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Abstract. Minimum dominating set, which is an NP-hard problem, finds many
practical uses in diverse domains. A greedy algorithm to compute the minimum
dominating set is proven to be the optimal approximate algorithm unless P =
NP . Meta-heuristics, generally, find solutions better than simple greedy approx-
imate algorithms as they explore the search space better without incurring the
cost of an exponential algorithm. However, there are hardly any studies of ap-
plication of meta-heuristic techniques for this problem. In some applications it
is important to minimize the dominating set as much as possible to reduce cost
and/or time to perform other operations based on the dominating set. In this paper,
we propose a hybrid genetic algorithm and an ant-colony optimization (ACO) al-
gorithm enhanced with local search. We compare the performance of these two
hybrid algorithms against the solutions obtained using the greedy heuristic and
another hybrid genetic algorithm proposed in literature. We find that the ACO
algorithm enhanced with a minimization heuristic performs better than all other
algorithms in almost all instances.

Keywords: Ant-Colony Optimization, Genetic Algorithm, Heuristic, Minimum
Dominating Set.

1 Introduction

A dominating set (DS) of a graph G = (V, E) is a subset S ⊆ V such that every node
v ∈ V is either a member of S or is adjacent to a member of S. A dominating set
with minimum cardinality is called as the Minimum Dominating Set (MDS). This is
proven to be an NP-hard problem [8]. Minimum dominating sets are extensively used
in wireless networks for clustering and formation of backbone used for routing. In ad-
dition, they are also used in information retrieval, facility location and so on. Reducing
the cardinality of a DS is useful in reducing the cost of locating facilities. In informa-
tion retrieval, a query is matched against the dominating nodes. If the cardinality of the
dominating set is reduced, the time for retrieving information is accordingly reduced.

The greedy heuristic [13] for finding a minimum dominating set (MDS) is based on
that given for the set cover by Chvatal [2]. This returns a solution at most (lnΔ× Opt)
where Δ is the maximum degree of a node in the graph. It is proven to be the optimal
approximate solution unless P = NP [13]. In this algorithm, the nodes are all initially
colored WHITE. A node which is in the dominating set is colored BLACK and all
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dominated nodes are colored GREY. The algorithm works by selecting a non-BLACK
node with the maximum white degree and including it in the dominating set. The node is
then colored BLACK and all its neighbors are colored GREY. This is repeated until all
nodes are dominated, i.e., there are no more WHITE nodes in the graph. A polynomial-
time approximation scheme (PTAS) for the computation of MDS is presented in [9], but
this is applicable only for polynomially bounded growth graphs such as unit disk graphs.
A polynomially-bounded growth graph is a graph where the number of independent
nodes in the r-hop neighborhood of a node are bounded by a polynomial f(r) = O(rc)
for some constant c ≥ 1. However, the PTAS algorithm is not practical for unit disk
graphs (UDG) with higher degree of connectivity or large graphs. We observed that the
algorithm takes a lot of time when we implemented the PTAS algorithm for Minimum
Independent Dominating Set problem.

Recently, the problem of MDS has been solved using a hybrid genetic algorithm [4].
In this paper, the authors use a generational GA with a linear rank selection algorithm
to select parents for the standard one-point crossover and uniform mutation to generate
members of the new population. It uses three procedures to reduce the cardinality of
the solution computed. One is called Filtering which basically checks if a node can be
removed from the dominating set without affecting the domination property. Procedure
Local Search tries to randomly add nodes to the dominating set proportional to its degree
if the generated population member is not a DS; it deletes a node randomly in inverse
proportion to its degree if it is a DS. In both cases, if the fitness value increases, it
retains the change to the chromosome. The final procedure in the paper, EliteInspiration
constructs the intersection of the three best DS solutions found so far and then tries to
minimize the cardinality. However, in our experimentation, we found that in some cases,
this algorithm does not even find a DS. We modified the algorithm such that it always
returns a DS as output. We changed it as follows: after finding the intersection of the
best ncore members of the DS population, if the resultant solution is not a DS, we keep
adding nodes to it using the greedy heuristic until the member is a DS. We then, applied
Filtering to reduce the cardinality of this solution. We found that with these changes,
the solution returned by their algorithm is better than a straighforward implementation
of their paper. The results presented in this paper are with these changes incorporated.

