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Abstract. Many Content Based Image Retrieval systems (CBIRs) have
been invented in the last decade. The general mechanism of the search pro-
cess is very similar for each of these CBIRs, and the calculation of rank-
ings is determined by the comparison of features (low-, mid-, high-level).
Nevertheless, all things being equal, the respective realization leads to dif-
ferent results. Knowledge about the internal configuration (used features,
weights and metrics) of these systems would be beneficial in many usage
scenarios (e.g., by using a query image content sensitive query forwarding
strategy or improved result ranking strategies in meta search engines). In
this context, the paper presents an approach that supports an automatic
detection of the configuration of CBIR systems. We demonstrate that the
problem can be partly traced back to an optimization problem and tested
several optimization algorithms. The approach has been evaluated based
on the ImageCLEF test set and shows good results.

Keywords: CBIRs configuration, Image Database, Low-level Feature
detection.

1 Introduction and Background

Due to the digitalization and miniaturization of cameras as well as their integra-
tion into mobile phones, the amount of digitally available images has increased
tremendously in the last decade. In order to make those images searchable based
on content, CBIR has received a lot of attention in the last several years. The
theoretical background which was developed during these years was exhaustively
explored in [2] and [11] and various systems implementing CBIR were examined
in [14] and [7]. A CBIR system (CBIRs) allows searching of images based on
their extracted features (low-, mid-, high-level, see [15] for details) instead of
textual descriptions. The retrieval process matches the extracted features of the
stored images to those of a query image, thereby calculating its score and rank
which subsequently results in a list of best matches. The general mechanism of
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the search process is very similar for all of these CBIR systems. Nevertheless,
they use different combinations of features, feature metrics and feature weights
so that their search behavior and results differ.

In the context of meta-search engines [12] that provide access to multiple
heterogeneous retrieval systems, the knowledge of their internal configuration
would be beneficial. For instance such knowledge could allow the meta-search
engines to establish an image content sensitive CBIR selection. Thus, CBIR sys-
tems that would not be of additional value to the query response can be ignored
altogether. Furthermore, the gathered information can be used to improve the
result aggregation process of the different retrieved result sets. Imagine examples
of meta-search engines, for instance, in the domain of art galleries that provide
search facilities of their works of art.

Related to this, the paper proposes a novel approach for an automatic detec-
tion of the configuration of CBIR systems. The detection process is based upon
the analysis of a small set of test queries that are executed on the CBIR system
in question. The analysis uses an optimization algorithm and filter strategies in
order to identify the best feature/weight combination.

The remainder of this paper is organized as follows: In section 2 related work
is discussed. In section 3 and 4 the assumptions and the developed approach
are explained. In Section 5 the methods of evaluation as well as their results are
analyzed. Finally in section 6 results and future work are discussed.

2 Related Work

The search in image repositories is a very active research field and many retrieval
techniques and frameworks have been proposed in the past (see exhaustive sur-
veys [14,7]). In this context, several articles focused on the qualitative evaluation
of those techniques. For instance, in [4] the authors proposed an objective method
for evaluating image content by means of visual content words as basis vectors
for similarity calculations. Another important initiative in this domain is the
ImageCLEF benchmark [10], which provides an annotated image test set.

Furthermore, in the literature detailed analyses can be found that investigate
the individual features [15] and searches for correlations among them. Conse-
quently, recommendations are given as to which features perform well for certain
types of data [13].

Very little work related to the topic of our paper is available. For instance,
the implementation of [1] presented a peer to peer approach for a self-organized
image retrieval network. However, although the feasibility of an image retrieval
network has been shown, little attention has been paid to identifying the con-
figuration of the associated CBIR systems. The authors in [9] describe an algo-
rithm for obtaining knowledge about the importance of features by analyzing
user log files of the VIPER system. In their approach, features which are fre-
quently present in images marked as positive by users receive a higher weighting.
Moreover, their technique was used to improve retrieval quality due to a novel
relevance feedback technique. However, their work relies on access to query logs
and the internals of the system, which are not available in our case. It should
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also be noted that our proposed approach does not aim at evaluating the quality
of a CBIRs but at automatically detecting the used configuration.

