
T.-h. Kim et al. (Eds.): ASEA/DRBC/EL 2011, CCIS 257, pp. 85–96, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Prolog Based Approach to Consistency Checking
of UML Class and Sequence Diagrams

Zohaib Khai1, Aamer Nadeem1, and Gang-soo Lee2

1 Center for Software Dependability,
Mohammad Ali Jinnah University (MAJU), Islamabad, Pakistan

raja_zohaibkhai@yahoo.com, anadeem@jinnah.edu.pk
2 Department of Computer Engineering,

Hannam University, Korea
gslee@hannam.ac.kr

Abstract. UML is an industrial standard for designing and developing object-
oriented software. It provides a number of notations for modeling different
system views, but it still does not have any means of meticulously checking
consistency among the models. These models can contain overlapping
information which may lead to inconsistencies. If these inconsistencies are not
detected and resolved properly at an early stage, they may result in many errors
in implementation phase. In this paper, we propose a novel approach for
consistency checking of class and sequence diagrams based on Prolog language.
In the proposed approach, consistency checking rules as well as UML models
are represented in Prolog, then Prolog’s reasoning engine is used to
automatically find inconsistencies.

Keywords: UML, Sequence Diagram, Class Diagram, Prolog, Constraints,
Consistency checking.

1 Introduction

In system development lifecycle, design phase plays an important role as a basis for
implementation. During design phase system is modeled in such a way as to bridge
the gap between analysis and implementation phase. It is desirable to be able to detect
model inconsistencies at an early stage, so that the inconsistencies will not be
propagated to code or customer deliverables, such as, documentation [9]. If design
phase is modeled properly then process of up-gradation and maintenance of system
becomes easy.

An important quality of design is that it should be understandable. To increase the
design understandability different design methods and notations have been developed.
But for the past few years Unified Modeling Language (UML) [1] is accepted as an
industrial standard for object-oriented system modeling. The software design is
usually represented as a collection of UML diagrams. UML is a very flexible
modeling language as it provides number of notations for modeling different system
perspectives, e.g., static view (class diagram) and dynamic view (sequence diagram).

86 Z. Khai, A. Nadeem, and G.-s. Lee

It also has a wide range of tools covering up all the features of system modeling for
complete and comprehensive representation.

Cost of software development also decreases by performing consistency checking
between different UML artifacts. Especially after the emergence of MDA [21] object-
oriented code can be generated from UML models. So, for reliable and correct code
generation UML artifacts need to be consistent for which model consistency checking
is desirable. Similarly modifications in model are relatively simple as compared to the
changes in source code. After modifications in model, once again consistency
checking is required to validate models.

In this paper we present an approach that transforms UML models into Prolog [3]
to perform consistency checking. Use of Prolog is motivated by the fact that it is a
declarative programming language that provides beneficial assistance representing
arbitrary concepts based on inference rules. It is also quite expressive for the types of
consistency rules we deal with.

2 Inconsistency and Consistency Checking Types

This section describes the consistency checking types as given by Mens et al. [12].

2.1 Consistency Checking Types

Vertical Consistency. Consistency checking is performed between diagrams of
different versions or abstraction-levels. Syntactic and semantic consistencies are also
included in it.

Horizontal Consistency. Consistency checking is performed between different
diagrams of same version.

Evolution Consistency. Consistency checking is performed between different
versions of a same UML-artifact.

Inconsistencies we consider include both structural, which appears in class
diagram, and behavioural that appears in sequence diagram. Classes of
inconsistencies used below are taken from [17]. In current paper we deal with the type
of consistency known as horizontal consistency. Inconsistencies that can occur are
described in next section.

2.2 Inconsistency Types

Dangling Feature Reference [17]. This type of inconsistency occurs when message
in sequence diagram references to a method that does not exists in class diagram.

Multiplicity Incompatibility [17]. This type of inconsistency takes place when the
link in sequence diagram does not follow the multiplicity constraints defined by
corresponding association in class diagram.

 A Prolog Based Approach to Consistency Checking 87

Dangling Association Reference [17]. This type of inconsistency occurs when a link
is defined between objects in sequence diagram and it has no association between
classes of corresponding objects.

Classless Connectable Element [17]. This type of inconsistency occurs when
object’s lifeline in sequence diagram refers to the class that does not exist in class
diagram.

3 Related Work

In this section, the existing UML model consistency checking techniques are
discussed. For consistency checking many techniques transform the UML model in
some intermediate form, by applying the rules presented in different techniques.

