
N. Meghanathan et al. (Eds.): CCSIT 2012, Part I, LNICST 84, pp. 445–454, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

A Comparative Study of Partitioning Algorithms
for Wireless Sensor Networks

Zeenat Rehena1, Debasree Das2, Sarbani Roy2, and Nandini Mukherjee2

1 School of Mobile Computing & Communication, Jadavpur University, Kolkata, India
2 Computer Science & Engineering Department, Jadavpur University, Kolkata, India

zeenatrehena@yahoo.co.in, debasree.cse@gmail.com,
{sarbani.roy,nmukherjee}@cse.jdvu.ac.in

Abstract. In many applications large scale Wireless Sensor Networks (WSNs)
use multiple sinks for fast data dissemination and energy efficiency. A WSN
may be divided into a number of partitions and each partition may contain a
sink, thereby reducing the distance between source nodes and sink node. This
paper focuses on partitioning algorithms for WSN. Some existing graph
partitioning algorithms are studied that can be applied for partitioning a WSN.
A novel partitioning approach for WSN is proposed along with its modification.
Simulation of the proposed algorithms has been carried out and their
performances are compared with some existing algorithms. It is demonstrated
that the proposed algorithms perform better than the existing algorithms.

Keywords: Partitioning Algorithms, WSN, Nearest Neighbour Graph.

1 Introduction

For early detection of critical events in large scale wireless sensor networks (WSNs),
multiple sink nodes are required to be deployed. Routing the information regarding a
critical event only from the source (the node that sensed the event) to its nearest sink
also reduces energy consumption in an energy constrained WSN. We propose to
partition the entire network into a number of sub-networks where each sub-network
contains one sink node and all the sensor nodes in the sub-network forward the data
sensed by them to the sink contained within it.

This paper focuses on algorithms for partitioning a network into smaller-sized sub-
networks. A number of graph partitioning algorithms have been proposed in the
literature. Some of them which are used for partitioning wireless sensor networks
have been studied in this research work. We also propose a partitioning algorithm
based on k-nearest neighbour. Another algorithm with some improvements over the
former algorithm is also described. Both algorithms are implemented in a simulation
environment and their performances are compared with the existing algorithms.

The rest of the paper is organized as follows. Section 2 presents the related works.
The existing and the proposed partitioning algorithms are discussed in Section 3.
Section 4 presents a comparative study of the existing and proposed algorithms and
simulation results. Finally, we conclude the paper in Section 5.

446 Z. Rehena et al.

2 Related Work

Conventionally, the objective of graph partitioning method is to separate the vertices
of the graph into a predetermined number of sub-graphs, in which each sub-graph
consists of an equal number of vertices and the cut sets among these sub-graphs are
minimized. In the literature many heuristic graph partitioning algorithms have been
proposed based on spectral, combinatorial, geometric and multilevel techniques.

Pothen, Simon, and Liou [1] introduce an approach to partition the input graph
using the spectral information of Laplacian matrix. This technique is referred to as
recursive spectral bisection (RSB). Eigenvector of the Laplacian matrix is computed
and using its component the graph is initially partitioned into two sets of vertices.
Chan and Szeto [3] show the size of the cut sets can be minimized by using the
second smallest eigenvalue of the Laplacian matrix. They have done this by
introducing the concept of median cut RSB method. In this method the indices of
vertices which have values above the median are mapped onto one part and which
have values below the median are mapped onto the other part. The partitions are then
further partitioned by recursive application of the same procedure. Another variation
of RSB method is known as Modified RSB. Here instead of using median value,
another statistical function quantile is used to split the graph into desired number of
partitions. The authors in [7] use RSB method for partitioning a WSN into two halves
and then apply this method recursively to obtain optimal number of clusters.

In [2], authors propose the approximation of the Maximally Balanced Connected
Partition problem (MBCP). In [6], the authors used this MBCP to partition the entire
WSN into 2n equal sized sub-partitions where n is the number of iterations.

Both MBCP and RSB techniques finally produce 2n equivalent smaller sub-
networks where n is the number of iterations. But our objective is to partition the
network into any desired number of sub-partitions according to the number of sinks
available. Each sub-partition will be attached with a sink in the network, so that the
nodes can interact with that associated sink only. In contrast to the above methods, we
propose algorithms based on nearest neighbour computation. The main difference
with the proposed algorithms with other algorithms is that here we make prior
assumption regarding sink placement which is generally common in WSN.

