
A Parallel Compact Hash Table

Steven van der Vegt and Alfons Laarman

Formal Methods and Tools, University of Twente, The Netherlands
s.vandervegt@student.utwente.nl,

a.w.laarman@ewi.utwente.nl

Abstract. We present the first parallel compact hash table algorithm.
It delivers high performance and scalability due to its dynamic region-
based locking scheme with only a fraction of the memory requirements
of a regular hash table.

1 Introduction

During the last decade or so, we are witnessing a shift from ever faster sequential
microprocessors towards multi-core processors. This shift is caused by physical
limitations on the nanostructures inside the processor chip and is therefore irre-
versible. Most software systems, however, are still not equipped fully to benefit
from the newly available parallelism.

Data structures, like hash tables, are crucial building blocks for these systems
and many have been parallelized [4,6]. A hash table stores a subset of a large
universe U of keys and provides the means to lookup individual keys in constant
time. It uses a hash function to calculate an address h from the unique key.
The entire key is then stored at its hash or home location in a table (an array of
buckets): T [h]← key . Because often |U | � |T |, multiple keys may have the same
hash location. We can handle these so-called collisions by calculating alternate
hash locations and searching for a key in the list of alternate locations, a process
known as probing.

In the case that |U | ≤ |T |, a hash table can be replaced with a perfect hash
function and a bit array, saving considerable memory. The former ensures that no
collisions can occur, hence we can simply turn “on” the bit at the home location
of a key, to add it to the set. Compact hashing [3] generalizes this concept for
the case |U | > |T | by storing only the part of the key that was not used for
addressing in T : the remainder. The complete key can now be reconstructed
from the value in T and the home location of the key. If, due to collisions, the
key is not stored at its home location, additional information is needed. Cleary
[3] solved this problem with very little overhead by imposing an order on the
keys in T and introducing three administration bits per bucket.

The bucket size b of Cleary compact hash tables is thus dependent on U and T
as follows: b = w−m+3, with the key size w = �log2(|U |)� and m = �log2(|T |)�.
Assuming that all the buckets in the table can be utilized, the compression ratio
obtained is thus close to the information theoretical lower bound of storing a
subset of U in a list T, where boptimal = w−m+1 [5]. Note that good compression
ratios (b

w) are only obtained when m is significant with respect to w.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 191–204, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

192 S. van der Vegt and A. Laarman

Problem description. Compact hashing has never been parallelized, even though
it is ideally suited to be used inside more complex data structures, like tree ta-
bles [8] and binary decision diagrams (BDDs) [2]. Such structures maintain large
tables with small pieces of constant-sized data, like pointers, yielding an ideal
m and w for compact hashing. But even more interesting than obtaining some
(constant-factor) memory reductions, is the ability to store more information in
machine-sized words, for efficient parallelization depends crucially on memory
alignment and low-level operations on word-sized memory locations [4,7].

Contributions. We present an efficient scheme to parallelize both the Cleary ta-
ble and the order-preserving bidirectional linear probing (BLP) algorithm that
it depends upon. The method is lockless, meaning that it does not use operat-
ing system locks, thereby providing the performance required for use in high-
throughput environments, like in BDDs, and avoiding memory overhead.

Our algorithm guarantees read/write exclusion, but not on the lowest level of
buckets, as in [4,7], nor on fixed-size regions in the table as in region-based/striped
locking, but instead on the logical level of a cluster : a maximal subarray T [i . . . j]
such that ∀x : i ≤ x ≤ j =⇒ T [x].occ ,where T [x].occ denotes a filled bucket.
We call this novel method: dynamic region-based locking (DRL).

2 Background

In the current section, we explain the Cleary table and the BLP algorithm it uses.
Finally, we discuss some parallelization approaches that have been used before
for hash tables and the issues that arise when applying them to the Cleary table.

For this discussion, the distinction between open-addressing and chained hash
tables is an important one. With open addressing, the probing for alternate
locations is done inside the existing table as is done in BLP and hence also in
Cleary tables. While chained or closed-addressing hash tables resolve collisions
by maintaining (concurrent) linked lists at each location in the table.

2.1 Bidirectional Linear Probing

Linear probing (LP) is the simplest form of open addressing: alternate hash
locations in the table are calculated by adding one to the current location. While
this probing technique provides good spatial locality, it is known for producing
larger clusters, i.e., increasing the average probing distance [4].

BLP [1,9] mitigates the downside of LP, by enforcing a global order on the
keys in the buckets using a monotonic hash function: if k1 < k2 then hash(k1) ≤
hash(k2). Therefore, the look-up of a key k boils down to: compare the k to the
bucket at the home location h, if T [h] > k, probe left linearly (h′ ← h−1), until
T [h′] = k. If k is not present in the table, the probe sequence stops at either
an empty bucket, denoted by ¬T [h′].occ, or when T [h′] < k. If T [h] < k, do the
reverse.

