
Large-Scale Similarity-Based Join Processing

in Multimedia Databases

Harald Kosch and Andreas Wölfl

University of Passau, Germany
Distributed Information Systems, Faculty of Informatics and Mathematics

{Harald.Kosch,Andreas.Woelfl}@uni-passau.de

Abstract. This paper presents efficient parallelization strategies for
processing large-scale multimedia database operations. These strategies
are implemented by extending and parallelizing the GiST (Generalized
Search Tree)-framework. Both data and pipeline parallelism strategies
are used to execute multi join operations. We integrate the parallelized
framework into an Oracle 11g Multimedia Database using its extension
mechanisms. Our strategies and their implementations are tested and
validated with real and random data sets consisting of up-to 10 millions
of image objects.

Keywords: Multimedia Databases, Similarity-based Operations, Par-
allel Processing.

1 Motivation

In multimedia databases, the set of multimedia objects are described by a col-
lection of features. In the case of images, examples of features include color
histograms, color moments, textures, shape descriptions and so on [1]. Common
multimedia database operations are similarity-based selection queries [2]. Two
main types of selections are considered. First, one looks for objects whose feature
vectors are within a given range (range queries) to the feature vector of a given
query object. Second, one finds objects whose feature vectors have the most
similar values to the feature vector of a given query object (nearest-neighbor
queries). In addition, similarity-based join queries are considered [3,4,5]. The
similarity-based join is useful to merge two sets of multimedia objects based on
their pairwise similarity. It can be employed within a single database, for instance
in social media applications to compute pairwise similarity of images posted by
different interest groups. Similarity-based joins may also be employed to merge
sets of image objects stemming from different repositories in order to find out
pairwise similarity and thus create interlinking among them. In this scope, our
paper studies methods for efficiently joining large sets of image objects. Our
solution strategies include several data and pipeline parallelization methods.

2 Multimedia Database Operations

Let M1 and M2 be two image tables in a multimedia database. The image
tables contain the image objects together with their feature vectors extracted

K. Schoeffmann et al. (Eds.): MMM 2012, LNCS 7131, pp. 418–428, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Large-Scale Similarity-Based Join Processing in Multimedia Databases 419

beforehand from the images. For the following join example, we suppose that
we have one feature vector for an image object. A similarity-based join performs
for each image object of the left input table M1 a similarity search in the right
input table M2. Let M1 have the following two objects: (x1, (12, 15, 10)) and
(x2, (22, 32, 5)) and M2 has the objects (y1, (10, 14, 10)) and (y2, (14, 16, 12)).
The similarity search is a range query with a range of 4 using the Euclidean
distance. y1, y2 are the result objects of the similarity search of x1 in M2. For x2

we do not have any similar objects in M2. Thus, two result tuples are output:
(x1, y1, (12, 15, 10), (10, 14, 10)) and (x1, y2, (12, 15, 10), (14, 16, 12)).

Cascading the joins allows one to merge more than two multimedia ob-
ject sets (referred hereafter as multi join operation). Consider now a third im-
age table M3 with the following tuples (z1, (8, 15, 10)) and (z2, (16, 20, 5)). The
result of the former join between M1 and M2 shall be joined to M3 using a
range query (range of 5 using the Manhattan distance). This subsequent join
works as follows. First, we determine which feature vector of the join result
M1 with M2 is used for the subsequent join, then we perform for each join
result tuple a similarity search in M3. We choose the feature vector of M2

for the subsequent join. For the first tuple, (x1, y1, (12, 15, 10), (10, 14, 10)) we
find z1 to be similar, while z2 is not similar enough. For the second tuple,
(x1, y2, (12, 15, 10), (14, 16, 12)) we don’t find any similar image object in M3.
Thus, (x1, y1, z1, (12, 15, 10), (10, 14, 10), (8, 15, 10)) is the only result tuple of
the multi join operation.