Straeten et al [2, 11] present a technique for consistency detection and resolution
using DL (Description logic) [14]. The authors present an inconsistency classification.
A UML profile is also developed to support consistency of UML artifacts and then
LOOM tool [15] is used for translation of developed profile into DL. Consistency
checking is performed for messages, associations and classes but not for constraints
and multiplicity.

Krishnan [4] presents an approach for consistency checking based on translation of
UML diagrams in state predicates. Only UML behavior diagrams are covered. After
translation, PVS (prototype verification system) a theorem prover as well as a model
checker is used to perform consistency checking.

Muskens et al [5] present an approach for intra and inter phase consistency
checking, which makes use of Partition Algebra using verification rules. Consistency
checking is performed by deriving the rules from one view and imposing them on the
other view. Consistency checking is performed for associations, messages and
constraints.

Egyed [6] introduces a consistency checking technique known as View-Integra. In
this technique the diagram to be compared is transformed in such a way that it
becomes conceptually close to the diagram with which it is going to compare.
Consistency checking is performed between same artifacts, one is original and other
one is transformed. Technique is partially automated.

Ehrig et al [7] propose a technique to perform consistency checking between
sequence and class diagram based on Attributed Typed Graphs and their
transformation. Consistency checking is performed for existence checking (means all
classes used in sequence diagram exist in class diagram), visibility checking
(visibility of classes, attributes and operations, all should be visible to sequence
diagram) and multiplicity checking. Their approach is not supported by any tool
support.

Briand et al. [8, 18] propose an approach for change impact analysis based on
UML models. This technique is applied before changes are implemented to estimate
the effect of change. Some rules are formally defined using OCL to determine the

88 Z. Khai, A. Nadeem, and G.-s. Lee

impact of change on different versions of models. A prototype tool is implemented
which also executes consistency checking rules defined.

Paige et al. [10] present an approach to formalize and describe the implementation
of consistency constraints between two views of BON (Business Object Notation) i.e.
class and collaboration diagram. PVS theorem prover is used to automate the proofs.
Consistency checks performed includes sequencing consistency checks (order of
message calls), class existence and routine (operation) existence.

Storrle [16] proposes a Prolog based model representation and query interface for
analysis of models in MDD (Model Driven Development) setting. Models and queries
are represented on the basis of representation defined for Prolog clauses. Queries are
used for identifying elements, properties and sub-models of models.

4 Proposed Approach

The proposed approach is an idea of checking consistency of two UML diagrams, i.e.,
class diagram and sequence diagram. For this purpose, UML models as well as
consistency rules are represented in Prolog and then reasoning is performed in Prolog.
Our technique provides better coverage of the models and can also be extended to
check consistency between OCL constraints of both UML artifacts. Flow diagram of
proposed approach is given in Figure 1.

Fig. 1. Flow diagram of Proposed Approach

 A Prolog Based Approach to Consistency Checking 89

4.1 Representation of UML Models in Prolog

Class Diagram

Fig. 2. Partial UML Meta-model for Class diagram [1]

This section deals with Prolog representation of UML class diagram. Figure2 shows
partial meta-model of UML class diagram [1]. Class diagram consist of attributes,
operations, associations and multiplicity constraints along with class name. Every
element of class diagram is assigned an identifier which is a number. These assigned
identifiers are used so that relationships between different elements can be created.
General format of rules is as follows.

Predname(id(s) , Element(s)-details).

 class(Classid , Classname). (1)

‘class’ used at start is predicate name after that ‘Classid’ is the unique id assigned to
the class and ‘Classname’ is the actual name of class.

 attribute(Attrid , Attrname, Attr-type, Classid). (2)

‘attribute’ written at the start is predicate name, first thing after brackets is ‘Attrid’
which is identifier of attribute, second is ‘Attrname’ i.e. attribute name, third is ‘Attr-
type’ i.e. type of attribute and at fourth place ‘Classid’ is identifier of class to whom
this attribute belongs.