To maintain order during an insert of a key, the BLP algorithm needs to move
part of a cluster to the left or the right in the table, thereby making space for the

A Parallel Compact Hash Table 193

new key at the correct (in-order) location. This move is usually done with pair-
wise swaps, starting from the empty bucket at one end of the cluster. Therefore,
this is referred to as the swapping operation. For algorithms and a more detailed
explanation, please refer to [9].

2.2 A Compact Hash Table Using the Cleary Algorithm

As explained in Sec. 1, Cleary’s compact hash table [3] stores only the remainder
of a key in T . With the use of the sorting property of the BLP algorithm and 3
additional administration bits per bucket, the home location h of the remainder
can be reconstructed, even for colliding entries that are not stored at their home
location. The rem function is the complement of the monotonic hashing func-
tion and calculates the remainder, e.g., rem(x) = x%10 and hash(x) = x/10.1

A group h is a sequence of successive remainders in T with the same home lo-
cation h. All adjacent groups in T form a cluster, as defined in Sec. 1, which by
definition is enclosed by empty buckets.

The first administration bit occ is used to indicate occupied buckets. The
virgin bit is set on a bucket h to indicate the existence of the related group h
in T . And finally, the change bit marks the last (right-most) remainder of a
group, such that the next bucket is empty or the start of another group.

Fig. 1 shows the Cleary table with |T | = 10 that uses the example hash and
rem functions from above. A group h is indicated with gh. Statically, keys can be
reconstructed by multiplying the group number by 10, and adding the remainder:
key(j) = group(T [j]) × 10 + T [j] = hash−1(group(T [j])) + T [j]. For example,
bucket 6 stores remainder 8 and group(6) = 4, therefore key(6) = 4×10+8 = 48.

Fig. 1. Example Cleary table with 10 buckets containing 8 remainders, 2 clusters and
4 groups, representing the keys: 7,9,33,34,38,48,60,69

The algorithms maintain the following invariants [3]: the amount of change
and virgin bits within a cluster is always equal, and, when a virgin bit is set on
a bucket, this bucket is always occupied.

The find function in Alg. 1a makes use of these invariants as follows: it
counts the number of virgin bits between the home location h and the left end

1 To increase the performance of the hash function, it is common practice to apply an
invertible randomization function to the key before hashing it [1,3,5]. Throughout
this paper, we assume keys to be randomized.

194 S. van der Vegt and A. Laarman

1: procedure vcount-left(j)
2: c← 0 � count variable
3: while T [j].occ do
4: c← c + T [j].virgin
5: j ← j − 1

6: return j, c

7: procedure find(k)
8: j ← hash(k)
9: if ¬T [j].virgin then

10: return NOT FOUND � false
11: (j, c)← vcount-left(j)
12: j ← j + 1
13: while c �= 0 ∧ T [j].occ do
14: if c = 1∧ T [j] = rem(k) then
15: return FOUND � true
16: c← c− T [j].change
17: j ← j + 1

18: return NOT FOUND � false

Require: (∃i : ¬T [i].occ) ∧ ¬find(k)
1: procedure put(k)
2: h← hash(k)
3: (j, c)← vcount-left(h)
4: T [j]← rem(k)
5: T [j].occ ← 1
6: T [j].change ← 0
7: while c �= 0 do
8: if T [h].virgin ∧ c = 1∧
9: T [j + 1] > rem(k) then

10: return
11: c← c− T [j + 1].change
12: swap(T [j + 1], T [j])
13: j ← j + 1

14: if T [h].virgin then
15: T [j − 1].change ← 0

16: T [j].change ← 1
17: T [h].virgin ← 1

Alg. 1. Functions for finding (a) and inserting (b) a key in a Cleary table

of the cluster in c (see vcount-left). Since the last encountered virgin bit
corresponds to the left-most group, the group h can now be located by counting
c change bits to the right (l.13-17). The first iteration where c = 1 marks that
start of group h. Hence, the algorithm starts comparing the remainders in T [j]
with rem(k) at l.14, and returns FOUND when they are equal. Once c becomes 0
again, the group h did not contain the key, and NOT FOUND is returned at l.18.

The put function in Alg. 1b inserts the remainder of k in the empty bucket
left of the cluster around h at l.4-6 and swaps it in place at l.7-13 (swap only
swaps the remainder and the change bit). In this case, in place means two
things: within group h as guaranteed by l.7 and l.8, and sorted by remainder
value as guaranteed by l.9. Furthermore, put guarantees the correct setting of
the administration bits. First, the occ bit is always set for every inserted element
at l.5. Also, before return, the virgin bit is always set for T [h] (see l.8 and l.17).

