

Lecture Notes in Computer Science 7119
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Zdeněk Kotásek Jan Bouda
Ivana Černá Lukáš Sekanina
Tomáš Vojnar David Antoš (Eds.)

Mathematical and
Engineering Methods
in Computer Science
7th International Doctoral Workshop, MEMICS 2011
Lednice, Czech Republic, October 14-16, 2011
Revised Selected Papers

13

Volume Editors

Zdeněk Kotásek
Lukáš Sekanina
Tomáš Vojnar
Brno University of Technology, Faculty of Information Technology
Božetěchova 2, 612 66 Brno, Czech Republic
E-mail: {kotasek, sekanina, vojnar}@fit.vutbr.cz

Jan Bouda
Ivana Černá
Masaryk University, Faculty of Informatics
Botanická 68a, 602 00 Brno, Czech Republic
E-mail: {bouda, cerna}@fi.muni.cz

David Antoš
Masaryk University, Institute of Computer Science
Botanická 68a, 602 00 Brno, Czech Republic
E-mail: antos@ics.muni.cz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25928-9 e-ISBN 978-3-642-25929-6
DOI 10.1007/978-3-642-25929-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011944974

CR Subject Classification (1998): C.2, D.2, K.6.3, K.6.5, K.4.4, H.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

MEMICS 2011 was the seventh instance of the international doctoral workshop
on Mathematical and Engineering Methods in Computer Science organized in
Southern Moravia by the Faculty of Information Technology of the Brno Uni-
versity of Technology and the Faculty of Informatics of the Masaryk University.
MEMICS 2011 took place in Lednice, Czech Republic, where it was held dur-
ing October 14–16, 2011. For the first time in MEMICS’s history, the workshop
proceedings were published by Springer in the LNCS series.

The MEMICS workshops are intended to provide an opportunity for PhD
students to present and discuss their work in an international environment.
Their focus on PhD studies instead of a particular narrow scientific area leads
to a cross-disciplinary orientation, providing a pleasant environment for an ex-
change of ideas among researchers in several different fields of computer science
and technology.

Submissions are invited especially in the following (though not exclusive)
areas: software and hardware dependability, computer security, computer-aided
analysis and verification, testing and diagnostics, simulation, parallel and dis-
tributed computing, grid computing, computer networks, modern hardware and
its design, non-traditional computing architectures, software engineering, com-
putational intelligence, quantum information processing, computer graphics and
multimedia, signal, text, speech, and image processing, and theoretical computer
science.

As is the tradition in the MEMICS workshops, invited lectures given by inter-
nationally recognized researchers complemented the standard program based on
papers authored by PhD students. MEMICS 2011 hosted six invited speakers:
Saddek Bensalem from VERIMAG, University Joseph Fourier/CNRS/INPG,
Grenoble, France, with the talk “Rigorous Component-Based System Design Us-
ing the BIP Framework,” Peter Bentley from University College London, UK,
with a talk on “Modelling Complex Systems—Lessons from the Life Sciences,”
Krishnendu Chatterjee from IST Austria, with a talk on “Games and Proba-
bilistic Systems with Mean-Payoff, Energy and Parity Objectives,” Görschwin
Fey from University of Bremen, Germany, with the talk “Assessing System Vul-
nerability Using Formal Verification Techniques,” Renato Renner from ETH
Zurich, Switzerland, with a talk on “Security in a Quantum World,” and Petr
Tůma from Charles University in Prague, Czech Republic, with the talk “Com-
puter Memory: Why We Should Care What Is Under The Hood.” Thanks go to
all these invited lecturers who found time to participate at the workshop and
demonstrated how a top-quality presentation could look.

This post-workshop volume contains 6 papers written by the invited speak-
ers and 13 papers selected from 38 papers submitted by PhD students. Each
submitted paper was reviewed by at least three independent reviewers, who

VI Preface

provided not only a recommendation to the Program Committee, but also gave
an extensive feedback to the authors. The hard work of the Program Committee
as well as of the external reviewers is highly appreciated.

All the contributed works were presented by PhD students, who got the op-
portunity to speak in front of their peers and to receive immediate feedback from
participating senior faculty members, including the invited lecturers. All students
were encouraged to actively participate in the discussions, to express their opin-
ions, exchange ideas and compare methods, traditions and approaches of groups
and institutions whose representatives were participating at the workshop. All
these forms of discussions and social networking created a unique environment
intended to foster further research collaboration among participants and their
institutions.

The MEMICS tradition of best paper awards continued at the MEMICS 2011
workshop. Three student papers were selected at the end of the workshop, taking
into account their scientific and technical contribution together with the quality
of presentation. The following works were selected for the best paper awards
(listed in alphabetical order):

– Jǐŕı Barnat, Ivana Černá and Jana Tůmová, “Timed Automata Approach
to Verification of Systems with Degradation”

– Ondrej Morǐs and Petr Hliněný, “Generalized Maneuvers in Route Planning”
– Christos Sakellariou and Peter Bentley, “Introducing the FPGA-Based Hard-

ware Architecture of Systemic Computation (HAoS)”

The awards consisted of a diploma for all authors of the selected papers
complemented with a financial contribution covered by the sponsoring organi-
zations, Honeywell Czech Republic, IBA CZ, and Red Hat Czech Republic. The
sponsorship is highly appreciated.

The MEMICS 2011 workshop was financially supported by the doctoral grant
project 102/09/H042 Mathematical and Engineering Approaches to Developing
Reliable and Secure Concurrent and Distributed Computer Systems from the
Czech Science Foundation. This support is highly appreciated. The direct and
indirect support and help from the organizing faculties is also highly appreciated.

Last but not least, our appreciation goes to the Organizing Committee of
MEMICS 2011 that guaranteed a smooth realization of the MEMICS 2011 work-
shop, essential to its success. Our thanks go to all members of the Organizing
Committee and its Chair, Radek Koč́ı, for all their efforts and hard work.

The work of the PC of MEMICS 2011, including the preparation of this
volume, was greatly aided by the use of the EasyChair system.

October 2011 Zdeněk Kotásek
Brno Jan Bouda

Ivana Černá
Lukáš Sekanina
Tomáš Vojnar

Organization

General Chair

Zdeněk Kotásek Brno University of Technology, Czech Republic

Program Committee Co-chairs

Jan Bouda Masaryk University, Brno, Czech Republic
Ivana Černá Masaryk University, Brno, Czech Republic
Lukáš Sekanina Brno University of Technology, Brno,

Czech Republic
Tomáš Vojnar Brno University of Technology, Brno,

Czech Republic

Program Committee

Parosh Aziz Abdulla Uppsala University, Sweden
Andris Ambainis University of Latvia, Latvia
Maria Bieliková Slovak University of Technology in Bratislava,

Slovak Republic
Armin Biere Johannes Kepler University, Linz, Austria
Jan Bouda Masaryk University, Brno, Czech Republic
Ivana Černá Masaryk University, Brno, Czech Republic
Pavol Černý IST Austria, Vienna, Austria
Milan Češka Brno University of Technology, Czech Republic
Rusins Freivalds University of Latvia, Latvia
Tomasz Garbolino Silesian University of Technology, Gliwice,

Poland
Elena Gramatová Slovak University of Technology, Bratislava,

Slovak Republic
Jozef Gruska Masaryk University, Brno, Czech Republic
Peter Habermehl LIAFA, University Paris Diderot - Paris7,

France
Petr Hanáček Brno University of Technology, Czech Republic
Petr Hliněný Masaryk University, Brno, Czech Republic
Štefan Hudák Technical University of Košice, Slovakia
Radu Iosif VERIMAG, CNRS, Grenoble, France
Petr Jančar Technical University Ostrava, Czech Republic
Galina Jirásková Slovak Academy of Sciences in Košice,

Slovak Republic

VIII Organization

Dušan Kolář Brno University of Technology, Czech Republic
Zdeněk Kotásek Brno University of Technology, Czech Republic
Bohuslav Křena Brno University of Technology, Czech Republic
Mojmı́r Křet́ınský Masaryk University, Brno, Czech Republic
Hana Kubátová Czech Technical University in Prague,

Czech Republic
Paulo Mateus Instituto Superior Técnico Lisbon, Portugal
Václav Matyáš Masaryk University, Brno, Czech Republic
Luděk Matyska Masaryk University, Brno, Czech Republic
Richard Mayr University of Edinburgh, UK
Felix Moreno Universidad Politécnica de Madrid, Spain
Daniel Olejár Comenius University in Bratislava,

Slovak Republic
Simon Perdrix CNRS Grenoble, France
Stanislav Racek University of West Bohemia, Pilsen,

Czech Republic
Hana Rudová Masaryk University, Brno, Czech Republic
Andrey Rybalchenko Technical University of Munich, Germany
Zdeněk Řı́ha Masaryk University, Brno, Czech Republic
Zdeněk Sawa Technical University of Ostrava,

Czech Republic
Lukáš Sekanina Brno University of Technology, Czech Republic
Jǐŕı Srba BRICS, Aalborg University, Denmark
Jan Strejček Masaryk University, Brno, Czech Republic
Giovanni Squillero Politecnico di Torino, Italy
Andreas Steininger Vienna University of Technology, Austria
Jǐŕı Š́ıma The Academy of Sciences of the

Czech Republic, Czech Republic
Jim Torresen University of Oslo, Norway
Petr Tůma Charles University in Prague, Czech Republic
Tomáš Vojnar Brno University of Technology, Czech Republic
Michael Weber University of Twente, The Netherlands
Pavel Zemč́ık Brno University of Technology, Czech Republic

Organizing Committee Chair

Radek Koč́ı Brno University of Technology, Czech Republic

Organizing Committee

Pavel Bartoš Brno University of Technology, Czech Republic
Adam Husár Brno University of Technology, Czech Republic
Peter Jurnečka Brno University of Technology, Czech Republic
Filip Konečný Brno University of Technology, Czech Republic

Organization IX

Pavol Korček Brno University of Technology, Czech Republic
Zdeněk Letko Brno University of Technology, Czech Republic
Petr Posṕıchal Brno University of Technology, Czech Republic
Zdenek Prikryl Brno University of Technology, Czech Republic
Jǐŕı Šimáček Brno University of Technology, Czech Republic

Steering Committee

Milan Češka Brno University of Technology, Czech Republic
Zdeněk Kotásek Brno University of Technology, Czech Republic
Mojmı́r Křet́ınský Masaryk University, Brno, Czech Republic
Antońın Kučera Masaryk University, Brno, Czech Republic
Luděk Matyska Masaryk University, Brno, Czech Republic
Tomáš Vojnar Brno University of Technology, Czech Republic

Additional Reviewers

Gabriela Andrejková
Andrej Bebjak
Marius Bozga
Jonathan Cederberg
Florent Garnier
Lukáš Hoĺık
Martin Hrubý
Jozef Janovský
Jǐŕı Jaroš
Michal Kajan
Jan Kaštil
Martin Kot
Zbyněk Křivka
Markéta Lopatková

Andrej Podzimek
Thomas Polzer
Karin Quaas
Thomas Reinbacher
João Rodrigues
Adam Rogalewicz
Václav Šimek
Jǐŕı Šimša
Jari Stenman
David Svoboda
Patrick Totzke
Varadan Savulimedu Veeravalli
Martin Žádńık

Table of Contents

Rigorous System Design: The BIP Approach . 1
Ananda Basu, Saddek Bensalem, Marius Bozga,
Paraskevas Bourgos, and Joseph Sifakis

Natural Born Computing . 20
Peter J. Bentley

Games and Markov Decision Processes with Mean-Payoff Parity and
Energy Parity Objectives . 37

Krishnendu Chatterjee and Laurent Doyen

Assessing System Vulnerability Using Formal Verification Techniques . . . 47
Görschwin Fey

Information Security in a Quantum World . 57
Renato Renner

Computer Memory: Why We Should Care What Is under the Hood 63
Vlastimil Babka and Petr T̊uma

Frequency Prediction of Functions . 76
Kaspars Balodis, Ilja Kucevalovs, and Rūsiņš Freivalds

Timed Automata Approach to Verification of Systems with
Degradation . 84

Jǐŕı Barnat, Ivana Černá, and Jana T̊umová

Basic Operations on Binary Suffix-Free Languages 94
Roland Cmorik and Galina Jirásková

Efficient Data Representation of Large Job Schedules 103
Dalibor Klusáček and Hana Rudová

Prefix-Free Regular Languages: Closure Properties, Difference, and Left
Quotient . 114

Monika Krausová

Noise Injection Heuristics for Concurrency Testing 123
Bohuslav Křena, Zdeněk Letko, and Tomáš Vojnar

Low GPU Occupancy Approach to Fast Arithmetic Coding in
JPEG2000 . 136

Jǐŕı Matela, Martin Šrom, and Petr Holub

XII Table of Contents

Using Dimensionality Reduction Method for Binary Data to
Questionnaire Analysis . 146

Jakub Mažgut, Martina Paulinyová, and Peter Tiňo

Generalized Maneuvers in Route Planning . 155
Petr Hliněný and Ondrej Morǐs

STANSE: Bug-Finding Framework for C Programs 167
Jan Obdržálek, Jǐŕı Slabý, and Marek Trt́ık

Introducing the FPGA-Based Hardware Architecture of Systemic
Computation (HAoS) . 179

Christos Sakellariou and Peter J. Bentley

A Parallel Compact Hash Table . 191
Steven van der Vegt and Alfons Laarman

Four Authorization Protocols for an Electronic Payment System 205
Roman Žilka, Vashek Matyáš, and Libor Kyncl

Author Index . 215

Rigorous System Design: The BIP Approach

Ananda Basu1, Saddek Bensalem1,2, Marius Bozga1,
Paraskevas Bourgos1, and Joseph Sifakis1

1 Verimag Laboratory, Université Joseph Fourier Grenoble, CNRS
2 CEA-Leti, MINATEC Campus, Grenoble France

Abstract. Rigorous system design requires the use of a single powerful
component framework allowing the representation of the designed system
at different levels of detail, from application software to its implementa-
tion. This is essential for ensuring the overall coherency and correctness.
The paper introduces a rigorous design flow based on the BIP (Behavior,
Interaction, Priority) component framework [1]. This design flow relies
on several, tool-supported, source-to-source transformations allowing to
progressively and correctly transform high level application software to-
wards efficient implementations for specific platforms.

1 System Design

Traditional engineering disciplines such as civil or mechanical engineering are
based on solid theory for building artifacts with predictable behavior over their
life-time. In contrast, we lack similar constructivity results for computing en-
gineering: computer science provides only partial answers to particular system
design problems. With few exceptions in this domain, predictability is impos-
sible to guarantee at design time and therefore, a posteriori validation remains
the only means for ensuring their correct operation.

System design is facing several difficulties, mainly due to our inability to pre-
dict the behavior of an application software running on a given platform. Usually,
systems are built by reusing and assembling components that are, simpler sub-
systems. This is the only way to master complexity and to ensure correctness of
the overall design, while maintaining or increasing productivity. However, sys-
tem level integration becomes extremely hard because components are usually
highly heterogeneous: they have different characteristics, are often developed
using different technologies, and highlight different features from different view-
points. Other difficulties stem from current design approaches, often empirical
and based on expertise and experience of design teams. Naturally, designers
attempt to solve new problems by reusing, extending and improving existing
solutions proven to be efficient and robust. This favors component reuse and
avoids re-inventing and re-discovering designs. Nevertheless, on a longer term
perspective, this may also be counter-productive: designers are not always able
to adapt in a satisfactory manner to new requirements. Moreover, they a priori
exclude better solutions simply because they do not fit their know-how.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 1–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 A. Basu et al.

System design is the process leading to a mixed software/hardware system
meeting given specifications. It involves the development of application software
taking into account features of an execution platform. The latter is defined by
its architecture involving a set of processors equipped with hardware-dependent
software such as operating systems as well as primitives for coordination of the
computation and interaction with the external environment.

System design radically differs from pure software design in that it should
take into account not only functional but also extra-functional specifications
regarding the use of resources of the execution platform such as time, memory
and energy. Meeting extra-functional specifications is essential for the design
of embedded systems. It requires evaluation of the impact of design choices on
the overall behavior of the system. It also implies a deep understanding of the
interaction between application software and the underlying execution platform.
We currently lack approaches for modeling mixed hardware/software systems.
There are no rigorous techniques for deriving global models of a given system
from models of its application software and its execution platform.

A system design flow consists of steps starting from specifications and leading
to an implementation on a given execution platform. It involves the use of meth-
ods and tools for progressively deriving the implementation by making adequate
design choices.

We consider that a system design flow must meet the following essential
requirements:

– Correctness: This means that the designed system meets its specifications.
Ensuring correctness requires that the design flow relies on models with well-
defined semantics. The models should consistently encompass system description
at different levels of abstraction from application software to its implementation.
Correctness can be achieved by application of verification techniques. It is de-
sirable that if some specifications are met at some step of the design flow, they
are preserved in all the subsequent steps.

– Productivity: This can be achieved by system design flows

– providing high level domain-specific languages for ease of expression
– allowing reuse of components and the development of component-based so-

lutions
– integrating tools for programming, validation and code generation

– Performance: The design flow must allow the satisfaction of extra-functional
properties regarding optimal resource management. This means that resources
such as memory, time and energy are first class concepts encompassed by formal
models. Moreover, it should be possible to analyze and evaluate efficiency in using
resources as early as possible along the design flow. Unfortunately, most of the
widely used modeling formalisms offer only syntactic sugar for expressing timing
constraints and scheduling policies. Lack of adequate semantic models does not
allow consistency checking for timing requirements, or meaningful composition
of features.

Rigorous System Design: The BIP Approach 3

– Parcimony: The design flow should not enforce any particular programming
or execution model. Very often system designers privilege specific programming
models or implementation principles that a priori exclude efficient solutions.
They program in low level languages that do not help discover parallelism or
non determinism and enforce strictly sequential execution. For instance, pro-
gramming multimedia applications in plain C may lead to designs obscuring
the inherent functional parallelism and involving built-in scheduling mechanisms
that are not optimal. It is essential that designers use adequate programming
models. Furthermore, design choices should be driven only by system specifica-
tions to obtain the best possible implementation.

We call rigorous a design flow which allows guaranteeing essential properties of
the specifications. Most of the rigorous design flows privilege a unique program-
ming model together with an associated compilation chain adapted for a given
execution model. For example, synchronous system design relies on synchronous
programming models and usually targets hardware or sequential implementa-
tions on single processors [2]. Alternatively, real-time programming based on
scheduling theory for periodic tasks, targets dedicated real-time multitasking
platforms [3].

A rigorous design flow should be characterized by the following:

– It should be model-based, that is all the software and system descriptions
used along the design flow should be based on a single semantic model. This
is essential for maintaining the overall coherency of the flow by guaranteeing
that a description at step n meets essential properties of a description at step
n − 1. This means in particular that the semantic model is expressive enough
to directly encompasses various types of component heterogeneity arising along
the design flow [4]:

– Heterogeneity of computation: The semantic model should encompass both
synchronous and asynchronous computation by using adequate coordina-
tion mechanisms. This should allow in particular, modeling mixed hard-
ware/software systems.

– Heterogeneity of interaction: The semantic model should enable natural and
direct description of various mechanisms used to coordinate execution of
components including semaphores, rendezvous, broadcast, method call, etc.

– Heterogeneity of abstraction: The semantic model should support the descrip-
tion of a system at different abstraction levels from its application software to
its implementation. This makes possible the definition of a clear correspon-
dence between the description of an untimed platform-independent behavior
and the corresponding timed and platform-dependent implementation.

– It should be component-based, that is it provides primitives for building com-
posite components as the composition of simpler components. Existing theoret-
ical frameworks for composition are based on a single operator e.g., product of
automata, function call. Poor expressiveness of these frameworks may lead to

4 A. Basu et al.

complicated designs: achieving a given coordination between components often
requires additional components to manage their interaction.

For instance, if the composition is by strong synchronization (rendezvous)
modeling broadcast requires an extra component to choose amongst the possible
strong synchronizations a maximal one. We need frameworks providing fami-
lies of composition operators for natural and direct description of coordination
mechanisms such as protocols, schedulers and buses.
– It should rely on tractable theory for guaranteeing correctness by construction
to avoid as much as possible monolithic a posteriori verification. Such a theory
is based on two types of rules:

– Compositionality rules for inferring global properties of composite compo-
nents from the properties of composed components e.g. if a set of components
are deadlock-free then for a certain type of composition the obtained com-
posite components is deadlock-free too. A special and very useful case of
compositionality is when a behavioral equivalence relation between compo-
nents is a congruence [5]. In that case, substituting a component in a system
model by a behaviorally equivalent component leads to an equivalent model.

– Composability rules ensuring that essential properties of a component are
preserved when it is used to build composite components.

The paper presents a rigorous design flow based on the BIP (Behavior, Inter-
action, Priority) component framework [1]. It is organized as follows. Section 2
introduces the underlying modeling framework and the main steps of the de-
sign flow. Subsection 2.1 presents the BIP language. Subsection 2.2 explains the
principle of translating different programming models into BIP. Subsection 2.3
introduces a method for compositional verification of BIP programs, especially
used for checking deadlock-freedom. Subsection 2.4 presents a method for in-
tegrating architectural constraints into the BIP model of application software
and subsection 2.5 presents a method for generating distributed implementa-
tions. The design flow is illustrated through non trivial examples in section 3.
In section 4, we conclude and discuss future work directions.

2 The BIP Design Flow

BIP [1] (Behavior, Interaction, Priority) is a general framework encompassing
rigorous design. It uses the BIP language and an associated toolset supporting
the design flow. The BIP language is a notation which allows building complex
systems by coordinating the behavior of a set of atomic components. Behavior
is described as a finite-state automaton extended with data and functions de-
scribed in C. The transitions of the Petri are labelled with guards (conditions on
the state of a component and its environment) as well as functions that describe
computations on local data. The description of coordination between compo-
nents is layered. The first layer describes the interactions between components.
The second layer describes dynamic priorities between the interactions and is

Rigorous System Design: The BIP Approach 5

used to express scheduling policies. The combination of interactions and priori-
ties characterizes the overall architecture of a component. It confers BIP strong
expressiveness that cannot be matched by other languages [6]. BIP has clean
operational semantics that describe the behavior of a composite component as
the composition of the behaviors of its atomic components. This allows a di-
rect relation between the underlying semantic model (transition systems) and
its implementation.

The BIP design flow uses a single language to ensure consistency between the
different design steps. This is mainly achieved by applying source-to-source trans-
formations between refined system models. These transformations are proven
correct-by-construction, that means, they preserve observational equivalence and
consequently essential safety properties. Functional verification is applied only to
high level models for checking safety properties such as invariants and deadlock-
freedom. To avoid inherent complexity limitations, the verification method ap-
plies compositionality techniques implemented in the D-Finder tool.

Integration of
Communication Protocols

Distributed System
Model in S/R−BIP

Code
Generation

Deployable
Code

Performance
Analysis

Mapping

D−Finder

Software
Application

Platform

System

SW Model in BIP

HW Execution

Model in BIP

Integration of
Architectural Constraints

Application

Translation

Fig. 1. BIP Design Flow

6 A. Basu et al.

The design flow involves 4 distinct steps:

1. The translation of the application software into a BIP model. This allows its
representation in a rigorous semantic framework. There exist translations of
several programming models into BIP including synchronous, data-flow and
event driven models.

2. The generation of an abstract system model from the BIP model representing
the application software, a model of the target execution platform as well as
a mapping of the atomic components of the application software model into
processing elements of the platform. The obtained model takes into account
hardware architecture constraints and execution times of atomic actions. Ar-
chitecture constraints include mutual exclusion induced from sharing phys-
ical resources such as buses, memories and processors as well as scheduling
policies seeking optimal use of these resources.

3. The generation of a concrete system model obtained from the abstract model
by expressing high level coordination mechanisms e.g., interactions and prior-
ities by using primitives of the execution platform. This transformation usu-
ally involves the replacement of atomic multiparty interactions by protocols
using asynchronous message passing (send/receive primitives) and arbiters
ensuring overall coherency e.g. non interference of protocols implementing
different interactions.

4. The generation of executable, monolithic C/C++ or MPI code from sets
of interacting components executed by the same processor. This allows ef-
ficient implementation by avoiding overhead due to coordination between
components.

The BIP design flow is entirely supported by the BIP language and its associated
toolset, which includes translators from various programming models, verifica-
tion tools, source-to-source transformers and C/C++-code generators for BIP
models.

2.1 The BIP Language

The BIP language, introduced in [1], supports a design flow for building systems
from atomic components. It ses connectors, to specify possible interaction pat-
terns etween components, and priorities, to select amongst possible interactions.

Atomic components are finite-state automata that are extended with vari-
ables and ports. Variables are used to store local data. Ports are action names,
and may be associated with variables. They are used for interaction with other
components. States denote control locations at which the components await for
interaction. A transition is a step, labeled by a port, from a control location to
another. It has associated a guard and an action, that are respectively, a Boolean
condition and a computation defined on local variables. In BIP, data and their
transformations are written in C.

For a given valuation of variables, a transition can be executed if the guard
evaluates to true and some interaction involving the port is enabled. The exe-
cution is an atomic sequence of two microsteps: (i) execution of the interaction

Rigorous System Design: The BIP Approach 7

involving the port, which is a synchronization between several components, with
possible exchange of data, followed by (ii) execution of internal computation
associated with the transition.

Composite components are defined by assembling sub-components (atomic or
composite) using connectors. Connectors relate ports from different subcompo-
nents. They represent sets of interactions, that are, non-empty sets of ports that
have to be jointly executed. For every such interaction, the connector provides
the guard and the data transfer, that are, respectively, an enabling condition
and an exchange of data across the ports involved in the interaction.

Finally, priorities provide a mean to coordinate the execution of interactions
within a BIP system. They are used to specify scheduling or similar arbitration
policies between simultaneously enabled interactions. More concretely, priorities
are rules, each consisting of an ordered pair of interactions associated with a
condition. When the condition holds and both interactions of the corresponding
pair are enabled, only the one with higher-priority can be executed.

Figure 2 shows a graphical representation of an example model in BIP. It
consists of atomic components Sender, Receiver1 and Receiver2. The behavior
of Sender is described as an automaton with control locations Idle and Active.
It communicates through port s which exports the variable x. Components Re-
ceiver1 and Receiver2 are composed by the connector C1, which represents a
rendezvous interaction between ports r1 and r2, leading to the composite com-
ponent Receivers. The composite exports C1 as port r. As a result of the data
transfer in C1, the sum of the local variables y1 and y2 is exported as v through
the port r, and y1, y2 eventually receive the value of v. The system is the com-
position of Sender and Receivers using the connector C2 which represents a
broadcast interaction from the Sender to the Receivers. When the broadcast
occurs, as a result of the composed data transfer, the Sender gets the sum of y1
and y2, and each Receiver gets the value x from the Sender.

Active

Idle

work

print(y2)

r2

r2

Active

Idle

work

print(y1)

r1

r1

Active

work

x:=f(x)

s

[x<M]

s

rint w
up: {w:=x }

down: {x,v:=v,w}

int v
up: { v:=y1+y2 }

down: {y1,y2:=v,v}

C2

C1

Sender Receiver1 Receiver2
Receivers

Idle

Fig. 2. An example of a BIP system

8 A. Basu et al.

2.2 Translating Application Software into BIP

The first step in our design flow requires the generation of a BIP model for the
application software. We have developed a general method for generating BIP
models from languages with well-defined operational semantics. The principle of
the method is depicted in Figure 3. It involves the following three steps for a
given application software written in a language L:

1. Translation of atomic components of the source language into BIP com-
ponents. The translation focuses on the definition of adequate interfaces.
It encapsulates and reuses data structures and functions of the application
software,

2. Translation of coordination between components of the application software
into connectors and priorities in the target BIP model,

3. Generation of a BIP component modeling the operational semantics of L.
This component plays the role of an engine coordinating the execution of
the application software components.

Application Software
written in L

Execution Engine
for L in BIP

BIP Model of the
Application Software

Operational Semantics
of L

Fig. 3. Principle of translating application software

We have developed BIP model generators for several programming models used
by embedded system developers including Lustre [2], MATLAB/SimulinkTM, the
ArchitectureAnalysis andDesign Language AADL, NesC/TinyOS, the Distributed
Operation Layer DOL [7], the programming model GeNoM [8], etc. The generated
models preserve the structure and their size is linear with respect to the size of the
initial programs. They are easy to understand by developers in source languages.
These facts confirm the adequacy and expressive power of BIP.

Rigorous System Design: The BIP Approach 9

2.3 Compositional Verification by Using D-Finder

Monolithic verification of component-based systems often requires computing the
product of their atomic components by using interleaving and synchronization.
In general, the size of this product is prohibitive and cannot be handled without
manual intervention. In a series of recent works, it has been advocated that com-
positional techniques could be used to cope with state explosion in verification
of concurrent systems. A key issue is the existence of composition frameworks
ensuring compositionality, which is, establishing global properties of composite
components from properties of their constituent components.

A compositional verification method for BIP based on invariant computation
is presented in [9]. This method computes increasingly stronger invariants for
composite components as conjunctions of local invariants for atomic components
and interaction invariants characterizing the composition glue. Local component
invariants are generated by static (and individual) analysis of atomic compo-
nents. Interaction invariants are generated from abstractions of the composite
to be verified.

The method is based on the following rule:

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧

i Φi) ∧ Ψ ⇒ Φ
‖γ{Bi}i < Φ >

The rule allows to prove invariance of property Φ for systems obtained by using
an n-ary composition operation || parameterized by a set of interactions γ. Φ is
implied by the conjunction of invariants Φi of components Bi and an interaction
invariant Ψ . The latter expresses constraints on the global state space induced
by interactions. In [9], we have shown that Ψ can be computed automatically
from abstractions of the system to be verified. These are the composition of finite
state abstractions of the components Bi with respect to their invariants Φi.

The method has been recently improved to take advantage of the incremen-
tality of the design process. Incremental system design proceeds by adding new
interactions to existing sets of components. Each time an interaction is added,
it is possible to verify whether the resulting system violates a given property
and discover design errors as soon as they appear. The incremental verification
method [10] uses sufficient conditions ensuring the preservation of invariants
when new interactions are added along the component construction process. If
these conditions are not satisfied, new invariants are generated by reusing in-
variants of the interacting components. Reusing invariants reduces considerably
the verification effort.

The above methods have been implemented in the D-Finder tool [11] for
checking deadlock-freedom of systems described in BIP. Experimental results on
classical benchmarks (as illustrated in Figure 4) show that D-Finder can be ex-
ponentially faster than well-established verification tools. Nonetheless, D-Finder
has been also successful for the verification of complex software applications, as
illustrated later in section 3.

10 A. Basu et al.

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

V
er

ifi
ca

tio
n

tim
e

(m
in

ut
es

)

Number of philosophers

D-Finder: incremental based on positive mapping
D-Finder: incremental based on fixed-point

D-Finder: global based on positive mapping
D-Finder: global based on fixpoint

D-Finder: enumerative
NuSmv

 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
em

or
y

us
ag

e
(M

b)

Number of philosophers

D-Finder: incremental based on positive mapping
D-Finder: incremental based on fixed-point

D-Finder: global based on positive mapping
D-Finder: global based on fixed-point

D-Finder: enumerative
NuSmv

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14

V
er

ifi
ca

tio
n

tim
e

(m
in

ut
es

)

Gas Station: size = N x (50 pumps + 500 custumers)

D-Finder: incremental based on positive mapping
D-Finder: incremental based on fixed-point

D-Finder: global based on positive mapping
D-Finder: global based on fixed-point

NuSmv

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14

M
em

or
y

U
sa

ge
 (

M
b)

Gas Station: size = N x (50 pumps + 500 custumers)

d-finder: incremental by positive mapping
d-finder: incremental by fixpoint

d-finder: global by positive mapping
d-finder: global by fixpoint

nusmv

Fig. 4. D-Finder results: time (left) and memory usage (right) as a function of com-
plexity for i) monolithic verification with NuSMV, ii) compositional verification, iii)
incremental verification on two benchmarks, dining philosophers (up) and gas station
(down)

2.4 Integrating Architectural Constraints in BIP

We developed in [12] a rigorous method for generating a model which faithfully
represents the behavior of a mixed hardware/software system from a model of its
application software and a model of its underlying hardware architecture. The
method takes as input a model of the application software in BIP, a model of the
hardware architecture (in XML) and a mapping associating communication op-
erations of the application software with execution/communication paths in the
architecture. It builds a model of the corresponding mixed hardware/software
system in BIP. This system model can be simulated and analyzed for the verifi-
cation of functional and extra-functional properties.

The method consists in progressively enriching the application software model
by doing:

1. Integration of hardware components used in the system model and,
2. Application of a sequence of source-to-source transformations to synthesize

hardware dependent software routines implementing communication by using
the hardware components.

The transformations are proved correct-by-construction, that is, they
preserve functional properties of the application software.

Rigorous System Design: The BIP Approach 11

The system model is parameterized and allows flexible integration of specific
target architecture features, such as arbitration policy, throughput, latency for
buses and scheduling policy, execution speed, etc. We have defined a library
of BIP atomic components that characterize multi-processor tiled architectures,
including models for hardware components (e.g., processor, memory) and for
hardware-dependent software components (e.g., FIFO channel read/write, bus
controllers, schedulers).

The method has been implemented and integrated in the BIP toolset. We
used the DOL framework [7] as a frontend to describe the application software,
hardware architectures and mapping specifications. The backend of the tool pro-
duces the system model in BIP, which can be analyzed by the BIP tool chain
for:

– Code generation for simulation/validation on a Linux PC
– Functional correctness using the D-Finder tool, checking for deadlocks
– Performance analysis (e.g. delay computation), based on simulation and sta-

tistical model checking

We generated different system models of an MJPEG decoder running on a sim-
plified MPARM platform. The decoder is described in DOL [7], and consists
of five processes communicating asynchronously through FIFO channels. The
process description consists of about 2500 lines of C. The description is auto-
matically translated into the application software model, which is about 10000
lines of BIP. This model is purely functional and can be analyzed with D-Finder
to assess its correctness. It has been mapped on a MPARM platform consisting
of three processors, their local memories, and a global shared memory, with all
being connected via a global bus. Different mappings were considered, leading
to different system models. These models have been used for performance anal-
ysis. Using simulation, we measured computation and communication times for
relevant parts of the application software. As future work, we intend to use these
results in order to build (simpler) statistical abstractions of the system models
on which properties can be validated using statistical model-checking.

2.5 Generating Distributed Implementations

To generate distributed implementations from BIP models it is necessary to
transform these models into S/R-BIP models. These are a subclass of models
where multi-party interaction is replaced by protocols using S/R (Send/Receive)
primitives. Then, from S/R-BIP models and a mapping of atomic components
into processing elements of a platform it is possible to generate efficient C/C++
or MPI-code.

We developed in [13] a general method for generating distributed implemen-
tations from BIP models. The method uses the following sequence of correct-by-
construction transformations, that preserve observational equivalence:

1. We transform a BIP system model into a S/R-BIP system model such that
(i) atomicity of transitions in the original model is broken by separating

12 A. Basu et al.

interaction and computation, and (ii) multi-party interactions of the source
model are replaced by protocols using send/receive primitives. Moreover, the
target S/R-BIP model is structured in three layers:
(a) The component layer consists of a transformation of atomic components

in the original model.
(b) The interaction protocol layer consists of a set of components, each host-

ing a user-defined subset of interactions from the original BIP model.
This layer detects enabledness of interactions and executes them after
resolving conflicts either locally or assisted by the third layer.

(c) The conflict resolution protocol layer resolves conflicts requested by the
interaction protocol layer. This protocol resolves a committee coordina-
tion problem [14] using, so far, one distributed algorithm amongst (i)
fully centralized, (ii) token-ring, and (iii) dining philosophers [15,14].

2. We generate from the obtained 3-layer S/R-BIP model and a mapping of its
atomic components on processors, either a MPI program, or a set of plain
C/C++ programs that use TCP/IP communication. The generation consists
in statically composing atomic components running on the same processor
to obtain a single observationally equivalent component, and consequently
reduced coordination overhead at runtime.
The composition operation has been implemented in the BIP2BIP tool, by
using three elementary source-to-source transformations:
(a) Component flattening, which replaces the hierarchy on components by

a set of hierarchically structured connectors applied on atomic compo-
nents;

(b) Connector flattening, which computes for each hierarchically structured
connector an equivalent flat connector;

(c) Component composition, which composes atomic components to get an
atomic component.

We conducted a set of experiments [16,13] to analyze the behavior and perfor-
mance of the generated code using different scenarios (i.e., different partitioning
of interactions, choice of committee coordination algorithm, mapping). Our ex-
periments clearly show that particular configurations are suitable for different
topology, size of the distributed system, communication load, and of course, the
structure of the initial BIP model.

Table 1 taken from [16] summarizes experimental results obtained for dif-
ferent distributed implementations of a bitonic sorting algorithm [17]. We run
experiments for three platform configurations denoted m × c, for m intercon-
nected machines with c cores each. The table provide the total sorting time for
arrays of size k×104 elements, and k = 20, 40, 80, 160. As can be seen, execution
times for handwritten MPI are slightly better than for plain C++ with TCP/IP
communication. For example, the execution time for sorting an array of size
80 × 104, for the configuration 2 × 2 is: 240 seconds for MPI, and 390 seconds
for plain C++.

In the case of S/R-BIP models auto-generated as described earlier, it is fre-
quent that some of the atomic components and engines cannot run in parallel.

Rigorous System Design: The BIP Approach 13

Table 1. Total sorting time for different implementations of a bitonic sorting algo-
rithm (handwritten or generated, with or without optimisation) deployed on different
execution platforms (m × c denotes m interconnected machines with c cores each) on
unsorted arrays of size k × 104 elements

MPI (handwritten) Plain C++ with TCP/IP MPI (generated)
optimised - no no yes no no yes

m × c 1 × 1 2 × 2 4 × 1 1 × 1 2 × 2 2 × 2 4 × 1 2 × 2 2 × 2

k = 20 80 14 14 96 23 24 24 63 24

k = 40 327 59 60 375 96 96 100 271 96

k = 80 1368 240 240 1504 390 391 397 964 394

k = 160 5605 1007 958 6024 1539 1548 1583 4158 1554

Therefore, they can be composed without losing any parallelism. For the bitonic
sorting example, the original S/R-BIP model has 7 atomic components (4 atomic
components and 3 engines), and can be transformed into a merged S/R-BIP
model containing only 4 components, while preserving all the parallelism.

The performance gain obtained by using static composition on 2 dual-core
machines (2×2 setting) is shown in Table 1. Observe that the performance of the
C++ implementation is approximately identical in both cases, with or without
optimisation. This is because TCP/IP communication is interrupt-driven. Thus,
if a component is waiting for a message, it does not consume CPU time. On the
other hand, MPI uses active waiting, which results in CPU time wasting when
components are waiting. Since we have four cores for more processes (seven), the
MPI code generated from the original S/R-BIP model is much slower than the
plain C++ code. Nevertheless, reducing the number of components to one per
core by composition allows the MPI code to reach the same speed as the C++
implementation.

3 Case Studies

BIP has been applied to several non trivial case studies. These include the com-
ponentization of a MPEG encoder [18] and of the control software of the DALA
robot of LAAS [19]. Another case study is modeling TinyOS-based wireless sen-
sor networks [20]. Moreover, BIP has been also used for modeling, verification
and performance evaluation of a self-stabilizing distributed reset algorithm [21].

3.1 MJPEG Decoder

The MJPEG decoder application software reads a sequence of MJPEG frames
and displays the decompressed video frames. The process network of the applica-
tion software is illustrated in Figure 5. It contains five processes SplitStream (SS),
SplitFrame (SF), IqzigzagIDCT (IDCT), MergeFrame (MF) and MergeStream
(MS), and nine communication FIFO channels C1, . . . , C9. The total lines of

14 A. Basu et al.

ARM1 ARM2 ARM3 ARM4 ARM5

Shared

IqzigzagIDCTSplitFrame MergeStreamMergeFrameSplitStream

C6

C1

C2

C3

C4

C5

C7 C8

C9

Fig. 5. MJPEG Decoder application software and a mapping

Table 2. Mapping Description of the processes and the FIFOs

ARM1 ARM2 ARM3 ARM4 ARM5
1 all
2 SS, SF , IQ MF , MS
3 SS, SF IQ, MF , MS
4 SS, SF IQ MF , MS
5 SS, MS SF IQ MF
6 SS SF IQ MF MS
7 SS, SF IQ MF , MS
8 SS SF IQ MF MS

Shared LM1 LM2 LM3 LM4
1 all
2 C6, C7 C1, C2, C3, C4, C5 C8, C9
3 C3, C4, C5, C6 C1, C2 C7, C8, C9
4 C3, C4, C5, C6, C7 C1, C2 C8, C9
5 all
6 all
7 C6, C7 C1, C2, C3, C4, C5 C8, C9
8 C1, C2 C3, C4, C5, C6 C7 C8, C9

C code describing the behavior of the application software processes is approxi-
mately 1600.

We analyzed the effect of eight different mappings on the total computation
and communication delay for decoding a frame. The process and the FIFO map-
pings are illustrated on Table 2.

For these mappings a system model contains around 50 BIP atomic compo-
nents and 220 BIP interactions, and consists of approximately 6K lines of BIP
code, generating around 19.5K lines of C code for simulation.

The total computation and communication delays for decoding a frame for
different mappings are shown in Figure 6. Mapping (1) produces the worst com-
putation delay as all processes are mapped to a single processor. Mapping (2)
uses two processors, but still the performance does not improve much. Mapping
(3) drastically improves performance as the computation load is balanced. The
other mappings cannot further enhance performance as the load cannot be fur-
ther balanced, even if more processors are used. The communication overhead is

Rigorous System Design: The BIP Approach 15

 48

 50

 52

 54

 56

 58

 60

 62

 64

 66

 68

 0 1 2 3 4 5 6 7 8 9C
o
m
p
u
t
a
t
i
o
n

D
e
l
a
y

(
m
e
g
a
c
y
c
l
e
s
)

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9

C
o
m
m
u
n
i
c
a
t
i
o
n

D
e
l
a
y

(
m
e
g
a
c
y
c
l
e
s
)

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8

B
u
s

c
o
n
f
l
i
c
t

(
m
e
g
a
c
y
c
l
e
s
)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 2 3 4 5 6 7 8

M
e
m
o
r
y

c
o
n
f
l
i
c
t

(
c
y
c
l
e
s
)

Fig. 6. Mjpeg Performance Analysis Results

reduced if we map more FIFOs to the local memories of the processors. The bus
and memory access conflicts are shown in Figure 6. As more FIFOs are mapped
to the local memory, the shared bus contention is reduced. However, this might
increase the local memory contention, as shown for (8).

3.2 Heterogeneous Communication System

This case study deals with a distributed heterogeneous communication system
(HCS) providing an all electronic communication infrastructure, typically for
cabin communication in airplanes or for building automation. HCS contains
various devices such as sensors (video camera, smoke detectors, temperature,
pressure, etc.) and actuators (loudspeakers, light switches, temperature control,
signs, etc.) connected through a wired Ethernet network to a central server. The
server runs a set of services to monitor the sensors and to control the actuators.
The devices are connected to the server using network access controllers.

The architecture and functionality delivered by HCS are highly heteroge-
neous. The system includes different hardware components, which run different

16 A. Basu et al.

protocols and software services ensuring functions with different characteris-
tics and degree of criticality e.g, audio streaming, clock synchronization, sensor
monitoring, video surveillance, etc. Moreover, HCS has to guarantee stringent
requirements, such as reliable data transmission, fault tolerance, timing and syn-
chronization constraints. For example, the latency for delivering alarm signals
from sensors, or for playing audio announcements should be smaller than cer-
tain predefined thresholds. Or, the accuracy of clock synchronization between
different devices, should be guaranteed under the given physical implementation
of the system.

Complete details of this case study can be found in [22]. We have developed
a structural model of HCS using BIP. At top level, the structure of the model
follows the natural decomposition into physical elements e.g., server, network ac-
cess controllers and devices are the top-level components. Moreover, these com-
ponents are connected and interact according to the wired network connections
defined in the original system. Then, one level down, every (physical) compo-
nent has a functional decomposition. Inner subcomponents provide features for
network operation (e.g., packet delivery, filtering, routing, scheduling, ...), proto-
cols (e.g., clock synchronization) or services (e.g., audio/video streaming, event
handling, etc.)

The overall complexity of this case study is extremely high. A model for a
relevant functional subsystem required approximately 300 atomic components
and 1900 connectors in BIP. Almost all atomic components have timed behav-
ior. They totalize approximately 250 clocks variables to express all timing con-
straints. Moreover, the use of large domain data (e.g., packet numbers) and
complex data structures (e.g., FIFO queues of packets) made the state space of
the model extremely huge. One single state needs approximately 400 bytes to be
represented. Furthermore, the state space has a heterogeneous structure which
prevents its compact representation using symbolic techniques based on BDDs.

We have been interested to verify the clock synchronization protocol i.e., the
application used to synchronize the clocks of all devices within the system. The
challenge is to guarantee that the protocol maintains the difference between a
master clock (running on the server) and all the slave clocks (running on devices)
under some bound. A first major difficulty is network communication which
makes all applications interfering and therefore requires exploration of the whole
model. A second difficulty comes from the time granularity i.e., one microsecond,
needed to perform faithful observations. These two factors significantly restrict
brute-force simulation approaches: 1 second system lifetime needs approximately
10 minutes simulation time with microsecond precision on the BIP model.

To overcome these difficulties, we proposed in [22] a new verification technique
which combines random simulation and statistical model checking. We have been
able to derive exact bounds on clock synchronization for all devices in the sys-
tem. We also computed probabilities of clock synchronization for smaller values
of the bound. Being able to provide such information is of clear importance,
especially when the exact bounds are too high with respect to user’s require-
ments. In particular, we have shown that the bounds strongly depend on the

Rigorous System Design: The BIP Approach 17

position of the device in the network. We also estimated the average and worst
proportion of failures per simulation for smaller bounds i.e., how often the clock
synchronization exceeds the given bound on some arbitrary run.

4 Discussion and Future Work

We have shown that the BIP component framework, and the associated design
flow and supporting tools allow rigorous and effective system design. A key idea
is the application of correctness-preserving source-to-source transformations to
progressively refine the application software model by taking into account hard-
ware architecture constraints as well as coordination mechanisms used for the
collaboration between processors in a distributed implementation. Verification
is used to check essential properties as early as possible in the design flow. To
avoid complexity limitations, the verification process is incremental and compo-
sitional. When the validity of a property is established for a model, the property
will hold for all the models obtained by transformation. The complexity of the
transformations is linear with the size of the transformed models. So correct-
ness is ensured at minimal cost and by construction thus overcoming obstacles
of design flows involving different and not semantically related languages and
models.

The use of a single modeling framework allows to maintain the overall co-
herency of the design flow by comparing different architectural solutions and
their properties. This is a significant advantage of our approach. Semantically
related models are used for verification, simulation and performance evaluation.
Designers use many different languages e.g. programming languages, UML, Sys-
temC, SES/Workbench. Code generation and deployment is often independent
from validation and evaluation.

Clearly, using a single modeling framework does not suffice. An advantage of
BIP over other existing frameworks is its expressiveness. It uses a few powerful
primitives to express coordination between components. Architecture is a first
class concept and can be characterized as the combination of interactions and
priorities. It can model in a natural and direct manner both timed and untimed
behavior, synchronous and asynchronous. Using less expressive frameworks e.g.
based on a single composition operator, would lead to intractable models. For
instance, BIP directly encompasses multiparty interaction between components.
This type of coordination would require the development of complex coordina-
tion mechanisms for frameworks supporting only point-to point interaction. This
would lead to models with complicated coordination structure and would make
the whole design flow intractable. In particular for such models establishing a
clean refinement relation between the different models would be compromised.

Empirical design flows are limited to simple execution models and execution
platforms involving a few processing elements. We believe that rigorous and
automated design flows are crucial for system development especially when the
target architecture is distributed and/or heterogeneous.

18 A. Basu et al.

References

1. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Systems in
BIP. In: Proceedings of Software Engineering and Formal Methods SEFM 2006,
pp. 3 –12. IEEE Computer Society Press (2006)

2. Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers (1993)

3. Burns, A., Welling, A.: Real-Time Systems and Programming Languages, 3rd edn.
Addison-Wesley (2001)

4. Henzinger, T., Sifakis, J.: The Embedded Systems Design Challenge. In: Misra, J.,
Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,
Heidelberg (2006)

5. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

6. Bliudze, S., Sifakis, J.: A Notion of Glue Expressiveness for Component-Based
Systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 508–522. Springer, Heidelberg (2008)

7. Thiele, L., Bacivarov, I., Haid, W., Huang, K.: Mapping Applications to Tiled
Multiprocessor Embedded Systems. In: Proceedings of Application of Concurrency
to System Design ACSD 2007, pp. 29–40. IEEE Computer Society (2007)

8. Fleury, S., Herrb, M., Chatila, R.: GenoM: A Tool for the Specification and the
Implementation of Operating Modules in a Distributed Robot Architecture. In:
IROS 1997, pp. 842–848 (1997)

9. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional Verification for
Component-based Systems and Application. In: Cha, S(S.), Choi, J.-Y., Kim, M.,
Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer,
Heidelberg (2008)

10. Bensalem, S., Bozga, M., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.: Incremen-
tal Component-based Construction and Verification using Invariants. In: FMCAD
2010, pp. 257–266. IEEE (2010)

11. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-Finder: A Tool for Com-
positional Deadlock Detection and Verification. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

12. Bourgos, P., Basu, A., Bozga, M., Bensalem, S., Sifakis, J., Huang, K.: Rigorous
system level modeling and analysis of mixed hw/sw systems. In: Proceedings of
MEMOCODE, pp. 11–20. IEEE/ACM (2011)

13. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level
component-based models to distributed implementations. In: Proceedings of Em-
bedded Software EMSOFT 2010. ACM (2010)

14. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley
Longman Publishing Co. Inc., Boston (1988)

15. Bagrodia, R.: Process synchronization: Design and performance evaluation of dis-
tributed algorithms. IEEE Transactions on Software Engineering 15(9), 1053–1065
(1989)

16. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: Automated
Conflict-free Distributed Implementation of Component-Based Models. In: Pro-
ceedings of Industrial Embedded Systems SIES 2010. IEEE (2010)

17. Batcher, K.E.: Sorting Networks and Their Applications. In: Proceedings of AFIPS
1968 (Spring), pp. 307–314 (1968)

Rigorous System Design: The BIP Approach 19

18. Combaz, J., Fernandez, J.C., Sifakis, J., Strus, L.: Symbolic quality control for
multimedia applications. Real-Time Systems 40(1), 1–43 (2008)

19. Basu, A., Gallien, M., Lesire, C., Nguyen, T.-H., Bensalem, S., Ingrand, F., Sifakis,
J.: Incremental Component-Based Construction and Verification of a Robotic Sys-
tem. In: ECAI 2008. FAIA, vol. 178, pp. 631–635. IOS Press (2008)

20. Basu, A., Mounier, L., Poulhiès, M., Pulou, J., Sifakis, J.: Using BIP for Modeling
and Verification of Networked Systems – A Case Study on TinyOS-based Networks.
In: Proceedings of Network Computing and Applications NCA 2007, pp. 257–260.
IEEE (2007)

21. Basu, A., Bonakdarpour, B., Bozga, M., Sifakis, J.: Brief Announcement: Incre-
mental Component-Based Modeling, Verification, and Performance Evaluation of
Distributed Reset. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 174–175.
Springer, Heidelberg (2009)

22. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical
Abstraction and Model-Checking of Large Heterogeneous Systems. In: Hatcliff, J.,
Zucca, E. (eds.) FMOODS 2010. LNCS, vol. 6117, pp. 32–46. Springer, Heidelberg
(2010)

Natural Born Computing

Peter J. Bentley

Department of Computer Science, University College of London,
Malet Place, London WC1E 6BT, UK

p.bentley@cs.ucl.ac.uk

Abstract. Nature is not afraid of complexity. Her solutions exploit the
unpredictable and messy nature of reality. But our technology seems to
be very different. Instead of exploiting its environment it is more fre-
quently damaged by that environment. In this article I describe how
we can learn from natural systems and create new technologies that ex-
ploit natural principles. I describe our investigations into the technolo-
gies of the future – devices that can adapt, be fault tolerant, and even
assemble themselves. Examples of a self-repairing robot and physical
self-assembling systems are shown, and I describe my systemic computer
concept which aims to be the first parallel fault tolerant computer that is
based on general biological systems. Through examples such as these, I
argue that while we may never be able to predict exactly what a natural
system may do, that does not prevent such systems from being extremely
useful for us – after all, we are unpredictable natural systems ourselves.

1 Introduction

For several years now I have been troubled by something. I’ve had a strange
feeling of wrongness.

It is similar to the uncomfortable feeling you might have if a stranger has come
into your home and moved all your belongings around. Maybe they exchanged
your favourite appliances with over-complicated alternatives. They also replaced
your food with brands and varieties that you don’t buy because you find them
hard to digest. Despite feeling ill at ease, you continue to live there and most of
the time everything seems to work, but now it is clumsy. Inelegant. Awkward.
You find certain activities – perhaps operating the satellite TV box or cooking
a meal – take much longer than they should. The food is good quality, but you
can’t make it taste nice. Sometimes you trip over things that shouldn’t be there.
Or you feel for a light switch, which is somewhere else.

If you have an artistic flair, then it is the same feeling you have when you
look at a painting that is unbalanced, or a photograph that is poorly cropped.
Perhaps the colours clash or seem ugly. It might be a beautifully executed piece
of work; the technical ability of the artist is of a high standard. But somehow you
don’t like it. The picture looks wrong in your eyes. You see the world differently
to the artist and you cannot agree with the interpretation you’re looking at.

To begin with, this feeling of wrongness is more of an intuition. You know
something could be improved, but you’re not quite sure what, or how. But the

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 20–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Natural Born Computing 21

longer you live with the feeling, the more you begin to pinpoint the things that
make you uncomfortable – the reasons for your troubled feeling.

My feeling of wrongness is exactly like this. However I am a scientist, so my
feeling is tied up with my perception of science. I’m a computer scientist, so
my perceptions are also biased and oriented by an understanding of information
processing. I’m also a computer scientist who works with many other scientists of
different disciplines, often modelling complex systems, so my views are grounded
by the knowledge that it is very difficult to understand, communicate, and exploit
the information we gather about our complex world.

It was a grey day some years ago when I was able to crunch my feet in
the heart of the issue. I was walking on Hasting Beach in the UK. It was not
perhaps the prettiest stretch of beach in the world, with concrete on one side,
grey sea on the other, and no sand at all. Just pebbles everywhere. Each wave
sighed onto the shore, and hissed as it retreated over the pebbles. On that
day I crunched my way over the undulations of the beach, my feet sending
small avalanches of stones down the slope towards the latest frothy wave. As I
walked, I noticed something fascinating. There was order arising from the chaos
on that beach. The pebbles lay in regular stripes, each stripe containing stones
of a similar size. But the small stones were not closest to the waves and the
largest furthest away. Instead there were actual stripes of large, small, large,
small pebbles running parallel to the waves. When I dug down with my hands I
found that these strange stripes of order were not just some surface phenomenon
– they continued to preserve their ordered sorting as deep as I dug.

I cared about these stones because I recognised the difficulty of duplicating
what I was observing. Sorting is not a simple process. If I gave you a few mil-
lion numbers and asked you to sort them into order, or to cluster them into
several groups of most similar numbers, you would have to spend hours and
hours comparing each number with a large proportion of the other numbers in
order to figure out where it should be placed. Sorting and clustering are very
common processes needed for many kinds of computation – any calculation that
needs to order, rank or judge values needs this form of process. That includes
our financial systems, voting, distribution, medical, telecommunication, betting,
examinations. . . it is a long list. The speed that we can sort or cluster differ-
ent values also depends on the number of values. When the number reaches a
few hundreds of billions, even our fastest computers take some time to complete
the task. So looking at a beach containing trillions upon trillions of pebbles –
way too many pebbles to even count – but with every pebble carefully sorted
and clustered, I was impressed. This was computation on a scale grander than
anything I was used to seeing.

To me on that day, the hiss of the retreating wave became the sound of a
mechanical computer. As I crunched through the stones I was nothing more
than a minor bug in the computer – an unwanted disruption to the computa-
tion being performed by the sea and stones. Even now on Hastings Beach, every
new wave is performing trillions of new calculations a second as it moves the
small and large stones in relation to each other. Every sigh of a new wave brings

22 P.J. Bentley

energy to move larger pebbles, every hiss is the sound of millions of tiny peb-
bles clicking past each other in the retreating water. Every movement of every
stone is as meaningful as the movement of a bead on an abacus. It is a natural
computation, a calculation of a new arrangement of pebbles sorted into groups
according to their respective sizes. Much more complex than simple arithmetic,
these calculations have been carried out on all the pebbled beaches of the world,
every second, for billions of years. Waves have been moving stones and sorting
them in rows of large and small, large and small, that could not be duplicated
by the hands of all the people in the world. Indeed, the sorting and clustering
of so many unique objects could not be achieved in the same time by all the
computers in the world working together.

But what kind of a technology is made from stones and waves? We can make
an abacus with stone beads, but the beach is surely no kind of computer we
are used to. This “Hastings Beach device” is huge, it has no software to tell it
how to behave, and its data storage system – if you can call it that – comprises
different sized pebbles. How do you convert your MP3 file into pebbles? Or how
can your MP3 player read a beach of pebbles? There is also no intentionality
behind the computation of the waves and pebbles. No-one has assigned this
task and no-one is reading the result (at least not until I “read” the beach on
that day). So using this conventional way of thinking, then of course Hastings
beach is not a computer: it is not designed by anyone to do anything, it doesn’t
do anything especially useful to us, it is not precise or reliable in its method of
storing information (if it can really be said to represent or store any information),
and it is largely random in the order in which it “processes” its information.

Something else behaves in a very similar way. Something that has no software
to tell it how to behave. Something that does not use the shape of stones, but
the shapes of molecules and cells to store information. Something that really
can store an (approximation of an) MP3 file in those chemicals and cells, and
which can play back that file so that it is recognisable. No-one designed it, or
assigned it any of its specific tasks. There is no intentionality behind the specific
interactions of those tiny cells and molecules. It is not precise or reliable in its
method of storing information, and it is largely random in the order in which it
“processes” its information. It is the human brain.

The idea that a beach could process information is perhaps challenging. But
our brains? Intuitively most of us feel that our brains are actually quite good at
processing information. After all, they can store numbers, perform mathematical
operations on them and produce a result. A brain can store music and replay
it well enough for its owner to enjoy again a piece of music that they’d heard
earlier. It clearly can do many of the same things that a conventional computer
can do, and indeed many things that are beyond the abilities of our computers.
We have no formal way of describing how and where that information is stored
and manipulated, but that does not mean that the human brain does not process
information. It just means that at present our understanding and language is
not good enough to describe how the brain works.

Natural Born Computing 23

The human brain is not the only natural “device” that can process informa-
tion. There are also many other examples in the natural world of living systems
that appear to compute. A colony of ants is able to make highly accurate calcu-
lations about which paths to take from the nest to a new food source, minimising
the energy needed for the colony as a whole. Their ability to find the shortest
path emerges from collective intelligence: the ants communicate with each other
by laying smelly pheromone trails on the ground, and by following the smelliest
paths. The shortest paths are self-reinforcing; in the same amount of time 100
ants running to and from the nest on a long path will leave less concentrated
pheromone compared to 100 ants running on a short path, so the shorter path
wins. [1]

Like sorting or clustering, finding the shortest path is known to be a complex
and time-consuming form of computation. Yet somehow the randomised running
of the ants in a physical environment combined with the ability to lay scent and
smell scent is sufficient for them to perform this calculation more effectively than
our computers can. (Ant colony optimisation algorithms are used to improve the
ability of our computers by copying the process used by ants [1].) But where in
the living ant colony is the information? When and how is that information
processed? Again, these concepts are fuzzy and ill-defined, despite their seeming
effectiveness.

There seem to be no end of natural mechanisms that are capable of extraor-
dinary feats of computation. Brains, immune systems, embryogenesis, evolution,
crystal growth, swarming insects, flocking birds, bacterial growth, self-replicating
systems, chemical reactions, quantum and DNA interactions. The capabilities
of all of these have been widely recognised by computer scientists for several
decades. In fact, all have their own fields of research in computer science. Thou-
sands of scientists, hundreds of conferences and tens of thousands of scientific
papers are all devoted to understanding and exploiting the computational power
of natural systems. This tremendous research effort is built on a shared founda-
tion: the belief that nature can teach us important lessons that could improve
our human-designed computers. [2]

It turns out that the more you examine the natural world, whether looking
at quantum scales, atomic, cellular, organism, species, ecological, planetary or
universe scales, you can find more examples that seem to outperform our de-
signs. Natural computation surrounds us, is contained within us and comprises
us. All of these systems, regardless of scale, are capable of feats of computation
that completely outclass our electronic computers, and all these systems seem
to behave in similar ways. Yet none of them work in the same way as our com-
puters. Bizarrely, there seem to be more similarities between the working of the
human brain and Hastings Beach, than between the way the brain works and the
workings of a conventional computer. If we were drawing a family tree showing
relatedness, then the human brain would be a far distant cousin to Hastings
Beach, and a fairly close relation to an ant colony. Conventional computers (and
most current man-made technology) are more like aliens from another planet –
it is hard to see how they are related to natural systems at all.

24 P.J. Bentley

This is what troubles me.
If everything around us appears to be capable of performing natural computa-
tion, then why doesn’t anything in the natural world resemble our computers?
Have we filled the world with technology that all follows the wrong design? Or
have we created in a few decades something that is superior to billions of years
of physical laws and evolution? If we could understand the differences between
natural computation and manmade computers, would we then be able to apply
the mathematics and theorems of computer science to everything else? Would
we use our understanding of natural systems to change computers, technology
or even science itself?

2 Origins

Much of our conventional computer architecture came from the researchers at
the Moore School of the University of Pennsylvania [3]. When von Neumann
wrote the “First Draft of a Report on the EDVAC” [4] which summarised this
work, he scribbled down words that would be used by computer designers for
decades to come. The architecture that he described was to form the blueprint
of most modern computers. But in addition to the engineering constraints of
the time and his mathematics and physics background, von Neumann’s words
showed just how his thinking was influenced by biology. The key part of the
document (where he defines the architecture of a general-purpose computer) is
fascinating, for it is full of biological terms:

“In analyzing the functioning of the contemplated device, certain classificatory
distinctions suggest themselves immediately.

First: Since the device is primarily a computer, it will have to perform the
elementary operations of arithmetics most frequently. These are addition, multi-
plication and division. It is therefore reasonable that it should contain specialised
organs for just these operations. . . a central arithmetic part of the device will
probably have to exist and this constitutes the first specific part: CA.

Second: The logical control of the device, that is the proper sequencing of its
operations can be most efficiently carried out by a central control organ. . . this
constitutes the second specific part: CC.

