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Abstract Circadian clocks are autonomous oscillators entrained by external

Zeitgebers such as light–dark and temperature cycles. On the cellular level, rhythms

are generated by negative transcriptional feedback loops. In mammals, the

suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus plays the

role of the central circadian pacemaker. Coupling between individual neurons in

the SCN leads to precise self-sustained oscillations even in the absence of external

signals. These neuronal rhythms orchestrate the phasing of circadian oscillations in

peripheral organs. Altogether, the mammalian circadian system can be regarded as a

network of coupled oscillators. In order to understand the dynamic complexity of these

rhythms, mathematical models successfully complement experimental investigations.

Here we discuss basic ideas of modeling on three different levels (1) rhythm

generation in single cells by delayed negative feedbacks, (2) synchronization of

cells via external stimuli or cell–cell coupling, and (3) optimization of chronotherapy.
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1 Introduction

The mammalian circadian clock can be regarded as a system of coupled oscillators.

In virtually every cell, negative transcriptional feedback loops generate rhythm

with a period of about 24 h (Zhang and Kay 2010; Minami et al. 2013; Buhr and

Takahashi 2013). Circadian expression of hundreds of genes has been described in

many tissues, including brain, liver, heart, and lung (Hastings et al. 2003; Keller

et al. 2009; Brown and Azzi 2013). Even cultivated cells display pronounced

rhythms upon stimulation (Balsalobre et al. 1998; Yagita and Okamura 2000)

or temperature entrainment (Brown et al. 2002). As discussed elsewhere, the

molecular clock orchestrates the timing of physiological and metabolic processes

in our body (Hastings et al. 2003).

In mammals, the suprachiasmatic nucleus (SCN) is thought to play the role of

the central circadian pacemaker. In the SCN, neurons are coupled via neuro-

transmitters and gap junctions (Welsh et al. 2010; Slat et al. 2013). The synchroni-

zation of neurons results in precise pacemaker rhythms which coordinate peripheral

organs via neuronal and humoral signals. The phase of the SCN clock is entrained

by external light–dark and temperature cycles. Feeding can serve as another potent

Zeitgeber, which can entrain, for example, circadian rhythms in the liver (Stokkan

et al. 2001). Circadian clock affects many physiological processes including cell

division and detoxification. Consequently, the timing of therapeutic intervention

can be optimized (“chronotherapy”) (Lévi et al. 1997). The complexity of these

processes has inspired systems biological approaches (Ukai and Ueda 2010). In

particular, understanding the emergence of oscillations requires dynamical systems

theory. Here, we discuss some aspects of mathematical modeling applied to circa-

dian rhythms and chronotherapy.

Mathematical models of circadian rhythms have been applied on many levels

(Pavlidis 1973; Winfree 1980; Daan and Berde 1978). Already decades ago,

amplitude-phase models were developed to study entrainment properties, phase

response properties, and seasonal variations (Wever 1965; Kronauer et al. 1982).

Such models are still useful to study aspects of transients after jet lag (Granada and

Herzel 2009), single cell oscillations (Westermark et al. 2009), effects of coupling

(Bordyugov et al. 2011), and to optimize the phase response properties of circadian

oscillators (Pfeuty et al. 2011). In the meantime, detailed biochemical models of the

core clock have been developed (Leloup and Goldbeter 2003; Forger and Peskin

2003; Becker-Weimann et al. 2004). Such models describe transcriptional regula-

tion, protein expression, posttranslational modifications, protein degradation, com-

plex formation, and nuclear translocation (Relógio et al. 2011; Mirsky et al. 2009).

However, quantitative details of many kinetic processes are not known and, thus,

the choice of kinetic laws and parameters remains a major challenge. Simulations of

coupled cells usually rely on simple cell models (Gonze et al. 2005). Recently,

clock models have been connected to cell proliferation as an attempt to simulate

chronotherapy (Lévi et al. 2008). Also theoretical attempts on describing systems

with negative feedback and low numbers of molecules have proven the possibility

of high-quality oscillations in such systems (Morelli and Jülicher 2007).
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There is a statement that “all models are wrong, but some are useful” (George E. P.

Box and Norman Richard Draper Wiley 1987). Indeed, mathematical models are

cartoons of the overwhelming complexity of biological systems. Good models empha-

size the most essential features of a system and reflect the major experimental facts.

Model analysis can help to check the self-consistency of the modeling assumptions.

When the celebrated Hodgkin–Huxley model was established (Hodgkin and

Huxley 1952), its theoretical analysis took as much effort as the experiments.