To understand the correct setting of the change bits, we introduce an invari-
ant: at l.8, group(T [j + 1]) ≤ h. Consequently, a return at l.10, means that the
remainder is not swapped to the end of group h, therefore the change bits do
not require updating. On the other hand, if the while loop terminates normally,
the remainer is swapped to the end of group h, therefore the change bit needs to
be set (l.16). If group h already existed (T [h].virgin = true), the previous last
remainder of the group needs to have its change bit unset (l.15).

We illustrate put with an example. Inserting the key 43 into the table of Fig. 1
gives a h = hash(43) = 4 and rem(43) = 3. Searching for the empty bucket left
of the cluster at l.3, results in j = 2 and c = 2, since there are two virgin bits
in buckets 3 and 4. The remainder is initially inserted in T [2] (l.4-6). At l.12
the remainder in bucket 2 is swapped with bucket 3 (the virgin bit remains

A Parallel Compact Hash Table 195

unchanged). These steps are repeated until j points to bucket 5. Then, at l.11 c
becomes 1, indicating group(T [j +1]) = h. In the next iteration (j′ = j− 1), the
condition at l.8-9 holds, meaning that the remainder is at its correct location:
at the start of g4.

If instead, we were inserting the key 49, c would have become 0, ending the
while loop with j = 6 (l.7), after swapping the remainder 9 to bucket 6. Because
g4 already existed, the previous change bit (now on T [5]) is unset by l.14-15.
Finally, the change bit at bucket 6 is set by l.16.

To make groups grow symmetrically around their home locations and keep
probing sequence shorter, it is important that the put function periodically
also starts inserting remainders from the right of the cluster (not shown in the
algorithm). Our experimental results confirm that a random choice between the
two insert directions yields the same probe distances as reportedly obtained by
the optimal replacement algorithms in [1].

2.3 Related Work on Parallel Hash Tables

In this subsection, we recapitulate some relevant, existing approaches to paral-
lelize hash tables. With relevant, we mean parallel hash tables that can efficiently
store smaller pieces of data (remember, from the introduction, that the key size
w should be significant with respect to m for compact hashing to be effective).
Furthermore, the scalability should be good for high-throughput systems like
inside BDDs.

Many parallel hash table implementations are based on chaining. More ad-
vanced approaches even introduce more pointers per bucket, for example: split-
ordered lists [6, Sec. 13.3], which: “move[s] the buckets among the [keys], instead
of moving the [keys] among the buckets”. While these kind of hash tables lend
themselves well for maintaining small sets in parallel settings like graphical user
interfaces, they are less suited for our goals for two reasons: (1) the pointers
require relatively much additional memory compared to the small bucket sizes
that are so typical for compact hashing and (2) the pointers increase the mem-
ory working set, which is disastrous for scalability on modern computer systems
with steep memory hierarchies [7,4].

Slightly more relevant to our cause is the use of operating system locks to
make access to a hash table (chained or open addressing) concurrent. One lock
can be used for the entire table, but this is hardly scalable. Alternatively, one
lock can be used per bucket, but this uses too much memory (we measured 56
bytes for posix locking structures, this excludes any memory allocated by the
constructor). A decent middle way is to use one lock for a group of buckets. The
well-known striped hash table [6, Sec. 13.2.2], does this for chained tables. To
employ the same idea for an open-addressing table, it does not make sense to
‘stripe’ the locks over the table buckets. Preferably, we group subsequent buckets
into one region, so that only one lock needs to be taken for multiple probes. We
dub this method “region-based locking” (RBL).

196 S. van der Vegt and A. Laarman

Lockless hash tables avoid the use of operating system locks entirely. Instead,
atomic instructions are used to change the status of buckets (“locking” in paren-
theses). A lockless hash table (LHT) is presented in [7], based on ideas from
[4]. It uses open addressing with LP and even modifies the probe sequence to
loop over cache lines (“walking the line”) to lower the memory working set and
achieve higher scalability. For maximum scalability, only individual buckets are
“locked” using one additional bit; the only memory overhead that is required.

None of the above-mentioned methods are suitable for ordered hash tables, like
BLP and Cleary tables. First the regions in RBL are fixed, while the clusters in
ordered tables can be at the boundary of a region. While this could be solved
with more complicated locking mechanism, it would negatively affect the perfor-
mance of RBL, which is already meager compared to the lockless approaches (see
Sec. 4). The lockless approach, in turn, also fails for ordered hash tables since
it is much harder to “lock” pairs of buckets that are swapped atomically. And
even if it would be technically possible to efficiently perform an atomic pairwise
swap, it would severely increase the amount of (expensive) atomic operations
per insert (Sec. 3.2 discusses the complexity of the swapping operations).

