
On the Benefit of Automated Static Analysis for

Small and Medium-Sized Software Enterprises

Mario Gleirscher1, Dmitriy Golubitskiy1,
Maximilian Irlbeck1, and Stefan Wagner2

1 Institut für Informatik, Technische Universität München, Germany
{gleirsch,golubits,irlbeck}@in.tum.de

2 Software Engineering Group, Institute of Software Technology,
University of Stuttgart, Germany

stefan.wagner@informatik.uni-stuttgart.de

Abstract. Today’s small and medium-sized enterprises (SMEs) in the
software industry are faced with major challenges. While having to work
efficiently using limited resources they have to perform quality assur-
ance on their code to avoid the risk of further effort for bug fixes or
compensations. Automated static analysis can reduce this risk because
it promises little effort for running an analysis. We report on our expe-
rience in analysing five projects from and with SMEs by three different
static analysis techniques: code clone detection, bug pattern detection
and architecture conformance analysis. We found that the effort that
was needed to introduce those techniques was small (mostly below one
person-hour), that we can detect diverse defects in production code and
that the participating companies perceived the usefulness of the pre-
sented techniques as well as our analysis results high enough to include
the techniques in their quality assurance.

Keywords: software quality, small and medium-sized software enter-
prises, static analysis, code clone detection, bug pattern detection, ar-
chitecture conformance analysis.

1 Introduction

Small and medium-sized enterprises (SMEs) play a decisive role in global soft-
ware industry. In many countries, like the US, Brazil or China, these companies
represent up to 85% of all software organisations [24] and carry out the majority
of software development [22]. Nevertheless, SMEs are confronted with special
circumstances like limited resources, lack of expertise or financial insecurity.

Problem. While there are many articles focusing on process improvement in
SMEs [14,22,28], we found no study that looks at specific quality assurance (QA)
techniques and their application in this context. Contrary to this observation,
the properties of automated static analysis techniques seem to be suitable for
SMEs. The benefits of such techniques lie in their low-cost application and their
potential to detect critical quality defects [33,2]. Such defects are risky for the

S. Biffl, D. Winkler, and J. Bergsmann (Eds.): SWQD 2012, LNBIP 94, pp. 14–38, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



On the Benefit of Automated Static Analysis for SMEs 15

further development and increase costs. These arguments are promising for small
software enterprises and their need for efficient quality assurance.

Research Objective. Our goal is to answer the question whether SMEs can benefit
from automated static analysis techniques. Is it possible to introduce a set of
such techniques in their existing projects with low effort? What kind of defects
can be found using these techniques? Finally, is the perceived usefulness for the
enterprises high enough to justify the needed effort? We think that these aspects
are useful for future decisions in SMEs on using static analysis techniques in
their projects.

Contribution. In this article, we describe our experience in analysing five projects
of five SMEs using three different static analysis techniques: code clone detection,
bug pattern detection and architecture conformance analysis. We evaluate the
effort that is needed to introduce these techniques, the pitfalls we came across
and how the participating enterprises evaluated the presented techniques as well
as the defects we discovered in their projects.

2 Approach

We describe our experiences with transferring static analysis technology to small
and medium-sized enterprises. This section illustrates the research context, i.e.,
the participating enterprises, our guiding research questions, the regarded static
analysis techniques, the procedure we used to get answers to the research ques-
tions and finally the study objects we employed to gather the experiences.

2.1 Research Context

Fundamental for our research was the collaboration with five SMEs, all resident
in the Munich area and selected through personal contacts and a series of in-
formation events and workshops. Details regarding the selection process can be
found in Sec. 2.5. Following the definition of the European Commission [5], one of
the participating enterprises is micro-, two are small and two are medium-sized
considering their staff head count and annual turnover. The presented research is
based on the experience with these enterprises gathered in a project from March
2010 to April 2011.

2.2 Research Questions

Our overall research objective is to analyse the transfer of new and innovative
quality assurance techniques to small enterprises. We structure this objective
into two major research questions.

RQ 1. What problems occur while introducing and applying static analysis tech-
niques at SMEs?

SMEs exhibit special characteristics, such as generalist employees instead of
specialists for quality assurance. Hence, smooth introduction and application



16 M. Gleirscher et al.

are necessary so that the enterprises can adopt and make use of static analysis.
We further break this down into two sub-questions:

RQ 1.1. What technical problems occur? Static analysis is tightly coupled to
tools that perform and report the analysis. Hence, the ease to introduce and
apply static analysis also depends on how many and which technical problems
the software engineers need to solve.
RQ 1.2. How much effort is necessary?
If the effort necessary to bring the analyses up and running is too large, it can be
a killer criterion for an SME, which cannot afford to reserve extra capacities for
that. Therefore, we analyse the effort spent in the introduction and application.

RQ 2. How useful are static analysis techniques for SMEs?

Beyond how easy or problematic it is to introduce and apply static analysis in
SMEs, we are interested in whether we can produce useful results for them. Even
a small effort should not be spent if there is no return on investment. We again
break this question down into two sub-questions:

RQ 2.1. Which defects can be found?
We establish a measure of usefulness by analysing the types and numbers of
defects found by using the static analysis tools at the SME. If critical defects can
be found, the application of the techniques is considered useful. We neither focus
on specification defects and whether they can be found at all, nor do we perform
cause and effects analyses for defects except for some criticality assessments.
RQ 2.2. How do the companies perceive the usefulness?
We add the subjective perception of our project partners. How do they interpret
the results of the static analysis tools? Do they believe they can work with those
tools and are they going to apply them continuously in their future projects?
This way, we augment the information we gained from defect analysis.

2.3 Static Analysis Techniques

Static analysis is known as the checking of software against certain properties
without executing it. It includes manual techniques, such as reviews and inspec-
tions, as well as automated techniques. As manual analyses are time-consuming
and prone to missing problems in the huge amount of code to analyse, automa-
tion has high potential. For example, to detect simple and reoccurring problems
in source code, such as using “==” instead of “equals” to compare strings in
Java, should not be the task of human reviewers. They should concentrate on
the more subtle and domain-related problems. From the interviews with our
partners and the experiences at our research groups, we chose three important
techniques, which we introduce in detail in the following. Technically, we em-
ploy the open-source tool ConQAT1 for code clone detection and architecture
conformance analysis as well as for results processing of bug pattern detection.

1 http://www.conqat.org

http://www.conqat.org


On the Benefit of Automated Static Analysis for SMEs 17

Code Clone Detection. Modern programming languages, particularly object-
oriented ones, offer various abstraction mechanisms to facilitate reuse of code
fragments, but copy-paste is still a widely employed reuse strategy. This often
leads to numerous duplicated code fragments—so called clones—in software sys-
tems. As stated in the surveys of Koschke [16] and Roy and Cordy [26], cloning
is problematic for software quality for several reasons:

– Cloning unnecessarily increases program size and thus efforts for size-related
activities like inspections and testing.

– Changes, including bug fixes, to one clone instance often need to be made
to the other instances as well, again increasing efforts.

– Inconsistently performed changes to duplicated source code fragments can
introduce bugs.

Code clone detection is an automated static analysis technique that focuses on
finding duplicated code fragments. One of the most important metrics offered
by this technique is unit coverage, which is the probability that an arbitrarily
chosen source statement (i.e. a unit) is part of a clone. Another metric called
blow-up denotes the ratio of the unit count of the current software w.r.t. the
unit count of a hypothetical software without clones [13]. Moreover, two terms
are important for clone detection: A clone class defines a set of similar code
fragments and a clone instance is a representative of a clone class [12].