Third: Any device which is to carry out long and complicated sequences of
operations (specifically of calculations) must have a considerable memory. . . this
constitutes the third specific part: M.

. . .The three specific parts CA, CC and M correspond to the associative neu-
rons in the human nervous system. It remains to discuss the equivalents of the
sensory or afferent and the motor or efferent neurons. These are the input and
the output organs of the device.” [4 pp. 3 & 6]

It is no coincidence that many of the other early pioneers in computing also
had great interest in biology. Turing actively researched a wide range of bio-
logical topics such as neurology, morphogenesis, physiology and intelligence. He
regarded biology and human brains as computational devices and according to
one writer: “he became involved in discussions on the contrasts and similarities

Natural Born Computing 25

between machines and brains. Turing’s view, expressed with great force and wit,
was that it was for those who saw an unbridgeable gap between the two to say
just where the difference lay.” [5]

Claude Shannon was also fascinated by the ability of brains to learn and adapt
– something difficult to achieve with programmed computers. To investigate
learning, he constructed a robot mouse, which could navigate through a maze
and learn its path [6]. This was one of the first examples of a learning robot ever
created. He also created a simple chess-playing machine. [7]

Shannon’s work and students went on to influence the world of computers to
an extraordinary degree1. Sadly von Neumann and Turing died much younger
and were not able to continue their vision of computing. It is fascinating to re-
mind ourselves of the final works of von Neumann, published posthumously as
The Computer and the Brain [8]. In this short book, von Neumann talks about
the future of computing, and discusses both analogue and parallel processing.
Other posthumous work appeared as the book: Theory of self-reproducing au-
tomata [9] where von Neumann introduces cellular automata and advanced ideas
such as self-replication. It is perhaps ironic that today the sequential architecture
described in the “First Draft of a Report on the EDVAC” has become known as
the von Neumann architecture. Given the direction of his work and the fact that
the biggest challenges facing today’s computer scientists revolve around parallel
and distributed computing, perhaps Jonny von Neumann would have preferred
to be known for his ideas on parallel and bio-inspired computers.

3 Embodied Computation

Traditional design is all about prediction. We predict what a device or piece of
software will be used for, how it will be used, and what problems it might en-
counter, and then we design a solution accordingly. There are some good reasons
why we try to anticipate environmental conditions and design reliable solutions
that can survive, whether that environment is made from other programs, com-
puter hardware or the physical world.

Nature also anticipates possible problems in her solutions. Millions of years
of trial and error have pushed evolutionary change towards organisms that are
adaptable, fault tolerant and tightly coupled to their environments. Nature’s
approach is one of brute force – try everything possible and exploit whatever
works, however bizarre. It turns out that this is a highly effective way to solve
problems.

Modeling is one approach we use when designing robots. But modeling the
world with any accuracy is difficult. Modeling how an autonomous robot will
react in an unseen environment is virtually impossible. Robot controllers that
rely on such modeling are brittle and susceptible to catastrophic failure. Expe-
rience suggests that the goal of autonomous, self-sustaining robots is unlikely
1 Such as AI (he supervised Marvin Minsky and helped set up the Dartmouth College

conference) and graphics (he supervised Ivan Sutherland), in addition to his own
works in cryptography and information theory [3].

26 P.J. Bentley

to be reached by predicting every eventuality and designing solutions for every
problem. The complexity of interactions between robot and environment mean
that there will always be an unforeseen problem that results in mission failure.
Instead, a better way to achieve long-term survival of robots (and potentially
other technologies as well) is to learn from nature and make them innately adap-
tive. Every part of their form and function must enable them to change, to alter
themselves. They must learn how to move themselves in unknown environments,
whether damaged or not. They must adapt to their environment and increase
their ability to transmit or receive signals amongst themselves. They must be
embodied in their environments.

Fig. 1. A photograph of the self adaptive snake used for embodied evolution

Fig. 2. Maximum fitness (bold) and average fitness plotted at each generation. The
robot controller was evolved until maximum fitness remained stable for 7 generations,
then was damaged randomly by disabling an actuator. Subsequent evolution shows
recovery by the robot. The snake learns to slither using its remaining muscles.

One example of an attempt at such a robot was the self-adaptive snake at
UCL [10], [11], [12]. To provide more flexibility in movement, shape memory
alloy was exploited for actuation, and in later versions a genetic algorithm was
used in combination with a 3D printer to evolve and create a robot snake body

Natural Born Computing 27

with the desired physical properties. A genetic algorithm was also used to evolve
the controller for this physical system, under different environmental conditions.
Embodied evolution creates and tests controllers in the physical device, in real
environments, giving it an innate adaptability. This adaptability was assessed
by repeatedly damaging the robot snake and measuring the degree of recovery,
see figure 2.

The key feature of the approach is that no simulations are employed. Instead,
each evolving control program is uploaded into the actual physical device in its
real environment, and performance assessed “in the field”. True fitness measures
of candidate solutions (in this case corresponding to the distance travelled by the
robot) are then used by the evolutionary algorithm to create control programs
designed to exploit the actual properties of robot and environment at the time
they are occurring. This on-the-spot adaptation is a true example of embodiment
– the robot affects its environment by moving in that environment, while the
environment plays an immediate and important role in affecting the device and
its performance, and thus affecting the subsequent control of the device in the
immediate future. It is not necessary for a robot control program to “know” the
status of the robot or of the environment – all that is necessary is that the robot
be flexible enough to adapt, and some measurable performance metric can be
obtained. An evolutionary algorithm is then able to exploit whatever exists and
is controllable in order to make the device work.

4 Physical Information

Embodied computation that exploits the true properties of our world as part
of its solution is one fundamental difference between natural computation and
conventional “von Neumann” computers. Another difference is the “blood” of
the computer – information.

Since Claude Shannon’s breakthrough in the 1940s [13], [14], we digitise all
our data. We turn all our information into long lists of the smallest possible unit
of information: the binary digit, made from 1 or 0. There are many advantages
for error correction and reproduction of information, but this is the most basic,
elementary form of information possible. But imagine if our transport systems
worked using the minimal description of matter. They would turn us into long
strings of subatomic particles and then move each particle at a time to our
destination, reassembling us at the other end. It is the slowest, most inefficient
possible way of moving us! We chose to use binary for our information because it
is the easiest. There are more accurate ways of storing information (the analogue
wiggles of audio on a vinyl record comprise a higher-fidelity recording of audio
compared to the digitized audio on a CD). It is just harder to transmit, remove
noise from and store analogue information, so we chose the easy option.

Now look at information in natural systems. Nature seems to use the oppo-
site idea – instead of using the minimal description of information, it uses the
maximal description. It embeds meaning in morphology, interaction and con-
text. The right shape, interacting in the right way, in the right environment,

28 P.J. Bentley

has a very rich informational content. Use the same principles at all scales, from
subatomic to molecular to cellular to organism and upwards, and vast amounts
of information can be exploited and manipulated in parallel. The same shapes
can mean different things at different times in different environments. Nature
also has error correction – bad genes are corrected, bad cells are replaced, bad
individuals in societies are corrected or removed. Nature also has a far better
ability to store and reproduce information compared to our digital technology.
In your body you have 100 trillion cells, each one containing a perfect copy of
your genome (except those deliberately designed to be different). Yet nature is
not binary.

Fig. 3. Information is mapped to physical components (top) which self-assemble into
desired forms (bottom)

To investigate exactly how information can be expressed in morphologies, an-
other ongoing project at UCL and Calgary creates components with morpholo-
gies that enable them to self-assemble into a desired form [15], [16], [17]. The
method translates self-assembly rule sets into physical objects, which are fabri-
cated using rapid prototyping. The resulting mechanical components are placed
in a jar of fluid on an orbital shaker, their environment. The energy and physical
properties of the environment, along with the physical properties of the compo-
nents (including complementary shapes and magnetic-bit patterns, created using
permanent magnets to attract and repel components) enable the self-assembly
process to create emergent target structures with three-dimensional symmetric
and asymmetric features.

The successful results demonstrate how physically encoded information can
be programmed by hand or evolved by computer, in order to obtain physical
self-assembling systems in three dimensions. They also illustrate a little of how

Natural Born Computing 29

natural information works: we must define the right environments, the right
component morphologies and the right adhesive properties for the correct infor-
mation processing (self-assembly) to take place. Natural information is context
sensitive – place the same components in a different environment, and we obtain
a different result.

5 Systemic Computation

With these natural processes in mind, and the differences between natural and
conventional computations clearly evident, the question arises: what would a
“natural computer” look like? What if we had a computer that was parallel,
stochastic, distributed? What if its processing was the result of interacting “com-
ponents” of some abstract type? What if meaning was conditional on the envi-
ronment or context in which the interactions took place? Could such a computer
be built and could we program it?

To address these questions, my research at UCL has resulted in Systemic
Computation – a model of computation designed to have as many of these natural
properties as possible [18], [19]. It is also a language; a way of writing down
natural systems in the world around us. It was designed to be as simple as
possible.

The first problem is how to represent things. What things exist in the natural
world and how do we represent them? Clearly, there appears to be a lot of diverse
things around us. Big things, small things. We have a lot of different names for
all these things: planet, neuron, virus, water molecule, helium atom, neutron.
But it is hard to talk about everything at the same time if it has all got different
names. So in Systemic Computation we call everything by the same name. From
now on, everything is a “system.” It doesn’t matter how big or how small, what
it is made from, whether it is alive or dead. Everything is a system.

We all know that the things (systems) around us seem to be made from
other, smaller things (systems). You are an organism (a system) made from
several major organs contained within another organ called the skin (systems
within a system). Your organs are made from cells (systems), which are made
from molecules (systems), which are made from atoms (systems), which are made
from subatomic particles (systems), and so on. There appears to be an embedded
hierarchical arrangement of systems. Systems made from systems made from
systems.

This hierarchical arrangement is not purely subjective. Each level of scale can
be separated from the higher and lower level by degrees of interaction. So planets
tend to interact at a planetary scale. While they are ultimately made from
subatomic particles, their scale means that they affect vast numbers at a scale
similar to them. (At this scale, the combined gravity is more significant compared
to many of the smaller and larger scale interactions; at other scales, different
interactions predominate.) Animals tend to interact mostly with animals, plants
or other features around their scale – one animal is usually not able to modify
individual atoms or entire planets in any controlled or significant way. Cells tend

30 P.J. Bentley

to interact mainly with cells; genes and proteins with other genes and proteins,
and so on. So systems in the universe seem to form “clumps”at similar scales.
These structures are self-organising and appear to be caused by the laws of
physics, nothing more or less.

At each level of the hierarchy of organisation, systems are also all limited
by boundaries or scopes. So the large bodies in our solar system interact when
they are within each others’ gravitational fields. If our Moon were ever pushed
significantly outside the scope of the Earth’s gravitational field, then it could no
longer interact with the Earth in any significant way. Species on Earth are often
limited by geographical constraints, so if one member of a species was to find
itself on another continent with no way of returning, then it would be outside the
boundary that contained its species and it would no longer be able to interact
with other members of its species. The cells within our bodies can only interact
if they remain within our bodies. Remove a cell and it cannot behave as a part
of you any more.

If we draw a typical arrangement of systems at just one level of the hierarchy,
then it might appear as illustrated in fig. 4.

Fig. 4. A hierarchy of systems

Every system is a circle with two little arms. They are numbered for reference,
but the numbers are not important. Also, the absolute positions of these systems
are not important. Think of them as being like mathematical sets where all that
matters is what is inside or outside. So systems 1, 2 and 3 are inside the scope of
system 4, which is itself within the scope of system 12. System 9 is outside the
scope of system 4, but within 12. System 15 is outside all scopes. The scope of
a system is also a system, because that is the first rule: everything is a system.

Perhaps in this picture we are looking at several cells contained within bound-
aries formed by the organs, which are within the skin of an organism. Or perhaps

Natural Born Computing 31

we are looking at molecules that are within range of each others’ electromag-
netic charges. Or maybe we’re looking at probability distributions of subatomic
particles. The exact level doesn’t matter – we can use the same language, and
see similar structures.

The introduction mentioned some of the important properties of natural sys-
tems, so we already know how these systems behave. We know their behaviour
has a significant stochastic element – there is randomness in whatever these
things do. We know they behave asynchronously – there is no inherent coordi-
nation underlying their function. They do things in parallel, so while they may
not all exhibit a specific behaviour at the same time (which would then be syn-
chronous), there is nothing to stop them from doing their thing within the same
period of time that others do something.

Clearly these hierarchies of systems are autonomous – they need no intelligence
to organise them. They also seem to be homeostatic and fault tolerant. They “like”
being in their hierarchies and in their scopes so much that they will restore them-
selves if damaged (even atoms “prefer” to have a certain number of electrons and
neutrons and will grab more or discard extra if the number is not in balance). Sys-
tems are definitely robust, for example, you don’t normally see gravity “crash” or
electromagnetism “break. ” There are definitely a lot of systems in the universe,
with no sign of a central controller, so we can call them distributed. There appears
to be almost no limit to the number of hierarchies or the different arrangements
of scopes, so our systems are open-ended and complex.

Every system is approximate. Although not shown in fig. 4, every system
is usually made from other systems, so you could substitute each system with
one or more other systems if they are exactly equivalent. So we could choose
to talk about you being a single system, or we could talk about you being a
collection of tens of systems (organs), or of trillions of systems (cells). This
means whenever we use this language we must choose the level of abstraction
(the level of the hierarchy) that we wish to focus upon, and we always recognise
that the description is an approximation. There is probably always going to be
a different way of expressing each system so each could always be replaced with
a different set. The system is a way of talking about and summarising reality
while recognising that the words are never absolutely right.2

Scopes are a little more complicated than we’ve discussed so far. Every system
can act as a scope, where that scope behaves like a field – other systems may be
partially or fully within that scope. Systems should only be able to interact if
they are in the same scope as each other. (Or more correctly, the interaction of
systems is a function of their membership of the same scope, so they might have
a higher probability of interacting the more they share a greater membership.)
Intuitively this means that things within the same region or boundary are more
likely to interact, while those separated from each other are less likely. While
systems are drawn as circles as shown in fig. 4, the field may be any shape or

2 Even the idea that a system is completely separable from other systems may be ap-
proximation; like two flowers from one plant, systems may correspond to underlying
systems that are shared amongst the higher-level systems.

32 P.J. Bentley

have any properties. So we may wish to talk about gravitational field systems,
or probability distribution systems, or human skin systems. In all cases we’re
referring to a kind of boundary with some internal properties that affect the
internal systems, external properties that effect external systems, and potentially
fuzzy edges. This means every system may “overlap” every other system, even if
it is to an infinitesimal degree (or to a very large degree), allowing our systems to
merge with each other (or have partial memberships of each other). Systems can
thus affect each other and be affected by each other to a large degree, making
them very embodied. For example if a couple share a house then the scopes of
the two people overlap, so they are likely to be able to interact with the same
artefacts (that are in both their scopes) and with each other.

It is clear that all systems do something. Maybe they just move. Maybe they
pull or distort. Maybe they alter other systems. So in our systems-based language
we have to have a notion of behaviour. If two systems interact then they will
transform each other at the same time. This means that the first system causes
a change to the second and the second causes a change to the first – circular
causality. We only need to think about two systems interacting at a time. (Even if
more than two interact at precisely the same instant that is the same as multiple
sets of two systems interacting in parallel.) When you think about it, that is all
behaviour can ever be in the universe: two systems interacting. Nothing can
change until some form of interaction occurs, whether we call that interaction a
collision, a crash, a conversation, an attraction, or a reaction.

As soon as we have a concept of behaviour causing change, then we have
to think about what is being changed. Clearly systems have properties in the
universe: they may have specific spatial locations and shapes. These properties
may be changing over time so they may have speed, acceleration, compression,
stretching or deformation. Looking at higher in the hierarchy and systems cor-
responding to cells may have considerably more complex properties; systems
corresponding to organisms may have massively complex properties. Whatever
those properties are, they all derive from and comprise systems.

Their properties also help determine the result arising from interactions. So
a baseball moving at 50mph that hits a stationary glass window will transform
the properties of both ball and window. After their interaction, the ball will no
longer be travelling at 50mph and the window may have a rather more complex
shape and many types of movement. (After the interaction it may be preferable
to move down in the hierarchy of description and talk about the systems that
make up the glass, as it may no longer make so much sense to regard it as one
system with a very complex broken shape.) But a foam ball moving at 50mph
that hits the same glass window would result in a very different transformation
of properties. So in our systems, information appears to be intimately linked
with behaviour. Both information and behaviour affect and are affected by all
interactions. There is no binary information stored and manipulated in one place,
separate from everything else. We cannot separate data and function; we cannot

Natural Born Computing 33

distinguish between message and morphology. Shape, behaviour and information
are the same thing.3

Returning to the example of the broken window, there is one other factor we
need to consider. The environment plays a key part in all interactions. If we were
to move our window underwater and then throw the ball at 50mph towards the
window, the resultant interaction would be hugely different. So the result of any
interaction depends on the two systems that are interacting, and also upon the
context in which that interaction takes place. Since everything is a system, we
can express the context as a system as well.

We all intuitively recognise that the real world is context-sensitive. Even the
fundamental law in most human societies, “thou shalt not kill,” sadly depends
on the context in which this interaction occurs. While the context of normal
society tries to ensure that the killer is significantly penalised as a result of such
a deadly interaction, in the context of warfare the killer may be rewarded after an
identical interaction. When children ask, “what will happen?” we may answer,
“it depends,” because it usually does. The result of any interaction depends on
its context.

While it could be argued that there is no need to describe context explicitly
as a system (we could replace the context with other interactions occurring in
parallel), we are limited by what we can express, so the context is like a summary
of those parts of the environment that significantly affect the current interacting
pair of systems, allowing us to ensure we do not omit anything important. It
also means that now any system can potentially take the role of a context and
affect how two other systems interact (that is why we draw systems with two
little arms, see fig. 4).4

Finally, we should ensure our systems are consistent with existing knowledge.
All behaviours should follow those observed in the universe. Systems cannot be
destroyed or created from nothing, only transformed. (We may interpret systems
differently perhaps by substituting one set of systems with another set, but they
would still describe the same feature, so this is not a transformation of any
system, just of our representation of it). Any system can be a context, a scope,
an interacting system or any combination at once.

3 Its interesting to note that Daniel Tammet, a famous sufferer of Asperger’s syndrome,
agrees. He believes numbers have colours, shapes, and textures, and by manipulat-
ing those features in his imagination he is able to perform extraordinary mental
calculations. [20]

4 The more astute reader will have noticed that if scope and context are both systems,
then they must be equivalent. This does indeed appear to be the case: a scope
affects the outcome and probability of an interaction just as a context does, and
by clustering systems according to their contexts we would organise them just as
scopes do. After all, everything is a system. Nevertheless, even if scope and context
systems may refer to identical phenomena in some cases, it is often easier and useful
to talk of scopes and contexts as though they are different, as they correspond to our
everyday experiences more. Scopes are useful when discussing information: position,
topology and mutual relationships. Contexts are useful for behaviours, changes, and
transformations. In mathematics, they are all, of course, functions.

34 P.J. Bentley

These notions comprise this new computational language. But what has any
of this to do with computation?

The answer comes with the final rule: computation is transformation. At a
single stroke, we turn everything imaginable into an entity that can represent
information and be instrumental in the manipulation of that information. Ev-
erything. We can control how the computation occurs by modifying the nature
of the interacting systems, the context in which that interaction occurs, and the
scopes that constrain the interactions.

So we can talk about neurons interacting in the context of the chemical and
cellular structure of the brain. By interacting, the neurons change each other.
Change the properties of the neurons, and the results of their interaction changes.
Change the context (introduce a different chemical environment) and the results
of their interaction changes. The “wires” that connect the neurons (axons and
dendrites) are the scopes – they determine which neuron can interact with which
other neuron. Change the scopes and you change the wiring (you alter the or-
ganisation of the neural network). Or we can talk about ants interacting in the
context of their environment. The scopes of an ant include how far it can sense
(see or smell) or move. Two ants may greet each other, help each other carry
an object, or many other interactions depending on the current state of the
ants and the context of their interaction. Or we can talk about pebbles inter-
acting on Hastings Beach, transforming their relative positions in the context
of a wave. The scope of the pebbles is determined by their physical proximity –
move them apart and they can no longer interact. Place them adjacent to each
other, but change the properties of the pebbles or of the wave and the result of
the interaction will be different.

We have a lot of different words for objects, interactions, organisations, and
environments, but they can all be expressed using this single overarching lan-
guage of systems, called Systemic Computation. When we construct a machine
that operates according to these systemic computation rules, the resulting sys-
temic computer has all of the natural properties we are interested in mimicking.5

The right kinds of systems are together also provably Turing Complete.
Our work continues in this area, with a calculus, graph notation, a program-

ming language and compiler [18], [21], Mac and PC simulators [18], [21], a GPU
implementation [22], and most recently an FPGA design [23]. We can make a
natural computer with the properties of biological systems. We’re still learning
how to program it.

6 Summary

Our world seems to be capable of astonishing feats of computation. Even a
beach of pebbles can do better than our best sorting algorithms. But the best
examples of natural computers are inside our own skulls. We are natural born
computers. Our brains are superior in most respects to every computer ever
5 Thanks to Dr Erwan Le Martleot who has spent several years of research for his

PhD proving this exact point.

Natural Born Computing 35

made. We may not be perfect at sequential mathematical calculations, but no
human designed artefact can beat natural systems like ourselves for parallel,
stochastic, distributed computation.

The future of computing, as predicted by von Neumann, will be parallel and
distributed. Perhaps by learning lessons from nature we will be able to achieve
this future with the efficiency and reliability of a living system. If we could learn
to combine the advantages of existing technologies with those of natural systems,
our capabilities would be transformed.

References

1. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, London (2004)
2. Kari, L., Rozenberg, G.: The many facets of natural computing. Communications

of the ACM 51, 72–83 (2008)
3. Bentley, P.J.: Digitized, Oxford, UK (2012)
4. von Neumann, J.: First Draft of a Report on the EDVAC. Moore School of

Electrical Engineering, University of Pennsylvania. Developed under contract W-
670-ORD-4926 between the United States Army Ordinance Department and the
University of Pennsylvania (1945)

5. Obituary on Turing in The Times (1954)
6. Shannon, C.: Presentation of a Maze-Solving Machine. Group Interchange. In:

Macy Jr., J. (ed.) Transactions of the Eighth Conference on Cybernetics Founda-
tion, March 15-16, pp. 173–180 (1951)

7. Shannon, C.: Programming a Computer for Playing Chess. Philosophical Magazine,
Ser.7 41(314) (March 1950)

8. von Neumann, J.: The Computer and the Brain: 2 edn. (Mrs. Hepsa Ely Silliman
Memorial Lectures) (2000)

9. von Neumann, J., Burks, A.W.: Theory of Self-Reproducing Automata. University
of Illinois Press, Urbana (1966)

10. Haroun Mahdavi, S., Bentley, P.J.: Innately adaptive robotics through embodied
evolution. Journal of Adaptive Robotics (2004)

11. Haroun Mahdavi, S., Bentley, P.J.: Innately adaptive robotics through embodied
evolution. In: Proc. of Robosphere 2004, the 2nd Workshop on Self-Sustaining
Robotic Systems, November 9-10. NASA Ames Research Center (2004)

12. Mahdavi, S.H., Bentley, P.J.: An Evolutionary Approach to Damage Recovery of
Robot Motion With Muscles. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich,
P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 248–255. Springer,
Heidelberg (2003)

13. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical
Journal 27, 379–423, 623–656 (1948)

14. Shannon, C.: Communication Theory of Secrecy Systems. Bell System Technical
Journal 28(4), 656–715 (1948)

15. Bhalla, N., Bentley, P.J., Vise, C., Jacob, C.: Programming and Evolving Self-
assembling Systems in Three Dimensions. To appear in the Special issue on Engi-
neering Emergence, in the Journal of Natural Computing (2011)

16. Bhalla, N., Bentley, P.J.: Programming Self-assembling Systems Via Physically En-
coded Information. In: Doursat, Sayama, Michel (eds.) Morphogenetic Engineering.
Springer, Heidelberg (2011)

36 P.J. Bentley

17. Bhalla, N., Bentley, P.J., Jacob, C.: Mapping Virtual Self-assembly Rules to Phys-
ical Systems. In: Proc. of the 2007 Conference on Unconventional Computing,
Bristol, July 12-14 (2007)

18. Bentley, P.J.: Systemic computation: A model of interacting systems with natural
characteristics. IJPEDS 22, 103–121 (2007)

19. Bentley, P.J.: Methods for Improving Simulations of Biological Systems: Systemic
Computation and Fractal Proteins. Special Issue on Synthetic Biology, J R Soc.
Interface 2009 6, 451–466 (2009), doi:10.1098/rsif.2008.0505.focus

20. Tammet, D.: Embracing the Wide Sky: A Tour Across the Horizons of the Mind.
Hodder & Stoughton (2009)

21. Le Martelot, E., Bentley, P.J., Lotto, R.B.: A Systemic Computation Platform
for the Modelling and Analysis of Processes with Natural Characteristics. In:
GECCO 2007, pp. 2809–2816. ACM Press (2007)

22. Rouhipour, M., Bentley, P.J., Shayani, H.: Systemic Computation Using Graphics
Processors. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS,
vol. 6274, pp. 121–132. Springer, Heidelberg (2010)

23. Sakellariou, C., Bentley, P.J.: Introducing the FPGA-Based Hardware Architecture
of Systemic Computation (HAoS). In: Kotásek, Z., et al. (eds.) MEMICS 2011.
LNCS, vol. 7119, pp. 179–190. Springer, Heidelberg (2011)

Games and Markov Decision Processes
with Mean-Payoff Parity and Energy Parity Objectives�

Krishnendu Chatterjee1 and Laurent Doyen2

1 IST Austria (Institute of Science and Technology Austria)
2 LSV, ENS Cachan & CNRS, France

Abstract. In this paper we survey results of two-player games on graphs and
Markov decision processes with parity, mean-payoff and energy objectives, and
the combination of mean-payoff and energy objectives with parity objectives.
These problems have applications in verification and synthesis of reactive sys-
tems in resource-constrained environments.

1 Introduction

Two-player games on graphs and Markov decision processes (MDPs) are standard mod-
els for reactive systems. In the analysis of reactive systems, the problem may specify
a goal as a set of desired traces (such as ω-regular specifications), or as a quantitative
optimization objective for a payoff function on the traces. One classical example of
quantitative objective is the mean-payoff objective [15,19]. Recently, the energy objec-
tives (corresponding to total-payoff functions) have also been considered in the design
of resource-constrained embedded systems such as power-limited systems [2,5], as well
as in queueing processes, and gambling models (see also [3] and references therein).
The energy objective requires that the sum of the rewards be always nonnegative along
a trace. Energy objectives can be expressed in the setting of boundaryless one-counter
systems [3]. In recent times, games and MDPs equipped with the combination of a
parity objective (which is a canonical way to express the ω-regular conditions [21]),
and a quantitative objective specified as either mean-payoff or energy condition have
been considered [9,5,6]. Such combination of quantitative and qualitative objectives is
crucial in the design of reactive systems with both resource constraints and functional
requirements [4,9,2,1]. Also the energy parity objective can be viewed as a natural ex-
tension of boundaryless one-counter systems with fairness conditions.

In this paper we summarize the main results about MDPs and games with parity,
mean-payoff, energy, mean-payoff parity, and energy parity objectives. We also present
an improved algorithm to solve MDPs with mean-payoff parity objectives.

2 Definitions

Probability Distributions. A probability distribution over a finite set A is a function
κ : A → [0, 1] such that

∑
a∈A κ(a) = 1. The support of κ is the set Supp(κ) = {a ∈

A | κ(a) > 0}. We denote by D(A) the set of probability distributions on A.
� This work was partially supported by FWF NFN Grant S11407-N23 (RiSE) and a Microsoft

faculty fellowship.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 37–46, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 K. Chatterjee and L. Doyen

Markov Decision Processes. A Markov Decision Process (MDP) M = (Q, E, δ) con-
sists of a finite set Q of states partitioned into player-1 states Q1 and probabilistic states
QP (i.e., Q = Q1 ∪ QP and Q1 ∩ QP = ∅), a set E ⊆ Q × Q of edges such that for
all q ∈ Q, there exists (at least one) q′ ∈ Q such that (q, q′) ∈ E, and a probabilistic
transition function δ : QP → D(Q) such that for all q ∈ QP and q′ ∈ Q, we have
(q, q′) ∈ E iff δ(q)(q′) > 0. We often write δ(q, q′) for δ(q)(q′). For a state q ∈ Q, we
denote by E(q) = {q′ ∈ Q | (q, q′) ∈ E} the set of possible successors of q. A Markov
chain is a special case of MDP where Q1 = ∅.

Plays. An MDP can be viewed as the arena of a game played for infinitely many rounds
from a state q0 ∈ Q as follows. If the game is in a player-1 state q, then player 1 chooses
a successor state from the set E(q); otherwise the game is in a probabilistic state q, and
the successor is chosen according to the probability distribution δ(q). This game results
in a play from q0, i.e., an infinite path ρ = q0q1 . . . such that (qi, qi+1) ∈ E for all
i ≥ 0. The prefix of length n of ρ is denoted by ρ(n) = q0 . . . qn, the last state of ρ(n)
is Last(ρ(n)) = qn. We write Ω for the set of all plays.

Strategies. A strategy (for player 1) is a function σ : Q∗Q1 → Q such that for all
ρ ∈ Q∗, q ∈ Q1, and q′ ∈ QP , if σ(ρ ·q) = q′, then (q, q′) ∈ E. We denote by Σ the set
of all strategies. An outcome of σ from q0 is a play q0q1 . . . where qi+1 = σ(q0 . . . qi)
for all i ≥ 0 such that qi ∈ Q1.

Outcomes and Measures. Once a starting state q ∈ Q and a strategy σ ∈ Σ are fixed,
the outcome of the game is a random walk ωσ

q for which the probabilities of every event
A ⊆ Ω, which is a measurable set of plays, are uniquely defined [22]. For a state q ∈ Q
and an event A ⊆ Ω, we denote by P

σ
q (A) the probability that a play belongs to A if

the game starts from the state q and player 1 follows the strategy σ. For a measurable
function f : Ω → R we denote by E

σ
q [f] the expectation of the function f under the

probability measure P
σ
q (·).

Finite-Memory Strategies. A strategy uses finite-memory if it can be encoded by a
deterministic transducer 〈Mem, m0, αu, αn〉 where Mem is a finite set (the memory of
the strategy), m0 ∈ Mem is the initial memory value, αu : Mem × Q → Mem is an
update function, and αn : Mem × Q1 → Q is a next-move function. The size of the
strategy is the number |Mem| of memory values. If the current state is a player-1 state q,
and m is the current memory value, then the strategy chooses the next state q′ according
to αn(m, q). If the current state is q, then the memory is updated to αu(m, q). Formally,
〈Mem, m0, αu, αn〉 defines the strategy σ such that σ(ρ · q) = αn(α̂u(m0, ρ), q) for all
ρ ∈ Q∗ and q ∈ Q1, where α̂u extends αu to sequences of states as expected. A strategy
is memoryless if |Mem| = 1, and a memoryless strategy σ : Q1 → Q chooses one edge
for every player 1 state. For a finite-memory strategy σ, Mσ denote the Markov chain
obtained as the product of M with the transducer defining σ.

Two-Player Games. A two-player game is a graph G = (Q, E) with the same assump-
tions as for MDP, except that the partition of Q is denoted (Q1, Q2) where Q2 is the set
of player-2 states. Player 2 plays the role of an adversary to player 1. The notions of
play, strategies (in particular strategies for player 2), and outcome are analogous to the
case of MDP (see [21] for standard definition of games).

Games and MDPs with Mean-Payoff Parity and Energy Parity Objectives 39

Objectives. An objective for an MDP M (or game G) is a set φ ⊆ Ω of infinite
paths. Let p : Q → N be a priority function and w : E → Z be a weight function1

where positive numbers represent rewards. We denote by W the largest weight (in ab-
solute value) according to w. The energy level of a prefix γ = q0q1 . . . qn of a play is
EL(w, γ) =

∑n−1
i=0 w(qi, qi+1), and the mean-payoff value2 of a play ρ = q0q1 . . . is

MP(w, ρ) = lim infn→∞ 1
n · EL(w, ρ(n)). In the sequel, when the weight function w

is clear from the context we omit it and simply write EL(γ) and MP(ρ). We denote by
Inf(ρ) the set of states that occur infinitely often in ρ, and we consider the following
objectives:

– Parity objectives. The parity objective Parity(p) = {ρ ∈ Ω | min{p(q) | q ∈
Inf(ρ)} is even } requires that the minimum priority visited infinitely often be even.
The special cases of Büchi and coBüchi objectives correspond to the case with two
priorities, p : Q → {0, 1} and p : Q → {1, 2} respectively.

– Energy objectives. Given an initial credit c0 ∈ N, the energy objective
PosEnergy(c0) = {ρ ∈ Ω | ∀n ≥ 0 : c0 + EL(ρ(n)) ≥ 0} requires that the
energy level be always positive.

– Mean-payoff objectives. Given a threshold ν ∈ Q, the mean-payoff objective
MeanPayoff≥ν = {ρ ∈ Ω | MP(ρ) ≥ ν} (resp. MeanPayoff>ν = {ρ ∈ Ω |
MP(ρ) > ν}) requires that the mean-payoff value be at least ν (resp. strictly greater
than ν).

– Combined objectives. The energy parity objective Parity(p) ∩ PosEnergy(c0) and
the mean-payoff parity objective Parity(p)∩MeanPayoff∼ν (for ∼∈ {≥, >}) com-
bine the requirements of parity and energy (resp., mean-payoff) objectives.

Almost-Sure Winning Strategies. For MDPs, we say that a player-1 strategy σ is
almost-sure winning in a state q for an objective φ if P

σ
q (φ) = 1. For two-player games,

we say that a player-1 strategy σ is winning in a state q for an objective φ if all outcomes
of σ starting in q belong to φ. For energy objectives with unspecified initial credit, we
also say that a strategy is (almost-sure) winning if it is (almost-sure) winning for some
finite initial credit.

Decision Problems. We are interested in the following problems. Given an MDP M
with weight function w and priority function p, and a state q0:

– The parity problem asks whether there exists an almost-sure winning strategy for
the parity objective from q0.

– The mean-payoff problem (resp. mean-payoff parity problem) asks whether there
exists an almost-sure winning strategy for the mean-payoff objective (resp. mean-
payoff parity objective) with threshold 0 from q0. Note that it is not restrictive to
consider mean-payoff objectives with threshold 0 because for ∼∈ {≥, >}, we have
MP(w, ρ) ∼ ν iff MP(w − ν, ρ) ∼ 0, where w − ν is the weight function that
assigns w(e) − ν to each edge e ∈ E.

1 Sometimes we take the freedom to use rational weights (i.e., w : E → Q), while we always
assume that weights are integers encoded in binary for complexity results.

2 The results of this paper hold for the definition of mean-payoff value using lim sup instead of
lim inf .

40 K. Chatterjee and L. Doyen

– The energy problem (resp. energy parity problem) asks whether there exists a finite
initial credit c0 ∈ N and an almost-sure winning strategy for the energy objective
(resp. energy parity objective) from q0 with initial credit c0.

The two-player game versions of these problems are defined analogously, and in two
player games we are interested in the existence of winning strategies as compared to
almost-sure winning strategies.

3 Games

In this section we summarize the results of games with all the objectives defined in
the previous section. We first present the results for parity, mean-payoff and energy
objectives, and then present the results for combined objectives.

3.1 Games with Parity, Mean-Payoff, and Energy Objectives

In games with parity, mean-payoff, and energy objectives, memoryless winning strate-
gies exist for both players. The result for parity objectives was established in [14] (also
see [23]); for mean-payoff objectives it was shown in [18] (also see [13]); and for en-
ergy objectives it follows from [4]. The existence of memoryless optimal strategies, and
the fact that the one-player version of the problems can be solved in polynomial time
shows that the problems can be decided in NP ∩ coNP. For polynomial time algorithms
for the one-player games, see [17] for parity objectives, [16] for mean-payoff objec-
tives, and [4] for energy objectives. A major open question in this area of research is
whether games with parity, mean-payoff, and energy objective can be solved in polyno-
mial time. There is a close connection between mean-payoff and energy games, and the
equivalence of the decision problems has been established in [2]. The main argument
is as follows: by existence of memoryless strategies it follows that if the answer to the
mean-payoff objectives with threshold ν = 0 is true, then player 1 can fix a memory-
less strategies such that in all cycles the sum of the rewards is non-negative, and this
exactly coincides with the finite initial credit problem (where after a prefix, the sum
of the rewards in cycles is non-negative). The results are summarized in the following
theorem.

Theorem 1. Memoryless winning strategies exist for both players in two-player games
with parity, mean-payoff, and energy objectives, and the decision problems lie in
NP ∩ coNP.

3.2 Games with Mean-Payoff Parity and Energy Parity Objectives

Mean-payoff parity games were first studied in [9] and it was shown that winning strate-
gies for player 1 require infinite memory in general. It follows from the results of [9] that
memoryless winning strategies exist for player 2. In [5] games with energy parity ob-
jectives were studied and the following results were established: (1) winning strategies
for player 1 with energy parity objectives require memory at least 2 · (|Q| − 1) ·W + 1
and memory of size 4 · |Q| · d · W is sufficient; (2) memoryless winning strategies

Games and MDPs with Mean-Payoff Parity and Energy Parity Objectives 41

exist for player 2; and (3) the decision problem lie in NP ∩ coNP. It was also shown
in [5] that the decision problem for mean-payoff parity objectives can be reduced to the
decision problem for energy parity objectives, however, as winning strategies require
infinite memory for mean-payoff parity objectives, the reduction is more involved than
the reduction from mean-payoff to energy objectives. As a consequence it also follows
that the decision problem for mean-payoff parity objectives lie in NP ∩ coNP.

Theorem 2. In games with mean-payoff parity objectives, winning strategies for
player 1 (with mean-payoff parity objective) require infinite memory in general, and
memoryless winning strategies exist for player 2. In games with energy parity objec-
tives, winning strategies for player 1 (with energy parity objective) require 2 · (|Q| −
1) · W + 1 memory in general and memory of size 4 · |Q| · d · |W | is sufficient, and
memoryless winning strategies exist for player 2. The problems of deciding the win-
ner in games with mean-payoff parity and games with energy parity objectives lie in
NP ∩ coNP.

4 Markov Decision Process

In this section we summarize the results for Markov decision processes (MDPs).

4.1 MDPs with Parity, Mean-Payoff and Energy Objectives

As in the case of games, in MDPs memoryless almost-sure winning strategies exist
for parity, mean-payoff and energy objectives. The result of existence of memoryless
almost-sure winning strategies for MDPs with parity objectives follows from [12] (also
see [10] for explicit proofs). The result of existence of memoryless almost-sure winning
strategies for mean-payoff objectives follows from the result of [18] (also see [15,19]
for details of MDPs with mean-payoff objectives). Almost-sure winning in MDPs with
energy objective is equivalent to a two-player energy game (where the probabilistic
states are controlled by player 2). Indeed (1) a winning strategy in the game is trivially
almost-sure winning in the MDP, and (2) if an almost-sure winning strategy σ in the
MDP was not winning in the game, then for all initial credit c0 there would exist an out-
come ρ of σ such that c0 + EL(ρ(i)) < 0 for some position i ≥ 0. The prefix ρ(i) has a
positive probability in the MDP, in contradiction with the fact that σ is almost-sure win-
ning. As a consequence, it follows that memoryless almost-sure winning strategies exist
for MDPs with energy objectives, and it also follows that solving MDPs with energy
objectives is as hard as games with energy as well as games with mean-payoff objec-
tive. The results of [10] give a polynomial-time algorithm to solve almost-sure winning
for MDPs with parity objective. For MDPs with mean-payoff objective, the almost-
sure winning problem can be solved through linear programming (see [15,19] for a
linear program formulation to solve MDPs with mean-payoff objective). The problem
of MDPs with energy objective lies in NP ∩ coNP due to the equivalence with games
with energy objective.

Theorem 3. Memoryless almost-sure winning strategies exist in MDPs with parity,
mean-payoff and energy objectives. The decision problems of existence of almost-sure

42 K. Chatterjee and L. Doyen

winning strategy can be solved in polynomial time for mean-payoff and parity objec-
tives, and for energy objectives it belongs to NP ∩ coNP.

4.2 MDPs with Mean-Payoff Parity and Energy Parity Objectives

MDPs with mean-payoff parity and energy parity objectives were considered in [6],
and the following results were established. For mean-payoff parity objectives, almost-
sure winning strategies require infinite memory in general, and the set of almost-sure
winning states can be computed in polynomial time. For energy parity objectives, a
polynomial time reduction was presented to games with energy Büchi objectives (par-
ity objectives with two priorities), and it follows that the decision problem belongs to
NP ∩ coNP.

Theorem 4. In MDPs with mean-payoff parity objectives, almost-sure winning strate-
gies require infinite memory in general. In MDPs with energy parity objectives, almost-
sure winning strategies require 2 · (|Q| − 1) · W + 1 memory in general and memory
of size 2 · |Q| · |W | is sufficient. The set of almost-sure winning states can be computed
in polynomial time for mean-payoff parity objectives. The decision problem of whether
a state is almost-sure winning lies in NP ∩ coNP for energy parity objectives.

4.3 New Result: Improved Algorithm for Mean-Payoff Parity Objectives

In this section we present an improved polynomial-time algorithm for the computation
of the set of almost-sure winning states for mean-payoff parity objectives, using the
results of [6] and hierarchical graph decomposition technique. We first define the basic
notion of end-component for MDPs.

End-Components. A set U ⊆ Q is δ-closed if for all q ∈ U ∩ QP we have
Supp(δ(q)) ⊆ U . The sub-MDP induced by a δ-closed set U is M � U = (U, E ∩
(U × U), δ). Note that M � U is an MDP if for all q ∈ U there exists q′ ∈ U such that
(q, q′) ∈ E. A closed recurrent set for a Markov chain is a δ-closed set U ⊆ Q which
is strongly connected. End-components in MDPs play a role equivalent to closed recur-
rent sets in Markov chains. Given an MDP M = (Q, E, δ) with partition (Q1, QP), a
set U ⊆ Q of states is an end-component if U is δ-closed and the sub-MDP M � U
is strongly connected [11,12]. We denote by E(M) the set of end-components of an
MDP M .

End-Component Lemma. We now present an important lemma about end-components
from [11,12] that we use in the proofs of our result. It states that for arbitrary strategies
(memoryless or not), with probability 1 the set of states visited infinitely often along a
play is an end-component. This lemma allows us to derive conclusions on the (infinite)
set of plays in an MDP by analyzing the (finite) set of end-components in the MDP.

Lemma 1 ([11,12]). Given an MDP M , for all states q ∈ Q and all strategies σ ∈ Σ,
we have P

σ
q ({ω | Inf(ω) ∈ E(M)}) = 1.

We now present the key lemma from [6] where it was shown that for an MDP that
is an end-component such that the minimum priority is even, the mean-payoff parity

Games and MDPs with Mean-Payoff Parity and Energy Parity Objectives 43

objective Parity(p)∩MeanPayoff≥ν is satisfied with probability 1 if the expected mean-
payoff value is at least ν at some state (the result also holds for strict inequality). In other
words, from the expected mean-payoff value of at least ν we ensure that both the mean-
payoff and parity objective is satisfied with probability 1 from all states. For a state q,
let ValMP(w)(q) = supσ∈Σ E

σ
q [MP(w)] denote the expected mean-payoff value. The

following lemma was established in [6].

Lemma 2 ([6]). Consider an MDP M with state space Q, a priority function p,
and weight function w such that (a) M is an end-component (i.e., Q is an end-
component) and (b) the smallest priority in Q is even. If there is a state q ∈ Q such
that ValMP(w)(q) ≥ ν (resp. ValMP(w)(q) > ν), then there exists a strategy σ∗

such that for all states q ∈ Q we have P
σ∗
q (Parity(p) ∩ MeanPayoff≥ν) = 1 (resp.

P
σ∗
q (Parity(p) ∩ MeanPayoff>ν) = 1).

Winning End-Component. Given an MDP M with a parity objective Parity(p)
and a mean-payoff objective MeanPayoff≥ν for a weight function w, we call an
end-component U winning if (a) min(p(U)) is even; and (b) there exists a state
with expected mean-payoff value at least ν in the sub-MDP induced by U , i.e.,
maxq∈U ValMP(w)(q) ≥ ν in the sub-MDP induced by U . We denote by W the set
of winning end-components, and let Win =

⋃
U∈W U be the union of the winning

end-components.

Reduction to Reachability of Winning End-Component. By Lemma 2 it follows that
in every winning end-component the mean-payoff parity objective is satisfied with prob-
ability 1. Conversely, consider an end-component U that is not winning, then either the
smallest priority is odd, or the maximal expected mean-payoff value that can be ensured
for any state in U by staying in U is less than ν. Hence if only states in U are visited
infinitely often, then with probability 1 (i) either the parity objective is not satisfied, or
(ii) the mean-payoff objective is not satisfied. In other words, if an end-component that
is not winning is visited infinitely often, then the mean-payoff parity objective is satis-
fied with probability 0. It follows that the almost-sure winning states can be computed
by computing the set of almost-sure winning states for reachability objectives with the
winning end-components as the target set (i.e., computing almost-sure reachability to
the set Win). Since almost-sure winning states for MDPs with reachability objectives
can be computed in polynomial time [10], it suffices to present a polynomial-time algo-
rithm to compute Win in order to obtain a polynomial-time algorithm for MDPs with
mean-payoff parity objectives.

Computing Winning End-Components. The computation of the winning end-
components is done iteratively by computing winning end-components with smallest
priority 0, then winning end-components with smallest priority 2, and so on. The com-
putation of Win is as follows:

– For i ≥ 0, let W2i be the set of maximal end-componentsU with states with priority
at least 2i and that contain at least one state with priority 2i, i.e., U contains only
states with priority at least 2i, and contains at least one state with priority 2i. Let
W ′

2i ⊆ W2i be the set of maximal end-components U ∈ W2i such that there is a
state q ∈ U such that the expected mean-payoff value in the sub-MDP restricted to
U is at least ν. Let Win2i =

⋃
U∈W′

2i
U .

44 K. Chatterjee and L. Doyen

The set Win =
⋃
d/2�

i=0 Win2i is the union of the states of the winning end-components
(formal pseudo-code in [7]).

Complexity of Computing Winning End-Components. The winning end-component
algorithm runs for O(d) iterations and in each iteration requires to compute a maximal
end-component decomposition (mec) and compute mean-payoff values of at most n
end-components, where n is the number of states of the MDP. We now improve the
O(d) iterations to O(log d) using the hierarchical clustering technique of Tarjan [20].

Given a priority function p : Q → {0, 1, . . . , 2d}, for 0 ≤ m ≤ d, let Q≤m =
{q ∈ Q | p(q) ≤ m} denote the set of states with priority at most m. Given an
MDP M , let Mi denote the MDP obtained by removing AttrR(Q≤2i−1) the set of
states with priority less than 2i and its random attractor (random attractor denotes the
probabilistic alternating reachability, for formal definition of random attractor see [8]).
A mec C is a winning mec in Mi if there exists u ∈ C such that p(u) = 2i and there
is some state v ∈ C such that the expected mean-payoff value of v is greater than the
given threshold ν. Let WEi be the union of the vertices of winning mec in Mi, and let
WE = ∪0≤i≤dWEi.

Informal Description of the New Algorithm. If two states u, v belong to the same
mec in Mi, they also belong to the same mec in Mi−1. Thus the mec’s of Mi refine
the ones of Mi−1, which can be exploited using the hierarchical clustering technique.
Formally, we will compute WE by the recursive procedure WINMAXEC(M, p, i, j).
The procedure takes an MDP, and two indices i and j, and outputs

⋃
i≤2k≤j WE2k.

To obtain WE we invoke WINMAXEC(M, p, 0, 2d). Given the MDP M , and indices
i, j, the procedure first computes the mec’s of Mm, where m = � i+j

2 �. If m is
even, then the set WEm of Mm is computed. Then we recursively call the procedures
WINMAXEC(Mu, p, m+1, j) and WINMAXEC(M�, p, i, m−1), where Mu is a sub-
MDP containing only the edges inside the mec’s of Mm and the MDP M� is obtained
by collapsing each mec in Mm to a single vertex, thus containing only edges outside
the mec’s of Mm. The formal description of the algorithm is identical to the algorithm
of Section 5 of [8] for almost-sure winning of MDPs with parity objectives, and the
only change is while determining whether an end-component is winning along with
the priority being even, we also check whether there is some state where the expected
mean-payoff value is at least the given threshold. The correctness argument is essen-
tially similar to the correctness of [8], and shows that Win = WE.

Running Time Analysis. Given a MDP M with n states, m edges and a parity objective
with d priorities, let us denote by T (m, n, d) the running time of WINMAXEC on M .
We observe that in Eu consists of edges with in mec’s, and such edges are not present
in E�. Thus we obtain the following recurrence relation for the running time T (m, n, d)
of WINMAXEC:

T (m, n, d) = TM (m, n) + T (mu, n, �d − 1
2

�)

+T (m�, n, �d − 1
2

�),

with m� +mu ≤ m, and TM (m, n) denotes the time complexity of mec decomposition
and MDPs with mean-payoff solving with m edges and n states. It is straightforward to

Games and MDPs with Mean-Payoff Parity and Energy Parity Objectives 45

show that T (m, n, d) = O((MAXEC(n, m) + MEANPAYOFFSOLVE(n, m)) · log(d)),
where MAXEC and MEANPAYOFFSOLVE denote algorithms for computing the max-
imal end-component decomposition of an MDP and solving MDPs with mean-payoff
objectives, respectively. Thus we obtain an improved algorithm to solve MDPs with
mean-payoff parity objectives.

5 Conclusion

In this paper we summarized the main results of games and MDPs with parity, mean-
payoff, energy, mean-payoff parity, and energy parity objectives. The major open ques-
tions are whether games with parity, mean-payoff, and energy objective can be solved
in polynomial time.

References

1. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in Synthesis
Through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

2. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in Weighted
Timed Automata With Energy Constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008.
LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

3. Brázdil, T., Brozek, V., Etessami, K., Kucera, A., Wojtczak, D.: One-counter Markov deci-
sion processes. In: Proc. of SODA, pp. 863–874. SIAM (2010)

4. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces. In:
Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

5. Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 599–610.
Springer, Heidelberg (2010)

6. Chatterjee, K., Doyen, L.: Energy and Mean-Payoff Parity Markov Decision Processes. In:
Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 206–218. Springer,
Heidelberg (2011)

7. Chatterjee, K., Doyen, L.: Energy and mean-payoff parity Markov decision processes. Tech-
nical report, IST Austria (February 2011),
http://pub.ist.ac.at/Pubs/TechRpts/2011/IST-2011-0001.pdf

8. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-component
decomposition and related graph problems in probabilistic verification. In: Proc. of SODA.
ACM SIAM (2011)

9. Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Mean-payoff parity games. In: Proc. of LICS,
pp. 178–187. IEEE Computer Society (2005)

10. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity games. In:
Proc. of SODA Symposium on Discrete Algorithms, pp. 114–123 (2004); Technical Report:
UCB/CSD-3-1280 (October 2003)

11. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

12. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University
(1997)

http://pub.ist.ac.at/Pubs/TechRpts/2011/IST-2011-0001.pdf

46 K. Chatterjee and L. Doyen

13. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. Journal of
Game Theory 8(2), 109–113 (1979)

14. Emerson, E.A., Jutla, C.: The complexity of tree automata and logics of programs. In: FOCS,
pp. 328–337. IEEE Computer Society Press (1988)

15. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)
16. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Mathe-

matics 23(3), 309–311 (1978)
17. King, V., Kupferman, O., Vardi, M.Y.: On the Complexity of Parity Word Automata. In:

Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 276–286. Springer,
Heidelberg (2001)

18. Liggett, T.A., Lippman, S.A.: Stochastic games with perfect information and time average
payoff. Siam Review 11, 604–607 (1969)

19. Puterman, M.L.: Markov Decision Processes. John Wiley and Sons (1994)
20. Tarjan, R.E.: A hierarchical clustering algorithm using strong components. Inf. Process.

Lett. 14(1), 26–29 (1982)
21. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages. Beyond

Words, vol. 3, ch. 7, pp. 389–455. Springer, Heidelberg (1997)
22. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state systems. In:

FOCS 1985. IEEE Computer Society Press (1985)
23. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on

infinite trees. Theor. Comput. Sci. 200, 135–183 (1998)

Assessing System Vulnerability
Using Formal Verification Techniques�

Görschwin Fey

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
fey@informatik.uni-bremen.de

Abstract. Hardware systems are becoming more and more vulnerable to soft er-
rors caused by radiation or process variations. Design techniques to cope with
these problems are built into the system. But how to verify that the final system
is as resilient as expected? The paper covers modeling issues related to assess-
ing fault tolerance and reliability. Existing approaches are reviewed that analyze
transient faults on the electrical as well as the logical level. Trade-offs regard-
ing resource requirements and quality of results are discussed and the individual
advantages are highlighted.

1 Introduction

For safety related products ensuring the functionality under all circumstances is manda-
tory. In certain cases standards apply, e.g., IEC 61508 considering safety-related elec-
tronic systems or ISO 26262 which is more specific to the automotive area.

Here, the focus is on hardware-systems implemented as digital integrated circuits
where the interest in analyzing the vulnerability to faults has significantly gained mo-
mentum in the recent past. Ongoing downscaling of hardware components is the reason
due to three main factors. First, smaller hardware components are more sensitive to
value changes induced by environmental radiation as smaller amounts of energy are
sufficient to change the value of a signal. Second, even though the overall production
process is continuously improved the influence of process variations during production
increases as, e.g., the relative variation of area, delay etc. increases. Third, aging pro-
cesses also corrupt the functionality of smaller components more rapidly. Consequently,
a designer needs to know the consequence of a fault occurring in the system.

A natural counter-measure is to design systems that are able to tolerate a fault with-
out suffering a system level failure. Such fault tolerant systems have a long tradition
and therefore various design practices are known and established. Triple Modular Re-
dundancy (TMR) is just one well-known example. A single module is copied for three
times and a majority voter selects the output data. By this any single fault of and in
one of the three modules can be detected and corrected. Similarly, the Hamming code
[Ham50] corrects any single fault in a given data word. Various additional approaches
have been proposed more recently.

� This work has been supported in part by the German Research Foundation (DFG, grant no.
797/6-1).

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 47–56, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

48 G. Fey

But any given implementation has to be checked for correctness. If the implemen-
tation has bugs, the real system may not be able to tolerate internal faults. Moreover,
these bugs cannot be detected without explicitly checking the behavior under faults.

Various approaches have been proposed to analyze whether a given digital circuit
is fault tolerant. Approaches based on simulation [KPMH09, TH10] or on emulation
[CMR+02, PCZ+08] are predominant to analyze very large systems. But as a disad-
vantage it is typically impossible to analyze the system completely, i.e., only a subset
of the potential input stimuli, the system configurations, or the potential faults can be
considered. Thus, fault tolerance cannot be proven but only be established with a cer-
tain confidence. Formal approaches fully analyze the state space, the input space and
all potential faults.

The present survey concentrates on formal approaches to analyze a hardware sys-
tem’s reaction upon internal malfunctions. Approaches assessing fault tolerance or re-
liability of a given circuit or system are considered.

This survey is structured as follows: Section 2 introduces basics such as notation,
general concepts and modeling issues. A formal model for vulnerability analysis along
with a comparison of existing approaches is provided in Section 3. Section 4 concludes.

2 Basics

2.1 Representation of Circuits and Systems

There exist different approaches to represent digital circuits [ABF90]. When the struc-
ture of a sequential synchronous circuit C is important graph representations are typ-
ically used that describe a Boolean network. Nodes in the graph structure correspond
to elements of a library of basic components. The set { AND, OR, NOT, FF } is an
example of a typical library where FF denotes a flip-flop. The library may be enriched
by parameters of the underlying technology like delay or threshold voltages. When
necessary hierarchy may be represented in the graph by introducing nodes referring to
modules. Each module is then represented as a Boolean network itself.

The library can be extended to represent primary inputs, primary outputs and mem-
ory elements. In the following we assume that a circuit C has ns memory elements, ni

primary inputs and no primary outputs.
When the structure of a digital circuit C is not required, the Boolean function

fC : B
ni × B

ns → B
no × B

ns

implemented by the Boolean network NC is an appropriate representation. Given a val-
uation of inputs and state elements, the combinational logic captured by fC calculates
the valuation of outputs and the new values of state elements of the circuit.

A synchronous sequential circuit corresponds to a finite automaton

AC = (X, Y, S, I, T)

where X = B
ni is the input alphabet, Y = B

no is the output alphabet, S = B
ns is the

set of states, I ⊆ S is the set of initial states, and T ⊆ X × S × S × Y is the transition

Assessing System Vulnerability Using Formal Verification Techniques 49

relation. The transition relation is determined by the Boolean function implemented by
the circuit: TC(x, z, z′, y) = fC(x, z) ≡ (z′, y), where x ∈ B

ni , z, z′ ∈ B
ns , y ∈ B

no

and (z′, y) denotes the concatenation of the two vectors z′ and y.
Finite automata are often used to model other systems than circuits as well. There-

fore, some of the approaches discussed in Section 3 can be applied to other types of
systems, too.

One approach to analyze the sequential behavior is unrolling as done in formal veri-
fication [BCCZ99] also called time frame expansion in the testing area [Kub68, PR71].
The result is a combinational representation of the sequential system. An unrolling of a
circuit C for t time steps is modeled by the following expression:

UC(t) = I(z0) ∧
t∧

i=1

TC(xi−1, zi−1, zi, yi−1) (1)

where I is used as a Boolean predicate over state elements, that is 1 exactly when the
valuation of the variables corresponds to an initial state.

Any assignment to the variables that yields UC(t) = 1 describes a path in the finite
automaton which corresponds to a potential simulation run of the circuit of t times
steps.

2.2 Faults and Errors

When considering fault tolerance or reliability of a circuit or a system physical faults are
of interest. Typical physical faults induced by particle hits from environmental radiation
are voltage pulses in combinational logic, called Single Event Transients (SETs), or bit-
flips in memory cells, called Single Event Upsets (SEUs). Modeling all details like
energy and size of potential particles and their impact on the physical structure of the
circuit leads to too many parameters for an automated analysis. Therefore the physical
faults are abstracted into a fault model to be handled by analysis procedures.

In the following the circuit or system is assumed to be assembled of components
that may be gates or larger modules composed of gates. A fault φ is a malfunction of a
component in a circuit that causes one or more signal values to differ from their value
during normal operation. Such differing values may propagate to primary outputs of
the system. This observation of differing values is then called an error. The error may
propagate further into a system potentially resulting in a system failure or the error may
be detected and handled at higher levels of the full system. The universe of all faults in
the model for a circuit C is denoted by ΦC or simply Φ if unambiguous.

A typical fault model known from the testing area is the Stuck-At Fault Model
(SAFM), where a single line is assumed to be stuck at 0 or 1. Typically, faults in SAFM
are considered permanent. A stuck-at fault lasting for one time step only also models
a transient fault. This transient fault model only considers logic masking, e.g., at an
AND-gate with inputs i1 and i2 a transient fault at i1 is masked if i2 permanently has
stores the value 0. Two other masking effects are not considered by this model: timing
masking and electrical masking. Timing masking happens if the value change induced
by a transient fault arrives at a storage value while the new value is not latched. Elec-
trical masking is caused by the continuous decrease of a pulse that propagates through
subsequent gates and disappear before being observed as an error or being latched in a
storage element.

50 G. Fey

2.3 Fault Tolerance and Reliability

A circuit is fault tolerant when none of the faults in Φ leads to an error. By this, analyz-
ing fault tolerance of a system yields a pass/fail result. Multiple faults are modeled by
a multiplicity of the universe of faults, i.e., φ ∈ Φn where n ∈ N. Then, fault tolerance
may be assessed with respect to multiple faults. If a circuit is not fault tolerant, there
exists a test sequence, i.e., a sequence of assignments to the primary inputs that leads to
an error under the presence of at least one fault.

More elaborate classifications are available, e.g., from the testing area where the
notion of self-checking combinational circuits has been introduced [GOSM08].

Reliability and fault tolerance are related but different concepts. A system may be re-
liable, even though it may be sensitive to internal malfunctions and thus may not always
be functional. Reliability is typically measured in Mean Time To Failure (MTTF), Mean
Time Between Failures (MTBF), and Mean Time To Repair (MTTR) (e.g., [KK07]). As
indicated by the names, these measures estimate how long a system is functional on
average.

3 Assessing Vulnerability

Often an abstract model of a circuit or system is used to assess the vulnerability. During
this abstraction various choices are made influencing the accuracy of the result and/or
the complexity of the computation. Section 3.1 provides a generalized model to provide
a common notation for theses choices and their consequences. Based upon that model
Section 3.2 evaluates existing approaches and provides a qualitative discussion.

3.1 General Model

The following model is based on unrolling similar to Equation 1. Essentially, the model
describes the behavior of the circuit under all input sequences up to a given length and
under any fault in a given set of faults Ψ ⊆ Φ.

The analysis is based on a model of the transition relation. The transition relation
T describes the normal behavior of the circuit. When modeling a set Ψ ⊆ Φ of faults,
the functionality of the circuit changes leading to a modified transition relation TΨ .
This fault modeling to create TΨ is the first point where different choices are made in
different analysis approaches.

Then, based on the formal description of the transitions the temporal behaviors of
the circuit with and without faults are compared. The circuit is initialized at first to start
from one of the initial states in I at time step 0. The circuit operates normally up to time
step thit−1 until a fault occurs at time step thit. At this point normal operation and faulty
operation may diverge. The fault(s) may be permanent or transient. Therefore, after
tok time steps the circuit may return to the normal operation described by transition
relation T . Afterwards the circuit is observed for another tobs time steps. Starting from
time step thit the behavior is observed. This is denoted by a property P that may, e.g.,
compare the equality of the primary outputs of the two models with and without fault,
respectively. Restrictions R on the primary inputs may or may not be applied depending
on the application. These restrictions may be described by a formal property.