Nowadays, computers are fast and cheap and computer simulations should comple-

ment expensive and time-consuming experiments. In many cases the development

of mathematical models guides the design of appropriate quantitative measure-

ments. In molecular chronobiology, models point to the role of transcriptional

inhibition, degradation kinetics, and delays as discussed below. Mathematical

models can systematically explore the role of feedback loops, the sensitivity to

parameter variations and noise, and the efficacy of chronotherapies. Interesting

theoretical predictions may stimulate novel experiments. Mathematical

abstractions help to find common design principles of seemingly quite different

biological systems. For example, most physiological oscillations are based on

delayed negative feedback loops combined with cooperative interactions. Such

cooperative interactions result, in turn, in a nonlinear response of the system to

the feedback signal, which is required for generation of oscillations (Glass and

Mackey 1988). Below we illustrate basic ideas of mathematical modeling in

chronobiology using examples on different levels:

1. A simple oscillator model, which is based on a delayed negative feedback.

2. Synchronization of cells via external stimuli or cell–cell coupling.

3. Optimization of chronotherapy.

2 Oscillations Due to Delayed Negative Feedback

A large variety of physiological and biochemical oscillations has been modeled

with the aid of delay differential equations (DDEs): Intracellular circadian rhythm

generator (olde Scheper et al. 1999), drosophila endocycles (Zielke et al. 2011),

periodic leukemia (Mackey and Glass 1977), Cheyne–Stokes respiration (Glass and

Mackey 1988), blood pressure waves (Seidel and Herzel 1998), somite formation in

zebra fish (Lewis 2003), circadian rhythms in D. melanogaster (Smolen et al.

2004), and mouse liver (Korenčič et al. 2012). Most detailed models of the

mammalian clock are based on sets of ordinary differential equations (ODEs). In

Appendix B, we show that DDEs and ODEs are intimately related. ODEs have been

used to describe many details of the involved kinetic processes. DDEs have the

advantage that fewer kinetic parameters are required. Equation (1) represents a

simple DDE that can describe self-sustained oscillations:
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dxðtÞ
dt

¼ a

1þ xnðt� τÞ � d � xðtÞ: (1)

The dynamic variable x(t) might represent a clock gene such as Period2 whose

protein product inhibits its own transcription after a delay τ (compare Fig. 1, left

panel). The delay τ describes the time span between the transcription and the

nuclear availability of the functional gene product. By introducing τ, we condense
protein production, modification, complex formation, nuclear translocation, and

epigenetic processes into a single parameter. Thus the model given by Eq. (1) is

obviously a gross simplification, but it helps to understand the generation of

self-sustained oscillations via delayed negative feedback loops (see Appendix A).

The parameter a is the basal transcription rate, and d represents the degradation

rate. A cooperativity index n ¼ 2 can be justified since clock proteins frequently

dimerize (Tyson et al. 1999; Bell-Pedersen et al. 2005).

Fig. 1 Left panel: A sketch of a self-repressing gene regulation. Here τ denotes the time span

between the transcription of the gene and its repression by its own gene products. TF represents an

activating transcription factor such as BMAL1. Right panel: Results of simulation of Eq. (1). (a) A
typical time course of oscillations in Eq. (1). The solid line denotes x(t); the dashed line denotes the
delayed variable x(t � τ). (b) Approximation of the DDE by an ODE system Eq. (11). Black lines
correspond to chain length k ¼ 15. The solid black line shows x(k), and the dashed black line
shows the time course of the last chain variable y15(t). The red line shows a decay of oscillations of
x(t) in Eq. (11) for chain length k ¼ 12, which is not enough to successfully approximate

oscillations in our DDE. (c) Bifurcation diagram for Eq. (1), showing a stable (the horizontal
solid line) and unstable (horizontal dashed line) steady state for increasing delay τ. At τ � 7.0 self-

sustained oscillations emerge with maxima and minima shown by solid lines. (d) Dependence of
oscillation period on the variation of the parameters normalized to their default values a ¼ 10.0,

d ¼ 0.2, τ ¼ 8.5. The period is most strongly influenced by the delay τ (dashed–dotted line) and
by the degradation rate d (dashed line)

338 G. Bordyugov et al.



For parameter values a ¼ 10.0, d ¼ 0.2 [a typical mRNA degradation rate

(Schwanhäusser et al. 2011) ], and τ ¼ 8, the model exhibits self-sustained

oscillations (a “limit cycle”) with a period of about 24 h. Figure 1a shows the

corresponding oscillations of the state variable x(t) and delayed version x(t � τ).
The phase shift of 8 h resembles the phase shifts of mRNA and protein peaks of

many clock genes (Reppert and Weaver 2001).

Figure 1b illustrates the close connection of DDE and ODEs. As shown in

Appendix B, the explicit delay τ can be replaced by a chain of ODEs as in the

widely used Goodwin model (Goodwin 1965; Griffith 1968; Ruoff et al. 2001). The

corresponding auxiliary variables might represent different phosphorylation state

complexes and nuclear translocation. For sufficiently long chains, ODEs approxi-

mate our DDE in Eq. (1) reasonably well.