Let M1(p, fvp, ap) and M2(q, fvq, aq) be two base image tables, p, q are the
image objects. fvp = f1, f2, ... is the set of feature vectors representing the low-
level features of the object p (respectively for q). ap and aq are object types
containing the attribute components that may be used to describe the objects.
Formally, the Similarity-based Image Join is defined as:

(a) join(M1, M2, fp, fq, ε) = X ⇔ X ∈ M1 × M2 ∧ ∀((p, fvp, ap), (q, fvq, aq)) ∈
X • q ∈ ε − similarity(M2, p, fp, fq, ε).
(b) join(M1, M2, fp, fq, k) = X ⇔ X ∈ M1 × M2 ∧ ∀((p, fvp, ap), (q, fvq, aq)) ∈
X • q ∈k-NN-similarity(M2, p, fp, fq, k).

ε − similarity(M2, p, fp, fq, ε) is the ε-similarity in M2 computing all
neighbors whose distance to the query image p is below a threshold ε.
k-NN-similarity(M2, p, fp, fq, k) is the k-NN -similarity computing the k-nearest
neighbors to the query image p in M2.

The result of a similarity-based join is a new intermediate image table M
which contains the components of both joined image tables, thus the table
schema expresses as: M(p, q, fvp, fvq, ap, aq). The definition above can simply
be extended to the join of one base table with an intermediate image table and
to a join of two intermediate tables.

The Multi Similarity-based Join specifies n ≥ 1 similarity-based joins. It
is represented by a linear processing tree with the following syntax: PT ::= Mi

or PT ::= join(PT1, Mi, f1, f2, ε) or PT ::= join(PT1, Mi, f1, f2, k) where PT1

is a linear processing tree.



420 H. Kosch and A. Wölfl

For simplifying the notations and without loosing the generality of the opti-
mization consideration, each image table Mi is used exactly once.

3 Related Work

This paper concentrates on methods for efficient processing of large-scale multi
similarity-based join operations. To compute the similarity-based operations effi-
ciently, the feature space is usually indexed using a multidimensional index data
structure [6].

The similarity search in large databases may reveal time-consuming, if many
index nodes have to be examined in a range search. To cope with this, recent
works proposed a compact representation of the similarity join result [7]. While
this limits the problem for a similarity-based join, it cannot solve the problem
for multi join operations. If a nearest-neighbor search is employed, the compu-
tational complexity is in the many distance computations and in the size of the
priority queues used for pruning. It becomes specially time- and space-critical for
high-dimensional database spaces (see [8]). Recent works focused on improving
the nearest-neighbor algorithm by using distance estimators, in order to reduce
the storage requirements [9]. It has been proven that this can prune the prior-
ity queue without altering the output of the query. But the time complexity is
still present. As a consequence, several authors considered the parallelization of
similarity-based selection queries [10,11,12].

These works consider either data distribution, space partitioning, or multi-
plexed index structures. Data distribution assigns data rectangles/spheres to dif-
ferent computing nodes in a round robin manner or by a hash function. Space
partitioning divides the space into partitions which are assigned to separate
computing nodes. Multiplexed index structures are distributed over nodes with
pointers across the nodes. Data distribution balances the load, while space parti-
tioning activates few nodes. Multiplexed index structures are more flexible, they
can balance the number of activated nodes vs load balancing among nodes. These
strategies are well-researched. Coming to the processing of similarity-based join
operations, Kosch et al. [3] considered simultaneously processing of two index
structures, and Yu et al. [4] focused on dimension reductions and distance in-
dex structures. Both work did not consider parallelization strategies. In spatial
databases, parallelization of joins have been considered by several authors (see
Section 5 of Jacox et al. [13]). These works consider mainly the parallelization
of the filter step of a spatial join which is special to spatial databases and can-
not be directly transferred to multimedia databases. A recent work concentrated
on the optimal placement of similarity-based multimedia operations in complex
multimedia queries, a parallelization strategy is however only considered for the
selection operators [14]. Distributed processing in IR systems considered also
data distributions. Content replications and distributions for cluster-based ar-
chitectures is for instance considered by Klampanos et al. [15].

