
Cryptanalysis of a Group Key Transfer Protocol

Based on Secret Sharing�

Junghyun Nam1, Moonseong Kim2, Juryon Paik3,
Woongryul Jeon3, Byunghee Lee3, and Dongho Won3,��

1 Department of Computer Engineering, Konkuk University, Korea
jhnam@kku.ac.kr

2 Information and Communications Examination Bureau, Korean Intellectual
Property Office, Korea
moonseong@kipo.go.kr

3 Department of Computer Engineering, Sungkyunkwan University, Korea
wise96@ece.skku.ac.kr,{wrjeon,bhlee,dhwon}@security.re.kr

Abstract. Group key establishment protocols allow a set of communi-
cating parties to establish a common secret key. Due to their significance
in building a secure multicast channel, a number of group key estab-
lishment protocols have been suggested over the years for a variety of
settings. Among the many protocols is Harn and Lin’s group key trans-
fer protocol based on Shamir’s secret sharing. This group key transfer
protocol was designed to work in the setting where a trusted key genera-
tion center shares a long-term secret with each of its registered users. As
for security, Harn and Lin claim that their protocol prevents the long-
term secret of each user from being disclosed to other users. But, we
found this claim is not true. Unlike the claim, Harn and Lin’s protocol
cannot protect users’ long-term secrets against a malicious user. We here
report this security problem with the protocol and show how to address
it.

Keywords: Security, key establishment protocol, group key transfer,
secret sharing, replay attack.

1 Introduction

Key establishment protocols allow two or more communicating parties to es-
tablish their common secret key called a session key. Establishment of session
keys is one of the fundamental cryptographic operations and provides a typical
way of building secure communication channels over insecure public networks.
Traditionally, protocols which can be run by an arbitrary number of parties are
called group (or conference) key establishment protocols, in contrast to protocols

� This work was supported by Priority Research Centers Program through the Na-
tional Research Foundation of Korea(NRF) funded by the Ministry of Education,
Science and Technology(2011-0018397).

�� Corresponding author.

T.-h. Kim et al. (Eds.): FGIT 2011, LNCS 7105, pp. 309–315, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



310 J. Nam et al.

which can be run only by two or three parties. In the group setting, a session key
is also called a group key. Key establishment protocols are often classified into
two types: key agreement protocols and key transfer protocols. Key agreement
protocols require each participant to contribute its part to the final form of the
session key, whereas key transfer protocols allow one trusted entity to generate
the session key and then transfer it to all participants.

The first priority in designing a key establishment protocol is placed on ensur-
ing the security of the protocol. Even if it is computationally infeasible to break
the cryptographic algorithms used, the whole system becomes vulnerable to all
manner of attacks if the keys are not securely established. But the experience
shows that the design of secure key establishment protocols is notoriously diffi-
cult. Over the last decades, a number of protocols have been found to be insecure
years after they were published [5,4,2,1]. Thus, key establishment protocols must
be subjected to a thorough scrutiny before they can be deployed into a public
network which might be controlled by an adversary.

This work is concerned with the security of the group key transfer proto-
col designed recently by Harn and Lin [3]. We use HL to refer to Harn and
Lin’s protocol. The protocol HL employs Shamir’s secret sharing [6] to achieve
information-theoretically secure distribution of session keys. Accordingly, the se-
curity of HL does not depend on any unproven assumption about computational
hardness (as far as confidentiality of session keys is concerned). HL assumes a
trusted key generation center (KGC) who provides key distribution service to its
registered users. During registration, KGC issues each user a long-term secret
which should be kept privately by the user. One of the security claims made for
HL is that the long-term secret of each user cannot be learned by other users.
But, it turns out that this claim is not true. The truth is that HL is vulnerable to
a replay attack whereby a malicious user, who is registered with KGC, can read-
ily obtain the long-term secret of any other registered user. In the current work,
we reveal this security vulnerability of HL and then suggest a countermeasure
against the replay attack.

2 Harn and Lin’s Group Key Transfer Protocol

This section reviews Harn and Lin’s group key transfer protocol HL [3]. The
protocol HL consists of three phases: system initialization, user registration, and
key distribution.

System Initialization. KGC randomly chooses two safe primes p and q (i.e., p
and q are primes such that p′ = p−1

2 and q′ = q−1
2 are also primes) and computes

n = pq. n is made publicly known.

