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Preface

These proceedings contain the papers selected for CARDIS 2011, the 10th IFIP
Conference on Smart Card Research and Advanced Applications hosted by the
Katholieke Universiteit of Leuven, Belgium. Since 1994, CARDIS has been the
foremost international conference dedicated to the security of smart cards and
embedded systems. Initially biennial, the conference became annual in 2010 to
take into account the very fast evolution of the smart card technology.

Security of smart cards is today an established and dynamic research area.
Since 1994, CARDIS offers a privileged environment where the scientific com-
munity can congregate, present new ideas and discuss recent developments with
both an academic and industrial focus. It covers a wide range of topics includ-
ing hardware design, operating systems, systems modelling, cryptography and
systems security. This year, the Program Committee of CARDIS refereed 45
submitted papers. Each paper was reviewed by at least 3 referees and the com-
mittee selected 20 papers to be presented at the conference. Two invited talks
completed the technical program. The first one was given by Helena Handschuh,
Chief Technology Officer at Intrinsic-ID, and the second one, by Olivier Ly,
Associate Professor at LaBRI, University of Bordeaux.

There are many volunteers who offered time and energy to put together the
symposium and who deserve our acknowledgement. I first would like to thank
all the members of the Program Committee and the external reviewers for their
hard work in evaluating and discussing the submissions. I am also very grateful
to Vincent Rijmen, the General Chair of CARDIS 2011, and his team for the
local conference management. I am particularly grateful to the CARDIS Steering
Committee for allowing me to serve at such a recognized conference. Especially,
I would like to say a big thank you to Jean-Jacques Quisquater for all the energy
and hard work he put into the organization of this event.

Last, but certainly not least, my thanks go to all the authors who submitted
papers and all the attendees. I hope you will find the proceedings stimulating.

September 2011 Emmanuel Prouff
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Sébastien Canard Orange Labs, France
Odile Derouet Samsung, Korea
Josep Domingo Ferrer Rovari i Virgili University, Catalonia
Hermann Drexler Giesecke And Devrient, Germany
Benoit Feix Inside Secure, France
Benedikt Gierlichs K.U. Leuven, ESAT-COSIC, Belgium
Sylvain Guilley GET/ENST, CNRS/LTCI, France
Kimmo Järvinen Helsinki University of Technology, Finland
Jean-Louis Lanet University of Limoges, France
Thanh-Ha Le Morpho, France
Stefan Mangard Infineon Technologies, Germany
Konstantinos Markantonakis University of London, UK
Amir Moradi Ruhr University Bochum, Germany
Ventzi Nikov NXP, Belgium
Elisabeth Oswald University of Bristol, UK
Axel Poschman Nanyang Technological University, Singapore
Emmanuel Prouff Oberthur Technologies, France
Matthieu Rivain CryptoExperts, France
Jörn-Marc Schmidt IAIK TU Graz, Austria



VIII Organization

Sergei Skorobogatov University of Cambridge, UK
François-Xavier Standaert UCL Crypto Group, Belgium
Pim Tuyls Intrinsic-ID, The Netherlands
David Vigilant Gemalto, France

Referees

J. Balasch
S. Riou
A. Barenghi
M. Roussellet
E. Beck
S. Salgado
A. Berzati
G. Schrijen
S. Bhasin
M. Seysen
B. Brumley
J. Soria-Comas
C. Capel
A. Séré
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Evaluation of the Ability to Transform SIM Applications
into Hostile Applications

Guillaume Bouffard1, Jean-Louis Lanet1, Jean-Baptiste Machemie1,
Jean-Yves Poichotte2, and Jean-Philippe Wary2

1 SSD - XLIM Labs, University of Limoges,
83 rue d’Isle, 87000 Limoges, France

{guillaume.bouffard,jean-louis.lanet,jean-baptiste.machemie}@xlim.fr
2 SFR, Direction Fraud and Information Security,

1 Pl. Carpeaux, 92915 Paris la Defense, France
{jean-philippe.wary,jean-yves.poichotte}@sfr.com

Abstract. The ability of Java Cards to withstand attacks is based on software
and hardware countermeasures, and on the ability of the Java platform to check
the correct behavior of Java code (by using byte code verification). Recently, the
idea of combining logical attacks with a physical attack in order to bypass byte
code verification has emerged. For instance, correct and legitimate Java Card ap-
plications can be dynamically modified on-card using a laser beam. Such applica-
tions become mutant applications, with a different control flow from the original
expected behaviour. This internal change could lead to bypass controls and pro-
tections and thus offer illegal access to secret data and operations inside the chip.
This paper presents an evaluation of the application ability to become mutant and
a new countermeasure based on the runtime checks of the application control flow
to detect the deviant mutations.

1 Introduction

A smart card usually contains a microprocessor and various types of memories: RAM
(for runtime data and OS stacks), ROM (in which the operating system and the romized
applications are stored), and EEPROM (to store the persistent data). Due to significant
size constraints of the chip, the amount of memory is small. Most smart cards on the
market today have at most 5 KB of RAM, 256 KB of ROM, and 256 KB of EEPROM. A
smart card can be viewed as a secure data container, since it securely stores data and it is
securely used during short transactions. Its safety relies first on the underlying hardware.
To resist probing an internal bus, all components (memory, CPU, cryptoprocessor...)
are on the same chip which is embedded with sensors covered by a resin. Such sensors
(light sensors, heat sensors, voltage sensors, etc.) are used to disable the card when
it is physically attacked. The software is the second security barrier. The embedded
programs are usually designed neither for returning nor modifying sensitive information
without guaranty that the operation is authorized.

Today, Mobile Network Operators (MNO) are looking to open their native secure el-
ement : the Universal Subscriber Identity Module (USIM) Card [10] to third party ser-
vices providers, in order to allow them to develop value added services, like m-payment

E. Prouff (Ed.): CARDIS 2011, LNCS 7079, pp. 1–17, 2011.
c© IFIP International Federation for Information Processing 2011



2 G. Bouffard et al.

or m-transport for instance (on an NFC based technology). To be able to warrant the
security of third parties applications hosted in USIM Card, MNO have choose to cer-
tify their Secure Element under the Common Criteria (CC) scheme, and two reference
protection profiles have been developped [3], [4] (the CC targeted assurance level is
EAL4+ for the USIM platform, it allows any applications to achieve EAL4+ CC level
through the CC composition model [12]). To summarize the model USIM card will be
certified under CC scheme at an EAL4+ level, and will allow post issuance third par-
ties applications downloading without existing CC certification loss. It means that the
industrial process to be put in place will have to warrant the inocuity of every candidate
application to a download. The technology described in this paper may allow MNOs to
evaluate the ability of every application candidate to download to become a mutant.

Today most of the SIM cards are based on a Java Virtual Machine. Java Card is a
kind of smart card that implements the standard Java Card 3.0 [22] in one of the two
editions “Classic Edition” or “Connected Edition”. Such a smart card embeds a virtual
machine, which interprets application byte codes already romized with the operating
system or downloaded after issuance. Due to security reasons, the ability to download
code into the card is controlled by a protocol defined by Global Platform [12]. This
protocol ensures that the owner of the code has the necessary credentials to perform the
action. Java Cards have shown an improved robustness compared to native applications
regarding many attacks. They are designed to resist numerous attacks using both phys-
ical and logical techniques. Currently, the most powerful attacks are hardware based
attacks and particularly fault attacks. A fault attack modifies part of the memory con-
tent or signal on internal bus and leads to deviant behaviour exploitable or not by an
attacker. A comprehensive consequence of such attacks can be found in [14]. Although
fault attacks have generally been used in the literature from a cryptanalytic point of view
[5,13,16], they can be applied to every code layer embedded in a device. For instance,
while choosing the exact byte of a program, the attacker can bypass countermeasures
or logical tests. We call such modified applications "mutant".

Designing efficient countermeasures against fault attacks is important for smart card
manufacturers but also for application developers. Manufacturers need countermeasures
with the lowest cost in term of memory and processor usage. These metrics can be
obtained with an evaluation of a target. As regards application developers, they have to
understand the ability of their applets to become mutants and potentially hostile in case
of fault attack. Thus the coverage (reduction of the number of mutant generated) and the
detection latency (number of instructions executed between an attack and its detection)
are the most important metrics. In this paper, we present a workbench to evaluate the
ability of a given application to become a hostile applet with respect to the different
implemented countermeasures, and the fault hypothesis.

In order to minimize the impact of fault attacks, developers need to implement coun-
termeasures in applicative code. Examples of such applicative countermeasures are:
redundant choices, counters, redefining the value of true and false constants, etc. But in
this case the developer must have knowledge of the underlying platform architecture,
which can differ from a smart card supplier to another one. This low interoperabil-
ity of the security aspects between different platforms is a huge problem for smart card
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application development. The detection mechanism discussed in this paper is integrated
to the system thus it ensures portability of the application code.

The contribution of this paper with respect to our prior work is twofold. We define
a novel system countermeasure based on a verification by the virtual machine of the
control flow and a framework to evaluate the efficiency of countermeasures. This paper
is organized as follows: first we introduce a brief state of the art of fault injection at-
tacks and existing countermeasures, then we discuss about the new countermeasure we
have developed. In the fourth paragraph we present the evaluation framework and the
collected metrics, and finally we conclude with the perspectives.

2 Fault Attacks and Countermeasures

Faults can be induced into the chip by using physical perturbations in its execution
environment. These errors can generate different versions of a program by changing
some instructions, interpreting operands as instructions, branching to other (or invalid)
labels and so on. A fault attack has the ability to physically disturb the smart card chip.
These perturbations can have various effects on the chip registers (like the program
counter, the stack pointer), or on the memories (variables and code changes). Mainly, it
can permit an attacker to execute a treatment beyond his rights, or to access secret data
in the smart card. Different manners to produce fault attacks [6] exist, most of them
differ from the model of the attacker.

2.1 Fault Model

To prevent a fault attack from happening, we need to know its effects on the smart card.
Fault models have already been discussed in details [8,24]. We describe in the table 1
the fault models in descending order in terms of attacker power. We consider that an
attacker can change one byte at a time. Sergei Skorobatov and Ross Anderson discuss
in [21] an attack using the precise bit error model. But it is not realistic on current
smart cards, because modern components implement hardware security on memories
like error correction and detection code or memory encryption.

In real life, an attacker physically injects energy in a memory cell to change its state.
Thus and up to the underlying technology, the memory physically takes the value 0x00
or 0xFF. If memories are encrypted, the physical value becomes a random value (more
precisely a value which depends on the data, the address, and an encryption key). To
be as close as possible to the reality, we choose the precise byte error that is the most
realistic fault model. Thus, we have assumed that an attacker can:

– make a fault injection at a precise clock cycle (he can target any operation he wants),
– only set or reset a byte to 0x00 or to 0xFF up to the underlying technology (bsr1

fault type), or he can change this byte to a random value beyond his control (random
fault type),

– target any memory cell he wishes (he can target a specific variable or register).

1 Bit set or reset.



4 G. Bouffard et al.

Table 1. Existing Fault Model

Fault Model Precision Location Timing Fault Type Difficulty
Precise bit error bit total control total control bsr, random ++
Precise bit error byte total control total control bsr, random +
Precise bit error byte loose control total control bsr, random -
Precise bit error variable no control no control random –

We have defined the hypotesis concerning the attacker, then we present the effects of
such an attack on a Java Card if the attack targets the permanent memory generating a
mutant application.

2.2 Defining a Mutant Application

The mutant generation and detection is a new research field introduced simultaneously
by [7,23] using the concepts of combined attacks, and we have already discussed mutant
detection in [20]. To define a mutant application, we use an example on the following
debit method that belongs to a wallet Java Card applet. In this method, the user PIN
(Personal Identification Number) must be validated prior to the debit operation.

Listing 1.1. Original Java code

p r i v a t e vo id d e b i t (APDU apdu ) {
i f ( p i n . i s V a l i d a t e d ( ) ) {

/ / make t h e d e b i t o p e r a t i o n
} e l s e {

ISOEx cep t io n . t h r o w I t ( SW_PIN_VERIFICATION_REQUIRED ) ;
}

}
Table 2. Byte Code representation before attack

Byte Byte Code
00 : 18 00 : aload_0
01 : 83 00 04 01 : getfield #4
04 : 8B 00 23 04 : invokevirtual #18
07 : 60 00 3B 07: ifeq 59
10 : ... 10 : ...
... ...
59 : 13 63 01 59 : sipush 25345
63 : 8D 00 0D 63 : invokestatic #13
66 : 7A 66 : return

In table 2 resides the corresponding byte code representation (the full byte code
representation can be found in section B). An attacker wants to bypass the PIN test.
He injects a fault on the cell containing the conditional test byte code. Thus the ifeq
instruction (byte 0x60) changes to a nop instruction (byte 0x00). The obtained Java
code follows with its byte code representation in table 3:
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Listing 1.2. Mutant Java code

p r i v a t e vo id d e b i t (APDU apdu ) {
/ / make t h e d e b i t o p e r a t i o n
ISOEx cep t io n . t h r o w I t ( SW_PIN_VERIFICATION_REQUIRED ) ;

}

Table 3. Byte code representation after attack

Byte Byte code
00 : 18 00 : aload_0
01 : 83 00 04 01 : getfield #4
04 : 8B 00 23 04 : invokevirtual #18
07 : 00 07 : nop
08 : 00 08 : nop
09 : 3B 09 : pop
10 : ... 10 : ...
... ...
59 : 13 63 01 59 : sipush 25345
63 : 8D 00 0D 63 : invokestatic #13
66 : 7A 66 : return

The verification of the PIN code is bypassed, the debit operation is made and an
exception is thrown but too late because the attacker will have already achieved his
goal. This is a good example of dangerous mutant application: “an application that
passes undetected through the virtual machine interpreter but that does not have the
same behavior than the original application”. This attack has modified the control flow
of the application and the goal of the countermeasure described in this paper is to detect
when such modifications happen.

2.3 Hardware Countermeasures

Fault attacks are powerful and can threaten the card security. So smart card manufactur-
ers have redoubled their efforts by integrating hardware protections that can prevent the
fault attacks or make them more difficult to implement. This section is about hardware
measures that can be found in the card. We do not claim to enumerate all the possible
hardware measures that exist but to give a glimpse of the type of technology that resides
in the card. A smart card contains two categories of hardware protection (see [11]):

– Passive protections increase the difficulty of a successful attack. These protections
can use bus and memory encryption, random dummy cycles, unstable internal fre-
quency, etc.

– Active protections include mechanisms that check whether tampering occurs and
take countermeasures (possibly by locking the card or by generating hardware ex-
ceptions on the platform). Some active protection mechanisms are sensors (light,
supply voltage, etc), hardware redundancy, etc.
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Hardware countermeasures are a good way to protect the card, but are specialized, and
they increase the smart card production cost.

2.4 Software Countermeasures

Software countermeasures are introduced at different stages of the development pro-
cess; their purpose is to strengthen the application code against fault injection attacks.
Software countermeasures can be classified by their end purpose:

– Cryptographic countermeasures: better implementation of the cryptographic algo-
rithm like RSA (which is the most frequently used public key algorithm in smart
cards), DES, and hash functions (MD5, SHA-1, etc.).

– Applicative countermeasures: only modify the application with the objective to pro-
vide resistance to fault injection. Generally, this class produces application with a
greater size. Because beside the functional code (the code that process data), we
have the security code and the data structure for enforcing the security mechanism
embedded in the application. Java is an interpreted language therefore it is slower
to execute than a native language (like C or assembler), so this category of counter-
measures suffers of bad execution time and add complexity for the developer.

– System countermeasures: harden the system by checking that applications are exe-
cuting in a safe environment. The main advantage is that the system and the protec-
tions are stored in the ROM, which is a less critical resource than the EEPROM and
cannot be attacked thanks to checksum mechanisms that allow to identify modifi-
cation of data that are stored in the ROM. Thus, it is easier to deal with integration
of the security data structures and code in the system. Another thing that must be
considered is the CPU overhead, if we add some treatments to the functional code.

– Hybrid countermeasures: are at the crossroads between applicative and system
countermeasures. They consist in inserting data in the application that are used
later by the system to protect the application code against fault attacks. They have a
good balance between the increasing of the application size and the CPU overhead.

All previous categories with the exception of cryptography, use a generalist approach
to detect the fault because they do not focus on a particular algorithm. The developed
path check detection mechanism proposed in this paper is a hybrid countermeasure.

2.5 Control Flow Integrity

We have already proposed several solutions to check code integrity during execution
using basic blocs check in a previous publication [19]. This paper is about the control
flow integrity. In the previous description of a mutant we have shown how to bypass
some checks but in [9] we describe how to modify the control flow of an application
either by return oriented programming or using a laser beam. In both cases we succeed
in executing arbitrary byte code.

The control flow integrity has been already studied for fault tolerance [17,15,18].
These methods attempt to discern program execution deviation from a registered static
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control flow graph; but they are not adapted to the smart card because of the memory
and of the computation power required.

The authors in [2] proposed a generic framework which consists of macros to include
in C code. The piece of program can help the programmer to have different structures
and mechanisms to save and check various forms of execution history. For instance,
a programmer can have a counter to check the number of iterations. One of the most
complete methods verifies that execution follows predetermined paths computed during
development and stored with the application. If an execution does not follow one of
these paths then an error is raised and the platform can take appropriate steps (stop the
program, lock the card, etc.). More precisely, the application maintains an execution
history composed of a list of program points already passed. These program points have
been set during development by the programmer, using macro to easily include code for
execution history update. Then the programmer adds “checkpoints” at specific program
points. During execution, the history is checked when the application reaches one of the
checkpoints. The principle of this mechanism is simple and all valid paths are computed
off-card. Significant inputs are required from the developer because he has to explicitly
set the program points in the code; this leads to a high level of complexity because the
developer needs to determine where program points are to be put, which invariants are to
be checked and where these verifications are to be put. Moreover, because the detection
mechanism is included in the application, a fault attack against the checking mechanism
can bypass the detection phase. Another problem is the increase of the application size,
because the list of valid histories and the detection mechanisms are contained inside
the application. Thus, an application takes more space in the EEPROM, which is a rare
commodity in the card.

Another technique, exposed in [1] is based on the same idea. It uses dynamic runtime
checks to allow flow controls to remain within a given control flow graph. They pro-
pose to dynamically rewrite machine code of some byte code instructions to ensure that
jumps go to a valid code location. To achieve this, an off-card application tags the tar-
gets of jump instructions with a unique label and saves the label of targeted instructions
for each jump instruction. Then the jump instructions are modified to check during exe-
cution that jump instructions continue to one of the valid targeted instructions. But this
application suffers from the same problems as the previous solution: it is an applicative
countermeasure.

3 Checking Paths during Runtime Execution

Some points are important when designing a new countermeasure for smart card. This
countermeasure must not disturb the application development workflow. It should keep
the application size close to the original size. And it should not use up processor re-
sources. To comply with these requirements, we have designed a lightweight software
countermeasure that uses static byte code analysis to guarantee that at each step, the
virtual machine interpreter follows an authorized path to access some resources.
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3.1 Using Java Annotation

The proposed solution uses a security feature found in the Java Card 3 platform: annota-
tions. But it is also fully applicable to Java Card 2 platforms using a preprocessor. When
the virtual machine interprets the application code and enters a method or class tagged
with a security annotation, it switches to a “secure mode”. The code fragment that fol-
lows shows the use of annotations provided by Java Card 3 on the debit method. The
@SensitiveType annotation denotes that this method must be checked for integrity
with the PATHCHECK mechanism.

Listing 1.3. Java Annotation

@Sen s i t iv eTy p e{
s e n s i t i v i t y = S e n s i t i v e V a l u e . INTEGRITY ,
p r o p r i e t a r y V a l u e="PATHCHECK"

}
p r i v a t e vo id d e b i t (APDU apdu ) {

i f ( p i n . i s V a l i d a t e d ( ) ) {
/ / make t h e d e b i t o p e r a t i o n

} e l s e {
ISOEx cep t io n . t h r o w I t ( SW_PIN_VERIFICATION_REQUIRED ) ;

}
}

With this approach, we provide a tool that processes an annotated class file. The
annotations become a custom component containing security information. This is pos-
sible because the Java Card specification [22] allows adding custom components to a
classfile: a virtual machine processes custom components if it knows how to use them
or else, silently ignores them. But to process the information contained in these custom
components, the virtual machine must be modified.

This approach allows to achieve a successful attack. With this mechanism, for an
attacker to succeed, he must simultaneously inject two faults at the right time, one
on the application code, the other on the system during its interpretation of the code
(difficult to achieve) and outside the scope of the chosen fault model. Now we will
detail the principle of the detection mechanism.

3.2 Principle of the “PATHCHECK” (PC) Method

The principle of the mechanism is divided in two parts: one part off-card and one part
on-card. Our module works on the byte code, and has sufficient client computation
power available because all the following transformations and computations are done
on a server (off-card). It is a generic approach that is not dependent on the type of
application. But it cannot be applied to native code such as cryptographic algorithm.

Off-card. The first step is to create the control flow graph of the annotated method
(in the case that it is an annotated class the operation is repeated for all the methods
belonging to the class), by separating its code into basic blocks and by linking them. A
basic block is a set of uninterrupted instructions. It is ended by any byte code instruction
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that can break the control flow of the program (i.e. conditional or unconditional branch
instructions, multiple branch instructions, or instructions that raise an exception). If this
operation is applied to the debit method, we obtained the basic blocks represented in
figure 1. Once the method is divided into basic blocks, the second step is to compute
its control flow graph; the basic blocks represent the vertices of the graph and directed
edges in the graph denote a jump in the code between two basic blocks (c.f. figure
3). The third step is about computing for each vertex that compounds the control flow
graph a list of paths from the beginning vertex. The computed path is encoded using the
following convention:

– Each path begins with the tag 01. This to avoid an attack that changes the first
element of a path to 0x00 or to 0xFF.

– If the instruction that ends the current block is an unconditional or conditional
branch instruction, a jump to the target of this instruction (represented by a low
edge in 3) will use the tag 0 .

– If the execution continues at the instruction immediately following the final instruc-
tion of the current block (represented by a top edge in figure 3), then the tag 1 is
used.

If the final instruction of the current basic block is a switch instruction, a particular tag
is used, formed by any number of bits that are necessary to encode all the targets. For
example, if we have four targets, we use three bits to code each branch (like in figure
2). Switch instructions are not so frequent in Java Card applications, but at least present
in the ProcessApdu method. And to avoid a great increase of the application size that
uses this countermeasure, they must be avoided.

Thus a path from the beginning to a given basic block is X0...Xn (where X corre-
sponds to a 0 or to a 1 and n is the maximum number of bit necessary to code the path).
In our example, to reach the basic block 9, which contains the update of the balance
amount, the paths are : 01 0 0 0 0 0 0 1 and 01 0 0 0 0 0 1.

On-card. When interpreting the byte code of the method to protect, the virtual machine
looks for the annotation and analyzes the type of security it has to use. In our case, it is
the path check security mechanism. So during the code interpretation, it computes the
execution path; for example, when it encounters a branch instruction, when jumping to
the target of this instruction then it saves the tag “0”, and when jumping to the instruc-
tion that follows it saves the tag “1”. Then prior to the execution of a basic block, it
checks that the followed path is an authorized path, i.e a path belonging to the list of
paths computed for this basic block.

For the basic block 9 this should be one of the two previous paths; if this is not the
case, then it is probably because the interpreter followed a wrong path to arrive there. If
a loop is detected (backward jump) during the code interpretation, then the interpreter
checks the path for the loop, the number of references and the number of value on the
operand stack before and after the loop, to be sure that for each round the path remains
the same.
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0 aload_0;
1 getfield 4;  
4 invokevirtual 18;
7 ifeq 98 (+91);

0

10 aload_1;              
11 invokevirtual 11;      
14 astore_2;              
15 aload_2;           
16 iconst_4;
17 baload;
18 istore_3;        
19 aload_1;         
20 invokevirtual 19;
23 i2b;
24 istore 4;       
26 iload_3;         
27 iconst_1;
28 if_icmpne 37 (+9);

1

31 iload 4;
33 iconst_1;
34 if_icmpeq 43 (+9);

2

37 sipush 26368;
40 invokestatic 13;

3

43 aload_2;
44 iconst_5;
45 baload;
46 istore 5;
48 iload 5;
50 bipush 127;
52 if_icmpgt 60 (+8);

4
55 iload 5;
57 ifge 66 (+9);

5

60 sipush 27267;
63 invokestatic 13;

6

66 aload_0;              
67 getfield 20;
70 iload 5;
72 isub;
73 i2s;
74 ifge 83 (+9);

7 77 sipush 27269;
80 invokestatic 13;

8

83 aload_0;              
84 aload_0;             
85 getfield 20;          
88 iload 5;  
90 isub;
91 i2s;
92 putfield 20;
95 goto 104 (+9);

9

98 sipush 25345;
101 invokestatic 13; 

10

104 return;

11

Fig. 1. Basic blocks of the debit method
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Fig. 2. Coding a switch instruction
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Fig. 3. Control flow graph of the debit method

4 Experimentation and Results

4.1 Evaluation Context

Two Java Card applets have been used for the evaluation. Those two cardlets are repre-
sentative of the type of code that a MNO may want to add to their USIM Card. The first
(AgentLocalisation) is oriented geolocalization services, this cardlet is able to detect
when the handset (the device in which the USIM card is inserted) is entering or leaving
a dedicated or a list of geographical dedicated cells (each cell is identified through a
CellID value, which is stored on the USIM interface) and then sends a notification to
a dedicated service (registred and identified in the cardlet). The second is more spe-
cialised to authentication services, the cardlet is able to provide a One Time Password
(OTP) to the customer and/or an application in the handset. This OTP value is already
shared and synchronized by the cardlet with a central server, which is able to check
every collected OTP value by dedicated web services.

Evaluating Resources Consumption. The first category of metrics is the memory
footprint and the CPU overhead. They have been obtained using the SimpleRTJ Java
virtual machine that targets highly restricted constraints device like smart cards. The
hardware platform for the evaluation is a board which has similar hardware as the stan-
dard smart cards.

These metrics are very important for the industry because the size of the used mem-
ories directly impacts the production cost of the card. In fact, applications are stored in
the EEPROM that is the most expensive component of the card.

The CPU overhead is also important because most of the time, when challenging
the card for some computation a quick answer is needed. So when designing a coun-
termeasure for smart cards, it is important to have these properties in mind. To obtain
the metrics in table 4, the PATHCHECK countermeasure has been implemented on an
embedded system that has similar properties as common smart card.

Evaluating Mutants Detection. To evaluate the path check detection mechanism, we
have developed an abstract Java Card virtual machine interpreter. This abstract inter-
preter is designed to follow a method call graph, and for each method of a given Java
Card applet, it simulates a Java Card method’s frame. A frame is a memory area allo-
cated for the operand stack and the local variables of a given method.
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The interpreter can also simulate an attack by modifying the method’s byte array.
This is important because it allows us to reproduce faults on demand. In addition to the
abstract interpreter, we have developed a mutant generator. This tool can generate all
the mutants corresponding to a given application according to the chosen fault model.
To achieve this, for a given opcode, the mutant generator changes its value from 0x00
to 0xFF, and an abstract interpretation is performed for each of these values. If the
abstract interpretation does not detect a modification then a mutant is created enabling
us to regenerate the corresponding Java source file and to color the path that lead to this
mutant.

The mutant generator has a number of modes of execution:

– The Basic Mode (BM): the interpreter executes, without running any checks, the
instruction push and pop elements on the operands stack and using local variables.
With this configuration, instructions can use elements of other methods frame like
using their operands stack or using their locals. When running this mode, no coun-
termeasures are activated.

– The Byte Code Verifier mode (BCV mode): the interpreter checks that no overflow
or no underflow occurs, that the used locals are inside the current table of locals,
and that when a jump occurs it takes place inside the method. They consist in some
verifications done by the BCV.

– The advanced mode: the simple mode plus the ability to activate or to deactivate
a given countermeasure like the developed ones: path checking mechanism (PC),
field of bits mechanism (FB) see [19], or PS mechanism. PS is a detection mecha-
nism that is not described in this paper and for which a patent is pending.

Graphical User Interface (GUI). We have created a GUI for the mutant generator, that
allows a user to choose a specific application, to parameterize the vulnerability analysis,
and to navigate through the generated mutant applications showing the mutation that
has led to it. This allows a security officer to have all the useful information in a user
friendly environment.

We also provide a web application that allows a registered user to upload an applica-
tion binary file, and to choose between the different analysis mode seen previously.

4.2 Results

Resources Consumption. Table 4 shows the metrics for resources consumption ob-
tained by applying the detection mechanism to all the methods of our test applications.
The increasing of the application size is variable, this is due to the number of paths that
exist on a method. Even if the mechanism is close to 10 % increasing of application size
and 8 % of CPU overhead, the developer can choose when to activate only for sensitive
methods to preserve resources. This countermeasure needs small changes on the virtual
machine interpreter if we refer to the 1 % increment. So, we can conclude that it is an
affordable countermeasure.

Mutant Detection and Latency. Tables 5, 6 and 7 show the reduction of generated
mutants in each mode of the mutant generator for three applications. The second line
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Table 4. Ressources consumption

Countermeasures CPU EEPROM RAM ROM
Path check + 8 % +10 % <1 % 1%
Field of bits + 3 % + 3 % <1 % 1%
Basic block + 5 % +15% <1% 1%

shows the number of mutants (1) generated in each mode of the mutant generator. The
third line of those tables shows the latency (2). The obtained results show the efficiency
of the developed countermeasures.

The latency is the number of instructions executed between the attack and the detec-
tion. In the basic mode, no latency is recorded because no detection is made. This value
is also really important because if a latency is too high maybe instructions that modify
persistent memory like: putfield, putstatic or an invoke instruction (invokestatic,
invokevirtual, invokespecial, invokeinterface) can be executed. If a persistent
object is modified then it is manipulated during all future sessions between the smart
card and a server. So this value has to be as small as possible to reduce the chances of
having instructions that can modify persistent memory.

Table 5. Wallet (simple class) - 470 Instructions

BM BCV PS FB BB PC
(1) 440 54 30 10 0 37
(2) - 2,91 2,92 2,43 2,72 2,42

Path check fails to detect mutants whenever the fault that generates the mutant does
not influence the control flow of the code. Otherwise, when a fault occurs that alters
the control flow of the application then this countermeasure detects it. With this coun-
termeasure it becomes impossible to bypass systems calls like cryptographic keys ver-
ification. And if some mutants remain, applicative countermeasures can be applied on
demand to detect them.

Table 6. SfrOtp (simple class) - 4568 of instructions - 9136 attacks

BM BCV PS PC FoB BB
(1) 7960 94% 95% 86% 99% 100%
(2) - 3,64 3,56 17.18 8.61 12

Table 7. AgentLocalisation (simple class) - 3504 instructions - 7008 attacks

BM BCV PS PC FoB BB
(1) 7960 94% 99% 88% 99% 100%
(2) - 11.8 12.1 2.43 10.20 13
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5 Conclusions

In this paper, we presented a new approach that is affordable for the card and that is fully
compliant with the Java Card 2.x and 3.x specifications. Moreover it does not consume
too much computation power and the produced binary files increases in an affordable
way. It does not disturb the applet conception workflow, because we just add a module
that will make a lightweight modification of the byte code. It saves time to the developer
looking to produce secured applications thanks to the use of the sensitive annotation.
Finally, it only requires that a slight modification be made to the Java Virtual Machine.
It also has a good mutant applications detection capacity.

We have implemented all these countermeasures inside a smart card in order to have
metrics concerning memory footprint and processor overhead, which are all affordable
for smart cards. In this paper, we presented the second part of this characterization to
evaluate the efficiency of countermeasures in a smart card operating system. We provide
a framework to detect mutant applications according to a fault model and a memory
model. This framework is able to provide to a security evaluator all the source code
of the potential mutant of the application; he can decide if there is a threat with some
mutants and then to implement a specific countermeasure. We applied this approach on
SIM card applications but it could be applied to every Java Card application.

With this tool, both the developer and security evaluator can take informed decisions
concerning the security of its smart card application. For the developer company, re-
ducing the size of the embedded code minimizes the cost of the application. For the
security evaluator it provides a semi automatic tool to perform vulnerability analysis.
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A Full Java Code of the Debit Method

P r i v a t e vo id d e b i t (APDU apdu ) {
/ / a c c e s s a u t h e n t i c a t i o n
i f ( p i n . i s V a l i d a t e d ( ) ) {

b y t e [ ] b u f f e r = apdu . g e t B u f f e r ( ) ;
b y t e numBytes = ( b y t e ) ( b u f f e r [ ISO7816 . OFFSET_LC ] ) ;
b y t e byteRead = ( b y t e ) ( apdu . se t IncomingAndRece ive ( ) ) ;
i f ( ( numBytes != 1 ) | | ( byteRead != 1 ) )

IS OE xcep t ion . t h r o w I t ( ISO7816 .SW_WRONG_LENGTH) ;
/ / g e t d e b i t amount
b y t e debi tAmount = b u f f e r [ ISO7816 . OFFSET_CDATA ] ;
/ / check d e b i t amount
i f ( ( debi tAmount > MAX_TRANSACTION_AMOUNT ) | | ( debi tAmount <0))

IS OE xcep t ion . t h r o w I t (SW_INVALID_TRANSACTION_AMOUNT ) ;
/ / check t h e new b a l a n c e
i f ( ( s h o r t ) ( b a l a n c e − debi tAmount ) < ( s h o r t )0 )

IS OE xcep t ion . t h r o w I t (SW_NEGATIVE_BALANCE) ;
b a l a n c e = ( s h o r t ) ( b a l a n c e − debi tAmount ) ;
} e l s e {

IS OE xcep t ion . t h r o w I t ( SW_PIN_VERIFICATION_REQUIRED ) ;
}

}

B Full Byte Code Representation of the Debit Method

p r i v a t e vo id d e b i t (APDU b u f f e r ) {
0 a l o a d _ 0 ;
1 g e t f i e l d 4 ;
4 i n v o k e v i r t u a l 1 8 ;
7 i f e q 9 1 ;
10 a l o a d _ 1 ;
11 i n v o k e v i r t u a l 1 1 ;
14 a s t o r e _ 2 ;
15 a l o a d _ 2 ;
16 i c o n s t _ 4 ;
17 b a l o a d ;
18 i s t o r e _ 3 ;
19 a l o a d _ 1 ;
20 i n v o k e v i r t u a l 1 9 ;
23 i 2 b ;
24 i s t o r e 4 ;
26 i l o a d _ 3 ;
27 i c o n s t _ 1 ;
28 i f _ i c m p n e 9 ;
31 i l o a d 4 ;
33 i c o n s t _ 1 ;
34 i f _ i c m p e q 9 ;
37 s i p u s h 26368;
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40 i n v o k e s t a t i c 1 3 ;
43 a l o a d _ 2 ;
44 i c o n s t _ 5 ;
45 b a l o a d ;
46 i s t o r e 5 ;
48 i l o a d 5 ;
50 b i p u s h 127;
52 i f _ i c m p g t 8 ;
55 i l o a d 5 ;
57 i f g e 9 ;
60 s i p u s h 27267;
63 i n v o k e s t a t i c 1 3 ;
66 a l o a d _ 0 ;
67 g e t f i e l d 2 0 ;
70 i l o a d 5 ;
72 i s u b ;
73 i 2 s ;
74 i f g e 9 ;
77 s i p u s h 27269;
80 i n v o k e s t a t i c 1 3 ;
83 a l o a d _ 0 ;
84 a l o a d _ 0 ;
85 g e t f i e l d 2 0 ;
88 i l o a d 5 ;
90 i s u b ;
91 i 2 s ;
92 p u t f i e l d 2 0 ;
95 go to 9 ;
98 s i p u s h 25345;
101 i n v o k e s t a t i c 1 3 ;
104 r e t u r n ;

}
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Abstract. Up to now devices in charge of performing secure transac-
tions mainly remained limited regarding their functionalities. However
the trend has recently gone towards an increasing integration of features
and technologies, which could potentially represent a source of additional
threats. This article introduces an innovative attack exploiting advanced
functionalities and offering unrivalled opportunities. This attack targets
specifically the multithreaded systems featuring network capabilities. By
the way of a network flooding we show how a process can be interrupted
at the precise time a sensitive operation is being executed. This inter-
ruption aims at subsequently modifying the execution context and con-
sequently breaking the sensitive operation. The practical feasibility of
this attack is illustrated on a Java Card 3.0 Connected Edition platform.
This description reveals that going through with the full attack scenario
is not obvious. However this apparent complexity must not conceal the
potential breach, which may significantly alter any application running
on the system. Finally the goal of this work is to emphasize that the
increasing products complexity may generate new security issues rather
than to highlight a specific weakness on released products.
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1 Introduction

Every software developer knows the usefulness of debug sessions in an application
development process. To be in a position to debugging, the developer needs
to use some specific tools enabling him to set breakpoints in the middle of a
code execution. He has then the ability to control the internal process flow by
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modifying the execution context. Such a capability on released device would
represent an outstanding breach. Indeed, it would allow to alter any application
running on the defeated system.

This article introduces a new attack revealing a malicious mean to set a break-
point. This attack targets multithreaded systems with network capabilities. By
exploiting a network flooding we demonstrate how a multithreaded system can be
abused to artificially freeze an application during a sensitive operation process.
Combined with a temporary illegal access to the execution context in memory, we
describe how the context modification may alter the security of the application
when its process is resumed.

As a proof of concept we detail a practical attack on a Java Card. The recently
released Java Card 3.0 Connected Edition specifications [1,2,18,3] associate the
multithreading and network connectivity features with the Java Card technol-
ogy. To fit with the particular context of secured Java Cards, our description
reveals that some inherent system protections must be circumvented requiring a
fault injection [4,5,6,7]. In spite of its apparent complexity we have successfully
implemented the attack to alter the security of a Java Card web application. We
also present different ways to withstand such attacks.

Beyond the practicability of the attack this work seeks to highlight that any
feature is a potential source of attack, even though the links with security are
not obvious. The article is subsequently organized as follows : In Section 2,
we briefly present the involved mechanisms. Then we expose the generic attack
concept in Section 3 and detail in Section 4 a complete attack path on a JC3.0.
Finally, in Section 5 we discuss the protections preventing this attack and we use
this example to emphasize the importance of the implementation to fit a high
level of security.

2 Involved Mechanisms

As stated above, a prerequisite for our attack concept is the support of mul-
tithreading and network communications over standard protocols. This section
intends to outline these mechanisms to set the basement of our work.

2.1 Multithreading

Our concept is grounded on the multithreading capacity of the targeted system,
which allows the concurrent execution of different processes. In this work, we
only consider multithreading on single-core devices. To process several threads
simultaneously, the system assigns resources to a thread for a given time slice
before switching to another. The entity in charge of distributing resources to
the threads is the scheduler. Numerous rules can be used to decide when the
scheduler will order a thread switching, i.e. to set the size of the so-called time
slice. For instance thread switching can be triggered by a timer, an instruction
counter, control flow breaks, access to certain resources, etc.
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When a thread has consumed its allocated time slice, the scheduler orders a
switch. This switch should be processed as follows :

– The current thread’s execution context is saved.
– The next thread is elected and its execution context is loaded.1

The different threads are then successively given access to the system resources.
The attack concept does not directly target the multithreading but rather

lies on an abuse of this feature. Next section introduces the feature we take
advantage of to achieve this abuse.

2.2 I/O Network Interfaces

We consider in the scope of this work a device providing a logical network inter-
face supporting standard network protocols (TCP, HTTP(S), ...) over physical
I/O interfaces. The aim of this section is to set the system architecture assumed
in the remainder of this work.

Applications

Runtime Environment
Thread scheduling

OS
Hard./Soft. Interface

Logical connectivity

Hardware
Physical connectivity

Fig. 1. Alleged architecture of the system

As depicted in Fig. 1, these interfaces are most likely not part of the so-
called runtime environment (RE), but belong to lower layers. According to this
statement, we can expect that some incoming requests are handled in these lower
layers only and do not reach the RE. Therefore they do not enter the system’s
multithreading mechanism.

This last statement is a key element rendering our attack concept practicable,
regardless of the targeted system. For the sake of clarity, Fig. 2 illustrates it with
different requests. As depicted on the figure, requests B and D handling leads to
a thread creation within the RE, whereas requests A and C are handled by the
system before entering the RE.

Now we have set the basement of our attack concept, introducing the required
mechanisms and properties of the targeted system, the attack concept itself can
be exposed.
1 The next thread election can possibly take into account the concept of thread priority.

This concept will not be further considered in our context since an attacker able to
start new threads should also have the ability to modify their priority.
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Applications

Runtime Environment

OS
Hard./Soft. Interface

Hardware

A

�
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B

�
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C
�
�

D

�
�

Fig. 2. Different requests handling

3 The Attack Concept

This section introduces the attack principle in a generic way. The goal is to
emphasize that this threat may potentially affect a wide range of systems. On the
other hand we will see that the attack success is closely related to implementation
choices in the platform, providing some leads to find adequate protections later
on.

The attack aims at altering a sensitive execution flow at a precise time. To
achieve this, two steps must be performed as follows :

– Freezing the application execution at time T0. It comes to setting a break-
point on a specific operation.

– Altering the execution context available in memory to change the application
behaviour when it is resumed.

In the scope of this article, we assume that the thread scheduler is based upon
a timer. A certain amount of time is then allocated to each thread. When an
execution exceeds the time slice T , the scheduler stops the process and switches
to the next thread in the queue. This hypothesis is obviously not the single way
to implement multithreading. However for the sake of clarity, we intentionally
focus our description on one kind of scheduler. The adaptation of this attack to
other schedulers may be subject to future works.

Our attack relies on the corruption of the multithreading system to force the
interruption of an application. The objective is to cheat the scheduler, so that
the thread switch occurs at T0 rather than T . This is obtained by sending a
sequence of requests to the device when the targeted thread is being processed.
As the process in charge of the network requests is unlikely to be handled as a
thread, the time of processing initially devoted to the current thread is lost. As
a consequence the thread execution is curtailed, as depicted in Fig. 3.

T0 is then adjustable depending on the number of network requests sent. To
appropriately determine T0, it is better to have an idea of the thread execution
flow. Nevertheless, the code knowledge may not be necessary as side channel
analysis may provide sufficient information, depending on the attacked system.

Once the targeted thread is frozen, the scheduler switches to the next ones
in the queue. During this time the context of the sensitive code is available in
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Fig. 3. Normal (up) and curtailed (down) execution of a thread

memory. An attacker in position of executing a malicious application would have
then the opportunity to get to the context in memory and alter it. Depending
on the attacked system, the right to load and run a application can be more
or less restrictive. However in the context of a multi applicative platform these
rights necessarily exist, indeed can be forced.

The remaining issue to achieve this attack is memory access. In some open
systems the volatile memory remains fully available. But some systems isolate
the memory access to respective areas. Therefore this restriction does not allow
a thread to get to the execution contexts. To successfully perform the attack, the
isolation mechanism must be overcome. The next section illustrates how such
a protection has been circumvented on a Java Card by the mean of a physical
perturbation.

Once memory access is obtained, a full range of possibility is offered to the
attacker. The control of the execution context of the thread gives access to its
program counter, local variables and execution stack. Although access to these
data obviously stands as a compromission of the system, an attacker has no
guarantee that she will be able to take benefit of it. On the other hand, provided
she has properly adjusted T0 , well-chosen alterations would break almost any
security operation. The complete attack scenario is depicted on Fig. 4.

Fig. 4. The complete attack scenario
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The attack potentially concentrates several issues which strongly depends on
the kind of attacked system. But its consequences may be tragic for an applica-
tion, even if the code has been proficiently secured. Furthermore this attack also
underlines that the security of an application has a value only if the platform
underneath is secured enough.

4 Practical Implementation on a Java Card

This section details the full attack scenario we have put into practice on a recent
device to illustrate the feasibility of this concept and outline its consequences.

4.1 Context of the Attack

The Attacked Platform. With regards to the different features involved in the
attack, a device implementing the JC3.0 specifications appears to be a potential
target. Indeed, it is a security device offering both multithreading and network
communication support. Furthermore, such platform may allow post-issuance
application loading, as long as the application is well-formed.

The Target Application. We consider in the remainder of this section an
application T offering sensitive services. Access to those services requires an
authentication, achieved through a signature. T then contains the following lines
of code (or equivalent) :

1. if (sig.verify(inBuf,inOf,inLen,sigBuf,sigOf,sigLen) != true)

2. accessDenied();

3. else

4. accessGranted();

The bytecode sequence that is actually executed on-card is then :

0E. invokevirtual #4 <javacard/security/Signature.verify>

11. iconst_1

12. if_icmpne 0x1C (+10)

15. aload_0 <app/Target this>

16. invokespecial #5 <app/Target.accessDenied>

19. goto 0x20 (+7)

1C. aload_0 <app/Target this>

1D. invokespecial #6 <app/Target.accessGranted>

Attack Goal. The attack aims at gaining access to the sensitive services with-
out producing a valid signature.

4.2 The Attack Concept Key Assumptions

We have stated in the previous section that the success of our attack concept
relies on a couple assumptions validity. This section details the validation of
these assumptions on the attacked platform.
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Loading the Attack Application. Loading application on the platform is
not an obvious right for Java Card users. This capacity is generally limited by
the knowledge of authentication keys through GlobalPlatform [8]. However, we
consider that an attacker may be able to load an application. This ability can
have various origins :

– The load keys are known (this knowledge being either legitimate or not).
– One or several fault injection(s) can lead to a breach in the GP implemen-

tation on the card.

Loading and executing a malicious application A have two rationales. First it
should permit the modification of the targeted thread’s execution context. But
it is also in charge of ensuring the expected thread scheduling scenario. Details
of its implementation are given along the attack path.

How to Access and Corrupt the Java Frame. The first challenge is to
access the memory and to identify the execution context. Considering a JC3.0,
we are interested in the following elements (refer to [9] for a detailed description
of Java Threads and Runtime Areas) :

– the Java program counter : the address of the currently executing instruction
in the current method of the current frame.

– the stack of frames : a frame is pushed onto the stack when a method is
invoked and is popped out when this method completes.

– in the frames : the local variables and the operand stack.

We intend to reach these values by forging a fake byte array. For that matter,
we consider a type confusion provoked by means of a fault injection.

The fault attack. At CARDIS’10, Barbu et al. proposed a combined attack
provoking a type confusion and permitting to forge an object’s reference and
content [10]. In our context, this attack turns out to have a couple of advantages :

– A single physical attack of the device is required, a perturbation during the
execution of a checkcast instruction for instance.

– Since forged references are persistent :

• The fault injection can be the first step of our attack scenario.
• Once one perturbation has been successful, a failure in the following

steps will not require to start again from scratch.

We successfully applied this technique to the attacked platform. The physical
perturbation was achieved using a laser. Its success depends on a couple of
parameters (time, location and wavelength of the beam) found experimentally.

Accessing the Java frame. We assume that execution contexts are saved in
volatile memory on thread switching. The type confusion is used to forge a byte
array in memory in order to access the execution context of T . We also assume
the internal representation of a Java array contains a pointer (say a 32-bit word)
to its content in memory, as exposed in [11] and depicted within Fig. 5.
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To build a fake array, we only have then to set our ”confused object” fields
to appropriate values. Then, we expect to be able to access the memory as if it
was the content of the forged array. This process is illustrated in Fig. 5.2

Fig. 5. Confusion between instance of two classes in order to forge an array’s address

Once we have gained access to memory, we need to identify the frame within
the forged array and to figure out its internal structure.

Finding and learning the structure of the Java frame. To locate the frame, we
can take advantage of a straightforward linear memory allocation mechanism.
According to the scheduling scenario of our attack concept, initializing a new
array with obvious values when A is resumed permits to delimit the memory
used by the targeted application. Furthermore, we have run a training session
of our attack in order to learn the structure of frames on the platform. For that
matter, we have built a target application that interrupts itself with easy-to-
detect short values in local variables (0x1903 for instance) and on the operand
stack (0x1902 for instance). The dump array obtained when A is resumed is
depicted in Fig. 6.

We can then detect the frame and gain sufficient information on its structure :

– <number of local variables : nb loc> <nb loc * local variables>
– <maximum stack size : max stk> <max stk * operand values>
– <current top of stack>
– <jpc>

How Ping Flooding Affects Application Execution. We have stated in
Section 2.2 that some incoming requests do not require the attention of the
JCRE. An Internet Control Message Protocol (ICMP) echo request (a ping)
is a typical example of such a request. Our claim is that when a ping request
is incoming, the processor handles it whereas in the meantime the scheduler’s
timer is still running. We can then manage to shorten a thread’s execution as

2 See Appendix A.1 for implementation details.
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0x0000 : 55 55 55 55 55 55 XX XX XX XX XX XX XX XX XX XX
<proprietary data>

0x0030 : XX 14 00 01 00 BA E2 01 00 E2 04 01 00 F2 45 00

0x0040 : 00 00 70 00 00 03 19 00 00 03 19 00 00 03 19 00

0x0050 : 00 03 19 00 00 03 19 00 00 03 19 00 00 03 19 00

0x0060 : 00 03 19 12 E1 53 12 00 12 E1 08 00 00 00 02 19

0x0070 : 00 00 02 19 00 00 02 19 00 00 02 19 00 00 02 19

0x0080 : 00 00 02 19 00 00 02 19 00 00 02 19 00 00 20 00

0x0090 : 00 00 49 00 XX XX XX XX XX XX XX XX XX XX XX XX

<proprietary data>

0x00D0 : XX XX XX XX XX XX XX XX XX 55 55 55 55 55 55 55

0x00E0 : 55 55 55 55 55 55 55 55 55 55 55

Fig. 6. Memory dump from the forged array

we please, the number of instructions actually executed within a time slice being
reduced. To validate this claim, we have run a thread incrementing a counter on
the attacked platform. Fig. 7 presents the value reached by the counter after a
given amount of time against the number of pings sent in the same time. This
proves that the number of instruction executed within the thread is reduced
when the system is flooded with pings, since the value reached by the counter is
representative of the number of instructions executed.3

Fig. 7. Influence of communication on instructions execution

This technique could be assimilated to a well-known attack in the network
security field : ping flooding [12,13]. Ping flooding usually aims at consuming the
bandwidth of the targeted system in order to provoke a Denial of Service (DoS).
Our approach is different as the aim is here to consume the time allocated to
the targeted thread in order to curtail it.

3 Implementation details are given in Appendix A.2.
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4.3 The Practical Attack

The attack is divided into three steps detailed within this section.

– In the first step, we achieve the preliminary work to ensure both the access
to T ’s frame and the scheduling scenario;

– In the second step, we force the ”breakpoint hitting” with I/O flooding;
– In the third step, we use the fake array to corrupt T ’s frame.

Preliminaries. With regards to the global illustration of the attack concept,
this step corresponds to the first segment of the ”evil” thread’s execution (T1(1)
in Fig. 4). The aim of this step is to procure a way to access the memory where the
execution context of T will be stored. This is achieved as presented in Section 4.2.

To ensure the predicted thread scheduling scenario, the application only has
to start a new thread, and force its interruption for a certain amount of time (via
the Thread.sleep() method). Within that time, T is launched in a new thread.
On the next thread switching, A’s thread will then become active again. This
last statement implicitly assumes that no other thread is concurrently running
on the platform, or at least that the attacker’s thread will be the next one to be
executed. We can then focus on T ’s execution and when to force its interruption.

Setting the Breakpoint. The aim of this step is to force a thread switching at
a precise point during T ’s execution. It corresponds to the first segment of the
targeted thread’s execution of the attack concept illustration (T2(1) in Fig. 4).
The challenge at this step is to ”synchronize” the pings and the thread’s execu-
tion. Working on a smartcard, the power consumption analysis can again reveal
a strong ally at this step. Actually, we can monitor bytecode instruction execu-
tion through the power consumption of the card (as stated in [14]). Therefore,
the exact knowledge of the code does not appear necessary to achieve the attack.

The attacked platform comes within a USB smart card connector and com-
municates as an Ethernet Emulation Model (EEM) device according to the spec-
ification [15]. The first task is then to adapt our power consumption acquisition
module to monitor power consumption behind the USB smart card connector
where the Java Card is plugged (cf. Fig. 8).

Fig. 8. USB smartcard acquisition module
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We can then achieve and monitor the ping flooding of T .
Fig. 9 shows the power traces of T ’s execution. On the first power trace, the

signature verification is easily identified. The following traces depicts the same
execution with an increasing number of ping requests (the numerous peaks on
the traces). As we can see, the cryptographic operation is executed more or less
shifted depending on the number of pings received during the thread’s execution.

Fig. 9. Execution of the two threads with various number of ping requests (respectively
0, 10, 30 and 40). T1 and T2 refer respectively to the attacker’s and the target thread.

Based on experimentations, an average sequence of 37 ping requests during
the execution of T causes its interruption after the verify method returns but
before the execution of the conditional branching. This corresponds to the third
power trace in the figure. Actually other ”breakpoints” may also allow an attack.

The previous section has given us a mean to read/write the volatile memory.
In this section we have exposed how we manage to set the so-called breakpoint
within the attacked application T . To complete the attack, we will now try to
modify T ’s frame in order to bypass its security.

Corruption of the Java Frame. From application A, we can now corrupt T ’s
frame. We are then literally spoilt for choice in order to bypass the application’s
security :
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– Set the jpc to a given value in order to modify the execution flow,
– Assign given values to references or integral values in the operand stack to

have a method executed on the wrong object or with wrong parameters, or
return a wrong value,

– Assign given values to references or integral values in the set of local vari-
ables, with the same consequences.

With regards to the current state of the art of fault injection, these possibilities
are quite outstanding. In a manner of speaking, completing the three previous
steps enhances tremendously the initial fault model. We present hereafter one
of the numerous way to render the security check of T useless by modifying the
value of the Java Program Counter.

Modification of the jpc. As expected, the signature verification has failed and the
conditional branching at line 0x12 leads the execution flow in the ”accessDenied
branch”. Because of the flooding, the so-called breakpoint is ”hit” at line 0x1D

(invokespecial #6 <accessDenied>).
A is then resumed and we can read T ’s frame and identify the jpc value (Fig. 10).

0x0040 : XX XX XX XX XX XX XX XX XX XX 08 00 01 00 38 FC

0x0050 : 01 00 78 F2 01 00 D2 FE 00 00 05 00 00 00 00 02

0x0060 : 01 00 46 F2 00 00 00 00 00 00 01 00 E7 D2 66 00

0x0070 : 0B D4 07 00 01 00 38 FC 00 00 01 00 00 00 05 00

0x0080 : 00 00 00 02 01 00 46 F2 00 00 00 00 00 00 01 00

0x0090 : 00 00 18 00 00 00 1D 00 XX XX XX XX XX XX XX XX

Fig. 10. Memory dump from the forged array

An easy way to overcome the signature invalidity is then to modify the jpc in
order to jump ”manually” in the desired branch. That is to say to say to modify
the jpc value from 0x1D to 0x16. This is done by a mere affectation in the forged
array : ac.array [jpc offset] = 0x16;

When the scheduler switches back to T , its execution continues according to
the frame. That is to say at the offset we have just set. The next executed in-
struction will then be the invoke of the accessGranted method. As a consequence,
we gain access to the privileged method, although we do not have the private
key to produce a valid signature.

Depending on the moment when the ping flooding force the interruption,
similar results have been obtained by modifying operands on the stack and local
variables. What emerges from these different options is that a certain inaccuracy
in the ping flooding phase is tolerable. Indeed, depending on the ”breakpoint”
location, an attacker with a good knowledge of the targeted application will
often (not to say always) find a path to meet her objective.

This proof of concept demonstrates that such a threat should be taken in
consideration when addressing the security of an embedded platform. Hereafter,
we discuss this particular topic and tackle the issue of countermeasures designing.
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5 Discussion on Protections

Making a product secure against any known attacks is not straightforward, as it
requires a significant expertise in the field. This is particularly true in embedded
technology when the security must coexist with restrictions of cost, performances
and resources. Therefore the best way to suit all these requirements remains an
optimisation of the security at the right protection level. This be can achieved
thanks to a thorough vulnerability analysis. Regarding the attack introduced
in this article, the developer should wonder if this attack is worth of being
considered as a reasonable threat.

This attack is undoubtedly not easy to set up. However its apparent com-
plexity should not conceal the potential consequences for an application. This
statement is particularly true for the following reasons:

– The fault model turns out to be extremely powerful. Therefore most of the
sensitive functions of an application may be defeated, even if they have been
secured with care.

– A weak system may lead to an alteration of any hosted applications.
– The adequate protection is unlikely to be found in the application. As a

result, an application with a thorough concern of security may be broken.
It is then of the utmost importance that a system shows the evidence it is
reliable and trustworthy.

Many ways can be explored to find efficient protections against this threat. Firstly
it is worth of strengthening the scheduler to make sure it cannot be abused. The
protection must be adapted to the rule enforced by the multithreaded system.
Based on a time slice the scheduler of our Java Card makes use of a timer. By man-
aging this timer appropriately in the handler in charge of the network requests,
we have experimented that the Java Card withstands the attack.

The identification of the targeted instruction on the power consumption trace
has also been an elementary step of our attack. Therefore, the difficulty to set
up the attack increases with the difficulty to locate the instruction to attack.
Techniques to harden the power consumption analysis such as described in [16,
17] would then stand as an additional barrier to circumvent for the attacker.

Another way consists of a strong isolation between the memory areas of dif-
ferent contexts. This includes the runtime environment area where the thread
contexts are stored. Such an isolation may prevent the attacker to have access
to the sensitive context. It is more or less difficult to achieve according to the
systems. On a smartcard it may be interesting to take advantage of specific hard-
ware features, such as a memory protection unit (MPU). This kind a protections
enforces a strong isolation by the mean of hardware controls, which remain very
difficult to overcome.

Lastly it may be worth of implementing some integrity controls on the contexts
during the thread switch. As the control value must be prevented from being
modified by an adversary, this may be achieved through a MAC verification
using an internal symmetric key for instance. Before restoring a context, the
scheduler would be in charge of checking that nothing has been tampered with
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and could send an alarm if an inconsistency is found. This implementation has
shown a great efficiency on the Java Card platform we used.

To meet with today’s best practices it is assumed that the security should
not rely on one single countermeasure. Therefore it is strongly recommended to
combine at least two of these protections. As a conclusion, everyone has to bear
in mind that finding the right compromise between security and performance
is not obvious. This can be achieve by combining a high expertise in existing
attacks with a strong experience in secure implementations.

6 Conclusion

This article introduces a novel attack exploiting a potential weakness of a multi-
threaded platform. An established breach would severely damage the security of
any application running on this system. The principle lies on attempting to fool
the scheduler. By this mean the attacker gets the ability to interrupt a sensitive
code execution. By analogy he sets a breakpoint with the aim to subsequently
modify the execution context and change the application behaviour.

The feasibility of this attack has been demonstrated on a smartcard imple-
menting the JC3.0 specifications. Indeed this technology turned out to be a
perfect target. With regards to the inherent constraints of embedded systems,
it implements a relatively straightforward multithreading feature and offers net-
work capabilities in a context of high security. As a result, we have shown how
a strong authentication based on a signature may be bypassed.

Several ways of protecting an implementation have been introduced. All these
techniques have shown a good level of efficiency on the Java Card. Now it is the
developer’s responsibility to figure out if this threat is worth of being considered.

With the growing complexity of some devices, several technologies are in-
creasingly integrated together. This attack interestingly reveals that none of
them must be neglected during the vulnerability analysis. Therefore any feature
or functionality should be deemed as a potential door for an attack, even though
they are not obviously related to the product security. The illustration on the
Java Card with an exploitation of the multithreading and the network capability
is meaningful.
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A Implementation

A.1 Array Forgery

The classes loaded wit the attacker’s application :

public class ArrayContainer {
byte[] array;

}

http://www.cert.org/tech_tips/denial_of_service.html
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public class ForgeryContainer {
Forgery f;

}

public class Forgery {
int field_1, field_2;

}

The code within the attacker’s application to forge the array in the volatile mem-
ory :

ArrayContainer ac = new ArrayContainer();
ac.array = new byte[1];
ForgeryContainer fc = (ForgeryContainer) (Object) ac;
fc.f.field_1 = 0x100; // set the length of ac.array to 256
fc.f.field_2++; // increment the memory pointer of ac.array
// Access to memory through ac.array[i]

A.2 Request Flooding Validation Thread

The run method of the thread used to validate the influence of communication :

public void run() {
i = 0;
startTime = System.currentTimeMillis();
while ((System.currentTimeMillis() - startTime) < TIME_BOUND){

i++;
}

}

The Python ping flooder :

def flood(host, url, delay, socket, ID, count, ping_delay)
# Send request to target application
conn = httplib.HTTPConnection(host)
conn.request("GET", url)

# Wait
time.sleep(delay)

# Send ping flood
for i in xrange(count):

send_ping(ID, socket, host)
time.sleep(ping_delay)
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Abstract. Smart card Web server provides a modern interface between
smart cards and the external world. It is of paramount importance that
this new software component does not jeopardize the security of the
smart card. This paper presents a formal model of the smart card Web
server specification and the proof of its security properties. The for-
malization enables a thoughtful analysis of the specification that has
revealed several ambiguities and potentially dangerous behaviors. Our
formal model is built using a modular approach upon a model of Java
Card and Global Platform. By proving the security properties, we show
that the smart card Web server preserves the security policy of the over-
all model. In other words, this component introduces no illegal access to
the card resources (i.e., file system and applications). Furthermore, the
smart card Web server provides a means for securely managing the card
contents (i.e., resources update).

1 Introduction

Since the beginning of the smart card era, the I/O interface is defined by the
ISO-7816 standard [10] in terms of APDU (Application Protocol Data Unit)
commands and responses. For example, to access to a binary file, the card reader
sends a SELECT FILE command to select the file, then a GET BINARY command
to retrieve its contents. For the next generation of multimedia SIM cards that
may embed up to one gigabyte of data, this interface becomes outdated: because
the multimedia data are heterogeneous and stored in complex multi-leveled file
systems, the APDU commands do not provide an efficient access method. Fur-
thermore, the ISO-7816 standard requires ad-hoc software on the handset to
communicate with the SIM card. On the other hand, most handsets own a Web
browser to access to the MNO (Mobile Network Operator) services and it is
tempting to use the HTTP protocol for interfacing with the SIM card. In this
interface, the SIM card embeds a Web server and the handset accesses to the
card resources via a Web browser.

The so-called smart card Web server (SCWS) provides a modern interface
and dramatically simplifies the access to multimedia services. Standardized by
Open Mobile Alliance (OMA)[12], the SCWS also allows the MNOs to remotely
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administer their clients via an OTA (over-the-air) infrastructure. Recently, this
remote administration capacity has been leveraged by the Global Platform con-
sortium [8] to a content management method for multi-actor multi-application
smart cards. For Java Card framework, the European Telecommunications Stan-
dards Institute (ETSI) also specifies additional APIs to transform a Java Card
applet into a servlet (i.e., a Web application)[6]. In other words, SCWS is a
cross-industry specification based on existing infrastructures and it is worth to
investigate its overall consistency before any implementation.

On the other hand, the Web server also exposes the SIM card to numerous
well-known threats and it is of paramount importance that it does not compro-
mise the security services provided by the card. In particular, it is essential to
ensure that no illegal access to card resources can be done through the SCWS.

In this paper, we present a formalization the SCWS specifications [12,8,6,17,16]
and a formal proof of the security properties related to the card resources ac-
cess. The SCWS is formalized as a state machine that receives a HTTP request,
interacts with the other card components before sending back the corresponding
HTTP response. All formal models and proofs have been developed in Coq [15],
a proof assistant based on higher-order type theories. This choice was firstly
motivated by the safety of Coq that has well-studied mathematical foundation
and a robust implementation: all proofs are re-checked by a (tiny) kernel that is
the only Coq trusted reasoning base. Secondly, the expressive power of the logic
underlying Coq deals more efficiently with the (universally) quantified security
properties. Furthermore, this work benefits from the Coq libraries built for the
certification of the Java Card platform in a previous work [5] and hence, smoothly
handles the interaction between different card components (e.g., SCWS, Java
Card and Global Platform). The reuse of an existing formal infrastructure also
reduces the modeling and proving workload.

The rest of this paper is organized as follows. Section 2 summarizes the dif-
ferent specifications related to the SCWS and discussed its expected security
properties. The Coq model of the SCWS is described in Section 3. In Section 4,
we present the Coq formalization and the proof of the security properties. We
discuss the related work and give some concluding remarks in Sections 5 and 6.

2 Smart Card Web Server

This section provides an overview of the SCWS functions as specified in [12,8,6,17],
then discusses several ambiguities and dangerous behaviors discovered while for-
mally analyzing these specifications. An analysis of the SCWS security policy is
also presented.

Figure 1 shows the integration of the SCWS in a multi-actor and multi-
application Java smart card (i.e., a smart card that supports both Java Card
and Global Platform). The SCWS includes three components:

– a HTTP server
– a repository containing the SCWS data
– an administration task manager that updates the SCWS repository



36 P. Neron and Q.-H. Nguyen

HTTP 
request/response

Serlvet
1

Global
Platform

Admin 
tasks

Repository

Communication layer

HTTP Server

Java Card Virtual Machine

Operating System

S
ta

tic re
so

u
rce

s

Serlvet
2

Fig. 1. SCWS inside a Java smart card

The external entity (e.g., a Web browser or an OTA infrastructure) com-
municates with the card using the HTTP requests and responses. After being
relayed by the communication layer, the HTTP request is sent to the HTTP
server. Note that the multi-request management is ensured by the communi-
cation layer: a HTTP server (instance) is supposed to receive and manage one
request per session. A SCWS session starts with the reception of the request
and finishes by the emission of the response. The HTTP server dispatches the
request to its destination indicated by the URL included in the header of the
request:

– If this URL points to a servlet (i.e., an applet registered to the SCWS), then
the request is forwarded to this servlet.

– If this URL points to a static resource (i.e., a file in the file system), then this
file is accessed following the HTTP method (GET, PUT, etc) of the request.
The access to the file system is done through the OS low-level services.

– If the URL points to the administration task manager, then this is an ad-
ministration command for updating the SCWS repository.

– If the URL points to the Global Platform component (also known as the
Card Manager), then the request contains a command that updates the
card contents (i.e., update the servlets).

Interface between SCWS and servlets. On a Java Card platform, a servlet is an
applet that was registered to the SCWS. A servlet needs to implement a specific
Java interface for each HTTP method. For example, the doPost() interface must
be implemented to handle the POST requests. The servlet registration and Java
interfaces are defined by ETSI in a dedicated API [6].

The interface between the SCWS and the servlet is done by method invocation.
For example, for a POST request, the SCWS identifies the servlet, and invokes the
doPost() method of this servlet. The HTTP request is passed to this method
as a global variable. The method constructs the HTTP response that is also a
global variable. Finally, the SCWS envelops the HTTP response and sends it
back to the communication layer.
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This interface corresponds to the “normal” servlets that receive a HTTP
request and returns a HTTP response. The SCWS also manage the “interception”
servlets that only collect information from the header of the HTTP requests. The
interception servlets do not return any HTTP response.

Access control. According to [12], the HTTP access control relies on the protec-
tion sets. A protection set contains a list of users. If a URL subtree is mapped
to a protection set, then access to the resources inside this subtree is reserved
to the users defined in that protection set.

The user authentication may use different protocols:

– HTTP Basic or Digest authentication as defined in [16], which is a sim-
ple authentication with username and password contained in the request’s
header

– HTTPS protocol which uses cryptographic procedure to authenticate users
– ADMIN protocol i.e., the current user is the remote administration server

Building the HTTP response. In successful cases, the result is put in the body of
the response and the status 0x200 is set in the header of this response. Otherwise,
an error status is sent back in the header. Several categories of status are defined
by the HTTP protocol e.g., 0x2xx for successful cases, 0x4xx for client errors,
0x5xx for internal errors while processing the request.

2.1 Specification Analysis and Recommendations

The formal analysis of the SCWS specification has revealed several ambiguities
and dangerous behaviors that we discuss here. Furthermore, several recommen-
dations are also provided to overcome these issues.

1. URL sharing: Sharing a URL between servlets and static resources is not
forbidden in the specification. In some cases, URL sharing does not generate
any conflict, e.g., between a normal servlet and an interception servlet. In
other cases, e.g., between a servlet and a file, the data returned by the SCWS
is not precisely defined. In order to ensure the consistency, URL sharing is
not allowed in the formal model.

2. Multi-role applet: Can an applet be registered as both interception servlet
and normal servlet? Multi-role applet is not forbidden by the specification
but an interception servlet can only access to the header while a normal
servlet has access to all the HTTP request. In other words, there is an
inconsistency on the access rights of the applet. The formal model clearly
separates interception servlets from normal ones: multi-role applet is not
allowed.

3. SCWS/Java Card consistency: Can a servlet be uninstalled or updated dur-
ing a servlet invocation (that is handled by Java Card)? In principle, during
the execution of a method, the list of servlets may be updated. However, a
servlet cannot be uninstalled or updated during its invocation.
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4. SCWS/Global Platform consistency: The list of registered servlets and the
Global Platform registry table that manages the list of (on-card) applets shall
be consistent. Because a servlet is an applet that was registered to the SCWS,
any modification on the list of applets (kept in Global Platform registry table)
shall be synchronized with the SCWS. Furthermore, the modification rights
of these lists shall be reserved to the same group of users.

5. Servlet collaboration: If several servlets are invokable on a request (for
example, one URL is covered by two different servlets), a priority order is
defined between these servlets. Usually, the servlet that is mapped to the
closer URL has greater priority. The SCWS invokes the servlets following
this order and if a servlet is invoked but refuse to handle the request, then
the next servlet will be invoked. However, the refusing servlet is still able to
access to the HTTP request. In other words, if a refusing servlet is mapped
to the directory /a/b/c, then it can learn about the activities of the other
servlets that are mapped to the directories /a and /a/b. Hence, the URL
distribution to servlets (done by the SCWS administrator), shall be carefully
done to avoid data leaking between them. Another solution would be to
restrict the servlet collaboration by only allowing the servlet mapping to the
exact URL to access to the HTTP request.

6. Unsafe default configuration: If no protection set is defined, then any
resource is accessible. This mechanism is advocated in the HTTP protocol to
avoid unnecessary authentications to the Web servers. However, on a smart
card, this behavior seems to be dangerous. It is recommended to map an
empty protection set to the root URL and hence, force an authentication on
any access.

7. Unsafe Fail: In an unsuccessful operation, the HTTP response is only re-
quired to contain an error code that is different from 0x200. This is necessary
to inform the handset about the failed operation. However, a confidential in-
formation may still be leaked through the other components of the response.
Hence, it is recommended that the HTTP response does not contain other
data than the error code.

While the three first points correspond to the imprecision of the specification, the
other issues are directly related to the security of the SCWS. The formal model
described in Section 3 takes into account the above security recommendations
to deal with these issues.

2.2 Security Policy

The principal SCWS security policy consists in preventing illegal access to the
card resources. This security policy can be decomposed into several sub-policies
as follows:

(1) URL separation: Static resources, interception servlets and normal servlets
shall be separated in terms of mapped URL.

(2) No illegal access to static resources: an access cannot target

/a/b/c
/a
/a/b
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– the un-mapped static resources,
– the static resources not mapped to the request’s URL, and
– the unauthorized static resources.

(3) No illegal invocation of smart card applications: an invocation cannot target
– the unregistered servlets,
– the unmapped servlet,
– the servlets not mapped to the request’s URL, and
– the unauthorized servlets.

(4) The smart card data outside the scope of the SCWS cannot be accessed i.e.,
any data in a HTTP response shall belong to a SCWS-managed resource.

(5) Safe Fail: in an unsuccessful operation, the HTTP response does not contain
other data than the error code.

(6) Secure card content management: the card contents (i.e., static resources,
applets and repository) can only be updated by an“Admin” user.

These sub-policies are then decomposed into simpler security properties in order
to ease the Coq formalization.

Property 1. (URL separation) All normal servlet, interception servlet and
static resources are mapped to separate URLs.

Property 2. (Invalid static resource) If a static resource is not mapped to any
URL, then its data cannot be sent out by a HTTP response.

Property 3. (Unauthorized access to static resource) If a static resource is
protected by a protection set, then any HTTP request to a static resource will
fail if no username/password were provided or the provided username/password
are not correct.

Property 4. (Unregistered application) An unregistered servlet cannot be in-
voked by any HTTP request.

Property 5. (Unmapped application) A registered servlet that is not mapped
to any URL cannot be invoked by any HTTP request.

Property 6. (Unrelated application) A servlet that is not mapped to the URL
of the HTTP request and any of its ancestors cannot be invoked by this request.

Property 7. (Unauthorized access to application) A servlet that is mapped to
the URL of the HTTP request cannot be invoked if this request is not authorized
(no username/password were provided or the provided username/password are
not correct).

Property 8. (Access to administrative tasks) Only an “Admin” user can per-
form the administrative tasks on the SCWS.

Property 9. (Access to GlobalPlatform operations) Only an “Admin” user can
perform the Global Platform tasks.
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Property 10. (Safe fail) If the status code of a HTTP response is not 0x200,
then this response contains no data.

It is straightforward to see that, the policy (1) is fulfilled by Property 1; the
policy (2) is fulfilled by Properties 1, 2, and 3; the policy (3) is fulfilled by
Properties 1, 4, 5, 6 and 7; the policy (4) is fulfilled by Properties 1, 2; the
policy (5) is fulfilled by Property 10; the policy (6) is fulfilled by Properties 8
and 9.

3 A Coq Model of the Smart Card Web Server

The SCWS is formalized as a state machine. The SCWS state formalizes the
repository while a SCWS transition formalizes the modification caused by a
HTTP request on a state.

3.1 SCWS State

The state defines the global components of the SCWS as the following record:
SCWS State � {
registered servlets : registered servlet table;
servlet mapping : url servlet table;
interception servlets : url servlet intercept table;
users id : user table;
ps defined : ps list;
ps table : path ps table;
listen http : http state;
auth status : scws status;
curr request : option http request;
curr response : http response
}

where the components are formalized as record fields associated to their types:

– registered servlets is the table of all servlets (i.e., applets registered to the
SCWS).

– servlet mapping and interception servlets are respectively two tables map-
ping the URLs to the normal servlets and the interception servlets.

– users id is the table of all registered users in the SCWS. This table maps
each user’s identifier to its password.

– ps defined is the table of all registered protection sets. This table maps each
protection set to its parameters (protocol, list of authorized users, etc).

– ps table is the table mapping each protected URL to its protection set.
– listen http indicates if the SCWS is currently ready for receiving a HTTP

request.
– auth status indicates whether the current user is an “Admin” user (in this

case auth status is “ADMIN”).
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– curr request is the HTTP request being processed by the SCWS: the request
is defined as an optional type to handle “no request” error.

– curr response is the HTTP response being processed by the SCWS: the
SCWS always returns a (error or success) response.

All these elements define the current state of the SCWS and determine if a static
resource is accessible or if a servlet is invokable by the current request.

URL tree. The resources managed by the SCWS are addressed by their URLs. In
the model, the URL path name includes the directory names stored in the reverse
order to speed up the recursive search in the ancestors of a name. For example,
the path name /scws/appl/epurse is stored by the list epurse → appl → scws.
There are three constructors to generate a set of URLs from a path name as
follows:

path url � exact url : path name → path url
| directory url : path name → path url
| ∗ url from : path name → path url.

For example, /scws/appl/epurse is an exact URL, /scws/appl/ is a URL
directory and /scws/appl/* is a URL subtree.

SCWS file system. The static resources are effectively stored in the smart card
file system. However, the SCWS only manages part of the smart card file system
that is in its scope. Without loss of generality, a SCWS file system is represented
by a table mapping the URLs to the associated files.

3.2 SCWS Transition

The transition formalizes the modification of the state caused by the process of a
HTTP request. Each transition is defined by the relations between the input and
the output states. The card components that can be modified by a transition
are:

– the SCWS state e.g., due to an administrative tasks
– the SCWS file system e.g., due to PUT and DELETE requests
– the JCVM (Java Card virtual machine) state1 e.g., due to the invocation of

a servlet by the SCWS

The process of a HTTP request is done in three steps. First, the authentication
checks if the user has the sufficient right to process the request. Then, a servlet
is resolved and invoked if necessary. Finally, the request is processed w.r.t. the
contents of the request (see Section 2).

Authentication. The authentication process is defined according to [12]:

– PUT and DELETE requests require the current user to be an “Admin” user
– TRACE request that returns the routing information towards the server (e.g.,

the list of proxies), does not require any authentication
1 A record that contains the global components of the JCVM.

/scws/appl/epurse
/scws/appl/epurse
/scws/appl/
/scws/appl/*
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– for any other request, the authentication process relies on the defined protec-
tion sets. We need to find if the requested URL or its ancestors are mapped
to any protection set:

• If no protection set is found, then the URL is in free access.
• If the found protection set requires the ADMIN protocol, then the cur-

rent user must be an “Admin” user.
• If the found protection set requires the HTTP protocol with no realm,

then the URL is in free access.
• If the found protection set requires the HTTP protocol with the realm

“Basic authentication”, then the user and password must be present in
the request and must correspond to a valid user defined in the protection
set (and user id table).

Servlet resolution and invocation. The SCWS first attempts to find a servlet that
is exactly mapped to the requested URL using the servlet mapping table. If
such a servlet is not found, then the search is done recursively in the ancestors
of the URL.

Once a servlet is resolved, the SCWS invokes the servlet’s method that corre-
sponds to the request (e.g., doPost(), doGet()). This invocation is done by the
method invocation mechanism provided by the Java Card model. The execution
of the servlet’s method may modify the JCVM state but this modification is man-
aged by the Java Card model. The SCWS only manages the modification caused
by this method on the current HTTP response (formalized by curr response).

If the resolved servlet’s method produces no effect on the current HTTP
response, then this servlet refuses the current request and the search is continued
in the URL tree to locate the next candidate.

Request processing. The actions to be done by the SCWS depend on the method
of the request (i.e., GET, POST, PUT, DELETE, HEAD, OPTION, TRACE or
CONNECT) and the requested URL (see Section 2):

– if the URL points to the administration task manager, then the SCWS state
is modified according to the definitions in [12].

– if the URL points to the Global Platform component (i.e., the Card Manager),
the appropriate method of the Global Platform model is invoked.

– if this is a POST request that accesses to a servlet, then this servlet is
resolved and invoked using the requested URL as described above.

– otherwise, the SCWS checks if the requested URL is mapped to a valid static
resource, and returns it (or an eventual error).

The SCWS transition is defined by the following relation:

transition(A, scws stin, jcvm stin, fsin, scws stout, jcvm stout, fsout)

where A is the action that causes the transition, scws stin, jcvm stin, fsin

respectively represent the input states of the SCWS, the JCVM and the file
system while scws stout, jcvm stout, fsout respectively represent the output
states of the SCWS, the JCVM and the file system.
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Example 1. The model of the GET request in the case where no servlet provides
a response is as follows:

transition(GET request, scws stin, jcvm stin, fsin,

scws stout, jcvm stout, fsout) � ∃ request ∃scws staux.