Extending the parallelization of similarity-based selections to multi similarity-
based joins is a challenging task. First, the index look-ups of the left input



Large-Scale Similarity-Based Join Processing in Multimedia Databases 421

table image objects to the right image table must be parallelized. Second, the
processing of the different join levels must be also parallelized in order to fully
exploit the computing power of a parallel machine.

4 Large-Scale Processing

We want to effectively process large-scale multimedia queries specifying n ≥ 1
similarity-based joins. For each Mi(oi, fvi, ai) (1 ≤ i ≤ n) with fvi = fi1, fi2, ...
being the set of feature vectors representing the low-level features of the object oi,
we assume that multidimensional index structures are available for each different
f ∈ fvi to efficiently carry out the ε or k-NN -similarity. These multidimensional
index structures shall be able to hold a large number of data points in possibly
high-dimensional data spaces. From related work [6], Data Partitioning index
structures are good candidates. We concentrate in this work on hierarchical
index structures (e.g., X-,SS-, SR- and TV-trees), as they are the mostly used
and tuned [16] index structures in multimedia database products.

Nested-Loop Index Join. The method for performing a similarity-based join
is to apply the ε or k-NN -similarity for each object of the left input table M1

as a query object o looking for its similar objects from the right input table M2.
The latter operation is implemented as an index look-up in the index structure
of the right input table M2.

The research problem we pose is how to process effectively large-scale oper-
ations. Our two main methods are: Data Parallelism of a single similarity-
based operation and and Pipeline Parallelism of multiple similarity-based
operations.

Data Parallelism. We suppose that we are disposing a cluster system with a
high-speed interconnected computing nodes in a distributed memory architec-
ture. Each node has b cores which access the shared memory on the node. We
assume a shared disk architecture.

The processing is done in two phases. In the index build phase the feature
vectors of all available image tables are distributed in round robin manner over
the computing nodes. At each node, a local index structure is built. Thus, each
distribution is complete and not overlapping. We have chosen the data distribu-
tion over the space partitioning parallelization (see Section 3), because it is load
balancing for multi join processing. In a space partitioning approach, each level of
the multi join processing introduces a load imbalance which could easily sum up to
an important overall imbalance and thus leading to much higher-response times.

The processing of the similarity-based join is done in a master-worker manner
(processing phase). The multimedia database server acts as master. It for-
wards the common feature vector for each object of the left input table M1 to
all computing nodes (workers), where an index look-up in the common feature
vector index structure of the right input table M2 is performed. The processing
of each local join (on each node) can be done independently from the others.
This scales very well. The results are sent back to the master. It prepares then
for the subsequent join.



422 H. Kosch and A. Wölfl

Example. Consider two image tables, M1, M2 and a = 4 computing nodes. The
feature vectors of M1 and M2 are:

fv1 = {dominant color, color histogram} and
fv2 = {dominant color, edge histogram}.
In the index build phase, the four available feature vectors (2 for M1 and 2 for
M2) are distributed uniformly over the 4 nodes, thus each node holds 1/4 of the
complete index structures. In the processing phase, we like to perform a 3-NN
similarity-based join of the two image tables. The common feature vector for M1

and M2 shall be the dominant color. The master initiates the join by scanning
M1. For each tuple, it extracts the dominant color feature vector and forwards
the query information (vector and 3-NN ) to all nodes, where an index look-up
on the local dominant color index of the M2 table is performed. The result (the
tuple id) is returned to the master.

