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Abstract. Multimedia Event Detection is a multimedia retrieval task
with the goal of finding videos of a particular event in an internet video
archive, given example videos and descriptions. We focus here on min-
ing features of example videos to learn the most characteristic features,
which requires a combination of multiple complementary types of fea-
tures. Generally, early fusion and late fusion are two popular combination
strategies. The former one fuses features before performing classification
and the latter one combines output of classifiers from different features.
In this paper, we introduce a fusion scheme named double fusion, which
combines early fusion and late fusion together to incorporate their ad-
vantages. Results are reported on TRECVID MED 2010 and 2011 data
sets. For MED 2010, we get a mean minimal normalized detection cost
(MNDC) of 0.49, which exceeds the state of the art performance by more
than 12 percent.

Keywords: Feature Combination, Early Fusion, Later Fusion, Double
Fusion, Multimedia Event Detection.

1 Introduction

In recent years, due to its great potential for many applications, the explosive
growth of the user generated online videos and the prevailing online communities
such as YouTube, Hulu etc., automatic detection of complex events in uncon-
strained videos has received a lot of interest from the research community [1] [2]
[3]. However, most current tools only focus on single modality such as automatic
transcription of speech from audio signal, scene recognition using color features
or action detection based on time-related features. How to combine these state-
of-the art approaches to build an accurate, fast and robust multimedia system
to help users to study these overwhelming video data is still an open question.
Many research in progress during the past few years still focus on the following
two tracks: the design of highly discriminative and robust features [4] and the
combination of multiple complementary features based on different modalities
such as visual, audio and text [5] [6] [7] [9] [10]. For example, in 2010, NIST held
the first Multimedia Event Detection (MED) evaluation [7] [10], which emphasis
the importance of combining multiple modalities for event detection. As shown
in Fig. 1, the task is: given an Event Kit (including an description of the con-
cepts and some example videos), find videos that belong to the event defined by
the Event Kit. In this paper, we will deal with the same task.
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Fig. 1. The illustration MED task

Many research papers [5] [7] [8] [9] [10] state that a multimodal approach
helps to obtain an effective retrieval/classification performance on image and
video. In general, there are two types of combination strategies, namely early
fusion and late fusion [9]. Early fusion combines feature before performing clas-
sification, such as multi-kernel learning [11] [12]. Late fusion combines output of
classifiers from different features, such as average fusion, committee voting [13]
and co-regularized least squared regression [14]. There is no universal conclusion
of which strategy is the preferred method for multimedia content analysis and
retrieval. [9] found that early fusion is better than late fusion in semantic index-
ing based on their results on TRECVID 2004 benchmark. While studying data
on TRECVID 2006, [15] found that early fusion gets better results on most of
concepts while late fusion is more robust and can tackle some harder concepts.
To incorporate the advantages of both methods, we introduce a simple yet effi-
cient fusion strategy called double fusion. In double fusion, we first perform early
fusion to generate different combinations of features from subsets on the single
features pool. After that, we train classifiers on each feature or feature combina-
tion and carry out late fusion on the output of these classifiers. For example, as
shown in Fig. 2, we first extract three kinds of features (visual, audio and text)
from three training and three testing videos. After that, pairwise early fusion
(visual+audio, visual+text) are carried out in these three features based on their
kernel matrice. In the training step, five classifiers are trained based on five fea-
tures and feature combinations (visual, audio, text, visual+audio, visual+text).
For each video, there are thus five output scores indicating how likely it is that



Double Fusion for Multimedia Event Detection 175

this video belongs to the event. In the last step, late fusion is used to fuse five
output score vectors into one score vector, on which the final interpretation can
be executed. Experimental results on the TRECVID MED 2010 and MED 2011
data sets with about 484 hours’ video clips for 18 events show the effectiveness
of double fusion. For MED 2010 we get a mean minimal normalized detection
cost (MNDC) of 0.49, which exceeds the state of the art performance [7] by more
than 12 percent.
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Fig. 2. The illustration of our MED system

The remainder of the paper is organized as follows. Section 2 briefly intro-
duces different fusion strategies. Section 3 presents the details of our implementa-
tion, including feature representation, bag-of-words scheme, classifiers and fusion
schemes. Section 4 demonstrates and analyzes experimental results on MED 2010
and MED 2011. Finally, section 5 concludes the paper and outlines our future
work.

