
Chapter 4 

Physical Principles of Wind Energy Conversion 

The primary component of a wind turbine is the energy converter which transforms the 
kinetic energy contained in the moving air, into mechanical energy. For the initial 
discussions of principles, the exact nature of the energy converter is irrelevant. The 
extraction of mechanical energy from a stream of moving air with the help of a disk-
shaped, rotating wind energy converter follows its own basic rules. 

The credit for having applied this principle to windmills is owed to Albert Betz. 
Between 1922 and 1925, Betz published writings in which he was able to show that, by 
applying elementary physical laws, the mechanical energy extractable from an air 
stream passing through a given cross-sectional area is restricted to a certain fixed 
proportion of the energy or power contained in the air stream [1]. Moreover, he found 
that optimal power extraction could only be realised at a certain ratio between the flow 
velocity of air in front of the energy converter and the flow velocity behind the 
converter. Similar approaches have been made by Rankine and Froude on the example 
of ship propellers in the nineteenth century. 

Although Betz’s “momentum theory”, which assumes an energy converter working 
without losses in a frictionless airflow, contains simplifications, its results are quite 
usable for performing rough calculations in practical engineering. But its true 
significance is founded in the fact that it provides a common physical basis for the 
understanding and operation of wind energy converters of various designs. For this 
reason, the following sections will provide a summarised mathematical derivation of the 
elementary “momentum theory” by Betz.  

4.1   Betz’s Elementary Momentum Theory 

The kinetic energy of an air mass m moving at a velocity ݒ can be expressed as: ܧ ൌ  12  ଶ          ሺܰ݉ሻݒ ݉ 

Considering a certain cross-sectional area A, through which the air passes at velocity ݒ, 
the volume V flowing through during a certain time unit, the so-called “volume flow”, is: 
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ሶܸ ൌ ሺ݉ଷ          ܣ ݒ ⁄ݏ ሻ 

and the mass flow with the air density ϱ is: ሶ݉ ൌ ሺ݇݃          ܣ ݒ ߷  ⁄ݏ ሻ 

The equations expressing the kinetic energy of the moving air and the mass flow yield 
the amount of energy passing through cross-section A per unit time. This energy is 
physically identical to the power P: ܲ ൌ  12  ሺܹሻ          ܣ ଷݒ ߷ 

The question is how much mechanical energy can be extracted from the free-stream 
airflow by an energy converter. As mechanical energy can only be extracted at the cost of 
the kinetic energy contained in the wind stream, this means that, with an unchanged mass 
flow, the flow velocity behind the wind energy converter must decrease. Reduced 
velocity, however, means at the same time a widening of the cross-section, as the same 
mass flow must pass through it. It is thus necessary to consider the conditions in front of 
and behind the converter (Fig. 4.1). 

Here, ݒଵ is the undelayed free-stream velocity, the wind velocity, before it reaches 
the converter, whereas ݒଶ is the flow velocity behind the converter. 

The mechanical energy which the disk-shaped converter extracts from the airflow 
corresponds to the power difference of the air stream before and after the converter: ܲ ൌ  12 ଵଷݒ ଵܣ  ߷  െ 12 ଶଷݒ ଶܣ  ߷  ൌ  12  ߷ ሺܣଵ ݒଵଷ െ  ଶଷሻ          ሺܹሻݒ ଶܣ 

Maintaining the mass flow (continuity equation) requires that: ߷ ݒଵ ܣଵ ൌ ଶ          ሺ݇݃ܣ ଶݒ ߷  ⁄ݏ ሻ 

 

Fig. 4.1. Flow conditions due to the extraction of mechanical energy from a free-stream air flow, 
according to the elementary momentum theory 
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Thus, ܲ ൌ   12 ଵଶݒଵሺܣ ଵݒ ߷  െ ݒଶଶሻ          ሺܹሻ 

or ܲ ൌ   12 ሶ݉  ሺݒଵଶ െ ݒଶଶሻ          ሺܹሻ 

From this equation it follows that, in purely formal terms, power would have to be at its 
maximum when ݒଶ is zero, namely when the air is brought to a complete standstill by 
the converter. However, this result does not make sense physically. If the outflow 
velocity ݒଶ behind the converter is zero, then the inflow velocity before the converter 
must also become zero, implying that there would be no more flow through the converter 
at all. As could be expected, a physically meaningful result consists in a certain 
numerical ratio of ݒଵ ⁄ଶݒ  where the extractable power reaches its maximum. 