Pipeline Parallelism. We propose to process multiple similarity-based joins in
pipelined fashion. The principle idea is taken from right-deep processing of join
operations in parallel relational databases. The way of processing traditional
joins works with exact matching, while similarity-based join processing works
on possibly multiple feature vectors based on similarity matching. Thus, the
distributed implementation of the pipelined similarity-based join cannot directly
use right-deep processing implementations. We therefore originally designed a
pipelined processing strategy for similarity-based joins with a fully threaded
realization exploiting multi-core parallelism on different index structures (and
feature vectors). The pipeline parallelism works as follows, once the result of
a join arrives at the master node, the feature vector for the subsequent join
is looked up the corresponding base table. It is immediately send to all nodes
to probe against the next right input operator. Thus, the former join and the
subsequent join execute on each node in parallel. In order to scale, the processing
of the former join and the subsequent one is done by different threads allocated
to different cores on each node. For instance, if each node has b = 4 cores, one
may execute 4 join levels in parallel. The access to the shared memory could be
the limiting factor for this parallelization. But, as the joins are performed on
different right image tables, the access are not concurrently to the same data.
This strategy scales well.

5 Efficient Parallel Implementation

The implementation of the multidimensional index structure and the similarity-
based join operation is done in two main parts, the Database Extension (SB-
MJLibrary) and the External Index Structure (GiSTServer).

Database Extension (SBMJLibrary): An Oracle 11g Database with the Or-
acle Data Cartridge Interface Technology (ODCI) offering extensibility interfaces
is used. We can extend the query processing, type system and data indexing by
calling external C,C++ or Java routines. We implemented the similarity-based



Large-Scale Similarity-Based Join Processing in Multimedia Databases 423

Fig. 1. Framework for the Similarity-based Join Execution

join operation as an external table function in C++. Figure 1 shows the frame-
work for the similarity-based join execution. In particular one sees the compo-
nents involved, these are the Oracle 11g Database, the ODCI Interface, the Query
Optimizer, the SBMJLevel and the GiST-Framework. The ODCI Interfaces in-
clude external routines that are combined to a shared library. Each subsequent
level of a similarity-based join is represented by an instance of a SBMJLevel.
In each SBMJLevel, the specific join parameters (e.g., involved table indices,
join type, etc.) and a reference to the GiSTWrapper are saved. New interme-
diate result tuples are computed by requesting index scans via GiSTWrapper
calls. The GiSTWrapper is a singleton Object, designed to communicate with
the GiSTServers.

Now, let’s take a look on our realization. The join processing starts with the
Query Optimization. Its task is to find a good ordering of the join operations,
where few intermediate join result tuples are produced. In a previous paper [5],
we introduced a cost model to compute the number of intermediate result tu-
ples. This paper uses the cost model and implements an Iterative Improvement
search strategy to compute a good ordering. The Iterative Improvement algo-
rithm makes a specified number of local optimization. The algorithm starts at
a random state and improves the solution by repeatedly performing swap- or
3-cycle-transformations until a local minimum or the maximal number of itera-
tions is reached. The query optimization is the first part of the similarity-based
join processing.

The execution of the joins, thus generating the result tuples is done
in a parallel and multithreaded manner (processing phase). Each level of a
similarity-based join (SBMJLevel) runs in a separate thread and is connected to
an own input queue. An input queue contains intermediate result tuples from the



424 H. Kosch and A. Wölfl

upper level and acts as a data pipeline (pipeline parallelism). The input queue
of the top level is initialized with feature vector / row-id pairs of the left input
table of the deepest join. With each feature vector in the input queue, a new
index scan request to the GiSTWrapper is started. The result of this query is a
set of matching pairs, which are merged to a new intermediate result tuple, that
is directly piped out to the input queue of the lower level. Considering that one
level will always produce new tuples faster (or slower) than another, the level
processing is also multithreaded to avoid a bottleneck. If there are more than
one intermediate tuple in the input queue, the level runs a predefined number
of worker threads for parallel index scan requests.