In [9], we introduced a lockless algorithm for BLP that “locks” only the cluster
during swapping operation. find operations do not require this exclusive access,
for an ongoing put operation can only cause false negatives that can be mitigated
by another exclusive find operation. However, this method is not suitable for
the Cleary table, since its find function is probe-sensitive, because it counts the
virgin and change bits during probing. Therefore, it can cause false positives
in case of ongoing swapping operations. The current paper is an answer to the
future work of [9].

3 Dynamic Region-Based Locking

In the current section, we first present dynamic region-based locking (DRL): a
locking strategy that is compatible with the access patterns of both the BLP al-
gorithm with its swapping property and the Cleary table with its probe-sensitive
lookup strategy. We limit our scope to a procedure that combines the find and
put functions, described in the previous section, into the find-or-put func-
tion, which searches the table for a key k and inserts k if not found. The reason
for this choice is twofold: first, it covers all issues of parallelizing the individual
operations, and second, the find-or-put operation is sufficient to implement
advanced tasks like model checking [7,8].

Additionally, in Sec. 3.2, we show that DRL only slightly increases the number
of memory accesses for both BLP and PCT. From this and the limited number
of atomic operations that it requires, we conclude that its scalability is likely as
good as LHT’s. We end with a correctness proof of DRL in Sec. 3.3.

3.1 Parallel FIND-OR-PUT Algorithm

We generalize the lockless BLP algorithm from [9] to accommodate Cleary com-
pact hashing with its probe-sensitive find operation. It uses one extra bit field

A Parallel Compact Hash Table 197

per bucket (lock) to provide light-weight mutual exclusion. This method has
limited memory overhead and does not require a context switch and additional
synchronization points like operating system locks.

The atomic functions try-lock and unlock control this bit field and have
the following specifications: try-lock requires an empty and unlocked bucket
and guarantees an empty, locked bucket or otherwise fails. unlock accepts mul-
tiple buckets and ensures all are unlocked upon return (each atomically, the
multiple arguments are merely syntactic sugar). These functions can be imple-
mented using the processor’s cas(a, b, c) operation, which updates a word-sized
memory location at a with c atomically, if and only if the condition b holds
for location a [6, Ch. 5.8]. cas returns the initial value at location a, used to
evaluate the condition.

Alg. 2 shows the dynamic locking scheme for the find-or-put algorithm.
First, at l.3, the algorithm tries a non-exclusive write using cas, which succeeds
if the home location h is empty and unlocked (¬lock ∧¬occ). The success of the
operation can be determined from the return value old of cas (see l.4). If a lock
or full bucket was detected, the algorithm is restarted at l.7.

From l.10 onwards, the algorithm tries to acquire exclusive access to the cluster
around T [h]. Note that T [h] is occupied. At l.10 and l.11, the first empty location
left of and right of h are found in T . If both can be locked, the algorithm enters a
local critical section (CS) after l.16, else it restarts at l.13 or l.16 (after releasing
all taken locks). In the CS, the algorithm can now safely perform exclusive reads
and exclusive writes on the cluster (l.17 and l.20).

DRL is suitable in combination with the find and put operations of both
BLP and the Cleary table. If we are implementing the BLP algorithm using this
locking scheme, then find at l.8 can perform a non-exclusive read (concurrent
to any ongoing write operations). The possibility of a false negative is miti-
gated by an upcoming exclusive read at l.17. For the Cleary algorithm, however,
the non-exclusive read needs to be dropped because the probe-sensitive lookup
mechanism might yield a false positive due to ongoing swapping operations.

1: procedure find-or-put(k)
2: h← hash(k) � non-excl. write:
3: old ← cas(T [h],¬lock ∧ ¬occ, k)
4: if ¬old .occ ∧ ¬old .lock then
5: return INSERTED

6: else if old .lock then
7: return find-or-put(k)

8: if find(k) then � non-excl. read
9: return FOUND

10: left ← cl-left(h)
11: right ← cl-right(h)

12: if ¬try-lock(T [left]) then
13: return find-or-put(k)

14: if ¬try-lock(T [right]) then
15: unlock(T [left])
16: return find-or-put(k)

17: if find(k) then � exclusive read
18: unlock(T [left], T [right])
19: return FOUND

20: put(k) � exclusive write
21: unlock(T [left], T [right])
22: return INSERTED

Alg. 2. Concurrent bidirectional linear find-or-put algorithm

198 S. van der Vegt and A. Laarman

3.2 Complexity and Scalability

Two questions come to mind when studying the DRL: (1) What is the added
complexity compared to the sequential BLP or Cleary algorithm? (2) What scal-
ability can we expect from such an algorithm. Below, we discuss these matters.

