
N. Meghanathan et al. (Eds.): CCSIT 2012, Part I, LNICST 84, pp. 552–562, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

A Secure Session Transfer Protocol for Downloading
a Large File across a Cluster of Servers
in the Presence of Network Congestion

Natarajan Meghanathan1 and Bhadrachalam Chitturi2

1 Jackson State University, Jackson, MS 39217, USA
nmeghanathan@jsums.edu

2 Amrita Vishwavidyaapeetham University, Amritapuri Campus, Kerala, India
bhadrachalam@am.amrita.edu

Abstract. We propose the design of a Session Transfer Protocol (STP) that
allows a client to download a large file replicated across several servers. STP
runs at the session layer, on the top of the standard Transmission Control
Protocol (TCP). A client can sequentially download the entire file from one or
more servers, from one server at a time, with just one TCP session. A STP
Server, currently sending the contents of a file to a client, can proactively detect
congestion in the network and transfer a file download session to another peer
STP Server that is located in a different network. At any stage (initial session
establishment or session transfer), the STP Client chooses a particular server by
executing certain selection tests among the servers in the list sent by the STP
Gateway, which is the public face of the cluster of STP Servers in the Internet.
Unlike the traditional File Transfer Protocol (FTP) that requires users to
repeatedly initiate the entire download process upon the failure of each FTP
connection, STP is seamless, incremental and provides improved Quality of
Service while downloading a large file. The user working at the STP Client is
unaware of the congestion and resulting session transfer to a different STP
Server. STP is security-aware and has appropriate encryption, authentication
and anti-spoofing features incorporated at different stages of its execution.

Keywords: Session Transfer Protocol, Sequential Download, Large File
Download, Quality of Service, Secure Download.

1 Introduction

With the phenomenal growth in the Internet and the diversity of consumer
applications, the size of the files being downloaded keep increasing from KB through
MB to GB. The traditional File Transfer Protocol (FTP) with a single server that runs
on the top of the connection-oriented Transmission Control Protocol (TCP) [10] is
often considered unsuitable for downloading larger files over the Internet. A
commonly employed strategy to counter the single server bottleneck problem is to
employ multiple mirror servers and let the client choose one of these servers for
download. Even in this scenario, once a server is chosen, the client has to stay with

 A Secure Session Transfer Protocol 553

that server for the entire download process. If a client starts experiencing more delay
in the download process and wishes to download from another server, the client has
no option other than completely disconnecting from the first server and opening a new
TCP connection with the second server and starting the download all over again from
the first byte of the file. For example, if a client is downloading a huge file (such as an
.iso file for virtual machine operating systems) that is in the order of GB and if
network congestion sets in after half of the file has been downloaded and the client
apparently sees no appreciable progress in the download, it becomes quite
exasperating for a client to start the process all over again with a new server. There is
no guarantee that the client will not again experience the same problem with the new
server after a while.

To counter the problem of relying on a single client - single server model,
downloading in parallel has been considered as a viable alternative (e.g. [1][2]). Here,
the distinct segments of a file are downloaded in parallel from multiple servers and
the downloaded contents are merged at the client to reconstruct the original file.
However, parallel downloading has several drawbacks. A critical drawback is the
requirement to maintain multiple TCP connections at the client side, with each of the
parallel servers from which the file is being downloaded. It becomes tedious for thin
clients (client machines with very limited resources) to maintain multiple TCP
connections and the associated memory buffers for a download session. The client is
overloaded until the download is completed. In addition, proper security features need
to be embedded in the parallel downloading schemes.

Another strategy that is gaining prominence in recent times is peer-to-peer file
sharing with technologies such as the BitTorrent protocol [9]. Here, files are no longer
hosted at a particular server or a mirror of servers. A file is broken into pieces and
distributed among several machines across the Internet; the information about these
machines is stored as part of a metadata for the file. An interested client wishing to
download a file contacts the machines listed in the metadata of the file. As the
different pieces of the file get downloaded, the client itself becomes a host from
which other interested peer clients can download. Peer-to-peer file sharing again
requires the client to re-order the downloaded pieces of the file before being delivered
to the application and it is highly prone to out-of-order packet arrival. Hence, peer-to-
peer file sharing systems are not typically suitable for streaming applications that
require progressive or contiguous downloading.

