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Abstract. This paper investigates the problem of designing active feedback con-
trollers for achieving generalized projective synchronization (GPS) of identical
hyperchaotic Lü systems (Chen et al. 2006) and non-identical hyperchaotic Cai
system (Wang and Cai, 2009) and hyperchaotic Lü system. The synchronization
results (GPS) derived in this paper have been established using Lyapunov stability
theory. Since the Lyapunov exponents are not required for these calculations, the
active feedback control method is very effective and convenient for achieving the
general projective synchronization (GPS) of hyperchaotic Lü and hyperchaotic
Cai systems. Numerical simulations are shown to demonstrate the effectiveness
of the synchronization results derived in this paper.
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1 Introduction

Chaotic systems are nonlinear dynamical systems, which are highly sensitive to initial
conditions. The sensitive nature of chaotic systems is commonly called as the butterfly
effect [1].

Hyperchaotic system is usually defined as a chaotic system with more than one pos-
itive Lyapunov exponent. Since hyperchaotic system has the characteristics of high ca-
pacity, high security and high efficiency, it has the potential of broad applications in
nonlinear circuits, secure communications, lasers, neural networks, biological systems,
and so on. Thus, the studies on hyperchaotic systems, viz. control, synchronization and
circuit implementation are very challenging works in the chaos literature.

In most of the chaos synchronization approaches, the master-slave or drive-response
formalism is used. If a particular chaotic system is called the master or drive system
and another chaotic system is called the slave or response system, then the idea of
synchronization is to use the output of the master system to control the slave system so
that the output of the slave system tracks the output of the master system asymptotically.

The seminal work by Pecora and Carroll ([3], 1990) is followed by a variety of
impressive approaches for chaos synchronization such as the sampled-data feedback
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synchronization method [4], OGY method [5], time-delay feedback method [6], back-
stepping method [7], active control method ([8]-[9]), adaptive control method [10], slid-
ing control method [11], etc.

In generalized projective synchronization [12], the chaotic systems can synchronize
up to a constant scaling matrix. Complete synchronization [13], anti-synchronization
[14], hybrid synchronization [15], projective synchronization [16] and generalized syn-
chronization [17] are special cases of generalized projective synchronization. The gen-
eralized projective synchronization (GPS) has applications in secure communications.

This paper deals with the problem of designing active feedback controllers for the
generalized projective synchronization (GPS) of identical hyperchaotic Lü systems
(Chen et al. [18], 2006) and non-identical hyperchaotic Cai system (Wang and Cai,
[19], 2009) and hyperchaotic Lü system (2006).

This paper is organized as follows. In Section 2, we provide a description of the
hyperchaotic systems studied in this paper. In Section 3, we derive results for the GPS
between identical hyperchaotic Lü systems (2006). In Section 4, we derive results for
the GPS between non-identical hyperchaotic Cai system (2009) and hyperchaotic Lü
system (2006). In Section 5, we summarize the main results obtained in this paper.

2 Systems Description

The hyperchaotic Lü system ([18], 2006) is described by the dynamics

ẋ1 = a(x2 − x1) + x4

ẋ2 = −x1x3 + cx2

ẋ3 = x1x2 − bx3

ẋ4 = x1x3 + dx4

(1)

where x1, x2, x3, x4 are the state variables and a, b, c, d are constant, positive parame-
ters of the system.

The system (1) is hyperchaotic when the system parameter values are chosen as
a = 36, b = 3, c = 20 and d = 1.3.

Figure 1 depicts the state orbits of the hyperchaotic Lü system (1).
The hyperchaotic Cai system ([19], 2009) is described by the dynamics

ẋ1 = p(x2 − x1)
ẋ2 = qx1 + rx2 − x1x3 + x4

ẋ3 = x2
2 − sx3

ẋ4 = −εx1

(2)

where x1, x2, x3, x4 are the state variables and p, q, r, s, ε are constant, positive param-
eters of the system.

The system (2) is hyperchaotic when the system parameter values are chosen as
p = 27.5, q = 3, r = 19.3, s = 2.9 and ε = 3.3.

Figure 2 depicts the state orbits of the hyperchaotic Cai system (2).
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Fig. 1. State Orbits of the hyperchaotic Lü System
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Fig. 2. State Orbits of the hyperchaotic Cai System
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3 Generalized Projective Synchronization of Identical
Hyperchaotic Lü Systems

3.1 Main Results

In this section, we discuss the design of active controller for achieving generalized
projective synchronization (GPS) of identical hyperchaotic Lü systems ([18], 2006).

Thus, the master system is described by the hyperchaotic Lü dynamics

ẋ1 = a(x2 − x1) + x4

ẋ2 = −x1x3 + cx2

ẋ3 = x1x2 − bx3

ẋ4 = x1x3 + dx4

(3)

where x1, x2, x3, x4 are the state variables and a, b, c, d are constant, positive parame-
ters of the system.