(0) fsin = fsout ∧
(1) curr request(scws stin) = Some(request) ∧
(2) servlet resolution and invocation(doGet(), request, scws stin,

jcvm stin, fsin, scws staux, jcvm stout, fsout) = NO ERROR ∧
(3) curr response(scws staux) = curr response(scws st in) ∧
(4) get file(fsin, scws staux, scws stout)

(0) means that the file system is not modified by this transition.
(1) means the current SCWS state (scws stin) contains some request to be pro-

cessed.
(2) means the servlet invocation produces the output state of the JCVM

(jcvm stout), an temporary SCWS state (scws staux) and no error.
(3) means the servlet invocation has no effect on the HTTP response (because

the response component of scws staux is that of scws stin). In other words,
all servlets refuse the HTTP request. In this case, the request is forwarded
to the file system (static resource).

(4) returns a file (pointed by the requested URL) or an error included in the
output SCWS state (scws stout).

4 Proof of the Security Properties

This section describes the formal statement and the proof of the security prop-
erties presented in Section 2.2. The security properties are formally expressed as
Coq theorems in the following form:

∀ scws stin, scws stout, jcvm stin, jcvm stout, fsin, fsout.

transition(A, scws stin, jcvm stin, fsin, scws stout, jcvm stout, fsout) ⇒
Pre(A, scws stin, jcvm stin, fsin) ⇒ Post(A, scws stout, jcvm stout, fsout)

where Pre states the conditions on the input states of the transition and Post
states the property of the output states.

Theorem 1. (No map on static resource) Mapping a servlet to a URL already
mapped to a static resource, returns error status code and this mapping will not
be registered.
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Theorem 2. (Admin access required) Access to a URL protected by a protection
that requires ADMIN authentication is only allowed if the authentication status
of the input state is ADMIN.

Theorem 3. (Invalid Static Resource) If the SCWS provides a response con-
taining some data (i.e., some file), then this file was already in the file system
before the request processing and the status code of the response is 0x200 (suc-
cess).

Theorem 4. (Invalid Authentication) If the requested URL is protected by a
protection set (or inherits a protection set from its ancestors) and if the authen-
tication failed i.e., (i) no authentication parameter in the request or, (ii) wrong
password or, (iii) the user is not defined in the protection set, then the response
is an error status code.

4.1 External Observation of Servlet Invocation

In order to formalize the properties requiring that a servlet is not invoked by the
SCWS, we use the external observation approach. A servlet is not invoked by
the SCWS if the final state of any SCWS transition is independent of the code
of this servlet. In other words, the servlet’s behavior has no effect on the SCWS
transitions. This approach simplifies the formalization of these properties and
keeps it independent of the Java Card model.

Theorem 5. (Unregistered servlet) Unregistered servlets have no effect on the
final state of a SCWS transition.

To this end we suppose the determinism of the JCVM transitions and of the file
system transitions (i.e., those transitions are functions). The JCVM transition
describes the modification of the JCVM due to the invocation of a servlet by
the SCWS while the file system transition describes the modifications of the
file system due to static resource access requests (e.g., PUT or GET). Intuitively,
all JCVM and file system operations (bytecode execution and file access) are
deterministic. Those are two properties of the JCVM and file system model that
are not in the scope of the SCWS.

The formalization is based on two actions call servlet1 and call servlet2 that
represent the effects of any two different codes of the unregistered servlet (these
two actions having an identical effect on other servlets).

∀ S, scws stin, scws stout1, scws stout2, jcvm stin, jcvm stout1, jcvm stout2

fsin, fsout1, fsout2.

transition(call servlet1, scws stin, jcvm stin, fsin,

scws stout1, jcvm stout1, fsout1) ⇒
transition(call servlet2, scws stin, jcvm stin, fsin,

scws stout2, jcvm stout2, fsout2) ⇒
∀ serv.(S 	= serv ⇒ call servlet1(serv) = call servlet2(serv)) ⇒
unregistered(scws stin, S) ⇒ scws stout1 = scws stout2
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Theorem 6. (Unmapped servlet) Unmapped servlets have no effect on the final
state of a SCWS transition.

This theorem is formalized similarly as Theorem 5 using the hypothesis that the
unmapped servlet is not mapped to the requested URL and any of its ancestors.

4.2 Proof

Notice first that these Coq theorems are sufficient to verify the security properties
presented in Section 2.2. Indeed:

– Property 1 is verified by Theorem 1; Property 2 is verified by Theorem 3;
Property 3 is verified by Theorem 4; Property 4 is verified by Theorem 5.

– Property 5 is verified by Theorem 6; Property 6 is verified by Theorem 6;
Property 7 is verified by Theorem 4.

– Properties 8 and 9 is verified by Theorem 2 under the hypothesis that the
URLs used in the administration commands and the Global Platform com-
mands are only accessible to an “Admin” user. This hypothesis corresponds
to the security policy required by the SCWS administration and the Global
Platform card content management [8].

– Property 10 is the corollary of Theorem 3.

The proof of the Coq theorems is interactive. According to the data structures
used in the model, a relevant proof scheme (e.g., case analysis, induction) is
used. Most of the proofs of the different properties relies on a case analysis of the
different transitions provided by the SCWS and modeled through the transition
predicate. Therefore, for each of this case there are two possibilities :

– The “nominal” case corresponds to the proof hypotheses (e.g., wrong pass-
word), thus the transition relation provides us the corresponding conclusion
(e.g., sending an error code) is in general simple.

– The specific cases contradict the proof hypotheses, and we have to construct
the right premise (from the current context)that allows us to prove the con-
tradiction. This construction can be costly due to the size and the complexity
of the context. If a recursive data structure or action is involved in the prop-
erty (e.g., the URLs or the servlet resolution), then the proof requires an
induction on this structure or action.

Proof of the external observation properties (Theorem 5 and 6) also relies on
case analysis of the two separate transitions (that respectively use call servlet 1
and call servlet 2):

– if the transitions are identical and the request does not invoke the (unregis-
tered or unmapped) servlet S, then we can use the determinism hypotheses
to conclude that both output SCWS states are also identical

– if the transitions are identical and the request invokes S, then one can prove
that because S is either unmapped or unregistered, the SCWS does not
invoke it and thus S has no effect on the output state



46 P. Neron and Q.-H. Nguyen

– otherwise, the transitions being different, the model is proved to be deter-
ministic by showing that the intersection of the premises in two transitions
is empty.

Dedicated tactics have been used to factorize the proof and reduce the mainte-
nance workload. However, a lots of user-interactions are still required to allow
the Coq’s kernel to re-check the whole proof at the end in order to increase the
trustworthiness. In other words, user-interactions are somewhat the cost to pay
for getting a higher level of trust.

5 Related Work

The SCWS is a pretty new software component and to our knowledge, no formal
analysis has been done on it. However, formal techniques have been used by
numerous researchers to analyze the security of the Web-related systems. The
network protocols are the preferred targets for formal methods (see [11,13,4,3]).
The SCWS uses the well-known HTTP and HTTPS protocols that have been
intensively investigated and hence, are not in the scope of our model.

In [1], the authors formalize part of a SMTP mail server in Coq. This model
only covers the mail receiving process. The authors build the model following a
Java implementation rather than the SMTP specification. In contrast, we aim
at preserving the generality of the SCWS specifications as much as possible. If a
choice is required between several specifications, the generality is considered as
the first criterion. Our objective is to ensure that no new smart card backdoor
is introduced by the SCWS and the security services provided by the smart card
are preserved. We do not focus on a specific implementation as done in the
source-code verification approach. Source-code verification is trendy because it
may detect bugs on a real implementation. However, in the current state of the
art, source-code verification is usually limited by the size and the complexity of
the code.

Model checking is also widely used to formalize and verify the properties of the
Web applications (or services). The drawback of the model checking approach
is that an abstraction is usually required on the properties in order to avoid
state explosion. Finding a correct abstraction is not always possible for any
property. The paper [9] describes an attempt to apply SPIN model checker to
the verification of the Web applications. The authors formalize the properties in
a communicating finite automate and use SPIN to verify these properties. Also
using SPIN, [7] presents a tool built upon it to formally analyze the Web services.
In [14], a recovery framework of the Web services is modeled and checked. The
Web applications (or servlets) are not in the scope of our work. Actually, we
focus on the interactions between the servlets and the external world through
the SCWS. Hence, in some sense, this work complements the verification of Web
applications.

The difficulty in designing secure Web systems is partly due to the lack of
a formal foundation: [2] is a recent attempt to bridge this gap. That paper
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presents several attack models on the Web system and evaluates some well-
known counter-measures w.r.t. these models. This is a promising approach to
formally analyze the robustness of the Web systems.

6 Concluding Remarks

In this paper, we presented a formal security model of the SCWS. The formaliza-
tion identified some ambiguities as well as dangerous behaviors of the specifica-
tion (see Section 2.1). This feedback is useful for the standard institutions such as
Global Platform consortium, OMA and ETSI in order to improve their specifi-
cations. On the other hand, several security properties of the SCWS were proved
on the model. These security properties ensure that the SCWS preserves the
overall security of the Java Card/Global Platform model. These security policies
are also required by different protection profiles2 of SCWS-embedded products.
Hence, this work can be used to fulfill the ADV SPM.1 evaluation task3 that is
the only formal method related task of the Common Criteria EAL6 level.

It is worth to highlight the modular approach advocated by this work. The
reuse of the model (and associated proof) bricks provided by the existing Java
Card/Global Platform baseline model4 reduces the overall workload to roughly two
man-months for a Formal Methods expert having general knowledge on smart
(Java) cards. Three thousand lines of model and ten thousand lines of proof have
been developed in this project. The SCWS model also extends the baseline model
by new bricks such as “HTTP protocol” and “servlet management”. Without the
existing bricks, building the Coq model and proof for a new software component
from the scratch may not comply with the industrial constraints. Indeed, the
formal analysis is best done between the specification/design freeze and the im-
plementation. Otherwise, the formal analysis does not generate sufficient added
value on the final product.

Further work consists in refining the security model in more concrete repre-
sentations (e.g., “Functional Specification” and “Design” in Common Criteria
scheme) to get a complete formal chain from the specification to the implemen-
tation and hence, fulfills the Common Criteria highest requirements on the ADV
assurance class that ensures the correctness of the product. Again the develop-
ment of the formal chain will be facilitated by the existing bricks provided by [5].
Note that in order to get a full EAL7 certificate, the other assurance classes
are still to be addressed, in particular, the ATE (Application TEsting) assur-
ance class and the AVA (Application Vulnerability Analysis) assurance class.
These classes are not really related to formal methods: in the current state of
the art, formal models and proofs are mainly used to ensure the correctness
2 A protection profile defines the set of security requirements on an IT product for a

Common Criteria security evaluation.
3 This task requires to build a formal security model of the product and to prove the

evaluation security objectives on this model.
4 More than 100 000 lines of Coq model have been developed for fulfilling the highest

requirements on the ADV (Application DeVelopment) assurance class [5].
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(the robustness of the product being ensured by the ATE and AVA assurance
classes).

Finally, it is worth to mention that in the latest Java Card specification (version
3.0 - connected edition), the Web server is part of the virtual machine that also
includes almost all Java features such as garbage collection and multi-threading.
Java Card 3.0 platform requires significantly more computing resources than the
previous version and is still yet to be accepted by the market. On the contrary,
the SCWS is a pragmatic implementation of a HTTP-based I/O for the currently
deployed smart cards. A security model of the Java Card 3.0 Web server can also
be built at a reasonable cost using the model bricks provided by this work.

Acknowledgments. We thank the anonymous reviewers for their comments
on the previous version of this paper.
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Abstract. In this paper we propose an improved multi-byte differential
fault analysis of AES-128 key schedule using a single pair of fault-free and
faulty ciphertexts. We propose a four byte fault model where the fault is
induced at ninth round key. The induced fault corrupts all the four bytes
of the first column of the ninth round key which subsequently propagates
to the entire tenth round key. The elegance of the proposed attack is that
it requires only a single faulty ciphertext and reduce the search space of
the key to 232 possible choices. Using two faulty ciphertexts the attack
uniquely determines the key. The attack improves the existing DFA of
AES-128 key schedule, which requires two faulty ciphertexts to reduce
the key space of AES-128 to 232, and four faulty ciphertexts to uniquely
retrieve the key. Therefore, the proposed attack is more lethal than the
existing attack as it requires lesser number of faulty ciphertexts. The
simulated attack takes less than 20 minutes to reveal 128-bit secret key;
running on a 8 core Intel Xeon E5606 processor at 2.13 GHz speed.

Keywords: Differential Fault Analysis, Fault Attack, Advanced En-
cryption Standard, Key Schedule, DFA.

1 Introduction

External noise such electromagnetic radiation, glitch in the input clock line,
variation in the supply voltage can create fault in the electronic devices such
as smart card. These properties of electronic devices are being exploited by
the attackers. An attacker can deliberately inject fault into a device running a
cryptographic algorithm. Then by analysing the faulty output he can reveal the
secret key. This kind of attack is known as fault attack which was originally
introduced by Boneh et. al. [7] in 1996 to break RSA crypto-system running
on a smart-card . Subsequently, Biham and Shamir showed a modified form
of the attack which is known as Differential Fault Analysis (DFA) based on
combination of Differential Cryptanalysis and fault analysis [5]. The DFA was
applied on DES crypto-system which successfully retrieved the secret key.

In 2001, NIST standardised Rijndael as the Advanced Encryption Standard
(AES) [1]. Subsequently, many DFA were proposed on AES cryptosystem [6,11,
14, 15, 17] with the aim to reduced the number of faulty ciphertext required by
the attack. However the DFA on AES can be divided into two categories. One in

E. Prouff (Ed.): CARDIS 2011, LNCS 7079, pp. 50–64, 2011.
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which the fault is induced in AES states, another in which the fault is induced in
the key schedule. The literature is rich in attacks on the states. The most recent
among these attacks is the attack on AES-128 proposed by M. Tunstall et. al.
in [21, 22]. They proposed an attack where a single byte fault induced at the
input of eighth round can reduce the AES-128 key space to 28 choices. However,
there is not much research on attacks of AES key schedule.

In 2003, Giraud first proposed a DFA against the AES key schedule [10], which
combined both kind of fault attack; the fault analysis in AES states as well as
in key schedule. The attack was subsequently improved by Chen and Yen in [9].
Chen et. al. attack required to induce fault at the ninth round key. The attack
required less than thirty faulty ciphertexts to successfully retrieve the secret key.
In 2006 Peacham and Thomas in [16], proposed an improved DFA against the
AES key schedule, which reduced the number of faulty ciphertext required by
the attack to 12. In Peacham’s attack, fault was induced at the ninth round
key during execution of the key schedule operation, so that the induced fault
subsequently propagates to tenth round key.

Finally, Takahashi et. al. in [20], proposed an attack, which can reduce the
search space of the key to 248 choices using two faulty ciphertexts. The attack
can reduce the key space to 216 choices using four faulty ciphertexts and can
determine the key uniquely by using seven faulty ciphertexts. In 2008, Kim et.
al. proposed an improved DFA by inducing 3-byte fault at the first column of
ninth round key. Kim’s attack required two faulty ciphertexts and a brute-force
search of 232. With four faulty ciphertexts the attack can uniquely determine
the secret key.

In this paper we propose an improved attack against the AES-128 key sched-
ule. We propose a fault model where the induced fault corrupts all the four bytes
of the first column of ninth round key and the fault subsequently propagates to
the entire tenth round key. Our attack requires only one faulty ciphertext to
reduces the search space of the AES-128 key to 232 choices. Using two faulty
ciphertext our attack can uniquely determine the key. We present extensive sim-
ulation results which shows that the attack takes less than 20 minutes to uniquely
retrieve the 128-bit secret key.

Organization

The paper is organized as follows: We start with Section 2 where we describe the
preliminaries to this paper. In Section 3 we briefly describe the existing attack.
We propose our attack in Section 4. In Section 5 we present experimental results.
In Section 6 we compare our work presented in this paper with the previous
works, and we conclude in Section 7.

2 Preliminaries

2.1 The AES Algorithm

AES [1] is a 128-bit symmetric key block cipher comes in three different versions
AES-128, AES-192, and AES-256 with key length 128-bit, 192-bit, and 256-bit
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respectively. The 128-bit intermediate results are represented as 4 × 4 matrix,
known as state. Each elements of the matrix is a byte. The algorithm is divided
into round function. Each round function except the last round consists of four
transformations namely: SubBytes, ShiftRows, MixColumns and AddRoundKey.
The three versions of AES has three different number of rounds : AES-128 has
10 rounds, AES-192 has 12 rounds, and AES-256 has 14 rounds. The last round
of each of the three versions of AES does not have MixColumns operation. The
four basic transformations are described as follows:

SubBytes : It is the only non-linear byte-wise transformation in AES. Each
element of the state matrix is replaced by its inverse and followed by an
affine mapping. All the operations are under F28 .

ShiftRows : It is a row-wise transformations where the ith row is cyclically
shifted by i bytes towards left where 0 ≤ i ≤ 3 .

MixColumns : It is a column level linear transformation of the state matrix.
Each column of the state matrix is considered as a polynomial of degree 3
with coefficient in F28 and multiplied with the polynomial {03}x3+{01}x2+
{01}x + {02}.
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Fig. 1. Last three rounds of AES-128 key scheduling algorithm
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AddRoundKey: In this transformation the 128-bit round key is bit-wise XOR-ed
with the 128-bit state.

An additional AddRoundKey operation is performed at the beginning of first
round which is known as key whitening phase. Each round key is generated by
the AES key scheduling algorithm. Figure 1 shows the generation of last three
rounds according to the AES-128 key schedule. For more detail on the AES key
scheduling, one can refer the AES specification [1]

2.2 Notations

In the rest of the paper we use following symbols and notations: SubBytes,
ShiftRows,and MixColumns will be referred as SB, SR and MC respectively
and the corresponding inverse functions as SB−1, SR−1 and MC−1.

Kr
i,j : Represent {i, j} byte of the rth round key Kr.

Ci,j : Represent {i, j} byte of the fault-free ciphertext C.
C∗

i,j : Represent {i, j} byte of the faulty ciphertext C∗.

2.3 Fault Model Used

It is clear from the past research on DFA of AES that the fault model is the key
to successful fault analysis. Slightest change in the fault model can drastically
increase or decrease the complexity of the fault analysis. This fact was clearly
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depicted in [3] where it was shown that with the increase of number of byte
faults the search space of the key drastically increases. In our proposed attack we
follow the fault model of Peachman and Thomas [16] where the fault is expected
to induce in the ninth round key while it is being executed and subsequently
propagated to the entire tenth round key. We assume that the induced fault
corrupts all the four bytes of the first column of the ninth round key. Figure 2
show the flow of fault in the last two round keys.

3 Existing Fault Analysis

The most recent attack against the AES-128 key schedule shows that two faulty
ciphertexts are enough to reduce the key space to 232 choices [13]. The attack
assumed a fault model where the induced fault corrupts three out of four bytes
of the first column of the ninth round key K9. As Figure 3 depicts, the induced
fault subsequently propagates to the tenth round key. The three key bytes :
K9

0,0, K
9
1,0, and K9

2,0 are the modified bytes and induced differences due to the
faults are a, b, and c respectively. As per the AES-128 key scheduling algorithm
the fault is propagated to all the subsequent three bytes of the same row of the
ninth round key. As the fault is induced during the generation of key therefore
the fault in the ninth round key also propagated to tenth round key bytes.
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Fig. 3. Fault induced in 9th round key

The fault values d, e, and f can be calculated as follows:

d = SB(K9
1,3) ⊕ SB(K9

1,3 ⊕ b)

= SB(K10
1,3 ⊕ K10

1,2) ⊕ SB(K10
1,3 ⊕ K10

1,2 ⊕ b)
(1)
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e = SB(K9
2,3) ⊕ SB(K9

2,3 ⊕ c)

= SB(K10
2,3 ⊕ K10

2,2) ⊕ SB(K10
2,3 ⊕ K10

2,2 ⊕ c)
(2)

f = SB(K9
0,3) ⊕ SB(K9

0,3 ⊕ a)

= SB(K10
0,3 ⊕ K10

0,2) ⊕ SB(K10
0,3 ⊕ K10

0,2 ⊕ a)
(3)

The fault in the ninth round key affects the AES state after the ninth round
AddRoundKey. Figure 4 shows the flow of fault in the last two rounds.
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Fig. 4. Propagation of Faults in the AES-datapath due to the 3-byte Fault Induction
in the first column of K9

The fault-free and faulty ciphertexts (C, C∗) are known to the attacker. There-
fore, he can represent the fault values {c, c, c, c}, at the input of ninth round using
following equations:

c = SB−1(C2,2 ⊕ K10
2,2) ⊕ SB−1(C∗

(2,2) ⊕ K10
2,2 ⊕ c)

= SB−1(C2,3 ⊕ K10
2,3) ⊕ SB−1(C∗

(2,3) ⊕ K10
2,3)

= SB−1(C2,0 ⊕ K10
2,0) ⊕ SB−1(C∗

(2,0) ⊕ K10
2,0 ⊕ c)

= SB−1(C2,1 ⊕ K10
2,1) ⊕ SB−1(C∗

(2,1) ⊕ K10
2,1)

(4)

In the above set of equations the attacker guesses the values of c and gets the
corresponding values of key quartet 〈K10

2,2, K
10
2,3, K

10
2,0, K

10
2,1〉. As there are 28 pos-

sibilities of c therefore the above set of equations will reduce the possible choices
of 〈K10

2,2, K
10
2,3, K

10
2,0, K

10
2,1〉 to 28 choices from 232 choices. For more details on the

analysis, one can refer to [13, 21]. Similarly, the attacker uses another faulty ci-
phertext and again reduces the possible choices of 〈K10

2,2, K
10
2,3, K

10
2,0, K

10
2,1〉 to 28.

Then he takes the intersection of two sets of values of 〈K10
2,2, K

10
2,3, K

10
2,0, K

10
2,1〉 gen-

erated from two different faulty ciphertexts. The intersection uniquely determine
the key quartet. Now the attacker uses equation (2) and determines the values
of e from the values of c, K10

2,2 and K10
2,3. He follows the same technique to uniquely
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determine the quartets 〈K10
0,0, K

10
0,1, K

10
0,2, K

10
0,3〉 and 〈K10

1,0, K
10
1,1, K

10
1,2, K

10
1,3〉.

Therefore, using two faulty ciphertexts the attacker can retrieve 12 bytes of
the tenth round key K10. This implies that the attacker retrieve 96-bit and need
to perform 32-bit brute-force search to get the master key.

3.1 Limitation of Existing Attack

The existing attack nicely reveals the secret key of AES-128 crypto-system using
only two faulty ciphertexts. However, the attack still needs two faulty ciphertexts
which is the bottle neck of the attack. First of all the induced faults need to
corrupt three out of the four bytes of the first row of the ninth round key.
However, in real life the probability of such an event is small. Fault induction
methods such as described in [3,4,12,18,19] gives an attacker an extent of control,
but cannot precisely realize the number of faults. The probability of success
reduces further if more than one fault inductions are necessary. If probability of
getting such fault is p then the probability of getting two such fault is p2. It its
quite obvious from the experimental result reported in [3, 4, 12, 18, 19] that the
value of p is quite small. Therefore, ideally an attacker would want an attack
which require one faulty ciphertext.

In the next section we propose an improved attack which will produce the
same results as in the existing attack using only one faulty ciphertext.

4 Proposed Attack Using Single Faulty Ciphertext

In our proposed attack, the attacker is expected to induce a fault which corrupts
all four bytes of the first column of the ninth round key as depicted in Figure 2.
The proposed fault model increased the fault coverage where eventually all the
bytes of the ninth round key and subsequently all the bytes of the tenth round
key are corrupted by the induced fault. In the previous attack only 12 out of 16
bytes of ninth round key were corrupted by the induced fault. As in Figure 3 only
the first three rows of the ninth round input state matrix is corrupted by the
faulty ninth round key K9. Therefore, only the first three rows of K10 participate
in forming differential equations. The last row of K10 is not related to any fault
values. Hence there is no trace of getting the last row’s values. But in our fault
model there is no such limitations.

4.1 Attack Principle

The proposed attack exploits the relation between the faulty byte at the input
of the ninth round. Figure 5 depicts the flow of faults. At the input of ninth
round, all the bytes of the state matrix S0 are corrupted. However, each of the
rows have same fault values, which helps in deducing the differential equations.
We have the fault-free and faulty ciphertexts (C, C∗).
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Therefore, we can represent the fault values {m, m, m, m} at first the row of
the state matrix S0 as follows:

m = SB−1(C0,0 ⊕ K10
0,0) ⊕ SB−1(C∗

(0,0) ⊕ K10
0,0 ⊕ m ⊕ w)

= SB−1(C0,1 ⊕ K10
0,1) ⊕ SB−1(C∗

(0,1) ⊕ K10
0,1 ⊕ w)

= SB−1(C0,2 ⊕ K10
0,2) ⊕ SB−1(C∗

(0,2) ⊕ K10
0,2 ⊕ m ⊕ w)

= SB−1(C0,3 ⊕ K10
0,3) ⊕ SB−1(C∗

(0,3) ⊕ K10
0,3 ⊕ w)

(5)

Similarly, the fault values in the rest of the three rows of S0 can be represented
by the following equations:

n = SB−1(C1,3 ⊕ K10
1,3) ⊕ SB−1(C∗

(1,3) ⊕ K10
1,3 ⊕ x)

= SB−1(C1,0 ⊕ K10
1,0) ⊕ SB−1(C∗

(1,0) ⊕ K10
1,0 ⊕ x ⊕ n)

= SB−1(C1,1 ⊕ K10
1,1) ⊕ SB−1(C∗

(1,1) ⊕ K10
1,1 ⊕ x)

= SB−1(C1,2 ⊕ K10
1,2) ⊕ SB−1(C∗

(1,2) ⊕ K10
1,2 ⊕ x ⊕ n)

(6)

o = SB−1(C2,2 ⊕ K10
2,2) ⊕ SB−1(C∗

(2,2) ⊕ K10
2,2 ⊕ y ⊕ o)

= SB−1(C2,3 ⊕ K10
2,3) ⊕ SB−1(C∗

(2,3) ⊕ K10
2,3 ⊕ y)

= SB−1(C2,0 ⊕ K10
2,0) ⊕ SB−1(C∗

(2,0) ⊕ K10
2,0 ⊕ y ⊕ o)

= SB−1(C2,1 ⊕ K10
2,1) ⊕ SB−1(C∗

(2,1) ⊕ K10
2,1 ⊕ y)

(7)

p = SB−1(C3,1 ⊕ K10
3,1) ⊕ SB−1(C∗

(3,1) ⊕ K10
3,1 ⊕ z)

= SB−1(C3,2 ⊕ K10
3,2) ⊕ SB−1(C∗

(3,2) ⊕ K10
3,2 ⊕ z ⊕ p)

= SB−1(C3,3 ⊕ K10
3,3) ⊕ SB−1(C∗

(3,3) ⊕ K10
3,3 ⊕ z)

= SB−1(C3,0 ⊕ K10
3,0) ⊕ SB−1(C∗

(3,0) ⊕ K10
3,0 ⊕ z ⊕ p)

(8)

As per the AES-128 key scheduling algorithm the fault value w in the tenth
round key K10 can be express in terms of n by the following equations:
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w = S(K9
1,3) ⊕ S(K9

1,3 ⊕ n)

= S(K10
1,3 ⊕ K10

1,2) ⊕ S(K10
1,3 ⊕ K10

1,2 ⊕ n)
(9)

Similarly, we can represent x, y, z by n, o, p respectively and K10 using the fol-
lowing equations:

x = S(K10
2,3 ⊕ K10

2,2) ⊕ S(K10
2,3 ⊕ K10

2,2 ⊕ o) (10)

y = S(K10
3,3 ⊕ K10

3,2) ⊕ S(K10
3,3 ⊕ K10

3,2 ⊕ p) (11)

z = S(K10
0,3 ⊕ K10

0,2) ⊕ S(K10
0,3 ⊕ K10

0,2 ⊕ m) (12)

Now we have four sets of differential equations for the four quartets of key bytes
like the attack in [21]. However, we can not directly apply the solving technique
proposed in [21]. The reason is each set of equations contain six unknown vari-
ables. For, example the unknown variables in the first set of equations (5) are
{K10

0,0, K
10
0,1, K

10
0,2, K

10
0,3, m, w}. Therefore, in this case we have to guess all possi-

ble values of m and w. For one choice of (m, w) on an average we get one choice
of 〈K10

0,0, K
10
0,1, K

10
0,2, K

10
0,3〉. Therefore, for all possible 216 choices of (m, w) we

get 216 choices of the key quartet. If we apply the same technique to the other
three sets of equations (6), (7), (8) we get 216 choices for each of the three
quartets. Therefore, finally we get (216)4 = 264 choices of the key K10 which is
not in practical limits. This means the previous solving technique is not directly
applicable.

We follow divide and conquer technique to solve the above four sets of differ-
ential equations [2]. We use S-box difference table so that we can directly get
the values of the key byte from the given S-box input difference and the out-
put difference. We start with the first set of differential equations (5). In these
sets of equation we guess the possible values of (m, w). For one choice of (m, w)
we directly get on an average one choice of 〈K10

0,0, K
10
0,1, K

10
0,2, K

10
0,3〉 using S-box

difference table. Therefore, for 216 possible choices of (m, w) we get 216 choices
of the key quartet with time complexity 216. For, each value of m and the cor-
responding value of K10

0,2, K
10
0,3 we get the values of z using equation (12). Next

we consider the fourth set of equations (8) where the values of z are already
known from the previous steps. Therefore, in (8) we only guess the values of p
and get the values corresponding to the quartet 〈K10

3,0, K
10
3,1, K

10
3,2, K

10
3,3〉. For each

values of (m, w, z) and p we get one value of 〈K10
3,0, K

10
3,1, K

10
3,2, K

10
3,3〉. There are

216 possible choices of (m, w, z) and 28 choices of p. Therefore, together we have
224 choices of first and fourth quartets of key bytes from the first and fourth set
of equations and the time complexity of the process is 224.

Now we use the values of K10
3,3, K

10
3,2 and p to get the corresponding values

of y using equations (11). Similarly, we choose the third set of equations (7)
and get the 28 values 〈K10

2,0, K
10
2,1, K

10
2,2, K

10
2,3〉. Therefore, from the three sets

of equations (5), (7), and (8) we get 232 choices of the first, third and fourth
quartet of key bytes. Following the same technique we get the values of x from
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equation (10) and then get the 28 values of the second quartet of key bytes
〈K10

1,0, K
10
1,1, K

10
1,2, K

10
1,3〉 using the second set of equations (6). Therefore, now we

have 240 choices of all the four quartets of key bytes which is the tenth round
key K10.

But still we have one equation left unchecked i.e. equation (9). Each of the
tenth round key and the corresponding values of w is tested by equation (9).
Those which satisfy are considered and the rest are discarded. Finally, 232 out of
240 candidates will satisfy equation (9). Therefore, finally we have 232 possible
choices of the tenth round key K10. So, we need to do 32-bit brute-force search
to get the master key.

However, the attack time complexity is 240 which is in practical limits. But
the entire attack takes around 14 hours to generate all the possible 232 keys
which is not feasible in terms of side-channel cryptanalysis.

In the next section we show a technique which further reduces the time com-
plexity of the attack.

4.2 Time Complexity Reduction Technique

The proposed attack has got four steps. In the first step we deduce the possible
choices K10

0,i where 0 ≤ i ≤ 3 and z. Similarly, in second, third and fourth steps we
get the possible choices of K10

1,i, K10
2,i,and K10

3,i respectively and the corresponding
values of y, x, w.

In the first step, for a given value of w we get 28 choices of the quartet K10
0,i

from which we calculate z. However for getting z from equation (12) we need only
two key bytes (K10

0,3, K
10
0,2) of quartet K10

0,i. Therefore, we only consider the unique
values of (K10

0,3, K
10
0,2) out of 28 values of K10

0,i. The number of unique values of
(K10

0,3, K
10
0,2) is given by 28

22 = 26 [2]. Similarly, in the rest of the three steps we
consider 26 choices of (K10

3,3, K
10
3,2), (K10

2,3, K
10
2,2) and (K10

1,3, K
10
1,2) each for getting

the values of y, x, and w respectively. This implies, for testing equation (9)
indirectly we need only eight key bytes. For a given value of w the possible
choices of these eight key bytes is (26)4 = 224. For all possible 28 choices of w
we have 224 × 28 = 232 choice of the required eight bytes. Each choice of these
eight key bytes are tested by equation (9) if they satisfy they are accepted, else
they are discarded. Thus only 224 out of 232 choices satisfy the test. Those which
satisfy are combined with rest of the eight key bytes (K10

0,0, K
10
0,1), (K10

1,0, K
10
1,1),

(K10
2,0, K

10
2,1), (K10

3,0, K
10
3,1) . There are 22 × 22 × 22 × 22 = 28 choices for rest of

the eight key bytes. Therefore, using this technique the equation (9) is tested for
232 times which correspond to the time complexity of the attack. This implies,
that using this technique the time complexity of the attack reduced to 232 from
240 and hence comes in practical limits.

The simulated, attack written in C programing language was run on a 8
core Intel Xeon E5606 processor at 2.13 GHz speed. The attack takes less
than 20 minutes to deduce the master key. Algorithm 1 summarizes the attack
procedure.
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Algorithm 1. DFA on AES-128 Key Scheduling using Single Faulty Ciphertexts

Input: P, C, C∗

Output: 128-bit AES key
/*P is the plaintext */1

for Each candidates of w do2

for Each candidates of m do3

Get {K10
0,2, K

10
0,3} from equations (5)4

Get z from equation (12).5

for Each candidates of p do6

Get {K10
3,2, K

10
3,3} from the equations (8).7

Get y from equation (11).8

for Each candidates of o do9

Get {K10
2,2, K

10
2,3 from equations (7)10

Get x from equation (10).11

for Each candidates of n do12

Get {K10
1,2, K

10
1,3} from equations (6).13

Test equation (9).14

if Satisfied then15

for Each values of16

{K10
0,0, K

10
0,1, K

10
1,0, K

10
1,1, K

10
2,0, K

10
2,1, K

10
3,0, K

10
3,1} do

Get K10.17

Get the AES key K using AES Key Schedule.18

if P=Decrypt(K,C) then19

Save K;20

end21

end22

end23

end24

end25

end26

end27

end28

4.3 Analysis of the Proposed Attack

There are total 20 differential equations in the proposed attack: 16 in four sets
of equations (5), (6), (7), (8), and 4 more for equations (9), (10), (11), and (12).
Each of these equations reduces the 216 possible choices of right hand side (cor-
responding to two S-box output) to 28 choices in the left hand side. Therefore,
the reduction is given by ( 1

28 ). If there are N differential equations then the
reduction is given by ( 1

28 )N . If N equations contain M unknown variables then
the reduced search space is give by (28)(M−N). For more details on the analysis,
one can refer to the paper [21]. We have 20 equations with 24 unknown vari-
ables; namely m, n, o, p, w, x, y, z and 16 unknown key bytes. Therefore, we have
(28)(24−20) = 232 choices of final round key.
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The time complexity of the attack is also 232 as explained in the previous
section.

Note:
In some cases the attacker may not have access to the plaintext. So, he can not
perform brute-force search on the possible guessed keys. In that case the attacker
need to uniquely determine the key. Our attack can be applied in such a situation
with two faulty ciphertexts. Say the faulty ciphertexts are (C∗

1 , C∗
2 ). If we apply

our proposed attack on these two faulty ciphertexts, we will have two sets of
fault values m1, n1, o1, p1, w1, x1, y1, z1 and m2, n2, o2, p2, w2, x2, y2, z2. Each of
these sets will produce corresponding 20 differential equations.

Now we can apply our attack on each of these sets in step by step fashion.
In the first step we guess the values of (w1, m1) and get 216 choices of K10

0,i

where 0 ≤ i ≤ 3. For each of these choices we guess one value of w2 and test
equations (5) with the deduced key quartet K10

0,i. If these two values satisfy the
equations we accept them, else we discard them. There are 8 equations (two
sets of equations (5) from two faulty ciphertexts ) and 8 unknown variables (
m1, m2, w1, w2 and K10

0,i). This implies only one key candidate will satisfy the
test.

In the second step we get the values of z1, z2 and guess the possible values
of p1, and p2 each of which will produce 28 choices K10

3,i. Intersection of these
two sets will uniquely determine K10

3,i. Following the same technique in third and
fourth steps we can uniquely identify rest of the two key quartets K10

1,i and K10
2,i.

So, finally we will have one choice of K10. The time complexity of these attack
is 224 as initially we need to guess w1, w2, and m1 to get the values K10

0,i.
The attack analysis is quite obvious. One faulty ciphertext reduces the key

space to 232 from 2128. Therefore, two faulty ciphertexts will reduce the search
space to ( 232

2128 )2 × 2128 = 1
264 . This implies only the actual key will left and rest

of the guessed keys will be discarded by the attack.

5 Experimental Results

In order validate our attack we performed extensive simulations. Some of the
simulation results are presented in this section. We used 8 core Intel Xeon
E5606 processor of 2.13 GHz speed running on Linux (Ubuntu 10.4). The at-
tack code was written in C programming language and compiled with gcc-4.4.3
with O3 optimization. The simulation was performed over 100 times on different
random keys. Some of the results are shown in Table 1. The attack takes less
than 20 minutes to reveal the secret key. The first column of Table 1 represents
the random 16-bytes keys which were attacked. The second column represents
the number of possible key generated by the attack. The last column represents
the total time taken by the attack which corresponds to generating possible keys
and then performing brute-force search on them to get the master key.
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Table 1. Experimental Results

Random 128-bit Number of Possible Running Time

Key Keys (Minutes)

aaf3100fdf183ef427464fbf4db85f7a 3976380416 ≈ 231.88 17.65

5da4e5407bae5f94cc4a264bf694c0d2 8744409088 ≈ 233.025 18.533

19345421476b4e2b72191a845d30942a 8424587264 ≈ 232.971 18.791

226156432112475303294a5bc2326a96 4018579456 ≈ 231.90 18.883

5da4e5407bae5f94cc4a264bf694c0d2 4223047680 ≈ 231.975 19

6 Comparison with the Previous Works

In this section we compare our attack with some of the existing attacks in these
area. The first DFA on AES key schedule was proposed by Giraud [10]. Giraud’s
attack requires 250 faulty ciphertexts and five days execution time to retrieve the
secret key. The attack proposed by Chen and Yen in [9], was an improvement
over Giraud’s attack where around 30 faulty ciphertexts were used. Peacham
et. al. in [16] proposed an attack using 12 faulty ciphertext. DFA on AES key
schedule using two faulty ciphertexts was first time proposed by Junko Takahashi
et. al. [20], which reduced the AES key space to 248 choices. Kim et. al. in [13],
further improved the attack and reduced the key space to 232 possible choices
using two faulty ciphertexts.

Compared to these attacks our attack requires only one faulty ciphertext. The
required brute-force search for our attack is 32-bit which is same as in Kim et.
al.’s attack [13]. Therefore, the proposed attack required minimal faulty cipher-
texts to mount an attack on AES key schedule. Table 2 shows the comparison.

Table 2. Comparison with existing attack on AES-128 key schedule

Reference Fault Model Number Exhaustive

of Faults Search

[9] Single byte fault 22 to 44 1

[16] Multi byte fault 12 1

[20] Multi byte fault 2 248

[13] Multi byte fault 2 232

Our Attack Multi byte fault 1 232

7 Conclusions

We proposed an improved attack on AES-128 key schedule. The attack require
only one pair of fault-free and faulty ciphertexts. The proposed attack reduces
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the AES-128 key space to 32-bit. The time complexity of the attack is 232. In
order to validate the attack we have provided extensive simulation results. The
simulated attack retrieves the secret key on less than 20 minutes on an 8 core
Intel Xeon E5606 processor at 2.13 GHz speed. This shows that the attack is
indeed practical.
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Abstract. The contribution of this paper is twofold: (1) a novel fault
injection attack against AES, based on a new fault model, is proposed.
Compared to state-of-the-art attacks, this fault model advantage is to
relax constraints on the fault location, and then reduce the a priori
knowledge on the implementation. Moreover, the attack algorithm is
very simple and leaves room for optimization with respect to specific
cases; (2) the fault attack is combined with side-channel analysis in or-
der to defeat fault injection resistant and masked AES implementations.
More precisely, our fault injection attack works well even when the at-
tacker has only access to the faulty ciphertexts through a side-channel.
Furthermore, the attacks presented in this paper can be extended to any
SP-Network.

Keywords: AES, SCA, DPA, DFA, Side-Channel Analysis, Fault At-
tacks, masking scheme, combined attack.

1 Introduction

In a hostile environment, devices embedding cryptographic algorithms are sus-
ceptible to so-called physical attacks, namely Side-Channel Analysis (SCA) and
Fault Attacks (FA). To recover the key, SCA makes use of physical leakages em-
anating from a device (power consumption, electromagnetic radiations, ...) while
it performs a cryptographic operation. FA exploit logical error(s) induced by the
adversary on a device running a cryptographic operation to retrieve the secret.

These two classes of attacks have been widely studied these last years, and
countermeasures have been suggested to thwart them. As a first contribution,
we propose to study the security of block ciphers, more precisely SP-Networks,
against a new type of FA. We will show that in many implementations, it is
possible to relax the state-of-the-art fault models of FA. Our second contribution
is to attack an implementation where countermeasures against FA and SCA have
been embedded such that the faulty outputs are only accessible through side-
channel leakage. To that purpose we combine our FA with a classical 1st-order
SCA. This second contribution is the true goal of this paper, the FA was indeed
designed to this end. We remarked that in order to make use of a statistical
analysis such as SCA on faulty computations, one must be able to repeat the
same fault several times. Interestingly enough, this property led to a simple and
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generic FA attack that straightforwardly combines itself with SCA. The attacks
proposed in this article will be presented on the Advanced Encryption Standard
(AES) [2], because it is the most studied SP-Network, but they can be applied
to any SP-based cipher.

The paper is organized as follows: Section 2 describes previous works on SCA,
FA, and their countermeasures. A brief summary on combined attacks is given.
Section 3 defines some notations used in the rest of the document. Section 4
describes our new fault attack against AES. Section 5 explains our combined
fault and side-channel attack against FA- and SCA-resistant implementations
of AES. Possible countermeasures against this attack are given in Section 6.
Finally, we conclude and give future directions of this study in Section 7.

2 Previous Work

In this section, we briefly present the main SCA and FA against block cipher
implementations and the sound countermeasures that have been introduced in
the literature. The combination of such countermeasures should thwart both
SCA and FA. The idea of combining SCA and FA in order to create a more
powerful attack is not new, we will list the previous combined attacks and discuss
their strength against secure implementations.

2.1 SCA and Masking

The observation of a block cipher implementation through a side-channel (e.g.
power consumption, electromagnetic radiations, timing, etc. . . ) has been shown
to give information about intermediate variables manipulated by the block ci-
pher.

SCA attacks make use of leaked information about intermediate variables that
are dependent on the unknown secret key and the known plaintext (we will refer
to sensitive variables in the sequel). SCA attacks have been first introduced by
Kocher et al. in their seminal paper describing Simple Power Analysis (SPA for
short) and Differential Power Analysis (DPA for short) [22]. Since then, SCA has
become a real threat to security devices. DPA is especially powerful because of
its robustness to noise, and has been applied to many block ciphers. Moreover,
several variants were proposed to enhance the attack success. Let us just cite
the main improvements of the statistical distinguisher: CPA [10] and MIA [17].
In the following, we use the term Differential Side-Channel Analysis (DSCA for
short) for attacks based on DPA, CPA, MIA or other variants.

Principle of DSCA: let us consider the sensitive variable s, depending on both
the unknown secret key k and the known plaintext p. When s is computed
by the device, some information on s is leaked and may be captured by the
adversary. We denote by L(s) this information leakage. The leakage function L()
is composed of a deterministic part φ and some noise B (that includes both
algorithmic and electronic noise):

L(s) = φ(s) + B (1)
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Note that B is generally assumed to be close to a Gaussian noise of mean μ and
standard deviation σ: B ∼ N (μ, σ). In DSCA, the adversary tries to correlate
the leaked information L(s) with a prediction L̂(s) of the behavior of L(s) for
various values of p. The predictions are dependent on the choice of φ (typically
the Hamming weight function, HW for short) and a hypothesis on k. For a
given choice of φ, the right hypothesis on k is expected to lead to the highest
correlation.

The threat of DSCA-like attacks led to the research of sound and efficient
countermeasures. Among them, the so-called masking schemes constitute the
only family of countermeasures for which formal proofs of security have been
given [11]. A masking scheme consists in randomizing the manipulated inter-
mediate variables, such that the side channel observations do not yield useful
information about sensitive variables.

To illustrate the basic idea, we consider a Boolean masking scheme of order d
applied on a function f . Let s be a sensitive variable depending on p and k, let
m1, · · · , md be the d random input masks, and let m′

1, · · · , m′
d be the d random

output masks. The variable s is then randomized in d shares, as follows: s ⊕
m1 ⊕ · · · ⊕md, m1, · · · , md. So the function f has to be transformed into a new
function f ′ such that:

f ′(s⊕m1 ⊕ · · · ⊕md, m1, · · · , md) = f(s)⊕m′
1 ⊕ ...⊕m′

d (2)

At the end of a cipher encryption, one has just to unmask the result with the d
masks to get the ciphertext. Several methods have been proposed in the literature
to implement such a masking scheme, for different values of d, for instance [3,
20, 22, 26, 28].

Nevertheless, a dth-order masking scheme is susceptible to a (d + 1)th-order
differential side-channel attack, initially introduced in [23], which consists in
combining (d+1) side-channel leakages, e.g. the one where the masked sensitive
variable is handled and those where the different masks are manipulated. It has
to be noted that high-order side-channel attacks become impracticable as the
order increases, mainly for two reasons:

– when combining the different side-channel leakages, the resulting noise in-
creases exponentially with d [11];

– the adversary has to guess the instants where the different side-channel leak-
ages occur, which, in the absence of truly efficient detection algorithms, im-
plies an exponential increase of the computation time of the attack with d.

2.2 DFA and Redundancy

The first use of logical faults to break a cipher appeared in a paper of the Bellcore
team in 1997 [9]. They showed how a unique fault could be used to break a RSA
implementation. The next year, Biham and Shamir introduced the concept of
Differential Fault Analysis (DFA) [7] on the Data Encryption Standard (DES) [1].
This concept has been applied later on SP-Networks (mainly on AES), through
different attacks [8, 12, 16, 18, 21, 25, 27].
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Among them, the attack of Piret et al. [27] is probably the most powerful. It
allows to retrieve an AES key with only one pair of correct/faulty ciphertexts and
a computation time of about 240 (note that improvements have been proposed
to reduce this offline phase [19, 32]), when the adversary can induce a fault on a
single byte of the state before the penultimate MixColumn.

The most popular countermeasure against DFA consists in spatial or tempo-
ral redundancy, as explained in [6]. The idea is to compute at least two times
the cryptographic operation, and to compare the obtained results. The device
provides the result of the cryptographic operation only if the different results
are equal. Several variants exist:

– one can (temporally or spatially) duplicate only the last rounds of the block
cipher, as most of the DFA focus on inducing faults on the last rounds of
block ciphers;

– one can encrypt the plaintext, keep the obtained ciphertext in the device,
decrypt the ciphertext and compare the new plaintext with the original one;
thus the ciphertext is output only if both are equal.

2.3 Combined Attacks and Combined Countermeasures

Recently, different works proposed to exploit SCA and FA together to develop
more powerful attacks. In [30], the author uses a laser beam to increase the
power consumption of a micro-controller logic cell and exploits this phenomenon
via power analysis. In [29], the authors introduce the Differential Behavioral
Analysis (DBA), which combines Safe Error Attack (SEA) and DPA. The DBA
requires the adversary to be able to induce a fault during several encryptions.
Moreover the fault has to be repeatable, must affect a small number of bits
(less than 8) and is also expected to induce a fixed (possibly unknown) stuck-at
value. The authors show in simulation that the DBA can break an AES hardware
implementation, but one has to note that the DBA is ineffective on a masked
implementation.

The same year, [4] introduced a Passive and Active Combined Attack (PACA)
on Public-Key Cryptography. Later, the same idea was applied on AES in [14].
The fault also assumes a stuck-at model. It is shown how a PACA can defeat
a masked implementation of AES. Nevertheless, it has to be noticed that this
attack can only break a first order masking scheme of AES. In the case of an
AES implementation masked at order equal or greater than 2, this PACA just
reduces the DSCA of one order.

Thus, to our knowledge, no successful practical side-channel attack has been
reported in the literature targeting a masking scheme of AES at order equal
or greater than 2. One can then consider that an AES implementation with
a masking scheme at order at least 2, with one of the DFA countermeasures
cited in Section 2.2, is protected against both state-of-the-art SCA and FA. In
Section 5, we show that this is not true if the redundancy check of the fault
injection countermeasure manipulates unmasked ciphertexts (or plaintexts).
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3 Notations

In the following, we will denote respectively by P, C, K, Z and E the plaintext,
the ciphertext, the secret key, the targeted intermediate value and the error. All
these values are over 16 bytes. We will frequently use their vector representation
in (GF(28))16 (e.g. P = (P0, · · · , P15)).

We will consider the AES cipher as an example to describe the attacks, but all
of them can be straightforwardly extended to any SP-Network. As a consequence,
we will use the common AES sub-function names (e.g. see [2]) to denote either
the non-linear layer (SubByte) or the linear layer (ShiftRow and MixColumn)
of the cipher. Moreover the different size parameters will correspond to the AES-
128’s, involving 10 rounds with 128 bits master key, and 11 round keys (denoted
K0, · · · , K10).

The attacks presented here will mainly involve fault injection in the last round
of AES, where only the SubByte, ShiftRow and the last AddRoundKey oper-
ation appear. Without loss of generality we omit the last ShiftRow operation,
as its only effect would be to render indices unreadable.

We will use the so called correlation side-channel analysis, based on the Pear-
son correlation coefficient. Let ρ(X, Y ) denote the correlation between the two
random variables X and Y , we recall that it is defined by:

ρ(X, Y ) =
cov(X, Y )
σ(X).σ(Y )

4 A New DFA

In this section we present a new perturbation attack on AES. We first consider
a FA-unprotected AES implementation.

We will consider several types of AES implementations, masked or not, and
propose a DFA attack based on more or less restrictive fault models. Many types
of faults can be investigated; in practice, the apparition of one kind of fault or
another is strongly dependent on the means of the fault injection (laser beam,
glitches, etc. . . ) and to the hardware target (micro-controller, ASIC or FPGA
implementations). We believe that the fault model considered in some of these
scenario is much less constraining than any other proposed by now. In the next
section, those attacks will be combined to SCA in order to defeat a FA resistant
and masked implementation.

4.1 Best Case Scenario: Key Schedule Pre-computation

For sake of clarity, let us first consider the target implementation where our DFA
attack accepts the widest fault model. The (hardware or software) implementa-
tion is as follows:

– the implementation possesses no countermeasure against DFA;
– the secret key is stored in (e.g. non-volatile) memory;
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– at each reset of the device (that an attacker has control upon, this can
correspond to simply powering off the device), the key schedule is run and
the round keys are stored in volatile memory and will be used for any later
ciphering/deciphering execution.

Remark that the implementation may include SCA countermeasures.

Fault Model. The attack will target the key-scheduling algorithm. The fault
shall be transient (i.e. future computations shall not be affected) and affect the
key schedule in its last but one round. The fault could be of any kind, short to
destroy or stop the device. The wanted effect is to have the last but one round
key incorrect (and, as a side effect, also the last round key). Furthermore the
fault can affect any part of the last two round keys in any possible way, for each
affected byte of the next to last round key the attack will recover one of the last
round key byte (see Remark 2 below).

When the fault injection is successful, the affected last two round keys will be
written as the XOR of the valid round keys and an error:

K̃9 = K9 ⊕ E9

K̃10 = K10 ⊕ E10
(3)

Attack Description

1. Encrypt N messages P 1, · · · , PN .
2. Reset the device and inject an error in the key-schedule.
3. Encrypt P 1, · · · , PN once more1.
4. It produces N pairs of valid-faulty ciphertexts (C1, C̃1), · · · , (CN , C̃N ).
5. For each byte index j of the ciphertexts, process separately:

6. For each hypothetic value (e9, e10, k) ∈ (F28)3 of the error bytes E9
j = e9

and E10
j = e10 respectively on the 9th and 10th round key, and the sub-

key byte K10
j = k (of the last round key) create a counter, denoted by

Te9,e10,k. For each pair of valid-faulty ciphertext (Ci, C̃i), do the follow-
ing:

7. Increment the counter Te9,e10,k if

SubByte
(
SubByte−1(Ci

j ⊕ k)⊕ e9

)
⊕ k ⊕ e10 = C̃i

j

8. Find the triplet of error and subkey bytes that led to the highest counter.
If the counter is N , then mark the triplet as right. Otherwise the fault
injection was not successful.

9. The last round key is retrieved from the different marked subkey bytes when
the corresponding error byte e9 is non-zero.

The complexity of the attack is in O(N(28)3) for N faulty ciphertexts.
1 In all the sequel, the only constraint on the plaintexts is that they must be used

twice, they do not have to be known.
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Why the Attack Works. The main idea in the attack above is the ability to
inject an error such that any future cipher execution will be impacted by the
same error. More precisely, we are here artificially building an unknown but fixed
difference in the last round of the cipher. As a matter of fact, for any 0 ≤ j ≤ 15,
the difference between SubByte−1(Ci

j⊕K10
j ) and SubByte−1(C̃i

j⊕K̃10
j ) is fixed

over all i ≤ N and equal to E9
j .

Let us first assume that the fault injection was successful and that only the
last two round keys are affected with respectively the error E9 and E10. Af-
ter the execution of the attack algorithm, for any 0 ≤ j ≤ 15, the counter
TE9

j ,E10
j ,K10

j
is trivially equal to N . On the other hand the probability for a

triplet (e9, e10, k) �= (E9
j , E10

j , K10
j ) to have Te9,e10,k = N in step 8 of the attack

algorithm is about
(

1
256

)N . This result is only a rough estimation considering
the AES cipher. The probability is actually dependent on the S-box uniform
differentiability, the better the S-box is (in term of resistance against differential
attacks), the better the DFA will work2. Our simulations confirm that 3 pairs of
valid-faulty ciphertexts are enough to get a success rate superior to 90%.

If we consider now that the fault injection impacted more than the last
two round keys (i.e. the fault model is violated). Then the difference between
SubByte−1(Ci

j ⊕ K10
j ) and SubByte−1(C̃i

j ⊕ K̃10
j ) (denoted Δi

j) is not fixed
anymore. This does not change anything for the wrong triplets (e9, e10, k) �=
(E9

j , E10
j , K10

j ), their corresponding counter will have the same probability to
reach N . By opposition, the right counter TE9

j ,E10
j ,K10

j
will have a lower proba-

bility to reach N . This probability is in fact dependent on the distribution of the
differences Δi

j for a fixed j (e.g. when the distribution is uniform, the probability
to reach N is equal to the other counters).

Remark 1. In the case where the fault model is not respected but still the dif-
ference Δi

j is fixed with a biased probability, it is possible to adapt the attack
algorithm in order to retrieve the key. Indeed, a non-uniform distribution in the
Δi

j will eventually be distinguished (when N grows) by looking at the Te9,e10,k

distribution.

Remark 2. Let us note that if the byte K9
j of K9 is not affected by the fault

injection, then the corresponding byte K10
j will not be retrieved by our attack.

Hence, the wider the fault, the better the attack. This is in opposition with
classical DFA where the fault model restricts the fault size.

The attack described here assumed that the key schedule was pre-computed, let
us now consider cipher implementations where the key schedule is re-executed
for each cipher run.

4.2 Key Schedule Re-executed at Each Cipher Execution

In the setup where the key schedule is re-computed at each cipher execution, the
attack algorithm will have to be modified, now N fault injections being necessary
2 This is a classical observation in DFA [27].
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to get N faulty ciphertexts. The fault model will also have to be modified,
two cases can be distinguished whether the key schedule implementation uses
masking countermeasures or not. Eventually, in a fully masked implementation,
the fault model will be severely restricted.

Unmasked Key Schedule Implementation. In the case of an unmasked key
schedule implementation, our attack still targets the key schedule algorithm. The
main difference with the attack proposed in previous Section is the fact that a
unique error will not be enough anymore to compute N faulty ciphertexts. For
each faulty ciphertext computation, the fault injection must be re-applied. As a
consequence, the fault injection must possess a new property: a good repeatability
(i.e. two injected faults have a good chance to induce the same error). Indeed,
if we consider that, with an identical fault injection setup on the key schedule
computation of two cipher executions on the same key, the injected fault is
always the same, then the attack here will have the same success rate and same
complexity than the attack described in Section 4.1. Let us insist that since
the fault is injected on the key schedule, the same values are modified (at each
execution the key schedule is manipulating the same intermediate variables),
thus, again here, any kind of fault that affected the last two round keys can be
written as the XOR of the valid round keys and an error (as in equation 3)

The attack steps are then:

1. Encrypt N messages P 1, · · · , PN .
2. Encrypt P 1, · · · , PN once again, this time with a fault injection during the

last but one round of the key schedule.
3. It produces N pairs of valid-faulty ciphertexts (C1, C̃1), · · · , (CN , C̃N ).
4. For each byte index j of the ciphertexts, process separately:

5. For each hypothetic value (e9, e10, k) ∈ (F28)3 of the errors byte E9
j = e9

and E10
j = e10 respectively on the 9th and 10th round key, and the sub-

key byte K10
j = k (of the last round key) create a counter, denoted by

Te9,e10,k. For each pair of valid-faulty ciphertext (Ci, C̃i), do the follow-
ing:

6. Increment the counter Te9,e10,k if

SubByte
(
SubByte−1(Ci

j ⊕ k)⊕ e9

)
⊕ k ⊕ e10 = C̃i

j

7. Find the triplet of error and subkey bytes that led to the highest counter.
If the counter is ”high enough” compared to the others, then mark the
triplet as right. Otherwise, if no triplet can be significantly distinguished
from the others, the fault injection was not successful (it might either
mean that the fault is not injected at the right location or that the fault
repeatability is not high enough).

8. The last round key is retrieved from the different marked subkey bytes when
the corresponding error byte e9 is non-zero.
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We believe that the hypothesis about fault injection repeatability is realistic,
although of course a 100% repeatability seems a too strong assumption. Hence
we simulated the attack (at each cipher execution, the injected fault is either
fixed or random with a given probability). Figure 1 shows the exponential cost
in the number of plaintexts (N) to get a 90% success rate attack as a function of
the repeatability probability (the experiment has been done 100 times for each
probability of fault repeatability).

Furthermore, we implemented the AES-128 on a FPGA platform and per-
formed the described attack. We induced the faults by clock glitches during the
next to last round of the key schedule and verified that the fault repeatability
was good enough: the attack required 15 faulty ciphertexts to recover the 11
round key bytes that have been affected by the fault. According to the table
given besides Figure 1, this means that the fault repeatability of our attack is
about 50%. The setup and attack are detailed in Annex A.
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Fig. 1. Number of valid-, faulty-ciphertext pairs for 90% success rate with respect to
the probability of fault injection repeatability (in %)

Remark 3. The attack can be seen as an artificially constructed differential
cryptanalysis. As a matter of fact, it works the same way and is based on the
same assumption: there exists an output differential that occurs more often than
the others. Hence, the classical results on differential cryptanalysis success rate
can be straightforwardly applied and formalize our results here (see, for instance,
[5]). Let us note here that the value of the output differential (before the last
round) is unknown in our case, which does not change much, it shows that
the knowledge of the existence of a good differential is what matters and the
knowledge of the difference value is useless.
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Remark 4. We have considered here that the key schedule is unmasked, it is
interesting to add that the attack would also work if the key schedule was masked
with a fixed mask (i.e. at each key schedule execution the same mask is used).
Such fixed mask key schedule is very attractive from the performances point-of-
view and yet resistant against 1st-order SPA or profiled attacks on key values.

Masked Implementation. In the case where the implementation is fully
masked, i.e. the intermediate variables of the whole cipher computation is masked
with randomly generated values, the fault model will have to be drastically re-
stricted, we still believe it is relevant when considering certain categories of
hardware/injection materials (e.g. using a laser beam [24]). We consider here
that a Boolean masking scheme is used, the masking may be of any fixed order
d (see Section 2.1 for definitions and details about masking countermeasures).

Fault Model. As mentioned in the previous attack scenarios, the gist of the attack
is to get pairs of valid-faulty ciphertexts with fixed difference in the last round.
Let us now consider that an attacker injects the same fault in two different
executions during the last but one round of the masked key schedule, for our
attack to work, we would like the following equations 4 and 5 to be satisfied with
fixed (a priori unknown) values E9 and E10:

K̃9 = K9 ⊕M9 ⊕ E9

K̃10 = K10 ⊕M10 ⊕ E10
(4)

K̃
′9 = K9 ⊕M

′9 ⊕ E9

K̃
′10 = K10 ⊕M

′10 ⊕ E10 ,
(5)

where K9 and K10 are the last two round keys, M9 and M10 (resp. M
′9 and

M
′10) are the random masks of round keys K9 and K10 for the first (resp.

second) cipher execution. K̃9 and K̃10 (resp. K̃
′9 and K̃

′10) are faulty round
keys for the first (resp. second) cipher execution.

Equations 4 and 5 lead to

K̃
′9 ⊕ K̃9 = M9 ⊕M

′9

K̃
′10 ⊕ K̃10 = M10 ⊕M

′10 (6)

As these equations must be satisfied for any values of M i and M
′i (i ∈ {9; 10}),

it is easy to see3 that only the XOR error function (error by bit-flip) is acceptable:

Fe : x �→ x⊕ e ,

where Fe is the fault injection function: ∀X, Fe(X) = X̃.
3 The first derivative of the fault injection function Fe is 1: Equation 6 implies that

∀(K, M, M ′),
Fe(K ⊕ M) ⊕ Fe(K ⊕ M ′)

M ⊕ M ′ = 1.
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In the two previous attack scenarios, we modeled the fault by a XOR operation;
this was possible since the fault was injected on fixed values; Now the target
values are varying (because of masking), to write the fault as a XOR, the fault
injection needs really to flip the bits.

Assuming that the fault injection function satisfies the constraints (i.e. bit-
flip), the attack algorithm is similar to the unmasked case, with same success
rate as a function of the fault injection repeatability.

Remark 5. The fault model may seem unrealistic, much more than satisfying
very good fault repeatability. In fact a trade-off can be made between those
two parameters: many fault models will coincide with the bit-flip model for a
majority of its input space. A good example is the so-called stuck-at fault model.
Let us consider that the fault injection function is of the following form4:

Fe : x �→ x&e ,

where & is the AND bit wise operator. Even though this corresponds to stuck
some bits at 0, it can be seen as a bit-flip fault injection function with a cer-
tain probability of success (i.e. they coincide on a fraction of their inputs). This
probability of success will add itself to the fault repeatability. Moreover the prob-
ability of success increases with the hamming weight of e. When e is the vector
made of all 0 bits, no information is leaked about the value of x through the fault
and the proposed attack will not be successful. In such a case of fault model (full
stuck-at) we point out that other types of combined DFA-SCA attacks exist [14].

Remark 6. When assuming that the fault injection follows the bit-flip model
(exactly or by approximation), it is equivalent to consider the fault to be injected
in the key schedule or directly in the state. Therefore:

– when the key schedule is computed in parallel of the state computation, the
fault can touch both parts altogether.

– if the fault targets the state only, the attacker can apply exactly the same at-
tack algorithm as before without the prediction of the error value on the last
round subkeys. This simply decreases by a factor of 28 the offline complexity
of the attack.

5 Combined Attack Against (HO-)Masked and DFA
Resistant Implementation of AES

In this section is introduced a combined attack that bypasses both higher order
masking countermeasures and integrity check by the simultaneous use of faults
injection and side-channel observation.

The combined attack is based on what we point out to be a weakness in the
way the error detection mechanism is usually performed. Such a mechanism im-
plies the manipulation of the unmasked faulty ciphertext (or plaintext), therefore
allowing to mount a classical 1st-order DSCA.
4 We present the case of stuck-at 0 but all the following is also true for stuck-at 1 or

a mix of both.
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First we come back to the different implementations that have been presented
in the previous section, now integrating a DFA countermeasure by computation
redundancy. Then, in Section 5.2, we propose a generic attack procedure by
adding a 1st-order DSCA to the fault injection attack.

5.1 Fault Injection Resistant Implementations

We have proposed in Section 4 a new kind of DFA based on the ability to
reproduce a fixed fault for different cipher executions. We presented the attack
for several cipher implementations — considering the pre-computation of the
key schedule algorithm and the use of masking schemes to thwart SCA attacks
— and, for each of them, different fault models led to successful perturbation
attacks. Namely:

– The key-schedule is pre-computed once for several cipher executions.
• Fault Model: Single injection inside the next to last round of the key

schedule computation.
– The key-schedule is unmasked (or masked with a fixed mask) and computed

at each cipher execution.
• Fault Model: Injection inside the last but one round of each key schedule

computation, does not touch the state computation. The fault needs a
good repeatability.

– The key-schedule is masked and computed for each cipher execution.
• Fault Model: Injection inside the last but one round of each key schedule

computation and/or the state computation. It can be modeled, with
good approximation, as a bit-flip error and possesses good repeatability.

We will moreover assume that one of the countermeasures described in Sec-
tion 2.2 against DFA has been implemented.

5.2 Combined Attack Description

The idea follows the fact that the faulty ciphertexts are not received by the
adversary anymore. However he is still able to observe the computation through
a side-channel, and more precisely the manipulation of the (potentially faulty)
ciphertext when its integrity is checked5.

We propose to transform the round key retrieving part of the DFA algorithms
in a standard CPA attack (as presented in a generic way in Section 2.1). The
attack is straightforwardly extended to fault injection resistant implementations,
assuming the knowledge of good approximation of the leakage model (for purpose
of clarity we will use here the Hamming weight model as presented in Section 2.1,
but, any kind of leakage model could be used). The attack becomes then:

5 We can add here that such a location in the cipher algorithm is usually easy to spot
out from side-channel leakage traces as it corresponds to the end of encryption.



Combined Fault and Side-Channel Attack on Protected Implementations 77

1. Produce N pairs of valid-faulty ciphertexts (C1, C̃1), · · · , (CN , C̃N ) (for any
of the implementations and their fault models described in Section 4). The
faulty ciphertexts are not returned by the chip, the attacker has to record
the side-channel traces during the faulty computations (by monitoring the
power consumption, the electromagnetic radiation or any exploitable side-
channel). We will consider that for each trace Ωi, there is a known instant
ti such that Ωi[ti] is the side channel observation of the faulty ciphertext C̃i

manipulation. Hence, according to the notations introduced in Section 2.1,
we have Ωi[ti] = φ(s) + B, where s is the value manipulated at time ti (i.e.
C̃i or a subpart of it depending on the data register size), φ is a deterministic
leakage function (e.g. Hamming Weight function) and B denotes the noise
(e.g. a Gaussian noise with mean μ and standard deviation σ).

2. For each byte index j of the ciphertexts (included in s), process separately:

3. For each hypothetic value (e9, e10, k) of the errors byte E9
j = e9 and

E10
j = e10 respectively on the 9th and 10th round key, and the subkey

byte K10
j = k compute the correlation value ρe9,e10,k:

4. For each ciphertext Ci, compute the prediction values:

predi = HW (SubByte
(
SubByte−1(Ci

j ⊕ k)⊕ e9

)
⊕ k ⊕ e10) .

Then compute the Pearson correlation coefficient between the predic-
tions and the observations (the function ρ(, ) is recalled in Section 3):

ρe9,e10,k = ρ({predi}1≤i≤N , {Ωi[ti]}1≤i≤N )

5. Find the triplet of error and subkey bytes that led to the highest corre-
lation. If the correlation value is ”high enough” compared to the others,
then mark the triplet as right. Otherwise, if no triplet can be significantly
distinguished from the others, the fault injection was not successful (it
might either mean that the fault is not injected at the right location or
that the fault repeatability is not high enough with respect to the noise
and the number of samples).

6. The last round key is retrieved from the different marked subkey bytes when
the corresponding error byte e9 is non-zero.

The success rate of the attack described above is dependent on the noise in the
side-channel measure, the repeatability of the fault injection and, of course, the
number of plaintexts (N). A heuristic evaluation of the success rate as a function
of these different parameters is given in the next section.

5.3 Evaluation of the Attack Success Rate

In this section we present the results of the attack simulations to show the rough
evolution of complexity of the attack (in terms of number of plaintexts) as a func-
tion of fault injection repeatability and noise strength in order to reach a fixed
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success rate of 90%. As in previous experiments, for each choice of parameters,
we reached 90% of success over 100 attacks.

The simulations assumed a leakage function to be, for each ciphertext byte
C̃i

j , of the form:

L(C̃i
j) = HW (C̃i

j) +N (μ, σ) ,

with μ = 0 and σ going from 1 to 5. Figures 2(a) to 2(f) show the results,
each of them for a fixed fault injection repeatability. The exponential growth
of complexity as a function of the noise standard deviation is clearly visible on
the figures, this is also the case with respect to the fault injection repeatability.
Figures 2(c) to 2(f) capture practical scenarios where the complexity is limited
(< 4000 plaintexts), σ up to 5 and fault repeatability down to 40%. Recall that
in the first attack setup (with pre-computed key schedule), the repeatability
would be 100%.
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Fig. 2. Number of valid-, faulty-ciphertext pairs for 90% success rate with respect to the
gaussian noise standard deviation for each probability of fault injection repeatability
(from 10% to 100%)



Combined Fault and Side-Channel Attack on Protected Implementations 79

6 Countermeasures

Some countermeasures against classical SCA and FA attacks are still applica-
ble to the combined attack presented in the previous Section. For instance, the
insertion of random delays during the cryptographic computation. This counter-
measure is not new, it is already used by industrials and several papers provide a
study of its efficiency [15, 31]. Nevertheless, this countermeasure does not make
the attack infeasible, it just makes it harder. Moreover there exists methods to
bypass this countermeasure, which can be applied in our case (for instance [13]).

Another possible countermeasure could be to keep the ciphertext masked be-
fore applying the integrity check. For instance, in the case of the redundancy
countermeasure, if C1 and C2 are the two ciphertexts obtained from the same
encryption and M1 and M2 the two different masks used in each instance of
the encryption, one gets C1 ⊕M1, C2 ⊕M2, M1 and M2. Then one has to XOR
C1 ⊕M1 with M2 and C2 ⊕M2 with M1, and compare the two values. If they
are equal, one can unmask the ciphertext without risk of vulnerability. A simi-
lar method could be used in the case of the DFA countermeasure consisting of
encryption/decryption to check the validity of the ciphertext.

7 Conclusion

In this paper we have introduced a new DFA on AES (or any SP-Network). This
attack is particularly interesting when the key schedule is unmasked or masked
with a fixed mask. In such cases, we believe this FA attack to have the least
restrictive fault model in terms of fault pattern and fault location compared to
state-of-the-art attacks. A relaxation on the fault model means that the attacker
needs less knowledge about the implementation or less precise fault injection
material. The price we pay for this relaxation is the constraint of repeatability
of the fault (not necessary in the case of a pre-computed key schedule), we
think that in an overwhelming majority of cases, this hypothesis will be easily
satisfied. However, when the key-schedule is masked with fresh random values at
each execution, the types of faults that lead to a successful attack are severely
restricted and the attack becomes harder but still possible in some context.

In a second part, the DFA is combined with a 1st-order SCA to defeat block
cipher implementations including not only a masking countermeasure but also
an error detection mechanism on the cipher result. Simulations of the attacks
verify that, even though the complexity (in term of plaintext number) grows
exponentially with the probability of error in the fault repeatability, the attack is
still practical for low repeatability (∼ 40%) and realistic noise strength. Finally,
we propose some simple countermeasures which can thwart our combined attack.

Future directions will be first to mount such combined attack on an off-the-shelf
device and secondly to study the injection of bit-flip errors with good repeatability
(which lead to the attack of fully masked block cipher implementations).
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A An FPGA Implementation Tampered with Clock
Glitches

A.1 Architectural Details

In order to validate the assumption of a good repeatability for the fault injection
(both for the key-schedule and the encryption state) a machine prototype was
developed which allowed us to induce glitches into the clock signal of an AES
hardware accelerator. We used an Altera Cyclone II FPGA6 board involving
an AES hardware engine and a main control unit, we will now describe the
architecture thereof.

One should note that even though our design is rather specific, as it was
tailored to the purpose of the feasibility study/demonstration, it clearly manages
to demonstrate the proof of concept of a good repeatability. Indeed, no more
assumptions were made on the implementation other than those described in
the present paper and which are specifically required for the attack to succeed.

More precisely:

– the AES engine is a hardware unit performing the ten AES rounds in ten suc-
cessive cycles in a combinational way, therefore using a sole 128-bit register
to store the AES state;

– for each encryption run the key-schedule is computed separately from the
encryption process, beforehand, allowing the fault to be injected at the same
instant each time, and its effect on the last two subkeys to be appreciated
according to what matters: its repeatability.

– a control unit is present in the design aside from the AES engine, which
handles I/O serial communications with a remote PC and scheduling of
computations;

– the AES engine and the control unit each occupies a private clock-domain;
an on-chip PLL allows generating a separated clock for each, which share
nonetheless both frequency (250 MHz) and phase alignment;

– the control unit drives a clock-enable signal that is fed to a global clock
buffer placed ahead the clock network of the AES engine; this clock-enable
signal is asserted one cycle out of eight, thus emulating an approx. 30 MHz
clock to the encryption core.

– for each encryption run, the user can specify the plaintext and the master-
key, along with the precise cycle in which he desires the AES engine clock to
be cut short during the key-schedule computation. In the cycle specified by
user, the control unit will assert, for two consecutive periods of its own clock,
the clock-enable signal of the AES-engine, thereby emulating a transient
clock of 250 MHz for an isolated period.

A.2 Attack Description

The above implementation was used to put the attack method described in
Section 4.2 to the test:
6 This is a 130 nm low-cost family.
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– we randomly chose 100 plaintexts and performed their encryption without
any fault injection;

– the same plaintexts were then encrypted again, this time with a clock-glitch
at the next to last cycle of the key-schedule;

– this provided us with 100 pairs of valid-faulty ciphertexts;
– we ran the attack on an increasing number of such pairs. Eventually, only

15 pairs were sufficient to retrieve 11 round key bytes. The other 5 round
key bytes were not affected by the fault injection; they could be obtained by
exhaustive search.

Note that, according to Figure 1, one can deduce from this result that the prob-
ability of fault repeatability is of 50% in this experiment.
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Abstract. An efficient countermeasure against fault attacks for a right-
to-left binary exponentiation algorithm was proposed by Boscher, Naciri
and Prouff (WISTP, 2007). This countermeasure was later generalized by
Baek (Int. J. Inf. Sec., 2010) to the 2w-ary right-to-left algorithms for any
w � 1 (the case w = 1 corresponding to the method of Boscher, Naciri and
Prouff). In this paper, we modify theses algorithms, devise new coherence
relations for error detection, and reduce the memory requirements with-
out sacrificing the performance or the security. In particular, a full register
(in working memory) can be gained compared to previous implementa-
tions. As a consequence, the implementations described in this paper are
particularly well suited to applications for which memory is a premium.
This includes smart-card implementations of exponentiation-based cryp-
tosystems.

Keywords: Fault attacks, countermeasures, exponentiation, memory-
constrained devices, smart cards.

1 Introduction

Implementation of exponentiation-based cryptosystems needs to be resistant
against side-channel attacks. Simple Power Analysis (SPA) or Differential Power
Analysis (DPA) target unprotected exponentiation algorithms like the classical
square-and-multiply technique [20]. It has been shown that a private key used
in RSA can be retrieved by observing the microprocessor’s power consump-
tion [21]. A possible countermeasure against SPA consists in always computing
a squaring operation followed by a (sometimes dummy) multiplication, regard-
less the value of the exponent bit. The resulting algorithm is known as the
“square-and-multiply always” algorithm [9]. Protection against DPA is usually
achieved thanks to randomization techniques.

Fault attacks (FA) constitute another threat for public-key algorithms such
as RSA [5]. Different methods have been proposed to protect RSA against fault
analysis. There exist basically three main types of countermeasures.

The first type relies on a modification of the RSA modulus. This approach was
initiated by Shamir [23] and gave rise to several follow-up papers, e.g. [1,4,18,24].
When these methods are applied to RSA with Chinese remaindering, the main
difficulty resides in the protection of the re-combination.

E. Prouff (Ed.): CARDIS 2011, LNCS 7079, pp. 84–101, 2011.
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The second type of countermeasures uses the corresponding public operation
to check the result before outputting it; for example, one can check the validity of
an RSA signature using public exponent e. This however assumes the availability
of e and is specific to a given cryptosystem; see [13] for a recent survey on these
techniques.

The last type of countermeasures exploits coherence properties between in-
ternal variables during the exponentiation algorithm. Such algorithms are some-
times referred to as self-secure exponentiation methods. We focus our attention
on this third type of countermeasures as they tend to be more generic.

Self-secure secure methods. In 2005, Giraud proposed an exponentiation algo-
rithm, which is secure against SPA and FA [11]. His key idea was to perform a
coherence check at the end of the Montgomery powering ladder. Indeed, when
evaluating xd, both values z := xd−1 and y := xd are available at the end of the
computation. The check consists then in verifying that z · x = y before out-
putting the result. We note that this technique nicely combines with Chinese
remaindering for RSA.

Boscher, Naciri and Prouff subsequently proposed another SPA-FA resistant
exponentiation algorithm [7]. Their method built on an SPA-resistant version
of the right-to-left binary algorithm1 for evaluating xd, that uses three registers.
The authors observed that in each iteration of the main loop, the product of
two registers is equal to the third one multiplied by the input value x. Their
countermeasure consists in using this relation to derive a coherence check in the
last iteration. Recently, Baek showed how the coherence check can be adapted
to the Yao’s right-to-left m-ary algorithm [2].

Yet another self-secure exponentiation method was proposed by Rivain [22].
The underlying idea is different. It relies on a double exponentiation, that is,
an algorithm taking on input a pair of exponents (a, b) and returning (xa, xb).
Applied to RSA, the pair of exponents is (d, φ(N) − d) and the coherence check
verifies that xd · xφ(N)−d = 1 (modulo N). This method has the advantage of re-
ducing the number of multiplications: on average, 1.65 modular multiplications
per bit are required compared to the 2 modular multiplications for Giraud’s
or Boscher et al.’s binary methods. On the down side, the algorithm requires
knowledge of φ(N) (or a multiple thereof like ed − 1), which is not necessarily
available.