3 Methodology

Current CBIR systems primarily use (low-level) features to compare query im-
ages to images that are stored in their system. Formula 1 shows the internal
representation of an image i in a CBIRs α:

repα(i) = {f j(i)|j ∈ {1..|Fα|}} (1)

The image i is represented as a set of feature vectors f j(), which are extracted
from i. These features of the feature set Fα are digital representations such as
color, edge or shape characteristics. Mixtures of such characteristics can also
be represented in a feature. The used set of features may be different for every
CBIR system. Even two retrieval systems which are using an equal set of features
could reply differently to the same query as they might assign different weights
or distance functions to their features. Formula 2 formalizes the configuration of
CBIRsα as a 3-tuple. This tuple consists of a set of features Fα, a set of feature
metrics Δα and a set of feature weights Wα.

config(CBIRsα) = (Wα, Δα, Fα) (2)

The calculation of CBIRs α’s score respective to the query image q and a stored
image i′ uses the features, weights and metrics of this configuration. It is defined
as follows: Let scoreα,i’(q) be the score of α respective to query image q and
a stored image i′ and let δαj ∈ Δα be the distance function of feature f j().
Furthermore, let wαj ∈ Wα be the weight assigned by the system α to feature
f j(). The score of image i′ regarding the query image q is then calculated as
follows:

scoreα,q(i′) =
|Fα|∑

j=1

wαjδαj(f j(i′), f j(q)) (3)

4 Approach Outline

As illustrated in section 1, our aim is an automatic detection of the configura-
tion of a CBIRs. In this context the internal representation and the supported
classification cases are presented in subsection 4.1. The overall process is then
described in subsection 4.2 whereas the details of the algorithm are shown in
subsection 4.3.

4.1 Feature Distribution

The basis of our approach is the exploitation of a rich set of implemented and
well known features and feature metrics. However, for reasons of simplification
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the description of the implementation explained in this article focuses on the fea-
tures. Nevertheless, a metrics detection mechanism has also been integrated in
our implementation and can be used by assigning multiple metrics to a feature.
The internal representation of our system is analogous to that of the CBIRs in-
troduced in section 3, methodology. Formula 4 shows the internal representation
Repω of an image i:

Repω(i) = {f j(i)|j ∈ {1..|Fω|}} (4)

Since knowing all features, especially the proprietary ones that could be used in
a CBIRs, is not feasible different classification cases have to be considered. Five
such cases are possible (see also figure 1):

1) Fα = Fω : In this case our representation is aware of exactly the same features
the CBIRs is using. Here, only the weights for the features have to be found.

2) Fα ⊂ Fω : In this case the features which are not used by α have to be
identified and the weights for the remaining features have to be found.

3) Fα ⊃ Fω : In this case the CBIR system in question uses features that are not
present in our internal representation. The current focus of our implemen-
tation is the detection of this case in order to avoid false positives. Future
research will consider feature classes (e.g. by statistical analysis according
to the correlation of specific features [3]) by trying to identify which feature
class has been used by the CBIRs.

4) Fω ∩ Fα �= ∅: Not included in this case are constellations that are included
in cases 1, 2 or 3. Similar to case 3, the current focus of our implementation
is the detection of this case.

5) Fω ∩ Fα = ∅: In this case, as in cases 3 and 4, the current focus of our
implementation is the detection of this constellation.

Fα    Fω Fα FωFωFα Fα Fω Fα Fω

Case 1 Case 2 Case 3 Case 4 Case 5

Fig. 1. Distinct cases for the detection of the configurations

4.2 Overall Process

The detection process of our algorithm starts with an enrollment of the CBIR
in question.

Then a set of test images, from now on referred to as image test set (ITS),
is used for querying the CBIRs (see figure 2). The selection of these images
is arbitrary. The necessary size of ITS has been experimentally evaluated. In
our tests setting the amount of test images at five showed a reasonable balance
between processing speed and the accuracy of our detection approach.
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Fig. 2. Approach Outline

As shown in figure 2, for every single query image of the ITS the CBIRs
responds with a ranked list of result images and associated scores.

Depending on the search paradigm used the length of those lists may vary.
But as long as the returned number of results exceeds five items per list, for at
least three returned result lists, those different paradigms do not influence the
algorithms performance. The implemented paradigms of the CBIRs can therefore
be left out of consideration. For the same reason false positives and negatives do
not have to be considered. This is because of the approaches’ exclusive interest
in the detection of the configuration of the CBIRs. The approaches aim is not
to judge the quality of the CBIR, but to detect its configuration.