In Appendix A, we provide a linear stability analysis of the steady state of

Eq. (1). This approach allows the identification of the necessary conditions to

get self-sustained oscillations. For small delays, the equilibrium is stable and

perturbations decay exponentially. Intermediate delays lead to damped oscillations

and further increase of τ leads to the onset of self-sustained oscillations. This

transition has been termed “Hopf bifurcation” and is visualized in Fig. 1c.

The mathematical analysis in Appendix A provides further information on

delayed feedback oscillators: the delay τ should be in the range of one-quarter to

one-half of the period, and the inhibition should be sufficiently strong [fast decay of

the transcription term in Eq. (1) with increasing “inhibitor” x(t � τ) ]. The period
of the oscillation turns out to be nearly proportional to the delay τ.

Figure 1d displays the dependencies of the period on the model parameters τ, a,
and d. As discussed above, the period grows linearly with the delay τ, whereas it
decays slightly with increasing degradation parameter d. This is plausible since

faster degradation implies shorter timescales of the mRNA dynamics and, hence,

shorter periods. Variation of the basal transcription rate a has a minor effect on the

period, consistent with Dibner et al. (2008). Extensive studies with more sophisti-

cated models show that many insights obtained from our simple model given by

Eq. (1) apply as well:

– Sufficiently strong nonlinearities are required to get self-sustained oscillations

– Overcritical delays of about a quarter to half of a period are necessary

– Delays and degradation rates have profound effects on the period

Transcriptional feedback loops with shorter-than-circadian periodicity including

Hes1 (Hirata et al. 2002), p53 (Lahav et al. 2004), and NFκB (Nelson et al. 2004;

Hoffmann and Baltimore 2006) have smaller delays, which result in shorter periods

of a few hours. In circadian clocks, the particularly long delay is necessary to get

24 h rhythms. The central role of delays and degradation rate has been demonstrated

by the intensively studied Familial Advanced Sleep Phase Syndrome (FASPS)

(Vanselow et al. 2006).
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3 Precision via Synchronization and Entrainment

On the organismic level, circadian clocks are astonishingly precise (Enright 1980;

Herzog et al. 2004). Even in constant darkness (DD), the behaviorial activity onset

varies from day to day by a few minutes only (Oster et al. 2002). In contrast,

circadian rhythms in single cells are much noisier (Welsh et al. 1995; Liu et al.

2007), and thus for single cells, stochastic (i.e., accounting for fluctuations) models

are necessary. Fitting amplitude-phase models to single cells resulted in broad

distributions of estimated model parameters (Westermark et al. 2009). For example,

single cell periods were found to obey a Gaussian distribution with a standard

deviation of about 1.5 h (Welsh et al. 1995; Honma et al. 2004; Herzog et al. 2004).

In this section, we illustrate how external signals and intercellular coupling can lead

to precise circadian oscillations despite noise on the single cell scale.

We analyzed several hundred single cell recordings of circadian rhythms. The

first column of Fig. 2 displays time courses of two selected cells. The upper one

clearly shows periodicity, whereas the lower one is quite noisy. We have shown that

such single cell data can be represented by noise-driven amplitude-phase models

(Westermark et al. 2009). Interestingly, two types of fits were successful: single cell

circadian time series could be modeled either by limit cycle models or as weakly

damped oscillators. The examples in Fig. 2 illustrates that both types of simulations

seem reasonable.

Fig. 2 Two representative bioluminescence time series from dispersed SCN neurons (left
column). The middle column shows simulations of the corresponding limit cycle model (see

Eq. (2) ) with added noise. Similar simulations are obtained with weakly damped noise-induced

oscillations (right column). The model parameters were estimated from the time courses in the left-
most column as explained in (Westermark et al. 2009). This implies that the two models are

tailored to the specific cells
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The model for self-sustained oscillations is given in polar coordinates by

dri
dt

¼ �λiðri � AiÞ;
dφi

dt
¼ 2π

τi
; i ¼ 1; 2; . . . ;N: ð2Þ

The variable ri is the radial coordinate, and φi is the phase of the i-th cell. The

parameter Ai corresponds to the amplitude of the self-sustained oscillations. The

parameter λi is the amplitude relaxation rate. Small values of λi result in slow

amplitude relaxation towards the amplitude Ai. In order to simulate the intrinsic

stochasticity of the single cell rhythms (Raser and O’Shea 2005; Raj and van

Oudenaarden 2008), we added random noise to Eq. (2) (Westermark et al. 2009).

Details of the simulation procedure are explained in Appendix C. Weakly damped

oscillators are described by Eq. (2) with vanishing amplitudes Ai. In this way single

cell rhythms can be quantified by a handful of parameters, including estimated

periods τi and the relaxation rates λi.
Figure 3 shows histograms of parameters estimated from 140 dispersed SCN

neurons from wild-type mice (Liu et al. 2007). The limit cycle model (left) and the

damped oscillator model (right) lead to a wide range of single cell periods as

reported earlier (Welsh et al. 1995; Honma et al. 2004; Herzog et al. 2004).