In this paper, we propose a hybrid genetic algorithm which is vastly different from
that in [4] and an Ant-Colony Optimization (ACO) algorithm that uses local search to
minimize the DS found by each ant in every iteration. We compared the performance
of these two meta-heuristic algorithms proposed here with those in [4] and the greedy
heuristic. We experimented using unit disk graphs and other general graph instances.
We found our algorithms to be consistently better than the greedy heuristic and the
HGA in [4]. In fact, we found that the heuristic is better than the HGA of [4]. We
find that the Ant-Colony Optimization (ACO) algorithm combined with a local search
heuristic performs better than all the other algorithms studied.

The rest of the paper is organized as follows: we present the steady-state genetic
algorithm with the minimization heuristic in section 2 and the ant-colony optimization
algorithm in section 3. The comparison of the results between the heuristic, hybrid
genetic algorithm in [4] and our proposed algorithms is given in section 4. We end the
paper with the conclusions in 5.
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Algorithm 1. Hybrid Genetic Algorithm for MDS
Generate Initial Population, I
F := fitness of best member of I
b := Best member of I
while gen < MAXGEN do

if (p < pc) then
Select parents p1 and p2 using binary tournament selection
C := crossover(p1, p2)
C := mutate(C)

else
Generate C randomly

end if
if (p < ph) then

C := HeuristicRepair(C)
else

C := RandomRepair(C)
end if
C := Minimize(C)
if unique(C) then

Replace worst member of the population with C
if f(C) < F then

F := f(C)
b := C

end if
gen := gen + 1

end if
end while
return b

2 The Hybrid Genetic Algorithm

We have used a steady-state genetic algorithm [3] to solve the MDS problem. The chro-
mosome is represented as a bit vector of size N where N is the number of nodes in the
given graph. The fitness of the solution is the cardinality of the generated dominating set
(DS). We start off with an initial population of 100 members. Each member is generated
by randomly setting bits in the bit vector with a probability of 0.3. If the generated solu-
tion is not a DS, we repair it using the greedy heuristic with probability ph or by adding
nodes randomly. Then, we minimize the cardinality as follows: if any node of the DS
and all its neighbors are covered by other nodes in the DS, it is redundant. Such a node
can be removed from the DS, thus reducing cardinality without affecting domination
property. We repeatedly remove redundant nodes until there are no more such nodes in
the computed DS. In each iteration, we remove a redundant node randomly with proba-
bility pr or using the policy of lowest degree redundant node with probability (1− pr).
If the solution thus generated is unique, it is added to the population. For creating a new
child, binary tournament is used to select two parents for crossover. The parent with a
better fitness is selected with probability pbetter . We use the crossover method proposed
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by Beasley and Chu [1] to create the child member. Let the parents be p1 and p2 and
their respective fitness values f(p1) and f(p2). The bits in the child are inherited from
parent p1 with probability f(p2)

f(p1)+f(p2)
and from parent p2 with probability f(p1)

f(p1)+f(p2)
.

This method ensures that bits are more often inherited from a parent with a better fit-
ness ensuring that the fitness of the child is likely to be better. Crossover is not applied
always but with probability pc; in other instances, a new member is generated randomly
to diversify the population. A simple bit flip mutation scheme is used with probability
pm. If the new child generated is not a DS, the greedy heuristic is used to add nodes
until it is a DS. We, then, minimize the solution as specified in initial population gener-
ation. We replace the worst member of the previous generation with this new member.
Algorithm 1 provides the pseudo-code of our approach.

