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Abstract. Organizing and visualizing video collections containing a high
number of near duplicates is an important problem in film and video post-
production. While kernels for matching sequences of feature vectors have
been used e.g. for classification of video segments, kernel-based methods
have not yet been applied to matching near duplicate video segments. In
this paper we survey the application of six sequence-based kernels to clus-
tering near duplicate video segments using kernel k-means and hierarchi-
cal clustering, and the application of kernel PCA for generating content
visualizations for browsing. Evaluation on the TRECVID 2007 BBC
rushes data set shows that the results of the kernel based methods are
comparable to other approaches for matching near duplicates, eliminat-
ing differences between dynamic time warping and string matching. These
results show that hierarchical clustering outperforms kernel k-means. We
also show that well-arranged visualizations of both single- and multi-view
content sets can be obtained using kernel PCA.

1 Introduction

In this paper we consider the problem of organizing and visualizing video col-
lections containing a high number of near duplicates. Such collections exist for
example in the film and video production process, where a large amount of raw
material is shot, and a small fraction of it is selected for use in post-production.
The material is highly redundant, containing often many takes of the same scene,
which are similar, but differ in small details. A substantial amount of literature on
the problem of matching and detecting near duplicate video segments exists (for
an overview see e.g. [2,16], also fostered by two iterations of the TRECVID [23]
rushes summarization task.

Kernels for matching sequences of feature vectors have been proposed and
applied to feature sequences from videos for problems such as classifying events
or person trajectories. As several of the works on near duplicate detection use
sequence-based similarity measures, it seems promising to apply such kernels
to collections of near duplicate video segments. Although this seems a logical
step, a recent paper [13] seems to be the only work that mentions the use of a
sequence-based kernel in a video summarization system.

The rest of this paper is organized as follows. In the remainder of this section
we briefly discuss related work on sequence-based kernels and the application of
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kernel k-means and kernel PCA to video content. Section 2 discusses several ker-
nels for sequences of feature vectors and describe their application to clustering
video segments using kernel k-means and hierarchical clustering as well as using
kernel PCA for projection to a 2-dimensional space for visualization. Section 3
reports experimental results and Section 4 concludes the paper.

Several approaches for sequence matching based on the idea of the pyramid
match kernel have been proposed. The original pyramid match kernel [9,11] par-
titions the feature space in each of the dimensions of the input feature vector.
Its efficiency advantage is based on avoiding explicit distance calculations, but
only counting elements that end up in the same bin of the pyramid. This as-
sumes that the L1 distance can be applied to the feature vectors, and no specific
distance functions can be used. The vocabulary guided pyramid matching ap-
proach proposed in [10] addresses this problem, as it uses a clustering step to
construct the pyramid, supporting arbitrary distance measures. The approach
has been extended to spatio-temporal matching in [4], using sets of clustered
SIFT and optical flow features as local descriptors. Their approach is similar to
spatial pyramid matching proposed in [12], which applies the pyramid matching
only to the image space (i.e., subdividing an image into a spatial pyramid, and
counting features of the same type in each of the bins), but uses clustering in
the feature space (i.e., the common bag of words approach).

Another temporal matching method based on the pyramid match kernel is
described in [24,25]. Temporally constrained hierarchical agglomerative cluster-
ing is performed to build a structure of temporal segments. The pyramid match
approach is applied to the decision values of different SVMs instead of the fea-
tures. The similarity between segments is determined using the earth mover’s
distance and the pyramid match kernel is applied to the similarities on the dif-
ferent hierarchy levels. This approach explicitly assumes that the temporal order
of the individual subclips is irrelevant (as is e.g. the case for news stories). Then
the temporal order within the clips is aligned using linear programming.

Kernels for sequences based on dynamic time warping (DTW) [14] have been
proposed. The dynamic time alignment kernel (DTAK) proposed in [22] is one
of them. Instead of only considering the kernel values along the optimal DTW
alignment, the time series alignment kernel proposed in [5] considers the values
along all possible paths in DTW alignment.