The estimated relaxation times differ considerably between two models. Damped

oscillator models exhibit smaller values of λi, which results in longer relaxation

times. Due to slow relaxation, random perturbations can induce fairly regular noise-

induced oscillations (Ebeling et al. 1983; Ko et al. 2010). Long relaxation times

[or, equivalently, high oscillator qualities Q (Westermark et al. 2009) ] lead to

resonant behavior.

Below we discuss the response of simulated oscillators to a short pulse, external

time-periodic forcing, and intercellular coupling. As parameter values, we take the

direct estimates from 140 dispersed SCN neurons. We compare simulations with

self-sustained oscillators and weakly damped noise-driven oscillators.

In cultivated cells, stimuli such as fresh serum, forskolin, dexamethasone, or

temperature pulses can induce temporarily synchronized rhythms (Balsalobre et al.

1998; Yagita and Okamura 2000). After the stimuli are ceased, however, the

synchrony is lost within a few cycles and the averaged signal damps out. This

decay is caused by single cell damping and dephasing of cells due to different

periods.

In Fig. 4 we compare the response of simulated cells to short pulses. For both

limit cycle and weakly damped models, we observed the expected damped rhythms

of the population mean. Single cells were found to exhibit much larger amplitudes

than the average signal. Due to the longer relaxation time, damped oscillators

(Fig. 4, right panel) show larger amplitudes and the damped oscillations persist a

few more cycles. This supports our expectation that weakly damped oscillators are

good “resonators.” By looking only at the averaged signal (Fig. 4, time series in

thick black lines), it is difficult to distinguish between limit cycle and weakly
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Fig. 4 Temporary synchronization of simulated cells via a pulse-like perturbation. Selected cells

are visualized in gray. Left panel: Cartoon visualizing a pulse acting on oscillators. Central panel:
Ensemble of noisy limit cycle oscillators. Right panel: Ensemble of noisy damped oscillators. In

both time series, the thick black line represents the averaged signal. Parameters were extracted

from experimental time series (Liu et al. 2007; Westermark et al. 2009)

Fig. 3 Histograms of parameters estimated from a total of 140 SCN neurons. The left column
refers to the limit cycle model (see Eq. (2)), showing a peak at circadian periods and relatively fast

relaxation to their amplitudes Ai. Fitted parameters of damped oscillators (right column) exhibit
longer relaxation times λ�1, thus allowing noise-induced oscillations as shown in Fig. 2, upper
right panel
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damped models. Thus, the characterization of single cell properties requires careful,

long-lasting single cell experiments (Nagoshi et al. 2004; Liu et al. 2007) or

resonance experiments as suggested in (Westermark et al. 2009). Such resonance

experiments might be performed using temperature entrainment (Brown et al. 2002;

Buhr et al. 2010). Recent studies have shown that periodic warm–cold cycles can

synchronize peripheral tissues such as lung (Abraham et al. 2010) or epidermal

cells (Spörl et al. 2010).

Figure 5 shows simulations of temperature entrainment. We find that relatively

weak external signals can lead to fairly precise rhythms of the average signal (time

series in thick black lines in Fig. 5), even though single cells are still quite noisy

(time series in thin gray lines in Fig. 5). Both self-sustained oscillators (Fig. 5,

central panel) and weakly damped oscillators (Fig. 5, right panel) lead to regular

averaged oscillations. Some damped oscillators have relatively long relaxation time

λ�1
i (see Fig. 3, lower right graph), which results in large amplitudes due to stronger

resonance. The distribution of the periods τi is however wide (see upper left plot

in Fig. 3) and thus the average signal is weaker compared to the entrained self-

sustained oscillator.

So far we simulated uncoupled cells synchronized via external signals. SCN

neurons are coupled via gap junctions (Long et al. 2005) and neurotransmitters such

as VIP (Aton et al. 2005). Such coupling leads to precise and robust SCN rhythms

relatively insensitive to temperature signals (Buhr et al. 2010; Abraham et al. 2010).

The periodic secretion of neurotransmitters induces a common oscillatory level,

which we model by a periodic mean field, see Appendix C. Figure 6 demonstrates

that such mean-field coupling can easily synchronize ensembles of noisy single cell

oscillators. The coupling via mean field in Fig. 6 again leads to a pronounced

amplitude expansion since a distributed neurotransmitter acts as periodic driving

signal.