3 Existing Partitioning Algorithms

In this section three popular graph partitioning algorithms are discussed. A novel
algorithm is also proposed in this section which is based on the nearest neighbour [4]
concept. Table 1 lists the notations used in different algorithms in this paper.

3.1 Recursive Spectral Bisection (RSB) [5]

RSB uses the Laplacian matrix of a graph. The construction of the Laplacian matrix is
such that its smallest eigenvalue λ1 is zero for connected graph and all the associated
eigenvectors are equal to one. Except λ1, all the other eigenvalues are greater than

A Comparative Study of Partitioning Algorithms for Wireless Sensor Networks 447

zero. The RSB method that we mention here is based on the Fiedler vector of the
Laplacian matrix of a given graph.

In the RSB method, the spectral information is used to partition the graph. The
RSB uses Spectral Bisection algorithm recursively. Initially the algorithm computes
Laplacian matrix LM of the given graph and the eigenvectors EV corresponding to the
second largest eigenvalue of LM. Then it computes the median m of EV. The nodes
whose eigenvectors are less than median m are placed in one partition and the rest are
placed in the other partition. The partitions are further partitioned by recursive
application of the same procedure. Above method partitions a graph into power of 2.

Table 1. List of Notations used in all the algorithms

Symbol Description
p total number of sink nodes, SINK={SINK1, .., SINKp }
NextNode the node used for finding its k-NNG in the next iteration
Flag used to denote visited or unvisited node
pre_dist previously stored distances of each node from NextNode
cur_dist current distance of each node from the NextNode in each partition

Neighbor_list NNs
a set of neighbour nodes of each node s generated from k-NNG,
where k is the pre-defined number of nodes

dist A vector storing distances of all neighbor nodes of a given node
Partition_list P a set of sensor nodes for eachpartition Pp

3.2 Modified Recursive Spectral Bisection (M-RSB) [5]

Unlike RSB, the modified recursive spectral bisection algorithm partitions a graph
into any number of sub-graphs. M-RSB also computes LM and EV and bisects the
graph into two parts based on the value of quantile. In case of RSB, median is used to
bisect the graph. In case of M-RSB, instead of median, the quantile percentage q of
EV is calculated and used as the splitting value. The nodes whose eigenvector is less
than q are placed in one partition and the rest are placed in the other partition. Each
partition is then further partitioned by recursive application of the same procedure.
Quantile percentage q of EV determines the number of nodes in each partition.

3.3 Maximally Balanced Connected Partition (MBCP) [6]

MBCP finds the maximally balanced connected partition for a graph G(V, E). It
results in a partition (V1, V2) of V composed of disjoint sets V1 and V2 such that both
sub-graphs of G induced by V1 and V2 are connected.

The algorithm starts with two connected partitions V1 and V2 for G. Initially V1
consists of the single vertex v1 ∈ V near the periphery of the network. V2 consists {V -
V1}. In the next step, it creates a set V0 by choosing a vertex u from V2 such that (V1 U
{u}) and (V2 - {u}) would also be a connected partition of G. From V0, a vertex vi is
selected such that vi is the closest element to V1. This is done by sorting the list of
candidates according to their distances from V1. The algorithm repeats until the total
number of vertices in V1 is greater than or equal to half of the vertex in V.

448 Z. Rehena et al.

3.4 Proposed Algorithm: FN_NNG (Farthest Node in Nearest Neighbor
Graph)

The algorithm runs in two phases: Initial Phase and Incremental phase. Initially, there
are p sink nodes and the algorithm outputs p partitions at the end. In the initial phase,
each sink generates its k-nearest-neighbors, k-NNG. These are stored in its
Neighbour_list as well as in the Partition_list associated with it. A Flag is used for
each sensor node which is set to 'False' initially.

In the Incremental phase, the farthest neighbour node is found for each sink node.
These nodes are set as NextNode and their neighbour nodes are found in the next step.
The k-NNG of each NextNode is generated and these neighbour nodes are stored in
the Neighbour_list, as well as in the Partition_list. This phase is repeated until the
union of all the Partition_lists equals total number of nodes deployed. By setting the
Flag of each sensor node when it is first visited, we can avoid duplication. Thus, each
Partition_list contains disjoint set of nodes. Whenever a sensor node is included in a
partition, it stores the id of the corresponding sink as the destination address.
Algorithm for Incremental Phase is shown in the Fig. 1.

The following functions are used in FN_NNG algorithm:

FARTHEST selects the farthest neighbour node of Rootp, such that the returned node is
not SINKp and it belongs to NNp.
GENERATE returns the k nearest neighbours of a given node and place them in set
NN.
FIND returns the k +ith nearest neighbour of a given node if such a node exists, else it
returns null.