User Registration. Each user is required to register at KGC to subscribe the
key distribution service. During registration, KGC shares a secret (xi, yi) with
each user Ui where xi, yi ∈ Z

∗
n.

Key Distribution. This phase constitutes the core of the protocol and is per-
formed whenever a group of users U1, . . . , Ut decide to establish a common session
key.



Cryptanalysis of a Group Key Transfer Protocol 311

Step 1. A designated user of the group, called the initiator, sends a key dis-
tribution request to KGC. The request carries the list of participating users
〈U1, . . . , Ut〉.

Step 2. KGC broadcasts the participant list 〈U1, . . . , Ut〉 in response to the
request.

Step 3. Each user Ui, for i = 1, . . . , t, sends a random challenge ri ∈ Z
∗
n to

KGC.
Step 4. KGC randomly selects a session key k and constructs by interpo-

lation a t-th degree polynomial f(x) passing through the (t + 1) points:
(x1, y1 ⊕ r1), . . . , (xt, yt ⊕ rt) and (0, k). Next, KGC selects t additional
points P1, . . . , Pt that lie on the polynomial f(x). KGC then computes
β = h(k, U1, . . . , Ut, r1, . . . , rt, P1, . . . , Pt), where h is a one-way hash func-
tion, and broadcasts 〈β, r1, . . . , rt, P1, . . . , Pt〉 to the users. All computations
with respect to f(x) are performed modulo n.

Step 5. Each Ui constructs the polynomial f(x) from the (t+1) points: P1, . . . , Pt

and (xi, yi ⊕ ri). Then Ui recovers the session key k = f(0) and checks the
correctness of β in the straightforward way. Ui aborts if the check fails.

Since the above protocol HL focuses on protecting the keying material broad-
casted from KGC to users, Harn and Lin also present (in Remark 2 of [3]) how
HL can be extended to provide user authentication and key confirmation. Let
HL+ be the extended version of HL. HL+ is constructed from HL by revising
Steps 3 and 4 to achieve user authentication and by adding Steps 6 and 7 to
achieve key confirmation.

Step 3 (of HL+). Each user Ui, for i = 1, . . . , t, selects a random challenge
ri ∈ Z

∗
n, computes αi = h(xi, yi, ri), and sends 〈αi, ri〉 to KGC.

Step 4 (of HL+). KGC checks the correctness of each αi in the straightforward
way. KGC aborts if any of the checks fails. Otherwise, KGC continues with
Step 4 of HL.

Step 6. Each Ui sends γi = h(xi, yi, k) to KGC.
Step 7. After receiving all γi’s, KGC sends δi = h(xi, yi, k, U1, . . . , Ut) to Ui for

i = 1, . . . , t.

All other parts (including the phases of system initialization and user registra-
tion) remain unchanged between HL and HL+.

3 Replay Attack

The fundamental security goal of a key establishment protocol is to ensure that
no one other than the intended users can compute the session key. In the cases
of HL and HL+, this goal can be achieved only when the secrecy of every (xi, yi)
is guaranteed. As soon as (xi, yi) is disclosed, all the protocol sessions that Ui

participates become completely insecure. It is thus crucial that xi’s and yi’s must
not be revealed under any circumstances.

Harn and Lin claim that their protocols prevent the secret (xi, yi) of each
Ui from being disclosed to other users, either insiders or outsiders (Theorem 3



312 J. Nam et al.

of [3]). However, we found that this claim is wrong. Suppose that a malicious
registered user Uj has a goal of finding out Ui’s secret (xi, yi). Then Uj can
achieve its goal by mounting the following attack against the protocol HL+.

Step 0. As a preliminary step, the adversary Uj eavesdrops on a protocol ses-
sion, where Ui participates, and stores the message 〈αi, ri〉 sent by Ui in Step
3 of the session.

Uj then initiates two concurrent sessions S and S′ of the protocol alleging that
the participants of both sessions are Ui and Uj . Once KGC responds with the
participant list 〈Ui, Uj〉 in Step 2 of each session, Uj performs Step 3 of the
sessions while playing dual roles of Uj itself and the victim Ui.

Step 3 of S. Uj sends the eavesdropped message 〈αi, ri〉 to KGC as if the mes-
sage is from Ui. But, Uj behaves honestly in sending its own message; Uj

selects a random rj ∈ Z
∗
n, computes αj = h(xj , yj, rj), and sends 〈αj , rj〉 to

KGC.
Step 3 of S′. Uj replays the messages 〈αi, ri〉 and 〈αj , rj〉. That is, Uj sends

〈αi, ri〉 as Ui’s message and sends 〈αj , rj〉 as its own message.