Assessing System Vulnerability Using Formal Verification Techniques 51

Putting these parts into a single formula yields the following model:

MC(P, R, thit, tok, tobs) = I(z0) ∧ N(0, thit + tok + tobs)
∧ F (thit, thit + tok) ∧ z(thit) ≡ z′(thit)
∧N ′(thit + tok, thit + tok + tobs)
∧ ¬P ∧ R

(2)

where

I(z0) describes the set of initial states

N(j, k) =
∧k

i=j T (xi−1, zi−1, zi, yi−1) describes normal operation
between time steps j and k

F (j, k) =
∧k

i=j TΨ (x′
i−1, z

′
i−1, z

′
i, y

′
i−1) describes faulty operation

with respect to the set Ψ ⊆ Φ of faults

N ′(j, k) =
∧k

i=j T (x′
i−1, z

′
i−1, z

′
i, y

′
i−1) describes normal operation

after the internal fault disappeared

R restrictions on primary inputs

P property comparing faulty and correct behavior

The parameters thit, tok, and tobs configure the model. All values of thit and tobs up to a
certain bound and their combinations have to be considered for a complete classification
with respect to all faults, states and input sequences. The parameter tok also relates
to the types of faults that are modeled. The creation of TΨ may be done in different
ways, e.g., to model the area affected by a fault, non-deterministic behavior, or stuck-at
behavior of gates, components, or modules. The states considered while analyzing the
system are determined by I . For example, by setting I to 1 (true) any restriction on the
initial state is removed and any state is considered – even states not reachable during
normal operation. To analyze only the combinational behavior, one configuration may
be thit = 1, tok = tobs = 0, I = R = 1, and P = y0 ≡ y′

0.
Any assignment satisfying Equation 2 yields a test sequence, i.e., an input sequence

that shows how the behavior under a fault φ ∈ Ψ violates property P , e.g., by diverging
from normal operation. This is the pass/fail information on the fault tolerance of C with
respect to Ψ .

Sometimes it is useful to know which fault causes a violation of P more easily, i.e.,
to grade the fault sites. The ratio between the number of test sequences over the number
of all input sequences yields a probability for the circuit to violate property P under
a fault in Ψ under the assumption that all input sequences are equally distributed. Of
course, the restriction R has to be taken into account in this process.

If reliability is the focus of the analysis, more information is required. As the mod-
eled faults correspond to physical events, a probability to occur can be assigned to each
fault. Taking this probability also into account yields information on the reliability of
the circuit.

52 G. Fey

3.2 Existing Approaches

Existing approaches for assessing vulnerability differ in how parts of the model are
configured. Before relating existing approaches to the general model of the previous
section, Table 1 gives an overview of the approaches discussed here and their respective
characteristics.

The table compares different aspects. The key for the symbols is given below the
table. The first column gives a reference for the respective approach. The second col-
umn automaton/circuit shows whether the approach works on finite automata in general
or particularly considers circuits. The third column area denotes whether assessing re-
liability or fault tolerance is the main goal. The fourth column input shows which input
data is needed besides the system or design. The fifth column output shows what output
is produced. The sixth column seq./comb. informs whether sequential circuits or only
combinational circuits are considered. The seventh column fault model lists how faults
are modeled in the approach and the eighth column single/multiple shows whether sin-
gle or multiple faults are addressed.

One important difference is in the way the approaches create the faulty model of the
circuit leading to TΨ . The three approaches in [MZM06, MZM10, ZBD07] use a de-
tailed model of transient faults induced by radiation. For this purpose voltage levels and
shapes of glitches induced by radiation are modeled and the analysis takes logic mask-
ing, timing masking, and electrical masking into account. This requires a large model
for TΨ . Consequently, the computation is only feasible for small circuits. The propaga-
tion of faults manifesting as memory errors through sequential behavior is considered
in [MZM10] based on the transition relation.

All other approaches use simple transformations to determine TΨ . The fault model
is quite coarse for the approaches [BBC+09, BCG+10, BCT07] considering arbitrary
systems. The user defines modifications of the system for [BCT07] to check consis-
tency with the non-modified system using a model checker. In [BCG+10] the system
properties are given in the form a → g, where a is an assumption and g is the guaran-
tee to be proven. Now, the approach counts how many guarantees fail, if an increasing
number of assumptions are violated by the failing system. Thus, the user indirectly
supplies the fault model through the formulation of the properties. The approach is ca-
pable of synthesizing ”the most robust” system with respect to this fault model. Finally,
[BBC+09] assumes faults in state elements and uses theorem proving or model check-
ing techniques to analyze the resulting faulty systems. The outcome of these approaches
is a pass/fail information with respect to the user defined properties [BCG+10, BCT07]
and grading information given by the number of failing properties [BCG+10] or the
influence on the state space [BBC+09].

The fault model of the approaches considering circuits modifies bits in memory
and combinational components [FD08, FFD10, FSFD11, HH08, HHC+09, KPJ+06]
or memory elements only [HPB07, SLM07].

The analysis may be done for transient faults where tok = 1, or longer lasting faults
where tok ≥ 1, or even for permanent faults lasting indefinitely where tok = ∞. These
approaches mainly differ in the way sequential behavior is handled. Model checking
approaches are complete, i.e., all combinations of thit, tok, and tobs are considered.
These approaches utilize formal tools as a black box and apply transformations to the

Assessing System Vulnerability Using Formal Verification Techniques 53

Table 1. Overview of the different approaches and their characteristics
re

fe
re

nc
e

au
to

m
at

on
/c

ir
cu

it

ar
ea

in
pu

t

ou
tp

ut

co
m

b.
/s

eq
.

fa
ul

tm
od

el

si
ng

le
/m

ul
ti

pl
e

ba
se

en
gi

ne

pa
ra

m
et

er
s

A/I F/R e/l/p F/G/P C/S R/E/L/
T/m/d

s/m A/B/C/
F/M/S/T

I thit tok tobs

[BBC+09] A F p G S Rm s/m TM I free free ∞
[BCG+10] A F p G S Rm m M I free free ∞
[BCT07] A F p F S Rd m FM I free free ∞
[CM09] I R e P C Rm s/m C 1 0 1 0
[FD08] I F (p) G S Lm m B 1 0 n n

[FFD10] I F - G S Lm (m) B Ŝ free 1 n

[FSFD11] I F - F S Lm (m) B Ŝ free 1 n
[HH08] I F - F C Lm s A 1 0 1 0
[HHC+09] I F - G C Lm m A 1 0 1 0
[HPB07] I F - P S Lm s M I free 1 ∞
[KPJ+06] I F - G S Ld (m) F I free 1 ∞
[KPMH09] I R p G S Lm s S I n n n

[Lev05] I F p G S Rd s F I free n ∞
[MZM06] I R el P C LETm s C 1 0 1 0
[MZM10] I R el P S LETm m C 1 0 1 0
[SLM07] I F p F S Lm s F I free 1 ∞
[ZBD07] I R el P C LETm s C 1 0 1 0

circuit/system: A →automaton, I →circuit
area: F →fault tolerance, R →reliability
input: e →error probabilities, l →library, p →properties
output: F →pass fail, G →grading, P →probability
circuit model: C →combinational, S →sequential
fault model: R→based on the transition relation,

E/L/T→electrical/logic/timing masking,
d →user defined, m →embedded

single/multiple: s →single faults, m →multiple faults
base engine: A →ATPG, B →bounded model checking, C →custom model,

F →formal tool as a black box, M →model checking,
S →simulation, T →theorem proving

I I →initial states of the circuit, 1→any state,
Ŝ →approximation of reachable states

thit, tok, tobs: free →no restriction, all values, n →an arbitrary fixed value,
∞ →unbounded complete analysis

54 G. Fey

description of the circuit or system that is passed to the tool [BCT07, KPJ+06, Lev05,
SLM07]. Typically, a fixed-point iteration using symbolic representations of the state
space is performed. This limits the application to small circuits. The approaches based
on Bounded Model Checking [FD08, FSFD11] limit the observation tobs to a short
window. Moreover, the path to thit is not explicitly modeled, but uses abstractions of
the state space. This further reduces the size of the model. As a consequence, larger
circuits can be handled and bounds on the vulnerability are returned instead of a single
value. The approach in [FFD10] additionally yields a grading of vulnerable sites.

The ATPG-based approaches [HH08, HHC+09] consider combinational circuits only,
i.e., tok = tobs = 0. Initialization of these circuits is not considered, i.e., thit = 1 and
I(z0) = 1. As an advantage the model is relatively small.

Simulation is the underlying engine of [KPMH09]. The analysis is incomplete con-
sidering only certain values for the parameters. During this analysis process a time
frame expansion model is used.

Once the respective parameters for any of these approaches have been determined the
subsequent analysis is fully automatic. Nonetheless the user has to interpret the results
carefully.

3.3 Potential Pitfalls

Applying these approaches to assess the vulnerability has certain pitfalls a user must
be aware of. One issue is complexity of the chosen approach. A full formal analysis is
typically limited to small systems or restrictions on state space, observation time etc.
are applied. Consequently, incomplete results may be provided hiding problems in the
design.

If the analysis finishes without restrictions, only the given universe of faults is taken
into account. Typically, there are other sources of faults not modeled and therefore
not analyzed. A well-known problem are common-mode failures or common-cause-
failures. The system may be immune to any single fault in a component but a certain
event may cause a failure in several parts at the same time.

Similarly, the multiplicity of faults is typically restricted to a small number – often
to one. If faults occur with higher multiplicity in practice, the analysis is not adequate.

Even though adequate on a certain abstraction level the result of the analysis may not
apply to the final implementation. A simple example is a redundant system described,
e.g., in a hardware description language undergoing synthesis. A powerful synthesis
tool may remove all redundancy if running unconstrained. Similarly, the assessment
at a higher abstraction level may not take lower level optimizations into account. For
example, a resource may be shared during synthesis while not being shared in the higher
level description. Thus, a single fault in the synthesized system corresponds to more
than one fault in the higher level description. Such transformations render the analysis
done at one abstraction invalid for the implementation at another abstraction level.

These and similar problems are usually handled by obeying a well-defined methodol-
ogy when assessing a system’s vulnerability. Within such a methodology the automated
approaches discussed above provide significant support in the assessment.

Assessing System Vulnerability Using Formal Verification Techniques 55

4 Conclusions

Several powerful formal approaches to assess a circuit’s or a system’s vulnerability are
available. The approaches have individual strength’s and differ in the types of faults
they consider as well as in the information returned to the user. When applying any of
the approaches in practice, a well-defined methodology is required to ensure reliable
fault tolerant implementations of the real system.

References

[ABF90] Abramovici, M., Breuer, M.A., Friedman, A.D.: Digital Systems Testing and
Testable Design. Computer Science Press (1990)

[BBC+09] Baarir, S., Braunstein, C., Clavel, R., Encrenaz, E., Ilie, J.-M., Leveugle, R.,
Mounier, I., Pierre, L., Poitrenaud, D.: Complementary formal approaches for de-
pendability analysis. In: IEEE International Symposium on Defect and Fault Tol-
erance in VLSI Systems, pp. 331–339 (2009)

[BCCZ99] Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking Without
Bdds. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

[BCG+10] Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Jobstmann, B.: Robust-
ness in the Presence of Liveness. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 410–424. Springer, Heidelberg (2010)

[BCT07] Bozzano, M., Cimatti, A., Tapparo, F.: Symbolic Fault Tree Analysis For Reac-
tive Systems. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.)
ATVA 2007. LNCS, vol. 4762, pp. 162–176. Springer, Heidelberg (2007)

[CM09] Choudhury, M.R., Mohanram, K.: Reliability analysis of logic circuits. IEEE Trans.
on CAD 28(3), 392–405 (2009)

[CMR+02] Civera, P., Macchiarulo, L., Rebaudengo, M., Sonza Reorda, M., Violante, M.:
An FPGA-based approach for speeding-up fault injection campaigns on safety-
critical circuits. Jour. of Electronic Testing: Theory and Applications 18(3), 261–
271 (2002)

[FD08] Fey, G., Drechsler, R.: A basis for formal robustness checking. In: Int’l Symp. on
Quality Electronic Design, pp. 784–789 (2008)

[FFD10] Frehse, S., Fey, G., Drechsler, R.: A better-than-worst-case robustness measure. In:
IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems,
pp. 78–83 (2010)

[FSFD11] Fey, G., Sülflow, A., Frehse, S., Drechsler, R.: Effective robustness analysis us-
ing bounded model checking techniques. IEEE Trans. on CAD 30(8), 1239–1252
(2011)

[GOSM08] Gössel, M., Ocheretny, V., Sogomonyan, E., Marienfeld, D.: New Methods of Con-
current Checking. Frontiers in Electronic Testing, vol. 42. Springer, Heidelberg
(2008)

[Ham50] Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical
Jour. 26(2), 147–160 (1950)

[HH08] Hunger, M., Hellebrand, S.: Verification and analysis of self-checking properties
through ATPG. In: IEEE International On-Line Testing Symposium, pp. 25–30
(2008)

[HHC+09] Hunger, M., Hellebrand, S., Czutro, A., Polian, I., Becker, B.: ATPG-Based grad-
ing of strong fault-secureness. In: IEEE International On-Line Testing Symposium
(2009)

56 G. Fey

[HPB07] Hayes, J.P., Polian, I., Becker, B.: An analysis framework for transient-error toler-
ance. In: VLSI Test Symp., pp. 249–255 (2007)

[KK07] Koren, I., Krishna, C.M.: Fault-Tolerant Systems. Morgan Kaufmann (2007)
[KPJ+06] Krautz, U., Pflanz, M., Jacobi, C., Tast, H.W., Weber, K., Vierhaus, H.T.: Evalu-

ating coverage of error detection logic for soft errors using formal methods. In:
Design, Automation and Test in Europe, pp. 176–181 (2006)

[KPMH09] Krishnaswamy, S., Plaza, S., Markov, I.L., Hayes, J.P.: Signature-based SER anal-
ysis and design of logic circuits. IEEE Trans. on CAD 28(1), 74–86 (2009)

[Kub68] Kubo, H.: A procedure for generating test sequences to detect sequential circuit
failures. NEC Res. and Dev. 12(3), 69–78 (1968)

[Lev05] Leveugle, R.: A new approach for early dependability evaluation based on formal
property checking and controlled mutations. In: IEEE International On-Line Test-
ing Symposium, pp. 260–265 (2005)

[MZM06] Miskov-Zivanov, M., Marculescu, D.: Circuit reliability analysis using symbolic
techniques. IEEE Trans. on CAD 25(12), 2638–2649 (2006)

[MZM10] Miskov-Zivanov, N., Marculescu, D.: Multiple transient faults in combinational
and sequential circuits: A systematic approach. IEEE Trans. on CAD 29(10), 1614–
1627 (2010)

[PCZ+08] Pellegrini, A., Constantinides, K., Zhang, D., Sudhakar, S., Bertacco, V., Austin,
T.: CrashTest: A fast high-fidelity FPGA-based resiliency analysis framework. In:
Int’l Conf. on Comp. Design (2008)

[PR71] Putzolu, G.R., Roth, J.P.: A heuristic algorithm for the testing of asynchronous
circuits. IEEE Trans. on Comp., pp. 639–647 (1971)

[SLM07] Seshia, S.A., Li, W., Mitra, S.: Verification-guided soft error resilience. In: Design,
Automation and Test in Europe, pp. 1442–1447 (2007)

[TH10] Thompto, B.W., Hoppe, B.: Verification for fault tolerance of the ibm system z
microprocessor. In: Design Automation Conf., pp. 525–530 (2010)

[ZBD07] Zhao, C., Bai, X., Dey, S.: Evaluating transient error effects in digital nanometer
circuits. IEEE Transactions on Reliability 56(3), 381–391 (2007)

Information Security in a Quantum World

Renato Renner

Institute for Theoretical Physics, ETH Zurich, Switzerland

Abstract. It is well known that classical computationally-secure cryp-
tosystems may be susceptible to quantum attacks, i.e., attacks by ad-
versaries able to process quantum information. A prominent example is
the RSA public key cryptosystem, whose security is based on the hard-
ness of factoring; it can be broken using a quantum computer running
Shor’s efficient factoring algorithm. In this extended abstract, we review
an argument which shows that a similar problem can arise even if a
cryptosystem provides information-theoretic security. As long as its se-
curity analysis is carried out within classical information theory, attacks
by quantum adversaries cannot in general be excluded.

1 Introduction

It is generally impossible to efficiently represent the state of a quantum system
using classical information carriers. In fact, the number of classical bits required
to approximate n quantum bits (qubits) grows exponentially in n. It is therefore
reasonable to assume (and widely conjectured) that quantum computers cannot
in general be efficiently simulated by classical computers. In complexity-theoretic
terms, this means that quantum computing is not accurately characterized by
the classical model of computation.1 Therefore, even if a given computational
problem was known to be hard according to the classical theory, this would
not exclude the existence of a quantum algorithm that solves it efficiently. As a
consequence, cryptosystems that are based on classical hardness assumptions are
not necessarily secure against adversaries equipped with quantum computers.
The most prominent example is the RSA public key cryptosystem [RSA78],
whose security relies on the hardness of factoring—a problem that a quantum
computer can solve efficiently [Sho94].

One may now be tempted to think that this problem is restricted to com-
putational cryptography, where security is based on computational problems
whose hardness is anyway only conjectured. This is however not the case. As we
shall see, there exist cryptographic systems that are provably secure within the
framework of classical information theory, whereas their security can be compro-
mised by adversaries able to process quantum information. Remarkably, these
cryptosystems may be purely classical, i.e., the legitimate parties only need to
process and exchange classical data.

1 This is equivalent to say that the Strong Church-Turing Thesis does not hold in a
world where quantum information can be processed (see, e.g., [KLM07]).

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 57–62, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

58 R. Renner

We start the discussion in Section 2 with the observation that information
stored in a quantum memory cannot in general be accurately characterized
within classical probability and information theory. In Section 3, we consider, as
an example, a (classical) key expansion protocol which is secure in the bounded
storage model, i.e., under the assumption that an adversary has only limited
storage space. We then argue that this scheme, although provably secure within
classical information theory, is vulnerable to quantum attacks.

2 Limitations of Classical Information Theory

Consider a coin that randomly takes one of two values, labelled by 0 and 1,
respectively. The coin may be biased, i.e, there may be a value b ∈ [− 1

2 , 1
2]

by which the probability of outcome 1 deviates from 1
2 . We may model the

coin as well as the bias by random variables, C and B, respectively. Then, by
assumption, we have

PC|B=b(1) =
1
2

+ b ,

where PC|B=b(c) denotes the probability that C equals 1 conditioned on the
event B = b that the bias takes a specific value b.

Assume now that we know the value of the bias, B, but are ignorant about the
outcome of the coin toss, C. The knowledge we have about C is then completely
determined by the conditional probability distribution PC|B=b. In particular,
given PC|B=b, we can compute operational quantities such as the probability
by which the outcome C can be correctly predicted, or the average number of
uniform bits that can be extracted from independent copies of C.

Let us now move to a slightly modified scenario, where the bias B is not
available as a classical value, but instead encoded into the state of a qubit, Q.
More precisely, we asume that the state of Q is given by a vector of the form

|φb〉 = cos
πb

2
|e0〉 + sin

πb

2
|e1〉 , (1)

where {|e0〉, |e1〉} is an orthonormal basis of the state space. Similarly to the
previous example, assume that we do not know the outcome of the coin toss C,
but now have access to Q (instead of B). We may then ask whether there is
a compact mathematical description of the knowledge we have about C, analo-
gously to the conditional distribution PC|B=b of the previous example. Crucially,
however, because of the quantum nature of Q (which now takes the role of B),
there is no longer a classical event on which we could condition the probability
distribution of the (still classical) value C on.

To be a bit more specific, let us assume that B is uniformly distributed over the
interval [− 1

2 , 1
2]. Then, using the fact that the classical values of C can without

Information Security in a Quantum World 59

loss of generality be represented by two orthogonal quantum states, denoted |0〉C
and |1〉C , respectively, the joint state of C and Q is given by2

ρCQ =
∫ 1

2

− 1
2

[
PC|B=b(0)|0〉〈0|C ⊗ |φb〉〈φb| + PC|B=b(1)|1〉〈1|C ⊗ |φb〉〈φb|

]
db .

A simple calculation shows that this state can be rewritten as

ρCQ =
1
2
|0〉〈0|C ⊗ ρ0

Q +
1
2
|1〉〈1|C ⊗ ρ1

Q

where the density operators ρ0
Q and ρ1

Q are given by

ρ0
Q =

(
1
2 + 1

π − 2
π2

− 2
π2

1
2 − 1

π

)
and ρ1

Q =
(

1
2 + 1

π
2

π2
2

π2
1
2 − 1

π

)
,

respectively. Note that ρ0
Q and ρ1

Q are not simultaneously diagonalizable. The
state of the qubit Q can therefore not be identified with a classical value.

One may now ask whether it is possible to nevertheless define a classical value
B′ which is equally useful as having access to Q. One possibility could be to set
B′ equal to the actual bias, B. However, the B′ would then be strictly more in-
formative (about C) than Q. To see this, consider for example the case where B
and, hence, B′ are (almost) equal to 1

2 . Knowing B′ then immediately allows us
to infer the value of C (which will be 1 with almost certainty). In contrast, since
both density operators ρ0

Q and ρ1
Q have full rank, there is no event (e.g., defined

via a measurement of Q) conditioned on which the value of C is fully known.3 The
classical value B′ would therefore be strictly more informative than Q.

More generally, it can be shown that it is impossible to define a classical ran-
dom variable B′ which is equivalent to Q, in the sense that any information
about C that is extractable from Q can also be obtained from B′, and vice
versa. Roughly, the argument is that, if B′ can be obtained from Q, there must
exist a measurement of Q whose result is B′. However, from the measurement
outcome B′ it is generally impossible to reconstruct the state that Q had be-
fore the measurement.4 Hence, the information Q can no longer be obtained from

2 Note that ρCQ describes the joint state of a classical and a quantum system, as-
suming that the values of the classical system are represented by the elements of an
orthonormal basis. Such states are sometimes termed classical-quantum states or cq
states.

3 If the states ρ0
Q and ρ1

Q have full rank then, for any outcome of a measurement on Q
that has strictly positive probability conditioned on C = 0, the same outcome also
has positive probability when conditioned on C = 1, and vice versa. This implies that
the measurement outcome does not uniquely determine the value of C.

4 This is because the accessible information between B and Q (which is defined by
a maximization of the mutual information over all measurements on Q) can be
strictly smaller than the mutual information between B and Q; see [KRBM07] for
an example.

60 R. Renner

B′, which means that B′ is strictly less informative than Q. We conclude from
this that, in a situation where we have access to quantum information Q, our
knowledge about C cannot be equivalently described by a classical value B′. In
particular, it is not possible to define a conditional probability distribution of C
which fully characterizes all information we have about C.

The remarkable feature of this example is that C is classical. This illustrates
that, even when we are talking about a classical object such as the outcome of a
coin toss, the knowledge we may have about it cannot necessarily be accurately
characterized within the classical framework of probability theory. In the next
section, we will show that this leads to problems in cryptography, where—even if
the data that the legitimate parties are processing and communicating is purely
classical—it may be advantageous for an adversary to process her information
quantum-mechanically.

3 An Example: The Bounded Storage Model

The bounded storage model, introduced by Maurer [Mau92] (see also [Lu04,
Vad04, DM04]) can be seen as an alternative to the standard computational
model used in cryptography. Instead of imposing any limitations on the adver-
sary’s computing power, one assumes that her storage capacity is limited. This
facilitates security proofs that are information theoretic. One of the most promi-
nent examples is a key expansion protocol proposed in [Mau92]. It allows two
legitimate parties, connected only over an insecure communication channel, to
expand an initially short key to an arbitrary long one. The protocol requires in
addition that the legitimate parties have access to a large source of randomness
(such as cosmic background radiation). The source is assumed to be public (and
hence also accessible to an adversary), but the amount of randomness emitted
by the source exceeds the adversary’s storage capacity.

The idea of the protocol is, roughly, that the legitimate parties use their
initial key to decide on positions from which they read the randomness of the
large public source in order to form a raw key. Since the adversary cannot know
these positions, and is furthermore unable to store all randomness of the source,
he has large uncertainty about the raw key. Hence, using privacy amplification
techniques [BBCM95], the legitimate parties can turn their raw keys into highly
secure (final) keys.

In the early security proofs for this protocol, the adversary’s memory is (im-
plicitly) assumed to be purely classical [Lu04, Vad04, DM04]. Following the
discussion in Section 2, we know however that this assumption strictly does not
include situations where the adversary can store (parts of her) information in a
quantum memory. Consequently, even if the adversary has only one single quan-
tum bit available to store data (which, given the recent progress in experimental
quantum information science is certainly realistic) the classical security proofs
are no longer directly applicable.

Information Security in a Quantum World 61

So far, we have argued that security proofs referring to a purely classical model
of information do not imply security of protocols in a quantum world, where
adversaries can make use of quantum information processing. This however, does
not necessarily imply that cryptographic protocols are insecure in the presence
of quantum adversaries. One may therefore wonder whether classical security
proofs can generally be extended to proofs that include quantum adversaries.

This is however generally not the case. An explicit example can be obtained
using a result of Gavinsky, Kempe, Kerenidis, Raz, and de Wolf [GKK+07] on
the one-way communication complexity of certain functions. Based on this, it is
possible to construct randomness extractors, i.e., functions that turn weak ran-
domness into uniform randomness, which have the following property. Whenever
the extractor is applied to a uniform classical value C which is correlated to an-
other classical value B consisting of t bits (for some appropriately chosen t ∈ N),
then the extractor output is virtually uniform and uncorrelated to B. However,
when the same extractor is applied to a classical value C correlated to a register
Q consisting of t quantum bits, then the output may still be strongly correlated
to Q. If such an extractor is used for privacy amplification in the key expansion
protocol sketched above (so that C takes the role of the weakly secure raw key),
the scheme will be secure against classical adversaries (holding information B),
while a quantum adversary (holding Q) can break it.

4 Conclusions

The proof that a cryptographic system is secure against any classical adver-
sary does not in general imply that it is also secure in the presence of quantum
adversaries. While this is not very surprising for cryptosystems that use quan-
tum communication (such as Quantum Key Distribution schemes), the example
shown in Section 3 illustrates that even purely classical cryptosystems may be-
come insecure in the presence of quantum adversaries.

Nevertheless, in various cases the full (quantum) security of a cryptographic
scheme may follow generically from its security against classical adversaries
(see [Unr10]). Furthermore, in the particular case of key expansion protocols
in the bounded storage model, security can be obtained via the use of quantum-
proof extractors, as shown in [KR11] (see also [DPVR09]). However, it is an open
question whether general cryptographic concepts such as privacy amplification
schemes based on extractors—for which there is a classical security proof—can
in a generic way be shown secure against quantum adversaries.

Acknowledgements. This work was supported by the Swiss National Science
Foundation (grant 200020-135048 and through the National Centre of Compe-
tence in Research Quantum Science and Technology) and the European Research
Council (grant 258932).

62 R. Renner

References

[BBCM95] Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.: Generalized privacy
amplification. IEEE Transaction on Information Theory 41(6), 1915–1923
(1995)

[DM04] Dziembowski, S., Maurer, U.: Optimal randomizer efficiency in the
bounded-storage model. Journal of Cryptology 17(1), 5–26 (2004)

[DPVR09] De, A., Portmann, C., Vidick, T., Renner, R.: Trevisan’s extractor in the
presence of quantum side information. arXiv:0912.5514 (2009)

[GKK+07] Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential
separations for one-way quantum communication complexity, with appli-
cations to cryptography. In: Proceeding of the 39th Symposium on Theory
of Computing, STOC (2007)

[KLM07] Kaye, P., Laflamme, R., Mosca, M.: An introduction to quantum comput-
ing. Oxford University Press (2007)

[KR11] König, R., Renner, R.: Sampling of min-entropy relative to quantum
knowledge. IEEE Transactions on Information Theory 57, 4760–4787
(2011)

[KRBM07] König, R., Renner, R., Bariska, A., Maurer, U.: Small accessible quantum
information does not imply security. Phys. Rev. Lett. 98, 140502 (2007)

[Lu04] Lu, C.-J.: Encryption against storage-bounded adversaries from on-line
strong extractors. Journal of Cryptology 17(1), 27–42 (2004)

[Mau92] Maurer, U.: Conditionally-perfect secrecy and a provably-secure random-
ized cipher. Journal of Cryptology 5(1), 53–66 (1992)

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining dig-
ital signatures and public-key cryptosystems. Communications of the
ACM 21(2), 120–126 (1978)

[Sho94] Shor, P.W.: Algorithms for quantum computation: Discrete logarithms
and factoring. In: Proceedings of the 35nd Annual Symposium on Foun-
dations of Computer Science, pp. 124–134. IEEE Computer Society Press
(1994)

[Unr10] Unruh, D.: Universally Composable Quantum Multi-Party Computation.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505.
Springer, Heidelberg (2010)

[Vad04] Vadhan, S.P.: Constructing locally computable extractors and cryptosys-
tems in the bounded-storage model. Journal of Cryptology 17(1), 43–77
(2004)

Computer Memory: Why We Should Care

What Is under the Hood

Vlastimil Babka and Petr Tůma

Department of Distributed and Dependable Systems,
Faculty of Mathematics and Physics, Charles University,
Malostranské náměst́ı 25, 118 00 Prague, Czech Republic

{vlastimil.babka,petr.tuma}@d3s.mff.cuni.cz

Abstract. The memory subsystems of contemporary computer archi-
tectures are increasingly complex – in fact, so much so that it becomes
difficult to estimate the performance impact of many coding constructs,
and some long known coding patterns are even discovered to be princi-
pally wrong. In contrast, many researchers still reason about algorithmic
complexity in simple terms, where memory operations are sequential and
of equal cost. The goal of this talk is to give an overview of some mem-
ory subsystem features that violate this assumption significantly, with
the ambition to motivate development of algorithms tailored to contem-
porary computer architectures.

1 Introduction

When we code, we do not try to envision how our code drives the computer
in all its complexity. Instead, we hold in our heads a simplified image, free of
technical details that are not relevant to the problem at hand. Of course, to do
so, we must first know which details can be abstracted away and which details
happen to be influential.

It turns out that in the case of memory subsystems of contemporary com-
puter architectures, this distinction is not an easy one to make. Over the past
decade, we have witnessed numerous cases where initial judgment lead to ignor-
ing technical details that have turned out to be vital for program correctness or
performance. In all fairness, we have to observe that it was not always the initial
judgment that was at fault – the technical progress has simply lead to changing
conditions and thus changing results.

To help avoid such situations, our goal is to present a compact overview of
selected technical details related to the memory subsystems – details that might
have not been considered essential knowledge a decade ago, but have grown
important since. The choice of the technical details is based mostly on our per-
formance evaluation work [7,8,4,5], where we have analyzed the reasons behind
numerous surprising performance anomalies on recent computer architectures of

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 63–75, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

64 V. Babka and P. Tůma

the x86 family. Other articles treat particular issues in more depth and for more
platforms, we provide references as appropriate.1

2 Motivating Examples

Delving into the details of the memory subsystems can feel like a hunt for the
obscure. A computer researcher looking for principal insights will likely wonder
whether the details are not just a case of platform specific and short lived knowl-
edge. To convince the reader otherwise, we present two motivating examples, one
related to correctness and one to performance.

In the correctness domain, we choose the famous example of the Double
Checked Locking pattern. Published in 1996 [24], the pattern deals with the
issue of delayed initialization of a shared read only variable. Upon access, the
reader checks whether the variable has been initialized, and when that is not
the case, the initialization is done:

private static SomeRefType var = NULL;
public static getVar () {
if (var == NULL) var = new SomeType ();
return (var);

}

As listed, the code can fail with multiple concurrent readers. Simply adding
a lock to protect the shared variable access can hurt performance, the pattern
therefore proposes to first check the variable and only lock and check again when
the initialization needs to be done.

The pattern has quickly found its way into the design pattern literature, and
it took several years for the community to realize that it would actually fail with
many increasingly common memory subsystems [13,19]. In essence, due to the way
the memory subsystems work, concurrent readers can see the reference stored in
the shared variable before they can see the data the reference points to.

For a performance related example, we choose a recent observation concerning
scientific applications in the high performance computing domain, namely the
well established code from the Omni Compiler Project [21] that implements the
NAS Parallel Benchmark suite [9]. Researchers from the Future Technologies
Group of the Oak Ridge National Laboratory have observed that a particular
problem happens to increase the execution time of some code by over a half.
They add that this is a problem most scientific applications have been considered
immune to, going as far as calling the issue insidious [18].

The cited observation is interesting in that fixes to the discovered perfor-
mance problems often consist of modifying a few lines of code. An example of
1 The exact properties of memory subsystems are highly platform dependent. We have

decided to focus on the recent computer architectures of the x86 family, hoping that
the reader will find the content general enough to be applicable to their platform, yet
specific enough to be useful. It is possible that some generalizations trade precision
for brevity.

Computer Memory: Why We Should Care What Is under the Hood 65

a more sophisticated refactoring of a three-dimensional stencil kernel shows an-
other significant performance increase, ranging from 40% to 70% depending on
the platform. This particular refactoring is based entirely on reflecting memory
subsystem features.

In both motivating examples, we see a situation where a relatively detailed
knowledge of memory subsystems was required to make seemingly simple code
perform efficiently and correctly. The reader can see how similar issues can arise
in other work and how knowledge outlined in the following sections can be useful
in managing them.

3 Hardware Features

Recent memory subsystems of the x86 family provide shared memory access to
multiple cores of multiple processors.2 Several levels of caches are used to mask
memory access latency, coherency protocol is employed to maintain consistent
view of memory content across cores and processors. Other latency masking fea-
tures include speculative reads and buffered writes, which contribute to a specific
memory ordering model that differs from the intuitive sequential consistency.
Our compact presentation assumes some prior knowledge and focuses on selected
properties, we refer the reader to vendor documentation such as [15,16,14,1,2]
or comprehensive articles such as [11] for details.

3.1 Caches: Not Just Size

Data in cache is accessed faster than data in main memory. The difference in
access latency is expressed as cache miss penalty and depends largely on the
cache level where the cache miss occurs. Both vendor documentation and exper-
imental measurements give ranges of values valid for particular platforms and
workloads, a general rule is to expect access times in units of processor cycles
for first level cache, tens of cycles for second level cache, and hundreds of cycles
for memory [7,4]. For an example of how a cache miss penalty can depend on
the amount of data accessed and therefore the cache level involved, see Figure 1
(measured on an Intel Xeon processor in [7]).

Cache miss penalty can be accompanied by other penalties related to the
same memory access. With write back cache, handling a cache miss may entail
not just reading new data from memory, but also writing old data to memory
to free space. Also significant are the address translation cache penalty, which
can amount to tens of cycles assuming the paging tables are cached, and the co-
herency protocol overhead, which can amount to hundreds of cycles [7,4]. Finally,
some components of a cache miss penalty can be systematic and deterministic,
yet difficult to explain from coder perspective. For an example of how a cache
miss penalty can differ between odd and even cache lines, see Figure 2 (measured
on an Intel Xeon processor in [7]).
2 To improve text flow, we will drop the family designation, but we still refer to the

recent computer architectures of the x86 family, even with general statements.

66 V. Babka and P. Tůma

1 9 18 28 38 48 58 68 78 88 98 110 123

0
50

10
0

20
0

30
0

Number of accesses mapping to the same L2 cache line set

A
cc

es
s

du
ra

tio
n

[c
yc

le
s

−
 1

00
0

w
al

ks
 A

vg
]

Fig. 1. Dependency of cache miss penalty on amount of data accessed

Cache miss penalties can be partially masked by executing other operations
in parallel with the memory access [6]. The availability of other operations to
execute depends on both the structure of the code and the architecture of the
processor. In [12], the authors show how, for a particular benchmark, up to one
quarter of the level one data cache miss penalty can be masked by having a
large enough processor instruction window. Even though both processors and
compilers perform optimizations to facilitate parallel execution, it makes sense
to consider the ratio of memory accesses to other operations in performance
sensitive code.

An obvious concern with caches is the size of the cached data. Intuitively,
we understand that frequently accessed data should fit in the cache. This need
gives rise to techniques such as tiling [28], which splits data into blocks that fit
a known cache size, or cache oblivious algorithms [22], which split data in an
asymptotically optimal manner even without knowing the cache size.

To tune an algorithm to a particular cache size, the cache size has to be
known. Some operating systems can provide detailed information about cache
size. Even when such information is not available, techniques to determine cache
size by an automated measurement exist [29]. It is important to note that with
the common policy of evicting least recently used data, misjudging the effective
cache size by mere one line can lead to evicting data just before they are needed
– a decidedly wrong thing to do.

There are reasons why the effective cache size that an algorithm uses will be
smaller than the determined cache size. Since the unit of cache access is a cache
line, any data that is not aligned and sized to fit the cache line exactly will waste
some cache space. Also, when fetching a cache line, an adjacent cache line can
be fetched by the hardware prefetcher regardless of the access pattern, again
potentially limiting cache space utilization.

Computer Memory: Why We Should Care What Is under the Hood 67

0 1000 2000 3000 4000

22
0

24
0

26
0

28
0

30
0

Offset of accesses within a page [bytes]

A
cc

es
s

du
ra

tio
n

[c
yc

le
s

−
 1

00
0

w
al

ks
 A

vg
]

Accessed addresses

32
64
128

Fig. 2. Dependency of cache miss penalty on offset within a page

Related to cache size is cache organization, specifically the relationship be-
tween cache levels and the relationship between multiple caches. Typically, first
level caches are separate for code and data, and private to each core. Higher level
caches are unified, the last level cache is often shared among cores. The exact
impact on effective cache size also depends on whether the caches are inclusive
or exclusive.

With inclusive caches, data that resides in lower level caches is also replicated
in higher level caches. With exclusive caches, data is not replicated. A cache
may also be neither strictly inclusive nor strictly exclusive. Although vendor
information in this respect is often scarce, experiments can test inclusivity or
exclusivity [4].

Exclusive caches appear more efficient from capacity perspective. Inclusive
caches may require less traffic between levels when handling misses or when
maintaining coherency. Significant performance effects may depend on the par-
ticulars, as illustrated by an example on Figure 3. Figure 3 shows a cache miss
penalty spike when accessing data that has just been evicted in an exclusive
cache (measured on an AMD Opteron processor in [4]).

A very significant feature of caches is limited associativity. Rather than being
a single large cache that serves the entire physical address space, a cache of
limited associativity can be viewed as a set of smaller caches, each serving a
disjunct subset of the physical address space. When data accesses are not spread
evenly across cache sets, this can again limit cache space utilization.

From coder perspective, it is important to realize how cache sets are selected.
Starting with the least significant bits, a physical address consists of an offset
within a cache line, then a cache set, then a cache key. For example, in a cache
with 64 byte lines and 4096 sets, such as an Intel Xeon processor might have [4],
bits 6 to 19 of a physical address will determine the cache set used.

68 V. Babka and P. Tůma

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

0
10

20
30

40

Number of accesses mapping to the same L1 cache set

D
ur

at
io

n
of

 a
cc

es
s

[c
yc

le
s

−
 1

00
0

w
al

ks
 A

vg
]

Fig. 3. Dependency of cache miss penalty on amount of data accessed, with visible
spike for accessing just evicted data

Typically, code can control virtual address allocation but not physical address
allocation. Since a virtual address matches a physical address only in the bits
that determine an offset within a page, code has only limited control over cache
set choice. Returning to the example, in a system with 4096 byte pages, only
bits 0 to 11 of a virtual address necessarily match the corresponding bits of a
physical address. In the example, code can therefore easily influence only half of
the physical address bits that determine the cache set.

The operating system, which allocates the physical addresses and therefore
participates in the choice of the cache sets, does not have sufficient information to
assign addresses in an optimal manner. On some platforms, heuristic algorithms
are employed to occupy the cache sets evenly, on other platforms, the choice is
basically random. As a result, the same code with the same data can execute
sometimes with good but sometimes with bad cache space utilization. This has
been known to disrupt measurement results significantly [20]. Techniques that
can alleviate the issue include using large pages or using special allocation rou-
tines [7], there are also statistical methods for correct processing of results [17],
Also, some data strides may be discouraged to avoid conflicts in cache [14,2].

3.2 Bandwidth: Far From Peak

Given the differences in clock speeds between processor chips and memory chips,
the achievable memory bandwidth is of obvious concern. For various reasons
nicely explained in [11], utilizing the memory bandwidth up to the theoretical
maximum is not possible, however, some techniques can help get close. In general,
the more linear and aligned the memory accesses, the higher the bandwidth.

Besides the memory chips, other parts of the memory subsystem can have
properties that translate into apparent bandwidth limitations. Typical are

Computer Memory: Why We Should Care What Is under the Hood 69

constraints on the maximum number of memory accesses that can be issued per
processor clock cycle [14, Section 3.6.1] and constraints on the maximum number
of outstanding cache accesses [2, Section 6.5]. Figure 4 shows how a workload
that generates outstanding cache misses slows down a concurrent workload that
generates outstanding cache hits (measured on an Intel Xeon processor in [4]).

0 1 2 4 8 16 64 256 1024 4096 16384 65536 524288

6.
0

6.
5

7.
0

7.
5

8.
0

Idle length [number of NOP instructions]

D
ur

at
io

n
of

 s
in

gl
e

ac
ce

ss
 [c

yc
le

s
−

 1
00

 A
vg

]

Fig. 4. Dependency of access bandwidth on delay between cache misses, generated by
concurrently executing workload

Whenever parts of the memory subsystem are shared by multiple cores or
multiple processors, bandwidth is naturally shared as well. Since sharing is of-
ten on the first-come first-served basis, more intensive workloads will get larger
shares of bandwidth.

3.3 Prefetching: Do Be Linear

Prefetching is utilized to hide the memory access latencies. Starting a memory
access well before the data is actually needed in code means that code is likely to
find the data in cache rather than in memory, thus executing faster. Hardware
typically guesses what data will be needed by assuming linear access patterns.

The access patterns recognized by hardware prefetchers are often fairly simple.
Typical is a linear access pattern with a constant stride, or several such patterns
anchored to a particular page [14, Section 7.2] or a particular instruction [2,
Section 6.5]. The pattern is assumed to be continuous in the virtual address
space, and since the hardware prefetcher works in the physical address space, it
stops following an access pattern on the page boundary. For typical 4096 byte
pages, this limits the useful stride distances to at most hundreds of bytes, since
larger stride distances would reach the page boundary too soon.

70 V. Babka and P. Tůma

Other typical features of hardware prefetchers include fetching adjacent cache
lines, which may give the impression that cache lines are larger than they actually
are.

Memory accesses by hardware prefetchers can be dropped when the memory
subsystem is near maximum utilization. Moreover, the behavior of the memory
subsystem under cache sharing can exhibit surprising effects, including workloads
that become faster when the memory subsystem is more loaded [4,3].

In addition to the hardware prefetchers, it is possible to initiate prefetch
in code. Compilers can emit prefetch instructions for certain code constructs,
especially array loops. Builtin functions are available to request prefetch explic-
itly [25].

3.4 Ordering: Hard to Get Right

For performance reasons, it may be beneficial to carry out memory accesses in a
different order than that specified by code. Generally, memory accesses are not
done in code order, even though processors attempt to preserve the semblance
of code order in many situations. Processor vendors also indicate that stronger
memory ordering models will not necessarily be present on future processors.

To illustrate the reasons for changing memory access order, we mention two
common architectural elements:

– Store buffer. Rather than writing directly to cache or memory, processor can
stage writes in a store buffer and only write to cache or memory from there.
Writes pending in the store buffer are typically visible to other accesses to
the same address, however, certain special memory access operations can
bypass the store buffer.

– Write combining buffer. Rather than writing small chunks of data, processor
can stage writes in a write combining buffer and only write in larger chunks.
Writes pending in the write combining buffer are not necessarily globally
visible to other accesses.

Rather than reproducing the exact details of memory access ordering, we only
want to impress the reader with the fact that it needs to be considered even
in relatively simple situations. For that, we reproduce a short code example
from [15, Section 8.2.3]:

volatile int x = 0;
volatile int y = 0;

int FunctionOne () {
x = 1;
return (y);

}

int FunctionTwo () {

Computer Memory: Why We Should Care What Is under the Hood 71

y = 1;
return (x);

}

When the two functions are executed by threads running on two processors, it is
possible for both to return zero, which is a result that is not possible on a single
processor.

Note that where memory ordering model is concerned, vendor documentation
is not always clear and consistent. For example, in a 2008 version of its System
Programming Guide, Intel states that ”writes to the same location have a total
order,” but a 2011 version of the same document replaces this with ”any two
stores are seen in a consistent order by processors other than those performing
the stores.” Since many of the intricate interactions that can make seemingly
reasonable memory ordering models backfire are still only being discovered, we
would recommend following recent work on C++ and Java memory models for
details [10,23].

3.5 Coherency: Not for Heavy Use

Alongside ordering, coherency is another property where processors generally
attempt to present a simple facade over complex internals, where specialized
protocols are used to enforce coherent memory view among multiple participants.
For all cached data, the participants remember whether the data is also cached
elsewhere and whether it was modified since being cached. The participants must
also snoop the addresses of all memory accesses and react to certain events:

– An attempt to read data that is cached elsewhere requires indicating the
existence of a copy.

– An attempt to write data that is cached elsewhere requires invaliding the
copy.

– An attempt to read or write data that is modified elsewhere requires flushing
the modifications.

Even though particular variants of the protocol (MESI, MOESI, MESIF) can
differ in details, it is important to realize that any memory access, not just access
to shared data, can cause coherency protocol activity. Measurements illustrating
this effect are available in [6], where a raytracing benchmark is shown to run
21% slower when another workload on another processor accesses memory, even
though the raytracing benchmark itself runs almost entirely from cache.

In general, it is recommended that workloads avoid sharing memory. This
concerns especially false sharing, where otherwise unrelated data reside close to
each other. When workloads require sharing memory, general advice is to place
those workloads on cores that share cache, under the assumption that exchanging
data through shared cache is faster than exchanging data through memory. Note,
however, that there are exceptions to this rule – for example, level one caches
can exchange data through main memory even when they are connected to a
shared level two cache.

72 V. Babka and P. Tůma

3.6 Controllers: No Longer Uniform

Memory modules are connected to processors through memory controllers. In
some multiprocessor architectures, processors share an external memory con-
troller in a symmetrical configuration. Recently, however, processors come
equipped with integrated memory controllers. When such processors are used
in multiprocessor architectures, each processor has direct access to some mem-
ory through its own controller, but only indirect access to other memory through
controllers of other processors. Such architectures are necessarily NUMA, since
the cost of accessing memory depends on both the accessing processor and the
accessed address.

As was the case with associativity, the operating system, which allocates the
physical addresses and therefore participates in the choice of the memory con-
troller, does not have sufficient information to assign addresses in an optimal
manner. Unlike with associativity, however, there are standard interfaces to di-
rect allocation [11].

Multiprocessor applications that do not provide the operating system with
allocation information are known to suffer on NUMA architectures. Since the
default policy is to allocate memory close to the processor that first touches it,
applications that first initialize their data structures and then fork for compu-
tation will most likely have their data placed near the processor that did the
initialization rather than near the processors that do the computation. An ex-
ample analysis of this effect for scientific computing applications is available
in [18].

4 Software Techniques

To conclude, we list several examples of software techniques that can help ad-
dressing the presented hardware features. In essence, what we look for is de-
signing algorithms and structures with hardware in mind – but since carefully
optimized solutions are necessarily algorithm-specific, the examples refer mostly
to general coding practice.

To begin with, we should be aware of the requirements our code will place
on processor and memory. Even simple calculations will help estimate whether
cache occupancy and memory traffic requirements are reasonable. We should also
know whether our workload is processor-bound or memory-bound – a handy tool
for this purpose are the roofline diagrams [27].

When coding, we should avoid clearly wrong constructs in performance
sensitive code:

– Data should be aligned and sized to fit cache lines to avoid incurring both
time and space overhead. It is especially important to avoid accessing data
on cache line boundaries.

– Iteration steps should be small and constant to facilitate hardware prefetch-
ing. Multiple iteration patterns should access different pages, since some
architectures recognize one pattern per page.

Computer Memory: Why We Should Care What Is under the Hood 73

– Small data distances generally increase the efficiency of the memory subsys-
tem. Address translation caches or memory controller pages are examples
where locality matters.

– Data sharing should be avoided to minimize coherency traffic. It is especially
important to avoid frequent updates to cache lines accessed from multiple
processors.

For specific situations, further optimizations can be considered:

– Code that transforms input data into output data can benefit from modifying
data in place rather than working from input buffer into output buffer. That
way, outputs will not compete with inputs for cache space.

– When writing data that will not be read, either not soon or not by the same
processor, special write operations that bypass cache can be used to conserve
cache space.

– Specialized allocators can reduce probability of collisions.
– Inserting prefetch instructions can reduce latencies.

Finally, we should dedicate a special paragraph to experimental measurements.
Algorithms in many computing domains perform optimizations based on com-
plex assumptions about their workloads, and the most straightforward way to
evaluate such optimizations are experimental measurements. Given the outlined
features of memory subsystems – where simple acts of assigning particular ad-
dress to data or switching two variables can lead to observable performance
changes – it is very easy to mistake a performance artifact for a valid result.

We recommend the reader checks some of the documents referenced by the
Evaluate Collaboratory [26] to avoid common mistakes in experimental measure-
ments related to the complexities of contemporary computer architectures.

Acknowledgments. The members of the Department of Distributed and De-
pendable Systems have contributed to the work in performance evaluation, which
has provided the necessary backdrop for this paper. The work has been partially
funded by project GACR P202/10/J042 and by project SVV-2011-263312.

References

1. AMD: AMD64 Architecture Programmers Manual : System Programming, 3.18
edn. vol. 2 (2011)

2. AMD: Software Optimization Guide for AMD Family 15h Processors, 3.03 edn.
(2011)

3. Babka, V.: Cache Sharing Sensitivity of SPEC CPU2006 Benchmarks. Tech. Rep.
2009/3 2.0, Department of Software Engineering, Faculty of Mathematics and
Physics, Charles University (2009)

4. Babka, V., Bulej, L., Decky, M., Kraft, J., Libic, P., Marek, L., Seceleanu, C.,
Tuma, P.: Resource Usage Modeling: Q-ImPrESS Project Deliverable D3.3 (2009),
http://www.q-impress.eu

http://www.q-impress.eu

74 V. Babka and P. Tůma

5. Babka, V., Bulej, L., Libic, P., Marek, L., Martinec, T., Podzimek, A., Tuma,
P.: Resource Impact Analysis: Q-ImPrESS Project Deliverable D3.4 (2011),
http://www.q-impress.eu

6. Babka, V., Marek, L., Tuma, P.: When Misses Differ: Investigating Impact of Cache
Misses on Observed Performance. In: Proceedings of ICPADS 2009. IEEE (2009)

7. Babka, V., Tuma, P.: Investigating Cache Parameters of x86 Family Processors.
In: Kaeli, D., Sachs, K. (eds.) SPEC Benchmark Workshop 2009. LNCS, vol. 5419,
pp. 77–96. Springer, Heidelberg (2009)

8. Babka, V., Tuma, P.: Can Linear Approximation Improve Performance Prediction?.
In: Proceedings of EPEW 2011. Springer, Heidelberg (2011)

9. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H.: The NAS
Parallel Benchmarks. Tech. Rep. RNR-94-007, RNR (1994)

10. Boehm, H.: Threads and Memory Model for C++,
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm

11. Drepper, U.: What Every Programmer Should Know About Memory. Tech. rep.,
Red Hat (2007)

12. Fields, B.A., Bodik, R., Hill, M.D., Newburn, C.J.: Interaction Cost and Shotgun
Profiling. ACM Transactions on Architecture and Code Optimization 1, 272–304
(2004), http://doi.acm.org/10.1145/1022969.1022971

13. Goetz, B.: Double-Checked Locking: Clever, But Broken. JavaWorld (2001)
14. Intel: Intel 64 and IA-32 Architectures Optimization Reference Manual, 248966-025

edn. (2011)
15. Intel: Intel 64 and IA-32 Architectures Software Developers Manual Volume 3A:

System Programming Guide, Part 1, 253668-039 edn. (2011)
16. Intel: Intel 64 and IA-32 Architectures Software Developers Manual Volume 3B:

System Programming Guide, Part 2, 253669-039 edn. (2011)
17. Kalibera, T., Tuma, P.: Precise Regression Benchmarking with Random

Effects: Improving Mono Benchmark Results. In: Horváth, A., Telek, M. (eds.)
EPEW 2006. LNCS, vol. 4054, pp. 63–77. Springer, Heidelberg (2006)

18. McCurdy, C., Vetter, J.: Memphis: Finding and Fixing NUMA-Related Perfor-
mance Problems on Multi-Core Platforms. In: Proceedings of ISPASS 2010. IEEE
(2010)

19. Meyers, S., Alexandrescu, A.: C++ and the Perils of Double-Checked Locking. Dr.
Dobb’s Journal (2004)

20. Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing Wrong Data
Without Doing Anything Obviously Wrong. In: Proceedings of ASPLOS 2009, pp.
265–276. ACM (2009)

21. Omni Compiler Project. High Performance Computing Systems Laboratory, Grad-
uate School of Systems and Information Engineering, University of Tsukuba,
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp/top-en.html

22. Prokop, H.: Cache-Oblivious Algorithms. Master Thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology (1999)

23. Pugh, B.: The Java Memory Model,
http://www.cs.umd.edu/~pugh/java/memoryModel

24. Schmidt, D.C., Harrison, T.: Double-Checked Locking – An Object Behavioral
Pattern for Initializing and Accessing Thread-Safe Objects Efficiently. Presented
at PLoP 1996 (1996)

25. Stallman, R.M., et al.: Using the GNU Compiler Collection, 4.6.1 edn.

http://www.q-impress.eu
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm
http://doi.acm.org/10.1145/1022969.1022971
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp/top-en.html
http://www.cs.umd.edu/~pugh/java/memoryModel

Computer Memory: Why We Should Care What Is under the Hood 75

26. The Evaluate Collaboratory: Experimental Evaluation of Software and Systems in
Computer Science, http://evaluate.inf.usi.ch

27. Williams, S.: The Roofline Model. In: Performance Tuning of Scientific Applica-
tions. CRC (2010)

28. Wolfe, M.: More Iteration Space Tiling. In: Proceedings of Supercomputing 1989,
pp. 655–664. ACM, New York (1989), http://doi.acm.org/10.1145/76263.76337

29. Yotov, K., Pingali, K., Stodghill, P.: Automatic Measurement of Memory Hierarchy
Parameters. In: Proceedings of SIGMETRICS 2005. ACM (2005)

http://evaluate.inf.usi.ch
http://doi.acm.org/10.1145/76263.76337

Frequency Prediction of Functions�

Kaspars Balodis, Ilja Kucevalovs, and Rūsiņš Freivalds

Faculty of Computing, University of Latvia, Raiņa bulvāris 29, Riga, LV-1459, Latvia

Abstract. Prediction of functions is one of processes considered in in-
ductive inference. There is a “black box” with a given total function f
in it. The result of the inductive inference machine F (< f(0), f(1), · · · ,
f(n) >) is expected to be f(n + 1). Deterministic and probabilistic pre-
diction of functions has been widely studied. Frequency computation is
a mechanism used to combine features of deterministic and probabilistic
algorithms. Frequency computation has been used for several types of in-
ductive inference, especially, for learning via queries. We study frequency
prediction of functions and show that that there exists an interesting hi-
erarchy of predictable classes of functions.

1 Introduction

Physicists are well aware that physical indeterminism is a complicated phe-
nomenon and probabilistical models are merely reasonably good approximations
of reality. The problem “What is randomness?” has always been interesting not
only for philosophers and physicists but also for computer scientists. The term
“nondeterministic algorithm” has been deliberately coined to differ from “inde-
terminism”.

Probabilistic (randomized) algorithms is one of central notions in Theory of
Computation. However, since long ago computer scientists have attempted to
develop notions and technical implementations of these notions that would be
similar to but not equal to randomization.

The notion of frequency computation was introduced by G. Rose [28] as an
attempt to have an absolutely deterministic mechanism with properties similar
to probabilistic algorithms. The definition was as follows. A function f : w → w
is (m, n)-computable, where 1 ≤ m ≤ n, iff there exists a recursive function R:
wn → wn such that, for all n-tuples (x1, · · · , xn) of distinct natural numbers,

card{i : (R(x1, · · · , xn))i = f(xi)} ≥ m.

R. McNaughton cites in his survey [25] a problem (posed by J. Myhill) whether f
has to be recursive if m is close to n. This problem was answered by B.A. Trakht-
enbrot [31] by showing that f is recursive whenever 2m > n. On the other hand,
B.A. Trakhtenbrot [31] proved that if 2m = n then nonrecursive functions can be
� The research was supported by Grant No. 09.1570 from the Latvian Council

of Science and by Project 2009/0216/1DP/1.1.1.2.0/09/IPIA/VIA/044 from the
European Social Fund.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 76–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Frequency Prediction of Functions 77

(m, n)-computed. E.B. Kinber extended the research by considering frequency
enumeration of sets [20]. The class of (m, n)-computable sets equals the class of
recursive sets if and only if 2m > n. The notion of frequency computation can be
extended to other models of computation. Frequency computation in polynomial
time was discussed in full detail by M. Hinrichs and G. Wechsung [19].

For resource bounded computations, the behavior of frequency computability
is completely different: for e.g., whenever n′ − m′ > n − m, it is known that
under any reasonable resource bound there are sets (m′, n′)-computable, but
not (m, n)-computable. However, scaling down to finite automata, the analogue
of Trakhtenbrot’s result holds again: We show here that the class of languages
(m, n)-recognizable by deterministic finite automata equals the class of regular
languages if and only if 2m > n. Conversely, for 2m > n, the class of languages
(m, n)-recognizable by deterministic finite automata [3] is uncountable for a
two-letter alphabet. When restricted to a one-letter alphabet, then every (m, n)-
recognizable language is regular. This was also shown by E.B. Kinber.

Frequency computations became increasingly popular when relation between
frequency computation and computation with a small number of queries was
discovered [23,18,6,7].

Inductive inference is a process to find an algorithm from sample computa-
tions. We restrict ourselves to the case when a total function is to be identi-
fied.The first paper in this area was [17], yet (sometimes indirectly) the research
was influenced by the theory of experiments with finite automata [24].

In the prediction of functions we consider a functional F . We say that F
predicts a total function f : N → N correctly if the result F (< f(0), · · · , f(n) >)
always equals f(n+1). A class U of functions is called predictable if there exists
a functional F correctly predicting every function f ∈ U .

This definition of predictability of functions is rather weak because only rather
non-interesting classes of functions are predictable. All functions in U are dis-
tinguishable using only the value f(0). Hence a more complicated definition is
used.

Definition 1. We say that F predicts a total function f : N → N in the limit
if the result F (< f(0), · · · , f(n) >) equals f(n+1) for all but a finite number of
the values of n. It is not even demanded that F (< f(0), · · · , f(n) >) is defined
for all n. A class U of functions is called predictable if there exists a recursive
functional F correctly predicting every function f ∈ U .

Definition 2. We say that F (m, n)-predicts a class U of total functions f :
N → N if for arbitrary n-tuple of pairwise distinct functions f1, f2, · · · , fn

from the class U the frequency algorithm works on n inputs receiving F (<
fj(0), · · · , fj(n) >) on the j-th input (n being the same on all the inputs) and
producing (at different moments!) outputs ”fj(n + 1) = r (the computation
is infinitely long and for some j the result can never be produced). It is de-
manded that there are at least m pairwise distinct functions g1, g2, · · · , gm such
that {g1, g2, · · · , gm} ⊆ {f1, f2, · · · , fn} and for all i ∈ {1, 2, · · · , m} the correct
result on the corresponding output is produced for all but a finite number of n.

78 K. Balodis, I. Kucevalovs, and R. Freivalds

2 Results

Lemma 1. If a total function f is deterministically predicted in the limit then
f is recursive.

Proof. By the definition of predictability, there exists an n0 such that for all
n > n0 the result F (< f(0), · · · , f(n) >) equals f(n + 1). Whatever the values
< f(0), · · · , f(n0) >, the recursivity of f is implied by the recursivity of F . ��

Nonetheless there is specifics of the frequency computation.

Theorem 1. There is a class U of total functions containing a non-recursive
function g such that for arbitrary positive integer n there is an algorithm
(n, n + 1)-predicting the class U .

Proof. Let f be a total non-recursive function such that f(0) = 0. Let U consist
of the function f and all constants c. The frequency algorithm for each fj predicts
the next value as fj(0). For all the constant functions the prediction is correct.
Since the functions are supposed to be distinct, no more than one of the functions
is predicted incorrectly. ��

How (m, n)-predictability and (m′, n′)-predictability is related? Some implica-
tions are evident.

Lemma 2. If U is (m, n)-predictable, then U is also (m, n + 1)-predictable.

Lemma 3. If U is (m + 1, n + 1)-predictable, then U is also (m, n)-predictable.

Theorem 2. For arbitrary positive integer k there is a class Uk of total func-
tions such that:
1) for arbitrary positive integer n the class Uk is (n, n + k)-predictable,
2) for no positive integer n the class Uk is (n, n + k − 1)-predictable.

Proof. The class Uk consists of all the constants and k distinct non-recursive
functions. If at any tuple of distinct target functions at least k errors are allowed,
then the frequency algorithm can predict the functions as they were constants. If
less than k errors are allowed then existence of a frequency predicting algorithm
is supposed to predict in the limit at least one non-recursive function. This
contradicts an easy modification of Lemma 1. ��

The proofs of Theorems 1 and 2 used essentially the property of the class U to
contain non-recursive functions. This raises a natural question: does
(n, n + k)-predictability depend on the parameters (n, k) if all the functions in
U are recursive?

Theorem 3. For arbitrary positive integer k there is a class Uk of total recursive
functions such that:
1) for arbitrary positive integer n the class Uk is (n, n + k)-predictable,
2) for no positive integer n the class Uk is (n, n + k − 1)-predictable.

Frequency Prediction of Functions 79

The main idea of the proof is to construct Uk as a set of total recursive functions
fab where a ∈ N and b ∈ {1, 2, · · · , k}. Each fab(0) contains information about
the value of a involved and complete information about the programs for all the
functions f0b, f1b, · · · , f(a−1)b but not the information about the programs for
any of the functions fab. This way, if a is the largest first index of the target
functions of the frequency algorithm, there is no need for an error on all the
target functions with exception of fa1, fa2, · · · , fak. On the other hand, the
functions fa1, fa2, · · · , fak are constructed to ensure that the frequency algo-
rithm F computed by Turing machine ϕa working on these k functions cannot
predict correctly all but a finite number of values faj(n) for at least one of the
functions faj. (In our paper ϕ is a Gödel numbering of all one argument partial
recursive functions such that ϕ0 is the nowhere defined function. For instance,
any standard numbering of Turing machines can be used for this purpose.)

Formally, we use Smullyan’s double recursion theorem [30]:

Smullyan’s Double Recursion Theorem. [27,30] For any recursive functions
g and h, there exist m and n such that

ϕm = ϕg(<m,n>), and ϕn = ϕh(<m,n>).

This theorem can easily be generalized:

Lemma 4. [30] For any s-tuple of total recursive functions (h1, h2, · · · , hs)
there exists an s-tuple of natural numbers < y1, y2, · · · , ys > such that

ϕy1 = ϕh1(<y1,y2,··· ,ys>), · · · , ϕys = ϕhs(<y1,y2,··· ,ys>).