Now let us concentrate on the GiSTWrapper. GiST stands for Generalized
Search Tree and is an extensible data structure framework, developed at the
University of Berkeley [17]. The GiST-Library (libgist2.0) contains implemen-
tations for R-,R*,SS-,SR-,B- and NP-Trees and is designed for storing multi-
dimensional index structures. Our extension, the GiSTWrapper is an interface
between the database and the external index structure, which is based on the
GiST-framework. The two main tasks of the GiSTWrapper are first to map the
Oracle ODCI-datatypes to native C-datatypes and second to forward a query
(e.g., index scan request) to the GiSTServers. Considering that the external in-
dex structure is uniformly distributed over multiple GiSTServers in the network,
one query has to be sent to all GiSTServers by using a TCP/IP connection. For
this purpose and to satisfy the criteria of a parallel and multithreaded execu-
tion, the GiSTWrapper runs a new worker thread for each connection. This
thread holds the connection until the GiSTServer completes the computing of
the query. The result of all threads is merged into a set of tuples, which are
returned to the level thread. Note that in a k-NN -query, the result set contains
k * #GiSTServers tuples and must be filtered before it is returned.

External Index Structure (GiSTServer). A GiSTServer communicates over
our multithreaded TCP/IP-Connection-Pool which runs a configurable num-
ber of threads at start-up. When a new request arrives and a free thread is
available, the execution of the request is allocated to that thread. If not, the re-
quest has to wait until a new thread is available. After a new request is received,
it is forwarded to a request handler. The request handler parses each com-
ponent, checks for errors and classifies the request into data manipulating and
data querying requests. This determination is important for thread synchroniza-
tion. In order to avoid that the threads must be fully synchronized when calling
the GiST-framework, we preload multiple GiST-framework instances into the
memory at start-up. This allows truly parallel query execution of threads on
each node. This start-up handling is done by the GiSTHolder-Pool and the
GiSTHolder. A GistHolder holds the entire GiST-framework in protected mem-
ory dynamically. Thus, a GiSTHolder can process a request on his own, in an
independent memory area. The GiSTHolder-Pool is responsible for the schedul-
ing of the GiSTHolder. In this manner, multiple data querying requests can be
executed in parallel. On the completion of a request, either a status code (data
manipulating) or the result tuples (data querying) are returned to the database.



Large-Scale Similarity-Based Join Processing in Multimedia Databases 425

1 2 4 6
0

50

100

150

200

250

300

Number of servers

R
un

tim
e 

in
 s

ec
on

ds

Number of datapoints: 1000000 − join with 5 tables

R−Tree
R*−Tree
SS−Tree
SR−Tree

Fig. 2. Similarity-based Join Response Times with Real Data (1 Million), up to 6
Processors

As the TCP/IP Connection-Pool only supports synchronous communication, the
reply is sent with the same connection as the request was received. Furthermore,
we added several updates and bug fixes to the original GiST-framework, e.g.,
large file support on Linux platforms, so the GiSTServer can handle larger files
than 2GB both on 64bit and 32bit compilates.

6 Experimental Results

We compiled and installed our implementation on a network cluster system. Our
cluster system consists of one master node and 16 worker nodes, interconnected
by a reliable Gigabit Ethernet network. To store the external index structure,
we used a shared disk with 2TB disk space, accessible by each node. All nodes
have the following hardware specification:

Operating System: openSUSE 10.3 (X86-64)
Kernel: 2.6.22.19-0.4-default x86_64
CPU(s): 1 Quad Core Intel Xeon E5405s
CPU Clock: 2000.069 MHz (each core)
Memory: 16078.3MB

We installed the Oracle 11g Database on the master node, the GiSTServers on
the worker nodes.

For the following series of tests, we used two different data sets: first, randomly
generated data (up to 10 millions) and second, real feature vectors, extracted from
images of the Flickr Database (up to 1 million). The main purpose of the tests
is to measure the response time improvements of the processing phase while
increasing the number of computing GiSTServers.