This requires another equation expressing the mechanical power of the converter. Using 
the law of conservation of momentum, the force which the air exerts on the converter 
can be expressed as: ܨ ൌ  ሶ݉  ሺݒଵ െ ݒଶሻ          ሺܰሻ 

According to the principle of “action equals reaction”, this force, the thrust, must be 
counteracted by an equal force exerted by the converter on the airflow. The thrust, so to 
speak, pushes the air mass at air velocity ݒᇱ, present in the plane of flow of the converter. 
The power required for this is: ܲ ൌ ᇱݒ ܨ ൌ  ሶ݉  ሺݒଵ െ  ᇱ          ሺܹሻݒ ଶሻݒ 

Thus, the mechanical power extracted from the air flow can be derived from the energy or 
power difference before and after the converter, on the one hand, and, on the other hand, 
from the thrust and the flow velocity. Equating these two expressions yields the relationship 
for the flow velocity ݒᇱ: 12 ሶ݉  ሺݒଵଶ െ ݒଶଶሻ ൌ  ሶ݉  ሺݒଵ െ  ᇱ          ሺܹሻݒ ଶሻݒ 

ᇱݒ ൌ  12 ሺݒଵ െ ݒଶሻ          ሺ݉ ⁄ݏ ሻ 

Thus the flow velocity through the converter is equal to the arithmetic mean of ݒଵ and ݒଶ: ݒᇱ ൌ ଵݒ  െ ଶ2ݒ            ሺ݉ ⁄ݏ ሻ 

The mass flow thus becomes: ሶ݉ ൌ ᇱݒ ܣ ߷  ൌ  12 ଵݒሺ ܣ ߷  ൅ ݒଶሻ          ሺ݇݃ ⁄ݏ ሻ 
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The mechanical power output of the converter can be expressed as: ܲ ൌ  14 ଵଶݒሺ ܣ ߷  െ ݒଶଶሻ ሺݒଵ  ൅  ଶሻ          ሺܹሻݒ 

In order to provide a reference for this power output, it is compared with the power of 
the free-air stream which flows through the same cross-sectional area A, without 
mechanical power being extracted from it. This power is: 

଴ܲ ൌ  12  ሺܹሻ          ܣ ଵଷݒ ߷ 

The ratio between the mechanical power extracted by the converter and that of the 
undisturbed air stream is called the “power coefficient” cP: 

ܿ௉ ൌ  ܲܲ଴  ൌ   14 ଵଶݒሺ ܣ ߷  െ ଵݒଶଶሻ ሺݒ   ൅ ଶሻ12ݒ  ଵଷݒ ܣ ߷            ሺെሻ 

After some re-arrangement, the power coefficient can be specified directly as a function 
of the velocity ratio ݒଶ ⁄ଵݒ : ܿ௉ ൌ  ܲܲ଴  ൌ   12 ቈ1 െ ൬ݒଶݒଵ൰ଶ቉  ൤1 ൅ ݒଶݒଵ൨          ሺെሻ 

The power coefficient, i.e. the ratio of the extractable mechanical power to the power 
contained in the air stream, therefore, now only depends on the ratio of the air velocities 
 

 

Fig. 4.2. Power coefficient versus the flow velocity ratio of the flow before and after the energy 
converter 
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before and after the converter. If this interrelationship is plotted graphically - naturally, 
an analytical solution can also be found easily - it can be seen that the power coefficient 
reaches a maximum at a certain velocity ratio (Fig. 4.2). 