For ordered hash tables, like BLP and Cleary tables, the cluster size L depends
on the load factor α, as follows: L = (α−1)−2−1 [1], where α = n/|T | and n the
number of inserted keys. Since DRL probes to the empty buckets at both ends
of the cluster, it requires (α− 1)−2 + 1 bucket accesses. When implementing the
Cleary table using DRL, this is the complexity for the find-or-put operation
independent whether an insert occurred or not, because in both cases it “locks”
the entire cluster. Note that we do not count the bucket accesses of the called
find and the put operations, since, in theory, these could be done simultaneously
by the cl-left and cl-right operations. In practice, this seems unnecessary,
because the cluster will be cache hot after locking it.

The sequential Cleary find and put algorithm have to probe to one end of the
cluster to count the virgin and change bits, hence require 1

2 (α− 1)−2 + 1
2 bucket

accesses (again assuming that we can count both in one pass or that the second
pass is cached and therefore insignificant). We conclude that Cleary+DRL (with
one worker thread) is only twice as slow as the original Cleary algorithm.

For BLP+DRL the story changes, but the outcome is the same. The sequential
BLP algorithm does not have to probe to the end of the cluster and is empiri-
cally shown to be much faster than LP [1]. However, DRL+BLP is correct with
non-exclusive reads as long as an unsuccessful find operation is followed by an
exclusive find to mitigate false negatives, as is done in Alg. 2. But false neg-
atives are rare, so again the parallel find operation is not much slower than
the sequential one. The same holds for the put operation, since the sequential
version on average needs to swap half of an entire cluster and the parallel version
“locks” the whole cluster.

Scalability of DRL can be argued to come from three causes: first, the com-
plexity (in memory access) of the parallel algorithm is the same the sequential
versions, as shown above, second, the number of (expensive) atomic operations
used is low, DRL uses two at most, and third, the memory accesses are all
consecutive. We analyze the third cause in some more detail.

To mitigate the effect of slow memories, caching is important for modern
multi-core systems. Each memory access causes a fixed region of memory, known
as a cache line, to be loaded into the CPU’s cache. If it is written to, the entire
line is invalidated and has to be reload on all cores that use it; an operation which
is several orders of magnitude more expensive than other operations using in-
cache data. We have shown before that highly scalable hashing algorithms can
be obtained by lowering the number of cache lines that are accessed: the memory
working set [7].

The open-addressing tables discussed in this paper exhibit only consecutive
memory accesses. And while it seems that the amount of buckets probed in the
Cleary algorithm is high, typically few cache lines are accessed. For example,
there are 26 bucket accesses on average for α = 0.8, while on average only

A Parallel Compact Hash Table 199

�26/64� + 26/64 = 1.41 cache lines are accessed, assuming a bucket size of 1
byte and a cache line size of 64 byte. When α grows to 0.85, we get 1.71 cache
line accesses on average, and when α = .9, 3.59 accesses. Note finally that with
buckets of 1 byte, the cleary algorithm can store keys of more than 32 bit for
large tables, e.g, if m = 28, then w = b + m − 3 = 8 + 28 − 3 = 33, while
non-compacting hash table requires five bytes per bucket to store as many data.
In conclusion, we can expect Cleary+DRL to perform and scale good until load
factors of 0.8 and competitive performance to that of [7].

3.3 Proof of Correctness

To prove correctness, we show that Alg. 2 is linearizable, i.e., its effects appear
instantaneously to the rest of the system [6, Ch. 3.6]. Here, we do this in a
constructive way: first, we construct all possible local schedules that Alg. 2 al-
lows, then we show by contradiction that any interleaving of the schedules of
two workers always respects a certain critical section (CS) of the algorithm, and
finally, we generalize this for more workers. From the fact that CS is the only
place where writes occur, we can conclude linearizability.2 We assume that all
lines in the code can be executed as atomic steps.

If the home location of a key k is empty, correctness follows from the properties
of the atomic cas operation at l.3. For every other table accesses (l.17 and l.20),
we prove that never two workers can be in their CS for the same cluster.

The ‘→’ operator is used to denote the happens-before relation between those
steps [6]. For example, ‘cl-righti(x)→ try-locki(x)’ means that a Worker i
always first executes cl-right writing to the variable x (l.11), and subsequently
calls try-lock using (reading) the variable x. We omit the subscript i, if it is
clear from the context which worker we are talking about. We concern our-
selves with the following local happens-before order: cas(h) � cl-left(l) →
cl-right(r)→ try-lock(l) � try-lock(r) � (occ(l)⊕ occ(r)), where occ(x)
signifies a fill of a bucket (T [x].occ← 1) and � indicates a happens-before rela-
tion dependent on a condition. Depending on the replacement end (left or right),
put fills one of the buckets at the end of the cluster, hence the exclusive-or: ⊕.
Furthermore, we write li, ri and hi for: the left variable, the right variable and
the home-location hi = hash(k), all local to a Worker i.