3 The ACO Local Search Algorithm

First of all, we experimented with a standard ACO with no enhancements. We found
the results to be much worse than even the greedy heuristic. We tried enhancing the
algorithm by calculating probability based on both the pheromone value as well as the
degree of a node as proposed for the minimum weighted vertex cover problem by Shyu
et al [10]. In this, the higher the degree of a node, the higher the probability with which
it is selected. However, we found that this was not generating a good solution either.
We then proposed a local search similar to that used in the maximum clique problem
in [12] as an enhancement to the standard ACO. We found this to be the most effective
algorithm and this is what is described here.

Algorithm 2. ACO Algorithm for Computing MDS
F := N
b := φ
for I := 1 → MAX − ITER do

for A := 1 → MAX − ANTS do
pi := τi∑

j τj

Add node i to S with probability pi until S is a dominating set
S := Minimize(S)

end for
D := Best(S)
if f(D) < F then

F := f(D)
b := D

end if
Update Pheromone(D)

end for
return b
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In our hybrid ACO algorithm, in each cycle, a total of Nants perform a random walk
of the graph until they discover a DS. Initially, we deposit a pheromone value of τ0 =
10.0 on each node. Each ant chooses the next candidate to include in the DS based on
the probability of the node which is calculated as pi = τi∑

j τj
, where τi is the pheromone

concentration on node i. After the random walk of an ant is completed, the DS found is
minimized using the concept of redundant nodes as described in the previous section.
At the end of a cycle, we use the best ant found in that cycle to reinforce the pheromone
value. The pheromone concentration on the nodes of the best ant found is updated using
the formula τi = ρ × τi + 1

10+f−F where f is the fitness of the best ant in this cycle
and F is the fitness of the best ant found so far and ρ is the pheromone persistence rate.
This is similar to the formula used to update pheromone value in [11]. For all the other
nodes in the graph, the pheromone is evaporated using the formula τi = ρ × τi; if the
resultant value is less than τmin, the value is set to τmin. We run the algorithm for a
total of specified cycles. We present the results using only the local search in this paper
due to lack of space.

Table 1. Cardinality (γ) of MDS and Time taken in seconds using Heuristic, Hedar, HGA and
ACO-LS for UDG Instances

N Range Heuristic Hedar HGA ACO-LS

γ Time (s) γ Time (s) γ Time (s)

50 150 13.9 15.4 0.1 12.9 0.7 12.9 1.1
50 200 10.5 11.3 0.0 9.4 0.6 9.4 1.0
50 250 8 8.6 0.1 6.9 0.5 6.9 0.7

100 150 19.4 20.8 0.2 17 2.2 17 2.9
100 200 12.8 13.5 0.2 10.4 1.6 10.4 2.0
100 250 9.1 10.2 0.3 7.5 1.1 7.6 1.6
250 150 22.7 24.8 0.5 18.7 6.0 18.1 9.4
250 200 14.6 15.5 0.8 11.4 3.5 11 5.8
250 250 10.1 11.2 1.0 8 3.0 8 4.4
500 150 75.3 84.7 1.7 67.3 95.4 64.5 83.5
500 200 48.2 55.4 1.5 41.4 43.8 39.8 51.9
500 250 34.6 36.9 1.0 27.9 17.6 26.8 33.3
750 150 82.9 90.4 3.2 72.9 152.8 68.7 170.2
750 200 51.4 59 2.4 43.9 54.8 41.3 91.6
750 250 35.9 39.2 2.5 28.7 24.6 27.3 57.0
1000 150 85.9 94.2 4.4 74.8 215.1 70.3 264.3
1000 200 53 60 3.4 44.8 65.9 42.5 135
1000 250 36.7 39.8 4.0 29.8 35.5 28.2 83.9