We differentiate between conventional clone detection and gapped clone detec-
tion. During conventional clone detection, clones are considered to be syntacti-
cally similar copies; only variable, type, or function identifiers could be changed
[16]. In contrast, gapped clone detection reveals clones with further modifica-
tions; statements could be changed, added, or removed [16]. While clones are an
indicator of bad design, the difference between the two approaches is that only
the results of gapped clone detection can reveal defects that lead to failures,
which arise through unconscious, inconsistent changes in instances of a clone
class.

Clone detection is supported by a number of free and commercial tools.
The most popular of them are CCFinder2, ConQAT, CloneDR3, and Axivion
Bauhaus Suite4. The former two are free, while the latter two are commercial.

Bug Pattern Detection. By this term we refer to a technique for automated
detection of a variety of defects. Bug patterns have been thoroughly investigated,
e.g. in [33], and compared with other frequently used software quality assurance
techniques such as code reviews or testing [31]. Bug patterns represent a scalable
approach to efficiently reveal defects or possible causes thereof. Following Wagner
et al. [30] they can be cost-efficient after detecting only three field defects. Their
detectors, aka rules, aim at structural patterns recognisable from source code,
executables and meta-data such as source code comments and debug symbols to

2 http://www.ccfinder.net
3 http://www.semanticdesigns.com/Products/Clone
4 http://www.axivion.com

http://www.ccfinder.net
http://www.semanticdesigns.com/Products/Clone
http://www.axivion.com


18 M. Gleirscher et al.

gain as much knowledge as possible from a static perspective. This knowledge
encompasses obvious bugs, rather complex heuristics for latent defects, e.g. code
clones (focused in Sec. 2.3), and less critical issues of coding style.

Because of the large bandwidth of defects, bug patterns are categorised along
a variety of tool-specific, non-standard criteria. A reason for that is that gener-
ally applicable defect classifications are rare, vague or difficult to use in practice
[29]. The tools used for this report classify their rules according to the conse-
quences of findings such as security vulnerability, performance loss or functional
incorrectness. By the term finding we denote that a rule was applied at a specific
location. Often, findings are themselves categorised by their severity and their
confidence levels.

Many of the rules are realised by means of individual lexers and parsers, by
using compiler infrastructures, or by more reusable means such as pattern or
rule languages and machine-learning. Rules for latent defects and coding style
often stem from abstract source code metrics as, e.g., realised in Ferzund, Ahsan,
and Wotawa [7]. Among the wide variety of tools [32] available for bug pattern
detection, free and more popular ones are, e.g., splint5 for C, cppcheck6 for C++,
FindBugs7 for Java as well as FxCop8 for C#.
Architecture Conformance. The phenomenon of architectural erosion is a widely
documented problem [6,8,25]. Architectural knowledge erodes or even gets lost
during the lifetime of a system. Accordingly, the documented and implemented
architectures are drifting apart from each other. This effect leads to a downward
spiralling maintainability of the system. In some cases the effort needed to re-
implement the whole system becomes lower than to maintain it. To counteract
this situation different approaches are used to compare the system’s implemen-
tation with its intended architecture.

Passos et al. [23] identify three static concepts existing for architecture confor-
mance analysis: Reflexion Models (RM), Source Code Query Languages (SCQL)
and Dependency Structure Matrices (DSM).

Reflexion Models as defined by Koshke and Simon [17] compare two models
of a system to each other and check their conformance. The first model usually
represents the intended architecture, the second one the implementation of the
system [15]. The intended architecture consists of components and allowed rela-
tionships between components, expressed as rules. Each component itself can con-
tain sub-components. The system’s code is mapped to these components and then
analysed for conformance to the given rules. This technique is used by the commer-
cial tools SonarJ9 and Structure10110 as well as the open-source tools ConQAT
and dependometer11.
5 http://splint.org
6 http://cppcheck.sourceforge.net
7 http://findbugs.sourceforge.net
8 http://msdn.microsoft.com/en-us/library/
bb429476%28v=vs.80%29.aspx

9 http://www.hello2morrow.com/products/sonarj
10 http://www.headwaysoftware.com
11 http://source.valtech.com/display/dpm/Dependometer

http://splint.org
http://cppcheck.sourceforge.net
http://findbugs.sourceforge.net
http://msdn.microsoft.com/en-us/library/bb429476%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/bb429476%28v=vs.80%29.aspx
http://www.hello2morrow.com/products/sonarj
http://www.headwaysoftware.com
http://source.valtech.com/display/dpm/Dependometer


On the Benefit of Automated Static Analysis for SMEs 19

Table 1. Study objects

SO Platform Sources Size [kLoC] Business Domain

1 C#.NET closed, commercial ≈ 100 Corporate controlling
2 C#.NET closed, commercial ≈ 200 Embedded device maintenance
3 Java open, non-profit ≈ 200 Health information management
4 Java closed, commercial ≈ 100 Communal controlling
5 Java closed, commercial ≈ 560 Document processing

There are tools using SCQL like Semmle.QL [3] or DSM like Lattix [27],
for the sake of brevity not further explained here. Both of these concepts rely
strongly on the realisation of the system and cannot provide an architecture
specification that is independent of the system’s implementation [4].

2.4 Study Subjects and Objects

Study Subjects. For our investigation, we collaborate with five SMEs. These
companies cover various business and technology domains, e.g. corporate and
communal controlling, form letter processing as well as diagnosis and mainte-
nance of embedded systems. Four of them are involved in commercial software
development, one in software quality assurance and consulting. The latter could
not provide an own software project.

Study Objects (SO). Following the suggestion of the partner without a software
project, we instead chose the humanitarian open-source system OpenMRS12,
a development of the equally named multi-institution, non-profit collaborative.
Hence, our study objects are the five software systems briefly described in Tab. 1.
These software systems encompass between 100 and 600 kLoC. The develop-
ments of SOs 1 to 4 are conducted or audited by the study subjects and started
at most seven years ago. The project teams contain less than ten persons. Except
for OpenMRS, they are located in the Munich area. The development of SOs 1
and 2 has already been finished before our project started.

2.5 Procedure

This section explains milestones of our investigation (Step 1–4). It explains the
starting of our research (Step 1), addresses our research questions, i.e. which data
have to be collected and how to achieve that (Step 2) as well as how and under
which conditions our analyses have to be carried out (Step 3–4). Steps 2 and 3
take place in terms of a single, collaborative two-week sprint per participating
enterprise.

Step 1: Workshops and Interviews. We conduct a series of workshops and
interviews to first convince industrial partners to participate in our project and
then to understand their context and their needs. First, in an information event,
12 http://www.openmrs.org

http://www.openmrs.org


20 M. Gleirscher et al.

we explain the general theme of transferring QA techniques and propose first
directions. With the companies that agreed to join the project, we conduct a
kick-off meeting and a workshop to create a common understanding, discuss
organisational issues and plan the complete schedule. In addition, the partners
present a software system that we can analyse as well as their needs concerning
software quality. To intensify our knowledge of these systems and problems, for
each partner we perform a semi-structured interview with two interviewers and
a varying number of interviewees. Both interviewers take notes and consolidate
them. We then compare all interview results to find commonalities and differ-
ences. Finally, we have one or two consolidation workshops to discuss our results
and plan further steps.

Step 2: Raw Data Collection. The source code of at least three versions of
the study objects, e.g., major releases chosen by the companies, is retrieved for
the application of the chosen techniques for RQ 1 to analyse effects over time.
For bug pattern detection and architecture conformance analyses, we retrieve or
build executables packed with debug symbols for each of these configurations.
For architecture conformance we also need an appropriate architecture documen-
tation. To accomplish this step, all partners have to provide project data as far
as available, i.e. source code, build environment and/or debug builds, as well as
documentation of source code, architecture and project management activities.

