Zdenélg Kotasek Jan Bouda
Ivana Cerna Lukas Sekanina
Tomas Vojnar David Antos (Eds.)

Mathematical and
Engineering Methods
in Computer Science

7th International Doctoral Workshop, MEMICS 2011
Lednice, Czech Republic, October 2011
Revised Selected Papers

LNCS 7119

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7119

Zden€k Kotasek Jan Bouda
Ivana Cerna Lukas Sekanina
Tomas Vojnar David AntoS (Eds.)

Mathematical and
Engineering Methods
in Computer Science

7th International Doctoral Workshop, MEMICS 2011
Lednice, Czech Republic, October 14-16, 2011
Revised Selected Papers

@ Springer

Volume Editors

Zdenék Kotasek

Lukas Sekanina

Tomas Vojnar

Brno University of Technology, Faculty of Information Technology
Bozetéchova 2, 612 66 Brno, Czech Republic

E-mail: {kotasek, sekanina, vojnar} @fit.vutbr.cz

Jan Bouda

Ivana Cernd

Masaryk University, Faculty of Informatics
Botanicka 68a, 602 00 Brno, Czech Republic
E-mail: {bouda, cerna}@fi.muni.cz

David Anto$

Masaryk University, Institute of Computer Science
Botanicka 68a, 602 00 Brno, Czech Republic
E-mail: antos @ics.muni.cz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25928-9 e-ISBN 978-3-642-25929-6
DOI 10.1007/978-3-642-25929-6

Springer Heidelberg Dordrecht London New York
Library of Congress Control Number: 2011944974
CR Subject Classification (1998): C.2, D.2, K.6.3, K.6.5, K.4.4, H4

LNCS Sublibrary: SL 2 — Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable

to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws

and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

MEMICS 2011 was the seventh instance of the international doctoral workshop
on Mathematical and Engineering Methods in Computer Science organized in
Southern Moravia by the Faculty of Information Technology of the Brno Uni-
versity of Technology and the Faculty of Informatics of the Masaryk University.
MEMICS 2011 took place in Lednice, Czech Republic, where it was held dur-
ing October 14-16, 2011. For the first time in MEMICS’s history, the workshop
proceedings were published by Springer in the LNCS series.

The MEMICS workshops are intended to provide an opportunity for PhD
students to present and discuss their work in an international environment.
Their focus on PhD studies instead of a particular narrow scientific area leads
to a cross-disciplinary orientation, providing a pleasant environment for an ex-
change of ideas among researchers in several different fields of computer science
and technology.

Submissions are invited especially in the following (though not exclusive)
areas: software and hardware dependability, computer security, computer-aided
analysis and verification, testing and diagnostics, simulation, parallel and dis-
tributed computing, grid computing, computer networks, modern hardware and
its design, non-traditional computing architectures, software engineering, com-
putational intelligence, quantum information processing, computer graphics and
multimedia, signal, text, speech, and image processing, and theoretical computer
science.

As is the tradition in the MEMICS workshops, invited lectures given by inter-
nationally recognized researchers complemented the standard program based on
papers authored by PhD students. MEMICS 2011 hosted six invited speakers:
Saddek Bensalem from VERIMAG, University Joseph Fourier/CNRS/INPG,
Grenoble, France, with the talk “Rigorous Component-Based System Design Us-
ing the BIP Framework,” Peter Bentley from University College London, UK,
with a talk on “Modelling Complex Systems—Lessons from the Life Sciences,”
Krishnendu Chatterjee from IST Austria, with a talk on “Games and Proba-
bilistic Systems with Mean-Payoff, Energy and Parity Objectives,” Gorschwin
Fey from University of Bremen, Germany, with the talk “Assessing System Vul-
nerability Using Formal Verification Techniques,” Renato Renner from ETH
Zurich, Switzerland, with a talk on “Security in a Quantum World,” and Petr
Tuma from Charles University in Prague, Czech Republic, with the talk “Com-
puter Memory: Why We Should Care What Is Under The Hood.” Thanks go to
all these invited lecturers who found time to participate at the workshop and
demonstrated how a top-quality presentation could look.

This post-workshop volume contains 6 papers written by the invited speak-
ers and 13 papers selected from 38 papers submitted by PhD students. Each
submitted paper was reviewed by at least three independent reviewers, who

VI Preface

provided not only a recommendation to the Program Committee, but also gave
an extensive feedback to the authors. The hard work of the Program Committee
as well as of the external reviewers is highly appreciated.

All the contributed works were presented by PhD students, who got the op-
portunity to speak in front of their peers and to receive immediate feedback from
participating senior faculty members, including the invited lecturers. All students
were encouraged to actively participate in the discussions, to express their opin-
ions, exchange ideas and compare methods, traditions and approaches of groups
and institutions whose representatives were participating at the workshop. All
these forms of discussions and social networking created a unique environment
intended to foster further research collaboration among participants and their
institutions.

The MEMICS tradition of best paper awards continued at the MEMICS 2011
workshop. Three student papers were selected at the end of the workshop, taking
into account their scientific and technical contribution together with the quality
of presentation. The following works were selected for the best paper awards
(listed in alphabetical order):

— Jiff Barnat, Ivana Cernd and Jana Tumova, “Timed Automata Approach
to Verification of Systems with Degradation”

— Ondrej Moris and Petr Hlinény, “Generalized Maneuvers in Route Planning”

— Christos Sakellariou and Peter Bentley, “Introducing the FPGA-Based Hard-
ware Architecture of Systemic Computation (HA0S)”

The awards consisted of a diploma for all authors of the selected papers
complemented with a financial contribution covered by the sponsoring organi-
zations, Honeywell Czech Republic, IBA CZ, and Red Hat Czech Republic. The
sponsorship is highly appreciated.

The MEMICS 2011 workshop was financially supported by the doctoral grant
project 102/09/H042 Mathematical and Engineering Approaches to Developing
Reliable and Secure Concurrent and Distributed Computer Systems from the
Czech Science Foundation. This support is highly appreciated. The direct and
indirect support and help from the organizing faculties is also highly appreciated.

Last but not least, our appreciation goes to the Organizing Committee of
MEMICS 2011 that guaranteed a smooth realization of the MEMICS 2011 work-
shop, essential to its success. Our thanks go to all members of the Organizing
Committee and its Chair, Radek Ko¢i, for all their efforts and hard work.

The work of the PC of MEMICS 2011, including the preparation of this
volume, was greatly aided by the use of the EasyChair system.

October 2011 Zdenék Kotasek
Brno Jan Bouda
Ivana Cern4

Luk&s Sekanina

Tomas Vojnar

General Chair

Zdenck Kotasek

Organization

Brno University of Technology, Czech Republic

Program Committee Co-chairs

Jan Bouda
Ivana Cerna
Luk4s Sekanina

Tomas Vojnar

Program Committee

Parosh Aziz Abdulla

Andris Ambainis
Maria Bielikova

Armin Biere

Jan Bouda

Ivana Cernd
Pavol Cerny
Milan Ceska
Rusins Freivalds
Tomasz Garbolino

Elena Gramatova

Jozef Gruska
Peter Habermehl

Petr Hanacek
Petr Hlinény
Stefan Hudak
Radu Iosif

Petr Jancar
Galina Jiraskova

Masaryk University, Brno, Czech Republic

Masaryk University, Brno, Czech Republic

Brno University of Technology, Brno,
Czech Republic

Brno University of Technology, Brno,
Czech Republic

Uppsala University, Sweden
University of Latvia, Latvia
Slovak University of Technology in Bratislava,
Slovak Republic
Johannes Kepler University, Linz, Austria
Masaryk University, Brno, Czech Republic
Masaryk University, Brno, Czech Republic
IST Austria, Vienna, Austria
Brno University of Technology, Czech Republic
University of Latvia, Latvia
Silesian University of Technology, Gliwice,
Poland
Slovak University of Technology, Bratislava,
Slovak Republic
Masaryk University, Brno, Czech Republic
LIAFA, University Paris Diderot - Paris7,
France
Brno University of Technology, Czech Republic
Masaryk University, Brno, Czech Republic
Technical University of Kosice, Slovakia
VERIMAG, CNRS, Grenoble, France
Technical University Ostrava, Czech Republic
Slovak Academy of Sciences in Kosice,
Slovak Republic

VIII Organization

Dusan Kolar
Zden¢k Kotasek
Bohuslav Kiena
Mojmir Kietinsky
Hana Kubatova

Paulo Mateus
Viéclav Maty&s
Ludék Matyska
Richard Mayr
Felix Moreno
Daniel Olejar

Simon Perdrix
Stanislav Racek

Hana Rudova
Andrey Rybalchenko
Zdenék Riha

Zdenék Sawa

Lukas Sekanina
Jit{ Srba

Jan Strejcek
Giovanni Squillero
Andreas Steininger
Jit{ Sima

Jim Torresen
Petr Tuma
Toma&s Vojnar
Michael Weber
Pavel Zemcik

Brno University of Technology, Czech Republic
Brno University of Technology, Czech Republic
Brno University of Technology, Czech Republic
Masaryk University, Brno, Czech Republic
Czech Technical University in Prague,

Czech Republic
Instituto Superior Técnico Lisbon, Portugal
Masaryk University, Brno, Czech Republic
Masaryk University, Brno, Czech Republic
University of Edinburgh, UK
Universidad Politécnica de Madrid, Spain
Comenius University in Bratislava,

Slovak Republic
CNRS Grenoble, France
University of West Bohemia, Pilsen,

Czech Republic
Masaryk University, Brno, Czech Republic
Technical University of Munich, Germany
Masaryk University, Brno, Czech Republic
Technical University of Ostrava,

Czech Republic
Brno University of Technology, Czech Republic
BRICS, Aalborg University, Denmark
Masaryk University, Brno, Czech Republic
Politecnico di Torino, Italy
Vienna University of Technology, Austria
The Academy of Sciences of the

Czech Republic, Czech Republic
University of Oslo, Norway
Charles University in Prague, Czech Republic
Brno University of Technology, Czech Republic
University of Twente, The Netherlands
Brno University of Technology, Czech Republic

Organizing Committee Chair

Radek Koci

Brno University of Technology, Czech Republic

Organizing Committee

Pavel Bartos
Adam Husar
Peter Jurnecka
Filip Kone¢ny

Brno University of Technology, Czech Republic
Brno University of Technology, Czech Republic
Brno University of Technology, Czech Republic
Brno University of Technology, Czech Republic

Pavol Korcek
Zdenék Letko
Petr Pospichal
Zdenek Prikryl
Jiff Siméacek

Steering Committee

Milan Ceska
Zden¢k Kotasek
Mojmir Kietinsky
Antonin Kucera
Ludék Matyska
Toma&s Vojnar

Additional Reviewers

Gabriela Andrejkova
Andrej Bebjak
Marius Bozga
Jonathan Cederberg
Florent Garnier
Luk&s Holik

Martin Hruby

Jozef Janovsky

Jit{ Jaros

Michal Kajan

Jan Kastil

Martin Kot

Zbynék Kfiivka
Markéta Lopatkova

Organization

Brno University of Technology, Czech Republic
Brno University of Technology, Czech Republic
Brno University of Technology, Czech Republic
Brno University of Technology, Czech Republic
Brno University of Technology, Czech Republic

Brno University of Technology, Czech Republic
Brno University of Technology, Czech Republic
Masaryk University, Brno, Czech Republic
Masaryk University, Brno, Czech Republic
Masaryk University, Brno, Czech Republic
Brno University of Technology, Czech Republic