4 Experimental Results

The experiments were done on two different types of graphs - unit disk graphs gener-
ated using the UDG topology generator [5] and Waxman Router Topologies [14] using
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BRITE [7]. The data set consists of 50, 100, 250, 500, 750 and 1000 nodes. For UDG
topologies, we used ranges of 150, 200 and 250 units to study the effect of different
degrees of connectivity on the performance of the algorithms. Graphs with nodes 50,
100 and 250 are generated using an area of 1000×1000 units whereas those with nodes
500, 750 and 1000 are generated using an area of 2000 × 2000 units. In the case of
Router Waxman topologies, we used random and heavy-tailed placement [6] which is
considered more common for Internet topologies. We varied the degree of connectivity
by using 2 × N , 4 × N and 8 × N edges for graphs, where N is the number of nodes
in the graph. In all cases, the results presented are averaged over 10 instances.

The hybrid genetic algorithm that we implemented (HGA) has an initial population
of 100 members and we ran it for 10,000 generations. This would mean that a total of
10,000 solutions are created as we create one new member of the population in each
generation. We use the following values for the various probabilities: when generating
random population members both in initial population and a new member in later gen-
erations, we use a probability of 0.3 for adding a node into the dominating set. We use
the value of pc = 0.9 for crossover, pm = 0.02 for mutation, pbetter = 0.8 to choose a
better parent during binary tournament selection, ph = 0.2 for using the heuristic to re-
pair a member. We use random removal of a redundant node with probability pr = 0.6.
All of these values were arrived at after extensive experimentation with different values.
The hybrid ACO algorithm has 20 ants and is run for 1000 iterations which is a total of
20,000 solutions. We use an initial pheromone value of 10.0 and a minimum threshold
on the pheromone value of 0.08. The pheromone persistence rate is ρ = 0.985. The
algorithm from [4] has been used with 100 generations and 100 members in the pop-
ulation for a total of 10,000 solutions, the same as in our hybrid GA. The rest of the
parameters are as specified in their paper.

It can readily be seen that the algorithm due to Hedar et. al. [4] is performing worse
than even the greedy heuristic in all the graph instances studied. As stated earlier, if not
for the changes we introduced, we were getting results that were even worse. This can
be explained by the fact that there is no attempt to force each member of the population
to be a DS. Minimization is also not done in the best possible way. The final EliteIn-
spiration process seems flawed because in standard elitism, the best ncore members are
always retained across generations. In their method, they are doing an intersection of
the best ncore members which is not guaranteed to even be a DS.

We observe that the hybrid ACO performs better or on par with our own HGA for
most instances in terms of cardinality of the solution. This shows that it is better to use
ACO-LS for MDS than the HGA. We observe that the time taken by ACO-LS and HGA
are similar up to 250 nodes for UDG instances. But, as the number of nodes increases,
the ACO-LS algorithm takes more time than HGA, upto twice that of HGA. However,
we note that the solutions generated by ACO-LS are also twice those generated by the
GA. When it comes to large Router Waxman topologies, the time taken by ACO-LS
is actually smaller than that of HGA. We also observe that for large Router Waxman
graphs with more degree of connectivity, the HGA performs slightly better than the
ACO-LS algorithm both in terms of cardinality as well as time.

Thus, we can conclude that the ACO-LS we have presented here is the best meta-
heuristic approach found so far for the problem of MDS.
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Table 2. Cardinality (γ) of MDS and Time taken in seconds using Heuristic, Hedar, HGA and
ACO-LS for Router Waxman Instances with random and heavy-tailed (ht) placement of nodes

N Range Placement Heuristic Hedar HGA ACO-LS

γ Time (s) γ Time (s) γ Time (s)

50 100 ht 13.5 15.1 0.1 12.1 0.6 12.1 1.0
50 100 random 12.4 14.4 0.0 11.6 0.7 11.6 1.0
50 200 ht 7.7 10.9 0.1 7 0.5 7 0.6
50 200 random 7.3 10.3 0.0 6.8 0.5 6.8 0.8
50 400 ht 4.7 6.7 0.2 4.2 0.4 4.2 0.5
50 400 random 4.1 6.6 0.1 3.8 0.3 3.8 0.4