3.5 Improvement on FN_NNG

One major problem of using k-NNG is that the algorithm needs global information of
sensor nodes such as location information. For this reason GPS enabled sensor nodes
are required which increases the cost of the network. Furthermore, while searching k-
Nearest Neighbour of a node in any partition, we may select a node u for partition P1.
Later if it is found that the node u is nearer to another node in partition P2, it will not
be included in partition P2 according to the above algorithm. In such cases the
region covered by partition P1 is larger than other partitions. This scenario is depicted
in Fig. 2.

Thus, some modifications on FN_NNG algorithm are suggested. Instead of using
k-NNG, the concept of 1_Hop_Neighbour nodes is used. Here the algorithm only
needs local information in the network. In order to overcome the second problem we
use a variable pre_dist which stores the calculated distance of each node from the
NextNode. This algorithm is also run in two phases: Initial Phase and Incremental
phase. The Initial phase is similar to FN_NNG. The initial value of pre_dist is set to
infinity. The incremental phase is shown in Fig. 3.

A Comparative Study of Partitioning Algorithms for Wireless Sensor Networks 449

Fig. 1. Algorithm of Incremental Phase

Fig. 2. Partitioning Scenario

In the 1_Hop_Neighbour function, for a particular Neighbour_list p, if the node m is
not previously selected and the cur_dist is less than the pre_dist then the node is
assigned into Neighbourp. The pre_dist value is modified by cur_dist value. Now in the
same iteration if cur_dist value of the node m in another Neighbour_list q, is less than
pre_dist value, then the node m is deleted from previous Neighbourp and included in
new Neighbourq. The algorithm for selecting 1_Hop_Neighbour is given in Fig. 4.

The following additional functions are used in M-FN_NNG algorithms:

SEARCH returns the 1-Hop Neighbour_list which are within the communication
range of a node and current distance, cur_dist of each neighbour node.

450 Z. Rehena et al.

GET picks up an element from distance vector dist that corresponds to the distance of
node m.

GETPARTITION returns the partition id of the partition in which the node m has
already been included.

Fig. 3. Algorithm of Incremental Phase Fig. 4. Algorithm of 1_Hop_Neighbour

4 Comparative Analysis and Simulation Results

Spectral Bisection methods find good partitions and are used in many applications.
But the calculations of the eigenvector in spectral methods involve expensive
computation.

4.1 Comparative Analysis

Using RSB method the network is partitioned into 2n sub-networks where n is the
number of iterations. M-RSB partitions the network into any number of partitions.
Fig. 5 shows the partitioning structure of a given network using RSB method having
four parts. Fig. 6 shows that six partitions are created using M-RSB.

All the methods, except M-FN_NNG, need global information of the nodes. M-
FN_NNG needs only 1-Hop neighbour information. Like M-RSB, our proposed
methods also partition the network into any number of sub-networks. Fig. 7 depicts
four sub-partitions using FN_NNG method and Fig. 8 shows four sub-partitions using
M-FN_NNG methods. Fig. 9 and Fig. 10 show six sub-partitions using FN_NNG and
M-FN_NNG of a given network respectively.

A Comparative Study of Partitioning Algorithms for Wireless Sensor Networks 451

Fig. 5. 4-partitions using RSB Fig. 6. 6-partitions using M-RSB

Fig. 7. 4-partitions using FN_NNG Fig. 8. 4-partitions using M-FN_NNG

Fig. 9. 6-partitions using FN_NNG Fig. 10. 6-partitions using M-FN_NNG

The MBCP method also partitions the network into 2n sub-networks where n is the
number of iterations. The authors in [6] have not mentioned clearly how the node u is
chosen from set V0. According to them, node u of V0 is chosen in such a way that u is
closest to the elements of V1. Thus in most cases this partitioning method generates
sub-partitions which are not physically separated. This situation is shown in Fig. 11.

While implementing MBCP, we have made some modifications in the strategy of
choosing the node u from set V0. We calculate the mean of distances between u and
each element of V1. Then we choose a node u which has least mean distance in V0.

452 Z. Rehena et al.

Fig. 11. 4-partitions using MBCP Fig. 12. 4-partitions using M-MBCP

Using the new strategy (M-MBCP), the sub-partitions generated by MBCP are shown
in Fig. 12. In the next section we describe the simulation environment and present the
experimental results.