 Operation(Opid , Opname , [Parameter(s)-id] , Classid). (3)

‘operation’ is predicate name, then ‘Opid’ is operation identifier, ‘Opname’ is
operation name, ‘[parameters]’ is list of parameters and ‘Classid’ is same as in (1).

 parameter(Pid ,Pname, Ptype). (4)

90 Z. Khai, A. Nadeem, and G.-s. Lee

Keyword ‘parameter’ is predicate name, Pid is parameter identifier, ‘Pname’ is name
of parameter and ‘Ptype’ refers to the type of parameter, it can either refers to
primitive types or to a class.

 association(Associd , ClassAid , ClassBid). (5)

Keyword ‘association’ is predicate name, ‘Associd’ is identifier for association.
‘ClassAid’ and ‘ClassBid’ are identifiers for the association ends.

 Multiplicity(Associd , Classid , Lowval , Upval). (6)

Keyword ‘multiplicity’ is name of predicate, from ‘Associd’ and ‘Classid’, we come
to know the association and class to which multiplicity constraints belongs. ’Lowval’
& ‘Upval’ contains actual values of multiplicity.

Sequence Diagram

Fig. 3. UML Meta-model for Sequence diagram [19]

This section contains details of Prolog representation of sequence diagram
elements. Figure 3 shows meta-model of sequence diagram [19]. Elements of
sequence diagram are objects and operation/method call. Similarly identifiers are
assigned to different elements of sequence diagram.

 object(Objid , Objname, Classid, Multiobj). (7)

Keyword ‘object’ is actually name of predicate. ‘Objid’, ‘Objname’ and ‘Classid’ are
object identifier, object name and class identifier respectively. ‘Multiobj’ has value of
T(true) or F(false), which tells whether multiple instances exist or not.

 mcall(Msgid ,Opname ,[Parameter-list] ,Sndobjid ,Recobjid). (8)

 A Prolog Based Approach to Consistency Checking 91

Keyword ‘mcall’ stands for method-call is predicate name. ‘Msgid’, ‘Opname’ and
[Parameter-list] are for message identifier, operation name and parameter-list of
operation respectively. ‘Sndobjid’ and ‘Recobjid’ is sending object name and
receiving object name.

Below is an example of class and sequence diagram representation according to our
proposed representation of UML model in Prolog. Both diagrams are taken from [20].

Fig. 4. Example Class Diagram [20]

class(1, Employee).
attribute(3, age, integer, 1).
attribute(4, name, String, 1).
operation(5, getAge, [], 1).
class(2, Company).
attribute(6, location, String, 2).
attribute(7, name, String, 2).
operation(8, fire,[10], 2).
operation(9, hire, [10], 2).
parameter(10, Employee, Employee).
association(11, 1, 2).
multiplicity(11, 1, 0, 1).
multiplicity(11, 2, 0, n).

Fig. 5. Example Sequence Diagram [20]

92 Z. Khai, A. Nadeem, and G.-s. Lee

object(1, ACME, 2, F).
object(2, Andrea, 1, T).
mcall(3, getAge, [], 1, 2).

4.2 Consistency Checking Rules

In this section we have proposed some rules for consistency checking of UML models
based on Prolog predicate.

Classless Connectable Element. Occurs when object’s lifeline in sequence diagram
refers to the class that does not exist in class diagram. Here object’s information is
brought from database using object clause and from that information class identifier is
extracted and compared with all class predicates in database to check class existence.
In case of negative results of comparison an error message is returned defining
inconsistency.

objcl_exist_rule(ClCele):-
 object(Objid,_,_,_),
 object(Objid,N,Classid,_),
 ((\+class(Classid,_),
 ClCele="Error: 301");
 fail.

Dangling Feature Reference. Occurs when message call in sequence diagram refers
to method that does not exist in class diagram. In this rule using method call clause,
required information is brought from database and from that information object
identifier is extracted to find out the related object. Finally operation existence in
corresponding class is checked on the basis of information taken from object. If
operation does not exist an error message is returned.

op_exist_rule(DfRef):-
 mcall(Msgid,_,_,_),
 mcall(Msgid,Opname,_,Recobjid),
 object(Recobjid,_,Classid,_),
 ((\+operation(_,Opname,_,Classid),
 DfRef="Error: 302");
 fail.

Dangling Association Reference. Occurs when there is link between objects in
sequence diagram while no association between corresponding classes of class
diagram. In this rule first required information about method call and object is
gathered from database using ‘mcall’ and ‘object’ clauses and then on the basis of
gathered information comparison is made to check existence of association between
classes. If association does not exist an error message is returned.

assoc_exist(DaRef):-
 mcall(Msgid,_,_,_),
 mcall(Msgid,_,Sndobjid,Recobjid),
 object(Sndobjid,_,ClassA,_),
 object(Recobjid,_,ClassB,_),
 ((\+association(_,ClassA,ClassB),
 DaRef="Error: 303");
 fail.