Step 3: Measurement and Analysis. We apply each technique to the gath-
ered raw data via corresponding tool runs and inspect the results, i.e. findings
and statistics. To provide answers for RQ 1 we consider problems arising and ef-
forts spent. The tool runs enable us to derive answers for RQ 2.1. To accomplish
this step, the partners have to provide support for technical questions by a re-
sponsible contact or by personal attendance at the sprint meetings. One person
per technique carries out this step for all SOs. The following explains how this
is accomplished:

Code Clone Detection. We use the clone detection feature [11] of ConQAT 2.7
for all SOs. In case of conventional clone detection the configuration consists of
two parameters: the minimal clone length and the source code path. In case of
gapped clone detection such gap-specific parameters as maximal allowed number
of gaps per clone and maximal relative size of a gap are additionally required.
Based on the experience of our group and initial experimentation, we set the
minimal clone length to 10 lines of code, the maximal allowed number of gaps
per clone to 1 and the maximal relative size of a gap in our analysis to 30%.
After providing the needed parameters we run the analysis.

To inspect the analysis metrics and particular clones we use ConQAT. It
provides a list of clones, lists of instances of a clone, a view to compare files
containing clone instances and a list of discrepancies for gapped clone analysis.
This data is used to recommend corrective actions. Also in a series of runs of
clone detection over different versions of respective systems we monitor how
several parameters (cf. Sec. 2.3) evolve in subsequent versions.



On the Benefit of Automated Static Analysis for SMEs 21

Bug Pattern Detection. For Java-based systems we use FindBugs 1.3.9 and
PMD13 4.2.5. In C#.NET contexts we use Gendarme14 2.6.0 and FxCop 10.0.
Aside from applying all rules, we choose two additional tool settings which we
consider as being relevant for the SOs to gain two focused quality perspectives:

1) Selected categories addressing correctness, performance, and security
2) Selected rules for unused or poorly partitioned code and bad referencing

The tool settings are determined during preliminary analysis test runs. Cate-
gories and rules which are considered as not important – based on discussion
with the partners as well as requirements non-critical to the SOs’ application
domains – are ignored during rule selection.

To simplify the issue of defect classification (cf. Sec. 2.3) for our investigation
we only distinguish between rules for bugs (obvious defects), smells (simple to
very complex heuristics for latent defects) and pedantry (less critical issues with
focal point on coding style).

For additional and language independent metrics (e.g., lines of code without
comments; code-comment ratio; number of classes, methods and statements;
depth of inheritance and nested blocks; comment quality) as well as for result
preparation and visualisation we apply ConQAT.

Next, we analyse the finding reports resulting from the tool runs. This step
involves the filtering of findings as well as the inspection of source code to confirm
the severity and confidence of the findings and to determine corrective actions.
To get feedback and to confirm our conclusions from the findings we discuss
them with our partners during a workshop.

Architecture Conformance Analysis. We use ConQAT for this technique. The
procedure for each system consists of four steps:

1) Configuration of the tool with path to source code and corresponding exe-
cutables of the system

2) Creation of the architecture reflexion model (cf. Sec. 2.3) based on the ar-
chitectural information given by the enterprises

3) Run of the architecture conformance analysis
4) Defect analysis: Identification, discussion and classification of architectural

violations

A detailed description of this ConQAT feature can be found in [4]. In summary,
we use a reflexion model where dependency and hierarchy relations between
components can be expressed. As a next step, we map modelled components
to code parts (e.g. packages, namespaces, classes). We exclude code parts from
the analysis that do not belong to the system (e.g. external libraries). Then,
ConQAT analyses the conformance of the system to the reflexion model. Every
existing dependency that is not allowed by the architectural rules represents a
defect. Defects are visualised by the tool on the level of components and on the

13 http://pmd.sourceforge.net
14 http://www.mono-project.com/Gendarme

http://pmd.sourceforge.net
http://www.mono-project.com/Gendarme


22 M. Gleirscher et al.

level of classes and can therefore be analysed on both high and low level. To
eliminate tolerated architecture violations and to validate the created reflexion
model, we discuss every found defect with the enterprise. As a last step we
classify all defects together with the responsible enterprise. This allows us to
group similar defects and to provide a general understanding.

Step 4: Questionnaire. First, we evaluate the experience of the participat-
ing enterprises regarding software quality as well as static analysis techniques.
Second, we want to understand the perceived usefulness of static analysis tech-
niques for SMEs: Do they plan to use the presented techniques in their future
projects? Thus, we perform a survey on our study subjects using a questionnaire
containing nine questions (Q1-9), which can be found in Appendix A. This way
we contribute to RQ 2.2. The executive managers of each enterprise in their
role as a representative for their company then fill out this questionnaire and
we evaluate the answers. To avoid the risk of biased or too narrowly formulated
answers we use both, open and closed questions.

3 Results

We held the information event of Step 1 of our procedure (cf. Sec. 2.5) in July
2009 and invited more than thirty SMEs of which finally 12 participated. From
these companies, five committed to take part in the project. The other companies
were not able to provide the necessary commitment because of schedule or bud-
get constraints. As the first discussions were generally about improving quality
assurance, it was not caused by the choice of techniques. We conducted the kick-
off meeting in March 2010, the interviews between March and July and, finally,
two consolidation workshops in July 2010. We did not particularly analyse their
outcome for this paper. But based on these interviews and the experience of our
research group, we selected the three static analysis techniques and interpreted
our further results.

In the following we portrait for each technique how we contribute to the posed
research questions.

3.1 Code Clone Detection

RQ 1.1 – Technical Problems. Code clone detection turned out to be the
most straightforward and least complicated of the three techniques. It has, how-
ever, some technical limitations that could hinder its application in certain soft-
ware projects.

A major issue was the analysis of projects containing both, markup and proce-
dural code like JSP or ASP.NET. Since ConQAT supports either a programming
language or a markup language during a single analysis, it is required to aggre-
gate the results for both languages. To avoid this complication and to concentrate
on the code implementing the application logic we took into consideration only
the code written in the programming language and ignored the markup code.



On the Benefit of Automated Static Analysis for SMEs 23

Table 2. Efforts spent (RQ 1.2) per study object for applying each of the techniques

Phase Work step
(C)lone
(D)etection

Bug Pattern
Detection

Architecture
Conformance

Introduction
(configur-
ation) and
calibration

Analysis tools ≤ 0.5h ≤ 1h ≤ 0.5h
Aggregation
via ConQAT

n/a ≤ 0.5d ≤ 0.5h

Recalibration,
x-times

n/a ≤ x ∗ 0.5h n/a

Application
(analysis)

Run analysis ≤ 5min 1min ≤ . ≤ 1h ≤ 10sec
Inspection
of results

≤ 1h, more for
gapped CD

5min ≤ . ≤ 0.5h 5min ≤ . ≤ 0.5h

Nevertheless, it is still possible to combine the results of clone detection of the
code written in both languages to get more precise results.

Another technical obstacle was filtering out generated code from the analysed
code basis. In one SO large parts of the code were generated by a parser gen-
erator, viz. ANTLR. We excluded this code from our analysis using ConQAT’s
feature to ignore code files specified by regular expressions.

RQ 1.2 – Spent Effort. The effort required to introduce clone detection is
small compared to the other two techniques under study. The ease of introduction
of clone detection is achieved due to the minimalist configuration of the analysis
which in the simplest case includes the path to the source code and the minimal
length of a clone.

For all SOs it took less than an hour to configure clone detection, to get the
first results and to investigate the longest and the most frequent clones. Running
the analysis process itself took less then five minutes.