Also, the slave system is described by the controlled hyperchaotic Lü dynamics

ẏ1 = a(y2 − y1) + y4 + u1

ẏ2 = −y1y3 + cy2 + u2

ẏ3 = y1y2 − by3 + u3

ẏ4 = y1y3 + dy4 + u4

(4)

where y1, y2, y3, y4 are the state variables and u1, u2, u3, u4 are the active controls.
For the GPS of (3) and (4), the synchronization errors are defined as

ei = yi − αixi, (i = 1, 2, 3, 4) (5)

where the scales α1, α2, α3, α4 are real numbers.
A simple calculation yields the error dynamics

ė1 = a(y2 − y1) + y4 − α1[a(x2 − x1) + x4] + u1

ė2 = −y1y3 + cy2 − α2[−x1x3 + cx2] + u2

ė3 = y1y2 − by3 − α3[x1x2 − bx3] + u3

ė4 = y1y3 + dy4 − α4[x1x3 + dx4] + u4

(6)

We consider the active nonlinear controller defined by

u1 = −a(y2 − y1) − y4 + α1[a(x2 − x1) + x4] − k1e1

u2 = y1y3 − cy2 + α2[−x1x3 + cx2] − k2e2

u3 = −y1y2 + by3 + α3[x1x2 − bx3] − k3e3

u4 = −y1y3 − dy4 + α4[x1x3 + dx4] − k4e4

(7)

where the gains k1, k2, k3, k4 are positive constants.
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Substitution of (7) into (6) yields the closed-loop error dynamics

ė1 = −k1e1

ė2 = −k2e2

ė3 = −k3e3

ė4 = −k4e4

(8)

We consider the quadratic Lyapunov function defined by

V (e) =
1
2

eT e =
1
2

(
e2
1 + e2

2 + e2
3 + e2

4

)
(9)

which is positive definite on IR4.
Differentiating (9) along the trajectories of the system (8), we get

V̇ (e) = −k1e
2
1 − k2e

2
2 − k3e

2
3 − k4e

2
4 (10)

which is a negative definite function on IR4, since k1, k2, k3, k4 are positive constants.
Thus, by Lyapunov stability theory [20], the error dynamics (8) is globally exponen-

tially stable. Hence, we obtain the following result.

Theorem 1. The active feedback controller (7) achieves global chaos generalized pro-
jective synchronization (GPS) between the identical hyperchaotic Lü systems (3)
and (4).

3.2 Numerical Results

For the numerical simulations, the fourth order Runge-Kutta method is used to solve
the two systems of differential equations (3) and (4) with the active controller (7).

The parameters of the identical hyperchaotic Lü systems are chosen as

a = 36, b = 3, c = 20, d = 1.3

The initial values for the master system (3) are taken as

x1(0) = 24, x2(0) = 8, x3(0) = 10, x4(0) = 12

The initial values for the slave system (4) are taken as

y1(0) = 15, y2(0) = 12, y3(0) = 4, y4(0) = 20

The GPS scales αi are taken as

α1 = 4.58, α2 = 3.49, α3 = −7.21, α4 = −5.34

We take the state feedback gains as k1 = 4, k2 = 4, k3 = 4 and k4 = 4.
Figure 3 shows the time response of the error states e1, e2, e3, e4 of the error dynam-

ical system (6) when the active nonlinear controller (7) is deployed. From this figure,
it is clear that all the error states decay to zero exponentially in 1.5 sec and thus, gen-
eralized projective synchronization is achieved between the identical hyperchaotic Lü
systems (3) and (4).
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Fig. 3. Time Responses of the Error States of (6)

4 Generalized Projective Synchronization of Non-identical
Hyperchaotic Lü and Hyperchaotic Cai Systems

4.1 Main Results

In this section, we derive results for the generalized projective synchronization (GPS)
of non-identical hyperchaotic systems, viz. hyperchaotic Cai system ([19], 2009) and
hyperchaotic Lü system ([18], 2006).

Thus, the master system is described by the hyperchaotic Cai dynamics

ẋ1 = p(x2 − x1)
ẋ2 = qx1 + rx2 − x1x3 + x4

ẋ3 = x2
2 − sx3

ẋ4 = −εx1

(11)

where x1, x2, x3, x4 are the state variables and p, q, r, s, ε are constant, positive param-
eters of the system.