Andrej Podzimek
Thomas Polzer
Karin Quaas
Thomas Reinbacher
Joao Rodrigues
Adam Rogalewicz
Viaclav Simek

Jiff Simsa

Jari Stenman
David Svoboda
Patrick Totzke
Varadan Savulimedu Veeravalli
Martin Zadnik

Table of Contents

Rigorous System Design: The BIP Approach 1
Ananda Basu, Saddek Bensalem, Marius Bozga,
Paraskevas Bourgos, and Joseph Sifakis

Natural Born Computing i 20
Peter J. Bentley

Games and Markov Decision Processes with Mean-Payoff Parity and
Energy Parity Objectivesot 37
Krishnendu Chatterjee and Laurent Doyen

Assessing System Vulnerability Using Formal Verification Techniques . . . 47
Gorschwin Fey

Information Security in a Quantum World 57
Renato Renner

Computer Memory: Why We Should Care What Is under the Hood 63
Vlastimil Babka and Petr Tima

Frequency Prediction of Functions 76
Kaspars Balodis, Ilja Kucevalovs, and Rusins Freivalds

Timed Automata Approach to Verification of Systems with
Degradation 84
Jirt Barnat, Ivana Cernd, and Jana Tumovd

Basic Operations on Binary Suffix-Free Languages 94
Roland Cmorik and Galina Jirdskovd

Efficient Data Representation of Large Job Schedules 103
Dalibor Klusacek and Hana Rudovd

Prefix-Free Regular Languages: Closure Properties, Difference, and Left
QUOTIEIIL .« o v et e 114
Monika Krausovd

Noise Injection Heuristics for Concurrency Testing 123
Bohuslav Krena, Zdenek Letko, and Tomds Vojnar

Low GPU Occupancy Approach to Fast Arithmetic Coding in
JPEG2000 136
Jiri Matela, Martin Srom, and Petr Holub

XII Table of Contents

Using Dimensionality Reduction Method for Binary Data to
Questionnaire Analysis 146
Jakub Mazgut, Martina Paulinyovd, and Peter Tirio

Generalized Maneuvers in Route Planning 155
Petr Hlineny and Ondrej Moris

STANSE: Bug-Finding Framework for C Programs 167
Jan Obdrzdlek, Jiri Slaby, and Marek Trtik

Introducing the FPGA-Based Hardware Architecture of Systemic
Computation (HAOS) 179
Christos Sakellariou and Peter J. Bentley

A Parallel Compact Hash Table............ 191
Steven van der Vegt and Alfons Laarman

Four Authorization Protocols for an Electronic Payment System 205
Roman Zilka, Vashek Matyds, and Libor Kyncl

Author Index 215

Rigorous System Design: The BIP Approach

Ananda Basu', Saddek Bensalem'?, Marius Bozga!,
Paraskevas Bourgos', and Joseph Sifakis'

! Verimag Laboratory, Université Joseph Fourier Grenoble, CNRS
2 CEA-Leti, MINATEC Campus, Grenoble France

Abstract. Rigorous system design requires the use of a single powerful
component framework allowing the representation of the designed system
at different levels of detail, from application software to its implementa-
tion. This is essential for ensuring the overall coherency and correctness.
The paper introduces a rigorous design flow based on the BIP (Behavior,
Interaction, Priority) component framework [I]. This design flow relies
on several, tool-supported, source-to-source transformations allowing to
progressively and correctly transform high level application software to-
wards efficient implementations for specific platforms.

1 System Design

Traditional engineering disciplines such as civil or mechanical engineering are
based on solid theory for building artifacts with predictable behavior over their
life-time. In contrast, we lack similar constructivity results for computing en-
gineering: computer science provides only partial answers to particular system
design problems. With few exceptions in this domain, predictability is impos-
sible to guarantee at design time and therefore, a posteriori validation remains
the only means for ensuring their correct operation.

System design is facing several difficulties, mainly due to our inability to pre-
dict the behavior of an application software running on a given platform. Usually,
systems are built by reusing and assembling components that are, simpler sub-
systems. This is the only way to master complexity and to ensure correctness of
the overall design, while maintaining or increasing productivity. However, sys-
tem level integration becomes extremely hard because components are usually
highly heterogeneous: they have different characteristics, are often developed
using different technologies, and highlight different features from different view-
points. Other difficulties stem from current design approaches, often empirical
and based on expertise and experience of design teams. Naturally, designers
attempt to solve new problems by reusing, extending and improving existing
solutions proven to be efficient and robust. This favors component reuse and
avoids re-inventing and re-discovering designs. Nevertheless, on a longer term
perspective, this may also be counter-productive: designers are not always able
to adapt in a satisfactory manner to new requirements. Moreover, they a priori
exclude better solutions simply because they do not fit their know-how.

Z. Kotasek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 1 2012.
© Springer-Verlag Berlin Heidelberg 2012

2 A. Basu et al.

System design is the process leading to a mixed software/hardware system
meeting given specifications. It involves the development of application software
taking into account features of an execution platform. The latter is defined by
its architecture involving a set of processors equipped with hardware-dependent
software such as operating systems as well as primitives for coordination of the
computation and interaction with the external environment.

System design radically differs from pure software design in that it should
take into account not only functional but also extra-functional specifications
regarding the use of resources of the execution platform such as time, memory
and energy. Meeting extra-functional specifications is essential for the design
of embedded systems. It requires evaluation of the impact of design choices on
the overall behavior of the system. It also implies a deep understanding of the
interaction between application software and the underlying execution platform.
We currently lack approaches for modeling mixed hardware/software systems.
There are no rigorous techniques for deriving global models of a given system
from models of its application software and its execution platform.

A system design flow consists of steps starting from specifications and leading
to an implementation on a given execution platform. It involves the use of meth-
ods and tools for progressively deriving the implementation by making adequate
design choices.

We consider that a system design flow must meet the following essential
requirements:

— Correctness: This means that the designed system meets its specifications.
Ensuring correctness requires that the design flow relies on models with well-
defined semantics. The models should consistently encompass system description
at different levels of abstraction from application software to its implementation.
Correctness can be achieved by application of verification techniques. It is de-
sirable that if some specifications are met at some step of the design flow, they
are preserved in all the subsequent steps.

— Productivity: This can be achieved by system design flows

— providing high level domain-specific languages for ease of expression

— allowing reuse of components and the development of component-based so-
lutions

— integrating tools for programming, validation and code generation

— Performance: The design flow must allow the satisfaction of extra-functional
properties regarding optimal resource management. This means that resources
such as memory, time and energy are first class concepts encompassed by formal
models. Moreover, it should be possible to analyze and evaluate efficiency in using
resources as early as possible along the design flow. Unfortunately, most of the
widely used modeling formalisms offer only syntactic sugar for expressing timing
constraints and scheduling policies. Lack of adequate semantic models does not
allow consistency checking for timing requirements, or meaningful composition
of features.

Rigorous System Design: The BIP Approach 3

— Parcimony: The design flow should not enforce any particular programming
or execution model. Very often system designers privilege specific programming
models or implementation principles that a priori exclude efficient solutions.
They program in low level languages that do not help discover parallelism or
non determinism and enforce strictly sequential execution. For instance, pro-
gramming multimedia applications in plain C may lead to designs obscuring
the inherent functional parallelism and involving built-in scheduling mechanisms
that are not optimal. It is essential that designers use adequate programming
models. Furthermore, design choices should be driven only by system specifica-
tions to obtain the best possible implementation.

We call rigorous a design flow which allows guaranteeing essential properties of
the specifications. Most of the rigorous design flows privilege a unique program-
ming model together with an associated compilation chain adapted for a given
execution model. For example, synchronous system design relies on synchronous
programming models and usually targets hardware or sequential implementa-
tions on single processors [2]. Alternatively, real-time programming based on
scheduling theory for periodic tasks, targets dedicated real-time multitasking
platforms [3].
A rigorous design flow should be characterized by the following:

— It should be model-based, that is all the software and system descriptions
used along the design flow should be based on a single semantic model. This
is essential for maintaining the overall coherency of the flow by guaranteeing
that a description at step n meets essential properties of a description at step
n — 1. This means in particular that the semantic model is expressive enough
to directly encompasses various types of component heterogeneity arising along
the design flow [4]:

— Heterogeneity of computation: The semantic model should encompass both
synchronous and asynchronous computation by using adequate coordina-
tion mechanisms. This should allow in particular, modeling mixed hard-
ware/software systems.

— Heterogeneity of interaction: The semantic model should enable natural and
direct description of various mechanisms used to coordinate execution of
components including semaphores, rendezvous, broadcast, method call, etc.

— Heterogeneity of abstraction: The semantic model should support the descrip-
tion of a system at different abstraction levels from its application software to
its implementation. This makes possible the definition of a clear correspon-
dence between the description of an untimed platform-independent behavior
and the corresponding timed and platform-dependent implementation.

— It should be component-based, that is it provides primitives for building com-
posite components as the composition of simpler components. Existing theoret-
ical frameworks for composition are based on a single operator e.g., product of
automata, function call. Poor expressiveness of these frameworks may lead to

4 A. Basu et al.

complicated designs: achieving a given coordination between components often
requires additional components to manage their interaction.

For instance, if the composition is by strong synchronization (rendezvous)
modeling broadcast requires an extra component to choose amongst the possible
strong synchronizations a maximal one. We need frameworks providing fami-
lies of composition operators for natural and direct description of coordination
mechanisms such as protocols, schedulers and buses.

— It should rely on tractable theory for guaranteeing correctness by construction
to avoid as much as possible monolithic a posteriori verification. Such a theory
is based on two types of rules:

— Compositionality rules for inferring global properties of composite compo-
nents from the properties of composed components e.g. if a set of components
are deadlock-free then for a certain type of composition the obtained com-
posite components is deadlock-free too. A special and very useful case of
compositionality is when a behavioral equivalence relation between compo-
nents is a congruence [5]. In that case, substituting a component in a system
model by a behaviorally equivalent component leads to an equivalent model.

— Composability rules ensuring that essential properties of a component are
preserved when it is used to build composite components.

The paper presents a rigorous design flow based on the BIP (Behavior, Inter-
action, Priority) component framework [1]. It is organized as follows. Section
introduces the underlying modeling framework and the main steps of the de-
sign flow. Subsection [Z.1] presents the BIP language. Subsection explains the
principle of translating different programming models into BIP. Subsection 2.3
introduces a method for compositional verification of BIP programs, especially
used for checking deadlock-freedom. Subsection 4] presents a method for in-
tegrating architectural constraints into the BIP model of application software
and subsection presents a method for generating distributed implementa-
tions. The design flow is illustrated through non trivial examples in section [Bl
In section [we conclude and discuss future work directions.

2 The BIP Design Flow

BIP [I] (Behavior, Interaction, Priority) is a general framework encompassing
rigorous design. It uses the BIP language and an associated toolset supporting
the design flow. The BIP language is a notation which allows building complex
systems by coordinating the behavior of a set of atomic components. Behavior
is described as a finite-state automaton extended with data and functions de-
scribed in C. The transitions of the Petri are labelled with guards (conditions on
the state of a component and its environment) as well as functions that describe
computations on local data. The description of coordination between compo-
nents is layered. The first layer describes the interactions between components.
The second layer describes dynamic priorities between the interactions and is

Rigorous System Design: The BIP Approach 5

used to express scheduling policies. The combination of interactions and priori-
ties characterizes the overall architecture of a component. It confers BIP strong
expressiveness that cannot be matched by other languages [6]. BIP has clean
operational semantics that describe the behavior of a composite component as
the composition of the behaviors of its atomic components. This allows a di-
rect relation between the underlying semantic model (transition systems) and
its implementation.