KGC cannot detect any discrepancy since αi and αj are both valid. Note that
KGC does not check for message replays. Hence, KGC will distribute the keying
materials for the sessions. Let f(x) = a2x

2 +a1x+k and f ′(x) = a′
2x

2 +a′
1x+k′

be the polynomials constructed by KGC respectively in sessions S and S′. As
soon as receiving the keying materials, Uj derives these polynomials as specified
in Step 5 of the protocol. Now let

g(x) = f(x) − f ′(x)
= (a2 − a′

2)x
2 + (a1 − a′

1)x + k − k′.

Then, g(xi) = 0 and g(xj) = 0 since f(xi) = f ′(xi) = yi ⊕ ri and f(xj) =
f ′(xj) = yj ⊕ rj . This implies that xi and xj are the two roots of the quadratic
equation (a2 − a′

2)x
2 + (a1 − a′

1)x + k − k′ = 0. It follows that

(a2 − a′
2)x

2 + (a1 − a′
1)x + k − k′ = (a2 − a′

2)(x − xi)(x − xj)..

Therefore,
xi = x−1

j (a2 − a′
2)

−1(k − k′). (1)

Here, the computations are done modulo n. Once xi is obtained as in Eq.. (1),
yi can be easily computed from f(xi) = yi ⊕ ri. The value of yi is different
depending on whether yi ⊕ ri < n or yi ⊕ ri ≥ n.

yi =
{

f(xi) ⊕ ri if yi ⊕ ri < n
(f(xi) + n) ⊕ ri otherwise.

αi can serve as a verifier for checking which of the two cases is true. Using (xi, yi)
obtained as above, Uj is able to complete the protocol without the attack being
noticed.



Cryptanalysis of a Group Key Transfer Protocol 313

The above attack assumes, for ease of exposition, that KGC allows for the key
establishment between two parties. But, this assumption is not necessary.. If two-
party key establishments are not allowed, Uj can collude with another malicious
user Uk to mount a slight variant of the attack. Assume two concurrent sessions
of the protocol, in both of which the participants are Ui, Uj and Uk. If Uj and
Uk collude together and run the two sessions as in the attack above, they can
construct a cubic polynomial g(x) = (a3−a′

3)x
3+(a2−a′

2)x
2+(a1−a′

1)x+k−k′

such that g(xi) = g(xj) = g(xk) = 0. Then, with xj and xk in hand, the
adversaries can compute xi as

xi = (−1)x−1
j x−1

k (a3 − a′
3)

−1(k − k′)

and thereby can determine yi as above.
So far, we have seen the vulnerability of the protocol HL+. As can be expected,

the basic protocol HL also suffers from the same vulnerability. The attack against
HL is essentially similar to the above attack and is provided in Appendix.

4 Countermeasure

The security failure of HL+ (and HL) is attributed to one obvious flaw in the
protocol design: the messages sent by users in Step 3 can be replayed in different
protocol sessions. This flaw allows our adversary Uj to send the same random
challenges twice and thereby to construct a quadratic polynomial g(x) such that
g(xi) = g(xj) = 0.. Fortunately, message replays can be effectively prevented if
Steps 2 and 3 of the protocols are revised as follows:

Step 2 (revision). KGC selects a random r0 ∈ Z
∗
n and broadcasts it along

with the participant list 〈U1, . . . , Ut〉.
Step 3 (revision). Each user Ui, for i = 1, . . . , t, selects a random ri ∈ Z

∗
n,

computes αi = h(xi, yi, ri, r0, U1, . . . , Ut), and sends 〈αi, ri〉 to KGC..

The other steps of the protocols remain unchanged except that in Step 4 of
HL, KGC has to check the correctness of αi, for i = 1, . . . , t, before starting to
construct the polynomial f(x). As a result of our modification, the protocols
HL and HL+ become identical except that HL+ requires two additional steps
(Steps 6 and 7) for key confirmation. With the modification applied, the message
〈αi, ri〉 eavesdropped in a protocol session can no longer be replayed in any other
sessions. Hence, our attacks are not valid against the improved protocols.