There is an ongoing debate whether dispersed single cells can be regarded as

self-sustained oscillators or weakly damped oscillators (Nagoshi et al. 2004; Gonze

et al. 2005; Westermark et al. 2009). Webb et al. (2009) find a mixture of seemingly

self-sustained and damped cells the SCN. Our simulations of pulses in Fig. 4, of

entrainment in Fig. 5, and of synchronization in Fig. 6 indicate that both model

Fig. 5 Synchronization of simulated single cell oscillators by an external time-periodic Zeitgeber
(see also Appendix C). Left panel: Cartoon visualizing a common periodic Zeitgeber acting on

oscillators. Central panel: The averaged signal indicates that precise rhythms can be established in

an ensemble of self-sustained oscillators and for weakly damped oscillators (right panel)
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types can reproduce gross features of experimental observations. Consequently,

long-lasting single cell recordings are needed to extract the characteristics of

the oscillators. In addition, controlled resonance experiments will be helpful for

determining parameters of single cell rhythms.

4 Modeling Chronotherapy

Circadian timing modifies efficacy and toxicity of many drugs (Lévi and Schibler

2007; Ortiz-Tudela et al. 2013; Musiek and FitzGerald 2013). In particular, the

tolerability and efficacy of anticancer agents depend on treatment timing (Mormont

and Levi 2003; Lévi et al. 1997). In mice experiments, it has been shown that a 4-h

difference of drug delivery time can change the survival rate from 20 % to 80 %

(Gorbacheva et al. 2005). Mathematical models of chronomodulated administration

schedules (“chronotherapy”) complement experiments and clinical studies

(Hrushesky et al. 1989; Basdevant et al. 2005; Ballesta et al. 2011; Ortiz-Tudela

et al. 2013).

Comprehensive mathematical modeling of chronotherapy should incorporate the

pharmacokinetics and -dynamics (PK/PD) of drugs (Derendorf and Meibohm 1999)

and the interaction of circadian rhythms and proliferation (Hunt and Sassone-Corsi

2007). Even though PK/PD models and cell cycle models (Chauhan et al. 2011) are

available, the comprehensive mathematical description of chronotherapy remains

an attractive challenge. Here we report the core results of recently published

simulations (Bernard et al. 2010) with simple cell cycle models under

periodic circadian modulation. The model is useful to study the efficacy of

chronotherapeutic treatment of fast and slow growing cancer cell populations.

Mathematical modeling allows simulation of various temporal treatment schedules.

The central output of the model is the therapeutic index which takes into account

the removal of cancer cells together with the quantification of the side-effects

(Bernard et al. 2010).

Fig. 6 Synchronization of single cell oscillators coupled through a common mean-field (black
dots in the background of the left panel) as described in Appendix C. Within a few cycles coupling

can induce synchrony in an ensemble of self-sustained oscillators (central panel) and in a set of

damped oscillators (right panel). Single cell time-series (thin gray lines in the time series) reveal

that selected cells exhibit quite large amplitudes due to resonance with the oscillating mean field
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The left graphs of Fig. 7 demonstrate the application of drugs at two different

phases of a 24 h cycle. The optimal phase (Fig. 7a ) and the worst phase (Fig. 7c) are

compared. The simulations reproduce the experimental findings (Gorbacheva et al.

2005) that drug delivery at wrong phase can result in undesirable effects, in particular,

in fast growing tumors (see Bernard et al. (2010) for details). A possible explanation for

that is a resonance between the time-periodic therapy and circadian clock (Andersen

and Mackey 2001). Such a resonance can be avoided by therapies with a different

period. Patients often carry programmable portable pumps, and hence periods of, e.g.,

30 h can be easily realized clinically. The simulation in Fig. 7d demonstrates that the

30-h-periodic treatment is successful even for the worst phase. Since it is difficult to

measure the phase of circadian rhythm in a clinical situation, a treatment schedule that

is applicable at any phase seems quite promising.

5 Discussion

Unfortunately, comprehensive and precise models of the mammalian circadian

clock are not at the horizon. Quantitative details of many essential molecular

processes such as complex formation, posttranslational modification, proteasomal

Fig. 7 Visualization of chronotherapy simulations at 24 h intervals (left) and 30 h intervals

(right). The triangles represent treatment, dashed lines represent tumor growth, and solid gray
lines host cells. The upper graphs show treatment at the optimal phase, whereas the lower graphs
display the worst phases for both treatment schedules
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degradation, and transcriptional regulation are not available. Nevertheless, mathe-

matical models can provide some insights into the design principles of circadian

rhythms.

As shown above, simple models of delayed negative feedback loops point to the

role of overcritical (i.e., beyond a certain critical value) delays and nonlinearities.

For the circadian clock, there must be a minimal delay of 6 h between transcription

of clock genes and their inhibition. This result emphasizes the importance of

controlled degradation and nuclear translocation associated with phosphorylation

and complex formation.

