

N. Meghanathan et al. (Eds.): CCSIT 2012, Part I, LNICST 84, pp. 510–519, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Dependable Solutions Design by Agile Modeled Layered
Security Architectures

M. Upendra Kumar1,*, D. Sravan Kumar2, B. Padmaja Rani3, K. Venkateswar Rao4,
A.V. Krishna Prasad5, and D. Shravani6

1CSE JNTUH and CSE MGIT, Hyderabad, A.P., India
uppi_shravani@rediffmail.com

2 CSE KITE WCPES, Hyderabad, A.P., India
dasojusravan@gmail.com

3 CSE JNTU CEH, Hyderabad, A.P., India
padmaja_jntuh@yahoo.co.in

4 CSE JNTU CEH, Hyderabad, A.P., India
Kvenkateswarrao_jntuh@rediffmail.com

5 S.V. University Tirupathi, A.P., India
kpvambati@gmail.com

6 Rayalaseema University, Kurnool, A.P., India
sravani.mummadi@yahoo.co.in

Abstract. Our research entitled “Designing Dependable Agile Layered Security
Architecture Solutions” addresses the innovative idea and novel implementa-
tions of Security Engineering for Software Engineering using Agile Modeled
Layered Security Architectures for Dependable Privacy Requirements, with a
validation of an exemplar case study of Web Services Security Architectures.
Securing the Software Architecture in any application at design phase is known
as Security Architectures, and we focus on authentication and authorization of
the user. Now a day most of the applications are developed as a Layered Securi-
ty Architecture Pattern, typically we have user presentation layer, Business
Logic Layer and Database access layer. Now Agile modeling is used in all ap-
plications design (but Agile Modeled Architectures are given little importance)
because of shortened developed time, with customer collaborations with devel-
opers and importantly with Test Driven Development approaches. Securing
Agile Modeled architectures, which being an iterative development, will pro-
vide enhanced Dependable Security Requirements in terms of Privacy of user,
in its successive iterations. All this research paves a way for Secure Web
Engineering.

Keywords: Security Architectures, Agile Modeling, Layered Pattern,
Designing Solutions, Dependable Privacy Requirements, Web Services.

* Corresponding author.

Dependable Solutions Design by Agile Modeled Layered Security Architectures 511

1 Research Methodology for Designing Dependable Agile
Layered Security Architecture Solutions—Web Services Case
Study

This paper discusses the latest and advantages in secure software development
process in an early stage. The primary focus is on security considerations early in the
life cycle, i.e. at the system architecture stage, which has the potential to improve the
requirements engineering in software system. The ultimate goal is to have a better
quality product. Initially we discuss about the Research Methodology for Designing
Dependable Agile Layered Security Architecture Solutions. Later on we discuss about
dependability of data and application layers by Agile Modeled Security Architectures,
validated with a case study of Web Services Security Architectures.

Research on Security Architectures. Software Engineering covers the definition of
processes, techniques and models suitable for its environment to guarantee quality of
results. An important design artifact in any software development project is the Soft-
ware Architecture. Software Architectures important part is the set of architectural
design rules. A primary goal of the architecture is to capture the architecture design
decisions. An important part of these design decisions consists of architectural design
rules. In a Model Driven Architecture (MDA) context, the design of the system archi-
tecture is captured in the models of the system. MDA is known to be layered ap-
proach for modeling the architectural design rules and uses design patterns to improve
the quality of software system. And to include the security to the software system,
security patterns are introduced that offer security at the architectural level. More
over, agile software development methods are used to build secure systems. There
are different methods defined in agile development as eXtreme Programming (XP),
scrum, Feature Driven Development (FDD), Test Driven Development (TDD), etc.
Agile processing includes the phases as Agile Analysis, Agile Design, and Agile Test-
ing. These phases are defined in layers of MDA to provide security at the Modeling
level which ensures that, “Security at the system architecture stage will improve the
requirements for that system”.