5 Concluding Remark

It is worth noting that polynomial interpolation over Z
∗
n may fail, though the

probability of failure is negligible. This is essentially because the multiplicative
group Z

∗
n is not closed under addition and subtraction while interpolation formu-

las include additive and subtractive terms. If an addition/subtraction operation
in Z

∗
n returns a value z such that gcd(z, n) �= 1 (i.e., z = cp or z = cq for



314 J. Nam et al.

some integer c), then there will not exist the multiplicative inverse of z modulo
n. The protocols HL and HL+ fail if such a z happens to be a divisor in the
interpolation formula. (Of course, the probability of this occurring should be
negligible, because otherwise we have a polynomial-time factoring algorithm.)
This correctness issue of the protocols can be addressed simply by replacing Z

∗
n

with a prime field Fp in which interpolation never fails. We believe that the
replacement causes no security degradation.

References

1. Choo, K.-K.: Refuting the security claims of Mathuria and Jain (2005) key agree-
ment protocols. International Journal of Network Security 7(1), 15–23 (2008)

2. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Errors in Computational Complexity Proofs
for Protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 624–643.
Springer, Heidelberg (2005)

3. Harn, L., Lin, C.: Authenticated group key transfer protocol based on secret sharing.
IEEE Transactions on Computers 59(6), 842–846 (2010)

4. Krawczyk, H.: HMQV: a High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidel-
berg (2005)

5. Pereira, O., Quisquater, J.-J.: A security analysis of the Cliques protocols suites. In:
Proc. 14th IEEE Computer Security Foundations Workshop, pp. 73–81 (2001)

6. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

Appendix: Attack on the Protocol HL

Consider the protocol HL described in Section 2. We here show that HL is vul-
nerable to an attack whereby a registered user Uj can learn the long-term secret
(xi, yi) of any other registered user Ui. The main idea of the attack is the same
as that of the attack against HL+. The attack works as follows:

1. The adversary Uj initiates two concurrent sessions S and S′ of the protocol
alleging that the participants of both sessions are Ui and Uj.

2. KGC will respond with the participant list 〈Ui, Uj〉 in Step 2 of each session.
3. Uj performs Step 3 of the sessions while playing dual roles of Uj itself and

the victim Ui.

Step 3 of S. Uj selects a random ri ∈ Z
∗
n and sends it to KGC as if it is

from Ui. In addition, Uj sends its own challenge rj ∈ Z
∗
n to KGC.

Step 3 of S′. Uj replays the challenges ri and rj . That is, Uj sends ri as
Ui’s challenge and sends rj as its own challenge.

4. KGC will distribute the keying materials for the sessions. Let f(x) = a2x
2 +

a1x+k and f ′(x) = a′
2x

2 +a′
1x+k′ be the polynomials constructed by KGC

respectively in S and S′.



Cryptanalysis of a Group Key Transfer Protocol 315

5. After receiving the keying materials, Uj recovers the two polynomials f(x)
and f ′(x) as specified in Step 5 of the protocol. Let

g(x) = f(x) − f ′(x)
= (a2 − a′

2)x
2 + (a1 − a′

1)x + k − k′.

Then since g(xi) = 0 and g(xj) = 0,

xi = x−1
j (a2 − a′

2)
−1(k − k′).

Given xi, we should consider two different cases in calculating the value of
yi.

yi =
{

f(xi) ⊕ ri if yi ⊕ ri < n
(f(xi) + n) ⊕ ri otherwise.

6. Uj needs to decide whether yi⊕ri < n or yi⊕ri ≥ n. Note that the equations
f(xi) = yi ⊕ ri and f ′(xi) = yi ⊕ ri do not allow to determine which of the
two cases is true. This is because both values of yi satisfy the equations.
But, knowledge of another polynomial f ′′(x) such that f ′′(xi) = yi ⊕ r̃i,
where r̃i �= ri, would immediately reveal which one of the two values of yi

is correct. Uj can easily generate such a polynomial f ′′(x) if he runs a new
protocol session as above, but this time using a different challenge r̃i for Ui.

As is the case for HL+, HL is also vulnerable to a colluding attack where two
adversaries Uj and Uk collude together to learn Ui’s secret (xi, yi). We here omit
the description of the colluding attack on HL since it is clear from the attack
above and the colluding attack on HL+.


	Cryptanalysis of a Group Key Transfer Protocol Based on Secret Sharing
	Introduction
	Harn and Lin's Group Key Transfer Protocol
	Replay Attack
	Countermeasure
	Concluding Remark
	References