2 Fusion Scheme

Early Fusion [9] is a combination scheme that runs before classification. Both
feature fusion and kernel space fusion are example of early fusion. The main
advantage of early fusion is that only one learning phase is required. However,
it is hard to combine features into a common representation [9]. Multiple kernel
learning is one of the most popular early fusion technologies. Its drawback is the
curse of high dimensionality, usually accompanied by limited training data.

In contrast to early fusion, late fusion [9] happens after classification. While
late fusion is easier to perform, in general, it needs more computational effort and
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has potential to lose the correlation in mixed feature space. Normally, another
learning procedure is needed to combine these outputs, but in general, because
of the overfitting problem, simply averaging the output scores together yields
better or at least comparable results than training another classifier for fusion.

As shown in paper [9], there is no conclusion about which fusion scheme will
get better performance. For some concepts such as stock quotes, early fusion get
better result, for other concepts such as road, late fusion get better performance.
Could we come up a solution to combine the strengths of both early and late
fusion? In this paper, we introduce a method called double fusion, which com-
bines early fusion and late fusion together. Specifically, for early fusion, we fuse
multiple subsets of single features by using standard early fusion technologies;
for late fusion, we combine output of classifiers trained from single and combined
features. By using this scheme, we can freely combine different early fusion and
late fusion techniques, and get benefits of both.

Two early fusion strategies, i.e., rule-based combination and multiple kernel
learning [12], are used to combine kernels from different features. For rule-based
combination, we use the average of the kernel matrix. Multiple kernel learning
[12] is a natural extension of average combination. It aims to automatically learn
the weights for different kernel matrix. Our experimental results show that the
performance of multiple kernel learning is slightly better than average combi-
nation. However, because of the explosive number (the number of combination
is 2n − 1, n is the number of features) of combination, it is time consuming
to use all possible feature combination when the feature space becomes large.
To address this problem, our first possible solution is by combing features be-
longing the same categories. For each category or single feature, we train one
classifier. The number of classifiers for late fusion will be n+c, in which c is the
number of category. Our second solution is to combine all features together in
early fusion and perform late fusion with all single feature classifiers that results
in n+1 classifiers need to be fused in later fusion. In this paper, we use both
approaches and train n+c+1 classifiers for late fusion, in which there are c early
fusion classifiers built on category-based features, n single feature classifiers and
one early fusion classifier trained on the combination of all features. This allows
us to exploit the advantages of single feature classifier, category-based classifier
and complete-feature classifiers.

3 Implementation

As shown in Fig. 2, there are four key steps in our system. In step one, we
perform feature extraction on visual, textual and audio modality. After modality
specific data processing, bag-of-words representation is used to aggregate the
point features into whole video features. Early fusion is applied in step two after
calculating the kernel matrix. In step three, classifiers are trained to perform
the classification. The outputs of different classifiers are combined by using late
fusion strategies in step four.
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Feature Extraction and Feature Representation. Feature representation
is critical for video content understanding. In TRECVID MED System, we ex-
plore three feature modalities including visual features, audio features and text
features.

Visual Feature. We use five visual features, namely SIFT [20], CSIFT [16],
MoSIFT [17], STIP [18] and GIST [4] .

For SIFT feature and CSIFT, the harris-laplace key point detector is used to
detect key points. As processing all MED video frames will be computationally
expensive, we only extract features from key frames extracted by a shot boundary
detection algorithm. Specifically, the algorithm calculates the color histogram
for every five frames and subtracts the histogram with the histogram of the
previous frame, if the subtracted value is larger than a certain threshold, which
is empirically setted, the key frame will be a shot boundary. After detecting the
shot, we use the frame in the middle of the shot to represent that shot. By using
this algorithm, we extracted 114992 key frames from MED 2010 and 364747 key
frames from MED 2011 development data.

While SIFT and CSIFT describe 2D local structure in images, space-time
interest points (STIP) and MoSIFT capture space time volumes where the image
values have significant local variations in both space and time. STIP and MoSIFT
are different in both key points detector and descriptor. STIP uses 3D Harris
corner detectors and its key points are represented in two parts: the first part
is HOG (Histograms of Oriented Gradients; 72 dimensions) which indicates the
spatial appearance and the second part is HOF (Histograms of Optical Flow;
90 dimensions) describing the motion information. MoSIFT uses a Difference
of Gaussian (DoG) based detector and represents by another descriptor which
is also concatenated from two parts: the first part is SIFT (128 dimensions)
which indicates the spatial appearance and the second part is also HOF (128
dimensions).