Proof of Theorem 3. We define fab ∈ Uk by induction. There cannot be a
universal 3-argument recursive function U(a, b, x) = fab(x) because otherwise U
would be deterministically predictable in the limit. We define fa1, · · · , fak only
after fa′b have been defined for all a′ < a. Lemma 4 will be used to prove that ϕa

cannot be a frequency algorithm predicting the k-tuple of functions fa1, · · · , fak.
Basis. We define f01, · · · , f0k as constant functions equal to zero. We define

every number among n01, · · · , n0k as an integer v such that ϕv is constant zero
(every number nab will be a correct ϕ-program for the function fab). We de-
fine every number among z01, · · · , z0k as 0 (every number zab will be a correct
information about all ϕ-programs for all the functions fa′b′ , where a′ < a and
b′ ∈ {1, 2, · · · , k}).

Since we define the functions h1, h2, · · · , hk by a common procedure, we use
infinite injury priority method to establish temporal priorities among the num-
bers {1, 2, · · · , k}. These priorities are needed to describe the construction of the
functions. We start with the “natural” priority (1, 2, · · · , k).

Inductive step. Assume that all the functions fa′b where a′ < a have al-
ready been defined . Let t1, t2, · · · , tk be arbitrary natural numbers. For each
b ∈ {1, 2, · · · , k} we construct a k-tuple of functions as follows. For all b ∈
{1, 2, · · · , k} we define the functions ϕhb(<t1,t2,··· ,ts>) stepwise. First, we define

80 K. Balodis, I. Kucevalovs, and R. Freivalds

ϕhb(<t1,t2,··· ,ts>)(0) =< fa−1(0), na−1 > .

This value does not depend on b.
Assume, by a new induction, that each of the functions ϕhb(<t1,t2,··· ,ts>)

is already defined on some (0, 1, · · · , db) and the priority among the numbers
{1, 2, · · · , k} is now {w1, w2, · · · , wk}. For each j ∈ {1, 2, · · · , k}, we define b(j)
as the value p such that wp = j. Assume, by induction, that priority is coor-
dinated with the number of values of the arguments where the functions are
defined, i.e., db(1) ≤ db(2) ≤ · · · ≤ db(k).

In a way to serialize the parallel processing of computing predictions by the
frequency algorithm ϕa the k-tuple of functions to be constructed (where the
values of the functions already constructed are taken as they are but the new
values of the target functions are taken equal to zero), we compute (in this order)
· · · q steps of ϕa on all the functions up to the length db(1), then q steps of ϕa

on all the functions up to the length db(2), · · · , then q steps of ϕa on all the
functions up to the length db(k), then q +1 steps of ϕa on all the functions up to
the length db(1), then q+1 steps of ϕa on all the functions up to the length db(2),
· · · , then q + 1 steps of ϕa on all the functions up to the length db(k), · · · , then
q + 1 steps of ϕa on all the functions up to the length db(1) + 1, then q + 1 steps
of ϕa on all the functions up to the length db(2) + 1, · · · , then q + 1 steps of ϕa

on all the functions up to the length db(k) + 1, then q + 2 steps of ϕa on all the
functions up to the length db(1), then q + 2 steps of ϕa on all the functions up
to the length db(2), · · · , then q + 2 steps of ϕa on all the functions up to the
length db(k), then then q + 3 steps of ϕa on all the functions up to the length
db(1)+1, then q + 3 steps of ϕa on all the functions up to the length db(2)+1, · · · ,
then q + 3 steps of ϕa on all the functions up to the length db(k)+1, · · · , then
then q + 4 steps of ϕa on all the functions up to the length db(1)+2, then q + 4
steps of ϕa on all the functions up to the length db(2)+2, · · · , then q + 4 steps of
ϕa on all the functions up to the length db(k)+2, · · · till the first new prediction
on one of the functions is found. Say, the prediction for fj(m + 1) = e is found.
Then we define ϕhj(<t1,t2,··· ,ts>)(db + 1) = ϕhj(<t1,t2,··· ,ts>)(db + 2) = · · · =
ϕhj(<t1,t2,··· ,ts>)(m) = 0 and ϕhj(<t1,t2,··· ,ts>)(m+1) = e+1, (the prediction by
ϕa is made wrong). Additionally, we extend the definition domains for all the
functions whose priority comes after j, i.e., using the notation wp = j, for all
the functions ϕhwp (<t1,t2,··· ,ts>), · · · , ϕhwk

(<t1,t2,··· ,ts>).
By Lemma 4, there exists an s-tuple of natural numbers < y1, y2, · · · , ys >

such that

ϕy1 = ϕh1(<y1,y2,··· ,ys>), · · · , ϕys = ϕhs(<y1,y2,··· ,ys>).

However, these functions may be not total. We define fab as ϕyb
if it is total,

and as

fab(x) =
{

ϕyb
(x) , if ϕyb

is defined on [0, d] and x ∈ [0, d],
0 , if ϕyb

is defined on [0, d] and x ≥ d.

It is easy to see that fab either is equal to ϕyb
and the frequency algorithm ϕa

makes infinitely many incorrect predictions on this function or ϕyb
is a function

Frequency Prediction of Functions 81

defined on a finite segment [0, d] and fab is a total function extending ϕyb
but

ϕa produces no predictions after the segment [0, d].
Nonetheless, Uk is (n, n+ k)-predictable for arbitrary natural n. Indeed, from

the values g1(0), g2(0), · · · , gn+k(0) the frequency algorithm can find the maxi-
mum value of a such that the target functions are fab ∈ Uk. The programs for all
functions with a′ < a can be computed knowing fab(0). No more than k distinct
target functions can correspond to the maximum value of a. ��

Theorem 4. There are two classes U1 and U2 of total recursive functions such
that:
1) U1 is deterministically predictable,
2) U2 is deterministically predictable,
3) If U1 ∪ U2 is (m, n)-predictable then m = 0.

Proof. Following example of [4], we define U1 as the class of all total recur-
sive functions f such that for all but a finite number of values of x it is true
that f(x) = 0, and U2 is the class of all total recursive functions f such that
∀x(ϕf(0)(x) = f(x)).

Now we prove that U1∪U2 is not (m, n)-predictable with m > 0. Assume from
the contrary that it is (m, n)-predictable by a frequency algorithm ϕa. In order
to use Lemma 4 we define an n-tuple of recursive functions (h1, h2, · · · , hn). The
functions take values ϕh1(t1,··· ,tn)(0) = t1, · · · , ϕhn(t1,··· ,tn)(0) = tn,
ϕh1(t1,··· ,tn)(1) = 1, · · · , ϕhn(t1,··· ,tn)(1) = n.

To define the values of these functions for x > 1 we compute predictions made
by ϕa initial fragments of these functions of length 2, 3, · · · supposing that the
subsequent values of the functions are zeros (but we do not add any new values
to these functions) till for at least one of these predictions equal zero.

Copying the method used in the proof of Theorem 3 we get that all the con-
structed functions are either defined on a finite initial fragment of the sequence
of natural numbers (and then the algorithm ϕa has produced only a finite num-
ber of predictions for this function) or the algorithm ϕa has produced infinitely
many wrong predictions for this function. ��

It was proved in [2] that Theorem 4 cannot be generalized to 3 classes U1, U2

and U3. More precisely, it was proved in [2] that deterministic predictability of
U1∪U2, U2∪U3 and U1∪U3 implies deterministic predictability of U1∪U2∪U3.

Theorem 5. Let n be a natural number such that n ≥ 7, m > n
2 and U1, U2, · · · ,

Un be classes of total recursive functions such that:
1) U1 ∪ U2 ∪ · · · ∪ Un−1 is (m, n)-predictable,
2) U1 ∪ U2 ∪ · · · ∪ Un−2 ∪ Un is (m, n)-predictable,
3) U1 ∪ U2 ∪ · · · ∪ Un−3 ∪ Un−1 ∪ Un is (m, n)-predictable,
· · ·
n) U2 ∪ U3 ∪ · · · ∪ Un is (m, n)-predictable.
Then U1 ∪ U2 ∪ · · · ∪ Un is (2m, 2n)-predictable.

Proof. We describe the processing by the (2m, 2n)-algorithm the 2n-tuple of
functions f1, · · · , f2n from the class U1 ∪ U2 ∪ · · · ∪ Un. The new frequency

82 K. Balodis, I. Kucevalovs, and R. Freivalds

algorithm A has 2n distinct functions f1, · · · , f2n as the input. The old n algo-
rithms A1, A2, · · · , An have only n functions as the input. The new algorithm A
uses all possible (2n)!/n! copies of each of algorithms A1, A2, · · · , An by choos-
ing n functions out of f1, · · · , f2n. To predict the next value of any function
fi ∈ {f1, · · · , fn} the algorithm A considers predictions of all old frequency al-
gorithms on all n-tuples such that the tuple contains fi. This restriction removes
n.(2n−1)!

n! for every old algorithm leaving n((2n)!
n! − n.(2n−1)!

n!) predictions in total
for the current value of fi.

Our frequency algorithm A for U1 ∪ U2 ∪ · · · ∪ Un always considers the set
of the pairs (algorithm Aj , n-tuple of inputs fi) having made the least number
of wrong number predictions for the function fi under question. Since n ≥ 7,
and m > n

2 , most of these pairs allow only a finite number of wrong predictions.
When a pair has made a wrong prediction, this pair is removed from the set.
When the first (!) prediction is made by one of the pair in the set, this prediction
is output as the result of the new frequency algorithm for U1 ∪ U2 ∪ · · · ∪ Un.
Since n ≥ 7 and m > n

2 , at least 2m of the functions fi get only finite number
of wrong predictions. ��

References

1. Farid, M.: Why Sometimes Probabilistic Algorithms Can Be More Effective. In:
Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp.
1–14. Springer, Heidelberg (1986)

2. Aps̄ıtis, K., Freivalds, R., Kriķis, M., Simanovskis, R., Smotrovs, J.: Unions of
Identifiable Classes of Total Recursive Functions. In: Jantke, K.P. (ed.) AII 1992.
LNCS, vol. 642, pp. 99–107. Springer, Heidelberg (1992)

3. Austinat, H., Diekert, V., Hertrampf, U., Petersen, H.: Regular frequency compu-
tations. Theoretical Computer Science 330(1), 15–20 (2005)

4. Bārzdiņš, J., Barzdin, Y.M.: Two theorems on limiting synthesis of functions. The-
ory of algorithms and programs 1, 82–88 (1974) (in Russian)

5. Bārzdiņš, J., Freivalds, R.: On the prediction of general recursive functions. Soviet
Mathematics Doklady 13, 1224–1228 (1972)

6. Beigel, R., Gasarch, W.I., Kinber, E.B.: Frequency computation and bounded
queries. Theoretical Computer Science 163(1/2), 177–192 (1996)

7. Case, J., Kaufmann, S., Kinber, E.B., Kummer, M.: Learning recursive functions
from approximations. Journal of Computer and System Sciences 55(1), 183–196
(1997)

8. Degtev, A.N.: On (m,n)-computable sets. In: Moldavanskij, D.I., Gos, I. (eds.)
Algebraic Systems, pp. 88–99. Universitet (1981)

9. Freivalds, R.: On the growth of the number of states in result of the determinization
of probabilistic finite automata. Avtomatika i Vichislitel’naya Tekhnika (3), 39–42
(1982) (Russian)

10. Freivalds, R., Karpinski, M.: Lower Space Bounds for Randomized Computation.
In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 580–592.
Springer, Heidelberg (1994)

11. Freivalds, R.: Complexity of Probabilistic Versus Deterministic Automata. In:
Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp.
565–613. Springer, Heidelberg (1991)

Frequency Prediction of Functions 83

12. Freivalds, R.: Inductive Inference of Recursive Functions: Qualitative Theory. In:
Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 77–
110. Springer, Heidelberg (1991)

13. Freivalds, R., Bārzdiņš, J., Podnieks, K.: Inductive Inference of Recursive Func-
tions: Complexity Bounds. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer
Science. LNCS, vol. 502, pp. 111–155. Springer, Heidelberg (1991)

14. Freivalds, R.: Models of Computation, Riemann Hypothesis, and Classical Mathe-
matics. In: Rovan, B. (ed.) SOFSEM 1998. LNCS, vol. 1521, pp. 89–106. Springer,
Heidelberg (1998)

15. Freivalds, R.: Non-constructive methods for finite probabilistic automata. Interna-
tional Journal of Foundations of Computer Science 19(3), 565–580 (2008)

16. Freivalds, R.: Amount of nonconstructivity in finite automata. Theoretical Com-
puter Science 411(38-39), 3436–3443 (2010)

17. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

18. Harizanova, V., Kummer, M., Owings, J.: Frequency computations and the cardi-
nality theorem. The Journal of Symbolic Logic 57(2), 682–687 (1992)

19. Hinrichs, M., Wechsung, G.: Time bounded frequency computations. Information
and Computation 139, 234–257 (1997)

20. Kinber, E.B.: Frequency calculations of general recursive predicates and frequency
enumeration of sets. Soviet Mathematics Doklady 13, 873–876 (1972)

21. Kinber, E.B.: On frequency real-time computations. In: Barzdin, Y.M. (ed.)
Teoriya Algoritmov i Programm, vol. 2, pp. 174–182 (1973) (Russian)

22. Kinber, E.B.: Frequency computations in finite automata. Kibernetika 2, 7–15
(1976); Russian; English translation in Cybernetics 12, 179–187 (1976)

23. Kummer, M.: A proof of Beigel’s Cardinality Conjecture. The Journal of Symbolic
Logic 57(2), 677–681 (1992)

24. Moore, E.F.: Gedanken-experiments on sequential machines. Automata Studies
Ann. of Math. Studies (34), 129–153 (1956)

25. McNaughton, R.: The Theory of Automata, a Survey. Advances in Computers 2,
379–421 (1961)

26. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3(2), 115–125 (1959)

27. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. MIT
Press (1987)

28. Rose, G.F.: An extended notion of computability. In: Abstracts of International
Congress for Logic, Methodology and Philosophy of Science, p. 14 (1960)

29. Rose, G.F., Ullian, J.S.: Approximations of functions on the integers. Pacific Jour-
nal of Mathematics 13(2), 693–701 (1963)

30. Smullyan, R.M.: Theory of Formal Systems, Annals of Mathematics Studies,
vol. (47), Princeton, NJ (1961)

31. Trakhtenbrot, B.A.: On the frequency computation of functions. Algebra i Logika 2,
25–32 (1964)

Timed Automata Approach to Verification

of Systems with Degradation

Jǐŕı Barnat	, Ivana Černá		, and Jana Tůmová			

Masaryk University, Faculty of Informatics,
Botanicka 68a, 602 00, Brno, Czech Republic

{barnat,cerna,xtumova}@fi.muni.cz

Abstract. We focus on systems that naturally incorporate a degrad-
ing quality, such as electronic devices with degrading electric charge or
broadcasting networks with decreasing power or quality of a transmitted
signal. For such systems, we introduce an extension of linear temporal
logic with quantitative constraints (Linear Temporal Logic with Degra-
dation Constraints, or DLTL for short) that provides a user-friendly for-
malism for specifying properties involving quantitative requirements on
the level of degradation. The syntax of DLTL resembles syntax of Metric
Interval Temporal Logic (MITL) designed for reasoning about timed sys-
tems. Thus, we investigate their relation and a possibility of translating
DLTL verification problem for systems with degradation into previously
solved MITL verification problem for timed automata. We show, that
through the mentioned translation, the DLTL model checking problem
can be solved with limited, yet arbitrary, precision.

Further, we show that probability in Markov Decision Processes can
be viewed as a degrading quality and DLTL as a probabilistic linear
temporal logic with quantitative operators. We discuss expressiveness of
DLTL as compared with expressiveness of probabilistic temporal logics.

1 Introduction

Model checking [4] has been recognized as one of the successful formal verifi-
cation techniques that if employed during the software development cycle, may
bring significant reduction in total development cost or time-to-market [9,8]. Re-
cently, we have shown how the automata-based verification procedure as used for
model checking of non-deterministic systems may be extended to systems with
degradation [5]. Degradation is a natural phenomenon present in many systems
we encounter regularly in our everyday life, for example, value of money degrades
with time due to inflation, signal strength degrades with the distance from the
transmitter, capacity of a recharging battery pack degrades with every charging
cycle, and many others. There is no doubt that a number of software systems
produced must take the degradation phenomenon into account. Verification of

� The author has been partially supported by grant number LH11065.
�� The author has been partially supported by grant number GAP202/11/0312.

��� The author has been partially supported by grant number GD102/09/H042.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 84–93, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Timed Automata Approach to Verification of Systems with Degradation 85

worst-case degradation scenarios that a software system under development must
survive or designing a strategy to avoid degradation below a given threshold are
examples of problems that can be addressed with the model checking approach.

In our previous work, we have introduced two formalisms to capture the verifi-
cation problem for systems with degradation [5]. These were Transition Systems
with Degradation (TSD) used to describe the degradation aspects in the behavior
of the system under development, and Büchi Automata with Degradation Con-
straints (BADC) used to capture degradation properties. Given a TSD and a
BADC specification of undesired system behavior we have shown how to decide
whether the system exhibits the undesired behavior or not.

A drawback of the designed verification framework is the necessity to express
the undesired behavior of the system with use of an automaton. According to
our experiences, constructing a BADC from a natural language description of
a property is far more complicated than in standard non-degradation case, let
alone the necessity of negation of the degradation specification. We address this
issue in this paper by introducing an easy-to-use specification formalism.

We present Linear Temporal Logic with Degradation Constraints (DLTL) that
is capable of expressing quantitative properties of systems with degradation. To
our best knowledge, so far none of the existing temporal logics has focused on
systems with a quality that degrades relatively, not absolutely, along a run of
a system. We show, that DLTL verification problem can be translated into a
verification problem for real-time systems. In particular, we show how a system
with degradation can be interpreted as a Timed Automaton (TA) and a DLTL
formula as a formula of Metric Interval Temporal Logic (MITL) [1]. Using this
approach, the verification problem for systems with degradation and DLTL fo-
mulas can be solved up to chosen precision. Furthermore, we show that with
DLTL we can distinguish discrete time Markov decision processes that are in-
distinguishable by standard probabilistic logics such as PLTL or PCTL, which
is an extension to our previous result that BADCs can do that.

The rest of the paper is organized as follows. Section 2 reviews timed au-
tomata and MITL. In Section 3, we review transition systems with degradation,
introduce DLTL, and focus on verification of DLTL formulas. In Section 3.3, we
focus on interpretation of probability in Markov decision processes as a degrad-
ing phenomenon. Finally, in Section 5 we conclude and outline possible future
directions.

2 Preliminaries

A timed automaton is an automaton equipped with a finite set of real-valued
clock variables (clocks) that can be intuitivelly viewed as stopwatches allowing
us to reason about timed properties of real-time systems.

A clock constraint γ over finite set of clocks X is a finite expression constructed
according to the grammar γ ::= x �� c | γ ∧ γ, where ��∈ {<,≤, >,≥}, x ∈ X ,
and c ∈ N. Let CC(X) denote the set of all clock constraints over X . A clock
valuation ν is a function ν : X → R≥0 assigning to each clock x ∈ X its current

86 J. Barnat, I. Černá, and J. Tůmová

value ν(x). We use ν + d to denote valuation ν′, where ν′(x) = ν(x)+ d for each
x ∈ X .

Definition 1 (Timed Automaton). A timed automaton (TA) is a tuple A =
(Q, Σ, X, δ, Qinit , Inv, AP, L), where

– Q is a finite set of states,
– Σ is a finite set of actions,
– X is a finite set of clocks,
– δ ⊆ Q × CC(X) × Σ × 2X × Q is a transition relation,
– Qinit ⊆ Q is a set of initial states,
– Inv : Q → CC(C) is an invariant-assignment function,
– AP is a set of atomic propositions,
– L : Q → 2AP is a labeling function.

A 5-tuple (q1, γ, σ, R, q2) ∈ δ corresponds to a transition from state q1 to q2

labeled with σ that is enabled if constraint γ is satisfied. R denotes the subset
of clock variables that are reset to zero when the transition is executed. Time
can progress (i.e. the value of clock can increase) in states, whereas transitions
between states always take zero time. Function Inv assigns to each state an
invariant that gives a limit on how much time can be spent in that state. There
are two possible ways how a TA can evolve: via discrete transitions i.e., those
between states, and delay transition, i.e., staying in a state with letting time pass.

A run of a timed automaton is a sequence ρ = (q0, ν0)
d0−→ (q0, ν

′
0)

σ0−→
(q1, ν1)

d1−→ (q1, ν
′
1)

σ1−→ (q2, ν2) . . ., such that q0 ∈ Qinit, ∀x ∈ X : ν0(x) = 0,
and ∀i ∈ N:

–
(
(qi, νi), di, (qi, ν

′
i)

)
if and only if di ∈ R≥0, ν′

i(x) = νi(x) + di for all x ∈ X ,
and ν′

i satisfies Inv(qi), and
–

(
(qi, ν

′
i), σi, (qi+1, νi+1)

)
if and only if there exists (qi, γi, σi, Ri, qi+1) ∈ δ,

such that ν′
i |= γi, νi+1(x) = ν′

i(x) for all x ∈ X \ Ri, νi+1(x) = 0 for all
x ∈ X ∩ Ri, and νi+1 satisfies Inv(qi+1).

A position on the run ρ is defined as any state that may appear during the run,
i.e., a tuple (qi, ν), where ν = νi+d, and d ≤ di. A time duration Tρ(qi, ν) up to
position (qi, ν) is the sum of the delays up to this position Tρ(qi, ν) =

∑i−1
j=0 di+d.

We denote by ρ(t) and ρt a position (q, ν) on ρ, such that Tρ(q, ν) = t and
suffix of run ρ initialized in ρ(t), respectively. Run ρ produces a word w =(
L(q0), Tρ(q0, ν

′
0)

)(
L(q1), Tρ(q1, ν

′
1)

)
. . .. A language of a timed automaton A,

denoted by L(A) is a set of all words produced by all runs of A.
Metric Interval Temporal Logic (MITL) is a specification logic for real-time

systems. MITL formulas are interpreted over runs of timed automata.

Definition 2 (MITL Syntax). The syntax of a MITL formula over the set of
atomic propositions AP is given as follows: ϕ ::= tt | α | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ,
where α ∈ AP , and I is a non-singular1 interval with integer end-points (I may
be also unbounded).
1 Singular intervals are those of form [t, t].

Timed Automata Approach to Verification of Systems with Degradation 87

Definition 3 (MITL Semantics). Given a MITL formula ϕ and a run ρ
of a timed automaton A, the satisfaction relation ρ |= ϕ is for formulas ϕ of
form tt | α | ¬ϕ | ϕ ∧ ϕ given analogously as for LTL [1,4]. Furthermore,
ρ |= φUI ψ ⇔ ∃t ∈ R≥0, such that (ρt |= ψ ∧ t ∈ I ∧ ∀ 0 ≤ t′ < t.(ρt′ |= φ)).

Each MITL formula ϕ defines a language L(ϕ) of all words produced by all runs
satisfying ϕ. Note, that MITL formulas do not contain next operator, because
the time domain is dense. Boolean operators ∨, and ⇒ are defined in the usual
way. Besides that, we define temporal operators FI ϕ ≡ tt UI ϕ (eventually) and
GI ϕ ≡ ¬FI ¬ϕ (globally), and φRI ϕ ≡ ¬(¬φUI ¬ϕ) (release).

Given a timed automaton A and a MITL formula ϕ, the model checking
question whether L(A) ⊆ L(ϕ) can be solved using automata-based approach.
First, ϕ is negated and translated into a timed automaton B¬ϕ. Then, a product
timed automaton A × B¬φ is built, such that L(A × B¬ϕ) = L(A) ∩ L(B¬ϕ).
Finally, by checking emptiness of L(A × B¬ϕ), the answer to model-checking
problem is obtained. MITL model checking is EXPSPACE-complete [1].

The translation process from a MITL formula ¬ϕ into timed automaton B¬ϕ

requires the intervals appearing in ¬ϕ to have integer bounds. Although this
might seem quite restrictive, there is a simple way how to extend the results to
deal with intervals with rational bounds as well. The ”trick” is to pick a suitable
constant p ∈ Q>0 and multiply all the interval bounds appearing in ¬ϕ with
p in order to get integer interval bounds. All the constants that appear in the
model-checked timed automaton A have to be multiplied with p as well.

3 Verification of Systems with Degradation

3.1 Modeling Systems with Degradation

In this section we review a modeling formalism for systems with degradation that
we introduced in our previous work [5]. A Transition System with Degradation
(TSD) is a labeled transition system that is enhanced with a rational degradation
constant associated with every transition.

Definition 4 (Transition System with Degradation). A transition system
with degradation is a tuple T = (S, Act, T, D, Sinit ,AP , L), where

– S is a finite set of states,
– Act is a finite set of actions,
– T ⊆ S × Act × S is a transition relation,
– D : T → (0, 1] is a degradation relation,
– Sinit ⊆ S is a set of initial states,
– AP is a set of atomic propositions,
– L : S → 2AP is a labeling function.

Transition t = (s1, a, s2) ∈ T represents that the system can make a transition
from state s1 to state s2 under action a. The degradation constant D(t) de-
termines to what fraction the level of quality degrades when the transition t is

88 J. Barnat, I. Černá, and J. Tůmová

executed. If D(t) = 1 the level of quality is unchanged, if D(t) = 0.75 the level
of quality is decreased to 75% of the level of quality at the moment before the
transition was executed. In other words, if the level of degradation is l at state
s1, then after the execution t, the level of degradation at state s2 is l · D(t).

A run of a TSD T = (S, Act, T, D, Sinit ,AP , L) is an infinite sequence π =
s0

t0−→ s1
t1−→ . . . where si ∈ S and ti = (si, ai, si+1) ∈ T for all i ≥ 0. We denote

by π(i) and πi the (i-1)-st state of the run π (i.e., si) and the suffix beginning
in π(i), respectively. A level of degradation Dπ(i) on run π up to state π(i) is
defined as a product of all degradation constants associated with transitions
along this state Dπ(i) =

∏i−1
j=1 D(tj).

3.2 Temporal Logic for Systems with Degradation

In our previous work [5], we have shown that systems with degradation may be
model checked if the property to be verified (its negation to be more precise) is
described by a so-called Büchi automaton with degradation constraints (BADC).
This is however, the major drawback of the method as specifying properties (or
their negations) directly as BADCs is not a user-friendly process. On the other
hand, expressing properties by means of a temporal logic can be viewed as quite
intuitive with some resemblance to the natural language.

We propose Linear Temporal Logic with Degradation Constraints (DLTL) that
allows for specification of quantitative properties of systems with degradation.
The syntax of DLTL resembles syntax of MITL, however the logics differ in their
semantics as they are interpreted over significantly different models.

Definition 5 (DLTL Syntax). Let α ∈ AP , and I be an interval within (0, 1].
The syntax of a DLTL formula over the set of atomic propositions AP is given
according to the following rules:

ϕ ::= tt | α | ¬ϕ | ϕ ∧ ϕ | XI ϕ | ϕUI ϕ

Definition 6 (DLTL Semantics). Let π a run of a TSD T . DLTL semantics
is defined through the satisfaction relation |=.

– π |= tt always
– π |= a ⇐⇒ a ∈ L(s0)
– π |= ¬ϕ ⇐⇒ π �|= ϕ
– π |= ϕ ∧ ψ ⇐⇒ π |= ϕ ∧ π |= ψ
– π |= XIϕ ⇐⇒ π(1) |= ϕ ∧ Dπ(1) ∈ I
– π |= ϕUI ψ ⇐⇒ ∃j.(πj |= ψ ∧ Dπ(j) ∈ I ∧ ∀0 ≤ i < j.(πi |= ϕ))

The standard LTL operators X, and U are included in DLTL as X(0,1], and
U(0,1], respectively. Other boolean operators such as ∨ (disjunction), and ⇒
(implication) are defined in expected way. In addition to that, we also define three
useful temporal operators FI ϕ ≡ tt UI ϕ (eventually), GI ϕ ≡ ¬FI ¬ϕ (globally),
and φRI ψ ≡ ¬(¬φUI ¬ψ) (release). Similarly as LTL formulas, DLTL formulas
can be normalized, i.e. transformed into a form, where all negations are applied
only directly to atomic propositions.

An example of a system with degradation is given in Figure 1.

Timed Automata Approach to Verification of Systems with Degradation 89

S

.85

.89

.86

.8

.72

.88

.75

.87

.8

.9 .95

.8

A

A

E

.7
s1

t0
t1

t2

Fig. 1. An example of a signal coverage map. States of the systems represent geograph-
ical places and transition between them are labelled with constants determining how
much the signal degrades between the places. For instance, signal degrades to 87% of
its quality between states S and s1. A starting point (sender) is labelled with S and an
end point (receiver) is labelled with E. The signal is fully restored in amplifiers, which

are labelled with A. An example of a run in such a system is π = S
t0−→ s1

t1−→ A
t2−→

The level of degradation up to state A on this run is Dπ(2) = 0.87 · 0.7 = 0.609, mean-
ing that the signal quality in A will be 60.9% of its quality in S. An example of a
DLTL formula for this system is FE ∧ G

(
(S ∨ A) ⇒ F[0.9,1](A ∨ E)

)
saying that on a

run satisfying the formula the signal eventually reaches E while its quality does not
decrease under 90% of its full strength.

3.3 DLTL Model Checking

The verification question we would like to answer is, whether all runs of a given
TSD satisfy a given DLTL formula. We approach this problem via its conversion
into verification problem for timed automata and MITL formulas. During the
conversion process, two major differences have to be overcome: (1) in systems
with degradation, the degradation decreases along the transitions, whereas in
timed systems, the time passes in the states, and (2) the degradation constants
are meant to be multiplied, whereas time passes in additive fashion. We address
the first one by modelling transitions of a TSD as states of a timed automaton
and the second one by applying logarithm to the degradation constants. We
build on the fact that log a · b = log a + log b.

Assume that the given DLTL formula ϕ sastisfies two additional assumptions:
(1) the intervals that appear in ϕ are non-singular, and (2) ϕ does not contain
next operator. These restrictions allow us to translate ϕ into a MITL formula.
We discuss how to deal with full DLTL later.

First, we preprocess the given TSD T = (S, Act, T, D, Sinit ,AP , L) into a
TSD T ′ = (S′, Act′, T ′, D′, Sinit ,AP ′, L′) this way:

– S′ = S ∪ S × T ∪ T × S,
– Act′ = Act ∪ {ε}, where ε �∈ Act,
– T ′ = {

(
s1, σ, (s1, t)

)
,
(
(s1, t), ε, (t, s2)

)
,
(
(t, s2), ε, s2

)
| t = (s1, σ, s2) ∈ T },

– D′(t) = 1 for all transitions leading from and to some s ∈ S, and
D′((s1, t), ε, (t, s2)

)
= D(t) for the rest of the transitions,

– AP ′ = AP ∪ {αε}, where αε �∈ AP ,
– L′(s) = L(s) for all s ∈ S, and L′(s) = {αε} for all s ∈ S′ \ S.

90 J. Barnat, I. Černá, and J. Tůmová

Second, we convert the given normalized DLTL formula ϕ into ϕ′ by replac-
ing each non-negated occurrence of atomic proposition α with αε U α and each
negated occurrence of α with αε U¬α. This way, we ”ignore” the states corre-
sponding to the transitions of T .

Lemma 1. T |= ϕ ⇐⇒ T ′ |= ϕ′

Proof: (Sketch.) Each run π producing word α0α1α2 . . . in T maps to a single
run π′ producing word α0αεαεα1αεαεα2 . . . in T ′. It is easy to show by induction,
that for all i ≥ 2 it holds that πi |= ϕ if and only if π′3i−4 |= ϕ′ ∧ π′3i−3 |=
ϕ′ ∧ π′3i−2 |= ϕ′. Finally, we get that π |= ϕ ⇐⇒ π′ |= ϕ′.

Given TSD T and the corresponding TSD T ′, we build a timed automaton
A = (S ∪ T, Act′, {x}, δ, Sinit , Inv, AP ′, LA), where

– δ = {
(
s1, x = 0, σ, ∅, t

)
,
(
t, x = log D(t), ε, {x}, s2

)
| t = (s1, σ, s2) ∈ T },

– Inv(s) = x ≤ 0 for all s ∈ S, and Inv(t) = x ≤ log D(t) for all t ∈ T ,
– LA(s) = L(s) for all s ∈ S, and LA(t) = {αε} for all t ∈ T .

A DLTL formula ϕ′ is transformed into a MITL formula ϑ as follows: Each
occurrence of interval (a, b) is replaced with (log b, log a), and analogously, each
occurrence of (a, b], [a, b], and [a, b) is replaced with [log b, log a), [log b, log a],
and (log b, log a], respectively. In case a = 0, we use ∞ instead of log a. The rest
of the formula remains the same.

Lemma 2. T ′ |= ϕ′ ⇐⇒ A |= ϑ

Proof: Follows directly from the structure of T ′, construction of A, and the
fact, that log(a · b) = log a + log b, and 0 < a ≤ c ≤ b ≤ 1 ⇒ 0 ≤ log b ≤ log c ≤
log a < 1.

Corollary 1. T |= ϕ ⇐⇒ A |= ϑ

The remaining task is to check emptiness of L(A) ∩ L(¬ϑ). Without loss of
generality, assume that ¬ϑ is normalized from now on. Let us assume that log c
is a rational number for all constants c that appear in formula ¬ϑ. We will
discuss the remaining cases shortly. First, we pick a suitable constant p ∈ Q>0

and multiply all the constants both in A and ¬ϑ with p in order to make all the
interval bounds appearing in formula ¬ϑ integer. Now, ¬ϑ can be translated into
a timed automaton B¬ϑ. The rest is just well-known checking language emptiness
for timed automaton A× B¬ϑ.

Of course, it is not always the case that log c is a rational number for each
constant c that appears in ¬ϑ. Furthermore, in a number of cases it is not even
possible to find n, such that logn c is rational. Therefore, necessarily, some kind
of approximation is needed.

Lemma 3. Consider intervals I and I ′, such that interval I ′ is within I. For
any run ρ, it holds that ρ |= ϕUI′ ψ ⇒ ϕUI ψ, and dually, ρ |= ϕRI ψ ⇒ ϕRI′ ψ.

Proof: Directly from expanding definition of UI and RI , respectively.

Timed Automata Approach to Verification of Systems with Degradation 91

Based on Corollary 1 and Lemma 3, the model checking procedure can be sum-
marized as follows:

1. Transform TSD T into timed automaton A and DLTL formula ϕ into MITL
formula ϑ. Obtain ¬ϑ as normalized negation of ϑ.

2. Pick a precision constant p ∈ Q>0, and multiply all constants both in A and
in ¬ϑ with p.

3. In each UI operator in ¬ϑ replace left bound a and right bound b of interval
I with �a� and �b�, respectively. Dually for each RI operator.

4. Translate ¬ϑ into B¬ϑ and check, whether L(A) ∩ L(B¬ϑ) = ∅. If yes, then
T |= ϕ, otherwise continue on line 5.

5. In each UI operator in of ¬ϑ replace left bound a and right bound b of
interval I with �a� and �b�, respectively. Dually for each RI ope.

6. Translate ¬ϑ into B¬ϑ and check, whether L(A) ∩ L(B¬ϑ) = ∅. If no, then
T �|= ϕ, otherwise pick a precision constant p′ > p and repeat the procedure
from line 3.

If the outlined procedure provides an answer, the answer is correct. On the other
hand, the termination is not guaranteed and thus we can only answer model
checking question with limited, although arbitrary precision. The price paid for
increasing precision is rapidly increasing computational demands. The size of
timed automaton B¬ϑ is O(2N ·K) with N · K clocks, where N is the number
of atomic propositions, boolean, and temporal operators in ¬ϑ and K − 1 is
the largest integer constant in ¬ϑ [1]. Higher precision causes increase of the
constant K, and therefore also significant increase of the size of B¬ϑ.

Remark 1. For the sake of presentation simplicity, we assumed continuous se-
mantics of timed automata and MITL, although the dynamics of a TSD is purely
discrete. Therefore we had to restrict DLTL formulas not to contain next oper-
ators and singular intervals. In order to solve the model checking problem for
full DLTL, we have to consider discrete semantics of timed automata and Metric
Temporal Logic (which is MITL including singular intervals). The approach is
analogous to the one we presented above, but approximation is needed not only
in the formulas, but in the timed automaton as well. The complexity of empti-
ness checking of L(A)∩L(¬ϑ) remains EXPSPACE-complete and dependent on
the size of constants appearing in ¬ϑ [2].

4 DLTL Viewed as a Probabilistic Logic

In this section we focus on probability viewed as a degrading quality. In [5]
we showed that Markov Decision Processes (MDPs, [6], [11]) are a specialized
form of transition systems with degradation and that there exist two MDPs that
are indistinguishable by any LTL ([10]), PCTL ([7]), or PCTL∗ ([3]) formula,
but are distinguishable by a BADC. The question is, whether there exist two
LTL, PLTL, and PCTL indistinguishable MDPs that can be distinguished with
a DLTL formula. In this section we show that this is the case, which proves the
incomparable expressiveness of DLTL with respect to LTL, PCTL, and PCTL∗.

92 J. Barnat, I. Černá, and J. Tůmová

Markov Decision Processes. Let T = (S, Act, T, D, Sinit ,AP , L) be a tran-
sition system with degradation extended with the following restriction on the
transition relation T :

∀s1 ∈ S, ∀a ∈ Act :
∑

t=(s1,a,s2)∈T

D(t) = 1 or 0.

When we think of probability as of a system quality that degrades in time,
the transition systems with degradation restricted as above are syntactically
equivalent to Markov decision processes.

We showed in [5] that two MDPs given in Figure 2 are indistinguishable by
any LTL, PCTL or even PCTL∗ formula. However, a DLTL formula

ϕ = ¬(a U[0,0.7] ¬a)

is satisfied for M, but not for M′. In M, there exists no run satisfying a U[0,0.7] ¬a,
because the level of degradation between π(1) and π(2) is 1 for all runs π. On
the other hand, there is a run π′ = s′0

γ−→ s′1 . . . in M′ satisfying a U[0,0.7] ¬a.
The level of degradation between π′(1) and π′(2) is 0.5.

M 1

0.5

γ

1

1

1

0.5

αβ
{a}α

s1

α{a}
s0

∅

1 1

1

1

β

β α

β
∅

s′0 s′1

M′

Fig. 2. Two MDPs indistinguishable by any LTL, PCTL, or PCTL∗ formula

DLTL allows us to capture quite different aspects than the usual probabilistic
logics. Whereas there, we look for probability of a whole set of runs that satisfy
a given property, in DLTL approach we aim at prefixes of individual runs and
measure how much the probability degrades if the prefix is extended with a
transition. In other words, with DLTL we are able to express the amount of
contribution to the target probability of a set of runs that is brought by the set of
runs exhibiting the same finite prefix. Furthermore, unlike in probabilistic LTL,
the requirements on the level of degradation can be nested in DLTL formulas.

5 Conclusions and Future Work

In this paper we aimed at quantitative properties of systems with degradation.
We introduced a new version of linear temporal logic that allows for specification
of requirements on the level of degradation of individual system runs. We showed

Timed Automata Approach to Verification of Systems with Degradation 93

a connection between systems with degradation and timed automata and used
MITL model checking algorithm to solve DLTL model checking problem.

The solution suffers from two major drawbacks. First, the verification problem
can be answered only with limited precision, and second, higher precision causes
rapidly higher computational demands. In our future work, we plan to overcome
these issues by introducing a direct translation process from DLTL formulas into
BADCs. Another future focus of ours is on control strategy synthesis for systems
with degradation from DLTL specifications, on continuous and hybrid systems
with degradation, and also on a case study.

References

1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal
of the ACM 43, 116–146 (1996)

2. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. In: In-
formation and Computation – Special issue: selections from 1990 IEEE Symposium
on Logic in Computer Science, vol. 104, pp. 35–77 (1993),
doi:10.1006/inco.1993.1025

3. Aziz, A., Singhal, V., Balarin, F., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It
Usually Works: The Temporal Logic of Stochastic Systems. In: Wolper, P. (ed.)
CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
5. Barnat, J., Černá, I., Tůmová, J.: Quantitative model checking of systems with

degradation. In: QEST 2009, pp. 21–30 (2009)
6. Derman, C.: Finite State Markovian Decision Processes. Academic Press, Inc.,

Orlando (1970)
7. Hansson, H., Jonsson, B.: A Framework for Reasoning about Time and Reliability.

In: IEEE Real-Time Systems Symposium, pp. 102–111 (1989)
8. iFEST homepage (August 2011), http://www.artemis-ifest.eu
9. Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav, S.,

Slobodová, A., Taylor, C., Frolov, V., Reeber, E., Naik, A.: Replacing Testing with
Formal Verification in Intel � Coretm i7 Processor Execution Engine Validation. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 414–429. Springer,
Heidelberg (2009)

10. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science, pp. 46–57. IEEE Computer
Society Press (1977)

11. Puterman, M.L.: Markov Decision Processes-Discrete Stochastic Dynamic
Programming. John Wiley &Sons, New York (1994)

http://www.artemis-ifest.eu

Basic Operations

on Binary Suffix-Free Languages�

Roland Cmorik1 and Galina Jirásková2

1 Institute of Computer Science, P.J. Šafárik University,
Jesenná 5, 041 54 Košice, Slovakia

roland.cmorik@gmail.com
2 Mathematical Institute, Slovak Academy of Sciences,

Grešákova 6, 040 01 Košice, Slovakia
jiraskov@saske.sk

Abstract. We give a characterization of nondeterministic automata ac-
cepting suffix-free languages, and a sufficient condition on deterministic
automata to accept suffix-free languages. Then we investigate the state
complexity of basic operations on binary suffix-free regular languages. In
particular, we show that the upper bounds on the state complexity of all
the boolean operations as well as of Kleene star are tight in the binary
case. On the other hand, we prove that the bound for reversal cannot be
met by binary languages. This solves several open questions stated by
Han and Salomaa (Theoret. Comput. Sci. 410, 2537-2548, 2009).

1 Introduction

A language is suffix-free if it does not contain two strings, one of which is a proper
suffix of the other. Motivating by suffix-freeness property of some codes used in
information processing and data compression, Han and Salomaa [8] examined
state complexity of basic operations on suffix-free regular languages. This is
a part of research devoted to investigation of the state complexity of regular
operations in various subclasses of the class of regular languages [1,3,4,5,7,9,10].

Here we continue this research, and study the class of suffix-free languages in
more detail. We first give a characterization of nondeterministic finite automata
recognizing suffix-free languages. Using this characterization we state a sufficient
condition on a deterministic finite automaton to accept a suffix-free language.
This allows us to avoid proofs of suffix-freeness of languages throughout the
paper. Then we study the state complexity of operations in the class of binary
suffix-free languages. In particular, we show that the bounds for all the boolean
operations as well as for Kleene star are tight in the binary case. On the other
hand, the bound for reversal, that is tight in the ternary case [8], cannot be met
by binary languages. We provide lower and upper bounds on the state complexity
of reversal of binary suffix-free languages. In the case of concatenation, where
witness languages in [8] are defined over a four-letter alphabet, we give ternary
worst-case languages. We conclude the paper with several open problems.

� Supported by VEGA grants 1/0035/09 and 2/0183/11, and grant APVV-0035-10.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 94–102, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Basic Operations on Binary Suffix-Free Languages 95

2 Suffix-Free Languages and Suffix-Free Automata

We assume that the reader is familiar with basic notions of formal languages
and automata theory, and for all unexplained notions, we refer to [13,14]. State
complexity of a regular language L, sc(L), is the smallest number of states in
any complete deterministic finite automaton (dfa) recognizing language L. Non-
deterministic finite automata (nfa’s) throughout the paper are ε-free.

If w = uv, then v is a suffix of w, and if, moreover, v �= w, then v is a proper
suffix of w. A language L is suffix-free if for every string w in L, no proper suffix
of w is in L. An automaton is suffix-free if it accepts a suffix-free language.

If an automaton accepts a non-empty suffix-free language, then it is non-
returning, that is, no transition goes to the initial state [8]. A suffix-free minimal
dfa must have a dead state, that is, a rejecting state that goes to itself on every
symbol [8]. Our first theorem provides a characterization of suffix-free nfa’s.
Then, a lemma providing a sufficient condition for a dfa to be suffix-free follows.
We use the lemma several times to prove the suffix-freeness of automata.

Theorem 1 (Characterization of Suffix-Free NFA’s). Consider a non-
returning nfa without unreachable states and with the initial state s. Let Lq be
the set of strings accepted by the nfa from state q. The nfa accepts a suffix-free
language if and only if for each state q with q �= s, the language Ls∩Lq is empty.

Proof. Let a non-returning nfa accept a suffix-free language. Assume for a con-
tradiction that there is a state q with q �= s such that Ls ∩ Lq �= ∅. Then there
exists a string w that is accepted by the nfa from both s and q. Since state q is
reachable, the initial state s goes to state q by a non-empty string u. Then the
nfa accepts both strings w and uw, which is a contradiction. The converse can
be proved by contradiction in a similar way.
�

Lemma 1. Consider a non-returning dfa without unreachable states and with
the sole final state. If there do not exist two distinct states that go to the same
useful state by the same symbol of the input alphabet, then the dfa accepts a
suffix-free language.

Proof. By Theorem 1, if the dfa is not suffix-free, then there exists a string w
accepted from the initial state and also from some other state. The two accepting
paths end in the sole final state. So these paths must meet in some useful state q.
The two predecessors of q on the two paths go to q by the same symbol.
�

3 Basic Operations on Binary Suffix-Free Languages

Han and Salomaa investigated the upper bounds for complexity of Kleene star,
reversal and concatenation in [8]. They also presented witness languages for these
bounds, however, the problem of tightness for small alphabets remained open.
Here we investigate the complexity of mentioned operations on small alphabets.

First, we study the complexity of difference (K \L) and symmetric difference
(K ⊕ L) that were not considered in [8]. Here we use the same witness binary
languages as Olejár has used in [9] for union and intersection.

96 R. Cmorik and G. Jirásková

Theorem 2 (Boolean Operations). Let K and L be suffix-free languages over
an alphabet Σ with sc(K) = m and sc(L) = n, where m,n ≥ 4. Then

1. sc(K ∩ L) ≤ mn− 2(m+ n− 3);
2. sc(K ∪ L), sc(K ⊕ L) ≤ mn− (m+ n− 2);
3. sc(K \ L) ≤ mn− (m+ 2n− 4).

All the bounds are tight if |Σ| ≥ 2.

Proof. The cases of intersection and union hold according to [9]. Let QK , QL,
FK , FL, sK , sL and dK , dL denote the sets of states, final states, the initial states,
and the dead states of suffix-free dfa’s for K and L, respectively. Consider the
cross-product automaton for difference and symmetric difference, respectively.
They differ only in final states. The set of final states is (FK ×QL) \ (FK ×FL)
for difference and (FK ×QL ∪QK × FL) \ (FK × FL) for symmetric difference.
No pair (sK , q) with q �= sL and (p, sL) with p �= sK is reachable in the cross-
product automaton since the two dfa’s are non-returning. So we can remove
these m + n − 2 unreachable states. Moreover, in the case of difference, there
is no string accepted from a state, the first component of which is dK . We can
replace all such n− 2 states with one dead state. Therefore, the minimal dfa for
difference has at most mn − (m + n − 2) − (n − 2) states, and for symmetric
difference at most mn− (m+ n− 2) states.

For tightness, consider the languagesK and L accepted by dfa’s A and B from
[9], shown in Fig. 1, where dead states m and n, as well as all the transitions to
dead states, are omitted. By Lemma 1, both languages are suffix-free.

Consider the cross-product automaton for the language K − L, where the
set of final states is {(m − 1, j) | j �= n − 1}. In the proofs of Lemma 6 and
Lemma 7 in [9], it is shown that states (i, j) for i = 2, . . . ,m and j = 2, . . . , n,
and the initial state (1, 1) are reachable. We show that these states are pairwise
distinguishable. State (m,n) is the only dead state. State (1, 1) is distinguished
from any other state by a string starting with b. Consider two distinct states
(i, j) and (k,), where 2 ≤ i, k ≤ m − 1, and 2 ≤ j, 	 ≤ n. If i < k, then the
string anbm−1−k is accepted from (k,) and rejected from (i, j). If i = k, then we
can move the two states into two distinct states (m−1, j′) and (m−1, 	′) in row
m− 1 by a word in b∗. If j′ < 	′, then the string an−1−j′ is rejected from state
(m− 1, j′) and accepted from state (m− 1, 	′). This proves distinguishability of
all the mn− (m+ 2n− 4) states.

Fig. 1. Binary suffix-free dfa’s meeting the upper bounds for Boolean operations

Basic Operations on Binary Suffix-Free Languages 97

In the case of symmetric difference K ⊕L, the set of final states of the cross-
product automaton is {(i, j) | i = m− 1 or j = n− 1} − {(m − 1, n− 1)}. The
proof of reachability is the same as above. State (m,n) is the only dead state,
and state (1, 1) is distinguished from any other state by a string starting with
b. State (m− 1, n− 1) is distinguished from any other rejecting state by string
am. Consider two distinct rejecting states (i, j) and (k,), both different from
(m − 1, n − 1). If i = k and j < 	, then they can be distinguished by an−1−j .
If i < k, then string bm−1−iam distinguishes them. Now consider two distinct
accepting states. States (m−1, n−2) and (m−2, n−1) can be distinguished by
aa. Every other pair of accepting states can be distinguished by b since either
one state of the pair goes to an accepting state and the second one to a rejecting
state, or both go to different rejecting and, as shown above, distinguishable
states. This concludes our proof.
�

The next theorem shows that the upper bound 2n−2 + 1 for Kleene star, shown
to be tight for a four-letter alphabet [8], is tight even in the binary case.

Theorem 3 (Star). Let L be a suffix-free language over an alphabet Σ with
sc(L) = n, where n ≥ 6. Then sc(L∗) ≤ 2n−2 + 1. The bound is tight if |Σ| ≥ 2.

Proof. The upper bound is from [8]. For tightness, consider the binary dfa A
depicted in Fig. 2, where n ≥ 6. By Lemma 1, automaton A is suffix-free.

Fig. 2. Binary suffix-free dfa meeting the bound 2n−2 + 1 for star

According to [8], we can obtain an nfa for L(A)∗ from automaton A by adding
a new transition from state 1 to itself by b, and making the initial state final.
Furthermore we can omit the dead state. Let us denote the obtained (n−1)-state
nfa for L(A)∗ by A′. If we omit the initial state of nfa A′, and consider state
1 as the initial state, then we get an (n − 2)-state nfa which is isomorphic to
the reverse of the (n− 2)-state Šebej’s automaton [12] meeting the upper bound
2n−2 for reversal. This means that in the subset automaton corresponding to nfa
A′, all the subsets of {1, 2, . . . , n−2} are reachable and pairwise distinguishable.
The initial state of the subset automaton is state {0}, which is final. The string
a3 distinguishes state {0} from any other final state.
�

Now we investigate the state complexity of concatenation of two suffix-free lan-
guages. The upper bound is (m − 1)2n−2 + 1 by [8], where its tightness for a
four-letter alphabet is also proved. We start with the ternary case.

98 R. Cmorik and G. Jirásková

Fig. 3. Suffix-free dfa’s meeting the bound (m− 1)2n−2 + 1 for concatenation

Theorem 4 (Concatenation: Ternary Case). Let K and L be suffix-free
languages over an alphabet Σ with sc(K) = m and sc(L) = n, where m ≥ 4,
n ≥ 3. Then sc(KL) ≤ (m− 1)2n−2 + 1, and the bound is tight if |Σ| ≥ 3.

Proof. The upper bound is from [8]. For tightness, consider ternary regular lan-
guagesK and L accepted by the dfa’s A and B shown in Fig. 3; to keep the figure
transparent, we omit the dead states qm−1 and n− 1, and all the transitions to
the dead states. By Lemma 1, languages K and L are suffix-free.

Construct an nfa for languageKL from dfa’s A and B by adding the transition
on c from state q2 to state 1 and by declaring q2 as a rejecting state.

The initial state of the corresponding subset automaton is {q0}. We first show
that for every subset X of {1, 2, . . . , n−2}, state {q2}∪X is reachable. The proof
is by induction on |X |. The basis, |X | = 0, holds since {q2} is reached from {q0}
by ca. Assume that for every subset Y of {1, 2, . . . , n − 2} of size k − 1 state
{q2} ∪ Y is reachable. Let

X = {j1, j2, . . . , jk} with j1 < j2 < · · · < jk

be a subset of {1, 2, . . . , n− 2} of size k. Let

Y = {j2 − j1 + 1, . . . , jk − j1 + 1}.

Then state {q2}∪Y is reachable by the induction hypothesis. Next, state {q2}∪Y
goes to {q2} ∪ X by cbj1−1. Now if i ∈ {1, . . . ,m − 2}, then state {qi} ∪ X is
reached from state {q2}∪X by string am−4+i. State {qm−1}∪X is reached from
state {q2}∪X by bn−3ab. This proves the reachability of (m− 1)2n−2+1 states.

It remains to show that these states are pairwise distinguishable. Since string
cac is accepted by the nfa only from state q0, the initial state {q0} of the subset
automaton is distinguishable from any other state. States {qi}∪X and {qj}∪Y
with i < j are distinguished by am−ic. Finally, two states {qi}∪X and {qi}∪Y
with X �= Y differ in a state j in {1, 2, . . . , n − 2}, and so the string bn−j−1

distinguishes the two states.
�

Next we investigate the binary case. We present an m-state dfa and an n-state
dfa such that the state complexity of L(A)L(B) is (m − 1)2n−2 providing that
m− 2 and n− 2 are relatively prime numbers.

Basic Operations on Binary Suffix-Free Languages 99

Fig. 4. Suffix-free dfa’s A and B on binary alphabet

Theorem 5 (Concatenation: Binary Case). Let m ≥ 4, n ≥ 3, and let m−2
and n − 2 be relatively prime. There exist binary suffix-free regular languages
K and L with sc(K) = m and sc(L) = n such that sc(KL) ≥ (m− 1)2n−2.

Proof. Let K and L be the languages accepted by dfa’s A and B shown in Fig. 4.
By Lemma 1, languages K and L are suffix-free. Construct an nfa for KL from
dfa’s A and B by adding the transition on b from state q2 to state 1, and by
declaring q2 as a rejecting state.

The lengths of the cycles in A and B are m− 2 and n− 2, respectively. Since
m − 2 and n − 2 are relatively prime, there exist integers y and x such that
(m− 2)y ≡ 1 (mod n− 2) and (n− 2)x ≡ 1 (mod m− 2).

The initial state of the subset automaton is {q0}. We first show that for
every subset X of {1, 2, . . . , n − 2}, state {q2} ∪ X is reachable. The proof is
by induction on |X |. The basis, |X | = 0, holds since {q2} is reached from the
initial state {q0} by ba. Let X = {j1, j2, . . . , jk} with j1 < j2 < · · · < jk be
a subset of {1, 2, . . . , n − 2} of size k. State {q2} ∪ X is reached from state
{q2}∪ {j2 − j1 +1, . . . , jk − j1 +1} by ba(m−2)y(j1−1). Now if i ∈ {1, . . . ,m− 2},
then state {qi} ∪X is reached from state {q2} ∪X by string a(n−2)x(m−4+i). If
i = m − 1 and X �= {1, . . . , n − 2}, then there exists some z ∈ {1, . . . , n − 2}
such that z /∈ X . By string a(m−2)y(n−2−z)+1, state {q3} ∪ X ′ is reached from
{q2} ∪X , where X ′ is a rotation of X such that 1 /∈ X ′. Then from this state,
we can reach {qm−1} ∪ X ′ by reading b. Then we can reach the desired state
{qm−1}∪X by reading az−1. This proves the reachability of (m− 1)2n−2 states.

It remains to show that these states are pairwise distinguishable. Since string
bab is accepted by the nfa only from state q0, the initial state {q0} of the subset
automaton is distinguishable from any other state. States {qi}∪X and {qj}∪Y
with i < j are distinguished by am−ib. Finally, states {qi}∪X and {qi}∪Y with
X �= Y differ in a state j in {1, 2, . . . , n− 2}, and so string an−j−1 distinguishes
the two states.
�

Han and Salomaa [8] proved that 2n−2 + 1 states are sufficient for reversal of
suffix-free languages. They met this bound using a ternary alphabet. Theorem 6
shows that this upper bound cannot be met in the binary case.

100 R. Cmorik and G. Jirásková

Theorem 6 (Reversal). Let L be a suffix-free regular language with sc(L) = n,
where n ≥ 3. Then sc(LR) ≤ 2n−2 + 1. The bound is tight in the ternary case,
but cannot be met in the binary case.

Proof. The bound is tight in the ternary case as shown in [8]. Let us suppose
by contradiction that there exists a minimal n-state suffix-free dfa A over a
binary alphabet such that the minimal dfa for the language L(A)R has 2n−2+1
states. Let the set of states of A be Q, with the initial state s and the dead
state d. Construct nfa AR from the dfa A by reversing all the transitions, and
by swapping the role of the initial and final states. The dead state d becomes
unreachable in AR, so we can omit it. The subset automaton corresponding to
nfa AR, after removing unreachable states, is a minimal dfa for L(A)R [2].

No subset X of Q such that s ∈ X and {s} �= X is reachable in the subset
automaton [8, Lemma 6]. It follows that the state set of the subset automaton
consists of all the subsets of Q − {s, d} and state {s}, that is, 2n−2 + 1 states
in total. This means that the set Z = Q − {s, d} is reachable in the subset
automaton. Since in dfa A there is a transition from state s to some state q in
Q − {s, d} on some letter a, in the subset automaton there is a transition on a
from Z to a subset Y such that s ∈ Y . If there are some states p, p′ in Q−{s, d}
such that p′ goes to p by a in dfa A, then p′ ∈ Y . Thus {s, p′} ⊆ Y . This is a
contradiction since such a state cannot be reachable in the subset automaton.

There remains the case when there are no states p, p′ in Q− {s, d} such that
p′ goes to p by a in dfa A. Then there are just transitions on b among the states
in Q − {s, d}. The determinization of (n − 2)-state nfa over a unary alphabet

requires eΘ(
√

(n−2) ln(n−2)) = o(2n−2 + 1) states [6].
�

The next theorem provides upper and lower bounds on the state complexity of
the reversal of suffix-free languages in the binary case.

Theorem 7 (Reversal: Binary Case). Let f2(n) be the state complexity of
reversal of binary suffix-free languages. Then 2n/2−2+1 ≤ f2(n) ≤ 2n−4+2n−3+1
for every integer n with n ≥ 12.

Proof. Let us prove the upper bound. We will continue our considerations from
the proof of previous Theorem 6. Let K be a language over {a, b} accepted by
an n-state suffix-free minimal dfa A with the state set Q = {s, d, 1, 2, . . . n− 2},
the initial state s, and the dead state d. Without loss of generality, state s goes
to a state q in {1, 2, . . . , n− 2} by a. Construct nfa AR as in the previous proof.

First consider the case when there are two states p and p′ in {1, 2, . . . , n− 2}
such that p goes to p′ by a in dfa A. We have shown in the previous proof that
we cannot reach the subset Q − {s, d}. Moreover, we cannot reach any subset
containing both p and q due to the same argument. There are 2n−4 subsets of
Q−{s, d} that did not contain neither p nor q. And there are 2n−3 subsets that
contain at least one but not both of them. So, including the final state {s}, there
are at most 2n−4 + 2n−3 + 1 states in the corresponding subset automaton. If
among the states in {1, 2, . . . , n − 2}, there are just transitions on symbol b,

then the state complexity of KR is asymptotically equal to 1 + e
√

(n−2) ln(n−2).

Basic Operations on Binary Suffix-Free Languages 101

Now we prove the lower bound. Consider the language #Lm−2, where Lm−2

is the language over {a, b} accepted by the (m−2)-state Šebej’s dfa [12] meeting
the upper bound 2m−2 for reversal. The minimal dfa B# for #Lm−2 has m
states. Language #Lm−2 is suffix-free. Now, we can construct an automaton C
over a binary alphabet by encoding the three alphabet symbols of B# with two
symbols 0 and 1 as follows. For symbol # we use code 00, for symbol a code
10, and for b we use 11. For every state q in B#, we add two special states q′

and q′′, and replace the transitions from q as follows. The transition from q to
some q# by # is replaced with two transitions: The first one goes from q to q′

by 0, and the second one from q′ to q# by 0. The transition from q to some qa
by a is replaced with transitions from q to q′′ by 1 and from q′′ to qa by 0. The
transition from q to some qb by b is replaced with transitions from q to q′′ by
1 and from q′′ to qb by 1. All the transitions not defined above go to the dead
state. The number of states in C is 3m. However, there are m + 1 states that
are equivalent to the dead state: For the initial state s, state s′′ goes to the dead
state d by both 0 and 1. For all states q except for s, q′ goes to d by both 0 and
1, and in the case of d, also state d′′ goes to d by 0 and 1. So we can replace
all the mentioned special states with d. After removing these equivalent states,
there remains 2m − 1 states in C. Automaton C is deterministic. Let us prove
that it is suffix-free. Suppose by contradiction that C accepts a string w and
also its proper suffix v. Both are of even length, since strings of odd length are
not accepted by C. So they can be decoded as w′ and v′, respectively, where v′

is a suffix of w′ and both are accepted by B#, which is a contradiction.
Now we prove that C accepts the encoded language of B#. If the length of a

string w in {0, 1}∗ is odd, then it is rejected in C since it ends in a special state
or in d. If the length is even, then w can be decoded and it is accepted in C if and
only if the decoded w is accepted in B#. We construct nfa C′ for language L(C)R

by reversing all the transitions in C. In the corresponding subset automaton, we
can reach all the 2m−2 + 1 states which are pairwise distinguishable, as in the
subset automaton for L(B#)

R. So if n is the size of the minimal dfa for the
encoded language, then L(C)R requires at least 2n/2−2 + 1 states.
�

4 Conclusions

We gave a characterization of suffix-free nfa’s and a sufficient condition on a dfa
to accept a suffix-free language. This allowed us to avoid proofs of suffix-freeness
of all the languages we have used throughout the paper. Then we investigated
the operational state complexity of suffix-free regular languages. We solved com-
pletely the case of difference, symmetric difference, and Kleene star since we
proved that the general upper bounds for these operations can be met in the
binary case.

In the case of concatenation, we provided ternary witness languages. For the
binary case, we presented an example that almost meets the upper bound in
infinitely many cases. It remains open whether the bound for concatenation can
be met in the binary case.

102 R. Cmorik and G. Jirásková

Then we showed that the upper bound for reversal cannot be met in the
binary case, and we also gave lower and upper bounds for that case. The exact
value of the state complexity of reversal in the binary case remains open.

