled with size equal to
newk = sk − sk−1 − clk.

In this evaluation, the harmonic mean has been applied as a fusion function for the
multiple-SVM results (scores). The cold start problem was solved by using another
TRECVID collection, the 2005 one. We trained SVM classifiers on the TRECVID 2005
collection and predicted the usefulness on the development set of TRECVID 2007; we
have started with annotating the first 100 samples at the top of the ranked list (samples
having high scores), then the Active learning and cleaning system was run to label all
the shots within the development set.

4.2 Available Annotations

In the following we present the two resources of the considered annotations:

1- Collaborative Annotations (CA): Annotations were done in collaboration with 32
groups of participants at TRECVID, each group contributed with several annotators.
The annotation system used is based on the active learning approach. For each concept
(c) × sub-shot (x) in the data set, the annotators have left the choice to label x as
containing an instance of concept t or not, pos and neg respectively, they also can skip
annotating it in the case of confusing on its label. This can be considered as crowd-
sourcing, since each shot could be proposed to several annotators to judge whether it
contains c or not. Since we were limited in time of the annotating phase of TRECVID,
this data set was not fully annotated. Furthermore, there are multiple annotations for the
annotated samples L for each concept c, and they are still available and can be used as
multiple judgments for the experiments on simulated active cleaning approach. For our
experiments, these judgments have been completed to have at least two judgments for
each sample.

2- MCG-ICT-CAS Annotations (MCG): The MCG-ICT-CAS team has produced, on
its own, complete and independent annotations of all the concepts (c)× sub-shots (x).
The annotations were made by a pool of students. Each student could annotate shots to
contain only a specific concept, and the annotations were done on all the data set (active
learning was not considered). Each c × x has only one label, since only one annotator
(student) could examine and label it, which means that it does not contain multiple
annotations. This annotations set has the advantage of being complete, and since it was
made using a smaller number of annotators, one can say it is more consistent.

These annotations were taken by different annotators and two different systems, and
they have some noise in annotations. These noises came from the annotation systems
used and the annotators themselves. For instance, given concept Sports: we got 482
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Fig. 1. The MAP calculated on 20 concepts of the TRECVID 2007 test set, with two different
annotation sources

positive samples from the CA annotations, while from MCS annotations we got only
226 positives; furthermore, the two sources were agreed on only 168 positive samples.

The performance of our baseline system, by using only single annotations from the
two annotation resources (CA and MCG), is shown in figure 1. This figure shows the
effectiveness in performance, of the classification system, with the number of the anno-
tated sub-shots from the development set. Thus, it presents the MAP, of the 20 concepts,
calculated on the test set. For both curves, we consider a better curve to be: the fastest in
growing, and the highest MAP value, it reaches, especially in the beginning. As we can
see, the system performance using the annotations produced by the CA is much higher
than using the MCG annotations. This can be due to the annotation strategy, which is
different in the two cases as described above, and it may also be related to the annotators
themselves.

From this result, we assume that for each concept (c) × sub-shot (x), the annotations
taken from CA are cleaner than the MCG, and we planned two main experiments to
study the effectiveness of the active cleaning strategies:

1. (MCG-CA): the first annotation, for each c × x, is taken from low-quality annota-
tors, (MCG), and the second annotation was taken from better-quality annotators
(CA).

2. (CA-MCG): the first annotation, for each c × x, is taken from good-quality anno-
tators, (CA), and the second annotation was taken from lower-quality annotators
(MCG).

In both experiments, we have used the second annotation produced by CA as the third
annotation, and it was used when the two annotations (CA and MCG) are conflicting.

4.3 Active Cleaning Effectiveness

We have studied the performance of the annotation system using the cleaning strategy,
Cros-Val with different P%, N% and S% fractions as set in table 1. Thus, we report the
obtained results from our two main experiments MCG-CA and CA-MCG. For simplic-
ity, we report the results of the last iteration of the active cleaning, in table 2. Further-
more, in figure 2 we present the full iterative results of the cleaning performance, for
some experiments.
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Table 2. The result of the cleaning strategies with the eight experiments described in table 1