The authors of [26] use the Levenshtein distance between sequences of clus-
tered local descriptors for classification of still images. Recently, a kernel for
matching sequences of histograms of visual words has been proposed [3]. The
authors consider different similarity measures between the histograms and use
them instead of symbol equality in the Needleman-Wunsch distance. The result
of sequence matching is then plugged into a Gaussian kernel. In [1] a kernel
based on longest common subsequence (LCSS) matching of sequences has been
proposed. An arbitrary kernel can be plugged in to determine the similarity
between two elements of the sequences, and the kernel value is determined as
the normalized sum of the similarities along the backtracked longest common
sequences.
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While methods such as kernel k-means and kernel PCA have been used for
features derived from video sequences (e.g., pedestrian trajectories [18]), there
is little work applying these methods to matching and organizing near duplicate
video content. An approach for unsupervised summarization of rushes video is
proposed in [13]. It uses a technique called constrained aligned cluster analysis,
for both segmentation of the input video and clustering, which is based on kernel
k-means and the dynamic time alignment kernel (DTAK) [22]. Unfortunately the
authors do not provide objective evaluation results for clustering repeated takes,
but only an example for one video.

The contributions of this paper are the following. As only the DTAK kernel has
been applied the clustering near duplicate video content, we consider also other
types of sequence-based kernels in order to compare their applicability to this
problem. As the distance function based on string matching clearly outperforms
the one based on DTW in the experiments reported in [2], we are interested
whether the same holds for the kernels based on each of these approaches. In
addition to using kernel k-means for clustering, we also investigate the use of
hierarchical clustering based on the kernel matrix of the sequences. Finally, we
use kernel PCA to project a collection of video segments to a 2-dimensional space
for visualization purposes based on the similarity of the sequences over time. To
the best of our knowledge, this has not been proposed before.

2 Kernel-Based Clustering and Visualization

In this work we aim at finding similar video segments S from a set originating
from a single video or a collection of videos. A segment is represented by samples
si (e.g., frames, key frames). Each of these samples is described by a feature
vector xi, consisting of arbitrary features of this sample (or a temporal segment
around this sample). In order to represent the video segment, we concatenate
the individual feature vectors to form a feature vector X = (x1, . . . , xm) of
the segment. Clearly, not every segment has the same length and/or consists of
the same number of samples, thus the lengths of the feature vectors of different
segments will differ. We thus need to be able to determine the similarity between
such feature vectors having different lengths.

In this section, we first analyze some kernels, which can be applied to the
problem of matching such feature vectors. We then discuss how these kernels can
be applied to clustering near duplicate video segments using kernel k-means and
hierarchical clustering, as well as to projecting video sequences to a 2-dimensional
space for visualization.

2.1 Candidate Sequence Kernels

In the following, we review six kernels for sequences of feature vectors with vary-
ing lengths and harmonize the formulations of the kernel functions. We denote
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as X = (x1, . . . , xm) and Y = (y1, . . . , yn) the sequences of feature vectors of two
segments. The term sequence denotes a possibly non-contiguous subsequence. As
we intend to support arbitrary ground distances between the feature vectors of
the input samples, we use a kernel for matching the feature vectors of elements
of the feature sequences, denoted as κf (xi, yj).

Earth Mover’s Distance. An advantage of the EMD is that it can applied to
different ground distances [19]. We use EMD in a similar way as applied in [24],
but we do not use the proposed temporal alignment (TPAM), as it actually does
sequence alignment, which is similar to the methods discussed below. We define
a kernel using the EMD, replacing the ground distance dij with κf (xi, yj), as

κEMD(X,Y ) = −
∑m

i=1

∑n
j=1 f̂ij(−κf(xi, yj))
∑m

i=1

∑n
j=1 f̂ij

, (1)

where f̂ij is the optimal flow determined as

f̂ij = − argminfij

∑m
i=1

∑n
j=1(−κf (xi, yj))fij ,∑n

j=1 fij ≤ wxi , 1 ≤ i ≤ m, and
∑m

i=1 fij ≤ wyj , 1 ≤ j ≤ n.

(2)

The the weights of samples xi and yj are chosen as wxi = 1/m and wyj = 1/n
respectively. Under this condition the formulation is equivalent to the Earth
Mover’s Similarity proposed in [17].

Temporal Pyramid Match. In order not to constrain the choice of distances
in the feature space, pyramid matching can only be applied to the temporal
domain, in a similar way as proposed for spatial [12] or spatio-temporal [4]
pyramid matching. As we do not perform clustering of the feature vectors in
advance, we define a threshold θ to determine whether two feature vectors match
or not. The temporal pyramid match kernel is then defined as

κTPM(X,Y ) =
∑L

l=1
1

2L−l+1Γ
l + 1

2LΓ
0, (3)

where L is the number of pyramid levels (L = �log2 max(|X |, |Y |)�) and Γ l is
the number of elements matching on level l, i.e., the number of elements falling
into the same temporal bin on level l for which κf (xi, yj) ≥ θ.