References

1. Bordihn, H., Holzer, M., Kutrib, M.: Determinization of finite automata accepting
subregular languages. Theoret. Comput. Sci. 410, 3209–3222 (2009)

2. Brzozowski, J.: Canonical regular expressions and minimal state graphs for definite
events. In: Mathematical Theory of Automata. MRI Symposia Series, vol. 12, pp.
529–561. Polytechnic Press, Polytechnic Institute of Brooklyn, NY (1962)

3. Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages. In:
López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 208–221. Springer, Hei-
delberg (2010)

4. Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of closed languages. In:
Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 84–95. Springer,
Heidelberg (2010)

5. Câmpeanu, C., Salomaa, K., Culik II, K., Yu, S.: State complexity of basic oper-
ations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS,
vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

6. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986); Erratum: Theoret. Comput. Sci. 302, 497–498 (2003)

7. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free
regular languages. In: Automata, Formal Languages, and Related Topics, pp. 99–
115. University of Szeged, Hungary (2009)

8. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theoret. Comput. Sci. 410, 2537–2548 (2009)

9. Jirásková, G., Olejár, P.: State complexity of intersection and union suffix-free
languages and descriptional complexity. In: Bordihn, H., Freund, R., Holzer, M.,
Kutrib, M., Otto, F. (eds.) NCMA 2009, pp. 151–166. Osterreichische Computer
Gesellschaft (2009)

10. Jirásková, G., Masopust, T.: Complexity in union-free regular languages. In: Gao,
Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 255–266. Springer,
Heidelberg (2010)

11. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res. De-
velop. 3, 114–129 (1959)

12. Šebej, J.: Reversal of regular languages and state complexity. In: Pardubská, D.
(ed.) ITAT 2010, pp. 47–54. P. J. Šafárik University of Košice, Slovakia (2010)

13. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

14. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. I, ch. 2, pp. 41–110. Springer, Heidelberg (1997)

Efficient Data Representation

of Large Job Schedules

Dalibor Klusáček and Hana Rudová

Faculty of Informatics, Masaryk University, Czech Republic
{xklusac,hanka}@fi.muni.cz

Abstract. The increasing popularity of advanced schedule-based tech-
niques designed to solve Grid scheduling problems requires the use of ef-
ficient data structures to represent the constructed job schedules. Based
on our previous research in the area of advanced scheduling algorithms
we have developed data representation designed to maintain large job
schedules. We provide new details of the applied representation, espe-
cially about the binary heap data structure. The heap guarantees good
efficiency of the crucial schedule update procedure which is used to keep
the schedule consistent and up-to-date subject to dynamically changing
state of the system. We prove the time complexity related to the use of
such a structure and — using an experimental evaluation — we demon-
strate the performance of this structure even for very large job schedules.

1 Introduction

The Grid technology allows to build large and powerful computing infrastruc-
tures using relatively cheap hardware [5]. To guarantee good performance, effi-
cient scheduling techniques are necessary. From this point of view, techniques
using schedule become very important, as they allow to plan job execution ahead,
predict the behavior of the system, guarantee job start time [11,6] or establish
reservations [7,14]. Moreover, the use of schedule allows to easily evaluate the
quality of constructed schedule using selected objective functions [9,15]. Then,
its quality can be improved through the application of optimization algorithms,
e.g., metaheuristics, as was shown in our earlier works [9,10] as well as by other
researchers [18,16,1].

On the other hand, the use of schedule requires much more complicated data
representation with respect to the common queue-based solutions that are widely
applied in existing production schedulers. Such a data representation must guar-
antee good performance and scalability with respect to the size of the system.
As the Grid scheduling is an on-line problem, the schedule is created subject to
dynamically changing environment [13,9]. Typically, the number of jobs or the
number of available machines are changing through the time. In order to remain
consistent with the actual state of the system, the schedule must be updated
according to the current situation. The update procedure is used to repair all
information stored in the schedule when a dynamic event causes that previously
computed values are no longer valid. There are several events that may cause

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 103–113, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

104 D. Klusáček and H. Rudová

such inconsistencies. For example, when a machine failure appears the schedule
must be updated such that no job in the schedule is planned on that failed ma-
chine [8]. Another frequent event is an early job completion. When a job finishes
earlier than expected the schedule must be updated. Typically, some jobs can
be shifted to earlier time slots due to the premature job termination [11]. Last
but not least, iterative optimization routines often modify existing schedule to
improve the quality of the initial schedule. Each such modification requires an
update so that the effect of this modification can be correctly evaluated using
up-to-date data. Typically, it is necessary to compute some objective function
to evaluate the modification. Here the update is always performed prior the
evaluation so that the objective function is computed using correct data that
reflect the “effect” of the recently performed modification [8]. Moreover, as the
situation can change frequently, updates must be performed efficiently so that
there is enough time left for the optimization phase. From this point of view,
the most crucial goal is to use an efficient update procedure, which assures that
all information concerning planned job execution are up-to-date in the schedule.

The update procedure shall not be confused with methods that are used to
create or optimize the schedule. While these methods frequently use updates,
the update procedure itself is not responsible for the creation or the optimiza-
tion of the schedule. It only guarantees that the dynamic changes are correctly
propagated into the schedule data structure. An overview of scheduling tech-
niques that can be used to build and optimize the initial schedule can be found
in [18,16,8].

In this work we closely describe an efficient schedule update procedure that
uses data representation designed to successfully represent schedules of large
Grid systems [9,8]. A binary heap structure [3] is applied to speed up the up-
date routine, keeping the runtime in a decent level. Next, the asymptotic time-
complexity of such procedure is analyzed. Finally, an experimental evaluation
is presented proving the good scalability and low memory and runtime require-
ments of the applied solution.

2 Problem Description

Let us formally describe the requirements concerning the schedule data repre-
sentation. We consider a Grid system that consists of m CPUs and n jobs. Each
job j is characterized by its processing time pj and by the number of requested
CPUs usagej. Intuitively, the schedule defines when and where jobs will be ex-
ecuted, introducing a two dimensional rectangular representation such that for
each job the set of assigned CPUs and the time interval is specified. Here the
x-axis represents the time and the y-axis represents the CPUs of the system. An
example of such a schedule is shown in Fig. 1 (top left). Formally, the schedule
assigns each job j a set of CPUs (CPUj) it will use, where the size of CPUj is
equal to usagej. The schedule also specifies the time interval during which the
job j will be executed. This interval is denoted by the expected start time Sj and
completion time Cj . We do not consider job preemption, therefore Cj −Sj = pj

Efficient Data Representation of Large Job Schedules 105

Fig. 1. Various data representations of job schedule

holds. Clearly, if the executions of two different jobs j1 and j2 overlap in time
then CPUj1 ∩CPUj2 = ∅. We now proceed to the description of the applied data
representation.

3 Data Representation of the Schedule

As we have already mentioned, queue-based scheduling systems use queue(s) to
store jobs prior their execution. Here the scheduling decisions are often taken
at the very last moment— when some machine(s) become available. There-
fore, schedule-like structures are not necessary unless some planning ahead is
required [8]. On the other hand, as soon as some advanced features such as
predictability, evaluation of the quality of the generated solution, optimization
routines or even advanced reservations are considered, the schedule becomes very
useful structure as it depicts the future behavior of the system. It allows to pre-
dict the behavior of the system, to use evaluation when analyzing the quality of
the solution, as well as to introduce optimization. Similarly, if advanced reser-
vations are applied [14] some form of schedule must be used to establish and
maintain them properly.

A trivial implementation of schedule is often used for static problems [12]
where a matrix-like two dimensional array is used (see Fig. 1 (top middle)).
Each cell of this array represents a plan for given CPU (y-axis (rows)) and given
time (x-axis (columns)). More specifically, each cell contains either the identifier
of a job being planned for that time period or no value (null) when there is no
job currently planned. However, such structure is not suitable for schedules that

106 D. Klusáček and H. Rudová

represent longer time horizons since its size grows rapidly, being m ·Cmax, where
Cmax is the completion time of the last job. Let us assume that we consider
schedule for a single CPU for one month (Cmax = 30 days). Let there is a single
cell for each second in that time period. Then, the schedule of a single CPU
requires 2,592,000 cells to represent one month. Since we can expect hundreds
or even thousands of CPUs in a Grid this solution becomes impractical.

This structure can be further improved. For example, for given CPU all cells
that correspond to one job can be merged into a single cell (see Fig. 1 (top right)).
Instead of pj cells for one job and one CPU, there is a single cell that now must
store the Sj and Cj since the index of the column no longer represents certain
time. Still, parallel jobs (usagej > 1) require usagej cells — one for each CPU
from the CPUj set. Therefore, the size of such a structure is at most m · n cells.
The problem with this structure is that information concerning single parallel
job is spread over multiple cells belonging to different CPUs. Also updates of
such a structure can invoke cascade-like effects in the whole structure.

In [11], so called profile of free CPUs represented as a linked list (see Fig. 1
(bottom left)) is used to determine whether jobs from a queue can be backfilled
without delaying the execution of some older waiting jobs. Similar structure
is often used for cumulative scheduling [2]. In our previous work [9] we have
proposed a representation, where the schedule is represented as a linear list of
jobs (job list) and a list of so called gaps (gap list) that represents the free
CPUs. The gap list is an analogy of the profile used in [11]. Both jobs and gaps
in the lists are ordered according to their expected start times. Each job in this
list stores its Sj , Cj and CPUj . Therefore, complete information as required by
the definition in Section 2 is stored in a single cell of the list. All these parameters
are computed using UpdateSchedule procedure once some job is added into the
schedule. If two or more jobs in the schedule have the same start time, then the
one being assigned to the CPU with the smallest id becomes the predecessor
of the remaining jobs in the job list and so on. Gaps represent unused periods
of CPU time. They appears every time the number of available CPUs in the
existing schedule is greater than the number of CPUs requested by the job(s)
in the given time period. Just like jobs, gaps hold information about their start
time, duration and usage. Here usage expresses the number of available (idle)
CPUs in this gap. Moreover, each gap has a pointer to the nearest following
job. If there is no following job (gap at the end of the schedule) this pointer is
set to null. For given time t, there is always at most one gap in the gap list.
Two successive gaps in the gap list have either different usage or the completion
time of the earlier gap is smaller than the start time of the later gap. Otherwise,
such gaps are merged into a single, longer gap. Fig. 1 (bottom right) shows an
example of the applied data structure.

The use of this structure represents several benefits. First of all, it is very
compact as each job is represented by a single cell. It can be shown that job list
and gap list contain at most 2n+1 cells [8]. Moreover, as all gaps in the current
schedule are stored in a separate list, these can be quickly used when necessary.
For example, gap list can be used when adding new job into the schedule [9].

Efficient Data Representation of Large Job Schedules 107

This is a common operation used in several popular algorithms such as EASY
or Conservative Backfilling [11]. Here, two or more adjacent gaps can be used
for the new job. The pointer of the first selected gap is used to place the job into
the job list. This “gap-filling” approach is very useful as it significantly increases
system utilization while respecting the start times of previously added jobs.

The most important and also demanding operation is the schedule update
procedure called UpdateSchedule. It is a crucial part of the applied solution as
it guarantees that schedule remains up-to-date subject to dynamically changing
situation. As discussed in Section 1, various scenarios such as early job comple-
tions, machine failures or schedule modifications performed, e.g., by optimization
algorithms can cause inconsistencies in the existing schedule. Typically, incon-
sistencies would appear in the internal values of jobs in the job list or in the
gap list. In such situation, the UpdateSchedule procedure must recompute the
internal values of all jobs in the job list list and also construct a new gap list.
Otherwise, the schedule is not consistent with the new situation. As these up-
dates can appear frequently, they must be handled efficiently. The rest of this
paper describes UpdateSchedule implementation, its computational complexity
and an experimental evaluation of the actual UpdateSchedule performance.

3.1 UpdateSchedule Procedure

The pseudo code of the UpdateSchedule procedure is shown in Algorithm 1.
It uses two inputs — the job list which represents the schedule that shall be
updated and an auxiliary data structure called first free slots which stores
information about the first free time slot on each working CPU. Using them, the
UpdateSchedule procedure computes new and up-to-date “coordinates” for all
n jobs, starting with the first job in job list and continuing in the linear order of
the list (lines 2–11). Formally, based on the first free slots structure and using
known job’s usagej and pj parameters, new and up-to-date Sj, Cj and CPUj

values are computed for each job j in the job list.

Algorithm 1. UpdateSchedule(job list ,first free slots)
1: gap list := null;
2: for i := 1 to n do
3: j := select i-th job in the job list;
4: Sj := find earliest start time Sj using the first free slots;
5: Cj := Sj + pj ;
6: CPUj := compute the set of assigned CPUs;
7: if gap(s) appeared “in front” of j then
8: append gap(s) that appeared “in front” of j to gap list;
9: end if

10: first free slots := set entries corresponding to CPUs from CPUj equal to Cj ;
11: end for

The update works as follows. At first, the previous gap list is deleted (line 1)
as it will be newly constructed during the update. Next, new and up-to-date

108 D. Klusáček and H. Rudová

Sj , Cj and CPUj values are computed for each job (lines 4–6) and the newly
constructed gap list is extended with gap(s) that appeared “in front” of the
job j (lines 7–9). Such gap(s) is identified as the earliest start time Sj is being
found1. Finally, the auxiliary first free slots structure is updated such that
entries that correspond to CPUs assigned to job j (CPUj) are set equal to the
expected completion time Cj of the job (line 10) and a new iteration starts.

Once the UpdateSchedule procedure finishes, all schedule-related parameters
of jobs in job list as well as the gap list are up-to-date. Now we can closely
describe how the earliest start time of each job is found. Naturally, we can
find the earliest start time by scanning the completion time of every job “in
front” of the currently updated job. However, this solution is impractical, as its
complexity was shown to be quadratic with respect to the number of jobs [4,11].
Instead of that, we continuously maintain the first free slots structure that
stores information about the first free slot on each CPU. The design of this
structure is the key to the good performance. The simplest solution would use
an unordered array of size m. Here, the i-th cell would represent the earliest
time when i-th CPU becomes available. However, such data structure is not very
efficient when searching for minimal values. In general, usagej ≤ m therefore
the number of operations required to find the earliest start time of job can grow
up to m2 as the minimum must be found usagej-times. Then, for all n jobs the
time complexity would be in O

(
n · m2

)
which is inefficient. Instead of that, we

use a binary heap which is much more time-efficient when searching for minimal
values [3], allowing to keep the time complexity of UpdateSchedule procedure
in O (n · m) as we show in the following text.

For our purpose, the binary heap is applied in the following fashion. Each
node of the heap stores a key representing the earliest available time (te) on
some CPU(s). Moreover, each node contains a list of CPU IDs that all become
free at the time te. In another words, if the time te is the same for two or more
CPUs, their IDs are stored in this list, while te becomes the node’s key in the
heap. The heap is constructed according to the key values. The minimal key is
the root of the heap. Let s (size) be the number of nodes in the heap. Let IDsi be
the list of CPU IDs at the i-th node of the heap. Clearly, as soon as the system
contains at least one CPU then s > 0 as well as s ≤ m. The latter guarantees
that there are at most m nodes in the heap. Finally,

∑s
i=1 |IDsi | = m assures

that the total number of CPU IDs stored in the heap is the same as the number
of CPUs (m). Using a binary heap, the complexity when finding the minimal
node is in O (1), the minimal node can be extracted in O (log m) and a new node
is inserted within O (log m) [3].

3.2 Complexity of the UpdateSchedule Procedure

We now proceed to the complexity analysis of the UpdateSchedule procedure.

1 For example, once the start time of the third job S3 is established (see Fig. 1 top
left), one gap located between the first and the third job is found. The gap is detected
as S3 is greater than the earliest free time on cpu0 which is equal to C1 in this case.

Efficient Data Representation of Large Job Schedules 109

Theorem 1. Let m be the number of CPUs in the system and let n be the
number of jobs in the job list. Then the time complexity of UpdateSchedule
procedure is in O (n · m).

Proof. We first analyze the complexity of the steps performed in one loop of
Algorithm 1, i.e., the complexity of lines 3–10.

line 3: O (1).
line 4: O (usagej · log m). In the worst case usagej nodes must be extracted

from the heap to find the earliest start time Sj for the job j.2 Often the
situation is much better. Let r be the root node of the heap. Let sizer be
the number of CPU IDs stored in the root r (sizer = |IDsr|). In the best
case sizer > usagej which means that no node has to be extracted from the
heap and the complexity of finding the earliest start time is in O (usagej)
as only usagej steps are needed to remove the requested IDs from the list
in node r.

lines 5–6: O (usagej). 1+usagej steps are required to compute Cj and CPUj .
lines 7–9: O (usagej). The gap list is updated using at most usagej steps, since

for a given job j at most usagej gaps can appear “in front” of it [8].
line 10: O (usagej + m). When the update of the first free slots structure

(i.e., the heap) is performed, two situations can appear. If the Cj is the
same as the key of some existing node in the heap, this existing node is
extended. At most usagej + m steps are needed as there are at most m
nodes in the heap, and usagej steps are needed to update the IDsi list
in the selected node i. Otherwise, one new node is inserted in the heap
(usagej+logm steps). Together, the update of the first free slots structure
is in O (usagej + m + log m) = O (usagej + m).

So far we have clarified the complexity of one iteration of Algorithm 1 that up-
dates one job. We may now extend it to all n jobs, thus describing the complexity
of the UpdateSchedule procedure. Without the loss of generality we assume that
at the start of the procedure all CPUs are currently free and working, i.e., there
are no failed machines. Therefore, at the beginning the heap contains only one
node that stores all CPU IDs (m). This initial node is created in O (m) steps. The
update is performed for all n jobs. Clearly, for each job the algorithm extracts
at most usagej nodes from the heap (see line 4) and inserts at most one node
in the heap (see line 10). Therefore, at most n nodes can be inserted into the
heap during the execution of UpdateSchedule procedure. Since at the beginning
the heap contains only one node and every job inserts at most one node into the
heap then — for all jobs together— the algorithm cannot extract more than n
nodes during its execution, therefore for all n jobs the time to compute line 4
is bounded by O (n · log m). Then, for all n jobs the lines 5–6 and lines 7–9
are performed, requiring 2 ·

∑n
j=1 usagej steps which is in O

(∑n
j=1 usagej

)
.

Finally, the auxiliary first free slots structure is updated (see line 10), which

2 In the worst case all extracted nodes contain only one CPU ID.

110 D. Klusáček and H. Rudová

for n jobs requires
(∑n

j=1 usagej

)
+ n · m steps. Together, the complexity of

UpdateSchedule is shown in Eqn. 1.

O (m) + O (n · log m) + O
(∑n

j=1 usagej

)
+ O

((∑n
j=1 usagej

)
+ n · m

)
(1)

Since usagej ≤ m holds, this equation can be further simplified as shown in
Eqn. 2. Clearly, the complexity of UpdateSchedule is in O (n · m) which concludes
the proof of Theorem 1.

O (m) + O (n · log m) + O (n · m) + O (n · m + n · m)
= O (m + n · (log m + m))

= O (n · m) (2)

��

4 Experimental Evaluation

In the previous section we have formally demonstrated that the application of bi-
nary heap can significantly decrease the time complexity of the UpdateSchedule
procedure. In this section we present a synthetic experiment where the perfor-
mance of the UpdateSchedule procedure is experimentally evaluated, measuring
memory and runtime requirements subject to changing number of jobs and
CPUs in the simulated system.

In the simulation, both m and n are varying, representing different size and
different load of the system respectively. For m, we considered following values:
100, 200, 500, 1,000, 2,000, . . . , 10,000. For n, following values were applied: 100,
500, 1,000, 2,000, 5,000 and 10,000. Job parameters were generated synthetically
using uniform distribution. Following ranges were used: job execution time (1–
86,400) seconds, number of CPUs required by a job (1–128). In this experiment,
all jobs were available at the same moment (at t = 0) as it was not necessary to
simulate different job arrival times in this case. Once all n jobs were created the
initial schedule was generated randomly and the experiment started, measuring
the amount of used RAM and the actual runtime of the UpdateSchedule proce-
dure. For each combination of m and n the experiment was repeated 20 times
with different seed and the mean was calculated. All experiments were computed
using an Intel QuadCore 2.6 GHz desktop machine with 2 GB of RAM.

The amount of used RAM is shown in the top part of Fig. 2. It grows propor-
tionally to the number of jobs in the schedule which sounds with the expecta-
tions mentioned in Section 3, where we have shown that the size of the schedule
structure is proportional to n [8]. Fig. 2 (bottom) shows the actual runtime of
the UpdateSchedule procedure, which is very good as even the largest schedule
is updated within only 40 ms. As we observed, the use of binary heap played
a crucial role here. When we used an unordered array instead (see Section 3.1)
the runtime increased up to 1,004 ms for the same problem instance. Clearly,
the application of more powerful data structures makes good sense, keeping the
runtime in a decent level even for large job schedules.

Efficient Data Representation of Large Job Schedules 111

Fig. 2. Used RAM memory (top) and the runtime (bottom) of the UpdateSchedule
procedure

Further experiments demonstrating applicability of described data structures
on real-life data sets and standard benchmarks are available in [8].

5 Conclusion

This work has been motivated by the increasing popularity of advanced schedule-
based techniques that represent promising direction when seeking for good per-
formance in large scale computing systems such as Grids [15,7,6,11,14]. The
dynamic character of the Grid system requires the use of efficient approaches
when keeping the job schedule up-to-date. In this work we have described an
efficient schedule update method designed to maintain large job schedules. All
major features of the update procedure have been discussed, including the im-
plementation details and the analysis of the computational complexity. Also an
experimental evaluation has been presented showing the actual memory and

112 D. Klusáček and H. Rudová

runtime requirements. Here the use of binary heap has shown a great sense,
significantly decreasing the runtime of the update procedure.

Acknowledgment. We would like to thank to our colleagues Jǐŕı Filipovič
and Matúš Madzin who helped us to develop the core idea used in the proof
in Section 3.2. We also appreciate the support provided by the Ministry of
Education, Youth and Sports of the Czech Republic under the research intent
No. 0021622419.

References

1. Abraham, A., Liu, H., Grosan, C., Xhafa, F.: Nature inspired meta-heuristics for
Grid scheduling: Single and multi-objective optimization approaches. In: Meta-
heuristics for Scheduling in Distributed Computing Environments [17], pp. 247–272

2. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-based scheduling: Applying con-
straint programming to scheduling problems. Kluwer (2001)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press (2001)

4. Feitelson, D.G., Weil, A.M.: Utilization and predictability in scheduling the IBM
SP2 with backfilling. In: 12th International Parallel Processing Symposium, pp.
542–546. IEEE (1998)

5. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastruc-
ture, 2nd edn. Morgan Kaufmann (2004)

6. Hovestadt, M., Kao, O., Keller, A., Streit, A.: Scheduling in HPC Resource
Management Systems: Queuing vs. Planning. In: Feitelson, D.G., Rudolph, L.,
Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 1–20. Springer,
Heidelberg (2003)

7. Keller, A., Reinefeld, A.: Anatomy of a resource management system for HPC
clusters. Annual Review of Scalable Computing 3, 1–31 (2001)

8. Klusáček, D.: Event-based Optimization of Schedules for Grid Jobs. PhD thesis,
Masaryk University (submitted, 2011)

9. Klusáček, D., Rudová, H.: Efficient Grid scheduling through the incremen-
tal schedule-based approach. Computational Intelligence: An International Jour-
nal 27(1), 4–22 (2011)

10. Klusáček, D., Rudová, H., Baraglia, R., Pasquali, M., Capannini, G.: Compari-
son of multi-criteria scheduling techniques. In: Grid Computing Achievements and
Prospects, pp. 173–184. Springer, Heidelberg (2008)

11. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions
on Parallel and Distributed Systems 12(6), 529–543 (2001)

12. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice-Hall (2002)

13. Sgall, J.: On-line scheduling – a survey. In: Fiat, A. (ed.) Dagstuhl Seminar 1996.
LNCS, vol. 1442, pp. 196–231. Springer, Heidelberg (1998)

14. Smith, W., Foster, I., Taylor, V.: Scheduling with advanced reservations. In: In-
ternational Parallel and Distributed Processing Symposium (IPDPS 2000), pp.
127–132 (2000)

Efficient Data Representation of Large Job Schedules 113

15. Süß, W., Jakob, W., Quinte, A., Stucky, K.-U.: GORBA: A global optimising
resource broker embedded in a Grid resource management system. In: International
Conference on Parallel and Distributed Computing Systems, PDCS 2005, pp. 19–
24. IASTED/ACTA Press (2005)

16. Xhafa, F., Abraham, A.: Meta-heuristics for Grid scheduling problems. In: Meta-
heuristics for Scheduling in Distributed Computing Environments [17], pp. 1–37

17. Xhafa, F., Abraham, A.: Metaheuristics for Scheduling in Distributed Computing
Environments. SCI, vol. 146. Springer, Heidelberg (2008)

18. Xhafa, F., Abraham, A.: Computational models and heuristic methods for Grid
scheduling problems. Future Generation Computer Systems 26(4), 608–621 (2010)

Prefix-Free Regular Languages: Closure

Properties, Difference, and Left Quotient�

Monika Krausová

Institute of Computer Science, P.J. Šafárik University,
Jesenná 5, 041 54 Košice, Slovakia

mon.krausova@gmail.com

Abstract. We show that the class of prefix-free languages is closed un-
der intersection, difference, concatenation, square, and the k-th power
and is not closed under complement, union, symmetric difference, Kleene
star, reversal, cyclic shift, shuffle, and left quotient. Then, we study the
state complexity of difference and left quotient of prefix-free regular lan-
guages. In both cases we get tight bounds. In the case of difference, the
tight bound is mn−m−2n+4 and is met by binary languages. In the case
of left quotient, the tight bound is 2n−1. The bound is met by languages
over (n− 1)-letter alphabet and cannot be met using smaller alphabets.

1 Introduction

A language is prefix-free if it does not contain two strings one of which is a proper
prefix of the other. Prefix-free languages are used in coding theory; for exam-
ple, Huffman codes are prefix-free sets. Every minimal deterministic automaton
recognizing a prefix-free regular language must have exactly one final state that
goes to the dead state on every input symbol. Using this property, tight bounds
on the state complexity of basic operations such as union, intersection, concate-
nation, star, and reversal have been obtained by Han et al. [1] and strengthen in
[4,5], where also the tight bounds for symmetric difference and cyclic shift have
been presented. The nondeterministic state complexity of basic operations has
been studied in [2], and of cyclic shift and difference in [4], while [3] investigated
the complexity of combined operations in the class of prefix-free languages.

Here we continue the research on properties of prefix-free languages. We start
with closure properties. Then, we study the state complexity of difference and
get the tight bound mn−m−2n+4. To prove tightness we use a binary alphabet.
We next examine left quotient. The left quotient of regular languages has been
investigated by Yu at al. in [7]. However, there is an error in the proof in [7], so
we present a correct proof of the lower bound 2n − 1 on the state complexity of
left quotient of regular languages. In the case of prefix-free languages, we get the
tight bound 2n−1. We show that the bound is tight for an alphabet consisting
of at least n − 1 symbols. On the other hand, we prove that the bound cannot
be met using any smaller alphabet.
� Research supported by VEGA grant 1/0035/09 “Combinatorial Structures and

Complexity of Algorithms”.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 114–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Prefix-Free Regular Languages 115

2 Preliminaries

We assume that the reader is familiar with basic concepts of regular languages
and finite automata and for unexplained notions we refer to [6].

For an alphabet Σ, let Σ∗ be the set of all strings over Σ, including the empty
string ε. A language is any subset of Σ∗. The difference of languages K and L
over Σ is defined by K −L = {w ∈ Σ∗ | w ∈ K and w /∈ L}, and left quotient of
L by K is defined by K\L = {x ∈ Σ∗ | wx ∈ L for a string w in K}. We denote
the power-set of a set X by 2X .

A deterministic finite automaton (DFA) is a quintuple M = (Q, Σ, δ, s, F),
where Q is a finite non-empty set of states, Σ is an input alphabet, δ : Q×Σ → Q
is the transition function, s ∈ Q is the initial state, and F ⊆ Q is the set of
final states. In this paper, all DFAs are assumed to be complete. The transition
function δ is extended to the domain Q × Σ∗ in a natural way. The language
accepted by DFA M is the set of strings L(M) = {w ∈ Σ∗ | δ(s, w) ∈ F}.

A nondeterministic finite automaton (NFA) is a quintuple M = (Q, Σ, δ, S, F),
where Q, Σ, and F are defined in the same way as for a DFA, S is the set of
initial states, and δ is the nondeterministic transition function that maps Q×Σ
to 2Q. The transition function can be naturally extended to the domain 2Q×Σ∗.
The language accepted by NFA M is L(M) = {w ∈ Σ∗ | δ(S, w) ∩ F
= ∅}.

Two automata are equivalent if they recognize the same language. A DFA
M is minimal if every DFA equivalent to M has at least as many states as M .
It is well-known that a DFA is minimal if all of its states are reachable and
pairwise distinguishable. The state complexity of a regular language L, sc(L), is
the number of states in the minimal DFA recognizing language L.

Every NFA (Q, Σ, δ, S, F) can be converted to an equivalent deterministic
automaton (2Q, Σ, δ′, S, F ′), where δ′(R, a) =

⋃
r∈R δ(r, a) for every set R in 2Q

and every symbol a in Σ, and F ′ = {R ∈ 2Q | R∩F
= ∅}. We call the resulting
DFA the subset automaton corresponding to NFA M . The subset automaton
need not be minimal since some states may be unreachable or equivalent.

If u, v, w are strings in Σ∗ and w = uv, then u is a prefix of w. If, moreover,
v
= ε, then u is a proper prefix of w. The empty string, ε, is a proper prefix
of any string. A language is prefix-free if it does not contain two strings one of
which is a proper prefix of the other.

3 Closure Properties

We start our investigation with the closure properties of the class of prefix-free
regular languages. To prove the next result notice that every subset of a prefix-
free language is a prefix-free language. Next, every language consisting of just
one string is prefix-free.

Theorem 1. The class of prefix-free regular languages is closed under intersec-
tion, difference, concatenation, square, and the k-th power and is not closed un-
der complement, union, symmetric difference, Kleene star, reversal, cyclic shift,
shuffle, and left quotient.

116 M. Krausová

Proof. Since every subset of a prefix-free language is a prefix-free language, the
closeness under intersection and difference follows.

To show the closeness under concatenation, notice that having two DFAs such
that both have just one final state going to the dead state on every input symbol,
we can construct a DFA for concatenation as follows: First, remove the dead state
of the first automaton and redirect all the transitions going to it to the dead
state of the second DFA. Then, make the final state of the first automaton non-
final and merge it with the initial state of the second automaton. The resulting
DFA for concatenation has just one final state going to the dead state on every
input symbol, therefore the concatenation is a prefix-free language.

The closeness under square and the k-th power follows from the closeness of
the class of prefix-free regular languages under concatenation.

For all the other operations we present prefix-free languages such that the
language resulting from the operation is not prefix-free:

Complement: {a}c ⊇ {ε, aa, aaa},
Union: {a} ∪ {ab} = {a, ab},
Symmetric difference: {aa, ab} ⊕ {ab, aab} = {aa, aab},
Kleene star: {ab}∗ ⊇ {ε, ab, abab},
Reversal: {aa, abaa}R = {aa, aaba},
Cyclic shift: Shift({aa, aba}) = {aa, aba, baa, aab},
Shuffle: {abb} {a, ba} ⊇ {abba, abbab},
Left quotient: {a, b}\{aba, bbaba} = {ba, baba}.

Hence, the non-closeness follows. ��

4 State Complexity of Difference

Now we turn our attention to the state complexity of difference of prefix-free
regular languages. The operation of difference was not investigated in [1] at all.
The upper bound and the ternary witness languages were claimed without any
proof in [4]. Here we provide the proof of upper bound mn−m− 2n + 4, as well
as binary worst-case examples.

Theorem 2. Let m ≥ 4, n ≥ 3, and K and L be prefix-free regular languages
with sc(K) = m and sc(L) = n. Then, sc(K − L) ≤ mn − m − 2n + 4 and the
bound is tight in the binary case.

Proof. First, we prove the upper bound. Let A and B be an m-state and an
n-state DFAs over an alphabet Σ recognizing prefix-free languages and let their
state sets be P = {0, 1, . . . , m − 1} and Q = {0, 1, . . . , n − 1}, respectively,
with the initial state 0 in both automata. Both automata must have exactly one
final state that goes to the dead state on every input symbol. Without loss of
generality, assume that states m− 2 and n− 2 are final, while states m− 1 and
n − 1 are dead. Let the corresponding transition functions be δA and δB.

Construct the cross-product automaton for the difference K − L as follows:
M = (P × Q, Σ, δ, [0, 0], F), where δ([p, q], a) = [δA(p, a), δB(q, a)] for all states
[p, q] in P × Q and all a in Σ, and F = {m − 2} × (Q − {n − 2}), see Fig. 1.

Prefix-Free Regular Languages 117

[0,0] [0,1] [0,n−3] [0,n−2] [0,n−1]

[1,0] [1,1] [1,n−3] [1,n−2] [1,n−1]

[m−3,0] [m−3,1]

[m−2,0] [m−2,1]

[m−1,0] [m−1,1]

[m−3,

n−3]

[m−2,

n−3]

[m−1,

n−3]

[m−3,

n−2]

[m−2,

n−2]

[m−1,

n−2]

[m−3,

n−1]

[m−2,

n−1]

[m−1,

n−1]

Fig. 1. The cross-product automaton for difference

Since states m − 1 and n − 1 are dead, all the states of the cross-product
automaton M in row m−1, as well as state [m−2, n−2], are dead. Next, all the
states in row m−2, except for state [m−2, n−2], accept only the empty string,
therefore are equivalent. Finally, the pairs of states [i, n−2] and [i, n−1], where
0 ≤ i ≤ m − 3, are equivalent since they go to the same state on every symbol.
Hence, the minimal DFA for the difference has at most mn−m− 2n + 4 states.

To prove tightness, consider prefix-free languages accepted by DFAs in Fig. 2.
The cross-product automaton for their difference is shown in Fig. 3. Consider

0 1

a a

b ab b

a

m− 4 m− 3
b

b

m− 1

a, b

m− 2
a, b

0 1

b b b

a a
2

a a

b

n− 2 n− 1
a, b

a, b

n− 3
a

Fig. 2. Binary prefix-free languages meeting the bound mn−m− 2n+4 for difference

118 M. Krausová

b

b

b

[m−1,

a, b

[m−2,0] [m−2,1] [m−2,2] [m−2, [m−2,

[m−3,0] [m−3,1] [m−3,2] [m−3,

a

[m−3,

[m−1,

a, b

[m−2,

[m−3,

b

b

b

b

b

b

a
[1,0] [1,n−1][1,n−2][1,n−3][1,2]

a
[1,1]

a
[0,0] [0,n−1][0,n−2][0,n−3][0,2]

a
[0,1]

aa

[m−1,2][m−1,1][m−1,0]

n−1]

n−1]

n−1]

n−2]

n−2]

n−2]

n−3]

n−3]

[m−1,

n−3]

a

a

aa a

b bb

b b b

b b b

a
[m−4,0] [m−4,[m−4,[m−4,2]

a
[m−4,1]

aa a
n−1]n−3]

[m−4,

n−2]

a

a

b

b

b

a, b

b

a

b

b

b

a

a a a

a a, b

b

aa

a

a

a

b

b

b

aaa

bbb

b b

Fig. 3. The cross-product automaton for the difference of languages from Fig. 2

the following set of mn−m−2n+4 states of the cross-product automaton: R =
{[i, j]; 0 ≤ i ≤ m−3, 0 ≤ j ≤ n−1 and j
= n−2}∪{[m−2, n−2], [m−2, n−1]}.

We show that all the states in set R are reachable and pairwise distinguishable
in the cross-product automaton. Each state [i, j] in set R different from [m −
2, n − 2] and [m − 2, n − 1] is reached from the initial state [0, 0] by string
ajbi. State [m − 2, n − 1] is reached from state [m − 3, n − 1] by a and state
[m− 2, n− 2] is reached from state [m− 3, n− 3] by a. This proves reachability.
To prove distinguishability, notice that [m− 2, n− 2] is the only dead state and
[m− 2, n− 1] is the only accepting state in set R. Now let [i, j] and [k, �] be two
distinct states in R different from [m− 2, n− 2] and [m− 2, n− 1]. If i < k, then
the string anbm−3−ia is accepted from state [i, j] and rejected from state [k, �].
If i = k and j < �, then there is a string in b∗ that moves the two states into
states [0, j] and [0, �] in row 0. Then, the string an−3−jbm−3a is rejected from
state [0, j] and accepted from state [0, �]. This concludes our proof. ��

Prefix-Free Regular Languages 119

5 State Complexity of Left Quotient

Yu et al. in [7] investigated the state complexity of left quotient of regular lan-
guages. They proved the upper bound 2n − 1 and presented binary language L,
shown in Fig. 4, that meets the bound for Σ∗\L. However, as shown below, their
proof does not work, therefore we provide a correct proof. Then, we consider the
case of prefix-free regular languages.

Theorem 3 ([7]). Let K and L be regular languages with sc(K) = m and
sc(L) = n. Then, sc(K\L) ≤ 2n − 1 and the bound is tight in the binary case.

Let us first show that the proof in [7] does not work. For tightness, let L be the
language recognized by the DFA in Fig. 4. The paper [7] claims that in the subset
automaton corresponding to the NFA for Σ∗\L, every non-empty subset X of
the state set {0, 1, . . . , n−1} is reached from the initial state {0, 1, . . . , n−1} by
the string x0xn−1 · · ·x1, where for every j with 0 ≤ j ≤ n− 1, xj = a, if j ∈ X ,
and xj = b otherwise. Assume n = 6 and let X = {2, 3, 5}. State X should be
reached from the initial state {0, 1, 2, 3, 4, 5} by string babaab. However, we have
{0, 1, 2, 3, 4, 5} b−→ {0, 2, 3, 4, 5} a−→ {0, 1, 3, 4, 5} b−→ {0, 2, 4, 5} a−→ {0, 1, 3, 5} a−→
{0, 1, 2, 4} b−→ {0, 2, 3, 5}.

Proof. To get an n-state NFA for language K\L from an n-state DFA A for L,
it is enough to make initial all the states of DFA A that can be reached from
the initial state of A by a string in language K. In the corresponding subset
automaton, the empty set cannot be reached since DFA A for L is assumed to
be complete. This gives the upper bound 2n − 1.

0 1

b

a a, b a, b a, b

a, b

n− 1n− 2

Fig. 4. Binary witness language for left quotient by Σ∗

For tightness, let K = a∗∪a∗bm−2. Language K contains all strings in a∗ and
has state complexity m. Let L be the language recognized by the DFA shown in
Fig. 4. Then, in the NFA for language K\L, obtained from the DFA for L, all
the states are initial. The string an−1−i is accepted by the NFA for K\L only
from state i. It follows that all the states in the corresponding subset automaton
are pairwise distinguishable since two distinct subsets must differ in a state i,
therefore the string an−1−i distinguishes them.

We prove the reachability of all the non-empty subsets by induction on the size
of subsets. The set {0, 1, . . . , n− 1} is the initial state of the subset automaton,
therefore is reachable. Assume that every subset of size k+1, where 1 ≤ k ≤ n−1

120 M. Krausová

is reachable and let X = {i1, i2, . . . , ik}, where 0 ≤ i1 < i2 < · · · < ik ≤ n − 1,
be a subset of size k.

First, let i1 = 0 and i2 ≥ 2, thus X contains 0 and does not contain 1. Take
Y = {0, i2 − 1, . . . , ik − 1, n− 1}. Then, |Y | = k + 1, therefore Y is reachable by
the induction hypothesis. State X is reached from state Y by b.

Now let i1 = 0, i2 = 1, and � be the minimal state in {0, 1, . . . , n− 1}, that is
not in X ; such a state must exist since |X | < n. Take Y = {(x− (l− 1)) mod n |
x ∈ X}. Then, |Y | = k and Y contains 0 and does not contain 1. Thus state Y
is reachable as shown in the first case. State X is reached from Y by al−1.

Finally, let i1 > 0. Take Y = {x−i1 | x ∈ X}. Then, |Y | = k and Y contains 0,
thus state Y is reachable as shown in the two cases above. State X is reached
from Y by ai1 . This proves reachability and concludes the proof. ��

Theorem 4. Let K and L be prefix-free regular languages over an alphabet Σ
with sc(K) = m and sc(L) = n, where m, n ≥ 3. Then, sc(K\L) ≤ 2n−1. The
bound is tight if |Σ| ≥ n − 1, but cannot be met using any smaller alphabet.

Proof. Since L is prefix-free, the DFA for L has the dead state. Before construct-
ing an NFA for K\L, we omit the dead state. This gives the upper bound.

To prove tightness, let Σ = {a1, a2, . . . , an−1}. Let L be the language accepted
by the DFA with states 1, 2, . . . , n, of which 1 is the initial state, n − 1 is the
sole accepting state, n is the dead state, and in which for i = 1, 2, . . . , n − 1, by
ai, states 1, 2, . . . , i− 1 go to itself, each state j with i ≤ j ≤ n− 1 goes to state
j + 1, and state n − 1 goes to state n, see Fig. 5 for every instance of i.

We define language K so that in the NFA for language K\L, all the states in
{1, 2, . . . , n − 1} would be initial. To this aim we consider two cases: If m ≥ n,
then let

K = a2 + a1a3 + a2
1a4 + · · · + an−3

1 an−1 + an−3
1 an−2 + am−2

1

= a2 +
n−3∑
i=1

ai
1ai+2 + an−3

1 an−2 + am−2
1 ,

and if m < n, then let

K = a2 + a1a3 + a2
1a4 + · · · + am−4

1 am−2 + am−3
1 a∗

1(am−1 + am + · · · + an−1)

= a2 +
m−4∑
i=1

ai
1ai+2 + am−3

1 a∗
1(am−1 + am + · · · + an−1),

1

ai

a1

ai

2
a1

ai

a1 a1
i− 1 i

ai

a1
i + 1

ai ai

n− 1
ai

n

a1, ai

a1 a1 a1

Fig. 5. Transitions on symbol a1 and ai

Prefix-Free Regular Languages 121

see Fig. 6 for n = 6, in which all omitted transitions go to the dead states 6
and 4, respectively. In both cases, the strings ai−2

1 ai with 2 ≤ i ≤ n − 1 as well
as the string an−3

1 an−2 are in K, therefore all the states in the NFA for K\L are
initial.

Since the string an−1−i
1 is accepted by this NFA only from state i, all the

states in the corresponding subset automaton are pairwise distinguishable. Now
we prove that all the non-empty subsets of {1, 2, . . . , n − 1} are reachable in
the subset automaton. The set {1, 2, . . . , n − 1} is the initial state of the subset
automaton. Let X = {1, 2, . . . , n− 1}− {i1, i2, . . . , ik}, where 1 ≤ k ≤ n− 1 and
1 ≤ i1 < i2 < · · · < ik, be a subset. Then, X is reached from the initial subset
{1, 2, . . . , n − 1} by string ai1ai2 · · ·aik

.

1
a1

a3, a4a3a2

2
a1 a1

3
a1

4 5

a1a2

a3, a4
1

a1
2 3

Fig. 6. Automaton for language K; n = 5, m = 6 (left) and n = 5, m = 4 (right)

To see that the bound cannot be met for a smaller alphabet, denote by Q the
initial state {1, 2, . . . , n−1}. Then, every set Q−{i} must be reached either from
Q or from a set Q−{j}. Since we omitted the dead state, no transitions go from
state n − 1. Therefore, the second case is possible only if j = n − 1. However, if
Q−{n−1} goes to Q−{i}, then Q goes to Q−{i} as well. It follows that every
set Q − {i} must be reached from the initial state Q, therefore |Σ| ≥ n − 1. ��

6 Conclusions

We investigated closure properties and the state complexity of difference and
left quotient of prefix-free regular languages. We showed that the class of prefix-
free regular languages is closed under intersection, difference, concatenation,
square, and the k-th power and is not closed under complement, union, symmet-
ric difference, Kleene star, reversal, cyclic shift, shuffle, and left quotient. We
proved that the state complexity of difference of prefix-free regular languages is
mn − m − 2n + 4 and we provided binary worst-case example. In the case of
left quotient, we presented a correct proof of a lower bound 2n − 1 in the case
of regular languages. Then, we dealt with the left quotient of prefix-free regular
languages and showed that its state complexity is 2n−1 by providing witness
languages over an alphabet of size n − 1. We also proved that the upper bound
cannot be met using smaller alphabets.

122 M. Krausová

References

1. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free
regular languages. Automata, Formal Languages, and Related Topics, 99–115 (2009)

2. Han, Y.-S., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic
operations for prefix-free regular languages. Fund. Inform. 90, 93–106 (2009)

3. Han, Y.-S., Salomaa, K., Yu, S.: State Complexity of Combined Operations For
Prefix-Free Regular Languages. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C.
(eds.) LATA 2009. LNCS, vol. 5457, pp. 398–409. Springer, Heidelberg (2009)

4. Jirásková, G., Krausová, M.: Complexity in prefix-free regular languages. In:
McQuillan, I., Pighizzini, G., Trost, B. (eds.) Proc. 12th DCFS, pp. 236–244. Uni-
versity of Saskatchewan, Saskatoon (2010)

5. Krausová, M.: Prefix-free languages and descriptional complexity. Bachelor thesis.
P. J. Šafárik University, Košice, Slovakia (2010) (in Slovak)

6. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

7. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on
regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

Noise Injection Heuristics

for Concurrency Testing

Bohuslav Křena, Zdeněk Letko, and Tomáš Vojnar

FIT, Brno University of Technology, Czech Republic

Abstract. Testing of concurrent software is difficult due to the non-
determinism present in scheduling of concurrent threads. Existing testing
approaches tackle this problem either using a modified scheduler which
allows to systematically explore possible scheduling alternatives or us-
ing random or heuristic noise injection which allows to observe different
scheduling scenarios. In this paper, we experimentally compare several
existing noise injection heuristics both from the point of view of cov-
erage of possible behaviours as well as from the point of view of error
discovery probability. Moreover, we also propose a new noise injection
heuristics which uses concurrency coverage information to decide where
to put noise and show that it can outperform the existing approaches in
certain cases.

1 Introduction

Concurrency software testing and analysis is hard due to the non-deterministic
nature of scheduling of concurrent threads. Static analysis and model checking
do not scale well when analysing such programs due to the large interleaving
space they need to explore. Testing and dynamic analysis scale well but usually
do not analyse all possible interleavings. The number of different interleavings
spot during repeated executions of the same test can be increased either by using
a deterministic scheduler or by injecting of so-called noise into test executions.

Deterministic schedulers [12] control thread scheduling decisions during a pro-
gram execution and so can systematically explore the interleaving space up to
a certain extent. Such tools can be seen as light-weight model checkers. Noise
injection tools [3,11] inject calls to a noise maker routine into the program code.
Threads executing the modified code then enter the noise maker routine that
decides—either randomly or based on some heuristics—whether to cause a noise.
The noise causes a delay in the current thread, giving other threads opportunity
to make a progress.

Coverage metrics are used to measure how many coverage tasks (i.e., monitored
events such as reachability of a certain line) defined by a coverage model have been
covered during test execution(s) so far. Concurrency coverage metrics [14,2,7] can
be used to track how many different concurrency-related tasks have been covered,
and hence how many different interleavings have been witnessed.

This paper presents two contributions to the research on noise injection tech-
niques. First, we propose a new heuristics which uses coverage information to

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 123–135, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

124 B. Křena, Z. Letko, and T. Vojnar

select places in an execution of a given code where to put a noise. We also propose
a way to determine the strength of the noise needed to suitably affect the be-
haviour of tested programs. Second, we address the current lack of experimental
evaluations of the various noise injection heuristics by systematic comparison of
several noise injection techniques available in the well-known IBM Concurrency
Testing Tool (ConTest) [3] as well as our new heuristics on a set of test cases
of different size. The comparison is based on the coverage obtained under one
selected concurrency coverage metric, the needed execution time, and the rate
of manifestation of concurrency errors in the testing runs.

We in particular focus on concurrent programs written in Java. We use our
infrastructure for search-based testing called SearchBestie [8] to run multiple
tests with different parameters and to collect their results and IBM ConTest [3]
for noise injection and concurrency coverage measurement. Although our com-
parison could certainly be further extended, we believe that the comparison
provides results missing in the existing literature on noise injection. Moreover,
the comparison shows that our new heuristics may in certain cases provide an
improvement in the testing process.

2 Existing Noise Injection Heuristics

Existing works discuss three main aspects of heuristic noise injection: (1) how
to make noise, i.e., which type of noise generating mechanism should be used,
(2) where to inject noise during a test execution, i.e., at which program location
and at which of its executions, and (3) how to minimise the amount of noise
needed for manifestation of an already detected error when debugging. This
work mainly targets the first two aspects. More information on debugging can
be found, e.g., in [5].

There exist several ways how a scheduler decision can be affected in Java.
In [3], three different noise seeding techniques are introduced and evaluated on
a single-core processor. The priority technique changes priorities of threads. This
technique did not provide good results. The yield technique injects one or more
calls of yield() which causes a context switch. The sleep technique injects
one call of sleep(). Experiments showed that the sleep technique provided
best results in all cases. However, when many threads were running, the yield
technique was also effective.

The current version of the IBM ConTest tool comes with several more noise
seeding techniques [9]. The wait technique injects a call of wait(). The con-
cerned threads must first obtain a special shared monitor, then call wait(),
and finally release the monitor. The synchYield technique combines the yield
technique with obtaining the monitor as in the wait technique. The busyWait
technique does not obtain a monitor but instead loops for some time. The hal-
tOneThread technique [13] occasionally stops one thread until any other thread
cannot run. Finally, the timeoutTamper heuristics randomly reduces the time-
out used when calling sleep() in the tested program (to test that it is not used
for synchronisation). All the above mentioned seeding techniques except the pri-
ority technique are parameterised by the so-called strength of noise. In the case

Noise Injection Heuristics for Concurrency Testing 125

of techniques based on sleep and wait, the strength gives the time to wait. In
the case of yield, the strength says how many times the yield should be called.

Next, we discuss techniques for determining where to put a noise. IBM Con-
Test allows to inject a noise before and after any concurrency-related event
(namely, access to class member variables, static variables, and arrays, calls
of wait, interrupt, notify, monitorenter, and monitorexit routines). The
rstest [11] tool considers as possibly interesting places before concurrency-related
events only. Moreover, rstest uses a simple escape analysis and a lockset-based
algorithm to identify so-called unprotected accesses to shared variables. The un-
protected access reads or writes a variable which is visible to multiple threads
without holding an appropriate lock. This optimisation reduces the number of
places where the noise can be put but suppresses ability to detect some con-
currency errors, e.g., high-level data races or deadlocks where all accesses to
problematic variables are correctly guarded by a lock.

It is discussed in [3,11,5] that putting noise on every possible place is ineffi-
cient and only a few relevant context switches are critical for the concurrency
error. Also, putting noise in a certain place (ploc—program location [3]) in the
execution can either help to spot the concurrency error or mask it completely.
Therefore, several heuristics for choosing places where to put a noise were pro-
posed, e.g., in [3,11,1,6,4,13].

The simplest heuristics is based on a random noise [3,11]. This heuristics puts
a noise before/after an executed ploc with a given probability. The probability
is the same for all plocs in the execution. It was shown in [1] that focusing
random noise only on a single variable over which a data race exists increases
the probability of spotting the error. The authors also propose a heuristics which
helps to choose a suitable variable without additional information from a data
race detector. In [4], the noise injection problem is reformulated as a search
problem, and a genetic algorithm is used to determine plocs suitable for noise
injection. The fitness function used prefers solutions with a low number of plocs
where a noise is put (size), a high amount of noise in less plocs (entropy), and
a high probability of spotting the error (efficiency). In [6], several concurrency
antipatterns are discussed, and for each of them, a suitable scheduling scenario
that leads to manifestation of the corresponding concurrency error is presented,
but the paper contains no practical evaluation of the proposed heuristics.

A few heuristics based on concurrency coverage models have been published.
Coverage-directed generation of interleavings presented in [3] considers two cover-
age models. The first model determines whether the execution of each method was
interrupted by a context switch. The second model determines whether a method
execution was interrupted by any other method. The level of methods used here
is, according to our opinion, too coarse. In [13], a coverage model considers, for
each synchronisation primitive, various distinctive situations that can occur when
the primitive is executed (e.g., in the case of a synchronised block defined using
the Java keyword synchronised, the tasks are: synchronisation visited, synchro-
nisation blocking some other thread, and synchronisation blocked by some other
thread). A forcing algorithm then injects noise at corresponding synchronisation

126 B. Křena, Z. Letko, and T. Vojnar

primitive plocs to increase the coverage. None of these two heuristics focuses on
accesses to shared variables which can limit their ability to discover some concur-
rency errors, e.g., data races.

3 A New Coverage-Based Noise Injection Heuristics

Our new heuristics is motivated by our recent experiences with concurrency cov-
erage metrics [7]. The heuristics primarily answers the question where to inject
noise during a test run (the noise can be caused by any of the wait, sleep, or
yield seeding techniques). In the heuristics, we consider only plocs that appear
before concurrency-related events as suitable for noise injection. Our heuristics
targets both accesses to shared variables as well as the use of synchronisation
primitives. Our goal is to be able to discover all kinds of concurrency errors.
Our heuristics monitors the frequency of a ploc execution during a test and puts
a noise at the given ploc with a probability biased wrt. this frequency—the more
often a ploc is executed the lower probability is used. Furthermore, our heuristics
also derives the strength of a noise to be used from the timing of events observed
in previous executions of the test (although for determining the strength of noise,
alternative approaches can be used too).

The testing process with our noise injection heuristics works in the following
four steps. (1) No noise is produced, and a set of covered tasks of our coverage
metric together with information on relative timing of appearance of monitored
concurrency-related events are generated during the first execution of the test.
(2) A set of the so-called noise tuples is generated from the gathered information.
(3) Random noise at the plocs included in the noise tuples is generated, and
the average frequency of execution of these plocs within particular threads is
gathered during the next test execution. (4) Biased random noise of strength
computed wrt. the collected statistics is (repeatedly) produced at the collected
plocs. Coverage information is updated during each execution, and new noise
tuples are constantly learnt. Likewise, all other collected statistics are updated
during each test run. Due to performance reasons, only one thread is influenced
by noise at a time. We now explain the above introduced steps in more detail.

Our coverage model considers coverage tasks of the form (t1, ploc1, t2, ploc2).
There are two situations when a task is covered. First, a task is covered if a thread
t1 accesses a shared variable v at ploc1, and subsequently a thread t2 accesses
v at ploc2, which is a typical scenario critical for occurrence of concurrency-
related errors. If t1 owns a monitor when accessing v at ploc1, another task
(t1, ploc3, t2, ploc2) where ploc3 refers to the location where t1 obtained the last
monitor is also covered. This is motivated by considering the relative position of
locking a critical section in one thread and using it in another thread as impor-
tant. Second, a new task is covered if a thread t1 releases a monitor obtained at
ploc1, and subsequently a thread t2 obtains the monitor at ploc2. Each covered
task is annotated by the number of milliseconds that elapsed between the events
on which the task is based. The threads are identified in an abstract way based
on the history of their creation in the same way as in [7].

Noise Injection Heuristics for Concurrency Testing 127

Our heuristics injects noise before a location ploc1 executed by a thread t1
if a task (t1, ploc1, t2, ploc2) has been covered within some previous execution.
This way, our heuristics tries to reverse the order in which the locations are ex-
ecuted. The coverage information collected during previous runs is transformed
into noise tuples of the form (t1, ploc1, min, max, orig, exec). Here, t1 identifies
a thread and ploc1 the program location where to put a noise. The two next
values give the minimal and maximal number of milliseconds that elapsed be-
tween the events defining the given coverage task. These values can be used
for determining the strength of noise to be used as a delay of length randomly
chosen from between the values. If there are multiple coverage tasks with the
same couple (t1, ploc1), min and max are computed from all such tasks. The
orig value contains an identification of the run where the couple (t1, ploc1) was
spot for the first time. In order to limit values of min and max, their update is
possible only within a limited number of test executions after the orig run. Fi-
nally, the exec value contains the average number of times the couple (t1, ploc1)
is executed during a test execution. It is used to bias the probability of noise
injection at ploc1.

if exec > 0 then1

prob = 1 / exec;2

if prob < 0.004 then3

prob = 0.001;4

else prob = prob/4;5

else prob = 0.01;6

Alg. 1. Computing probability of
noise generation

In repeated executions of a test, the so far
computed noise tuples are loaded, and the
noise is generated at program locations given
by them with the probability computed from
the number of times the locations have been
executed (the exec value). The computation
is shown in Alg. 1. The base probability is ob-
tained as 1/exec to be higher for plocs that
are executed rarely. The minimal noise prob-
ability accepted by ConTest is 0.001, and so
all lower computed probabilities are set to this value. Higher probabilities are
divided by 4 to keep the noise injection frequency reasonably low (25 % for a ploc
which is executed once during each test). This is motivated by our observation
that higher probability than 25 % degrades test performance and usually does
not provide considerably better results. The limit can be changed if necessary.
If the exec value is not yet available, the probability of 0.01 is used.

4 A Comparison of Noise Injection Techniques

This section presents an experimental evaluation of selected noise injection tech-
niques available in ConTest as well as of the above newly proposed heuristics.
We evaluate these techniques on a set of 5 test cases shown in Table 1 which
gives the number of classes the test cases consist of and the concurrency error
present in them (if there is one). The sunbank test case runs 4 threads repre-
senting bank clients each performing a set of transfers. There is a data race on
a variable containing the total amount of money in the bank. The airlines [7]
test case represents an artificial air ticket reservation system. During each test,
4 threads representing ticket resellers serve requests of 8 client threads. The test
case contains a high-level atomicity violation.

128 B. Křena, Z. Letko, and T. Vojnar

Table 1. Test cases

Test Classes Concur. error

sunbank 2 data race

airlines 8 atom. viol.

crawler 19 data race

ftpserver 120 data race

tidorbj 1399 none

The three other programs in Table 1 are real-
life case studies. The crawler case study [1] is
a skeleton of an older version of a major IBM
software. In this test case, 16 threads simulate
serving of remote requests. A data race can man-
ifest here if a certain very rare timing condi-
tion is met during a shutdown sequence. The
ftpserver case study [7] is an early development
version of an open-source FTP server. The server creates a new thread for each
connection. The code contains several data races, out of which we focus only
on those producing a NullPointerException. Finally, the tidorbj test case is
an open source CORBA-compliant object resource broker [10]. We used the
echo concurrent test case available in the distribution. The test starts 10 clients,
each sending a set of requests to the server. This test case does not contain any
known concurrency error.

During each test run, we measure coverage wrt. a chosen metric—namely,
Avio* [7]. This metric has been chosen due to its very good ratio of providing
good results from the point of view of suitability for saturation-based or search-
based testing and a low overhead of measuring the achieved coverage (and hence
its suitability for performing many tests with minimal interference with tested
programs—still, in the future, more experiments with other metrics could be
done). Note that the Avio* metric that we use for evaluation of the testing is
different than the specialised metric that we have proposed above as a means
for driving the noise injection. In particular, the Avio* coverage metric focuses
on accesses to shared variables and collects triplets consisting of two subsequent
accesses a1, a3 to a shared variable v from a thread and the last access a2 to
v from another thread that interleaved accesses a1 and a3. Besides coverage
information, we monitor execution times and occurrences of the known errors.
Collection of this information of course affects thread scheduling of the monitored
test cases, but the influence is the same for all performed executions. All tests
were executed on multi-core machines running Linux and Java version 1.6.

To recall from Section 2, IBM ConTest provides 5 basic techniques for noise
seeding: yield, sleep, wait, busyWait, and synchYield. In addition, the so-called
mixed technique simply randomly chooses one technique from the others. The
probability of causing a noise at a ploc is driven by the noise frequency (nFreq)
parameter ranging from 0 (no noise) to 1000 (always). We limit this parame-
ter to values 0, 50, 100, 150, and 200. Higher values cause significant perfor-
mance degradation and are therefore not considered. The mentioned basic noise
seeding techniques can be combined in ConTest with two further techniques—
haltOneThread and timeoutTamper. The approach of setting a certain noise fre-
quency to control when some noise is generated can then be combined with
restricting the noise generation to events related to (certain) shared variables
(the sharedVar heuristics). Finally, ConTest provides a so-called random setting
under which it randomly selects and combines its parameters.

Noise Injection Heuristics for Concurrency Testing 129

Table 2. Relative improvement of error detection when using different types of noise

test case nFreq sleep busyWait wait sYield yield mixed average

sunbank 50 1.63 1.32 2.28 0.45 1.60 0.85 1.36

100 3.05 2.48 4.22 0.00 0.38 3.62 2.29

150 4.18 1.68 2.52 0.00 4.85 2.03 2.54

200 3.85 3.12 6.13 0.00 4.47 2.50 3.34

airlines 50 1.13 1.13 0.65 0.67 3.06 0.91 1.26

100 2.44 1.45 1.34 1.88 5.48 1.35 2.32

150 0.21 1.89 1.42 1.83 5.21 0.47 1.84

200 1.90 0.23 0.58 1.93 5.54 1.15 1.89

ftpserver 50 0.36 0.34 0.56 0.94 0.91 0.49 0.60

100 0.21 0.48 0.28 0.90 0.96 0.35 0.53

150 0.36 0.22 0.30 0.98 0.95 0.31 0.52

200 0.20 0.60 0.29 0.99 0.90 0.31 0.55

average 1.63 1.24 1.71 0.88 2.86 1.19 1.59

Each of our 5 test cases was tested with 496 different noise injection configu-
rations. We collected data from 60 executions for each configuration. This way,
we obtained a database of 148,800 results. Then, we computed average cumu-
lated values for sequences of 1, 10, 20, 30, 40, and 50 randomly chosen results
of each configuration (the length of the sequence is denoted as SeqLen below).
These average results represent average values that one obtains when executing
the given configuration SeqLen times.

Due to limited space, only two analyses of the results are presented here:
(1) A comparison of the efficiency of the different noise seeding techniques avail-
able in ConTest together with the influence of the noise frequency on them.
(2) A comparison of the efficiency of the ConTest’s heuristics restricting noise
generation to events related to (certain) shared variables and our newly pro-
posed heuristics for deciding where to generate noise in a testing run. Hence, the
first comparison is mainly about the types of noise seeding and partially about
where the noise is generated in a test execution whereas the second comparison
is mainly about the latter issue.

4.1 A Comparison of ConTest’s Noise Seeding Settings

In this subsection, we focus on the influence of the different noise seeding tech-
niques and the noise frequency on how the testing results are improved in com-
parison to testing without noise injection (but with the collection of data about
the testing enabled, which also influences the scheduling). Since ConTest does
not allow one to use its timeoutTamper and haltOneThread noise seeding tech-
niques without one of its basic noise seeding techniques, we first study the effect
of the basic noise seeding techniques, which are activated via the noiseType
parameter of ConTest. Then we focus on the effect of the timeoutTamper and
haltOneThread seeding techniques.