100 200 ht 26.7 31.8 0.1 23.6 2.4 23.7 3.4
100 200 random 25.8 32.1 0.2 23.4 2.7 23.4 3.3
100 400 ht 16.5 21.5 0.2 14.8 1.8 14.5 2.4
100 400 random 16.1 22.1 0.2 14.7 1.9 14.4 2.4
100 800 ht 9.6 15 0.1 8.7 1.1 8.7 1.6
100 800 random 9.2 15.5 0.2 8.7 1.2 8.4 1.6
250 500 ht 64.7 77.1 0.6 59.4 24.6 58.5 23.3
250 500 random 67.2 78.4 0.6 60.8 25.1 59.8 23.5
250 1000 ht 42.2 56.4 0.7 38.2 15.2 37.2 17.4
250 1000 random 41.8 57.9 0.6 38.5 16.2 37.1 17.4
250 1000 ht 26.1 39.6 0.5 23.7 7.4 23.1 11.1
250 1000 random 25.3 40.2 0.6 23.2 8.2 22.4 10.9
500 1000 ht 131.4 152.7 2.0 122.2 161.7 117.3 129.4
500 1000 random 131 157.7 2.0 121.7 162.2 117.9 127.2
500 2000 ht 83.9 113.5 2.3 78.4 94.5 75.8 97.9
500 2000 random 84.1 116.7 2.3 79.5 100.7 76.5 99.6
500 4000 ht 52.3 81.1 1.7 50.3 43.9 49 61
500 4000 random 50.1 83.8 1.7 48.7 49.1 47.2 60
750 1500 ht 196.6 230.8 4.2 183.7 520.5 176.9 375
750 1500 random 195.7 241.5 4.3 185.1 527.3 178.7 372.4
750 3000 ht 125.6 169.2 4.8 119.2 302.7 119.6 288.2
750 3000 random 127.3 176.4 4.6 120.8 319.2 119 290.4
750 6000 ht 78.2 120.5 4.1 76.6 134.9 77.7 171.2
750 6000 random 77.7 128.9 4.2 76.4 140.1 75.6 169.5
1000 2000 ht 268 317 7.5 251.3 1211.4 244.8 853.7
1000 2000 random 259.8 313.5 7.4 247.6 1212.3 239.1 824.7
1000 4000 ht 168.5 231.5 7.5 161.1 720.9 163.3 635.7
1000 4000 random 168 236.9 7.7 160.7 735.6 161.3 638.2
1000 8000 ht 104.1 166.3 8.5 103 300.7 106.5 359.7
1000 8000 random 104 171.4 8.2 102.5 311.1 106.7 367.8

5 Conclusions

We have proposed a steady-state hybrid genetic algorithm (HGA) and a hybrid ACO
algorithm that combines ACO with local search (ACO-LS) for the problem of Mini-
mum Dominating Set. We compared the results obtained by these two algorithms with
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the greedy heuristic which is the optimal approximate solution and a hybrid genetic
algorithm proposed by Hedar et. al. [4]. We find that the ACO-LS algorithm gives the
best cardinality in almost all the cases. In most cases, its running time is comparable
to that of the HGA and in some cases, it is actually better. It takes more time for large
UDG instances compared to HGA. However, the ACO-LS algorithm generates twice
as many solutions as HGA. This implies that the ACO-LS is actually much faster than
the HGA. We found that an ACO which computes probability of a node for inclusion
in the random walk of an ant based on both pheromone and a heuristic such as the de-
gree of a node performs worse than the local search algorithm presented here. Thus,
we conclude that the best solution is obtained using standard ACO enhanced with a
minimization heuristic.
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