We propose a novel Session Transfer Protocol (STP) for downloading a huge file
over the Internet in a sequential fashion using just one TCP session at any given time
(between the client and a chosen server) while providing improved Quality of Service
(QoS) and a secure (reliable) download. The STP runs at the session layer, on top of
TCP at the transport layer. Here, we conceptualize a cluster of cooperating file
servers, each of which hosts the entire file. The cluster is publicly identified through a
gateway, which is the initial point of contact for an interested client. The gateway, by
itself, does not store any file – however, it maintains a database (STP database) that
has information about the cooperating servers hosting each of the files. The gateway
merely forwards this information to the requesting client in the form of a secure STP
ticket, which has to be used by the client to initiate a download session with any of

554 N. Meghanathan and B. Chitturi

the cooperating servers of the file. During the download process, as the client sends
out Acknowledgments for the last packet that has arrived in-order, the server
evaluates the variance in the round-trip times (RTT) of the acknowledgment packets.
If the RTT starts to increase beyond a threshold, the server considers this as a sign of
impending congestion on the path to the client. As a proactive measure, the server
decides that the client has to choose some other server to continue the session and
hands-off by sending an encrypted ‘Transfer Session’ message that includes the
session details (such as last byte acknowledged, window size, etc); the client selects
the next suitable server from the list of cooperating servers for the file through a ping-
request-reply cycle [10] and forwards the encrypted Transfer Session message and the
STP ticket originally sent by the gateway. If the chosen server can accommodate the
new session with the required QoS, it responds positively. Otherwise, it rejects the
connection request.

The STP Client maintains a list of overloaded and unavailable servers and updates
this list based on the recent STP sessions it has gone through. After a server positively
responds to the session transfer, the STP Client continues to download the remainder
of the file from that server. If the session has to be further transferred to another
server, the above process is repeated. However, we anticipate that there will not be
several session transfers as a STP Server accepts a connection request only if it is able
to provide the required QoS in terms of maintaining the same sender window size,
etc. The only unknown parameter here is the network bandwidth. The bandwidth on
the path between the client and server may be sufficient at the beginning of the
session transfer or session initiation. But, after a while, the intermediate networks and
the routers on the path between the client and server may be overloaded with traffic,
necessitating a session transfer for quick, real-time download. However, at any time, a
client has to run only one TCP connection and has to deal with only one server.
Hence, STP is perfectly suitable for thin clients. The File Transfer Protocol (FTP) that
runs at the application layer, on the top of TCP, can be suitably modified to run STP
at the Session layer. We will refer to the modified FTP as STP-aware FTP.

The rest of the paper is organized as follows: Section 2 analyzes related work on
parallel downloads and motivates the need for a secure sequential download,
especially for thin clients, and at the same time provides the required QoS. Section 3
presents a detailed design of the proposed Session Transfer Protocol (STP) and
provides a qualitative comparison with that of the traditional FTP. Section 4
concludes the paper and discusses future work.

2 Related Work

In [1], the authors propose a Parallelized-File Transfer Protocol (P-FTP) that
facilitates simultaneous downloads of disjoint file portions from multiple file servers
distributed across the Internet. The selection of the set of parallel file servers is done
by the P-FTP gateway when contacted by a P-FTP client. The number of bytes to be
downloaded from each file server is decided based on the available bandwidth. We
observe the following drawbacks with P-FTP: (1) The P-FTP client would be

 A Secure Session Transfer Protocol 555

significantly overloaded in managing multiple TCP sessions, one with each of the
parallel file servers. Thus, P-FTP cannot be run on thin clients that are limited in the
available memory and resources to run concurrent TCP sessions for downloading a
single file. (2) If the path to a particular file server gets congested, the P-FTP client is
forced to wait for the congestion to be relieved and continue to download the
remaining bytes of the portion of the file allocated for download from the particular
file server. The QoS realized during the beginning of the download process may not
be available till the end due to the dynamics of the Internet. (3) P-FTP has no security
features embedded in it. Hence, it is open for spoofing-based attacks on the
availability of the parallel file servers by unauthorized users/clients who simply
launch several parallel download sessions that appear to originate from authentic
users/IP addresses.