In case of gapped clone detection it could take a considerable amount of time
to analyse if a discrepancy is intended or if it is a defect. To speed up the
process ConQAT supports that the intended discrepancies can be fingerprinted
and excluded from further analysis runs. An overview of the efforts can be found
in Tab. 2.

RQ 2.1 – Found Defects. The results of conventional clone detection can
be interpreted as an indicator of bad design or of bad software maintainability,
but they do not point at actual defects. Nevertheless, these results give first
hints, which code parts must be improved. The following three design flaws
were detected in all analysed systems to a certain extent: cloning of exception
handling code, cloning of logging code and cloning of interface implementation
by different classes.

Tab. 3 shows the clone detection results for three versions of each SO, sorted
by time. In the analysed systems unit coverage as defined in Sec. 2.3 varied
between 14 and 79%. Koschke [16] reports on several case studies with unit
coverage values between 7 and 23% and one case study with a value of 59%,
which he defines as extreme. Therefor, the SOs 1, 3 and 5 contain normal clone



24 M. Gleirscher et al.

Table 3. Results of code clone detection

SO Version
Analysed

Units
[kUnits]

Cloned
Units

[kUnits]

Blow-up
[%]

Unit
Coverage

[%]

Longest
Clone

[Units]

Most Clone
Instances

I 15,9 3,5 119.5 22.2 112 39
1 II 25,3 5,8 118.9 23.0 117 39

III 32,3 7,8 119.2 24.0 117 39

I 35,4 14,3 143.1 40.5 63 64
2 II 41,6 18,9 150.2 45.4 132 47

III 39,9 14,6 137.4 36.7 89 44

I 51,7 9,4 114.5 18.2 79 21
3 II 56,8 8,6 111.2 15.1 52 20

III 61,6 8,4 110.0 13.7 52 19

I 8,9 6,0 238.8 68.0 217 22
4 II 22,4 17,3 309.6 77.6 438 61

III 38,3 30,4 336.0 79.4 957 183

I 196,3 48,7 122.3 24.8 141 72
5 II 211,3 53,4 122.7 25.3 158 72

III 208,6 53,2 122.8 25.5 156 72

Table 4. Results of gapped code clone detection

SO Version
Analysed

Units
[kUnits]

Cloned
Units

[kUnits]

Blow-up
[%]

Unit
Coverage

[%]

Longest
Clone

[Units]

Most Clone
Instances

I 13,3 3,0 119.9 22.3 34 39
1 II 21,0 4,5 117.9 21.5 37 52

III 27,1 6,0 117.4 22.1 52 52

I 24,3 4,6 116.3 19.0 156 37
2 II 34,7 8,7 123.2 25.0 156 37

III 37,1 9,4 123.7 25.3 156 37

I 46,7 12,0 124.4 18.2 73 123
3 II 46,1 10,0 120.0 15.1 55 67

III 49,1 10,0 118.6 20.5 55 64

I 7,8 4,5 192.1 58.6 42 34
4 II 18,8 11,0 206.2 59.8 51 70

III 32,2 19,2 211.1 59.5 80 183

I 142,3 29,4 117.4 20.7 66 68
5 II 154,0 32,8 118.0 21.3 85 78

III 151,9 32,7 118.2 21.5 85 70

rates according to Koschke. The clone rate in SO 2 is higher than the rates
reported by Koschke and for SO 4 it is extreme. Regarding maintenance the
calculated blow-up for each system is an interesting value. For example version
III of SO 4 is more than three times bigger as its hypothetically equivalent system
containing no clones. SO 4 shows that cloning can be an increasing factor over



On the Benefit of Automated Static Analysis for SMEs 25

time, while SO 3 reveals that it is possible to reduce the amount of clones existing
in the system code.

Cloning is considered harmful because it increases the chance of unconscious,
inconsistent changes, which can lead to faults in a system [12]. These changes can
be detected when applying gapped clone detection. We found a number of such
changes in the cloned code fragments, but we could not classify them as defects,
because we lacked the knowledge needed about the software systems. Also the
project partners could not directly classify these discrepancies as defects, which
confirms that gapped clone detection is a more resource demanding type of anal-
ysis. Nevertheless, in some clone instances we identified additional instructions
or deviating conditional statements compared to other instances of the same
clone class. Gapped clone detection does not go beyond method boundaries,
since experiments showed that inconsistent clones that cross method boundaries
in many cases did not capture semantically meaningful concepts [12]. This ex-
plains why metrics such as cloned units or clone coverage may differ from values
observed with conventional clone detection. Tab. 4 shows the results of gapped
clone detection.

RQ 2.2 – Perceived Usefulness. Following the feedback obtained from the
questionnaire, two enterprises had limited experience with clone detection, the
others did not know about it at all (Q2). Three enterprises estimated the rele-
vance of clone detection to their projects as very high, the others estimated it
as medium relevant (Q3). Concerning Q3, one stated that “clones are necessary
within short periods of development.” Finally, all enterprises evaluated the im-
portance of using clone detection in their projects as medium to high and plan
to introduce this technique in the future (Q5). For details see Tab. 7 and 8 in
Appendix A.

3.2 Bug Pattern Detection

RQ 1.1 – Technical Problems. Following Sec. 2.3, we confirm that bug pat-
terns are a powerful technique to gather a vast variety of information about
potentially defective code. However, most of its effectiveness and efficiency is
achieved through carefully done, project-specific fine-tuning of the many
setscrews available.

First, the impact of findings on quality factors of interest and their conse-
quences for the project (e.g. corrective actions, avoidance or tolerance) were
difficult to determine by the tool-provided rule categories, the severity and con-
fidence information. Based on our experience we identified the following study
object characteristics this impact depends on:

– Required usage-level qualities, e.g., security, safety, performance, usability
– Required internal qualities, e.g., code maintainability, reusability
– Technologies, i.e., language, framework, platform, architectural style
– Criticality of the context the findings belong to, e.g., platform or driver code



26 M. Gleirscher et al.

Second, some rules exhibited many false positives, either because their technical
way of detection is fuzzy or because a definitely precise finding is considered
not relevant in a project-specific context. The latter case requires an in-depth
understanding of each of the rules, the impacts of findings and, subsequently, a
proper redlining of rules as pedantry or, actually, irrelevant. We neither measured
the rates of false positives nor investigated costs and benefits thereof as our focus
lay on the identification of the most important findings only.

Third, due to restricted selection and filtering mechanisms in the tools as well
as a bounded view of the SOs’ life-cycles, we were hindered to apply and calibrate
appropriate rule selectors and findings filters. We saw that the usefulness of
results is crucially influenced by the conversion of project-specific information on
rule impacts into queries for rule selection and findings filtering. The tools greatly
differ in their abilities to achieve this task via their graphical or command-line
interfaces.

We addressed the first two issues by group discussion also with our partners
and improved rule selection and findings filtering to principally avoid the findings
reports to get overloaded or prone to false positives of the second kind. Also, the
third issue could only be largely compensated by manual efforts. As most finding
reports were quite homogeneously encoded and technically well accessible, we
utilised ConQAT to gain statistical information for higher-level quality metrics
as listed in Step 3 of Sec. 2.5.

RQ 1.2 – Spent Effort. We achieved the initial setup of a single bug pattern
tool in less than an hour. This step required knowledge about the internal struc-
ture of the SO such as, e.g., its directory structure and third party code. We
used the ConQAT framework to flexibly run the tools in a specific setting (Java
only) and for further processing of the finding reports. Having good knowledge
of this framework, we completed the analysis setup for an SO (selection of rules,
adjustment of bug pattern parameters, framework setup, etc.) in about half a
day.