For many purposes traditional amplitude-phase models remain useful. For

instance, phase response properties, entrainment range, and effects of coupling

can be addressed with such simplified models. We have shown that temporary

synchronization via pulses, entrainment, and resonance phenomena can be

reproduced using amplitude-phase models with experimentally validated

parameters (Westermark et al. 2009). These simulations reveal that ensembles of

weakly damped single cell oscillators can constitute precise clocks thanks to

coupling. This observation points to an unsolved question: How many SCN cells

are in vivo truly self-sustained oscillators (Webb et al. 2009)?

In the context of optimizing chronotherapy, we simulated the interaction of

circadian rhythms with cell proliferation and drug delivery. Even if many details

including PK/PD were neglected, a plausible conclusion could be drawn: Due to

strong resonance effects, a 24 h therapy might be more risky than other therapeutic

cycles such as 30 h treatments. Of course, our minimal models have to be

complemented by more detailed studies such as Ballesta et al. (2011). There are

many more exciting questions that can be approached using mathematical models:

– What might be the role of auxiliary feedback loops in the core clock machinery?

– How are harmonics in gene expression profiles generated?

– How are entrainment phases controlled across seasons?

– What might be the function of the SCN heterogeneity?

– How do circadian clock, metabolism, immune response, and detoxification

interact?

– What are the major selective advantages of a functioning circadian clock?

In order to address these intriguing questions, appropriate theoretical studies can

successfully complement experimental approaches.
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Appendix A: Oscillations Due to Delayed Negative Feedback

A.1 The Model

One of the simplest models for a self-suppressing gene reads

dxðtÞ
dt

¼ a

1þ bxnðt� τÞ � d xðtÞ: (3)

Here, the time-dependent state variable x(t) corresponds to the mRNA level of a

clock gene, for instance, Per2 at time t. The positive parameter d is the mRNA

degradation rate, large values correspond to a rapid degradation, whereas small

values model more stable mRNAs. Parameter a determines the basal transcription

rate in the absence of the inhibitor.

The self-inhibition is modeled in the following way: For simplicity, we

consciously refrain from modeling all intermediate steps, which lead from the

mRNA to its protein product translocated back into the nucleus. We merely

postulate that the nuclear protein abundance is proportional with the factor b to

the amount of mRNA τ hours earlier. The power n is the cooperativity index, which
in the case of dimerization is given by n ¼ 2. The self-inhibition is reflected by the

delayed state variable x(t � τ) appearing in the denominator. Its high values

decrease the net production rate of the mRNA dxðtÞ=dt. Asymptotically, for very

large values of x(t � τ), the production rate of mRNA tends to zero.

A typical choice of parameters is given by the following values: The basal

transcription rate can be set to a ¼ 1, because we have arbitrary units, the degrada-

tion rate to d ¼ 0.2 h�1, which corresponds to a typical mRNA half-life (Sharova

et al. 2009), and the time delay to τ ¼ 8 h, which is a characteristic delay between

Per2 and phosphorylated nuclear PER2.

We stress that the model given by Eq. (3) is qualitative and we do not expect an

exact quantitative correspondence of its predictions with the numerical values from

experiments. However, many features of the oscillations can be predicted by the

model equation. For example, parameter ranges of the delay τ and the degradation

rate can be determined that allow the generation of oscillations.

A.2 Steady State and Its Stability

We generalize our model given by Eq. (1) to a one-dimensional DDE as follows:

dxðtÞ
dt

¼ gðxðt� τÞÞ � d � xðtÞ; (4)
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where τ is a time delay, g(·) is a nonlinear function, and d > 0 is a degradation

constant. An example is the nonlinear feedback in the form of

gðxÞ ¼ a

1þ bxn
; (5)

with the parameters a, b, n as discussed above.

A steady state of Eq. (4) satisfy
dxðtÞ
dt ¼ 0 and is given by the nonlinear equation

gðxÞ � dx ¼ 0;

which is in the case of Eq. (5) equivalent to

a� dð1þ bxnÞx ¼ 0: (6)

This is a nonlinear equation, which can be analytically solved only for small

values of the exponent n. Generally, for arbitrary n, the steady state can be

determined numerically.

Suppose that we have solved the steady state equation and the equilibrium is

given by x ¼ x0. We are now interested in the question of the stability of x0: that is,
whether the system in the course of time will return back to equilibrium x0 or depart
from it. For this purpose, we introduce the ansatz

xðtÞ ¼ x0 þ yðtÞ; (7)

with a small function of time y(t), which is the deviation of x(t) from its steady state

value x0. In order to determine the stability of x0, we need to see, whether the

derivation, y(t), would grow or decay in time. We emphasize that we are interested

in what happens in the intermediate neighborhood of x0, which implies that y(t) is
small.