Dynamic Time Alignment. The dynamic time alignment kernel (DTAK)
proposed in [22] is based on the dynamic time warping (DTW) approach for se-
quence alignment [14]. DTW tries to align the samples of the sequences so that
the temporal order is kept, but the distance (i.e., the sum of the distances of
aligned elements) is globally minimized. Each sample of one sequence is aligned
with one or more samples from the other sequence. Let ψx(k) be the alignment
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function, with 1 ≤ ψx(k) ≤ ψx(k + 1) ≤ |X |. In addition, a local continuity
constraint γ can be defined, s.t. ψx(k+1)−ψx(k) ≤ γ. Then DTAK is defined as

κDTAK(X,Y ) = maxψx,ψy

1∑N
k=1m(k)

m(k)κf (xψx(k), yψy(k)), (4)

where N = max(|X |, |Y |) and m(k) is a weighting coefficient. The kernel can be
defined recursively and efficiently implemented using dynamic programming.

Weighted All Subsequences. The all subsequences kernel [21] is defined as
κASS(X,Y ) =

∑
σ∈Σ∗ φσ(X)φσ(Y ), where σ denotes a sequence from the possi-

ble set of sequences Σ∗, and φσ(X) counts the number of times σ occurs as a
subsequence of X . Clearly, φσ(X)φσ(Y ) is only non-zero, if σ is a subsequence
of both X and Y . Thus a dynamic programming approach can be applied to
determine the set of common subsequences. The approach is based on the obser-
vation that the kernel can be defined recursively. This kernel assumes sequences
of discrete values, which does not generally hold for feature vectors. Thus we
introduce a threshold θ and consider elements in the sequence as matching, iff
κf (xi, yj) ≥ θ. The kernel is then defined as

κASS(X, ∅) = 1,
κASS((x1, . . . , xn−1), Y ) = κASS((x1, . . . , xn−2), Y )+∑

k:κf (xn−1,yk)≥θ κASS((x1, . . . , xn−2), (y1, . . . , yk−1)),
(5)

where ∅ denotes the empty sequence. The kernel value is normalized by the
possible maximum number of common sequences of X and Y . In addition, we
want to weight the result by the similarities of the matching elements. This can
be done by summing κf (xi, yj) for all elements for which κf (xi, yj) ≥ θ and
normalizing.

Longest Common Subsequence. Kernels based on the longest common sub-
sequence (LCSS) algorithm have been proposed in [3,1]. The kernel described
in [1] already allows plugging in any kernel for measuring the distance between
the feature vectors of the samples of the two sequences, and includes the simi-
larities in the result of the kernel. The kernel uses a recursive definition of LCSS
and a threshold θ to decide if two feature vectors are considered as matching.

LCSS(X,Y ) =⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if |X | = 0 ∨ |Y | = 0,
κf (x|X|, y|Y |)+
LCSS(Head(X),Head(Y )), if κf (x|X|, y|Y |) ≥ θ,

max(LCSS(Head(X), Y ),
LCSS(X,Head(Y ))) otherwise,

(6)

where θ is a threshold to consider two feature vectors as matching and Head(X)=
(x1, . . . , x|X|−1). The kernel function to determine the length of the single longest
common subsequence is given as κLCSS = LCSS(X,Y ). Similarity weighting can
be achieved by performing backtracking of the longest sequence, summing the
values of κf (·) of the matches and normalizing.
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All Longest Common Subsequences. In [1] the authors propose to consider
all subsequences ending in the last element of either of the two sequences:

κALCSS(X,Y ) =
∑1

i=m LCSS((x1, . . . , xi), Y )+
∑1

j=n−1 LCSS(X, (y1, . . . , yj)).
(7)

This requires backtracking of all sequences ending in the last element of either
X or Y . The result of the kernel function is normalized to account for sequences
of different lengths.

2.2 Kernel-Based Clustering

In this section we discuss the application of the kernels reviewed above for clus-
tering collections of near duplicate video segments.

Kernel k-Means. The basic idea of kernel k-means is to apply the well-known
k-means algorithm to data points mapped into a high-dimensional feature space.
As with other kernel methods, the kernel trick allows performing the required
calculations (distance to cluster center, update of cluster center) only by dot
products of the mapped data points, thus avoiding the explicit construction of
the high-dimensional feature space. In each iteration, the updated cluster index
j′ of a feature vector X (assuming equal weights for all feature vectors) is given
as [6]

j′(X) = argminj

⎛

⎝−2
∑

Y∈Cj

κ(X,Y ) +
∑

Y,Z∈Cj

κ(Y, Z)

⎞

⎠ , (8)

where Cj is the set of feature vectors in cluster j. An approach based on kernel
k-means using the DTAK kernel has been proposed in [13]. Here we generalize
this approach and plug in the different types of sequence kernels discussed above.