The runs took between a minute and an hour depending on code size, rules
selection and other parameters. Hence, bug pattern detection should at least be
selectively included into automated build tasks. Part of the rules are compu-
tationally complex and some tools frequently required more than a gigabyte of
memory. The manual effort after the runs can be split into review and recali-
bration. The review of a report took us a few minutes up to half an hour. Due
to the short period of the life-cycle of the SOs we had insight into, we could not
estimate the recalibration effort for the rule selector and the findings filter. An
overview of the efforts can be found in Tab. 2.

RQ 2.1 – Found Defects. We conducted bug pattern analysis in three selective
tool settings according to Step 3 in Sec. 2.5, but only for one version of each SO.
For all SOs the filtered finding reports confirmed the defects focused or expected
by these settings. Without going into the quantities and details of single findings,
we summarise language-specific results:



On the Benefit of Automated Static Analysis for SMEs 27

Table 5. Overview of bug pattern results. Legend: Cells contain the number of findings
or a maximum value, “n” . . . not applicable, “.” . . . not noticeable, “x” . . . noticeable,
but PMD did not offer an appropriate way to exactly count the many findings.

Tool
(Lang.)

Rule
(recommendations in parentheses)

Study Objects Most affected
Qualities1 2 3 4 5

FxCop
(C#)

Empty / general exception handlers 47 106 n n n Maintainability
Nested use of generic types 44 . n n n Maintainability

Gend-
arme
(C#)

Deep namespaces 35 . n n n Maintainability
Visible constants 18 338 n n n Security
Extensively large classes . 3 n n n Maintainability
Extensively long methods . 17 n n n Maintainability
Suspicious type conversion . 3 n n n Correctness

Gend.,
PMD

Constructor calls overwritable
method

8 . x x x Security, stabil-
ity

Find-
Bugs
(Java)

Unused local variables n n 142 . . Maintainability
Inefficient string manipulation n n 46 . . Performance
Corrupted serialisable n n 55 . . Correctness
Return values not validated n n 30 . . Correctness, sec.
Access of a null pointer n n . . 1 Sec., stability
Integer shift beyond 32 bits n n . . 4 Correctness

PMD
(Java)

Empty method in abstract class n n x . x Maintainability
Max. cyclomatic complexity (≤ 10) n n 78 156 216 Maintainability
Extensive length / size / parameter
count, too many methods / fields

n n . x x Maintainability

ConQAT Max. nested block depth (≤ 5) 13 11 19 17 14 Maintainability

C# Upon the rules with highest numbers of findings, FxCop and Gendarme
reported empty exception handlers, visible constants, and poorly structured
code. There was only one consensually critical kind of findings related to
correctness in SO 2, viz. unacceptable loss of precision through wrong cast
during an integer division used for accounting calculations.

Java Upon the rules with highest numbers of findings, FindBugs and PMD
reported unused local variables, missing validation of return values, wrong
use of serialisable, and extensive cyclomatic complexity, class/method size,
nested block depth, parameter list. There have only been two consensually
critical findings, both in SO 5, related to correctness, viz. foreseeable access
of a null pointer and an integer shift beyond 32 bits in a basic date/time
component.

Independent of the programming language and concerning security and stability
we frequently detected the pattern constructor calls an overwritable method in
4 of 5 SOs and found a number of defects related to error prone handling of
pointers. Concerning maintainability the SOs exhibited missing or unspecific
handling of exceptions, manifold violation of code complexity metrics and various
forms of unused code. Details are shown in Tab. 5.



28 M. Gleirscher et al.

RQ 2.2 – Perceived Usefulness. According to the questionnaire, all of the
partners considered our bug pattern findings to be medium to highly relevant for
their projects (Q3). The sample findings we presented during our final workshop
were perceived as being non-critical for the success of the SOs but would have
been treated if they had been found by such tools during the development of these
software systems. The low number of consensually critical findings correlated
well with the fact that the technique was known to all partners and that most of
them have good knowledge thereof and regularly used such tools in their projects,
i.e. at least monthly, at milestone or release dates (Q1-2). However, three of them
could gain additional education in this technique (Q4). Nevertheless, all of the
enterprises decided to use bug patterns as an important QA instrument in their
future projects (Q5). For details see Tab. 7 and 8 in Appendix A.

3.3 Architecture Conformance Analysis

RQ 1.1 – Technical Problems. We observe two kinds of general problems that
prevent or complicate each architectural analysis: The absence of an architecture
documentation and the usage of dynamic patterns.

For two of the systems there was no documented architecture available. In
one case the information was missing because the project was taken over from
a different organisation that was not documenting the architecture at all. They
reasoned that any later documentation of the system architecture would be too
expensive for their enterprise. In another case the organisation was aware that
their system was severely lacking any architectural documentation. Nevertheless
they feared that the time involved and the sheer volume of code to be covered
exceeds the benefits. The organisation additionally argued that they are afraid
of having to update the documentation within several months as soon as the
next release is coming out.

In SO 2 a dynamic architectural pattern is applied, where nearly no static de-
pendencies could be found between defined components. All components belong-
ing to the system are connected at run-time. Thus, our static analysis approach
could not be applied.

Architecture conformance analysis needs two ingredients apart from the ar-
chitecture documentation: The source code and the executables of a system.
This could be a problem because the source has to be compilable to analyse
it. Another technical problem occurred when using ConQAT. Dependencies to
components solely existing as executables were not recognised by the tool. For
that reason all rules belonging to compiled components could not be analysed.

Beside these problems we could apply our static analysis approach to two
systems without any technical problems. An overview of all SOs with respect to
their architectural properties can be found in Tab. 6.

RQ 1.2 – Spent Effort. For each system the initial configuration of ConQAT
and the creation of the reflexion model in ConQAT could be done in less than one
hour. Tab. 6 shows the number of modelled components and the rules that were
needed to describe their allowed connections. The analysis process itself finished



On the Benefit of Automated Static Analysis for SMEs 29

Table 6. Architectural characteristics of the study objects

SO Architecture Version
Violating Compo-
nent Relationships

Violating Class
Relationships

12 Components
20 Rules

I 1 5
1 II 3 9

III 2 8

2 dynamic n/a n/a n/a

3 undocumented n/a n/a n/a

14 Components
9 Rules

I 0 0
4 II 1 1

III 2 4

5 undocumented n/a n/a n/a

in less than ten seconds. The time needed for the interpretation of the analysis
results is of course dependent on the amount of defects found. For each defect we
were able to find the causal code parts within one minute. We expect that the
effort needed for bigger systems will only increase linearly but staying small in
comparison to the benefit that can be achieved using architecture conformance
analysis as illustrated in Sec. 2.3. An overview of the efforts can be found in
Tab. 2.

RQ 2.1 – Found Defects. As shown in Tab. 6 we observed several discrepan-
cies in the analysed SOs over nearly all version. Only one version did not contain
architectural violations. Overall, we found three types of defects in the analysed
systems. Each defect represents a code location showing a discrepancy to the doc-
umented architecture. The two analysable SOs had architectural defects which
could be avoided if this technique had been applied. In the following we explain
the types of defects we classified together with the responsible enterprises. The
companies rated all findings as critical.

– Circumvention of abstraction layers: Abstraction layers (e.g. presentation
layer) provide a common way to structure a system into logical parts. The
defined layers are hierarchically dependent on each other, reducing the com-
plexity in each layer and allowing to benefit from structural properties like
exchangeability or flexible deployment of each layer. These benefits vanish
when the layer concept is harmed by dependencies between layers that are
not connected to each other. In our case e.g. the usage of the data layer from
the presentation layer was a typical defect we found in the analysed systems.