Research Problem Statement. Our research entitled “Designing Dependable Agile
Layered Security Architecture Solutions” addresses the innovative idea of Security
Engineering for Software Engineering using Agile Modeled Layered Security Archi-
tectures for Dependable Privacy Requirements with a validation of case study of Web
Services Security Architectures. The key research questions addressed are: How a
failure addresses a specific security service at a specific layer impact other (interde-
pendent) layers? Also how successful implementation of a security service had an
affect on the rest of the system? [2] How can agile methods be used to generate effec-
tive security requirements? In what ways do these agile methods change the develop-
ment of security requirements? How is the outcome of emergent security development
different from more traditional forms? [3]

512 M. Upendra Kumar et al.

Organization of Research Methodology. First, we introduce to secure software
engineering, security architectures design and development, introduction and over-
view of research title, software security architecture using Model Driven Architecture,
Agile Methods, Case study of Web Services Security Architectures are discussed so
that the problem statement can be designed. Second, a detailed literature survey was
conducted on Secure Software Engineering, Model Driven Architecture, Agile me-
thodology, Security Patterns for Agile Layered Security Architectures, UML 2.0, and
Secure UML, Web Services Security Architectures, to find out basis for the thesis.
Third, we design Agile Modeled Layered Security Architectures, with validations of
case study for Web Services Security Architectures, with a initial case study valida-
tions using on simple secure Web Services Design using Agile Modeled Test Driven
Development. Fourth, we design solutions using Agile Modeling for Layered Security
Architectures with case study of Web 2.0 Services Security Architectures and its im-
plementations. Fifth, Dependability (regarding Privacy requirements) Agile Modeled
Layered Security Architectures with a case study of Web Services Security architec-
tures are done, with implementation of a financial application for Secure Stock Mar-
ket using Web Services.

2 Dependable Solutions Design by Agile Modeled Layered
Security Architectures

Software Architecture: An important design artifact in any software development
project, with the possible exception of very small Projects, is the Software Architec-
ture. An important part of any architecture is the set of Architectural Design Rules.
Architectural Design Rules are defined as the rules, specified by the architect(s) that
need to be followed in the detailed design of the system. A primary role of the archi-
tecture is to capture the architectural design decisions. An important part of these
design decisions consists of architectural design rules.

Security: Security ensures that information is provided only to those users who are
authorized to possess the information. Security generally includes the following:

Identification: This assumes that system must check whether a user really is whom he
or she claims to be. There are many techniques for identification and it is also called as
authentication. The most widely used is “Username/Password” approach. More sophis-
ticated techniques based on biometrical data are like retinal fingerprint scan.

Authorization: This means that the system should provide only the information that
the user is authorized for, and prevent access to any other information. Authorization
usually assumes defining “user access rights”, which are settings that define to which
operations, data, or features of the system the user, does have access.

Encryption: This transforms information so that unauthorized users (who inten-
tionally or accidentally come into its possession) cannot recognize it.

Model Driven Architecture: Model-Driven Development (MDD) is a modeling
approach. The basic premise of Model-Driven Development is to capture all
important design information in a set of formal or semiformal models, which are kept

Dependable Solutions Design by Agile Modeled Layered Security Architectures 513

consistent automatically. To realize full benefits of MDD, formalize architecture de-
sign rules, which then allow automatic enforcement of architecture on the system
model. There exist several approaches to MDD, such as OMG’s (Object Management
Group) MDA (Model-Driven Architecture), Domain Specific Modeling (DSM), and
Software factories fro Microsoft. Model-Driven Architecture prescribes that three
models or sets of models shall be developed as:

The Computationally Independent Model(s) (CIM) captures the requirements of
the system.

The Platform-Independent Model(s) (PIM) captures the systems functionality
without considering any particular execution platform.

The Platform-Specific Model(s) (PSM) combines the specifications in the PIM
with the details that specify how the system uses a particular type of platform. The
PSM is a transformation of the PIM using a mapping either on the type level or at the
instance level.

MDA does not directly address architectural design or how to represent the architec-
ture, but the architecture has to be captured in the PIM or in the mapping since the CIM
captures the requirements and the PSM is generated from the PIM using the mapping.