Let us introduce our ansatz into the equations. We have for the left-hand side of

Eq. (4)

dxðtÞ
dt

¼ dyðtÞ
dt

and correspondingly for its right-hand side by using a Taylor expansion up to the

first order:

gðxðt� τÞÞ � dxðtÞ ¼ gðx0 þ yðt� τÞÞ � dx0 � dyðtÞ �
� gðx0Þ þ Jyðt� τÞ � dx0 � dyðtÞ ¼
¼ Jyðt� τÞ � dyðtÞ:
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Here, J is the slope of the nonlinear function g in the steady state x0 given by

J ¼ d

dx
gðx0Þ:

Putting both sides together results in

dyðtÞ
dt

¼ Jyðt� τÞ � dyðtÞ: (8)

This is a DDE for the unknown function y(t). This equation is linear, and we can
solve it by an exponential ansatz

yðtÞ ¼ y0e
λt;

with the unknown complex number λ. The last ansatz, when substituted in Eq. (8),

leads to

y0λe
λt ¼ Jy0e

λðt�τÞ � dy0e
λt;

and after dividing by y0e
λt it results in the transcendental characteristic equation

for λ:

λ ¼ Je�λτ � d: (9)

If we find a value λ which solves Eq. (9), the function y(t) ¼ y0e
λt would be a

solution to Eq. (8). The growth or decay of y(t) ¼ y0e
λt is determined by the sign of

the real part of λ. If Re λ < 0, the function y(t) will decay in the course of time,

which would correspond to a stable steady state x0. If Re λ > 0, the function y(t)
grows, which means that the system departs from steady state x0 and the latter

is unstable.

To sum up, given steady state x0, we have to solve Eq. (9) for the unknown λ,
whose real part determines the stability of x0. Note that Eq. (9) depends on the

steady state x0 through J, on the value of the time delay τ, and on the degradation

rate d. Thus we expect that the stability of the steady state can be changed by tuning
any of those parameters.

A.3 Oscillation Onset (Hopf Bifurcation)

Here, we are interested in a special situation, where the complex exponent λ has a
zero real part. This corresponds to a parameter set, for which the stability of the

steady state changes: if we change one of the parameters slightly, the real part will

become nonzero and the steady state would either loose or gain stability, depending

on the direction of the parameter change.
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We introduce λ ¼ μ + iω, which, when substituted in Eq. (9), results in

μ ¼ Je�μτ cosðωτÞ � d;

ω ¼ �Je�μτ sinðωτÞ:

We are interested in the situation when μ ¼ 0, since it is associated with a

change of stability of the steady state. At the same time when the steady state looses

its stability, a small limit cycle emerges from the steady state. The period T of this

limit cycle is close to 2π/ω. This scenario is known as a Hopf bifurcation. Going on
with our calculations, the condition μ ¼ 0 simplifies the above two equations to

J cosðωτÞ � d ¼ 0;

�J sinðωτÞ ¼ ω:

Using cos2 (ωτ) + sin2 (ωτ) ¼ 1, we have

J2 ¼ d2 þ ω2;

and d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � ω2

p
. This in turn leads to the expression for the critical value of

delay:

cosðωτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � ω2

p

J
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

J2

r
:

Moreover, we can express ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � d2

p
and have cos (ωτ) ¼ d/J, which gives

the value for the critical delay

τ ¼ arccosðd=JÞ
ω

¼ arccosðd=JÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � d2

p :

We can analyze this equation a bit further: Owing to d � 0 and J < 0, d/J is

negative or zero. Hence, arccos (d/J) assumes values in between π/2 (corresponding
to d/J ¼ 0) and π (corresponding to d/J ¼ �1). Thus, the value of τ is in between

2π/ω and π/ω , which is exactly one-fourth to one-half of T ¼ 2π/ω . Here, T
approximates the period of the limit cycle, which emerges from the steady state in a

Hopf bifurcation with λ ¼ 0 + iω.
Our analytical calculations allowed us to specify the parameters where a Hopf

bifurcation occurs: From J ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ω2

p
we see that a certain slope is needed.

Furthermore, the delay must exceed a quarter of a period (6 h for circadian

rhythms). Finally, the period is approximately proportional to the delay.
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Appendix B: Explicit Delays Versus Reaction Chains

In the main text we studied the DDE

dxðtÞ
dt

¼ gðxðt� τÞÞ � d � xðtÞ: (10)

If x(t) represents the mRNA of a clock gene, the transcriptional inhibition is

executed by its time-delayed value x(t� τ). In reality, the mRNA is spliced, exported,

and translated to a protein. The protein forms complexes, can be posttranslationally

modified, and will be translocated to the nucleus, where it regulates transcription. This

series of events can be modeled in principle by studying all the corresponding

intermediate concentrations and the resulting inhibitory complex. Since many quanti-

tative details are not known, we introduced here the shortcut with an explicit delay.