– Circular dependencies: We found undocumented circular dependencies be-
tween two components. We consider these dependencies – whether or not
documented – as defects themselves, because they affect the general prin-
ciple of component design. Two components that are dependent on each
other can only be used together and can thus be considered as one compo-
nent, which contradicts the goal of a well designed architecture. The reuse
of these components is strongly restricted. They are harder to understand
and to maintain.



30 M. Gleirscher et al.

– Undocumented use of common functionality: Every system has a set of com-
mon functionality (e.g. date manipulation) which is often grouped into com-
ponents and used across the whole system. Consequently, it is important to
know where this functionality is actually used inside a system. Our observa-
tion showed that there were such dependencies that were not covered by the
architecture.

RQ 2.2 – Perceived Usefulness. Following the feedback gained from the
questionnaire, we observed that 4 of the 5 participating enterprises did not know
about the possibility of automated architecture conformance analysis (Q1). Only
one of them already checked the architecture of their systems, however in a
manual way and less frequently. Confronted with the results of the analysis all
enterprises rated the relevance of the presented technique medium to highly
relevant (Q3). One of them stated that as a new project member it is easier
to become acquainted with a software system if its architecture conforms to
its documented specification. All enterprises agreed on the usefulness of this
technique and plan its future application in their projects (Q5). Details of the
questionnaire can be found in Tab. 7 and 8 in Appendix A.

4 Discussion

General Observations. First, we observed that code clone detection and archi-
tecture conformance analysis have been quite new to our partners as opposed to
bug pattern detection which was well known. This may result from the fact that
style checking and simple bug pattern detection are standard features of modern
development environments. However, we consider it as important to know that
code clone detection can indicate critical and complex relationships residing in
the code at minimum effort. We made our partners aware of the usefulness of
architecture conformance analysis, both in the case of an available architecture
specification and to reconstruct such a documentation.

Second, we conclude that all of the three techniques can be introduced and
applied with resources affordable for small enterprises. We assume, that except
for calibration phases at project initiation or after substantial product changes
the effort of readjusting the settings for the techniques stays very low. This effort
is compensated by the time earned through narrowing results to successively
more relevant findings. Moreover, our partners perceived all of the discussed
techniques as useful for their future projects.

Third, we perceive our analyses of the study objects as successful. We found
large clone classes, a significant number of pattern-based bugs aside from smells
and pedantry as well as unacceptable architecture violations.

Usage Guidelines. During the repetitive conduct of Steps 2 and 3 of the proce-
dure in Sec. 2.5 we gained a lot of experience in applying the chosen techniques.
For their introduction and application to a new software project we consider the
following generic procedure as very helpful:



On the Benefit of Automated Static Analysis for SMEs 31

1) Establish a project-specific configuration. This includes the choice, particu-
larly for bug patterns, of appropriate rules aiming on relevant quality factors
or just the strengthening of design or coding guidelines.

2) Define events for measurement, findings filtering and documentation. Filter-
ing requires in-depth knowledge of the system and its critical components.
For bug pattern detection this influences severity and confidence levels, and
for architecture conformance analysis this influences the definition of allowed,
tolerated, and forbidden dependencies.

3) Decide whether to treat or tolerate findings. This involves (i) the inspection
of results and defective code, (ii) the issue of change requests for defect
removal and, (iii) to assess efficiency, the documentation of efforts spent.

4) Determine whether and how defects can be avoided regarding lessons learned
from defect treatment.

5) Strengthen quality gates by improved criteria, which follow patterns such
as, e.g., “Clone coverage in critical code package A below X% prior to any
bundled feature introduction.”, “No critical security errors with confidence
> Y % according to tool Z for any release.”, or “No architecture violations
originating from change sets of new features.”

6) For project control in the context of continuous integration, derive statistics
and trends from findings reports by a quality control dashboard such as
ConQAT.

5 Threats to Validity

In the following, we discuss threats to the validity of our results. We structure
them in internal and external validity threats.

5.1 Internal Validity

First, a potential threat to the internal validity is that most of the project
participants had little experience with the specific tools we were applying. This
could give us additional technical problems, which would not have occurred with
experts. Furthermore, the efforts are probably higher. We mitigated this risk by
discussions with experts and we assume that the introduction in other companies
would also not necessarily be performed by experts.

Second, we did not record exact details about the efforts we spent. We rather
made order of magnitude estimations only. In our context we consider this threat
as small as we do not require precise analyses of these efforts including time
measurement.

Third, we did not completely check whether all defects we found have caused
real problems such as, e.g., critical system failures during operation or significant
budget overruns. Hence, there may be false positives. We reduced this risk by
detailed inspections of the defects we listed.

Fourth, the questionnaire results could be wrong, because a participant either
knowingly or unknowingly gave incorrect answers. We mitigated this threat by
asking participants to be careful in filling it out and at the same time assured
anonymity to them.



32 M. Gleirscher et al.

5.2 External Validity

As this is an experience report on a technology transfer project, the results are
inherently difficult to generalise. We had five projects of SMEs all located in
Germany. We also restricted our analysis to systems realised in Java and C#
and only applied specific analysis tools for it. Hence, the problems, defects, and
perceptions may be particular to this context.

Nevertheless, we think that most of our experiences are valid for other con-
texts as well. The companies, we have collaborated with, range in their size from
only several to a hundred employees. The domains they build software for dif-
fer quite strongly. Finally, the tools are all prominent examples and had been
used in industrial projects before. Only the restriction to two programming lan-
guages has a strong effect as for other languages there may exist rather different
tools and defects. For instance, with bug pattern detection, Ahsan, Ferzund and
Wotawa [1] report that characteristics of bug patterns may be language specific.

6 Related Work

In this research we concentrate on applying automated static analysis techniques
to enable SMEs mitigate the risk of defect-related costs. Different from our
approach, the research community devotes its attention primarily to software
process improvement in SMEs. There are a number of papers covering this topic.

Kautz [14] developed and used metrics to evaluate how new practices and tools
for configuration and change management were affecting the software process at
three SMEs. This work considers that the key to successful software measurement
is to make metrics meaningful and to tailor them to a particular organisation.
We confirm that observation in the context of software measurement.

Von Wangenheim et al. [28] investigated the assessment of software processes
in SMEs to improve these processes. They developed MARES, a set of guide-
lines for conducting an ISO/IEC 15504-conforming software process assessment,
focused on small companies. We perceive the usage guidelines we reported as a
potential bridge between automated static analysis and more general guidelines
for software process improvement.

Hofer [10] states that only 10% of the analysed SMEs in Austrian software
industry believe to suffer from a lack of methods. He concludes that appropriate
tool support as well as the knowledge of methods is available. On the contrary, we
argue that SMEs may not be aware of many effective methods and can therefore
not estimate their lack concerning these techniques.

Returning to automated static analysis techniques, to the best of our knowl-
edge, multiple techniques have never been applied in a study in an SME context.
However, there are several publications in which such techniques were investi-
gated separately and in other contexts:

Lague et al. [18] report on application of function clone detection to a large
telecommunication software system. As opposed to that, we do not limit clone
detection to the comparison of functions but compare arbitrary code fragments
with each other. In this work we also did not analyse large systems. Nevertheless,



On the Benefit of Automated Static Analysis for SMEs 33

we came to the similar conclusion that clone detection has potential to improve
software quality.

Lanubile and Mallardo [19] performed research on finding clones in web ap-
plications developed using markup and programming languages. As mentioned
earlier, our approach is technically limited in analysing such software systems. In-
troducing a semi-automatic approach presented by Lanubile and Mallardo could
remove this limitation.