Agile Methods: Over the past few years, a new family of software engineering meth-
ods has started to gain acceptance amongst the software development community.
These methods, collectively called Agile Methods, conform to the Agile Manifesto,
which states “We are uncovering better ways of developing software by doing it and
helping others does it. Through this work we have come to value: Individuals and
interactions over processes and tools working software over comprehensive documen-
tation customer collaboration over contract negotiation responding to change over
following a plan That is, while there is value in the items on the right, we value the
items on the left more.” The individual agile methods include Extreme Programming
(XP), Scrum, Lean Software Development, Crystal Methodologies, Feature Driven
Development (FDD), and Dynamic Systems Development Methodology (DSDM).
While there are many differences between these methodologies, they are based on
some common principles, such as short development iterations, minimal design up-
front, emergent design and architecture, collective code ownership and ability for
anyone to change any part of the code, direct communication and minimal or no
documentation (the code is the documentation), and gradual building of test cases.
Some of these practices are in direct conflict with secure SDLC processes.

Security Requirements: Agile information systems and software methods are char-
acterized by nimbleness to rapid changes, multiple incremental iterations and a fast
development pace. Agile development is defined as a set of principles and practices
that differs as a whole from traditional planned development. The major principles for
agile information systems and software methods include:

Accept multiple valid approaches: A stable architecture, a tool orientation and
component based development combine to enable a “fluid view” of methodology and
the value of tailoring the methodology for each development project. Improvisation in
development approach will help match the methodology to the constraints of the
project environment. Engage the customer: Close involvement of customers in the

514 M. Upendra Kumar et al.

project enables accurate and fast requirements elicitation, and the customers again
immediate satisfaction as their ideas and requirements arise in each new release.

Accommodate requirements change: Agility means that developers quickly and
easily respond to the shifting requirements driven by the changing environment for
which the software is intended. Build on successful experience: The “right” people
are important for project success in order to foster innovation in software develop-
ment. Courage, specific knowledge, intelligence, and commitment are needed for
agile development. Develop good teamwork: The right mix of people operating with
the right process framework means that the right mix of knowledge and working style
will be present in the project. Agile development teams must often come together
quickly and be immediately effective. Agile practices include:

Develop in parallel: Releases may be completely developed in parallel, or staged
onto the market such that design, development, and quality assurance are all taking
place simultaneously, but sequentially on different releases. Coding may even begin
before the requirements are declared. Release more often: Releases are scoped to
more frequently deliver small sets of new features and fixes. Constant re-prioritization
of features enables responsiveness to changing requirements and enables features to
easily slip from one release to the next. Depend on tools: Heavy use of development
tools and environment that speed up the design and coding process offer much of the
functionality that used to be custom built. Ideally, agile developers try to avoid wast-
ing time repetitively building features others have already developed. Implant cus-
tomers in the development environment: Fast and intimate access to customer views
and opinions slashes time, and ensures the high-priority features are built first. When
customers participate closely in all phases of development, cycle times shorten and
teams can better chuck requirements into logical releases from customer views.

Establish a stable architecture: This anchors a rapid development process that is
never quite stable, yet each release has some similarity and components reuse. As-
semble and reuse components: Never unnecessarily build software from scratch when
it can be assembled from existing components. It is quicker and equally effective to
acquire, integrate, and assemble components with wrappers, including business logic
software, interfaces and back-end infrastructure.

Ignore maintenance: Building components for short life spans eliminates the need
for documentation. Assembled software can be thrown away and reassembled with
greater ease than maintaining complex and custom-build components. Tailor the
methodology daily: Operating with an overall development framework, but allowing
project teams to adjust the exact approach to the daily situation, enabled teams to
meet intense demands for speed by skipping unnecessary tasks or phases. Use just
enough process to be effective, and no more.

Security requirements for Agile Security methods and Extant Security methods:
Requirements for security methods that are targeted to be integrated into agile soft-
ware methods: The security approach must be adaptive to agile software development
methods. They must be simple; they should not hinder to the development project.
The security approach, in order to be integrated successfully with agile development
methods, should offer concrete guidance and tools at all phases of development (i.e.,
from requirements capture to testing).