The BIP design flow uses a single language to ensure consistency between the
different design steps. This is mainly achieved by applying source-to-source trans-
formations between refined system models. These transformations are proven
correct-by-construction, that means, they preserve observational equivalence and
consequently essential safety properties. Functional verification is applied only to
high level models for checking safety properties such as invariants and deadlock-
freedom. To avoid inherent complexity limitations, the verification method ap-
plies compositionality techniques implemented in the D-Finder tool.

Application HW Execution Mappmg
Software Platform

e

Integration of
Architectural Constraints

\ , i - \
L, A

\
System N
Model in BIP \
\
i \)

Integration of Performance

Communication Protocols Analysis
T /

Distributed System
Model in S/R-BIP

Code
Generation

Deployable
Code

Fig. 1. BIP Design Flow

6 A. Basu et al.

The design flow involves 4 distinct steps:

1. The translation of the application software into a BIP model. This allows its
representation in a rigorous semantic framework. There exist translations of
several programming models into BIP including synchronous, data-flow and
event driven models.

2. The generation of an abstract system model from the BIP model representing
the application software, a model of the target execution platform as well as
a mapping of the atomic components of the application software model into
processing elements of the platform. The obtained model takes into account
hardware architecture constraints and execution times of atomic actions. Ar-
chitecture constraints include mutual exclusion induced from sharing phys-
ical resources such as buses, memories and processors as well as scheduling
policies seeking optimal use of these resources.

3. The generation of a concrete system model obtained from the abstract model
by expressing high level coordination mechanisms e.g., interactions and prior-
ities by using primitives of the execution platform. This transformation usu-
ally involves the replacement of atomic multiparty interactions by protocols
using asynchronous message passing (send/receive primitives) and arbiters
ensuring overall coherency e.g. non interference of protocols implementing
different interactions.

4. The generation of executable, monolithic C/C++ or MPI code from sets
of interacting components executed by the same processor. This allows ef-
ficient implementation by avoiding overhead due to coordination between
components.

The BIP design flow is entirely supported by the BIP language and its associated
toolset, which includes translators from various programming models, verifica-
tion tools, source-to-source transformers and C/C++-code generators for BIP
models.

2.1 The BIP Language

The BIP language, introduced in [I], supports a design flow for building systems
from atomic components. It ses connectors, to specify possible interaction pat-
terns etween components, and priorities, to select amongst possible interactions.

Atomic components are finite-state automata that are extended with vari-
ables and ports. Variables are used to store local data. Ports are action names,
and may be associated with variables. They are used for interaction with other
components. States denote control locations at which the components await for
interaction. A transition is a step, labeled by a port, from a control location to
another. It has associated a guard and an action, that are respectively, a Boolean
condition and a computation defined on local variables. In BIP, data and their
transformations are written in C.

For a given valuation of variables, a transition can be executed if the guard
evaluates to true and some interaction involving the port is enabled. The exe-
cution is an atomic sequence of two microsteps: (i) execution of the interaction

Rigorous System Design: The BIP Approach 7

involving the port, which is a synchronization between several components, with
possible exchange of data, followed by (ii) execution of internal computation
associated with the transition.

Composite components are defined by assembling sub-components (atomic or
composite) using connectors. Connectors relate ports from different subcompo-
nents. They represent sets of interactions, that are, non-empty sets of ports that
have to be jointly executed. For every such interaction, the connector provides
the guard and the data transfer, that are, respectively, an enabling condition
and an exchange of data across the ports involved in the interaction.

Finally, priorities provide a mean to coordinate the execution of interactions
within a BIP system. They are used to specify scheduling or similar arbitration
policies between simultaneously enabled interactions. More concretely, priorities
are rules, each consisting of an ordered pair of interactions associated with a
condition. When the condition holds and both interactions of the corresponding
pair are enabled, only the one with higher-priority can be executed.

Figure shows a graphical representation of an example model in BIP. It
consists of atomic components Sender, Receiver! and Receiver2. The behavior
of Sender is described as an automaton with control locations Idle and Active.
It communicates through port s which exports the variable z. Components Re-
ceiver! and Receiver? are composed by the connector C1, which represents a
rendezvous interaction between ports r1 and r2, leading to the composite com-
ponent Receivers. The composite exports C1 as port r. As a result of the data
transfer in C1, the sum of the local variables y1 and y2 is exported as v through
the port r, and y1, y2 eventually receive the value of v. The system is the com-
position of Sender and Receivers using the connector C2 which represents a
broadcast interaction from the Sender to the Receivers. When the broadcast
occurs, as a result of the composed data transfer, the Sender gets the sum of y1
and y2, and each Receiver gets the value z from the Sender.

2
C_.- ‘ int v
int w ! r c1 up: { vi=y1+y2}
up: {w:=x} N down: {y1,y2:=v,v}
down: {x,v:=v,w} * l
Idle S r1 Idle r2 Idle
work s work r|| work r2
e besM] print(y1) print(y2)
Active Active Active
Sender Receiver1 Receiver2

Receivers

Fig. 2. An example of a BIP system

8 A. Basu et al.

2.2 Translating Application Software into BIP

The first step in our design flow requires the generation of a BIP model for the
application software. We have developed a general method for generating BIP
models from languages with well-defined operational semantics. The principle of
the method is depicted in Figure Bl It involves the following three steps for a
given application software written in a language L:

1. Translation of atomic components of the source language into BIP com-
ponents. The translation focuses on the definition of adequate interfaces.
It encapsulates and reuses data structures and functions of the application
software,

2. Translation of coordination between components of the application software
into connectors and priorities in the target BIP model,

3. Generation of a BIP component modeling the operational semantics of L.
This component plays the role of an engine coordinating the execution of
the application software components.

Application Software BIP Model of the
written in £ Application Software

N N1
N e

a 2
Operational Semantics Execution Engine
of £ for £ in BIP

Fig. 3. Principle of translating application software

We have developed BIP model generators for several programming models used
by embedded system developers including Lustre [2], MATLAB/Simulink™ the
Architecture Analysis and Design Language AADL, NesC/TinyOS, the Distributed
Operation Layer DOL [7], the programming model GeNoM [§], etc. The generated
models preserve the structure and their size is linear with respect to the size of the
initial programs. They are easy to understand by developers in source languages.
These facts confirm the adequacy and expressive power of BIP.

Rigorous System Design: The BIP Approach 9

2.3 Compositional Verification by Using D-Finder

Monolithic verification of component-based systems often requires computing the
product of their atomic components by using interleaving and synchronization.
In general, the size of this product is prohibitive and cannot be handled without
manual intervention. In a series of recent works, it has been advocated that com-
positional techniques could be used to cope with state explosion in verification
of concurrent systems. A key issue is the existence of composition frameworks
ensuring compositionality, which is, establishing global properties of composite
components from properties of their constituent components.

A compositional verification method for BIP based on invariant computation
is presented in [9]. This method computes increasingly stronger invariants for
composite components as conjunctions of local invariants for atomic components
and interaction invariants characterizing the composition glue. Local component
invariants are generated by static (and individual) analysis of atomic compo-
nents. Interaction invariants are generated from abstractions of the composite
to be verified.

The method is based on the following rule:

{Bi < ®; >}, W € (|| {Bi}i, {®i}i), (N Pi) N = &
[{Bi}i < >

The rule allows to prove invariance of property @ for systems obtained by using
an n-ary composition operation || parameterized by a set of interactions . @ is
implied by the conjunction of invariants ®; of components B; and an interaction
tmvariant ¥. The latter expresses constraints on the global state space induced
by interactions. In [9], we have shown that ¥ can be computed automatically
from abstractions of the system to be verified. These are the composition of finite
state abstractions of the components B; with respect to their invariants &;.

The method has been recently improved to take advantage of the incremen-
tality of the design process. Incremental system design proceeds by adding new
interactions to existing sets of components. Each time an interaction is added,
it is possible to verify whether the resulting system violates a given property
and discover design errors as soon as they appear. The incremental verification
method [I0] uses sufficient conditions ensuring the preservation of invariants
when new interactions are added along the component construction process. If
these conditions are not satisfied, new invariants are generated by reusing in-
variants of the interacting components. Reusing invariants reduces considerably
the verification effort.

The above methods have been implemented in the D-Finder tool [1I] for
checking deadlock-freedom of systems described in BIP. Experimental results on
classical benchmarks (as illustrated in Figure) show that D-Finder can be ex-
ponentially faster than well-established verification tools. Nonetheless, D-Finder
has been also successful for the verification of complex software applications, as
illustrated later in section [3l

10 A. Basu et al.

70 1000
j j D"Finder: incremental based on positive mapping'—+— j j D- Finder incremental based on positive mapping ' ——
-Finder: incremental based on fixed-point D-Finder: incremental based on fixed-point
R D-Finder: global based on positive mapping --+-=-- D-Finder: global based on positive mapping -
60 [D-Finder: global based on fixpoint & - -Finder: global base on firecpoint -
r D-Finder: enumerative 800 |- D-Finder: enumerative]
— H NuSmv NuSmv
@ H
& so0f
£l i
=
E
Z 4f
€
= o
S sof
©
S
T 20
=

2
o ! ol
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 O 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of philosophers Number of philosophers
60 T T 600 T T
D- Flnder incremental based on positive mapping —— d-finder: incremental by positive mapping
D-Finder: incremental based on fixed-point d-finder: incremental by fixpoint
D-Finder: global based on positive mapping - d-finder: global by positive mapping -
50 | D-Finder: global based on fixed-point & | go0 | ‘d-finder: global by fixpoint & |
. NuSmv nusmy
n
2 —~
S 40 400 B
£ =
E Y
> a
o 4
£ . -
£ 3ot 84300 o 4
g z .
3 g -
o 3 o @
£ 20 =200 P e b
S -
> a

rs
. .
0 2 4 6 8 10 12 140 2 4 6 8 10 12 14
N x (50 pumps + 500 custumers) Gas Station: size = N x (50 pumps + 500 custumers)

Fig. 4. D-Finder results: time (left) and memory usage (right) as a function of com-
plexity for i) monolithic verification with NuSMV, ii) compositional verification, iii)
incremental verification on two benchmarks, dining philosophers (up) and gas station
(down)

2.4 Integrating Architectural Constraints in BIP

We developed in [12] a rigorous method for generating a model which faithfully
represents the behavior of a mixed hardware/software system from a model of its
application software and a model of its underlying hardware architecture. The
method takes as input a model of the application software in BIP, a model of the
hardware architecture (in XML) and a mapping associating communication op-
erations of the application software with execution/communication paths in the
architecture. It builds a model of the corresponding mixed hardware/software
system in BIP. This system model can be simulated and analyzed for the verifi-
cation of functional and extra-functional properties.

The method consists in progressively enriching the application software model
by doing;:

1. Integration of hardware components used in the system model and,

2. Application of a sequence of source-to-source transformations to synthesize
hardware dependent software routines implementing communication by using
the hardware components.

The transformations are proved correct-by-construction, that is, they
preserve functional properties of the application software.

Rigorous System Design: The BIP Approach 11

The system model is parameterized and allows flexible integration of specific
target architecture features, such as arbitration policy, throughput, latency for
buses and scheduling policy, execution speed, etc. We have defined a library
of BIP atomic components that characterize multi-processor tiled architectures,
including models for hardware components (e.g., processor, memory) and for
hardware-dependent software components (e.g., FIFO channel read/write, bus
controllers, schedulers).