It turns out that variables with explicit delays can be approximated by a chain of

k intermediate auxiliary variables yi(t):

dxðtÞ
dt

¼ gðykðtÞÞ � dxðtÞ;
dy1ðtÞ
dt

¼ hðxðtÞ � y1ðtÞÞ;
dy2ðtÞ
dt

¼ hðy1ðtÞ � y2ðtÞÞ;
. . .

dykðtÞ
dt

¼ hðyk�1ðtÞ � ykðtÞÞ:

(11)

If we choose h ¼ k=τ , the chain of ODEs approximates the DDE (10) [this

transformation is called the linear chain trick (MacDonald et al. 2008; Smith

2010)]. Here we sketch a short explanation for that claim.

We begin by ad hoc introducing a family of gamma functions Gh,q by

Gh;qðtÞ ¼ hqtq�1e�ht

ðq� 1Þ! :

A first useful observation is that the time derivative of the gamma functions

satisfies the following relation

d

dt
Gh;qðtÞ ¼ hðGh;q�1ðtÞ � Gh;qðtÞÞ; q ¼ 2; 3; . . . ; k;

which formally reminds the last k equations in (11). Using this result, a straight-

forward differentiation shows that functions, yq(t), given by the convolution integrals,

yqðtÞ ¼
ðt

�1
xðsÞGh;qðt� sÞds; q ¼ 1; 2; . . . ; k; (12)

indeed solve the last k equations in (11).
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We now turn to the properties of yk(t). It is formed by convolution integrals of

x(t) with the gamma function Gh,k(t). These functions have mean value at t ¼ k=h
and variance proportional to k. Thus, for large k, the functions Gh,k(t) become

narrower, approximating a peak centered at k=h.
In the above integral (12) for q ¼ k, we aim at localizing x(s) at the time moment

t � τ by properly choosing Gh,k(t � s). The condition s ¼ t � τ results in Gh,

k(t � s) ¼ Gh,k(τ). By an appropriate choice of parameter h, we tune the gamma

function in such a way that its mean value is at the delayed time point t � τ. Owing
that the mean value of Gh,k(τ) is at τ ¼ k=h, this leads to the sought condition for h:
h ¼ k=τ. We conclude that the solution of the last equation of system (11), given by

ykðtÞ ¼
ðt

�1
xðsÞGh;kðt� sÞ ds

with h ¼ k=τ indeed approximates the delayed value of x: yk(t) � x(t � τ). The
approximation becomes better for larger chain lengths due to narrower Gh,k for

large k.
These calculations illustrate that chains of ODEs as studied in most clock models

are closely related to DDEs analyzed above. The fact that long chains (i.e., large

number k of the ODE equations) lead to sharper delays could be related to the

observation that many posttranslational modifications (Vanselow et al. 2006),

complex formations (Zhang et al. 2009; Robles et al. 2010), and epigenetic modifi-

cation (Bellet and Sassone-Corsi 2010) are involved in generation of 24 h rhythms.

We also refer to Forger (2011) for a somewhat similar study of the Goodwin model

as a chain of three interconnected steps.

Appendix C: Modeling Details of Single Cell Oscillators

The dynamics of single cells was described either by a noisy limit cycle model or

a noise-driven weakly damped oscillator model. For N cells, the governing deter-

ministic differential equations read:

dri
dt

¼ �λiðri � AiÞ;
dφi

dt
¼ 2π

τi
; i ¼ 1; 2; . . . ;N: (13)

Here, λi is the radial relaxation rate, τi is the cell’s period, and Ai is the cell’s

signal amplitude. All three parameters were estimated from experimental data as

explained in (Westermark et al. 2009). Limit cycle oscillators have a nonzero

amplitude Ai, whereas for damped oscillators we set Ai ¼ 0. The cell stochasticity
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was modeled by Gaussian noise sources added to the right-hand sides of Eq. (13).

The variances of the noise terms were also estimated from experimental data as

in (Westermark et al. 2009). For time integration of the resulting stochastic differ-

ential equation, we used the Euler–Murayama method.

For both limit cycle oscillators and weakly damped ones, three simulation

protocols were realized.

– Synchronization by a pulse: At a certain time moment, we simultaneously

shifted each oscillator in a specific direction by 120 dimensionless units

(see Fig. 4).

– External periodic forcing: For the results presented in Fig. 5, we subjected

oscillators to an external periodic force with a 24 h period and an amplitude of

0.5 dimensionless units. This driving force is much smaller than the typical

oscillator amplitude of 10–20 (dimensionless units).

– Synchronization via mean field: In the third protocol (see Fig. 6), the oscillators

were subjected to the mean field Z, which resulted from averaging across the

ensemble:

Z ¼ 1

N

X
N

rie
iφi :

For linear damped oscillators, a saturation of the mean field at 20 dimensionless

units was introduced in order to avoid amplitude explosion due to the linearity of

the model.
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