MCG-CA #Annotations CA-MCG #Annotations
E1=N0P0S0 0.084 21532 0.091 21532
E2=N0P10S0 0.084 +0% +65 0.091 +0% +46
E3=N0P0S10 0.086 +2% +50 0.092 +1% +11
E4=N10P0S0 0.095 +14% +2100 0.096 +5% +2150
E5=N5P5S5 0.096 +14% +1100 0.095 +4% +1100
E6=N10P10S10 0.097 +15% +2200 0.090 -1% +2215
E7=N20P20S20 0.097 +15% +4400 0.095 +4% +4420
E8=N0P100S100 0.086 +2% +1150 0.093 +2% +580
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Fig. 2. Active cleaning strategies: Cleaning MCG annotations by CA in left, and in right Cleaning
CA by MCG annotations

Table 2 presents the evaluation results of the two main combinations MCG-CA and
CA-MCG, using the cleaning strategy, Cros-Val with different P%, N% and S% frac-
tions as set in table 1. Moreover, it presents the number of cleaning annotations required
for each experiment in the two considered combinations. As we can see from this table,
some experiments do not have a real effect on the system performance, especially when
the cleaning system does not include the negative samples, as in E2, E3 and E8. This is
due to the fact, that the number of re-annotated samples is very small, since there are
few positive and skipped samples in the data set. However, the performance is higher
when the negative samples were included in the cleaning system; moreover it goes up
to 15% in the case of MCG-CA and 5% in CA-MCG. This is expected since, as shown
in figure 1, we consider that annotations from MCG have lower-quality than CA.

Figure 2 shows the effectiveness of the active cleaning strategies E4 and E5 com-
pared to the baseline (E1) and the Skip-Pos (E8) strategy, with the two considered exper-
iments, the MCG-CA (left) and CA-MCG (right). As we can see in this figure, in both
experiments, the system performance (using the MAP) was increased when the clean-
ing system considered the re-annotations of negative samples, as in E4 and E5. Hence,
the Cross-Val strategy E4 works in re-annotating only 10% of the negative samples,
and E6 re-annotating 5% of each type of the annotations (positive, negative, skipped).
Moreover, the active cleaning maintains the purpose of using the active learning ap-
proaches to annotate large scale image/video databases. Thus, the best performance
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could be obtained when annotating only 15-30% of the development set. The enhance-
ment in the performance is more important when cleaning the lower-quality annotations
than better-quality annotations. Furthermore the active cleaning can better enhance the
performance under the condition that the number of annotations is the same.

4.4 A Posteriori Cleaning Effectiveness

Table 3 shows the same results in the case of a posteriori cleaning. The results are sim-
ilar to the results obtained by active cleaning, as shown in the previous section, but
Active cleaning is is more effective and efficient. In this table, as we can see, using the
full three annotations (N100P100S100) leads to a better performance than using dif-
ferent fractions as in table 1. Even though, it requires three times as many annotations
as the baseline, while each of the other combinations requires only few more annota-
tions than the baseline. This is due to either the fraction is small (e.g. N5* or N10*) or
because the target concepts are sparse.

Table 3. The result of the posteriori cleaning with the eight experiments described in table 1

MCG-CA CA-MCG
E1=N0P0S0 0.0840 0.0910
E2=N0P10S0 0.0833 0.0917
E3=N0P0S10 0.0847 0.0927
E4=N10P0S0 0.0858 0.0917
E5=N5P5S5 0.0841 0.0921
E6=N10P10S10 0.0852 0.0910
E7=N20P20S20 0.0877 0.0921
E8=N0P100S100 0.0866 0.0931
Full3=N100P100S100 0.0962 0.0962

5 Conclusions

We have described the active cleaning approach that was used to complement the ac-
tive learning approach in the TRECVID collaborative annotation. The actual impact of
the active cleaning approach was evaluated on TRECVID 2007 collection. The eval-
uations were conducted using complete annotations that were collected from different
resources, including the TRECVID collaborative annotations and the MCG-ICT-CAS
annotations.

From our experiments, a significant improvement of the annotation quality was ob-
served when applying the cleaning by cross-validation strategy, which selects the sam-
ples to be re-annotated. Experiments show that higher performance can be reached with
minimum double annotations of 10% of negative samples or 5% of all the annotated
samples selecteded by the proposed cleaning strategy using cross-validation. It has been
shown that, with an appropriate strategy, using a small fraction of the annotations for
cleaning improves much more the system’s performance than using the same fraction
for adding more annotations.
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