The method has been implemented and integrated in the BIP toolset. We
used the DOL framework [7] as a frontend to describe the application software,
hardware architectures and mapping specifications. The backend of the tool pro-
duces the system model in BIP, which can be analyzed by the BIP tool chain
for:

— Code generation for simulation/validation on a Linux PC

— Functional correctness using the D-Finder tool, checking for deadlocks

— Performance analysis (e.g. delay computation), based on simulation and sta-
tistical model checking

We generated different system models of an MJPEG decoder running on a sim-
plified MPARM platform. The decoder is described in DOL [7], and consists
of five processes communicating asynchronously through FIFO channels. The
process description consists of about 2500 lines of C. The description is auto-
matically translated into the application software model, which is about 10000
lines of BIP. This model is purely functional and can be analyzed with D-Finder
to assess its correctness. It has been mapped on a MPARM platform consisting
of three processors, their local memories, and a global shared memory, with all
being connected via a global bus. Different mappings were considered, leading
to different system models. These models have been used for performance anal-
ysis. Using simulation, we measured computation and communication times for
relevant parts of the application software. As future work, we intend to use these
results in order to build (simpler) statistical abstractions of the system models
on which properties can be validated using statistical model-checking.

2.5 Generating Distributed Implementations

To generate distributed implementations from BIP models it is necessary to
transform these models into S/R-BIP models. These are a subclass of models
where multi-party interaction is replaced by protocols using S/R (Send/Receive)
primitives. Then, from S/R-BIP models and a mapping of atomic components
into processing elements of a platform it is possible to generate efficient C/C++
or MPI-code.

We developed in [13] a general method for generating distributed implemen-
tations from BIP models. The method uses the following sequence of correct-by-
construction transformations, that preserve observational equivalence:

1. We transform a BIP system model into a S/R-BIP system model such that
(i) atomicity of transitions in the original model is broken by separating

12 A. Basu et al.

interaction and computation, and (ii) multi-party interactions of the source
model are replaced by protocols using send /receive primitives. Moreover, the
target S/R-BIP model is structured in three layers:

(a) The component layer consists of a transformation of atomic components
in the original model.

(b) The interaction protocol layer consists of a set of components, each host-
ing a user-defined subset of interactions from the original BIP model.
This layer detects enabledness of interactions and executes them after
resolving conflicts either locally or assisted by the third layer.

(¢) The conflict resolution protocol layer resolves conflicts requested by the
interaction protocol layer. This protocol resolves a committee coordina-
tion problem [14] using, so far, one distributed algorithm amongst (i)
fully centralized, (ii) token-ring, and (iii) dining philosophers [I5l/14].

2. We generate from the obtained 3-layer S/R-BIP model and a mapping of its
atomic components on processors, either a MPI program, or a set of plain
C/C++ programs that use TCP/IP communication. The generation consists
in statically composing atomic components running on the same processor
to obtain a single observationally equivalent component, and consequently
reduced coordination overhead at runtime.

The composition operation has been implemented in the BIP2BIP tool, by

using three elementary source-to-source transformations:

(a) Component flattening, which replaces the hierarchy on components by
a set of hierarchically structured connectors applied on atomic compo-
nents;

(b) Connector flattening, which computes for each hierarchically structured
connector an equivalent flat connector;

(¢) Component composition, which composes atomic components to get an
atomic component.

We conducted a set of experiments [I6/I3] to analyze the behavior and perfor-
mance of the generated code using different scenarios (i.e., different partitioning
of interactions, choice of committee coordination algorithm, mapping). Our ex-
periments clearly show that particular configurations are suitable for different
topology, size of the distributed system, communication load, and of course, the
structure of the initial BIP model.

Table [taken from [I6] summarizes experimental results obtained for dif-
ferent distributed implementations of a bitonic sorting algorithm [I7]. We run
experiments for three platform configurations denoted m x ¢, for m intercon-
nected machines with ¢ cores each. The table provide the total sorting time for
arrays of size k x 10 elements, and k = 20, 40, 80, 160. As can be seen, execution
times for handwritten MPT are slightly better than for plain C++ with TCP/IP
communication. For example, the execution time for sorting an array of size
80 x 10%, for the configuration 2 x 2 is: 240 seconds for MPI, and 390 seconds
for plain C++.

In the case of S/R-BIP models auto-generated as described earlier, it is fre-
quent that some of the atomic components and engines cannot run in parallel.

Rigorous System Design: The BIP Approach 13

Table 1. Total sorting time for different implementations of a bitonic sorting algo-
rithm (handwritten or generated, with or without optimisation) deployed on different
execution platforms (m X ¢ denotes m interconnected machines with ¢ cores each) on
unsorted arrays of size k x 10* elements

MPI (handwritten) Plain C++ with TCP/IP MPI (generated)

optimised - no no yes no no yes
mxc1lx12x2 4x11x12x22x2 4x12x2 2x2
k=20 80 14 14 96 23 24 24 63 24
k=40 327 59 60 375 96 96 100 271 96
k=80 1368 240 240 1504 390 391 397 964 394
k=160 5605 1007 958 6024 1539 1548 1583 4158 1554

Therefore, they can be composed without losing any parallelism. For the bitonic
sorting example, the original S/R-BIP model has 7 atomic components (4 atomic
components and 3 engines), and can be transformed into a merged S/R-BIP
model containing only 4 components, while preserving all the parallelism.

The performance gain obtained by using static composition on 2 dual-core
machines (2 x 2 setting) is shown in Table[Il Observe that the performance of the
C++ implementation is approximately identical in both cases, with or without
optimisation. This is because TCP/IP communication is interrupt-driven. Thus,
if a component is waiting for a message, it does not consume CPU time. On the
other hand, MPI uses active waiting, which results in CPU time wasting when
components are waiting. Since we have four cores for more processes (seven), the
MPI code generated from the original S/R-BIP model is much slower than the
plain C++ code. Nevertheless, reducing the number of components to one per
core by composition allows the MPI code to reach the same speed as the C++
implementation.

3 Case Studies

BIP has been applied to several non trivial case studies. These include the com-
ponentization of a MPEG encoder [18] and of the control software of the DALA
robot of LAAS [19]. Another case study is modeling TinyOS-based wireless sen-
sor networks [20]. Moreover, BIP has been also used for modeling, verification
and performance evaluation of a self-stabilizing distributed reset algorithm [21].

3.1 MJIPEG Decoder

The MJPEG decoder application software reads a sequence of MJPEG frames
and displays the decompressed video frames. The process network of the applica-
tion software is illustrated in Figure[H It contains five processes SplitStream (S5S),
SplitFrame (SF), IqzigzagIDCT (IDCT), MergeFrame (MF) and MergeStream
(MS), and nine communication FIFO channels C1, ..., C9. The total lines of

14 A. Basu et al.

———

I

! ARMI1 | ARM?2 : | ARM3 ARMS !
: SplitStream ‘ : ’ SplitFrame ‘ | : ’quigzagIDCT ‘
LT I

’ MergeFrame ‘ i
Y gy W

Fig. 5. MJPEG Decoder application software and a mapping

Table 2. Mapping Description of the processes and the FIFOs

ARM1 ARM?2 ARM3 ARM4 ARM5

1 all

2 SS, SF, IQ MF, MS

3 SS, SF IQ, MF, MS

4 SS, SF IQ MF, MS

5 SS, MS SF IQ MF

6 SS SF IQ MF MS

7 SS, SF IQ MF, MS

8 SS SF IQ MF MS
Shared LM1 LM?2 LM3 LM4

1 all

2 c6, C7 C1, C2, C3, C4, C5 C8, C9

3 C3, C4, C5, C6 C1, C2 7, C8, C9

4 C3, C4, C5, C6, C7 C1, C2 Cs8, C9

5 all

6 all

7 C6, C7 C1, C2, C3, C4, C5 C8, C9

8 C1, C2 C3, C4, C5, C6 CT C8, C9

C code describing the behavior of the application software processes is approxi-
mately 1600.

We analyzed the effect of eight different mappings on the total computation
and communication delay for decoding a frame. The process and the FIFO map-
pings are illustrated on Table

For these mappings a system model contains around 50 BIP atomic compo-
nents and 220 BIP interactions, and consists of approximately 6K lines of BIP
code, generating around 19.5K lines of C code for simulation.

The total computation and communication delays for decoding a frame for
different mappings are shown in Figure[6l Mapping (1) produces the worst com-
putation delay as all processes are mapped to a single processor. Mapping (2)
uses two processors, but still the performance does not improve much. Mapping
(3) drastically improves performance as the computation load is balanced. The
other mappings cannot further enhance performance as the load cannot be fur-
ther balanced, even if more processors are used. The communication overhead is

Rigorous System Design: The BIP Approach 15

o e ; ; ; ; ; ; ; ; _
it
0 66| 19
I —~
@ 64 b g
e 0
e I
60 | 10
> g
o osst 10
@ 9]
a s6 L 15
st
§ sat 1
3 =
i) L i
B 52 0
i)
550 1 3
& M
E 48
O 0 9

o
29 , , , , , , , , 4500 , , , , , ,
g —

()]

1000 - i

& ks 000
o 0 L ,
g . S 3500
= =~ 3000 F g
> D
o 4T O 2500 4
—~ o
[0) —
a sl & 2000]
o o
o O 1500 [g
S Lt o
het 2 1000 | 1
o °
S o1t
g g 500 g
E o o
5 1 2 3 4 5 6 7
O

Fig. 6. Mjpeg Performance Analysis Results

reduced if we map more FIFOs to the local memories of the processors. The bus
and memory access conflicts are shown in Figure[@ As more FIFOs are mapped
to the local memory, the shared bus contention is reduced. However, this might
increase the local memory contention, as shown for (8).

3.2 Heterogeneous Communication System

This case study deals with a distributed heterogeneous communication system
(HCS) providing an all electronic communication infrastructure, typically for
cabin communication in airplanes or for building automation. HCS contains
various devices such as sensors (video camera, smoke detectors, temperature,
pressure, etc.) and actuators (loudspeakers, light switches, temperature control,
signs, etc.) connected through a wired Ethernet network to a central server. The
server runs a set of services to monitor the sensors and to control the actuators.
The devices are connected to the server using network access controllers.

The architecture and functionality delivered by HCS are highly heteroge-
neous. The system includes different hardware components, which run different

16 A. Basu et al.

protocols and software services ensuring functions with different characteris-
tics and degree of criticality e.g, audio streaming, clock synchronization, sensor
monitoring, video surveillance, etc. Moreover, HCS has to guarantee stringent
requirements, such as reliable data transmission, fault tolerance, timing and syn-
chronization constraints. For example, the latency for delivering alarm signals
from sensors, or for playing audio announcements should be smaller than cer-
tain predefined thresholds. Or, the accuracy of clock synchronization between
different devices, should be guaranteed under the given physical implementation
of the system.

Complete details of this case study can be found in [22]. We have developed
a structural model of HCS using BIP. At top level, the structure of the model
follows the natural decomposition into physical elements e.g., server, network ac-
cess controllers and devices are the top-level components. Moreover, these com-
ponents are connected and interact according to the wired network connections
defined in the original system. Then, one level down, every (physical) compo-
nent has a functional decomposition. Inner subcomponents provide features for
network operation (e.g., packet delivery, filtering, routing, scheduling, ...), proto-
cols (e.g., clock synchronization) or services (e.g., audio/video streaming, event
handling, etc.)