Contributions of the paper. This paper deals with countermeasures against SPA
and FA for right-to-left exponentiation algorithms. A drawback of Boscher et
al.’s and Baek’s proposals consists in requiring, on top of the internal registers
for the computation of xd, an additional register for storing the value of the input
x, which is needed for the coherence check at the end of the algorithm. The main
contribution of this paper is an optimized version of the protected right-to-left
m-ary exponentiation algorithm. The optimizations consist of a rearrangement

1 This scan direction may be preferred as it usually eases the implementation (note that
the Montgomery ladder processes the exponent bits from the left to the right).
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of Baek’s algorithm by modifying the initialization steps and restructuring the
inner operations so that a minimal number of registers in memory is used.
Plugging m = 2 into our general algorithm yields a right-to-left binary method
with one register less than Boscher et al.’s method. As a result, we obtain a right-
to-left binary algorithm equally efficient (speed- and memory-wise) as Giraud’s
left-to-right algorithm. In the higher-radix case also (i.e., for m > 2), we also
gain one full memory register over the best known right-to-left methods. Finally,
as a side result, we offer a detailed memory analysis of Baek’s algorithm and a
slight variant thereof.

While the main application we had in mind was RSA (in standard and CRT
modes), our implementations readily extend to any (finite) abelian group G.
For RSA, one has G = (Z/NZ)× or (Z/pZ)× × (Z/qZ)×. We give a fully generic
treatment and consider the general problem of computing y = xd in G. We
assume that exponent d is given in a standard format. We do not make a priori
assumptions on G so that the presented algorithms can be used in various
settings, including elliptic curve cryptosystems — though we present certain
shortcuts when for example inverses are easy to compute inG. In particular, we
do not assume that the order ofG is known and available to the implementation.
We note that memory issues are of paramount importance for devices with
limited resources as the amount of working memory generally constitutes the
limiting factor in the development of efficient implementations.

Outline. The rest of this paper is organized as follows. In the next section, we
review Baek’s 2w-ary exponentiation algorithm, generalizing a binary exponen-
tiation algorithm due to Boscher, Naciri and Prouff. In Section 3, we present
a slightly modified variant thereof. Section 4 is the core of the paper. We de-
tail how a full register can be saved, reducing the memory requirements to
their minimum: no additional memory is needed for fault detection. Finally, we
conclude in Section 5.

2 Exponentiation and Fault Countermeasures

2.1 Yao’s m-Ary Exponentiation

Consider the m-ary expansion of some positive integer d, d =
∑�−1

i=0 di mi where
0 � di � m − 1 and d�−1 � 0, and an element x in a (multiplicatively written)
group G. The goal is to efficiently compute y = xd, that is, x · x · · ·x (d times),
for some (secret) exponent d. When m = 2, the classical right-to-left binary
exponentiation method proceeds from the relation xd =

∏
0�i��−1

di=1
x2i

.

This was extended to a general radix m � 2 by Yao [25]. The evaluation of
y = xd is then carried out from the relation

y = x
∑�−1

i=0 di mi
=

m−1∏

j=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏

0�i��−1
di= j

xmi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

j

. (1)
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In more detail, Yao’s algorithm makes use of an accumulator A and of (m − 1)
temporary variables R[ j] (1 � j � m − 1). Accumulator A is used to contain the
successive mth powers of the input element x. Specifically, at the beginning of
step i, A contains the value xmi

and is then updated as A ← Am to contain the
value xmi+1

for the next step. Temporary variables R[ j] are initialized to 1G (the
neutral element in G). At step i, provided that di � 0, the temporary variable
corresponding to digit di (i.e., R[di]) is updated as R[di] ← R[di] · A; the other
temporary variables remaining unchanged. At the end of the computation,
all the temporary variables R[di] are aggregated to get the final result as y =
∏m−1

j=1 (R[ j]) j.
The original version of Yao’s algorithm, as previously described, is prone to

SPA-type attacks since an attacker may distinguish zero digits from nonzero
ones. Indeed, when at step i, digit di is zero, there is no update of a temporary
variable, and thus no multiplication occurs. An easy way to make the algorithm
regular is to insert a dummy multiplication when di = 0 so that the digit 0 is
treated as the other digits; see e.g. [9]. This is achieved by using an additional
temporary variable, R[0], which is updated as R[0]← R[0] · A when di = 0. The
resulting implementation is depicted in Alg. 1.

Algorithm 1. Yao’s algorithm (with dummy multiplication)
Input: x ∈ G and d = (d�−1, . . . , d0)m ∈N
Output: y = xd

/* Initialization */
1: for i = 0 to m − 1 do R[i]← 1G
2: A← x

/* Main loop */
3: for i = 0 to � − 1 do
4: R[di]← R[di] · A
5: A← Am

6: end for

/* Aggregation */
7: A← R[m − 1]
8: for i = m − 2 down to 1 do
9: R[i]← R[i] · R[i + 1]

10: A← A · R[i]
11: end for

12: return A

Although protected against SPA-type attacks, the algorithm becomes now
vulnerable to safe-error attacks [26]. By timely inducing a fault during the mul-
tiplication at step i, an attacker may guess whether the operation is dummy or
not (and thus whether the corresponding digit is zero or not) from the output
value: a correct output value indicates that digit di is 0. Again, countermeasures
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exist. For example, exponent d can be recoded prior entering Yao’s exponentia-
tion algorithm in such a way that all digits are nonzero. This is the approach fol-
lowed in [14] where a regular recoding algorithm with digits in the set {1, . . . ,m}
is presented.

2.2 Protecting against Faults

This section addresses the more general question of protecting against fault
attacks (which encompasses protecting against safe-error attacks).

Baek, generalizing an earlier method due to Boscher, Naciri and Prouff [7],
showed in a recent paper [2] how Algorithm 1 can be adapted so as to resist
fault attacks. Defining

Lj =
∏

0�i��−1
di= j

xmi
(for 0 � j � m − 1) ,

Equation (1) can be rewritten as y =
∏m−1

j=1 (Lj) j. Hence, defining

T =
m−2∏

j=0

(Lj)m−1− j ,

it follows that

y · T =
m−1∏

j=0

(Lj) j ·
m−1∏

j=0

(Lj)m−1− j =

⎛
⎜⎜⎜⎜⎜⎜⎝

m−1∏

j=0

Lj

⎞
⎟⎟⎟⎟⎟⎟⎠

m−1

=

⎛
⎜⎜⎜⎜⎜⎝

∏

0�i��−1

xmi

⎞
⎟⎟⎟⎟⎟⎠

m−1

=
(
xm−1
) ∑

0�i��−1
mi

= xm�−1

and therefore
y · T · x = xm� . (2)

This relation is the basic idea behind the protection against faults. It serves as
a coherence check between the different values involved in the computation. If
the content of one of the temporary variables or of the accumulator is corrupted
during the computation, then the coherence check will very likely fail and
therefore the faulty computation can be detected and notified.

Binary Case. This case corresponds to the method of Boscher, Naciri and Prouff.
When m = 2, the value of T simplifies to T = L0. Further, noting that

d =
�−1∑

i=0

di 2i =
∑

0�i��−1
di=1

2i

the binary case (i.e., m = 2) also implies y = L1. As a result, the coherence test
(Eq. (2)) becomes

L0 · L1 · x ?
= x2� . (3)
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Algorithmically, this translates into:

Algorithm 2. Binary SPA-FA resistant algorithm [7]
Input: x ∈ G and d = (d�−1, . . . , d0)2 ∈N
Output: y = xd

/* Initialization */
1: R[0]← 1G; R[1]← 1G
2: A← x

/* Main loop */
3: for i = 0 to � − 1 do
4: R[di]← R[di] · A
5: A← A2

6: end for

/* Error detection */
7: R[0]← R[0] · R[1]
8: if (R[0] · x � A) then return ‘error’

9: return R[1]

Remark 1. As presented, the previous implementation is not protected against
second-order fault attacks. If an attacker induces a first fault and next a second
fault during the error detection (at Line 8 in Alg. 2), then a faulty result may
be returned and possibly exploited to infer information on secret value d. Such
attacks were reported in [17]. An efficient countermeasure relying on the so-
called lock-principle was later described in [10]. It is assumed that the error
detection is done in this way or in an equivalent way so as to make it effective
against second-order attacks.

Higher-Radix Case. For the case m = 2w, Baek suggests to evaluate, just after
the main loop in Alg. 1, the quantities y←∏m−1

j=1 R[ j] j and T ←∏m−2
j=0 R[ j]m−1− j,

and then to check whether T ·y·x = A (note that A contains xm� output of the main
loop). The update of accumulator A, A← Am with m = 2w, is done via w repeated
squarings. The evaluations of y and T are done as the aggregation in Alg. 1, the
total cost of which amounts to 2 × 2(m − 2) multiplications. Therefore, as the
coherence check requires two multiplications, if M and S respectively represent
the cost of a multiplication and a squaring in G, Baek’s original algorithm
requires altogether (� + 4(2w − 2) + 2)M + �wS, where � = �|d|2/w� and |d|2 is the
bit-length of d.

3 A Variant of Baek’s Algorithm

This section offers a detailed memory analysis for Baek’s algorithm. We show
how rearranging the operations allows a better management of the working
memory. As a bonus, the total cost is also slightly reduced.
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Let m = 2w for some w > 1. In a nutshell, using the notation of § 2.2, Baek’s
method proceeds in the following way:

1. Compute y = xd using Algorithm 1;
2. Compute T and next the product S := y · T;

3. Check whether S · x ?
= xm� ;

4. If so, return y.

The computation of y is evaluated in the aggregation step as y =
∏m−1

i=1 R[i]i; cf.
Lines 7–11 in Alg. 1. First, we note the temporary variable R[m− 1] can serve as
the accumulator for the aggregation. This allows us to save A, which contains
the value of xm� output of the main loop — the value of xm� being needed for the

coherence check, S · x ?
= xm� . More explicitly, we rewrite the aggregation step as:

/* Aggregation */
for i = m − 2 down to 1 do

R[i]← R[i] · R[i + 1]
R[m − 1]← R[m − 1] · R[i]

end for

After the aggregation, the temporary variable R[m−1] contains the value of y. A
close inspection shows also that R[1] contains

∏m−1
i=1 Li. Further, since as shown

in § 2.2

S = y · T =
⎛
⎜⎜⎜⎜⎜⎝

m−1∏

i=0

Li

⎞
⎟⎟⎟⎟⎟⎠

m−1

and since R[0] contains L0, the value of S can be obtained as (R[0] · R[1])m−1.
Therefore, instead of computing the quantity T =

∏m−2
j=0 R[ j]m−1− j as done in [2],

we suggest to directly compute the product y·T by raising R[0]·R[1] to the power
m − 1. This avoid the use of any additional temporary variables. Furthermore,
as in the binary representation of m− 1 = 2w − 1, the bits are all equal to one, the
powering to m−1 can be carried out through w−1 squarings and multiplications.
This trades 2(2w − 2)M in Baek’s original algorithm against (w− 1)S+ (w − 1)M.
The complete algorithm is depicted in Alg. 3.

The total cost of our variant drops to (� + 2(2w − 2) + w + 1)M + (�w + w − 1)S.
It requires 2w + 1 registers (i.e., 2w temporary variables R[ j], 0 � j � 2w − 1, and
accumulator A) as well as input value x for the coherence check.

Remark 2. When m = 2w, the powering to m− 1 for the computation of S = Rm−1

where R :=
∏

0� j�m−1 Lj could be optimized. In [8], Brauer explains how to obtain
a short addition chain for 2w − 1 from an addition chain for w. However, as the
optimal value for w is rather small for typical cryptographic sizes (i.e., w � 6
as shown in Table 1), we do not discuss this issue further and stick to a simple
binary algorithm for the computation of S. Alternatively, when the computation
of an inverse in G is not expensive, R2w−1 can be evaluated as R2w · R−1.
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Algorithm 3. Modified Baek’s algorithm
Input: x ∈ G and d = (d�−1, . . . , d0)2w ∈N, w > 1
Output: y = xd

/* Initialization */
1: for i = 0 to 2w − 1 do R[i]← 1G
2: A← x

/* Main loop */
3: for i = 0 to � − 1 do
4: R[di]← R[di] · A
5: A← A2w

6: end for

/* Aggregation */
7: for i = 2w − 2 down to 1 do
8: R[i]← R[i] · R[i + 1]
9: R[2w − 1]← R[2w − 1] · R[i]

10: end for

/* Error detection */
11: R[0]← R[0] · R[1]; R[1]← R[0]
12: for i = 1 to w − 1 do
13: R[1]← R[1]2

14: R[0]← R[0] · R[1]
15: end for
16: if (R[0] · x � A) then return ‘error’

17: return R[2w − 1]

The next table compares the proposed variant for various sizes of d and w.

Table 1. Number of multiplications for various sizes of d and w

1024 bits 1536 bits 2048 bits
S/M=1 S/M=.8 S/M=1 S/M=.8 S/M=1 S/M=.8

Boscher et al. [7] w = 1 2050 1845 3074 2767 4098 3688
Baek [2] w = 2 1546 1341 2314 2007 3082 2672

w = 3 1391 1187 2074 1767 2757 2347
w = 4 1338 1133 1978 1671 2618 2208
w = 5 1351 1146 1965 1658 2580 2170
w = 6 1445 1230 2042 1735 2639 2230

Our variant w = 2 1544 1339 2312 2005 3080 2670
w = 3 1383 1178 2066 1758 2749 2339
w = 4 1316 1111 1956 1648 2596 2186
w = 5 1299 1093 1913 1605 2528 2117
w = 6 1331 1125 1928 1620 2525 2114
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4 Memory-Efficient Methods

We have seen in the previous section that a memory-optimized variant of Baek’s
algorithm requires m+1 registers together with the input value x for the coherence
check:

S · x ?
= xm� where S = y · T

(see Eq. (2)). Likewise, in the binary case, Boscher et al.’s algorithm requires
2 + 1 = 3 registers together with input value x.

When the computation of an inverse is not expensive in G, a classical trick to
avoid the storage of the complete value of x consists in computing a κ-bit digest
thereof, say h = H(x) for some function H : G → {0, 1}κ, at the beginning of the
computation, and to replace the coherence check with

h
?
= H
(
S−1 · xm�

)
. (4)

Such a method is mostly useful when κ � |x|2. Note also that κ cannot be
chosen too small, otherwise the coherence check (Eq. (4)) could be satisfied with
a non-negligible probability, even in the presence of faults.

In this section, we consider generic countermeasures in the sense that they
work equally well in any group G (even of unknown order). In particular, they
do not require that computing inverses is fast. Moreover, they do not need
further memory requirements: m+ 1 registers will suffice to get a protected im-
plementation. Finally, they do not degrade the security level: the error detection
probability remains unchanged compared to Baek’s algorithm or to Boscher et
al.’s algorithm in the binary case.

4.1 SPA-FA Resistant Right-to-Left m-Ary Exponentiation

The main observation in Baek’s algorithm (or in the binary version) for the com-
putation of y = xd is that the product of the temporary variables is independent
of exponent d.

In Algorithm 3, accumulator A is initialized to x and the temporary variables,
R[ j], to 1G. In each step of the main loop, exactly one temporary variable is
updated as R[di] ← R[di] · A and the accumulator is updated as A ← Am (with
m = 2w). To avoid confusion, we let R[ j](i) (resp. A(i)) denote the content of the
temporary variable R[ j] (resp. accumulator A) before entering step i. We have:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R[ j](i+1) = R[ j](i) · A(i) for j = di

R[ j](i+1) = R[ j](i) for j � di

A(i+1) =
(
A(i)
)m

and consequently the product of all the temporary variables satisfies
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R(i+1) :=
m−1∏

j=0

R[ j](i+1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

m−1∏

j=0

R[ j](i)

⎞
⎟⎟⎟⎟⎟⎟⎠
· A(i)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

m−1∏

j=0

R[ j](i−1)

⎞
⎟⎟⎟⎟⎟⎟⎠
· A(i−1) · A(i)

...

=

⎛
⎜⎜⎜⎜⎜⎜⎝

m−1∏

j=0

R[ j](0)

⎞
⎟⎟⎟⎟⎟⎟⎠
· A(0) · · ·A(i−1) · A(i)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

m−1∏

j=0

R[ j](0)

⎞
⎟⎟⎟⎟⎟⎟⎠
·

i∏

k=0

A(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

m−1∏

j=0

R[ j](0)

⎞
⎟⎟⎟⎟⎟⎟⎠
·
(
A(0)
)1+m+m2+···+mi

=

⎛
⎜⎜⎜⎜⎜⎜⎝

m−1∏

j=0

R[ j](0)

⎞
⎟⎟⎟⎟⎟⎟⎠
·
(
A(0)
) mi+1−1

m−1 .

We observe that if the accumulator A is initialized to xα and the temporary
variables are initialized so that their product is equal to xβ (i.e., if A(0) = xα and∏

0� j�m−1 R[ j](0) = xβ) then the previous relation becomes

R(i+1) = xβ+
α(mi+1−1)

m−1 . (5)

Since Equation (5) is independent of d, our idea consists in using it to build
a coherence check for appropriately chosen values for α � 0 and β. There are
several options.

Basic Case:α = 1 and β = 0. In this case, we get R(i+1) = x
mi+1−1

m−1 and in particular

R := R(�) = x
m�−1
m−1 .

This corresponds to the countermeasures proposed by Boscher et al. for the
binary exponentiation and by Baek for higher radices. Indeed, setting S = Rm−1

leads to
S · x = Rm−1 · x = xm�−1 · x = xm� .

Fractional Case: α = 1 and β = 1
m−1 . Plugging these values in Eq. (5) yields

R(i+1) = x
mi+1
m−1 and thus

R := R(�) = x
m�

m−1 .

In this case, it turns out that the numerator in the power of x is m� (and not m�−1
as in the basic case). Therefore, a simple coherence check is to compare S := Rm−1

with xm� . The main advantage is that the value of x is no longer involved.
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On the minus side, since β = 1
m−1 is not an integer, the initialization of the

temporary variables requires the computation of roots in G. In general, this is
a rather expensive operation but there exist cases where it is not. Examples
include point halving (i.e., square roots in G) in odd-order subgroups of binary
elliptic curves [19] or cube roots in [the multiplicative group of] a finite field of
characteristic three [3].

Generic Case: α = β(m − 1). This setting generalizes the fractional case. How-
ever, to avoid the computation of roots inG, we restrict α and β to integer values.
We have:

R := R(�) = xβm� =⇒ Rm−1 = xαm� .

It is worth noting here that at the end of the main loop, A contains the value of
xαm� . The relation Rm−1 = xαm� therefore provides a coherence check to protect
against faults. The main advantage over the previous methods is that Rm−1

appears as the exact value present in the accumulator and so there is no need to
keep the value of x.

It remains now to show how to compute y = xd when A is initialized to
xα = xβ(m−1) and

∏
0� j�m−1 R[ j] is initialized to xβ. We write:

d = α · q + r with q =
⌊ d
α

⌋

and r = d mod α . (6)

Hence, if
∑�′−1

i=0 qi mi denotes the m-ary expansion of q then Yao’s method yields

xd−r = (xα)
∑�′−1

i=0 qi mi
=

m−1∏

j=1

(Lj) j where Lj =
∏

0�i��′−1
qi= j

Xmi
and X = xα . (7)

Remember from Section 3 that the temporary variable R[0] is not used in the
computation of y. Now, assume in Algorithm 3 that temporary variables R[ j]
are initialized to xej for some integer ej, for 0 � j � m − 1, so that

m−1∑

j=1

j · ej = r and
m−1∑

j=0

ej = β . (8)

In that case, it can be easily verified that if A is initialized to xβ(m−1), then Algo-
rithm 3 (with the error detection adapted as above explained) will return the
value of y = xd (or an error notification). Indeed, from Eq. (7), we get

y = xr ·
m−1∏

j=1

(Lj) j =

m−1∏

j=1

(xej · Lj) j

(and Rm−1 = Xm�
′
).
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Several strategies are possible in order to fulfill Eq. (8). The simplest one is to
select β = 1 (and thus α = m − 1). Since 0 � r < α (= m − 1), a solution to Eq. (8)
is then given by ⎧

⎪⎪⎨
⎪⎪⎩

er = 1
ej = 0 for 0 � j � m − 1 and j � r

.

We detail below the corresponding algorithm for m > 2. The case m = 2 is
presented in § 4.3.

Algorithm 4. Memory-efficient SPA-FA resistant algorithm
Input: x ∈ G and d ∈N
Output: y = xd

/* Initialization */
1: A← xm−1

2: for i = 0 to m − 1 do R[i]← 1G
3: R[d mod (m − 1)]← x
4: d← �d/(m − 1)� = (d′�′−1, . . . , d

′
0)m

/* Main loop */
5: for i = 0 to �′ − 1 do
6: R[d′i ]← R[d′i ] · A
7: A← Am

8: end for

/* Aggregation */
9: for i = m − 2 down to 1 do

10: R[i]← R[i] · R[i + 1]
11: R[m − 1]← R[m − 1] · R[i]
12: end for

/* Error detection */
13: R[0]← R[0] · R[1];
14: R[0]← R[0]m−1

15: if (R[0] � A) then return ‘error’

16: return R[m − 1]

Remark 3. For the sake of clarity and in order not to focus to a specific imple-
mentation, the error detection in Alg. 4 is written with an if-branching. This may
be subject to second-order fault attacks. In practice, if second-order attacks are a
concern, precautions need to be taken and the if-branching should be rewritten
with appropriate measures; cf. Remark 1.

4.2 Dealing with the Neutral Element 1G

In certain cases, multiplication by neutral element 1G may be distinguished,
which is turn, may leak information on the secret exponent d.
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Small order elements. To avoid this, the temporary variables R[ j] can be multi-
plied by an element of small order in G in the initialization step. As an illustra-
tion, suppose that they are all multiplied by some element h of order 2. More
specifically, suppose that the initialization in Alg. 4 (where α = m− 1 and β = 1)
is

/* Initialization */
A← xm−1

for i = 0 to m − 1 do R[i]← h
R[d mod (m − 1)]← h · x
d← �d/(m − 1)� = (d′�′−1, . . . , d

′
0)m

for some h ∈ G such that h2 = 1G. Then in each iteration, it is easily seen that the
product of all R[ j]’s will contain a surplus factor hm, or from Eq. (5) that

R(i+1) :=
m−1∏

j=0

R[ j](i+1) = hm · xβ+ α(mi+1−1)
m−1 = hm · xmi+1

=⇒ R := R(�) = hm · xm� .

When m is even (which is always the case for m = 2w) then hm = 1 and so the

coherence check is unchanged: Rm−1 ?
= xαm� with α = (m − 1). Furthermore, the

computation of y is also unchanged when m = 2w and w > 1. Indeed, letting
r = d mod (m − 1), we have from Eq. (7):

m−1∏

j=1

(
R[ j](�)

) j
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏

1� j�m−1
j�r

hj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· (h · x)r · xd−r = h
∑m−1

j=1 j · xd = h
m(m−1)

2 · y = y

since m(m − 1)/2 is even when m = 2w and w > 1. In the binary case (i.e., when
w = 1), we have m(m − 1)/2 = 1 and consequently the above product needs
to be multiplied by h to get the correct output; see also § 4.3 for alternative
implementations. Note that for the RSA cryptosystem with a modulus N, we
can take h = N−1 which is of order 2 since (N−1)2 = 1 (mod N). The technique
can also be adapted to other elements of small order.

Invertible elements. Prime-order elliptic curves obviously do not possess ele-
ments of small order. We present below a solution for groups G wherein the
computation of inverses is fast (as it is the case for elliptic curves).

A method used in [13] consists in initializing all the registers to x. This
initialization method does not work as is and has to be adapted here. In order
to verify Eq. (5), R[ j] should be initialized to x1+ej so that

m−1∑

j=1

j · ej = r′ and
m−1∑

j=0

(1 + ej) = 1 .
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Again there are several possible solutions to the previous relation. We may
for example define:

– if r′ = 0 ⎧
⎪⎪⎨
⎪⎪⎩

(e0, em−1) = (2 −m, −2)
ej = 0 for 1 � j � m − 2

;

– if r′ � 0
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(e0, em−1) = (1 −m, −2)
ej = 0 for 1 � j � m − 2 and j � r′

er′ = 1
.

R[ j] (for 1 � j � m−2) are then initialized to x and R[m−1] is set to x1+em−1 = x−1.
Since R[ j] is raised to the power j within the aggregation step, we subtract
∑m−2

j=1 j− (m− 1) = (m−1)·(m−4)
2 from d prior to the exponentiation, i.e., we compute

d′ = d− (m−1)·(m−4)
2 . Next, we write d′ = (m− 1) · q′+ r′ with 0 � r′ < m− 1. Finally,

R[0] is initialized to x1+e0 = x−(m−2) and R[r′] is initialized to

x1+e′r =

⎧
⎪⎪⎨
⎪⎪⎩

x−(m−3) if r′ = 0
x1+1 = x2 otherwise

.

Noting that x−(m−3) = x−(m−2) · x and x2 = x · x, and since r′ � m − 2 the above
procedure can be implemented in a regular fashion by replacing the initialization
of Alg. 4 with

/* Initialization */
A← xm · x−1

R[0]← A−1 · x
for i = 1 to m − 1 do R[i]← x
d← d − (m−1)·(m−4)

2
r′ ← d mod (m − 1)
R[r′]← R[r′] · R[r′ + 1];
R[m − 1]← R[m − 1]−1

d← �d/(m − 1)� = (d′�′−1, . . . , d
′
0)m

This initialization works for all w > 1. The next section proposes an efficient
alternative in the binary case for the RSA exponentiation. (i.e. d is odd)

4.3 Binary Case

In the binary case, we have m − 1 = 1 and thus q = d and r = 0. We can use
Algorithm 4 as is, where m is set to 2.

The resulting algorithm is very simple. It is slightly faster than Boscher et
al.’s algorithm (Alg. 2) as it saves one multiplication. When d is odd (as is the
case for RSA), A can be initialized to x2, R[1] to x, and the for-loop index at
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i = 1; this allows to save one more multiplication — and not to involve 1G. More
importantly, Algorithm 5 saves one register compared to Algorithm 2 as the
value of x is no longer needed for the error detection. We so obtain a right-to-
left algorithm as efficient as Giraud’s algorithm. Being based on Montgomery
ladder, Giraud’s method scans however the exponent in the opposite direction
which may be less convenient.

Algorithm 5. Binary right-to-left SPA-FA resistant algorithm
Input: x ∈ G and d = (d�−1, . . . , d0)2 ∈N
Output: y = xd

/* Initialization */
1: A← x
2: R[0]← x; R[1]← 1G

/* Main loop */
3: for i = 0 to � − 1 do
4: R[di]← R[di] · A
5: A← A2

6: end for

/* Error detection */
7: R[0]← R[0] · R[1]
8: if (R[0] � A) then return ‘error’

9: return R[1]

4.4 Efficiency

The initialization phase in Alg. 4 for the higher-radix case involves seemingly
cumbersome operations. We detail below efficient implementations.

Algorithm 4 starts with the evaluation of xm−1. We suggest to rely on a binary
algorithm similarly to the implementation of the error detection in our variant
of Baek’s algorithm (i.e., Lines 12–15 in Alg. 3). For m = 2w, this costs at most
(w − 1) multiplications and squarings in G (see Remark 2).

The initialization in Alg. 4 also requires the integer division (with remainder)
of exponent d by m − 1. One may argue that these two values could be pre-
computed and d represented by the pair (q, r) with q = �d/(m − 1)� and r =
d mod (m− 1). We rule out this possibility as it supposes that d is fixed (which is
for example not the case for ECDSA). Further, even for RSA with a a priori fixed
exponent, such a non-standard format for d, d = (q, r), is not always possible
as it may be incompatible with the personalization process or with certain
randomization techniques used to protect against DPA-type attacks.

Let m = 2w. We first remark that given the m-ary expansion of d, d =
∑�−1

i=0 di mi,
the value of r = d mod (m−1) can simply be obtained as r =

∑�−1
i=0 di (mod m−1).

For the computation of the quotient, q = �d/(m− 1)�, the schoolboy method can
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be significantly sped up by noting that the divisor (i.e., m − 1 = 2w − 1) has
all its bits set to 1 [20, p. 271] (see also [28]). It is also possible to evaluate q
without resorting on a division operation. A common approach is the division-
free Newton-Raphson method [16]. Being quadratically convergent, the value
of q is rapidly obtained after a few iterations, i.e., roughly log2(log2 d) iterations.
The cost is typically upper-bounded to 2 multiplications in G. The algorithm
is presented in Appendix A. Of course, when available, the pair (q, r) can be
computed with the co-processor present on the smart card; some of them come
with an integer division operation.

To sum up, noting that Algorithm 4 saves a few multiplications, we see that
all in all its expected performance is globally the same — when not faster — as
our variant of Baek’s algorithm. But the main advantage of Algorithm 4 resides
in its better usage of memory.

5 Conclusion

This paper presented several memory-efficient implementations for preventing
fault attacks in exponentiation-based cryptosystems. Furthermore, they are by
nature protected against SPA-type attacks and can be combined with other exist-
ing countermeasures to cover other classes of implementation attacks. Remark-
ably, the developed methodology is fully generic (i.e., applies to any abelian
group) and allows one to save one memory register (of size a group element)
over previous implementations. This last feature is particularly attractive for
memory-constrained devices and makes the proposed implementations well
suited for smart-card applications.

Acknowledgments. We are grateful to an anonymous reviewer for useful com-
ments.

References

1. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on RSA with
CRT: Concrete results and practical countermeasures. In: Kaliski Jr., B.S., Koç, Ç.K.,
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A Newton-Raphson Iterated Division Algorithm

Algorithm 6. Integer division by m − 1 (initialization step)

Input: d =
∑�−1

i=0 di mi where m = 2w

Output: q = �d/(m − 1)� and r = d mod (m − 1)

/* Remainder */
1: r← d0

2: for i = 1 to � − 1 do r← (r + di) mod (2w − 1)

/* Quotient */
3: d← d − r; B← |�(w − 1)|2
4: q← 1; s← 2w − 1
5: for i = 1 to B do q← q · (2 − s · q) mod 22i

6: q← q · d mod 22B

7: return (q, r)
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Abstract. We present modular reduction algorithms over finite fields of
large characteristic that allow the use of redundant modular arithmetic.
This technique provides constant time reduction algorithms. Moreover,
it can also be used to strengthen the differential side-channel resistance
of asymmetric cryptosystems. We propose modifications to the classic
Montgomery and Barrett reduction algorithms in order to have efficient
and resistant modular reduction methods. Our algorithms are called dy-
namic redundant reductions as random masks are intrinsically added
within each reduction for a small overhead. This property is useful in
order to thwart recent refined attacks on public key algorithms.

1 Introduction

Modular reduction is at the heart of many asymmetric cryptosystems. Its prin-
ciple is to evaluate the remainder of the integer division x/m. However, the
division of two large multi-precision integers is very costly. Modular reduction
algorithms were proposed in order to compute efficiently a remainder. Barrett
reduction [5] and Montgomery reduction [15] are the two main methods. Both al-
gorithms have a pre-computational step where either the inverse of the modulus
or its reciprocal is computed. If the modulus is fixed amongst many operations,
this pre-computed value is used in order to efficiently obtain a modular reduc-
tion. In asymmetric cryptosystems, the modulus is generally fixed at the very
beginning. These techniques are then extremely efficient. Note that we leave out
of our study the use of interleaved reduction and multiplication.

The implementation of cryptography algorithms on embedded devices is par-
ticularly sensitive to side-channel attacks. An attacker is often able to recover se-
cret information from the device simply by monitoring the timing variations [11]
or the power consumption [12]. Side-channel analysis include two main fami-
lies of attacks: simple side-channel analysis (SSCA) and differential side-channel
analysis (DSCA).

In this paper, we aim at protecting asymmetric cryptosystems against DSCA.
Particularly, we focus on securing the exponentiation algorithm when the ex-
ponent is secret. Messerges et al. in [14] first detailed DSCA attacks applied
to a modular exponentiation. Powerful attacks on public key algorithms were
also proposed recently by Amiel et al. in [2,1]. These attacks can combine infor-
mation obtained from SSCA, DSCA or fault analysis. There are typically two
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families of countermeasures against DSCA: randomized addition chains type or
data randomization type. This second family is very interesting as it provides
a countermeasure independent of the choice of the algorithm. Well known pro-
tections consist in message blinding [14], exponent blinding [11] and exponent
splitting methods [7]. We propose here an alternative DSCA countermeasure
that thwarts most of the attacks published in the literature.

We study in detail a technique called redundant modular arithmetic that
allows integers modulo m to be kept modulo m plus some random multiples of m
such that their representation is not unique. This idea has been introduced before
in order to avoid timing attacks [20]. However, it can be improved to thwart also
differential side-channel analysis. Golić and Tymen [10] proposed a differential
side-channel countermeasure, based on the idea of redundant arithmetic, in the
context of a masked Advanced Encryption Standard (AES) implementation. A
brief study of Montgomery redundant arithmetic as a differential side-channel
countermeasure is presented by Smart et al. in [18].

We extend this work to a so-called dynamic redundant modular arithmetic ap-
plied to Barrett’s and Montgomery’s reduction. Compared to [18], our algorithms
offer flexibility in their usage as a randomization parameter can be adjusted. Our
solution also allows dynamic randomization inside the exponentiation algorithm
whereas other classical countermeasures often use only one randomization at the
beginning of the exponentiation algorithm. This property can be useful in order
to have a protection against the attack of Amiel et al. in [1] or even combined
attacks as presented in [3].

The remainder of this paper is structured as follows. Section 2 describes
the Montgomery and Barrett modular reduction algorithms. In Section 3, we
detail the static redundant arithmetic method previously introduced in [18].
Then, we propose dynamic redundant reduction algorithms based on Mont-
gomery’s and Barrett’s reductions in Section 4. We evaluate the performance
and the security of our propositions in Section 5. Finally, Section 6 concludes the
paper.

2 Modular Reduction Algorithms

We first introduce some notations. Long integers are represented as arrays of
w-bit digits. Generally, one choose w as the word-size of the processor. The bit
length of the integers is noted l and n is the number of digits necessary to store
them, hence n = 
l/w�. A long integer is then noted as u = (un−1, . . . , u0)b

with 0 ≤ ui < b and b = 2w. We note that, on a processor which word-size
is w, the division by b or a power of b is simply a right shift, hence virtually
free. Let m = (mn−1, . . . , m0)b be a prime modulus of size n, i.e. n digits in the
b-basis representation. Let u and v be two integers strictly lower than m, hence
of size at most n. Let x = (x2n−1, . . . , x0)b = uv < m2 be the integer to reduce
modulo m.
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2.1 Montgomery Reduction

The Montgomery reduction method [15] consists in using divisions by a power of
b instead of multi-precision divisions. Let R > m an integer coprime to m such
that operations modulo R are easy to compute. A classical choice is R = bn. In
this method, integers u < m are represented as a m-residues with respect to R,
i.e. uR mod m. This representation of an integer is often called a Montgomery
form. The Montgomery reduction of u is then defined as uR−1 mod m where
R−1 is the inverse of R modulo m. This reduction supposes that integers are
in the Montgomery form. Take two integers u < m and v < m. Consider their
transformation in Montgomery form uR mod m and vR mod m. Their multipli-
cation gives x = uvR2. Then, using Algorithm 1, one obtains x = uvR mod m
which is still in Montgomery form. This method uses a pre-computed value
β = −m−1 mod R. Note also that the reduction requires, at most, only one
final subtraction by m. Let MontRed(x, m, R, β) be the Montgomery reduction
algorithm presented in Algorithm 1.

Algorithm 1. Montgomery reduction algorithm
Input: positive integers x = (x2n−1, . . . , x0)b, m = (mn−1, . . . , m0)b and β =

−m−1 mod R where R = bn, gcd(b, m) = 1 and x < mR
Output: xR−1 mod m
1: s1 ← x mod R, s2 ← βs1 mod R, s3 ← ms2

2: t ← (x + s3)/R
3: if (t ≥ m) then
4: t ← t − m
5: end if
6: return t

2.2 Barrett Reduction

Introduced by Barrett [5], this method is based on the idea of fixed point arith-
metic. The principle is to estimate the quotient x/m with operations that can
either be pre-computed or are less expensive than a multi-precision division. The
remainder r of x modulo m is equal to r = x −m �x/m. Using the fact that
divisions by a power of b are virtually free, we have:

r = x−m

⌊
x

bn−1
b2n

m

bn+1

⌋
= x−m

⌊ x
bn−1 μ

bn+1

⌋

with μ =
⌊

b2n

m

⌋
a pre-calculated value that depends on the modulus. Let q̂ be

the estimation of the quotient of x/m. Barrett improves further the reduction
using only partial multi-precision multiplication when needed. The estimate r̂ of
the remainder of x modulo m is:

r̂ = (x mod bn+1 − (mq̂ mod bn+1)) mod bn+1.
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This estimation implies that at most two subtractions of m are required to obtain
the correct remainder r. Barrett’s algorithm is described in Algorithm 2. Note
that in this algorithm, the estimated quotient q̂ corresponds to the variable
q3 and the estimated remainder r̂ is computed with the operation r1 − r2 in
Line 2.

Algorithm 2. Barrett reduction algorithm

Input: positive integers x = (x2n−1, . . . , x0)b, m = (mn−1, . . . , m0)b and μ =
⌊
b2n/m

⌋
Output: x mod m
1: q1 ← ⌊

x/bn−1
⌋
, q2 ← μq1, q3 ← ⌊

q2/bn+1
⌋

2: r1 ← x mod bn+1, r2 ← mq3 mod bn+1, r ← r1 − r2

3: if (r ≤ 0) then
4: r ← r + bn+1

5: end if
6: while (r ≥ m) do
7: r ← r − m
8: end while
9: return r

3 Static Redundant Modular Arithmetic

Redundant field representation can form an interesting defense against differ-
ential side-channel attacks as a given element can have different representa-
tions. We can cite the recent work by Smart et al. [18] on this topic. The
authors briefly present a redundant Montgomery arithmetic. If one wants to
work with integers modulo m, a standard representation is to take elements in
Z/mZ = {0, . . . , m − 1}. The principle of redundant arithmetic is to consider
elements in the range {0, . . . , C − 1} where C > m and keep integers modulo m
within this range.

We recall this method that can be denoted as static redundant modular arith-
metic.

Let C = cm where c > 1 is an integer coprime to m. Instead of working in
Z/mZ, we work in Z/(cm)Z, i.e. modulo C. Let RC = bj with j > n a cer-
tain integer such that RC > C. Let βC = −C−1 mod RC a pre-computed value
similar to β defined in § 2.1. The Montgomery form of an element u modulo C be-
comes uRC mod C. We apply this method in a classical modular exponentiation
algorithm (see Algorithm 3).

We call this method static redundant modular arithmetic as only one random
mask k is applied at the beginning of the algorithm. In the next section, we
present two propositions of dynamic redundant modular reduction algorithms
for the methods of Montgomery and Barrett.
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Algorithm 3 . Square-and-multiply exponentiation using static redundant
Montgomery arithmetic
Input: positive integers e = (el−1, . . . , e0)2, x, m, C, βC and RC

Output: xe mod m
1: X ← x + km, where k is a random integer
2: R0 ← RC

3: R1 ← XRC mod C
4: for i = l − 1 down to 0 do
5: R0 ← MontRed(R2

0, C, RC , βC)
6: if (ei = 1) then
7: R0 ← MontRed(R0R1, C, RC , βC)
8: end if
9: end for

10: R0 ← R0R
−1
C mod m

11: return R0

4 Dynamic Redundant Modular Arithmetic Propositions

We propose modular reduction algorithms that are slight modifications of Mont-
gomery’s and Barrett’s techniques. Our methods offer a so-called dynamic re-
dundant modular arithmetic in which random masks are refreshed intrinsically
within the reduction method.

4.1 Dynamic Redundant Montgomery Reduction

Consider we want to reduce an integer x = uv modulo m with u < m and v < m
two integers modulo m. Hence, if m is a n-word integer, we want to reduce a 2n-
word integer x. Working with redundant modular arithmetic, several multiples
of the modulo m can be added to an integer. Thus, its size will grow depending
on the number of multiples considered. If we have a (2n+2i)-word integer at the
input of the reduction algorithm, we need a (n + i)-word output so that further
multiplications between reduced elements can be computed.

We first look in details at the operations of the Montgomery reduction (Al-
gorithm 1). Recall that β = −m−1 mod R is a pre-computed value and R is a
power of b, generally R = bn. We know from [13, Fact 14.29 and Note 14.30]
that (x + m(xβ mod R))/R = (xR−1 mod m)+ εm with ε ∈ {0, 1} at the end of
the reduction. If we develop the formula, we have:

(x + m(xβ mod R))/R = (x + m(xβ − k1R))/R (1)
= (x + x(−1 + k2R)− k1Rm)/R (2)
= k2x− k1m, (3)

for k1, k2 some integers. In our context, we want to have ε greater than 1 in
order to have several multiples of the modulus at the end of the reduction.
By slightly modifying the Montgomery reduction algorithm, we can achieve this
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property. Consider now the following steps for a modified Montgomery reduction
algorithm:

1: s1 ← x mod R
2: s2 ← βs1 mod R
3: s2 ← s2 + kR, with k some random positive integer
4: s3 ← ms2

5: t← (x + s3)/R

We now have from Eq. (3) and Step 3 that

(x + m(xβ mod R))/R = k2x− (k1 − k)m.

Hence, the error at the end of the reduction becomes k + ε. We also note that
the final subtraction step of Algorithm 1 is removed so that the implementation
is resistant to timing attacks. If t is the output of this modified Montgomery
reduction, we have:

(xR−1 mod m) + km ≤ t ≤ (xR−1 mod m) + (k + 1)m. (4)

For a practical implementation, we need to consider the size of the operands at
the input and output of the reduction algorithm. Instead of fixing the constant
R = bn for a modulus of size n, we consider a larger constant R′ = bn+2i for some
integer i. We recall that the Montgomery reduction requires that the input x is
such that x < mR. Hence, with the constant R′ we can process larger integers
x < mR′ < b2n+2i which means that the output of the reduction can be integers
t < bn+i. From Eq. (4), we deduce that the random integer k needs to be chosen
such that k < bi − 1. We define a dynamic redundant Montgomery reduction
algorithm (see Algorithm 4).

Algorithm 4. Dynamic redundant Montgomery reduction algorithm

Input: positive integers x = (x2n+2i−1, . . . , x0)b, m = (mn−1, . . . , m0)b and β′ =
−m−1 mod R′ where R′ = bn+2i, gcd(b, m) = 1, x < mR′ and for some integer i

Output: t ≤ (xR′−1 mod m) + (k + 1)m
1: Let k be a random integer such that 0 ≤ k < bi − 1
2: s1 ← x mod R′, s2 ← β′s1 mod R′

3: s2 ← s2 + kR′, s3 ← ms2

4: t ← (x + s3)/R′

5: return t

Each reduction adds a random number of multiples of the modulus to the re-
mainder. If a dynamic redundant reduction technique is used in an asymmetric
cryptosystem such as RSA, a final normalization step is needed at the very end
of the exponentiation algorithm for example in order to output a result strictly
inferior to m. We note that the boundary bi− 1 on the random integer k can be
parametrized in the reduction algorithm. Hence, we could fix k = 0 and obtain a
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time constant Montgomery reduction without final reduction if we want effective-
ness instead of differential side-channel resistance. Let DRMontRed(x, m, R′, β′)
be the dynamic redundant Montgomery reduction algorithm presented in Algo-
rithm 4.

4.2 Dynamic Redundant Barrett Reduction

We know from [13, Note 14.44] that, with the original parameters of Barrett
used in § 2.2, the estimated quotient q̂ satisfies q − 2 ≤ q̂ ≤ q where q is the
correct quotient. It can be shown that for about 90% of the values of x < m2

and m, the value of q̂ will be equal to q and in only 1% of cases q̂ will be 2
in error [6]. Dhem’s work [9, Section 2.2.4] provides a general parametrization
of the Barrett reduction. In particular, with appropriate choices, the error on
the quotient can be reduced. In our context, we are interested in adding more
errors to the estimated quotient so that multiples of the modulus are left in the
reduced integer. However, using Dhem’s parametrization to bound the errors is
not interesting as, in practice, only a very small number of integers will reach
the upper bound.

We first recall some notations of Dhem’s work. The estimated quotient q̂ in
the reduction of x modulo m can be evaluated as:

q̂ =

⌊
x

bn+β
bn+α

m

bα−β

⌋
=

⌊ x
bn+β μα

bα−β

⌋
,

with μα = �bn+α/m the parametrized constant used in the Barrett reduction
and α, β two integers.

In Barrett’s algorithm, the estimated quotient is undervalued. Hence, we need
to further undervalue it in order to have a reduced integer with some multiples of
the modulus left. If we have q̂ = (q−k) the undervalued quotient for some positive
integer k, then the estimated remainder will be r̂ = x −mq̂ = x −m(q − k) =
x − mq + km. Consider the following steps for a modified Barrett reduction
algorithm :

1: q1 ←
⌊
x/bn+β

⌋
2: q2 ← μαq1

3: q3 ←
⌊
q2/bα−β

⌋
4: q3 ← q3 − k, with k some random positive integer
5: r1 ← x mod bα

6: r2 ← mq3 mod bα

7: r ← r1 − r2

8: if (r ≤ 0) then
9: r = r + bα

10: end if

In practice, we note that the last conditional addition is not required on most
processors that use the two’s-complement system. We also remove the final sub-
traction loop in Algorithm 2 as we want multiples of the modulus left in the
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remainder. As in the Montgomery reduction case, we consider integers x of size
2n + 2i to be reduced modulo m of size n. Hence, the output of the reduction
algorithm needs to be at most of size n + i. We know from Dhem’s work that
the error ε in the estimation of the quotient is such that :

ε ≤ �2n+2i−α + 2β+1 + 1− 2β−α.

We choose α = n + 2i and β = −1, hence the estimated quotient is, at most,
undervalued by 2, i.e. ε ≤ 2. We do not need to minimize the error for our
proposition as it would add complexity to the reduction algorithm. However the
error can not be too large as for the final normalization step we need to subtract
the remaining multiples of the modulus relatively quickly. If r is the output of
this modified Barrett reduction, we have:

(x mod m) + km ≤ r ≤ (x mod m) + (k + 2)m. (5)

From Eq. (5), we deduce that the random integer k needs to be defined such that
k < bi− 2. We simply note μ′ = μn+2i =

⌊
b2n+2i/m

⌋
in the following. We define

a dynamic redundant Barrett reduction algorithm (Algorithm 5). As previously,
we note that the randomization can be parametrized such that if we fix k = 0,
we obtain an efficient time constant Barrett reduction.

Algorithm 5. Dynamic redundant Barrett reduction algorithm

Input: positive integers x = (x2n+2i−1, . . . , x0)b, m = (mn−1, . . . , m0)b and μ′ =⌊
b2n+2i/m

⌋
Output: r ≤ (x mod m) + (k + 2)m
1: Let k be a random integer such that 0 ≤ k < bi − 2
2: q1 ← ⌊

x/bn−1
⌋
, q2 ← μ′q1

3: q3 ← ⌊
q2/bn+2i+1

⌋
, q3 ← q3 − k

4: r1 ← x mod bn+2i, r2 ← mq3 mod bn+2i, r ← r1 − r2

5: return r

5 Efficiency and Security Evaluation

As previously stated, we only study reduction algorithms and leave out of our
study the use of interleaved multiplication and reduction. Hence, we compare
the complexity of reduction algorithms alone. Each algorithm needs a multi-
precision multiplication for its intermediate results. We consider Comba’s mul-
tiplication [8] as it is very interesting in embedded devices. This method is often
called column-wise multiplication or product scanning method. Note that an
evolution of Comba’s multiplication, called hybrid multiplication, is presented
in [17]. The authors combine column-wise and line-wise multiplication techniques
for better efficiency. In order to compare the performance of the algorithms,
we consider the number of base multiplications, i.e. multiplication of two b-bit
operands.
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We first analyze the standard Montgomery reduction (Algorithm 1). The op-
eration s2 ← βs1 mod R can be computed as a partial multiplication. In fact,
only the lower words of βs1 are needed for the result s2. We recall that R = bn

with n the size of the modulus in words. The multiplicands β and s1 are two
n-words values. Instead of n2 base multiplications, this operation can be com-
puted with

(
n+1

2

)
= (n2 + n)/2 base multiplications. The next multiplication,

s3 ← ms2 has to be fully computed using n2 base multiplications. Hence the
standard Montgomery reduction requires (3n2 + n)/2 base multiplications.

(a) (b)

Fig. 1. Partial multiplications used in a standard Barrett reduction. Figure 1a repre-
sents the computation of q3. Figure 1b represents the computation of r2. The striped
lines correspond to operations that are not needed for these partial multiplications.

The standard Barrett reduction (Algorithm 2) benefits also from partial mul-
tiplications. Only the highest words of the multiplication q2 ← μq1 are needed
to compute q3 ←

⌊
q2/bn+1

⌋
. As noted in [13, Note 14.45], the n + 1 least signif-

icant words of q2 are not needed. If b > n, we can compute the multiplication
starting at the n− 1 least significant word and we will have an error at most 1.
The complexity is (n + 1)2 −

(
n
2

)
= (n2 + 5n + 2)/2 base multiplications. The

operation r2 ← mq3 mod bn+1 can also be computed using a partial multipli-
cation as only the n + 1 least significant words are required. Its complexity is(
n+1

2

)
+ n = (n2 + 3n)/2. Finally, the complexity of the standard Barrett reduc-

tion is n2 + 4n + 1 base multiplications. The two partial multiplications used in
the Barrett reduction are represented in Figure 1.

Using similar considerations as for the standard reduction algorithms, we
analyze the complexity of our dynamic redundant reduction algorithms. The
dynamic redundant Montgomery reduction (Algorithm 4) requires

(
n+2i+1

2

)
+

n(n + 2i + 1) = (3n2 + 3n)/2 + i(4n + 2i + 1) base multiplications for a given
i. We recall that i bounds the maximum number of multiples of the modulus
that can be added. The dynamic redundant Barrett reduction (Algorithm 5)
requires n2 + 3n + 1 + i(4n + 2i + 5) base multiplications. Table 1 summarizes
the complexities.

We evaluate a practical implementation of the different reduction algorithms
on a AVR 8-bit ATmega 2561 processor [4] running at 16 MHz. A 512-bit mod-
ulus is chosen randomly and fixed. Each reduction is implemented in assembly
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Table 1. Summary of the complexities of the different modular reduction algorithms
in the number of base multiplications for a n-word modulus

Algorithm Number of base multiplications

Standard Montgomery (3n2 + n)/2
Dynamic redundant Montgomery (3n2 + 3n)/2 + i(4n + 2i + 1)

Standard Barrett n2 + 4n + 1
Dynamic redundant Barrett n2 + 3n + 1 + i(4n + 2i + 5)

and use the same column-wise multiplication code. The results are summarized
in Table 2. Using either Montgomery’s or Barrett’s technique, we first remark
that redundant arithmetic allows time constant reductions as the final subtrac-
tions are removed of both standard algorithms. We also note our proposition is
more efficient using Barrett reduction. In fact, the dynamic redundant Barrett
reduction with i = 1 is faster than the standard Barrett. If the randomization
is not needed, we can fix the random k = 0 in Algorithm 5 and compute a
constant time dynamic redundant Barrett with i = 1 more efficiently than the
classic Barrett. Note that even if the complexity in base multiplication of our
algorithm with i = 1 is slightly higher than the standard Barrett (see Table 1),
our propositions remove the final loop of the Barrett reduction. Hence, for small
values of i, we can obtain a dynamic redundant Barrett reduction faster than
the standard one.

Table 2. Execution time of each reduction algorithm on a ATmega 2561 processor
running at 16 MHz for a fixed modulus of 512 bits and random inputs

Algorithm Time (in ms)

Standard Montgomery 6.1 or 6.3
Dynamic redundant Montgomery with i = 1 8.7
Dynamic redundant Montgomery with i = 2 9.3

Standard Barrett 6.4 or 6.6
Dynamic redundant Barrett with i = 1 6.3
Dynamic redundant Barrett with i = 2 6.6

We define the function Normalize(x, m) = x mod m as a simple loop that com-
putes subtractions x = x−m as long as x ≥ m. Algorithm 6 illustrates the use of
dynamic redundant modular arithmetic in an exponentiation algorithm. We first
note that the static redundant arithmetic exponentiation (Algorithm 3) requires
one more n-word parameter, i.e. we need to store both m and C = cm, whereas
the dynamic version only needs the modulus m. Moreover, in Algorithm 6, for
given pre-computed values β′ and R′ with a fixed i, one can choose to use a
function rand() that generates random integers in [0, bi′−1[ such that 0 ≤ i′ ≤ i.
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In particular, we can fix i′ = 0 in the exponentiation algorithm if no random-
ization is needed. In the static redundant case, values C, βC and RC need to be
pre-computed again if the amount of random needs to be lower for a particular
exponentiation.

Algorithm 6. Multiply always exponentiation using dynamic redundant Mont-
gomery arithmetic

Input: positive integers e = (el−1, . . . , e0)2, x,m, β′ and R′. Let rand() be a function
that generates a random integer in [0, bi − 1[ for some integer i.

Output: xe mod m
1: X ← x + rand()m
2: R0 ← DRMontRed(rand()m,m, R′, β′)
3: R1 ← DRMontRed(XR′, m,R′, β′)
4: i ← l − 1, t ← 0
5: while i ≥ 0 do
6: R0 ← DRMontRed(R0(Rt + rand()m),m, R′, β′)
7: t ← t ⊕ ei, i ← i − 1 + t
8: end while
9: R0 ← DRMontRed(R0R

′−1, m, R′, β′)
10: R0 ← Normalize(R0, m)
11: return R0

Amiel et al. showed in [1] that the Hamming weight of the output of a mul-
tiplication x × y can be distinguished whether y = x or y �= x. Hence, they can
defeat atomic implementations of exponentiation algorithms. Using redundant
arithmetic as in Algorithm 6, we note that the representation of Rt can be easily
randomized prior to the multiplication R0×Rt. Hence, even if t = 0, the output
of the multiplication R0 ×Rt cannot be distinguished anymore by this attack.

Left-to-right atomic exponentiation algorithms seems particularly vulnerable
to combined attacks [3,16]. In left-to-right algorithms, the value of one register,
e.g. R1, is generally fixed to the value of the input message x during the exponen-
tiation. If a precise fault is injected in R1, an attacker can detect with a simple
side-channel analysis when this register is used during the exponentiation, hence
the attacker can recover the exponent. Using our dynamic redundant modular
propositions, as in the left-to-right Algorithm 6, we can note that the represen-
tation of register R1 is randomized during the exponentiation. Hence, combined
attacks as presented in [3] are no longer able to recover the full exponent.

Dynamic redundant reduction algorithms provide a countermeasure against
differential side-channel attacks for public key algorithms. Our solution is an
alternative to the classical message blinding [14]. However, as pointed out by
Smart et al. [18], redundant arithmetic may not be as interesting in elliptic
curve cryptography. In fact, if the modulus is a generalized Mersenne prime [19],
masking using multiples of the modulus is not as suitable. However, for ran-
dom modulus, as in RSA, this technique provides a very good defense against
differential side-channel attacks for a minimal overhead.
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6 Conclusion

We study in this paper the use of redundant arithmetic as a differential side-
channel countermeasure. We extend the work of Smart et al. [18] by proposing
dynamic redundant modular reduction algorithms based on Montgomery’s and
Barrett’s techniques. Our algorithms are parametrized and offer a good flexi-
bility in order to control the amount of randomization as well as the size of
the operands. The dynamic randomization of the data inside an exponentiation
algorithm can also thwart more refined side-channel attacks. As we remove the
final subtraction steps in both standard algorithms, our propositions are time
constant and efficient.

Acknowledgments. The authors would like to thank François Dassance, Vin-
cent Verneuil and the anonymous referees of Cardis 2011 for their helpful com-
ments.
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Abstract. Security-aware embedded systems are widespread nowadays
and many applications, such as payment, pay-TV and automotive appli-
cations rely on them. These devices are usually very resource constrained
but at the same time likely to operate in a hostile environment. Thus,
the implementation of low-cost protection mechanisms against physi-
cal attacks is vital for their market relevance. An appealing choice, to
counteract a large family of physical attacks with one mechanism, seem
to be protocol-level countermeasures. At last year’s Africacrypt, a fresh
re-keying scheme has been presented which combines the advantages of
re-keying with those of classical countermeasures such as masking and
hiding. The contribution of this paper is threefold: most importantly, the
original fresh re-keying scheme was limited to one low-cost party (e.g.
an RFID tag) in a two party communication scenario. In this paper we
extend the scheme to n low-cost parties and show that the scheme is
still secure. Second, one unanswered question in the original paper was
the susceptibility of the scheme to algebraic SPA attacks. Therefore, we
analyze this property of the scheme. Finally, we implemented the scheme
on a common 8-bit microcontroller to show its efficiency in software.

Keywords: Side-channel attacks, Fault attacks, Re-keying, Masking,
Shuffling.

1 Introduction

Ensuring security against physical (e.g. side-channel and fault) attacks is an
increasingly important challenge for cryptographic embedded devices. It is spe-
cially critical in applications requiring low-cost implementations. Indeed, most
solutions that have been introduced in the literature to prevent physical attacks
imply significant performance penalties, that may be too high for certain applica-
tions. For example, improving security against side-channel attacks is frequently
obtained by applying masking [4,10] or hiding [28,29] to the implementations.
Additionally, preventing fault attacks requires to include fault detection mecha-
nisms in the circuits [2,12]. In both cases, implementing these countermeasures
implies significant area or time overheads. Unfortunately, low-cost devices such
as smart cards, RFID tags or sensor nodes are also the ones for which the threat
of a physical attack is the most realistic, when operated in hostile environments.

E. Prouff (Ed.): CARDIS 2011, LNCS 7079, pp. 115–132, 2011.
� IFIP International Federation for Information Processing 2011
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Since directly protecting cryptographic algorithms, such as the AES Rijndael,
against side-channel and fault attacks is difficult, an alternative approach is to
design encryption mechanisms that can be more easily protected in this case.
One important line of research, denoted as leakage-resilient cryptography, aims
at combining such new designs with a proof of security, using the formalism
of modern cryptography. For example, this approach has been applied to new
stream cipher constructions [6,21,31]. But as discussed in [26,27], present proof
techniques have limited practical relevance, as they need to rely on assumptions
that may be difficult to fulfill by hardware designers. More important for our
present focus, these schemes are also quite inefficient, as their initialization im-
plies the execution of a pseudorandom function [5,27], which typically requires
the execution of n AES encryptions, with n the bit size of the initialization vec-
tor. A more practically-oriented line of research has been trying to embed the
block cipher in some protocol that makes it easier to protect. An example of such
an approach is the application of “all-or-nothing” transforms [17]. Here, the idea
is to modify the plaintexts and ciphertexts according to a (low-cost) mapping,
therefore preventing attacks based on known plaintexts/ciphertexts. Whereas
the scheme is efficient for long messages, the initialization effort might render
it impractical for smartcard and RFID applications. More recently, a fresh re-
keying scheme was presented at Africacrypt 2010 [19]. It combines the re-keying
used in leakage-resilient cryptography with easy to protect low-cost mappings in
order to remove the initialization overhead.

k

k∗

r

gk(r)

fk∗(m) cm

Fig. 1. Original (one party) fresh re-keying scheme

The basic principle of this fresh re-keying scheme, that we further investigate
in this paper, is pictured in Figure 1. It essentially encrypts every message block
m under a fresh session key k∗, with a block cipher. The session key is generated
from the master key k and a public random nonce r, with a function g. At first
sight, it may seem that one just shifts the problem of protecting the block cipher
f against physical attacks to the one of protecting the function g. Interestingly,
it is argued in [19] that a proper selection of g may lead this scheme to be signif-
icantly easier to protect against such attacks than the underlying block cipher f .
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Namely, g does not need to be cryptographically strong. It should only ensure a
strong diffusion between the master key k and the session keys k∗, while being
easy to protect against Differential Power Analysis (DPA). Assuming that these
conditions are respected, the only additional requirement for the global scheme
of Figure 1 to be secure against side-channel attacks is that the block cipher f
resists against SPA (i.e. side-channel attacks exploiting a single measurement)
- an easier task than preventing DPA. In addition, the re-keying mechanism
naturally prevents Differential Fault Analysis (DFA) and was shown to have
limited hardware cost. Following these interesting features, the present paper
aims at extending this analysis in three main directions:

1. In view of the difficulty to design leakage-resilient pseudorandom permu-
tations [5], the claim that a simple fresh re-keying scheme could be secure
against a wide class of side-channel and fault attacks appears quite provoca-
tive. In this respect, one important problem that was left open in the previous
work of Africacrypt is to evaluate if the cryptographically weak function g
could not be the target of advanced side-channel attacks (such as [20,23]),
taking advantage of its simple algebraic expression. We evaluate this concern
and suggest that it can be efficiently prevented by shuffling the implemen-
tation [11] (which is anyway required to prevent SPA).

2. The original Africacrypt scheme was limited to the protection of one party
in a communication protocol. This is because in Figure 1, it is crucial that
the random nonce r is chosen inside the protected device and cannot be ma-
nipulated from outside. For example, keeping r constant would completely
break the re-keying. While there exist many practical scenarios in which such
an asymmetric type of security is realistic (e.g. RFID readers can be pro-
tected with expensive means, only tags have strong cost constraints), there
also exist many where protecting multiple parties is necessary. For instance,
trends can be observed in which also constrained devices become readers,
e.g. mobile phones in NFC applications [22]. Furhtermore, automotive ap-
plications, where many low-cost devices need to communicate securely [13],
provide a strong motivation for developing such tools. As a result, we ex-
tend the re-keying scheme to multiple parties. In particular, this allows all
involved parties to derive a common session key in a side-channel protected
manner1. We show that the security of the new proposal is similar to the one
of the single-party case, while its performances only decrease linearly with
the number of parties.

1 This context can be seen as reminiscent of group key distribution. However, our
objectives are different in the sense that group key distribution typically aims at
ensuring cryptographic properties such as forward security, whereas our fresh re-
keying scheme “only” aims at preventing successful side-channel attacks against
the master key. It is an interesting open question to investigate whether one could
combine strong physical security guarantees and, e.g. forward secrecy. We note that
it would be surprising, as the relatively simple (linear) nature of the g function is
central in making it easy to protect against side-channel attacks.



118 M. Medwed et al.

3. Finally, since the use of dedicated solutions for protecting block cipher im-
plementations is mainly justified by strong cost constraints, we evaluate the
performances of our proposal in an AVR microcontroller. Our implemen-
tations consider different levels of masking and shuffling. We confirm their
low-cost nature by comparing them with the masked AES Rijndael software
implementation proposed at CHES 2010 [24]. These results nicely comple-
ment the ones in [19], where hardware implementations were considered.

2 Background: The Africacrypt 2010 Scheme

The original scheme, as depicted in Figure 1, describes a physically secure en-
cryption which is for instance carried out inside an RFID tag. It consists of the
re-keying function g and a cryptographically secure encryption function f . At
every invocation of the scheme, g uses a symmetric master key k and a fresh
random nonce r to obtain a session key k∗ = gk(r). The random nonce r is
generated inside the device but is made public afterwards. The session key is
then used by f to perform an encryption. Thus, the ciphertext c is obtained as
c = fk∗(m). The function f is instantiated with a standardized algorithm, in our
examples we use the AES Rijndael. For such algorithms, it is also well known
how to protect them against SPA attacks (e.g. by shuffling [7,11]). Thus, the
main concern is a careful choice of g. In [19], g was chosen as:

g :
(
GF(28)[y]/(y16 + 1)

)∗ × (GF(28)[y]/(y16 + 1)
)
→ GF(28)[y]/(y16 + 1)

: (k, r)→ k · r.

That is, g takes two 128-bit operands, represented by polynomials in y of de-
gree 15 and coefficients in GF(28), and performs a polynomial multiplication to
obtain the session key. The key k is constrained to the invertible elements of
GF(28)[y]/(y16 +1); otherwise any master key k that is a divisor of 0 would only
lead to session keys that are also divisors of 0. As shown in the original paper,
this choice of g has some very advantageous properties. Most important, it pro-
vides sufficient diffusion such that “divide-and-conquer” attacks on the master
key become computationally infeasible. Second, the function has homomorphic
properties which allows sound protection against higher-order differential at-
tacks [4]. In particular, the key can be split into t + 1 shares:(

k1 = b1, k2 = b2, · · · , kt = bt, kt+1 = k ⊕
t⊕

i=1

bi

)
,

in order to obtain the session key as:

k∗ =
t+1⊕
i=1

r · ki.
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Such a masking thwarts tth-order attacks2. Third, as the arithmetic in the
proposed algebra is carry-free, shuffling can be efficiently applied to thwart
SPA attacks. Finally, the function can also benefit from hardware counter-
measures (such as secure logic styles) at low-costs thanks to its regular struc-
ture.

3 Security of g against Algebraic SPA

In this section, we analyze the security of the original fresh re-keying scheme
from [19] against side-channel attacks that exploit the algebraic structure of
the target algorithm. We first show that, if no attention is paid, block ciphers
protected by a re-keying scheme can still be vulnerable to algebraic side-channel
attacks, due to the simple algebraic structure of the re-keying function g. Next,
we suggest that a shuffling of the operations would prevent this kind of attacks
(as it prevents most algebraic side-channel attacks, in fact).

In the rest of the paper, we will assume that the encryption function f is
the AES Rijndael, and that the side-channel attacks are performed in a known
plaintext context. In this setting, the re-keying function g can be written as
a system of linear equations over GF(28). Let us call k the vector contain-
ing the 16 bytes k.,j (0 ≤ j ≤ 15) of the master key k, and k∗

i (resp. ri)
the vector containing the 16 bytes k∗

i,j (resp. ri,j) of the ith session key gen-
erated from the same master key (resp. nonce used). The bytes of the nonces
are known, the bytes of the master and session keys are unknown. Hence, the
system of equations linking a session key k∗

i to the master key k and the
nonce ri is:

Ri.k = k∗
i (1)

⎡
⎢⎢⎢⎢⎢⎣

ri,0 ri,15 ri,14 · · · ri,1

ri,1 ri,0 ri,15 · · · ri,2

ri,2 ri,1 ri,0 · · · ri,3

...
...

...
. . .

...
ri,15 ri,14 ri,13 · · · ri,0

⎤
⎥⎥⎥⎥⎥⎦ .

⎡
⎢⎢⎢⎢⎢⎣

k.,0

k.,1

k.,2

...
k.,15

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

k∗
i,0

k∗
i,1

k∗
i,2
...

k∗
i,15

⎤
⎥⎥⎥⎥⎥⎦ . (2)

This system can be represented using a block matrix:

[
Ri | I

]
.

[
k
k∗
i

]
=
[
0
]
, (3)

with I the identity matrix. It is an homogeneous system of 16 linear equations
in 32 unknown variables (the bytes of k and k∗

i ). For each additional session key

2 In the original scheme, the nonce is shared rather than the key. However, this leads
to a first-order leakage if a master key byte is zero, similar as observed in [9].
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produced from the same master key, we can add 16 new equations in 16 new
variables (the bytes of k∗

i+1) to the system:

⎡
⎢⎢⎢⎣
R1 I 0 · · · 0
R2 0 I · · · 0
...

...
...

. . .
...

Rn 0 0 · · · I

⎤
⎥⎥⎥⎦ .

⎡
⎢⎢⎢⎢⎢⎣

k
k∗
1

k∗
2
...

k∗
n

⎤
⎥⎥⎥⎥⎥⎦ =

[
0
]
. (4)

As such, this system is underdefined. We need at least 16 bytes of information
about the session keys k∗

i in order to identify the value of the master key k3. The
easiest way to solve this system is thus to find 16 additional linear equations,
involving one or more bytes of k∗

i . For this purpose, a straightforward approach
is to use side-channel leakage in order to learn session key bytes. Usually, side-
channel leakages do not provide the exact data processed by a device, but some
information about it. For example, one could assume that three leakage points are
obtained, for each session key byte, as illustrated in Figure 2. They correspond to
(1) the output byte of the fresh re-keying multiplication itself (k∗

i,j), (2) the XOR
operation between this byte and a known plaintext byte (Pi,j⊕k∗

i,j), and (3) the
output of the AES S-box (S(Pi,j ⊕ k∗

i,j)). By combining these three Hamming
weight values, it is possible to identify a unique valid value for the session key byte
in approximately 16% of the cases. As a result, only 11 encryptions are required
to get 16 session key bytes with probability higher than 0.99. Naturally, these
simple estimations assume that the Hamming weights are perfectly recovered,
while actual attacks may be affected by noise. Nevertheless, they show that
algebraic attacks must be considered in the analysis of fresh re-keying schemes.

⊕ SPi,j

k∗
i,j

S(Pi,j ⊕ k∗
i,j)

: WH leakages

Fig. 2. Three interesting leakage points in the first AES round

Another possibility is to use Side-Channel Collision Attacks (proposed against
the DES in [25], and enhanced in [14]). For example, in [3], the author intro-
duces the notion of generalized internal collisions for the AES. A generalized
internal collision occurs when two AES S-boxes are evaluated on the same in-
put. These two S-boxes can be located in the same round, in two different rounds
or even in two different encryptions. If all the AES S-boxes are implemented in
a similar way, the computation of the same value should give rise to similar power

3 Ignoring the fact that the entropy of k is slightly less than 16 bytes.
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consumption traces, making the collision detection possible. If a collision is de-
tected between two S-boxes of the first AES round, we translate this information
into:

Pi1,j1 ⊕ k∗
i1,j1 = Pi2,j2 ⊕ k∗

i2,j2 ⇔ k∗
i1,j1 = Pi1,j1 ⊕ Pi2,j2 ⊕ k∗

i2,j2 ,

Hence, 16 collisions would be sufficient to solve the system of Equation (4).
The average number of collisions for ne encryptions can be computed using
the birthday paradox (see [1]): E(N(ne)) = 16ne − 256 + 256(1 − 1/256)16ne.
Simulations show that less than 10 encryptions are sufficient to reach the 16
required collisions with high probability.

Summarizing, a straightforward implementation of the re-keying scheme is
susceptible to algebraic type of attacks. Importantly, this does not contradict
the security analysis in [19], as these attacks can be seen as SPA against the
AES function. However, they clearly exhibit the importance of explicit SPA
resistance of the block cipher used in the scheme. In a very similar way, fresh
re-keying implies executing the AES key scheduling algorithm, in which case
Mangard’s SPA attack is another possible threat [15] (or similarly [30]).

On the positive side, and as discussed in this previous work, SPA attacks
are relatively easy to counteract (compared to DPA). First, they are typically
applicable in software implementations with small (e.g. 8-bit) buses. Second, in
case small data buses are considered, they are efficiently prevented by shuffling
the operations [7,11]. In this respect, it is worth mentioning that, in order to
allow secure implementations, the interaction between the f and g functions
needs to remain shuffled (which will be ensured in the software implementations
of Section 5). Eventually, we also note that the AES Rijndael may not be the
most suitable block cipher for efficient shuffling, because of its non-regular and
sequential key scheduling algorithm.

4 Extending the Africacrypt Scheme to n Parties

In this section, we present two possible extensions in order to enable the use of
fresh re-keying amongst n parties. The first scheme is a straightforward extension
of the original scheme and uses n master keys. The second one allows the same
functionality but uses only one master key. We show that their security is similar
to the one of the original scheme. This will be done in two steps. First, we
demonstrate that the session keys are still uniformly distributed and cannot be
biased by an adversary controlling all but one of the nonces involved in the re-
keying. Second, we argue that the requirement for the diffusion between k and
k∗ which is the core of the security argument in [19] is still fulfilled.

4.1 Scheme 1: Using n Master Keys

The first solution to the extension problem consists in instantiating n original
fresh re-keying schemes with independent master keys. Every party possesses
all n master keys and serves as master (that is, it generates the nonce) for
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c mm

k∗ k∗
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fk∗(m)

gk,�(r, s) gk,�(r, s)

f−1

k∗ (m)

Fig. 3. Basic extension to two parties using two master keys

one instance and as slave (that is, it receives the nonce from outside) for all
other n− 1 instances. The shared session key is derived as the sum of all the n
independent session keys, from the n instances. Like in the original scheme, the
master keys are constrained to the invertible elements of GF(28)[y]/(y16 + 1).
Figure 3 illustrates the principle for two master keys k and �. In a first step,
the parties generate and exchange the nonces r and s. Next, the session key is
computed as k∗ = k · r + � · s.

4.2 Scheme 2: Using a Single Master Key

The second scheme is similar to the first scheme, except that only one master key
k ∈

(
GF(28)[y]/(y16 + 1)

)∗ is shared amongst the parties. In particular, every
party is enumerated with a unique value i ∈ [1, n]. The session key is derived as:

k∗ =
n⊕

i=1

ri · ki,

where ri denotes the nonce generated by party i and ki denotes the ith power of
the master key. Note, that in this scheme, the order of k needs to be greater n. For
two parties the session key is derived as k∗ = k · r +k2 · s. As for the i values, we
assume that the parties are enumerated statically. Such an assumption already
covers many scenarios. In a tag-reader scenario, the roles can be assigned in the
specification. In car like scenarios, the devices are rarely replaced and thus can
be set up by the manufacturer or a certified garage. However, ad-hoc negotiation
of the i values would be interesting to cover arbitrary applications. We leave the
evaluation and selection of appropriate negotiation protocols for further research.

4.3 Security Model

The challenge when designing an n-party fresh re-keying scheme lies in the fact
that each party is provided with n− 1 nonces from outside. Thus, an adversary
potentially has control over n− 1 out of n nonces. Compared to the single-party
case, there are two main properties that need to be verified. First, it should still
hold that the adversary controlling the external nonces is not able to significantly
bias the session key distributions (e.g. he should not be able to set them to
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a constant value). Second, it should also hold that there is a strong diffusion
between the master key and the session keys (i.e. it should not be possible to
guess one byte of session key, excepted by guessing most of the master key).
In the following, we show that these conditions are respected in a model where
the adversary can eavesdrop the communications and modify the nonce values
received by each party. By contrast, he cannot access the master key and he
cannot change the nonce value that is generated internally by the target device.

4.4 Security of Scheme 1

Our analysis will be done in two steps. First, and for illustration, we will con-
sider an adversary trying to set the session key to a constant value. We show in
Lemma 1, that this is impossible without already possessing substantial infor-
mation about the master keys. In other words, in order to fix the session key, the
quotient of the two master keys has to be guessed correctly. This gives intuition
that biasing the session keys is a difficult problem. Next, we consider a more re-
alistic adversary who is just trying to bias the session key distribution. Lemma 2
shows that, whatever the distribution of the external nonces, the session key is
close to uniformly distributed given that the nonce generated within the target
device is uniformly distributed.

For simplicity, the following lemmata consider the two-party case. Proofs can
be extended easily to the general case. Let rj and sj be the nonce values gener-
ated during the jth execution of the re-keying, and let k∗

j be the corresponding
session key. We prove the security of the party generating sj .

Lemma 1. If the adversary is able to keep k∗ constant, then he also knows �/k.
Reciprocally, if the adversary knows k/�, then he can keep k∗ constant.

Proof: Suppose:
k∗ := kr1 + �s1 = kr2 + �s2.

Then assuming s1 + s2 is an invertible element4, we get:

�/k = (r1 + r2)/(s1 + s2),

and the adversary can compute this value since he knows r1, r2, s1, s2. On the
other hand, if the adversary knows �/k, then he can choose:

r2 := r1 + (s1 + s2)�/k, (5)

in order to keep k∗ constant. �

4 The proof can be slightly adapted when y + 1 divides s1 + s2, either by considering
the quotient �/k instead, or by dividing both r1 +r2 and s1 +s2 by a common power
of y +1. Alternatively since the nonces are randomly chosen and a large majority of
them produce an invertible s1 + s2, the adversary can simply wait until s1 + s2 is
invertible.
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More generally, let us now define δ := (r1 + r2)/(s1 + s2). Since the adversary
knows r1, s1 and s2, choosing r2 is equivalent to choosing δ (from his point of
view). In the following lemma, we show that the distribution of k∗

2 + k∗
1 cannot

be biased by the adversary unless he has some information on the value δ + �/k.

Lemma 2. Let the nonces be uniformly distributed and further let 0 ≤ e < 16
be the maximal power of y + 1 dividing �/k + δ. Then the value k∗

12 := k∗
2 + k∗

1

is uniformly distributed in the set:

Ke := {(y + 1)ep(y)| deg(p) < 16− e, (y + 1) � |p},

given that the nonces si are uniformly distributed.

Proof: We have:

k∗
2 = kr2 + �s2

= kr1 + �s1 + k(r2 + r1) + �(s2 + s1)
= k∗

1 + k(�/k + δ)(s1 + s2),

hence:
k∗
2 + k∗

1 = (y + 1)ek
�/k + δ

(y + 1)e
(s2 + s1).

By definition, k �/k+δ
(y+1)e is an invertible element of GF(28)[y]/(y16 + 1). As a con-

sequence, for any k∗
12 = k̃12(y + 1)e ∈ Ke, we have:

k∗
2 + k∗

1 = k̃12(y + 1)e ⇔ s2 ∈
{

s1 + k̃12k
−1 (y + 1)e

�/k + δ
+ (y + 1)16−eq(y)|deg(q) < e

}
.

We see that each k12 value corresponds to 2e values for s2. Since s2 is chosen
randomly and cannot be controlled by the adversary, we obtain the result. �

Intuitively, Lemma 2 implies that the adversary cannot affect the distribution
of k∗

2 + k∗
1 without affecting the distribution of �/k. Since the adversary has a

priori no information at all about �/k, all he can do is to try random values for
δ and hope that he guessed �/k up to some large power of y + 1. This way, the
adversary has no way to decrease the entropy of k∗

2 + k∗
1 . Indeed, k∗

2 + k∗
1 only

belongs to Ke (that has size (28−1)28(15−e)) with a probability 2−8e−2−8(e+1).

4.5 Security of Scheme 2

Scheme 2 can be seen as a particular case of Scheme 1 where � = k2:

k∗
i = kri + k2si.

Since the adversary could target both parties, we consider two cases:

1. s is chosen randomly and then r is chosen by the adversary.
2. r is chosen randomly and then s is chosen by the adversary.
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The arguments of Section 4.4 also apply to both cases. In the first case, we define
δ := (r1 + r2)/(s1 + s2) and obtain:

k∗
2 + k∗

1 = k(s1 + s2) (δ + k) .

Using an argument similar to the one in Lemma 2, we have that the adversary
cannot modify the distribution of k∗

2 + k∗
1 without modifying the distribution of

δ + k, which requires knowing some information about k. In the second case, we
define δ := (s1 + s2)/(r1 + r2) and obtain:

k∗
2 + k∗

1 = k2(s1 + s2)
(
δ + k−1

)
.

Again by adapting Lemma 2, we see that the adversary cannot modify the dis-
tribution of k∗

2 +k∗
1 without modifying the distribution of δ+k−1, which requires

knowing some information about k.