We executed similarity-based joins with varying image data sets (random
data, real data), four index structure types (R-Tree, R*-Tree, SS-Tree, SR-Tree),
different table sizes (103 to 107) and join depths (1-4 cascading joins). We first
found out that on every node, at least 10000 datapoints must be inserted to
achieve an improvement. From that, the greater the table size the clearer the
response times enhancements. In general, the greater the join depth, the better



426 H. Kosch and A. Wölfl

8 10 12 14 16
0

5

10

15

20

25

30

35

Number of servers

R
un

tim
e 

in
 s

ec
on

ds

Number of datapoints: 1000000 − join with 5 tables

R−Tree
R*−Tree
SS−Tree
SR−Tree

Fig. 3. Similarity-based Join Response Times with Real Data (1 Million), from 8 Pro-
cessors

1 2 4 6
0

1000

2000

3000

4000

5000

6000

Number of servers

R
un

tim
e 

in
 s

ec
on

ds

Number of datapoints:10000000

join with 2 tables
join with 3 tables
join with 4 tables
join with 5 tables

Fig. 4. Similarity-based Join Response Times with Random Data (10 Millions), up to
6 Processors

the response time enhancements. The response time highly depends on which tree
family is used: Sphere-based trees deliver (compared to rectangle-based trees)
the best performance. In this paper, due to the page size limit, the figures will
be shown for the maximal amount of treated image objects: 10 millions in the
case of randomly generated data and 1 million in the case of real data and for
the maximal join depths of four.

The result of a cascading similarity-based join with 4 levels on the real data
is shown in figures 2 and 3: join(join(join(join(M1, M2), M3), M4), M5). The
feature vector in the real data is a 64-dimensional MPEG-7 Scalable Color. In
order to regularize the number of result tuples, we set the size of the left input
table of the deepest join M1 to 10 datapoints. Each look-up table contained
1 million datapoints. We used a 1-NN similarity search on the deepest level
and a 3-NN similarity search on the other levels. With this setup, 810 result
tuples are produced. The Database Extension and the GiSTServers were con-
figured to exploit the entire hardware capacity. Each of the 4 SBMJLevel were
running 4 worker threads, so 16 ∗ #nodes threads were requesting the exter-
nal index structures in parallel. Regarding the memory limitation on one node,
the GiSTServers’ thread-pool was set to 8 threads. The scaling is very good.



Large-Scale Similarity-Based Join Processing in Multimedia Databases 427

8 10 12 14 16
0

100

200

300

400

500

Number of servers

R
un

tim
e 

in
 s

ec
on

ds

Number of datapoints:10000000

join with 2 tables
join with 3 tables
join with 4 tables
join with 5 tables

Fig. 5. Similarity-based Join Response Times with Random Data (10 Millions), from
8 Processors

Doubling the number of GiSTServers leads to just above halving the response
time. The slightly lower values on a larger number of computing nodes results
from a communication overhead and the bottleneck of the shared disk access.

Figures 4 and 5 show the results for the similarity-based joins on 5 randomly
generated multimedia tables with 10 millions datapoints on an R*-Tree based
index structure. We used the same thread- and similarity search configuration
as in the previous tests. The response time improvements are similar to figures 2
and 3, except for nodes=1,2. We had to reduce the thread-pool of the nodes
to 1 thread on 1 node and 3 threads on 2 nodes. This was necessary to avoid
memory overflow.

In general, we observed that the running times for the real data sets are
appreciable faster, which is due to the higher density areas in the real data
sets. The difference decreases with a higher number of processors involved.
Our parallelization strategy clearly scales with the size of the data sets joined
and the number of processors used. It brings down the response times of
complex queries to reasonable waiting periods with 10 millions data points
involved.

7 Conclusion

This paper presented efficient parallelization methods for processing large-scale
multimedia database operations. In special, similarity-based image join opera-
tions were efficiently been carried out by using data and pipeline parallelization
strategies. In future works, we will extend the parallelization framework of GiST
with further index structures, e.g., from the Windsurf framework1. We also in-
tend to integrate so called ”distance joins” between two image input sets, e.g., to
compute the K-closest pairs of the two image input sets, ordered by the distance
of objects in each pair.