 A Prolog Based Approach to Consistency Checking 93

Multiplicity Incompatibility. Occurs when multiplicity constraints of both artifacts
are not matching. In this rule required information is collected from database using
‘mcall’, ‘object’ and ‘association’ clauses. From gathered information, receiving
object is checked whether it’s a multi-object or not and on the basis of this further
comparison is made to check the multiplicity constraints. If constraints are non-
matching then an error message is returned containing details of inconsistency.

mlp_in_rule(MulIn):-
 mcall(Msgid,_,_,_),
 mcall(Msgid,_,Sndobjid,Recobjid),
 object(Sndobjid,_,ClassAid,_),
 object(Recobjid,_,ClassBid,BMulti),
 association(Associd,ClassAid,ClassBid),
 ((BMulti == t,
 multiplicity(Associd,ClassBid,_,UpvalB),

 ((UpvalB =< 1,
 MulIn="Error: 304");
 (UpvalB > 1)));

 (BMulti == f,
 multiplicity(Associd,ClassBid,_,UpvalB),

 ((UpvalB < 1,
 MulIn="Error: 304b");
 (UpvalB =:= 1)))),
 fail.

5 Automation

Technique proposed in current paper is automatable. For automation of technique
certain steps are to be followed. First UML models are converted so that information
contained in models can be represented in prolog. This is done by generating XMI of
each model, which is by default generated, with each model, in existing CASE tools(
e.g. Togeather). Then from XMI relevant information or information to be matched is
extracted and represented in the form of Prolog predicates, which are of first order.

After model conversion to prolog predicates, consistency rules from rule database
along with converted models are presented to reasoning engine. Reasoning engine
performs reasoning on prolog predicates generated from models based on consistency
rules and return error code of inconsistencies if any.

6 Evaluation

In this section, evaluation of existing techniques presented in section 3 and our
proposed technique is performed. Evaluation is performed on the basis of
inconsistency types described in section 2. Result of evaluation is presented below in
the form of a table.

94 Z. Khai, A. Nadeem, and G.-s. Lee

Table 1. Comparison of Existing Related Techniques

Inconsistency Types

Techniques

DFR MI DAR CCE CI

Simmonds et al (2004),
Straeten et al (2003)

Yes No Yes Yes No

Krishnan, P. (2005) Yes No No Yes No

Muskens et al (2005) Yes No Yes No Yes

Egyed, A. (2001) Yes No Yes Yes No

Ehrig et al (2000) Yes Yes(partial) Yes Yes No

Briand et al (2006,
2003)

Yes No No Yes No

Paige et al (2002) Yes No No Yes No

CCSP Yes Yes Yes Yes No

Table 2. Abbreviations used in Table1

Abbreviation Used Value
DFR Dangling Feature Reference
MI Multiplicity Incompatibility
DAR Dangling Association Reference
CCE Classless Connectable Element
CI Constraint Incompatibility
CCSP Consistency checking of Class & Sequence diagram using Prolog

7 Conclusion and Future Work

UML is an industrial standard for designing and developing object-oriented software.
To obtain consistent and correct information from UML artifacts, consistency
checking of artifacts is required. Also consistency checking plays very important role
in reliable and correct code generation in MDD setting, as correct code is generated
only if models are consistent. In this paper we present a prolog based consistency
checking technique for two different artifacts of UML, Proposed technique provides
better diagram coverage and also covers more inconsistency types. Further work can
be done by including more elements of both artifacts. More artifacts can also be added
by covering all elements of those artifacts to avoid skipping minor details in models.

Ackmowledgement. This work was supported by the Security Engineering Research
Center, under research grant from the Korean Ministry of Knowledge Economy.