4.6 Security against Divide-and-Conquer Attacks

Most DPA attacks considered in the literature are based on a divide-and-conquer
approach. In [19], it is argued that fresh re-keying prevents the application of
such a strategy, because every bit of the session key is a sum of half of the master-
key bits on average. In addition, since DPA attacks usually require more than
one power trace to be successful, this subset changes for every encryption, as
long as the nonces are uniformly distributed. Thus, after only a few encryptions,
the union of those subsets almost covers the whole master key. In practice, this
means that an adversary needs to guess almost all 128 master key bits in order
to build 8-bit hypotheses for the session key. More generally, it was shown in [19]
that, whatever are the traces selected by the adversary (e.g. those obtained from
low Hamming weight nonces), it remains computationally intensive to guess one
byte of the session keys. We already showed in the previous section that the
control over the external nonces does not allow the adversary to efficiently bias
the session keys. As a result, the argument of security against divide-and-conquer
attacks for the single party case directly extends to the multi-party case. The
best adversarial strategy is to set all the nonces under control to zero and,
for the remaining (uncontrolled) nonce, to apply the strategy described in the
Africacrypt 2010 paper.

4.7 SCA Security of the Extended Function g

Since the function g has a homomorphic property it can be easily shown that
there is no leakage of order smaller t + 1 with t as the masking order. Further-
more, as shown in the previous subsection, for the final session key, we can rely
on the diffusion property after unmasking. However, what has to be considered
separately is the unmasking of the different session key contributions. In par-
ticular, if an adversary chooses a nonce s in such a way that only one byte is
non-zero, every byte of the product involving s depends only on one master-key



126 M. Medwed et al.

byte. Thus, after unmasking the product, it is possible to directly build hypothe-
ses for a single master key byte. When implementing the full scheme, one would
process the uniform nonce first and then accumulate the shares of the biased
product to obtain the final session key. For example let x = r ∗ k and y = s ∗ �
and further let r be the uniformly distributed nonce and s be the biased nonce
with only one non-zero byte. Finally, let x be shared as x = x1 + x2 + x3. Then
after the first multiplication, the session-key register will hold the intermediate
values (1)x, (2)x+y1, (3)x+y1 +y2, and finally (4)x+y. This shows that inde-
pendently of the masking order, if we implement the scheme straightforwardly
there will always be a second-order leakage, namely the joint leakage of (1)x and
(4)x+y. Furthermore, these leakage samples are only shuffled over 16 positions.

In order to fix this flaw, the unmasking has to be done in an interleaved
manner. That is, first all shares with index one are accumulated, afterwards all
shares with index two and so on. For the above example, this means that the
session key register will hold the values (1) x1, (2)x1+y1, (3)x1+y1+x2, (4)x1+
y1+x2+y2, (5)x+y1+y2, and finally (6)x+y. In order to attack y an adversary
would need to for instance use the joint distribution of (6)x + y, (1)x1, x2, and
x3, the dimension of which is greater than t.

5 Software Implementation in an AVR Microcontroller

In this section we will discuss an 8-bit software implementation of the fresh
re-keying scheme. As a target platform we chose the AVR microcontroller ar-
chitecture and in particular the model ATmega128. We target this architecture
since it is very common in constrained platforms such as smart cards, which are
the ones which will benefit most from our protection scheme.

The selected AVR microcontroller features an 8-bit datapath, 32 general pur-
pose registers and four kilobytes of SRAM. Furthermore, we can rely on four
kilobytes of EEPROM and 128 kilobytes of Flash program memory. Finally,
most of the instructions finish within a single clock cycle. Unfortunately, our
target platform does not feature a hardware random number generator (RNG).
Therefore, we state the performance of our implementation in two numbers.
First the number of clock cycles assuming that reading a random byte takes 2
clock cycles and second the explicit number of RNG calls needed throughout the
execution. This allows a cycle estimation for platforms which do provide such
an RNG.

5.1 Multiplication

The basic implementation of the function g relies on a product scan algorithm to
implement the polynomial multiplication. That is, every byte ci of the product
c = a∗b is calculated as ci =

∑15
j=0 a(i−j mod 16) ∗ bj . The GF(28) multiplication

is implemented using two lookup tables, a 256 byte large logarithm table (LOG)
and the corresponding inverse logarithm table (ILOG). In the logarithm table,
−∞ (LOG[0x00]) is encoded as 0xff. In order to get a conditional-branch free
multiplication, we rely on Algorithm 1.
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Algorithm 1. Branch-free multiplication
Require: a’ ← LOG[a], b’ ← LOG[b] with a, b ∈ GF(28)
Ensure: pp = a ∗ b
1: (carry, c) ← a′ + b′

2: pp ← ILOG [c − carry] // mod 255, ILOG [255] := ILOG [0]
3: zfa ← ZF(a′ − 0xff), zfb ← ZF(b′ − 0xff) // ZF ... AVR’s zero flag
4: pp ← pp · (1 − (zfa OR zfb))
5: return pp

5.2 Shuffling of the Fresh Re-keying

The function g needs to be shuffled for two reasons. First, the noise introduced
by shuffling is vital for the impact of masking. Second, in order to prevent attacks
as described in Section 3, the position of the leakage samples within the power
trace needs to be uncertain. Since g relies on carry-free arithmetic, shuffling
can be done efficiently. In this section we describe the two different parts of the
polynomial multiplication where we apply shuffling and also discuss two different
shuffling techniques. Thus, we provide four different levels of shuffling.

The most important part of the algorithm to shuffle is the processing of the
product bytes itself, that is the order in which the ci bytes are computed. This
significantly reduces the information an SPA adversary can learn about the prod-
uct. In particular, it leaves such an adversary with a probability of 1/16 for gain-
ing information about a specific byte. In addition, it is also possible to shuffle
the processing of the partial products corresponding to one product byte. Also
here, 16 positions can be shuffled, which results in a total randomization of the
partial products over 256 positions.

Internally, both parts of the algorithm are implemented as loops where each
iteration operates on independent data. Thus, the simplest way of shuffling is to
add an offset modulo 16 to the loop counter. For the bytes of the product, we just
start from cr and run through to c(r+15 mod 16), for a randomly chosen r. For
the partial products of one product byte, and a randomly chosen starting offset
s, this would mean ci =

∑15
j=0 a(i−(j+s mod 16) mod 16) ∗ b(j+s mod 16). From an

overhead point of view, shuffling using a random starting index is negligible.
As a second shuffling method, we indirectly address the product bytes and

the operand bytes. The bytes of the product are thus addressed by cri where r is
now a random permutation of the sequence 0, . . . , 15. For the partial products of
one product byte this would mean ci =

∑15
j=0 a(i−sj mod 16) ∗ bsj , for a random

permutation s. The generation of such a random permutation is significantly
more expensive than generating a random starting offset as in the first strategy.
In particular, we start with the sequence 0, . . . , 15 and sample n random bytes.
For every such random byte we take the four MSbs as position one and the four
LSbs as position two. Afterwards, we swap the entries at those positions. In gen-
eral, the generation of a permutation has a quadratic complexity, thus n = 162.
However, this results in 7 160 clock cycles just to generate one permutation of
which we need 17 in total. In order to allow a more flexible tradeoff, we also
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introduce an intermediate solution which sets n to 162 for the first permuta-
tion and derives all consecutive ones from the first permutation by swapping 16
random pairs.

For the generation of noise, the two approaches yield similar results, however,
if the aim is to prevent SPA attacks, there is a significant difference. In general,
if all 16 product bytes need to be recovered within a single trace, the time
complexity is 16 for the random starting index and 16! for the full permutation.
Since the described SPA attack needs t > 1 traces, we can estimate the time
complexity of the attacks as 16t and 16!t respectively. Therefore, for small values
of t, a random starting index might not be sufficient to shuffle the product bytes.

5.3 Shuffling of the AES

The AES Rijndael algorithm features a 16 bytes state, thus shuffled implemen-
tations usually shuffle these 16 positions plus sometimes additional dummy op-
erations. However, when it comes to the key schedule, only four positions can be
shuffled. Therefore, one option in a standard implementation is to store all the
round keys in the device instead of computing them on the fly. Unfortunately, we
cannot rely on this strategy as we never reuse the same key. As a result we have
to introduce three additional key schedules which operate on random dummy
data. This allows us again to shuffle over 16 positions and thus achieve the same
security level as for the remainder of the algorithm. We implemented a version
of the AES which uses fully indirect addressing for all the operations. This al-
lows having complete control over the processed bytes, but negatively affects
the performance. In fact our implementation can complete a whole encryption,
including one permutation generation, in 30,713 clock cycles.

5.4 Performance Results

Table 1 summarizes the different performance numbers for a single polynomial
multiplication when implemented using different levels of shuffling. RSI stands
for random starting index and RP-n for random permutation, the generation of
which used n swap operations. In addition we state the number of RNG calls. In
our implementation, those calls are included with a factor of two in the number
of clock cycles. It can be seen that the execution time of one multiplication
heavily depends on the way the shuffling is implemented. In order to prevent
SPA attacks and to add sufficient noise against DPA attacks we rely on the
third solution (RP-256 + RSI) for all further evaluations.

Implementing the masking is equivalent to performing t + 1 multiplications
for tth-order masking. The reason why first-order masking does not take twice as
long as the unmasked version is that we reuse the permutation for the product
bytes. We settled for this solution as it provides a good security vs. performance
tradeoff. However, the scheme could be implemented using various other trade-
offs, which generally compare favorably with the straightforward protection of a
block cipher against side-channel attacks, as will be discussed next.
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Table 1. Implementation results for the polynomial multiplication for different levels
of shuffling: RSI = random starting index, RP-16 = random permutation generated
with 16 swap operations, and RP-256 = random permutation generated with 256 swap
operations

Product bytes Partial products Clock Calls Code size RAM usage
shuffling shuffling cycles to RNG (bytes) (bytes)

- - 13,400 16 754 48
RSI RSI 15,032 33 760 48
RP-256 RSI 22,199 288 904 64
RP-256 RP-16 29,688 528 1008 80
RP-256 RP-256 137,208 4368 1008 80

In order to finalize the two n-party schemes, we need to perform n masked
multiplications for Scheme 1 and 2n − 1 multiplications for Scheme 2, if the
powers of k are computed on the fly. If the powers of k are precomputed, the
execution times of the schemes are equivalent. As for the RAM usage, we need
n times the RAM, as the n multiplications need to be performed in parallel to
allow interleaving the shares (as discussed in Section 4.7). Only the 16 bytes for
the session key accumulation can be shared.

Finally, we compare the total performance of our scheme with the provable
secure AES implementation of CHES 2010 [24]. Their results have been recently
improved [8] but this paper states only figures for the masked S-box and not for
the entire cipher, therefore we still use the figures from the CHES publication. For
third-order masking, the implementation of Rivain and Prouff takes 470k clock
cycles. Compared to that, our implementation with third-order masking and
shuffling takes 125k+31k=156k clock cycles if either Scheme 1 is used or Scheme
2 with precomputed powers of k. This shows the experimental evidence that fresh
re-keying is also attractive in software. Especially, because the performance scales
linearly with the masking order. For a larger number of involved parties though,
it would be favorable to have a hardware polynomial multiplier as in [19].

Table 2. Implementation results for the different masking orders with randomly per-
muted product bytes (RP-256) and random starting indices for the partial products
(RSI)

masking order single multiplication Scheme 1 Scheme 2

w/o masking 22,199 48,398 66,597
1st-order 35,559 71,118 106,677

2nd-order 48,919 97,838 146,757
3rd-order 62,279 124,558 186,837

6 Future Research and Conclusions

In this paper we analyzed and extended the fresh re-keying scheme as intro-
duced at Africacrypt 2010. In particular, we extended their research on three
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lines. First, we analyzed the scheme’s susceptibility to algebraic SPA attacks.
We showed that on the one hand, if no precautions are taken, such attacks can
be easily applied. On the other hand, the assumptions for such attacks are also
non-trivial, thus they can be efficiently prevented by shuffling. Second, we ex-
tended the scheme to n parties and showed that the security of the two proposed
extensions is similar to the one of the original scheme. From a performance point
of view the extensions scale linearly in n and our second scheme does not even
need additional key material. Third, we implemented the scheme on an 8-bit
microcontoller architecture in order to show its efficiency in software. Thus, the
paper shows that the fresh re-keying scheme seems to be an appealing choice to
provide side-channel security for automotive applications. That is, applications
where many low-cost parties need to communicate in a secure way.

Eventually, while the security versus performance results of the fresh re-keying
are pretty strong, it is important to note that the analysis of the scheme combines
several components. Namely, the overall resistance against side-channel attacks
relies on the provable secure masking for the multiplications, the impossibility of
biasing the session key, the interleaved recombination of the session key shares
and finally, the SPA security of all components. While present evaluation does
not reveal obvious weaknesses, a more formal evaluation of the proposed solu-
tion, allowing to precisely understand and argue about the interaction between
these components, would be a nice scope for further research. Besides, another
interesting open problem would be to study the use of a randomness extractor as
re-keying function. As recently discussed in [18], such extractors have interesting
properties for leakage resilience, when implemented in hardware. Since they are
central elements in proofs of leakage resilience such as [6], their use for improving
the formal analysis of fresh re-keying schemes could be investigated as well.
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Abstract. The ARMADILLO cryptographic primitive is a multi-purpose crypto-
graphic primitive for RFID devices proposed at CHES’10. The main purpose of
the primitive is to provide a secure authentication in a challenge-response pro-
tocol. It has two versions, named ARMADILLO (subsequently denoted by AR-
MADILLO1) and ARMADILLO2. However, we found a fatal weakness in the de-
sign which allows a passive attacker to recover the secret key in polynomial time,
of ARMADILLO1 and some generalizations. We introduce some intermediate de-
signs which try to prevent the attack and link ARMADILLO1 to ARMADILLO2.
Considering the fact that the attack against ARMADILLO1 is polynomial, this
brings about some concerns into the security of the second version ARMADILLO2,
although it remains unbroken so far.

1 Introduction

ARMADILLO is a hardware oriented multi-purpose cryptographic primitive presented at
CHES’10 [2]. It was built for RFID applications. It can be used as a PRF/MAC, e.g. for
a challenge-response protocol as a MAC, and also as a hash function for digital signa-
tures, or a PRNG for making a stream cipher. It has two versions, named ARMADILLO
(subsequently denoted by ARMADILLO1) and ARMADILLO2.

During the review process of CHES’10 we found an attack against ARMADILLO1
and its variants. The ARMADILLO2 includes a quick fix to resist it. The attack and its
variants are presented in this paper.

To fix the vulnerability of ARMADILLO1 and simultaneously shrink the design, we
define multiple intermediate versions of ARMADILLO and we investigate their security
with respect to the original attack and illustrate that they are still vulnerable to a key re-
covery or a forgery attack. Although our attack is not applicable against ARMADILLO2,
the step by step approach in the design of other variants would give a concern behind the
security of ARMADILLO2. These intermediate designs reveal that the security bounds
on ARMADILLO2 might be insufficient.

We introduce a generalized version ARMADILLOgen and we explain when the key re-
covery or forgery attack is possible. Finally, we come to the definition of ARMADILLO2.

The attacks we show have always complexity polynomial in the size of input. Specif-
ically, the attack against ARMADILLO1 has complexity O(k2 logk) and it can be per-
formed “by hand“, as the actual key recovery algorithm is very simple.
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1.1 Related Work

In [1] the authors found an attack against ARMADILLO2 based on parallel matching.
The key recovery attack against FIL-MAC application of ARMADILLO2-A and AR-
MADILLO2-E using single challenge-response pair is 27 and 218 times faster than ex-
haustive search respectively. The techniques presented in our paper may help to reduce
the time complexity if the attacker uses multiple samples.

2 Description of ARMADILLO

ARMADILLO relies on data-dependent bit transpositions. Given a bitstring x with bit
ordering x = (x�‖· · ·‖x1), fixed permutations σ0 and σ1 over the set {1,2, . . . , �}, a bit
string s, a bit b∈ {0,1} and a permutation σ, define xσs = x when s has length zero, and
xσs‖b = xσs◦σb , where xσ is the bit string x transposed by σ, that is,

xσ = (xσ−1(�)‖· · ·‖xσ−1(1))

The function (s,x) �→ xσs is a data-dependent transposition of x. The function s �→ σs

can be seen as a particular case of the general semi-group homomorphism from {0,1}∗
to a group G.

Notations. Throughout this document, ‖ denotes the concatenation of bitstrings, ⊕
denotes the bitwise XOR operation, x denotes the bitwise complement of a bitstring x;
we assume the little-endian numbering of bits, such as x = (x�‖· · ·‖x1).

In this section, we give the description of two variants ARMADILLO1 and
ARMADILLO2. Then, we introduce a common generalized version ARMADILLOgen
and show how it relates to all versions. We show the attack against ARMADILLOgen
for many different choices of parameters.

2.1 ARMADILLO1

ARMADILLO1 maps an initial value C and a message block U to two values (see Fig. 1).

(VC,VT ) = ARMADILLO1(C,U)

ARMADILLO1 works based on a register Xinter. By definition, C and VC are of c bits,
VT as well as each block Ui are of m bits, Xinter is of k = c + m bits. ARMADILLO1
is defined by integer parameters c, m, and two fixed permutations σ0 and σ1 over the
set {1,2, . . . ,2k}. Concretely, we consider m ≥ 40 and k = c + m. To initialize AR-
MADILLO1, Xinter is set to C‖0m where 0m is a null padding block, and C is an initial
value. ARMADILLO1 works as follows (Fig. 1).

1: in the i-th step, replace the rightmost m-bit block of Xinter by the block Ui;
2: set a � = 2k bits register x = Xinter‖Xinter;
3: x undergoes a sequence of bit permutations which we denote by P. The output of

this sequence of bit permutations is truncated to the rightmost k bits, denoted S, by

S = tailk((Xinter‖Xinter)σXinter )
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4: set Xinter to the value of S⊕Xinter.
5: after processing the last block Un, take (VC‖VT ) = Xinter as the output.

Xinter Xinter
· · · 3 2 1

C Ui

c m

(Xinter‖Xinter)σXinter .
.
.
3
2
1

k

S

⊕

m

VTVC

Fig. 1. Scheme of ARMADILLO1

2.2 ARMADILLO2

For completeness, we now provide the description of ARMADILLO2 [2] here. The AR-
MADILLO2 is mostly based on ARMADILLO1b (be defined later) with an additional pre-
processing mechanism. As the reader see later in the paper, the pre-processing prevents
our attack. We note that the pre-processing step outputs a sequence of bits that defines
the data dependent permutation and ensures that the data dependent permutation σXinter

cannot be easily controlled by the attacker (see Fig. 2).

1: in the i-th step, replace the rightmost m-bit block of Xinter by the block Ui;
2: set a � = k bits register x = Xinter;
3: x undergoes a sequence of bit permutations, σ0 and σ1 and a constant γ addition,

which we denote by P. In fact, P maps a bitstring of m bits and a vector x of k
bits into another vector of k bits as P(s‖b,x) = P(s,xσb ⊕ γ), where b ∈ {0,1} and
xσb is a permutation of bits of x (transposition). The output of this sequence of k
bit permutations and constant addition is denoted Y = P(Ui,x). We call this step
pre-processing, since it is used to define the permutation for the consequent step.

4: x undergoes a sequence of bit permutations and constant addition P defined by Y .
The output of this sequence of k bit permutations and constant addition is denoted
S = P(Y,x).

5: set Xinter to the value of S⊕Xinter.
6: after processing the last block Un, take (VC‖VT ) as the output.
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Y = P(Ui,C‖Ui)

Y
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c m

P(Y,C‖Ui)
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⊕

m

VTVC

Fig. 2. Scheme of ARMADILLO2

3 General ARMADILLOgen Algorithm

We define various intermediate versions of ARMADILLO. These intermediate versions
show the relation between ARMADILLO1 and ARMADILLO2 and give a security con-
cern on ARMADILLO2. We explain step by step how the weakness in the design of
ARMADILLO1 relate to a possible weaknesses in design of ARMADILLO2.

All these versions are based on data-dependent permutation P. They all can be cov-
ered under ARMADILLOgen as a parametrized version of distinct variants, and by setting
corresponding parameters we obtain ARMADILLO1, ARMADILLO1b, ARMADILLO1c,
ARMADILLO1d and ARMADILLO2. We show an attack against ARMADILLOgen for
some choices of parameters.

ARMADILLOgen is defined as

ARMADILLOgen(X) = T4(P(T1(X),T2(X)),X)

where
P(s‖b,Y ) = P(s,T3(b,Y ))
P(λ,Y ) = Y

λ denotes the empty string, T1, T2, and T4 are some linear functions, and T3 in its most
general form is

T3(b,Y ) = L(Y )σb ⊕ γ

where L is linear and γ is a constant.
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Then, ARMADILLO1 is defined as ARMADILLOgen for

T1(X) = X
T2(X) = X‖X
T3(b,X) = Xσb

T4(X ,Y ) = tailk(X)⊕Y

ARMADILLO2 is defined as ARMADILLOgen for

T1(X) = P(tailm(X),X)
T2(X) = X
T3(b,X) = Xσb⊕ γ
T4(X ,Y ) = X⊕Y

3.1 ARMADILLO1b: Shrinking the Xinter Register

The ARMADILLO1b is a compact version of ARMADILLO1 which prevents the preserva-
tion of Hamming weight by adding a constant. However, it does not prevent the attack
against ARMADILLO1. According to [2], the ARMADILLO1 design prevents a distin-
guishing attack based on constant Hamming weight by having the double sized internal
register and the final truncation, assuming the output of P transposition looks pseudo-
random. We see later in this paper (see section 4) that this proof does not hold in stan-
dard attack model and ARMADILLO1 can be broken in polynomial time. First, we define
ARMADILLO1b and then demonstrate an attack against this version and explain how the
same attack can be used against ARMADILLO1.

ARMADILLO1b is defined as ARMADILLOgen for

T1(X) = X
T2(X) = X
T3(b,X) = Xσb⊕ γ
T4(X ,Y ) = X⊕Y

In the design of ARMADILLO1b the state size is reduced to k bits to save more gates.
So, there is only the register Xinter and not its complement, and there is no truncation.
To avoid Hamming weight preservation, after each permutation there is an XOR of the
current state with a constant γ (see Fig. 3).

3.2 ARMADILLO1c: Adding a Linear Layer in T3

To investigate whether a more complex layer in T3 can prevent the attack on AR-
MADILLO1b we define ARMADILLO1c. It is defined as ARMADILLOgen for

T1(X) = X
T3(b,X) = L(X)σb ⊕ γ

for a linear transformation L, with arbitrary linear T2 and T4.
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Fig. 3. Scheme of ARMADILLO1b

3.3 ARMADILLO1d: Adding a Fixed Transposition in T1

We will see later that ARMADILLO1c is still vulnerable. To prevent the attack on AR-
MADILLO1c, a fixed transposition was added in T1 to mix the bits of the secret and the
challenge. ARMADILLO1d is defined as ARMADILLOgen for

T1(X) = Xπ
T3(b,X) = Xσb⊕ γ

for a fixed permutation π and with arbitrary linear T2 and T4.

4 Key Recovery Attack against ARMADILLO1 and ARMADILLO1b

In this section, we describe an attack against two versions of ARMADILLO. We first
explain the attack on ARMADILLO1b and then setting γ = 0 and extending the initial
state to (Xinter‖Xinter) = (C‖U‖C‖U), the same attack can be directly used against
ARMADILLO1.

Since ARMADILLO has more than one applications, we just briefly explain how it
is deployed in the challenge-response application. We refer the reader to [2] for more
details. The objective is to have a fixed input-length MAC. Suppose that C is a secret
and U is a one block challenge. The value VT is the response or the authentication tag.
We write

VT = ARMADILLO(C,U)
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As can be seen from the description of the algorithm, there is no substitution layer. This
means that for a fixed key C the permutation σC is fixed (but unknown). As we see later
in the paper, it can be easily recovered. For the attack it suffices to recover the mapping
σC of a single index, for instance we recover σC( j) = n for some value j. If we can
recover the mapping σC( j), we than take challenges Ui so that j-th bit of P(Ui,C‖Ui)
contains different bits of the key. This allows us to recover the secret key from literally
reading the key from the output of ARMADILLO1b. We also show that the attack can be
extended to other scenarios, or can be changed to forgery attack if the key recovery is
not possible. More precisely, we consider

T1(X) = X
T3(b,X) = Xσb⊕ γ

with arbitrary linear T2 and T4. This includes ARMADILLO1 and ARMADILLO1b.
The attack is based on the fact that a bit permutation is linear with respect to XOR

operation, i.e., for a permutation σ, X and Y be two vectors, we have (X⊕Y )σ = Xσ⊕Yσ.

Lemma 1. For any T3, C, and U, we have

P(C‖U ,C‖U) = P(C,P(U ,C‖U))

Proof. We easily prove it by induction on the size of C. ��

Lemma 2. For T3(b,X) = Xσb ⊕ γ, there exists a function f : 2|X | → 2|X | such that for
any Y = (yk‖ . . .‖y1) and X, we have

P(Y,X) = XσY ⊕ f (Y )

Proof. Let rewrite

P(Y,X) =

(((
Xσy1

⊕ γ
)

σy2

⊕ γ
)

σy3

⊕ γ . . .

)
σyk

⊕ γ

Let define the prefix of Y as

prefix(Y ) = {Yj; Yj = (yk‖ . . .‖y j),1≤ j ≤ k}

Thus, P can be rewritten as

P(Y,X) = (X⊕ γ)σY ⊕ γ⊕
⊕

p∈prefix(Y )

γσp = XσY ⊕P(Y,0)

��
Now we apply the above results to ARMADILLOgen with T1(X) = X and T3(b,X) =
Xσb⊕ γ.

ARMADILLOgen(C‖U) = T4(P(C‖U ,T2(C‖U)),C‖U)
= T4(P(C,P(U ,T2(C‖U))),C‖U)
= T4(P(C,(LU (C)σU ⊕ f (U))),C‖U)
= T4

(
(LU(C)σU ⊕ f (U))σC

⊕ f (C),C‖U
)
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where LU(C) = T2(C‖U) and f (U) is given by Lemma 2. The first equality is coming
from the definition, the second from Lemma 1 and the last two from Lemma 2. So, we
can write

ARMADILLOgen(C‖U) = L
(
(LU(C)σU ⊕ f (U))σC

⊕g(U)⊕h(C)
)

for some linear function L and some functions g and h. For all the variants we consider, L
is either the identity function or consists of dropping a few bits. For ARMADILLO1b and
ARMADILLO1 the function h(C)= f (C)⊕(C‖0m), g(U)= (0c‖U). Similarly, L(X) = X
and L(X) = tailk(X) respectively.

In what follows, we consider an arbitrary i and take a vector ei such that ei ·L(X) =
X [i], i.e, the i-th bit of register X . So, we obtain

ei ·ARMADILLOgen(C‖U) = (LU (C)σU ⊕ f (U))σ−1
C (i)⊕g(U)i⊕h(C)i

Clearly, there exists a j = σ−1
C (i) such that

ei ·ARMADILLOgen(C‖U)⊕g(U)i = LU(C)σ−1
Ut

( j)⊕ f (U) j⊕h(C)i (1)

In chosen-input attacks against the PRF mode, we assume that the adversary can com-
pute

ei ·ARMADILLOgen(C‖U)

for a chosenU and a secret C. In the challenge-response application, we only have access
to VT , but in all considered variants, ei has Hamming weight one, so we just need to
select i so that this bit lies in the VT window. We introduce an attack (see Fig. 4) which
only needs this bit of the response for n = k logk queries. This algorithm has complexity
O(k2 logk) to recover the secretC (also see Fig. 5). In fact, the attacker can simply recover
the permutationY = P(Ui,Xinter), since she has control overUi’s. Now, her goal is to find
out how P(C,Y)maps the index j to i. The goal of the algorithm is to find this mapping and
recovers C. It is exploiting the fact that fixing the i, then h(C)i is fixed for all challenges
and the left side of Eq. (1) can be computed directly by the adversary. Then, it recovers
C by solving an overdefined linear system of equations and check it has a solution. If so,
it checks whether the recovered C is consistent with other samples.

Attack complexity. The first for loop runs ARMADILLO algorithm k logk times . The sec-
ond loop runs � times where � = 2k for ARMADILLO1 and � = k for ARMADILLO1b. We
perform up to 2k logk simple arithmetic operations in the second loop to compute val-
ues LUt (C)σ−1

Ut
( j). Solving the system of n linear equation requires O(n3) in general case.

However, in the case of ARMADILLO1 and ARMADILLO1b every line contains only one
variable of secret C, which comes from the Lemma 2. As we have k logk equations
in c variables, if the mapping i→ j is not guessed correctly we have high probability
to obtain contradiction on line 13. So overall, we have complexity of O(k2 logk) for
attacking both ARMADILLO1 and ARMADILLO1b.

Probability of success. We first choose randomly k logk challenges Ut and compute
ARMADILLOgen(C‖Ut). That is because, according to coupon collector problem [3]
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1: Pick a random i from 1 to m.
2: for t from 1 to n = k logk do
3: collect challenge-response pair (Ut ,ei ·ARMADILLOgen(C‖Ut))
4: compute bt = ei ·ARMADILLOgen(C‖Ut)⊕g(Ut )i.
5: end for
6: for j from 1 to � do
7: for each β ∈ {0,1} do
8: set h(C)i = β.
9: for t from 1 to n do

10: compute LUt (C)σ−1
Ut

( j) = bt ⊕ f (Ut ) j⊕β for all c bits.

11: end for
12: solve the system of n linear equations LUt (C)σ−1

Ut
( j)

13: if no solution then
14: break
15: end if
16: derive C
17: if C is consistent with samples then
18: output C.
19: end if
20: end for
21: end for

Fig. 4. The key recovery algorithm against ARMADILLO1 and ARMADILLO1b

the expected number of challenges so that every bit of C is mapped to i-th bit of output
is k logk. Therefore, among k logk challenges all the bits of challenge and all the bits of
secret key are mapped to a single bit of the output. The attacker can derive equation for
the j-th bit of P(Ut ,C‖Ut), and for k logk distinct challenges Ut the set of equations will
have full rank. These equations do not change through the fixed mapping σC, only the
constant term might change due to term P(C,0). Therefore if the attacker guess j → i
correctly, the set of k logk equations in c variables has a solution, otherwise the set of
k logk equations in c variables has no solution with probability at least 1−2−n.

Failure of the previous attack. The previously mentioned attack would fail, if the per-
mutations σ0, σ1 map bit indices in the set [1,m] to the set [1,m], i.e., σ0[1..m] = [1..m]
and σ1[1..m] = [1..m]. So, it might be speculated that picking such permutations in the
design makes the cryptosystem secure. However, the ARMADILLO with such permuta-
tions is vulnerable to a simple forgery attack.

Let remind the decomposition

ARMADILLO1b(C‖U) = P(C‖U,C‖U)⊕ (C‖U)
= P(C,P(U,C‖U))⊕ (C‖U)
= P(C,(L(C)σU ⊕ f (U)))⊕g(U)
= (L(C)σU ⊕ f (U))σC

⊕g(U)⊕h(C)

Given m challenges which form a linearly independent system, we can compute the
response by solving the set of these linear equations.
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Fig. 5. Scheme of the key recovery algorithm against ARMADILLO1 and ARMADILLO1b

5 Attack Extension with Linear Layer in T3 (ARMADILLO1c)

T3 function is very simple in the previous versions. The first attempt to prevent the
previous attack is to use a more complex layer but still linear and check whether it
prevents the attack. We define another intermediate version and call it ARMADILLO1c.
Then, we show that only adding a linear layer L in T3(b,X) = L(X)σb ⊕ γ would not
prevent the attack.

Let L be a linear transformation. This attack requires O(k) challenges and three Gaus-
sian eliminations which require O(k3) operations. We define the new ARMADILLO1c as
follows.

ARMADILLO1c(C‖U) = T4(P(C‖U,T2(C‖U)),(C‖U))

where
P(s‖b,Y ) = P(s,L(Y )σb ⊕ γ)
P(λ,Y ) = Y

We build a system of equations, where

ARMADILLO1c(C‖Uj) = T4 (P(C‖Uj,T2(C‖Uj)),C‖Uj)
= T4 (P(C,P(Uj,T2(C‖Uj))),C‖Uj)
= T4 (P(C,P(Uj,T2(C‖0)⊕T2(0‖Uj))),C‖Uj)
= T4 (P(C,P(Uj,T2(C‖0))⊕P(Uj,T2(0‖Uj))),C‖Uj)

= T4
(
LC(LUj (C)⊕ γ j)⊕P(C,0),C‖Uj

)
where LUj (C) = P(Uj,T2(C‖0)) and γ j = P(Uj,T2(0‖Uj)).
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We use the fact that a set of ck+1 equations LUj (C) is linearly dependent. Using this
we can bypass the unknown mapping LC. We can find a set J of equations whose sum
is 0. Let ε be the parity of the cardinality of J. We obtain

⊕
j∈J

ARMADILLO1c(C‖Uj) = T4

(
LC

(⊕
j∈J

γ j

)
⊕ εP(C,0),εC‖

⊕
j∈J

Uj

)

Using the above expression with several J’s, we can recover linear mapping LC and
P(C,0). Using the knowledge of LC(X) we recover P(C,2i) for 0 < i < k. We do this by

Gaussian elimination on values

(⊕
j∈J

γ j

)
. Using P(C,2i) for 0≤ i < k, we can recover

LUj (C) as follow.

ARMADILLO1c(C‖Uj) = T4
(
LC(LUj (C)⊕ γ j)⊕P(C,0),C‖Uj

)
= T4

(
LC(LUj (C)),C‖0

)
⊕T4 (LC(γ j)⊕P(C,0),0‖Uj)

Therefore, we can compute

T4
(
LC(LUj (C)),C‖0

)
= ARMADILLO1c(C‖Uj)⊕T4 (LC(γ j)⊕P(C,0),0‖Uj)

Let consider Ui �= Uj, we have

Δ(Ui,Uj) =T4 (LC(LUi (C)),C‖0)⊕T4
(
LC(LUj (C)),C‖0

)
=T4

(
LC(LUi(C)⊕LUj (C)),0

)
=ARMADILLO1c(C‖Ui)⊕T4 (LC(γi)⊕P(C,0),0‖Ui)
⊕ARMADILLO1c(C‖Uj)⊕T4 (LC(γ j)⊕P(C,0),0‖Uj)

Hence, we obtain

LUi(C)⊕LUj (C) = L−1
C (T−1

4 (ARMADILLO1c(C‖Ui)⊕T4 (LC(γi)⊕P(C,0),0‖Ui)

⊕ARMADILLO1c(C‖Uj)⊕T4 (LC(γ j)⊕P(C,0),0‖Uj) ,0))

Since LUi(C) is a known transformation linear in C we can recover the secret key by
solving the set of linear equations.

6 Attack Extension with a Fixed Transposition in T1
(ARMADILLO1d)

6.1 Case with no General T2 and T4

The previous attack can be prevented by using an S-box layer. However, if the underly-
ing permutation P is not predictable then we can not apply the aforementioned attack.
We used P(U,C‖U) to generate linear equations, and then guess the mapping P(C,Y ).
So, an attempt is to mix bits of C and U . But then, we show that even though we do not
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know the secret parts of permutation since these parts are fixed, we can guess them one
by one. We design a version called ARMADILLO1d that first applies a fixed permutation
π on the first register, i.e., T1 is a transposition. Then, we show that setting T1 to be a
transposition does not prevent a forgery attack. ARMADILLO1d is defined as follows.

ARMADILLO1d(C‖U) = T4(P((C‖U)π,T2(C‖U)),(C‖U))

where

P(s‖b,Y ) = P(s,Yσb ⊕ γ)
P(λ,Y ) = Y

We first consider a simple case for T1 when bits of challenge U form an interval (see
Fig. 6), and T2 is identity and T4(X ,Y ) = X⊕Y . Later, we extend the attack to a general
transposition T1, T2 and T4.

ARMADILLO1d(C1‖C2‖U) = P(C1‖U‖C2,C1‖C2‖U)⊕ (C1‖C2‖U)

Let denote X = (C1‖C2‖U). We have

ARMADILLO1d(C1‖C2‖U) = P(C1‖U‖C2,X)⊕X
= P(C1‖U,P(C2,X))⊕X
= P(C1,P(U,P(C2,X)))⊕X

Xinter

C1 C2 U

c m

P(Xinter,Xinter)

C2

U

C1

k

S

⊕

m

VTVC

Fig. 6. The compression function of ARMADILLO1d
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Concentrating on an arbitrary output bit n and using Lemma 2, we obtain

ARMADILLO1d(C1‖C2‖U)[n] = P(C1,P(U,P(C2,C1‖C2‖U)))[n]
⊕(C1‖C2‖U)[n]

t=σ−1
C1

(n)
= P(C1,0)[n]⊕P(U,P(C2,C1‖C2‖U))[t]

⊕(C1‖C2‖U)[n]
l=σ−1

U (t)
= P(C1,0)[n]⊕P(U,0)[t]⊕P(C2,C1‖C2‖U)[l]

⊕(C1‖C2‖U)[n]
i=σ−1

C2
(l)

= P(C1,0)[n]⊕P(U,0)[t]⊕P(C2,0)[l]
⊕(C1‖C2‖U)[i]⊕ (C1‖C2‖U)[n]

Re-arranging the above expression, for al = P(C2,0)[l] and bn = P(C1,0)[n] we obtain

ARMADILLO1d(C1‖C2‖U)[n]⊕g(U)[t]⊕X [n]⊕X [i]= (al⊕bn) (2)

We follow Fig. 7. for the attack scenario. Let n = σC1(t) and l = σC2(i), where both
permutations are unknown. Set a value q to be determined later. We group k.q distinct
challenges as follows: we put the challenge Uj in group Gl→t if σUj (l) = t. In fact, a
challenge appears in k groups. These are groups G1→σUj (1), G2→σUj (2), . . . , Gk→σUj (k)

.

We obtain k2 groups with approximately q challenges in each. The right hand side
of equation (2) is fixed for all challenges in the same group, since σU(l) = t for all
U ∈ Gl→t . Hence the left hand side should be fixed for all challenges in the same group
as well, since neither al not bn changes. We deploy this property and use the following
algorithm to filter out “bad groups” and recover relations which allow us to forge the
response. Since C1 and C2 are fixed, σC2(i) and σ−1

C1
(n) are fixed for (i,n) fixed. So,

σC2(i) for i ∈ [1,m] can only map to m distinct positions, therefore l can have only m
possibilities out of k. The same is true for σ−1

C1
(n) which can only have m possibilities

for t. Intuitively, what we mean by a “bad group” is a group which whether in the
mapping σ−1

C2
(l) maps l out of the corresponding windows of size m or in the mapping

σC1(t) maps t out of the corresponding windows of size m. Term “good groups” is used
to recover σC1 , σC2 . We now define more precisely what we mean by a “bad group” and
how they can be filtered.

Definition 1. We call a group a “bad group” if the exists no pair (i,n) ∈ [1,m]2, such
that σC2(i) = l and σ−1

C1
(n) = t.

Lemma 3. The group Gl→t is bad if for every pair (i,n) ∈ [1,m]2 there exists U ∈Gl→t

such that the equation 2 is not satisfied.

Proof. The equation 2 has to be satisfied for group Gl→t only if we guess σC2(i) = l
and σ−1

C1
(n) = t correctly. If σC2(i) �= l or σC1(t) �= n, then given U ∈ Gl→t we have 1

2
probability that the equation 2 would be satisfied even if the group is chosen incorrectly.

Therefore, we drop out a “bad group” Gl→t if there exists no pair (i,n)∈ [1,m]2 such that
(i→ l→ t→ n) for which equation (2) is satisfied for all elements (see Fig 9). Following
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Fig. 7. ARMADILLO1d attack scheme

this step, we also output a correct mapping (i→ l → t → n) where (l, t) ∈ [1,k]2 and

(i,n) ∈ [1,m]2. The probability to accept a given incorrect group is lower than k2

2q . So,
for k4 � 2q we keep no incorrect group for sure. That is, we need q≈ 4log2 k.

Now we have m2 groups left after filtering and at least one mapping (i f → l f → t f →
n f ) for a group Gl f→t f . These m2 groups correspond to all groups Gli→ei for li ∈
{σC2 [1], . . . ,σC2 [m]} and ei ∈ {σ−1

C1
[1], . . . ,σ−1

C1
[m]} (see Fig. 8). Since σC1 ,σC2 are fixed,

the correct groups correspond to all mappings between the set of m indices
{σC2 [1], . . . ,σC2 [m]} and the set of m indices {σ−1

C1
[1], . . . ,σ−1

C1
[m]}.

Now, we fix l to l f . This way we reduce the number of groups to m. At this stage, we
know the exact mapping is i f → l f . Depending on which group Gl f→tg we pick at this
stage (we have a free choice of tg), we have m distinct mappings from bit l f . We pick
one of these groups Gl f→tg which maps l f to tg. i.e., the mappings on both ends of Fig.
7 are fixed. Then, we go through all m possibilities for n and check for all U ∈ Gl f→tg
whether ARMADILLO1d(C1‖C2‖U)[n]⊕ g(U)[tg]⊕X [n]⊕X [i f ] is constant. If yes, we
know that tg maps to n. Using all m groups Gl f→·, we can recover permutation σ−1

C1
on

[1,m]. We can fix t to t f this time and perform the same procedure to recover σC2 .

Now we have all we need to forge a response for a new challenge. Let U ′ be a new
challenge. We forge ARMADILLO1d bit by bit. Let consider bit n of the responce R′. We
have recovered σ−1

C1
[1,m] and therefore we know σ−1

C1
(n) where n ∈ [1,m] i.e., position

to which the nth bit of the response R′ is mapped. Now we select l 1 such that U ′ ∈
1 Notice that this l can be in the “bad groups”. We only use the “good groups” to recover the

secret permutations σC2 and σC1 .
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σ ( )

σ ( )

σ

Fig. 8. ARMADILLO1d group filtering scheme

Gl→σ−1
C1

(n). If we find such l (i.e., we find the corresponding group) then we forge the

n = σC1 σU σC2(i)-th bit of the response as follows. Let U ∈Gl→σ−1
C1

(n) be a representative

of such a group. From equation (2) we have

ARMADILLO1d(C1‖C2‖U)[n]⊕g(U)[t]⊕X [n]⊕X [i]= (al⊕bn)
ARMADILLO1d(C1‖C2‖U ′)[n]⊕g(U ′)[t]⊕X ′[n]⊕X ′[i] = (al⊕bn)

and therefore

ARMADILLO1d(C‖U ′)[n] = ARMADILLO1d(C‖U)[n]⊕ (X [i]⊕X ′[i])⊕ (g(U)[t]
⊕g(U ′)[t])⊕ (X [n]⊕X ′[n])

If there is no such l (i.e., we cannot find any corresponding group) we forge the n =
σC1 σU σC2(i)-th bit of response as follows. Compared to the previous case we only drop
(X [i]⊕X ′[i]), since X [i] = X ′[i], since the bit is coming from the secret part.

ARMADILLO1d(C‖U ′)[n] = ARMADILLO1d(C‖U)[n]⊕g(U)[t]⊕g(U ′)[t]
⊕X [n]⊕X ′[n]

The complexity of the forgery attack is O(qk4) with qk challenges, where q≈ 4log2 k.

6.2 Extension with the T4 and T2 Transformations

Let now consider the definition for a general case of a T2 and T4 and T1(C1‖C2‖U) =
(C1‖U‖C2), i.e., we assume that π keeps a large piece of consecutive bits of U together.

ARMADILLO1d(C1‖C2‖U) = T4(P(C1‖U‖C2,T2(C1‖C2‖U)),(C1‖C2‖U))
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1: for all Gl→t , where (l,t) ∈ [1,k]2 do
2: ω = 0
3: for all (i,n) ∈ [1,m]2 do
4: err = 0
5: pick an arbitrary U1 ∈ Gl→m
6: ν = ARMADILLO1d(C1‖C2‖U1)[n]⊕g(U1)[t]⊕X [n]⊕X [i]
7: for all U ∈ Gl→m\U1 do
8: if ν �= ARMADILLO1d(C1‖C2‖U)[n]⊕g(U)[t]⊕X [n]⊕X [i] then
9: ω = ω+1

10: err = 1
11: break
12: end if
13: end for
14: if (err == 0) then
15: output (i→ l→ t → n).
16: end if
17: end for
18: if (ω == m2) then
19: drop Gl→t .
20: end if
21: end for

Fig. 9. Group filtering algorithm for ARMADILLO1d

The same steps as the previous attacks hold in the general case as well. In the case of
T2, since the secret is fixed it can be derived out as a constant in our computations. So,
deploying the same grouping strategy, the attack still works. It is not difficult to see that
the same method also holds even if we have the T4 function.

6.3 Extension to a General π

Let now consider the definition

ARMADILLO1d(X) = P(Xπ,X)⊕X

for X = (C1‖ . . .‖Ct‖U1‖ . . .‖Ut−1). In the algorithm above, the attacker decomposes the
computation of ARMADILLO1d into several stages. Let suppose wlog that we permute
the bits of secret using permutation π as follows

(C1‖ . . .‖Ct‖U1‖ . . .‖Ut−1)π = C1‖U1‖C2‖U2‖ . . .‖Ct−1‖Ut−1‖Ct

I.e. π mixes C and U bits together, without putting too many consecutive bits of U . We
use t times the forgery algorithm on ARMADILLO1d to recover all mappings σCi .

Let assume that 2|Ui| ≥ kq for every i. If this is not the case we can recover the mapping
σCi−1σUi σCi for all evaluations of Ui in polynomial time. In both cases, we recover each
σCi and σCi+1 recursively. To recover σCi and σCi+1 , we fix Ei+1 = Ui+1‖Ci+2‖ . . .‖Ct by
fixing Ui+1, . . . ,Ut−1, since Ci+2, . . . ,Ct is already fixed. Then, the problem is reduced
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to the same situation as the previous attack, where we have a challenge part sandwiched
between two intervals of the secret bits C. Finally, we obtain the mapping σC1 on set
[1,m], σC2 , . . . , σCt−1 on set [1,k] and σ−1

Ct
on set [1,m]. Note that we can recover permu-

tations σC2 , . . . , σCt−1 on set [1,k] by setting challenge bits to different values k
m times.

All we need is to describe an algorithm to recover all constants P(Ci,0). Then we will
have everything we need to forge the response of ARMADILLO1d to any challenge.

We now describe how to recover P(C1,0). The same method can be used to derive
other P(Ci,0) recursively. The same as before, Let fix all Ui’s except U1. We use Lemma
1. and Lemma 2. and rewrite

ARMADILLO1d(X)⊕X = P(C1‖U1‖E2,X)
= P(E2,P(U1,P(C1,X)))
= P(C1,X)σU1 σE2

⊕P(U1,0)σE2
⊕P(E2,0)

= P(C1,0)σU1
σE2
⊕XσU1

σE2
⊕P(U1,0)σE2

⊕P(E2,0)

which gives us set of linear equations and we can vary σU1 as necessary to obtain a large
system of equations and solve it.

Complexity. The general attack may iterate the algorithm in Fig. 9. up to k times. In
some iterations, the requirement 2|Ui | ≥ k logk does not need to be satisfied. In such case,
we need to extend the interval Ui by guessing some bits of key. Such technique would
require another k logk steps. Therefore, the complexity is bounded by O(k ·k4q ·k logk).
We specified before that q ≈ 4logk. Hence, the complexity of the offline stage of the
attack is O(k6 log2 k) and the algorithm requires at most k3 log2 k queries.

6.4 Attack Impact on ARMADILLO2

We can see ARMADILLO2 as a successor of ARMADILLO1d with a pre-processing T1

which is more elaborate than a simple transposition. Such preprocessing makes it re-
sistant against our attack. Our attack is based on decomposition according to Lemma 1
and a guess of a constant value of function f (U) from Lemma 2. The pre-processing
phase protects against both the decomposition and the constant value of function f (U).
However, the attack we propose points out possible weaknesses in the design of AR-
MADILLO2.

7 Conclusion

We have shown a devastating key recovery attack against ARMADILLO1 and discussed
a potential implication on ARMADILLO2. Although we did not find an attack on AR-
MADILLO2, we have illustrated that the non-linearity based on data-dependent permu-
tations in both ARMADILLO1 and ARMADILLO2 is not sufficient. The results do not
immediately apply on ARMADILLO2 but they allow for better understanding the design
and they might be used to improve the attack in [1].
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Abstract. Side-channel analysis (SCA) attacks are a threat for many
embedded applications which have a need for security. With embedded
processors being at the very heart of such applications, it is desirable to
address SCA attacks with countermeasures which “naturally” fit deploy-
ment in those processors. This paper describes our work in implementing
one such protection concept in an ASIC prototype and our results from
a practical evaluation of its security. We are able to demonstrate that
the basic principle of limiting the “leaking” portion of the processor
works rather well to reduce the side-channel leakage. From this result
we can draw valuable conclusions for future embedded processor design.
In order to minimize the remaining leakage, the security concept calls
for the application of a secure logic style. We used two concrete secure
logic styles (iMDPL and DWDDL) in order to demonstrate this increase
in security. Unfortunately, neither of these logic styles seems to do a
particularly good job as we were still able to attribute SCA leakage to
the secure-logic part of the processor. If a better suited logic style can
be employed we believe that the overall leakage of the processor can be
further reduced. Thus we deem the evaluated security concept as a viable
method for protecting embedded processors.

Keywords: Side-channel analysis, SCA countermeasures, embedded pro-
cessors, iMDPL, DWDDL.

1 Introduction

Two well-known methods for protecting cryptographic workloads on embedded
processors against side-channel analysis (SCA) attacks are software countermea-
sures and cryptographic coprocessors with custom hardware protection. On the
one hand, software countermeasures are the most flexible solution but might not
address all attacks or bear a significant overhead in terms of running time or
resources. On the other hand, coprocessors often only offer a limited range of
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functionality and inhibit even slight changes of parameters (e.g. new modes of
operation). An alternative approach is the incorporation of SCA countermea-
sures into the processor itself in order to find a trade-off between the flexibility
of software countermeasures and the protection of hardware countermeasures.

There have been several proposals for adapting processors directly in order
to increase their SCA resistance. Randomized execution of programs is the
basic concept in non-deterministic processors as proposed by May et al. [11].
Regazzoni et al. [16] built an automated design flow for integrating custom
functional units (FUs) implemented in a secure logic style into the processor. The
MUTE-AES architecture proposed by Ambrose et al. [1] uses a second processor
to balance out the AES operations of the first with the calculation of the same
operations on inverted data. The balancing of the second processor is activated
and terminated automatically by detecting certain sequences of instructions and
it can be used for other tasks when no cryptographic operations are performed
on the first processor. Recently, additional works regarding SCA protection of
processors have been published. Nakatsu et al. [12] have investigated a processor
modification in combination with software countermeasures for eliminating SCA
vulnerabilities due to branches, addresses and intermediate values dependent on
secret information. They propose to implement the ALU in a specific secure
logic style (Random Switching Logic) and use masking of operands and results.
Although the authors emphasize that their proposal can be applied to various
operations and processor architectures, several issues regarding mask handling
remain open. Barthe et al. [2] proposed to duplicate the processor data path
by adding an additional register file and pipeline registers. Data in the original
data path is masked while the second data path carries the corresponding masks.
Before entering the FUs, data is unmasked and the according result is freshly
masked. Data in memory is protected with a “static” mask.

Protecting a processor from SCA with a combination of masking and the
application of secure logic styles has first been proposed by Tillich et al. in [19].
The original proposal was targeted at securing a specific set of cryptographic
instructions. Based on the original idea, a full security concept covering a wide
range of instructions and addressing issues of hardware limitations and secure
task switching was then presented in [20]. As this work was conducted in context
of the so-called Power-Trust project, we will refer to this security concept as the
Power-Trust security concept in the remainder of this paper. The work of [20]
also produced an FPGA prototype to validate the functionality and a preliminary
SCA evaluation to demonstrate the principal protection offered by the concept
(although the use of FPGA-style secure logic had been omitted).

In the present paper we present an ASIC implementation of the Power-
Trust security concept based on the SPARC V8 Leon3 embedded processor. Our
prototype includes several optional features proposed in [20]. For the critical
portion of the processor (the so-called secure zone) we have used two different
secure logic styles. Additionally, we have included a CMOS variant of the secure
zone for reference. The goal of our work was threefold:
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– Demonstrate the functionality and practicality of the concept.
– Test the utility of the optional features and develop possible improvements

both regarding usage in software and simplification in hardware.
– Evaluate the SCA resistance of the prototype in order to estimate the po-

tential protection offered by the Power-Trust security concept.

Although we have observed huge improvements in DPA attack resistance in our
practical evaluation, the use of our chosen secure logic styles has turned out to be
rather ineffective (leading only to little improvements in resistance at relatively
high cost). Nevertheless, we deem our results as valuable insights into the issues
of practical deployment of secure logic styles.

The rest of this paper is organized as follows. The Power-Trust security con-
cept is described in Section 2. Our ASIC prototype implementation including a
description of features of the secure zone as well as details of the implementation
of the logic styles on ASIC is presented in Section 3. Section 4 discusses possible
improvements of the whole security concept. A detailed security evaluation and
the presentation of our SCA attack results is given in Section 5, followed by
analyses of the results in Section 6. Conclusions are drawn in Section 7.

2 Description of the Power-Trust Security Concept

SCA attacks exploit the effect specific key-dependent data has on various ob-
servable physical characteristics of a device, e.g. timing or power consumption.
We will denote such data as critical data in the following. The basic assumption
for the Power-Trust security concept is that each handling of critical data is a
potential target for an attacker. The general term handling hereby refers to
both operations on the critical data as well as the movement of it through
various data flow control elements (e.g. multiplexers) and storage units. For
example, in a typical modern processor critical data are not only operated upon
in a number of functional units but also have to pass through various pipeline
stages, feedback paths, and storage elements like pipeline registers, register files,
caches and memories. All these activities are reflected in the processor’s power
consumption and can be ultimately exploited in a power analysis attack.

The first step for counteracting SCA attacks is to minimize the effect of
the critical data on the physical characteristics. Leakage in the timing of the
processor can be addressed by eliminating key-dependent branches and avoiding
other potentially variable-time operations like table lookups. The use of special
cryptographic instructions (instruction set extensions) is very helpful in achiev-
ing this goal without sacrificing performance. Also, elimination of table lookups
is expected to go a long way in reducing leakage in the power side channel, as
memory operations are usually a significant contributor to the overall power
consumption.

With the help of cryptographic instruction set extensions (ISEs) it is possi-
ble to confine actual operations on critical data exclusively to the FUs of the
processor, which are usually the main part of its execute stage. Any other part
of the processor then just moves around critical data without transforming it.
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Based on this observation, the Power-Trust security concept applies a mask to
all critical data which circulates outside of the FUs. The operands entering a
FU have to be unmasked and the results leaving the FU have to be masked
again. Therefore, arbitrary FUs can be supported easily. This is unlike most of
the previous masking solutions, which require the development of special FUs
to implement non-linear operations which transform masked values and mask.

Thus, direct leakage only emanates from the FUs which are required for
implementing the cryptographic algorithm. Leakage from components which
handle the masks (mask storage and mask generator) could also lead to higher-
order weaknesses when combined with leakage from the masked values. In order
to mitigate these vulnerabilities, all these components are implemented in a
secure logic style. This portion of the processor is denoted as secure zone. From
its functionality and interface, the secure zone is very similar to a conventional
FU, which facilitates its implementation in secure logic and its integration into
the processor. Conceptually, an attacker must overcome the protection of the
secure logic style1 in order to break the security of the processor.

The secure zone can only store a fixed number of masks, which determines
the maximum size of the intermediate state of a cryptographic algorithm at
any point in time. However, by using pseudo-randomly generated masks it is
possible to store masks intermittently outside of the secure zone in a secure
redundant representation. This mechanism allows to virtually extend the number
of available masks and also to share the secure zone between several processes
in a secure fashion. Other issues addressed in [20] are the way that masks and
masked values are associated in the processor and the options for dealing with
exceptional cases during runtime, e.g. when the maximum number of possible
masks is reached. Those issues afford various solutions and we describe our
concrete design choices in Section 3.

3 ASIC Prototype Implementation

Our prototype is based on the SPARC V8 Leon3 processor [4], which is a popular
platform for academic research due to its high quality and tool support as well
as its openness. It is a 32-bit embedded architecture with a large number of
configuration options. Our most important enhancements are described in the
following.

3.1 Features of the Secure Zone

When masked operands enter the secure zone, the processor needs a mechanism
to identify the corresponding mask. Various options are possible but in our
implementation we chose to introduce a custom addressing mechanism which is
under explicit software control. Our reason for this choice was the huge degree of

1 Either by attacking the unmasked critical data in the secure zone or with a higher-
order attack on the masked values and their masks in the secure zone.
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Fig. 1. Data representation and addressing in enhanced processor

flexibility offered by this solution. Each mask and each masked value is associated
with a custom 10-bit address, so that the mask and masked value with the same
address belong together. As this address acts much like a register address, it is
denoted as masked register address. Depending on the storage location of mask
or masked value, the adjoint masked register address is handled differently.

Figure 1 depicts the different possible data representations of masked data
and masks in various storage locations as well as the mechanisms used to keep
the masked register address alongside them. Unmasked data only occurs in the
secure zone’s FUs (circled 1) and masks reside exclusively in the secure zone’s
mask storage unit (circled 2), where both are protected by the secure logic style
(indicated by the gray shading). Masked data can circulate through the other
pipeline stages, the register file, and memory (circled 3). Additionally, masks can
be held in their secure redundant form in memory (circled 4). Masks and masked
data must always be attached to their masked register address, so that the secure
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zone can associate masked data with its corresponding mask. Masked data in
the pipeline stages and register file (diamond 1) are principally attached to a
logical register address. A custom hardware table called Masked Register Table
(MRT) then maps this logical register address to a masked register address. The
masks in the mask storage (diamond 2) are held automatically alongside their
masked register address. On the other hand, masked data and masks in memory
(diamond 3) must have their masked register address stored explicitly with them
by the software.

The advantage of this masked register addressing scheme is that it can be
used to emulate several different forms of software usage of the secure zone.
For example, the software can choose to never write masks or masked values
out to memory. In this case, the MRT can be initialized with a fixed mapping
and the logical register address of a masked value effectively determines the
corresponding mask.

The instruction result coming from the secure zone must be protected by a
fresh 32-bit mask. When the processor handles a sequence of such protected
instructions, a fresh mask is needed in every clock cycle. Furthermore, masks
must be uniformly distributed and unpredictable by an attacker. For dealing
with more masks than the mask storage of the secure zone can handle internally,
it is also necessary to have a secure representation of masks which allows their
subsequent reconstruction.

In order to balance all these (partly conflicting) requirements with an efficient
design we have implemented our mask generator as a 127-bit maximum-length
LFSR. We used the pentanomial x127 + x87 + x59 + x37 + 1 as the reduction
polynomial because it facilitates parallelization in both forward and reverse
direction. In normal operation, the LFSR advances 32 steps per cycle in order
to produce a fresh 32-bit mask.

The mask generator also keeps track of the number of steps (denoted as mask
index ) it has taken from a specific initial state. In conjunction with a particular
LFSR state, the mask index is a secure alternative representation of a mask.
Software can read and write the LFSR state and can run the LFSR in forward
or reverse direction towards a specific mask index in order to restore a mask. In
a finished device, the LFSR should be seeded from a random number generator
(RNG) to make the produced masks unpredictable and to prevent reset attacks.
For our prototype, we did not integrate an RNG.

The secure zone can hold up to eight masks in its mask storage component.
Metadata about stored mask like masked register address and mask index can
be read by software. Exceptional conditions in the secure zone cause traps. Such
exceptional conditions are a full mask storage, encounter of a masked operand
whose mask is missing from the mask storage, and an overflow of the mask
index counter in the mask generator. It is up to the software to either avoid those
exceptional conditions altogether or to address them at runtime with specific trap
handlers. Protected instructions of the secure zone encompass specific support
for AES and ECC over GF(2m) as well as a range of logic operations for bit-sliced
implementations.
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3.2 Implementation Details

We have used the UMC 0.18�m standard-cell library FSA0A C from Faraday
[3] for implementation. Our original plan was to employ memory macros from
this library to implement memory components like the caches. However, despite
our best efforts we were unable to integrate those memory macros into our
design flow within a reasonable time frame. Therefore, we used the synthesizer
to infer those memory structures with flip-flops. As such inferred structures are
significantly larger compared to macros, we had to reduce the size of instruction
and data cache to the minimum of 1 KB each.

We have integrated secure zone blocks in three different logic styles in our
prototype. We chose logic styles which are based on standard cell libraries and
thus can be relatively easily implemented in a more or less automatic way but
which still promised to deliver an increase in protection over CMOS. To this end
we chose iMDPL [14] and DWDDL [23]. The third secure zone was implemented
in CMOS to serve as a point of reference. Software can select a specific secure
zone by writing to a custom configuration register. The inputs (including the
clock signal) of the other two secure zones are held at zero in order to minimize
their impact on the power profile.

The improved masked dual-rail precharge logic (iMDPL) style combines the
dual-rail precharge (DRP) technique, a masking technique, and it takes precau-
tions to prevent the effect of early propagation ([18]). The DRP technique avoids
the occurrence of glitches ([15]) which may significantly reduce the side-channel
resistance of implementations ([9] and [10]). This is achieved by introducing an
evaluation and a precharge phase in each clock cycle. In the precharge phase,
both wire rails of each signal are precharged. In the evaluation phase the wires
switch to their corresponding values. The masking technique bypasses the need
for special routing techniques of the circuitry. In [14] it has been shown that
early propagation may cause a significant side-channel leakage in a masked DRP
logic style. Thus, each iMDPL gate contains an evaluation-precharge detection
unit (EPDU) which tries to prevent the premature evaluation/precharge of the
gates.

A basic iMDPL AND gate is built with two three-input majority (MAJ)
gates. MAJ gates are part of standard cell libraries, so there is no need to design
and verify special security cells in the library. The iMDPL style can thus be
implemented by a more or less straight forward search and replace processing
step after design synthesis. Each iMDPL gate processes the masked values am, bm

(ām, b̄m) and the mask value m (m̄). IMDPL is based on boolean masking, i.e.
am = a ⊕m, and the mask value m is derived from a 64-bit maximum-length
LFSR counter [13] in each clock cycle.

The area of a pure iMDPL implementation is usually increased by a factor of
approximately 20. In our case, the area of the iMDPL secure zone is 406kGE,
compared to 19 kGE of the secure zone implemented in unprotected CMOS logic,
which corresponds to a factor of 21. The whole Leon3 processor without any
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secure zones has 582kGE2. This results in a total area overhead of approximately
64% compared to a pure CMOS implementation of the SPARCV8 embedded
processor.

We implemented iMDPL with knowledge that the security of the logic style
might suffer from unbalanced wires ([17], [21]). Recent research has shown that
the mask value in an iMDPL circuit can most probably be discovered and
that also other wires within the circuitry might be affected by imbalances.
Nevertheless, investigations of an ASIC implemented in iMDPL have shown
that the logic style is able to increase the SCA resistance ([5]).

Double Wave Dynamic Differential Logic (DWDDL) [23] is an enhancement
of WDDL [22] with the goal of solving its inherent balancing issues. Whereas
WDDL requires techniques of balanced routing of its differential signals, DWDDL
duplicates the layout of a normally routed WDDL circuit and inverts both the
block’s input as well as the inputs and outputs of all logic cells3. Thus, for each
differential signal, a bit flip at one of the wires in the first WDDL block is
counterbalanced by a bit flip on the other wire of this differential signal in the
second WDDL block.

The area of the DWDDL secure zone is 260 kGE, which represents a factor of
14 compared to the secure zone implemented in unprotected CMOS logic. With
respect to the whole Leon3 processor, the total area overhead is approximately
40%, which represents a relatively moderate increase in area in return for a
significantly increased SCA resistance.

DWDDL has originally been proposed exclusively for use in FPGAs, as they
allow to invert the functionality of logic cells simply by changing the contents
of their lookup tables (LUTs). In case of ASIC implementations a swapping of
cell functionality (i.e. substituting an AND cell with an OR cell) would result
in significant changes in the circuitry due to differences in the structure of the
cells. This would implicate differences between the two WDDL circuits and would
hence introduce imbalances in the power consumption of the two circuits. We
have developed a simple way to overcome this issues and to adopt DWDDL for
ASIC implementations. Our approach is based on the observation that three-
input MAJ gates can be seen as configurable two-input AND/OR gates (inputs
a and b), where the value of the third MAJ input c determines the functionality,
see Figure 2.

We started with the design synthesis utilizing conventional AND and OR
gates. Afterwards we implemented WDDL based on MAJ gates by means of a
search and replace processing step in which the standard AND and OR cells
are replaced by corresponding WDDL cells (based on MAJ cells) and the whole
netlist is transformed to a dual-rail circuitry. The third input of each MAJ gate

2 The area of 582 kGE of the Leon3 processor includes everything except the three
secure zones. Note the fact that we implemented the chip using inferred memory
structures instead of smaller memory macros. Subtracting the inferred memories
(488 kGE) and some conventional AES ISEs (6 kGE), the size of the bare processor
is about 88 kGE.

3 In practice, this means that AND gates become OR gates and vice versa.
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c

Fig. 2. Using a MAJ gate as configurable AND/OR gate. The gate functionality can
be controlled by input c of the MAJ gate.

is hooked up to a global configuration signal. This WDDL netlist is then placed
and routed. The resulting layout is duplicated and the second instance of the
WDDL block is hooked up to the inverted inputs and the inverted configuration
signal. This way we achieved two identically placed and routed WDDL circuits
with a globally configurable cell functionality. We are aware that such a sepa-
ration of the two WDDL circuits on the chip opens the door for localized EM
measurements and thus represents a potential vulnerability.

A critical point for the SCA resistance of the DWDDL implementation is the
timing of the two WDDL circuits. The propagationof the evaluation and precharge
waves through the circuits has to start as exact as possible in both circuits, devi-
ations would result in early propagation which would significantly affect the SCA
resistance. Thus, we implemented the transformation cells CMOStoWDDL in a
way that the clock signal acts as a trigger for the precharge/evaluation phases.
Internally, the WDDL circuits are operated with a doubled clock speed due to
the master-slave flip-flop structure implemented [22]. So we have two clock do-
mains in the whole design: (1) the standard clock signal for all CMOS circuits and
the iMDPL secure zone, which also serves as a precharge/evaluation signal and
(2) a double-speed clock signal for the two WDDL circuits. We also had to take
precautions when implementing the transformation cells for leaving the dual-rail
circuit. Similar to inputs in the CMOStoWDDL cells, in case of WDDLtoCMOS
the sensitive outputs of both WDDL circuits have to be synchronized to prevent a
data leakage. Thus, we added a register stage to the output transformation which
is synchronized by the clock signal.

Known weakness in DWDDL: Before the implementation of DWDDL we per-
formed a theoretical investigation. Unfortunately, at this point we made a mis-
take and evaluated an incorrectly designed DWDDL cell: we correctly inverted
the input signals of the complementary WDDL cell but we missed to exchange
the logic gates AND and OR of the complementary WDDL cell. Our mistake
disguised the occurrence of early propagation in DWDDL and resulted in an
incorrect behavior of the complementary WDDL circuit. We recognized the
mistake only shortly before the tape-out date, where we still had the time to
correctly exchange the logic gates but we did not have enough time to switch to
another logic style or to implement and improved version of DWDDL.
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4 Possible Improvements

Experience with software development using the various features of the proto-
type has led to a number of possible improvements. Most of the features are
intended to support manual software development for the enhanced processor.
However, we expect that software generation should ultimately be pushed off to
the toolchain in order to minimize the risk of programming errors. In such a case,
many of the extra features of the secure zone could be simplified or eliminated
in order to reduce its size and cost.

The biggest issue is the use of masked register addresses to associate masked
data and masks. This leads to a high degree of flexibility for software which
allows to move masked data freely between memory and any register. However, as
allocation of masked data is expected to be ultimately handled by the toolchain,
this flexibility does not seem to be required. Masked register addresses require
elaborate address lookup logic and the inclusion of the MRT. By using the
already present logical register address as mechanism to associate masked data
and masks, the address lookup logic can be greatly simplified and the MRT can
be eliminated altogether. This implies that masked data must be loaded back
into the same logical register from which it has originally been stored to memory.
However, we do not expect this to be a problem for the software.

The hardware traps are mainly intended for a very flexible but also rather
slow mode of execution. This mode is intended for software developers who have
little knowledge about the characteristics of the secure zone but still want to
write code manually. By removing this mode of execution, the hardware trap
mechanism can be simplified or even eliminated altogether.

Mask indices are maintained by the mask generator (i.e. its current “step”
count) and the mask storage (i.e. the “step” count of each mask) with the
sole purpose of having a secure redundant representation of masks. If the mask
storage of the secure zone is deemed large enough to support all required crypto-
graphic algorithms, these mask indexing mechanisms could be removed in order
to reduce hardware overhead.

A more minor issue are the management instructions to read out metadata
from the mask storage. In our prototype, it is not possible to get the meta-
data corresponding to a particular mask directly, which makes it necessary to
read out all metadata and look for the desired entry. This problem could be
easily remedied by a slight modification of the functionality of the management
instructions.

5 Security Evaluation

We have compared various implementations of a single round of AES by means
of classical correlation-based DPA attacks using Hamming weight (HW) and
Hamming distance (HD) as power models. A standard software AES using only
native SPARC V8 instructions and incorporating an S-box lookup table serves as
our baseline version (SW-AES). Then we have the use of basic AES ISEs, which
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eliminate the need for table lookups (AESREF). Furthermore, we implemented
AES on each of the three secure zones (SZ CMOS, SZ IMPDL, SZ DWDDL). We
defined a DPA attack as successful if at least 9 of the 16 key bytes could have been
revealed. We assumed that the remaining 7 key bytes can be revealed by a brute
force attack within reasonable time. Our approach is based on common brute-
force attacks on the 7-byte key of DES ([6] and [7]). Hence, for our estimations
of the number of required power traces we used the ninth-highest correlation
value of all correctly revealed key bytes.

In case of SW-AES we performed 10 000 measurements. According to our
attack success metrics and according to the rule-of-thumb formula from [8]
(Chapter 6.4.1) the number of required power traces to distinguish the correct
key hypothesis from the incorrect ones is 263 (key byte 9 has the ninth-highest
correlation value of 0.315). The SW-AES implemented in unprotected CMOS
is highly vulnerable as expected. Due to the involvement of the MixColumns
operation in the SW implementation, attacks using the HD power model would
have resulted in rather expensive attacks based on 4 key bytes at once, and
hence, these attacks have been omitted. Our results show that the AESREF
implementation offers a very slightly increased protection compared to SW-AES.
The number of required traces of the ninth-highest correlation value (0.0319)
in case of HW is 27 200. The attacks using a HD power model resulted in
significantly higher correlation values around 0.2, which corresponds to 700
required power traces.

We received very interesting results from the SZ CMOS: it turned out that
the secure zone implementation already has a significant effect on the SCA
resistance, even without implementing the secure zone itself in a special logic
style. According to our attack success metrics the number of required power
traces in case of SZ CMOS is around 130 000. The results of the attacks on the
SZ IMDPL show a further increase in SCA resistance: around 260 000 power
traces are required to distinguish the ninth-highest correlation value. In case
of SZ DWDDL it turned out that the lower 16 bits of the four 32-bit words
processed can not be clearly distinguished in a HW attack. As only eight key
bytes could be revealed, we used the eighth-highest correlation value of 0.0064
in this case, which corresponds to 675 000 required power traces. By means of
an HD attack on SZ DWDDL, all 16 key bytes could have been revealed: the
highest correlation value corresponds to a number of required power traces of
approximately 5 200 000.

The results lead to the following conclusions: it shows that the confinement
of leaking operations to a small part of the implemented processor significantly
enhances the SCA resistance, even though the confined part is not implemented
in a secure logic style. The results also show that the implemented logic styles
still have an information leakage, therefore we can not conclusively show that
the overall security will increase further with a reliably secure logic style. Never-
theless, the assumption that the elimination of the leakage in the confined part
of the processor would also have a positive effect on the overall security still
seems plausible.
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6 Analysis of the Results

The results of the DPA attacks using Hamming weight power model are sum-
marized in Table 1, the results using Hamming distance power model are sum-
marized in Table 2.

The AES ISEs in the FU of the AESREF implementation are identical to the
ISEs in the FU of the SZ CMOS, i.e. the only difference between these two imple-
mentations is the masking of the result values leaving the SZ CMOS. Hence, we
assume that the significant HD leakage of AESREF is related to storing the un-
masked results in the register file of the processor. In other words, the HD leakage
of the SZ CMOS is prevented due to the masking of the output operands.

The results of the SZ IMDPL support the assumptions that routing imbal-
ances within the circuitry limit the effectiveness of the logic style to a certain
degree. Imbalances between complementary wires in a DRP circuit obviously
cause signal-dependent differences in terms of power consumption as well as in
terms of signal timings. In a conventional digital design which contains consid-
erably large combinational structures such imbalances may influence the overall
power consumption to a certain degree, which results in a data leakage.

Unfortunately, at this stage there are several questions unanswered which are
marked for future work. During our evaluations it turned out that we are not able
to fully resolve the open questions solely by means of measurements. It further
turned out that we cannot perform logic simulations of the whole Leon3 processor
within a reasonable time. Hence, we plan to perform simpler simulations of
individual submodules in order to be able to investigate the processes within the
Leon3 processor and the secure zones in more detail.

The proposal of Barthe et al. [2] is similar to the Power-Trust security
concept: it tries to confine the leaking operations to a specific portion of the
processor. However, protection of memory appears relatively weak as a constant
mask added to all words is in principle not expected to deliver good protection
against DPA attacks. The authors have performed practical evaluation of an
FPGA implementation of an enhanced MicroBlaze clone. They used EM mea-
surements at a number of points of the device. However, analysis of the acquired
traces seems to have been done with classical difference-of-means DPA, which
makes it hard to accurately estimate the minimal required number of traces for
a successful attack from the resulting difference-of-means trace. Barthe et al.
concluded that their proposal significantly reduces leakage from most parts of
the pipeline but that leakage from the unprotected combinational logic in the
FUs remains.

7 Conclusions

In this paper we presented an ASIC implementation of the Power-Trust security
concept. Our prototype is based on the SPARC V8 Leon3 processor and has
been produced in a 0.18�m process technology from UMC. We demonstrated
the functionality and practicality of the security concept and we evaluated the
SCA resistance of the ASIC prototype.
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The results have shown that the use of basic AES ISEs, which eliminate
the need for table lookups, already has a positive effect on the SCA resistance
of an implementation. A further improvement of the SCA resistance has been
achieved by the secure zone concept where critical operations are confined to
a small part of the processor and all data outside of the secure zone is strictly
masked. Even if the secure zone itself is not implemented in a secure logic style
(as it is proposed by the Power-Trust security concept), the SCA resistance is
significantly increased. A further increment in security is provided if the secure
zone is implemented in a special logic style. Unfortunately, neither iMDPL nor
DWDDL provide a very high level of SCA resistance, but our results indicate
that the efficiency of the Power-Trust security concept could be further increased
when implementing the secure zone in a well-performing logic style. Furthermore,
restricting the implementation of a special logic style only to a small part of a
processor tremendously reduces the overhead in terms of area and power which
is associated with most of such logic styles.
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A Analysis Results

Table 1. Correlation analysis results for the measurement series (Hamming weight
model); correlation values marked with an asterisk indicate unsuccessful attacks;
correlation values in bold represent the ninth-highest value (if at least nine key bytes
could have been discovered)

Target SW-AES AESREF SZ CMOS SZ IMPDL SZ DWDDL

Byte 1 0.227 0.0164* 0.0111 0.0066 0.0028*
Byte 2 0.298 0.162 <0.003* 0.0177 0.0025*
Byte 3 0.574 0.0244 0.0264 0.0103 0.0121
Byte 4 0.135 0.177 0.0177 0.0289 0.0243
Byte 5 0.230 0.0334 0.0146 0.0067 0.0024*
Byte 6 0.697 0.0162* 0.0074 0.0195 0.0018*
Byte 7 0.672 0.0878 0.0261 0.0080 0.0064
Byte 8 0.178 0.0294 0.0213 0.0289 0.0120
Byte 9 0.315 0.0222 0.0085 0.0059 0.0026*
Byte 10 0.564 0.0355 0.0067 0.0166 0.0018*
Byte 11 0.511 0.0240 0.0228 0.0078 0.0091
Byte 12 0.556 0.1296 0.0192 0.0268 0.0114
Byte 13 0.409 0.145 0.0050 0.0062 0.0028*
Byte 14 0.294 0.0201 0.0045* 0.0181 0.0019*
Byte 15 0.452 0.168 0.0237 0.0084 0.0155
Byte 16 0.113 0.0319 0.0240 0.0279 0.0098

Table 2. Correlation analysis results for the measurement series (Hamming distance
model); correlation values marked with an asterisk indicate unsuccessful attacks

Target AESREF SZ CMOS SZ IMPDL SZ DWDDL

Byte 1 → 5 0.184 <0.003* <0.002* 0.0019
Byte 3 → 7 0.211 <0.003* <0.002* 0.0019
Byte 5 → 9 0.184 <0.003* <0.002* 0.0020
Byte 6 → 10 0.200 <0.003* <0.002* 0.0023
Byte 7 → 11 0.212 <0.003* <0.002* 0.0021
Byte 8 → 12 0.221 <0.003* <0.002* 0.0023
Byte 9 → 13 0.184 <0.003* <0.002* 0.0017
Byte 10 → 14 0.201 <0.003* <0.002* 0.0019
Byte 11 → 15 0.214 0.0314 <0.002* 0.0021
Byte 12 → 16 0.221 <0.003* <0.002* 0.0021
Byte 14 → 2 0.201 <0.003* <0.002* 0.0017
Byte 16 → 4 0.222 0.0239 <0.002* 0.0021
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Abstract. In a world in which every processing cycle is proportional
to used energy and the amount of available energy is limited, it is es-
pecially important to optimize source code in order to achieve the best
possible runtime. In this paper, we present a side-channel secure C frame-
work performing elliptic curve cryptography and improve its runtime on
three 16-bit microprocessors: the MSP430, the PIC24, and the dsPIC.
To the best of our knowledge we are the first to present results for the
PIC24 and the dsPIC. By evaluating different multi-precision and field-
multiplication methods, and hand-crafting the performance critical code
in Assembler, we improve the runtime of a point multiplication by a
factor of up to 5.41 and the secp160r1 field-multiplication by 6.36, and
the corresponding multi-precision multiplication by 7.91 (compared to a
speed-optimized C-implementation). Additionally, we present and com-
pare results for four different standardized elliptic curves making our data
applicable for real-world applications. Most spectacular are the perfor-
mance results on the dsPIC processor, being able to calculate a point
multiplication within 1.7 – 4.9 MCycles.

Keywords: Elliptic Curve Cryptography, ECC, Prime Field, MSP430,
PIC24, dsPIC, Assembler Optimization.

1 Introduction

Public-key cryptography is an active research area with a lot of applications.
The applications range from desktop computing, over (wireless) smart cards
down to low-energy sensor networks. On desktop computers one can use special
instructions or graphic processors in order to implement asymmetric cryptogra-
phy. Even nowadays mobile phones are equipped with powerful 32-bit processors
making the job of implementing public-key cryptography easier. However, there
are a lot of circumstances which call for cheap, energy saving, and fast solutions.