Lemma 1. Alg. 2 ensures that when two workers try to enter their CS for the
same cluster, then: li = lj ∨ ri = lj ∨ li = rj ∨ ri = rj .

Proof. Assume Worker Wi is in its CS, and Worker Wj is about to enter the CS
for the same cluster. Since Wi is in its CS, we have T [li].lock and T [ri].lock. Wi

is going to perform the step occ(li) or occ(ri). Note that these operations might
influence the clusters, as two clusters separated by only one empty bucket, may
become one upon filling the bucket.
2 For completeness sake, we should also mention that we only allow for false positives

to occur in non-exclusive reads and that unsuccessful non-exclusive reads are always
followed by a read operation in the CS, i.e., an exclusive read.

200 S. van der Vegt and A. Laarman

Fig. 2. Several clusters and empty positions. The cluster 8-10 is locked by worker Wi.
Location marked with ha to he potential home locations for worker Wj .

Worker Wj has yet to enter its CS, executing the steps: cas(hj)→ cl-left(lj)
→ cl-right(rj). With a generalizable example, Fig. 2 illustrates five non-trivial
cases that we consider, where Wj starts with a hj respective to the cluster li, ri.
Clusters in T are colored gray and we assume that they are separated by one
empty bucket (white), because more empty buckets makes the resulting cases
only more trivial. There are several representative home-locations marked with
ha to he (e.g., choosing a different location within the same cluster leaves the
results of the cl-left and cl-right operations unaffected). Locations on the
right of ri follow from symmetry. Below, we consider the outcome of all the cases
for hj . We use the fact that there are no empty buckets between lj and rj .

hj = ha: Because T [hj].occ, cas(hj) fails. Wj performs the steps cl-left(lj)
→ cl-right(rj). Since lj = 1 < rj = 3 < li, Lemma 1 is vacuously true.

hj = hb: This location is unoccupied and not locked, so the cas(hj) succeeds
and the algorithm returns never reaching CS, making Lemma 1 vacuously true.

hj = hc: This location is occupied so cas(hj) fails. Next, the step cl-left(lj)
results in lj = 3. The result rj of cl-right is dependent on the state of Wi. If
Wi has not already performed any occ or did perform occ(11), then rj = 7. If
Wi has executed occ(7), then rj = 11. So, rj = 7 = li ∨ rj = 11 = ri.

hj = hd: The success of the cas(hj) depends on the state of Wi. If Wi

has not performed any steps, then cas(hj) restarts the algorithm at l.7. If Wi

has performed occ(7), then Wj continues with cl-left(lj) and cl-right(rj),
resulting in lj = 3, rj = 11 = ri. If Wi has performed step occ(11), then
lj = 7 = li, rj = 15.

hj = he: Since he is occupied, cas(hj) fails again. Wj continues with the
cl-left(lj) and cl-right(rj). The result depends on if Wi has executed occ(7)
or occ(11). We distinguish five interleavings:
1: cl-left(lj)→ cl-right(rj)→ (occi(7)⊕ occi(11))⇒ lj = 7, rj = 11 = ri

2: cl-left(lj)→ occi(7)→ cl-right(rj)⇒ lj = 7 = li, rj = 11 = ri

3: cl-left(lj)→ occi(11)→ cl-right(rj)⇒ lj = 7 = li, rj = 15
4: occi(7)→ cl-left(lj)→ cl-right(rj)⇒ lj = 3, rj = 11 = ri

5: occi(11)→ cl-left(lj)→ cl-right(rj)⇒ lj = 7 = li, rj = 15

Thus, under the above assumption: li = lj ∨ ri = lj ∨ li = rj ∨ ri = rj .
�
Theorem 1. No two workers can be in their CS at the same time and work on
the same cluster such that li ≤ lj ≤ ri ∨ li ≤ rj ≤ ri ∨ (lj ≤ li ∧ rj ≥ ri).

A Parallel Compact Hash Table 201

Proof. By contradiction, assume the opposite: both Wi and Wj reach their CS
and li ≤ lj ≤ ri ∨ li ≤ rj ≤ ri ∨ (lj ≤ li ∧ rj ≥ ri). Without loss of generality
because of symmetry, we assume again Wi to have entered its CS first. The steps
for Wj to arrive in its CS are:
cas(hj)→ cl-left(lj)→ cl-right(rj)→ try-lock(lj)→ try-lock(rj).
The remaining step for Wi is: occ(li)⊕ occ(ri)
Wi hash performed try-lock(li) → try-lock(ri), thus we have T [li].lock ∧
T [ri].lock. According to Lemma 1 that at least one of the locations lj and rj

equals either li or ri. Therefore, Wj will always fail with either try-lock(lj)
or try-lock(ri). This conclusively proves mutual exclusion for two workers.
Since additional workers cannot influence Wj in such a way that Lemma 1 is
invalidated, Theorem 1 also holds for N > 2 workers.
�
Absence of deadlocks (infinite restarts at l.7, l.13 and l.16), follows from the fact
that all “locks” are always released before a restart or a return. Furthermore, we
have absence of livelocks, because workers first “lock” the left side of a cluster.
The one which locks the right side first, wins. With a fair scheduler the algorithm
is also starvation-free, because each worker eventually finished its CS in a finite
number of steps. From this, we conclude that Alg. 2 is linearizable.