An issue with k-means is of course the question of the optimal number of
clusters. As this question is independent of the use of sequence-based kernels,
we do not discuss it here, but refer the reader to the literature.

Hierarchical Clustering. Hierarchical clustering is a common technique to
build a cluster structure out of a similarity matrix. Here we use the kernel
matrix K of the video segments of the collection as input, i.e., the elements
of K are kij = κ(Xi, Yj). We use the clustering algorithm proposed in [2] for
clustering different takes of the scene. It is based on single-linkage clustering, but
has an additional constraint to first cluster takes or assign them to scenes before
merging scenes. Instead of the number of clusters, this algorithm has a minimum
distance parameter which determines when to stop clustering. As several of the
kernels use a similarity threshold, we use this threshold θ as the cutoff distance
for clustering. This means, that feature vectors can be clustered, if they contain
at least one element for which κf (·) > θ.
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2.3 Kernel-Based Visualization

Principal component analysis (PCA) is a well-known method to apply an orthog-
onal linear transform which projects data into a coordinate system spanned by
the principal components. The dimensions of the coordinate system are ordered
by decreasing variance of the data. Thus a small number of principal components
often approximates the data quite well. Projection of data using PCA to a plane
is commonly used for visualization purposes.

In [20] the kernel PCA is introduced, which applies the idea of the PCA to
data transformed to a high-dimensional space, using the kernel trick to avoid
explicit construction of this space. Instead, the projection to the space spanned
by the k first principal components can be determined as

Pk(X) =

(
l∑

i=1

αjiκ(X,Yi)

)k

j=1

, (9)

where l is the size of the kernel matrix (i.e., in our case, the number of video
segments in the collection) and αj = (1/λj)vj is defined from the eigenvectors
vj and eigenvalues λj of the kernel matrix. The kernel matrix K contains the
mutual kernel values between the video segments of the collection as input, i.e.
the elements of K are kij = κ(Xi, Yj). As the PCA is defined on centered data,
a similar step is required for the kernel matrix: K̃ = K − 1

l 1K − 1
lK1+ 1

l2 1K1,
where 1 is a matrix of size l × l with all elements 1.

We aim at using this approach for projecting a collection of video sequences
to a low-dimensional space (as an alternative to applying multidimensional scal-
ing to a similarity matrix between the segments). Using the sequence kernels
discussed above, the kernel PCA is expected to yield a projection of the data, in
which near duplicates are close in the projected space. Such a representation is
useful for video browsing and interactive search in video collections containing
near duplicate segments.

3 Results

In the following we present results of experiments for clustering repeated takes
and visualizing collections of unedited video material.

3.1 Clustering Repeated Takes

The proposed clustering algorithms using the different kernels have been eval-
uated on a subset of the TRECVID 2007 BBC rushes test data set (the same
subset as used e.g. in [2,8]). The subset consists of six randomly selected videos
out of this data set (in total 3 hours, for more details see [2]), using the ground
truth provided by NHK [15]. In order to avoid side effects from different shot
segmentations, the results are based on the ground truth shots. Every 10th frame
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Table 1. Mean and median of the frame based F1 measure of clustering results with
hierarchical clustering and kernel k-means (with different choices of k) for the six
sequence kernels

clustering hierarchical kernel k-means kernel k-means kernel k-means

methods k ground truth k as hierarch. best k ∈ [3; 15]

mean median mean median mean median mean median

ALCS 0.50696 0.48305 0.40378 0.41629 0.39730 0.39898 0.49800 0.51472

LCS 0.58775 0.57874 0.45652 0.38854 0.38106 0.37901 0.62065 0.65442

ASS 0.43178 0.41910 0.42903 0.40174 0.37684 0.36764 0.49262 0.47499

EMD 0.49595 0.51785 0.43934 0.44547 0.43277 0.43945 0.51365 0.50151

TPM 0.55394 0.54737 0.40873 0.37693 0.38878 0.37401 0.48079 0.49547

DTAK 0.60153 0.58055 0.48300 0.44685 0.48173 0.47998 0.59541 0.60995

of the videos is used in the feature sequence, and from each frame we extract a
feature vector consisting of the MPEG-7 ColorLayout (cl) descriptor (DC and
the first two AC coefficients of each channel), the MPEG-7 EdgeHistogram (eh)
descriptor and a scalar visual activity (va) value. The kernel function between in-
dividual feature vectors is defined as κf ((dcX , ehX , vaX)T , (dcY , ehY , vaY )T ) =
κMPEG−7((dcX , ehX)T , (dcY , ehY )T ) κRBF (vaX , vaY ), where κMPEG−7 is the
MPEG-7 kernel proposed in [7] (with equal weighting of both MPEG-7 features).
For the sequence kernels that need a similarity threshold, we set θ = 0.03.