4.2 Simulation Environment and Metrics

The simulations of the above algorithms have been done in Matlab environment. A
wireless sensor network deployed in a square region is considered.

We use four different sensor networks ranging from 100 nodes to 400 nodes. The
100 node field is generated by randomly placing the nodes in a 200 m x 200 m square
area. We assume that the area contains homogeneous sensor nodes with a
communication range of 45m. Other sizes are generated by scaling the square and
keeping the communication range constant in order to keep average density of sensor
nodes constant.

Following metrics are evaluated for performance analysis of the algorithms:

Average Execution Time for a particular method. Execution time needed for
computation of the sub-partitions in a given network is measured. We have
considered four sub-partitions for each of the algorithms.

Number of Edge cuts in a particular method. Edge cut is defined as follows:

|| 'EEC =
, Where E' is the set of edges with one point in V1 and the second point in

V2. V1 and V2 are the set of vertices of two sub-partitions.

4.3 Result Discussion

Execution times needed for partitioning using RSB, M-RSB, MBCP, M-MBCP,
FN_NNG and M-FN_NNG are compared in Fig.13. It is clear from Fig.13 that
MBCP needs highest execution time and M-FN_NNG needs lowest execution time.
Execution time of RSB increases due to its computation of the eigenvalues and
eigenvectors. M-RSB performs slightly better than RSB. Both MBCP and M-MBCP
require higher execution time, because time is spent in checking connectivity while
including a vertex in each partition. Thus, FN_NNG and M-FN_NNG give much

A Comparative Study of Partitioning Algorithms for Wireless Sensor Networks 453

better performance among all the methods. Fig.14 compares the number of edge cuts
for the above mentioned algorithms. RSB and M-RSB return equal number of edge
cuts. Fig.14 depicts that FN_NNG and M-FN_NNG also give low edge cut in
comparison with other methods. Fig.15 demonstrates execution time needed to run all
the methods with different sized networks. As expected, with the increased number of
nodes, the execution time increases. However, in case of FN_NNG, M-FN_NNG,
RSB and M-RSB methods, execution time increases slowly. But in case of MBCP and
M-MBCP, the execution time increases rapidly with the increase in number of nodes.

Fig. 13. Execution time Fig. 14. Number of Edge-cut

5 Conclusion

This paper makes a comparative analysis of different graph partitioning algorithms
and proposes novel algorithms which can be applied in wireless sensor networks. The
existing partitioning algorithms partition the network into number of sub-partitions,
whereas the proposed algorithms partition the network according to the available
sinks. The simulation results demonstrate that the proposed algorithms have low
execution time and low edge cut. Since WSN applications need fast response
therefore the proposed algorithms are suitable for critical WSN applications, like
disaster monitoring.

Fig. 15. Execution time with different sizes of network

454 Z. Rehena et al.

References

1. Pothen, A., Simon, H.D., Liu, K.: Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

2. Chlebikova, J.: Approximating the Maximally Balanced Connected Partition Problem in
graphs. Information Processing Letters 60, 225–230 (1996)

3. Chan, T.F., Szeto, W.K.: On the Optimality of the Median Cut Spectral Bisection Graph
Partitioning Method. SIAM J. Sci. Comput. 18(3), 943–948 (1997)

4. Eppstein, D., Paterson, M.S., Yao, F.F.: On Nearest-Neighbour Graphs (2000)
5. Kabelıkova, P.: Graph Partitioning Using Spectral Methods. VSB - Technical University

of Ostrava (2006)
6. Slama, I., Jouaber, B., Zeghlache, D.: Energy Efficient Scheme for Large Scale Wireless

Sensor Networks with Multiple Sinks. In: Wireless Communications and Networking
Conference, WCNC-IEEE (2008)

7. Elbhiri, B., El Fkihi, S., Saadane, R., Aboutajdine, D.: Clustering in Wireless Sensor
Networks Based on Near Optimal Bi-partitions. In: Next Generation Internet (NGI) (2010)

	A Comparative Study of Partitioning Algorithms for Wireless Sensor Networks
	Introduction
	Related Work
	Existing Partitioning Algorithms
	Recursive Spectral Bisection (RSB) [5]
	Modified Recursive Spectral Bisection (M-RSB) [5]
	Maximally Balanced Connected Partition (MBCP) [6]
	Proposed Algorithm: FN_NNG (Farthest Node in Nearest NeighborGraph)
	Improvement on FN_NNG

	Comparative Analysis and Simulation Results
	Comparative Analysis
	Simulation Environment and Metrics
	Result Discussion

	Conclusion
	References