4 Experiments

In the current section, we show an empirical evaluation of the Parallel Cleary
Table (PCT), i.e. Cleary+DRL, by comparing its absolute performance and
scalability with that of BLP+DRL, LHT and RBL. In our experiments, several
parameters have been fixed as follows: m = 28, b = 16 for PCT, while for the
non-compacting tables b = 64, and finally α = 0.9. These parameters reflect best
the goals we had in mind for this work, since all tables can store pointers larger
than 32 bits. Furthermore, the load factor and bucket size for PCT is higher than
the values discussed in Sec. 3.2, creating a healthy bias against this algorithm.
Additionally, we investigated the influence of different load factors on all tables.

We used the following benchmark setup. All tables were implemented in the
C language using pthreads.3 For RBL, we determined the optimal size of the
regions by finding the size that yielded the lowest parallel runtime. For table
of 228 buckets, this turned out to be 213. The benchmarks were run on Linux
servers with 4 amd Opteron(tm) 8356 CPUs (16 cores total) and 64GB memory.
The maximum key size w that all tables can store in our configuration is 40: for
PCT we have w = b+m−4 = 16+28−4 = 40, and for BLP, LHT and RBL we
have w = 64− 2 = 62 (2 for the lock and occ bit). Therefore, we fed the tables
with 40 bit keys, generated with a pseudo random number generator.

Table 1 gives the runtimes of all hash tables for different read/write ratios
and load factor of 90%. Beside the runtimes with 1, 2, 4, 8, and 16 cores (TN

for N ∈ {1, 2, 4, 8, 16}), we included the runtimes of the sequential versions
of the algorithms Tseq , i.e., the algorithm run without any locks and atomic

3 Available at: http://fmt.cs.utwente.nl/tools/ltsmin/memics-2011

http://fmt.cs.utwente.nl/tools/ltsmin/memics-2011

202 S. van der Vegt and A. Laarman

Table 1. Runtimes of BLP, RBL, LHT and PCT with r/w ratios 0:1, 3:1 and 9:1

Alg. LHT RBL BLP PCT

r/w ratio 0:1 0:3 0:9 0:1 0:3 0:9 0:1 0:3 0:9 0:1 0:3 0:9

Tseq 77.5 242.4 569.2 76.7 239.9 563.2 71.8 279.1 676.0 54.5 368.9 1050.

T1 81.6 255.2 599.2 145.9 565.4 1404. 97.5 302.0 726.3 77.3 565.9 1543.

T2 51.6 157.6 371.0 85.0 327.6 813.4 60.8 188.8 443.9 44.4 317.7 863.9

T4 26.5 77.9 184.0 46.2 170.2 424.9 31.3 94.0 219.1 23.4 159.7 431.9

T8 13.9 39.6 92.9 24.0 89.4 219.2 16.5 47.8 110.3 11.5 79.7 216.0

T16 7.7 21.1 48.8 13.5 48.6 120.5 9.4 25.5 57.2 6.0 41.6 112.9

instructions. From this, we can deduce the overhead from the parallelization.
Comparing the runs with a r/w ratio of 0:1, we see that the sequential variants
have more or less the same runtime (PCT is slightly faster, due to its compacter
table). Only the lockless algorithms show little overhead when we compare Tseq

to T1, while DRL shows that the posix mutexes slow the algorithm down by a
factor of two. The same trend is reflected in the values for TN with N > 1.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Cores

LHT 0:1

LHT 3:1

LHT 9:1

RBL 0:1

RBL 3:1

RBL 9:1

BLP 0:1

BLP 3:1

BLP 9:1

PCT 0:1

PCT 3:1

PCT 9:1

Ideal Speedup

Fig. 3. Speedups of BLP, RBL, LHT and PCT with r/w ratios 0:1, 3:1 and 9:1

A Parallel Compact Hash Table 203

0

20

40

60

80

100

120

140

160

180

200

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

T 1
6

load factor

LHT 0:1 LHT 3:1

LHT 9:1 RBL 0:1

RBL 3:1 RBL 9:1

BLP 0:1 BLP 3:1

BLP 9:1 PCT 0:1

PCT 3:1 PCT 9:1

Fig. 4. 16-core runtimes of BLP, RBL, LHT and PCT

If we now focus our attention to the higher r/w ratios, we see that reads are
much more expensive for PCT. This was expected, since non-exclusive reads in
DRL are not allowed for PCT as explained in the previous section. To investigate
the influence of the r/w ratio, we plotted the absolute speedups (SN = Tseq/TN)
of the presented runs in Fig. 3. The lightweight locking mechanism of DRL
delivers good scalability for PCT and BLP, almost matching those of LHT.
While PCT speedups are insensitive to the r/w ratio, since the algorithm always
performs the same locking steps for both read and write operations, BLP shows
much better speedups for higher r/w ratios. Finally, we see that RBL is no
competition to the lockless algorithms.