In [2], the authors propose a Dynamic Parallel Access (DPA) scheme that is also
based on downloading a file in parallel from multiple servers, but different from P-
FTP in the sense that the portion of the file and the number of bytes to be downloaded
from a particular file server is not decided a priori; but done dynamically based on the
response from the individual servers. In this scheme, the client chooses the set of
parallel servers to request for the file. The download is to be done in blocks of equal
size. Initially, the client requests one block of the file from every server. After a client
has completely received one block from a server, the client requests the particular
server for another block that has not yet been requested from any other server. Upon
receiving all the blocks, the client reassembles them and reconstructs the whole file.
Unlike P-FTP, DPA is less dependent on any particular mirror server as it requests
only one block of the file from a server at a time and does not wait for several blocks
of the file from any particular server. However, with DPA, the client cannot close its
TCP connections with any of the mirror file servers until the entire file is downloaded.
This is because, if a client fails to receive a block of the file from a particular mirror
server and has waited for a long time, then the client has to request another peer
mirror server for the missing block. In order to avoid opening and closing multiple
TCP connections with a particular mirror server, the client has to maintain the TCP
connection with each of the file servers until the entire download is completed. The
client has to keep sending some dummy packets to persist with the TCP connections.
On the other hand, a P-FTP client can close the TCP connection with a P-FTP server
once the required portions of the file are downloaded as initially allocated from the
particular mirror server. DPA also does not have any security features embedded in it.

Many other related works (e.g., [3][4][5]) on simultaneous partial download have
also been proposed in the literature for better QoS. All of these schemes use parallel
downloading to fasten the throughput and minimize the delay. But, this will be a
significant overhead on the part of the client. Also, as mentioned above, the parallel
download schemes rarely take into account incorporating modules that will address
the security issues. In [6], the authors analyzed (through simulations) the impact of
large-scale deployment of parallel downloading on the Internet as well for network
dimensioning and content distribution service provisioning. They show that with

556 N. Meghanathan and B. Chitturi

proper admission control and dimensioning, single-server downloading can perform
just as well as parallel downloading, without the complexity and overhead incurred by
the latter. The above observation forms the motivation for our work in this paper.
Ours is the first novel approach to expedite file download in a sequential fashion by
incorporating the idea of a secure session transfer protocol that can be run on thin
clients, with just one TCP connection for the entire download process, and is also
adaptive to the congestion in the Internet.

3 Design of the Session Transfer Protocol

The Session Transfer Protocol (STP) will run at the session layer on the top of TCP.
To use STP at the application layer, the traditional FTP Protocol has to be modified to
run on the top of STP. The modified FTP can be referred to as the STP-aware FTP
and it needs to run on a separate port number. In other words, the STP-aware FTP
would be an alternate to the standard FTP. If a client does not want to go through the
file transfer that could potentially involve more than one server, then the client can
use the standard FTP; if the client wants to use STP in order to get better QoS and be
able to successfully transfer the files even in the presence of network congestion, then
the client can use the STP-aware FTP. Figure 1 illustrates the TCP/IP protocol stack
for the standard FTP and the STP-aware FTP.

There are three entities involved in the STP protocol: (i) STP Server Cluster – A
group of servers, each located in different networks, one or more of which are
involved in the file download session with a client. Note that, only a subset of the
cluster might carry a specific file and this information resides in the STP Gateway
Server. (ii) STP Client – A client machine that runs the STP protocol and is involved
in downloading a file from the STP Server Cluster. (iii) STP Gateway Server – The
public face of the STP Cluster. The STP Client first contact the STP Gateway Server
to initiate the file downloading process. The STP Server Cluster and STP Gateway
Server are organization-specific. There could be multiple STP Server Clusters and an
appropriate STP Gateway Server (one for each organization) running in the Internet.

 Traditional FTP STP-aware FTP

Fig. 1. TCP/IP Protocol Stack for the Traditional FTP and the STP-aware FTP

 A Secure Session Transfer Protocol 557

3.1 STP – Details

1. The STP Client initiates the download session by contacting the STP Gateway
Server. The client passes the username and password to first get authenticated by
the Gateway Server. Once authenticated, the client sends the path and the name of
the file to download. We assume the file hierarchy for a particular user is
maintained the same across all STP Servers. The Gateway server resolves the tuple
<username, path> in its database and extracts the list of STP Servers that store the
file. The STP Servers are ranked in the order of the number of hops from the client
network.