In Table 1 we report the mean and median F1 measure for take clustering.
The F1 values are calculated from the frame precision/recall measure proposed
for evaluating clustering of repeated takes in [8]. In general, the results are
comparable to those of other clustering approaches. An interesting result is that
precision and recall are more balanced than in clustering results reported in the
literature for clustering with other distance functions. In contrast to the results
reported for string matching and DTW based distance functions [2], the LCS
or ALCS kernels do not outperform the DTAK kernel. The reason seems to lie
in the properties of the kernel κf (·) between individual feature vectors, which
is in the form of exp(−distance(·)), and thus better distinguishes well matching
subsequences than a linear distance measure.

From the string matching kernels, LCS performs better than those considering
more than one subsequence (ALCS, ASS). Also EMD and TPM, which do not
enforce an ordered sequence, perform similarly well. For TPM, it seems that the
temporal tolerance introduced by the pyramid match is sufficient to cover the
timing differences and insertions between different takes. The optimal sequence
found by EMD often contains many samples in the correct temporal order.

From the clustering methods, hierarchical clustering seems to be the better
choice. It yields better results than kernel k-means with the same number of
clusters or the number of clusters from the ground truth. We conclude that
the reason for this is that the hierarchical clustering algorithm used includes
a specific constraint for the take clustering problem. The best kernel k-means
results slightly outperform hierarchical clustering result in terms of median, but
not in terms of mean.
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Fig. 1. Projection of segments from video MRS025913 using kernel PCA (2 principal
components) with ALCS kernel (top) and DTAK kernel (bottom)



392 W. Bailer

3.2 Kernel PCA for Visualization

We perform visualization experiments on two data sets: on the videos from the
TRECVID 2007 BBC rushes set used for the clustering experiments and on a
set of multi-view test material from the 2020 3D Media project1 (3 views, about
6 minutes). Kernel PCA has been applied and the data has been projected to
the plane spanned by the first two principal components. Each video segment is
visualized by its first, center and last key frame.

Figure 1 shows the results for one video from the BBC rushes set, using the
ALCS and the DTAK kernel. In both visualizations, the proximity is related
to the similarity of the sequences. It is difficult to find objective criteria for
assessing the quality of the visualizations, especially as the difference in clus-
tering performance between the two kernels is quite small. However, the data
seems to be organized more clearly in the visualization produced using the ALCS
kernel.

Figure 2 shows the visualization of the multi-view content set using the LCS
kernel. The different views are rather spread along the horizontal axis, while the
different takes are on the vertical axis (note e.g. the shot with the calibration
board being close to the bottom in both cases). Only takes from the one shot
with structured light experiments (the dark frames in the middle) are outliers
and not well fit into the projection space.

Fig. 2. Projection of segments from the 2020 3D Media multi-view set using kernel
PCA (2 principal components) with LCS kernel

1 http://www.20203dmedia.eu/

http://www.20203dmedia.eu/
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4 Conclusion

In this paper we have analyzed the application of six sequence-based kernels for
clustering and visualizing collections of near duplicate video segments.

In contrast to previous work using kernel k-means clustering in summariza-
tion, we have compared the performance of different kernels and have also used
hierarchical clustering on the kernel matrix. No strong differences in the perfor-
mance of the different kernels have been observed. However, we see that kernels
that determine a single best matching sequence perform slightly better than
those that weight the results from several matching sequences. Differences in
clustering results observed between string matching and dynamic time warping
distances are not evident between kernels based on these paradigms. Our results
show that hierarchical clustering outperforms kernel k-means in most cases.

We have also shown that meaningful visualizations for interactive browsing
and presentation of summaries can be generated using kernel PCA to project the
data into a plane. Once the kernel matrix has been calculated, both clustering
and visualization can be performed very efficiently. Despite the similar perfor-
mance of the kernels in clustering, the string matching based kernels (e.g., LCS,
ALCS) produce visualizations with a more comprehensible organization of the
data. The quality of the obtained visualization needs to be further evaluated in
a user study.

Acknowledgments. The author would like to thank Felix Lee for the key
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kernel PCA. The research leading to these results has received funding from
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