Ayewah et al. [2] evaluate the accuracy and value of FindBugs findings and dis-
cuss but not solve the problem of properly filtering false positives. They use the
term trivial bugs for what we call smells and pedantry. We confirm their conclu-
sions on the usefulness of findings and believe that an application of bug pattern
detection has to undergo calibration guided by the staff of a software project.
Moreover, by answering RQ2, we contribute to Foster’s, Hicks’ and Pugh’s [9]
question “Are the defects reported by [static analysis] tools important?”.

Ferzund, Ahsan and Wotawa [7] report on the effectiveness of rules for smell
detection. The rules they developed are based on machine learning and source
file statistics provided by static code metrics. They used training information
from two software projects including bug databases. We did not address the
estimation of rule effectiveness but focused on their selection and application.

Wagner et al. [30] similarly applied FindBugs and PMD to two industrial
projects. They could not find defects reported from the field that are covered
by bug pattern detection. However, our results show that this technique indeed
captures critical defects that may eventually occur in the field.

Rosik et al. [25] conducted an industrial case study on architecture confor-
mance with three participating software engineers. They conclude that this tech-
nique should be integrated into the software engineering process and applied
continuously. We think that the procedure we presented is able to satisfy their
needs, because it explicitly focuses on continuous integration.

Mattsson et al. [21] illustrate their experience in an industrial project and the
huge effort that is needed to keep the architectural model in conformance with
the implementation. However, they tried to reach this goal in a manual way. Our
results show that automation can dramatically reduce efforts.

Feilkas, Ratiu and Juergens [6] analysed three .NET platform projects of Mu-
nich Re very similar to our procedure, but they analysed the effects of the loss
of architectural knowledge. Compared to our results they report a much higher
effort of about five days to apply the technique, mainly because of time consum-
ing discussions. We think that the lower effort we are reporting is mainly caused
by the fact that we were collaborating with small enterprises and experienced a
lower communication overhead.

7 Conclusions and Future Work

In general, it is most effective to combine different QA techniques to find most
of the defects [20]. This, however, comes at the efforts and costs of performing
many different techniques. Particularly, SMEs have difficulties in assigning large



34 M. Gleirscher et al.

efforts to diverse QA provisions and to training specialists for them. Automated
static analysis techniques promise to be an efficient contribution to software QA,
because they only require little effort for their application.

We reported our experience in applying three static analysis techniques to
small enterprises: code clone detection, bug pattern detection and architecture
conformance analysis. Consequently, we assessed potential barriers for introduc-
ing these techniques as well as the observations we could make in a one-year
project with five German SMEs.

We found several technical problems, such as multi-language projects with
single language clone analysis or false positives, but we believe that these are
no major road blocks for the adoption of static analysis. Overall, the effort for
introducing the analyses was small. Most techniques were set up with an effort
of less than one person-hour. We found various defects, such as high levels of
cloning, null pointer access, erroneous calculations or circumvention of archi-
tecture layers. In the end, our partners found all of the presented techniques
relevant for inclusion into their quality assurance processes.

In our opinion static analysis tools can efficiently improve quality assurance
in SMEs, if they are continuously used throughout the development process
and are technically well integrated into the tool landscape. But as our research
was not focused on long term observations we can not address this issue. Conse-
quently it is an interesting area of future work to investigate the long term effects
of static analyses in SMEs’ software projects and their continuous integration
into their development processes. Questions arising from the application of these
techniques such as their long term efficiency, their inclusion into an overall QA
strategy, their acceptance by developers, their application to non-code develop-
ment artefacts or their effects on the daily work could then be investigated.

We will continue to work in this area to better understand the needs of SMEs
and investigate our current findings.

Acknowledgements. We would like to thank Christian Pfaller, Bernhard
Schätz and Elmar Jürgens for their technical and organisational support through-
out the project. We thank all involved companies for their reproachless collabo-
ration and assistance.

References

1. Ahsan, S.N., Ferzund, J., Wotawa, F.: Are there language specific bug patterns?
Results obtained from a case study using Mozilla. In: Proc. Fourth International
Conference on Software Engineering Advances (ICSEA 2009), pp. 210–215. IEEE
Computer Society (2009)

2. Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J., Zhou, Y.: Evaluating static
analysis defect warnings on production software. In: Proc. 7th Workshop on Pro-
gram Analysis for Software Tools and Engineering (PASTE 2007), pp. 1–8. ACM
Press (2007)

3. de Moor, O., Verbaere, M., Hajiyev, E., Avgustinov, P., Ekman, T., Ongkingco, N.,
Sereni, D., Tibble, J.: QL for source code analysis. In: Proc. Seventh IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM
2007), pp. 3–16. IEEE Computer Society (2007)



On the Benefit of Automated Static Analysis for SMEs 35

4. Deissenboeck, F., Heinemann, L., Hummel, B., Juergens, E.: Flexible architecture
conformance assessment with ConQAT. In: Proc. 32nd ACM/IEEE International
Conference on Software Engineering, vol. 2, pp. 247–250. ACM Press (2010)

5. European Commission. Commission recommendation of May 6 2003 concerning
the definition of micro, small and medium-sized enterprises. Official Journal of the
European Union L 124, 36–41 (May 2003)

6. Feilkas, M., Ratiu, D., Juergens, E.: The loss of architectural knowledge during
system evolution: An industrial case study. In: Proc. IEEE 17th International Con-
ference on Program Comprehension (ICPC 2009), pp. 188–197. IEEE Computer
Society (2009)

7. Ferzund, J., Ahsan, S.N., Wotawa, F.: Analysing Bug Prediction Capabilities of
Static Code Metrics in Open Source Software. In: Dumke, R.R., Braungarten, R.,
Büren, G., Abran, A., Cuadrado-Gallego, J.J. (eds.) IWSM 2008. LNCS, vol. 5338,
pp. 331–343. Springer, Heidelberg (2008)

8. Fiutem, R., Antoniol, G.: Identifying design-code inconsistencies in object-oriented
software: A case study. In: Proc. International Conference on Software Maintenance
(ICSM 1998). IEEE Computer Society (1998)

9. Foster, J., Hicks, M., Pugh, W.: Improving software quality with static analysis. In:
Proc. 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE 2007), pp. 83–84. ACM Press (2007)

10. Hofer, C.: Software development in Austria: Results of an empirical study
among small and very small enterprises. In: Proc. 28th Euromicro Conference,
pp. 361–366. IEEE Computer Society (2002)

11. Juergens, E., Deissenboeck, F., Hummel, B.: CloneDetective – A workbench for
clone detection research. In: Proc. 31th International Conference on Software En-
gineering (ICSE 2009), pp. 603–606. IEEE Computer Society (2009)

12. Juergens, E., Deissenboeck, F., Hummel, B., Wagner, S.: Do code clones matter?
In: Proc. 31th International Conference on Software Engineering (ICSE 2009),
pp. 485–495. IEEE Computer Society (2009)

13. Juergens, E., Göde, N.: Achieving accurate clone detection results. In: Proceed-
ings 4th International Workshop on Software Clones, pp. 1–8. ACM Press (2010)

14. Kautz, K.: Making sense of measurement for small organizations. IEEE Soft-
ware 16, 14–20 (1999)

15. Knodel, J., Popescu, D.: A comparison of static architecture compliance checking
approaches. In: Proc. IEEE/IFIP Working Conference on Software Architecture
(WICSA 2007), p. 12. IEEE Computer Society (2007)

16. Koschke, R.: Survey of research on software clones. In: Duplication, Redundancy,
and Similarity in Software, Schloss Dagstuhl, Germany (2007)