2. The Gateway server creates a STP Ticket that contains the username, path of the
file requested, filename, IP address of the client machine, the byte number in the
file (set to 0) and the time of contact information. The time of contact information
is included to avoid any replay attack. STP Tickets lose their validity beyond a
certain time after their creation. All of the above information in the STP Ticket is
encrypted using a secret key that is shared by all the STP Servers and the Gateway
Server. Along with this information, the Gateway also includes the set of IP
addresses of the STP Servers in the increasing order of the hop count from the
client network. For security purposes, the IP address list of the candidate STP
Servers is encrypted through a key that is derived (using a Key Derivation
Function agreed upon by the user while creating an account at the Gateway
Server) based on the user password. Figure 2 illustrates the contents of the STP
Ticket along with the STP Server IP address list. We show only the payload
portion of the Ticket message; we do not show the standard IP header (containing
the STP Gateway IP address as the sender address and the STP Client address as
the destination address) that is part of the message.

Fig. 2. Structure of STP Ticket along with the List of Server IP Addresses

3. The client decrypts STP Server List and pings the top three servers in the list by
sending four short “Echo Request” messages to each of these servers. The client
measures the Round Trip Time (RTT) of the “Echo Reply” ping messages. The
STP Server that returns the Reply message at the earliest (i.e., incurred the lowest
RTT) is selected. Ties are broken by the lowest hop count and other predefined
criteria.

558 N. Meghanathan and B. Chitturi

Fig. 3. TCP SYN Message with the Payload STP Ticket and SIM

4. The STP Client attempts to establish a TCP Session with the chosen STP Server

and sends a TCP SYN message (structure shown in Figure 3) – the payload of
which includes the STP Ticket and a Session Initiation Message (SIM) containing
the username, path, filename and the byte number, starting from which the
download is requested. The STP Server first decrypts the STP Ticket using the
secret key shared among the servers in the STP Cluster as well as the Gateway
Server. If the extracted contents of the Ticket matches with the username and file
path (sent by the client) as well as the IP address of the client machine, then the
STP Sever accepts the TCP connection request (sends a TCP SYN/ACK message)
if it can allocate the required resources for the file download session. Otherwise,
the STP Server sends a ‘Connection Request Reject’ message. Once the STP
Server has accepted for the TCP session, the STP Client begins to download the
contents of the requested file using TCP. In order to avoid any IP-spoofing
triggered session transfers, we recommend the STP Client and STP Server to form
an IPSec security association (SA) before establishing a TCP session. One of the
pre-requisite steps for establishing an IPSec SA is to run an Internet Key protocol
Exchange (IKE) session between the concerned Client and Server machines and
exchange their public-key certificates. All subsequent communications, including
the TCP session establishment messages, packets of the file being downloaded and
the Transfer Session message – all of these could be encrypted at the sender using
the public key of the receiver and decrypted at the receiver using its private key.

5. If the STP Server denies the TCP connection request, the STP Client includes the
STP Server to the ‘Overloaded List of STP Servers’ and then tries to establish a
TCP Session with the STP Server that responded with the next lowest RTT. If all
the three first-choice STP Servers deny the connection request, the STP Client
chooses the next three STP Servers in the list sent by the Gateway Server and
pings them. This procedure is repeated until the STP Client manages to
successfully find a STP Server; otherwise, the STP Client returns an error message
to the user indicating that the file cannot be downloaded.

6. After receiving a packet in-order, the STP Client acknowledges for all the packets
that have been received in-order and not acknowledged yet. The STP Server
measures the RTT for the acknowledgment packets received from the STP Client.
If the RTTs start increasing significantly for every acknowledgment received (the
actual rate of increase of the RTT is an implementation issue), then the STP Server
decides to handoff the session to another peer STP Server.

 A Secure Session Transfer Protocol 559

7. To handoff the session, the STP Server sends a ‘Transfer Session’ message to the
STP Client and includes the sequence number of the last byte whose
acknowledgment has been received by the Server and the position of this byte (i.e.,
the byte number) in the actual file being downloaded. The STP Server also updates
the STP Ticket with the byte number that was last sent to the Client and
acknowledged by the latter. The STP Server encrypts the updated STP Ticket
using the secret key shared among all the servers in the STP cluster. The updated
STP Ticket along with the Transfer Session message is sent to the STP Client.