For the GIST feature, we follow the suggestion from [4] and set the dimension
of feature points to 960.

Audio Feature. For the audio feature, we used Automatic Speech Recognition
(ASR) feature, which is extracted as described in [10].

Textual Feature. Following the work of [10], we use Optical Character Recog-
nition (OCR) feature extracted by the Informedia system to represent the text
feature.

Bag-of-words Representation. After extracting above features from given
videos, a formal Bag-of-words representation is adopted to cast features of key
frames into fixed length feature vector. First, vector quantization (VQ) technique
is used to cluster feature descriptors into a large number of clusters (i.e. ’words’
) using k-means clustering algorithm. For visual features, the code book size
is 4096 except for GIST, which has 960 dimensions. Second, by mapping these
features into their cluster centroid, we can get a feature representation for each
key frame. Here, we adopt a soft-weight strategy in which we choose the ten
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nearest clusters and assigned a rank weight for them. For using these words to
represent the videos, we need to cast image feature into video feature. For SIFT,
CSIFT and GIST, we first normalize feature vectors of each key frame in a video
and then sum them together to represent the video. For STIP and MoSIFT,
we just sum all the feature points in a video together and normalize it. As for
ASR and OCR, we simply count the number of words or tokens found in videos.
There are a total of 11618 unique words and 180228 unique tokens extracted for
ASR and OCR, respectively.

Spatial Pyramid Matching. Since the classic bag-of-words method loses all
information about the spatial layout of features,[19] adopt the pyramid matching
scheme by repeatedly subdividing the image and computing histograms of local
features for each sub-regions. Specifically, besides the bag-of-word representation
for the whole image, we divided the keyframe into 2x2 and 1x3 sub-regions, and
computed the bag-of-word representation for each sub-region. Thus, the feature
dimension for the spatial pyramid matching is 8x4096=32768. We applied this
simple yet effective method for SIFT and CSIFT features.

Classifier. A large variety of classifiers exist for mapping the feature space into
score space. In this paper, we adopt two classifiers, i.e. non-linear support vector
machine (SVM) [21] and kernel regression (KR) [14]. SVM is one of the most
commonly used classifier due to its simple implementation, low computational
cost, relatively mature theory and high performance. In TRECVID MED 2010,
most of the teams [7] [8] use SVM as their classifiers. Compared to SVM, KR
is a simpler but less used algorithm. However, our experiment shows that the
performance of KR is consistently better than the performance of SVM.

Fusion. In our feature set, only visual feature set has multiple features, while
all other features represent each category by its own. By performing visual fea-
ture (SIFT, CSIFT, MoSIFT, STIP, GIST) combination and all-feature (SIFT,
CSIFT, MoSIFT, STIP, ASR, OCR, GIST) combination, we have two feature
combination and seven single features (SIFT, CSIFT, MoSIFT, STIP, ASR,
OCR, GIST). For late fusion, we use two rule-based fusion methods to combine
the output of above 9 classifiers. One is average combination, another one is
weighted combination using weight learned from cross-validation. The detail of
the weight calculation will be given in the experimental part.

4 Experiment

4.1 Data

For TRECVID MED 2010, we used both the annotated training and testing data,
which consists of 114 hours of video clips and three event kits, i.e., ”Making a
cake”,”Batting a run” and ”Assembling a shelter”. For MED 2011, currently,
we only have the annotated development data of MED 2011, which consists of
about 370 hours of video clips and 15 events including 5 training events (At-
tempting a board trick, Feeding an animal, Landing a fish, Wedding ceremony
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and Working on a woodworking project) and 10 testing events (Birthday party,
Changing a vehicle tire, Flash mob gathering, Getting a vehicle unstuck, Groom-
ing an animal, Making a sandwich, Parade, Parkour, Repairing an appliance and
Working on a sewing project). To test the performance of our system on MED
2011 dataset, we manually split the 10 testing events into same size of training
and testing data. After the splitting, we have 3135 video clips for training and
a 6687 video set for testing on MED 2011.