The overall complexity of this case study is extremely high. A model for a
relevant functional subsystem required approximately 300 atomic components
and 1900 connectors in BIP. Almost all atomic components have timed behav-
ior. They totalize approximately 250 clocks variables to express all timing con-
straints. Moreover, the use of large domain data (e.g., packet numbers) and
complex data structures (e.g., FIFO queues of packets) made the state space of
the model extremely huge. One single state needs approximately 400 bytes to be
represented. Furthermore, the state space has a heterogeneous structure which
prevents its compact representation using symbolic techniques based on BDDs.

We have been interested to verify the clock synchronization protocol i.e., the
application used to synchronize the clocks of all devices within the system. The
challenge is to guarantee that the protocol maintains the difference between a
master clock (running on the server) and all the slave clocks (running on devices)
under some bound. A first major difficulty is network communication which
makes all applications interfering and therefore requires exploration of the whole
model. A second difficulty comes from the time granularity i.e., one microsecond,
needed to perform faithful observations. These two factors significantly restrict
brute-force simulation approaches: 1 second system lifetime needs approximately
10 minutes simulation time with microsecond precision on the BIP model.

To overcome these difficulties, we proposed in [22] a new verification technique
which combines random simulation and statistical model checking. We have been
able to derive exact bounds on clock synchronization for all devices in the sys-
tem. We also computed probabilities of clock synchronization for smaller values
of the bound. Being able to provide such information is of clear importance,
especially when the exact bounds are too high with respect to user’s require-
ments. In particular, we have shown that the bounds strongly depend on the

Rigorous System Design: The BIP Approach 17

position of the device in the network. We also estimated the average and worst
proportion of failures per simulation for smaller bounds i.e., how often the clock
synchronization exceeds the given bound on some arbitrary run.

4 Discussion and Future Work

We have shown that the BIP component framework, and the associated design
flow and supporting tools allow rigorous and effective system design. A key idea
is the application of correctness-preserving source-to-source transformations to
progressively refine the application software model by taking into account hard-
ware architecture constraints as well as coordination mechanisms used for the
collaboration between processors in a distributed implementation. Verification
is used to check essential properties as early as possible in the design flow. To
avoid complexity limitations, the verification process is incremental and compo-
sitional. When the validity of a property is established for a model, the property
will hold for all the models obtained by transformation. The complexity of the
transformations is linear with the size of the transformed models. So correct-
ness is ensured at minimal cost and by construction thus overcoming obstacles
of design flows involving different and not semantically related languages and
models.

The use of a single modeling framework allows to maintain the overall co-
herency of the design flow by comparing different architectural solutions and
their properties. This is a significant advantage of our approach. Semantically
related models are used for verification, simulation and performance evaluation.
Designers use many different languages e.g. programming languages, UML, Sys-
temC, SES/Workbench. Code generation and deployment is often independent
from validation and evaluation.

Clearly, using a single modeling framework does not suffice. An advantage of
BIP over other existing frameworks is its expressiveness. It uses a few powerful
primitives to express coordination between components. Architecture is a first
class concept and can be characterized as the combination of interactions and
priorities. It can model in a natural and direct manner both timed and untimed
behavior, synchronous and asynchronous. Using less expressive frameworks e.g.
based on a single composition operator, would lead to intractable models. For
instance, BIP directly encompasses multiparty interaction between components.
This type of coordination would require the development of complex coordina-
tion mechanisms for frameworks supporting only point-to point interaction. This
would lead to models with complicated coordination structure and would make
the whole design flow intractable. In particular for such models establishing a
clean refinement relation between the different models would be compromised.

Empirical design flows are limited to simple execution models and execution
platforms involving a few processing elements. We believe that rigorous and
automated design flows are crucial for system development especially when the
target architecture is distributed and/or heterogeneous.

18

A. Basu et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Systems in

BIP. In: Proceedings of Software Engineering and Formal Methods SEFM 2006,
pp. 3 —12. IEEE Computer Society Press (2006)

Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers (1993)

Burns, A., Welling, A.: Real-Time Systems and Programming Languages, 3rd edn.
Addison-Wesley (2001)

Henzinger, T., Sifakis, J.: The Embedded Systems Design Challenge. In: Misra, J.,
Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp. 1-15. Springer,
Heidelberg (2006)

Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

Bliudze, S., Sifakis, J.: A Notion of Glue Expressiveness for Component-Based
Systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 508-522. Springer, Heidelberg (2008)

Thiele, L., Bacivarov, 1., Haid, W., Huang, K.: Mapping Applications to Tiled
Multiprocessor Embedded Systems. In: Proceedings of Application of Concurrency
to System Design ACSD 2007, pp. 29-40. IEEE Computer Society (2007)

Fleury, S., Herrb, M., Chatila, R.: GenoM: A Tool for the Specification and the
Implementation of Operating Modules in a Distributed Robot Architecture. In:
IROS 1997, pp. 842-848 (1997)

Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional Verification for
Component-based Systems and Application. In: Cha, S(S.), Choi, J.-Y., Kim, M.,
Lee, 1., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64-79. Springer,
Heidelberg (2008)

Bensalem, S., Bozga, M., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.: Incremen-
tal Component-based Construction and Verification using Invariants. In: FMCAD
2010, pp. 257-266. IEEE (2010)

Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-Finder: A Tool for Com-
positional Deadlock Detection and Verification. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 614-619. Springer, Heidelberg (2009)

Bourgos, P., Basu, A., Bozga, M., Bensalem, S., Sifakis, J., Huang, K.: Rigorous
system level modeling and analysis of mixed hw/sw systems. In: Proceedings of
MEMOCODE, pp. 11-20. IEEE/ACM (2011)

Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level
component-based models to distributed implementations. In: Proceedings of Em-
bedded Software EMSOFT 2010. ACM (2010)

Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley
Longman Publishing Co. Inc., Boston (1988)

Bagrodia, R.: Process synchronization: Design and performance evaluation of dis-
tributed algorithms. IEEE Transactions on Software Engineering 15(9), 1053-1065
(1989)

Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: Automated
Conflict-free Distributed Implementation of Component-Based Models. In: Pro-
ceedings of Industrial Embedded Systems SIES 2010. IEEE (2010)

Batcher, K.E.: Sorting Networks and Their Applications. In: Proceedings of AFIPS
1968 (Spring), pp. 307-314 (1968)

18.

19.

20.

21.

22.

Rigorous System Design: The BIP Approach 19

Combaz, J., Fernandez, J.C., Sifakis, J., Strus, L.: Symbolic quality control for
multimedia applications. Real-Time Systems 40(1), 1-43 (2008)

Basu, A., Gallien, M., Lesire, C., Nguyen, T.-H., Bensalem, S., Ingrand, F., Sifakis,
J.: Incremental Component-Based Construction and Verification of a Robotic Sys-
tem. In: ECAT 2008. FAIA, vol. 178, pp. 631-635. IOS Press (2008)

Basu, A., Mounier, L., Poulhies, M., Pulou, J., Sifakis, J.: Using BIP for Modeling
and Verification of Networked Systems — A Case Study on TinyOS-based Networks.
In: Proceedings of Network Computing and Applications NCA 2007, pp. 257-260.
IEEE (2007)

Basu, A., Bonakdarpour, B., Bozga, M., Sifakis, J.: Brief Announcement: Incre-
mental Component-Based Modeling, Verification, and Performance Evaluation of
Distributed Reset. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 174-175.
Springer, Heidelberg (2009)

Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical
Abstraction and Model-Checking of Large Heterogeneous Systems. In: Hatcliff, J.,
Zucca, E. (eds.) FMOODS 2010. LNCS, vol. 6117, pp. 32-46. Springer, Heidelberg
(2010)

Natural Born Computing

Peter J. Bentley

Department of Computer Science, University College of London,
Malet Place, London WCI1E 6BT, UK
p-bentley@cs.ucl.ac.uk

Abstract. Nature is not afraid of complexity. Her solutions exploit the
unpredictable and messy nature of reality. But our technology seems to
be very different. Instead of exploiting its environment it is more fre-
quently damaged by that environment. In this article I describe how
we can learn from natural systems and create new technologies that ex-
ploit natural principles. I describe our investigations into the technolo-
gies of the future — devices that can adapt, be fault tolerant, and even
assemble themselves. Examples of a self-repairing robot and physical
self-assembling systems are shown, and I describe my systemic computer
concept which aims to be the first parallel fault tolerant computer that is
based on general biological systems. Through examples such as these, 1
argue that while we may never be able to predict exactly what a natural
system may do, that does not prevent such systems from being extremely
useful for us — after all, we are unpredictable natural systems ourselves.

1 Introduction

For several years now I have been troubled by something. I’ve had a strange
feeling of wrongness.

It is similar to the uncomfortable feeling you might have if a stranger has come
into your home and moved all your belongings around. Maybe they exchanged
your favourite appliances with over-complicated alternatives. They also replaced
your food with brands and varieties that you don’t buy because you find them
hard to digest. Despite feeling ill at ease, you continue to live there and most of
the time everything seems to work, but now it is clumsy. Inelegant. Awkward.
You find certain activities — perhaps operating the satellite TV box or cooking
a meal — take much longer than they should. The food is good quality, but you
can’t make it taste nice. Sometimes you trip over things that shouldn’t be there.
Or you feel for a light switch, which is somewhere else.

If you have an artistic flair, then it is the same feeling you have when you
look at a painting that is unbalanced, or a photograph that is poorly cropped.
Perhaps the colours clash or seem ugly. It might be a beautifully executed piece
of work; the technical ability of the artist is of a high standard. But somehow you
don’t like it. The picture looks wrong in your eyes. You see the world differently
to the artist and you cannot agree with the interpretation you’re looking at.

To begin with, this feeling of wrongness is more of an intuition. You know
something could be improved, but you’re not quite sure what, or how. But the

Z. Kotasek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 20-136] 2012.
© Springer-Verlag Berlin Heidelberg 2012

Natural Born Computing 21

longer you live with the feeling, the more you begin to pinpoint the things that
make you uncomfortable — the reasons for your troubled feeling.

My feeling of wrongness is exactly like this. However I am a scientist, so my
feeling is tied up with my perception of science. I'm a computer scientist, so
my perceptions are also biased and oriented by an understanding of information
processing. I'm also a computer scientist who works with many other scientists of
different disciplines, often modelling complex systems, so my views are grounded
by the knowledge that it is very difficult to understand, communicate, and exploit
the information we gather about our complex world.

It was a grey day some years ago when I was able to crunch my feet in
the heart of the issue. I was walking on Hasting Beach in the UK. It was not
perhaps the prettiest stretch of beach in the world, with concrete on one side,
grey sea on the other, and no sand at all. Just pebbles everywhere. Each wave
sighed onto the shore, and hissed as it retreated over the pebbles. On that
day I crunched my way over the undulations of the beach, my feet sending
small avalanches of stones down the slope towards the latest frothy wave. As I
walked, I noticed something fascinating. There was order arising from the chaos
on that beach. The pebbles lay in regular stripes, each stripe containing stones
of a similar size. But the small stones were not closest to the waves and the
largest furthest away. Instead there were actual stripes of large, small, large,
small pebbles running parallel to the waves. When I dug down with my hands I
found that these strange stripes of order were not just some surface phenomenon
— they continued to preserve their ordered sorting as deep as I dug.