8. After receiving the Transfer Session message, the STP Client confirms about the
last byte number that was received in-order from the previous STP Server (which
is now added to the Overloaded list). The STP Client now goes through the
original Server List sent by the STP Gateway Server. Unlike the previous
procedure adopted (i.e., to look for potential STP Servers in the increasing order of
the number of hops), the STP Client randomly permutes the list and pings all the
Servers in the Cluster, except those in the locally maintained Overloaded list.

Fig. 4. Contents of the Transfer Session Message Sent by an STP Server

9. The STP Server that responds back with an “Echo Reply” at the earliest is chosen
as the next Server to transfer the session. The STP Client attempts to open a TCP
session with the new chosen server by sending a TCP SYN message – the payload
of which includes the STP Ticket received from the previous STP Server as well
as a ‘Transfer Request’ message containing those forwarded to the first STP
Server: username, path, filename and the byte number (one more than the previous
value), starting from which the download is requested.

Fig. 5. TCP SYN Message with the Payload – Updated STP Ticket and Transfer Request
Message

560 N. Meghanathan and B. Chitturi

10. Once the newly chosen STP Server receives the STP Ticket along with the
Transfer Request message, it decrypts the STP Ticket using the secret key for the
STP Server cluster and compares the contents of the STP Ticket with those in the
Transfer Request message. If everything matches and it is ready to allocate the
required buffer space for this session and offer the requested window size, the new
STP Server agrees to continue with the download session and sends a TCP
SYN/ACK message; otherwise, it sends a Connection Request Reject message.

11. The STP Client adds the last chosen STP server that sent the Connection Request
Reject message to the Overloaded list. Another STP Server that is not in the
Overloaded list is contacted and this procedure is repeated until a new STP Server
to transfer the session is found. If unsuccessful over the entire STP Server List, the
STP Client quits and reports an error message to the user.

12. Once the new STP Server has accepted the TCP connection request and to
continue with the transferred session, the STP Client begins to download the
subsequent contents of the file. A secure-TCP session established on the top of
IPSec is recommended.

13. After a while, if the new STP Server decides to handoff the file download session,
then Steps 7 through 12 are again followed.

3.2 Qualitative Comparison with Standard FTP

FTP does not support session transfer during the middle of a file download. If a client
or server experiences frequent timeouts and/or packet loss due to network congestion,
the TCP session running as part of FTP has to be discontinued and a new TCP session
has to be established. Nevertheless, we cannot be sure whether the new TCP session
would be of any remedy to the network congestion problem as packets are more likely
to be again routed through the same set of congested routers (and networks) as long as
the server and client remain the same. STP handles the network congestion problem
by initiating the transfer of a session to another server. This transfer is done in a
secure fashion, through the encrypted session transfer ticket, in order to avoid the
scenarios wherein an attacker initiates the transfer without the consent or knowledge
of the actual server or the client. There could be some delay involved in transferring a
session from one server to another server. However, the transfer delay is expected to
be smaller enough to offset the delay incurred if the packets are continued to be sent
on a congested route without any session transfer.

STP sincerely attempts to avoid session thrashing wherein a newly transferred
session to a server I does not get immediately transferred to some other server J. Note
that in Step 10, the STP Server receiving the Transfer Request message accepts the
message only if it can allocate resources and offer the download service as requested.
However, from a network congestion point of view, we cannot guarantee that session
thrashing will be totally avoidable. As IP works on a per-packet basis, it is possible
that after the session transfer is implemented, one or more networks on the route
between the client and the server start to get congested and the session has to be again
transferred to some other server within the set of clusters.