Dependable Solutions Design by Agile Modeled Layered Security Architectures 515

A successful security component should be able to adapt rapidly to ever changing
requirements owing to a fast-paced business environment, including support for han-
dling several incremental iterations.

Key Security Elements in Agile Software Development. The key security element
stems from information security “meta-notation”, or notation for notations, and data-
base security. Apply these key security elements to a process aimed at developing
secure software in an agile manner. This generic security process consists of these key
security elements in different phases of software development (requirements analysis,
design, implementation and testing). These steps are not necessarily sequential and in
any case, every step is optional.

Web Services Security Architectures Case Study. This case study is done with a
research motivation for Secure Service Oriented Analysis and Design and Secure
Service Modeling. ”Designing Dependable Web Services Security Architecture Solu-
tions” addresses the innovative idea of Web Services Security Engineering through
(or using) Web Services Security Architectures with a research motivation of Secure
Service Oriented Analysis and Design. It deals with Web Services Security Architec-
tures for Composition and Contract Design in general, with authentication and
authorization (access control) in particular, using Agile Modeled Layered Security
Architecture design, which eventually results in enhanced dependable privacy re-
quirements, Security Policies and Trust Negotiations. All the above findings are vali-
dated with appropriate case studies of Web 2.0 Services, BPEL for Role Based
Access Control, a secure stock market financial application, and their extensions for
spatial mobile application for cloud. All this research paves a way for Secure Web
Engineering (or) Secure Web Science. Key research questions addressed here are:
How can Agile Modeled Layered Security Architectures design be used for Web Ser-
vices Security Architectures with a motivation of Dependable Privacy requirements?
How can we extend the above approach for Web 2.0 Services Security Architectures?
How can we validate this approach for Spatial Mobile Web Services Security Archi-
tectures for Cloud case study?

Further Extension of this Research Work. Mining approach for Business Intelli-
gence to improve insights of Web Engineering applications deals with an innovative
idea of Mining for Web Engineering with a case study of Business Intelligence Web
application. Next generation Business Intelligence web application development uses
integrated technologies like Web 2.0, Agile Modeling, and Service-orientation (using
Web Services). We initially validated the Web 2.0 Services and Agile Modeling, for
insights of Web application security in terms of authentication and authorization for
Web Engineering. Applying Mining strategies to Web Services will provide valuable
insights in terms of Service discovery, Service dependency, Service composition etc.
This approach provides insights of Web application security for Web Engineering.
These insights are important in maintenance of these developed applications and also
in their scalability purposes. We validate our approach with a suitable exemplar Se-
cure Web Services for Stock Market application.

516 M. Upendra Kumar et al.

3 Implementations and Validations

The section discusses about Implementations and Validations on Web Services Secu-
rity Architectures Case Study.

SERVICE-ORIENTED computing (SOC) is an emerging paradigm for designing
distributed applications. SOC applications are obtained by suitably composing and
coordinating (that is, orchestrating) available services. Services are stand-alone com-
putational units distributed over a network and are made available through standard
interaction mechanisms. Composition of services may require peculiar mechanisms to
handle complex interaction patterns (for example, to implement transactions) while
enforcing nonfunctional requirements on the system behavior, for example, security,
availability, performance, transactional, quality of service, etc. From a methodologi-
cal perspective, Software Engineering should facilitate the shift from traditional ap-
proaches to the emerging service-oriented solutions. Along these lines, one of the
goals of this paper is to strengthen the adoption of formal techniques for modeling,
designing, and verifying SOC applications. In particular, we propose a SOC modeling
framework supporting history-based security and call by contract.

The execution of a program may involve accessing security-critical resources and
these actions are logged into histories. The security mechanism may inspect these
histories and forbid those executions that would violate the prescribed policies. Ser-
vice composition heavily depends on which information about a service is made pub-
lic, on how those services that match the user’s requirements can be chosen, and on
their actual runtime behavior. Security makes service composition even harder. Ser-
vices may be offered by different providers which only partially trust each other. On
the one hand, providers have to guarantee that the delivered service respects a given
security policy in any interaction with the operational environment, regardless of who
actually called the service. On the other hand, clients may want to protect their sensi-
tive data from the services invoked.