I cared about these stones because I recognised the difficulty of duplicating
what I was observing. Sorting is not a simple process. If I gave you a few mil-
lion numbers and asked you to sort them into order, or to cluster them into
several groups of most similar numbers, you would have to spend hours and
hours comparing each number with a large proportion of the other numbers in
order to figure out where it should be placed. Sorting and clustering are very
common processes needed for many kinds of computation — any calculation that
needs to order, rank or judge values needs this form of process. That includes
our financial systems, voting, distribution, medical, telecommunication, betting,
examinations. .. it is a long list. The speed that we can sort or cluster differ-
ent values also depends on the number of values. When the number reaches a
few hundreds of billions, even our fastest computers take some time to complete
the task. So looking at a beach containing trillions upon trillions of pebbles —
way too many pebbles to even count — but with every pebble carefully sorted
and clustered, I was impressed. This was computation on a scale grander than
anything I was used to seeing.

To me on that day, the hiss of the retreating wave became the sound of a
mechanical computer. As I crunched through the stones I was nothing more
than a minor bug in the computer — an unwanted disruption to the computa-
tion being performed by the sea and stones. Even now on Hastings Beach, every
new wave is performing trillions of new calculations a second as it moves the
small and large stones in relation to each other. Every sigh of a new wave brings

22 P.J. Bentley

energy to move larger pebbles, every hiss is the sound of millions of tiny peb-
bles clicking past each other in the retreating water. Every movement of every
stone is as meaningful as the movement of a bead on an abacus. It is a natural
computation, a calculation of a new arrangement of pebbles sorted into groups
according to their respective sizes. Much more complex than simple arithmetic,
these calculations have been carried out on all the pebbled beaches of the world,
every second, for billions of years. Waves have been moving stones and sorting
them in rows of large and small, large and small, that could not be duplicated
by the hands of all the people in the world. Indeed, the sorting and clustering
of so many unique objects could not be achieved in the same time by all the
computers in the world working together.

But what kind of a technology is made from stones and waves? We can make
an abacus with stone beads, but the beach is surely no kind of computer we
are used to. This “Hastings Beach device” is huge, it has no software to tell it
how to behave, and its data storage system — if you can call it that — comprises
different sized pebbles. How do you convert your MP3 file into pebbles? Or how
can your MP3 player read a beach of pebbles? There is also no intentionality
behind the computation of the waves and pebbles. No-one has assigned this
task and no-one is reading the result (at least not until I “read” the beach on
that day). So using this conventional way of thinking, then of course Hastings
beach is not a computer: it is not designed by anyone to do anything, it doesn’t
do anything especially useful to us, it is not precise or reliable in its method of
storing information (if it can really be said to represent or store any information),
and it is largely random in the order in which it “processes” its information.

Something else behaves in a very similar way. Something that has no software
to tell it how to behave. Something that does not use the shape of stones, but
the shapes of molecules and cells to store information. Something that really
can store an (approximation of an) MP3 file in those chemicals and cells, and
which can play back that file so that it is recognisable. No-one designed it, or
assigned it any of its specific tasks. There is no intentionality behind the specific
interactions of those tiny cells and molecules. It is not precise or reliable in its
method of storing information, and it is largely random in the order in which it
“processes” its information. It is the human brain.

The idea that a beach could process information is perhaps challenging. But
our brains? Intuitively most of us feel that our brains are actually quite good at
processing information. After all, they can store numbers, perform mathematical
operations on them and produce a result. A brain can store music and replay
it well enough for its owner to enjoy again a piece of music that they’d heard
earlier. It clearly can do many of the same things that a conventional computer
can do, and indeed many things that are beyond the abilities of our computers.
We have no formal way of describing how and where that information is stored
and manipulated, but that does not mean that the human brain does not process
information. It just means that at present our understanding and language is
not good enough to describe how the brain works.

Natural Born Computing 23

The human brain is not the only natural “device” that can process informa-
tion. There are also many other examples in the natural world of living systems
that appear to compute. A colony of ants is able to make highly accurate calcu-
lations about which paths to take from the nest to a new food source, minimising
the energy needed for the colony as a whole. Their ability to find the shortest
path emerges from collective intelligence: the ants communicate with each other
by laying smelly pheromone trails on the ground, and by following the smelliest
paths. The shortest paths are self-reinforcing; in the same amount of time 100
ants running to and from the nest on a long path will leave less concentrated
pheromone compared to 100 ants running on a short path, so the shorter path
wins. [1]

Like sorting or clustering, finding the shortest path is known to be a complex
and time-consuming form of computation. Yet somehow the randomised running
of the ants in a physical environment combined with the ability to lay scent and
smell scent is sufficient for them to perform this calculation more effectively than
our computers can. (Ant colony optimisation algorithms are used to improve the
ability of our computers by copying the process used by ants [I].) But where in
the living ant colony is the information? When and how is that information
processed? Again, these concepts are fuzzy and ill-defined, despite their seeming
effectiveness.

There seem to be no end of natural mechanisms that are capable of extraor-
dinary feats of computation. Brains, immune systems, embryogenesis, evolution,
crystal growth, swarming insects, flocking birds, bacterial growth, self-replicating
systems, chemical reactions, quantum and DNA interactions. The capabilities
of all of these have been widely recognised by computer scientists for several
decades. In fact, all have their own fields of research in computer science. Thou-
sands of scientists, hundreds of conferences and tens of thousands of scientific
papers are all devoted to understanding and exploiting the computational power
of natural systems. This tremendous research effort is built on a shared founda-
tion: the belief that nature can teach us important lessons that could improve
our human-designed computers. [2]

It turns out that the more you examine the natural world, whether looking
at quantum scales, atomic, cellular, organism, species, ecological, planetary or
universe scales, you can find more examples that seem to outperform our de-
signs. Natural computation surrounds us, is contained within us and comprises
us. All of these systems, regardless of scale, are capable of feats of computation
that completely outclass our electronic computers, and all these systems seem
to behave in similar ways. Yet none of them work in the same way as our com-
puters. Bizarrely, there seem to be more similarities between the working of the
human brain and Hastings Beach, than between the way the brain works and the
workings of a conventional computer. If we were drawing a family tree showing
relatedness, then the human brain would be a far distant cousin to Hastings
Beach, and a fairly close relation to an ant colony. Conventional computers (and
most current man-made technology) are more like aliens from another planet —
it is hard to see how they are related to natural systems at all.

24 P.J. Bentley

This is what troubles me.

If everything around us appears to be capable of performing natural computa-
tion, then why doesn’t anything in the natural world resemble our computers?
Have we filled the world with technology that all follows the wrong design? Or
have we created in a few decades something that is superior to billions of years
of physical laws and evolution? If we could understand the differences between
natural computation and manmade computers, would we then be able to apply
the mathematics and theorems of computer science to everything else? Would
we use our understanding of natural systems to change computers, technology
or even science itself?

2 Origins

Much of our conventional computer architecture came from the researchers at
the Moore School of the University of Pennsylvania [3]. When von Neumann
wrote the “First Draft of a Report on the EDVAC” [4] which summarised this
work, he scribbled down words that would be used by computer designers for
decades to come. The architecture that he described was to form the blueprint
of most modern computers. But in addition to the engineering constraints of
the time and his mathematics and physics background, von Neumann’s words
showed just how his thinking was influenced by biology. The key part of the
document (where he defines the architecture of a general-purpose computer) is
fascinating, for it is full of biological terms:

“In analyzing the functioning of the contemplated device, certain classificatory
distinctions suggest themselves immediately.

First: Since the device is primarily a computer, it will have to perform the
elementary operations of arithmetics most frequently. These are addition, multi-
plication and division. It is therefore reasonable that it should contain specialised
organs for just these operations... a central arithmetic part of the device will
probably have to exist and this constitutes the first specific part: CA.

Second: The logical control of the device, that is the proper sequencing of its
operations can be most efficiently carried out by a central control organ. .. this
constitutes the second specific part: CC.

Third: Any device which is to carry out long and complicated sequences of
operations (specifically of calculations) must have a considerable memory. .. this
constitutes the third specific part: M.

... The three specific parts CA, CC and M correspond to the associative neu-
rons in the human nervous system. It remains to discuss the equivalents of the
sensory or afferent and the motor or efferent neurons. These are the input and
the output organs of the device.” [4 pp. 3 & 6]

It is no coincidence that many of the other early pioneers in computing also
had great interest in biology. Turing actively researched a wide range of bio-
logical topics such as neurology, morphogenesis, physiology and intelligence. He
regarded biology and human brains as computational devices and according to
one writer: “he became involved in discussions on the contrasts and similarities

Natural Born Computing 25

between machines and brains. Turing’s view, expressed with great force and wit,
was that it was for those who saw an unbridgeable gap between the two to say
Just where the difference lay.” [5]

Claude Shannon was also fascinated by the ability of brains to learn and adapt
— something difficult to achieve with programmed computers. To investigate
learning, he constructed a robot mouse, which could navigate through a maze
and learn its path [6]. This was one of the first examples of a learning robot ever
created. He also created a simple chess-playing machine. [7]

Shannon’s work and students went on to influence the world of computers to
an extraordinary degree@. Sadly von Neumann and Turing died much younger
and were not able to continue their vision of computing. It is fascinating to re-
mind ourselves of the final works of von Neumann, published posthumously as
The Computer and the Brain [§]. In this short book, von Neumann talks about
the future of computing, and discusses both analogue and parallel processing.
Other posthumous work appeared as the book: Theory of self-reproducing au-
tomata [9] where von Neumann introduces cellular automata and advanced ideas
such as self-replication. It is perhaps ironic that today the sequential architecture
described in the “First Draft of a Report on the EDVAC” has become known as
the von Neumann architecture. Given the direction of his work and the fact that
the biggest challenges facing today’s computer scientists revolve around parallel
and distributed computing, perhaps Jonny von Neumann would have preferred
to be known for his ideas on parallel and bio-inspired computers.

3 Embodied Computation

Traditional design is all about prediction. We predict what a device or piece of
software will be used for, how it will be used, and what problems it might en-
counter, and then we design a solution accordingly. There are some good reasons
why we try to anticipate environmental conditions and design reliable solutions
that can survive, whether that environment is made from other programs, com-
puter hardware or the physical world.

Nature also anticipates possible problems in her solutions. Millions of years
of trial and error have pushed evolutionary change towards organisms that are
adaptable, fault tolerant and tightly coupled to their environments. Nature’s
approach is one of brute force — try everything possible and exploit whatever
works, however bizarre. It turns out that this is a highly effective way to solve
problems.

Modeling is one approach we use when designing robots. But modeling the
world with any accuracy is difficult. Modeling how an autonomous robot will
react in an unseen environment is virtually impossible. Robot controllers that
rely on such modeling are brittle and susceptible to catastrophic failure. Expe-
rience suggests that the goal of autonomous, self-sustaining robots is unlikely

! Such as AT (he supervised Marvin Minsky and helped set up the Dartmouth College
conference) and graphics (he supervised Ivan Sutherland), in addition to his own
works in cryptography and information theory [3].

26 P.J. Bentley

to be reached by predicting every eventuality and designing solutions for every
problem. The complexity of interactions between robot and environment mean
that there will always be an unforeseen problem that results in mission failure.
Instead, a better way to achieve long-term survival of robots (and potentially
other technologies as well) is to learn from nature and make them innately adap-
tive. Every part of their form and function must enable them to change, to alter
themselves. They must learn how to move themselves in unknown environments,
whether damaged or not. They must adapt to their environment and increase
their ability to transmit or receive signals amongst themselves. They must be
embodied in their environments.