 A Secure Session Transfer Protocol 561

4 Conclusions and Future Work

The high-level contribution of this paper is the design of a secure Session Transfer
Protocol (STP) that can be used even by thin clients to download a large file,
distributed across several servers that constitute the STP Server Cluster. If there is an
impending congestion on the path between a STP Client and the STP Server, the latter
proactively initiates a session handoff by sending a Session Transfer message with the
details on the last byte acknowledged and etc., updated in the STP Ticket. The STP
Client contacts the other STP Servers in the list originally sent by the STP Gateway
(during the authentication phase) and chooses the best alternate STP Server that
agrees to continue with the download session. The user working at the STP Client is
totally unaware of this session transfer process among the servers in the STP Cluster.
The entire session transfer will occur in a secure manner with no scope for any denial
of service or spoofing attacks, if the TCP session is run on the top of IPSec.
Throughout the download session, an STP Client is required to maintain only one
TCP connection – a feature that suits thin clients, unlike the protocols for parallel
download that require a client to simultaneously run/maintain multiple TCP
connections. Compared to the parallel and peer-to-peer download schemes, STP can
be the preferred choice for streaming applications, of course with some jitter
experienced during session transfer. Faster the session transfer, smaller is the delay.
Our strategy to let the STP Client randomly choose STP Servers (from a list of
putative servers) to contact for session transfer helps to minimize the session transfer
delay. Also, because of sequential download, data packets of the file are highly likely
to arrive in-order at the client. In the near future, we plan to implement STP, first as a
prototype in a laboratory scale, simulating with client-server programs and then
implement in a larger network with traffic actually sent over the Internet. Through
simulations, we plan to compare the performance of STP with that of the P-FTP and
DPA parallel download protocols as well as the BitTorrent peer-to-peer protocol.

Acknowledgments. The authors made equal contributions. The work of Natarajan
Meghanathan leading to this paper has been partly funded through the U. S. National
Science Foundation (NSF) CCLI/TUES grant (DUE-0941959) on “Incorporating
Systems Security and Software Security in Senior Projects.” The views and
conclusions contained in this document are those of the authors and do not represent
the official policies, either expressed or implied, of the funding agency.

References

1. Sohail, S., Jha, S.K., Kanhere, S.S.: QoS Driven Parallelization of Resources to Reduce
File Download Delay. IEEE Transactions on Parallel and Distributed Systems 17(10),
1204–1215 (2006)

2. Rodriguez, P., Biersack, E.W.: Dynamic Parallel Access to Replicated Content in the
Internet. IEEE Transactions on Networking 10(4), 455–465 (2002)

562 N. Meghanathan and B. Chitturi

3. Karrer, R.P., Knightly, E.W.: TCP-PARIS: A Parallel Download Protocol for Replicas. In:
The 10th International Workshop on Web Content Caching and Distribution, Sophia
Antipolis, France, pp. 15–25 (2005)

4. Brock, M., Goscinski, A.: A Parallel Download Protocol for Internet-based Distributed
Systems. In: International Conference on Internet Computing, Las Vegas, pp. 3–9 (2008)

5. Chang, R.-S., Guo, M.-H., Lin, H.-C.: A Multiple Parallel Download Scheme with Server
Throughput and Client Bandwidth Considerations for Data Grids. Future Generation
Computer Systems 24(8), 798–805 (2008)

6. Koo, S.G.M., Rosenberg, C., Xu, D.: Analysis of Parallel Downloading for Large File
Distribution. In: The 9th Workshop on Future Trends of Distributed Computing. IEEE,
San Juan (2003)

7. Neglia, G., Reina, G., Zhang, H., Towsley, D., Venkataramani, A., Danaher, J.:
Availability in BitTorrent Systems. In: International Conference on Computer
Communications, pp. 2216–2224. IEEE, Anchorage (2007)

8. Measche, D.S., Rocha, A.A.A., Li, B., Towsley, D., Venkataramani, A.: Content
Availability and Bundling in Swarming Systems. In: The 5th International Conference on
Emerging Networking Experiments and Technologies, pp. 121–132. ACM (2009)

9. BitTorrent,
http://www.bittorrent.org/beps/bep_0003.html
(last accessed: July 26, 2011)

10. Peterson, L.L., Davie, B.S.: Computer Networks: A Systems Approach, 5th edn. Morgan
Kaufmann (2011)

	A Secure Session Transfer Protocol for Downloading a Large File across a Cluster of Servers in the Presence of Network Congestion
	Introduction
	Related Work
	Design of the Session Transfer Protocol
	STP – Details
	Qualitative Comparison with Standard FTP

	Conclusions and Future Work
	References