Table 2 shows the relative improvement of error detection that we observed
when using different basic noise seeding techniques available in ConTest. Both

130 B. Křena, Z. Letko, and T. Vojnar

the haltOneThread and timeoutTamper seeding techniques were disabled, the
random noise injection heuristics was enabled, and SeqLen=50. Additionally, we
also consider the ConTest setting which randomly chooses among basic noise
seeding techniques before each test execution (referred as mixed in the table).
The entries of the table give the ratio of the number of error manifestations
observed when using noise injection of the respective type against the number of
error manifestations without any noise setting enabled. Moreover, average val-
ues are provided for a better comparison. Values lower than 1.00 mean that the
appropriate configuration provided a worse result than without noise. Higher
values mean that noise of the appropriate type provides better results. For in-
stance, 1.25 means that the given type of noise on average detected an error
by 25 % more often. Results for the crawler and tidorbj test cases are omitted
because there were no errors detected by the considered test configurations in
those test cases.

The table illustrates that noise injection affects each test case differently—
sometimes it helps, sometimes not. The use of noise almost always very signif-
icantly helps in the cases of sunbank and airlines, but it does not help in the
case of ftpserver. Also, the different seeding techniques perform differently in the
different test cases, and one cannot claim a clear winner among them (although
yield seems to be often winning). The wait technique helps the most in the sun-
bank test case while yield provides the best improvement in the airlines test
case. In the case of ftpserver, no technique provides improvement. Significant
influence of nFreq is visible in the sunbank test case, but in the ftpserver case,
it seems that nFreq has no influence. The effect of nFreq in airlines has no clear
tendency. Nevertheless, overall, the table demonstrates that choosing a suitable
noise seeding technique can rapidly improve the probability of detecting an error
at least in some cases.

Further, we have also performed experiments on how using the different basic
noise seeding techniques available in ConTest impacts upon coverage obtained
under the Avio* metric. The obtained results can be summarised by saying that
the obtained improvement due to the use of noise injection was smaller in this
case, and the differences among the noise seeding techniques were smaller too.
The best improvement was achieved using the busyWait technique (about 45 %)
in the crawler and ftpserver test cases.

Table 3. Influence of the hal-
tOneThread and timeoutTamper
techniques on error detection

t 0 t 1
test case h 0 h 1 h 0 h 1
sunbank 2.54 0.95 1.93 1.72
airlines 1.84 2.55 1.61 2.29
ftpserver 0.52 0.61 0.34 0.45

Table 3 shows influence of the timeoutTamper
and haltOneThread noise seeding techniques as
well as their combination on error detection (in
the table, t 0/t 1 indicates whether timeoutTam-
per is disabled or enabled, and h 0/h 1 indicates
whether haltOneThread is disabled or enabled,
respectively). As said above, these techniques
cannot be used without any basic noise seed-
ing techniques in ConTest, and therefore aver-
age values computed from results obtained with
different basic noise seeding techniques are reported. Results for nFreq=150 and

Noise Injection Heuristics for Concurrency Testing 131

seqLen=50 are used. Like in Table 2, the ratio of the number of manifested errors
against the number of manifested errors when no noise is used is presented. The
table shows that timeoutTamper and haltOneThread also affect each test case
differently. The haltOneThread technique significantly helps in the airlines test
case, slightly helps in the ftpserver, but it is harmful in the sunbank test case.
The timeoutTamper technique provides worse results in all shown test cases. On
the other hand, in the crawler test case (not shown in the table since no error is
detected in it without noise injection), testing with timeoutTamper enabled and
haltOneThread disabled was the only configuration of ConTest that allowed an
error to manifest (in 7 % of the executions).

Table 4. Influence of the hal-
tOneThread and timeoutTamper
techniques on Avio* coverage

t 0 t 1
test case h 0 h 1 h 0 h 1
sunbank 1.04 1.03 1.04 1.06
airlines 0.85 0.81 0.77 0.86
crawler 1.15 1.30 3.91 3.78
ftpserver 1.04 1.04 1.09 1.07
tidorbj 0.95 0.95 0.95 0.96

Table 4 illustrates the influence of the time-
outTamper and haltOneThread noise seeding
techniques on the coverage obtained under the
Avio* coverage metric. The table clearly shows
that the effect of timeoutTamper is very impor-
tant for the crawler test case. As we have already
said, this test case is a skeleton of one IBM soft-
ware product. When developers extracted the
skeleton, they modeled its environment using
timed routines. The timeoutTamper heuristics
influences these timeouts in a way leading to sig-
nificantly better results. The effects of the con-
sidered techniques in the other examples are then none or very small.

The same trends as described above can also be seen from results of experi-
ments that we have performed with different values of nFreq. Our results indicate
that there is no optimal configuration, and for each test case and each testing
goal, one needs to choose a different testing configuration. For instance, the
best configuration for the crawler test case is a combination of the busyWait
and timeoutTamper noise seeding techniques with nFreq set to 200 if the goal
is to increase the error detection probability. On the other hand, the testing
configuration with yield, timeoutTamper, and nFreq set to 150 provides the best
improvement of the Avio* coverage in this test case. In some cases, using a ran-
dom injection of noise does not provide any improvement as can be seen from
the tidorbj test case. A significant improvement in this case is achieved only
when the noise heuristics discussed in the following section are used.

4.2 A Comparison of Heuristics for Determining Where to
Generate Noise

This subsection concentrates on the influence of the ConTest’s heuristics restrict-
ing noise generation to events related to shared variables and on the influence
of our new heuristics proposed in Section 3. In addition, the scenario in which
ConTest randomly chooses its own parameters is also considered. In particular,
Table 5 compares the mentioned heuristics according to the number of Avio*
covered tasks divided by the time needed to execute the tests. Intuitively, this
relativised comparison favours techniques that provide a high coverage with a low

132 B. Křena, Z. Letko, and T. Vojnar

Table 5. A relativised comparison of heuristics restricting places where to put noise

position configuration airlines crawler ftpserver sunbank tidorbj average

1 0 1 1 1-0-one 0-0 7.0 2.7 9.2 4.8 7.7 6.3

2 0 1 0 1-0-one 0-0 5.0 2.7 11.5 4.5 8.8 6.5

3 0 0 0 0-0-all 1-0 2.6 17.7 2.5 7.6 2.3 6.6

4 1 0 0 0-0-all 0-0 10.3 3.2 10.3 5.3 5.0 6.8

5 0 1 0 1-1-one 0-0 11.8 5.0 11.8 4.0 8.7 8.3

6 0 1 1 1-1-one 0-0 9.5 7.5 15.7 3.5 7.2 8.7

7 0 0 1 1-0-one 0-0 5.2 18.0 3.0 9.7 9.3 9.0

8 0 0 0 1-0-one 0-0 6.3 17.8 2.8 10.0 8.7 9.1

9 0 0 0 1-1-one 0-0 8.7 15.8 10.8 7.8 7.0 10.0

10 0 0 1 1-1-one 0-0 10.8 14.5 9.5 10.5 7.5 10.6

11 0 0 0 0-0-all 0-0 5.0 19.2 11.0 12.0 10.5 11.5

12 0 0 0 0-0-all 1-1 3.7 23.0 19.0 6.7 13.0 13.1

13 0 1 0 1-0-all 0-0 14.7 5.5 19.0 15.3 14.7 13.8

14 0 1 0 0-0-all 0-0 17.2 7.5 17.0 12.3 16.0 14.0

15 0 1 0 1-1-all 0-0 17.3 6.8 18.2 11.0 17.2 14.1

16 0 1 1 1-0-all 0-0 17.8 6.5 13.7 17.3 15.5 14.2

17 0 1 1 1-1-all 0-0 14.3 9.3 16.0 16.8 14.7 14.2

18 0 0 1 1-0-all 0-0 13.0 14.3 9.5 19.8 16.7 14.7

19 0 0 0 1-1-all 0-0 14.0 16.8 14.3 16.0 13.7 15.0

20 0 1 1 0-0-all 0-0 16.2 10.3 17.8 14.8 16.5 15.1

21 0 0 1 1-1-all 0-0 15.3 16.0 9.7 19.8 15.2 15.2

22 0 0 0 1-0-all 0-0 18.2 17.3 11.8 16.3 17.3 16.2

23 0 0 1 0-0-all 0-0 19.2 18.5 9.8 19.3 18.0 17.0

overhead, and therefore punishes techniques that either put too much noise into
test executions or provide a poor coverage only. Based on our experiments, we
have also compared the heuristics according to the number of Avio* covered
coverage tasks only (thus providing a non-relativised comparison) as well as
according to how often an error is manifested (either taking into account the
needed testing time or not). Due to space restrictions, we do not present these
latter comparisons in detailed tables here, but we summarize them in the text.

The configuration column of Table 5 describes the considered noise injection
configuration. A configuration consists of five parts delimited by the “ ” charac-
ter. The meaning of these parts is as follows: (Part 1) The ConTest random pa-
rameter: if set to 1, ConTest parameters considered in Parts 2–4 are set randomly
before each execution. (Part 2) If set to 1, the timeoutTamper heuristics is enabled.
(Part 3) If set to 1, the haltOneThread heuristics is enabled. (Part 4) This part is
divided into three sub-parts delimited by “-”. The first sub-part indicates whether
the ConTest’s heuristics limiting noise generation to events related to shared vari-
ables is enabled. The second sub-part says whether the noise is also put to other
plocs than accesses to shared variables. Finally, the third sub-part says whether
the noise is put to all shared variables or one randomly chosen before each execu-
tion. (Part 5) This last part encodes the setting of our noise injection heuristics.
It consists of two sub-parts delimited by “-”. The first sub-part says whether our

Noise Injection Heuristics for Concurrency Testing 133

noise injection heuristics is enabled and the second one whether our noise strength
computation is enabled too. For further information concerning ConTest config-
uration, we refer the reader to Section 2 or ConTest documentation [9].

For each considered test case (i.e., airlines, crawler, etc.), we rank the test
configurations according to the obtained results—rank 1 is the best, rank 23 is
the worst. More precisely, the entries of the table under the particular test cases
contain average ranks obtained across the different basic noise types of ConTest.
The average rank over all the test cases is provided in the last column. The test
configurations are then sorted according to their average rank, giving us their
final position in the evaluation of the 23 configurations. We use the final position
to identify the configurations in the following text.

As before, the table shows that the efficiency of the different heuristics vary
for different test cases. Our heuristics (at position 3) achieved the best results in
three out of five test cases (airlines, ftpserver, and tidorbj). The heuristics was
not evaluated as the overall winner due to the poor results that it achieved in the
crawler test case. On the other hand, our heuristics was evaluated as the best
for crawler when considering the probability of error detection. In fact, there
were only three configurations (3, 16, and 18) which were able to detect the very
rarely manifesting error in the crawler test case. Our heuristics increased the
probability of spotting the error the most and achieved the best result in both
relativised and non-relativised comparisons. In the other considered test cases,
our heuristics was always in the first third of the average results when considering
the relativised probability of error detection. As for results of our heuristics in
the non-relativised cases of both the Avio* coverage and the probability of error
detection, our heuristics achieved worse results (still mostly being in the first
half of all the configurations). Hence, based on the results, we can claim that
our new heuristics seems to be a good choice when one needs to test bigger
programs, especially when having a limited time for testing.

The use of our noise injection heuristics combined with the newly proposed
noise strength computation ended at position 12 in Table 5. The results achieved
in the various test cases differ more significantly for this configuration than when
using the new noise injection heuristics only. Relatively good results were obtained
for the sunbank and airlines test cases, bad results for the other test cases. Simi-
lar results were obtained for the relativised Avio* coverage. This is caused by the
newly proposed noise strength computation that sometimes puts a considerable
amount of noise to places where it might be interesting. This leads to poor results
in relativised comparisons where the time plays an important role. On the other
hand, the use of our noise injection heuristics combined with the newly proposed
noise strength computation provided better results than using our noise injection
heuristics only in the non-relativised comparisons because it was able to examine
more different interleavings. It was even evaluated as the best for the tidorbj test
case in the non-relativised comparison using the Avio* coverage. To sum up, we
may advice to use the combination of both of the newly proposed heuristics to test
bigger programs when performance degradation is not a problem.

Table 5 also clearly shows effectiveness of the ConTest’s shared variable heuris-
tics focused on a single randomly chosen shared variable. Configurations based

134 B. Křena, Z. Letko, and T. Vojnar

on this heuristics occupy eight from the ten first positions in the table and pro-
vide good results also in other considered comparisons. The overall best results
were obtained by the combination of this heuristics with the timeoutTamper and
haltOneThread noise heuristics (position 1), which is again mainly due to the
effect of the timeoutTamper heuristics in the crawler test case. Hence, our re-
sults prove conclusions presented in [1] that focusing noise on a single variable
randomly chosen for each test execution improves the overall test coverage.

Our results then also show that some heuristics trying to restrict the posi-
tion where to put noise in an intelligent way provide worse results than the
configuration with generating noise at random places in test executions (posi-
tion 11). Finally, we have to admit that surprisingly good results were often
provided by the random setting of ConTest too (position 4). This approach pro-
vided good results especially in the relativised comparisons and the best result
for the airlines test case and the criterion of maximizing the probability of error
manifestation. Results of this configuration were of course considerably worse for
the non-relativised comparison where the execution time is not considered. We
suggest to use this configuration when the execution time is important, and one
has no idea how the test case is affected by different noise injection techniques.

Results presented in Table 5 were computed for seqLen=20 and nFreq=150.
We also examined the influence of changing these paramaters. Our results show
that seqLen has a minimal impact on the results. Configurations that were eval-
uated as good after 10 executions of the test were very similarly rated after 50
executions. The nFreq parameter which controls how often the noise is caused
influenced our results more. Differences were usually up to two positions with
three exceptions. Those exceptions represent the ConTest random setting and
both versions of our heuristics which in fact do not use the nFreq parameter.
All three configurations obtain a better ranking when noiseFreq=50 and non-
relativised results are considered. As for relativised results, the ConTest random
setting obtained the best overall ranking in both considered evaluation schemes.
Our noise injection heuristics used without the newly proposed noise strength
computation remained among the best three configurations, still beating the
ConTest random configuration in some test results. The combined use of both
newly proposed heuristics lost when considering the Avio* coverage, but re-
mained well-ranked when considering the error detection probability. Therefore,
we suggest to use the ConTest random setting or our noise injection heuris-
tics without the newly proposed noise strength computation in cases when the
amount of noise needs to be very low.

5 Conclusions

We have provided a comparison of multiple noise injection heuristics that was
missing in the current literature. We have also proposed a new, original noise
injection heuristics, winning over the existing ones in some cases. We show that
there is no silver bullet among the existing noise injection heuristics although
some of them are on average winning in certain testing scenarios. Based on
our experiences, we have given several suggestions on how to test concurrent

Noise Injection Heuristics for Concurrency Testing 135

programs using the noise injection approach. Our future work includes further
improvements of our heuristics, a further investigation of the influence of noise
on different programs, and an evaluation of some heuristics [4,6] not yet imple-
mented and tested in our framework. The obtained results are also important
for our current work which applies search techniques for automatic identification
of a suitable configuration (or configurations) for specific test cases [7,8].

Acknowledgement. This work was supported by the Czech Science Foun-
dation (projects no. P103/10/0306 and 102/09/H042), the Czech Ministry of
Education (projects COST OC10009 and MSM 0021630528), the EU/Czech
IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070, and the
internal BUT project FIT-11-1.

References

1. Ben-Asher, Y., Farchi, E., Eytani, Y.: Heuristics for Finding Concurrent Bugs. In:
Proc. of IPDPS 2003. IEEE CS (2003)

2. Bron, A., Farchi, E., Magid, Y., Nir, Y., Ur, S.: Applications of Synchronization
Coverage. In: Proc. of PPoPP 2005. ACM (2005)

3. Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., Ur, S.: Multithreaded Java Program
Test Generation. IBM Systems Journal 41, 111–125 (2002)

4. Eytani, Y.: Concurrent Java Test Generation as a Search Problem. ENTCS 144
(2006)

5. Eytani, Y., Latvala, T.: Explaining Intermittent Concurrent Bugs by Minimizing
Scheduling Noise. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383,
pp. 183–197. Springer, Heidelberg (2007)

6. Farchi, E., Nir, Y., Ur, S.: Concurrent Bug Patterns and How To Test Them. In:
Proc. of IPDPS 2003. IEEE CS (2003)

7. Křena, B., Letko, Z., Vojnar, T.: Coverage Metrics for Saturation-based and
Search-based Testing of Concurrent Software. To appear in Proc. of RV (2011),
http://www.fit.vutbr.cz/~iletko/pub/rv11paper.pdf

8. Křena, B., Letko, Z., Vojnar, T., Ur, S.: A Platform for Search-based Testing of
Concurrent Software. In: Proc. of PADTAD 2010. ACM (2010)

9. Nir-Buchbinder, Y., Farchi, E., Tzoref-Brill, R., Ur, S.: IBM Contest Documenta-
tion (May 2005), http://www.alphaworks.ibm.com/tech/contest

10. Soriano, J., Jimenez, M., Cantera, J.M., Hierro, J.J.: Delivering Mobile Enterprise
Services on Morfeo’s MC Open Source Platform. In: Proc. of MDM 2006. IEEE CS
(2006)

11. Stoller, S.D.: Testing Concurrent Java Programs Using Randomized Scheduling.
In: Proc. of RV 2002. ENTCS, vol. 70(4). Elsevier (2002)

12. Šimša, J., Bryant, R., Gibson, G.: DBug: Systematic Testing of Unmodified Dis-
tributed and Multi-threaded Systems. In: Groce, A., Musuvathi, M. (eds.) SPIN
Workshops 2011. LNCS, vol. 6823, pp. 188–193. Springer, Heidelberg (2011)

13. Trainin, E., Nir-Buchbinder, Y., Tzoref-Brill, R., Zlotnick, A., Ur, S., Farchi, E.:
Forcing Small Models of Conditions on Program Interleaving for Detection of Con-
current Bugs. In: Proc. of PADTAD 2009. ACM (2009)

14. Yang, C.-S.D., Souter, A.L., Pollock, L.L.: All-DU-Path Coverage for Parallel
Programs. In: Proc. of ISSTA 1998. ACM (1998)

http://www.fit.vutbr.cz/~iletko/pub/rv11paper.pdf
http://www.alphaworks.ibm.com/tech/contest

Low GPU Occupancy Approach

to Fast Arithmetic Coding in JPEG2000

Jǐŕı Matela1,3, Martin Šrom3, and Petr Holub2,3

1 Faculty of Informatics
2 Institute of Computer Science,

Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
3 CESNET z.s.p.o., Zikova 4, 162 00 Prague, Czech Republic

{matela,hopet}@ics.muni.cz, 208213@mail.muni.cz

Abstract. Arithmetic coding, and especially adaptive MQ-Coding of
JPEG2000, is a serial process, which does not match specifics of GPUs as
massively parallel processors well. In this paper we study and
evaluate several approaches to acceleration of the MQ-Coding using com-
modity GPU hardware, including our proposal of a new enhanced renor-
malization procedure. We conclude with a “low occupancy approach”
and 5.6–16× average speedup when compared to the state of the art
multi-threaded CPU implementations.

1 Introduction

Besides the compression performance superior to the JPEG standard, the
JPEG2000 [1,2] provides a number advanced features (e.g. multiple resolution
support, progressive format, optional lossless compression, or region of interests
coding) at cost of much higher computational demands. Figure 1 presents a sim-
plified block diagram of the JPEG2000 compression system. Input image data
consists of one or more color components, which can be optionally transformed
into a different target color space. Prior to actual compression, the image data
is transformed using the discrete wavelet transform (DWT) [3] and optionally
quantized [4] to reduce volume of the data to be compressed. The actual com-
pression is performed by the Embedded Block Coding with Optimal Truncation
(EBCOT) [5] consisting of two tiers: Tier-1 of the algorithm is context-based
adaptive binary arithmetic coder, while Tier-2 serves for the purposes of data
formation and rate allocation of the resulting stream.

The input to the EBCOT is partitioned into so called code-blocks. Each code-
block is independently processed by context-modeling and arithmetic MQ-Coder
modules in Tier-1 [6]. The context modeller analyzes bit structure of a code-block
and collects contextual information (CX) that is passed together with bit values
(D) to the arithmetic coding module for binary compression. The EBCOT Tier-1
is known to be computationally very intensive—most of JPEG2000 processing
time is spent in Tier-1 [7,8].

Attracted by their raw computing power and affordability, a number of general-
purpose computing approaches on commodity GPUs has been implemented.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 136–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Low GPU Occupancy Approach to Fast Arithmetic Coding in JPEG2000 137

Source
image

Color
transforms

DWT and
quantiza-

tion

Context
modeling

Arithmetic
coding

E
B
C

O
T

T
ie

r-
1

Output
stream

formating E
B
C

O
T

T
ie

r-
2

Output
JPEG2000

Fig. 1. JPEG2000 compression chain diagram

We have opted for CUDA [9] because of its flexibility and ability to utilize maxi-
mum performance of GPUs in real applications. GPU architectures are designed
to run thousands of threads in parallel. In CUDA, the threads are grouped into so
called thread blocks and warps, where the threads can cooperate using synchro-
nization primitives, shared memory (fast, visible within a thread block only), and
global memory (slower, visible to all threads). Fastest memory for each thread is
registers, but their number is limited—if compound amount of registers requested
on a multiprocessor is exceeded, the data is spilled to a slow local memory by the
CUDA compiler. Threads within the same warp should follow the same execution
path; otherwise thread divergence is introduced and divergent execution paths are
serialized (SIMT). These architecture specifics of GPUs call for algorithms that
allow for fine-grained parallelization with minimum instruction divergence and
good use of the memory hierarchy. High-enough ratio of arithmetic operations to
memory accesses is needed in order to mask memory latency.

Related Work. Acceleration of the compression steps up to the context modeling
for GPU has been studied by several groups [10,11,12], but an efficient imple-
mentation of the MQ-Coding is still an open question. When accelerating the
EBCOT Tier-1 as whole using GPUs, it should be noted that co-design of the
context modeling on a GPU and the MQ-Coding on a CPU is not appropriate
since the amount of data between these two steps increases multiple times and
data transfer over buses would become a bottleneck.

A natural approach to the parallel MQ-Coder is on code-block level, utilized
by CUJ2K [12]. Limited work has been done on general parallelization of the
coder [13], while most of the work focuses on VLSI architectures [14,15,16].

A recent study by Le et al. [10] also focused on the GPU acceleration of the
JPEG2000 EBCOT processing. Their context modeller uses parallelization prin-
ciples published by us previously [11]. Authors state their novel contribution is
a fully parallel design of the arithmetic coder, which is, however, incompatible
with the JPEG2000 MQ-Coder. Discussion of their results also shows that the
introduced parallelism of the arithmetic coder doesn’t bring any significant im-
provement for GPUs. Le et al. claim their approach is about 2× faster than our
previous results, which is incorrect for two reasons: (i) our previously published

138 J. Matela, M. Šrom, and P. Holub

results did not use accelerated arithmetic coder, and (ii) they are comparing their
implementation on NVIDIA GTX 480 card based on new Fermi [17] architecture,
while our previous results were measured using pre-Fermi GTX 285 GPU. The
improvements achieved by our standard-compliant MQ-Coder together with the
bit plane coder both optimized for Fermi architecture are given in this paper for
the first time.

In this paper, we have achieved the following novel steps toward the efficient
MQ-Coding on GPU: a) we have provided an improved enhanced renormal-
ization in the MQ-Coder process, that eliminates problems of previous known
designs, b) surveyed and analyzed state of the art parallelization techniques from
the perspective of GPU architectures; c) studied optimum occupancy from per-
formance perspective; d) evaluated performance of accelerated EBCOT Tier-1
compression on real-world systems.

2 Arithmetic Coding in JPEG2000

JPEG2000 standard uses MQ-Coding [18,19], which is a variant of an arithmetic
Q-Coder. The Q-Coder works with a notion of a more probable symbol (MPS)
and a less probable symbol (LPS)—the prevailing value (0 or 1) is mapped to
the MPS while the other value becomes the LPS. The coding process results in
a number C and uses an interval A which is split into two sub-intervals [0, AQ)
and [AQ, A], where Q is the probability of MPS occurrence. For each bit on
input, the coding will proceed as follows:

MPS A = A(1 − Q) C = C + AQ
LPS A = AQ C = C

In order to minimize the number of multiplications, which are more complex
than summations, the A interval is kept close to A ≈ 1 and the multiplications
may be replaced by A(1 − Q) ≈ A − Q and AQ ≈ Q. More precisely A is kept
in interval [0.75, 1.5] using so called renormalization process: both A and C are
multiplied by 2 until A ≥ 0.75 (see Figure 3).

MQ-Coder is an adaptive variant of Q-Coder, where the meaning of the MPS
and the LPS adapts during the coding process to obtain better results. Each
input symbol D ∈ {0, 1} is assigned a context value CX , which determines
mapping of the MPS and the LPS, an estimate of LPS probability, and other
coder state information. Thus all the D symbols with the same CX share some
coder state.

Implementation of the MQ-Coder requires two 32-bit registers for A and C
and a lookup table. Structure of C register is as follows:

0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx

where b represents output bits for ByteOut procedure (for meaning of the other
bits, see [18, p. 187]). During the computation, an index I(CX) into the lookup
table is maintained for each context; starting with initial values according to

Low GPU Occupancy Approach to Fast Arithmetic Coding in JPEG2000 139

A = A − Qe;
if A < 0x8000

if A < Qe
A = Qe;

else
C = C + Qe;

I(CX) = NMPS;
RENORMALIZE;

else
C = C + Qe;

A = A − Qe;
if A < Qe

C = C + Qe;
else

A = Qe;
I(CX) = NLPS;
RENORMALIZE;

Fig. 2. MQ-Coder MPS coding (a–left) and LPS coding (b–right) procedures

JPEG2000 specification, it evolves according to the symbols read and records in
the lookup table. The lookup table contains 46 rows with the following columns:
I(CX) – index value, Qe – LPS probability estimate; NMPS/NLPS – next index
under MPS/LPS; SWITCH – MPS/LPS swap indicator. The renormalization
occurs when A < 0x8000. The MQ-Coder MPS and LPS coding procedures are
depicted in Figure 2.

The MQ-coder is highly sequential: modifications of the A and C registers
depend on previously coded symbols due to the evolving state guided by the
lookup table. Parallelism is only allowed on the level of code blocks, which is too
coarse for GPUs—smaller latency-sensitive images (e.g., real-time 720p video
encoding) do not have enough code blocks; even for larger images, there is still a
problem with large amount of resources required by a single parallel process. Be-
yond the default mode, there are optional modes in the JPEG2000 standard [1,
Chapter 12]: combination of RESET, RESTART and CAUSAL enables parallel
coding passes at cost of slightly lower coding efficiency. But these modes are op-
tional and forbidden by some important standards based on the JPEG2000, e.g.,
Digital Cinema Initiative (DCI) [20] which is widely used for video distribution
in digital cinematography.

3 Accelerating MQ-Coder Using GPU

Basic binary arithmetic coding algorithms can be parallelized using parallel pre-
fix sum suitable for GPU platforms [21]. Context-based nature of MQ-Coder,
however, inhibits application of this method to a great extent.

When accelerating MQ-Coder using modern GPUs we have to deal with coarse
data granularity and data-dependant conditional branches which are the proper-
ties of the algorithm restricting utilisation of GPU processing power.

Coarse Data Granularity. The smallest independent data block is a code-
block (possibly slightly refined by RESET+RESTART+CAUSAL). Such a data
block cannot be normally processed internally in parallel, thus each thread has
to process its own data block. Small number of data blocks may produce not
enough working warps to mask global memory or instruction pipeline latency.
There are also consequences for large amount of local data and global memory

140 J. Matela, M. Šrom, and P. Holub

access pattern compared to a whole thread block processing a common shared
data block.

Data-Dependant Conditional Branches. Because the MQ-Coder algorithm
contains conditional branches, threads in a warp are taking divergent execution
paths. In the SIMT model, width of an issued instruction is then dynamically
narrowed and performance is wasted.

3.1 MQ-Coder Concurrency and Speedup Techniques

As a basis for our GPU MQ-Coder we have chosen an open source CPU im-
plementation of MQ-Coder from OpenJPEG library. Except for several minor
changes the code was copied as is, so that we could compare performance of
the same code on CPUs and GPUs. Because of the coarse data granularity, the
GPU code was executed with each of 64 threads in a thread block processing a
single code-block. This basic GPU MQ-Coder was 7× faster than OpenJPEG
on the CPU and 1.9× faster than highly optimized proprietary Kakadu CPU
implementation. Results discussed throughout this section are also summarized
in Figure 4.

Transition to Registers. Local data structures and arrays are likely to be
placed not in the registers but in slower local memory [9, Chap. 5.3.2.2]. Despite
the local memory is cached in an L1 cache, the registers are still much faster. The
basic MQ-Coder implementation stores A, C, and CT symbols in a structure
placed into local memory. We have modified the code to use registers where
possible. Results were 2.4× and almost 17× faster than basic GPU and CPU
codes respectively.

Enhanced Renormalization. The original MQ-Coder algorithm checks A and
starts renormalization (Figure 3a) whenever its value drops under 0x8000 thresh-
old. The renormalization process then NS -times cyclically doubles value of A
and C registers till A > 0x8000. Enhanced renormalization described by Min et
al. [13] omits the cyclical doubling by precomputing the NS using static lookup
table with registers A and C being shifted by this number in single pass. There
are, however, two issues with that algorithm: (a) it introduces overhead of the
lookup table and (b) it does not handle overflows correctly in all cases.

Instead of the lookup table, we propose using Count Leading Zeros (CLZ)
instruction, which is common on CPUs as well as GPUs and returns the number
of consecutive zero bits starting at the most significant bit. Based on our exper-
iments, this is as fast as the lookup table approach both on GPUs and CPUs
and avoids the storage overhead of the lookup table.

Regarding the second problem, compressed data is sent to output every time
the value of counter CT drops to zero during the renormalization process. The
CT counts how many ByteOut bit positions are left in the C register. The algo-
rithm proposed in [13] compares number of shift steps NS and number of Byte-
Out positions left CT and splits the renormalization procedure into two steps
whenever NS > CT [13, Fig. 6]. The algorithm is correct except for occasions

Low GPU Occupancy Approach to Fast Arithmetic Coding in JPEG2000 141

while (A < 0x8000) {
A = A << 1;
C = C << 1;
CT = CT − 1;
if (CT == 0)

ByteOut();
}

A = A << NS;
if (CT > NS) {

C = C << NS; CT = CT − NS;
} else {

C = C << CT; NS = NS − CT;
ByteOut();
if (CT > NS) {

C = C << NS; CT = CT − NS;
} else {

C = C << CT; NS = NS − CT;
ByteOut();
CT = CT − NS; C = C << NS;

}
}

Fig. 3. Original (a–left) and revised enhanced (b–right) renormalization

when NS − CT > 8. We have therefore proposed revised enhanced renormaliza-
tion (Figure 3b) which is as fast as [13], functionally equivalent to JPEG2000
original and about 39% faster than original when implemented on a GPU.

Loop Unrolling. Loop unrolling was proposed in [14,22], suggesting to process
several consecutive MPS symbols at once, iff renormalization does not take its
place during the coding and all the consecutive MPS symbols have been assigned
same context CX . Under this condition new values of the registers A and C can
be computed according to equations A = A − n × Qe and C = C + n × Qe,
where n is number of consecutive symbols having the same CX . Such equations
are enumerated using a single MAD instruction on a GPU. We evaluated that
for our image data set, 17%–25% of all CX ,D pairs was grouped into sequences
of MPS with same CX value. We considered sequences of length from 2 to 32.

To detect the sequences and find out their length during the coding, we have
implemented a parallel lookup algorithm, checking for potential sequence when
a MPS is detected on the input. The CUDA kernel was launched in such a
configuration that each group of 4 threads was concurrently processing a single
code-block. We have chosen 4 threads because vast majority of the sequences was
not longer than 4. Our measurements demonstrate average 31% slowdown due to
overhead of the parallel lookup routine and mainly due to fact that majority of
CX ,D pairs is coded sequentially, which means that the majority of the threads
intended to process particular code-block is idling most of the time.

Prefix Sum. The prefix sum technique enhances previously described loop un-
rolling by considering all sequences of MPS regardless value of their contexts
CX . In this case the portion of MPS sequences rises to 35%–50%. Because differ-
ent contexts have different probability estimate Qe, values of A and C registers
cannot be updated by the single MAD instruction. Qe values have to be summed
up to form Qetotal =

∑n−1
i=0 Qei which is in turn used to update the registers

A = A − Qetotal and C = C + Qetotal. Similarly to [21], the value of the aggre-
gated probability estimate can be concurrently computed using parallel prefix
sum algorithm. Similarly to the loop unrolling, this technique resulted in 24%

142 J. Matela, M. Šrom, and P. Holub

slowdown on average due to its complexity, overhead of sequence lookup routine
and the fact, that most of the threads were idling on solitary symbols.

Chunk Data Loading. Because of coarse data granularity, every thread pro-
cesses different data locations which also means that threads do not follow coa-
lesced global memory access pattern. Data loading could be sped up if a single
thread issues more data fetches or if it uses bit-level parallelism through wider
fetches [23]. We have opted for 64-bit fetches through data type double and every
thread performed 16 such loads in each step of a computation. This resulted in
33% speedup on average.

3.2 Low GPU Occupancy Approach

In order to find optimum configuration of the computation, we have analyzed its
performance dependence on occupancy of the GPU. CUDA occupancy is defined
as a ratio of a number of resident warps to the maximum number of resident
warps supported by a multiprocessor [9]. A common optimization is to increase
occupancy in order to hide latency of global memory access (GMA) and instruc-
tion pipeline latency (IP). Since occupancy is determined by amount of shared
memory and registers used, a typical endeavour is to reduce resources consump-
tion just to increase occupancy which could yield speed up. Higher occupancy,
nevertheless, helps to hide GMA latency only for memory-bound kernels—i.e.,
when throughput of global memory causes performance bottleneck—and IP la-
tency is typically hidden at occupancy counting about 22 or 6 warps per multi-
processor on Fermi and pre-Fermi platforms respectively [9]. On the other hand,
lower occupancy allows for more registers and more cache per a single thread.
Availability of more registers may be advantageous for computations with many
variables of simple local data types. Larger amount of data cache may be helpful
when more complex local data structures are placed to the local memory. Oc-
cupancy could be further reduced through instruction level parallelism when a
batch of independent arithmetic or data loading instructions is issued [23].

For our GPU accelerated MQ-Coder implementation, the best results have
been achieved at 33% occupancy (Figure 4). When compared to 100% occu-
pancy, a 1080p image was processed 1ms/13% faster and a 4K image 9 ms/45%
faster. Because our code does not feature sufficient portion of instruction level
parallelism, the performance drops significantly at lower occupancies.

3.3 Experimental Results and Discussion

All results throughout this paper have been measured on a personal computer
sporting Core i7 @3GHz, 6GB RAM, NVIDIA GTX 580, Linux operating system,
GCC 4.4.3 and CUDA 4.0. As input data we have used the The New Test Images
set1 of 8 bit RGB images in 1920×1080 (1080p, full HD) resolution. To measure
performance with respect to the resolution of an input image, we have used
an image of nature2 in 720p (1280×720), 1080p (1920×1080), 4K (4096×2160)
1 http://www.imagecompression.info/test_images/
2 http://adventuretykes.com/wp-content/uploads/2010/11/MG_0079.jpg

http://www.imagecompression.info/test_images/
http://adventuretykes.com/wp-content/uploads/2010/11/MG_0079.jpg

Low GPU Occupancy Approach to Fast Arithmetic Coding in JPEG2000 143

Table 1. (a) Performance of CPU and GPU implementations of the MQ-Coder and (b)
overall JPEG2000 and EBCOT Tier-1 performance. n t describes number of threads
used by the multi-threaded CPU implementation. CUJ2K performance in (a) is only
estimated based on average ratio 0.34 of MQ-Coder in Tier-1 in other implementations.

(a) 720p 1080p 4K

OpenJPEG 1.4 157 ms 316 ms 1081 ms
Jasper 1.900.1 89ms 178 ms 594 ms
Kakadu 6.4 (4 t) 41ms 84 ms 284 ms
CUJ2K 1.1 ≈25ms ≈49 ms ≈166 ms
CUDA GPU 7.3 ms 8.1ms 17.6 ms

(b) 1080p Total Tier-1

OpenJPEG 1.4 1204 ms 958 ms
Jasper 1.900.1 1179 ms 883 ms
Kakadu 6.4 (4 t) 218 ms 182 ms
CUJ2K 1.1 (GPU) 280 ms 143 ms
CUDA GPU N/A 14.1 ms

resolutions. All the measured JPEG2000 implementations have been set to loss-
less mode with code-block 32 × 32px, and 5 level DWT. CUDA kernels have
been executed at 33% occupancy with 64 threads per a thread-block, without
any shared memory used, and with preference for L1 caching.

Part (a) of Table 1 compares MQ-Coder performance of several CPU and
GPU implementations, both open-source and commercial. Data is provided for
images of 720p, 1080p, and 4K resolutions. Data for the MQ-Coder in CUJ2K
implementations are only estimates based on average ratio 0.34 of MQ-Coder
in Tier-1 in other implementations. The results show that the performance of
our MQ-Coder implementation scales with amount of data processed. The 720p
image is coded only 0.8ms faster than image in 1080p which has about twice as
much resolution and the 4K image is coded about 2× faster but it has 4× more
pixels than the 1080p image. When compared to the CUJ2K our implementation
is 3.4× to 9.4× faster and it is 5.6× to 61× faster than the CPU implementations.

Part (b) presents total and Tier-1 compression times of the individual codes
on 1080p image data. The total time is provided to give an idea of what fraction
of the total time Tier-1 consumes. It also shows that our entire GPU EBCOT
Tier-1 implementation is 68× faster than OpenJPEG, 63× faster than reference
JasPer, 13× faster than commercial multi-threaded Kakadu, and about 10×
faster than another GPU implementation CUJ2K on 1080p image. The result of
14.1ms also allows real-time compression requirements of full HD (1080p) video
data. We did not include results presented in [10] because of its incompatibility
with JPEG2000 standard. To give approximate comparison, noting [10] used
3.3× more data (5 MP, CMYK) and ≈15% slower GPU using the same Fermi
architecture, their results are equivalent to 71ms for Tier-1, which is 5× slower
compared to our results.

Figure 4 summarizes performance impact of the algorithm and GPU-related
optimizations described in the Sections 3.1 and 3.2. The table contains execution
times in milliseconds for each optimization and resolution in the left column
and speedups relative to the basic GPU implementation in the right column.
All the optimizations are implemented in registers, since the register optimiza-
tion improved performance of all the optimizations. As noted in Section 3.1,
loop unrolling and prefix sum techniques slowed down the basic register

144 J. Matela, M. Šrom, and P. Holub

720p 1080p 4K

GPU Basic 38.0 ms – 45.0 ms – 92.9 ms –
GPU R 16.2 ms 2.3× 18.9 ms 2.4× 48.5 ms 1.9×
GPU
R+ERN

11.9 ms 3.2× 14.9 ms 3.0× 44.9 ms 2.1×

GPU R+LU 18.1 ms 2.1× 31.2 ms 1.4× 87.1 ms 1.1×
GPU R+PS 20.9 ms 1.8× 25.7 ms 1.8× 64.6 ms 1.4×
GPU R+CL 12.1 ms 3.1× 13.2 ms 3.4× 27.7 ms 3.4×
GPU
R+ERN+CL

7.3 ms 5.2× 8.1 ms 5.6× 17.6 ms 5.3×
0 20 40 60 80 100

0.5

0.6

0.7

0.8

0.9

1

Occupancy [%]

R
el

a
ti

v
e

p
er

fo
rm

a
n
ce

720p
1080p

4K

Fig. 4. Performance impact of individual optimizations (left) and occupancy–
performance relation (right). R – implementation in registers; ERN – revised enhanced
renormalization; LU – loop unrolling; PS – prefix sum; CL – chunk loading.

implementation. The resulting implementation therefore combines the use of
registers, revised enhanced renormalization, and chunk loading optimizations.

4 Conclusion and Future Work

In this paper, we have studied various approaches to implementing and optimiz-
ing the arithmetic MQ-Coder for GPU platforms. We have proposed a novel en-
hanced normalization process compliant with the JPEG2000 standard. Together
with implementing the computations in the registers and with the specific chunk
loading strategy, these turned out to be effective optimizations, while the loop
unrolling and the prefix sums lead to deterioration of the performance. We have
also investigated dependency of the GPU occupancy on the performance and
figured out that the optimum performance is achieved with as low occupancy
as 33% because of the amount of resources required by each parallel process.
The experimental results show 5.6–16× and 3–9× performance increase over the
current multi-threaded CPU implementations and GPU implementations of MQ-
coder respectively, and 13–68× and 10× increase for entire EBCOT Tier-1 over
existing CPU and GPU implementations respectively. The results indicate that
the presented GPU design will allow for the real-time JPEG2000 compression of
1080p video and in a multi GPU configurations it will allow even real-time 4K
video compression. The process of resource utilization optimization stressed the
importance of further research into automation of performance tuning.

Acknowledgments. This project has been supported by the grants LM2010005
and GD102/09/H042 and MSM0021622419 research intent.

References

1. Taubman, D.S., Marcellin, M.W.: JPEG2000: Image Compression Fundamentals,
Standards, and Practice. Springer, Heidelberg (2002)

2. ISO/IEC 15444-1: JPEG2000 image coding system—part 1: Core coding system
(2004)

Low GPU Occupancy Approach to Fast Arithmetic Coding in JPEG2000 145

3. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J.
Fourier Anal. Appl. 4, 247–269 (1998)

4. Marcellin, M.W., Lepley, M.A., Bilgin, A., Flohr, T.J., Chinen, T.T., Kasner, J.H.:
An overview of quantization in JPEG2000. Signal Processing: Image Communica-
tion 17(1), 73–84 (2002)

5. Taubman, D.: High performance scalable image compression with EBCOT. IEEE
Trans. Image Process. 9(7), 1158–1170 (2000)

6. Rabbani, M., Joshi, R.: An overview of the JPEG2000 still image compression
standard. Signal Processing: Image Communication 17(1), 3–48 (2002)

7. Lian, C.J., Chen, K.F., Chen, H.H., Chen, L.G.: Analysis and architecture design
of block-coding engine for EBCOT in JPEG2000. IEEE Trans. Circuits Syst. Video
Technol. 13(3), 219–230 (2003)

8. Matela, J., Rusňák, V., Holub, P.: GPU-based sample-parallel context modeling for
EBCOT in JPEG2000. In: MEMICS 2010 – Selected Papers. OpenAccess Series in
Informatics (OASIcs), vol. 16, pp. 77–84. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl (2011)

9. NVIDIA: NVIDIA CUDA C Programming Guide 4.0. NVIDIA (2011)
10. Le, R., Bahar, I.R., Mundy, J.L.: A novel parallel Tier-1 coder for JPEG2000 using

GPUs. In: IEEE SASP 2011, pp. 129–136 (2011)
11. Matela, J., Rusňák, V., Holub, P.: Efficient JPEG2000 EBCOT Context Modeling

for Massively Parallel Architectures. In: Data Compression Conference (DCC 2011),
Snowbird, USA, pp. 423–432 (2011)

12. Weiß, A., Heide, M., Papandreou, S., Fürst, N., Balevic, A.: CUJ2K: a JPEG2000
encoder in CUDA. Technical report, IPVS, Universität Stuttgart (2009)

13. Min, B., Yoon, S., Ra, J., Park, D.S.: Enhanced renormalization algorithm in MQ-
coder of JPEG2000. In: IEEE ISITC 2007, pp. 213–216 (2007)

14. Dyer, M., Taubman, D., Nooshabadi, S., Gupta, A.: Concurrency techniques for
arithmetic coding in JPEG2000. IEEE Trans. Circuits Syst. I 53(6), 1203–1213
(2006)

15. Liu, K., Zhou, Y., Song Li, Y., Ma, J.F.: A high performance MQ encoder archi-
tecture in JPEG2000. Integration, the VLSI Journal 43(3), 305–317 (2010)

16. Rhu, M., Member, S., Park, I.C., Member, S.: Optimization of Arithmetic Coding
for JPEG2000. IEEE Transactions on Circuits and Systems 20(3), 446–451 (2010)

17. NVIDIA: NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.
NVIDIA (2009)

18. Acharya, T., Tsai, P.S.: JPEG2000 Standard for Image Compression: Concepts,
algorithms and VLSI architectures. Wiley Interscience, New York (2004)

19. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding
system: An overview. IEEE Trans. Consum. Electron. 46(4), 1103–1127 (2000)

20. DCI: Digital Cinema System Specification v. 1.2,
http://www.dcimovies.com/DCIDigitalCinemaSystemSpecv1_2.pdf (2008)

21. Balevic, A.: Parallel Variable-Length Encoding on GPGPUs. In: Lin, H.-X., Alexan-
der, M., Forsell, M., Knüpfer, A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par
2009. LNCS, vol. 6043, pp. 26–35. Springer, Heidelberg (2010)

22. Feygin, G., Gulak, P., Chow, P.: Architectural advances in the VLSI implementa-
tion of arithmetic coding for binary image compression. In: DCC 1994, pp. 254–263
(1994)

23. Volkov, V.: Better Performance at Lower Occupancy. In: GPU Technology
Conference (2010)

http://www.dcimovies.com/DCIDigitalCinemaSystemSpecv1_2.pdf

Using Dimensionality Reduction Method

for Binary Data to Questionnaire Analysis

Jakub Mažgut1, Martina Paulinyová2, and Peter Tiňo3

1 Faculty of Informatics and Information Technologies,
Slovak University of Technology, Slovakia

mazgut@fiit.stuba.sk
2 Department of Child Psychiatry, Child University Hospital,

Faculty of Medicine, Comenius University, Slovakia
mpaulinyova@gmail.com

3 School of Computer Science,
University of Birmingham, United Kingdom

P.Tino@cs.bham.ac.uk

Abstract. In this paper we introduce a modified version of existing
dimensionality reduction method for binary data, weighted logistic prin-
cipal component analysis (WLPCA). We propose to fit the basis vec-
tors of the latent natural parameter subspace in a successive procedure
instead of fitting them at ones, so the vectors will be sorted by an ex-
planation power of the data in term of model likelihood. Based on our
modified WLPCA model, we present a methodology for analyzing binary
(true/false) questionnaires. The purpose of the methodology is to bring
the authors of questionnaires a global overview of relationships between
questions based on the correlations of binary answers. In the experiment
we employ our proposed model to analyze psychiatric questionnaire,
namely the Junior Temperament and Character Inventory (JTCI). The
results suggest that our methodology can yield interesting relationships
between questions and that our modified model is better suited for such
an analysis as the existing versions of the logistic principal component
analysis model.

Keywords: dimensionality reduction, binary data, principal component
analysis.

1 Introduction

Most of us have filled in a questionnaire of one kind or other for various purposes.
In the basic form, the questionnaire is a research instrument consisting of a
series of questions for the purpose of gathering information from respondents.
Designing any questionnaire to be really effective is a complicated process. Even
translation of the questionnaire requires several confirmatory steps, especially in
psychiatric domain [5].

In this work, we focus on an analysis of questionnaire from psychiatric do-
main, but the model and the methodology can be used to analyze any binary

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 146–154, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

In-Depth Analysis of Binary Questionnaire 147

questionnaire. To introduce the process of evaluation of validity and reliabil-
ity and to point out existing problems we describe the process of translating a
Junior Temperament and Character Inventory (JTCI) from English to another
language.

Firstly, the text of JTCI must be translated from the original English version
to the desired language and then independently translated back by bilingual pro-
fessionals. Usually, the reverse translation must be approved by authors of the
original questionnaire [5]. Then the questionnaire is administered to the respon-
dents and acquired data are collected. When the data are collected, statistical
methods are used to evaluate the validity and reliability of the questionnaire. In
questionnaires, the questions are usually divided into theoretical groups based
on the general construct that each question tracks. One of the confirmatory tests
is a test that compares the theoretical structure (groups of questions) with the
structure (factors) obtained from data by dimensionality reduction methods,
principal component analysis (PCA) or factor analysis (FA) [4]. If PCA or FA
reveals similar structure to the theoretical groups of questions, it is considered
as a sign of properly designed questionnaire. However, the PCA and FA are
often used in their basic forms that are suitable for modeling real-valued data
assuming Gaussian noise model and not suitable for modeling the binary data.
Note that, using such models to analyze binary data is a common practice in
psychiatric domain (e.g.: [4,7]) and can lead to misleading results.

To further validate the design of questionnaire, an internal consistency of each
group of questions is measured by Cronbach alpha. The higher the Cronbach al-
pha, the higher level of internal consistency for analyzed group of questions.
Often the first version of questionnaire does not pass the evaluation process
(e.g. [7,4]) and the authors must inspect which questions to change or com-
pletely remove. To address such problems, we propose a methodology based on
an appropriate model for binary data to visualize an overview of relationships
between questions based on the correlations of their binary answers.

2 Dimensionality Reduction Methods for Binary Data

Principal component analysis (PCA) [3] is a widely used method for applications
such as dimensionality reduction, lossy data compression, feature extraction and
visualization of multivariate data. The method discovers a orthogonal projection
of the data onto a lower dimensional linear space, known as the principal sub-
space, such that the mean squared distance between the data points and their
projections is minimized.

While the mean-centering operations and mean squared distance criteria of
PCA are naturally suited to real-value data, they are not generally appropriate
for binary data [6]. The first attempt to expand the PCA for binary and other
data types was made by Collins et al. in [2]. They derived generalized criteria
for dimensionally reduction of data types that can be modeled by exponential
family of distributions and presented an iterative algorithm. A drawback of the
algorithm is that the optimizations required at each iteration do not have a
simple closed form for the Bernoulli distribution used for binary data.

148 J. Mažgut, M. Paulinyová, and P. Tiňo

Schein et al. eliminated the drawback of Collins’s approach and proposed in [6]
an iterative algorithm for generalized PCA embedding the Bernoulli distribution
for binary data, logistic principal component analysis (LPCA). An alternating
least squares method is used to fit the model parameters, where update rules have
a simple closed form and are guaranteed at each iteration to improve the model
likelihood. Furthermore, Zivkovic extended the LPCA model with weights [8], so
the model considers individual data sample and dimension selectively, depending
on the corresponding weights.

In our opinion, the name logistic principal component analysis is mislead-
ing. There are significant fundamental differences between PCA and LPCA: (1)
PCA finds linear projections that maximize the variance of projected data while
LPCA finds projections that maximize the model likelihood based on Bernoulli
distributions; (2) PCA diagonalizes the correlation matrix producing uncorre-
lated factors while LPCA produces only linearly independent factors; (3) PCA
assumes an unit variance across variables while LPCA does not.

3 The Model

In this chapter we propose a modified version of the WLPCA model. According
to the previously mentioned differences between PCA and LPCA we decided
to not use the name PCA and denote our model as weighted dimensionality
reduction for binary data (WDRBD).

Consider binary N -dimensional vector a ∈ {0, 1}N . Assume we are given a
set of M such vectors organized into a data matrix A as row vectors, A =
{a1,a2, ...,aM}T and each element am,n of the vector am, m = 1, 2, ..., M , n =
1, 2, ..., N , is independently Bernoulli distributed with parameter (mean) pm,n:
P (am,n|pm,n) = p

am,n
m,n · (1 − pm,n)1−am,n . The distribution can be equivalently

parametrized through log-odds (natural parameter) θm,n = log(pm,n/(1−pm,n)),
so the canonical link function linking the natural parameter with the mean is
the logistic function pm,n = σ(θm,n) = (1 + e−θm,n)−1. For each data vector
am, m = 1, 2, ..., M , the LPCA has P (am|θm) =

∏N
n=1 P (am,n|θm,n), where

P (am,n|θm,n) = σ(θm,n)am,n · σ(−θm,n)1−am,n .
Zivkovic [8] extended the model by introducing the weights wm,n ∈ R

+ for
each data sample m and dimension n. The higher the value of wm,n, the higher
the importance of data element am,n. If we collect all the parameters θm,n in
a matrix Θ ∈ RM×I and assume the data vectors are independently generated,
the model likelihood reads

L(Θ) =
M∏

m=1

N∏
n=1

P (am,n|θm,n)wm,n . (1)

So far the values in the parameter vectors θm were unconstrained. Schein et al.
constrained all the N -dimensional parameter vectors θm ∈ R

N (one for each
data vector am) to lie in a subspace spanned by the reduced set of basis vectors
U = {u1, ...,uR} where R ≤ N and bias (offset) vector Δ [6]:

In-Depth Analysis of Binary Questionnaire 149

θm =
R∑

r=1

qm,r · ur + Δ, (2)

where qm = (qm,1, qm,2, ..., qm,r), qm,r ∈ R are the mixing coefficients for the
data vector am,n.

To get parameter updates, authors of [6] take advantage of the fact that while
the logarithm of likelihood (1) is not convex in the parameters, it is convex in
any parameter, if the others are kept fixed. This leads to an iterative estimation
scheme described in a great detail in [6,8]. From the model likelihood definition
and updates formulas can be seen that there is no pressure for the basis vectors
U to be orthogonal or ordered by the degree of explaining the variation in
data. Furthermore, the direction of correlations can be captured (hidden) as
linear combinations of basis vectors and not represented straight-forward by
the direction of vectors as it is in the real-valued PCA model. So to use the
WLPCA model in a similar manner to the PCA for visualizing the data in 2- or
3- dimensional space spanned by basis vectors with largest explanatory power in
order to identify uniform or atypical groups of data samples can be misleading.

In order to address such problems, we propose to update the parameters
for each basis vector in successive procedure. Firstly, we fit the bias vector Δ,
then the first basis vector u1 with corresponding mixing coefficients qm,1, m =
1, . . . , M , then the second vector with mixing coefficients and so on. According to
this scheme, the model log-likelihood for �-th basis vector and mixing coefficients
as a form

L(Θ(�)) =
M∑

m=1

N∑
n=1

wm,n

[
am,n log σ(θ(�)

m,n) + (1 − am,n) log σ(−θ(�)
m,n)

]
, (3)

where
θ(�)

m,n = qm,� · u�,n + δ(�)
m,n, (4)

δ(�)
m,n =

{
Δi if � = 1∑(�−1)

r=1 qm,r · ur,n + Δi if � > 1.
(5)

To get analytical parameter updates, we use the trick of [6] and derive the
updating formulas from log-likelihood lower bound. Derivation of the parameter
updates is rather involved and (due to space limitations) we only present the
update formulas. Maximizing the lower bound of the model likelihood (3) with
respect to bias vector Δ leads to

Δn =
∑M

m=1 wm,n (2 am,n − 1)∑M
m=1 wm,n tm,n

,

where tm,n = (tanh(θm,n/2)/θm,n. The bias vector Δ can be though as a cen-
tering of the data in case of real-valued numbers and classical PCA method.

150 J. Mažgut, M. Paulinyová, and P. Tiňo

Maximizing the lower bound of the model likelihood with respect to basis vec-
tors u�,n and mixing coefficients qm,� leads to the following update formulas:

u�,n =
∑M

m=1 wm,n(2am,n − 1 − tm,n δ
(�)
m,n) qm,�∑M

m=1 wm,n tm,n q2
m,�

, (6)

qm,� =
∑N

n=1 wm,n(2am,n − 1 − tm,nδ
(�)
m,n) u�,n∑N

n=1 wm,n tm,n u2
�,n

, (7)

where � = 1, 2, . . . , R is the basis index.

4 Data

In this work, we focus on analysis of a Junior Temperament and Character Inven-
tory (JTCI) but the model and methodology can be used to analysis any binary
questionnaire. The JTCI questionnaire was developed to assess a Cloninger’s
biosocial model of personality in children and adolescent [5]. Assessing the bioso-
cial model is important to distinguishing a psychopathology of the respondent.
The importance of the JTCI in psychiatry supports the fact that it was trans-
lated and validated in more than 15 countries around the world [5,7].

In the experiments, we used the data gathered from Slovak version of JTCI
[5]. The authors provided 773 fully filled questionnaires. Each filled questionnaire
represents 108 yes/no (binary) answers. We collected the data to a binary ma-
trix with 773 rows (data samples) and 108 columns (data attributes/questions).
The questions are divided into two main groups, temperament and character
questions. Furthermore, the temperament group is divided into four tempera-
mental subgroups (traits): novelty seeking, harm avoidance, reward dependence
and persistence. The character group is divided into three subgroups (traits):
self-directedness, cooperativeness and self-transcendence.

5 Questionnaire Analysis

The goal of a methodology presented in this chapter is to bring a global overview
over the structure of questions based on the correlations of binary answers and
helps to suggest questions that need to be further analyzed in order to increase
the reliability of a given questionnaire. The existing evaluation methods that
employ PCA and FA are based on separating high and low values (extremes) of
basis vectors coefficients (e.g. [4]). The basis vector coefficients can be thought as
correlation coefficients between the question and particular factor represented by
the basis vector. In other words, high correlated (positive or negative) questions
with one factor creates a group.

Instead of analyzing each basis vector independently, we proposed to visual-
ize the questions in two-dimensional plot based on their coefficients of 2 selected
basis vectors. This allow us to inspect also the inter-factor correlations of ques-
tions. We employ LPCA, WLPCA and WDRBP models to find 2-dimensional

In-Depth Analysis of Binary Questionnaire 151

subspaces (2 factors) of the binary questionnaire data, plot the questions (at-
tributes) based on their correlations with factors and not the projections of
filled questionnaires (data samples) to the subspace determinated by mixing co-
efficients as it is a common practice. For our dataset, larger number of factors
(3 and more) did not reveal more useful information.

Several works (e.g. [4]) use the PCA or FA to analyze the JTCI temperament
and character questions separately while other works (e.g. [1]) analyze the whole
dataset at once. The reason is that the dependency between temperament and
character traits is not straightforward. The temperament traits are assumed to
be biologically rooted and stable across time while character traits are based
on social, cognitive and personality development and are expected to mature
throughout the life span [4]. However, analyzing the questions separately can
cause a loss of information while on the other side analyzing the whole set of
questions can cause mixing of the factors. In our methodology based on WDRBD,
we are able through the weights to set a trade-off between the scenarios of
analyzing the questions separately and analyzing the whole set.

The Fig. 1 shows the analyses of correlations of temperament questions with
2 factors obtained by different models and setups. The upper-left plot shows re-
sults for LPCA model analysis of the whole set of questions and plotted are only
the temperament questions. Upper-right plot visualizes the results for LPCA
analyzing only the temperament questions. Lower-left plot shows the results of
our proposed WDRBD model where we set the weights for temperament ques-
tions to 1 and for character questions to 0.2. We got similar results for weights
from interval 0.1 to 0.4. At last, the lower-right plot visualizes the analysis by
WLPCA model with the same weights as we used in the setup with WDRBD
model. As could be seen from the plots, our WDRBD model separates the ques-
tions of different types more clearly than the rest of the models. In the similar
manner we also analyzed the character questions and yield similar results that
are shown in Fig. 2.

Furthermore, to confirm the robustness of the results from WDRBD model,
we tested the threshold of minimum data samples that are necessary to achieve
the same separation of groups of questions. The sampling test has shown that
only 150 random samples out of 773 questionnaires are enough to get the same
results.

To further analyze the visualization by WDRBD, we use the same setup as
in the previous case and instead of plotting the questions as marks we use the
question identification numbers. The plot is depicted in Fig. 3. At first, we in-
spected the questions that are separated from their groups. The question 18
from persistence group is clearly separated. According to authors of the Slovak
version of JTCI a lot of children had problem understanding this question. Be-
sides that, if we remove the question, the internal consistency of the persistence
group measured by Cronbach alpha raise significantly from 0,44 (low level) to
0,58 (moderate level). Note that, improving the internal consistency of the ques-
tions is a crucial step in tweaking the questionnaire. Another clearly separated
questions from their group are questions 3, 26, 42, and 92 from novelty seeking.

152 J. Mažgut, M. Paulinyová, and P. Tiňo

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

LPCA (all questions)

−0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

LPCA (only temperament questions)

−0.1 0 0.1 0.2 0.3
−0.2

−0.1

0

0.1

0.2

0.3

Temperament Questions Analysis

WDRBD (all questions)

Coefficients of 1st basis vector

C
o
e
ff
ic

ie
n
ts

 o
f
2
n
d
 b

a
s
is

 v
e
c
to

r

Coefficients of 1st basis vector

C
o
e
ff
ic

ie
n
ts

 o
f
2
n
d
 b

a
s
is

 v
e
c
to

r

C
o
e
ff
ic

ie
n
ts

 o
f
2
n
d
 b

a
s
is

 v
e
c
to

r

Coefficients of 1st basis vector

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Coefficients of 1st basis vector

C
o
e
ff
ic

ie
n
ts

 o
f
2
n
d
 b

a
s
is

 v
e
c
to

r

WLPCA (all questions)

Legend
 - Novelty Seeking

 - Harm Avoidance

 - Reward Dependence

 - Persistence

Fig. 1. 2D plots of temperament questions based on the coefficients along 1st and 2nd

basis vectors

LPCA (all questions) LPCA (only character questions)

Character Questions Analysis

WDRBD (all questions)

Coefficients of 1st Basis Vector

C
o
e
ff
ic

ie
n
ts

 o
f
2
n
d
 B

a
s
is

 V
e

c
to

r

C
o
e
ff
ic

ie
n
ts

 o
f
2
n
d
 b

a
s
is

 v
e
c
to

r

C
o
e
ff
ic

ie
n
ts

 o
f
2
n
d
 B

a
s
is

 V
e

c
to

r

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.2

−0.1

0

0.1

0.2

0.3

−0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

WLPCA (all questions)

Legend
 - Novelty Seeking

 - Harm Avoidance

 - Reward Dependence

 - Persistence

Fig. 2. 2D plots of character questions based on the coefficients along 1st and 2nd basis
vectors

In-Depth Analysis of Binary Questionnaire 153

Again, if we remove these questions, the Cronbach alpha of the group raise from
0,71 to 0,75. For a more involved analysis, we inspected the meaning of questions
that are ’close’ to each other and marked the groups of questions with similar
meaning by ellipses in Fig 3. Group C-1 includes questions about illness and
tiredness that are related [5], group C-4 questions about sad movies and sad
stories, group C-2 about filings when she or he is trying new things or meets
strange people, group C-5 groups questions about loneliness, C-6 about secrecy,
C-2 about endeavor and C-3 about decisiveness. As could be seen from the de-
tailed analysis, WDRBD model is capable to visualize the questions with some
level of general topographic organization, where ’close’ questions have similar
character.

39

80
43

73891

Detailed Temperament Question Analysis by WDRBD

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.2

−0.1

0

0.1

0.2

0.3

0.4

3

37

42

71

75
98103
8
11

20

26

33

47

53

58

65

85

92
1

12

172234

55

59

73

8494

102

27

49

66

88 99

106

54

83
90

25

48

60 67

105

6

51

76
13

18

32

Legend
33 - Novelty Seeking

43 - Harm Avoidance

25 - Reward Dependence

13 - Persistence6
60

C-1

C-2

C-3

C-4

C-7

C-5
C-6

Coefficients of 1st Basis Vector

C
o

e
ff
ic

ie
n

ts
 o

f
2

n
d

 B
a

s
is

 V
e

c
to

r

Fig. 3. A detailed analysis of temperament questions based on the WDRBD model.
Groups of questions with similar meaning and close position in the plot are marked by
ellipses.