Especially applications utilizing small, embedded processors are interesting
for elliptic curve cryptography (ECC). An ECC implementation for such a mi-
croprocessor must be resource-conscious, aware of practically dangerous power,
timing, and fault attacks and still deliver a runtime, which is fast enough for
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real-world applications. Additionally, many applications require the use of stan-
dardized elliptic curves [1,5,27] that exceed a defined security threshold. Previous
work [20,29,31,36] did only consider a part of those requirements.

This paper focuses on a fast and secure implementation of ECC on three
embedded 16-bit processors. By optimizing performance critical field operations
in Assembler, we drive the PIC24 [22], dsPIC [23], and MSP430 [32] to their
limits. To the best of our knowledge we are the first to report runtime results on
the PIC24 and dsPIC. Furthermore we present runtime results on the MSP430
using standardized NIST curves [27]. Especially by taking advantage of the 16-
bit multiply-accumulate unit of the dsPIC, we were able to improve its runtime
for a point multiplication by a factor of up to 5.41, a field multiplication by
6.36, and a big-integer multiplication by 7.91 (compared to a speed-optimized
C-implementation). Thus we reduced a 160-bit multi-precision multiplication to
180 cycles, with 100 cycles being the theoretical minimum.

Our framework is written and verified in C, uses a side-channel aware Mont-
gomery Ladder including y-recovery (formulae by Hutter et al. [16]), and verifies
the resulting point in order to check for fault attacks (see Ebeid et al. [9]). Addi-
tionally a projective point randomization [7] was used in order to strengthen the
side-channel resistance of the Montgomery ladder. Having fixed our high-level
algorithms, we investigate different big-integer multiplication methods (operand-
scanning, product-scanning, and hybrid) and field-multiplication methods (Bar-
rett, Montgomery, and fast-NIST-reduction) on the three processors. Our results
can be the foundation for choosing suitable embedded processors (e.g. smart
cards or sensor networks), for the investigation of important ECC-related fea-
tures for future microprocessors, and for follow-up research on custom ECC-
hardware designs.

The remainder of the paper is structured as followed. Section 2 discusses rele-
vant related work. Section 3 gives an introduction to elliptic curve cryptography
and the used algorithms. Whereas Section 4 gives a short introduction into the
MSP430 processor, Section 5 discusses the performance optimizations made for
the Microchip processors. Section 6 gives a comparison of all results and Section 7
concludes the work.

2 Related Work

In the last years, a lot of research has been done on implementing elliptic curve
cryptography on embedded devices. Most notable is the work by Gura et al. [13],
who compared elliptic curve cryptography and RSA for the 8-bit ATmega128
processor [2]. For achieving high performance, they introduced the hybrid multi-
plication method. The results by Gura et al. for the ATmega128 processor have
been later improved by Uhsadel et al. [33], Scott et al. [29], and Liu et al. [21].
Further results for ATmega128 processors have been shown by Szczechowiak et
al. [31]. Using the preceding work of Scott and Szczechowiak [29], Szczechowiak et
al. [31] presented a comparison of ECC and pairings for the ATmega128 and
MSP430 processors. Those processors are specially interesting, because they are
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used for the Wireless Sensor Network nodes MICA2 [8] and Tmote Sky [26]. They
compared the performance of the sensor nodes for the NIST K-163 Koblitz curve
over GF (2163) and a custom curve with p = 2160 − 2112 + 264 + 1 over GF (p).
Their results are based on MIRACL [30], a Multiprecision Integer and Rational
Arithmetic C/C++ Library.

Similar work with focus on sensor nodes has been published by Liu et al. [20].
They used the by SECG standardized secp160r1 prime field [4]. Note that
for security reasons this curve has been removed from the latest version of the
standard [5].

In 2009, Yan et al. [36] used the 32-bit DSP processor TMS320C6416 from
Texas Instruments to implement the secp160r1 and secp224r1 elliptic curves.
This very powerful processor fits only partly within the scope of this paper, but
uses 16-bit multipliers internally. It operates at 1GHz, has 64 32-bit registers
and 1,024KB L2 cache.

In contrast to the MSP430 and TMS320C6416 processors, we use the ECC-
processors by Kern et al. [18], Hutter et al. [15], and Wenger et al. [35] as refer-
ences. Those papers present specially optimized semi-custom ASIC designs that
use 16-bit multipliers. This makes them perfectly suitable for a comparison with
the performance of the dsPIC processor.

The design by Kern et al. [18] generates an ECDSA signature within
511kCycles for the elliptic curve secp160r1. Specially notable is their fast re-
duction technique taking advantage of two carry registers.

Hutter et al. [15] are using an 8-bit RISC microcontroller supporting 32 in-
structions, which is used for higher-level control-flow operations. In order to pro-
cess ECC efficiently, they use eight microcode ROM tables. Those tables control
a 16-bit multiply-accumulate unit and a dual-port 16-bit RAM. For NIST P-
192 prime field, without reduction a multiplication only needs 168 clock cycles.
This is very close to the optimum of N2 = 122 = 144 clock cycles. The design
performs ECDSA and has a chip area of only 19,115 gate equivalents.

The focus of the work of Wenger et al. [35] was to reduce the area footprint
(11,686 gate equivalents) of their processor. They use a custom 16-bit RISC
processor, featuring 46 instructions and 12 registers. The most notable feature
of their Arithmetic Logic Unit (ALU) is a 16-bit multiply-accumulate unit. In
order to reduce the disadvantage from their single-port RAM, they parallelized
and combined the arithmetic and memory access instructions. Hence the run
time of the same 192-bit multi-precision multiplication needs 252 clock cycles,
which is 33% longer than the design of [15].

3 Elliptic-Curve Cryptography

Elliptic-Curve Cryptography (ECC) is defined over the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

with ai=1,2,3,4,6, x, y ∈ K. K defines the finite field. If a combination of x and y
fulfills Equation (1), it is noted a point P = (x, y) on the elliptic curve. Using
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formulas for the addition and doubling of points, a point multiplication Q = kP
can be derived. Finding k, if Q and P are given, is known as the Elliptic Curve
Discrete Logarithm Problem (ECDLP).

Throughout this paper, K is a prime field Fp. n = 
log2(p)� bits or N =

n/W � words are needed to represent an element of Fp. W is the word size of
the processor used. The binary representation of a field element a can be stored
in an array A = (A[N − 1], . . . , A[2], A[1], A[0]) of N W -sized words. The least
significant bit of a is stored in the rightmost bit of A[0].

3.1 Algorithms Used

Every point operation uses the underlying field operations, discussed in the fol-
lowing subsection. Speeding up those point operations has been a major goal
of a lot of researchers [3,14]. Unfortunately most of those formulas are vulner-
able to power, timing and fault-analysis attacks [10,34]. So it is important to
use a method that is less vulnerable to such attacks. Such a method is the
Montgomery Ladder. This method performs a point addition and doubling for
every key bit during a point multiplication. We applied the formula by Hutter et
al. [16] which only requires 7 n-bit registers. Their formula needs 12 multiplica-
tions, 4 squarings and 17 additions per key bit and uses a Montgomery Ladder
with common-Z coordinates. By randomly initializing this Z-coordinate [7], an
additional, computationally cheap resistance against side-channel attacks can be
added. In order to make fault attacks more difficult, the y-coordinate is recovered
within the projective coordinates and a point verification [9] is performed.

Having fixed the high-level point-multiplication formula, one can concentrate
on the fast and efficient implementation of field operations.

3.2 Modular Multiplication

The most time-critical field operation is the field multiplication [14] and the most
time-critical part of the field multiplication is the multi-precision multiplication.
Although there exist different multi-precision multiplication methods, for every
multiplication, N2 partial products are needed in order to get a 2N -word result.
Such methods are the operand-scanning, the product-scanning [6], and the by
Gura et al. [13] introduced hybrid method.

The operand-scanning method is shown on the left of Figure 1. During operand
scanning one row is calculated by multiplying one word of the first operand with
all words of the second operand. The resulting partial products are immediately
added to C[k]. Thus this method needs 2N2 + N read operations and N2 + N
write operations. Those are 3N2 + 2N memory operations in total.

By rearranging the fixed number of partial products, the product-scanning
method (see right part Figure 1) can be derived. Here the intermediate results
are sorted column-wise. By using an accumulator [6,12], the intermediate results
can be summed up very efficiently. For this method N2 read operations are
needed to access A[i] and B[j] and only 2N write operations are needed to store
C[k]. So 2N2 + 2N memory operations are needed in total.
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Fig. 1. Partial products during multi-precision multiplication (left: Operand Scanning,
right: Product Scanning)

In order to implement the operand and product-scanning multiplication meth-
ods, very few registers are needed. Gura et al. [13] takes advantage of the large
register-set of embedded processors and combines the operand and product-
scanning approaches. In an inner loop, d2 intermediate products are processed
row-wise (operand scanning) and in an outer loop, the intermediate sums are
added column-wise (product scanning). The larger the parameter d is chosen,
the more intermediate products are processed row-wise (d2) and the more regis-
ters are needed (3d+ 
log2(N/d)/W �) to implement this method efficiently. The
advantage of the hybrid-multiplication method is that it can reduce the number
of memory operations to 2
N2/d�+ 2N .

3.3 Field Multiplication

The used multi-precision multiplication method has a significant influence on
the runtime of a point and field multiplication. A field multiplication adds a
reduction to the multi-precision multiplication. There are three very popular
ways to perform this reduction: Barrett reduction, Montgomery reduction, and
fast reduction (NIST reduction). We implemented all three methods and the
results convinced us to do no further investigation into the Barrett reduction.

The fast reduction method is based on the special design of the primes used
within the standards (e.g. NIST P-192; p192 = 2192 − 264 − 1). This special
Mersenne-like prime allows a reduction by only using addition and shift opera-
tions. In practice this method is very fast, because additions are much faster
than multiplications. However there are Mersenne-like primes with a lot of
(e.g. NIST P-256; p256 = 2256 − 2128 − 296 + 232 − 1) or odd (e.g. secp160r1;
p160 = 2160 − 231 − 1) exponents, which have a significant influence on the run-
time.
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A method which is not dependent on the kind of the used prime is the Mont-
gomery multiplication [25]. This method need some special set-up and back trans-
formation of the field elements, but when there are a lot of operations involved,
this method definitively pays off. First a R = 2WN is selected at design-time,
making sure that R > p and gcd(R, p) = 1. The field elements are transformed
by

ã ≡ aR (mod p), and (2)

b̃ ≡ bR (mod p), (3)

and further ã and b̃ are used instead of a and b. A multiplication is performed
as follows:

c̃ ≡Mont(ã, b̃) ≡ ãb̃R−1 ≡ (aR)(bR)R−1 ≡ abR ≡ cR (mod p). (4)

Utilizing the Montgomery multiplication, the transformation of the field elements
can be carried out easily:

Mont(a, R2) ≡ aR2R−1 ≡ aR ≡ ã (mod p), (5)

Mont(c̃, 1) ≡ (cR)R−1 ≡ c (mod p). (6)

In practice the multi-precision multiplication and Montgomery reduction are in-
terleaved. For the important implementation specific aspects of the Montgomery
multiplication we refer to Koç et al. [19].

Every one of the previously discussed multiplication and reduction meth-
ods has advantages and disadvantages on certain microprocessors and the used
prime. Those are discussed in the following sections.

4 Texas Instruments MSP430

The 16-bit MSP430 processor [32] by Texas Instruments is a very popular RISC
processor. Especially its vast field of application makes it interesting (e.g. Tmote
Sky [26]). The processor has 16 fully-addressable, single-cycle CPU registers that
can be used with 27 instructions (24 additional instructions are emulated). Four
of those registers are special purpose registers (program counter, stack pointer,
status register, and constant generator), so not all registers can be used for an
Assembler-optimized elliptic-curve implementation. A very important module
for the multi-precision multiplication algorithm is the multiplier. The MSP430
does not have a multiplication instruction. Depending on the series, it only offers
a 16-bit or 32-bit memory-mapped hardware multiplier. In order to perform a
16-bit multiplication, four memory accesses are necessary (write the two operand
words and read the two resulting words).

For the MSP430, we implemented the three major multi-precision multipli-
cation operations, discussed in Section 3.2 in Assembler. The advantage of the
operand-scanning method is that in average only three memory accesses are
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necessary for a single integer multiplication. Remember that one operand stays
constant during the calculation of a row. The product-scanning multiplication
method takes advantage of the MAC instruction. This instruction uses the result
register as accumulator and provides a carry bit. So for every partial product,
the two operands have to be written and only the carry flag has to be processed.
For the hybrid multiplication results in Section 6, we used an implementation
with d = 2.

In order to summarize our results for the MSP430, the biggest disadvantage
in terms of ECC is that its hardware multiplier is memory mapped. Having
a processor with a multiplication instruction improves ECC significantly. Such
processors are the PIC24 and dsPIC.

5 Microchip PIC24 and dsPIC

The PIC24 and dsPIC microcontroller families by Microchip [22,23] are 16-bit
RISC processors that are using a modified Harvard architecture. They are widely
used for motor control, signal processing, and intelligent sensor applications.
These controllers use 24-bit instruction words with a variable length opcode field.
Almost all instructions can be executed in a single cycle. Only commands which
change the program flow, table operations and the double word move instruction
take two or more cycles. Similar to the MSP430, the used PIC processors have
16 16-bit registers labeled as W0 to W15. W14 and W15 are used as frame and
stack pointer.

The dsPIC processors facilitate different features that make them perfectly
suited for public-key operations. First of all, the processor comes with a Digital
Signal Processing (DSP) engine. This engine provides two 40-bit accumulators
and a corresponding Arithmetic Logic Unit (ALU). This ALU is equipped with
a multiply and accumulate (MAC) instruction. Additionally a second Address
Generation Unit (AGU) is integrated. The primary address generation unit is
called X, the secondary is called Y. Some of the DSP instructions can utilize these
two AGUs and therefore fetch two operands at the same time while processing
the data in the registers. However, not the whole address space is available to
both AGUs. The X unit can read and write to all addresses while the Y unit
can only read from a certain device specific region. Nevertheless it is possible to
improve the performance considerable by taking the hassle of placing the data
at the correct position in memory.

In order to minimize the overhead of loop constructs, special loop instructions
named REPEAT and DO are provided. While DO needs two cycles to set up the loop
and can execute several instructions multiple times, REPEAT needs one cycle and
operates on a single command only. Another feature is the possibility to post
increment or decrement pointers when indirect memory addressing is used. With
this capability, the pointer arithmetic can be sped up significantly.

When performance is not the first priority using PIC24 processors is an option.
Beside the missing DSP engine and the lack of the DO instruction the cores of the
PIC24 and the dsPIC processors are the same. Due to this compatibility we can
give detailed results on the impact of the DSP engine concerning performance.
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In order to find the fastest implementation for this processor architecture we
start by presenting a generic product scanning algorithm which takes advantage
of the DSP instructions. As the code of the inner loop is the most important code
segment concerning speed, the following subsection focuses on this part. In the
next step additional ideas to further optimize the multi-precision multiplication
for speed are explained.

5.1 Generic Product Scanning on the dsPIC

The inner loop of the product scanning algorithm consists of one 16-bit mul-
tiplication and one addition (32-bit plus overflow handling). Additionally two
load operations are required to fetch the values of A[i] and B[j] from memory.
Furthermore the increment or decrement of i and j has to be handled as well.
Usually this operations would involve two registers for the operand values, two
registers for the multiplication product and three registers for the result of the
addition.

As we have the DSP extension we take advantage of one of the 40-bit ac-
cumulators. The multiply-accumulate (MAC) instruction is used to multiply two
16-bit operands and to add the result to the accumulator. This means that we
can handle the multiplication and the addition with the necessary precision in
one clock cycle.

Now that we know how the data can be processed efficiently we still need to
find a performant way to fetch the operand values. This can be implemented
with the MAC instruction as well. As this DSP command possesses the capability
to pre-fetch values by utilizing the two AGUs, it is possible to load both operands
during one clock cycle.

By the use of pointers to address the current operands, the update of i and
j can be implemented through applying post increments and/or decrements to
those pointers. Due to the fact that this pointer arithmetic is also supported
by this DSP operation the complete inner loop can be reduced to a single MAC
instruction plus REPEAT command.

The result of this optimization can be seen in Figure 2 in Lines 14 to 16. At
first the number of iterations for the REPEAT is calculated by subtracting the
current loop count in DCOUNT (addressed via pointer in W0) from the total
loop count (stored in W3). Afterwards the loop is set up using REPEAT followed
by the MAC instruction which should be repeated. This MAC invocation reads as
follows: Multiply the operands stored in a temp and b temp and add them to
accumulator A (A ← A + W5 ∗W6). At the same time fetch the next a temp
via AGU X by dereferencing aPtr temp (W5← [W8]). Simultaneously, the next
b temp is fetched via AGU Y by dereferencing bP tr temp (W6 ← [W10]). The
pointers are updated by incrementing aPtr temp ([W8]+ = 2) and decrementing
bP tr temp ([W10]− = 2) by two.

As the MAC instruction always operates with the values which are already
stored in a temp and b temp, it is mandatory to initialize them before this inner
loop is executed. These fetches are done by using the MOVSAC operation in Line 12.
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1 ; W0 = pointer to the DCOUNT register ; W7 = pointer to the ACCAL register
2 ; W2 = result pointer ; W8 = temporary pointer (aPtr temp)
3 ; W3 = integer length in words (length) ; W9 = operand pointer (aPtr)
4 ; W4 = temp register (tmp) ; W10 = temporary pointer (bPtr temp)
5 ; W5 = value of operand a (a temp) ; W11 = operand pointer (bPtr)
6 ; W6 = value of operand b (b temp)
7
8 DO W3, loop ; main loop, iterates length+1 times
9 MOV W9,W8 ; aPtr temp = aPtr

10 SUB W11,#2,W10 ; bPtr temp = bPtr − 2
11 ; pre−fetch operands for the inner loop ; a temp = �aPtr temp++
12 MOVSAC A, [W8]+=2, W5, [W11]+=2, W6 ; b temp = �bPtr++
13 ; calculate iteration count and execute the loop
14 SUB W3,[W0],W4 ; tmp = length − DCOUNT
15 REPEAT W4
16 MAC W5�W6, A, [W8]+=2, W5, [W10]−=2, W6
17 ; store the resulting word and shift the accumulator
18 MOV [W7],[W2++] ; �resPtr++ = ACCAL
19 loop: SFTAC A, #16

Fig. 2. One of the two loops in the generic product scanning implementation

By looking at the pre-fetch behavior it can be seen that the last MAC operation
loads operands which are not needed for the algorithm. By unrolling this last
MAC invocation from the REPEAT it is possible to use the last pre-fetch to initialize
a temp and b temp with the needed data for the next iteration. By doing this,
the MOVSAC operation in the outer loop can be omitted.

5.2 Unrolled Product Scanning on the dsPIC

By unrolling the code for a fixed n-bit integer multiplication, advantage of the
constant input size can be taken to improve the pointer arithmetic. The tem-
porary pointers can be omitted when an appropriate sequence for the partial
products is chosen as the post-in/decrement functionality of the MAC instruc-
tion is sufficient to update the pointers. The resulting zig-zag like pattern is
nicely visualized in Figure 3. A part of the resulting source code is shown in
Figure 4. Observe that the multiplicands for the multiplication are loaded in the
preceding operations W5← [W9] and W6← [W11]. In the once more preceding
operation, the pointer registers are updated using the post in/decrement feature:
[W9]− = 2, [W11]+ = 2.

At this point, we have to note that there is a prerequisite which has to be
fulfilled. The pre-fetch mechanism requires that the operands are in different
address spaces (X and Y). We ensure this by copying the input integers into
temporary variables at the beginning of the multiplication. Although these copy
operations are quite cheap (15 cycles for one 160-bit integer) it is possible to omit
them by placing the operands in the correct memory region before the function
call. As the generic implementation uses the pre-fetch technique too, the same
constraint applies.
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Fig. 3. Note the zig-zag product scanning multiplication method, which is specially
suited for the dsPIC (e.g. four word multi-precision multiplication)

5.3 Montgomery Multiplication on the dsPIC

Like proposed by Koç et al. [19], various implementations of the Montgomery
multiplication are possible which mainly differ in the underlying multiplication
method (operand scanning, product scanning, . . . ) and the degree of integration
of the reduction step. As product scanning provides the best results on the dsPIC
architecture we have chosen the Finely Integrated Product Scanning (FIPS)
method for our implementation. The interleaving of multiplication and reduction
makes it necessary to implement the whole Montgomery multiplication using
Assembler. Otherwise no decent performance can be gained following the FIPS
approach. Through the high similarity of the product-scanning and the FIPS
method most of the optimizations presented in the last sections can be applied
as well, resulting in a fast implementation of the field multiplication.

1 MAC W5�W6, A, [W9]−=2, W5, [W11]+=2, W6
2 MAC W5�W6, A, [W9], W5, [W11]+=2, W6
3 MAC W5�W6, A, [W9]+=2, W5, [W11]−=2, W6
4 MOV [W7],[W2++]
5 SFTAC A, #16
6
7 MAC W5�W6, A, [W9]+=2, W5, [W11]−=2, W6
8 MAC W5�W6, A, [W9]+=2, W5, [W11]−=2, W6
9 MAC W5�W6, A, [W9]+=2, W5, [W11], W6

10 MAC W5�W6, A, [W9]−=2, W5, [W11]+=2, W6
11 MOV [W7],[W2++]
12 SFTAC A, #16

Fig. 4. Unrolled calculation of the result word two and three
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6 Comparison Results

For the results shown in this section, we avoided to select the parameters for
ECC ourselves. Instead we chose curves that have been standardized [1,5,27].
NIST [28] gave recommendations about the security margin for future applica-
tions. They recommend to use elliptic curves that exceed 160 bits. Also SECG
removed the 160-bit curve in their latest release of the SEC standard [5]. Never-
theless, we present results for the secp160r1 curve for comparison with related
work. Additionally, the relative performance results shown in Subsection 6.1 are
also applicable for larger elliptic curves. Those elliptic curves are discussed in
Subsection 6.2.

For the generation of the results, for the MSP430 we used the IAR Embedded
Workbench 5.30 [17] with the maximum optimizer settings available ’-Ohs’. All
results have been generated for the MSP430F1611 device which comes with an
embedded 16-bit multiplier.

For the PIC24 and dsPIC results, we used the simulator of the MPLAB IDE
v8.63 [24], the MPLAB C30 v3.25 compiler with settings ’-o3’, ’-funroll-loops’,
and the PIC24FJ96GA006 and dsPIC30F6015 devices.

For the following comparisons it should be noted that we neglect parameters
such as chip area, power consumption and cost factors, because they signifi-
cantly differ from processor to processor. However energy is defined as product
of power and time. So by minimizing the runtime, we also optimize the energy
consumption.

6.1 Relative Performance

In Table 1, we compare the run times for big-integer multiplication, field mul-
tiplication and point multiplication using the secp160r1 curve [4]. For all pre-
sented platforms, we started with a reference implementation in C. In C, the
operand-scanning multiplication outperforms the product-scanning multiplica-
tion by 12.6% (MSP430) and 16.4% (PIC24). Consequently, the point mul-
tiplication is 8.2% and 13.5% faster. By manually writing the multi-precision
multiplication in Assembler, the run time was reduced by a factor of 1.53 to 2.42.
Implementing the hybrid multiplication method with d = 2 on the MSP430 im-
proved the runtime by just 4.8%. By only using 3.1 kbytes of program memory
and 274 bytes of stack, this implementation is very resource friendly. Unrolling
the product-scanning multiplication method improved the multi-precision multi-
plication by another 15.1%, but came at the cost of additional 1.5 kbytes (47%)
more program code.

Up to this point, the results on the PIC24 processor are identical to the
results of the dsPIC processor. In the following steps, we utilize the special fea-
tures of the dsPIC to further improve the performance. By making use of the
DO and REPEAT commands, the run-time of a single multi-precision multiplica-
tion was reduced by 29% to 33%. A more significant performance improvement
was achieved by utilizing the DSP part of the dsPIC processor. A speedup of
2.72 has been achieved for the product-scanning multiplication method. Using
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Table 1. Comparison of the multi-precision multiplication, the field multiplication and
the ECC point multiplication for secp160r1

Implementation Multi-Prec. Mult. Fp160 Mult. Point Mult.

MSP430 C op. sc. 4,103 6,069 16,985,654
MSP430 C pr. sc. 4,699 6,665 18,512,606
MSP430a ASM op. sc. 2,583 4,127 11,380,361
MSP430a ASM pr. sc. 1,945 3,489 9,745,805
MSP430a ASM hybrid 1,851 3,395 9,504,977
MSP430a ASM + unrolled pr. sc. 1,570 3,112 8,779,931

PIC24 C op. sc. 1,423 2,393 6,703,476
PIC24 C pr. sc. 1,702 2,675 7,753,292

PIC24b ASM op. sc. 929 1,909 5,463,648

PIC24b ASM pr. sc. 1,031 2,011 5,739,732

dsPICc ASM + DO/REP. op. sc. 622 998 2,840,921
dsPICc ASM + DO/REP. pr. sc. 727 1,104 3,127,253
dsPICc ASM + DSP op. sc. 546 923 2,648,377
dsPICc ASM + DSP pr. sc. 267 644 1,932,431
dsPICc ASM + unrolled pr. sc. 180 557 1,709,537
dsPICc ASM + DSP Montgomery — 554 1,696,433
dsPICc ASM + unrolled Montgomery — 376 1,239,281

MSP430 Liu et al. [20] 12,645,040

MSP430d Scott et al. [29,31] 1,746 2,736 5,760,000
TMS320 Yan et al. [36] 150 290 810,000

ASIC Kern et al. [18] pr. sc. 167 511,864

a Multi-precision addition and subtraction were manually unrolled in Assembler.
b Only multi-precision multiplication was manually written in Assembler.
c Multi-precision addition, subtraction, and shift operation were manually written in

Assembler.
d Did not use secp160r1.

the same methodology, the operand-scanning multiplication method improved
by only 1.14. So only when we take advantage of the DSP-unit, the product-
scanning method is (2.04 times) faster. A further experiment showed that by
unrolling the Assembler code and performing the product-scanning in a zig-zag-
like fashion, the run time could be further reduced by 32.6%. At this point it
should be noted that although the performance of the multi-precision multipli-
cation has been improved by a factor of 7.91 (unrolled DSP vs. best C version),
the performance of the field multiplication improved by 4.30 and the point mul-
tiplication improved by 3.92. A reason for that is the slow reduction modulo
p160 = 2160− 231− 1. The term 231 results into a relatively slow shift operation.
So we investigated the Montgomery multiplication technique. Utilizing the FIPS
multiplication method from Koç et al. [19], the field multiplication was improved
by 14.0%. Unrolling the Assembler code resulted in the fastest field multiplica-
tion, just needing 376 cycles. This is 32.5% faster than the fastest combination
of unrolled product-scanning and fast reduction.
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By investigating the related results for the MSP430, it becomes obvious that
in comparison to Liu et al. [20], our point multiplication method is 25% faster
even though they used a memory-hungry sliding-window point multiplication
method.

The hybrid multi-precision multiplication method by Scott and Szczechowiaket
al. [29,31] is 6% faster than our multiplication method, because they unrolled
their hybrid multiplication. However compared to our unrolled product-scanning
method they are 11% slower. The differences within the field and point multiplica-
tion come from a different elliptic curve and sliding-window point multiplication
formula used. Because the sliding window technique needs additional memory,
they need 2.9 kbytes of data memory and 31.3 kbytes of program memory, which
is more than 10 times the resources we need.

The results on the dsPIC processor made us confident enough to compare
them with the powerful TMS320C6416 processor (Yan et al. [36]) as well as the
custom designed ASIC by Kern et al. [18]. The implementation by Yan et al. [36]
using the mighty TMS320C6416 processor1 and the custom designed ASIC ought
to be faster. But the difference is only a factor of 1.53 – 2.42.

With this comparison we showed that the field multiplication utilizing a
memory-mapped multiplication unit is more than 2 times slower. Also the ad-
vantages of having DO/REPEAT and DSP instructions have been discussed. Uti-
lizing the full potential of the Montgomery multiplication method, the point
multiplication has been improved by a factor of 5.41 versus the fastest C-only
implementation.

6.2 Scaling of Performance

The last subsection limited the comparison to the secp160r1 curve. This sub-
section extends our focuses to the NIST [27] standardized elliptic curves P-192,
P-224, and P-256.

The most remarkable feature within Table 2 is the influence of the chosen field
prime into the run time of the point multiplication. On the dsPIC processor,
the performance of the FIPS Montgomery field-multiplication is better for the
secp160r1 and NIST P-256 fields, but the fast reduction technique utilizing
Mersenne-like primes are faster for the NIST P-192 and P-224 prime fields.

The Assembler optimizations on the MSP430 resulted in a speedup of 1.93 to
2.34. The larger the used prime field, the larger is the achieved speedup. Also
on the PIC24 architecture, speedups between 1.23 and 1.42 have been achieved.
Utilizing the dsPIC, the biggest speedup factors, ranging from 3.89 up to 4.79,
have been achieved.

Our results improved the work of Liu et al. [20] on the MSP430 processor.
Again we compared our results with the powerful TMS320C6416 processor as
well as some custom designed ASICs. The TMS320C6416 performs the point
multiplication only 1.7 – 2.1 times faster, which is quite small compared to the
processing power of the TMS320C6416. Also the ASIC designs ought to be faster.

1 64 32-bit registers. Eight independent functional units. 1GHz.
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Table 2. Point multiplication for different field parameters in kCycles

Implementation secp160r1 P-192 P-224 P-256

MSP430 C op. sc. 16,986 23,405 35,531 47,455
MSP430 ASM hybrid 9,505 11,949 18,464 23,973

PIC24 C op. sc. 6,703 8,985 13,781 18,992
PIC24 ASM op. sc. 5,464 6,754 10,138 13,379

dsPIC ASM + DSP pr. sc. 1,932 2,178 2,880 5,079
dsPIC ASM + DSP Mont. 1,696 2,528 3,582 4,879

MSP430 Liu et al. [20] 12,645
C6416 Yan et al. [36] 810 1,690

ASIC Kern et al. [18] pr. sc. 512
ASIC Wenger et al. [35] pr. sc. 1,377
ASIC Hutter et al. [15] pr. sc. 783

Although those design focused on area-optimizations the authors [15,18,35]
achieved good run time results. Consequently the performance differs by a factor
of 1.58 – 3.31.

7 Conclusion

In this paper we presented, evaluated, and optimized an elliptic curve point
multiplication for three different processors using four different elliptic curves.
Starting with a C reference implementation (which includes several countermea-
sures against possible attacks), we were able to improve the runtime by simply
rewriting the performance critical field operations in Assembler. Therefore we
evaluated the most commonly used big-integer and field multiplication methods.
We achieved a speedup for a single point multiplication of 1.93 – 2.34 on the
MSP430, 1.23 – 1.42 on the PIC24 and 3.89 – 5.41 on the dsPIC. Especially
impressing is the possible speedup of 7.91 for a single 160-bit multiplication on
the dsPIC which is 10.5 times faster than fastest corresponding operation on the
MSP430.

By the best of our knowledge, we are the first to present results for ECC
on the PIC24 and dsPIC and those results are especially interesting for future
applications in which embedded processors are required.
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Abstract. Elliptic Curve Cryptography (ECC) based processors have
gained large attention in the context of embedded-system design due to
their ability of efficient implementation. In this paper, we present a low-
resource processor that supports ECC operations for less than 9 kGEs.
We base our design on an optimized 16-bit microcontroller that provides
high flexibility and scalability for various applications. The design allows
the use of an optimized RAM-macro block and reduces the complexity by
sharing various resources of the controller and the datapath. Our results
improves the state of the art in low-resource F2163 ECC implementations
(14 % less area needed compared to the best solution reported). The to-
tal size of the processor is 8,958 GEs for a 0.13 μm CMOS technology
and needs 285 kcycles for a point multiplication. It shows that the pro-
posed solution is well suitable for low-power designs by providing a power
consumption of only 3.2 μW at 100 kHz.

Keywords: Low-Resource Hardware Implementation, Elliptic Curve
Cryptography, Binary Extension Field, Embedded Systems.

1 Introduction

With the rapid development of more powerful and energy-saving devices, we
unwittingly move towards the vision of the Internet of things. The required
security services within this vision can be particularly achieved using Elliptic
Curve Cryptography (ECC). This paper focuses on a low-resource hardware
processor that provides ECC capabilities while meeting the low-area and low-
power requirements of embedded systems.

There exist many proposals for low-resource ECC processors. Most of the
processors operate on binary-field elliptic curves and use full-precision arithmetic
to increase the performance of point multiplication [4,13,25,35]. One of the most
efficient solutions in terms of low-resource requirements has been reported by
Lee et al. [26].

They presented a processor supporting a small elliptic curve over F2163 which
makes use of a tiny 8-bit microcontroller to handle higher-level protocol imple-
mentations. The ECC operation of k · P is performed by a separated Modular
Arithmetic Logic Unit (MALU). The processor needs 12,506GEs and 276 kcycles

E. Prouff (Ed.): CARDIS 2011, LNCS 7079, pp. 182–198, 2011.
� IFIP International Federation for Information Processing 2011
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to perform a point multiplication. However, the area estimations do not including
program ROM and RAM to store intermediate results and the necessary secret
scalar k. Similar datapath architectures have been reported by Batina et al. [2]
and Sakiyama et al. [32]. Hein et al. [17] reported a very efficient co-processor
(without microcontroller) for the same elliptic curve supporting multi-precision
arithmetics. They applied a finite-state machine based control-engine needing
11,904GEs including a standard-cell based RAM memory.

In this paper, we present a low-resource hardware processor that is based on
a 16-bit multi-precision architecture and an area-optimized custom microcon-
troller. This combination allows several optimizations. First, it allows the use of
an efficient RAM-macro block that reduces the area requirements for short-term
memory significantly. Second, since both the microcontroller and the datapath
use a 16-bit architecture, all resources are shared to minimize the area foot-
print of the processor. As an outcome, we present a complete solution including
memory for short-term (RAM) as well as long-term storage (program ROM),
controller, and datapath using a polynomial multiply-accumulate (MAC) unit.
In addition, we present results of higher-level protocol implementations of the
Elliptic Curve Digital Signature Algorithm (ECDSA) [30] and give results for
digital signature generation as well as verification. For a point multiplication,
our NIST B-163 based processor needs only 8,958GEs in total and performs a
point multiplication within 285kcycles. We demonstrate that the proposed so-
lution is also well suitable for low-resource embedded systems by providing a
power consumption of only 3.2 μW at 100kHz.

The rest of the article is structured as follows. In Section 2, a brief introduc-
tion into elliptic curve cryptography is given. In Section 3, we face the challenge
of low-resource ECC hardware implementations and explore various design pos-
sibilities. We evaluate appropriate word sizes of a processor and analyze different
memory types. Section 4 presents details about the hardware architecture of our
processor. Details about the implementation are given in Section 5. In Section 6,
the results are presented. Conclusions are drawn in Section 7.

2 Elliptic Curve Cryptography

Within Elliptic Curve Cryptography (ECC), not only a single number or poly-
nomial is used, but a pair of those. Each pair (x, y) of such numbers that satisfy
the general Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

is called a point on an elliptic curve. When a certain type of number is used,
in our case binary polynomials within GF (2m), the Weierstrass equation can be
reduced to

y2 + xy = x3 + ax2 + b. (2)

Among the most critical operation in terms of speed and security is the ECC
point multiplication. The implementation of this multiplication has to be secure
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against various implementation attacks such as side-channel and fault-analysis
attacks. The Montgomery ladder [28,21] provides very beneficial properties in
this context. We therefore decided to use it for our design and applied the very
fast group-operation formulas of López and Dahab [27]. The formulas are based
on projective coordinates (which avoid expensive field inversions) that can be
nicely combined with proposed countermeasures (see also the work of Junfeng
Fan et al. [11]) such as randomized projective coordinates (RPC) [6] or point-
validity checks [8].

We use the following notations throughout the paper (similar to [16]). Let
f(z) = zm + r(z) denote an irreducible binary polynomial of degree m. The
elements of F2m are binary polynomials of degree at most m − 1. An addition
of field elements is the usual addition of binary polynomials. Multiplication is
performed modulo f(z). A field element a(z) = am−1z

m−1 + · · ·+ a2z
2 + a1z +

a0 is associated with the binary vector a = (am−1, . . . , a2, a1, a0) of length m.
Furthermore, let N = 
m/W � be the number of words with width W needed to
store a(z). A = (A[N − 1], . . . , A[2], A[1], A[0]), where the rightmost bit of A[0]
is a0, and the leftmost (WN − m) bits of A[N − 1] are unused (always set to
zero).

For further readings on ECC we refer to several books [1,3,16,23] that discuss
the topic extensively.

3 Design-Space Exploration

In this section, we will explore different hardware-design options to obtain best
results for a low-resource ECC processor. The design goals have been to meet all
requirements of embedded systems which are low area (due to the production
costs), low power (due to a possible contactless operation), appropriate speed
(required for certain applications), security and flexibility. Due to the latter
requirement, we decided to base our design on a customized microcontroller.
This has the advantage of being modular in terms of protocol implementations
and modifications of already implemented solutions.

By following the principles of hardware/software co-design, it showed that the
dominant factors of ECC processors are the finite-field hardware multiplier and
the type and size of the applied data memory. In the following, we discuss these
factors and explore the design space to find the best solution for our objectives.

3.1 The Hardware Multiplier

One of the most area consuming parts within the ALU of an ECC-hardware de-
sign is the finite-field multiplier. The size, speed, and power consumption of such
a multiplier largely depends on the word size of the processor and the under-
lying finite field. Figure 1 shows the hardware architecture of a 4-bit multiplier
for binary-field (carry-less multiplier), prime-field (integer multiplier), and dual-
field arithmetic. The basic structure of all three types of multiplier is the same.
Only the adder structure needs to be adopted.
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Fig. 1. General 4-bit multiplier structure to the left. Carry-less, integer, and dual-field
adder (from top to bottom) on the right.

Table 1 shows the area evaluation of different hardware-multiplier types. We
evaluated multipliers for prime-field, binary-field, and dual-field arithmetic for
word sizes of 8, 16, 32, and 64 bits (on register-transfer level). For the evaluation
we used the UMC-L130 CMOS technology where an AND gate needs 1.25GEs,
a XOR gate needs 2.75GEs, and a full-adder cell needs 5.5GEs.

Obviously the area requirement scales quadratically with the given word size
and carry-less multipliers provide the lowest area footprint and lowest increase
in area for all given word sizes. Runtime approximations for an ECC point
multiplication showed that the word size of the carry-less multiplier must be at
least 16 bits in order to achieve a sensible runtime.

Next to a carry-less multiplier, an integer multiplier is necessary to provide
operations for higher-level protocols (e.g. ECDSA). Note that this multiplier is
needed only very few times for most protocols (only four prime field multiplica-
tions are required for ECDSA signature generation, for instance). Thus, lower
word sizes are acceptable since no significant reduction in speed is expected.
We therefore decided to implement a 16-bit carry-less multiplier (to provide an
appropriate speed for a point multiplication) and an 8-bit integer multiplier in-
stead of a dual-field 16-bit multiplier (which needs 1,946GEs). This would sum
up to 1,226GEs which is 720GEs less than for a dual-field multiplier.

Table 1. Area evaluation of different hardware-multiplier types

Finite Required adder 8 bit 16 bit 32 bit 64 bit
Field cells per bit [GE] [GE] [GE] [GE]

GF (2m) XOR 211 850 3,389 13,508
GF (p) FA 376 1,616 6,688 26,336
Dual field AND + FA 458 1,946 8,018 31,514
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Table 2. Area evaluation of different 16 × 128-bit RAM architectures

Type Port Storage Logic Total
[GEs] [GEs] [GEs]

Std. cells (registers) Single 10,281 2,941 13,926
Std. cells (latches) Single 8,388 3,119 12,221
Macro S-RAM Dual - - 6,737
Macro S-RAMa Single - - 6,000
Macro register-file Single - - 2,955

a Approximated based on UMC 180 nm technology.

3.2 The Memory Type and Architecture

One of the most area expensive chip components of ECC processors is the Ran-
dom Access Memory (RAM). RAM is necessary to store intermediate values
(e.g. point coordinates during point multiplication k · P ) and the secret scalar
k. The size of the memory varies depending on the requirements of the ECC
formulas (the formulas of López Dahab [27] need at least 5 registers of memory
for full-precision architectures and 6 registers for multi-precision architectures
due to the need of intermediate storage of in-place operations).

In Table 2, we compare different 16 × 128-bit RAM types concerning their
area requirements. We compare standard-cell based implementations with ded-
icated RAM macro blocks synthesized in CMOS UMC-L130 technology. The
standard-cell based RAM implementations (register and latch based) have been
designed on RTL-level and synthesized using Cadence RTL compiler [5]. The
RAM-macro blocks have been generated using the Standard Memory Compiler
FSA0A Memaker 200901.1.1 by the Faraday Technology Corporation [12]. All
except of one type of RAM provide a single read-port and a single write-port.
There is one S-RAM macro that features a dual-port read/write interface.

It shows that the latch-based RAM is about 12% smaller than the register-
based RAM. This is because the size of a flip-flop is 5 GE and the size of a
latch is 4 GE. This 25% difference in area is debilitated because some additional
registers and control logic is required so that the latch-based RAM works the
same way as the register-based RAM. Adding a second read port to those RAMs
would be relatively cheap in terms of chip area (it would require about 3,000GEs
in addition by introducing a second multiplexer at the output). Note that a dual-
port memory would increase the performance of a multi-precision multiplication
by a factor of about two.

From the two available single-port RAM macros, the register-file macro is
about 50% smaller than the S-RAM macro. The dual-port S-RAM macro, in
contrast, is only 12% larger than the single-port S-RAM macro, however, it is
about 2.3 times larger than the register-file based RAM macro.

The register-file RAM macro provides best performance in our evaluation
scenario. We performed several power simulations using Cadence Encounter and
obtained similar results for the register-file RAM macro and the standard-cell
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Fig. 2. High-level block diagram of the processor. Components for higher-level proto-
cols are drawn with slashed lines (i.e. integer multiplier, program and data memory).

based RAM architectures. The main disadvantages of the register-file macro
are the lack of a second read port (speed) and the limit of clock-synchronous
read operations. The lack of a second read port can be compensated by using
temporary working registers. The lack of an asynchronous read functionality can
be balanced with a more difficult control logic.

4 Hardware Architecture

In this section, we introduce the hardware architecture of our processor. It is
based on the microprocessor design called Neptun [34], which uses a Harvard
architecture. This allows to fetch, decode, execute, and store data within the
same clock cycle and allows low-area optimizations due to the choice of different
memory types and sizes. Figure 2 shows the block diagram of the architecture.
It is mainly composed of a Central Processing Unit (CPU) including register file
and Arithmetic Logic Unit (ALU), and memories for program code, constants,
and data.

4.1 Central Processing Unit (CPU)

The heart of the processor is the 16-bit CPU. It is composed of several internal
registers and an ECC optimized ALU. The register file consists of a program
counter (PC), a stack pointer (SP), three base registers, four working regis-
ters, and an accumulator register: The program counter is used as index for the
program memory. The stack pointer (SP) is needed to store registers on the
data memory. The stack is also used to store program-return addresses that are
needed for function calls. In order to address certain base addresses within the
data memory, three base registers are used. We integrated two source registers
and one destination register. They are used together with a 4-bit offset to ad-
dress data in the memory. The offset address is stored within a program word. We
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implemented four 16-bit working registers that can be used as general-purpose
registers. The registers are needed for almost any ECC operation and are used to
reduce the number of memory-read cycles within the finite-field multiplication.
The accumulator register (ACC) is needed for the multiply-accumulate operation
of the 163-bit multi-precision multiplication.

We integrated several optimizations to increase the performance of ECC op-
erations. First, the ALU accesses data directly without loading it first into CPU
registers (as it is in the case of conventional microcontrollers). In the first clock
cycle, the data is addressed in the memory. In the second cycle, the data is pro-
cessed by the ALU and the result is stored back in memory within the same clock
cycle. This increases the performance of memory-access operations significantly.
Second, loading and processing of data is done simultaneously by the processor.
This avoids unnecessary idle cycles and improves the efficiency of multi-precision
arithmetic operations. Those optimizations are described in more detail in [34].

Arithmetic Logic Unit (ALU). The arithmetic logic unit (ALU) mainly
consists of a reduction-logic unit, a carry-less multiplier, an arithmetic unit (ad-
dition/subtraction), and a logic unit (supporting OR, AND, XOR, and shift
operations). For higher-level protocols, an integer multiplier is needed in addi-
tion (drawn with dashed lines). Figure 3 shows a high-level diagram of the ALU.
We also integrated an operand isolation technique for each submodule which
reduces the power-consumption significantly.

4.2 Memory for Program, Data, and Constants

Our processor provides a long-term storage memory that mainly stores the pro-
gram for ECC point multiplication. The memory provides 72 control signals
and contains up to 1,800 entries depending on the implemented algorithms and
higher-level protocols. Most of the control signals are used to control the dataflow
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within the CPU. Best area results have been achieved by directly synthesizing the
memory table as Read Only Memory (ROM) using standard cells. Experiments
in which a 16-bit instruction set or a ROM macro have been introduced resulted
in a larger area requirement.

For short-term data storage, we used a 16-bit RAM macro (register-file based)
as discussed in Section 3. Note that in contrast to most processors reported in
literature [4,25,26,31], we include the number for the required storage of the
secret scalar k. For an ECC point multiplication, 1,296 bits (81 entries) are
necessary (we used a 16 × 84 macro in that case). For higher-level protocols,
additional memory is needed (e.g. 1,536 bits for ECDSA signature generation
(16 × 96 macro) and 2,384 bits for ECDSA signature verification (16 × 152
macro)).

ECC constants have been stored in a ROM. The ROM has been implemented
as a look-up table and stores between 880 and 2,564 bits such as the x and y
coordinate of the base point P , the ECC parameters a and b (see Equation (2)),
and the irreducible polynomial f(z).

The input/output of data has been realized via memory mapped I/O. Data
can be written and read using a 16-bit parallel interface.

5 Implementation Details

In the following, we give details about the implemented carryless multiply-
accumulate unit and the modular arithmetics in order to perform ECC oper-
ations.

5.1 Carry-Less Multiply-Accumulate Unit

The multi-precision multiplication over F2163 has been realized following a
multiply-accumulate (MAC) approach. There exist several publications that
make use of MAC units to increase the performance of modular multiplica-
tion (see e.g. the work of [9,14,15,17,33]). We implemented the multiplication by
a product-scanning form (often referred as Comba multiplication), where each
partial product of A[i] ·B[j] gets accumulated to a common sum (ACC1, ACC0),
i.e. (ACC1, ACC0)← (ACC1, ACC0) + A[i] ·B[j].

Note that for the polynomial MAC unit the handling of carry propagation is
not needed. Thus, the accumulator register needs a size of only (2W − 1) bits.

We implemented several improvements to increase the performance. First,
the entire multiplication algorithm has been unrolled so that no extra cycles are
wasted for loop operations. Second, we reused the working registers as a memory
cache to reduce the number of necessary load operations. With each working reg-
ister used, the total number of read operations has been reduced by about 2N .
Third, we added a third word to the accumulator register (ACC2, ACC1, ACC0)
in order to allow efficient reduction of the accumulated sum. Thus, the MAC op-
eration is performed on the words (ACC2, ACC1) instead of (ACC1, ACC0) and
ACC0 is used to store the previous intermediate result. A detailed description
of the reduction method is given in the following subsection.
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Algorithm 1. Polynomial multiplication with interleaved reduction
Require: Binary polynomials a(z) and b(z) of degree at most m − 1.
Ensure: c(z) = a(z) · b(z) mod f(z).
1: ACC ← 0
2: for i from 0 to N − 1 do
3: for each element of {(i, j)|i + j = k, 0 ≤ i, j ≤ N − 1} do
4: (ACC2, ACC1) ← (ACC2, ACC1) + A[i] · B[j].
5: end for
6: C[k] ← ACC1.
7: ACC ← ACC  W .
8: end for
9: ACC ← higher(ACC).

10: for k from t to 2N − 2 do
11: for each element of {(i, j)|i + j = k, 0 ≤ i, j ≤ t − 1} do
12: (ACC2, ACC1) ← (ACC2, ACC1) + A[i] · B[j].
13: end for
14: C[k − N − 1] ← C[k − N − 1] + reduce(ACC).
15: ACC ← ACC  W .
16: end for
17: C[N − 1] ← lower(C[N − 1]) + reduce(ACC).
18: ACC ← ACC  W .
19: C[0] ← C[0] + reduce(ACC + higher(C[N − 1]))  W .
20: C[N − 1] ← lower(C[N − 1])  W .
21: Return(c).

Algorithm 1 shows the algorithm of the implemented polynomial multiplica-
tion. The polynomials a(z) and b(z) get multiplied and the reduced result is
stored in c(z). In the lines 1 to 8, the lower N words of the result c(z) are calcu-
lated. Note that in this phase the ACC0 register is not used. In line 9, the lower
(m−W (N−1)) bits of the accumulator need to be cleared. Those are the bits of
the results that do not need to be reduced. The lines 10-16 calculate the higher
N words of c(z) and reduce them immediately. According to the recommended
NIST irreducible polynomial B-163 f(z) = z163 + z7 + z6 + z3 +1, the reduction
function (line 14) can be written as

reduce(ACC) =
(
ACC � (W + 3) + ACC �W + (3)

ACC � (W − 3) + ACC � (W − 4)
)
∧ (2W − 1).

Finally, in lines 17-20 the rest of the accumulator and the higher bits of C[N−1]
get reduced.

Polynomial NIST B-163 Reduction Logic. We make use of the recom-
mended NIST irreducible polynomial B-163 to perform a very efficient modular
reduction for modular multiplication and squaring. The reduction logic is shown
in Figure 4. We hard-wired the output of the appropriate accumulator register
according to Equation (3). The reduction logic takes the output of the 48-bit
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accumulator register, performs 4 × 16 XOR operations and the result is added
with the intermediate result C[i] = C[k − N − 1] (see line 14 in Algorithm1).
After the addition (XOR), the variable C[i] is updated with C′[i] in the data
memory. Only one clock cycle is needed to reduce the intermediate result of
the accumulator and sum of partial products, respectively. Figure 4 shows the
dedicated reduction logic.

It should be noted that although the reduction logic has been specially op-
timized for NIST B-163, the CPU is capable of handling arbitrary irreducible
polynomials. Thus requirements such as flexibility and extendability are ensured.

5.2 Modular Arithmetic

Modular Addition. The simplest operation is the modular addition. It is a
simple XOR operation. Neither a carry flag nor a finite-field reduction need
to be considered. Modular addition over F2163 needs 35 clock cycles on our
processor.

Modular Multiplication. Modular multiplication has been realized using the
carryless multiply-accumulate unit described in Section 5.1. Our processor
needs 222 clock cycles for a 163-bit multiplication.

Modular Squaring. Modular squaring can be performed very efficiently. The
binary representation of the polynomial can be easily squared by inserting a 0
between each consecutive bit of the polynomial, e.g. a(z) = am−1z

m−1+· · ·+
a2z

2 +a1z +a0 would results in a(z)2 = am−1z
2m−2 + · · ·+a2z

4 +a1z
2 +a0.

This can be realized with only a few additional hardware components. The
polynomial-reduction logic can be reused for squaring. One modular squaring
needs 41 clock cycles on our processor and thus is 5.4 times faster than a
modular multiplication.

Modular Inversion. Modular inversion is required to transform the projective
coordinates back into affine. For this operation, we made use of Fermat’s
little theorem [20] that states that a = a2m

mod f(z)∀a ∈ F2m . As a result,
a−1 ≡ a2m−2 mod f(z). This exponentiation can be performed using 162
squaring and only 9 multiplications for the NIST B-163 binary field. As a
result 11,031 cycles are needed for an inversion.
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Table 3. Size and power estimations of our processor for different CMOS technologies
using Latch-based RAMs

Technology Area NAND Gate Total Area Power Leakage
[μm2] [μm2] [GE] [μW@1MHz] [μW ]

AMS c35b4 693,948 54.600 12,710 696.3 0.63
UMC f180GII 139,469 9.374 14,878 107.1 0.53
UMC f130SP 71,745 5.120 14,013 31.4 1.37
UMC f090SP 39,550 3.136 12,612 70.1 54.32

6 Results

We synthesized our processor using different CMOS technologies from vari-
ous manufacturers. For synthesis, we used the Cadence RTL compiler [5] Ver-
sion v08.10. Table 3 shows the total area and power-consumption estimation of
the processor using latch-based RAMs1 (described in Section 3.2). The power-
consumption estimations were made using Cadence Encounter Version v08.10.
All obtained area results are within a 20% margin. In view of power consump-
tion, best performance had been obtained for the UMC-L130 technology. For all
following approximations we used register-based RAM macros.

In Table 4, the area and power requirements for individual chip components
are listed. The memory needs most of the area which is 5,399GEs. The CPU
needs 3,556GEs in total where only 849GEs are used for the carry-less multiplier.
The total size of the processor sums up to 8,958GEs.

In Table 5, we compare our results with related work. There exist many publi-
cations of ECC processors over F2163 . Most of those processors use full-precision
arithmetic to perform the point multiplication. For a fair comparison, we listed
the results of the authors for different digit sizes (d=1...8). All implementations
need between 10,392GEs and 16,247GEs of chip area and between 47 and 430
kcycles for the computation of k ·P . Our implementation needs 8,958GEs of area
which is 1,434GEs less area than the best reported solution. This is an area im-
provement by about 14%. The number of needed clock cycles can be compared
with the full-precision solutions with d=1. The power and energy consumption
is very low and fulfills most requirements of embedded-system designs.

6.1 Results for Higher-Level Protocol Implementations

As a higher-level protocol, we implemented the Elliptic Curve Digital Signature
Algorithm (ECDSA) [30]. In addition to a point multiplication over the binary
field F2163 , ECDSA needs a hash function and several prime-field arithmetic
operations to generate and verify a digital signature. As a hash function, we im-
plemented the 160-bit SHA-1 algorithm according to ISO/IEC FIPS-180-3 [29].
Replacing the SHA-1 algorithm with one of the current SHA-3 candidates [19]

1 We did not have access to RAM macros for all those technologies.
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Table 4. Size and power consumption of individual chip components

Component Area Area Power Power
[GE] [%] [μW@1MHz] [%]

Memory 5,399 60.27 11.57 35.77
Program memory 2,471 27.58 4.24 13.10
Data RAM 2,528 28.22 4.66 14.41
Constant ROM 256 2.56 1.62 5.01

CPU 3,556 39.70 18.93 58.54
ALU 1,837 20.51 11.05 34.16

Carry-less multiplier 849 9.48 2.30 7.12
Logic unit 348 3.88 2.15 6.65
Arithmetic unit 93 1.04 0.37 1.15

Register Set 875 9.77 1.48 4.58

Total Area 8,958 100.00 32.34 100.00

would be easily possible. For prime-field multiplications and inversion, we de-
cided to implemented Montgomery-arithmetic operations. We implemented the
Finely Integrated Product Scanning Form (FIPS) according to Koç et al. [24].
The algorithm is used only four times, so we optimized the code for low area (no
loop unrolling etc.). Furthermore, we implemented the Montgomery-inversion
algorithm according to Kalinski et al. [22].

For signature verification,we applied Shamir’s trick [7,10] to improve the perfor-
mance of multiple-point multiplication. All described operations for ECDSA have
been implemented as Assembler functions for our processor and have been stored
in program memory. Table 6 shows the results after synthesizing the processor.

Table 5. Comparison with related work

Related Area Cycles Power Energy CMOS
Work [GE] [kCycles] [μW@1MHz] [μJ ] Technology

Kumar06 d=1 [25] 15,094 430 - - AMI C35
Batina06a d=4 [2] 14,816 95 27.00 2.57 130 nm
Batina06a d=3 [2] 14,258 125 27.00 3.38 130 nm
Batina06a d=2 [2] 13,681 182 27.00 4.91 130 nm
Batina06a d=1 [2] 13,104 354 27.00 9.56 130 nm
Bock08 d=8 [4] 16,247 47 148.76 6.99 INF SRF55V01P
Bock08 d=4 [4] 12,876 80 93.27 7.46 INF SRF55V01P
Bock08 d=1 [4] 10,392 280 54.31 15.21 INF SRF55V01P
Lee08 d=4 [26] 15,356 79 37.39 2.95 UMC L130
Lee08 d=3 [26] 14,729 101 38.32 3.87 UMC L130
Lee08 d=2 [26] 14,064 145 36.52 5.30 UMC L130
Lee08 d=1 [26] 12,506 276 32.42 8.95 UMC L130
Hein08 16-bit [17] 11,904 296 101.87 30.15 UMC L180
This work 16-bit 8,958 286 32.34 9.25 UMC L130

a For a fair comparison a RAM approximated with 4,890 GE was added. The power
values lack the power consumption of this RAM.
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Table 6. Area and power estimations of our processor supporting ECDSA

Program Area Cycles Lines of Power Energy
[GE] [kCycles] Code [μW@1MHz] [μJ ]

ECC Only 8,958 294 637 32.09 9.43
ECC Protecteda 9,728 298 828 32.48 9.68

ECDSA Signa,b 15,387 378 1771 41.11 15.54
ECDSA Verifyb 16,005 605 1784 40.76 24.66

a The numbers include y-recovery, randomized projective coordinates (RPC) side-
channel countermeasure [6], and ECC point-validity check [8].

b Includes the SHA-1 hash function [29], Random Number Generation (RNG) [30], and
prime-field arithmetics.

For ECDSA signature generation, our processor needs 15,387GEs which outper-
forms existing solutions in terms of area, power, and speed [13,18,34,35]. Signature
verification can be realized using a chip area of 16,005GEs.

7 Conclusions

In this paper, we presented a low-resource implementation of an ECC hardware
processor. The processor needs 8,958GEs and performs a point multiplication
within 285 kcycles. The power consumption is about 3.2μW at 100 kHz. We met
the low-resource constraints of embedded systems by applying a very modular
microcontroller architecture that allows the execution of higher-level protocols
like ECDSA. The elliptic-curve operations have been performed over the NIST
F2163 elliptic curve using multi-precision arithmetic. The outcome improves the
state of the art in low area ECC hardware designs and provides even a smaller
area footprint than most of the proposed SHA-3 candidates [19].
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Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
292–302. Springer, Heidelberg (1999)

7. de Rooij, P.: Efficient Exponentiation Using Precomputation and Vector Addition
Chains. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 389–399.
Springer, Heidelberg (1995)

8. Ebeid, N., Lambert, R.: Securing the Elliptic Curve Montgomery Ladder Against
Fault Attacks. In: Proceedings of Workshop on Fault Diagnosis and Tolerance in
Cryptography - FDTC 2009, Lausanne, Switzerland, pp. 46–50 (September 2009)

9. Eberle, H., Gura, N., Shantz, S.C., Gupta, V., Rarick, L.: A Public-key Crypto-
graphic Processor for RSA and ECC. In: Proceedings of the 15th IEEE Interna-
tional Conference on Application-specific Systems, Architectures and Processors
(ASAP 2004), pp. 98–110. IEEE Computer Society (September 2004)

10. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 10–18. Springer, Heidelberg (1985)

11. Fan, J., Guo, X., Mulder, E.D., Schaumont, P., Preneel, B., Verbauwhede, I.: State-
of-the-Art of Secure ECC Implementations: A Survey on known Side-Channel At-
tacks and Countermeasures. In: Proceedings of 3rd IEEE International Symposium
Hardware-Oriented Security and Trust - HOST 2010, California, USA, June 13-14,
pp. 76–87. IEEE (2010)

12. Faraday Technology Corporation. Faraday FSA0A C 0.18 μm ASIC Standard Cell
Library (2004), http://www.faraday-tech.com

13. Fürbass, F., Wolkerstorfer, J.: ECC Processor with Low Die Size for RFID Appli-
cations. In: Proceedings of 2007 IEEE International Symposium on Circuits and
Systems. IEEE (May 2007)
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A Statistics for ECC Multiplication

During the development of the ECC and ECDSA functions we used a statistics
feature of our tool-chain to investigate the code-line and cycle consumption of
each function. Table 7 shows the number of times each function is called, the
size of each function in code lines and the total runtime of each function. Even
though the multiplication algorithm is optimized down to 222 cycles it still covers
74% of the total runtime.

Table 7. Functions used during ECC point multiplication with y-recovery and point-
validity check

Function Calls Code Lines Cycles

B163.Multiplication 990 222 219,780
B163.Square 969 41 39,729
B163.Add 490 35 17,150
PointOperation.Multiplication 1 148 16,636
B163.FermatInverseHelp 7 31 2,041
Utilities.Copy 16 24 384
PointOperation.yRecovery 1 90 90
B163.FermatInverse 1 88 88
PointOperation.isValidPoint 1 44 44
Utilities.CMP 1 35 35
Utilities.Clear 2 13 26

TOTAL 2,479 771 296,003
TOTAL including test functions 2,480 828 296,547

Table 8 shows how often each and every type of instruction is used. The
parallelized commands are a combination of other commands. They cover 71% of
the total runtime. Note that only 4.4% of the total runtime is used for program-
flow instructions such as RET, CALL, BRA, and JMP. This overhead would not
exist if a dedicated state machine instead of a CPU with instruction set would
be used.
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Table 8. Instructions used during an ECC point multiplication with y-recovery and
point-validity check

Mnemonic Description CPI Cycles Used

PAR: BMULACC | LD 1 109,869 111
PAR: MOVNF | LD 1 65,707 83
LD Load from memory 1 35,410 65
PAR: BREDUCE ADD ST | BRSACC 1 13,818 14
PAR: BMULACC | ST | BRSACC 1 11,859 12
PAR: BREDUCE ADDBYTE ST | BRSACC 1 9,690 10
CALL Call a function 3 7,440 70
LDI Load Immediate 1 6,900 105
AND Logic AND 1 6,038 7
PAR: XOR | ST 1 5,390 11
MOVNF Copy register to register without flag update 1 5,269 47
RET Return from function 2 4,960 13
BMULACC Binary multiply-accumulate 1 3,876 4
STR Store a register to memory 1 2,725 32
XOR Logic XOR 1 2,120 3
LDR Load from memory and store to register 2 1,942 10
ADDI Add with carry 1 573 11
BRA Branch if flag is set/cleared 1 488 6
PUSH Push a value to the stack 2 338 5
POP Pop a value from the stack 2 336 4
LSI Left shift by immediate 1 326 4
SUBI Subtract with carry 1 324 6
ADD Add 1 163 2
RS Right shift 1 163 2
RSI Right shift immediate 1 163 2
SUB Subtract 1 163 2
ASRI Arithmetic shift right 1 161 1
JMP Jump to address 1 160 1
CMP Compare 1 84 2
MOV Copy register to register 1 82 1
CMPC Compare with carry 1 10 10

TOTAL 296,547 656
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Abstract. With the latest advances in attack methods, it has become
increasingly more difficult to secure data stored on smart cards, espe-
cially on non-volatile memories (NVMs), which may store sensitive in-
formation such as cryptographic keys or program code. Lightweight and
low-latency cryptographic modules are a promising solution to this prob-
lem. In this study, memory encryption schemes using counter (CTR) and
XOR-Encrypt-XOR (XEX) modes of operation are adapted for the tar-
get application, and utilized using various implementations of the block
ciphers AES and PRESENT. Both schemes are implemented with a
block cipher-based address scrambling scheme, as well as a special write
counter scheme in order to extend the lifetime of the encryption key in
CTR-mode. Using the lightweight cipher PRESENT, it is possible to im-
plement a smart card NVM encryption scheme with less than 6K gate
equivalents and zero additional latency.

Keywords: memory encryption, smart card, low-latency block cipher,
AES, PRESENT.

1 Introduction

Smart cards and devices containing smart card ICs, have been playing increas-
ingly important roles in our daily lives for years. Within the last decade, pass-
ports, credit cards, ID cards, and even public transport tokens have come to rely
on smart card technologies. Non-volatile memories (NVMs) in those smart cards
contain frequently updated data such as personal information about the card
holder, and less frequently (or never) changing data such as program code, cryp-
tographic keys, etc. Access to the frequently updated data should be executed
with very low latency. Due to advances in attack methods, e.g., invasive attacks,
it is often realistic to expect that the information would be compromised in case
of a stolen or lost card. Therefore it is crucial to store the information securely
using state-of-the-art cryptographic algorithms and technologies, and yet in an
economic way.

This requires some form of data encryption algorithm to be implemented
on the smart card, either in hardware or software. However, encryption (and
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decryption) of memory data comes with a specific set of requirements, which
are not met with standard cipher implementations. For instance, while AES is
extremely well tested and secure, it requires either several tens of thousands
of gates for a fast hardware implementation, or several hundreds of cycles for
software implementation on a standard embedded processor. On the other hand,
mechanisms that allow access to data stored on the NVM of a smart card should
be lightweight in terms of power consumption, latency and resource usage. This
enforces utilization of specifically optimized algorithms and modes.

The memory encryption schemes proposed up to date mainly target real-time
hard disk encryption [1,2,3,4,5,6,7], which differs considerably from the security
in smart cards. They require lots of temporary storage for predictive processing
of data, which makes the overall process seem like zero-latency to the external
user.

On smart cards, NVM sizes are usually restricted. Even the future visions for
the next two decades predict at most a few gigabytes of NVM storage[8]. In most
cases, NVM also stores program memory, which has to be accessed with very
low latency for seamless execution of the program. Standard memory encryp-
tion techniques usually require several clock cycles in order to decrypt the page
header, calculate the tweak, and then use this information to further decrypt
consecutive block data. This is unacceptable for low latency access demanding
smart card NVM applications. Therefore, either the existing techniques have
to be improved, or new memory encryption techniques have to be introduced
together with supporting cryptographic primitives.

When considering security of smart card NVMs, the following assumptions
have to be considered:

• An adversary can read the raw contents of the NVM at any time (which
might be possible with either invasive attacks or attacks targeting the access
mechanism).

• An adversary can fool the smart card to encrypt and store arbitrary data of
his/her choosing on the NVM.

• An adversary can modify unused sectors on the NVM and then request their
decryption.

• Furthermore, most data stored on the NVM has a predefined structure, such
as headers, footers, fixed size and address, etc.

In order to resist such an adversary, the security module on the smart card should
be able to efficiently encrypt memory contents of NVM and perform memory
address scrambling. Scrambling (re-mapping of the address space) prevents the
adversary from locating the exact location of the stored data. It is a crucial
element of memory encryption, without which most memory encryption schemes
become pointless.

The memory encryption on smart cards should be low-cost, security proven,
low-latency, and low-complexity. In this work, we this target is accomplished by
adapting CTR and XEX-modes of operation for memory encryption, and realiz-
ing them using AES[9] and PRESENT[10] block ciphers. The proposed systems
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are implemented at RTL level, synthesized using standard CMOS technology,
and their performance figures are presented.

The rest of the paper is organized as follows: In section 2, an overview of
existing and proposed memory encryption schemes is presented together with
security discussion and performance analysis of two selected schemes for smart
card NVM encryption. System design details and performance results are pre-
sented in section 3. Finally in section 4, the results are summarized.

2 Memory Encryption

2.1 Memory Encryption Background

Like most other fixed width data applications, memory encryption also relies on
use of block ciphers. However, using a block cipher as the cryptographic primitive
for memory encryption makes sense only when it is used with a proper mode
of operation. In addition to the conventional counter mode (CTR), new modes
of operation specific to memory encryption have been proposed: namely Liskov-
Rivest-Wagner (LRW), XOR-Encrypt-XOR (XEX)[7] and XEX-based Tweaked
CodeBook mode with ciphertext stealing (XTS)[6]. All three proposed schemes
(LRW, XEX, XTS) depend on the tweakable block cipher idea in [11], which
is composed of a block cipher and a tweak. This system is proven to be secure
against the chosen-ciphertext and chosen-plaintext attack scenarios, provided
that the number of plaintext-ciphertext pairs is limited. Basically, a pseudo-
random tweak is computed for each block and then XORed with the input and
output of the cipher, thereby randomizing any structure in the plaintext and
ciphertext and thwarting attacks exploiting these structures. The CTR, LRW,
XEX, and XTS modes of operation are briefly summarized below:

CTR-Mode. CTR-mode mode enables the user to have parallel encryption
and random access to the encrypted data. This makes it a viable candidate for
memory encryption. However, it was shown that this mode is insecure when
more than 2

n
2 blocks of data are encrypted with a block cipher with block size

n. The idea in the counter mode is to produce a one-time pad (OTP) using the
underlying block cipher and XOR the plaintext with this OTP. This approach is
quite problematic when used recklessly in a memory encryption scheme, as will
be seen in Section 2.3.

LRW-Mode. LRW-mode randomizes the input and output of the block cipher
by XORing both with a tweak value, i.e. C = EK1(P ⊕T )⊕T , where T = K2⊗I
(⊗ being multiplication over GF(2n). Here, K1 is the key to the block cipher,
K2 is a key of the same size as the block size of the underlying block cipher and
I is the counter/index of the data to be encrypted. This mode of operation is
directly applicable to memory encryption when I is used as the address of the
block to be encrypted. However, for non-sequential data, a full GF(2n) multiplier
is required.
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XEX-Mode. Proposed by Rogaway in 2004 [7], XEX-mode enables the user
to have an easier computation of the tweak T (Figure 1), i.e. T = EK1(N)⊗ 2I .
As a result, a full finite field multiplier is not required. Tweak computation gets
even easier when encrypting sequential data, where it becomes simple doubling
over GF(2n).

XTS-mode. XTS-mode is standardized as IEEE standard 1617 for Crypto-
graphic Protection of Data on Block-Oriented Storage Devices in 2008 [6]. It
is basically the same as the XEX-mode. However, a second key, K2, is used in
tweak compution, i.e. T = EK2(N)⊗ 2I .

Fig. 1. Graphical illustration of the CTR and XEX-modes of operation

2.2 Previous Work

The previously proposed schemes for memory encryption mostly target every-
day PCs or even larger systems, and they use large amounts of resources. In [1],
CRYPTOPAGE extension of the HIDE infrastructure is proposed in addition
to the address bus protection, memory encryption and memory checking which
are combined in a way to provide a very low performance overhead. [2] presents
predecryption as a method of providing security with less overhead by using
well-known prefetching techniques to collect data from memory and perform de-
cryption before it is needed by the processor. Their results show no increase in
execution time despite an extra 128 cycle decryption latency per memory block
access. In [4,3], a technique is applied to hide the latency overhead of mem-
ory decryption (which is encrypted in CTR-mode) by predicting the sequence
number and precomputing the OTP. This technique solves the latency problem
by using idle decryption engine cycles to speculatively predict and precompute
OTPs before the corresponding sequence number is loaded. Also, an adaptive
OTP prediction technique is presented to further improve OTP prediction and
precomputation mechanism. This scheme is not only able to predict encryption
pads associated with static and infrequently updated cache lines, but also the
frequently updated cache lines as well. [4] presents new hardware mechanisms for
memory integrity verification and encryption. The integrity verification mecha-
nism offers better performance when the checks are infrequent as in grid comput-
ing applications, and the encryption mechanism improves the performance in all
cases. [12] shows a hardware implementation of an execute-only memory (XOM)
form which allows instructions stored in memory to be executed but not manipu-
lated in another way. In this work, all data that leaves the machine is encrypted,
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becuse the external memory is assumed to be insecure. However, for efficient
operation, hardware assist to provide fast symmetric ciphers is also required.
Some other works on memory-bus encryption [13,14] mention hardware engines
for bus encryption. [13] describes an engine called “Parallelized Encryption and
Integrity Checking Engine (PE-ICE)”, which guarantees the confidentiality and
integrity of data exchanged between a system-on-chip (SoC) and its external
memory. This approach is based on an existing block-encryption algorithm, to
which the integrity checking capability is added. According to [13], it results in
low performance overhead. In [14], a comprehensive survey on existing techniques
for hardware engines which are used in bus encryption is presented.

Apart from these, there exists proprietary data bus encryption algorithms for
on-chip NVMs in use by several chip vendors. However, these are not publicly
accessible, and to the best of our knowledge, unlike us, none of the existing
schemes focus on the cipher block in order to come up with a lightweight and
cacheless solution.

2.3 Memory Encryption System Design Issues

So far, we have covered previously proposed modes of operation for memory
encryption in the literature. In this study, our main concern is encyption on
smart card NVMs. For this purpose, we choose two target modes, CTR and
XEX, basically due to the simplicity and low implementation cost of CTR-mode
(which make it weak in terms of security), and solid security proof and single
key requirement of XEX-mode. In the rest of this section, we shall investigate
design and implementation issues for both modes. Additionaly we shall introduce
a simple address scrambling scheme, which is a practical requirement for all
memory encryption systems.

In CTR-mode, the address α is encrypted using the encryption key, gener-
ating the OTP. Part or whole of OTP is XORed with the plaintext, P , or the
ciphertext, C, resulting in ciptertext or plaintext outputs, respectively. In cases
where OTP size is equal to or more than twice the plaintext/ciphertext block
size (i.e. using a 64-bit block cipher with 32-bit memory), it is possible to use
only part of OTP to encrypt/decrypt data.

This is not the case for XEX-mode, where a data pair (or even quartet) is
required in order to be able to decrypt only a single word within the memory.
Referring to the same 64-bit block cipher with 32-bit memory case, we see that
updating an address within memory requires first decryption of the old contents
of the target address together with the contents of its neigbouring address (which
together form a 64-bit block), then writing to both addresses after encryption.
This scheme aggravates the average latency. Furthermore, XEX requires both
encryption and decryption modules, or a combined module in order to reduce
area at the cost of further additional latency.

Clearly, counter mode presents a much simpler and compact solution, and a
lot less implementation problems to deal with. This, of course, comes at the cost
of lower security with respect to that of XEX-mode. This problem can be reme-
died with an address scrambling scheme, as we shall see in the next subsection.
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Furthermore, we modify the CTR-mode in order to have a cryptographically
sound scheme, and introduce a write counter as explained later.

2.4 Address Scrambling

As mentioned before, address scrambling is an integral element of memory en-
cryption and should be handled with care. The most important aspect to address
scrambling is that the order of write addresses should not have any visible struc-
ture, or in other words, the order that the data is written to the memory should
look random to an adversary. In this work, a key dependent address scrambling is
proposed using a small scale block cipher. A small scale variant of the well known
and secure lightweight block cipher PRESENT[15] is used for this purpose.

In our sample system, 16-bit memory address is encrypted via 4 rounds of the
variant cipher, and the resultant ciphertext is used as the scrambled memory
address. Simulations show that the auto-correlation of the 4-round output of the
16-bit version of the block cipher PRESENT gives a satisfactory distribution
(see Figure 2). It is possible to store the regular 80-bit key and perform key
expansion for each of the 4-rounds. Alternatively, 16-bit keys for the 5 rounds
(which also sum up to 80-bits) can be stored directly. This way, not only the key
expansion logic can be strip off the design, but completely random keys without
any dependency in any round can be stored at no addition cost. Naturally,
address scrambling requires (4 + 1) × 16 = 80 bits of additional registers for
key storage. It is also possible to use part or whole of data encryption keys for
address scrambling. However, this requires careful investigation of the security
implications.

Fig. 2. Auto correlation of the input and the outputs of the small scale PRESENT for
rounds 1 to 4

2.5 Performance Issues

In this subsection, we discuss how the performances of CTR and XEX-modes
in terms of average latency per memory operation are affected by the cipher
latency and the page size (or packet size in case of CTR). First, let’s briefly
discuss issues with both modes.

Issues with CTR. In CTR-mode, the memory is divided into blocks that
are identified by unique headers. For each block, a write counter is used. This
scheme works as follows: Target write address width, which is the input to the
encryption, is for all practical purposes much smaller than the cipher block size.
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Instead of using all zeros to pad it, a predefined address field (for example, most
significant 5-bits) is reserved as the write counter. At each update of the block
data (i.e. writing of the whole block), the address counter is incremented by
one, resulting in a completely new OTP for the same addresses with respect to
previous writes. In order to be able to decrypt a block, the header address is
decrypted first, starting with zero write counter value, and incrementing it by
one until the correct header value is read. The resultant write counter is used
for the decryption of the rest of the data within the same memory block. This
way, the uniqueness of the IV of each encryption is guaranteed. Although this
is an expensive solution in terms of latency, larger packet sizes make up for the
initial write counter value search delay.

Issues with XEX. Memory encryption using XEX-mode of operation requires
the memory to be divided into pages, so that only one address encryption is
enough for each page. The rest of the page is encrypted using the same encrypted
page address information and the index of the word within the page (see Figure
1). However, XEX requires both encryption and decryption, which results in
doubling of the hardware area of the module, or doubling of the latency in case
a single module is used for both operations.

Fig. 3. Average latency of the proposed XEX scheme as a function of page size and
cipher latency

For the evaluation of the performance, we assume a generic block cipher which
can have up to 32 cycles latency to complete a single encryption/decryption
operation. For simplicity, memory word width is assumed to be equal to the
cipher block width. In our MATLAB model, we sweep the memory page size
(packet size for CTR) from 1 to 64 words, and the cipher latency from 1 to 32,
and then measure the average latency per memory operation (assuming equal
number of reads and writes). Our simulations clearly indicate that cipher latency
has a much higher impact than page and packet sizes over average latency (see
Figure 3). As seen in the figure, page size has a significant effect only for very
small values. As it goes above 10-15 words, its effect diminishes. However, the
effect of cipher latency on the average latency increases almost exponentially. It
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should also be noted that the figure only shows the average latency for XEX-
mode. In CTR-mode, unless the write counter mode is implemented, the average
latency is equal to the cipher latency. Clearly, it is imperative that the cipher
latency should be kept at minimum.

2.6 System Performance and Block Cipher Selection

Simulation results show that the best way to decrease average latency in memory
encryption is to have a low latency cipher. This can be achieved in a number
of ways. One is to simply design a low-latency block cipher from scratch, but
this requires extensive analysis, expertise and time. Another approach would be
to take a well analyzed block cipher and use reduced versions of that cipher, in
terms of the number of rounds it requires to encrypt a message block. Although
this approach is relatively more plausible, the security analysis done on the full
cipher does not directly apply to the reduced round versions of it.

Another approach to achieve low-latency encryption/decryption is to imple-
ment a cascade block cipher, i.e. to execute more than one round in one cycle.
In the remainder of this work, we implement several rounds of a block cipher (r
rounds in one cycle) in order to come up with n

r rounds for the encryption pro-
cess. Inevitably, this approach brings a trade-off between the latency in terms of
the number of rounds an encryption requires and the logical delay of the circuit.

The overall path delay is naturally a function of the underlying cipher func-
tion used. In our system, we consider AES and PRESENT as both of these
block ciphers have gone through extensive cryptanalysis and remain unbroken.
AES-128 requires only 10 rounds per encryption/decryption, but it requires rela-
tively large area in hardware. On the other hand, although it requires 31-rounds,
PRESENT-80 is a much more compact cipher, and therefore one can push the
cascade implementation to the limit with relatively low area/dealay overhead.
Implementation aspects and simulation results for cascade AES and PRESENT
are explained in detail in Section 3.