We ran our program on the Carnegie Mellon University Parallel Data Lab
cluster, which contains 300 cores and it took us about 57000 CPU hours to
extract features and perform the bag-of-words mapping.

4.2 Evaluation

For performance comparison, two evaluation schemes are adopted: the first one
is the MNDC, which, as indicated in formula 1, is an evaluation criteria for
NIST to evaluate MED 2010 and MED 2011. Lower MNDC indicates better
performance. For better understanding, we also use maximum F1 Score by using
test label to search the best threshold. Considering that we have 100 times
negative sample than positive samples for each event, MNDC is still a better
criteria for evaluation since it gives more weight on the cost of false alarm.
However, both of above two criteria are highly depended on threshold and are
not stable for evaluation.

NDC(S, E) =
CM ∗ PM (S, E) ∗ PT + CFA ∗ PFA(S, E) ∗ (1 − PFA(S, E))

MINUMUM(CM ∗ PT , CM ∗ (1 − PT ))
(1)

where PM (S, E) is the missed detection probability for system S, event E while
PFA(S, E) is the false alarm probability for system S, event E. CM = 80 is the
cost for missed detection, CFA = 1 is the cost for false alarm and PT = 0.001.

4.3 Parameter Selection

For both SVM and KR, we used a χ2 kernel [22] since all of our features are
histogram features and the χ2 kernel has been extensively used for histogram
features. A parameter γ is needed for χ2 kernel. For SVM, we have one additional
regularization parameter C. To optimize these parameters, we ran two-folded
cross-validation 10 times by randomly spliting the training data into two folds.
Then, the average MNDC of two folds are used to choose the best parameters.
We also use the average MNDC to generate weights to perform weight averaging
for late fusion. The search ranges for both C and γ are 10−3 to 103, in multiples
of 10. We did try small step size search for parameter selection suggested by [23],
but didn’t find much difference.

4.4 Results

To get a statistically meaningful experiment, for each setting, we run 10 times
and calculate the mean and standard deviation for that setting. Because running
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Table 1. Comparison of single features on TRECVID MED2010. Two evaluation cri-
teria including MMNDC and MMF1 are adopted. For MMNDC, lower score indicates
better performance; for MMF1, higher score means better performance.

Feature MMNDC %± STD MMF1%± STD

CSIFT 60.6 ± 0.7 52.5 ± 0.6

SIFT 60.5 ± 1.4 53.3 ± 1.1

MoSIFT 63.9 ± 1.4 50.6 ± 0.9

STIP 69.1 ± 0.5 48.2 ± 1.8

GIST 82.9 ± 1.5 33.7 ± 0.7

ASR 89.1 ±4.7 22.5 ± 4.1

OCR 85.7 ± 0.1 28.8 ± 0.8

MMNDC MMF1

Fig. 3. Comparison of single feature on TRECVID MED2010. Two evaluation criteria
including MMNDC and MMF1 are adopted. For MMNDC, lower score indicates better
performance; for MMF1, higher score means better performance.

all the combination of fusion strategies and classifiers will be computational
expensive and meaningless to our concern, we first compare all the classifiers,
early fusion and late fusion strategies on MED 2010 and choose the best strategy
for each step to perform further experiments on MED 2011.

Single Feature Comparison. First, we compare the mean MNDC (MM-
NDC) (lower MMNDC indicates better performance) and mean MF1 (MMF1)
(higher MMF1 indicates better performance) of single features on MED 2010. As
shown in Table 1 and Fig. 3, the performance of different features vary dramati-
cally from event to event. Generally, four local features including CSIFT, SIFT,
MOSIFT and STIP consistently outperform other three features. In these four
features, motion based features including MOSIFT and STIP get much better
results than static features including SIFT and CSIFT in ”Assembling a shelter
” event, which has a lot of motion. Contradictorily, static features are obviously
superior to other features in ”Batting a run” event and ”Making a cake”, be-
cause of their relatively monotonous background. Different matched situation for
different features shows that above features are complementary to each other.
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Table 2. Comparison of classifiers, early fusion and late fusion strategies on TRECVID
MED 2010. Two evaluation criteria including MMNDC and MMF1 are used. For MM-
NDC, lower score indicates better performance; for MMF1, higher score means better
performance.