Using the ranked lists received, we calculate the feature weighting vectors
that generate self-computed scores very similar to the result scores. If no score is
available, this calculation can also be made by the mere comparison of the ranks,
which also omits a necessary normalization step. As this results in a poorer per-
formance of the approach the scoring was preferred. This calculation is achieved
by minimizing an objective function which evaluates possible weight vectors for
the feature set by comparing our self-calculated scores to the result scores of
the CBIR system. This way, the problem can be traced back to a vector opti-
mization problem - an optimization algorithm can be used to find a good weight
vector, preferably one very similar to the one the CBIRs uses internally. This
optimization is performed for every query to be able to statistically evaluate the
calculated optimal weight vectors. Confidence rating values are assigned to every
feature according to different criteria, for example a weights’ standard deviation
across the multiple weight vectors. This rating is used to filter irrelevant features.
Once there are no more features to filter, the feature weight configuration of the
CBIRs is calculated using the arithmetical average.

4.3 Approach Details

Algorithm 1 presents the cornerstones of the described approach. The algorithm’s
goal is to find optimal weight values for every feature, in case every feature is
known in our representation. Conversely, it’s desirable that the algorithm reports
if the analyzed CBIR system uses unknown features.

The algorithm is initialized with all features known to our internal represen-
tation (line 2). This set of possible candidates is then successively thinned out
by removing irrelevant features (line 3). The while-loop in line 3 is repeated
until no more features can be discarded due to a low rating. The first for loop
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optimizes an objective function obj (line 7) for every image in the image test set
(ITS ). The objective function is used to evaluate the fitness of possible feature
weight vectors. It is listed in formula 6, with v being the feature weight vector
to be tested, n being the number of result images returned by the CBIRs and
scoreα,q(i′k) being the returned score value for result image i′k respective to input
image q (see formula 3). The function score′ is listed separately in formula 5.
It is very similar to formula 3 and is used to calculate an known score value for
result image i′k, input image q and feature weight vector v. Here, Fω

′ is the set
of currently remaining features inside PossibleFeatures, f j is the j-th remaining
feature and δωj is one of the distance functions used by our internal representa-
tion ω. Additionally, the function scale normalizes score′’s values to the interval
[0, 1].

score′ω,q,v(i′) = scaleq[
|Fω

′|∑

j=1

vjδωj(f j(i′), f j(q))] (5)

objq(v) =

√√√√√
n∑

k=1

(scoreα,q(i′k) − score′ω,q,v(i′k))2

n
(6)

As mentioned above, the objective function obj calculates a distance value for
the scoring obtained by using feature weight vector v and the actual scoring
of the CBIRs. Larger distance values mean that a tested vector results in self-
computed scores less similar to those returned by the CBIRs, i.e. there are larger
differences between score and score′ for the different result images.

Furthermore, algorithm [16,6,5] to find a feature weight vector which most
closely resembles the CBIRs’ configuration. Multiple optimization algorithms
have been evaluated and the results are presented in section 5. This optimization
is performed for every image in ITS, so FeatureWeights consists of vectors with
each vector containing the optimal weight values for one image in ITS (line 7).

The reason for calculating an optimal feature weight vector for multiple images
is to be able to conduct a statistical analysis of these values afterwards, which is
done in the second for loop starting in line 9. FeatureWeights contains multiple
weight values for a single feature, one for every image in ITS (for example
see figure 2 where for fA three different score settings have been detected).
rateFeature assigns a rating between 0 and 1 to every feature, depending on
different configurable criteria (line 10). Currently, a higher standard deviation
of the weight values of one feature for different images results in a reduction in
its rating, as does too small an average weight. The ratings of all features are also
lowered if the distance values returned by the objective function are higher, which
signifies that a weight vector cannot reproduce the CBIR system’s behavior well
enough. If any feature has a rating smaller than minRating (line 11) it is not used
again for future executions of the outer while loop since a smaller rating suggests
a lower probability of a feature being used by the analyzed CBIRs. The outer
while is only repeated if at least one feature has been discarded in the current
run (line 13). When the while loop finishes, depending on whether there are still
remaining features in PossibleFeatures, an average of the previously computed
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Algorithm 1. analyze(ITS, Fω , CBIRsResults[])
1: doContinue ← true
2: PossibleFeatures← F ω