To investigate the effects of the load factor, we measured the 16-core runtimes
of all algorithms for different load factors. To obtain different load factors we
modified the number of keys inserted and not the hash table size, therefore we
plotted the normalized runtimes T norm in Fig. 4 (T norm = T/α, where α = n/|T |
is the load factor and n the number of keys inserted). Due to the open-addressing
nature of the hash tables presented here, the asymptotic behavior is expected
for α close to 100% (the probe sequences grow larger as the table fills up).
However, this effect is more pronounced for PCT, again because of the read-
write exclusion, and for RBL, because more locks have to be taken once the
probe distance grows.

5 Discussion and Conclusions

We have introduced DRL: an efficient lockless mechanism to parallelize BLP
and Cleary compact hash tables efficiently. We have shown, analytically and
empirically, that these Parallel Cleary Tables (PCT) scale well up to load factors
of at least 80%. This is acceptable, since the compression ratio, obtained by
compact hashing, can be far below this value.

204 S. van der Vegt and A. Laarman

With experiments, we also compared both parallel ordered hash tables (PCT
and BLP) with a state-of-art lockless hash table (LHT) and a region-based lock-
ing table that uses operating system locks (RBL). We found that PCT and BLP
can compete with LHT. On the other hand, RBL scales worse than the other
lockless tables. We finally showed that PCT comes with higher costs for find
operations and higher load factors. However, this also holds for the sequential
algorithm because it has to probe to the end of the cluster as the analysis showed
and as is reflected by the good speedups that PCT still exhibits.

While we concentrated in this work on a parallel find-or-put algorithm, we
think that other operations, like individual find, put and delete operation,
can be implemented with minor modifications.

In future work, we would like to answer the following questions: Could DRL
be implemented with locking only one side of the cluster and the home location?
Could PCT be implemented with non-exclusive reads? The former could further
improve the scalability of DRL, while the latter could transfer the performance
figures of parallel BLP to those of PCT.

Acknowledgements. We thank Jaco van de Pol for providing useful comments
on this work.

References

1. Amble, O., Knuth, D.E.: Ordered Hash Tables. The Computer Journal 17(2), 135–
142 (1974)

2. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers 35, 677–691 (1986)

3. Cleary, J.G.: Compact Hash Tables Using Bidirectional Linear Probing. IEEE Trans-
actions on Computers C-33(9), 828–834 (1984)

4. Click, C.: A Lock-Free Hash Table. Talk at JavaOne (2007),
http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf

5. Geldenhuys, J., Valmari, A.: A Nearly Memory-Optimal Data Structure for Sets
and Mappings. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp.
136–150. Springer, Heidelberg (2003)

6. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. M. Kaufmann
(2008)

7. Laarman, A.W., van de Pol, J.C., Weber, M.: Boosting Multi-Core Reachabil-
ity Performance with Shared Hash Tables. In: Sharygina, N., Bloem, R. (eds.)
FMCAD 2010, pp. 247–255. IEEE Computer Society (2010)

8. Laarman, A., van de Pol, J., Weber, M.: Parallel Recursive State Compression for
Free. In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops 2011. LNCS, vol. 6823,
pp. 38–56. Springer, Heidelberg (2011)

9. van der Vegt, S.: A Concurrent Bidirectional Linear Probing Algorithm. In: Heijnen,
C., Koppelman, H. (eds.) 15th Twente Student Conference on Information Technol-
ogy, Enschede, The Netherlands, Enschede. TSConIT, vol. 15, pp. 269–276. Twente
University Press (2011),
http://referaat.cs.utwente.nl/TSConIT/download.php?id=981

http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf
http://referaat.cs.utwente.nl/TSConIT/download.php?id=981

	A Parallel Compact Hash Table
	Introduction
	Background
	Bidirectional Linear Probing
	A Compact Hash Table Using the Cleary Algorithm
	Related Work on Parallel Hash Tables

	Dynamic Region-Based Locking
	Parallel FIND-OR-PUT Algorithm
	Complexity and Scalability
	Proof of Correctness

	Experiments
	Discussion and Conclusions
	References