17. Koschke, R., Simon, D.: Hierarchical reflexion models. In: Proc. 10th Working
Conference on Reverse Engineering (WCRE 2003), p. 368. IEEE Computer Society
(2003)

18. Lague, B., Proulx, D., Mayrand, J., Merlo, E.M., Hudepohl, J.: Assessing
the benefits of incorporating function clone detection in a development pro-
cess. In: Proc. International Conference on Software Maintenance (ICSM 1997),
pp. 314–321. IEEE Computer Society (1997)

19. Lanubile, F., Mallardo, T.: Finding function clones in web applications. In:
Proc. 7th European Conference on Software Maintenance and Reengineering
(CSMR 2003), pp. 379–388. IEEE Computer Society (2003)

20. Littlewood, B., Popov, P.T., Strigini, L., Shryane, N.: Modeling the effects of com-
bining diverse software fault detection techniques. IEEE Transactions on Software
Engineering 26, 1157–1167 (2000)



36 M. Gleirscher et al.

21. Mattsson, A., Lundell, B., Lings, B., Fitzgerald, B.: Experiences from representing
software architecture in a large industrial project using model driven development.
In: Proc. Second Workshop on SHAring and Reusing architectural Knowledge Ar-
chitecture, Rationale, and Design Intent (SHARK-ADI 2007). IEEE Computer
Society (2007)

22. Mishra, A., Mishra, D.: Software quality assurance models in small and medium
organisations: A comparison. International Journal of Information Technology and
Management 5(1), 4–20 (2006)

23. Passos, L., Terra, R., Valente, M.T., Diniz, R., das Chagas Mendonca, N.: Static
architecture-conformance checking: An illustrative overview. IEEE Software 27,
82–89 (2010)

24. Richardson, I., Von Wangenheim, C.: Guest editors’ introduction: Why are small
software organizations different? IEEE Software 24(1), 18–22 (2007)

25. Rosik, J., Le Gear, A., Buckley, J., Babar, M.: An industrial case study of ar-
chitecture conformance. In: Proc. 2nd ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM 2008), pp. 80–89. ACM
Press (2008)

26. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Technical
report, Queen’s University at Kingston (2007)

27. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: Proc. 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications (OOP-
SLA 2005), pp. 167–176. ACM Press (2005)

28. von Wangenheim, C.G., Anacleto, A., Salviano, C.F.: Helping small companies
assess software processes. IEEE Software 23, 91–98 (2006)

29. Wagner, S.: Defect classification and defect types revisited. In: Proc. 2008 Work-
shop on Defects in Large Software Systems (DEFECTS 2008), pp. 39–40. ACM
Press (2008)

30. Wagner, S., Deissenboeck, F., Aichner, M., Wimmer, J., Schwalb, M.: An evalu-
ation of two bug pattern tools for java. In: Proc. First International Conference
on Software Testing, Verification, and Validation (ICST 2008), pp. 248–257. IEEE
Computer Society (2008)

31. Wagner, S., Jürjens, J., Koller, C., Trischberger, P.: Comparing Bug Finding Tools
with Reviews and Tests. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS,
vol. 3502, pp. 40–55. Springer, Heidelberg (2005)

32. Wikipedia. List of tools for static code analysis — wikipedia, the free encyclopedia
(2011) (accessed May 6, 2011)

33. Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J.P., Vouk, M.A.:
On the value of static analysis for fault detection in software. IEEE Transactions
on Software Engineering 32, 240–253 (2006)



On the Benefit of Automated Static Analysis for SMEs 37

A Results of the Questionnaire

Table 7. Summary of closed answers of the questionnaire for RQ 2.2 (five results,
contents and answers have been translated from German to English). Legend: ++ ..
very high, + .. high, o .. medium, – .. low, - - .. very low

Question Closed Answers (without comments)

Q1) Which of these static
analysis techniques have you
already been using in your
projects?

d
a
il
y

w
ee

kl
y

m
o
n
th

ly

le
ss

fr
eq

.

n
ev

er

Architecture conformance 0 0 0 1 4
Bug pattern detection 2 2 1 0 0
Clone detection 0 0 0 2 3

Q2) What is your estimate of
the experience of your com-
pany in these techniques?

++ + o – - - none
Architecture conformance 1 2 1 1 0 0
Bug pattern detection 1 3 1 0 0 0
Clone detection 0 0 1 0 1 3

Q3) How do you perceive the
relevance of our analysis re-
sults for your study object?

high o low none
Architecture conformance 3 2 0 0
Bug pattern detection 2 3 0 0
Clone detection 3 2 0 0

Q4) How much education
could you gain from the topics
of our research project?

much o little none
Architecture conformance 2 2 1 0 0 0
Bug pattern detection 2 0 1 1 1 0
Clone detection 2 2 1 0 0 0

Q5) Which of the following
analysis techniques do you
plan to apply at which level
of priority?

++ + o – - - none *)
Architecture conformance 1 3 0 1 0 0 5
Bug pattern detection 4 1 0 0 0 0 5
Clone detection 0 2 3 0 0 0 5
*) application of the technique is planned



38 M. Gleirscher et al.

Table 8. Summary of open answers and comments of the questionnaire for RQ 2.2
(five results, contents and answers have been translated from German to English)

Open Answers and Comments

Q1) Architecture conformance analysis has not been used because . . .

– “projects have been developed cleanly or without [need of] architecture.”
– “manual inspection was carried through.”
– “the prerequisites . . . would have needed to be established for our projects. Manual

inspection (code reviews) already takes place irregularly.”
– “it was not known to us.”

Clone detection has not been used because . . .

– “[clones were] not known to us as a problem.”
– “we did not recognise its necessity.”

Q3) The results have been relevant because . . .

– “manual [code] analysis is significantly more cost-intensive, . . . clone detection is
only feasible with tool support.”

– “we learned about concepts, experiences and tools . . . it is easier to become ac-
quainted with [a project if its architecture conforms to its documented specifica-
tion].”

– “Clones are necessary within short periods of development.”

Q5) “The results of this research project shall be included into our internal develop-
ment process.”
Q6) Your estimate of the current status of your organisation w.r.t. software quality:
Strengths: “Seamless process for requirements QA . . . regarded design guidelines for
all languages used . . . flexible adaptation of guidelines to customer needs . . . performed
QA provisions (from unit testing to selective pair programming) seem to work . . . so
far we only experienced high customer satisfaction . . .mature in testing techniques
and management.”
Weaknesses: “No consequent QA provisions . . . no systematic QA . . . automation and
tool usage either project specific or even left out . . . still learning to apply the tools.”
Q7) Where do you expect the highest potential of your organisation to improve its
software quality?

– “Consequent QA provisions,”
– “integrated tools and more automation . . . QA dashboard for project managers,”
– “better knowledge transfer between teams and projects,”
– “improved quality control . . . backflow of QA results into development process.”

Q8) Your estimate of the usefulness of static analysis for your software projects:
Positive: “Important”, “high”, “trend analyses are important”, “very important, be-
cause of early and efficient defect detection . . . help identify structural deficits . . . ease
[code] maintenance . . . quality improvement starting with first build . . . for internal
projects better control and indication of deficits.”
Negative: “Often not feasible in projects externally conducted at the customers’.”


	On the Benefit of Automated Static Analysis for Small and Medium-Sized Software Enterprises
	Introduction
	Approach
	Research Context
	Research Questions
	Static Analysis Techniques
	Study Subjects and Objects
	Procedure

	Results
	Code Clone Detection
	Bug Pattern Detection
	Architecture Conformance Analysis

	Discussion
	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Conclusions and Future Work
	References