Fig. 1. A photograph of the self adaptive snake used for embodied evolution

Max. and Ave. Distance travelled vs. no. of Generations

Fitness (Distance travelled) /mm
g

”Mu\kw

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 40 52 65 58 61 684 67 70 73 76 79 82 85 88 01 94 97
no. of Generations

Fig. 2. Maximum fitness (bold) and average fitness plotted at each generation. The
robot controller was evolved until maximum fitness remained stable for 7 generations,
then was damaged randomly by disabling an actuator. Subsequent evolution shows
recovery by the robot. The snake learns to slither using its remaining muscles.

One example of an attempt at such a robot was the self-adaptive snake at
UCL [10], [11], [12]. To provide more flexibility in movement, shape memory
alloy was exploited for actuation, and in later versions a genetic algorithm was
used in combination with a 3D printer to evolve and create a robot snake body

Natural Born Computing 27

with the desired physical properties. A genetic algorithm was also used to evolve
the controller for this physical system, under different environmental conditions.
Embodied evolution creates and tests controllers in the physical device, in real
environments, giving it an innate adaptability. This adaptability was assessed
by repeatedly damaging the robot snake and measuring the degree of recovery,
see figure

The key feature of the approach is that no simulations are employed. Instead,
each evolving control program is uploaded into the actual physical device in its
real environment, and performance assessed “in the field”. True fitness measures
of candidate solutions (in this case corresponding to the distance travelled by the
robot) are then used by the evolutionary algorithm to create control programs
designed to exploit the actual properties of robot and environment at the time
they are occurring. This on-the-spot adaptation is a true example of embodiment
— the robot affects its environment by moving in that environment, while the
environment plays an immediate and important role in affecting the device and
its performance, and thus affecting the subsequent control of the device in the
immediate future. It is not necessary for a robot control program to “know” the
status of the robot or of the environment — all that is necessary is that the robot
be flexible enough to adapt, and some measurable performance metric can be
obtained. An evolutionary algorithm is then able to exploit whatever exists and
is controllable in order to make the device work.

4 Physical Information

Embodied computation that exploits the true properties of our world as part
of its solution is one fundamental difference between natural computation and
conventional “von Neumann” computers. Another difference is the “blood” of
the computer — information.

Since Claude Shannon’s breakthrough in the 1940s [I3], [I4], we digitise all
our data. We turn all our information into long lists of the smallest possible unit
of information: the binary digit, made from 1 or 0. There are many advantages
for error correction and reproduction of information, but this is the most basic,
elementary form of information possible. But imagine if our transport systems
worked using the minimal description of matter. They would turn us into long
strings of subatomic particles and then move each particle at a time to our
destination, reassembling us at the other end. It is the slowest, most inefficient
possible way of moving us! We chose to use binary for our information because it
is the easiest. There are more accurate ways of storing information (the analogue
wiggles of audio on a vinyl record comprise a higher-fidelity recording of audio
compared to the digitized audio on a CD). It is just harder to transmit, remove
noise from and store analogue information, so we chose the easy option.

Now look at information in natural systems. Nature seems to use the oppo-
site idea — instead of using the minimal description of information, it uses the
maximal description. It embeds meaning in morphology, interaction and con-
text. The right shape, interacting in the right way, in the right environment,

28 P.J. Bentley

has a very rich informational content. Use the same principles at all scales, from
subatomic to molecular to cellular to organism and upwards, and vast amounts
of information can be exploited and manipulated in parallel. The same shapes
can mean different things at different times in different environments. Nature
also has error correction — bad genes are corrected, bad cells are replaced, bad
individuals in societies are corrected or removed. Nature also has a far better
ability to store and reproduce information compared to our digital technology.
In your body you have 100 trillion cells, each one containing a perfect copy of
your genome (except those deliberately designed to be different). Yet nature is
not binary.

Fig. 3. Information is mapped to physical components (top) which self-assemble into
desired forms (bottom)

To investigate exactly how information can be expressed in morphologies, an-
other ongoing project at UCL and Calgary creates components with morpholo-
gies that enable them to self-assemble into a desired form [15], [16], [T7]. The
method translates self-assembly rule sets into physical objects, which are fabri-
cated using rapid prototyping. The resulting mechanical components are placed
in a jar of fluid on an orbital shaker, their environment. The energy and physical
properties of the environment, along with the physical properties of the compo-
nents (including complementary shapes and magnetic-bit patterns, created using
permanent magnets to attract and repel components) enable the self-assembly
process to create emergent target structures with three-dimensional symmetric
and asymmetric features.

The successful results demonstrate how physically encoded information can
be programmed by hand or evolved by computer, in order to obtain physical
self-assembling systems in three dimensions. They also illustrate a little of how

Natural Born Computing 29

natural information works: we must define the right environments, the right
component morphologies and the right adhesive properties for the correct infor-
mation processing (self-assembly) to take place. Natural information is context
sensitive — place the same components in a different environment, and we obtain
a different result.

5 Systemic Computation

With these natural processes in mind, and the differences between natural and
conventional computations clearly evident, the question arises: what would a
“natural computer” look like? What if we had a computer that was parallel,
stochastic, distributed? What if its processing was the result of interacting “com-
ponents” of some abstract type? What if meaning was conditional on the envi-
ronment or context in which the interactions took place? Could such a computer
be built and could we program it?

To address these questions, my research at UCL has resulted in Systemic
Computation —a model of computation designed to have as many of these natural
properties as possible [18], [19]. It is also a language; a way of writing down
natural systems in the world around us. It was designed to be as simple as
possible.

The first problem is how to represent things. What things exist in the natural
world and how do we represent them? Clearly, there appears to be a lot of diverse
things around us. Big things, small things. We have a lot of different names for
all these things: planet, neuron, virus, water molecule, helium atom, neutron.
But it is hard to talk about everything at the same time if it has all got different
names. So in Systemic Computation we call everything by the same name. From
now on, everything is a “system.” It doesn’t matter how big or how small, what
it is made from, whether it is alive or dead. Everything is a system.

We all know that the things (systems) around us seem to be made from
other, smaller things (systems). You are an organism (a system) made from
several major organs contained within another organ called the skin (systems
within a system). Your organs are made from cells (systems), which are made
from molecules (systems), which are made from atoms (systems), which are made
from subatomic particles (systems), and so on. There appears to be an embedded
hierarchical arrangement of systems. Systems made from systems made from
systems.

This hierarchical arrangement is not purely subjective. Each level of scale can
be separated from the higher and lower level by degrees of interaction. So planets
tend to interact at a planetary scale. While they are ultimately made from
subatomic particles, their scale means that they affect vast numbers at a scale
similar to them. (At this scale, the combined gravity is more significant compared
to many of the smaller and larger scale interactions; at other scales, different
interactions predominate.) Animals tend to interact mostly with animals, plants
or other features around their scale — one animal is usually not able to modify
individual atoms or entire planets in any controlled or significant way. Cells tend

30 P.J. Bentley

to interact mainly with cells; genes and proteins with other genes and proteins,
and so on. So systems in the universe seem to form “clumps”at similar scales.
These structures are self-organising and appear to be caused by the laws of
physics, nothing more or less.

At each level of the hierarchy of organisation, systems are also all limited
by boundaries or scopes. So the large bodies in our solar system interact when
they are within each others’ gravitational fields. If our Moon were ever pushed
significantly outside the scope of the Earth’s gravitational field, then it could no
longer interact with the Earth in any significant way. Species on Earth are often
limited by geographical constraints, so if one member of a species was to find
itself on another continent with no way of returning, then it would be outside the
boundary that contained its species and it would no longer be able to interact
with other members of its species. The cells within our bodies can only interact
if they remain within our bodies. Remove a cell and it cannot behave as a part
of you any more.

If we draw a typical arrangement of systems at just one level of the hierarchy,
then it might appear as illustrated in fig. [l

Fig. 4. A hierarchy of systems

Every system is a circle with two little arms. They are numbered for reference,
but the numbers are not important. Also, the absolute positions of these systems
are not important. Think of them as being like mathematical sets where all that
matters is what is inside or outside. So systems 1, 2 and 3 are inside the scope of
system 4, which is itself within the scope of system 12. System 9 is outside the
scope of system 4, but within 12. System 15 is outside all scopes. The scope of
a system is also a system, because that is the first rule: everything is a system.

Perhaps in this picture we are looking at several cells contained within bound-
aries formed by the organs, which are within the skin of an organism. Or perhaps

Natural Born Computing 31

we are looking at molecules that are within range of each others’ electromag-
netic charges. Or maybe we’re looking at probability distributions of subatomic
particles. The exact level doesn’t matter — we can use the same language, and
see similar structures.

The introduction mentioned some of the important properties of natural sys-
tems, so we already know how these systems behave. We know their behaviour
has a significant stochastic element — there is randomness in whatever these
things do. We know they behave asynchronously — there is no inherent coordi-
nation underlying their function. They do things in parallel, so while they may
not all exhibit a specific behaviour at the same time (which would then be syn-
chronous), there is nothing to stop them from doing their thing within the same
period of time that others do something.

Clearly these hierarchies of systems are autonomous — they need no intelligence
to organise them. They also seem to be homeostatic and fault tolerant. They “like”
being in their hierarchies and in their scopes so much that they will restore them-
selves if damaged (even atoms “prefer” to have a certain number of electrons and
neutrons and will grab more or discard extra if the number is not in balance). Sys-
tems are definitely robust, for example, you don’t normally see gravity “crash” or
electromagnetism “break.” There are definitely a lot of systems in the universe,
with no sign of a central controller, so we can call them distributed. There appears
to be almost no limit to the number of hierarchies or the different arrangements
of scopes, so our systems are open-ended and complex.

Every system is approximate. Although not shown in fig. 4 every system
is usually made from other systems, so you could substitute each system with
one or more other systems if they are exactly equivalent. So we could choose
to talk about you being a single system, or we could talk about you being a
collection of tens of systems (organs), or of trillions of systems (cells). This
means whenever we use this language we must choose the level of abstraction
(the level of the hierarchy) that we wish to focus upon, and we always recognise
that the description is an approximation. There is probably always going to be
a different way of expressing each system so each could always be replaced with
a different set. The system is a way of talking about and summarising reality
while recognising that the words are never absolutely rightg

Scopes are a little more complicated than we’ve discussed so far. Every system
can act as a scope, where that scope behaves like a field — other systems may be
partially or fully within that scope. Systems should only be able to interact if
they are in the same scope as each other. (Or more correctly, the interaction of
systems is a function of their membership of the same scope, so they might have
a higher probability of interacting the more they share a greater membership.)
Intuitively this means that things within the same region or boundary are more
likely to interact, while those separated from each other are less likely. While
systems are drawn as circles as shown in fig. [, the field may be any shape or

2 Even the idea that a system is completely separable from other systems may be ap-
proximation; like two flowers from one plant, systems may correspond to underlying
systems that are shared amongst the higher-level systems.

32 P.J. Bentley

have any properties. So we may wish to talk about gravitational field systems,
or probability distribution systems, or human skin systems. In all cases we're
referring to a kind of boundary with some internal properties that affect the
internal systems, external properties that effect external systems, and potentially
fuzzy edges. This means every system may “overlap” every other system, even if
it is to an infinitesimal degree (or to a very large degree), allowing our systems to
merge with each other (or have partial memberships of each other). Systems can
thus affect each other and be affected by each other to a large degree, making
them very embodied. For example if a couple share a house then the scopes of
the two people overlap, so they are likely to be able to interact with the same
artefacts (that are in both their scopes) and with each other.