Our methodology for designing and composing services is to create new services,
and to sell it by a package base through a secured media. In particular, we are con-
cerned with Safety properties of service behavior. Services can enforce security poli-
cies locally and can invoke other services that respect given security contracts. This
call-by-contract mechanism offers a significant set of opportunities, each driving se-
cure ways to compose services. We discuss how we can correctly plan service com-
positions in several relevant classes of services and security properties. With this aim,
we propose a graphical modeling framework in this project. Our formalism features
dynamic and static semantics, thus allowing for formal reasoning about systems. Stat-
ic analysis and model checking techniques provide the designer with useful informa-
tion to assess and fix possible vulnerabilities.

Several approaches have been developed to support the verification of service-
oriented systems. For example, dynamic bisimulation-based techniques have been
adopted to analyze the consistency between orchestration and choreography of servic-
es whereas state-space analysis has been exploited to check the correctness of service
orchestration. Our approach allows for synthesizing and checking the correctness of
the orchestration statically.

Dependable Solutions Design by Agile Modeled Layered Security Architectures 517

In proposed system, we introduced a UML-like graphical language for designing
and verifying the security policies of service oriented applications. Another feature
offered by our framework is that of mapping high-level service descriptions into more
concrete programs. This can be done with the help of simple model transformation
tools. Such model-driven transformation would require very little user intervention.
Here one new framework is introduced called Service Component Architecture
(SCA). This framework aims at simplifying implementations by allowing designers to
focus only on the business logic while complying with existing standards. Our ap-
proach complements the SCA view, providing a full-fledged mathematical framework
for designing and verifying properties of service assemblies. It would be interesting to
develop a (model-transformation) mapping from our formal framework to SCA. Refer
to Figure 1 which provides class diagram for Web Services Design Application.

Login.

user_name
password

login()

Service

s_name
s_id
s_provider
s_package

User.

serviceName
servicePackage

service()
encr_service()

Admin.

serviceName
serviceId
serviceProvider

Service_creat()
service_Edit()

Fig. 1. Class Diagram for Web Services Application Design

Role Based Access Control for Web Services Security Policies
In the computerized world all the data are saved on electronically. It also contains
more sensitive data. In computer systems security, role-based access control is an
approach to restricting system access to authorized users. It is a newer alternative
approach to mandatory access control and discretionary access control. Security criti-
cal business processes are mapped to their digital governments. It needs different
security requirements, such as healthcare industry, digital government, and financial
service institute. So the authorization and authentication play a vital role. Authoriza-
tion constraints help the policy architect design and express higher level organization-
al rules. Access is the ability to do something with a computer resource (e.g., use,
change, or view). Access control is the means by which the ability is explicitly
enabled or restricted in some way (usually through physical and system-based con-
trols). Computer- based access controls can prescribe not only who or what process
may have access to a specific system resource, but also the type of access that is per-
mitted. These controls may be implemented in the computer system or in external
devices. Refer to Figure 2 and Figure 3which provides respectively class diagram and
sequence diagram and execution screen shot for Role-based access control for Web
Services policies.

518 M. Upendra Kumar et al.

role

user

job process

user

role()

Users

role
name
job

jobprocess()

administrator

name,
password

new_user()
role()
job_process()

Fig. 2. Class Diagram for RBAC Web Services Security Policies

Admin Edit Information User Job Processing

Create User

Assign Role

Admin Job

Job

Fig. 3. Sequence Diagram for RBAC Web Services Security policies

4 Conclusions

This paper had discussed about Research Methodology on Designing Dependable
Agile Layered Security Architecture Solutions – Web Services Case Study. In this
research the major part is given to model architectural design rules using Model
Driven Architecture (MDA) so that architects and the developers are responsible to
automatic enforcement on the detailed design and easy to understand and use by
both of them. This MDA approach is implemented in use of agile strategy in three
different phases covering three different layers to provide security to the system.
With this procedure a conclusion has been given that with the system security the
requirements for that system are improved. This research summarizes that security
is essential for every system at initial stage and upon introduction of security at
middle stage must lead to the change in the system i.e. an improvement to system
requirements.