Classifiers Early Fusion Late Fusion

KR SVM MKL Average Weighted Average
Fusion Fusion Fusion

MMNDC% ± STD 60.5 ± 1.4 62.3 ± 1.1 50.6 ± 0.8 50.7 ± 0.6 52.5 ± 1.5 57.6 ± 1.9

MMF1% ± STD 53.3 ± 1.1 50.7 ± 2.9 61.4 ± 0.1 61.2 ± 0.6 59.7 ± 1.1 54.4 ± 1.6

MMNDC MMF1

Fig. 4. Comparison of double fusion with early fusion and late fusion on MED
2010. Two evaluation criteria including MMNDC and MMF1 are adopted. For MM-
NDC, lower score indicates better performance; for MMF1, higher score means better
performance.

Also, the performances of ASR and OCR features are much worse than those
visual feature. All of these indicate that giving different weights for different
features is a promising fusion strategy.

KR versus SVM. We further compared the performance of different classifiers
by simply using the best single feature, which is SIFT. From Table 2, we can
see that, compared to SVM, KR has lower MMNDC and higher MMF1, which
indicate that KR is a better classifier for TRECVID MED task. From now on,
we will use KR as our classifier for further experiments in this paper.

Early Fusion Strategies Comparison. For early fusion, we choose either
multiple kernel learning oraverage fusion. As indicated in Table 2, we can see that
MKL only gets comparable results to simple average fusion, this is consistent
with what was suggested by [12]. Considering that the performances of some
features are much worse than other features, it is quite unreasonable to give
them equal weight. However, finding a better weight strategy is still an open
question.

Late Fusion Strategies Comparison. Table 2 shows the results of late fusion
using weighted fusion and average fusion. The result of weighted late fusion is
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Fig. 5. Comparison of double fusion with early fusion and late fusion on MED 2011
by suing MMNDC criteria. Lower MMNDC indicates better performances.

Fig. 6. Comparison of double fusion with early fusion and late fusion on MED 2011
by using MMF1 criteria. Higher MMF1 indicates better performances.

much better than the result of average late fusion. This indicates that different
features have different contributions to the final results, especially when the
performance varies dramatically between features. We will only use the weighted
combination for late fusion for further comparison.

Double Fusion Versus Early Fusion and Late Fusion. The result of double
fusion is shown in Table 3. From the table, we can see that double fusion gives
much better results than both early and late fusion. The current best result
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Table 3. Comparison of double fusion with early fusion and late fusion on MED2010.
Two evaluation criteria including MMNDC and MMF1 are adopted. For MMNDC,
lower score indicates better performance; for MMF1, higher score means better perfor-
mance.

MED 2010 MED 2011

Early Late Double Early Late Double
Fusion Fusion Fusion Fusion Fusion Fusion

MMNDC% ± STD 50.6 ± 0.8 52.5 ± 1.5 48.9 ± 0.7 65.6 ± 0.7 68.2 ± 1.3 60.6 ± 0.8

MMF1% ± STD 61.4 ± 0.1 59.7 ± 1.1 62.9 ± 0.6 41.1 ± 0.5 37.4 ± 3.8 44.3 ± 0.9

on TRECVID MED 2010 was achieved [7] using the MMNDC criteria and the
performance was 0.565. Compared to this result, we get more than 12 percentages
improvements in MMNDC, though results are not perfectly comparable due to
different features and machine learning methods. Fig. 4 shows that double fusion
gets consistently better performance than early fusion and late fusion on all of
three events in MED 2010. MED 2011 is much harder and more diverse than
MED 2010 since we have 15 events now, but Fig. 5 and Fig. 6 indicate that
double fusion still gets better performance than early fusion and late fusion on
11 of 15 events. For the other 4 events, double fusion still gets similar results
to the best methods for those events, which indicates that double fusion does
capture advantages of both early fusion and late fusion.

5 Conclusion

In this paper, we presented an analysis of early fusion and late fusion which
aims at combining features from different modalities for multimedia event de-
tection and introduced a double fusion scheme which combines early fusion and
late fusion together. Our experiments on about 484 hours of videos come from
TRECVID MED 2010 and 2011 showed that this simple strategy is very ef-
fective and had a substantial advantage over both early fusion and late fusion
strategies. Moreover, we found that weighted combination is better than aver-
age combination for late fusion but not for early fusion. How to learn weight
for early combination is still an open question, our future work will focus on
learning weight for early fusion.
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