3 Implementation Aspects and Simulations

In this study, we have decided to focus on two candidate systems, XEX and CTR,
for reasons explained before. While XEX mode offers higher security compared
to CTR mode, it also results in a more complex structure. Most important
of all, XEX requires use of both encryption and decryption cores, and there-
fore is not very suitable for lightweight purposes. In addition, it is not suitable
for low-latency requirements, because using 64 and/or 128-bit cipher with 32-
bit memories requires reading (and therefore decryption) of neighboring words
in order to form the 64/128-bit complete blocks for each write operation, and
noticeably increases the average latency. However, CTR system presents more
suitable results for both lightweight and low-latency purposes.

In order to give a comparison of both schemes, XEX and CTR-based systems
are designed separately. In the first step, variants of AES and PRESENT ciphers,
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which are basic building blocks for both systems, are implemented in order to
obtain performance figures. Furthermore, a reduced round and reduced width
version of the PRESENT cipher is utilized as the memory address scrambler
block.

Following this step, an XEX-based system is presented together with perfor-
mance figures. The same is done for a CTR-based system as well. The before-
mentioned address scrambling block is used in both modules. Additionally, the
write counter scheme mentioned in 2 is also implemented as part of the CTR-
mode based system. In the following two subsections, design and implementa-
tion details of each cipher core for various cascade combinations are explained
in detail. Then, the proposed compact XEX and CTR-mode systems and their
performance figures for variants of AES and PRESENT are given in the last
subsection.

3.1 AES Round Function and Core Design

Advanced Encryption Standard (AES) [9] is a block cipher with a fixed block
size of 128 bits and a key size of 128, 192 or 256 bits. In this design, only 128-bit
key size (number of rounds Nr = 10) is used, as the main concern is to have a
lightweight core. AES encryption and decryption pseudocodes are given as:

# Encryption # Decryption
AddRoundKey(state, w[0,3]) AddRoundKey(state, w[4*Nr,4*(Nr+1)-1])
for round=1 step 1 to Nr-1 for round=Nr-1 step -1 to 1

SubBytes(state) InvShiftRows(state)
ShiftRows(state) InvSubBytes(state)
MixColumns(state) AddRoundKey(state, w[4*round,4*(round+1)-1])
AddRoundKey(state, w[4*round,4*(round+1)-1]) InvMixColumns(state)

end for end for
SubBytes(state) InvShiftRows(state)
ShiftRows(state) InvSubBytes(state)
AddRoundKey(state, w[4*Nr,4*(Nr+1)-1]) AddRoundKey(state, w[0,3])

Both encryption and decryption paths were designed and combined together in
one block with encryption/decryption select. In addition, reverse key generation,
which is required for decryption phase, is handled within the module.

AES Encryption Path. As shown in Figure 4, encryption path of AES is a
fully parallel implementation of the algorithm. It consists of state round and
key round blocks, which handle state operations and key expansion operations,
respectively. By connecting several of these paths, it is possible to implement
any cascade configuration AES. State round block has a combined ShiftRows
& MixColumns module and a SubBytes module. ShiftRows part is the direct
mapping of the ShiftRows algorithm and MixColumns is optimized for each
coefficient as in [16]. SubBytes module is implemented as a composite S-Box
[17]. Key expansion, shown in Figure 4, is performed on-the-fly in parallel to
state processing.
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AES Decryption Path. Decryption path of AES is designed in a structure
similar to encryption path. It is also a fully parallel implementation of the algo-
rithm optimized for area, as shown in Figure 4. It consists of state round and key
round blocks as in the previous path. However, here the state round block has a
combined InvShiftRows & InvMixColumns module to handle inverse cipher op-
erations. In addition, there is InvSubBytes module, whose S-Box has the same
composite inverter structure [17]. Reverse key expansion is performed on-the-fly
in parallel to state processing, similar to encryption path, which is shown in
Figure 4.

Fig. 4. AES encryption & decryption paths and forward key expansion

Combined AES Core. In the combined AES core, encryption and decryption
state processing and key expansion paths are integrated as shown in Figure 5.
As the S-Box unit is the most area consuming unit of the core, the block is
implemented in a way that the composite inverter [17] is shared between two
paths in order to save area. The S-Box block is partitioned as a finite field
inverter and pre/post matrix multiplications (transformations), resulting in the
block in Figure 5. As a result of this approach, the area of this combined core is
smaller than the total of encryption and decryption paths.

Key round block implements the key expansion for both encryption and de-
cryption. Since both modes use the same S-Box, the only additional cost for the
combined key expansion is using extra multiplixers, with further area savings
(Figure 5).

Decryption Key Generation. Initially, only the encryption key is stored in
the key register. However, reverse key expansion for decryption requires use of
the last state of key expansion for encryption as the initial “decryption” key. In
order to avoid using decryption key registers, a simple key generation scheme
is applied: A dummy key expansion for encryption is executed before switching
to decryption every time. As a result, the last state of the encryption key is
generated and then saved in the key register as the decryption key. When the core
needs to switch from decryption to encryption, similar operation is performed:
A dummy reverse key expansion is executed, which generates the last state of
the decryption key and writes it back on to the key register as the encryption
key. Status of the key (encryption/decryption key) is stored in a 1-bit register
as the key status, and control logic handles the dummy key expansions.
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Fig. 5. Combined AES block with key expansion and AES S-Box

Area, Speed, Power Figures. The combined AES core is implemented in
various cascade combinations (1, 2, 5, and 10) as shown in 6, which results
in varying latencies, gate counts, and operating frequencies (see Table 1). All
combinations are synthesized and the obtained performance figures are used in
the implementation of the memory encryption unit as guidelines.

Fig. 6. Cascade implementation of AES

Table 1. Performance of different AES cores

Processor Core Gate Count Max Speed Power
(GE) (MHz) (uW/MHz)

acore 1-cyc (enc/dec) 115415 15,7 590,3
acore 1-cyc (enc) 76950 21,0 361,4
acore 2-cyc (enc/dec) 62307 29,5 273,3
acore 2-cyc (enc) 39790 39,6 168,9
acore 5-cyc (enc/dec) 26865 71,7 100,5
acore 5-cyc (enc) 17785 99,4 63,6
acore 10-cyc (enc/dec) 15132 137,2 45,4
acore 10-cyc (enc) 10458 191,2 30,1

3.2 PRESENT Round Function and Core Design

PRESENT [10] is a lightweight block cipher which is an SP-network that consists
of 31 rounds. The block length is 64 bits and two key lengths of 80 and 128 bits
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are supported. For targeted lightweight applications, 80-bit PRESENT provides
enough security with smaller area. PRESENT round function is defined as:

generateRoundKeys()

for round=1 31

addRoundKey(state,Ki)

sBoxLayer(state)

pLayer(state)

end for

addRoundKey(state,K32)

Encryption and decryption paths for PRESENT were designed and combined
together in a block. Reverse key generation required for decryption phase is
handled within the module, as in the AES design.

PRESENT Encryption Path. PRESENT encryption path is designed to be
the fully parallel implementation of the algorithm, as shown in Figure 7. There
are two blocks: state round and key round blocks, for state operations and key
expansion operations, respectively. State round block has a Permutation and
an S-Box module. Key expansion, shown in Figure 7, is performed on-the-fly in
parallel with the state processing.

Fig. 7. PRESENT encryption & decryption paths and forward key expansion

PRESENT Decryption Path. Decryption path of PRESENT is designed
similar to encryption path as a fully parallel core optimized for area. It consists
of reverse state round and reverse key round blocks as in the previous path, as
shown in Figure 7. The reverse state round block has an inverse permutation
module as well as inverse S-Boxes. The key unit is also adapted for on-the-fly
reverse key expansion, which is shown in Figure 7.

Combined PRESENT Core. The combined PRESENT core (Figure 8) puts
both encryption and decryption paths together. Unlike the AES S-Box, the
PRESENT S-Box can not be formulated in a finite field. Therefore, both regular
and inverse S-Boxes are used in the combined core, and selected via multiplex-
ers. The direct result of this fact is the almost doubling of the gate count. The
same approach is also applied to the key expansion unit, which has to use both
regular and inverse S-Boxes, as well as left and right rotations in order to handle
both encryption and decryption. Direct result is again doubled gate count.
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Fig. 8. Combined PRESENT block with key expansion

Decryption Key Generation. The decryption key generation scheme of the
AES core is also used in the PRESENT core. That is, in switching from en-
cryption to decryption and from decryption to encryption, dummy forward and
reverse key expansions are executed in order to generate and store the decryption
and encryption keys, respectively.

Area, Speed, Power Figures. As in the case of AES, various cascade versions
(1, 2, 4, 8, 16, and 32) of PRESENT are implemented as shown in Figure 9, and
the resulting performance figures (Table 2) are later used as guideline in the
design and implementation of memory encryption units.

Fig. 9. Cascade implementation of PRESENT

Table 2. Performance of different PRESENT cores

Processor Core Gate Count Max Speed Power
(GE) (MHz) (μW/MHz)

pcore 1-cyc (enc/dec) 45700 32,4 172,9
pcore 1-cyc (enc) 20088 48,8 113,2
pcore 2-cyc (enc/dec) 25012 62,3 85,6
pcore 2-cyc (enc) 11863 90,4 47,1
pcore 4-cyc (enc/dec) 13273 122,4 42
pcore 4-cyc (enc) 6744 191,2 22,4
pcore 8-cyc (enc/dec) 7417 228,3 20,1
pcore 8-cyc (enc) 4208 350,9 11,9
pcore 16-cyc (enc/dec) 4547 390,6 10,1
pcore 16-cyc (enc) 2937 429,2 6,4
pcore 32-cyc (enc/dec) 3116 574,7 7,1
pcore 32-cyc (enc) 1839 598,8 3,5
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3.3 Memory Encryption Module Design

The I/O signals for the memory encryption module are shown in Figure 10. From
the processor point of view, the memory encryption module acts like an ordinary
single-port memory. However, there is one important difference: The chip enable
signal, cen, also acts as a memory access request signal. Once it is asserted, the
control module inside the memory encryption unit starts the initialization. In
the case of XEX-mode, this corresponds to the encryption of the page address.

Fig. 10. Memory encryption unit I/O and timing

The situation is a bit different for the CTR-mode. During regular memory
accesses, the counter mode requires no initialization, for example when it accesses
the program memory code (i.e. only reads data). However, in case of repeatedly
written data, the CTR-mode memory encryption unit can be operated in a
special mode, where each write to a data packet is counted, and appended to
the start of memory address (write counter). This scheme allows use of the same
key over and over again until the predefined maximum counter value is reached.
However, one has to know the header for every packet. Additionally,, and as the
number of newly written data increases, the average memory access time also
increases. Therefore, a maximum write counter value has to be determined as
part of system design.

Upon completion of the initialization, the memory unit is ready to operate in
sequential memory access mode. It asserts the acknowledge signal, ack, asking
the processor side to send the next query. During the next query, the request
(chip enable) signal stays asserted, and only de-asserted during page and/or
packet switching (depending on the packet data). The timing for this operation
is shown in Figure 10.

During each memory access, the address is scrambled using a reduced width
and reduced round of the PRESENT cipher, which is a combined block with no
clock cycle losses. From the memory (NVM) point of view, the memory encryp-
tion unit acts like an ordinary processor. The memory encryption unit acts as
a bridge between the smart card processor and the memory. The most impor-
tant parameter of this translation process is the average cipher latency. In an
ideal case, the memory access latency is a single clock cycle. However, due to
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the initialization latencies, the average latency increases above the ideal value of
single cycle. As shown before, the cipher module latency is the most important
parameter in the whole process. Therefore it should be kept as low as possible,
ideally at zero additional delay. As will be shown in the following subsections,
even in this case, the initialization delay can only be lowered down to 1 cycle.

Fig. 11. XEX based memory encryption unit

3.4 XEX-Mode

Figure 11 shows the XEX-mode based memory encryption module. It uses a sin-
gle cipher core for both page address encryption and data encryption/decryption
operations. In page encryption, the cipher core operates in encryption mode, and
stores the encrypted page address inside the page address register. It is multi-
plied with the word address to obtain the tweak value, which is added to both
pre and post encrypted/decrypted data. Data encryption (memory write) uses
only the instantaneous value of the tweak, whereas decryption (memory read)
uses also the delayed value of the tweak. Tweak and page address registers have
the same width as the cipher block size.

The XEX-mode based memory encryption unit is implemented using differ-
ent versions of both AES and PRESENT ciphers. In the implementation, both
ciphers are operated in single cycle mode with respect to the memory access
clock. Therefore, for different versions of ciphers (except for the fully combina-
tional version), a second cipher clock is required, which should be a multiple of
the memory clock with respect to the number of combinational rounds inside
the cipher core.

3.5 CTR-Mode

In Figure 12, the CTR-mode based memory encryption module is shown. Its
structure is much less complex compared to the XEX-based system. Further-
more, it requires an only-encryption cipher core, which reduces the overall gate
count and combinational path delay dramatically. It also does not require the
encryption/decryption input data widths to be equal to the cipher width. There-
fore, it can be run truly in single cycle mode, resulting in zero additional
latency.
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The CTR-mode memory encryption module is also implemented using various
versions of AES and PRESENT ciphers. As in the case of XEX, it is possible to
run the cipher module using a higher rate clock in order to complete the overall
encryption process within the same cycle with respect to memory clock.

Table 3 shows the results for the best performing combinations of both mod-
ules. As seen in the table, an 8-cycle version of PRESENT, which runs at four
times the memory clock rate, gives almost the same throughput result as the 1-
cycle version, while occupying only one forth of the area. The result is a security
proven ultralight memory encryption scheme implemented in less than 6K gates
at zero additional latency.

Fig. 12. CTR based memory encryption unit

Table 3. Performance of various XEX and CTR cores

Processor Core Gate Count Max Speed

XEX with AES 1-cyc 121,7KGE 15,7MHz
XEX with AES 5-cyc 33,2KGE 14,4MHz
XEX with PRESENT 1-cyc 51,8KGE 32,4MHz
XEX with PRESENT 8-cyc 11,4KGE 28,5MHz
CTR with AES 1-cyc 75,5KGE 21,0MHz
CTR with AES 5-cyc 19,9KGE 19,8MHz
CTR with PRESENT 1-cyc 21,6KGE 48,8MHz
CTR with PRESENT 8-cyc 5,9KGE 43,8MHz

4 Conclusions

In this study, we have investigated the existing memory encryption schemes and
their suitability for smart card memory encryption. XEX and CTR-modes were
selected as suitable schemes for their proven security and relatively simple struc-
ture. Two memory encryption units were designed for each of these schemes, and
they were implemented for different versions of AES and PRESENT. PRESENT
seems to be an ideal choice for memory encryption when used in CTR-mode.
It is possible to implement a PRESENT-based CTR-mode memory encryption
module in less than 6K gates with zero additional latency.

The proposed architecture is not only suitable for today’s applications, but
also capable of fulfilling requirements set forth in the 2023 vision of Eurosmart[8].
We furthermore enhanced our memory encryption module via a block-cipher
based address scrambling scheme, where we implemented a small scale variant of
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PRESENT. For commercial applications, which require even more security, it is
also possible to replace the standard PRESENT S-Boxes with secret proprietary
S-Boxes to achieve higher levels of security.
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Abstract. Allowing good performances on different platforms is an im-
portant criteria for the selection of the future sha-3 standard. In this
paper, we consider the compact implementations of blake, Grøstl, jh,
Keccak and Skein on recent fpga devices. Our results bring an interest-
ing complement to existing analyzes, as most previous works on fpga im-
plementations of the sha-3 candidates were optimized for high through-
put applications. Following recent guidelines for the fair comparison of
hardware architectures, we put forward clear trends for the selection
of the future standard. First, compact fpga implementations of Keccak
are less efficient than their high throughput counterparts. Second, Grøstl
shows interesting performances in this setting, in particular in terms of
throughput over area ratio. Third, the remaining candidates are com-
parably suitable for compact fpga implementations, with some slight
contrasts (in area cost and throughput).

Introduction

The sha-3 competition has been announced by nist on November 2, 2007. Its
goal is to develop a new cryptographic hash algorithm, addressing the concerns
raised by recent cryptanalysis results against sha-1 and sha-2. As for the aes
competition, a number of criteria have been retained for the selection of the final
algorithm. Security against cryptanalysis naturally comes in the first place. But
good performances on a wide range of platforms is another important condition.
In this paper, we consider the hardware performances of the sha-3 finalists on
recent fpga devices.

In this respect, an important observation is that most previous works on hard-
ware implementations of the sha-3 candidates were focused on expensive and
high throughput architectures, e.g. [17,25]. On the one hand, this is natural as
such implementations provide a direct snapshot of the elementary operations’
cost for the different algorithms. On the other hand, fully unrolled and pipelined
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architectures may sometimes hide a part of the algorithms’ complexity that
is better revealed in compact implementations. Namely, when trying to design
more serial architectures, the possibility to share resources, the regularity of the
algorithms, and the simplicity to address memories, are additional factors that
may influence the final performances. In other words, compact implementations
do not only depend on the cost of each elementary operation needed in an algo-
rithm, but also on the number of different operations and the way they interact.
Besides, investigating such implementations is also interesting from an applica-
tion point of view, as the resources available for cryptographic functionalities
in hardware systems can be very limited. Consequently, the evaluation of this
constrained scenario is generally an important step in better understanding the
implementation potentialities of an algorithm.

As extensively discussed in the last years, the evaluation of hardware archi-
tectures is inherently difficult, in view of the amount of parameters that may
influence their performances. The differences can be extreme when changing
technologies. For example, asic and fpga implementations have very different
ways to deal with memories and registers, that generally imply different design
choices [14,16]. In a similar way, comparing fpga implementations based on
different manufacturers can only lead to rough intuitions about their respec-
tive efficiency. In fact, even comparing different architectures on the same fpga
is difficult, as carefully discussed in Saar Drimer’s PhD dissertation [12]. Ob-
viously, this does not mean that performance comparisons are impossible, but
simply that they have to be considered with care. In other words, it is impor-
tant to go beyond the quantified results obtained by performance tables, and to
analyze the different metrics they provide (area cost, clock cycles, register use,
throughput, . . . ) in a comprehensive manner.

Following these observations, the goal of this paper is to compare the five sha-
3 finalists on the basis of their compact fpga implementation. In order to allow
as fair a comparison as possible, we applied the approach described by Gaj et
al. at ches 2010 [14]. Namely, the ip cores were designed according to similar
architectural choices and identical interface protocols. In particular, our results
are based on the a priori decision to rely on a 64-bit datapath (see Section 3 for
the details). As for their optimization goals, we targeted implementations in the
hundreds of slices (that are the fpgas’ basic resources), additionally aiming for
the best throughput over area ratio, in accordance with the usual characteristics
of a security IP core. In other words, we did not aim for the lowest cost imple-
mentations (e.g. with an 8-bit datapath), and rather investigated how efficiently
the different sha-3 finalists allow sharing resources and addressing memories,
under optimization goals that we believe reflective of the application scenarios
where reconfigurable computing is useful.

As a result, and to the best of our knowledge, we obtain the first complete study
of compact fpga implementations for the sha-3 finalists. For some of the algo-
rithms, the obtained results are the only available ones for such optimization goals.
For the others, they at least compare to the previously reported ones, sometimes
bringing major improvements. For illustration purposes, we additionally provide
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the implementation results of an aes implementation based on the same frame-
work. Eventually, we take advantage of our results to discuss and compare the five
investigated algorithms. While none of the remaining candidates leads to dramat-
ically poor performances, this discussion allows us to contrast the previous con-
clusions obtained from high throughput implementations. In particular, we put
forward that the clear advantage of Keccak in a high throughput fpga implemen-
tation context vanishes in a low area one. Performance tables also indicate a good
behavior for Grøstl in our implementation scenario, in particular when looking at
the throughput over area evaluation metric.

1 SHA-3 Finalists

This section provides a quick overview of the five sha-3 finalists. We refer to the
original submissions for the detailed algorithm descriptions.

BLAKE. blake [3] is built on previously studied components, chosen for
their complementarity. The iteration mode is haifa, an improved version of
the Merkle-Damgard paradigm proposed by Biham and Dunkelman [10]. It pro-
vides resistance to long-message second preimage attacks, and explicitly handles
hashing with a salt and a “number of bits hashed so far” counter. The internal
structure is the local wide-pipe, which was already used within the lake hash
function [4]. The compression algorithm is a modified version of Bernstein’s
stream cipher ChaCha [5], which is easily parallelizable. The two main instances
of blake are blake-256 and blake-512. They respectively work with 32- and
64-bit words, and produce 256- and 512-bit digests. The compression function
of blake relies heavily on the function g, which consists in additions, xor op-
erations and rotations. It works with four variables : a, b, c and d. It is called
112 to 128 times respectively for the 32- and 64-bit versions.

Grøstl. Grøstl [15] is an iterated hash function with a compression function
built from two fixed, large, distinct but very similar permutations p and q.
These are constructed using the wide-trail design strategy. The hash function
is based on a byte-oriented sp-network which borrows components from the
aes [11], described by the transforms AddRoundConstant, SubBytes, ShiftBytes
and MixBytes. Grøstl is a so-called wide-pipe construction where the size of the
internal state (represented by a two 8 × 16-byte matrices) is significantly larger
than the size of the output. The specification was last updated in March of 2011.

JH. jh [26] essentially exploits two techniques : a new compression function
structure and a generalized aes design methodology, which provides a simple
approach to obtain large block ciphers from small components. The compression
function proposed for jh is composed as follows. Half of a 1024-bit hash value
H(i−1) is xor-ed with a 512-bit block message M (i). The result of this operation
is passed through a bijective function e8 which is a 42-rounds block cipher with
constant key. The output of e8 output is then once again xor-ed with M (i).
This paper considers the round 3 version of the jh specifications submitted to
the nist, in which the number of rounds has been increased from 35.5 to 42.
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Keccak. Keccak [6] is a family of sponge functions [7], characterized by two
parameters: a bitrate r, and a capacity c. The sponge construction uses r + c
bits of state and essentially works in two steps. In a first absorbing phase, r
bits are updated by xoring them with message bits and applying the Keccak
permutation (called f). Next, during the squeezing phase, r bits are output after
each application of the same permutation. The remaining c bits are not directly
affected by message bits, nor taken as output. The version of the Keccak function
proposed as sha standard operates on a 1600-bit state, organized in words. The
function f is iterated a number of times determined by the size of the state
and it is composed of five operations. Theta consists of a parity computation, a
rotation of one position, and a bitwise xor. Rho is a rotation by an offset which
depends on the word position. Pi is a permutation. Chi consists of bitwise xor,
not and and gates. Finally, iota is a round constant addition.

Skein. Skein [2] is built out of a tweakable block cipher [23] which allows hashing
configuration data along with the input text in every block, and makes every
instance of the compression function unique. The underlying primitive of Skein
is the Treefish block cipher: it contains no S-box and implements a non-linear
layer using a combination of 64-bit rotations, xors and additions (i.e. operations
that are very efficient on 64-bit processors). The Unique Block Iteration (ubi)
chaining mode uses Threefish to build a compression function that maps an
arbitrary input size to a fixed output size. Skein supports internal state sizes
of 256, 512 and 1024 bits, and arbitrary output sizes. The proposition was last
updated in October of 2010 (version 1.3) [13].

2 Related Works

Table 1 provides a partial overview of existing low area fpga implementations
for the sha-3 candidates, as reported in the sha-3 Zoo [1]. Namely, since our
following results were obtained for Virtex-6 and Spartan-6 devices (as will be
motivated in the next section), we list only the most relevant implementations
on similar fpgas.

blake has been implemented in two different ways. The first one, designed by
Aumasson et al. [3], consists in the core functionality (cf) with one g function.
This implementation offers a light version of the algorithm but does not really
exploit fpga specificities. On the other hand, the second blake implementation,
by Beuchat et al. [9], consists in a fully autonomous implementation (fa) and
is designed to perfectly fit the Xilinx fpga architecture : the slice’s carry-chain
logic is exploited to build a adder/xor operator within the same slices. The
authors also harness the 18-kbit embedded ram blocks (ramb) to implement
the register file and store the micro-code of the control unit. Table 1 shows
Spartan-3 (s3) and Virtex-5 (v5) implementation results.

Jungk et al. [20][21] chose to implement the Grøstl algorithm on a Spartan-3
device. They provide a fully autonomous implementation including padding. The
similarity between Grøstl and the aes is exploited and aes-specific optimizations
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Table 1. Existing compact fpga implementations of third round sha-3 candidates (*
padding included, ** Altera aluts)

Algorithm Scope fpga
Area

Reg. ramb Clk
Freq. Thr.

[slices] cyc. [MHz] [Mbps]

Aumasson et al. [3] blake-32 CF V5 390 - - - 91 575

Beuchat et al. [9] blake-32 FA S3 124 - 2 844 190 115

Beuchat et al. [9] blake-32 FA V5 56 - 2 844 372 225

Aumasson et al. [3] blake-64 CF V5 939 - - - 59 533

Beuchat et al. [9] blake-64 FA S3 229 - 3 1164 158 138

Beuchat et al. [9] blake-64 FA V5 108 - 3 1164 358 314

Jungk et al. [21] Grøstl-256 FA* S3 2486 - 0 - 63 404

Jungk et al. [20] Grøstl-256 FA* S3 1276 - 0 - 60 192

Jungk et al. [20] Grøstl-512 FA* S3 2110 - 0 - 63 144

Homsirikamol et al. [17] JH-256 FA V5 1018 - - 36 381 5416

Homsirikamol et al. [17] JH-512 FA V5 1104 - - 36 395 5610

Bertoni et al. [8] Keccak-256 EM V5 444 227 - 5160 265 70

Namin et al. [24] Skein-256 CF AS3 1385** 1858 - 72 574 161

presented in previous works are applied. The table only reports the best and
most recent results from [20]. Also, only serial implementations of p and q are
considered, because they better match our low area optimization goal.

No low area implementation of jh has been proposed up to now. In order
to have a comparison, the implementation proposed by Homsirikamol et al. [17]
may be mentioned. It is the high speed fpga implementation that has the lowest
area cost reported in the literature.

A low area implementation of the Keccak algorithm is given by Bertoni et
al. [8]. In this implementation, the hash function is implemented as a small area
coprocessor using system (external) memory (em). In the best case, with a 64-bit
memory, the function takes approximately 5000 clock cycles to compute. With
a 32-bit memory, this number increases up to 9000 clock cycles.

Finally, Namin et al. [24] presented a low area implementation of Skein. It
provides the core functionality and is evaluated on an Altera Stratix-III (as3)
fpga.

3 Methodology

As suggested by the previous section, there are only a few existing low area
fpga implementations of the sha-3 candidates up to now. Furthermore, those
implementations often lack of similar specifications which make them difficult
to compare. We therefore propose to design compact hardware cores of the five
third-round candidates using a common methodology, which allows a fair com-
parison of the performances. The methodology we used mainly follows the one
described by Gaj et al. [14], which suggests to use uniform interface and archi-
tecture, and defines some performance metrics.
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First of all, we tried to keep the number of slices in the same range for all
the implementations (typically between 150 and 300), with the throughput over
area ratio as optimization target. This is a relevant choice for hardware cores,
as they often need to be as efficient as possible with a limited resources usage.
We then decided to primarily focus on the sha-3 candidate variants with the
512-bit digest output size, as they correspond to the most challenging scenario
for compact implementations - and may be the most informative for comparison
purposes. For completeness, we also report the implementation results of the
256-bit versions in appendix, that are based on essentially similar architectures.
Next, since we are implementing low area designs, we limited the internal data-
path to 64-bit bus widths. This is a natural choice, as most presented algorithms
are designed to operate well on 64-bit processors. Therefore, trying to decrease
the bus size tends to be cumbersome and provides a limited area improvement at
the expense of a significantly decreased throughput. In addition, we specified a
common interface for all our designs, in which we chose to have an input message
width of 64 bits, as this is the most convenient size to use with our 64-bit internal
datapath. It also corresponds to our typical scenario, in which the hash IP cores
have to be inserted in larger fpga designs. Smaller or bigger message sizes would,
most of the time, require additional logic in order to reorganise the message in
64-bit words. This is resources consuming and can be added externaly if needed
by the user. All our cores have been designed to be fully autonomous, which will
help us in the comparison of the total resources needed by each candidate.

Drimer presented in [12] that implementation results are subject to great
variations, depending on the implementation options. Furthermore, comparing
different implementations with each others can be irrelevant if not made with
careful considerations. We therefore specified fixed implementation options and
architecture choices for all our implementations. We choose to work on a Virtex-
6 and Spartan-6 fpgas, specifically a xc6vlx75t with speed grade -1 and a
xc6slx9 with speed grade -2, which are the most constraining fpgas in their
respective families, in terms of number of available logic elements. Note that
the selection of a high-performance device is not in contradiction with com-
pact implementations, as we typically envision applications in which the hash
functionality can only consume a small fraction of the fpga resources. Also,
we believe it is interesting to detail implementation results exploiting the latest
fpga structures, as these advanced structures will typically be available in future
low cost fpgas too. In other words, we expect this choice to better reflect the
evolution of reconfigurable hardware devices. Besides, and as will be illustrated
by the implementation tables in Section 5, the results for Virtex-6 and Spartan-6
devices do not significantly modify our conclusions regarding the suitability of
the sha-3 finalists for compact fpga implementations.

We did not use any dedicated fpga resources such as block rams or dsps.
It is indeed easier to compare implementations when they are all represented in
terms of slices rather than in a combination of several factors. Additionally, the
use of block rams is often not optimal as they are too big for our actual needs.
All the implementations took advantage of the particular lut capabilities of
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the Virtex-6 and Spartan-6, and use shift registers and/or distributed rams (or
roms). The different modules are however always inferred so that portability to
other devices is possible, even if not optimal. The design was implemented using
ise 12.1 and for two different sets of parameters. Those two sets are predefined
sets available in ise Design Goals and Strategies project options and are specified
as “Area Reduction with Physical Synthesis” and “Timing Performance without
iob Packing”. This choice was mainly motivated by the willing to illustrate the
impact of synthesis options on the final performance figures.

We have made the assumption that padding is performed outside of our cores
for the same reasons as in [14]. The padding functions are very similar from
one hash function to another and will mainly result in the same absolute area
overhead. Additionally, complexity of the padding function will depend on the
granularity of the message (bit, byte, words,...) considered in each application.

Finally, the performance metrics we used in this text is always the throughput
for long message (as defined in [14]). We did not specify the throughput for short
message, but the information needed to compute it is present in the result tables
of Section 5.

4 Architectures

This section presents the different compact architectures we developed. Because
of space constraints, we mainly focus on the description of their block diagrams.

BLAKE. blake algorithm is implemented as a narrow-pipelined-datapath de-
sign. The architecture of blake is illustrated in Figure 1. The overall organiza-
tion is similar to the implementation proposed by Beuchat et al..

blake has a large 16-word state matrix v but each operation works with only
two elements of it. Hence, the datapath does not need to be larger than 64 bits.
The operations are quite simple, they consist in additions, xor and rotations.
This allows us to design a small alu embedding all the required operators in
parallel, followed by a multiplexer. The way the alu is build allows computing
xor-rotation and xor-addition operations in one clock cycle.

Our blake implementation uses distributed ram memory to store interme-
diate values, message blocks and c constants. Using this kind of memory offers
some advantages. Beyond effective slices occupation, the controller must be able
to access randomly to different values. Indeed, message blocks and c constants
are chosen according to elements of a permutation matrix. Furthermore, ele-
ments of the inner state matrix are selected in different orders during column
and diagonal steps.

The 4-input multiplexer in front of the ram memory is used to load message
blocks (m), salt (s) and counter (t) through the Message input, to load the
initialization vector (iv), to write the alu results thanks to the feedback loop,
and to set automatically the salt to zero if the user does not specify any value.
Loading salt or initializing it to zero takes 4 clock cycles. Loading initialization
vector takes 8 clock cycles. These two first steps are made once per message.
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The two following steps, which are loading the counter and message block, take
18 clock cycles and are carried out at each new message block.

The scheduling is made so that, for each call of the round function g (as
described in Section 1), the variable a is computed in two clock cycles, because
it needs two additions between three different inputs. The three other variables
(b, c, and d) are computed in one clock cycle thanks to the feedback loop on the
alu. As a result, one call of the g function needs 10 clock cycles to be executed.
To avoid pipeline bubbles between column and diagonal steps, the ordering of g
functions during diagonal step is changed to g4, g7, g6 and g5. The blake-64
version needs 16 (rounds) × 8 (g calls) × 10 = 1280 clock cycles to process one
block through the round function, and 4 more ones to empty the pipeline. The
initialization and the finalization steps need each 20 clock cycles. So, complete
hashing one message block takes 18+1284+40 = 1342 clock cycles. Finally, the
hash value is directly read on the output of the ram and takes 8 clock cycles to
be entirely read.

As expected, these results are very close to those announced by Beuchat et
al. [9] after adjustement (they considered 14 rounds for the blake-64 version
rather than 16), since the overall architectures are very similar.

Fig. 1. blake Architecture

Grøstl. The 64-bit architecture of Grøstl algorithm is depicted in Figure 2.
This pipelined datapath implements the p and q permutation rounds in an in-
terleaved fashion (to avoid data dependency problems). The last round function
(Ω) is implemented with the same datapath and only resorts to p. The difference
between p and q lies in slightly different AddRound constants and ShiftBytes
shift pattern. Besides the main aes-like functions, there are several circuits. A
layer of multiplexers and bitwise xors is required at the beginning and at the end
of the datapath. They implement algorithm initialization, additions necessary at
beginning and end of each round, and internal and external data loading. Two
distinct rams are used to store the p and q state matrices and input message
mi (ram qpm) and the hash result (ram h). ram qpm is a 64 × 64-bit dual port
ram. One ram slot is used to store message mi and three other slots are used
to store current and next p and q states (slots are used as a circular buffer).
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ram h is a 32 × 64-bit dual port ram that stores current and next H (as well
as final result).

The four main operations of each p or q rounds are implemented in the fol-
lowing way. The ShiftBytes operation comes first. It is implemented by accessing
bytes of different columns instead of a single column (as if ram qpm was a col-
lection of eight 8-bit rams), to save a memory in the middle of the datapath.
Different memory access patterns (meaning different initialization of address
counters) are required to implement p and q ShiftBytes as well as no shift (for
post-addition with h and hash unloading). Constants of AddRoundConstant are
computed thanks to a few small-size integer counters (corresponding to the row
and round numbers) and all-zero or all-one constants. Addition of those constants
with data is a simple bitwise xor operation. The eight S-boxes of SubBytes are
simply implemented as eight 8 × 8-bit roms (efficiently implemented in 6-input
look-up tables-based fpgas). Finally, the MixBytes operation is similar to the
aes MixColumn, except that 8 × 6 different 8-bit F2 multiplications by small
constants are required, and that eight 64-bit partial products have to be added
together. We implemented it as a large xor tree, with multipliers hardcoded as
8-bit xors and partial products xored together.

Hashing a 1024-bit chunk of a message takes around 450 cycles: 16 (loading of
mi) + 14 (rounds)× 2 (interleaved p and textscq) × 16 (columns of state matrix)
+ 8 (ending). The last operation Ω requires around 350 cycles: 14 (rounds) ×
(16 (columns) + 6 (pipeline flush)) + 8 (ending) + 8 (hash output).

Roughly speaking, the most consuming parts of the architecture are MixBytes
(accounting for 30 % of the final cost), the S-boxes (25 %) and the control of the
dual port rams (25 %). Note that most pipeline registers are taken from already
consumed slices, hence do not increase the slice count of the implementation.

JH. The jh architecture is illustrated in Figure 3 and is composed as follows.
Two 16×32-bit single port distributed rams (hash ram) are used to store the
intermediate hash values. Those rams are first initialized in 16 clock cycles
with iv values coming from a 16×64-bit distributed rom1 and are afterwards
updated with the output of r8 or the xor operation output. r8 performs the
round functions and is composed of sixteen 5×4 S-boxes, eight linear functions
and a permutation. As the permutation layer always puts in correspondence
two consecutive nibbles with a nibble from the first half and another from the
second half of the permuted state, the output of r8 can be split into two 32-bits
words, one coming from the first half and the other from the second half of the
intermediate hash value. An address controller (addr contr), composed of two
16×4-bit dual-port distributed rams is then used to reach the wanted location
in each hash ram, at each cycle. Rotations before and after r8 are needed to
organize correctly the hash intermediate values in the two hash rams.

A similar path is designed for constants generation. Two 16×8-bit single-port
distributed ram (cst rams) are used to store the constants intermediate values.

1 iv rom contains H(0) initial value and not H(−1) as defined in jh specifications.
That way, we save 688 cycles of initialization and only loose a couple of slices
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Fig. 2. Grøstl Architecture

The function r6 performs a round function on 16 bits of the constant state. The
same address controller as for hash rams is used for cst rams.

Finally, a group/de-group block is used to re-organize the input message.
As jh has been designed to achieve efficient bit-slice software implementations,
a grouping of bits into 4-bit elements has been defined as the first step of the
jh bijective function e8. Similarly, a de-grouping is performed in the last step of
e8. When those grouping and de-grouping phases have no impact on high speed
hardware implementations (as they result only in routing), this in not the case
anymore for low area architectures. Indeed, those steps requires 16 additional
clock cycles per message block, as well as more complex controls to access the
single port rams. To avoid this, we chose to always work on a grouped hash and
therefore to perform the data organization on the message with the group/de-
group block. The same component is also used to re-organize the hash final
value before sending it to the user.

Our implementation of jh needs 16×42 clock cycles to compute the 42 rounds
and 16 additional ones to perform the final xor operation. In total, 688 clock
cycles are required to process a 512-bit message block, 16 for ram initialization
and 20 additional clock cycles are used for the finalization step (4 to empty the
pipeline and 16 to output hash from the group/de-group component).

Keccak. Our architecture, depicted in Figure 4, implements the Keccak version
proposed as sha-3 standard. It works on state of 1600 bits organized into 25
words of 64 bits each. The whole algorithm does not use complex operations,
but only xors, rotations, negations and additions. The basic operations are
performed on the 64-bit words, thus our implementation has a 64-bit internal
datapath.

We maintained the same organization of Bertoni et al., where the computation
was split into three main steps: the first which does part of the theta transfor-
mation by calculating of the parity of the columns, the second which completes
the theta transformation and performs the rho and pi transformations, and the
third which computes the chi and iota steps. This structure requires a memory
of 50 words of 64 bits, which are needed to store the state and the intermediate
values at the end of the pi transformation.
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Fig. 3. jh Architecture

To allow parallel read/write operations and to simplify the access to the state,
we organized the whole memory into two distinct asynchronous read single port
ram of 32×64-bit (ram a and ram b), and we reserved ram b to store the
output of the pi transformation.

Internally, our architecture has 5 registers of 64 bits, connected in order to
create a word oriented rotator. During the theta transformation, the registers
store the results of the computed parities. The rotator allows to quickly position
the correct word for computing the second part of theta, as well as for computing
the chi transformation.

Fig. 4. Keccak Architecture

The most crucial part of Keccak is the rho transformation, which consist of
rotation of words with an offset which depends from the specific index. We im-
plemented this step efficiently in fpga by using a 64-bit barrel rotator and
by storing the rotation offsets into a dedicated look up table. The explicit
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implementation of a barrel rotator allows to significantly reduce the area re-
quirements in comparison to the use of a basic multiplexer. Furthermore, even if
the 25 words of the state need to be processed successively by the same compo-
nent, the use of a single barrel rotator reaches the trade off between the reached
performances and the overall area cost which is more suitable for the scope of
this paper.

Our implementation of Keccak requires 88 clock cycles to compute a single
round. Since Keccak-1600 has 24 rounds, the total number of cycles required
to hash a message is 2112, to which is should be added the initial xor with
the current state (25 cycles repeated for each block), the load of the message (9
cycles), and the offloading of the final result (8 cycles).

Fig. 5. Skein Architecture

Skein. Our implementation only contains a minimal set of operations necessary
to the realization of round computations. In order to provide acceptable perfor-
mances and memory requirements, the operations are not broken up all the way
down to the basic addition, exclusive or and rotate operations, but rather realize
the mix and subkey addition steps. The architecture is illustrated in figure 5. the
initial ubi value is obtained through an 8×64-bit rom (iv) which avoids hashing
the first configuration block. Key extension is performed on-the-fly using some
simple arithmetic and a 64-bit register (extend). One 17×64-bit ram memory
(key/msg ram) is used to store both the message block in view of the next
ubi chaining, and the keys used for the current block. The hash variables can
be memorized in two different 4×64-bit rams (hash ram), since the permute
layer never swaps even and odd words. The permute operation itself is implicitly
computed using arithmetic on memory addresses. The mix operations take two
64-bit values (mix), and require 4 cycles per round. The subkey addition acts on
64-bit values (add), requiring 8 cycles every 4 rounds. Subkeys are computed
just before addition, with the help of the tweak registers (subkey and tweak).
Finally, a 64-bit xor is used for ubi chaining. After the completion of round
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operations, the hash digest is read from the key register. Given the variable
management in this architecture, only single-port rams are needed, rather than
the more expensive dual-port rams. All these are used asynchronously. When
hashing a message, the operator first has to load the initialization vector, taking
9 cycles, followed by 457 cycles per 512-bit message block. Finally, one last block
has to be processed before the hash value is output, leading to an overhead of
466 additional cycles.

5 Implementation Results and Discussion

The complete implementation results for our different architectures are given in
Tables 2 and 3 for Virtex-6 and Spartan-6 devices, respectively. As expected,
one can notice the strong impact of the two sets of options we considered (i.e.
area and timing). Still, a number of important intuitions can be extracted.

In the first place, and compared to previous works, we see that our implemen-
tation results for blake are quite close to the previous ones of Beuchat et al.
The main differences are our exploitation of distributed memories (reported in
the slices count) rather than embedded memory blocks and the fact that they
implemented only 14 rounds, as specified in previous blake-64 version, instead
of 16. By contrast, for all the other algorithms, our results bring some inter-
esting novelty. In particular, for Keccak, the previous architecture of Bertoni et
al. was using only three internal registers, because of its compact asic-oriented
flavor. This was at the cost of a weak performances, in the range of 5000 clock
cycles per hash block. We paid a significant attention in taking advantage of the
fpga structure, in particular its distributed rams. As a result, we reduced the
number of clock cycles by a factor of more than two. As for the three remaining
algorithms, no similar results were known to date, which make them interesting,
as first milestones.

Next, this table also leads to a number of comments regarding the different
algorithms and their compact fpga implementations. First, one can notice that
Grøstl compares favorably with all the other candidates. While it has quite
expensive components, interleaving the p and q functions allows reducing the
logic resources. More importantly, this algorithm proceeds blocks of 1024 bits and
has a quite limited cycle count, which leads to significantly higher throughput
than our other implementations.

blake and jh also achieve reasonable throughput, but do not reach the level
of performance of Grøstl in this case study. For blake, the input blocks are
still 1024-bit wide, but our implementation requires three times more cycles per
block. For jh, it is rather the reduction of input block size that is in cause.

Skein provides interesting performances too. Its most noticeable limitation is a
lower clock frequency, that could be improved by better pipelining the additions
involved in our design. As a first step, we exploited the carry propagate adders
that are efficiently implemented in Xilinx fpgas. But this is not a theoretical
limitation of the algorithm. One could reasonably assume that further optimiza-
tion efforts would increase the frequency at the level of the other candidates.
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Table 2. Implementation results for the 5 sha-3 candidates on Virtex-6 (512-bit di-
gests)

blake Grøstl JH Keccak Skein AES

Properties
Input block message size 1024 1024 512 576 512 128
Clock cycles per block 1342 448 688 2137 458 44
Clock cycles overhead (pre/post) 12/8 24/354 16/20 9/8 9/466 8/0

Area

Number of LUTs 701 912 789 519 770 658
Number of Registers 371 556 411 429 158 364
Number of Slices 192 260 240 144 240 205
Frequency (MHz) 240 280 288 250 160 222
Throughput (Mbit/s) 183 640 214 68 179 646
Efficiency (Mbit/s/slice) 0.95 2.46 0.89 0.47 0.75 3.15

Timing

Number of LUTs 810 966 1034 610 1039 845
Number of Registers 541 571 463 533 506 524
Number of Slices 215 293 304 188 291 236
Frequency (MHz) 304 330 299 285 200 250
Throughput (Mbit/s) 232 754 222 77 223 727
Efficiency (Mbit/s/slice) 1.08 2.57 0.73 0.41 0.77 3.08

Table 3. Implementation results for the 5 sha-3 candidates on Spartan-6 (512-bit
digests)

blake Grøstl JH Keccak Skein AES

Properties
Input block message size 1024 1024 512 576 512 128
Clock cycles per block 1342 448 688 2137 458 44
Clock cycles overhead (pre/post) 12/8 24/354 16/20 9/8 9/466 8/0

Area

Number of LUTs 719 912 737 525 888 685
Number of Registers 370 574 338 433 249 365
Number of Slices 230 343 260 193 292 232
Frequency (MHz) 135 240 113 166 91 125
Throughput (Mbit/s) 103 548 84 45 102 364
Efficiency (Mbit/s/slice) 0.47 1.60 0.32 0.23 0.35 1.57

Timing

Number of LUTs 856 766 1106 640 1059 852
Number of Registers 594 759 646 476 395 529
Number of Slices 303 281 362 216 351 274
Frequency (MHz) 150 265 175 166 111 154
Throughput (Mbit/s) 114 605 130 45 124 448
Efficiency (Mbit/s/slice) 0.38 2.15 0.36 0.21 0.35 1.64

Finally, Keccak presents the poorest performances for the 512-bit digests.
This is an interesting result in view of the excellent behavior of this algorithm
in a high throughput implementation context [14]. Further optimizations could
be investigated in order to reduce the number of clock cycles. But as long as a
similar architecture as in this paper is used, this would probably be at the cost of
a larger datapath (hence, higher slice count). Also, even considering an optimistic
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50 cycles per round, the throughput of Keccak would remain 6 times smaller than
the one of Grøstl. The main reason of this observation relates different rotations
used in this algorithm (that come for free in unrolled implementations but may
turn out to be expensive in compact ones) and to the large state that needs to
be addressed multiple times when hashing a block. We note that our results are
in line with the recent evaluations from CHES 2011 [18], where it is stated that
Keccak is not straightforwardly suitable for folding2. An interesting alternative
and scope for further research would be to change the overall architecture in
order to better exploit the bit interleaving techniques described in [19].

Unsurprisingly, the main difference between the Virtex-6 and Spartan-6 im-
plementations consists in a slightly larger number of slices, most likely due to
the more constraining fpga, and a reduction in frequency due to the lower
performance of the Spartan-6 fpgas.

In addition to these results, Table 4 in appendix provides the implementation
results for the 256-bit digest versions of the hash algorithms, on Virtex-6. In
general, these smaller variants do not exhibit significantly different conclusions.
One important reason for this observation is that, when using distributed ram’s
in an implementation, reducing the size of a state does not directly imply a gain
in slices for a compact implementation (as only the depth of the memories are
affected in this case). In fact, the move to 256-bit digests only implied a change
of architecture for blake (in the 256-bit version, we used a datapath size of 32
bits). Overall, this move towards smaller digests is positive for Keccak, because
of a larger bitrate r, which allows this candidate to be more in line with the other
finalists. By contrast, for blake, the processing of 512-bit blocks does not come
with a sufficient reduction of the number of rounds, hence leading to smaller
throughputs. As for Grøstl, the number of rounds is also reduced by less than a
factor 2, but the smaller number of columns in the state matrix allows keeping
a higher throughput.

To conclude this work, we finally reported the performance results for an
aes-128 implementation, with “on-the-fly” key scheduling, based on a 32-bit
architecture. This implementation is best compared with the 256-bit versions of
the sha-3 candidates (because of a 128-bit key). One can notice that the slice
count and throughput also range in the same levels as the ones of Grøstl.
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A 256-Bit Digest Implementation Results

Table 4. Implementation results for the 5 sha-3 candidates on Virtex-6 (256-bit di-
gests)

blake Grøstl JH Keccak Skein AES

Properties
Input block message size 512 512 512 1088 256 128
Clock cycles per block 1182 176 688 2137 230 44
Clock cycles overhead (pre/post) 12/8 24/122 16/20 17/16 5/234 8/0

Area

Number of LUTs 417 912 789 519 770 658
Number of Registers 211 556 411 429 158 364
Number of Slices 117 260 240 144 240 205
Frequency (MHz) 274 280 288 250 160 222
Throughput (Mbit/s) 105 815 214 128 179 646
Efficiency (Mbit/s/slice) 0.90 3.13 0.89 0.89 0.75 3.15

Timing

Number of LUTs 500 966 1034 610 1039 845
Number of Registers 284 571 463 533 506 524
Number of Slices 175 293 304 188 291 236
Frequency (MHz) 347 330 299 285 200 250
Throughput (Mbit/s) 132 960 222 145 223 727
Efficiency (Mbit/s/slice) 0.75 3.27 0.73 0.77 0.77 3.08

http://www.vlsi.uwaterloo.ca/~ahasan/hasan_report.html
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Abstract. A theme of recent side-channel research has been the quest
for distinguishers which remain effective even when few assumptions
can be made about the underlying distribution of the measured leak-
age traces. The Kolmogorov-Smirnov (KS) test is a well known non-
parametric method for distinguishing between distributions, and, as such,
a perfect candidate and an interesting competitor to the (already much
discussed) mutual information (MI) based attacks. However, the side-
channel distinguisher based on the KS test statistic has received only
cursory evaluation so far, which is the gap we narrow here. This contri-
bution explores the effectiveness and efficiency of Kolmogorov-Smirnov
analysis (KSA), and compares it with mutual information analysis (MIA)
in a number of relevant scenarios ranging from optimistic first-order DPA
to multivariate settings. We show that KSA shares certain ‘generic’ ca-
pabilities in common with MIA whilst being more robust to noise than
MIA in univariate settings. This has the practical implication that de-
signers should consider results of KSA to determine the resilience of their
designs against univariate power analysis attacks.

1 Introduction

Differential power analysis (DPA) is a form of side-channel analysis which em-
ploys some type of statistic (the distinguisher) to identify a correct hypothesis
about (part of) the secret key from within a set of possible alternative hy-
potheses. Popular distinguishers include the Pearson correlation coefficient, the
distance-of-means test, and mutual information analysis (MIA). Mutual infor-
mation (MI) measures the total dependency between two random variables, and
was first proposed for use as a distinguisher at CHES 2008 ([1]). MIA’s sell-
ing point is genericity: it is capable of key recovery even when the underlying
leakages satisfy few assumptions.

Previous work such as [2] and [3] demonstrated that the (notoriously prob-
lematic) estimation of the leakage probability density functions for different
key-dependent models is of decisive importance to the performance of MIA in
practice. The authors of [2] suggested two alternative distinguishers based on
statistics which are conceptually similar to MI but do not require explicit density
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estimation: the (two-sample) Kolmogorov-Smirnov (KS) test and the Cramér-
von-Mises criterion. Each essentially computes some notion of a ‘distance’ be-
tween two distributions. Evaluations of these (and other similar) methods can be
found in the statistical literature (for example, [4]): whilst the Cramér-von-Mises
statistic performs particularly well (i.e. better than KS) for certain specific distri-
butions, the KS statistic is found to perform well across the board and therefore
represents the most generic, distribution-free method.

In this paper we demonstrate how the KS test statistic adapts to the purposes
of DPA and investigate the properties and practical performance of such attacks.
Alongside, we present an equivalent analysis of MIA—an ideal comparator be-
cause of its established role in the existing literature as well as its conceptual
similarity to Kolmogorov-Smirnov Analysis (KSA). We assess the distinguishers
as applied to key-recovery attacks against implementations of DES in four prac-
tically relevant leakage scenarios. Our results are interesting for academics and
practitioners alike: from an academic point of view it is interesting to investigate
how a conceptually similar approach such as the KS test performs in comparison
to MIA. From a practical point of view we are providing information about how
to choose the most appropriate distinguisher in certain settings. Specifically, in
the setting where the actual power model of a device is unknown to the attacker
and does not correspond to a ‘nice’ Hamming weight leakage, and where a sub-
stantial amount of noise distorts the data-dependent signal, we show that KSA
actually outperforms MIA and hence is the best choice of a distinguisher (in this
setting) at present. This setting is practically relevant as it resembles what can
be expected when attacking devices that implement cryptography in hardware
and have measures in place to increase the level of noise.

Sect. 2 provides an introduction to differential power analysis (DPA). To
explain our comparison criterion we outline some key concepts related to the
outcomes of DPA attacks (i.e. the distinguishing vectors) in Sect. 3. We then
explain how the KS test adapts to DPA attacks (including considerations for
higher-order attacks) in Sect. 4. Section 5 reports the results of our analysis. We
conclude thereafter in Sect. 6.

1.1 Our Contributions

In Sect. 3 we adapt the ideas presented in [5] to our purposes and introduce the
measure of nearest-rival distinguishability to compare distinguishers. We argue
that this measure is relevant for practical considerations as it strongly influences
the number of traces required for successful key recovery: the smaller the nearest-
rival distinguishability score, the more traces will be necessary before the correct
key stands out from the alternative hypotheses when the vector comes to be
estimated in practice.

In Sect. 4 we show how the KS test statistic can be used to construct a distin-
guisher for power analysis attacks. We briefly include relevant results from the
statistical literature and show how to apply them in the context of univariate and
multivariate attacks. An interesting conclusion that we can draw is that whilst
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KSA shares many properties with MIA in the univariate setting, its extension
to general multivariate settings is problematic [6,7].

In Sect. 5 we analyse the application of the KS distinguisher to four relevant
scenarios. An important phenomenon that we observe is that KSA is consistently
more robust to noise. Our results give conclusive evidence that it outperforms
MIA in univariate scenarios (our study ranges from the optimistic Hamming
weight assumption to realistic leakages including the assumption of an unknown
highly-nonlinear function). Interesting observations result from our study of bi-
variate extensions of KSA: here it clearly underperforms MIA both in the masked
and unmasked case, irrespective of noise. Our contribution thus gives a balanced
view of KSA; it shows both its strengths and weaknesses.

2 Differential Power Analysis

The context for all our analyses is a ‘standard DPA attack’ scenario as defined
in [8]. We assume that the power consumption T of the target cryptographic de-
vice depends on some internal value (or state) fk∗(x). The state is a function of
some part of the plaintext x ∈ X , as well as some part of the secret key k∗ ∈ K.
Consequently, we have that T = L ◦ fk∗(X) + ε, where X is a random variable
taking values in X , L is some function which describes the data-dependent com-
ponent and ε comprises the remaining power consumption which can be modeled
as independent random noise. The attacker has N power measurements corre-
sponding to encryptions of N known plaintexts xi ∈ X , i = 1, . . . , N and wishes
to recover the secret key k∗. The attacker can accurately compute the internal
values as they would be under each key hypothesis {fk(xi)}N

i=1, k ∈ K and uses
whatever information he possesses about the true leakage function L to construct
a prediction model M : f(X ) −→M.

DPA is based on the intuition that the modeled power traces corresponding
to the correct key hypothesis should bear more resemblance to the true power
traces than the modeled traces corresponding to incorrect key hypotheses. An
attacker is thus concerned with comparing the degree of similarity between the
true and modeled traces. A range of comparison tools—‘distinguishers’—can be
used, of which mutual information (MI) is an example. MI measures, in bits, the
total information shared between two random variables, and is most intuitively
expressed in terms of entropies via Shannon’s formula: I(A; B) = H(A)−H(A|B).

It is employed as an attack distinguisher to compare the measured traces T
with the hypothesis-dependent predictions Mk = M ◦ fk(X):

DMI(k) = I(T ; Mk) = H(T )−H(T |Mk) = H(T )− E
m∈M

[H(T |Mk = m)] , (1)

and because the ‘unexplained’ entropy (the second term) is smallest when the
predictions are good, we expect (1) to be maximised for the correct key hypoth-
esis k = k∗.

MI is particularly appealing for use in DPA because it compares distributions
in a general way, detecting not just linear relationships but nonlinear relation-
ships too. Thus MIA has been promoted as a ‘generic’ distinguisher which po-
tentially remains effective even in the absence of a good power model. It also has
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natural multivariate extensions, by which it can be straightforwardly adapted
to higher-order attacks (see [9] for an overview). However, estimation of MI is
notoriously problematic ([10]); all known estimators are biased and no ‘ideal’
estimator exists (different estimators perform differently depending on the un-
derlying structure of the data). Consequently, MIA outcomes are highly sensitive
to the estimation procedure and parameters chosen by the attacker.

3 Evaluation Methodology

The aim of our paper is to compare KSA with MIA in practically relevant sce-
narios. It is imperative to understand that we are seeking to compare statistical
procedures and not attacks or devices: we thus test our methodology in a range
of practically meaningful and clearly defined hypothetical scenarios, as charac-
terised by cryptographic function (a non-linear substitution box from the DES
standard, as well as the Boolean exclusive-or), device leakage model (Hamming
weight, an unevenly weighted sum over the bits, and a highly-nonlinear function)
and noise (Gaussian noise of varying size). Our results will be relevant for all
devices which share the above mentioned characteristics.

Our approach is based on the recent work published in [5] which proposes
to study ‘complicated’ distinguishers such as MIA by computing and estimat-
ing (respectively) so-called theoretic and practical distinguishing vectors. The
motivation for this is that distinguishers like MIA do not conform to the easily
understood behaviours of ‘simple’ distinguishers such as correlation, which has a
known sampling distribution and responds to noise in a well-understood fashion
(e.g. see Chapters 4 and 6 in [11]). We have mentioned before that estimation
is notoriously difficult [10]. Studying only practical distinguishing vectors does
not, in many cases (as illustrated by previous work such as [9]), allow us to draw
any definite conclusions about MIA because it is unclear from the practical vec-
tors whether it is a lack of good estimators or an inherent weakness of MIA
that causes its sometimes disappointing performance in practice. By contrast,
by studying both theoretic and practical vectors we can assess whether MI itself
is the problem or simply the estimation process.

Another contribution of [5] is that of defining measures for distinguishability.
This is motivated by the fact that the larger the theoretic (true) margins by
which the correct key is distinguished, the fewer traces we expect to require to
detect this difference in practice [12]. We use the following subsections to further
elaborate on the key concepts relevant to our study (theoretic and practical
distinguishing vectors, distinguishability).

3.1 Theoretic vs. Practical Distinguishing Vectors

We adopt the notation of [5], which defines the theoretic attack distinguisher as
D = {D(k)}k∈K = {D(L◦fk∗(X)+ε, M ◦fk(X))}k∈K, where the plaintext input
X takes values in X according to some known distribution (usually uniform).
The distinguisher D is chosen as some function, e.g. MI. For a defined leakage
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function L and a power model M , the value D(k) can be precisely calculated.
It thus represents the ‘true’ value of the distinguisher given M , L, and key
hypothesis k.
How to compute the ‘true’ distinguisher values. For each possible input x ∈ X to
the cryptographic function we obtain a vector evaluating the (variance Var(ε))
Gaussian density centred at the corresponding data-dependent leakage value L◦
fk∗(x). The average of these vectors, weighted by the input probabilities P(X =
x), then gives the probability density of the power consumption evaluated over
the full range of possible leakage values. Conditional densities, corresponding to
each possible prediction value m ∈ M under each key hypothesis k ∈ K, are
constructed similarly. From these probability densities we are able to directly
compute (via numerical integration) MIA distinguishing vectors as per equation
(1). The same approach allows us to compute KSA distinguishing vectors (to be
defined in Sect. 4, equation (2)).

In practice D must be estimated as the true distribution of T is unknown (in
the unprofiled setting which we are examining). Suppose we have observations
corresponding to the vector of inputs x = {xi}N

i=1, and write e = {ei}N
i=1 to be

the observed noise (i.e. drawn from the distribution of ε). Then the estimated
vector is D̂N = {D̂N (k)}k∈K = {D̂N(L ◦ fk∗(x) + e, M ◦ fk(x))}k∈K.

The theoretic distinguishing vector D can thus be seen as representing the
‘best’ result one could hope to achieve when performing an analysis in practice.

3.2 Notion of Distinguishability

It follows clearly from the working principle of the distinguishers (as explained
in previous sections) that the results of each will be on very different scales:
MI is measured in bits and takes values between zero and the total entropy of
the measured traces, whereas the KS statistic measures the (absolute) difference
between probability distributions and therefore takes values in [0, 1]. In order
to make meaningful comparisons we need to define an outcome measure which
is independent of the numerical results of distinguishers. One approach is to
look at how well the correct key hypothesis ‘stands out’. Previous work has
introduced measures for ‘standing out’; for instance a “DPA signal-to-noise ratio”
was defined in [13]. We seek to represent, more directly than the “DPA signal-
to-noise ratio”, the margin to be detected by a practical attack. Thus we look at
the distance of the correct key hypothesis from its nearest rival, and to scale this
by an appropriate normalising constant. Consequently, we define the nearest-
rival distinguishability score as the difference between the true-key distinguisher
value and the highest incorrect-key value, divided by the standard deviation
of the ‘optimal’ distinguishing vector: the theoretic output of an attack in a
noise-free setting with a known power model.

Nearest-rival distinguishability(D) =
D(k∗)−max{D(k)|k �= k∗}√

Var{D(L ◦ fk∗(X), L ◦ fk(X))}k∈K
.

We stress again that this measure of theoretic distinguishability is a meaningful
indicator of the practical efficiency of an attack as statistical theory (for example,
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[12]) teaches us that the sample size required to detect a difference is strongly
related to the true size of that difference: the lower the score, the more traces
we expect to require for a successful attack in practice.

4 The Kolmogorov-Smirnov Distinguisher

The Kolmogorov-Smirnov (KS) test has been mentioned in [2] as a seemingly
attractive alternative to MIA: it is similarly able to generically compare the
distributions of two samples but achieves this without explicit estimation of their
probability density functions (PDFs). It also extends fairly straightforwardly to
bivariate distributions which makes it adaptable to second-order DPA attacks,
although (unlike MI) it becomes problematic in higher dimensions ([7]).

In this paper we are particularly interested in how KSA compares with MIA,
in ‘typical’ scenarios and in some of the more specific scenarios for which MIA
has been promoted, namely unknown power model and higher-order attacks. The
remainder of this section introduces the KS test and discusses its application to
univariate and bivariate (second-order) DPA attacks.

4.1 Kolmogorov-Smirnov Based DPA Attacks

The (two-sample) KS test statistic measures the distance between the empiri-
cal cumulative distribution functions (CDFs) of two samples A = {Ai}n

i=1 and
B = {Bj}m

j=1, in order to test whether they have been drawn from the same
distribution. It is defined as supx∈A∪B |FA(x) − FB(x)| where FA, FB are the
empirical CDFs, i.e. FA(x) = 1

n

∑n
i=1 I{Ai≤x} (I{Ai≤x} is the indicator function,

taking the value 1 if Ai ≤ x and 0 otherwise).
Just as MIA can be understood to operate by comparing the global traces

T with the hypothesis-dependent conditional traces T |Mk—via the expected
change in entropy—a KS-inspired distinguisher measures the maximum distance
between the global and the conditional trace distributions, as averaged over the
prediction space:

DKS(k) = E[K(T ||T |Mk)] = E
m∈M

[
sup

t
|FT (t)− FT |Mk=m(t)|

]
. (2)

Under the correct key hypothesis we expect the test statistic to return a large
difference.

The particular appeal of the KS statistic as an alternative to mutual infor-
mation is that it does not require the explicit estimation of densities, but only
the calculation of empirical cumulative distribution functions.

Example: We illustrate the working principle of the KS test via a very simple
example consisting of a DES implementation leaking the Hamming weight (HW)
of the first S-Box with a signal-to-noise ratio (SNR, defined as Var(L◦fk∗ (M))

Var(ε) )
of 8. For each key hypothesis we estimate the empirical CDFs of the traces as
conditioned on the model predictions and compare them with the ‘global’ CDF of
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the traces by computing the expected largest difference between them according
to (2).

The left panel of Fig. 1 shows (in grey) the conditional CDFs under the correct
key hypothesis, where the ‘weight’ of the lines indicates the relative contribution
of the prediction-specific KS statistics to the expectation which comprises the
KS distinguisher as in equation (2). The difference—and most pertinently the
maximum (vertical) distance—between these conditional CDFs and the global
CDF (in black) is visibly substantial. By comparison the right panel shows the
same conditional CDFs as induced by an incorrect key hypothesis. These more
closely resemble the global CDF; it is clear to see that the expected maximum
distance will be substantially smaller. The same behaviour can be observed for
all other incorrect key hypotheses, hence providing the rationale for our KS-
inspired distinguisher: we expect only the correct key hypothesis to produce a
large average difference.
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Fig. 1. The KS test is based on the largest distance between the CDFs of two samples.
The left and right panels show the CDFs as conditioned on the model predictions under
the correct key hypothesis and an incorrect key hypothesis, respectively.

Note that, by design, the test is very sensitive to any distributional difference;
this is one of the features which makes it popular as a general, non-parametric
method of comparison. But for the purposes of DPA there is a potential downside
to this sensitivity: the statistic will detect even the subtle differences induced by
the incorrect hypotheses, to the detriment of the margin by which the correct
key is distinguished.

4.2 Multivariate Extensions

Standard first-order DPA attacks apply a distinguisher to a single point in a
trace. It is appealing to suppose that including more than one data point might
be beneficial. In the case of attacks against unprotected implementations this
could produce better results as more data points potentially imply that more
information can be exploited (this has been argued specifically for template
attacks [14]). In the case of masked implementations it could provide a way to
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defeat the masking scheme as the joint distributions of two or more trace points
might be related to unmasked model values.

Peacock ([6]) introduces a bivariate KS test statistic for comparing two-
dimensional samples (A1,A2) = {(A1,i, A2,i)}n

i=1 and (B1,B2) = {(B1,j ,
B2,j)}m

j=1, which he defines as:

sup
(x,y)∈(A1∪B1)×(A2∪B2)

|FA1,A2(x, y)− FB1,B2(x, y)|.

However, this extension is more problematic than the univariate case as it re-
quires a meaningful construction of bivariate empirical CDFs.

The distribution-free property of the KS test rests on being able to map any
distribution function on to any other distribution function using a transforma-
tion that preserves the ordering of the data. In the one-dimensional case this is
trivially fulfilled: there are only two ways of ordering data, namely P(A ≥ x)
and P(A ≤ x). As we have that P(A ≥ x) = 1 − P(A ≤ x) the choice is in fact
arbitrary.

In higher dimensions the empirical CDF can be defined as:

FA1,A2(x, y) =
1
n

n∑
i=1

n∑
j=1

IA1,i≤x,A2,j≤y

for all pairs (x, y). However, in the general case the choice of ordering now does
affect the test statistic: there is no direct way to map (e.g.) between P(A1 ≤
x, A2 ≤ y) and P(A1 ≥ x, A2 ≤ y). In fact for d different random variables,
there are 2d possible orderings we need to consider. The simplest solution to this
problem, as suggested by [6], is to find the maximum distributional difference
arising from all 2d possible orderings. The computational complexity of this
approach is exponential in the number of variables (O(2d ∗ nd)). Peacock shows
in his work that a bivariate KS test statistic according to his suggestion is close
enough to being distribution-free to be useful in practice.

Fasano and Franceschini [7] propose an optimisation whereby the test statistic
is evaluated only at the points which are observed in the sample, i.e. at every
(x, y) ∈ (A1,A2)∪ (B1,B2) rather than every (x, y) ∈ (A1 ∪B1)× (A2 ∪B2).
They are able to show that this leads to a linear increase in speed without
compromising on the power of the test or the distribution-free property.

We next explain how this bivariate extension of the test statistic can be
adapted to DPA attacks in which two trace points are exploited, and present
analogous distinguishers based on multivariate extensions to mutual informa-
tion. Note that, whilst the latter has natural extensions to dimensions greater
than 2, the KS statistic is shown to be problematic in higher dimensions. The
authors of [7] do present a three-dimensional test but this is not achieved with-
out some difficulty and a substantial increase in complexity (now 23 orderings
need to be considered); as such we choose not to make use of it ourselves.

Extensions for Masked Implementations. In a second-order attack against
a masked implementation we make univariate leakage predictions based on the
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(unmasked) target value and then exploit what this ‘tells’ us about the joint
distribution of the mask and the target value combined. For the KS distinguisher
this means that we are comparing the global joint CDF of the traces with the
conditional joint CDFs as partitioned by the model predictions under each key
hypothesis:

D2OKS(k) = E[K(T1, T2||T1, T2|Mk)]

= E
m∈M

[
sup
t1,t2

{
|FT1,T2(t1, t2)− FT1,T2|Mk=m(t1, t2)|

}]
.

(3)

Previous work (such as [9]) has explored the various ways in which mutual in-
formation generalises to higher orders and how these different notions can be
adapted to the purposes of DPA. For the purposes of comparison we focus on
the extension which is most analogous to the KS distinguisher, namely the in-
formation shared between the pair of trace points taken jointly and the model
prediction, as follows:

D2OMI(k) = I((T1, T2); Mk) = H(T1, T2)−H(T1, T2|Mk). (4)

Extensions for Unprotected Implementations. In an unprotected imple-
mentation we can use multivariate extensions of our distinguishers to exploit the
joint leakage of two target values simultaneously, for example key addition and
the output of the first DES S-Box.1 This approach makes use of a bivariate model
prediction and thus calls for slightly different constructions of the distinguishers
to those employed in the context of masked implementations.

For the KS distinguisher we simply condition the joint CDFs by the bivariate
prediction and proceed as before:

DMKS(k) = E[K(T1, T2||T1, T2|(M1, M2)k)]

= E
(m1,m2)∈
M1×M2

[
sup
t1,t2

{
|FT1,T2(t1, t2)− FT1,T2|(M1,M2)k=(x1,x2)(t1, t2)|

}]
.

(5)

Analogously we consider the MI between the pair of trace values and the pair of
predictions:

DMMI(k) = I((T1, T2); (M1, M2)k) = H(T1, T2)−H(T1, T2|(M1, M2)k). (6)

5 Results

For each scenario that follows we first analyse theoretic KSA and MIA vectors for
varying levels of Gaussian noise. These are derived from (respectively) true distri-
butional differences and true entropies, computed directly from the trace density
1 This choice is meaningful as the model predictions are in this case statistically in-

dependent.
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functions as explained in Sect. 3. We complement this theoretic analysis—which
gives an indication of the underlying potential of a distinguisher—by estimat-
ing ‘practical’ attack vectors against simulated traces and reporting on trace
requirements (again as noise varies).2

5.1 Optimistic Scenario: DES S-Box with (Known) Hamming
Weight Leakage

We first consider the simple and often-studied scenario in which the power con-
sumption comprises a data-dependent component proportional to the Hamming
weight of the (first) DES S-Box plus some independent Gaussian noise. Assum-
ing Hamming-weight leakage is realistic for implementations on simple micro-
controllers (e.g. [11] use this as their running example).

Theoretic Outcomes

Pure-Signal Leakage: Figure 2 shows the theoretic distinguishing vectors for
MIA and KSA attacks using a Hamming weight (HW) power model against
noise-free Hamming weight leakage of the first DES S-Box. It also illustrates
our notion of distinguishability. Both distinguishers are capable of identifying
the correct key; MIA achieves a slightly higher distinguishability score of 5.6
compared with 4.2 for KSA. Equivalent attacks using the identity (ID) power
model were less distinguishing, with scores of 3.8 and 3.1 for MIA and KSA
respectively: evidently, the generic capabilities of the distinguishers are not useful
in this ‘known power model’ scenario.
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Fig. 2. Theoretic distinguishing vectors for MIA(HW) and KSA(HW) in attacks
against HW leakage of the first DES S-Box with zero noise

2 For MIA estimations we employ the heuristic rule favoured by the literature, and
estimate PDFs via histograms with the number of bins equal to the cardinality of the
power model image (i.e. 5 for the HW power model, 16 for the identity power model).
Therefore, though these are not ‘definitive’ results (as no universally ‘best’ estimator
exists) they do represent an established methodology and, as such, a meaningful basis
for comparison with KSA.
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As SNR Varies: Figure 3 shows how the distinguishability scores vary with the
strength of the data-dependent signal (relative to the Gaussian noise). The KSA
attacks, though less distinguishing than their MIA counterparts in strong-signal
scenarios, are more robust to noise and therefore attain a theoretic advantage in
weak-signal scenarios.
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Fig. 3. Theoretic distinguishing power as SNR varies, for attacks against the first DES
S-Box with HW leakage

Practical Outcomes (Simulations). The first panel of Figure 4 shows the
mean number of traces needed to recover the key; the second panel shows the
90th-percentile, i.e. the number needed to achieve a 90% success rate. KSA(HW)
performs almost identically to MIA(HW) (as could be expected from the theo-
retic vectors), with some evidence of a small advantage in weak-signal settings
(again in keeping with the theoretic vectors). The ID attacks are more data
intensive in both cases, but KSA(ID) exhibits consistently better performance
than MIA(ID), probably due to the heavy estimation overhead incurred by the
large number of bins required by the latter.
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Fig. 4. Mean and 90th percentile of the trace requirement for key recovery, in repeated
experiments against simulated HW leakage of the first DES S-Box, as SNR varies

5.2 Realistic Scenario: DES S-Box with Unknown Power Model

We next consider the performance of the two distinguishers in the case that the
attacker does not have a precise power model. As motivated by [15] we focus on
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the case that the device leaks—instead of the Hamming weight—an unevenly
weighted sum of the bits. This is realistic for typical micro-processors especially
in the low-cost range (as reported by [15]). In our experiments, we assume that
the least significant bit dominates in the leakage function with a relative weight
of 10; in the experiments of [2] this was sufficient distortion to render MIA
more effective than correlation DPA. To extend this analysis we also consider
theoretic vectors assuming a highly non-linear power model3. This is relevant
for hardware implementations, e.g. often non-linear functions are implemented
via combinational logic in hardware and it is well known (see [16], [17]) that
such implementations show leakage characteristics which are unrelated to linear
leakage models.

Theoretic Outcomes

Pure-Signal Leakage: Both the HW and the generic ID variants of KSA are
theoretically successful in a noise-free environment, but once again are slightly
disadvantaged relative to MIA with distinguishing scores of 2.8 and 3.4 compared
with 4.8 and 4.8 respectively.

As SNR Varies: The impact of noise is more marked than that observed for the
known power model scenario, as can be seen in Figure 5; all attacks require a
stronger signal before converging to their noise-free outcomes.

It is particularly notable that in high-noise settings the KSA attacks are actu-
ally more distinguishing than their MIA counterparts. Also of interest is the fact
that the ID variants exhibit stronger outcomes and greater robustness to large
amounts of noise than attacks using the (now imprecise) HW power model. Thus
we confirm the existence of conditions under which KSA has the same ‘generic’
potential as MIA.

Practical Outcomes (Simulations). The theoretic KSA vectors show more
distinguishing power than MIA in noisy scenarios so we have sufficient reason
to expect that this translates to a practical advantage in terms of trace require-
ments, which we test by estimating the practical distinguishing vectors against
simulated trace measurements.

Figure 6 plots the results (in terms of sample size requirements) of the prac-
tical distinguishing vectors as estimated from simulated traces with Gaussian
noise. These tally well with the results of the theoretic vectors: ID attacks sub-
stantially outperform HW attacks when the leakage signal is weak, but this
advantage is less clear in high-signal settings. KSA(ID) is particularly effective
relative to MIA(ID) as estimated with 16 bins (we note that this does not neces-
sarily represent the best-case capabilities of MIA but it is consistent with what
one expects given the theoretic distinguishing vectors). KSA(HW) performs sim-
ilarly to MIA(HW).

3 To achieve a high-degree of non-linearity we use the Hamming weight of output of
the AES SubBytes function.
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Fig. 5. Theoretic distinguishing power as SNR varies for attacks against the first DES
S-Box where the LSB dominates in the leakage with a relative weight of 10 (left panel)
and were the leakage is a highly non-linear function (right panel)
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Fig. 6. Mean and 90th percentile of the trace requirement for key recovery, in repeated
experiments against simulated S-Box leakage in which the LSB dominates with a rel-
ative weight of 10

5.3 Higher-Order Scenario: Second-Order Attacks against a Masked
Implementation

As our first example of a multivariate application, we consider second-order
attacks on a masked implementation of DES leaking the HW of the mask and
the HW of the S-Box output, each with independent Gaussian noise. The second-
order extensions for KSA and MIA distinguishers are as described in Sect.4.2.

Theoretic Outcomes

Pure-Signal Leakage: The noise-free distinguishing score of second-order KSA
is just 0.6, compared with 3.2 for the MIA analogue. Thus both are capable of
identifying the correct key, though with substantially reduced distinguishability
relative to their first-order counterparts in unprotected scenarios, particularly in
the case of KSA, as Fig. 7 illustrates.
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Fig. 7. Theoretic distinguishing power as SNR varies, for second-order HW attacks
against a masked implementation of DES with HW leakage

As SNR Varies: Mark once more in Figure 7 that the KSA variant of the second-
order attack exhibits greater noise robustness, so that in low-signal settings it
shares comparable theoretic distinguishing power with MIA.

Practical Outcomes (Simulations). The first panel of Figure 8 shows the
success rates for attacks against a masked DES implementation with noise-free
leakage. The second-order KSA attack requires on average 150 traces, with a
90th-percentile of 325, whilst second-order MIA is markedly more efficient, re-
quiring on average only 30 traces with a 90th-percentile of 45.

The remaining three panels show the same for scenarios in which small but
increasing amounts of Gaussian noise are added. Even with an SNR as high
as 128 the impact on success is substantial for both attack methods but (pro-
portionately) more so for MIA. For an SNR of 32 (the lowest we attempted)
the mean and 90th-percentile of the trace requirement for KSA to be successful
were 2,450 and 5,500 respectively; the equivalent figures for MIA were 1,440 and
3,200.

The heavy computational demands of the second-order KSA distinguisher
mean that, as more noise is added, such attacks quickly become infeasible with-
out enhanced computing power. Our theoretic analysis, and our practical results
in other scenarios, indicate that it could achieve a small advantage over MIA (in
terms of data complexity) when the signal is weak enough, but we are not able
to test this and the advantage would likely be far outweighed by the relative
computational costs.

5.4 Bivariate Extensions for an Unprotected Implementation

We next investigate whether or not attack outcomes can be improved by the
incorporation of a second trace measurement corresponding to a different target
function. In particular, we consider exploiting the joint leakage of key addition
and the first DES S-Box, in the case that this is comprised of the Hamming
weight of the target values plus some independent Gaussian noise.
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Fig. 8. Success rates of HW attacks against a masked implementation of DES with
HW leakage, as the number of traces increases.

Theoretic Outcomes

Pure-Signal Leakage: The noise-free distinguishability scores of bivariate MIA
and KSA attacks are 3.6 and 1.7 respectively, compared with 5.6 and 4.2 for the
equivalent univariate S-Box attacks. Thus, both methods are actually weakened
by the incorporation of key addition leakage; KSA more so than MIA.