1 http://www-db.deis.unibo.it/Windsurf/



428 H. Kosch and A. Wölfl

References

1. Lew, M.S., Sebe, N., Djerba, C., Jain, R.: Content-based multimedia information
retrieval: State-of-the-art and challenges. ACM Transactions on Multimedia Com-
puting, Communications, and Applications 2(1), 1–19 (2006)

2. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and
trends of the new age. ACM Computing Surveys 40(2), 1–60 (2008)

3. Kosch, H., Atnafu, S.: Processing a multimedia join through the method of nearest
neighbor search. Inf. Process. Lett. 82(5), 269–276 (2002)

4. Yu, C., Cui, B., Wang, S., Su, J.: Efficient index-based knn join processing for
high-dimensional data. Information and Software Technology 49, 332–344 (2007)

5. Kosch, H.: Optimizing similarity-based image joins in a multimedia database. In:
Proceedings of the ACM International Workshop on Very-Large-Scale Multimedia
Corpus, Mining and Retrieval, VLS-MCMR 2010, pp. 37–42. ACM (2010)

6. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann (2006)

7. Bryan, B., Eberhardt, F., Faloutsos, C.: Compact similarity joins. In: Proceed-
ings of the IEEE International Conference on Data Engineering, ICDE 2008,
pp. 346–355. IEEE (2008)

8. Samet, H.: Techniques for similarity searching in multimedia databases.
PVLDB 3(2), 1649–1650 (2010)

9. Bustos, B., Navarro, G.: Improving the space cost of k-NN search in metric spaces
by using distance estimators. Multimedia Tools and Appl. 41(2), 215–233 (2009)

10. Berchtold, S., Böhm, C., Braunmüller, B., Keim, D.A., Kriegel, H.-P.: Fast parallel
similarity search in multimedia databases. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 1–12. ACM (1997)

11. Alpkocak, A., Danisman, T., Ulker, T.: A Parallel Similarity Search in High Di-
mensional Metric Space Using M-Tree. In: Grigoras, D., Nicolau, A., Toursel, B.,
Folliot, B. (eds.) IWCC 2001. LNCS, vol. 2326, pp. 166–171. Springer, Heidelberg
(2002)

12. Manjarrez-Sanchez, J., Martinez, J., Valduriez, P.: Efficient Processing of Nearest
Neighbor Queries in Parallel Multimedia Databases. In: Bhowmick, S.S., Küng, J.,
Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 326–339. Springer, Heidelberg
(2008)

13. Jacox, E.H., Samet, H.: Spatial join techniques. ACM Transactions on Database
Systems 32(1) (2007)

14. Wu, Z., Cao, Z., Wang, Y.: Multimedia selection operation placement. Multimedia
Tools and Appl. 54(1), 69–96 (2011)

15. Klampanos, I.A., Jose, J.M.: An Evaluation of a Cluster-Based Architecture for
Peer-to-Peer Information Retrieval. In: Wagner, R., Revell, N., Pernul, G. (eds.)
DEXA 2007. LNCS, vol. 4653, pp. 380–391. Springer, Heidelberg (2007)

16. Shen, H.T., Huang, Z., Cao, J., Zhou, X.: High-dimensional indexing with oriented
cluster representation for multimedia databases. In: Proceedings of the IEEE Inter-
national Conference on Multimedia and Expo, ICME 2009, pp. 1628–1631. IEEE
(2009)

17. Hellerstein, J.M.: Generalized Search Tree. In: Encyclopedia of Database Systems,
pp. 1222–1224. Springer, US (2009)


	Large-Scale Similarity-Based Join Processing in Multimedia Databases
	Motivation
	Multimedia Database Operations
	Related Work
	Large-Scale Processing
	Efficient Parallel Implementation
	Experimental Results
	Conclusion
	References