3: while doContinue do
4: doContinue ← false
5: for i = 1 to i = |ITS| do
6: q ← ITS[i]
7: FeatureWeights[i]← optimize(objq)
8: end for
9: for i = 1 to i = |PossibleFeatures| do

10: Ratings[i]← rateFeature(i,F eatureWeights)
11: if (Ratings[i] < minRating) then
12: PossibleFeatures.remove(i)
13: doContinue ← true
14: end if
15: end for
16: end while
17: if PossibleFeatures.isEmpty() then
18: return null
19: else
20: return average(FeatureWeights)
21: end if

optimal feature weights for the remaining features is returned. Otherwise it is
reported that the analyzed CBIRs uses unknown features (lines 17-20).

5 Evaluation

The evaluation section is divided into three parts. The first part addresses the
runtime of the implementation of our approach. The second part evaluates the
performance of the presented approach respective to the detection of the features
that were relevant for the analyzed CBIRs. Finally, the last part focuses on the
accuracy of the weight allocation for the detected features.

Our tests used the publicly available image set of the ImageCLEF bench-
mark [10] which can be obtained at http://www.imageclef.org/2011. We used
the full set of 20,000 images. As a CBIR system we used Lire [8] which is an
open source Java CBIR library containing a good set of implemented features1.
Furthermore, Lire was chosen as it is an extensible library and could therefore
be adapted with little effort.

5.1 Runtime

One possible way of approximating the configuration of a CBIRs is to try a num-
ber of feature weight vectors one by one (brute force). Equation 7 represents the
number of possible feature weighting allocations, where n stands for the number
1 http://www.semanticmetadata.net/lire/

http://www.imageclef.org/2011
http://www.semanticmetadata.net/lire/
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of features multiplied by the number of feature distances (metrics) and k stands
for the granularity of individual weight values. A granularity of 1 would only en-
able the algorithm to identify whether a feature-metric combination was chosen
with a weighting of 100% or 0%. By contrast, a granularity of 100 would make it
possible to allocate individual weight values in the weight vector in 1% steps.

t(n, k) =
(

n + k − 1
k

)
(7)

Under realistic circumstances, using a brute force approach would lead to a pro-
hibitively large runtime. The application of different optimization algorithms
solved this runtime problem. An implementation of Cuckoo Search [16] as well
as an implementation of Particle Swarm Optimization [6], the usage of Multi-
Directional Search and the Nelder-Mead Method from [5] all needed approxi-
mately 15 seconds for the analysis of one system and delivered very good results.
However, about two minutes of additional time was required for extracting the
feature vectors from images and pre-calculating feature distance values between
images, regardless of which algorithm was used.

5.2 Feature Detection

The evaluation involved the analysis of 500 different configurations (combina-
tions of features and weights) of a Lire-CBIRs. For every one of the cases defined
in section 4.1 a test set of 100 different configurations was randomly generated,
with each of the five test sets adhering to its respective classification case con-
straint. Also, for every optimization algorithm 50,000 evaluations of the objective
function were performed.

Figure 3 shows the average precision and recall percentages regarding the
correct identification of features over the 100 different configurations belonging
to case 1. As mentioned in section 5.1 all of the optimization algorithms delivered
very good results. The brute force approach using a granularity value of 10 was
chosen for comparison as it had a runtime similar to the other optimization
algorithms. All of the optimization algorithms returned mostly the same features
as the selected features in the CBIRs configuration. This means that for nearly
every possible configuration the optimal feature weighting calculated by the
algorithms was using all the features known to our internal representation. This
is the desired behavior, as our internal representation implemented exactly the
same features as the Lire-configurations in this case. False negatives - features
which are not marked as detected but are in fact used by the CBIRs - did not
occur often. These few false negatives, reflected in the marginal deviation from
100%, were mostly caused by configurations where one of the features used a
weight percentage of less or 1%.