However, it is well documented that the resistance of a function to DPA has an
inverse relationship with its resistance to cryptanalysis ([18]). In particular, the
linearity of key addition makes it hard for DPA to distinguish between similar
keys: small changes to the input produce small changes in the output. S-Boxes,
on the other hand, are specially designed so that the converse is true, which
makes them particularly vulnerable to DPA.

It is not, then, so surprising that key addition information detracts from
attack distinguishability. If the leakage of two suitably nonlinear functions could
be jointly targeted, our bivariate enhancement may prove more useful—we leave
this as an open question.

As SNR Varies: Figure 9 shows the distinguishing scores of the bivariate attacks
as compared with the univariate S-Box attacks, for varying levels of Gaussian
noise. As with the univariate attacks, the bivariate KSA distinguisher is more
robust to noise so that in very low-signal settings it exhibits a slight advantage
over the bivariate (and indeed the univariate) MIA distinguisher. As in the
application to the masked implementation, for all noise levels (i.e. including
the noise-free setting) the bivariate distinguishing vectors are considerably less
distinguishing than their univariate counterparts.

Practical Outcomes (Simulations). Figure 10 depicts the performance of
practical bivariate attacks (against the DES S-Box and key addition jointly)
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Fig. 9. Theoretic distinguishing power as SNR varies, for bivariate HW attacks against
DES with HW leakage

as compared with univariate attacks against the DES S-Box alone. The lower
theoretical distinguishing power, coupled with the additional complexity of esti-
mation, mean that the bivariate attacks require more traces to be successful, in
all tested noise settings. As with the univariate attacks, bivariate KSA performs
very similarly to bivariate MIA.
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Fig. 10. Mean and 90th percentile of the trace requirement for key recovery, in repeated
experiments against simulated HW leakage of AddRoundKey and the first DES S-Box
jointly, as SNR varies

These results (w.r.t. both theoretic and practical distinguishing vectors) are an
important reminder that it is not the quantity of information which contributes
to attack outcomes so much as the quality: identifying the most vulnerable tar-
gets is more likely to be fruitful than combining information from targets with
differing degrees of DPA resistance. Moreover, univariate attacks remain less de-
manding in terms of computational complexity and the sample size required for
estimation.

6 Conclusion

We have shown that the (two-sample) KS test statistic can be adapted to the
purposes of DPA in a manner which bears considerable resemblance to MI-based



250 C. Whitnall, E. Oswald, and L. Mather

DPA. We explored the theoretic and practical distinguishing vectors of KSA as
compared with MIA, with a particular focus on scenarios that are relevant for
practice.

Our findings showed that in noise-free or strong-signal univariate settings MIA
was consistently the more distinguishing and more efficient attack, but when the
signal was sufficiently weak the noise-robustness of KSA enabled it to gain an
advantage.

The KSA distinguisher was found to share those characteristics of MIA which
make it to some extent ‘power model free’; each can be adapted to use the
identity power model in the case that an attacker lacks precise knowledge of the
true data-dependent leakage (provided the target function is non-injective).

We also showed how a bivariate version of the (two-sample) KS test statistic
enables extension to second-order KSA in order to defeat a masking scheme.
However, here it was quite substantially outperformed by MIA in strong-signal
settings and was so computationally complex as to be unfeasible in weak-signal
settings. Moreover, whereas multivariate MI quite naturally incorporates addi-
tional data points, extensions of the KS test beyond 2 dimensions quickly become
problematic so that there is little scope for third- or higher-order KSA.

A interesting question for future work is whether or not the known distribution
of the KS test statistic could be used to formally derive the number of traces
required for an attack to be successful, as has been accomplished in the case of
correlation DPA (see §6.4 of [11]). Whilst the distribution of the KS test statistic
is known it is unclear how it could be used to derive that of the KSA distinguisher
(recall that this is defined as an average over several KS test statistics).
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Abstract. We present an implementation for Differential Power Anal-
ysis (DPA) that is entirely based on Graphics Processing Units (GPUs).
In this paper we make use of advanced techniques offered by the CUDA
Framework in order to minimize the runtime. In security testing DPA
still plays a major role for the smart card industry and these evalua-
tions require, apart from educationally prepared measurement setups,
the analysis of measurements with large amounts of traces and sam-
ples, and here time does matter. Most often DPA implementations are
tailor-made and adapted to fit certain platforms and hence efficient ref-
erence implementations are sparsely seeded. In this work we show that
the powerful architecture of graphics cards is well suited to facilitate a
DPA implementation, based on the Pearson correlation coefficient, that
could serve as a high performant reference, e.g., by analyzing one million
traces of 20k samples in less than two minutes.

Keywords: DPA, CPA, Graphics Cards, CUDA.

1 Introduction

The resistance of a cryptographic device against side channel attacks is defined by
the amount of traces that is at least required to recover a secret information that
is embedded in the device under a specific adversarial scenario. In commercial
applications, many crypto devices which can either consist of a microcontroller or
an FPGA (Field Programmable Gate Array), respectively an ASIC (Application-
Specific Integrated Circuit) are hardened to resist side channel attacks. In order
to fulfill the security requirements for highly resistant devices side channel testing
with one million or even more traces are nowadays common for security labs,
cf. [7] for the state of the art in testing AES hardware implementations in 2005.
Currently, CPA attacks in research are carried out with up to one hundred million
traces [8]. Both processes that are implied by a side channel attack, namely trace
recording and computational analysis, can be highly time consuming for a smart
card evaluation. Contrary to the effort involved in the trace recording that is
mostly dictated by the device and done once, the computational analysis is
repeatedly carried out to meet different attack scenarios. Hence, an acceleration
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concerning the analysis part is definitely desirable. Differential Power Analysis
(DPA) [4] using the Pearson correlation coefficient [2] is still the most common
statistical tool to evaluate the side channel resistance.

Motivation: Graphics cards provide a powerful parallel architecture which
became widely accepted in scientific computations. Also cryptography is well es-
tablished on GPUs with several implementations that were made during the last
few years. For instance, cryptosystems like ECC, RSA, and AES were efficiently
implemented [13,1,3]. Until now, only little efforts were spent to speed up DPA
with the help of graphics cards. The only other proposal we are aware of is [5].
Their approach includes Difference of Means (DOM) as the statistical test and
makes use of both, the general purpose CPU and a CUDA related GPU. All in
all they achieve a reasonable speed-up factor of about two by parallelizing the
summation of samples on the GPU side.

Our contribution: In this paper we make use of advanced techniques offered by
CUDA to achieve key benefits for the runtime. Further, we shift any computation
to the GPU. We adopt algorithms for DPA to achieve optimal results on graphics
cards involving the Pearson correlation coefficient as the statistical test. A major
part for the speed-up is the covariance whose implementation is done through a
matrix multiplication which performs very well on graphics cards.

Organization of the paper: This paper is organized as follows: Section 2 briefly
introduces Differential Power Analysis, especially the formula of the Pearson
correlation coefficient that will be adapted in the remainder. Section 3 provides
a short overview on modern graphics cards architecture considering their pro-
gramming and memory model. In Section 4, we describe the chosen implemen-
tation approach concerning algorithms and requirements when being applied on
a graphics card. Section 5 reports our experimental results before we conclude
in Section 6.

2 Differential Power Analysis

Differential Power Analysis (DPA) is a passive implementation attack aiming
at key recovery of a cryptographic implementation. The physical leakage of the
device that is exploited is usually the power consumption or the electromagnetic
emanation of the device while it processes the cryptographic algorithm. DPA is a
divide-and-conquer attack, i.e., a cryptographic key is successively compromised
by its subkeys.

We assume that the device processes a sensitive variable z which is the con-
junction of known input v to the cryptographic computation, i.e., a plaintext
or ciphertext and unknown secret information embedded in the device, i.e., a
subkey k, such that z = fk(v). We further assume that the physical leakage of
the device under test leaks is modeled by

Lt = δt + L(z) +Bt.

Herein, Lt is the leakage at time t that depends on a constant portion δt, a
certain deterministic leakage function L(•) that describes how the leaked infor-
mation depends on the sensitive variable z, and a noise term Bt, a randomly
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and normally distributed variable centered in zero with standard deviation σ.
Note that in practice the leakage function L(•) is usually not known by the ad-
versary, however, it is well-known that often the Hamming weight of z is a good
approximation [6]. Alternatively, the adversary may evaluate single-bit leakage
of z.

Measurement. As the first step of DPA the power consumption of the device
under attack is measured with a digital storage oscilloscope (DSO). Such a mea-
surement is given by the matrix

X =
(
X1 X2 X3 . . . Xs

)
=

⎛
⎜⎜⎜⎜⎜⎝

x1,1 x1,2 x1,3 . . . x1,s

x2,1 x2,2 x2,3 . . . x2,s

x3,1 x3,2 x3,3 . . . x3,s

...
...

... . . .
...

xm,1 xm,2 xm,3 . . . xm,s

⎞
⎟⎟⎟⎟⎟⎠

involving m independent measurements (traces) containing s samples per trace,
where each xi,j is a sample from trace i at time j (row-major order).

There are usually different (randomly chosen and uniformly distributed) in-
puts for each trace i, such that

V =

⎛
⎜⎜⎜⎜⎜⎝

v1,1 v1,2 v1,3 . . . v1,b
v2,1 v2,2 v2,3 . . . v2,b
v3,1 v3,2 v3,3 . . . v3,b
...

...
... . . .

...
vm,1 vm,2 vm,3 . . . vm,b

⎞
⎟⎟⎟⎟⎟⎠ ,

where vi,l is the lth input of trace i, for l ∈ {1, 2, . . . , b} and b is the length of
the plaintext.

DPA works with hypotheses on subkeys. Let vi be the partial entry of row
i of the matrix V that enters the computation of z = fk(v). That is, we get a
hypothetical leakage matrix

Y =
(
Y1 Y2 Y3 . . . Yp

)
=

⎛
⎜⎜⎜⎜⎜⎝

y1,1 y1,2 y1,3 . . . y1,p
y2,1 y2,2 y2,3 . . . y2,p
y3,1 y3,2 y3,3 . . . y3,p
...

...
... . . .

...
ym,1 ym,2 ym,3 . . . ym,p

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

L(f1(v1)) L(f2(v1)) L(f3(v1)) . . . L(fp(v1))
L(f1(v2)) L(f2(v2)) L(f3(v2)) . . . L(fp(v2))
L(f1(v3)) L(f2(v3)) L(f3(v3)) . . . L(fp(v3))

...
...

... . . .
...

L(f1(vm)) L(f2(vm)) L(f3(vm)) . . . L(fp(vm))

⎞
⎟⎟⎟⎟⎟⎠ ,

covering all p subkey candidates i ∈ {0, 1, . . . , p}.
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Pearson Correlation Coefficient. In this paper, we use the Pearson correlation
coefficient as the statistical test for DPA. It computes the correlation coefficient
of each column of the leakage matrix with each column of the measurement
matrix. DPA finally outputs the key hypothesis reaching the absolute maximum
of correlation.

For completeness, we provide the explicit formula for the estimated Pearson
correlation coefficient:

rX,Y =

∑m
i=1 xiyi − 1

m

∑m
i=1 xi ·

∑m
i=1 yi√∑m

i=1 x
2
i − 1

m (
∑m

i=1 xi)2 ·
√∑m

i=1 y
2
i − 1

m (
∑m

i=1 yi)
2
. (1)

3 Computations on Graphics Cards

General-purpose computing on graphics processing units (GPGPU) is the shift
of computations that are traditionally handled by the central processing unit
(CPU) or host processor, to the graphics processing unit (GPU), also known as
device. In this paper, we focus on nVidia GPUs and CUDA [10] that can be
programmed with C for CUDA, a C language derivative with special extensions.

The main unit of the device is the multiprocessor which is a set of a number of
stream processors (depends on the generation) which share memory, caches, and
an instruction unit. The multiprocessor creates, manages, and executes threads
in hardware. As Figure 1 shows, a thread in CUDA is the smallest unit of
parallelism that is executed concurrently with other threads (warps) on the
hardware. Threads are organized in a thread block, a group of threads in which
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Fig. 1. CUDA thread hierarchy
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the threads can communicate with each other and synchronize their state. A
group of thread blocks is called a thread grid. A thread grid forms the execution
unit in the CUDA model since it is not possible to execute a thread or thread
block solely.

Threads in the CUDA programming model can access data from various mem-
ory spaces that differ in size and access time. The CUDA memory model (Fig. 2)
describes the accessible memory spaces from the view point of the thread. At low-
est level, a thread has read and write access to its own registers and additionally
its own copy of local memory. Threads within the same block have read and write
access to a shared memory on the next higher level. Beyond the block, all threads
can have read and write access to the largest memory space, the global memory.
Beside the global memory, there are two further spaces that are read-only, the
constant memory and the texture memory. Usually, memory spaces that are
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Fig. 2. CUDA memory model

shared by threads contain potential hazards of conflicts such as read-after-write,
write-after-read, or write-after-write. Thus, the programming model implements
a barrier by defining a synchronization instruction. As a consequence, a large
number of divergent threads (i.e., threads which follow a different execution flow
of an algorithm) require frequent synchronization, reducing the overall computa-
tion time of the entire systems due to wait cycles. Accesses to the global memory
are crucial for the overall performance due to its latency. But most of that la-
tency can be hidden if there are enough independent arithmetic instructions that
are executed while waiting for access to complete.
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4 Differential Power Analysis on Graphics Cards

The implementation of the Pearson correlation coefficient according to its rep-
resentation (1) requires us to compute five sums:∑

∀i
xiyi,

∑
∀i

xi,
∑
∀i

yi,
∑
∀i

x2
i , and

∑
∀i

y2i

Taking both matrices X and Y into account the first sum embodies the matrix
multiplication

YT ∗X =

⎛
⎜⎜⎜⎜⎜⎝

Y1 ∗X1 Y1 ∗X2 Y1 ∗X3 . . . Y1 ∗Xs

Y2 ∗X1 Y2 ∗X2 Y2 ∗X3 . . . Y2 ∗Xs

Y3 ∗X1 Y3 ∗X2 Y3 ∗X3 . . . Y3 ∗Xs

...
...

... . . .
...

Yp ∗X1 Yp ∗X2 Yp ∗X3 . . . Yp ∗Xs

⎞
⎟⎟⎟⎟⎟⎠ ,

where Xi and Yj are column, respectively row vectors of length m.
Matrix multiplications perform very well on graphics cards, and hence the

idea is to build an implementation of the correlation coefficient based upon the
matrix multiplication. The other sums could then be computed simultaneously.
However, in this case prerequisite is the computation of the hypothetical leak-
age matrix Y beforehand. Additionally, we have to face some other issues that
arise when we aim for an implementation that can handle arbitrary large mea-
surement matrices. First, we have to keep in mind that the global memory of a
graphics card is a constrained resource. Second, we probably run into numeri-
cal problems considering the single dot products, respectively the sums of large
vectors (arithmetic overflow). Finally, we aim to distribute the computation of
the correlation coefficient over an arbitrary number of graphics cards, respec-
tively the computation has to be iteratively issuable if only one graphics card is
available in the case of very large measurements. Therefore, our implementation
approach consists of three major steps, i.e., CUDA kernels, that are carried out
iteratively.

Initially, a kernel that computes the leakage model, next a kernel that performs
the computations of the sums, and finally a kernel that computes the correlation
coefficients. Apart from this approach it is, of course, possible to have one kernel
that computes everything but that depends on the fact how large the matrices
are. Here, we merely assume measurements being too large to be processed by one
kernel at once but we will also briefly include this point into our considerations.

4.1 Leakage Model Creation

The leakage model is created by a kernel that is given an input vector V ∈ V.
Therefore, the row vectors of YT, of which each is based on a copy of V , are dis-
tributed over different thread blocks, that is each row is computed among several
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⎛
⎜⎜⎜⎜⎜⎜⎝

L(f1(v1)) L(f1(v2)) L(f1(v3)) . . . L(f1(vm))

L(f2(v1)) L(f2(v2)) L(f2(v3)) . . . L(f2(vm))

L(f3(v1)) L(f3(v2)) L(f3(v3)) . . . L(f3(vm))
...

...
... . . .

...

L(fp(v1)) L(fp(v2)) L(fp(v3)) . . . L(fp(vm))

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 3. Computation of YT among different thread blocks (outlined by solid lines)

threads within a thread block as depicted by Figure 3. As usual, the computation
of the leakage prediction function L(fk(vi)) is realized using a table, e.g. a S-box
with precomputed Hamming weights, which is copied into the constant memory
of the graphics card prior to the execution of the kernel and referenced later
on. Eventually, this kernel can be omitted if the inputs are directly fed into
the matrix multiplication kernel. This saves global memory because the leakage
model matrix does not need to be stored. However, in some cases it might be more
convenient to have a separated kernel when the leakage model is more complex
for instance. Our straightforward approach is represented by Algorithm 1. As
stated in the algorithm the integer values tIdx.x and bIdx.x represent the index
of a single thread and thread block in the first dimension complying with the
CUDA model.

Algorithm 1. Leakage Model Creation

Input: Input vector V ∈ V
Output: Leakage model matrix YT

1: for each block parallel do
2: for each thread parallel do
3: Y[bIdx.x, tIdx.x] = L(fbIdx.x(V [tIdx.x]))
4: end for parallel
5: end for parallel

4.2 Computation of the Sums

The computation of the correlation coefficient sums is, as already mentioned
above, based upon the matrix multiplication YT ∗ X. In order to achieve the
best performance in the sense of DPA some effort has to be spent. Regarding
arbitrary large matrices we have to keep in mind that at some point the matrices
exceed the global memory of the graphics card. From this point of view we can
follow two approaches, first a kernel that is given the matrices and computes
the correlation coefficient directly, because the matrices fit the global memory.
Contrary, if the matrices do not fit the memory, a kernel is needed that outputs
the sums for a later processing. In the remainder we deal with the latter oppor-
tunity but the similarity is high. However, these deliberations also lead us to the
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next implementation decision. Each sum has to be stored in a single variable
and a 32-bit variable may not be sufficient in general because of a potential
overflow. This is aggravated by the fact that the CUDA performance involving
64-bit variables is quite low [11]. Nevertheless, the framework is highly optimized
to employ 32-bit floating arithmetic. So to address these issues the correlation
coefficients, respectively their implied sums, are computed as follows.

rX,Y =

∑m
i=1

1
mxiyi −

∑m
i=1

1
mxi ·

∑m
i=1

1
myi√∑m

i=1
1
mx2

i − (
∑m

i=1
1
mxi)2 ·

√∑m
i=1

1
my2i − (

∑m
i=1

1
myi)2

(2)

Shifting the fractal into the sums does not necessarily cause a performance
penalty due to potential latency hiding since it also works vice versa by which
means additional instructions are covered by the waiting time.

Referring to [12] the resultant matrix of the multiplication is computed by
two-dimensional thread blocks, here called tiles, that are distributed as shown
in Figure 4. Each tile consists of n2 threads where a single thread is responsible
to compute a single dot product of the entire resultant matrix. At the beginning
a tile loads portions such that n2 elements of X and n2 of YT are deposited
into the shared memory of the thread block. This strategy avoids loading every
vector each time it is needed. With these portions a thread can now compute the
first n products of a dot product, since the first n elements of each row vector
of YT and each column vector of X are loaded. Afterwards, a tile fetches the
next portions to compute the next n products, a procedure which is repeated
until all elements are passed through. Obviously, we can exploit synergies and
compute all other correlation coefficient sums concurrently since all necessary
elements are already loaded. Figuratively, the tile move rightwards regarding

⎛
⎜⎜⎜⎜⎜⎝

x1,1 x1,2 x1,3 . . . x1,s

x2,1 x2,2 x2,3 . . . x2,s

x3,1 x3,2 x3,3 . . . x3,s

...
...

... . . .
...

xm,1 xm,2 xm,3 . . . xm,s

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

y1,1 y2,1 y3,1 . . . ym,1

y1,2 y2,2 y3,2 . . . ym,2

y1,3 y2,3 y3,3 . . . ym,3

...
...

... . . .
...

y1,p y2,p y3,p . . . ym,p

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Y1 ∗X1 Y1 ∗X2 Y1 ∗X3 . . . Y1 ∗Xs

Y2 ∗X1 Y2 ∗X2 Y2 ∗X3 . . . Y2 ∗Xs

Y3 ∗X1 Y3 ∗X2 Y3 ∗X3 . . . Y3 ∗Xs

...
...

... . . .
...

Yp ∗X1 Yp ∗X2 Yp ∗X3 . . . Yp ∗Xs

⎞
⎟⎟⎟⎟⎟⎠

Fig. 4. Computation of YT ∗X among different two-dimensional thread blocks, here
called tiles. Exemplarily, only one tile is emphasized to show which portions of the
matrices X and Y are involved to compute the resultant sub-matrix covered by that
tile. Actually, the whole resultant matrix is covered by several tiles.
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YT and downwards regarding X (Fig. 4). The kernel, constituted by its opti-
mized version, is depicted in Algorithm 2. Additionally, the algorithm reveals
two mandatory optimizations that were not mentioned so far. The portions are
prefetched by the tile threads into their registers first and then deposited into
shared memory with the effect that the sum calculations only consume already
fetched tile elements while the next elements are being loaded. This enables la-
tency hiding. The second optimization considers the workload balance within
kernel. Therefore, a number of tiles of matrix X, instead of one, are loaded hor-
izontally to compute multiple dot products involving the loaded single tile of
YT.

Algorithm 2. Computation of correlation coefficient sums

Input: Leakage model matrix YT and measurement matrix X
Output: Sums of corr. coef.:

∑
∀i

1
m
xiyi,

∑
∀i

1
m
xi,

∑
∀i

1
m
yi,

∑
∀i

1
m
x2
i , and

∑
∀i

1
m
y2
i

1: for each block parallel do
2: for each thread parallel do
3: prefetch first tile of YT and first horizontal tiles of X into registers: yi, xi.
4: end for parallel
5: end for parallel
6:
7: for k = 1 to m

n
do

8: for each block parallel do
9: for each thread parallel do
10: i← thread position within column vectors of X
11: j ← thread position within row vectors of YT

12: deposit prefetched tiles into shared memory: Xshared[tIdx.x, tIdx.y] = xi√
m
,

Y shared[tIdx.x, tIdx.y] =
yj√
m

13: prefetch next tiles into registers: xi+k, yj+k

14: for l = 1 to n do
15:

∑
thread xiyi =

∑
thread xiyi +Xshared[tIdx.x, l] · Y shared[l, tIdx.y]

16:
∑

thread xi =
∑

thread xi +Xshared[tIdx.x, l] · 1√
m

17:
∑

thread yi =
∑

thread yi + Y shared[l, tIdx.y] · 1√
m

18:
∑

thread x
2
i =

∑
thread x

2
i +Xshared[tIdx.x, l]2

19:
∑

thread y
2
i =

∑
thread y

2
i + Y shared[l, tIdx.y]2

20: end for
21: end for parallel
22: end for parallel
23: end for

4.3 Computation of the Correlation Coefficient Matrix

This kernel implementation is similar to that of the leakage model creation. The
matrix of the correlation coefficients is segmented in the same way (Fig. 3). Ev-
ery thread block is responsible for samples that are related to one key hypothesis,
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hence a block is given the corresponding correlation coefficient sums which result
from the measurement matrix and any sum from the leakage model matrix. The
implementation is shown in Algorithm 3.

Algorithm 3. Computation of correlation coefficient matrix

Input: Sums of corr. coef.:
∑

∀i
1
m
xiyi,

∑
∀i

1
m
xi,

∑
∀i

1
m
yi,

∑
∀i

1
m
x2
i , and

∑
∀i

1
m
y2
i

Output: Correlation coefficient matrix R

1: for each block parallel do
2: for each thread parallel do
3: R[bIdx, tIdx] = rXtIdx,YbIdx , complying with (2) and (3)
4: end for parallel
5: end for parallel

4.4 Special Case: Hamming Weight Model

In the case of the Hamming Weight model, a further approach to achieve an even
better performance outcome is to estimate the mean and standard deviation of
the leakage model. This would save computational effort, above all divisions and
square root calculations which should be avoided. These operations only offer
one fourth, respectively one eighth of the performance of a multiplication [11].
In addition to that, estimation also saves global memory due the avoided sums
that do not need to be stored anymore.

Presuming that the inputs, contained in V, are randomly chosen and uni-
formly distributed the mean

∑
∀i

1
myi can be estimated with

∑
∀i

1

m
yi = E[HW (Z)] = E[

b∑
i=1

Z(i)] = b · E[Z(i)] =
b

2
,

where Z(i) is the ith bit of random variable Z, i.e., Z is a b-bit variable. Whereas
the mean of the squares

∑
∀i

1
my2i can be estimated with

∑
∀i

1

m
y2i = E[HW (Z)2] = E[

b∑
i,j=1

Z(i) · Z(j)] =

b∑
i�=j

E[Z(i) · Z(j)] +

b∑
i

E[Z(i)]

= b · (b− 1) ·E[Z(i)Z(j)] + b ·E[Z(i)] =
b · (b− 1)

4
+

b

2
=

b2 + b

4
.

Eventually, we obtain the correlation coefficient with leakage estimation being
expressed as

rX,Y =

∑m
i=1

1
mxiyi − b

2 ·∑m
i=1

1
mxi√

b
4 ·
√∑m

i=1
1
mx2

i − (
∑m

i=1
1
mxi)2

. (3)
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5 Experimental Results

For our experiments, we used nVidia Tesla C2070 graphics cards with 6 GiB
video RAM and an Intel Xeon X5660 at 2.8 GHz running Windows 7 64-bit.
The results were obtained using the CUDA toolkit and SDK of version 3.2, the
CUDA driver 270.61, and the Microsoft Visual C++ compiler.

We presume attacking a sequential 8-bit implementation of AES [9] to recover
one subkey byte in the Hamming Weight model. In order to gain meaningful
results the inputs are composed of byte values that are randomly chosen and
uniformly distributed. Since in most cases employing a DSO with a vertical
resolution of eight bit suffices, we set X ∈R [−127, 127]m×s.

First of all the best kernel configuration has to be figured out, more precisely
the thread and thread block numbers. For the leakage creation and the corre-
lation coefficient kernel it is quite obvious that they have to be launched with
p thread blocks (one block per key hypothesis). Regarding the correlation coef-
ficient sum kernel two constraints show up, the maximum number of threads a
kernel can take and the shared memory in use that is dictated by this number.
Actually, we have at most 1536 threads per kernel on our graphics card, thus
the tile size could be nmax =

⌊√
1536

⌋
= 39, but due to the restricted shared

memory and the horizontal tiles (one tile computes more than one portion of X)
we need to find out the optimal trade-off. Through empirical testing, it turned
out that the kernel performs best with n = 28, that is n2 = 784 threads per
block and four horizontal tiles while barely not exceeding the available shared
memory. The number of tiles (thread blocks) can be obtained by simply divid-
ing each dimension, the number of key hypotheses p and the number of given
samples s, by n. Another limitation is the total global memory Mglobal which
accommodates the measurement matrix, the input vector, and the five correla-
tion coefficient sums. Presuming single precision variables for the sums and 8-bit
variables for the samples and inputs, the global memory usage consists of m · s
bytes for the measurement matrix, m bytes for the inputs, p · s · 4 bytes for the
covariance, and 2 · p · 4 bytes, respectively 2 · s · 4 bytes for the variances and
means. Eventually, we obtain the inequality

ms+m+ 4ps+ 8p+ 8s < Mglobal.

The runtime was then measured in steps of 10k traces and a number of samples
fixed to 20k. Figure 5 shows the results for the following variations of the sums
kernel: the kernel is given the precomputed leakage model, the kernel is given the
input vector directly (cf. Sec. 4.1), and further both variants with the leakage
estimation (cf. Sec. 4.4). Additionally, we show the runtime for the data transfer
between the host memory and the device memory.

As it can be seen the kernel applying the leakage estimation performs slightly
better and further it can be seen that the effort increases linearly with the
number of traces. It is not worthwhile to compute the leakage model beforehand
which is most likely caused by the frequent global memory accesses. Furthermore,
we get the same results if we fix the number of traces and iteratively increase
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Fig. 5. Runtime of the correlation coefficient sums kernel. The kernel can either be
given the leakage model or the input vector directly.

the number of samples by which means the measurement matrix can be cut at
any point to make it fit the graphics cards global memory in the case of very
large measurements. Since the effort increases linearly with both, the number of
traces and the number of samples, the implementation is perfectly scaled with
additional graphics cards. The runtimes of the remaining two kernels, namely
leakage model creation and correlation coefficient computation, are absolutely
negligible while being in the range of a few milliseconds. It is not surprising that
their runtimes hardly contribute to the overall runtime since the elements of the
resultant matrices are independent of each other, in marked contrast to the sums
kernel where as well thread synchronization is vital due to the usage of shared
memory. That is also true for the overhead, i.e., transferring data from the host
memory to the device memory and vice versa, respectively the kernel launches.
However, data transfers are dependent on the data and the time increases linearly
with the amount of bytes. Figure 5 thus shows the respective transfers of the full
measurement matrix. The influence of I/O, i.e., loading traces from a hard disk,
is not considered because this also affects a CPU implementation in the same
way. However, measurements containing over one million traces can be analyzed
in less than two minutes employing just one graphics card.

Furthermore, we provide a comparison between the CPU and the GPU. There-
fore, we implemented and optimized the sums kernel with leakage estimation on
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the CPU which does exactly the same as its GPU counterpart. Table 1 compares
the results. As expected, the CPU implementation is, as well, linearly scaled with
the number of traces. Hence, we can derive a speed-up factor of about almost
100 taking a common processor with four cores into account, a performance gain
that obviously suggests CUDA as a very promising platform for DPA.

Table 1. Runtime comparison between CPU and GPU where one thread runs the
CPU implementation. The number of samples is fixed to 20k.

10k traces 20k traces 50k traces 100k traces

GPU 0.774 s 1.545 s 3.861 s 7.733 s
CPU 302.72 s 622.11 s 1531.69 s 3152.21 s

6 Conclusion and Future Work

In this paper we presented a highly performant implementation of Differential
Power Analysis on graphics cards. The implementation can handle arbitrary
large measurement matrices which can be split up at any point to make them fit
into the graphics cards memory. Large measurements can be analyzed within a
few minutes. Our ongoing work will deal with the implementation of DPA based
higher order attacks.
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Abstract. Several countermeasures against side-channel analysis result
in misalignment of power traces, in order to make DPA more difficult.
In this paper we propose a new algorithm to align the measurements
after this desynchronizing through the variations of the internal clock,
random delays, etc. The algorithm is based on the ideas of SIFT and
U-SURF algorithm that were originally proposed for image recognition.
The comparison with other known methods favors our solution in terms
of efficiency and computational complexity.

Keywords: smart cards, side-channel analysis, DPA, random delay
countermeasure, alignment methods.

1 Introduction

Small electronic devices such as smart phones, PDAs and smart cards are becom-
ing increasingly popular. As a side effect of this trend, more critical information
is stored in these devices and therefore it is crucial that they are secure. As al-
gorithms used in modern chips are mathematically rather secure, attackers shift
focus to specific implementations and the secret information that leaks through
physics.

One of the focus areas is the power consumption of a device. About a decade
ago Kocher et al. proposed DPA, a method that allows attackers to extract
the secret key used for cryptographic operations from a small device such as a
smartcard [7]. Since then many countermeasures have been developed, as well
as ways to reduce the effects of these countermeasures.

Kocher’s method and its many variants depend on the assumption that during
the encryption, the timing of each operation during the cryptographic operation
is constant between multiple executions of the algorithm. By adding dummy
operations at random points in time or using an unstable clock this assumption
is broken, and thereby DPA attacks become less effective. However, there exist
algorithms that attempt to recover DPA information even in this case of the
traces being misaligned e.g. Static Alignment [9] and Elastic Alignment [10].

E. Prouff (Ed.): CARDIS 2011, LNCS 7079, pp. 266–282, 2011.
c© IFIP International Federation for Information Processing 2011
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The power traces are altered such that the target is susceptible to a DPA attack
again. Static alignment is fast, but it only aligns one point of the cryptographic
operation and does not take into account differences in the timing of the indi-
vidual operations. Elastic Alignment performs continuous alignment, but it is
computationally intensive.

Our proposed algorithm is designed to perform continuous alignment, without
the drawback of the high computational requirements of Elastic Alignment. The
algorithm is inspired by U-SURF [2] which, given a reference picture, is used
to recognize pictures of the same scene/object taking into account differences in
angle and light. The proposed algorithm uses several techniques used in U-SURF,
among most notably the use of block wavelets for detection and identifying
of specific points in the recorded power signal. The main advantage of block
wavelets is that they can be applied in O(1), which improves the running time
substantially.

This paper is organized as follows. Section 2 describes relevant prior work. In
Sect. 3 we explain the main ideas behind wavelets as a starting point for the
new method. We present the algorithm and its main components in Sect. 4. Our
experiments and results are given in Sect. 5. Finally, Sect. 6 concludes this work.

2 Related Work

Alignment algorithms try to reduce the effects of an unstable clock and dummy
operations by aligning all traces in a set to a reference trace, which is a common
approach. In this paper we refer to the trace we align to as the reference trace
and the traces that need to be aligned as the target traces.

Static alignment was described by Mangard et al. in 2007 [9], see Ch. 8. The
idea is as follows: the attacker chooses a fragment in a reference trace close to the
area where the attack takes place. Then the algorithm aims to find this same
fragment in the other traces and shifts the other trace so that the reference
fragments are aligned. Although this does not fully counter an unstable clock or
random delays, it often does reduce the number of traces needed to successfully
perform a DPA attack.

Elastic Alignment [10] attempts to match each sample in a target trace to
samples in the reference trace. It can match sequences of samples in the target
trace to a single sample in the reference trace, and vice versa. The algorithm
minimizes the sum of the different sample values between matched samples.
This match is used to stretch and compress samples in the target trace to match
the reference trace. The result is an algorithm that can perform a continuous
synchronization of any two traces. The authors show Elastic Alignment runs in
O(n), with n the number of samples in the trace to align. However, the continuous
matching procedure is still quite computationally expensive.

Sliding Window DPA was proposed by Clavier et al. in 2000 [6]. as an algo-
rithm that is specifically designed to counter random process interrupts (RPI).
When RPI are used as a countermeasure the position of the leakage that is ex-
ploited by DPA can shift a few clock cycles. Each clock cycle in a power trace
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is replaced by the average of itself and a number of previous clock cycles. The
two main parameters of this method are the number of cycles to average (the
window size) and the number of samples per one clock cycle. In [10] it was shown
that SW-DPA performs fairly well. However when an unstable clock is used the
performance drops drastically. This is not surprising since the algorithm assumes
a stable clock of which the frequency is set in parameters of the algorithm.

SIFT stands for Scale Invariant Feature Transform. It is a feature generation
method proposed by Lowe in 1999 [8]. The features generated are used to recog-
nize objects in images. Object recognition algorithms have to be robust against
scaling, translation, rotation and noise in the images, which are similar prob-
lems to those due to the misalignment. U-SURF [2] stands for Upright-SURF
where SURF stands for Speeded Up Robust Features. U-SURF does the same
as SURF, except that it skips a step where orientations of the points of interest
(POI). Our solution is inspired by both, as we translate the ideas of SIFT and
U-SURF from the 2 dimensions (images) to one dimension (power traces).

In this work we aim at creating a continuous alignment algorithm, with a
strong focus on improving computational complexity.

3 Alignment with Wavelets

To align two power traces one first needs to choose points in these power traces
to align upon. In Elastic Alignment, the points used for alignment are all the
samples in every resolution of each trace. This results in the calculation being
computationally demanding. The proposed algorithm uses far less points for
alignment and interpolates in between these points.

The points that are used to align on must be efficient to compute and recog-
nizable in each trace. To find these points of interest (POI) in multiple traces
the proposed algorithm searches for certain patterns in the traces. These pat-
terns are identified with the use of wavelets. Wavelets give information about a
power trace with excellent temporal resolution, as opposed to a Fourier Trans-
form which has a trade-off between frequency resolution and temporal resolution.
The benefits of wavelets in getting rid of noise were already presented in [5], but
they were not used for re-synchronization. Another important advantage is that
the wavelets used in the proposed algorithm can be applied in O(1). This is
further explained in the remainder of this section.

3.1 Wavelets

The term “wavelet” means small wave. It is a signal with an amplitude that
starts out at zero, than increases, and then decreases back to zero. An example
of this can be created by multiplying a sine wave with the Gaussian distribution
function. This will result in a Morlet wavelet as can be seen in Fig. 1. Given a
wavelet function the wavelet response WR(t, ψ), of a wavelet defined by func-
tion ψ(t) at a point t in a signal defined by function f(t), can be computed by
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Fig. 1. Examples of a Morlet wavelet (top-left), Mexican Hat wavelet (top-right), Mex-
ican Hat block wavelet (bottom-left) and Haar wavelet (bottom-right)

calculating the convolution of the wavelet and the signal at that point as is
shown in equation (1):

WR(t, ψ) =
∫

f(x) · ψα,t(x)dx, (1)

where ψα,β is the wavelet function ψ scaled with α and translated with β as is
shown in equation (2):

ψα,β(t) =
1√
α

ψ(
t− β

α
). (2)

When working with power traces the signal is not defined by a continuous func-
tion. Instead it is defined by a set of discrete data points. The wavelet response
function reduces then to a summation which is shown in the following sum:

WR(t, ψ) =
len∑
x=0

f(x) · ψα,t(x). (3)

where len is the number of sample points in the power trace.
For detection of POIs, wavelet responses are calculated at several scales and

at several sample points in the trace. Two patterns have been tried, the first
being a peak pattern which was identified with the Mexican Hat wavelet shown
in Fig. 1. The second was the slope pattern which was identified with the Haar
wavelet also shown in Fig. 1. To be able to compare wavelet responses of different
scales the wavelet responses are divided by

√
s where s is the scale of the wavelet.
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3.2 Block Wavelets

The calculation of a wavelet response as defined in equation (3) takes O(n) to
compute, where n is the length of the power trace. By using the 1-dimensional
variant of summed-area tables [1] this can be reduced to O(1) when using block
wavelets such as the Haar wavelet or the approximation of the Mexican Hat
wavelet. First, the power traces that need to be aligned are transformed in a
summed trace. Each element at position t in the summed trace is the sum of
all the samples before and including sample t in the power trace. The formal
definition of the summed trace S of power trace P is given in equation (4):

S[0] = P [0]
S[t] = S[t− 1] + P [t]. (4)

The convolution of the Haar wavelet and the block version of the Mexican Hat
wavelet with scale s at position t in summed trace S can now be calculated
efficiently: the Haar wavelet now requires only 3 read operation regardless of its
scale and the Mexican Hat requires 4. This follows directly from their definitions
applied to summed traces, the result of which is shown in equations (5) and (6):

Haar(S, t, s) =
−(S[t]− S[t− s

2 ]) + (S[t + s
2 ]− S[t])√

s

=
−2 · S[t] + S[t− s

2 ] + S[t + s
2 ]√

s
, (5)

MexicanHat(S, t, s) =
−(S[t − s

6 ] − S[t − s
2 ]) + 2 · (S[t + s

6 ] − S[t − s
6 ]) − (A[t + s

2 ] − S[t + s
6 ])√

s

=
3 · (S[t + s

6 ] − S[t − s
6 ]) − (S[t + s

2 ] − S[t − s
2 ])√

s
.

(6)

4 New Algorithm

The proposed algorithm is inspired by U-SURF [2]. It has several tunable pa-
rameters but in order to ease the tuning attackers need to do, every parameter
in the algorithm is related to properties of the trace.

The algorithm consists out of four components: Detector, Descriptor, Matcher
and Warper. First the Detector finds points of interest (POI) in the reference
trace and the target traces. The Descriptor then generates a feature vector for
each POI based on their context. Using these vectors the Matcher will match
POIs in the reference trace with POIs in the target trace. Finally, the Warper
uses the matched points to stretch and shrink the target trace and to align them
with the reference trace. This is a recursive process starting with POIs detected
with large wavelets. Each recursive step the algorithm repeats itself on trace
parts in between the POIs from the previous step with a reduced wavelet scale.
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A POI in this paper is a data structure containing its position in a trace,
the wavelet scale which was used to detect it and a feature vector. The position
and scale are set by the Detector and the feature vector is generated by the
Descriptor. An area in the code consists of two positions marking the start
(inclusive) and end (inclusive) of the area. A match consists of a position in the
reference trace, a position in the target trace and a confidence value.

In the following sub-sections a detailed description is given for each of the
four components. The main procedure of the algorithm is shown in Algorithm 1.

Algorithm 1. The main loop of RAM
procedure RAMinner(m:matches, ref :sumtrace, tar:sumtrace, aref :area,
atar:area, ws:wavsize)

if ws < Detmw ∨ atar.size = 0 ∨ aref.size = 0 then
return

end if

refpois = detect(ref, aref,ws)
tarpois = detect(tar, atar,ws)
describe(ref , refpois)
describe(tar, tarpois)
mat = match(refpois, tarpois)

if isEmpty(mat) then
RAMinner(m,ref, tar, aref, atar,ws/2)
return

end if
for All areas (mref,mtar) between neighbouring matches in mat do

RAMinner(m,ref, tar,mref,mtar,ws/2)
addMatch(m, mref.end, mtar.end)

end for
end procedure

procedure RAM(ref :trace, tar:trace)
mat = (0,0)
ws = argmaxx (x = Detmw · 2k | k ∈ N ∧ x < ref.size)
RAMinner(mat,MakeSumTrace(ref),MakeSumTrace(tar),{0, ref.size −

1}, {0, tar.size − 1}, ws)
return warp(tar, mat)

end procedure

4.1 Detector

The Detector detects POIs in the reference and target trace. A POI is a pattern
in the trace that can be quickly and repeatedly recognized in other traces of the
same set. The entire Detector procedure is shown in Algorithm 2.
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POIs are found by performing a wavelet transform. The response for wavelets
of various scales is calculated for the trace. The algorithm starts with the largest
wavelet scale that satisfies this predicate Detmw · 2k < l with k being a natural
number, l being the trace length and Detmw being the minimum wavelet scale.
For each iteration the scale is halved until Detmw is reached. Due to the type of
wavelet used (Mexican Hat) Detmw should be a multiple of 3.

For performance reasons the wavelet responses are not calculated for every
sample but with a step size of 10% of the wavelet scale. A small step size slows
down the algorithm, whereas a big step size does not detect sufficient POIs.
Preliminary testing shows a value of 10% yields a good tradeoff. To be able to
compare the responses to a constant threshold, the responses are normalized
with respect to the wavelet scale. Samples with an absolute wavelet response
less than Detth times the standard deviation of the trace are discarded. The
constant Detth will be a parameter of the algorithm.

A best-of-its-neighbors filter is then applied to the remaining samples. If the
absolute wavelet response of a sample is not greater than the absolute wavelet
responses of its neighbors, the sample is discarded. Neighbors are defined here
as every sample within 3 times the step size from the sample under evaluation.
Early testing showed that at least 3 times the step size is needed here, as other-
wise too many POIs survive the filter, whereby the matcher will not be able to
differentiate them properly.

The samples that remain after the filter will be the POIs. Since these are
the points that will be used for alignment later on it is important that they are
located as accurate as possible. To achieve this the remaining responses will be
pinpointed by searching for the highest wavelet response in the vicinity (the step
size) of the point.

Fig. 2. A power trace (top) with its points of interest for two scales (middle=384,
bottom=6)
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Figure 2 shows the result of the Detector. The first image is the original
trace followed by two images that show the POIs found by the detector at dif-
ferent scales. As is expected, large wavelets result in much fewer POIs than
small wavelets. Therefore it is more efficient to match the POIs from large scale
wavelets to POIs from another trace. On the other hand, smaller wavelets give
more information on how to align the traces.

The type of wavelet used here defines on which patterns the responses will
be high. Searching for slope patterns (by using Haar wavelets) and for peak
patterns (by using Mexican hat block wavelets) was tried. Both wavelets are
shown in Fig. 1. We found that in the traces we analyzed that the Mexican Hat
block wavelet outperformed the Haar wavelet in finding the same POIs in similar
traces.

Algorithm 2. The main loop of the Detector
procedure detect(S:sumtrace, a:area, ws:wavsize)

B = buffer trace
step = max(1, ws/10)
pois = empty list
for i = a.start; i < a.end; i+ = step do

B[i] = MexicanHat(S, i, ws)
if abs(B[i]) < Detth ∗ stddev(RefTrace) then � Below threshold?

B[i] = 0
end if

end for

for i = a.start; i < a.end; i+ = step do
if B[i] �= 0 ∧ BestOfNeighbors(B, i) then � If best, add

addPOI(pois, P inPoint(S, i), ws)
end if

end for
return pois

end procedure

4.2 Descriptor

The descriptor (Algorithm 3) aims to uniquely describe each POI by its context.
It generates a feature vector which will be used by the matcher to calculate
the distance between two POIs. These features must be robust to noise and
because there are many POIs coming from one single trace, the features must
be fast to calculate. We use the same approach as in U-SURF: an area of Desas

times the scale around each POI is divided in several sections as can be seen in
Fig. 3. Desas is a tunable parameter of the algorithm. For each of the sections
a few simple features are calculated. The sections are used to retain temporal
information.
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Fig. 3. A selected POI (top) and 8 sections which are used for the features (bottom)

For each section a number Desss of Haar wavelet responses are calculated
(using the summed trace) at constant distance from each other with a wavelet
scale of Deshw times the scale of the POI. In order to focus on the area directly
around the POI, a Gaussian curve centered at the POI and with a standard
deviation of Desga is used to normalize the Haar wavelet response.

To include information about the polarity of the section all the wavelet re-
sponses are summed, and to include information about the intensity of the sec-
tion all the absolute wavelet responses are summed. The number of sections is
based on the feature count Desfc (2 features per section). The constants Deshw,
Desss, Desfc, Desga are tunable parameters of the algorithm.

4.3 Matcher

The Matcher (Algorithm 4) creates a mapping between the POI set of the refer-
ence trace and the POI set of the target trace based on the feature vectors. The
Matcher has to be robust to the fact that not every POI appears in both trace
and that descriptions of different operations may be similar.

For every POI from the reference trace a distance is calculated to every POI
from the target trace with the same scale. To allow comparison against a thresh-
old the normalized Euclidean distance is used, which is a special case of the
Mahalanobis distance and is defined in equation (7).

d(−→x ,−→y ) =

√√√√ N∑
i=1

(xi − yi)2

σ2
i

(7)

where σi is the standard deviation of the xi over the sample set. In our case σi

is calculated using every possible POI with the same scale. To do this the all
the POIs have to be calculated before the matching starts (note that this is not
shown in the algorithms), this will also speed up the algorithm. In some cases,
especially those with large scales, there are not enough POIs to give a proper
estimate for σi, but we find in practice this does not cause problems.
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Algorithm 3. The main loop of the Descriptor
procedure describe(S:sumtrace, pois:POIlist)

for All POI p from pois do
v = ZeroF illedV ector(Desfc)
da = Desas ∗ p.scale � size of the description area
sc = Desfc/2 � section count
ss = da/sc � section size
o = p.pos − sc/2 ∗ ss � offset, most left sample point
step = max(1, p.scale/Desss);

for s = 0; s < sc; s + + do � For each section
for i = 0; i < ss; i+ = step do � For each sample in the section

t = Haar(S, o + s ∗ ss + i, Deshw ∗ p.scale) � Calc Haar
t∗ = Gaussian(o + s ∗ ss + i − p.pos,Desga) � Normalize

end for
v[2 ∗ s]+ = t � Add response for section
v[2 ∗ s + 1]+ = abs(t) � Add absolute response for section

end for
setFeatureVector(p, v)

end for
end procedure

Each POI from the reference trace is matched with the POI with the smallest
distance in the target trace. For efficiency, if the distance is greater than the
threshold Matmd the match is removed. Testing shows that this removes most
of the mismatches as can be seen in Fig. 4.

Fig. 4. Two matched POI sets, with Matmd = 1000 (left) and Matmd = 4(right)

In the remaining matches there can still occur cross matches. By this we mean
that sample point refn of the reference trace is matched against sample point
tarn of the target trace while at the same time sample refn+p is matched against
sample tarn+q with p · q < 0. This is not allowed because it would violate the
temporal behavior of the trace.

To resolve these cross matches the confidence of a match and a penalty func-
tion are used. The confidence of a match is defined by the distance of the best
match divided by the distance for the second best match. The penalty function
halves the confidence of a match for every other match it crosses. The conflict-
ing match with the lowest confidence will than be removed from the set. This is
repeated until all cross matches are resolved.
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Algorithm 4. The main loop of the Matcher
procedure match(ref :POIlist, tar:POIlist)

matches = emptylist

for All POI p from ref do � Match POIs
q1 = argminq(dist(p.feats, q.feats)) | q ∈ tar) � Closest
q2 = argminq(dist(p.feats, q.feats)) | q ∈ tar ∧ q �= q1) � Second closest
d1 = dist(p.feats, q1.feats)

conf = 1 − d1/dist(p.feats, q2.feats)
if d1 < Matmd then

addMatch(matches, {p, q1, conf})
end if

end for

while crossmatches exist in matches do � Remove crossmatches
worst =argminm (m.conf ∗ 0.5NumCrosses(m,matches) | m ∈ matches)
removeMatch(matches,worst)

end while
return matches

end procedure

4.4 Warper

The Warper (Algorithm 5) takes a list of matched POIs from two traces and
shrinks and stretches sections of the target trace so it will be aligned with the
reference trace. In the result trace the values of the samples that are included
in the match list are set to the values of the target trace. Values in between
the matched points are interpolated. Various interpolation schemes have been
tried such as Nearest Neighbor, Linear, Cosine, Cubic and Hermite [4]. Hermite

Algorithm 5. The main loop of the Warper
procedure warp(tar:trace, mat:Matchlist)

t = TraceOfSize(tar.size)
for m = 1; m < mat.size;m + + do

ddest = mat[m].ref.pos − mat[m − 1].ref.pos � delta in reference trace
dsrc = mat[m].tar.pos − mat[m − 1].tar.pos � delta in target trace
r = dsrc/ddest � stretch/shrink factor

for i = 0; i < ddest; i + + do
t[mat[m].ref.pos + i] = interpolatedPoint(tar,mat[m].tar.pos + i ∗ r)

end for
end for
t[t.size-1] = tar[tar.size-1] � Copy last sample
return t

end procedure
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interpolation is similar to cubic but has tension and biasing parameters. The
tension controls tightens the curve at known points whereas bias twists the curve
towards one of the two points. Testing shows that differences were minimal but
slightly in favor of the Cubic interpolation scheme. The other schemes have not
been researched further.

The start and the end of the traces are not necessarily aligned. The samples
before the first matched sample are interpolated with the same parameters as
the samples between the first and the second matched samples. The same is done
at the end of the trace. We fill this with the values of the nearest sample.

5 Experiments and Results

In our experiments we intend to compare RAM to other well-known methods
for dealing with misalignment: Static Alignment [9], SW-DPA [6] and Elastic
Alignment [10]. We compare first-order success rates of CPA after performing the
different alignment techniques applied to measurements taken from a software
DES implementation.

The hardware used for our measurements consists of the standard side channel
equipment: a smart card reader, a LeCroy 104Xi oscilloscope and our acquisi-
tion and analysis software. We also employed a 48 MHz analog lowpass filter.
The traces were acquired from a programmable smart card, which contains a
software implementation of DES, including software countermeasures that can
be turned on and off. For these measurements we enabled the random delays
countermeasure, which introduces random wait states during execution of the
DES algorithm. The card runs at an external clock of 4 MHz.

Timing measurements for the comparison of different alignment methods are
performed on a computer with an E6750 2.66 GHz processor and 2 Gb of RAM
and running Windows 7. We sampled the traces at 250 megasamples per sec-
ond. We chose for a much higher frequency than the clock speed to get a more
accurate reading per clock cycle. The acquired traces were compressed right af-
ter acquisition by averaging samples until we effectively obtained one sample per
clock. In total we acquired 8248 consecutive clock cycles per DES execution, pro-
viding us with several rounds of DES. This was performed with random inputs
for a total of 500k traces.

A typical trace from the resulting set is shown in Fig. 5. Note that the y-axis
shows negative mVolts. This is due to an offset introduced during acquisition
and has no consequences for our research.

Fig. 5. A typical trace from the data set, showing the last round of the encryption
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5.1 Settings

Here we elaborate on different settings used for alignment algorithms we compare
our algorithm with.

Static alignment settings: For static alignment we selected a trace fragment of
600 samples at the end of the encryption. The allowed shift for this fragment
was set to 250 samples.

Sliding window settings: We preprocessed the traces for a SW-DPA attack [6],
by averaging the samples as described previously. The number of samples
per clock cycle was set to 1 and the size of the sliding window that we used
was 50, 100 and 200.

Elastic alignment settings: We also compare our proposed algorithm to Elastic
Alignment. We set the radius in which FastDTW (as in [10]) will search
for the optimal warppath. A radius of 70 provided a good trade-off between
alignment quality and speed.

RAM align: For the new algorithm the initial values of the constants were chosen
close to the values of U-SURF [2] whenever possible. The other baselines
for the constants were tuned on the basis of previous experimenting. Using
the correlations of the target traces with the reference trace it was decided
whether increasing or decreasing the constant yields better results. Various
values for the constants that we tested are given in Table 1.

Table 1. Different values for the constants that were used for tuning the algorithms

Constant Notation Values tested Baseline value

Minimum Wavelet Size Detmw 3, 6, 12 6
Response Threshold Detth 2, 2.5, 3 3
Area Size Desas 12, 16, 20 20
Feature Count Desfc 16, 24, 32 32
Haar Wavelet Size Deshw 1.5, 2.5 -
Standard Deviation Gaussian Desga 2.8, 3.3, 3.8 -
Samples Per Section Desss 10, 20 -
Maximum Distance Matmd 2.3, 2.5, 2.7 2.5

Some additional explanations for constants and their values are given below.

Minimum Wavelet Size (Detmw) This constant specifies the stopping criterion
for the detector. The detector starts with large wavelets and decreases them
after every iteration. If this wavelet size is reached then the detector is fin-
ished. In addition, lowering this value increases computation time, as usually
there are much more possible POIs at low wavelet sizes, which possibly com-
plicates correct matching. Lowering this value provides more precision for
alignment and could increase the overall score.

Response Threshold (Detth) The detector will only select samples to become
a POI if the wavelet response at that point is greater than Detth times
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the standard deviation of the trace. A higher value input less points to
the matcher, but may result in too few POIs to do proper alignment. A
lower value also increases the running time of the algorithm. The matching
algorithm is quadratic in the number of POIs detected, which makes this
very computationally demanding.

Area Size (Desas) This specifies the size of the area around the POI which will
be used for the generation of the feature vector for this POI. The area of
this POI will be Desas times the scale of the POI. Low values mean that
POIs are related to each other based on the samples close to the POI (which
could have patterns that exist multiple times in the trace). High values take
samples further away into account, but could cause confusion that due to
the fact that areas of POIs overlap too much.

Feature Count (Desfc) This constant is related to the area size. It specifies
how many features should be calculated in the specified area. More features
means longer computation time but more accuracy for relating POIs.

Haar Wavelet Size (Deshw) The descriptor uses Haar wavelets of size Deshw

times the scale of the POI to generate the feature vectors. Higher values
means searching for patterns at lower signal frequencies. The wavelet be-
comes bigger and is less sensitive for higher frequencies.

Standard Deviation Gaussian (Desga) The descriptor weighs the Haar wavelet
responses with a Gaussian with an standard deviation of Desga times the
scale of the POI. Lowering the value of this constant means that the descrip-
tion is focused on samples closer to the POI.

Samples Per Section (Desss) This is the number of samples used per section.
The more samples used, the more accurate the descriptor can describe that
section. If significantly less samples are used it speeds up the algorithm.

Maximum Distance (Matmd) This constant specifies the maximum allowed
distance between two matched POIs. If a match has a distance of more than
Matmd it will be discarded. Lowering this value will prevent cross matching,
but lowering it too much will discard usable matches.

Due to the fact that some of the constants influence each other, changing the
setting on one constant may change the optimal settings for the others. More de-
tailed graphical representation of the constants tuning is given in the appendix.
After tuning the best results were obtained with the following values for the con-
stants: Detmw = 3, Detth = 2.5, Desas = 16, Desfc = 32, Deshw = 2, Desga =
3.3, Desss = 10, Matmd = 2.3.

Result Analysis. The final results are the calculated first order success rates.
After alignment, the trace set is split into subsets. For each subset a number
of traces Ns is selected and a CPA [3] attack is performed on these traces.
The module counts the number of successful attacks S+ and the number of
unsuccessful attacks S− and calculates the first order success rate Rs:

Rs =
S+

S+ + S−
.
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5.2 Comparison Results

The running times of the different algorithms are listed in table 2. The proposed
algorithm clearly outperforms Elastic Alignment in computation time. Although
Static Alignment and SW-DPA are faster they are not able to align the traces
in such a way that a successful DPA attack can be performed as can be seen
in Fig. 6. When comparing the success rate to the number of traces used the
proposed algorithm performs similar to Elastic Alignment. However, when com-
paring the success rate to the time it took to align the traces, the proposed
algorithm outperforms Elastic Alignment with an order of magnitude.

Table 2. Timing results for the various alignment methods. The time listed for SW-
DPA is the additional time it took to perform the DPA attack.

Algorithm Run Time Time Per Trace

Static Alignment 12 minutes 1.44 ms

SW-DPA 18 minutes 2.16 ms

RAM 76 minutes 9.1 ms

Elastic Alignment 3115 minutes 373.8 ms

Fig. 6. Success To Trace Ratio (Left) and Success to Time Ratio (Right). Note that
data points in the right graph are not measurements but translated and interpolated
points from other experiments.

6 Conclusions and Future Work

Although several algorithms to align the measurements exist today they are
all limited in either success-to-number-of-traces-ratio or computation time. In
this work we introduce a new algorithm that obtains the best performances of
previous works in terms of both the success rate and computation time. The
proposed algorithm consists of four components. Each of these components can
be replaced so that new approaches can easily be tested. This provides an easy
to use framework for alignment algorithms.

We illustrate our results by experiments on a smartcard with a software im-
plementation of triple DES to measure the performance of the algorithm. We
used several experiments to tune the parameters of the algorithm. All of the
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parameters are dependent on properties of the traces to be aligned. This results
in an algorithm which is easy to use. However, it is possible that further experi-
menting (with other implementations and platforms) could result in other values
for the parameters.

We compared our proposed algorithm with Static Alignment, Sliding Window
DPA and Elastic Alignment. While Static Alignment and Sliding Window DPA
are not capable of properly aligning the used trace set, Elastic Alignment showed
excellent performance but was relatively slow. It took almost 52 hours to process
the 500 000 traces from our data set. Our proposed algorithm performed similarly
in terms of success ratio compared to Elastic Alignment but took only 76 minutes
to process the data set.
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Abstract. The Java Card uses two components to ensure the security
of its model. On the one hand, the byte code verifier (BCV) checks,
during an applet installation, if the Java Card security model is ensured.
This mechanism may not be present in the card. On the other hand,
the firewall dynamically checks if there is no illegal access. This paper
describes two attacks to modify the Java Card control flow and to execute
our own malicious byte code. In the first attack, we use a card without
embedded security verifier and we show how it is simple to change the
return address of a current function. In the second attack, we consider
the hypothesis that the card embeds a partial implementation of a BCV.
With the help of a laser beam, we are able to change the execution flow.

Keywords: Java Card, control flow, laser, Java Card Stack, attack.

1 Introduction

Java Card is a kind of smart card that implements one of the two editions,
“Classic Edition” or “Connected Edition”, of the Java Card 3.0 standard [8].
Such smart cards embed a virtual machine (VM) which interprets codes already
romized with the operating system or downloaded after issuance1. In fact, Java
Card is an open platform for smart cards, i.e. able of loading and executing new
applications after issuance. Thus, different applications from different providers
run in the same smart card. Thanks to type verification, byte codes delivered by
the Java compiler and the converter (in charge of giving a compact representation
of class files) are safe, i.e. the loaded application is not hostile to other applica-
tions in the Java Card. Furthermore, the Java Card firewall checks application
permissions and access in the card, enforcing isolation between them.

Java Cards have shown improved robustness compared to native applications
regarding many attacks. They are designed to resist to numerous attacks using
both physical and logical techniques. Currently, the most powerful attacks are
hardware based attacks and particularly fault attacks. A fault attack modifies
1 Due to security reasons, the ability to download code into the card is controlled by

a protocol defined by Global Platform [3]. This protocol ensures that the owner of
the code has the necessary authorization to perform the action.

E. Prouff (Ed.): CARDIS 2011, LNCS 7079, pp. 283–296, 2011.
c© IFIP International Federation for Information Processing 2011
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parts of memory content or a signal on internal bus, which can lead to deviant
behavior exploitable by an attacker. A comprehensive consequence of such at-
tacks can be found in [6]. Although fault attacks have been mainly used in the
literature from a cryptanalytic point of view (see [1,4,9]), they can be applied to
every code layers embedded in a device. For instance, while choosing the exact
byte of a program the attacker can bypass counter-measures or logical tests. We
called mutant such modified application.

2 State of the Art

2.1 Java Card Security

The Java Card platform is a multi-application environment where critical data
of an applet must be protected against malicious access from another applet.
To enforce protection between applets, classical Java technology uses the type
verification, class loader and security managers to create private namespaces for
applets. In a smart card, complying with the traditional enforcement process is
not possible. On the one hand, the type verification is executed outside the card
due to memory constraints. On the other hand, the class loader and security
managers are replaced by the Java Card firewall.

Allowing code to be loaded into the card after post-issuance raises the same
issues as the web applets. An applet not built by a compiler (handmade byte
code) or modified after the compilation step may break the Java sandbox model.
Thus, the client must check that the Java-language typing rules are preserved at
the byte code level. Java is a strongly typed language where each variable and
expression has a type determined at compile-time, so that if a type mismatch
from the source code, an error is thrown. The Java byte code is also typed.
Moreover, local and stack variables of the VM have fixed types even in the
scope of a method execution but no type mismatches are detected at run time,
and it is possible to make malicious applets exploiting this issue. For example,
pointers are not supported by the Java programming language although they
are extensively used by the Java VM (JVM) where object referenced from the
source code are relative to a pointer. Thus, the absence of pointers reduces the
number of programming errors. But it does not stop attempts to break security
protections with unfair use of pointers.

The BCV is an essential security component in the Java sandbox model: byte
code alteration contained in an ill-typed applet may induce a security flaw. The
byte code verification is a complex process involving elaborate program analyses
using a very costly algorithm in time consumption and memory usage. For these
reasons, lot of cards do not implement this kind of component and rely on the
responsibility of the organization which signs the code of the applet to ensure
that they are well-typed.

The separation of different applets is enforced by the firewall which is based
on the package structure of Java Card and the notion of context. When an applet
is created, the Java Card Runtime Environment (JCRE) uses an unique Applet
IDentifier (AID) from which it is possible to retrieve the name of the package in
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which the applet is defined. If two applets are an instance of classes of the same
Java Card package, they are considered in the same context. There is also a super
user context, called the JCRE context. Applets associated with this context can
access to objects from any other context on the card.

Each object is assigned to a unique owner context which is the context of the
created applet. An object method is executed in the owner object context. This
context provides information allowing, or not, to access to another object. The
firewall prevents a method executed in a context from accessing to any attribute
or method of objects to another context.

2.2 The CAP File

The CAP (for Convert APplet) file format is based on the notion of components.
It is specified by Oracle [8] as consisting of ten standard components: Header,
Directory, Import, Applet, Class, Method, Static Field, Export, Constant
Pool and Reference Location and one optional: Descriptor. Moreover, the
targeted Java Card VM (JCVM) may support user custom components. We
except the Debug component because it is only used on the debugging step and
it is not sent to the card.

Each component has a dedicated role and is linked to each others. A modifica-
tion, volunteer or not, of a component is difficult and may provide meaningless
file. An invalid file is often detected during the installation step by the target
JCVM.

2.3 Logical Attacks

The Hubbers and Poll’s Attack Erik Hubbers et al. made a presentation at
CARDIS 2008 about attacks on smart card. In their paper [5], they present a
quick overview of the classical attacks available and gave some counter-measures.
They described four methods:

1. CAP file manipulation,
2. Fault injection,
3. Shareable interfaces mechanisms abuse and
4. Transaction Mechanisms abuse

The goal of (1) is to modify the CAP file after the building step to bypass the
BCV. The problem is that, like explained before, an on-card BCV is an efficient
system to block this attack. Using the fault injection in (2), the authors succeed
to bypass the BCV. Even if there is not particular physical protection, this attack
is efficient but quiet difficult to perform and expensive.

The idea of (3) abusing shareable interfaces is really interesting and can lead
to trick the VM. The main goal is to obtain a type confusion without the need to
modify the CAP files. To do that, the authors create two applets which commu-
nicate using the shareable interface mechanism. To create a type confusion, each
applet uses a different type of array to exchange data. During compilation or
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on loading, there is no way for the BCV to detect a problem. But it seems that
every card tried, with an on-card BCV, refused to allow applets using shareable
interface. As it is impossible for an on-card BCV to detect this kind of anomaly,
Hubbers et al. emitted the hypothesis that any use of shareable interface on card
can be forbidden with an on-board BCV.

The last option left is the transaction mechanism (4). The purpose of trans-
action is to make a group of atomic operations. Of course, it is a widely used
concept, for instance in databases, but still complex to implement. By defini-
tion, the rollback mechanism should also deallocate any objects allocated during
an aborted transaction and reset references to such objects to null. However,
Hubbers et al. found some cases where the card keeps the reference to objects
allocated during transaction even after a rollback.

Moreover, the authors described the easiest way to make and exploit a type
confusion to gain illegal access to otherwise protected memory. A first example
is to get two arrays with different types, a byte and a short array. If a byte array
of 10 bytes is declared and it exists a reference to a short array, it is possible to
read 10 shorts, so 20 bytes. With this method they can read the 10 bytes stored
after the array. If Hubbers et al. increase the size of the array, they will be able
to read as much memory as they want. The main problem is more how to read
memory before the array?

The other used confusion is between an array of bytes and an object. If Hub-
bers et al. put a byte as first object attribute, it is bound to the array length.
Then it is really easy to change the length of the array using the reference to
the object. With this attack, the problem becomes how to give a reference to an
object for another object type?

Barbu et al.’s Attack: Combined Physical & Logical Attack. At CARDIS
2010, Barbu et al. described a new kind of attack in their paper [2]. This attack
is based on the use of a laser beam which modifies a runtime type check (the
checkcast instruction) while running. This applet was checked by the on-card
BCV, considered as valid, and installed on the card. The goal is to cause a type con-
fusion to forge a reference of an object and its content. We consider three classes
A, B and C. They are declared in the listing 1.1.

public class A {
byte b00 , . . . , bFF

}

public class B {
short addr

}

public class C {
A a ;

}

Listing 1.1. Classes used to create a type confusion

The cast mechanism is explained in the JCRE specification [8]. When casting
an object to another, the JCRE dynamically verifies if both types are compatible,
with a checkcast instruction. Moreover, an object reference depends on the card
architecture. The following example can be used:
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T1 t1; aload @t1
T2 t2 = (T2) t1;⇐⇒ checkcast T2

astore @t2

The authors want to cast an object b to an object c. If b.addr is modified to
a specific value, and if this object is cast to a C instance, you may change the
referenced address by c.a. But the checkcast instruction prevents from this
illegal cast.

Barbu et al. use in his AttackExtApp applet (listing 1.2) an illegal cast at
line 9.

1 public class AttackExtApp extends Applet {
2 B b ; C c ; boolean classFound ;
3 . . . // Constructor , i n s t a l l method
4 public void proce s s (APDU apdu) {
5 . . .
6 switch ( bu f f e r [ ISO7816 .OFFSET_INS] ) {
7 case INS_ILLEGAL_CAST:
8 try {
9 c = (C) ( ( Object ) b ) ;

10 return ; // Success , re turn SW 0x9000
11 } catch ( ClassCastExcept ion e ) {
12 /∗ Fai lure , re turn SW 0x6F00 ∗/
13 }
14 . . . // more l a t e r de f i ned i n s t r u c t i o n s
15 } } }

Listing 1.2. checkcast type confusion

This cast instruction throws a ClassCastException exception. With specific
material (oscilloscope, etc.), the thrown exception is visible in the consumption
curves. With a time-precision attack, the authors prevent the checkcast from
being thrown with the injection of laser based fault. When the cast is done, the
references of c.a and b.addr link the same value. Thus, the c.a reference may be
changed dynamically by b.addr. This trick offers a read/write access on smart
card memory within the fake A reference. Thanks to this kind of attack, Barbu
et al. can apply their combined attack to inject ill-formed code and modify any
application on Java Card 3.0, such as EMAN1 [6].

3 EMAN2: A Stack Underflow in the Java Card

3.1 Genesis

The aim of this attack is to modify the register which contains the method
return address by the address of an array which contains our malicious byte
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code. To succeed, the target smart card has no BCV and we know its loading
keys. For this work, we used two tools developed in the Java-language. The first
one, the CFM [11] (for CAP File Manipulator) provides a friendly way to parse
and full-modify the CAP files. The other one is the Java library OPAL [10] used
to communicate with the card. So, to perform this attack, we must:

1. find the array address which contains the malicious byte code;
2. find where is located, in the Java Card stack, the address of the return

function;
3. change this address by the address of the byte code contained in our malicious

array.

We will explain each step in the next subsections.

3.2 How to Obtain the Address of Our Malicious Array?

In a previous work [6], we explained how to execute auto-modifiable code in a
Java Card. This malicious byte code was stored in a byte-array and called by
an ill-formed applet. We also have to remember the way to obtain the array
address.

1 public short getMyAddressByteArray (byte [ ] array ) {
2 short foo=(byte ) 0x55AA;
3 array [ 0 ] = (byte ) 0xFF ;
4 return foo ;
5 }

Listing 1.3. Method to retrieve the address of an array

In order to retrieve the address of an array, we implemented the method
getMyAddressByteArray described in the listing 1.3. In its unmodified version,
it returns the value contained in foo. The instruction in line 3 uses an array
given in the function parameter. As seen in listing 1.4, the JCVM needs first to
push a reference to the array tab2. Finally the function returns the previously
pushed value of foo.

If an event changed our byte code like described in the listing 1.5, our function
directly returns the reference of the array given as parameter. To make this
modification, we use the CFM to “nop” each instruction between push the array
reference and return the short pushed value. These instructions are written in
a bold font in the listing 1.5. Using a card without BCV, an applet containing
this function provides address of each array given in its parameter. The returned
address is locate in the EEPROM area.

2 In our tested card, all references are performed in a short type.
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public short
getMyAddressByteArray

(byte [ ] array ) {
03 // f l a g s : 0 max_stack : 3
21 // nargs : 2 max_locals : 1
10 AA bspush −86
31 sstore_2
19 aload_1
03 sconst_0
02 sconst_m1
39 sastore
1E sload_2
78 s r e tu rn
}

Listing 1.4. The Java byte code
corresponding to the function 1.3

public short
getMyAddressByteArray

(byte [ ] array ) {
03 // f l a g s : 0 max_stack : 3
21 // nargs : 2 max_locals : 1
10 AA bspush −86
31 sstore_2
19 aload_1
00 nop
00 nop
00 nop
00 nop
78 s r e tu rn
}

Listing 1.5. The function 1.3 with the
modified return

On the targeted JCVM, the address returned by the malicious function
getMyAddressByteArray does not refer to the array data. It is a pointer on
the array header which is structured by 6 bytes that include the type and the
number of contained elements. If the array is transient, the RAM array address
follows the header. Else, the array data is stored after the 6-byte header.

3.3 Java Card Stack

To perform this attack, we should understand the Java Card stack. In fact, a
Java Card contains two stacks, the native and the JCVM stack. The first one is
used by the smart card operating system. The second one, is used by the JCVM
to execute some Java applets value pushed in the Java Card stack.

To characterize the Java Card stack, We used the method ModifyStack, listed
in 1.6. This method has three parameters: apduBuffer, a reference to a byte
array; apdu, a reference to an instance of the APDU class; and a, a short value.
The figure 1(b) represents the Java Card stack where each method parameter,
variable and a reference to the class instance (this) are stored in the local
variables area. Next, the information present in the frame header (in L6 and L7)
are important data which hold the method return address. Finally, the stack
contains data pushed while the method run3.

The BCV must checks several points. In particular: it should prevent any
violations of the memory management (illegal reference access), stack underflow
or overflow. This means these checks are potentially not verified during runtime
and thus can lead to vulnerabilities. The Java frame is a non persistent data
structure implemented in different ways and the specification gives no designed
direction for it.
3 The maximum number of values to push is defined in the field MAX_STACK included

in each Java Card method header.
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...

MAX_VALUE values

Frame header

Local variables

...

(a) Generic Java Card stack

Previous frame

Current frame

...

0x0006 L10

getMyAddressByteArray ret. L9

MALICIOUS_ARRAY address L8

Return address L7

Unknown value L6

j L5

i L4

a L3

apdu L2

apduBuffer L1

this L0

...

(b) An Example of the Java Card
Stack

Fig. 1. Java Card stack characterization

3.4 Our Attack

Our attack aims to change the index of a local variable4. We propose to use two
instructions: sload and sstore. As described in the JCVM specification [8],
these instructions are normally used in order to load a short value from a local
variable and to store a short value in a local variable. The CFM allows us to
modify the CAP file in order to access the system data and the previous frame.
As example, the code in the listing 1.6, line 4, stores the value returned by
4 The specification says that the maximum number of variables that may be used in

a method is 255. It includes local variables, method parameters, and in case of an
instance method invocation, a reference to the object on which the instance method
is being invoked.
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1 public void ModifyStack (byte [ ] apduBuffer , APDU apdu , short
a )

2 {
3 short i =(short ) 0xCAFE;
4 short j=(short ) ( getMyAddressByteArray (MALICIOUS_ARRAY)

+6) ;
5 i = j ;
6 }

Listing 1.6. Function to modify the Java Card stack

getMyAdressByteArray() and adds 6 into variable j. Then, it loads the value
of j, and stores it into variable i (line 5).

So, if we change the operand of sload (sload 5, at the offset 0x11 of the
listing 1.7) we store information from a non-authorized area into the local 5.
Then, this information is sent out using an APDU. We tried this attack using
a +2 offset and we retrieved the short value 0x8AFA which was the address of
the caller. Thus, we were able to read without difficulty in the stack after our
local variables. Furthermore, we can write anywhere into the stack below: there
is no counter-measures. The targeted smart card implements an interpreter that
relies entirely on the byte code verification process.

Next, we modified the CAP file to change the return address by our malicious
array address, this step was explained in the section 3.2. When this modification
is performed, the exception 0x1712 is throw. So, we proved within this applet
that we can redirect the control flow of such a JCVM.

public void ModifyStack
(byte [ ] apduBuffer , APDU apdu , short a ) {

0x00 : 02 // f l a g s : 0 max_stack : 2
0x01 : 42 // nargs : 4 max_locals : 2
0x02 : 11 CA FE sspush 0xCAFE
0x05 : 29 04 s s t o r e 4
0x07 : 18 aload_0
0x08 : 7B 00 get s tat i c_a 0
0x0A : 8B 01 invok ev i r t u a l 1
0x0C : 10 06 bspush 6
0x0E : 41 sadd
0x0F : 29 05 s s t o r e 5
0x11 : 16 05 s load 5
0x13 : 29 04 s s t o r e 4
0x15 : 7A return

}

Listing 1.7. Malicious byte code applet of the function 1.6
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3.5 Counter-Measure

As we said, no important knowledge are needed in Java Card security and the
simple modifications of a CAP file, with the tool [11], may perform these attacks.

The purpose of the stack underflow is to get access to memory area normally
used by the system to the previous frame. A simple counter-measure would con-
sist in checking the number of locals and arguments provided in the header of the
method. With this simple check one cannot gain access to the system area where
the JPC (previous Java Program Counter) and SPC (previous Stack Pointer) are
stored. In order to avoid parsing the previous frame, the implementation can use
the linked frame approach like in the simple RTJ VM references. This approach
implies to create a new frame and to copy the argument of the current frame into
the new one, instead of the implemented method which uses the current stack
as the beginning of the new frame. Desynchronizing frames will avoid simply a
stack underflow attack.

4 EMAN4: Modifying the Execution Flow with a Laser
Beam

4.1 Description of Our Attack

In the section 3, we supposed that there is no BCV. This hypothesis allowed us to
modify the CAP file before loading it on the card. For the following, the targeted
card has an improved security system based on a partial implementation of a
BCV. This component statically checks the byte code during the loading step
and dynamic byte code checks are done during the runtime.

To perform this attack, we provide an external modification, such as the Barbu
et al.’s attack, with a laser beam to change the control flow to execute our own
malicious byte code. Furthermore, we have the smart card loading keys.

In order to modify the execution flow, we will use the for loop properties.
Next, after the understanding of how this kind of loop works, we modify it to
change the control flow.

4.2 How Re-loop a for Loop

The for loop is probably the most widely used loop in the imperative program-
ming languages. A classic for loop, such as in the listing 1.8, may be split in
three parts. The first one is the declaration of the loop with the preamble (the
initialization of the loop), followed by the stop condition and a function exe-
cuted at each iteration. Next, the loop body contains the executed instructions
for each iteration. Finally, a jump-like instruction re-loop to the next iteration
if the stop condition is not satisfied.

According to the amount of instructions contained in the loop body, the re-
loop instruction has relative offset on 1 or 2-byte (±127 or ±255 bytes). In the
Java Card byte code, the re-loop instruction may be a goto or goto_w. For our
attack, we are focused on the goto_w statement at the offset 0xEB (listing 1.9).
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for ( short i=0 ; i<n ; ++i ) {
foo = (byte ) 0xBA;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
// Few i n s t r u c t i o n s have
// been hidden f o r a
// b e t t e r meaning .
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;

}

Listing 1.8. A for loop

0x00 : sconst_0
0x01 : sstore_1
0x02 : sload_1
0x03 : sconst_1
0x04 : if_scmpge_w 00 7C
0x07 : aload_0
0x08 : bspush BA
0x0A : put f ie ld_b 0
0x0C : aload_0
0x0D : ge t f i e ld_b_th i s 0
0x0F : put f ie ld_b 1
// Few i n s t r u c t i o n s have
// been hidden f o r a
// b e t t e r meaning .
0xE3 : aload_0
0xE4 : ge t f i e ld_b_th i s 1
0xE6 : put f ie ld_b 0
0xE8 : s i n c 1 1
0xEB: goto_w FF17

Listing 1.9. Associated byte codes of
the loop 1.8

4.3 Our Attack

To begin, we install into a Java Card an applet which contains the loop for
described in the listing 1.8. The function which contains this loop is compliant
with each security rule of Java Card and the embedded smart card BCV allows
its loading.

An external modification based on a laser beam against the goto_w instruc-
tion, at the offset 0xEB in the listing 1.9, may change the control flow of the
applet. We would like to redirect this flow in the array MALICIOUS_ARRAY to ex-
ecute our malicious byte code. Thus, changing the goto_w parameter 0xFF17 to
0x0017 involves a relative jump to the 17th byte after this instruction. To success
attack, our array must locate after the modified function in the EEPROM area.