With ݒଶ ⁄ଵݒ  = 1/3, the maximum “ideal power coefficient” cP becomes ܿ௉ ൌ  1627 ൌ 0.593  
Betz was the first to derive this important value and it is, therefore, frequently called 

the “Betz factor”. 
Knowing that the maximum, ideal power coefficient is reached at ݒଶ ⁄ଵݒ  = 1/3, the 

flow velocity ݒᇱ ݒᇱ ൌ ଵ          ሺ݉ݒ 23  ⁄ݏ ሻ 

and the required reduced velocity ݒଶ behind the converter can be calculated: ݒଶ ൌ ଵ          ሺ݉ݒ 13  ⁄ݏ ሻ 

Fig. 4.3 shows the flow conditions through the wind energy converter once again, in 
greater detail. In addition to the flow lines, the variations of the associated flow velocity 
and of the static pressure are indicated. When approaching the converter plane the air is 
 

 

Fig. 4.3. Flow conditions of the stream through an ideal disk-shaped energy converter with the 
maximum possible extraction of mechanical power 
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retarded, it flows through and is then slowed down further to a minimum value behind 
the turbine. The flow lines show a widening of the stream tube to a maximum diameter 
at the point of lowest air velocity. Approaching the turbine, the static pressure increases, 
and then jumps to a lower value, to level out again at the ambient pressure behind the 
converter due to pressure equalisation. The flow velocity then also increases again to its 
initial value far behind the converter and the widening of the stream tube disappears. 

It is worthwhile to recall that these basic relationships were derived for an ideal, friction-
less flow, and that the result was obviously derived without having a close look at the 
wind energy converter. In real cases, the power coefficient will always be smaller than 
the ideal Betz value. The essential findings derived from the momentum theory can be 
summarised in words as follows: 

- The mechanical power which can be extracted from a free-stream airflow by an energy 
converter increases with the third power of the wind velocity. 

- The power increases linearly with the cross-sectional area of the converter traversed, it 
thus increases with the square of its diameter. 

- Even with an ideal airflow and lossless conversion, the ratio of extractable mechanical 
work to the power contained in the wind is limited to a value of 0.593. Hence, only about 
60 % of the wind energy of a certain cross-section can be converted into mechanical 
power. 

- When the ideal power coefficient achieves its maximum value cP = 0.593, the wind 
velocity in the plane of flow of the converter amounts to two thirds of the undisturbed 
wind velocity and is reduced to one third behind the converter. 

4.2   Wind Energy Converters Using Aerodynamic Drag or Lift 

The momentum theory by Betz indicates the physically based, ideal limit value for the 
extraction of mechanical power from a free-stream airflow without considering the design of 
the energy converter. However, the power which can be achieved under real conditions 
cannot be independent of the characteristics of the energy converter. 

The first fundamental difference which considerably influences the actual power 
depends on which aerodynamic forces are utilised for producing mechanical power. All 
bodies exposed to an airflow experience an aerodynamic force the components of which 
are defined as aerodynamic drag in the direction of flow, and as aerodynamic lift at a 
right angle to the direction of flow. The real power coefficients obtained vary greatly in 
dependence on whether aerodynamic drag or aerodynamic lift is used [2]. 