6 Conclusion

In our work, we investigated the possibility of using dimensionality reduction
methods for analyzing a binary questionnaire to bring a different view of the in-
trinsic relationships between questions. For that purpose we proposed an weighted
dimensionality reduction method for binary data (WDRBD) based on the exist-
ing weighted logistic principal component analysis (WLPCA).

The experiments with real dataset of binary answers to Slovak version of
Junior Temperament and Character Inventory (JTCI) [5] have shown that our
proposed methodology based on WDRBD model can reveal an interesting re-
lationships between questions that can be useful for further analysis of the
questions by authors of the questionnaires.

154 J. Mažgut, M. Paulinyová, and P. Tiňo

Acknowledgements. This work was partially supported by the Scientific Grant
Agency of Slovak Republic, grant No. VG1/0508/09 and by the Slovak Research
and Development Agency under the contract No. APVV-0208-10.

References

1. Asch, M.: Psychometric properties of a french version of the junior temperament and
character inventory. European Child Adolescent Psychiatry 18(3), 144–153 (2009)

2. Collins, M., Dasgupta, S., Schapire, R.E.: A generalization of principal component
analysis to the exponential family. In: Advances in Neural Information Processing
Systems. MIT Press, Cambridge (2002)

3. Fodor, I.: A survey of dimension reduction techniques. Tech. rep., Lawrence Liver-
more National Laboratory (2002)

4. Lyoo, I.K., Han, C.H., Lee, S.J., Yune, S.K., Ha, J.H., Chung, S.J., Choi, H., Seo,
C.S., Hong, K.-E.M.: The reliability and validity of the junior temperament and
character inventory. Comprehensive Psychiatry 45(2), 121–128 (2004)

5. Paulinyová, M., Tiňová, M., Halama, P., Hradečná, Z., Škodáček, I.: Realiability
and validity of the slovak version of JTCI. Psychiatrie (2011)

6. Schein, A., Saul, L., Ungar, L.: A generalized linear model for principal component
analysis of binary data. In: 9th Int. Workshop Artificial Intelligence and Statistics,
Key West, FL (January 2003)

7. Schmeck, K., Goth, K., Poustka, F., Cloninger, R.C.: Reliability and validity of
the JTCI. International Journal of Methods in Psychiatric Research 10(4), 172–182
(2001)

8. Zivkovic, Z.: Layered image model using binary PCA transparency masks. In: British
Machine Vision Conference, BMVA (2007)

Generalized Maneuvers in Route Planning

Petr Hliněný and Ondrej Morǐs

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

{hlineny,xmoris}@fi.muni.cz

Abstract. We study an important practical aspect of the route planning
problem in real-world road networks – maneuvers. Informally, maneuvers
represent various irregularities of the road network graph such as turn-
prohibitions, traffic light delays, round-abouts, forbidden passages and so
on. We propose a generalized model which can handle arbitrarily complex
(and even negative) maneuvers, and outline how to enhance Dijkstra’s
algorithm in order to solve route planning queries in this model without
prior adjustments of the underlying road network graph.

1 Introduction

Since mass introduction of GPS navigation devices, the route planning problem,
has received considerable attention. This problem is in fact an instance of the
well-known single pair shortest path (SPSP) problem in graphs representing real-
world road networks. However, it involves many challenging difficulties compared
to ordinary SPSP. Firstly, classical algorithms such as Dijkstra’s [4], A* [6] or
their bidirectional variants [11] are not well suited for the route planning despite
their optimality in wide theoretical sense. It is mainly because graphs represent-
ing real-world road networks are so huge that even an algorithm with linear time
and space complexity cannot be feasibly run on typical mobile devices.

Secondly, these classical approaches disregard certain important aspects of
real-world road networks, namely route restrictions, traffic regulations, or actual
traffic info. Hence a route found by such algorithms might not be optimal or not
even feasible. Additional attributes are needed in this regard.

The first difficulty has been intensively studied in the past decade, and com-
plexity overheads of classical algorithms have been largely improved by using
various preprocessing approaches. For a brief overview, we refer the readers to
[2,3,12] or our [7]. In this paper we focus on the second mentioned difficulty as
it is still receiving significantly less attention.

Related Work. The common way to model required additional attributes of
road networks is with so called maneuvers ; Definition 2.1. Maneuvers do not seem
to be in the center of interest of route-planning research papers: They are either
assumed to be encoded into the underlying graph of a road network, or they are
addressed only partially with rather simple types of restriction attributes such
as turn-penalties and path prohibitions.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 155–166, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

156 P. Hliněný and O. Morǐs

Basically, the research directions are represented either by modifications of
the underlying graph during preprocessing [8,10,15], or by adjusting a query
algorithm [9,13] in order to resolve simple types of restrictions during queries.

The first, and seemingly the simplest, solution is commonly used as it makes
a road network graph maneuver-free and so there is no need to adjust the queries
in any way. Unfortunately, it can significantly increase the size of the graph
[14]; for instance, replacing a single turn-prohibition can add up to eight new
vertices in place of one original [5]. A solution like this one thus conflicts with
the aforementioned (graph-size) objectives. Another approach [1] uses so-called
dual graph representation instead of the original one, where allowed turns are
modeled by dual edges.

To summarize, a sufficiently general approach for arbitrarily complex maneu-
vers seems to be missing in the literature despite the fact that such a solution
could be really important. We would like to emphasize that all the cited works
suffer from the fact that they consider only “simple” types of maneuvers.

Our Contribution. Firstly, we introduce a formal model of a generic maneuver
– from a single vertex to a long self-intersecting walk – with either positive or
negative effects (penalties); being enforced, recommended, not recommended
or even prohibited. Our model can capture virtually any route restriction, most
traffic regulations and even some dynamic properties of real-world road networks.

Secondly, we integrate this model into Dijkstra’s algorithm, rising its worst-
case time complexity only slightly (depending on a structure of maneuvers).
The underlying graph is not modified at all and no preprocessing is needed. Even
though our idea is fairly simple and relative easy to understand, it is novel in the
respect that no comparable solution has been published to date. Furthermore,
some important added benefits of our algorithm are as follows:

– It can be directly used bidirectionally with any alternation strategy using
an appropriate termination condition; it can be extended also to the A*
algorithm by applying a “potential function to maneuver effects”.

– Many route planning approaches use Dijkstra or A* in the core of their
query algorithms, and hence our solution can be incorporated into many of
them (for example, those based on a reach, landmarks or various types of
separators) quite naturally under additional assumptions.

– Our algorithm tackles maneuvers “on-line” – that is no maneuver is pro-
cessed before it is reached. And since the underlying graph of a road network
is not changed (no vertices or edges are removed or added), it is possible to
add or remove maneuvers dynamically even during queries to some extent.

2 Maneuvers: Basic Terms

A (directed) graph G = (V, E) is a pair of a finite set V of vertices and a finite
multiset E ⊆ V × V of edges (self-loops and parallel edges are allowed). The
vertex set of G is referred to as V (G), its edge multiset as E(G). A subgraph H
of a graph G is denoted by H ⊆ G.

Generalized Maneuvers in Route Planning 157

A walk P ∈ G is an alternating sequence of vertices and edges (u0, e1, u1, . . . ,
ek, uk) ⊆ G such that ei =(ui−1, ui) for i=1, . . . , k, the multiset of all edges of a
walk P is denoted by E(P). A concatenation P1. P2 of walks P1 =(u0, e1, u1, . . . ,
ek, uk) and P2 = (uk, ek+1, uk+1, . . . , el, ul) is the walk (u0, e1, u1,
. . . , ek, uk, ek+1, . . . , el, ul). If P2 =(u, f, v) represents a single edge, we write P1. f .
If edges are clear from the graph, then we write a walk simply as (u0, u1, . . . , uk).

A walk Q is a prefix of another walk P if Q is a subwalk of P starting
with the same index, and analogically with suffix. The prefix set of a walk
P = (u0, e1, . . . , ek, uk) is Prefix (P) = {(u0, e1, . . . , ei, ui)| 0 ≤ i ≤ k}, and
analogically Suffix(P) = {(ui, ei+1, . . . , ek, uk)| 0 ≤ i ≤ k}. A prefix (suffix) of a
walk P thus is a member of Prefix (P) (Suffix(P)), and it is nontrivial if i ≥ 1.

The weight of a walk P ⊆ G with respect to a weighting w : E(G) �→ R of
G is defined as

∑
e∈E(P) w(e) and denoted by |P |w. A distance from u to v in

G, δw(u, v), is the minimum weight of a walk P = (u, . . . , v) ⊆ G over all such
walks and P is then called optimal (with respect to weighting w). If there no
such walk then δw(u, v) = ∞. A path is a walk without repeating vertices and
edges.

Virtually any route restriction or traffic regulation in a road network, such
as turn-prohibitions, traffic lights delays, forbidden passages, turn-out lanes,
suggested directions or car accidents by contrast, can be modeled by maneuvers
– walks having extra (either positive or negative) “cost effects”. Formally:

Definition 2.1 (Maneuver). A maneuver M of G is a walk in G that is as-
signed a penalty Δ(M)∈R∪∞. A set of all maneuvers of G is denoted by M.

Remark 2.2. A maneuver with a negative or positive penalty is called negative
or positive, respectively. Furthermore, there are two special kinds of maneuvers
the restricted ones of penalty 0 and the prohibited ones of penalty ∞.

The cost effect of a maneuver is formalized next:

Definition 2.3 (Penalized Weight). Let G be a graph with a weighting w and
a set of maneuvers M. The penalized weight of a walk P ⊆ G containing the ma-
neuvers M1, . . . , Mr ∈ M as subwalks is defined as |P |Mw = |P |w +

∑r
i=1 Δ(Mi).

Then, the intended meaning of maneuvers in route planning is as follows.

– If a driver enters a restricted maneuver, she must pass it completely (cf. Def-
inition 2.4); she must obey the given direction(s) regardless of the cost effect.
Examples are headings to be followed or specific round-abouts.

– By contrast, if a driver enters a prohibited maneuver, she must not pass it
completely. She must get off it before reaching its end, otherwise it makes her
route infinitely bad. Examples are forbidden passages or temporal closures.

– Finally, if a driver enters a positive or negative maneuver, she is not required
to pass it completely; but if she does, then this will increase or decrease the
cost of her route accordingly. Negative maneuvers make her route better
(more desirable) and positive ones make it worse. Examples of positive ma-
neuvers are, for instance, traffic lights delays, lane changes, or left-turns.
Examples of negative ones are turn-out lanes, shortcuts, or implicit routes.

158 P. Hliněný and O. Morǐs

Fig. 1. A road network containing maneuvers M1 = (a, ab, b, bc, c) with Δ(M1) = ∞
(prohibited left turn) and M2 = (a, ab, b, bf, f) with Δ(M2) = 1 (right turn traffic
lights delay). All edges have weight 1. The penalized weight of the walk (a, ab, b, bc, c)
is 2 + ∞, the penalized weight of the walk (a, ab, b, bf, f, fe, e, ed, d, db, b, bd, c) is 6 +
1. Therefore the optimal walk (with respect to the penalized weight) from a to c is
(a, ab, b, bd, d, de, e, ef, f, fb, b, bc, c) with the penalized weight 6 + 0.

Definition 2.4 (Valid Walk). Let G, w,M be as in Definition 2.3. A walk
P in G is valid if and only if |P |Mw < ∞ and, for any restricted maneuver
M ∈ M, it holds that if a nontrivial prefix of M is a subwalk of P , then whole
M is a subwalk of P or a suffix of P is contained in M (that is P ends there).

We finally get to the summarizing definition. A structure of a road network
is naturally represented by a graph G such that the junctions are represented
by V (G) and the roads by E(G). The chosen cost function (for example travel
time, distance, expenses) is represented by a non-negative weighting w : E(G) �→
R

+
0 assigned to G, and the additional attributes such as traffic regulations are

represented by maneuvers as above. We say that two walks Q1, Q2 are divergent
if, up to symmetry between Q1, Q2, a nontrivial prefix of Q1 is contained in Q2

but the whole Q1 is not a subwalk of Q2. Moreover, we say that Q2 overhangs
Q1 if a nontrivial prefix of Q2 is a suffix of Q1 (particularly, E(Q1)∩E(Q2) �= ∅).

Definition 2.5 (Road Network). Let G be a graph with a non-negative weight-
ing w and a set of maneuvers M. A road network is the triple (G, w,M). Fur-
thermore, it is called proper if:

i. no two restricted maneuvers in M are divergent,
ii. no two negative maneuvers in M overhang one another, and

iii. for all N ∈ M, Δ(N) ≥ −|N |M\{N}
w (that is, the penalized weight of every

walk in G is non-negative).

Within a road network, only valid walks (Definition 2.4) are allowed further, and
the distance from u to v, δMw (u, v), is the minimum penalized weight (Defini-
tion 2.3) of a valid walk P = (u, . . . , v) ⊆ G; such a walk P is then called optimal
with respect to the penalized weight. If there is no such walk, then δMw (u, v) = ∞.
See Fig. 1.

Generalized Maneuvers in Route Planning 159

Motivation for the required properties i.–iii. in Definition 2.5 is of both natural
and practical character: As for i., it simply says that no two restricted maneuvers
are in a conflict (that is no route planning deadlocks). Point ii. concerning only
negative maneuvers is needed for a fast query algorithm, and it is indeed a natural
requirement (to certain extent, overhanging maneuvers can be modeled without
overhangs). We remark that other studies usually allow no negative maneuvers
at all. Finally, iii. states that no negative maneuvers can result in a negative
overall cost of any walk – another very natural property. In informal words, a
negative penalty of a maneuver somehow “cannot influence” suitability of a route
before entering and after exiting the maneuver.

2.1 Strongly Connected Road Network

The traditional graph theoretical notion of strong connectivity also needs to be
refined, it must suit our road networks to dismiss possible route planning traps
now imposed by maneuvers.

First, we need to define a notion of a “context” of a vertex v in G – a maximal
walk in G ending at v such that it is a proper prefix of a maneuver in M, or ∅
otherwise. A set of all such walks for v is denoted by XM. For example, on the
road network depicted on Fig. 1, XM(b) = {(a, b), ∅}. More formally:

Definition 2.6. Let M be a set of maneuvers. We define

XM(v) def=
{
X ∈ Prefix<(M) |(v) ∈ Suffix(X)

}
∪ {∅}

Prefix<(M) def= Prefix(M) \ {M}, Prefix<(M) def=
⋃

M∈M Prefix<(M).

This XM(v) is the maneuver-prefix set at v, that is the set of all proper prefixes
of walks from M that end right at v, including the mandatory empty walk. An
element of XM(v) is called a context of the position v within the road network.

The reverse graph GR of G is a graph on the same set of vertices with all of
the edges reversed. Let (G, w,M) be a road network, a reverse road network
is defined as (GR, wR,MR), where wR : E(GR) �→ R

+
0 , ∀(u, v) ∈ E(GR) :

wR(u, v) = w(v, u) and MR = {MR|M ∈ M}, ∀MR ∈ MR : Δ(MR) = Δ(M).

Definition 2.7. A road network (G, w,M) is strongly connected if, for every
pair of edges e = (u′, u), f = (v, v′) ∈ E(G) and for each possible context
X = X1 · e ∈ XM(u) of u in G and each one of v in GR, that is Y R =
Y R

1 . fR ∈ XMR(v), there exists a valid walk starting with X and ending with Y .

We remark that Definition 2.7 naturally corresponds to strong connectivity in
an amplified road network modeling the maneuvers within underlying graph.

3 Route Planning Queries

At first, let us recall classical Dijkstra’s algorithm [4]. It solves SPSP1 problem
a graph G with a non-negative weighting w for a pair s, t ∈ V (G) of vertices.
1 Given a graph and two vertices find a shortest path from one to another.

160 P. Hliněný and O. Morǐs

– The algorithm maintains, for all v ∈ V (G), a (temporary) distance estimate
of the shortest path from s to v found so far in d[v], and a predecessor of v
on that path in π[v].

– The scanned vertices, that is those with d[v] = δw(s, v), are stored in the
set T ; and the reached but not yet scanned vertices, that is those with
∞ > d[v] ≥ δw(s, v), are stored in the set Q.

– The algorithm work as follows: it iteratively picks a vertex u ∈ Q with
minimum value d[u] and relaxes all the edges (u, v) leaving u. Then u is
removed from Q and added to T . Relaxing an edge (u, v) means to check if
a shortest path estimate from s to v may be improved via u; if so, then d[v]
and π[v] are updated. Finally, v is added into Q if is not there already.

– The algorithm terminates when t is scanned or when Q is empty.

Time complexity depends on the implementation of Q; such as it is O(|E(G)|+
|V (G)| log |V (G)|) with the Fibonacci heap.

3.1 M-Dijkstra’s Algorithm

In this section we will briefly sketch the core ideas of our natural extension of
Dijkstra’s algorithm. We refer a reader to Algorithm 1 for a full-scale pseudocode
of this M-Dijkstra’s algorithm.

1. Every vertex v ∈ V (G) scanned during the algorithm is considered together
with its context X ∈ XM(v) (Definition 2.6); that is as a pair (v, X). The
intention is for X to record how v has been reached in the algorithm, and
same v can obviously be reached and scanned more than once, with different
contexts. For instance, b can be reached with the empty or (a, b) contexts on
the road network depicted on Fig. 1.

2. Temporary distance estimates are stored in the algorithm as d[v, X] for such
vertex-context pairs (v, X). At each step the algorithm selects a next pair
(u, Y) such that it is minimal with respect to the following partial order ≤M.

Remark 3.1. Partial order ≤M:

(v1, X1) ≤M (v2, X2)
def⇐⇒

(
d[v1, X1] < d[v2, X2] ∨

(d[v1, X1] = d[v2, X2] ∧ X1 ∈ Suffix(X2))
)
.

3. Edge relaxation from a selected vertex-context pair (u, Y) respects all ma-
neuvers related to the context Y (there can be more such maneuvers). If one
of them is restricted, then only its unique (cf. Definition 2.5, i.) subsequent
edge is taken, cf. Algorithm 1, RestrictedDirection.
Otherwise, every edge f = (u, v) is relaxed such that the distance estimate
at v – together with its context as derived from the concatenation (Y. f) –
is (possibly) updated with the weight w(f) plus the sum of penalties of all
the maneuvers in (Y. f) ending at v, cf. Algorithm 1, Relax.

4. If an edge relaxed is the first one of a negative maneuver, a specific process
is executed before scanning the next vertex-context pair. See below.

Generalized Maneuvers in Route Planning 161

1

5

5

1
1

1 1

w5

x2

s

x1

v3 v4 v5

w3w1

1

w2

1

v2

1

v1

u = v0 = w0

w4

1 1

Δ(M3) = −1

Δ(M4) = ∞

Δ(M2) = 0

Δ(M1) = −5

Fig. 2. A road network containing two negative maneuvers, M1 = (v0, . . . , v5) and
M3 = (w0, . . . , , w5), a restricted maneuver M2 = (v2, v3, v4), and a prohibited maneu-
ver M4 = (w2, w3, w4). When u is being processed (with its implicit context), x1, x2

and v1, w1 are relaxed normally. Furthermore, negative maneuver processing is exe-
cuted for both M1 and M3. As a result, v5 will be immediately reached and inserted to
Q with distance estimate equal to that of u which is less than those of x1, x2 (5 from
u) and of v1, w1 (1 from u). On the other hand, w5 will not be reached in the process
because the distance estimate of w4 bounces to ∞ while handling M4.

3.2 Processing Negative Maneuvers

Note that the presence of a maneuver of negative penalty may violate the basic
assumption of ordinary Dijkstra’s algorithm; that relaxing an edge never de-
creases the nearest temporary distance estimate in the graph. An example of
such a violation can be seen in Fig. 2, for instance, at vertex v5 which would not
be processed in its correct place by ordinary Dijkstra’s algorithm. That is why
a negative maneuver M must be processed by M-Dijkstra’s algorithm at once
– whenever its starting edge is relaxed, cf. Algorithm 1, ProcessNegative.

Suppose that an edge f = (u, v) is relaxed from a selected vertex-context
pair (u, X) and there is a negative maneuver M = (v0, f1, v1, . . . , vn−1, fn, vn),
u = v0, v = v1 starting with f (that is f = f1), processing negative maneuver
M works as follow:

1. Vertex-context pairs (vi, Xi), 0 ≤ i ≤ n along M are scanned one by one
towards the end of M . The other vertices leaving these vi are ignored.

2. Scanned vertex-context pairs are added to Q and their distance estimates are
updated, but none of them is added into T . They must be properly scanned
during the main loop of the algorithm.

3. This process terminates when the end (vn, Xn) is reached or the distance es-
timate of some (vi, Xi) bounces to ∞ (that is there is a prohibited maneuver
ending at vi) or when some restricted maneuver forces us to get off M (and
thus M cannot be completed).

162 P. Hliněný and O. Morǐs

Algorithm 1. M-Dijkstra’s Algorithm

Input: A proper road network (G, w,M) and vertices s, t ∈ V (G).
Output: A valid walk from s to t in G optimal with respect to the penalized weight.

M-Dijkstra(G, w,M, s, t)

1: for all v ∈ V (G), X ∈ XM(v) do /* Initialization. */
2: d[v, X] ← ∞; π[v, X] ← ⊥
3: done
4: d[s, ∅] ← 0; Q ← {(s, ∅)}; T ← ∅
5: if (s) ∈ M then d[s, ∅] ← d[s, ∅] + Δ(s) fi

/* The main loop starts at (s, ∅) and terminates when either all reachable vertex-
context pairs have been scanned or when t is reached with some of its contexts. */

6: while Q �= ∅ ∧ [� ∃X ∈ XM(t) s.t. (t, X) ∈ T] do

7: (u, X) ← min≤M(Q); Q ← Q \ {(u, X)} /* Recall ≤M (Remark 3.1) */

8: F ← RestrictedDirection(u, X) /* Possible restricted dir. from u. */
9: if F = ∅ then F ← {(u, v) ∈ E(G) | v ∈ V (G)} fi

10: for all f = (u, v) ∈ F do
11: Relax(u, X, f, v)
12: for all M = (u, f, v, . . .) ∈ M s.t. Δ(M) < 0 ∧ |E(M)| > 1 do
13: ProcessNegative (X, M)
14: done /* Negative man. starting with f are processed separately. */
15: done
16: T ← T ∪ {(u, X)}
17: done
18: ConstructWalk (G, d, π) /* Use “access” information stored in π[v, X]. */

LongestPrefix (P) : a walk P ′ ⊆ G

/* The longest (proper) prefix of some maneuver contained as a suffix of P */

1:
P ′ ← max⊆

[
(Suffix (P) ∩ Prefix<(M)) ∪ {∅}]
where Prefix<(M)

def
=

⋃
M∈M Prefix (M) \ {M}

2: return P ′

RestrictedDirection(u,X) : F ⊆ E(G)

/* Looking for edge f leaving u that follows in a restricted man. in context X.*/

1:
F ← {f = (u, v) ∈ E(G) | ∃ restricted R ∈ M :

E(X) ∩ E(R) �= ∅ ∧ Suffix(X. f) ∩ Prefix (R) �= ∅}
2: return F

Relax (u, X, f, v) /* Relaxing an edge f from vertex u with context X. */
1: δ ← w(f) +

∑
N∈N Δ(N) where N = M∩ Suffix(X. f)

2: X ′ ← LongestPrefix(X.f)
3: if d[u, X] + δ < d[v, X ′] then
4: Q ← Q ∪ {(v, X ′)}; d[v, X ′] ← d[u, X] + δ; π[v, X ′] ← (u, X)
5: fi

ProcessNegative(X, M = (v0, e1, . . . , en, vn))

1: i ← 1; X0 ← X; F ← ∅ /* Relaxing sequentially all the edges of M . */
2: while i ≤ n ∧ d[vi−1, Xi] < ∞∧ F = ∅ do

Generalized Maneuvers in Route Planning 163

3: Relax(vi−1, Xi−1, ei, vi)
4: Xi ← LongestPrefix(Xi−1.ei); F ← RestrictedDirection(vi, Xi)\{ei+1}
5: i ← i + 1
6: done

3.3 Correctness and Complexity Analysis

Assuming validity of Definition 2.5 ii. in a proper road network, correctness of
above M-Dijkstra’s algorithm can be argued analogously to a traditional proof
of Dijkstra’s algorithm. Hereafter, the time complexity growth of the algorithm
depends solely on the number of vertex-context pairs.

Theorem 3.2. Let a proper road network (G, w,M) and vertices s, t ∈ V (G)
be given. M-Dijkstra’s algorithm (Algorithm 1) computes a valid walk from s
to t in G optimal with respect to the penalized weight, in time O

(
c2
M|E(G)| +

cM|V (G)| log(cM|V (G)|)
)

where cM = maxv∈V (G) |{M ∈ M| v ∈ V (M)}| is
the maximum number of maneuvers per vertex.

Proof. We follow a traditional proof of ordinary Dijkstra’s algorithm with a sim-
ple modification – instead of vertices we consider vertex-context pairs as in Def-
inition 2.7 and in Algorithm 1.

For a walk P let χ(P) = max⊆
[
(Suffix(P) ∩ Prefix<(M)) ∪ {∅}

]
denote the

context of the endvertex of P with respect to maneuvers M. Let Px stand for
the prefix of P up to a vertex x ∈ V (P). The following invariant holds at every
iteration of the algorithm:

i. For every (u, X) ∈ T , the final distance estimate d[u, X] equals the smallest
penalized weight of a valid walk P from s to u such that X = χ(P). Every
vertex-context pair directly accessible from a member of T belongs to Q.

ii. For every (v, X ′) ∈ Q, the temporary distance estimate d[v, X ′] equals the
smallest penalized weight of a walk R from s to v such that X ′ = χ(R) and,
moreover, (x, χ(Rx)) ∈ T for each internal vertex x ∈ V (R) (except vertices
reached during ProcessNegative, if any).

This invariant is trivially true after the initialization. By induction we assume
it is true at the beginning of the while loop on line 6, and line 7 is now being
executed – selecting the pair (u, X) ∈ Q. Then, by minimality of this selection,
(u, X) is such that the distance estimate d[u, X] gives the optimal penalized
weight of a walk P from s to u such that X = χ(P). Hence the first part of the
invariant (concerning T , line 16) will be true also after finishing this iteration.

Concerning the second claim of the invariant, we have to examine the effect
of lines 8–15 of the algorithm. Consider an edge f = (u, v) ∈ E(G) starting
in u, and any walk R from s to v such that χ(Ru) = X . Since χ(R) must be
contained in X. f by definition; it is, Relax, line 2, χ(R) = X ′. Furthermore,
every maneuver contained in R and not in Ru must be a suffix of X. f by
definition. So the penalized weight increase δ is correctly computed in Relax,

164 P. Hliněný and O. Morǐs

line 1. Therefore, Relax correctly updates the temporary distance estimate
d[v, X ′] for every such f . Finally, any negative maneuver starting from u along
f is correctly reached towards its end w on line 13, its distance estimate is
updated by successive relaxation of its edges and, by Definition 2.5, ii. and iii.,
this distance estimate of w and its context is not smaller than d[u, X]; thus the
second part of claimed invariant remains true.

Validity of a walk is given by line 8 – RestrictedDirection, that is enforc-
ing entered restricted maneuvers; and line 1 in Relax – δ grows to infinity when
completing prohibited maneuvers, “if” condition on line 3 in Relax is then false
and therefore prohibited maneuver cannot be contained in an optimal walk.

Lastly, we examine the worst-case time complexity of this algorithm. We as-
sume G is efficiently implemented using neighborhood lists, the maneuvers in
M are directly indexed from all their vertices and their number is polynomial
in the graph size, and that Q is implemented as Fibonacci heap.

– The maximal number of vertex-context pairs that may enter Q is

m = |V (G)| +
∑

M∈M
(|M | − 1) ≤ cM · |V (G)| ,

and time complexity of the Fibonacci heap operations is O(m log m).

– Every edge of G starting in u is relaxed at most those many times as there
are contexts in XM(u) and edges of negative maneuvers are relaxed one
more time during ProcessNegative. Hence the maximal overall number
of relaxations is

r =
∑

u∈V (G)

|XM(u)| · out -deg(u) + q ≤ (cM + 1) · |E(G)|

where q is the number of edges belonging to negative maneuvers.

– The operations in Relax on line 1, LongestPrefix as well as Restricted-
Direction can be implemented in time O(cM).

The claimed runtime bound follows. ��

Notice that, in real-world road networks, the number cM of maneuvers per vertex
is usually quite small and independent of the road network size, and thus it can
be bounded by a reasonable minor constant. Although road networks in practice
may have huge maneuver sets, particular maneuvers do not cross or interlap too
much there. for example, cM = 5 in the current OpenStreetMaps of Prague.

4 Conclusion

We have introduced a novel generic model of maneuvers that is able to capture
almost arbitrarily complex route restrictions, traffic regulations and even some
dynamic aspects of the route planning problem. It can model anything from

Generalized Maneuvers in Route Planning 165

single vertices to long self-intersecting walks as restricted, negative, positive or
prohibited maneuvers. We have shown how to incorporate this model into Dijk-
stra’s algorithm so that no adjustment of the underlying road network graph is
needed. The running time of the proposed Algorithm 1 is only marginally larger
than that of ordinary Dijkstra’s algorithm (Theorem 3.2) in practical networks.

Our algorithm can be relatively straightforwardly extended to a bidirectional
algorithm by running it simultaneously from the start vertex in the original
network and from the target vertex in the reversed network. A termination
condition must reflect the fact that chained contexts of vertex-context pairs
scanned in both directions might contain maneuvers as subwalks. Furthermore,
since the A* algorithm is just an ordinary Dijkstra’s algorithm with edge weights
adjusted by a potential function, our extension remains correct for A* if the road
network is proper (Definition 2.5, namely iii.) even with respect to this potential
function.

Finally, we would like to highlight that, under reasonable assumptions, our
model can be incorporated into many established route planning approaches.

Acknowledgements. We would like to thank the reviewers, who took the time
to carefully read our paper and suggested many small, but helpful corrections,
additions, and improvements to our original submission.

References

1. Anez, J., De La Barra, T., Perez, B.: Dual graph representation of transport net-
works. Transportation Research Part B: Methodological 30(3), 209–216 (1996)

2. Cherkassky, B., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: Theory
and experimental evaluation. Mathematical Programming 73(2), 129–174 (1996)

3. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning
Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

4. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Math-
ematik 1, 269–271 (1959)

5. Gutierrez, E., Medaglia, A.: Labeling algorithm for the shortest path problem
withturn prohibitions with application to large-scale road networks. Annals of Op-
erations Research 157, 169–182 (2008), doi:10.1007/s10479-007-0198-9

6. Hart, P.E., Nilsson, N.J., Raphael, B.: Correction to “A formal basis for the heuris-
tic determination of minimum cost paths”. SIGART Bull. 1(37), 28–29 (1972)

7. Hliněný, P., Morǐs, O.: Scope-Based Route Planning. In: Demetrescu, C.,
Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 445–456. Springer,
Heidelberg (2011)

8. Jiang, J., Han, G., Chen, J.: Modeling turning restrictions in traffic network for
vehicle navigation system. In: Proceedings of the Symposium on Geospatial Theory,
Processing, and Applications (2002)

9. Kirby, R.F., Potts, R.B.: The minimum route problem for networks with turn
penalties and prohibitions. Transportation Research 3, 397–408 (1969)

10. Pallottino, S., Scutella, M.G.: Shortest path algorithms in transportation models:
classical and innovative aspects. Technical report, Univ. of Pisa (1997)

166 P. Hliněný and O. Morǐs

11. Pohl, I.S.: Bi-directional and heuristic search in path problems. PhD thesis, Stan-
ford University, Stanford, CA, USA (1969)

12. Schultes, D.: Route Planning in Road Networks. PhD thesis, Karlsruhe University,
Karlsruhe, Germany (2008)

13. Villeneuve, D., Desaulniers, G.: The shortest path problem with forbidden paths.
European Journal of Operational Research 165(1), 97–107 (2005)

14. Winter, S.: Modeling costs of turns in route planning. GeoInformatica 6, 345–361
(2002), doi:10.1023/A:1020853410145

15. Ziliaskopoulos, A.K., Mahmassani, H.S.: A note on least time path computation
considering delays and prohibitions for intersection movements. Transportation
Research Part B: Methodological 30(5), 359–367 (1996)

STANSE: Bug-Finding Framework
for C Programs

Jan Obdržálek, Jiří Slabý, and Marek Trtík

Masaryk University, Brno, Czech Republic
{obdrzalek,slaby,trtik}@fi.muni.cz

Abstract. Stanse is a free (available under the GPLv2 license) mod-
ular framework for finding bugs in C programs using static analysis. Its
two main design goals are 1) ability to process large software projects
like the Linux kernel and 2) extensibility with new bug-finding techniques
with a minimal effort. Currently there are four bug-finding algorithms
implemented within Stanse: AutomatonChecker checks properties
described in an automata-based formalism, ThreadChecker detects
deadlocks among multiple threads, LockChecker finds locking errors
based on statistics, and ReachabilityChecker looks for unreachable
code. Stanse has been tested on the Linux kernel, where it has found
dozens of previously undiscovered bugs.

1 Introduction

During the last decade, bug-finding techniques based on static analysis have
finally come of age. One of the papers to really stir interest was [2], showing that
static analysis can efficiently find many interesting bugs in real-world code. This
work eventually led to a successful commercial tool called Coverity [10]. Over
the years, several other successful tools, like CodeSonar [9] orKlocwork [12],
appeared. However, such fully-featured tools are neither free to obtain, nor is
their code available (e.g. for developing new algorithms or tailoring the existing
tools to specific tasks). The existing free tools are usually severely limited in what
they can do (e.g. Uno [15], Sparse [14], Smatch [13]). One notable exception
is FindBugs [5,11], a successful tool working on Java code. Stanse is intended
to fill this gap for the C language. It can be seen in two ways:

1. Stanse is a robust framework (written predominantly in Java) for imple-
menting diverse static analysis algorithms. An implemented algorithm can
be immediately evaluated on large real-world software projects written in
C as the framework is capable to process such projects (for example, it can
process the whole Linux kernel). An implementation of such an algorithm
within the framework is called a checker.

2. As Stanse already contains four checkers, it can be also seen as a working
static analysis tool.

The paper is structured as follows. Section 2 describes the functionality pro-
vided by the framework, while Section 3 is devoted to the four existing checkers.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 167–178, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

168 J. Obdržálek, J. Slabý, and M. Trtík

In Section 4 we present some results of running Stanse on the Linux kernel.
The last section summarises the basic strengths of Stanse and mentions some
directions of future development.

2 Framework Functionality

The Stanse framework is modular and fully open. It is designed to allow static
analysis of large software projects like Linux kernel. Furthermore it is aimed to
reduce effort when implementing a new static analysis technique. Architecture of
the framework is depicted in Fig. 1, and is more or less standard. The bug-finding
algorithms are implemented as checkers, and will be described in more detail in
Section 3. In this section we focus on the functionality of the framework itself,
describing only the non-standard or for some other reason interesting features.

Checker Checker

Call

graph

Internal representation

AST CFG . . .

Checkers’ interface

tracing
report
error
GUI

data file
Checker

.preprocpreprocessor.C

Error
report

C parser

libraries
navigation
Code

Fig. 1. Stanse framework architecture

2.1 Configuration

The Stanse framework contains data structures capturing a configuration of an
analysis to be performed. We always need to know what source files to analyse
and by what checkers. That information we call configuration.

STANSE: Bug-Finding Framework for C Programs 169

There are several ways how to tell Stanse which source files to analyse.
Besides the standard possibilities (a given file, all files from a given directory,
all files listed in a list), Stanse can also derive all the necessary information
from a project Makefile. In this case, Stanse also remembers compiler flags for
preprocessing purposes. This functionality is inspired by the Sparse [14] tool.
The user must also specify the checkers which should be run on the config-

ured source files. There can be many checkers running simultaneously in Stanse.
However they cannot share any data and proceed independently. Checkers them-
selves can also be configured through their own configuration files. The configura-
tion can be passed to the Stanse framework either via command line arguments,
or using the graphical interface.

2.2 Parsing Source Files

The Stanse framework can process source files written in C, more specifically
in the ISO/ANSI C99 standard together with most of the GNU C extensions.
This allows Stanse to process software projects like the Linux kernel. We are
currently working on support of other languages, in particular C++, a prototype
implementation for which is included in the distribution. The parsing pipeline,
including a preprocessing the source files by the standard GNU C preprocessor,
is depicted at the bottom in Fig. 1. It is important to note that we do not parse
the source files in a sequence one by one as they appear in a configuration. Since
we use streaming (which we discuss later), the pipeline is applied as needed for
each individual source file.
The parser used in Stanse is generated using the AntLR tool from our own

annotated C grammar. The reason for us to write our own parser was that at
the time we started to develop Stanse we could not find free parser which,
while being suitable for our purposes, would be able to parse most of the GNU
C. (Linux Kernel makes heavy use of GNU C language extensions.) There is
one notable exception: Clang, which is slowly improving and will be able to
handle the Linux kernel in the near future. However, in its current form it still
contains bugs and cannot be used reliably. Our plan is to switch from our parser
to Clang once it becomes stable and feature complete.
Also, one may object that we could use the parser from the GNU compiler

(GCC). Unfortunately this parser, and most importantly its internal structures,
is not suitable for our purposes. For example the CFG is built on the top of RTL
or tree representation (we encourage the reader to look into the GCC manual
where these are described).

2.3 Program Internal Representation

Once the code is parsed, it is represented using Stanse’s internal structures :
a call graph among functions, a control flow graph (CFG) for each function,
and an abstract syntax tree (AST) for the whole file. Subtrees in the AST are
referenced from appropriate CFG nodes. We show these structures in the middle
of Fig. 1. All these structures can be dumped in a textual or graphical form.

170 J. Obdržálek, J. Slabý, and M. Trtík

Since we aim at large software projects consisting of hundreds or thousands of
modules (compilation units), it is often impossible in practice to store the cor-
responding internal structures in the memory all at the same time. The Stanse
framework therefore applies automatic streaming of the internal structures. This
is currently performed on a module basis. Instead of parsing all source modules
in the beginning, a module is streamed in only when Stanse needs to access
some internal structure belonging to the module. In other words, the internal
structures are constructed on demand, in a lazy manner.
If the memory occupied by internal structures exceeds a given limit, some

internal structures have to be freed before another module is streamed in. The
structures to be freed are selected using the LRU (least recently used) approach:
Stanse discards all internal structures of the module whose structures are not
accessed for the longest time. If the discarded structure is accessed again later,
the corresponding module is streamed back in. Both laziness of internal struc-
tures and streaming are completely invisible to checkers.
In the current implementation of streaming, each source file streamed out from

the memory is completely discarded. Stanse does not back up already parsed
internal structures into auxiliary files before discarding. As a consequence, when
internal structures of the discarded file are needed again, Stanse starts the
parsing pipeline of the file from scratch to recreate requested internal structures.
Although loading of previously parsed internal structures from auxiliary files
would speed up the streaming process, profiling of Stanse’s performance on the
Linux kernel has not shown streaming to be a performance bottleneck. However
this could be easily changed if streaming performance becomes a problem in the
future.

2.4 Pointer Analysis in Stanse

Since C programs tend to heavily use pointers, it almost always becomes a ne-
cessity to use some form of pointer analysis. There are many different known
approaches to pointer analysis, differing in speed and accuracy. As each bug-
finding/program analysis technique may have different requirements regarding
pointer analysis, a framework like Stanse should ideally implement several dif-
ferent pointer analysis techniques and provide them to its checkers.
Nevertheless, the Stanse framework currently provides just two pointer

analyses: Steensgaard ’s [7] and Shapiro-Horowitz ’s [6]. Both analyses are may
analyses – they compute an over-approximation of an accurate solution. The
Steensgard ’s analysis is very fast and it is widely used in practice. On the other
hand it is not very accurate. The Shapiro-Horowitz ’s analysis allows parametri-
sation between Steensgard ’s and Andersen’s analyses. One can therefore balance
between speed of Steensgard ’s analysis and accuracy of Andersen’s one.

2.5 Matching Language Constructs

Many static analyses change their internal state only on some subset of program
expressions. For example, when finding race conditions in a parallel program,

STANSE: Bug-Finding Framework for C Programs 171

one may only focus on expressions involving synchronisation, while ignoring all
others. The Stanse framework therefore provides a specification language for
determining a set of program expressions.
The language defines a collection of patterns. Each pattern is supposed to

identify a single specific kind of sub-trees in AST of analysed program. A pattern
itself is therefore also a sub-tree of AST, where some of its vertices are “special”.
They allow to define a set of possible sub-trees at that vertex.
This is, however, not the only possible approach. For example, in the METAL

[1] specification language, a C expression can be directly parametrised to define a
set. The solution we implemented exploits the fact that checkers in Stanse work
with AST intensively, and therefore identifying expressions in terms of AST is
very practical.

2.6 Traversing Internal Representation

Although a checker may need to work with the internal structures in an arbitrary
way, most checkers walk through CFGs using some standard strategy. To prevent
unnecessary reimplementations, the most important and heavily used traversal
methods are implemented directly inside the framework. With this functionality,
one can implement a new checker (or its part) by specifying

– whether it should go through CFGs forwards or backwards, breadth-first or
depth-first,

– whether the interprocedural walk-through should be performed or not (if
not, the function calls are ignored), and

– a method (callback) to be called for each visited node in a CFG.

This makes implementation of new algorithms extremely simple.
For example, when a checker needs to implement a forward flow-sensitive

analysis, it may ask the Stanse framework to traverse paths in CFGs in forward
depth-first manner. This can be implemented by a single call to a function
traverseCFGToDepthForward,which takes as an argument a CFG and a subclass
of Stanse class CFGPathVisitor. In this class the checker defines the actionwhich
should be taken whenever a CFG node is visited (already in the requested order).
The checker implements the action in a method visit of the subclass.
In addition, for those interprocedural analyses which do not construct sum-

maries Stanse provides an automated traversal among different CFGs according
to function calls (involving automated parameters passing and value returning).
Again, this can be done using a single call to the Stanse framework.
The functionality described in this section is shown in Fig. 1 as “Code navi-

gating libraries”.

2.7 Support for Function Summaries

Interprocedural analyses typically build function summaries. Unfortunately, these
summaries may differ from one analysis to another. Nevertheless, quite common

172 J. Obdržálek, J. Slabý, and M. Trtík

part in building many summaries is passing formal and actual parameters to call
sites and mapping return values to appropriate variables. Therefore, the Stanse
framework provides classes simplifying the parameter passing and values return-
ing for checkers. These classes also provide a conversion of a given expression
in the caller into an equal expression in the called function. The conversion can
also be required in the opposite direction, i.e. for returned values.

2.8 The Concept of Checkers

In the Stanse framework a checker is an implementation of some concrete static
analysis technique. Each checker has an access to a shared internal structure of
analysed source files. They are also provided with an access to the algorithms
providing navigation in those structures. This is done by an interface between
checkers and internal structure and libraries of the framework. The interface is
depicted in Fig. 1 right bellow the checkers.
The checkers are integrated in the framework of Stanse using concrete factory

design pattern. Therefore, to insert a new checker to the framework one needs
to implement generic checker interface and register it to the checkers’ factory
of the framework. Then it gains a full access to the features of the framework
accessible through the discussed interface.
It is very easy to integrate a new checker into Stanse. The process requires

only three simple steps to be fully functional. The first step is to create a subclass
of Stanse abstract class Checker, say MyChecker. The most important method
to implement is check. There the analysis algorithm should be implemented.
The second step is to integrate the newly created class into the framework.

This means implementation of MyCheckerCreator, a subclass of CheckerCreator
abstract class. And the final step is to register the class MyCheckerCreator. It
comprises adding a line registerCheckerCreator(new MyCheckerCreator())
at the end of CheckerFactory.java.

2.9 Processing Errors

Once a checker finds an error, it reports the error back to the framework in the
form of an annotated error trace - a path in the analysed code demonstrating this
error. A datatype is provided in the Stanse framework to describe an error. In
the framework there are then several possibilities how to present the error traces
back to the user of Stanse: they can be printed to the console, displayed using
a built-in error trace browser in the GUI (see Fig. 2), or saved to an external file
in XML format. This XML file has a wide variety of possible applications. For
example, we supply a tool transforming the XML file into an SQLite database.
The database is supplemented with a web interface allowing to browse errors in
the database via a web browser. Using the web browser or the built-in graphical
error browser, one can mark errors as real bugs or false positives. Stanse also
provides various statistics of errors like number of errors per checker, frequency
of errors of the same kind, percentage of false positives (based on user feedback).

STANSE: Bug-Finding Framework for C Programs 173

Fig. 2. Error trace browser in the Stanse GUI

Error reporting and tracing pipeline is depicted to the right of interface and
internal representation of Fig. 1.

3 Checkers

In this section we briefly describe the four currently available checkers. All four
checkers are provided with sample configuration so that they can be used in-
stantly, however they can be configured differently when necessary.

AutomatonChecker is heavily influenced by [2]. It takes, as an input, a set
of finite-state automata that describe the properties we want to check, patterns
which match against the code to be checked, and finally transitions, i.e. pairing
of patterns and automaton state changes. Properties like locking discipline, inter-
rupt management, null pointer dereference, dangling pointers and many others
can be described this way.
An example of the locking checker is presented in Fig. 3. The automaton starts

in the unlocked state (U) and a transition is made when there is an outgoing edge
from the current state with a pattern matching the action currently performed
by the analysed program. E.g. if there is an unlock action while the automaton
is in an unlocked state, an error is reported.
Compared to the implementation described in [2] and [4], our technique dif-

fers in several aspects. In particular, we do not use metacompilation, automata
are not input-language specific (a pattern matching is used instead), and the
interprocedural analysis is done in the context of a single input file.

174 J. Obdržálek, J. Slabý, and M. Trtík

Fig. 3. Automaton for locks checking

LockChecker accounts statistics about variable accesses. It also tracks which
locks are locked while each of the variable is accessed. Again both variable ac-
cesses and locks are specified by patterns.
Then, combining the information about accesses and locks held, it counts a

statistics in how many cases each variable is accessed while some lock is held.
If the difference is proportional, an error is reported. So if, for instance, some
variable is changed 99 times while some lock is held and in one case the lock
is not, this is reported as a possible error. The boundary is currently set to 70,
so that at least 70% of accesses must be under locks. The rest (30%) is then
reported. This work is based upon [3].

ThreadChecker aims to check for possible deadlocks in concurrent programs.
The technique is based on the notions of locksets of [8] and deadlock detection
by looking for cycles in resource allocation graphs (RAGs). ThreadChecker
first tries to identify the parts of the code which can run in parallel, as different
threads. This is performed by searching of functions instantiating threads (such
as pthread create). Or, for the Linux kernel, we also specify manually which
hooks may be run parallel.
Then the checker builds a set of dependency graphs for each such thread. A

dependency graph statically represents possible locksets during one execution of
a thread. Dependency graphs are then combined and transformed into RAGs. If
there is a circular lock dependency, RAG contains a cycle. In such case an error
is reported to the user.

ReachabilityChecker searches CFGs for unreachable nodes. These are then
reported as warnings or errors, depending on importance (e.g. superfluous semi-
colons are less important than unused branch). The primary goal of Reachabil-
ityChecker is to demonstrate the simplicity of a new checker implementation.
With a help of the framework features described in Subsection 2.6, the code
of the checker has less than 200 lines including the mentioned error/warning
classification and many strings and comments.
Even though it is a very simple checker it was still able to find serious bugs in

the kernel. For example a superfluous semicolon can cause unexpected uncondi-
tional returns from functions like in the following code: if (cond); return;.

STANSE: Bug-Finding Framework for C Programs 175

Table 1. Stanse results on the Linux kernel version 2.6.28

Checker Automaton Errors Real/classified
Found Real False pos. error ratio

Pairing 266 65 143 31.3%
AutomatonChecker Pointers 86 48 37 56.5%

Deadlocks 35 16 18 47.1%
LockChecker 13 6 7 46.2%
ThreadChecker 20 9 11 45.0%
ReachabilityChecker 31 31 0 100.0%

Overall 451 175 216 47.9%

4 Results on the Linux Kernel

We have several reasons to choose the Linux kernel for testing Stanse: the
kernel is a large and freely available codebase, it fully exercises most of the fea-
tures of ISO/ANSI C99 and GNU C extensions, it is under constant development
(there is a constant income of new bugs), and the absence of bugs is of a great
concern.
We applied Stanse, together with the four checkers described in the previ-

ous section, to the Linux kernel version 2.6.28. The AutomatonChecker was
configured with three automata describing the following types of errors:

– incorrect pairing of functions (imbalanced locking, reference counting errors)
– bugs in pointer manipulation (null dereference, dangling pointers, etc.)
– deadlocks caused by sleeping inside spinlocks or interrupt handlers

The running time of Stanse on a common desktop machine with two 2.5GHz
cores and 4GiB of memory was under two hours. The memory usage of the Java
process oscillated between 400 and 1000MiB. The number of errors found by
the checkers is presented in Table 1. Let us note that ReachabilityChecker
actually found 751 errors, but 720 of them are of low importance (including 696
superfluous semicolons) and they are omitted from our statistics.
We have manually analysed all the found errors and classified them as real

errors or false positives (with an exception of 60 errors found by Automa-
tonChecker where we are not able to decide in a short time whether it is a
false positive or not). Note that the checkers do not produce any false negatives
(assuming there is no bug in the checkers’ implementation). The reason is that
all the checkers implement may analyses, overapproximating the set of error be-
haviours. The numbers of real errors, false positives and the ratio of real errors
to all classified errors can be also found in Table 1. The overall ratio of real
errors to all classified errors is not high: 47.9%. However, Stanse in the current
version does not have any thorough false positive filtering technique, which may
be implemented in future.

176 J. Obdržálek, J. Slabý, and M. Trtík

More than 70 of the 169 real errors have been reported to kernel developers and
fixed in the following kernel releases (the rest have been independently discovered
and reported by someone else or the incorrect code disappeared from the kernel
before we finished our evaluation of found errors). Some of the reported bugs
remained undiscovered for more than seven years (for illustration, see our report
at http://lkml.org/lkml/2009/3/11/380).
We have reported another 60 bugs found by Stanse in the subsequent versions

of the kernel. This number is increasing every month.

4.1 Important Bugs Found by Stanse

Although checkers currently implemented in Stanse are based on widely known
techniques, running them on the Linux kernel helped to uncover several impor-
tant bugs. In the text below we present two typical bugs discovered by Stanse,
each using a different checker.

AutomatonChecker. Many bugs found by the AutomatonChecker trigger
only under specific conditions, however some of them may be visible to the user.
Consider this code excerpt taken from the 2.6.27 kernel, drivers/pci/hotplug/p-
ciehp core.c file, set lock status function:

mutex lock(& s l o t−>c t r l−>c r i t s e c t) ;
/∗ has i t been >1 sec s ince our l a s t t o g g l e? ∗/
i f ((g e t s e cond s () − s l o t−>l a s t em i t o g g l e) < 1)

return −EINVAL;

Note that the call to mutex lock function is followed by an if statement, which
returns immediately in the true branch, omitting a call to mutex unlock. In fact
this deadlock could be easily triggered by a user. It is sufficient to write ”1” to
/sys/bus/pci/slots/. . ./lock file twice within a second.

ThreadChecker. An example of non-trivial error which could not be found by
the AutomatonChecker. The code described here is from the 2.6.28 kernel,
file fs/ecryptfs/messaging.c.
There are three locks in the code, msg ctx->mux, which is local per context,

and two global locks – ecryptfs daemon hash mux and ecryptfs msg ctx lists mux.
Let us denote lock dependencies as a binary relation where the first component

depends on the second. I.e. lock(A) followed by lock(B) means dependency B on
A, and we write A ← B.

1 int e c r yp t f s p r o c e s s r e s p o n s e (. . .)
2 {
3 . . .
4 mutex lock(&msg ctx−>mux) ;
5 mutex lock(&ecryptfs daemon hash mux) ;
6 . . .
7 mutex unlock(&ecryptfs daemon hash mux) ;
8 . . .
9 unlock :
10 mutex unlock(&msg ctx−>mux) ;

http://lkml.org/lkml/2009/3/11/380

STANSE: Bug-Finding Framework for C Programs 177

11 out :
12 return rc ;
13 }

Here the two locks on lines 4 and 5 give msg ctx->mux ← ecryptfs daemon
hash mux.
14 static int e c ryp t f s s end mes sage l o ck ed (. . .)
15 {
16 . . .
17 mutex lock(&e c r yp t f s m sg c t x l i s t s mux) ;
18 . . .
19 mutex unlock(&e c r yp t f s m sg c t x l i s t s mux) ;
20 . . .
21 }
22
23 int e c ryp t f s s end mes sage (. . .)
24 {
25 int rc ;
26
27 mutex lock(&ecryptfs daemon hash mux) ;
28 rc = ec ryp t f s s end mes sage l o cked (. . .)
29 mutex unlock(&ecryptfs daemon hash mux) ;
30 return rc ;
31 }

At line 28, function ecryptfs send message locked is called from ecryptfs send
message, hence the locks at lines 17 and 27 generate lock dependency of ecryptfs
daemon hash mux ← ecryptfs msg ctx lists mux.
32 int e c r yp t f s wa i t f o r r e s p on s e (. . .)
33 {
34 . . .
35 mutex lock(&e c r yp t f s m sg c t x l i s t s mux) ;
36 mutex lock(&msg ctx−>mux) ;
37 . . .
38 mutex unlock(&msg ctx−>mux) ;
39 mutex unlock(&e c r yp t f s m sg c t x l i s t s mux) ;
40 return rc ;
41 }

Finally, this function introduces ecryptfs msg ctx lists mux ← msg ctx->mux.
Composing these results together the following circular dependency of these

three locks was found:

– msg ctx->mux ← ecryptfs daemon hash mux
– ecryptfs daemon hash mux ← ecryptfs msg ctx lists mux
– ecryptfs msg ctx lists mux ← msg ctx->mux

This issue was later confirmed as a real bug leading to a deadlock1.

5 Conclusions and Future Work

Stanse is a free Java-based framework design for simple and efficient imple-
mentation of bug-finding algorithms based on static analysis. The framework
can process large-scale software projects written in ISO/ANSI C99, together

1 http://lkml.org/lkml/2009/4/14/527

http://lkml.org/lkml/2009/4/14/527

178 J. Obdržálek, J. Slabý, and M. Trtík

with most the GNU C extensions. Stanse does not currently use any new tech-
niques – its novelty comes from the fact that (to our best knowledge) there is
no other open-source framework with comparable applicability and efficiency.
We note that more than 130 bugs found by Stanse have been reported to and
confirmed by Linux kernel developers already. More information and the tool
itself can be found at http://stanse.fi.muni.cz/.

Future Work. We plan to improve the framework in several directions. Firstly
we are currently working on C++ support. Furthermore we plan to provide
Stanse in the form of an IDE plug-in, e.g. for Eclipse and NetBeans. A lot
of work can be done in the area of automatic false alarm filtering and error
importance classification. Independently of developing new features, we would
like to speed up the framework as well. To this end we intend to replace the
current parser written in Java by an optimised parser written in C, to replace
the XML format of internal structures by a more succinct representation, to add
a support for function summaries, etc.

Acknowledgements. Jan Kučera is the author of the ThreadChecker. We
would like to thank Linux kernel developers, and Cyrill Gorcunov for Stanse
alpha testing and useful suggestions. All authors are supported by the research
centre Institute for Theoretical Computer Science (ITI), project No. 1M0545.

References

1. Chou, A., Chelf, B., Engler, D., Heinrich, M.: Using meta-level compilation to
check FLASH protocol code. ACM SIGOPS Oper. Syst. Rev. 34(5), 59–70 (2000)

2. Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-
specific, programmer-written compiler extensions. In: OSDI 2000, pp. 1–16 (2000)

3. Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior:
A general approach to inferring errors in systems code. ACM SIGOPS Oper. Syst.
Rev. 35(5), 57–72 (2001)

4. Hallem, S., Chelf, B., Xie, Y., Engler, D.: A system and language for building
system-specific, static analyses. In: PLDI 2002, pp. 69–82. ACM (2002)

5. Hovemeyer, D., Pugh, W.: Finding bugs is easy. In: OOPSLA 2004, pp. 132–136.
ACM (2004)

6. Shapiro, M., Horwitz, S.: Fast and accurate flow-insensitive points-to analysis. In:
POPL 1997, pp. 1–14. ACM (1997)

7. Steensgaard, B.: Points-to analysis in almost linear time. In: POPL 1996, pp. 32–41.
ACM (1996)

8. Voung, J.W., Jhala, R., Lerner, S.: RELAY: static race detection on millions of
lines of code. In: ESEC-FSE 2007, pp. 205–214. ACM (2007)

9. CodeSonar, http://www.grammatech.com/products/codesonar/
10. Coverity, http://www.coverity.com/products/
11. FindBugs, http://findbugs.sourceforge.net/
12. Klocwork, http://www.klocwork.com/products/
13. Smatch, http://smatch.sourceforge.net/
14. Sparse, http://www.kernel.org/pub/software/devel/sparse/
15. Uno, http://spinroot.com/uno/

http://stanse.fi.muni.cz/
http://www.grammatech.com/products/codesonar/
http://www.coverity.com/products/
http://findbugs.sourceforge.net/
http://www.klocwork.com/products/
http://smatch.sourceforge.net/
http://www.kernel.org/pub/software/devel/sparse/
http://spinroot.com/uno/

Introducing the FPGA-Based Hardware

Architecture of Systemic Computation (HAoS)

Christos Sakellariou and Peter J. Bentley

Department of Computer Science, University College of London,
Malet Place, London WC1E 6BT, UK

{c.sakellariou,p.bentley}@cs.ucl.ac.uk

Abstract. This paper presents HAoS, the first Hardware Architecture
of the bio-inspired computational paradigm known as Systemic Com-
putation (SC). SC was designed to support the modelling of biological
processes inherently by defining a massively parallel non-conventional
computer architecture and a model of natural behaviour. In this work
we describe a novel custom digital design, which addresses the SC ar-
chitecture parallelism requirement by exploiting the inbuilt parallelism
of a Field Programmable Gate Array (FPGA) and by using the highly
efficient matching capability of a Ternary Content Addressable Mem-
ory (TCAM). Basic processing capabilities are embedded in HAoS, in
order to minimize time-demanding data transfers, while the optional
use of a CPU provides high-level processing support. We demonstrate a
functional simulation-verified prototype, which takes into consideration
programmability and scalability. Analysis shows that the proposed ar-
chitecture provides an effective solution in terms of efficiency versus flex-
ibility trade-off and can potentially outperform prior implementations.

Keywords: Systemic Computation, FPGA, Parallel Architecture,
Non-Conventional Computer Architecture, Content Addressable Mem-
ory, Natural Computation.

1 Introduction

As conventional silicon-based technologies are about to reach their limits, re-
searchers have drawn inspiration from nature to found new computational
paradigms. Such a newly-conceived paradigm is Systemic Computation (SC).
SC is designed to be a model of natural behaviour and, at the same time, a
model of computation. It incorporates natural characteristics and defines a mas-
sively parallel computer architecture that can model natural systems efficiently
[1,2].

There are three SC implementations to date. The first two attempts simulate
a systemic computer, using conventional CPUs, and provide a satisfactory proof-
of-concept but suffer from poor performance [1,2]. The latest attempt success-
fully maps a part of the model on the parallel resources of a GPU and achieves
performance gains up to the order of hundreds [3]. Clearly, the full potential of
SC cannot be exploited using conventional hardware.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 179–190, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

180 C. Sakellariou and P.J. Bentley

Thus, in this paper, an FPGA-based approach is proposed to implement the
systemic computer. Section 2 outlines SC and prior implementations. Section
3 summarises our novel custom digital design. In section 4 we demonstrate
the verification and evaluation methodology for HAoS. Section 5 concludes the
paper.

2 Systemic Computation

2.1 Overview

Systemic computation adopts a holistic analysis approach of systems embrac-
ing the significant importance of the interactions of their fundamental elements
and their environment. Its intention is to resemble natural computation in or-
der to simulate biological processes effectively. To accomplish this, it follows a
set of conventions [1]: (a) everything is a system, (b) systems may comprise or
share other nested systems, (c) systems can be transformed but never destroyed
or created from nothing, (d) interaction between systems may cause transfor-
mation of those systems according to a contextual system, (e) all systems can
potentially act as context and interact in some context, (f) the transformation
of systems is constrained by the scope of systems, and finally (g) computation
is transformation.

0aab baa0

(a)

System

schemata1 transformation function schemata 2
(b)

00110aab baa00011

Fig. 1. SC notation and systems representation: (a) Graphical representation of a sys-
tem in SC (b) The three elements of a system. (Reproduced with permission from
[1]).

The interaction of two systems can be described by the systems themselves
and a third “contextual” system (which is referred to as context) which denotes
how/if the interacting systems are transformed after their interaction. The no-
tions of schemata and transformation function are used in [1] to describe the
interaction. Each system comprises of three parts, two schemata and one func-
tion (see Fig. 1). Both systems may change after an interaction, which implies
circular causality (each system may affect the other). The scope here, as in na-
ture, is an important factor. The scope of a system defines the neighbourhood
(which can be other than spatial) in which the system can interact with other
systems in a certain way, denoted by the context. Systems are represented as
binary strings.

Pairs of systems always interact with a context; these systems constitute a
valid triplet. The schemata of the context provide templates for the operand

Introducing HAoS 181

systems to match in order to interact, provided that all three systems belong in
the same scope. Thus all computations in SC involve (1) finding valid triplets
(context and two matching systems in a shared scope) and (2) updating the two
systems according to the transformation function in the context. Full details on
SC are provided in [1,2].

2.2 Prior SC Implementations

In [1], Bentley, along with introducing SC, provided a corresponding virtual com-
puter architecture and its first implementation. This prototype included a basic
instruction set, an assembly language, a compiler and resulting machine code.
However the implementation was merely a simulation of a systemic computer,
although it was a satisfactory proof-of-concept.

The second implementation (SCoPE) [2] provides a complete SC platform
(language, compiler, virtual machine and visualization tools) which is also an SC
simulation, but it is based on a high-level SC language. It is fully programmable
and more flexible than the original one. The transformation function set, the
string length and the alphabet can be customized by the user for each model
simulation in SCoPE. This flexibility comes in expense of execution speed.

In [3], another PC-based implementation is presented, utilizing the inherent
parallelism of graphics processors (GPUs) with considerable gains in terms of
speed compared to previous attempts. The performance improvement is justified
since this is the first implementation with a hardware constituent (GPU cores)
and the first step towards a real systemic computer. GPUs are well suited for
applications with numerous threads running in parallel over a set of shared data.
In [3], the shared data are the systems.

3 The Proposed SC Hardware Architecture

HAoS attempts to satisfy the basic SC requirements, taking into consideration
the requirements of a practical implementation: programmability, design friend-
liness, technology maturity, I/O functionality efficiency, advanced processing fea-
tures, compiler support and scalability.