Smart Card Memory Management. The main difficulty regarding this at-
tack is the memory management. Indeed, the static array MALICIOUS_ARRAY
must physically be put after our malicious function. For that, we analyzed how
our targeted smart card stores its data. In order to understand the algorithm
used by the card to organize its memory, we did the following method:

1. first, few chosen applets are installed on the card within a careful dump of
the EEPROM memory between each install,

2. next, the card is stressed by installing and deleting different applets size. A
dump is done at each step.
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For each analyzed smart card, we obtained the same algorithm used to manage
the memory. These Java Cards have a first fit algorithm where the applet data are
stored after its byte code. If the smart card managed few applets without causing
fragmentation, it is likely that the applet data is stored before the corresponding
applet byte code.

In our case, there were no installed applet before we installed our. The dump
obtained is listed in 1.10.

0x0A7F0: 18AE 0188 0018 AE00 8801 18AE 0188 0018
0x0A800: AE00 8801 18AE 0188 0018 ae00 8801 18ae
0x0A810: 0188 0059 0101 A8FF 177A 008A 43C0 6C88
0x0A820: abcd ef00 0000 0000 0000 0000 0000 0000
0x0A830: 0000 0000 0000 0000 0000 0000 0000 0000
0x0A840: 0000 0000 0000 0000 0000 0000 0000 0000
0x0A850: 0000 0000 0000 0000 0000 0000 0000 0000
0x0A860: 0000 0000 0000 0000 0000 0000 0000 0000
0x0A870: 0000 0000 0000 0000 0000 0000 0000 0000
0x0A880: 0000 0000 0000 0000 0000 0000 0000 0000
0x0A890: 0000 0000 0000 0000 1117 1200 0000 8D6F
0x0A8A0: C000 0000 0000 00FE DCBA

Listing 1.10. Memory organization of our installed applet

As may be seen in the dump 1.10, the function to fault precedes the array
MALICIOUS_ARRAY in light-gray. This dump is a linked byte code contrary to the
byte code listed in 1.9.

The Goto Redirection. Before injecting our fault, the function returns 0x9000
(status without error).

After precisely targeted the high-byte parameter of the goto_w instruction
located at 0xA817 in the listing 1.10, a laser beam attack swaps 0xFF17 to
0x0017. This fault allows to redirect the execution flow. Indeed, the goto_w
jumps forward to go into the array MALICIOUS_ARRAY. A landing area of nop
catches up the instruction pointer which will execute our malicious code, here
an exception throws the value 0x1712. This result proves that we succeeded to
change the control flow of our applet.

Moreover, even if the memory is encrypted, this kind of attack has fifty percent
to change the goto_w instruction statement to redirect towards the front.

4.4 Counter-Measures

Creating a mutant application uses the same way than changing an applet after
its loading. To protect the JCVM against this attack, voluntary or not, we de-
veloped some counter-measures described in [7]. We are going to present a brief
resume of these counter-measures.

The XOR Detection Mechanism. This protection is based on basic blocks.
It allows code integrity and application control flow checking. A basic block is a
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sequence of instructions with a single entry point and a single exit point5. For
each basic bloc, a checksum is computed by using the XOR operation on all
the bytes composing a basic block. Then this table is stored in the CAP file as
a Java Card custom component. The interpreter has to be modified to exploit
and verify the checksum information. During runtime, the interpreter computes
again the checksum and compares it with the stored values.

The Field of Bit Detection Mechanism. This counter-measure checks the
nature of the element stored in the byte array of the CAP file. A tag (bit) is
associated to each byte of the bytecode. The tag has the value 0 if the bytecode
is an opcode, and it has the value 1 if the byte code is a value (a parameter of
an opcode). During an attack, the following situations can appear:

1. An increase of operands number for the instruction, it is the case when add
(no operand) is replaced by icmpeq (one operand).

2. A decrease of operands number for the instruction, it is the case when aload
(one operand) is replaced by athrow (no operand).

3. No change on operand number: it is the case when an iload (one operand)
is replaced by a return (one operand).

This method can detect when the changing 1 and 2 happen. During the compi-
lation, a field of bit is generated representing the type of each element contained
in the method byte array. It is stored also as a Java Card custom component
in the CAP file. The interpreter checks before executing an opcode that its byte
was scheduled to be executed or not.

The Path Check Mechanism. This method computes the control flow graph
of the method by extracting the basic blocks from the code. The list of paths
from the beginning vertex is computed for each vertex of the control flow graph.
This computed paths are encoded using the following convention:

1. Each path begins with the tags 0 and 1 to avoid a physical attack that
changes it to 0x00 or to 0xFF.

2. If the instruction that ends the current block is an unconditional or con-
ditional branch instruction when jumping to the target of this instruction,
then the tag 0 is used.

3. If the execution continues to the instruction that immediately follows the
final instruction of the current block then the tag 1 is used.

If the final instruction of the current basic block is a switch instruction, the path
is made by any number of bits that are necessary to encode all the targets. When
interpreting the byte code, the VM computes the path followed by the program
using the same convention; for example, when jumping to the target of a branch
instruction it saves the tag 0. Then prior to the execution of a basic block, the
5 The execution of a basic block starts only at an entry point, and leaves a basic block

only at an exit point.
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VM checks that the followed path is an authorized path, i.e. a path that belongs
to the list of path computed for this basic block. In the case of a loop (backward
jump) the interpreter checks the path for the loop, the number of references and
the number of values on the operand stack before and after the loop, to be sure
that for each round the path remains the same.

5 Conclusion

In this paper we described two ways to change the execution flow of an applica-
tion after loading it into a Java Card. The first method, EMAN2, provides a way
to change the return address of the current method contained in its frame stack.
This attack is possible because there is no check during the stack operations. The
second method, EMAN4, uses a laser beam to modify a well-formed applet loaded
and installed on the card to become mutant, even with the on-board BCV.

These two attacks allow to execute malicious code in the JCVM without
being detected by the firewall component. In the case of EMAN2, we proposed
two counter-measures. A contratrio, EMAN4 needs a good knowledge of the
targeted JCVM and to find the faulted area with the laser beam.

References
1. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.: Fault Attacks on RSA

with CRT: Concrete Results and Practical Countermeasures. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003)

2. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining Fault
and Logical Attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.)
CARDIS 2010. LNCS, vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

3. Global Platform: Card Specification v2.2 (2006)
4. Hemme, L.: A Differential Fault Attack Against Early Rounds of (Triple-) DES.

In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 254–267.
Springer, Heidelberg (2004)

5. Hubbers, E., Poll, E.: Transactions and non-atomic API calls in Java Card: spec-
ification ambiguity and strange implementation behaviours. Dept. of Computer
Science NIII-R0438, Radboud University Nijmegen (2004)

6. Iguchi-Cartigny, J., Lanet, J.: Developing a Trojan applet in a Smart Card. Journal
in Computer Virology (2010)

7. Lanet, J.L., Bouffard, G., Machemie, J.B., Poichotte, J.Y., Wary, J.P.: Evaluation
of the Ability to Transform SIM Application into Hostile Applications. In: Prouff,
E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 1–17. Springer, Heidelberg (2011)

8. Oracle: Java Card Platform Specification
9. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN

Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

10. Smart Secure Devices (SSD) Team – XLIM, Université de Limoges: OPAL: An
Open Platform Access Library, http://secinfo.msi.unilim.fr/

11. Smart Secure Devices (SSD) Team – XLIM, Université de Limoges: The CAP file
manipulator, http://secinfo.msi.unilim.fr/

http://secinfo.msi.unilim.fr/
http://secinfo.msi.unilim.fr/


Java Card Operand Stack: Fault Attacks,

Combined Attacks and Countermeasures

Guillaume Barbu1,2, Guillaume Duc2, and Philippe Hoogvorst2

1 Oberthur Technologies, Innovation Group,
Parc Scientifique Unitec 1 - Porte 2,

4 allée du Doyen George Brus, 33600 Pessac, France
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Abstract. Until 2009, Java Cards have been mainly threatened by Log-
ical Attacks based on ill-formed applications. The publication of the Java
Card 3.0 Connected Edition specifications and their mandatory on-card
byte code verification may have then lead to the end of software-based at-
tacks against such platforms. However, the introduction in the Java Card
field of Fault Attacks, well-known from the cryptologist community, has
proven this conclusion wrong. Actually, the idea of combining Fault At-
tacks and Logical Attacks to tamper with Java Cards appears as an even
more dangerous threat. Although the operand stack is a fundamental el-
ement of all Java Card Virtual Machines, the potential consequences of
a physical perturbation of this element has never been studied so far.
In this article, we explore this path by presenting both Fault Attacks
and Combined Attacks taking advantage of an alteration of the operand
stack. In addition, we provide experimental results proving the practical
feasibility of these attacks and illustrating their efficiency. Finally, we de-
scribe different approaches to protect the operand stack’s integrity and
compare their cost with a particular interest on the time factor.

Keywords: Java Card, Fault Attack, Logical Attacks, Combined At-
tack, Countermeasures.

1 Introduction

Java Card systems are generally considered as intrinsically safer than native ones
due to the security brought by the Java Card Runtime Environment (JCRE).
Indeed the strongly-typed Java language and the abstraction layer provided by
the Java Card Virtual Machine (JCVM) thwarts many Logical Attacks, such
as stack overflow for instance. Therefore numerous attacks against Java Cards
consist in corrupting the binary representation of Java Card applications in
order to bypass the inherent security of the platform[1–3]. Nevertheless, the
recent Java Card 3.0 Connected Edition has rendered such Logical Attacks (LA)
unpracticable by making on-card bytecode verification mandatory. That is to say,
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it should not be possible to load an application that is not conform to the Java
Card specifications [4–7].

However, as every embedded system, Java Cards are sensitive to attacks based
on physical phenomena, amongst which fault-injection-based attacks. The prin-
ciple of a fault injection on a smartcard is to modify the physical environment
of the card in order to provoke an abnormal behavior of the component. It can
target either the processor, the data/address bus or even the memory cells [8].
Since their publication in 1996, Fault Attacks (FA) have been mainly tackled
in the literature with regards to embedded cryptographic implementations [9–
11]. However these attacks can potentially target any function of an embedded
system [12].

Two years ago, the idea of combining FA with LA has emerged [13]. Such
attacks, called Combined Attacks (CA), use a fault injection to allow a malicious
application to bypass the security mechanisms of the system. CA have turned out
to be very efficient against improperly secured platform [14, 15]. This highlights
the need to neglect none of the components of an embedded system when dealing
with fault detection, and with security in general.

In Java-based systems, the operand stack appears as a central element. How-
ever its behaviour when targeted by fault injection has never been studied in the
literature. In this paper we investigate this path and describe both FA and CA
against Java Cards by disturbing the operand stack. We present practical results
and detail two case-studies leading to the corruption of an application execution
flow and an unduly granted authentication. These case studies prove the neces-
sity of carefully ensuring the integrity of the operand stack. To reach this goal,
we present and compare the efficiency of three different countermeasures.

The rest of this paper is organized as follow. In Section 2, we relate the ut-
termost importance of the operand stack in a Java Card environment. We also
introduce the notions relative to FA and CA and present the fault model we
consider in this work. Section 3 describes several Fault Attacks targeting the
operand stack and leading to abuse Java Card applications. Section 4 presents
how an attacker can threaten the platform and other applications with Com-
bined Attacks focused on the operand stack. Finally, Section 5 describes different
countermeasures against such attacks and compares their respective costs.

2 Basics of Operand Stack, Fault and Combined Attacks

In this section we give an overview of the operand stack in a Java-based environ-
ment. Then we detail the principles of FA and CA. Finally, we define the fault
model we have chosen in the context of our work and discuss this choice.

2.1 The Operand Stack, a Central Element of the JCVM

The JCVM, and more generally, Java Virtual Machines (JVMs) are known as
stack-based machines, in opposition to register-based machines. Actually, several
stacks are described in the JVM specification [16]. We focus our interest on one
kind of these: operand stacks.
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A Java frame is created on each Java method invoke to store temporary VM-
specific data. The operand stack is the part of this frame in charge of holding the
operands and results of the VM instruction. Most of these instructions consist in
popping a certain number of operands, executing a specific process and pushing
a returned value. For instance, the execution of an iadd (adding two integer
values: value1 and value2 ) is specified as follows:

Quote. ”Both value1 and value2 must be of type int. The values are popped
from the operand stack. The int result is value1 + value2. The result is pushed
onto the operand stack.” [16]

The integrity of the values passing through the operand stack appears then
crucial. In this paper, we focus our attention on this central element of the
JCRE and study its robustness with regards to fault injections.

2.2 Fault and Combined Attacks

In this section we intend to introduce the notions relative to FA and CA.

FA and the Notion of Fault Model. Embedded systems are subject to the
laws of physics. The impact of physical phenomena on such systems has been
widely studied by the scientific community, with a particular interest on secure
systems. This interest has led to the conclusion that without particular pro-
tections, sensitive information can be retrieved from the so-called side channel
leakages such as execution timing, power consumption or electromagnetic ra-
diation. But another conclusion that has been drawn is that by modifying the
physical environment of the system, one can alter its behaviour. Such physical
perturbation can be caused by various tools such as a laser beam or a glitch
generator. This is the basis of the perturbation or fault-injection attacks.

In order to evaluate the possible consequences of a fault injection, it is then
necessary to provide a model of the possible errors induced by the perturbation.
Different fault models are commonly considered in the literature which mainly
depends on:

– the impact of the fault:
• whether it corrupts a bit, a byte, a data-word.
• whether the value is:

∗ set to a random value.
∗ stuck-at all-0 or all-1.

– the precision of the fault.

Combined Attacks. Until 2009, the majority of the literature dealing with
Java Card security remained focused on the effects of Logical Attacks (LA)
[1, 2, 17, 18]. These attacks are generally based on the corruption of the binary
representation of a Java Card application (.cap or .class file) into a so-called
ill-formed application before it is loaded on-card. Such modifications aim at
circumventing certain controls enforced by the JCVM. But in most cases, they
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also make the application illegal with regards to the Java Card specifications.
Therefore the modified application should not be able to pass static analysis
tools such as the Java bytecode verifier. The bytecode verification being a costly
process, it is generally executed off-card on Java Card 2.2.2 and earlier, as a part
of the application development tool chain. The usual philosophy of LA is then
to skip this step and to directly load unverified applications on platforms that
allow it.

The recently released Java Card 3.0 Connected Edition specifications, has
made mandatory the on-card execution of the bytecode verification. Therefore
loading ill-formed application is not possible anymore. This statement has given
a push to the introduction of the combination of LA with FA into the Java Card
field and practical applications have been published over the last two years. In
these works FA are used to bypass certain security mechanisms in order to allow
a LA. The so-called Combined Attacks allow then to take the benefits of both
FA and LA. Indeed, they are more realistic than LA since they do not rely on an
unverified application loading and potentially more powerful than FA since the
malicious application can make permanent changes and act like a trojan inside
the card.

2.3 The Selected Fault Model

In the scope of this work, we only consider FA targeting a JCVM. This has led us
to define a fault model allowing the attacker to modify the value pushed onto the
operand stack into a predetermined value or even to a chosen value, with some
limitations. Indeed we consider two different fault models: the common stuck-at
fault model and a model taking into account the value previously pushed onto
the stack. This model is detailed below.

In the constrained context of single-threaded Java Cards, optimization may
lead to use a single global operand stack. However, according to the specifica-
tions, an operand stack is allocated within a Java frame, on a method invoke.
In both cases, this allocation is most likely done in RAM. Therefore, pushing
an operand on the stack consists in writing this operand at a given address that
only depends on the number of elements already on the stack.

In our fault model, the fault injection targets the execution of the JCVM.
More precisely, we assume that the perturbation allows to prevent (at least par-
tially) the updating of the operand stack during a push operation. The resulting
erroneous value would then be either all-0, all-1 or a value resulting from an
incomplete writing. As a consequence, and assuming the attacker knows the val-
ues previously pushed onto the operand stack, we can conclude that she is able
to predetermine the erroneous value. Furthermore, assuming she can run and
attack her own application on the platform, she can choose the value previously
pushed onto the stack and therefore control the resulting erroneous value. The
experimental validation of this fault model is shown in Appendix A.

The following sections details possible exploitation of fault injections following
this fault model through both FA and CA.
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3 Fault Attacks on the Operand Stack

In this section we explore some potential consequences of a successful fault in-
jection on an integral value pushed onto the operand stack. In the rest of this
section, we assume that the attacker can only execute applications already loaded
on-card. We start with a brief description of an attack on the instruction byte
of the APDU (Application Protocol Data Unit) buffer. Then we raise the issue
of boolean values in a Java environment with regards to fault injection and put
into practice FA on a conditional branching instruction of the VM.

3.1 Taking Advantage of Erroneous Integral Values

As any other smartcard, a Java Card follows the ISO 7816 specifications [19].
Particulary, Java Card applets receive their command through APDUs, accord-
ing to the specified format (Fig. 1).

CLA INS P1 P2 LC DATA LE

Fig. 1. Format of an APDU command

The Java Card API provides a class representing APDUs and a virtual method
to access the data sent within this APDU through a byte array. This byte array
defines then the behaviour of the applet. For instance to select a specific instruc-
tion in the process method, an applet execute typically the following lines:

byte ins = apduBuf[ISO7816.OFFSET_INS];

switch (ins) { // push ins on the stack and execute the

// appropriate switch instruction.

case INS_A: processInstructionA(apdu); break;

case INS_B: processInstructionB(apdu); break;

...

default: ISOException.throwIt(ISO7816.SW_INS_UNKNOWN);

}

The value of ins is pushed onto the operand stack before executing the switch

instruction. Therefore, a successful fault injection during the pushing of the value
is likely to totally change the behaviour of the applet. However, the consequences
are then dependent on the applet itself, but considering an e-wallet applet, turn-
ing a payment into a credit operation is definitely interesting from the attacker’s
point of view. The chances of success are nevertheless quite low regarding our
fault model since the previous value on the operand stack (apduBuf’s reference
in this case) is not known and there is no reason why it should be in relation
with the different instructions.
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3.2 The Case of Boolean Values

In this section, we discuss the particular cases of the boolean type and of con-
ditional branching instructions. Then we describe FA on such instructions and
give experimental results proving the efficiency of our fault model.

Booleans and Conditional Branching in Java Card. Amongst the basic
types of the Java language, we find different types of integral values differing by
their size or sign (byte, char, short, ...). But we also find a specific boolean type,
which supports only two values: true and false. Indeed, the Java language
forbid the use of any other type than boolean in if statement, unlike C language
for instance.

Nevertheless, there is no such thing as a boolean type at the bytecode level and
the Java compiler produces only bytecodes manipulating values of type int when
processing operations on boolean variables. Finally, and most importantly with
regards to the remainder of this section, the conditional branching instructions
produced by the compilation of a simple if statement: ifeq and ifne, only
compare the top of stack value (i.e. the previously pushed operand) with 0
and branch or not depending on the result of this comparison (branch if the
comparison succeeds in the case of an ifeq, branch if the comparison fails in the
case of an ifne). That is to say, the specification imposes that any other value
than 0 will be interpreted as true by the JCVM.

One may note that this statement is true for any Java-based system.

FA against Conditional Branching Instructions. Several choices are of-
fered to an attacker in order to corrupt a conditional branching instruction on a
Java Card. In this section we give the details of a FA against an ifeq instruction
evaluating a positive (true) condition by setting the previously pushed operand
to 0. We consider the following code (application Java source code on the left
and the corresponding bytecode on the right):

1. boolean b = dummyTrue(); | 1. aload_0

| 2. invokevirtual #96

| 5. istore 6

2. if (b) { | 7. iload 6

| 9. ifeq 12

3. Util.setShort(buffer, | 12. aload_2

(short)0,(short)0x1111); | 13. iconst_0

| 14. sipush 0x1111

| 17. invokestatic #84

| 20. pop

4. } |

5. else { |

6. Util.setShort(buffer, | 21. aload_2

(short)0,(short)0x2222); | 22. iconst_0

| 23. sipush 0x2222

| 26. invokestatic #84

| 29. pop

7. } | ...
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8. Util.setShort(buffer, |

(short)2, proof); |

The dummyTrue() method initializes the instance field proof (used at line 8)
proving the method has been executed and return a boolean value (true).

The target of our attack is this value pushing, before the dummyTrue() returns.
The goal of the attack is then to force this value to 0. In case of success, the
ifeq instruction will result in a jump at line 21 in the bytecode sequence and
the returned value will be 0x2222 instead of 0x1111.

Experimental Results. We put this attack into practice on a recent smartcard
embedding a Java Card 2.2.2 VM. The fault injection is achieved with a laser
beam applied on the rear-side of the component.

After empirically searching the fault injection parameters (timing, impact
location, intensity) that ”maximize” the number of successful FA, we reach a
success rate of 78.25%, out of 10,000 disturbed executions of the application.
We then adapt the test application to attack an ifne instruction by changing
line 2 of the Java source code into if (!b). Once the fault injection parameters
adjusted, we reach this time a success rate of 70.92%, also out of 10,000 disturbed
executions.

The results of similar attacks on a false condition evaluation are expected to
be at least as good as the results obtained above. Indeed, since any value other
than 0 is interpreted as true, any alteration of the pushed operand would lead
to a successful attack.

These FA definitely raise the security issue caused by the specifications of the
ifeq and ifne instructions, and to a certain extent by the lack of a real boolean
type at the Java bytecode level.

4 Combined Attack through Faulty Object References

In this section we consider the combination of a fault injection in the operand
stack and a malicious application. This implicitly assumes that the attacker has
the opportunity to load and execute her own application on the platform. This
privilege is far from obvious on released products. However such attacks must be
considered in the context of platforms allowing post-issuance application loading
like Java Cards. In the following, we describe two CA taking advantage of a faulty
object reference on the operand stack in slightly different ways: type confusion
and instance confusion.

4.1 Yet Another Way to Type Confusion

Type safety is a fundamental element of Java-based systems in general and of
Java Cards in particular. Consequently this property has been largely studied
and is used in many of the published attacks against Java Cards.

We do not provide another particular type-confusion-based attack in this sec-
tion, but we describe how a fault injection in the operand stack can lead to break
the type safety property with a good probability.
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As previously stated, we consider that the attacker can load her own applica-
tion on-card. Nevertheless, we assume that the application has to pass a bytecode
verifier to be loaded. This bytecode verifier can be either on-card, as specified in
the latest Java Card specifications or off-card. Provided the bytecode verifier is
sound, the malicious application has then to be well-formed. As a consequence,
the well-known .cap file or .class file manipulation to cause a type confusion is
not an option.

Our strategy to break type safety is basically the same as the one proposed
in [20]. That is to say, the attacker creates in her application several instances
of a given class C and counts on an error to modify the Java reference of a given
instance of another class C∗ into that of one of the several instances of C. The
main difference with the work presented in [20] is that our fault model allows us
to predetermine the error. Therefore the success rate of the attack should not
depend on the number of instances of class C that have been created although
a sufficient number of instances of class C can be necessary in practice.

4.2 Instance Confusion: The Case Study of Security Role
Impersonation

In this section, we introduce the concept of instance confusion and present the
case study of an attack using this concept.

Instance Confusion. By analogy to the concept of type confusion, where an
instance of a class C is used as if it were an instance of another class C∗, we
introduce the concept of instance confusion. An instance confusion consists in
using an instance i of a given class (or of a class implementing a given interface)
as if it were another instance i∗ of the same class (or of a class implementing
the same interface).

Obviously, instance confusions within the bounds of the attacker’s applica-
tion may not represent a threat. Furthermore, to take advantage of an instance
confusion outside the bounds of her application, the attacker should have to cir-
cumvent the Java Card application firewall. In the remainder of this section, we
show that an appropriate instance confusion can allow the attacker to unduely
gain privileges in another application on a Java Card 3.0 through the use of an
authentication service.

JC3.0 User Authentication. The Java Card 3.0 specifications provide an au-
thentication facility through a dedicated set of service interfaces. These interfaces
are organized as illustrated in Fig. 2.

To allow user authentication, these shared services are mapped to specific Uni-
fied Resource Identifiers (URI) as any other Shareable Interface Object (SIO).
These SIOs are first registered into the service registry by the application pro-
viding the service through the register method of the ServiceRegistry class
of the Java Card API. They can then be retrieved in the service registry using
their URI by calling the lookup method of the same class.
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Shareable

Authenticator

SharedPasswordAuth SharedPINAuth SharedBioTemplateAuth

�
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Fig. 2. Java Card 3 authenticator classes and interfaces hierarchy

Each of these authentication service interfaces expose methods allowing to:

– authenticate a user with provided credentials (check),
– check wether or not a user is authenticated (isValidated),
– reset the authentication status of an authenticated user (reset).

These methods are typically called either by the application, or by the web
container to restrict access to specific services or content, as detailed in the
JCRE specifications (§6.4.4 and 6.4.5 of [4]). The important point to notice is
that these methods are exposed in shareable interfaces. That is to say they are
accessible across the application firewall. They are then likely to be abused by
an attacker through an instance confusion.

Setting Up and Exploiting Instance Confusion. Let us assume the at-
tacked application uses the service offered by the SharedPasswordAuth interface.
The first step for the attacker is then to create and load an application with sev-
eral instances of a class implementing this interface. This class would typically
have check and isValidatedmethods always returning true and reset method
doing nothing, to bypass access control.

When the targeted application is about to get the authenticator instance (i.e.
when the lookup method pushes its Java reference onto the operand stack),
the attacker can then try to corrupt it. If she manage to provoke an instance
confusion between the legitimate authenticator and one of her own, any call to
the check or isValidated method would return true and the targeted client
application would have all the reasons to consider her as an authenticated user.

The attacker may then access critical services within the attacked application.
It is important to notice that even if redundant checks are performed to verify the
authentication, one successful fault on the authenticator’s reference is sufficient.
This attack appears then more powerful than the FA on conditional branching
of Sect. 3.2, since in this case each additional check would require an additional
perturbation of the component.

Experimental Results. Our experiments are done on a Java Card 2.2.2.
Therefore, we cannot use the API’s authenticator interfaces. However, we exper-
iment our attack on an applet holding one instance a of a class A implementing
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an interface I and 256 instances of a class B, also implementing I. We intend
then to prove that an attacker should be able to provoke an instance confusion
on specific objects. To match the previously described attack, the application
obtains object a through a virtual method getA() and stores it in a local vari-
able of type I, the interface implemented by A and B. The attack consists then
in injecting a fault while pushing a onto the stack and check if the resulting
operand is an instance of B. The test application is then the following:

byte[] buffer = apdu.getBuffer();

buffer[0] = 0x7F;

I a = getA(); // attacked method

if (a instanceof Object) {

if (a instanceof B)

buffer[0] = 0x01; // SUCCESS

else if (a instanceof A)

buffer[0] = 0x02;

}

Out of 10,000 attacked executions of our application, we obtain the following
results:1

– 8.74% of success: the operand popped from the stack is an instance of B.
– 25.42% of attack failure : the operand popped from the stack is an instance

of A, i.e. a itself, the fault injection had no effect.
– 65.86% of unknown error : the execution of the application did not complete,

i.e. an exception was thrown or the fault injection caused a card failure.

With regards to a theoretic security of about 240 if we consider an 8-character
password, an attack on a password-based authenticator with a success rate of
about 10% is quite outstanding.

This section has shown that a CA taking advantage of an erroneous value
on the operand stack can be even more dangerous than FA. Finally, the two
previous sections have proven the need to ensure the integrity of the operand
stack.

5 Countermeasures

Within this section we present different approaches to design a software coun-
termeasure against the attacks previously described. The aim of these counter-
measures is then restrained to protecting the system against a faulty value on
the operand stack. Also, we focus here on dynamic checks in the context of a
defensive VM and do not consider static defenses such as detecting potential
dangerous mutation within an application [21, 22].

1 As expected with regards to our fault model, increasing the number of instances of
class B up to 1024 did not really enhance the success rate of the attack (almost
10%).
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5.1 When to Check for Faults?

A foundation of countermeasure designing lies in the definition of the assets
to protect. A good comprehension of the threats is necessary to achieve this
work. This section aims at analysing the attacks previously described in order
to determine the operations that are sensitive and thus worth protecting. As the
attacks target the JCRE, we will consider operations at the Java bytecode level.

In the context of Java Cards, we want to prevent:

– Data from being unduely sent out of the card,
– Applications from ill-behaving.

Indeed, these identified assets summarize the assets defined in the Java Card
Protection Profile (§3.2 of [23]).

We can then restrict fault detection to the bytecode instructions related to:

– Field manipulation (get/putfield, get/putstatic).
– Control-flow breaks (invokes, returns, conditions, exceptions).

Other instructions are arithmetic or logic operations, or operate on local vari-
ables. Apart from operation on static class fields, those are the operations pro-
tected by the Java Card application firewall.

5.2 Software Fault Detection

In this section we detail different approaches to detect faults within the scope
of the JCVM.

The Basic Approach: Redundant Checks. The most straightforward im-
plementation of a fault detection mechanism on the stack would be to check the
coherency between the value pushed onto the stack and the top of stack value
after the push operation. Likewise, with regards to the pop operation, we will
check the coherency between the value that has been popped and the former top
of stack value. That is to say:

push(expected);

if (get_tos() != expected)

handle_fault();

for the push operation.

expected = pop();

if (get_prev_tos() != expected)

handle_fault();

for the pop operation.

We implemented this countermeasure on a Java Card Virtual Machine. The
additional costs on various bytecode instructions are presented in Table 1 of
Sect. 5.3.

1st Refined Approach: Propagating Errors to Ensure Fault Detection.
Our approach to reduce the cost of redundant check is to propagate a potential
error to another component of the JCVM. This is then only valid if the standard
JCVM behaviour is to check this other component.
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The Java Card application firewall aims at ensuring a strict isolation between
the different applications and the JCRE. A typical implementation of this mech-
anism we found on numerous cards and simulation tools is to assign a context
identifier to each application. This identifier is also assigned to each object in-
stance created within the scope of an application. The context isolation is then
enforced by comparing an object context identifier and the current application
identifier, according to the JCRE specification [4]. We choose to propagate the
operand stack errors to this value. The implementation of the countermeasure
is then:

push(expected);

fw_context_id |=

(get_tos() ^ expected);

for the push operation.

expected = pop();

fw_context_id |=

(get_prev_tos() ^ expected);

for the pop operation.

Consequently if an error occurs on the pushed value, the current context of
ownership is modified. Therefore an attacker is no longer able to retrieve data
from the attacked application since she would have to either call virtual or
interface methods to send data out of the card or eventually use instance class
fields. In both ways, she would have to pass through the application firewall
and the firewall will not allow it. Similarly, if the fault aims at corrupting a
conditional branch, the subsequent execution will be interrupted as soon as a
firewall check occurs. An additional check is only necessary on access to static
fields that are not protected by the application firewall.

The fact that few additional checks need to be inserted (only for access to
static fields) is clearly an advantage regarding the computational cost of this
method. The major drawback of this method is that corrupting the fw context id

value, it is possible (although we consider the chances as low) that we fix it to the
value identifying another application installed on the card. In such a case, our
countermeasure would eventually open a breach in the application firewall. Table
1 of Sect. 5.3 presents the experimental cost of this refined countermeasure.

2nd Refined Approach: Introduction of a Stack Invariant. A second
approach to detect faults in the operand stack consist in adding in the Java
frame structure a variable σ that allows to exhibit an invariant property.

Definition 1. σ is the sum, considering the XOR operation, of all the values
pushed on and popped from the operand stack.

We can then exhibit the following invariant property:

Property 1. Let ST be the set of all the values contained by the operand stack
at a given time T . Then at any given time T,

σ ⊕ΣST = 0

Proving this property and its invariance is straightforward. Indeed since σ is
by definition the sum of the values pushed onto and popped of the stack, all
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the values that have been popped have been eliminated from the XOR sum.
Therefore, only the values that are still on the stack at a given time T are
components of σ.

The implementation of the countermeasure is then:

push(expected);

sigma ^= expected;

for the push operation.

expected = pop();

sigma ^= expected;

for the pop operation.

As previously stated, we can check the invariant property on firewall checking
and access to static fields and methods by XORing all the values on the stack
to σ.

This approach requires then to add a routine in charge of checking the invari-
ant property. Also it requires to add one word in each Java frame created. Table
1 in Sect. 5.3 presents the experimental cost of this countermeasure.

5.3 Costs Comparison

In this section, we present in Table 1 the cost (in time) of the different counter-
measures introduced in the previous sections. Then we discuss the result of this
comparison and the different benefits and drawbacks of the different approaches.

Table 1. Countermeasures impact on bytecode instructions execution time. (% refer-
enced to an initial implementation with no countermeasures.)

Instructions Basic Propagation Invariant

aload+astore 39.09% 21.98% 12.29%
aload+getfield+astore 19.83% 12.39% 11.75%
aload+aload+putfield 27.93% 18.77% 17.59%

aload+invokevirtual+return 7.53% 1.69% 1.77%
aload+invokevirtual+areturn+astore 8.82% 3.26% 2.38%

aload+putstatic 18.60% 11.58% 8.89%
getstatic+astore 19.18% 10.76% 10.21%

As the costs for the different countermeasures are given in percentage, it is
important to bare in mind that the different instructions have very different com-
plexity (which explains the large difference between the results for the sequences
aload+astore and aload+invokevirtual+return for instance).

The Redundant Approach. The performance degradation caused by this
straightforward countermeasure turns out to be not acceptable.

The Propagation Approach. This countermeasure is definitely more efficient
than the basic one. To fix the potential issue of context identifier manipulation, an
option could be to force legitimate identifiers to even values and propagated errors
to odd values. The detection of an invalid identifier would then be straightforward.
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The Invariant Approach. The invariant method is also more efficient than
the basic one. Its performance is even a little better than that of the propagation
countermeasure. Another advantage of this approach is that it does not present
the drawback of a potential breach opening.

As expected, the invariant and propagation approaches turn out to be more
efficient than the basic one and are relatively close in terms of performance.
Nevertheless, the propagation method requires no additional data and only few
additional checks on access to static fields. However, as we implemented it, the
propagation method potentially opens a security breach in the application fire-
wall. The use of another variable that would be frequently checked may be
recommended. Such variables are typically implementation-dependent and we
could not exhibit another quasi-standard one. If such variable should not be
found in a particular implementation, the invariant approach has proven to be
slightly better than the propagation one in terms of execution time. It should
easily be implemented at the cost of an additional data-word per Java frame.

6 Conclusion

As stated in the introduction of this work, Java Cards are safer than native de-
vices with regards to Logical Attacks by nature. However, we have raised in this
article the issue of the possible alteration of an operand stack and demonstrated
how such attacks can eventually compromise both the Java Card platform and
the applications loaded on-card. Indeed, we have described and put into prac-
tice both Fault and Combined Attacks against a Java Card by disturbing the
operand stack.

In particular, this work has permitted to highlight the weakness that repre-
sents the lack of a boolean type at the VM-instruction level. Furthermore, we
have exhibited new means to combine fault injection with malicious applica-
tions to cause a type confusion despite the bytecode verification, and to abuse
authentication services through instance confusion.

Finally, we have detailed and compared different countermeasures. Amongst
them, both the propagation and invariant approaches bring a good security level
without impacting too much the performances of on-card applications. However,
future works intending to refine the identification of the moment when an integrity
check should be performed may allow to reduce the cost of these countermeasure.

Acknowledgement. The authors would like to thank Nicolas Morin, for his
helping hand during the fault injection campaign, and Christophe Giraud for his
fruitful review(s).
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A Practical Validation of the Fault Model

The experimental results we present here have been obtained on a recent ARM-
based smartcard device. A Java Card 2.2.2 Virtual Machine is running on the
device. The fault injection was achieved with a laser equipment.

The Test Application. We intend to provide an experimental validation of
the previously introduced fault model. We then develop a Java Card applet, the
process method of which is exposed below.

1. public void process(APDU apdu) {

2. [...]

3. ref = Util.getShort(buffer, OFFSET_CDATA);

4. target = Util.getShort(buffer, (short) (OFFSET_CDATA+2));

5. ref = ref; // push and pop ref : sload #ref

sstore #ref

6. res = target; // push and pop target : sload #target

sstore #res

7. Util.setShort(buffer, OFFSET_CDATA, res);

8. [...]

9. }

The first step of our applet consists then in pushing a reference value onto the
operand stack and popping it. Therefore we know which value was written in
the operand stack before we proceed.

Then we push a second value onto the stack. This second push is the target of
our fault injection. The subsequent popped value which is stored in variable res
is then expected to be an erroneous value. The last step of the applet process is
then to send this value out of the card.

Fig. 3 illustrates the evolution of the operand stack along the execution of
lines 5 and 6.

tos

after sload #target

�
target

after sstore #res

�
target

tos

tos

after sload #ref

�
ref

after sstore #ref

� ref
tos

Fig. 3. Evolution of the operand stack content and of the top-of-stack (tos) along
execution of lines 5 and 6 of the test applet
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Experimental Results. To evaluate the validity of our fault model, we per-
form several fault attacks with different parameters (namely, the time and space
parameters of the attack as well as the width and intensity of the laser beam)
and different input parameters.

Table 2 sums up the different results obtained. In this table we only present
the results regarding a given couple of input : (ref, target) = (0xAABB, 0xCCEE).
The cells highlighted in grey within Table 2 denote the results that were depen-
dent on the inputs. We also highlighted the results 0x0000 and 0xFFFF which
correspond to the two stuck-at fault models. Note that we only present in this
table the results that were reproducible.

Table 2. Results (res values) of the fault attacks with various fault injection param-
eters and fixed ref and target values

0x00F1 0x0000 0x00F2 0x00CC 0x149C 0x0121 0x0D88 0xFF19

0x0006 0x0129 0x149E 0xEA00 0x00BB 0x27FF 0x168F 0x000D

0x1490 0x4778 0x0011 0xD203 0xC14A 0x00D9 0xAABC 0x1200

0x2B2B 0x0012 0x5576 0xBB00 0x6000 0x7600 0xFFFF 0xAA0B

0xAA8B 0x2AAF 0xAAEC 0xAAEB 0xABB0 0x2AAE 0xAB6B 0xEEA0

Conclusions. It is difficult to deduce the exact perturbation caused by the laser
beam in all cases, especially when the results are not correlated with the inputs.
Such results may be correlated with internal values contained in the registers of
the processor at the time the laser is activated.

On the other hand, some results can be easily interpreted since they are
compound of different chunks of either the reference or the target value and 0s
(for instance, 0x0000, 0x00CC, 0xBB00).

To conclude, the results we obtained only partially validate our fault model
since res is either all-0, all-1, truncated ref, truncated target or other unknown
values.

However this proves that an adversary can manage to disturb the push op-
eration and may have a certain control on the erroneous operand eventually
pushed.
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Abstract. Formal analysis is of importance in order to increase confi-
dence that the protocol satisfies its security requirements. In particular,
the results obtained from the formal analysis of the smart card security
protocols when smart cards are used as a specific type of Secure Sig-
nature Creation Devices (SSCDs) are presented. SSCDs are developed
to support the EU-directive on electronic signatures. In this paper, we
focus on security properties, called the authentication and secrecy. The
device authentication protocols mentioned in CWA 14890-1 are modeled
using the high-level protocol specification language HLPSL and verified
with the help of AVISPA tool. Our formal analysis does not reveal any
weaknesses of the CWA 14890-1 protocol suite.

Keywords: smart cards, CWA 14890-1 authentication protocols, formal
analysis, SSCDs, AVISPA.

1 Introduction

CEN Workshop Agreement CWA 14890-1 [1] describes the European standard-
ization activities and solutions for smart cards as a specific type of a Secure
Signature Creation Device (SSCD). SSCDs means configured software or hard-
ware which is used to manipulate the Signature Creation Data (SCD) [2]. SCD
is unique data, such as codes or private cryptographic keys, which are used by
the signatory to create an electronic signature. SSCDs are developed to sup-
port the EU-directive on electronic signatures. It builds on ISO/IEC 7816-4
[3]. The key issue of CWA 14890-1 is to enable interoperability, so that smart
cards from different manufacturers can interact with different kind of signature
creation applications [1]. CWA 14890-1 describes the following device authenti-
cation protocols:

– An Asymmetric Session Key Agreement Protocol with Privacy Protection
– An Asymmetric Session Key Transport Protocol based on RSA
– Symmetric Authentication Protocol

Formal analysis is of importance in order to increase the assurance that the
protocol satisfies its security requirements. In this sense, the Automated Valida-
tion of Internet Security Protocols and Applications (AVISPA) and the Security

E. Prouff (Ed.): CARDIS 2011, LNCS 7079, pp. 314–335, 2011.
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Formal Analysis of CWA 14890-1 315

Protocol Animator for AVISPA (SPAN) [6] tools have been used to validate
device authentication protocols mentioned in CWA 14890-1.

Contribution. Our main contribution is to provide the first comprehensive
formal analysis of CWA 14890-1. We explain formalization of the protocols in
AVISPA’s high-level protocol specification language HLPSL [7], and describe
approach to verifying that the device authentication protocols in CWA 14890-1
does indeed satisfy the security requirements and are safe w.r.t. finite number
of sessions in our analysis runs. Even though the CWA 14890-1 specs amount
to over 150 pages, our formal models are 16 pages of HLPSL code. Of course,
our model abstracts from some of the low-level details that are in the 150-odd
pages CWA 14890-1 specs, e.g., bit-level selection of data but such abstraction
seems crucial to keep an overview and understand the CWA 14890-1 standard
as a whole.

Synopsis. The paper is organised as follows. In Section 2 a brief overview of
AVISPA tool. Section 3 comments on smart cards. Section 4 is devoted to the
description and specifications of an asymmetric session key agreement protocol.
In Section 5, we describe the asymmetric key transport protocol. Section 6 com-
ments on symmetric authentication protocol. Finally in Section 7 we give our
conclusions.

2 The AVISPA Tool

The AVISPA tool is used for the Automated Verification of Internet Security
Protocols and Applications [4,5]. High-Level Protocol Specification Language
(HLPSL) is used to interact with the AVISPA tool. In HLPSL, protocol designer
specify a security protocol along with the security requirements that should
be met. HLPSL is role based formal specification language. The AVISPA tool
automatically translates (via HLPSL2IF Translator) a security protocol into
an equivalent description written in the rewriting-based formalism known as
Intermediate Format IF [8].

The current version of the tool integrates four back-ends: the On-the-fly
Model-Checker OFMC [9], the Constraint-Logic-based Attack Searcher CL-AtSe
[10], the SAT-based Model-Checker SATMC [11], and the Tree Automata tool
based on Automatic Approximations for the Analysis of Security Protocols an-
alyzer TA4SP [12]. All the back-ends of the tool analyze protocols under the
assumptions of perfect cryptography and that the protocol messages are ex-
changed over a network that is under the control of a Dolev-Yao intruder [13].

OFMC and CL-AtSe are dedicated to the refutation of protocols and focus on
a finite number of sessions. The analysis with the SATMC and TA4SP back-ends
were always ‘Inconclusive’ in our experiments. Both back-ends do not support
modulus and xor operators, thats why analysis was always ‘Inconclusive’. The
device authentication protocol mentioned in CWA 14890-1 make use of modulus
and xor operators.

Space does not permit discussion on back-ends. We refer to the AVISPA’s
user manual (google avispa-project) for deeper concerns about AVISPA. From
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now on we will only consider OFMC and CL-AtSe back-ends for the analysis of
protocols with AVISPA tool.

3 Smart Card Commands

Following smart card commands specified in ISO/IEC 7816-4 [3] suffice to cover
all smart cards related authentication protocols.

1. Manage Security Environment (MSE) command informs the smart card
about the encryption algorithms, signature algorithms, hash algorithms and
keys to be used in the subsequent command sequence.

2. The Get Challenge command requests challenge (e.g., random number) from
the smart card.

3. The Get Data / Read Binary command is used for the retrieval of data
object(s) e.g., serial number.

4. Perform Security Operation (PSO) command is used to compute hash and
digital signature. The data to be hashed or the final digest respectivly are
sent to the card with the PSO.

5. The Internal Authenticate is used when a smart card has to authenticate
itself, the terminal sends an Internal Authenticate Command.

6. When a terminal has to authenticate itself, the smart card expects an Ex-
ternal Authenticate command containing an authentication token.

7. Finally the Mutual Authenticate command combines Internal Authenticate
and External Authenticate into one command.

4 An Asymmetric Session Key Agreement Protocol with
Privacy Protection

Key agreement is the process of establishing a shared secret key between two
entities A and B in such a way that neither of them can predetermine the value
of the shared secret key. [1].

In an asymmetric session key agreement protocol with privacy protection, to
avoid the card disclosing private information, such as identity, a secure channel
session is established before any other operation. To do so, the protocol starts
with an unauthenticated Diffie-Hellman key exchange [15] and then authenticates
the Interface Device (IFD) before the Integrated Circuit Card (ICC). In device
authentication protocol card reader (i.e., IFD) can authenticate itself to smart
card (i.e., ICC) without having to know smart card’s identity. The following
section shows the general flow of device authentication protocol.

4.1 Authentication Steps

Step 1. The reader starts the protocol by sending the Read Binary command.
With the help of Read Binary command IFD reads the public key quantities
from the file. For instance, in a Diffie Hellman Key exchange scheme the public
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key quantities would be the public parameters p, q and g. The public key quan-
tities reveal information about the authentication mechanism. As long as these
quantities are used in many ICCs, the identity of an ICC cannot be determined
from this information.

Read Binary Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

p, q, g

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 2. After receiving the public parameters, card reader chooses random
number a with 1 ≤ a ≤ q - 1, computes a key token KIFD = ga mod p and
sends the key token to smart card with the help of Manage Security Environment
command in order to establish a secure session. ‘OK’ as response from smart card
after receiving the key token i.e., KIFD.

Manage Security Environment Command

KIF D

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

ok

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 3. The opposite key token/portion KICC is returned in the response of a
Get Data command. Upon receiving the Get Data command smart card com-
putes KICC = gb mod p and transmits key token KICC to card reader.

Get Data Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

KICC

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 4. At this point, neither card reader nor smart card has revealed his
identity. The reader and the card have completed simple unauthenticated Diffie-
Hellman key agreement. Neither side has been authenticated yet, but by using
the common secret i.e., KIFDICC , they now derive an encryption key Kenc and a
MAC key Kmac that will be used to protect the remainder of the authentication
protocol from casual eavesdroppers. Both keys are 112-bit 3DES keys. Note that
there could still be a man-in-the-middle at this point in the protocol. If we model
authentication (as an experiment) with the help of witness and request goal
facts (see section 4.5) at this point then AVISPA also finds man-in-the-middle.
It does not make sense to model authentication at this point of the protocol. The
reason is that man in the middle attacker could have made contact with the IFD
by himself – he did not even need to be in the middle as the protocol involves
an anonymous DH-Key Exchange. Both the reader and the card calculate:
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HASH1 = HMAC[KIFDICC ] (1)
HASH2 = HMAC[KIFDICC ] (HASH1 || 2)

112 bits are selected from HASH1 to produce Kenc, and 112 bits are selected
from HASH2 to produce Kmac. After generation of the encryption and MAC keys
reader sends the Manage Security Environment command. The MSE command
sets the key reference of the public key of trusted certification authority to be
used for the verification of the IFD’s authentication certificate. ‘OK’ as response
from the smart card because we assume that key of trusted certification authority
is present in card.

Manage Security Environment Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

ok

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 5. Upon receiving ‘OK’, reader now sends its certificate to the card by
encrypting it with Kenc. The MAC of the encrypted certifcate is also send to
the card with the help of Perform Security Operation command. The card will
verify the certificate with the help of public key of certification authority. After
verification card will send ‘OK’ as response.

Perform Security Operation Command

({Reader.PKifd} Kenc).Hash(Kmac, ({Reader.PKifd} Kenc))

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

ok

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 6. Upon receiving ‘OK’ from the smart card, the reader requests a 64 bits
(8 bytes) random number (RND ICC) from the smart card with a Get Challenge
command in order to prove its authenticity dynamically. Upon receiving Get
Challenge, the smart card generates a 64 bits random number used as nonce.
The smart card stores random number in its internal memory and replies with
random number to the reader.

Get Challenge Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

RND ICC

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card
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Step 7. The IFD computes a signature on the concatenation of the challenge
(PRND2) with its own key token (KIFD) information. The signature is a signature
with message recovery, so all parameters in the signature can be considered
to be recoverable. The Diffie-Hellman key parameters (DH.P) are part of the
signature in order to provide authenticity of the parameters. The MAC of the
encrypted signature is also transmitted to the card with the help of External
Authenticate command. Card now verifies the MAC, decrypts, and verifies the
signature using private key generated in step 4. At the conclusion of this step,
card has authenticated reader and knows that KIFD and KICC are fresh and
authentic. 6A and BC are hexadecimal numbers. After verification card sends
‘OK’ as response.

External Authenticate Command

SIG = 3DESEncrypt Key (6A || PRND2 || hash[PRND2 || KIFD || SN IFD || RND ICC

|| KICC || DH.P] || BC)

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

ok

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 8. Upon receiving ‘OK’, reader sends Read Binary Command in order to
get the ICC’s encrypted certificate plus MAC of encrypted certificate. However at
this point, while card knows there is no man-in-the-middle because card checked
the signature from reader, reader does not know whom he is talking to, and hence
is unsure if there may be a man-in-the-middle attack, thats why he demanded
the certificate.

Read Binary Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

({Card.PKicc} Kenc).Hash(Kmac, ({Card.PKicc} Kenc))

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 9. Before processing the Internal Authenticate command the ICC’s private
authentication key must be set by the Manage Security Environment command.
The MSE command updates the current security environment.

Manage Security Environment Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

ok

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card
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Step 10. The IFD performs an Internal Authenticate command. The challenge
(PRND) sent to the ICC with this command is RND IFD. The ICC then computes
the signature over the challenge and the key token KIFD, KICC and returns it
to the IFD encrypted with secure messaging. The signature is a signature with
message recovery, so all parameters in the signature can be considered to be
recoverable. Reader can now verify the MAC and decrypt signature. The IFD
verifies the certificate using the public key of the trusted certification authority.

Internal Authenticate Command

RND IFD

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

SIG = 3DESEncrypt Key ( 6A || PRND || hash(KICC || SN ICC || RND IFD ||

KIFD || DH.P) || BC )

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

4.2 HLPSL Specifications

In this section we show the fragments of HLPSL specifications of protocol. Our
intended target is to model the protocol as close as possible to the protocol
description given in 4.1. The protocol behavior could be modeled, except next
issues / limitations. The detailed HLPSL model can be found in [18]. We refer
to the AVISPA’s user manual (google avispa-project) for deeper concerns about
HLPSL.

Restrictions Applied:

– Our HLPSL model abstracts from some of the low-level details that are in
the protocol specifications, e.g., bit-level selection of data. Such abstraction
seems crucial to keep an overview and understand the protocol as a whole.
During the generation of encryption and MAC keys, protocol make use of bit-
level selection of data. This could not be mapped in HLPSL specifications.

– Protocol includes provisions for the optional exchange of chain of public-key
certificates. This is not included in the model.

– We assume that appropriate public key of the trusted certification authority
is present in IFD and in ICC.

4.3 Roles

In order to describe the protocol we should specify the actions of each kind of
participant, i.e., the basic roles. Roles are independent processes: they have a
name, receive information by parameters and contain local declarations. Basic
roles are played by an agent whose name is received as parameter. The actions of
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a basic role are transitions, describing changes in their state depending on events
or facts. To describe protocol in HLPSL we introduce two basic roles: ifd and
icc. We now present the declaration of basic roles and their (typed) parameters
in HLPSL:

role ifd ( Reader, Card: agent, PKifd : public_key, Hash, SHA1 : hash_func,

SND, RCV: channel (dy) ) played_by Reader def=

local

State, C1, C2 : nat,

PKicc : public_key,

KICC, KIFD : symmetric_key,

...

role icc ( Reader, Card: agent, PKicc : public_key, Hash, SHA1 : hash_func,

SND, RCV: channel (dy)) played_by Card def=

local

State, C1, C2 : nat,

PKifd : public_key,

KICC, KIFD : symmetric_key,

...

Here we have: Reader, Card are agents playing roles ifd and icc respectively. Hash,
SHA1 are hash functions used in calculating MAC and in session key generation
respectively. PKifd, PKicc are public keys of Reader and Card respectively. SND,
RCV are channels for sending and receiving messages. In HLPSL variable names
start with capital letters; constants, keywords1 and data types2 start with lower-
case letters.

4.4 Composed Roles

Composed roles instantiate one or more basic roles, “gluing” them together so
that they execute together, usually in parallel (with interleaving semantics) [7].
Composed roles have no transition section rather a composition section in which
the basic roles are instantiated. The composition is presented in HLPSL.

role session( Reader, Card: agent,

Hash, SHA1 : hash_func,

PKifd, PKicc : public_key )

def=

local SIFD, RIFD, SICC, RICC: channel (dy)

composition

ifd(Reader,Card,PKifd,Hash,SHA1,SIFD,RIFD)

/\ icc(Reader,Card,PKicc,Hash,SHA1,SICC,RICC)

end role

Symbol ∧ denotes here a parallel execution. A transition is a rule that can be
fired if the left-hand side is satisfied i.e., before symbol =|>.
1 Role, played by and def = are keywords in HLPSL.
2 Agent, public key, hash func and channel are data types in HLPSL. dy is the at-

tribute of channel type and it represents Dolev-Yao.
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4.5 Role IFD

For reasons of space we show the transitions of the role ifd that are more impor-
tant as compared to the other one because these transitions contain the sending
of the key token of the reader i.e., KIFD, signed certificate along with the Ex-
ternal Authenticate Command.

2. State = 2 /\ RCV(G’.P’.Q’) =|>

%% Manage Security Environment Command. The detailed syntax of MSE command

%%can be found in CWA 14890-1. A is a random number that lies between 1 and q-1

State’ := 4 /\ A’ := new()

%% KIFD’ is a Key Token of Reader used in generation of Mutual Key i.e., KIFDICC

/\ KIFD’ := exp(G’,A’)

/\ SND(two_two.four_one.a_6.l_a_6.KIFD’)

8. State = 8 /\ RCV(ok) =|>

%% Perform Security Operation Command. The detailed syntax of MSE command

%%can be found in CWA 14890-1. {Reader.PKifd}_Kenc is a certificate encrypted

%%with encryption key i.e., Kenc & contains the agent name

%%of reader & its public key. Reader now transmits it together with its MAC to Card.

State’ := 10 /\

SND (two_a.zero_zero.a_e.(({Reader.PKifd}_Kenc). Hash(Kmac,({Reader.PKifd}_Kenc))))

12. State = 12 /\ RCV(RND_ICC’) =|>

%% EXTERNAL AUTHENTICATE COMMAND

State’ := 14 /\ PRND’ := new()

%% SIG = 3DESEncrypt Key (6A || PRND2 || h[PRND2 || KIFD

%% || SN.IFD || RND.ICC || KICC || DH.P || BC)

/\ SND(eight_two.zero_zero.zero_zero.{({six_a.PRND’.KIFD.sn_ifd.

RND_ICC’.KICC.(G.P.Q).b_c}_inv(PKifd))}_Kenc.

Hash(Kmac,{({six_a.PRND’.KIFD.sn_ifd.

RND_ICC’.KICC.(G.P.Q).b_c}_inv(PKifd))}_Kenc ))

/\ witness(Reader,Card,ifd_icc_run_id_for_authentication_of_ifd,RND_ICC’)

This first transition in the above code fragment is called ’2.’, though the names
of the transitions serve merely to distinguish them from one another. It specifies
that if the value of State is equal to 2 and a message (Diffie-Hellman Public
Quantities) is received on channel RCV, then a transition fires which sets the new
value of State to 4 and sends the Manage Security Environment Command on
channel SND. HLPSL uses dot operator to denote the concatenation of messages
as you see in the RCV channel above. Comments in HLPSL begin with the %
symbol and continue to the end of the line. In any transition, the old value and
the new value of a variable are syntactically distinguished: the prime symbol ’
has to be attached to the name of a variable for considering its new value. Prime
notation stems from the temporal logic TLA [17], upon which HLPSL is based.
It is important to realise that the value of the variable will not be changed until
the current transition is complete. So, the right-hand-side tells us that the value
of the State variable, after transition ’2.’ fires, will be 4.

The second transition in HLPSL model above states that: if the value of
variable State equals to 8 and we receive on channel RCV ok then reader sends
the Perform Security Operation Command in which reader sends its certificate
(Identity plus public key) encrypted with encryption key i.e., Kenc. The MAC
of the encrypted certificate is also sent so that card can check the integrity with
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the help of MAC key (i.e., Kmac) also available at the card side”. HLPSL uses
the same notation for the encryption and decryption i.e., {Message} Key.

Another transition is: The IFD computes a signature on the concatenation
of the challenge with its own key token (KIFD) information. The signature is
a signature with message recovery, so all parameters in the signature can be
considered to be recoverable. The Diffie-Hellman key parameters are part of the
signature in order to provide authenticity of the parameters. The MAC of the
encrypted signature is also transmitted to the card with the help of External
Authenticate Command. Note that for the analysis tool as well as for the mod-
eling in the tool’s language, a signature is equivalent to an encryption with a
private key i.e., {Message} inv(PublicKey).

4.6 Modelling Authentication in HLPSL

Authentication, security property, is modelled by means of several goal predicates
in HLPSL: witness(agent,agent,protocol id,message), request(agent,agent,protoc
ol id,message) and wrequest(agent,agent,protocol id,message). The witness and
request are goal facts related to authentication. The last line of the transition in
above section 4.5 named ’12.’ is an authentication related event witness. Here
it should be read as follows: means that honest agent Reader wants to execute
the protocol with agent Card by using (RND ICC’) as value for the authenti-
cation identifier ifd icc run id for authentication of ifd. Goal facts witness and
request are used to check that a principal is right in believing that its intended
peer is present in the current session, has reached a certain state, and agrees
on a certain value, which typically is fresh. They have identical third parameter
and it should be declared as a constant of type protocol id in the top-level
role. The label ifd icc run id for authentication of ifd (of type protocol id) is
used to identify the goal. The third parameter is used to associate the witness
and request predicates with each other and to refer to them in the goal section.
There is also wrequest which corresponds to weak authentication (also called
non-injective agreement according to Lowe’s paper [16]). No replay protection is
imposed if one uses wrequest.

Goal factrequestmeans thatagentCardaccepts thevalue (TEMP RND ICC’)
and now relies on the guarantee that agent Reader exists and agrees with him on
the value (TEMP RND ICC’) for the authentication identifier ifd icc run id for a
uthentication of ifd. Goal fact request is used for strong authentication (also
called injective agreement according toLowe’s paper [16]). In general, the authenti-
cated issues a witness fact as soon as possible in his protocol execution, i.e., as soon
as he has known the name of the authenticator and the payload (the data that shall
be agreed upon) message. The authenticator issues in his last rule a request fact,
i.e., when he has executed the protocol to the end during the session from his point
of view. Also authentication goals have a direction, namely from an authentica-
tor to an authenticated, in the sense that the authenticator convinces himself
of the identity of the authenticated.
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4.7 Role ICC

Now we show role icc’s transition responsible for the receiving of the key token
and signature from the card reader:

3. State = 3 /\ RCV(two_two.four_one.a_6.l_a_6.KIFD’) =|>

State’:= 5 /\ SND(ok)

13. State = 13 /\

RCV(eight_two.zero_zero.zero_zero.{({six_a.PRND’.KIFD’.

TEMP_SN_IFD’.TEMP_RND_ICC’.KICC’.

(G’.P’.Q’).b_c}_PKifd)}_Kenc.Hash(Kmac,{({six_a.PRND’.

KIFD’.TEMP_SN_IFD’.TEMP_RND_ICC’.KICC’.

(G’.P’.Q’).b_c}_PKifd)}_Kenc ))

%% Verify the random number

/\ RND_ICC = TEMP_RND_ICC’

%% Card has now authenticated Reader and knows that KIFD and KICC are fresh and authentic.

/\ KIFD = KIFD’

/\ KICC = KICC’

=|>

State’:= 15 /\ SND (ok)

/\ request(Card,Reader,ifd_icc_run_id_for_authentication_of_ifd,TEMP_RND_ICC’)

The first transition in the above code fragment of role icc shows the reception
of the key token of the IFD i.e., KIFD used in session key generation. After
reception of the key token card sends ok.

The second transition shows the reception of the signature. It also shows
that at this point of time agent card is verifying the random number that he
generated earlier against the random number received as a part of signature. =
is comparison operator in HLPSL. Card also checks the authenticity of the key
tokens. After checking the authenticity of key tokens, card issued authentication
related event request described in section 4.6.

4.8 Role Environment

A top-level role is always defined. This role contains global constants and a
composition of one or more sessions, where the intruder may play some roles
as a legitimate user. Here we also define an initial intruder knowledge set using
intruder knowledge token. Initially the intruder knows all agents’ names along
with their public keys (Pkifd and Pkicc), hash functions (h and sha1) and
his public and private keys i.e., ki and inv(ki) respectively. The constant i
is used to refer to the intruder. One should introduce a goal section to define
security goals and to look for an attack. The authentication properties to be
checked are listed in the goal section. The authentication on keyword specify
authentication goal with replay protection i.e., freshness of the agreement (or
session) between the two, and directly corresponds to Lowe’s injective agreement
[16].

goal

authentication_on ifd_icc_run_id_for_authentication_of_ifd

authentication_on icc_ifd_run_id_for_authentication_of_icc

end goal

environment()
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4.9 Automatic Analysis of the Protocol

The analysis with the AVISPA tool is performed on the following parallel sessions
scenarios of the protocol.
Man-in-the-Middle Attack Scenario
In our first experiment, we consider a configuration: One session between agents
reader and card and one session between card and reader in order to check for
man-in-the-middle attack.

session(reader,card,h,sha1,pkifd,pkicc)
∧ session(card,reader,h,sha1,pkicc,pkifd)

Replay Attack Scenario
In our second experiment, we consider a configuration: One normal session be-
tween agents reader and card and in order to check for replay attacks we repeat
the normal session.

session(reader,card,h,sha1,pkifd,pkicc)
∧ session(reader,card,h,sha1,pkifd,pkicc)

Impersonating Attack Scenarios
In our third experiment, the analysis is also performed on the set of configu-
rations where an intruder (represented by i) is playing the role of legitimate
agent(s) in order to attack the protocol. In AVISPA we can define an explicit in-
truder knowledge set using intruder knowledge token. In the following analysis
scenario intruder is impersonating card.

session(reader,card,h,sha1,pkifd,pkicc)
∧ session(reader,i,h,sha1,pkifd,ki)

In our forth experiment, the analysis is performed on parallel sessions where
intruder is impersonating reader in order to attack the protocol.

session(reader,card,h,sha1,pkifd,pkicc)
∧ session(i,card,h,sha1,ki,pkicc)

Experiments
From now on we tested different parallel session scenarios until the results were
exhaustive. In our fifth experiment, we consider a configuration: One normal
session between agents reader and card. One session between card and reader.
One session between reader and intruder.

session(reader,card,h,sha1,pkifd,pkicc)
∧ session(card,reader,h,sha1,pkicc,pkifd)
∧ session(reader,i,h,sha1,pkifd,ki)

In our sixth experiment, we consider a configuration: One normal session be-
tween agents reader and card. One session between card and reader. One session
between intruder and card.
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session(reader,card,h,sha1,pkifd,pkicc)
∧ session(card,reader,h,sha1,pkicc,pkifd)

∧ session(i,card,h,sha1,ki,pkicc)

In our seventh experiment, we consider a configuration: One normal session
between agents reader and card. One session between card and reader. One
session between reader and intruder. One session between intruder and card.

session(reader,card,h,sha1,pkifd,pkicc)
∧ session(card,reader,h,sha1,pkicc,pkifd)
∧ session(reader,i,h,sha1,pkifd,ki)
∧ session(i,card,h,sha1,ki,pkicc)

In our seventh experiment, we consider a configuration: One normal session
between agents reader and card. One session between card and reader. Two
sessions between reader and intruder. One session between intruder and card.

session(reader,card,h,sha1,pkifd,pkicc)
∧ session(card,reader,h,sha1,pkicc,pkifd)
∧ session(reader,i,h,sha1,pkifd,ki)
∧ session(reader,i,h,sha1,pkifd,ki)
∧ session(i,card,h,sha1,ki,pkicc)

In our eight experiment, we consider a configuration: One normal session between
agents reader and card. One session between card and reader. Session between
reader and intruder. Two sessions between intruder and card.

session(reader,card,h,sha1,pkifd,pkicc)
∧ session(card,reader,h,sha1,pkicc,pkifd)
∧ session(reader,i,h,sha1,pkifd,ki)
∧ session(i,card,h,sha1,ki,pkicc)
∧ session(i,card,h,sha1,ki,pkicc)

In our ninth experiment, we consider a configuration: One normal session be-
tween agents reader and card. One session between card and reader. Two sessions
between reader and intruder. Two sessions between intruder and card.

session(reader,card,h,sha1,pkifd,pkicc)
∧ session(card,reader,h,sha1,pkicc,pkifd)
∧ session(reader,i,h,sha1,pkifd,ki)
∧ session(reader,i,h,sha1,pkifd,ki)
∧ session(i,card,h,sha1,ki,pkicc)
∧ session(i,card,h,sha1,ki,pkicc)

In our last experiment, we consider a configuration: Two parallel sessions be-
tween agents reader and card. One session between card and reader. Two sessions
between reader and intruder. Two sessions between intruder and card.
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session(reader,card,h,sha1,pkifd,pkicc)
∧ session(reader,card,h,sha1,pkifd,pkicc)
∧ session(card,reader,h,sha1,pkicc,pkifd)
∧ session(reader,i,h,sha1,pkifd,ki)
∧ session(reader,i,h,sha1,pkifd,ki)
∧ session(i,card,h,sha1,ki,pkicc)
∧ session(i,card,h,sha1,ki,pkicc)

This is actually the limit of the analysis tool (i.e., AVISPA’s OFMC and CL-
AtSe) for this protocol: with more parallel sessions, no answer comes. While it
may be interesting to use parallel computing to raise this limit, we think that
the analyzed scenarios are the most relevant ones for the smart card protocol.
Our analyzed scenarios fall into the following categories: Man in the middle
attacks, replay attacks, impersonation and parallel session attacks attacks. In all
experiments, the security properties under test are the correspondence properties
explained above in section 4.6. For all analyzed scenario, no attacks were
found on the protocol in the presence of DY model. According to [14],

“Finding an attack for a protocol with a fixed number of sessions is a
NP-complete3 problem with respect to a Dolev-Yao model [13] of intrud-
ers. Results does not assume a limit on the size of messages intruder can
generate.”

Table 1 shows the summary of validation results using AVISPA.

Table 1. AVISPA Validation Results

AVISPA Tool Summary

Backend Tool Result

OFMC Safe

CL-AtSe Safe

5 Specification and Analysis of Asymmetric Key
Transport Scheme Based on RSA

Key Transport is the process of transferring a secret key, chosen by one entity (or
a trusted center), to another entity, suitably protected by asymmetric techniques.
Key transport requires encryption of the key part, this is typically done with the
public key of the counterpart [1].

The protocol mentioned is favorable for situations where the ICC should be
authenticated prior to the IFD. It is appropriate to application fields where
privacy is not a key issue but simplicity is required and/or the ICC is to be
authenticated first. The Key Transport Protocol also specifies that smart card
3 The complexity class NP (Non-deterministic Polynomial time) is the set of all deci-

sion problems solvable in polynomial time on a non-deterministic Turing machine.
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and reader agree on two session keys to protect subsequent communications. In
smart card applications, one key is used for encryption/decryption operations
while the second key is used to compute message authentication codes (MAC).
CWA 14890-1 specifies two key triple DES (2KTDES) in cipher block chaining
mode with fixed initialization vector 0 as encryption method. The length of
challenges is specified as 64 bits. Additionally, the procedure to establish session
keys is defined and the length of the key derivation data is set to 256 bits.

5.1 Authentication Steps

Step 1. The reader starts the protocol with a Manage Security Environment
command informing the smart card which key reference will be used for subse-
quent messages. For simplicity we assume that the key reference is for the public
key of the trusted certification authority. The public key is used for the verifica-
tion of the IFD’s certificate. ‘OK’ will be the ICC’s response if referenced public
key of the certification authority is present in card and in this case it is there.

Manage Security Environment Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

ok

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 2. The reader next sends the Perform Security Operation command in
which reader sends the certificate to the smart card. The certificate is encrypted
/ signed4 with the private key of the reader and it has the identity of the sender
along with its public key . The card verifies the certificate using the public key
whose reference was received in the previous step. After verification card sends
‘OK’ as response. At this point of time the public key of the IFD is now known
by the ICC, and can be trusted.

Perform Security Operation Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

ok

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 3. Next, the reader fetches the serial number of the smart card along
with the card certificate that contains the identity of the card(i.e., Card) along
with its public key (i.e., PKicc) encrypted / signed by the help of card’s private
key (inv(PKicc)) by sending the Read Binary command. The IFD verifies the
certificate using the public key of the trusted certification authority. The public
key of ICC is now known by the IFD, and can be trusted.
4 Note that for the analysis tool as well as for the modeling in the tool’s

language, a signature is equivalent to an encryption with a private key i.e.,
{Message} inv(PublicKey).
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Read Binary Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

{Card.PKicc.sn icc} inv(PKicc)

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 4. Next the Manage Security Environment command updates the cur-
rent security environment by setting the ICC’s private authentication key. Fur-
thermore, the IFD’s public key needs to be selected for encryption in order to
transport the ICC’s key contribution data i.e., KICC. KICC is a 32 byte random
number generated by the ICC. Keys are set by sending the key references (pri-
vate key of card plus public key of the reader) to the card. Card will send ‘OK’
as response.

Manage Security Environment Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

ok

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 5. Upon receiving ‘OK’ from smart card, the reader generates its own 64
bits random number and sends random number along with its serial number in
the Internal Authenticate Command.

Internal Authenticate Command

RND IFD || SN IFD

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

Upon receiving the Internal Authentication command, the smart card then
computes the digital signature. Generate the padding random number (PRND1)
and concatenates with the random number generated for the key derivation
(KICC) and takes the hash of padding random number, random number, reader’s
serial (SN IFD) and random number (RND IFD), encrypts the concatenated data
using its private key and sends the encrypted data to the reader. The reader
decrypts the data with the public key and checks whether the second random
number equals the one stored in its internal memory and whether the second
serial number matches its own. After verification the reader authenticated the
card.

SIG = DS[Private Key.ICC.AUT](6A || PRND1 || KICC || hash(PRND1 ||
KICC || C) || BC)

where C = SN IFD || RND IFD

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card



330 A. Javed

Step 6. Then, the reader requests a 64 bits (8 bytes) random number (RND ICC)
from the smart card with a Get Challenge command in order to prove its au-
thenticity dynamically. Upon receiving Get Challenge, the smart card generates
a 64 bits random number used as nonce. The smart card stores random number
in its internal memory and replies with random number to the reader.

Get Challenge Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

RND ICC

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 7. Upon receiving Get Challenge, the reader computes the signature.
Generates a padding random number (PRND) and concatenates with KIFD i.e.,
a 32 byte random number generated by the IFD for key derivation / key token
and takes the hash of padding random number, random number, card’s serial
(SN ICC) and random number (RND ICC), encrypts the concatenated data us-
ing its private key and sends the encrypted data to the card with the help of
External Authenticate command. External Authenticate command deliv-
ers the digital signature of the IFD to the card.

External Authenticate Command

where SIG = DS [Private Key.IFD.AUT] (6A||PRND||KIFD||hash(PRND.||KIFD||

RND ICC||SN ICC)||BC)

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

Upon receiving the External Authentication command, smart card decrypts
the data with the public key of the counterpart and checks whether the second
random number equals the one stored in its internal memory and whether the
second serial number matches its own. After verification the card now authenti-
cated the reader.

Once smart card and reader have stored both their own and received key
derivation data, they can generate the session keys. CWA 14890-1 specifies two
key triple DES (2KTDES) as the algorithm to be used for encryption, decryption,
and integrity protection. Therefore, four 8 byte keys have to be generated. First,
both protocol participants XOR the key derivation data of reader and card
resulting in a value SK (session key). Then, two 32 bit counters are appended
to SK, resulting in SK1 and SK2. The value of the first counter is 1, the value
of the second is 2. Each protocol participant then calculates hash values of SK1
and SK2. CWA 14890-1 stipulates SHA-1 as hash algorithm. The first 8 bytes
of SHA-1(SK1) are used as the first encryption key; the second 8 bytes are used
for the second encryption key, while the last four bytes of the hash value are not
used. The value of SHA-1(SK2) is used similarly. The first 16 bytes are used for
both integrity keys and the last four bytes are not used. These keys are stored
in the internal state of both communication partners. From now on, these keys
can be used to secure further communications.
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5.2 HLPSL Specifications

HLPSL specifications of Asymmetric Session Key Transport Protocol have been
omitted for lack of space. Our intended target is to model the protocol as close
as possible to the protocol description given in 5.1. The protocol behavior could
be modeled, except issues / limitations as described in section 4.2. The detailed
HLPSL model can be found in [18].

5.3 Modeling Secrecy in HLPSL

Secrecy of a message means that the specified set of agents can see the message.
HLPSL supports secrecy goal with the help of predefined predicate secret. In
key transport protocol and in symmetric authentication protocol (see section 6),
both roles i.e., ifd and icc creates session key (SK), and so we augment transi-
tions of both roles in both protocols, with the following secret facts where the
primes is required there to refer to the new values of SK’:

secret(SK’,sec_ifd_session_key,{Reader,Card}

secret(SK’,sec_icc_session_key,{Card,Reader}

The labels sec ifd session key and sec icc session key are of type
protocol id. They must be declared in the const section of the environment
role. In the case of secrecy facts, protocol ids serve merely to distinguish different
secrecy goals.

5.4 Security Analysis

For security analysis our methodology for experiments 1-10 were the same as we
did in section 4.9. For all analyzed scenario, no attacks were found on the
key transport protocol in the presence of DY model. In all experiments,
the security properties under test are the correspondence properties explained
in section 4.6 and secrecy properties explained above in section 5.3 for this
protocol.

6 Specification and Analysis of Symmetric Authentication
Scheme

The symmetrical authentication protocol may be used to construct a secure
channel between an application and a signature creation device providing either
only integrity or both integrity and confidentiality. The long term shared secret
keys i.e., Kenc (encryption key) and Kmac (message authentication code/integrity
key) are supposed to be already present in the IFD (reader) and ICC (smart card)
and are used in authentication protocol. The long term shared secret keys are
replaced as soon as a fresh session keys are available.
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6.1 Authentication Steps

Step 1. The IFD requires the ICC’s identity serial number (SN ICC) for the
mutual authentication token. The card reader starts the protocol with the help
of Get Data Command by fetching the serial number (SN ICC) of the smart card
and stores it for later use.

Get Data Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

SN ICC

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 2. Then, the reader requests a 64 bits (8 bytes) random number (RND ICC)
from the smart card with a Get Challenge command in order to prove its au-
thenticity dynamically. Upon receiving Get Challenge, the smart card generates
a 64 bits random number used as nonce. The smart card stores random number
in its internal memory and replies with random number to the reader.

Get Challenge Command

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card

RND ICC

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Step 3. Once the reader receives random number of the smart card, it generates
its own 64 bits random number. Further 256 random bits are selected for use as
key derivation data. The reader stores key derivation data in its internal mem-
ory. Next, the reader generates the command data for a Mutual Authenticate
command. The Mutual Authenticate command authenticates ICC and IFD
in one command. It concatenates random and serial numbers of reader with
random and serial numbers of card and key derivation data of reader, and en-
crypts the resulting string under the encryption key selected in the initial Manage
Security Environment command. Last, the reader generates a MAC of the en-
crypted data using the selected integrity key. Then, the reader sends the Mutual
Authentication command with the command data just generated to the smart
card.

Mutual Authenticate Command

E[Kenc](S) || MAC[Kmac]( E[Kenc](S) )

where S = RND IFD || SN IFD || RND ICC || SN ICC || KIFD

Card Reader −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Card
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Upon receiving the Mutual Authentication command, the smart card first
checks the integrity of the message. If it can confirm command data integrity,
the command data are decrypted. Next, the smart card checks whether the sec-
ond random number has the same value as the random number stored in the
card’s internal memory, and whether the second serial number equals its own
serial number. If these two tests are successful, the card stores the key deriva-
tion data in its internal memory. Now, the smart card selects its own 256 bits
key derivation data and stores it in its internal memory, concatenates random
and serial numbers of card with random and serial numbers of reader and key
derivation data of the card, encrypts the concatenated data using the previously
selected encryption key, and calculates a MAC over the encrypted data using the
integrity key. The smart card then sends the encrypted data and MAC back to
the reader. After verifying the MAC value, the reader decrypts the response and
checks whether the second random number equals the one stored in its internal
memory and whether the second serial number matches its own.

E[Kenc](R) || MAC[Kmac](E[Kenc](R))

R = RND ICC || SN ICC ||RND IFD || SN IFD || KICC

Card Reader ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Card

Once smart card and reader have stored both their own and received key deriva-
tion data, they can generate the session keys. The procedure to generate session
keys is same as mentioned in section 5.1.

6.2 HLPSL Specifications

HLPSL specifications of symmetric authentication protocol have been omitted
for lack of space. Our intended target is to model the protocol as close as pos-
sible to the protocol description given in section 6.1. The protocol steps could
be modeled, except next issue / limitation. The detailed HLPSL model can be
found in [18].

Restriction Applied
During the generation of session keys symmetric authentication protocol make
use of bit-level selection of data 5. This could not be modeled in HLPSL speci-
fications while all the protocol steps are modeled in HLPSL.

6.3 Automatic Analysis of the Protocol

For security analysis our methodology for experiments 1-10 were the same as we
did in section 4.9. In all experiments, the security properties under test are the
correspondence properties explained in section 4.6. For all analyzed scenario,
no attacks were found on the protocol in the presence of DY model.
5 The first 64 bits of SHA-1(SK1) are used as the first encryption key, the second 64

bits are used for the second encryption key, while the last 32 bits of the hash value
are not used. The value of SHA-1(SK2) is used similarly. The first 128 bits are used
for both integrity keys and the last 32 bits are not used.
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7 Conclusion

In this paper device authentication protocols mentioned in CWA 14890-1, have
been presented and analyzed. We model core security properties as correspon-
dence properties and use the AVISPA tool to automate our security analysis. We
have found that device authentication protocols mentioned in CWA 14890-1 are
safe w.r.t. given finite number of sessions. Since we have carefully reviewed our
formalizations to validate that they faithfully describe the protocols mentioned
in CWA 14890-1, and since the tool used is mature enough, we can be confident
that in the device authentication protocols there are no design flaws that can
lead to attacks on authentication and secrecy. Of course, vulnerabilities at the
cryptographic or implementation level cannot be excluded with this approach.
In summary, we found our analysis has provided a greater degree of confidence in
the correctness of device authentication protocols mentioned in CWA 14890-1.
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