 A Prolog Based Approach to Consistency Checking 95

References

1. Object Management Group. Unified Modeling Language specification version 2.1.2.
formal/2007-11-01 (November 2007)

2. Simmonds, J., Van Der Straeten, R., Jonckers, V., Mens, T.: Maintaining consistency
between UML models using description logic. In: Proceedings Langages et Modèles à
Objets 2004, RSTI série L’Objet, vol. 10(2-3), pp. 231–244. Hermes Science Publications
(2004)

3. Clocksin, W.F., Mellish, C.S.: Programming in Prolog, 2nd edn. Springer, Heidelberg
(1984)

4. Krishnan, P.: Consistency Checks for UML. In: The Proc. of the Asia Pacific Software
engineering Conference (APSEC 2000), pp. 162–169 (December 2000)

5. Muskens, J., Brill, R.J.: Generalizing Consistency Checking between Software Views. In:
Proceedings of 5th Working IEEE/IFIP Conference on Software Architecture (WICSA
2005), pp. 169–180 (2005)

6. Egyed, A.: Scalable consistency checking between diagrams -The VIEWINTEGRA
Approach. In: Proceedings of the 16th International Conference on Automated Software
Engineering, San Diego, USA (November 2001)

7. Ehrig, H., Tsiolakis, A.: Consistency analysis of UML class and sequence diagrams using
Attributed Typed Graph Grammars. In: Proceedings of joint APPLIGRAPH/ GETGRATS
workshop on Graph Transformation systems, Berlin (March 2000)

8. Briand, L.C., Labiche, Y., O’Sullivan, L., Sowka, M.M.: Automated Impact Analysis of
UML Models. Journal of Systems and Software 79(3), 339–352 (2006)

9. Paige, R.F., Ostroff, J.S., Brooke, P.J.: A Test-Based Agile Approach to Checking the
Consistency of Class and Collaboration Diagrams, UK Software Testing Workshop,
University of York, September 4-5 (2003)

10. Paige, R.F., Ostroff, J.S., Brooke, P.J.: Checking the Consistency of Collaboration and
class Diagrams using PVS. In: Proc. Fourth Workshop on Rigorous Object-Oriented
Methods. British Computer Society, London (March 2002)

11. Straeten, R.V.D., Mens, T., Simmonds, J.: Maintaining Consistency between UML Models
with Description Logic Tools. In: ECOOP Workshop on Object-Oriented Reengineering,
Darmstadt, Germany (July 2003)

12. Mens, T., Straeten, R.V.D., Simmonds, J.: A Framework for Managing Consistency of
Evolving UML Models. In: Yang, H. (ed.) Software Evolution with UML and XML, ch.1.
Idea Group Inc. (March 2005)

13. Usman, M., Nadeem, A., Tai-hoon, K., Cho, E.-S.: A Survey of Consistency Checking
Techniques for UML Models. Advanced Software Engineering and Its Applications, pp.
57–62. ASEA, Hainan Island (2008)

14. Baader, F., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic
Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)

15. MacGregor, R.M.: Inside the LOOM description classifier. ACM SIGART Bulletin 2(3),
88–92 (1991)

16. Störrle, H.: A PROLOG-based Approach to Representing and Querying UML Models. In:
Cox, P., Fish, A., Howse, J. (eds.) Intl. Ws. Visual Languages and Logic (VLL 2007).
CEUR-WS, vol. 274, pp. 71–84. CEUR (2007)

17. Straeten, R.V.D.: Inconsistency management in model-driven engineering using
description logics. PhD thesis, Department of Computer Science, Vrije Universiteit
Brussel, Belgium (September 2005)

96 Z. Khai, A. Nadeem, and G.-s. Lee

18. Briand, L.C., Labiche, Y., O’Sullivan, L.: Impact Analysis and Change Management of
UML Models. In: Proceedings of the 19th International Conference Software Maintenance
(ICSM 2003), pp. 256–265. IEEE Computer Society Press, Amsterdam (2003)

19. Ouardani, A., Esteban, P., Paludetto, M., Pascal, J.: A Meta-modeling Approach for
Sequence Diagrams to Petri Nets Transformation within the requirement validation
process. In: The 20th annual European Simulation and Modeling Conference, ESM 2006
conference, LAAS, Toulouse, France (2006)

20. Baruzzo, A.: A Unified Framework for Automated UML Model Analysis. PhD thesis,
Department of Mathematics and Computer Science, University of Udine, Italy (July 2006)

21. Object Management Group (OMG), MDA Guide, Version 1.0.1 (2003),
http://www.omg.org/docs/omg/03-06-01.pdf

	A Prolog Based Approach to Consistency Checking of UML Class and Sequence Diagrams
	Introduction
	Inconsistency and Consistency Checking Types
	Consistency Checking Types
	Inconsistency Types

	Related Work
	Proposed Approach
	Representation of UML Models in Prolog
	Consistency Checking Rules

	Automation
	Evaluation
	Conclusion and Future Work
	References