Also, the slave system is described by the controlled hyperchaotic Lü dynamics

ẏ1 = a(y2 − y1) + y4 + u1

ẏ2 = −y1y3 + cy2 + u2

ẏ3 = y1y2 − by3 + u3

ẏ4 = y1y3 + dy4 + u4

(12)

where y1, y2, y3, y4 are the state variables, a, b, c, d are constant, positive parameters of
the system and u1, u2, u3, u4 are the active controls.
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For the GPS of (11) and (12), the synchronization errors are defined as

ei = yi − αixi, (i = 1, 2, 3, 4) (13)

where the scales α1, α2, α3, α4 are real numbers.
A simple calculation yields the error dynamics

ė1 = a(y2 − y1) + y4 − α1 [p(x2 − x1)] + u1

ė2 = −y1y3 + cy2 − α2 [qx1 + rx2 − x1x3 + x4] + u2

ė3 = y1y2 − by3 − α3

[
x2

2 − sx3

]
+ u3

ė4 = −fy2 − α4 [−εx1] + u4

(14)

We consider the active nonlinear controller defined by

u1 = −a(y2 − y1) − y4 + α1 [p(x2 − x1)] − k1e1

u2 = y1y3 − cy2 + α2 [qx1 + rx2 − x1x3 + x4] − k2e2

u3 = −y1y2 + by3 + α3

[
x2

2 − sx3

] − k3e3

u4 = fy2 + α4 [−εx1] − k4e4

(15)

where the gains k1, k2, k3, k4 are positive constants.
Substitution of (15) into (14) yields the closed-loop error dynamics

ė1 = −k1e1

ė2 = −k2e2

ė3 = −k3e3

ė4 = −k4e4

(16)

We consider the quadratic Lyapunov function defined by

V (e) =
1
2

eT e =
1
2

(
e2
1 + e2

2 + e2
3 + e2

4

)
(17)

which is positive definite on IR4.
Differentiating (17) along the trajectories of the system (16), we get

V̇ (e) = −k1e
2
1 − k2e

2
2 − k3e

2
3 − k4e

2
4 (18)

which is a negative definite function on IR4, since k1, k2, k3, k4 are positive constants.
Thus, by Lyapunov stability theory [20], the error dynamics (16) is globally expo-

nentially stable. Hence, we obtain the following result.

Theorem 2. The active feedback controller (15) achieves global chaos generalized
projective synchronization (GPS) between the non-identical hyperchaotic Cai system
(11) and the hyperchaotic Lü system (12).
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4.2 Numerical Results

For the numerical simulations, the fourth order Runge-Kutta method is used to solve
the two systems of differential equations (11) and (12) with the active controller (15).

The parameters of the hyperchaotic Cai system (11) are taken as

p = 27.5, q = 3, r = 19.3, s = 2.9, ε = 3.3

The parameters of the hyperchaotic Lü system (12) are taken as

a = 36, b = 3, c = 20, d = 1.3

The initial values for the master system (11) are taken as

x1(0) = 11, x2(0) = 24, x3(0) = 18, x4(0) = 15
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Fig. 4. Time Responses of the Error States of (14)
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The initial values for the slave system (12) are taken as

y1(0) = 20, y2(0) = 16, y3(0) = 5, y4(0) = 7

The GPS scales αi are taken as

α1 = −2.15, α2 = −6.83, α3 = 5.49, α4 = 3.48

We take the state feedback gains as k1 = 4, k2 = 4, k3 = 4 and k4 = 4.
Figure 4 shows the time response of the error states e1, e2, e3, e4 of the error dynam-

ical system (14) when the active nonlinear controller (15) is deployed.
From this figure, it is clear that all the error states decay to zero exponentially in

1.7 sec and thus, generalized projective synchronization is achieved between the non-
identical hyperchaotic Cai system (11) and hyperchaotic Lü system (12).

5 Conclusions

In this paper, we derived active control laws for achieving generalized projective syn-
chronization (GPS) of the following hyperchaotic systems:

(A) Identical hyperchaotic Lü systems (2006)
(B) Non-identical hyperchaotic Cai system (2009) and hyperchaotic Lü system.

The synchronization results (GPS) derived in this paper for the hyperchaotic Lü and hy-
perchaotic Cai systems [(A) and (B)] have been proved using Lyapunov stability theory.
Since Lyapunov exponents are not required for these calculations, the proposed active
control method is very effective and suitable for achieving GPS of the hyperchaotic
systems addressed in this paper. Numerical simulations are shown to demonstrate the
effectiveness of the synchronization results (GPS) derived in this paper.
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10. Chen, S.H., Lü, J.: Synchronization of an uncertain unified system via adaptive control.
Chaos, Solitons and Fractals 14, 643–647 (2002)

11. Konishi, K., Hirai, M., Kokame, H.: Sliding mode control for a class of chaotic systems.
Phys. Lett. A. 245, 511–517 (1998)

12. Zhou, P., Kuang, F., Cheng, Y.M.: Generalized projective synchronization for fractional order
chaotic systems. Chinese Journal of Physics 48(1), 49–56 (2010)

13. Sundarapandian, V.: Global chaos synchronization of Shimizu-Morioka and Liu-Chen
chaotic systems by active nonlinear control. Internat. J. Advances in Science and Technol-
ogy 2(4), 11–20 (2011)

14. Sundarapandian, V.: Anti-synchronization of Lorenz and T chaotic systems by active nonlin-
ear control. Internat. J. Computer Information Systems 2(4), 6–10 (2011)

15. Sundarapandian, V.: Hybrid synchronization of hyperchaotic Rössler and hyperchaotic
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