Drag devices 

The simplest type of wind energy conversion can be achieved by means of pure drag 
surfaces (Fig. 4.4). The air impinges on the surface A with velocity ݒௐ, the power 
capture P of which can be calculated from the aerodynamic drag D, the area A and the 
velocity ݒ௥  with which it moves: ܲ ൌ  ௥          ሺܹሻݒ ܦ
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The relative velocity ݒ௥௘௦ ൌ ௐݒ  െ  ௥ , which effectively impinges on the drag area, isݒ 
decisive for its aerodynamic drag. Using the common aerodynamic drag coefficient cD, 
the aerodynamic drag can be expressed as: ܦ ൌ  ܿ஽  ߷2 ሺݒௐ െ ݒ௥ሻଶ ܣ         ሺܰሻ 

The resultant power is ܲ ൌ  ܿ஽  ߷2 ሺݒௐ െ  ௥        ሺܹሻݒ ܣ ௥ሻଶݒ 

If power is expressed again in terms of the power contained in the free-stream airflow, 
the following power coefficient is obtained: 

ܿ௉ ൌ  ܲܲ଴ ൌ  ܿ஽  ߷2 ሺݒௐ െ ௐଷݒ ௥߷2ݒ ܣ ௥ሻଶݒ  ܣ            ሺെሻ 

Analogously to the approach described in Chapter 4.1, it can be shown that cP reaches a 
maximum value with a velocity ratio of ݒ௥ ⁄ௐݒ  = 1/3. The maximum value is then ܿ௉௠௔௫ ൌ  427 ܿ஽          ሺെሻ 

The order of magnitude of the result becomes clear if it is taken into consideration that 
the aerodynamic drag coefficient of a concave surface curved against the wind direction 
can hardly exceed a value of 1.3. Thus, the maximum power coefficient of a pure drag-
type rotor becomes: ܿ௉௠௔௫ ൎ 0.2  

Fig. 4.4. Flow conditions and 
aerodynamic forces with a  
drag device 
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It thus achieves only one third of Betz’s ideal cp value of 0.593. It must be pointed 
out that, strictly speaking, this derivation only applies to a translatory motion of the drag 
surface. Figure 4.4 shows a rotating motion, in order to provide a more obvious 
relationship with the wind rotor. 

Rotors using aerodynamic lift 

If the rotor blade shape permits utilisation of aerodynamic lift, much higher power 
coefficients can be achieved. Analogously to the conditions existing in the case of an 
aircraft airfoil, utilisation of aerodynamic lift considerably increases the efficiency  
(Fig. 4.5). 
 

 

Fig. 4.5. Aerodynamic forces acting on an airfoil exposed to an airstream 

All modern wind rotor types are designed for utilising this effect and the type best suited 
for this purpose is the propeller type with a horizontal rotational axis (Fig. 4.6). The wind 
velocity ݒௐ is vectorially combined with the peripheral velocity u of the rotor blade. When 
the rotor blade is rotating, this is the peripheral velocity at a blade cross-section at a certain 
distance from the axis of rotation. Together with the airfoil chord the resultant free-stream 
velocity ݒ௥  forms the aerodynamic angle of attack. The aerodynamic force created is 
resolved into a component in the direction of the free-stream velocity, the drag D, and a 
component perpendicular to the free-stream velocity, the lift L. The lift force L, in turn, can 
be resolved into a component Ltorque in the plane of rotation of the rotor, and a second 
component perpendicular to its plane of rotation. The tangential component Ltorque constitutes 
the driving torque of the rotor, whereas Lthrust is responsible for the rotor thrust. 

Modern airfoils developed for aircraft wings and which also found application in 
wind rotors, have an extremely favourable lift-to-drag ratio (E). This ratio can reach 
values of up to 200. This fact alone shows qualitatively how much more effective the 
utilisation of aerodynamic lift as a driving force must be. At this stage, however, it is no 
longer possible to calculate the achievable power coefficients of lift-type rotors 
quantitatively with the aid of elementary physical relationships alone. More 
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sophisticated theoretical modelling concepts are now required as will be described in the 
next chapter. 

One more note: Some rotor types, for example the Savonius rotor, can be built both as pure 
drag-type rotors and, with the appropriate aerodynamic shape, as rotors which partly utilise 
lift. This is one reason for the frequently greatly varying figures quoted for the power 
coefficient. 

 

 

Fig. 4.6. Flow velocities and aerodynamic forces acting on a propeller-like rotor 
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