It is clear that all systems do something. Maybe they just move. Maybe they
pull or distort. Maybe they alter other systems. So in our systems-based language
we have to have a notion of behaviour. If two systems interact then they will
transform each other at the same time. This means that the first system causes
a change to the second and the second causes a change to the first — circular
causality. We only need to think about two systems interacting at a time. (Even if
more than two interact at precisely the same instant that is the same as multiple
sets of two systems interacting in parallel.) When you think about it, that is all
behaviour can ever be in the universe: two systems interacting. Nothing can
change until some form of interaction occurs, whether we call that interaction a
collision, a crash, a conversation, an attraction, or a reaction.

As soon as we have a concept of behaviour causing change, then we have
to think about what is being changed. Clearly systems have properties in the
universe: they may have specific spatial locations and shapes. These properties
may be changing over time so they may have speed, acceleration, compression,
stretching or deformation. Looking at higher in the hierarchy and systems cor-
responding to cells may have considerably more complex properties; systems
corresponding to organisms may have massively complex properties. Whatever
those properties are, they all derive from and comprise systems.

Their properties also help determine the result arising from interactions. So
a baseball moving at 50 mph that hits a stationary glass window will transform
the properties of both ball and window. After their interaction, the ball will no
longer be travelling at 50 mph and the window may have a rather more complex
shape and many types of movement. (After the interaction it may be preferable
to move down in the hierarchy of description and talk about the systems that
make up the glass, as it may no longer make so much sense to regard it as one
system with a very complex broken shape.) But a foam ball moving at 50 mph
that hits the same glass window would result in a very different transformation
of properties. So in our systems, information appears to be intimately linked
with behaviour. Both information and behaviour affect and are affected by all
interactions. There is no binary information stored and manipulated in one place,
separate from everything else. We cannot separate data and function; we cannot

Natural Born Computing 33

distinguish between message and morphology. Shape, behaviour and information
are the same thingE

Returning to the example of the broken window, there is one other factor we
need to consider. The environment plays a key part in all interactions. If we were
to move our window underwater and then throw the ball at 50 mph towards the
window, the resultant interaction would be hugely different. So the result of any
interaction depends on the two systems that are interacting, and also upon the
context in which that interaction takes place. Since everything is a system, we
can express the context as a system as well.

We all intuitively recognise that the real world is context-sensitive. Even the
fundamental law in most human societies, “thou shalt not kill,” sadly depends
on the context in which this interaction occurs. While the context of normal
society tries to ensure that the killer is significantly penalised as a result of such
a deadly interaction, in the context of warfare the killer may be rewarded after an
identical interaction. When children ask, “what will happen?” we may answer,
“it depends,” because it usually does. The result of any interaction depends on
its context.

While it could be argued that there is no need to describe context explicitly
as a system (we could replace the context with other interactions occurring in
parallel), we are limited by what we can express, so the context is like a summary
of those parts of the environment that significantly affect the current interacting
pair of systems, allowing us to ensure we do not omit anything important. It
also means that now any system can potentially take the role of a context and
affect how two other systems interact (that is why we draw systems with two
little arms, see fig. @)

Finally, we should ensure our systems are consistent with existing knowledge.
All behaviours should follow those observed in the universe. Systems cannot be
destroyed or created from nothing, only transformed. (We may interpret systems
differently perhaps by substituting one set of systems with another set, but they
would still describe the same feature, so this is not a transformation of any
system, just of our representation of it). Any system can be a context, a scope,
an interacting system or any combination at once.

3 Its interesting to note that Daniel Tammet, a famous sufferer of Asperger’s syndrome,
agrees. He believes numbers have colours, shapes, and textures, and by manipulat-
ing those features in his imagination he is able to perform extraordinary mental
calculations. [20)]

The more astute reader will have noticed that if scope and context are both systems,
then they must be equivalent. This does indeed appear to be the case: a scope
affects the outcome and probability of an interaction just as a context does, and
by clustering systems according to their contexts we would organise them just as
scopes do. After all, everything is a system. Nevertheless, even if scope and context
systems may refer to identical phenomena in some cases, it is often easier and useful
to talk of scopes and contexts as though they are different, as they correspond to our
everyday experiences more. Scopes are useful when discussing information: position,
topology and mutual relationships. Contexts are useful for behaviours, changes, and
transformations. In mathematics, they are all, of course, functions.

34 P.J. Bentley

These notions comprise this new computational language. But what has any
of this to do with computation?

The answer comes with the final rule: computation is transformation. At a
single stroke, we turn everything imaginable into an entity that can represent
information and be instrumental in the manipulation of that information. Ev-
erything. We can control how the computation occurs by modifying the nature
of the interacting systems, the context in which that interaction occurs, and the
scopes that constrain the interactions.

So we can talk about neurons interacting in the context of the chemical and
cellular structure of the brain. By interacting, the neurons change each other.
Change the properties of the neurons, and the results of their interaction changes.
Change the context (introduce a different chemical environment) and the results
of their interaction changes. The “wires” that connect the neurons (axons and
dendrites) are the scopes — they determine which neuron can interact with which
other neuron. Change the scopes and you change the wiring (you alter the or-
ganisation of the neural network). Or we can talk about ants interacting in the
context of their environment. The scopes of an ant include how far it can sense
(see or smell) or move. Two ants may greet each other, help each other carry
an object, or many other interactions depending on the current state of the
ants and the context of their interaction. Or we can talk about pebbles inter-
acting on Hastings Beach, transforming their relative positions in the context
of a wave. The scope of the pebbles is determined by their physical proximity —
move them apart and they can no longer interact. Place them adjacent to each
other, but change the properties of the pebbles or of the wave and the result of
the interaction will be different.

We have a lot of different words for objects, interactions, organisations, and
environments, but they can all be expressed using this single overarching lan-
guage of systems, called Systemic Computation. When we construct a machine
that operates according to these systemic computation rules, the resulting sys-
temic computer has all of the natural properties we are interested in mimicking
The right kinds of systems are together also provably Turing Complete.

Our work continues in this area, with a calculus, graph notation, a program-
ming language and compiler [18], [21], Mac and PC simulators [1§], [21], a GPU
implementation [22], and most recently an FPGA design [23]. We can make a
natural computer with the properties of biological systems. We’re still learning
how to program it.

6 Summary

Our world seems to be capable of astonishing feats of computation. Even a
beach of pebbles can do better than our best sorting algorithms. But the best
examples of natural computers are inside our own skulls. We are natural born
computers. OQur brains are superior in most respects to every computer ever

5 Thanks to Dr Erwan Le Martleot who has spent several years of research for his
PhD proving this exact point.

Natural Born Computing 35

made. We may not be perfect at sequential mathematical calculations, but no
human designed artefact can beat natural systems like ourselves for parallel,
stochastic, distributed computation.

The future of computing, as predicted by von Neumann, will be parallel and

distributed. Perhaps by learning lessons from nature we will be able to achieve
this future with the efficiency and reliability of a living system. If we could learn
to combine the advantages of existing technologies with those of natural systems,
our capabilities would be transformed.

References

1.
2.

3.
4.

10.

11.

12.

13.

14.

15.

16.

Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, London (2004)
Kari, L., Rozenberg, G.: The many facets of natural computing. Communications
of the ACM 51, 72-83 (2008)

Bentley, P.J.: Digitized, Oxford, UK (2012)

von Neumann, J.: First Draft of a Report on the EDVAC. Moore School of
Electrical Engineering, University of Pennsylvania. Developed under contract W-
670-ORD-4926 between the United States Army Ordinance Department and the
University of Pennsylvania (1945)

. Obituary on Turing in The Times (1954)
. Shannon, C.: Presentation of a Maze-Solving Machine. Group Interchange. In:

Macy Jr., J. (ed.) Transactions of the Eighth Conference on Cybernetics Founda-
tion, March 15-16, pp. 173180 (1951)

. Shannon, C.: Programming a Computer for Playing Chess. Philosophical Magazine,

Ser.7 41(314) (March 1950)

. von Neumann, J.: The Computer and the Brain: 2 edn. (Mrs. Hepsa Ely Silliman

Memorial Lectures) (2000)

. von Neumann, J., Burks, A.W.: Theory of Self-Reproducing Automata. University

of Illinois Press, Urbana (1966)

Haroun Mahdavi, S., Bentley, P.J.: Innately adaptive robotics through embodied
evolution. Journal of Adaptive Robotics (2004)

Haroun Mahdavi, S., Bentley, P.J.: Innately adaptive robotics through embodied
evolution. In: Proc. of Robosphere 2004, the 2nd Workshop on Self-Sustaining
Robotic Systems, November 9-10. NASA Ames Research Center (2004)

Mahdavi, S.H., Bentley, P.J.: An Evolutionary Approach to Damage Recovery of
Robot Motion With Muscles. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich,
P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 248-255. Springer,
Heidelberg (2003)

Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical
Journal 27, 379-423, 623-656 (1948)

Shannon, C.: Communication Theory of Secrecy Systems. Bell System Technical
Journal 28(4), 656715 (1948)

Bhalla, N., Bentley, P.J., Vise, C., Jacob, C.: Programming and Evolving Self-
assembling Systems in Three Dimensions. To appear in the Special issue on Engi-
neering Emergence, in the Journal of Natural Computing (2011)

Bhalla, N., Bentley, P.J.: Programming Self-assembling Systems Via Physically En-
coded Information. In: Doursat, Sayama, Michel (eds.) Morphogenetic Engineering.
Springer, Heidelberg (2011)

36

17.

18.

19.

20.

21.

22.

23.

P.J. Bentley

Bhalla, N., Bentley, P.J., Jacob, C.: Mapping Virtual Self-assembly Rules to Phys-
ical Systems. In: Proc. of the 2007 Conference on Unconventional Computing,
Bristol, July 12-14 (2007)

Bentley, P.J.: Systemic computation: A model of interacting systems with natural
characteristics. IJPEDS 22, 103-121 (2007)

Bentley, P.J.: Methods for Improving Simulations of Biological Systems: Systemic
Computation and Fractal Proteins. Special Issue on Synthetic Biology, J R Soc.
Interface 2009 6, 451-466 (2009), doi:10.1098/rsif.2008.0505.focus

Tammet, D.: Embracing the Wide Sky: A Tour Across the Horizons of the Mind.
Hodder & Stoughton (2009)

Le Martelot, E., Bentley, P.J., Lotto, R.B.: A Systemic Computation Platform
for the Modelling and Analysis of Processes with Natural Characteristics. In:
GECCO 2007, pp. 2809-2816. ACM Press (2007)

Rouhipour, M., Bentley, P.J., Shayani, H.: Systemic Computation Using Graphics
Processors. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS,
vol. 6274, pp. 121-132. Springer, Heidelberg (2010)

Sakellariou, C., Bentley, P.J.: Introducing the FPGA-Based Hardware Architecture
of Systemic Computation (HAoS). In: Kotések, Z., et al. (eds.) MEMICS 2011.
LNCS, vol. 7119, pp. 179-190. Springer, Heidelberg (2011)

Games and Markov Decision Processes
with Mean-Payoff Parity and Energy Parity Objectives*

Krishnendu Chatterjee! and Laurent Doyen?

1 IST Austria (Institute of Science and Technology Austria)
2 LSV, ENS Cachan & CNRS, France

Abstract. In this paper we survey results of two-player games on g