Figure 4 shows the average precision and recall percentages over the 100 differ-
ent configurations of case 2. In this case the internal representation implements
more features than the CBIRs provides. Here, false positives - features that
are marked as detected but are not in fact used by the CBIRS - can occur in
addition to the previously described false negatives. Cuckoo Search as well as
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Fig. 3. Precision and Recall: Case 1

Multi-Directional Search also exhibited very good performance. For all the tests
every feature used was detected and false positives occurred only in a few cases.
The performance of the Nelder-Mead Method and Particle Swarm Optimization
were slightly weaker. They both had a small percentage of false negatives, see
recall, and a small percentage of false positives, see precision. Those false nega-
tives and positives belonged to tests where only a very small weight value was
assigned to a feature. In a real world scenario, though, it would not be very
detrimental to the performance of our approach to not be able to correctly iden-
tify features with very small weights or to incorrectly assign very small weights
to irrelevant features. So these small deviations do not pose a problem.

Fig. 4. Precision and Recall: Case 2

Since the focus of the analysis of cases 3 to 5 is not to understand which fea-
tures were used but rather to discover that the configuration cannot be detected,
it would not have been useful to calculate recall and precision values for these
cases. That is why in table 1 only the success rates of the different optimization
algorithms for the remaining cases are illustrated. A test case was counted as
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successful if our implementation returned that it was not able to determine the
CBIR system’s configuration.

In case 3 our internal representation implemented only a fraction of the fea-
tures of the CBIRs. In line 2 of table 1 the average success rate over the test runs
for every algorithm is shown. Here, each of the algorithms detected (in almost
all tests with a probability of 91 %) that the internally implemented features
were not a superset of or equal to the CBIR system’s features.

In case 4 our internal representation implemented a fraction of the features of the
CBIRs as well as additional features which were not implemented by the CBIRs.
Very similar to case 3 in most tests, our implemented approach detected that it
was not able to identify the CBIR system’s configuration due to missing features.
As the internal representation had a larger amount of features available to approx-
imate the CBIR system’s behavior, in marginal cases a CBIRs’s configuration was
sometimes incorrectly considered to be detected. The brute force method deliv-
ered better results in these cases because it was weaker in terms of optimization
precision and was thus more likely to identify a configuration as unknown.

Table 1. Sucess rates of Cases 3, 4 and 5

In case 5 the internal representation implemented only features which were
not implemented by the CBIRs. As illustrated, all optimization algorithms used
as well as the brute force approach were able to detect this classification class.

5.3 Weighting Allocation

In this subsection the weighting allocation performance of our approach is eval-
uated. This is done by computing the deviation of the detected weighting al-
location to the weighting allocation of the CBIRs using the euclidian distance
between the weight vectors.

Figure 5 shows a visualization of the deviation for test case 1 for every imple-
mented algorithm. All of the algorithms used did have a small weighting devi-
ation. Cuckoo Search had a deviation of 0.0175, whereas the Multi-Directional
Search and the Nelder-Mead Method had a deviation of 0.0217 and 0.0271. PSO
and the brute force approach had a deviation of 0.0322 and 0.0637, respectively.
In Figure 6 the average deviation for test case 2 is visualized. Again, all of the
algorithms do have a small weighting deviation, though mostly slightly larger
than in case 1. All of these deviation values are relatively small, meaning that
all of the algorithms are able to approximate CBIRs configurations well if all
used features are known. Cockoo Search was the best overall algorithm in our
tests, though the performance of the various optimization algorithms can be very
dependent on their configured parameters.
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Fig. 5. Averaged weighting deviation in Case 1

Fig. 6. Averaged weighting deviation in Case 2

All in all, these first test results are already very promising but further im-
provement and fine tuning of our approach are both necessary.

6 Conclusion

This article presented a novel approach for the detection of the configuration of
content based image retrieval (CBIR) systems. The focus of this work was on the
correct identification of feature settings and their assigned weights. Related to the
combination of a system’s configuration and our internal representation, five dif-
ferent classification cases have been highlighted. We demonstrated that our pro-
posed approach is capable of detecting the complete configuration for two cases
and is also able to mark the others are as currently not detectable. Moreover,
we demonstrated that the problem can be traced back to an optimization prob-
lem. The evaluation showed a high accuracy for feature and weight allocation and
demonstrated good performance by the use of different optimization algorithms.

Future work will consider the development of feature classes in order to solve
the missing classification classes as well. Furthermore, the approach will be
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adopted in a distributed search scenario for improving query distribution de-
cisions and result ranking strategies.
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