Dependable Solutions Design by Agile Modeled Layered Security Architectures 519

References

1. Peterson, G.: Security architecture Blueprint. Arctec Group LLC (2007)
2. Tillwick, H., Olivier, M.S.: A Layered Security Architecture Blueprint. In: Proceedings of

the Fourth Annual Information Security South Africa Conference (2004)
3. Baskerville, R.: Agile Security for Information Warfare: A call for research. Georgia State

University, USA
4. Anderson, R.: Security Engineering: A guide to building Dependable Distributed Systems,

2nd edn. Wiley Publishers, USA (2008)
5. Bishop, M.: Computer Security. Art and Science. Pearson Education (2003)
6. Mao, W.: Modern Cryptography: Theory and Practice. Pearson Education (2004)
7. Gupta, V., et al.: Sizzle. A standard based end to end security architecture for the Embed-

ded Internet. In: Pervasive and Mobile Computing. Elsevier (2005)
8. Pandian, D., et al.: Information Security Architecture – Context aware Access control

model for Educational Applications. International Journal of Computer Science and Net-
work Security (2006)

9. Whitmore, J.J.: A method for designing secure solutions. IBM Systems Journal 40(3),
747–768 (2001)

10. Smetters, D.K., Grinter, R.E.: Moving from the design of usable security technologies to
the design of useful secure applications. In: ACM New Security Paradigms Workshop, pp.
82–89 (2002)

11. Cheng, B.H.C., Konrad, S., Campbell, L.A., Wasserman, R.: Using security patterns to
model and analyze security requirements

12. Hunt, J.: Agile Software Construction. Springer, Heidelberg (2006)
13. Zelster, L.: Security Architecture cheat sheet for Internet applications
14. Harman, M., Mansouri, A.: Search based Software Engineering. Introduction to the special is-

sue of the IEEE Transactions on Software Engineering, 737–741 (November/December 2010)
15. Spiekermann, S., Cranor, L.: Engineering Privacy. IEEE Transactions on Software Engi-

neering 35(1), 67–82 (2009)
16. Mattsson, A., Lundell, B., Lings, B., Fitzgerald, B.: Linking Model-Driven Development

and Software Architecture: A Case Study. IEEE Transactions on Software Engineer-
ing 35(1) (2009)

17. Douglass, B.P.: Real-time agility, the Harmony/ESW Method for Real-time and Embed-
ded Systems Development. Pearson Education Inc. (2009)

18. Russo, B., Scotto, M., Silliti, A.: Agile Technologies in Open Source Development. IGI
Global publishers (2010)

19. Keramati, H., Mirian-Hosseinabadi, S.-H.: Integrating Software Development Security Ac-
tivities with Agile Methodologies. IEEE (2008)

20. Lazar, I., Parv, B., Motogna, S., Czibula, I.-G., Lazar, C.-L.: An Agile MDA approach for
Executable UML Structured Activities. Studia Univ. Bases LII(2) (2007)

21. Gueheneuc, Y.-G., Antoniol, G.: DeMIMA: A Multilayered Approach for Design Pattern
Identification. IEEE Transactions on Software Engineering 34(5) (2008)

22. Halkidis, S.T., Tsantalis, N., Chatzigeorgiou, A., Stephanides, G.: Architectural Risk
Analysis of Software Systems Based on Security Patterns. IEEE Transactions on Depend-
able and Secure Computing 5(3) (2008)

23. Gamma, E.: Design Patterns Elements of Reusable Object Oriented Software. Addison
Wesley Publishers (2009)

24. Siponen, M., Baserville, R., Kuivalainen, T.: Extending Security in Agile Software Devel-
opment Methods, pp. 143–157

25. Peeters, J.: Agile Security Requirements Engineering, psu.edu 10.1.1.91.4183

	Dependable Solutions Design by Agile Modeled Layered Security Architectures
	Research Methodology for Designing Dependable Agile Layered Security Architecture Solutions—Web Services Case Study
	Dependable Solutions Design by Agile Modeled Layered Security Architectures
	Implementations and Validations
	Conclusions
	References