HAoS targets an FPGA as this option appears to be the optimal implemen-
tation platform among others based on a detailed review and analysis of the
literature and available hardware platforms [4]. The conventional underlying ar-
chitecture of a multi-core processor [5] is capable of just simulating SC, as shown
in section 2.2. Conventional network-based platforms (like computer clusters
[6], peer-to-peer networks [7] and wireless sensors networks [8]) also rely on the
same underlying architecture. However, a network can present characteristics
like decentralized and distributed computation and parallelism while simulating
asynchrony, self-organization and partial fault-tolerance. Thus, a network with
FPGAs as basic building blocks could satisfy a large number of SC requirements
by presenting these natural characteristics. Unconventional material (like DNA
[9] or quantum [10]) platforms can also provide such characteristics but they are
not mature enough yet to provide a practical implementation.

182 C. Sakellariou and P.J. Bentley

The SC concept dictates that any three systems are eligible to form a valid
triplet. A fully parallel implementation would generate a valid triplet of systems,
in a random manner, for all contexts, in all scopes during an iteration of an
SC program, while all interactions would happen instantaneously, provided that
adequate parallel processing resources were available. Resource limitations forbid
a practical implementation of this approach on an FPGA. It is apparent that
the main two tasks that would ideally be executed in parallel are valid triplet
generation and system transformation (the actual data processing).

While one of the assumptions of the SC paradigm is that systems have “local
knowledge” storing the system bit representation and the scopes it belongs to in
local registers was not adopted but instead, the binary contents of the systems
and their scopes are stored in system RAM. This approach was preferred because
local knowledge is a feature that cannot be accurately mapped on on-chip logic.
The contents of a system could potentially be stored on registers which do not
reside on the same area of the chip instead of using a RAM. The use of a RAM
in this design is justified by the fact that RAM storage volumes are greater than
those provided by registers in modern FPGAs and since no further fabric would
need to be consumed for address decoding logic.

Moreover, only a finite number of systems can be stored on a single RAM,
which defines a neighbourhood for its systems, while the total number of sys-
tems can be spread over multiple RAMs. As a result, a potential failure in one
of the RAMs would leave the rest of systems of the program unaffected, provid-
ing a limited level of fault-tolerance for the single-FPGA HAoS prototype. The
level of fault-tolerance of our single-FPGA configuration can be improved in the
application-level, as shown in [11], by combining redundancy (duplicating system
instances) with self-maintenance (using self-repairing systems). A multi-FPGA
configuration could further improve fault-tolerance by adding redundancy in the
hardware-level to address faults that cannot be handled by the application (as
a hardware failure of the resources used to store the global scopetable).

One of the main limitations of the software-based implementations was the
way valid triplets were generated. The common strategy was to randomly select
three systems (one of which acted as context) in a scope and check triplet validity
after matching the operand systems with the schemata of the context. A common
practice to accelerate this task was to use priority queues that either gave priority
to systems that had recently interacted [1] or had not recently interacted [2]. In
[3], this task is assigned to the GPU which handles it in parallel resulting in
great performance gains.

The present design addresses the valid triplet generation by exploiting the in-
herent parallelism of a Ternary Content Addressable Memory (TCAM). While
traditionally used Random Access Memories (RAMs), when provided with an ad-
dress return the data stored in this address, CAMs compare their input data with
the data which they store and provide all matching addresses in parallel. More-
over, TCAMs have the ability to perform ternary comparisons, meaning that both
the input and stored data can include “don’t care” bits. This functionality enables

Introducing HAoS 183

a guaranteed match of systems to the schemata of the given context, provided
there are such systems in the scope of the context.

HAoS also uses a pseudo-random number generator to randomly identify valid
triplets but this operation is not biased by previous interactions. All matching
systems have the same interaction probability while, as explained above, the
use of the TCAM ensures maximum matching efficiency. While future work will
target parallel processing capabilities, true parallel interaction is not supported
by HAoS, since writing to the TCAM is limited to one system at a time in
order to improve its area and enable ternary comparisons (assuming that parallel
interactions would transform the interacting systems simultaneously). A fully
asynchronous design might enable the true implementation of the stochastic
property, but such an implementation would require that all systems, matching
and control circuitry and interconnections would be realized in combinatorial
logic which would pose a great area requirement and increase the possibility of
timing hazards.

3.1 The SC Architecture

HAoS consists of the SC core (CORE), the Control Unit (CU), the Functional
Unit (FU) and a set of configuration and data registers (REG BANK) for com-
munication with the optional CPU (see Fig. 2).

CORE

CU
FU

REG BANK

CONF/DATA REGS

CONF/DATA
REGS

CONTROL
FSM PROCESSING

UNITS

CPU
INTERFACE

CONF/DATA
REGS

FPGA

EMBEDDED
CPU

EXTERNAL
CPU

Fig. 2. The SC Hardware Architecture

The CORE contains the optimized logic for the parallel schemata matching
and the memory elements. The CU handles the execution sequence of the SC pro-
gram and the communication with the optional external CPU. The REG BANK
provides a control and debug interface between the CPU and the local registers
of the SC sub-modules. The FU provides basic local processing functionality.

184 C. Sakellariou and P.J. Bentley

A set of simple instructions is supported to avoid expensive data transfers be-
tween the REG BANK and the CPU.

The prototype implementation includes only one FU, but future implemen-
tations can take advantage of the plethora of DSP processing cores which are
available on the FPGA, and give the option to be used as a simple ALU each, to
provide multiple parallel processing resources. It is noted that only 16-bit signed
integer processing is currently supported by the HAoS prototype. The addition
of a hardware floating-point unit in future implementations is under investiga-
tion. However, floating-point intermediate operations of high-level functions, if
required, can be executed from the optional CPU.

The CPU is provided to the system in order to make more complex high-
level functions available. This functionality was available only in SCoPE [2],
since the other implementations had a fixed instruction set. HAoS increases
flexibility by letting the user define new instructions, when this is necessary, in
an unrestricted way. The SC compiler, which preserves backwards compatibility
with the compiler presented in [1], is written in C and translates SC source code
in SC assembly. Apart from the extra usability, the CPU in the prototype design
is used to load the SC assembly code into the memory elements of the CORE
during initialization or in the case of a hardware reset. A possible enhancement
is to provide the option for assembly loading through an external memory card,
thus making the CPU link completely optional, depending on the high-level
functionality requirements of the user. The CPU may reside either on the FPGA,
with the form of a SOFT or HARD IP embedded processor communicating with
the design using a shared internal FPGA bus, or be an external conventional
processor connecting to the design through a standard communication interface,
as illustrated in Fig. 2. The functional behaviour of the communication link is
simulated in this work. Since the main SC program runs on the FPGA, the CPU
is used as a co-processor in HAoS.

A further performance and flexibility boost can be achieved in the future if we
take advantage of the reconfigurability capabilities provided by the FPGA. A set
of user defined pre-synthesized hardware functions can be stored on an external
memory and dynamically loaded when needed. This technique could be applied
for applications that do not frequently change the function part of contexts as
reconfigurability speeds are quite low and would require the use of an embedded
CPU to handle the reconfiguration of a reserved area on the FPGA.

3.2 The Control Unit

The CU handles the flow of the user-defined SC program. As systems can never
be destroyed, the program runs indefinitely, although it halts when all systems
become stable and no further interaction is possible. The main control flow for
each iteration of the program can be seen in Fig. 3.

Upon a hardware reset, the SC assembly code is loaded into the core. For each
iteration of the SC program, four consecutive steps are performed. A scope is
randomly selected, and then a valid triplet of systems is randomly chosen, the
selected systems are fetched from memory, they interact (the actual computation

Introducing HAoS 185

is performed) and then the outcome of the interaction (the computation results)
is written back to memory (the random system selection logic is described in
the next section.) At the end of each iteration, the user is granted access to
pause execution in order to easily extract debug information. All the optimized
low-level SC micro-routines (for scope and memory manipulation) are available
to the user, to ensure maximum flexibility.

Hardware
Reset

Select Context in Scope

Compare Schemata 1

Compare Schemata 2

All Systems
Stable?

Y

N

Context Found?

Y

N

Match?

Y

N

Match?

Y

N

CPU Access

Initialization

Load
Program

Compute
Infinite
Loop

Get Valid
Triplet

Store
Triplet

Transform

Write
Result

Select Valid
Scope Halt

Fig. 3. SC Program Control Flow : HAoS enters an infinite computation loop after
the SC program is loaded, which involves finding valid triplets and transforming the
selected systems

Various optimizations have been applied in order to improve performance.
When the selected context system gives a mismatch, meaning that any of its
schemata does not match a system in the scope, it is disabled and becomes an
invalid context for this scope to prevent future mismatches (see section 3.3).
Moreover, once a scope is selected, if it contains fewer than three systems or
no valid contexts, it also is disabled and becomes an invalid scope until a new
system is added to it. If all scopes have been disabled, no further transactions
can occur and the program halts.

3.3 The SC Core

The CORE is mainly responsible for the efficiency of the design due to the way
it handles the task of schemata matching. Its main components are the TCAM,
the random selection logic, the system memories, the scopetable memories and
the system status registers, as can be seen in Fig. 5.

186 C. Sakellariou and P.J. Bentley

HAoS supports three types of systems (see Fig. 4): (1) data systems, com-
prised of two (16-bit) schemata and a zero (32-bit) function part, (2) context
systems, comprised of a (32-bit) function and two schemata templates (used for
matching with data systems and thus occupying the size of a whole data system,
64-bits,each) and (3) context adapter systems which have the same structure
with context systems (but each of their templates can match a data system or
a context). Since all the systems have the same size, each bit in a schema of a
data system is padded with three zero bits to form a 4-bit element or character.

The full contents of a system are stored in two separate RAMs, one of them
holds the binary part while the other stores the ternary part (the “don’t care”
bits). Since the function part of a system is always binary, it is not stored in the
ternary RAM. The various system parts are located in the same address in all
memories in order to simplify the required address-decoding logic.

32bits
transformation function

16bits
schemata2

16bits
schemata1

32bits
transformation function

16bits
schemata2

16bits
schemata1

32bits
context (adapter) function

System 1 Template System 2 Template

16 elements/effective bits 32 zero bits
transformation function

Data System Template 1 Data System Template 2

000b

4bits per
element

16 elements/effective bits

(a) A Data System

(b) A Context / Context Adapter System

Fig. 4. HAoS Systems Representation

The global scopetable information is stored in three RAM-based structures.
One of them stores the systems that belong in each scope at the corresponding
to the scope address, the second stores the scopes that each system belongs to
at the corresponding to the system address while the third stores a mask for
all the invalid contexts in a scope. The first two structures, although effectively
storing the same information, provide parallel access to two different aspects of
the scopetable (systems in scope and parent scopes of a system).

The TCAM is loaded with the regions of the systems that may be compared
during initialization. For data systems, the function part is always zero, so only
the binary representation of their two schemata may be compared while for con-
text systems only their function part (which is double the size of a schema)
may be compared. This implies that context systems can interact with other
context systems or data systems, which greatly enhances functionality since it
denotes that context adapting (where context systems can interact with other
systems and be changed) is supported (a feature only supported previously in
the highly flexible SCoPE implementation). Context adapter systems may not
interact with other systems in HAoS. The restriction of comparing only parts of
a system is posed by the fact that the TCAM resource requirements scale expo-
nentially with systems capacity (the maximum number of supported systems).

Introducing HAoS 187

SYSTEMS
IN SCOPE

SCOPETABLE

SCOPES
OF SYSTEM

MASK

BINARY
RAM

TERNARY
RAM

COUNTONES

LFSRDIVIDER

BITPOSSEL

RANDOM SELECTION LOGIC

M
U
X

SCH1

SCH2

ISDATA

ISCONTEXT

ISADAPTER

SYSTEM STATUS REGS

TCAM

VALID
SCOPES

SCOPES
WITH

CONTEXTS

CONTEXTS

L
O
G
I
C SCOPES

L
O
G
I
C

CONF/DATA
REGISTERS

INVALID
CONTEXTS
IN SCOPE

L
O
G
I
C

Fig. 5. The SC Core basic building blocks

Thus, by minimizing the size of the TCAM, we maximize the capacity of the
prototype. However, as the systems capacity of a single FPGA device is finite,
in order to enable further scalability of the HAoS architecture, future work will
investigate the use of either a multi-FPGA configuration or an scalable external
TCAM.

The random selection logic (RSL) accepts a bus as an input and returns the
address of a randomly selected set bit. It consists of a module that counts the
set bits of the bus (COUNTONES), a maximal-length Linear Feedback Shift
Register (LFSR) for pseudo-random number generation, a combinatorial divider
(which also performs integer division when required in the Transform state - see
Fig. 3) and a module (BITPOSSEL) that given a bus and the rank of a set
bit of this bus (the position of the set bit with rank 2 is 3 in 01001101 - when
rank starts from 0 and position 0 is the rightmost one), it returns its position
(combining a parallel bit count approach with a branchless selection method).
A random number, provided by the LFSR, is divided by the sum of the set bits
of the bus. The remainder of this division is used as the rank of the random set
bit that is given to BITPOSSEL in order to identify its position.

The function of the RSL (the result of the selection) is controlled by a mul-
tiplexer (MUX) which feeds the RSL with one out of five possible input buses
(see Fig. 5). When we need to choose a system that matches the first schema of
the context, the input bus (SCH1) is generated by combining all the matching
systems (the output of the TCAM) with valid SYSTEMS IN SCOPE (which
of them are valid depend on the type of the context system). The same bus
is used for matching the second schema (SCH2) after masking out the selected

188 C. Sakellariou and P.J. Bentley

system for SCH1 (a system may not interact with itself). When a random scope
is needed the input bus (SCOPES) is defined by scopes which include more than
two systems and at least one of their systems is a context (which is not disabled
at that time). Finally, when we need to randomly identify a context in a previ-
ously selected scope, the input bus of the SRL (CONTEXTS) is defined by the
valid contexts of the scope (meaning that previously used contexts that resulted
in a mismatch are masked out). The fifth input of the MUX serves a low-level
optimization for a scopetable manipulation task.

4 Testing and Evaluation

Before the final design is implemented and tested in silicon, it is possible to verify
its functional behaviour and assess its performance by using standard industry
EDA tools. We intend to implement HAoS on the Xilinx ML605 evaluation
board. Our prototype architecture, which supports a maximum number of 64
systems, is described in VHDL (7K lines of code) and synthesized targeting
the on-board Virtex-6 LX240T FPGA device by using the Xilinx ISE v13.1
design suite. The verification environment is written in SystemVerilog (5K lines
of code) and Mentor Graphics QuestaSim is used for simulation. The simulation
experiments are carried on an Intel R©CoreTMi7 950 CPU with 4 GB of RAM
running on 32-bit Windows 7 Ultimate and an nVidia GTX 260 GPU (192
CUDA cores).

Xilinx design tools provide accurate area and timing implementation statis-
tics. Thus, we can present precise performance metrics before downloading our
design on the FPGA. The prototype design (excluding the CPU INTERFACE)
occupies just 5759 (15%) slices (15487 (10%) slice LUTs and 6019 (1%) slice
registers), 143 (23%) I/O blocks, 5 (1%) RAMs and only 1 (0.1%) DSP block
(used as a multiplier).

Table 1. A subset of the successfully simulated SC test programs

Systems Description of the SC Test Program Functions Used

20 Systems subtract-escape, multiplied & printed SUBe, MULT, PRINT

24 Systems subtract-escape and recaptured SUBe, CAPTURE

41 Contexts are transformed to data systems ADD, SUB, COPY

36 Data systems are transformed to context systems SUB, COPY, ZERO

33 Part of schemata 1 of a context is changed ADD, ZERO

12 Fibonacci numbers generator
ADDxce,COPY,
PRINT, CAPTURE

4 Optimized incrementing counter ADDuc

58
A 16-element binary knapsack problem solver
based on a genetic algorithm

BINARYMUTATE,
CROSSOVER,
INIT,OUTPUT

Introducing HAoS 189

HAoS is divided into two clock domains: the REG BANK, which is connected
to the CPU INTERFACE (see Fig. 2) and runs at a higher clock rate (90 MHz)
in order to provide faster read/write operations to the CPU, while the rest of the
design is clocked at a (6 times) slower rate. Future efforts will include pipelining
HAoS in order to achieve higher operating frequencies.

In order to achieve system-level functional coverage closure, a series of 25
SC programs were designed to test and stress the design in various ways. An
indicative set of the simulated SC test programs is given in Table 1. It is evident
that basic and advanced functionality is supported by HAoS.

The most interesting test case is the genetic algorithm (GA) optimization of
the binary knapsack problem (explained in [3]) which is reproduced and simu-
lated as being executed in HAoS. Since [1], [3] and HAoS use the same SC source
code, this test program (which has not been optimized for HAoS) is used as a
preliminary performance benchmark among the available SC implementations
(timing metrics are approximated for the CPU INTERFACE in this work). Ex-
perimental simulation results show that for 10000 interactions in the 16-element
knapsack problem with 50 systems, the original implementation by [1] requires
33241.2 ms, the GPU-based solution in [3] requires 255.1 ms, while HAoS needs
just 55.7 ms, outperforming [1] by a factor of 596 and [3] by a factor of 4.6 (all
results are based on the average of 10 repetitions of the experiment). The ex-
pected solution is found by HAoS on average after 14.9 ms while the SC program
is loaded in 2.67 ms. Timing estimates of the external CPU execution times were
acquired by taking the average execution time of each used function (using the
high resolution hardware timers of the CPU). These estimates were fed back
to the verification environment in order to achieve system-level timing. It was
assumed that the CPU INTERFACE (see Fig. 2) can operate at the maximum
supported frequency (90MHz) posing a data rate requirement of 700 Mbps on
the CPU-FPGA communication link which may be delivered by PCI Express
[12] or Gigabit Ethernet [13]. The investigation of the most efficient and prac-
tical platform for the CPU INTERFACE and its implementation are subject of
future work. Similar results are anticipated for the other test programs.

Table 2. Performance Comparison based on the knapsack SC program

Sequential GPU HAoS

msec (factor) 33241.2 (x596) 255.1 (x4.6) 55.7 (x1)

Solution Found
w:73, p:87 w:75, p:69.7 w:78.7, p:123.5

(Weight : 79, Profit: 124)

It is also noted that HAoS outperforms prior implementations in terms of
the quality of the obtained results. As seen in Table 2, the correct solution for
the knapsack experiment is given for a weight of 79 and a profit of 124. Only
HAoS correctly estimates the expected solution given the restricted number of
interactions. This high level of efficiency is justified from the effective way of
triplet matching and the low-level optimizations of the Control Unit.

190 C. Sakellariou and P.J. Bentley

5 Conclusion

In this paper, the first hardware architecture specifically designed to support
Systemic Computation, HAoS, is presented. The prototype is designed to balance
flexibility (combining on-chip and off-chip processing) with efficiency (taking
advantage of the efficient parallel comparison capability of a TCAM). Early
results based on performance metrics indicate that HAoS could outperform prior
implementations.

Acknowledgments. This work was supported by the EPSRC Doctoral Train-
ing Centre in VEIV (University College London, UK) and Toumaz UK Limited.

References

1. Bentley, P.J.: Systemic computation: A model of interacting systems with natural
characteristics. IJPEDS 22, 103–121 (2007)

2. Le Martelot, E., Bentley, P.J., Lotto, R.B.: A Systemic Computation Platform for
the Modelling and Analysis of Processes with Natural Characteristics. In: Pro-
ceedings of Genetic and Evolutionary Computation Conference (GECCO 2007),
pp. 2809–2816. ACM Press (2007)

3. Rouhipour, M., Bentley, P.J., Shayani, H.: Systemic Computation using Graphics
Processors. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS,
vol. 6274, pp. 121–132. Springer, Heidelberg (2010)

4. Sakellariou, C.: Hardware-based Systemic Computation. Thesis (MRes), Depart-
ment of Computer Science, University College London (2010)

5. Blake, G., Dreslinski, R.G., Mudge, T.: A survey of multicore processors. IEEE
Signal Processing Magazine 26, 26–37 (2009)

6. Marcus, E., Stern, H.: Blueprints for High Availability: Designing Resilient Dis-
tributed Systems. John Wiley & Sons, Inc. (2000)

7. Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.,
Rollins, S., Xu, Z.: Peer-to-peer computing. Technical Report HPL-2002-57, HP
Labs (2002)

8. Akyildiz, I.F., Vuran, M.C.: Wireless sensor networks. John Wiley & Sons, Inc.
(2010)

9. Adleman, L.M.: Computing with DNA. Scientific American 279, 34–41 (1998)
10. Kari, L., Rozenberg, G.: The many facets of natural computing. Communications

of the ACM 51, 72–83 (2008)
11. Le Martelot, E., Bentley, P.J., Lotto, R.B.: Crash-Proof Systemic Computing: A

Demonstration of Native Fault-Tolerance and Self-Maintenance. In: Proceedings of
the Fourth IASTED International Conference on Advances in Computer Science
and Technology (ACST 2008), pp. 49–55. ACTA Press (2008)

12. Bittner, R.: Bus mastering PCI express in an FPGA. In: Proceeding of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pp.
273–276. ACM, New York (2009)

13. Alachiotis, N., Berger, S.A., Stamatakis, A.: Efficient PC-FPGA Communica-
tion over Gigabit Ethernet. In: 10th International Conference on Computer and
Information Technology, Bradford, pp. 1727–1734 (2010)

A Parallel Compact Hash Table

Steven van der Vegt and Alfons Laarman

Formal Methods and Tools, University of Twente, The Netherlands
s.vandervegt@student.utwente.nl,

a.w.laarman@ewi.utwente.nl

Abstract. We present the first parallel compact hash table algorithm.
It delivers high performance and scalability due to its dynamic region-
based locking scheme with only a fraction of the memory requirements
of a regular hash table.

1 Introduction

During the last decade or so, we are witnessing a shift from ever faster sequential
microprocessors towards multi-core processors. This shift is caused by physical
limitations on the nanostructures inside the processor chip and is therefore irre-
versible. Most software systems, however, are still not equipped fully to benefit
from the newly available parallelism.

Data structures, like hash tables, are crucial building blocks for these systems
and many have been parallelized [4,6]. A hash table stores a subset of a large
universe U of keys and provides the means to lookup individual keys in constant
time. It uses a hash function to calculate an address h from the unique key.
The entire key is then stored at its hash or home location in a table (an array of
buckets): T [h] ← key . Because often |U | � |T |, multiple keys may have the same
hash location. We can handle these so-called collisions by calculating alternate
hash locations and searching for a key in the list of alternate locations, a process
known as probing.

In the case that |U | ≤ |T |, a hash table can be replaced with a perfect hash
function and a bit array, saving considerable memory. The former ensures that no
collisions can occur, hence we can simply turn “on” the bit at the home location
of a key, to add it to the set. Compact hashing [3] generalizes this concept for
the case |U | > |T | by storing only the part of the key that was not used for
addressing in T : the remainder. The complete key can now be reconstructed
from the value in T and the home location of the key. If, due to collisions, the
key is not stored at its home location, additional information is needed. Cleary
[3] solved this problem with very little overhead by imposing an order on the
keys in T and introducing three administration bits per bucket.

The bucket size b of Cleary compact hash tables is thus dependent on U and T
as follows: b = w−m+3, with the key size w = �log2(|U |)� and m = �log2(|T |)�.
Assuming that all the buckets in the table can be utilized, the compression ratio
obtained is thus close to the information theoretical lower bound of storing a
subset of U in a list T, where boptimal = w−m+1 [5]. Note that good compression
ratios (b

w) are only obtained when m is significant with respect to w.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 191–204, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

192 S. van der Vegt and A. Laarman

Problem description. Compact hashing has never been parallelized, even though
it is ideally suited to be used inside more complex data structures, like tree ta-
bles [8] and binary decision diagrams (BDDs) [2]. Such structures maintain large
tables with small pieces of constant-sized data, like pointers, yielding an ideal
m and w for compact hashing. But even more interesting than obtaining some
(constant-factor) memory reductions, is the ability to store more information in
machine-sized words, for efficient parallelization depends crucially on memory
alignment and low-level operations on word-sized memory locations [4,7].

Contributions. We present an efficient scheme to parallelize both the Cleary ta-
ble and the order-preserving bidirectional linear probing (BLP) algorithm that
it depends upon. The method is lockless, meaning that it does not use operat-
ing system locks, thereby providing the performance required for use in high-
throughput environments, like in BDDs, and avoiding memory overhead.

Our algorithm guarantees read/write exclusion, but not on the lowest level of
buckets, as in [4,7], nor on fixed-size regions in the table as in region-based/striped
locking, but instead on the logical level of a cluster : a maximal subarray T [i . . . j]
such that ∀x : i ≤ x ≤ j =⇒ T [x].occ ,where T [x].occ denotes a filled bucket.
We call this novel method: dynamic region-based locking (DRL).

2 Background

In the current section, we explain the Cleary table and the BLP algorithm it uses.
Finally, we discuss some parallelization approaches that have been used before
for hash tables and the issues that arise when applying them to the Cleary table.

For this discussion, the distinction between open-addressing and chained hash
tables is an important one. With open addressing, the probing for alternate
locations is done inside the existing table as is done in BLP and hence also in
Cleary tables. While chained or closed-addressing hash tables resolve collisions
by maintaining (concurrent) linked lists at each location in the table.

2.1 Bidirectional Linear Probing

Linear probing (LP) is the simplest form of open addressing: alternate hash
locations in the table are calculated by adding one to the current location. While
this probing technique provides good spatial locality, it is known for producing
larger clusters, i.e., increasing the average probing distance [4].

BLP [1,9] mitigates the downside of LP, by enforcing a global order on the
keys in the buckets using a monotonic hash function: if k1 < k2 then hash(k1) ≤
hash(k2). Therefore, the look-up of a key k boils down to: compare the k to the
bucket at the home location h, if T [h] > k, probe left linearly (h′ ← h−1), until
T [h′] = k. If k is not present in the table, the probe sequence stops at either
an empty bucket, denoted by ¬T [h′].occ, or when T [h′] < k. If T [h] < k, do the
reverse.

To maintain order during an insert of a key, the BLP algorithm needs to move
part of a cluster to the left or the right in the table, thereby making space for the

A Parallel Compact Hash Table 193

new key at the correct (in-order) location. This move is usually done with pair-
wise swaps, starting from the empty bucket at one end of the cluster. Therefore,
this is referred to as the swapping operation. For algorithms and a more detailed
explanation, please refer to [9].

2.2 A Compact Hash Table Using the Cleary Algorithm

As explained in Sec. 1, Cleary’s compact hash table [3] stores only the remainder
of a key in T . With the use of the sorting property of the BLP algorithm and 3
additional administration bits per bucket, the home location h of the remainder
can be reconstructed, even for colliding entries that are not stored at their home
location. The rem function is the complement of the monotonic hashing func-
tion and calculates the remainder, e.g., rem(x) = x%10 and hash(x) = x/10.1

A group h is a sequence of successive remainders in T with the same home lo-
cation h. All adjacent groups in T form a cluster, as defined in Sec. 1, which by
definition is enclosed by empty buckets.

The first administration bit occ is used to indicate occupied buckets. The
virgin bit is set on a bucket h to indicate the existence of the related group h
in T . And finally, the change bit marks the last (right-most) remainder of a
group, such that the next bucket is empty or the start of another group.

Fig. 1 shows the Cleary table with |T | = 10 that uses the example hash and
rem functions from above. A group h is indicated with gh. Statically, keys can be
reconstructed by multiplying the group number by 10, and adding the remainder:
key(j) = group(T [j]) × 10 + T [j] = hash−1(group(T [j])) + T [j]. For example,
bucket 6 stores remainder 8 and group(6) = 4, therefore key(6) = 4×10+8 = 48.

Fig. 1. Example Cleary table with 10 buckets containing 8 remainders, 2 clusters and
4 groups, representing the keys: 7,9,33,34,38,48,60,69

The algorithms maintain the following invariants [3]: the amount of change
and virgin bits within a cluster is always equal, and, when a virgin bit is set on
a bucket, this bucket is always occupied.

The find function in Alg. 1a makes use of these invariants as follows: it
counts the number of virgin bits between the home location h and the left end

1 To increase the performance of the hash function, it is common practice to apply an
invertible randomization function to the key before hashing it [1,3,5]. Throughout
this paper, we assume keys to be randomized.

194 S. van der Vegt and A. Laarman

1: procedure vcount-left(j)
2: c ← 0 � count variable
3: while T [j].occ do
4: c ← c + T [j].virgin
5: j ← j − 1

6: return j, c

7: procedure find(k)
8: j ← hash(k)
9: if ¬T [j].virgin then

10: return NOT FOUND � false
11: (j, c) ← vcount-left(j)
12: j ← j + 1
13: while c �= 0 ∧ T [j].occ do
14: if c = 1∧ T [j] = rem(k) then
15: return FOUND � true
16: c ← c − T [j].change
17: j ← j + 1

18: return NOT FOUND � false

Require: (∃i : ¬T [i].occ) ∧ ¬find(k)
1: procedure put(k)
2: h ← hash(k)
3: (j, c) ← vcount-left(h)
4: T [j] ← rem(k)
5: T [j].occ ← 1
6: T [j].change ← 0
7: while c �= 0 do
8: if T [h].virgin ∧ c = 1∧
9: T [j + 1] > rem(k) then

10: return
11: c ← c − T [j + 1].change
12: swap(T [j + 1], T [j])
13: j ← j + 1

14: if T [h].virgin then
15: T [j − 1].change ← 0

16: T [j].change ← 1
17: T [h].virgin ← 1

Alg. 1. Functions for finding (a) and inserting (b) a key in a Cleary table

of the cluster in c (see vcount-left). Since the last encountered virgin bit
corresponds to the left-most group, the group h can now be located by counting
c change bits to the right (l.13-17). The first iteration where c = 1 marks that
start of group h. Hence, the algorithm starts comparing the remainders in T [j]
with rem(k) at l.14, and returns FOUND when they are equal. Once c becomes 0
again, the group h did not contain the key, and NOT FOUND is returned at l.18.

The put function in Alg. 1b inserts the remainder of k in the empty bucket
left of the cluster around h at l.4-6 and swaps it in place at l.7-13 (swap only
swaps the remainder and the change bit). In this case, in place means two
things: within group h as guaranteed by l.7 and l.8, and sorted by remainder
value as guaranteed by l.9. Furthermore, put guarantees the correct setting of
the administration bits. First, the occ bit is always set for every inserted element
at l.5. Also, before return, the virgin bit is always set for T [h] (see l.8 and l.17).

To understand the correct setting of the change bits, we introduce an invari-
ant: at l.8, group(T [j + 1]) ≤ h. Consequently, a return at l.10, means that the
remainder is not swapped to the end of group h, therefore the change bits do
not require updating. On the other hand, if the while loop terminates normally,
the remainer is swapped to the end of group h, therefore the change bit needs to
be set (l.16). If group h already existed (T [h].virgin = true), the previous last
remainder of the group needs to have its change bit unset (l.15).

We illustrate put with an example. Inserting the key 43 into the table of Fig. 1
gives a h = hash(43) = 4 and rem(43) = 3. Searching for the empty bucket left
of the cluster at l.3, results in j = 2 and c = 2, since there are two virgin bits
in buckets 3 and 4. The remainder is initially inserted in T [2] (l.4-6). At l.12
the remainder in bucket 2 is swapped with bucket 3 (the virgin bit remains

A Parallel Compact Hash Table 195

unchanged). These steps are repeated until j points to bucket 5. Then, at l.11 c
becomes 1, indicating group(T [j +1]) = h. In the next iteration (j′ = j − 1), the
condition at l.8-9 holds, meaning that the remainder is at its correct location:
at the start of g4.

If instead, we were inserting the key 49, c would have become 0, ending the
while loop with j = 6 (l.7), after swapping the remainder 9 to bucket 6. Because
g4 already existed, the previous change bit (now on T [5]) is unset by l.14-15.
Finally, the change bit at bucket 6 is set by l.16.

To make groups grow symmetrically around their home locations and keep
probing sequence shorter, it is important that the put function periodically
also starts inserting remainders from the right of the cluster (not shown in the
algorithm). Our experimental results confirm that a random choice between the
two insert directions yields the same probe distances as reportedly obtained by
the optimal replacement algorithms in [1].

2.3 Related Work on Parallel Hash Tables

In this subsection, we recapitulate some relevant, existing approaches to paral-
lelize hash tables. With relevant, we mean parallel hash tables that can efficiently
store smaller pieces of data (remember, from the introduction, that the key size
w should be significant with respect to m for compact hashing to be effective).
Furthermore, the scalability should be good for high-throughput systems like
inside BDDs.

Many parallel hash table implementations are based on chaining. More ad-
vanced approaches even introduce more pointers per bucket, for example: split-
ordered lists [6, Sec. 13.3], which: “move[s] the buckets among the [keys], instead
of moving the [keys] among the buckets”. While these kind of hash tables lend
themselves well for maintaining small sets in parallel settings like graphical user
interfaces, they are less suited for our goals for two reasons: (1) the pointers
require relatively much additional memory compared to the small bucket sizes
that are so typical for compact hashing and (2) the pointers increase the mem-
ory working set, which is disastrous for scalability on modern computer systems
with steep memory hierarchies [7,4].

Slightly more relevant to our cause is the use of operating system locks to
make access to a hash table (chained or open addressing) concurrent. One lock
can be used for the entire table, but this is hardly scalable. Alternatively, one
lock can be used per bucket, but this uses too much memory (we measured 56
bytes for posix locking structures, this excludes any memory allocated by the
constructor). A decent middle way is to use one lock for a group of buckets. The
well-known striped hash table [6, Sec. 13.2.2], does this for chained tables. To
employ the same idea for an open-addressing table, it does not make sense to
‘stripe’ the locks over the table buckets. Preferably, we group subsequent buckets
into one region, so that only one lock needs to be taken for multiple probes. We
dub this method “region-based locking” (RBL).

196 S. van der Vegt and A. Laarman

Lockless hash tables avoid the use of operating system locks entirely. Instead,
atomic instructions are used to change the status of buckets (“locking” in paren-
theses). A lockless hash table (LHT) is presented in [7], based on ideas from
[4]. It uses open addressing with LP and even modifies the probe sequence to
loop over cache lines (“walking the line”) to lower the memory working set and
achieve higher scalability. For maximum scalability, only individual buckets are
“locked” using one additional bit; the only memory overhead that is required.

None of the above-mentioned methods are suitable for ordered hash tables, like
BLP and Cleary tables. First the regions in RBL are fixed, while the clusters in
ordered tables can be at the boundary of a region. While this could be solved
with more complicated locking mechanism, it would negatively affect the perfor-
mance of RBL, which is already meager compared to the lockless approaches (see
Sec. 4). The lockless approach, in turn, also fails for ordered hash tables since
it is much harder to “lock” pairs of buckets that are swapped atomically. And
even if it would be technically possible to efficiently perform an atomic pairwise
swap, it would severely increase the amount of (expensive) atomic operations
per insert (Sec. 3.2 discusses the complexity of the swapping operations).

In [9], we introduced a lockless algorithm for BLP that “locks” only the cluster
during swapping operation. find operations do not require this exclusive access,
for an ongoing put operation can only cause false negatives that can be mitigated
by another exclusive find operation. However, this method is not suitable for
the Cleary table, since its find function is probe-sensitive, because it counts the
virgin and change bits during probing. Therefore, it can cause false positives
in case of ongoing swapping operations. The current paper is an answer to the
future work of [9].

3 Dynamic Region-Based Locking

In the current section, we first present dynamic region-based locking (DRL): a
locking strategy that is compatible with the access patterns of both the BLP al-
gorithm with its swapping property and the Cleary table with its probe-sensitive
lookup strategy. We limit our scope to a procedure that combines the find and
put functions, described in the previous section, into the find-or-put func-
tion, which searches the table for a key k and inserts k if not found. The reason
for this choice is twofold: first, it covers all issues of parallelizing the individual
operations, and second, the find-or-put operation is sufficient to implement
advanced tasks like model checking [7,8].

Additionally, in Sec. 3.2, we show that DRL only slightly increases the number
of memory accesses for both BLP and PCT. From this and the limited number
of atomic operations that it requires, we conclude that its scalability is likely as
good as LHT’s. We end with a correctness proof of DRL in Sec. 3.3.

3.1 Parallel FIND-OR-PUT Algorithm

We generalize the lockless BLP algorithm from [9] to accommodate Cleary com-
pact hashing with its probe-sensitive find operation. It uses one extra bit field

A Parallel Compact Hash Table 197

per bucket (lock) to provide light-weight mutual exclusion. This method has
limited memory overhead and does not require a context switch and additional
synchronization points like operating system locks.

The atomic functions try-lock and unlock control this bit field and have
the following specifications: try-lock requires an empty and unlocked bucket
and guarantees an empty, locked bucket or otherwise fails. unlock accepts mul-
tiple buckets and ensures all are unlocked upon return (each atomically, the
multiple arguments are merely syntactic sugar). These functions can be imple-
mented using the processor’s cas(a, b, c) operation, which updates a word-sized
memory location at a with c atomically, if and only if the condition b holds
for location a [6, Ch. 5.8]. cas returns the initial value at location a, used to
evaluate the condition.

Alg. 2 shows the dynamic locking scheme for the find-or-put algorithm.
First, at l.3, the algorithm tries a non-exclusive write using cas, which succeeds
if the home location h is empty and unlocked (¬lock ∧¬occ). The success of the
operation can be determined from the return value old of cas (see l.4). If a lock
or full bucket was detected, the algorithm is restarted at l.7.

From l.10 onwards, the algorithm tries to acquire exclusive access to the cluster
around T [h]. Note that T [h] is occupied. At l.10 and l.11, the first empty location
left of and right of h are found in T . If both can be locked, the algorithm enters a
local critical section (CS) after l.16, else it restarts at l.13 or l.16 (after releasing
all taken locks). In the CS, the algorithm can now safely perform exclusive reads
and exclusive writes on the cluster (l.17 and l.20).

DRL is suitable in combination with the find and put operations of both
BLP and the Cleary table. If we are implementing the BLP algorithm using this
locking scheme, then find at l.8 can perform a non-exclusive read (concurrent
to any ongoing write operations). The possibility of a false negative is miti-
gated by an upcoming exclusive read at l.17. For the Cleary algorithm, however,
the non-exclusive read needs to be dropped because the probe-sensitive lookup
mechanism might yield a false positive due to ongoing swapping operations.

1: procedure find-or-put(k)
2: h ← hash(k) � non-excl. write:
3: old ← cas(T [h],¬lock ∧ ¬occ, k)
4: if ¬old .occ ∧ ¬old .lock then
5: return INSERTED

6: else if old .lock then
7: return find-or-put(k)

8: if find(k) then � non-excl. read
9: return FOUND

10: left ← cl-left(h)
11: right ← cl-right(h)

12: if ¬try-lock(T [left]) then
13: return find-or-put(k)

14: if ¬try-lock(T [right]) then
15: unlock(T [left])
16: return find-or-put(k)

17: if find(k) then � exclusive read
18: unlock(T [left], T [right])
19: return FOUND

20: put(k) � exclusive write
21: unlock(T [left], T [right])
22: return INSERTED

Alg. 2. Concurrent bidirectional linear find-or-put algorithm

198 S. van der Vegt and A. Laarman

3.2 Complexity and Scalability

Two questions come to mind when studying the DRL: (1) What is the added
complexity compared to the sequential BLP or Cleary algorithm? (2) What scal-
ability can we expect from such an algorithm. Below, we discuss these matters.

For ordered hash tables, like BLP and Cleary tables, the cluster size L depends
on the load factor α, as follows: L = (α−1)−2−1 [1], where α = n/|T | and n the
number of inserted keys. Since DRL probes to the empty buckets at both ends
of the cluster, it requires (α− 1)−2 + 1 bucket accesses. When implementing the
Cleary table using DRL, this is the complexity for the find-or-put operation
independent whether an insert occurred or not, because in both cases it “locks”
the entire cluster. Note that we do not count the bucket accesses of the called
find and the put operations, since, in theory, these could be done simultaneously
by the cl-left and cl-right operations. In practice, this seems unnecessary,
because the cluster will be cache hot after locking it.

The sequential Cleary find and put algorithm have to probe to one end of the
cluster to count the virgin and change bits, hence require 1

2 (α− 1)−2 + 1
2 bucket

accesses (again assuming that we can count both in one pass or that the second
pass is cached and therefore insignificant). We conclude that Cleary+DRL (with
one worker thread) is only twice as slow as the original Cleary algorithm.

For BLP+DRL the story changes, but the outcome is the same. The sequential
BLP algorithm does not have to probe to the end of the cluster and is empiri-
cally shown to be much faster than LP [1]. However, DRL+BLP is correct with
non-exclusive reads as long as an unsuccessful find operation is followed by an
exclusive find to mitigate false negatives, as is done in Alg. 2. But false neg-
atives are rare, so again the parallel find operation is not much slower than
the sequential one. The same holds for the put operation, since the sequential
version on average needs to swap half of an entire cluster and the parallel version
“locks” the whole cluster.

Scalability of DRL can be argued to come from three causes: first, the com-
plexity (in memory access) of the parallel algorithm is the same the sequential
versions, as shown above, second, the number of (expensive) atomic operations
used is low, DRL uses two at most, and third, the memory accesses are all
consecutive. We analyze the third cause in some more detail.

To mitigate the effect of slow memories, caching is important for modern
multi-core systems. Each memory access causes a fixed region of memory, known
as a cache line, to be loaded into the CPU’s cache. If it is written to, the entire
line is invalidated and has to be reload on all cores that use it; an operation which
is several orders of magnitude more expensive than other operations using in-
cache data. We have shown before that highly scalable hashing algorithms can
be obtained by lowering the number of cache lines that are accessed: the memory
working set [7].

The open-addressing tables discussed in this paper exhibit only consecutive
memory accesses. And while it seems that the amount of buckets probed in the
Cleary algorithm is high, typically few cache lines are accessed. For example,
there are 26 bucket accesses on average for α = 0.8, while on average only

A Parallel Compact Hash Table 199

�26/64� + 26/64 = 1.41 cache lines are accessed, assuming a bucket size of 1
byte and a cache line size of 64 byte. When α grows to 0.85, we get 1.71 cache
line accesses on average, and when α = .9, 3.59 accesses. Note finally that with
buckets of 1 byte, the cleary algorithm can store keys of more than 32 bit for
large tables, e.g, if m = 28, then w = b + m − 3 = 8 + 28 − 3 = 33, while
non-compacting hash table requires five bytes per bucket to store as many data.
In conclusion, we can expect Cleary+DRL to perform and scale good until load
factors of 0.8 and competitive performance to that of [7].

3.3 Proof of Correctness

To prove correctness, we show that Alg. 2 is linearizable, i.e., its effects appear
instantaneously to the rest of the system [6, Ch. 3.6]. Here, we do this in a
constructive way: first, we construct all possible local schedules that Alg. 2 al-
lows, then we show by contradiction that any interleaving of the schedules of
two workers always respects a certain critical section (CS) of the algorithm, and
finally, we generalize this for more workers. From the fact that CS is the only
place where writes occur, we can conclude linearizability.2 We assume that all
lines in the code can be executed as atomic steps.

If the home location of a key k is empty, correctness follows from the properties
of the atomic cas operation at l.3. For every other table accesses (l.17 and l.20),
we prove that never two workers can be in their CS for the same cluster.

The ‘→’ operator is used to denote the happens-before relation between those
steps [6]. For example, ‘cl-righti(x) → try-locki(x)’ means that a Worker i
always first executes cl-right writing to the variable x (l.11), and subsequently
calls try-lock using (reading) the variable x. We omit the subscript i, if it is
clear from the context which worker we are talking about. We concern our-
selves with the following local happens-before order: cas(h) � cl-left(l) →
cl-right(r) → try-lock(l) � try-lock(r) � (occ(l)⊕ occ(r)), where occ(x)
signifies a fill of a bucket (T [x].occ ← 1) and � indicates a happens-before rela-
tion dependent on a condition. Depending on the replacement end (left or right),
put fills one of the buckets at the end of the cluster, hence the exclusive-or: ⊕.
Furthermore, we write li, ri and hi for: the left variable, the right variable and
the home-location hi = hash(k), all local to a Worker i.

Lemma 1. Alg. 2 ensures that when two workers try to enter their CS for the
same cluster, then: li = lj ∨ ri = lj ∨ li = rj ∨ ri = rj .

Proof. Assume Worker Wi is in its CS, and Worker Wj is about to enter the CS
for the same cluster. Since Wi is in its CS, we have T [li].lock and T [ri].lock. Wi

is going to perform the step occ(li) or occ(ri). Note that these operations might
influence the clusters, as two clusters separated by only one empty bucket, may
become one upon filling the bucket.
2 For completeness sake, we should also mention that we only allow for false positives

to occur in non-exclusive reads and that unsuccessful non-exclusive reads are always
followed by a read operation in the CS, i.e., an exclusive read.

200 S. van der Vegt and A. Laarman

Fig. 2. Several clusters and empty positions. The cluster 8-10 is locked by worker Wi.
Location marked with ha to he potential home locations for worker Wj .

Worker Wj has yet to enter its CS, executing the steps: cas(hj) → cl-left(lj)
→ cl-right(rj). With a generalizable example, Fig. 2 illustrates five non-trivial
cases that we consider, where Wj starts with a hj respective to the cluster li, ri.
Clusters in T are colored gray and we assume that they are separated by one
empty bucket (white), because more empty buckets makes the resulting cases
only more trivial. There are several representative home-locations marked with
ha to he (e.g., choosing a different location within the same cluster leaves the
results of the cl-left and cl-right operations unaffected). Locations on the
right of ri follow from symmetry. Below, we consider the outcome of all the cases
for hj . We use the fact that there are no empty buckets between lj and rj .

hj = ha: Because T [hj].occ, cas(hj) fails. Wj performs the steps cl-left(lj)
→ cl-right(rj). Since lj = 1 < rj = 3 < li, Lemma 1 is vacuously true.

hj = hb: This location is unoccupied and not locked, so the cas(hj) succeeds
and the algorithm returns never reaching CS, making Lemma 1 vacuously true.

hj = hc: This location is occupied so cas(hj) fails. Next, the step cl-left(lj)
results in lj = 3. The result rj of cl-right is dependent on the state of Wi. If
Wi has not already performed any occ or did perform occ(11), then rj = 7. If
Wi has executed occ(7), then rj = 11. So, rj = 7 = li ∨ rj = 11 = ri.

hj = hd: The success of the cas(hj) depends on the state of Wi. If Wi

has not performed any steps, then cas(hj) restarts the algorithm at l.7. If Wi

has performed occ(7), then Wj continues with cl-left(lj) and cl-right(rj),
resulting in lj = 3, rj = 11 = ri. If Wi has performed step occ(11), then
lj = 7 = li, rj = 15.

hj = he: Since he is occupied, cas(hj) fails again. Wj continues with the
cl-left(lj) and cl-right(rj). The result depends on if Wi has executed occ(7)
or occ(11). We distinguish five interleavings:
1: cl-left(lj) → cl-right(rj) → (occi(7) ⊕ occi(11)) ⇒ lj = 7, rj = 11 = ri

2: cl-left(lj) → occi(7) → cl-right(rj) ⇒ lj = 7 = li, rj = 11 = ri

3: cl-left(lj) → occi(11) → cl-right(rj) ⇒ lj = 7 = li, rj = 15
4: occi(7) → cl-left(lj) → cl-right(rj) ⇒ lj = 3, rj = 11 = ri

5: occi(11) → cl-left(lj) → cl-right(rj) ⇒ lj = 7 = li, rj = 15

Thus, under the above assumption: li = lj ∨ ri = lj ∨ li = rj ∨ ri = rj . ��

Theorem 1. No two workers can be in their CS at the same time and work on
the same cluster such that li ≤ lj ≤ ri ∨ li ≤ rj ≤ ri ∨ (lj ≤ li ∧ rj ≥ ri).

A Parallel Compact Hash Table 201

Proof. By contradiction, assume the opposite: both Wi and Wj reach their CS
and li ≤ lj ≤ ri ∨ li ≤ rj ≤ ri ∨ (lj ≤ li ∧ rj ≥ ri). Without loss of generality
because of symmetry, we assume again Wi to have entered its CS first. The steps
for Wj to arrive in its CS are:
cas(hj) → cl-left(lj) → cl-right(rj) → try-lock(lj) → try-lock(rj).
The remaining step for Wi is: occ(li) ⊕ occ(ri)
Wi hash performed try-lock(li) → try-lock(ri), thus we have T [li].lock ∧
T [ri].lock. According to Lemma 1 that at least one of the locations lj and rj

equals either li or ri. Therefore, Wj will always fail with either try-lock(lj)
or try-lock(ri). This conclusively proves mutual exclusion for two workers.
Since additional workers cannot influence Wj in such a way that Lemma 1 is
invalidated, Theorem 1 also holds for N > 2 workers. ��

Absence of deadlocks (infinite restarts at l.7, l.13 and l.16), follows from the fact
that all “locks” are always released before a restart or a return. Furthermore, we
have absence of livelocks, because workers first “lock” the left side of a cluster.
The one which locks the right side first, wins. With a fair scheduler the algorithm
is also starvation-free, because each worker eventually finished its CS in a finite
number of steps. From this, we conclude that Alg. 2 is linearizable.

4 Experiments

In the current section, we show an empirical evaluation of the Parallel Cleary
Table (PCT), i.e. Cleary+DRL, by comparing its absolute performance and
scalability with that of BLP+DRL, LHT and RBL. In our experiments, several
parameters have been fixed as follows: m = 28, b = 16 for PCT, while for the
non-compacting tables b = 64, and finally α = 0.9. These parameters reflect best
the goals we had in mind for this work, since all tables can store pointers larger
than 32 bits. Furthermore, the load factor and bucket size for PCT is higher than
the values discussed in Sec. 3.2, creating a healthy bias against this algorithm.
Additionally, we investigated the influence of different load factors on all tables.

We used the following benchmark setup. All tables were implemented in the
C language using pthreads.3 For RBL, we determined the optimal size of the
regions by finding the size that yielded the lowest parallel runtime. For table
of 228 buckets, this turned out to be 213. The benchmarks were run on Linux
servers with 4 amd Opteron(tm) 8356 CPUs (16 cores total) and 64GB memory.
The maximum key size w that all tables can store in our configuration is 40: for
PCT we have w = b+m−4 = 16+28−4 = 40, and for BLP, LHT and RBL we
have w = 64 − 2 = 62 (2 for the lock and occ bit). Therefore, we fed the tables
with 40 bit keys, generated with a pseudo random number generator.

Table 1 gives the runtimes of all hash tables for different read/write ratios
and load factor of 90%. Beside the runtimes with 1, 2, 4, 8, and 16 cores (TN

for N ∈ {1, 2, 4, 8, 16}), we included the runtimes of the sequential versions
of the algorithms Tseq , i.e., the algorithm run without any locks and atomic

3 Available at: http://fmt.cs.utwente.nl/tools/ltsmin/memics-2011

http://fmt.cs.utwente.nl/tools/ltsmin/memics-2011

202 S. van der Vegt and A. Laarman

Table 1. Runtimes of BLP, RBL, LHT and PCT with r/w ratios 0:1, 3:1 and 9:1

Alg. LHT RBL BLP PCT

r/w ratio 0:1 0:3 0:9 0:1 0:3 0:9 0:1 0:3 0:9 0:1 0:3 0:9

Tseq 77.5 242.4 569.2 76.7 239.9 563.2 71.8 279.1 676.0 54.5 368.9 1050.

T1 81.6 255.2 599.2 145.9 565.4 1404. 97.5 302.0 726.3 77.3 565.9 1543.

T2 51.6 157.6 371.0 85.0 327.6 813.4 60.8 188.8 443.9 44.4 317.7 863.9

T4 26.5 77.9 184.0 46.2 170.2 424.9 31.3 94.0 219.1 23.4 159.7 431.9

T8 13.9 39.6 92.9 24.0 89.4 219.2 16.5 47.8 110.3 11.5 79.7 216.0

T16 7.7 21.1 48.8 13.5 48.6 120.5 9.4 25.5 57.2 6.0 41.6 112.9

instructions. From this, we can deduce the overhead from the parallelization.
Comparing the runs with a r/w ratio of 0:1, we see that the sequential variants
have more or less the same runtime (PCT is slightly faster, due to its compacter
table). Only the lockless algorithms show little overhead when we compare Tseq

to T1, while DRL shows that the posix mutexes slow the algorithm down by a
factor of two. The same trend is reflected in the values for TN with N > 1.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Cores

LHT 0:1

LHT 3:1

LHT 9:1

RBL 0:1

RBL 3:1

RBL 9:1

BLP 0:1

BLP 3:1

BLP 9:1

PCT 0:1

PCT 3:1

PCT 9:1

Ideal Speedup

Fig. 3. Speedups of BLP, RBL, LHT and PCT with r/w ratios 0:1, 3:1 and 9:1

A Parallel Compact Hash Table 203

0

20

40

60

80

100

120

140

160

180

200

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

T 1
6

load factor

LHT 0:1 LHT 3:1

LHT 9:1 RBL 0:1

RBL 3:1 RBL 9:1

BLP 0:1 BLP 3:1

BLP 9:1 PCT 0:1

PCT 3:1 PCT 9:1

Fig. 4. 16-core runtimes of BLP, RBL, LHT and PCT

If we now focus our attention to the higher r/w ratios, we see that reads are
much more expensive for PCT. This was expected, since non-exclusive reads in
DRL are not allowed for PCT as explained in the previous section. To investigate
the influence of the r/w ratio, we plotted the absolute speedups (SN = Tseq/TN)
of the presented runs in Fig. 3. The lightweight locking mechanism of DRL
delivers good scalability for PCT and BLP, almost matching those of LHT.
While PCT speedups are insensitive to the r/w ratio, since the algorithm always
performs the same locking steps for both read and write operations, BLP shows
much better speedups for higher r/w ratios. Finally, we see that RBL is no
competition to the lockless algorithms.

To investigate the effects of the load factor, we measured the 16-core runtimes
of all algorithms for different load factors. To obtain different load factors we
modified the number of keys inserted and not the hash table size, therefore we
plotted the normalized runtimes T norm in Fig. 4 (T norm = T/α, where α = n/|T |
is the load factor and n the number of keys inserted). Due to the open-addressing
nature of the hash tables presented here, the asymptotic behavior is expected
for α close to 100% (the probe sequences grow larger as the table fills up).
However, this effect is more pronounced for PCT, again because of the read-
write exclusion, and for RBL, because more locks have to be taken once the
probe distance grows.

5 Discussion and Conclusions

We have introduced DRL: an efficient lockless mechanism to parallelize BLP
and Cleary compact hash tables efficiently. We have shown, analytically and
empirically, that these Parallel Cleary Tables (PCT) scale well up to load factors
of at least 80%. This is acceptable, since the compression ratio, obtained by
compact hashing, can be far below this value.

204 S. van der Vegt and A. Laarman

With experiments, we also compared both parallel ordered hash tables (PCT
and BLP) with a state-of-art lockless hash table (LHT) and a region-based lock-
ing table that uses operating system locks (RBL). We found that PCT and BLP
can compete with LHT. On the other hand, RBL scales worse than the other
lockless tables. We finally showed that PCT comes with higher costs for find
operations and higher load factors. However, this also holds for the sequential
algorithm because it has to probe to the end of the cluster as the analysis showed
and as is reflected by the good speedups that PCT still exhibits.

While we concentrated in this work on a parallel find-or-put algorithm, we
think that other operations, like individual find, put and delete operation,
can be implemented with minor modifications.

In future work, we would like to answer the following questions: Could DRL
be implemented with locking only one side of the cluster and the home location?
Could PCT be implemented with non-exclusive reads? The former could further
improve the scalability of DRL, while the latter could transfer the performance
figures of parallel BLP to those of PCT.

Acknowledgements. We thank Jaco van de Pol for providing useful comments
on this work.

References

1. Amble, O., Knuth, D.E.: Ordered Hash Tables. The Computer Journal 17(2), 135–
142 (1974)

2. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers 35, 677–691 (1986)

3. Cleary, J.G.: Compact Hash Tables Using Bidirectional Linear Probing. IEEE Trans-
actions on Computers C-33(9), 828–834 (1984)

4. Click, C.: A Lock-Free Hash Table. Talk at JavaOne (2007),
http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf

5. Geldenhuys, J., Valmari, A.: A Nearly Memory-Optimal Data Structure for Sets
and Mappings. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp.
136–150. Springer, Heidelberg (2003)

6. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. M. Kaufmann
(2008)

7. Laarman, A.W., van de Pol, J.C., Weber, M.: Boosting Multi-Core Reachabil-
ity Performance with Shared Hash Tables. In: Sharygina, N., Bloem, R. (eds.)
FMCAD 2010, pp. 247–255. IEEE Computer Society (2010)

8. Laarman, A., van de Pol, J., Weber, M.: Parallel Recursive State Compression for
Free. In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops 2011. LNCS, vol. 6823,
pp. 38–56. Springer, Heidelberg (2011)

9. van der Vegt, S.: A Concurrent Bidirectional Linear Probing Algorithm. In: Heijnen,
C., Koppelman, H. (eds.) 15th Twente Student Conference on Information Technol-
ogy, Enschede, The Netherlands, Enschede. TSConIT, vol. 15, pp. 269–276. Twente
University Press (2011),
http://referaat.cs.utwente.nl/TSConIT/download.php?id=981

http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf
http://referaat.cs.utwente.nl/TSConIT/download.php?id=981

Four Authorization Protocols

for an Electronic Payment System

Roman Žilka1, Vashek Matyáš1, and Libor Kyncl2

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
{zilka,matyas}@fi.muni.cz

2 Faculty of Law, Masaryk University, Brno, Czech Republic
libor.kyncl@law.muni.cz

Abstract. Over the recent years the Czech law has become quite liberal
towards electronic payment systems dealing with low-value goods (“mi-
cropayments”) [1]. As of today, few businesses make use of the new legal
facilities. This paper concerns a project aiming to support proliferation
of the micropayment-based operations by creating a feature-rich, secure
payment system with an open specification. More precisely, the key focus
here will be payment authorization: as payments are carried out by an
electronic device on a customer’s behalf, there is a clear need for preven-
tion of its abuse in case of theft. We introduce four original authorization
protocols – each suited to a different environment – that prescribe the
behavior of all relevant communicating devices and hopefully allow for
secure and sound authorization.

Keywords: authorization, PIN, payment system, payment scheme, mi-
cropayments, security, privacy, Payment System Act.

1 Motivation and Setting

1.1 The Original Payment System

In legal terms a payment system (PS) is a funds transfer system with formal and
standardised arrangements and common rules for processing, clearing and/or
settlement of payment transactions [2]. Vaguely put, a PS defines an infrastruc-
ture for buying and selling services and goods, be it a tangible or electronic
variety. A PS specification defines, among other items, a payment scheme: a
set of communication protocols all system components must follow in order to
attain the PS goals. This includes the format of data structures passed during
communication.

In 2008 our team at the Faculty of Informatics, Masaryk University, Brno and
the Y Soft Corporation, an industry partner, started a project whose aim is to
develop a PS [4] which is to be secure, highly scalable, feature-rich and suitable
for low-cost payments. Moreover, its specification is to be open, which then makes
the PS unique. Figure 1 depicts the operation of the PS in a nutshell and marks
the chronological order in which events take place. It also introduces the three

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 205–214, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

206 R. Žilka, V. Matyáš, and L. Kyncl

main classes of actors: customers who buy items (event group III in Fig. 1) from
vendors for units of digital cash – cheques. Cheques collected by vendors can be
exchanged (“redeemed”) for actual money at the broker (group IV) who controls
a certain portion of customers’ financial resources placed in payment accounts
of sorts. Inscribed in the cheque is the precise value, the debtor (customer) and
recipient (vendor) of money, as well as an identifier which makes the cheque
substantially unique among all others.

Fig. 1. A simplistic view of the payment system

In the electronic world of the payment scheme the broker is impersonated
by a form of terminals or servers that are, by default, present only in a few
designated locations, such as the broker’s headquarters and branch offices. Ven-
dors are impersonated by payment terminals situated at selling points. Payment
terminals can make a remote connection to the broker terminal. Customers are
represented by portable smart hardware tokens (customer tokens, CTs) that
produce the (digitally signed) cheques. CTs are equipped with a display and
the capacity to communicate with the broker and vendor terminals, but have to
be physically brought to them. Any modifications to the software and contents
of memory of the token can only be made by the token itself or by a broker
terminal.

In one instance of the PS there are many customers and vendors, but only one
broker who serves as a trusted third party to the former two groups. The broker
registers a customer or a vendor in the system by accepting selected personal or
corporate data from them and issuing a customer certificate or a vendor certifi-
cate, respectively (groups I and II in Fig. 1). Certificates are digitally signed by
the broker and contain a public key of the holder, among other items. We assume
the broker’s public key to be known to all customers and vendors. Certificates
also identify the debtor and recipient of money in a cheque.

Four Authorization Protocols for an Electronic Payment System 207

1.2 Motivation for Payment Authorization

At some point during the development of the payment scheme we started care-
fully re-considering the cases of a customer finding out that she has been charged
by the broker for wrongful transactions and trying to reclaim them. Here “wrong-
ful transactions” may refer both to whole transactions and to incorrect values
of transactions. Generally speaking, there are four groups of causes for such an
occurrence: incorrect execution of a payment transaction, CT abuse by a thief,
error made by the customer and cheating on part of the customer. Incorrect
execution encompasses all possible problems that arise upon execution of the
transaction itself and afterwards during its further processing. These problems
may originate within the CT, at the vendor or at the broker.

According to the Czech law, in a PS which handles electronic money the way
our system does, the customer is liable for loss of her money (actual or alleged)
in any of these four cases ([1], art. 116, part 3). That is highly unfavorable for
the customer, whose payment account would be open to free abuse by thieves.
The customer thus asks that the broker provide a means of making sure that a
purchase operation cannot result in a valid cheque, unless a secret held by the
customer (not her CT, that is) is supplied. Providing such a mandatory param-
eter of a transaction is called authorization of a transaction by a customer. As
the broker proceeds to implement authorization in the payment scheme, he an-
nounces to all vendors that cheques produced during unauthorized transactions
will not be redeemed. It must be recognizable for the broker and the vendors
whether authorization was carried out by the customer properly or not. Please
note that a PS based on “electronic money” (as per [1]) is not legally obliged to
support authorization. In fact, not so many existing systems do.

The law has much more to say on the whole topic and aims to define clearly
who is to blame in the various non-standard situations the broker, the vendor
and the customer can potentially find themselves in. Among other items, the
law states that it is actually the broker who covers payments carried out using
a stolen CT by a thief, but only if the customer had properly protected the PIN
(i.e., had not written it down on the CT, had not told it to anyone etc.) and
if she notifies the broker of the CT theft. However, if the customer claims that
she had protected the PIN, the broker either has to believe her, or insist that
the customer actually had not handled the PIN properly and prove this fact
true directly to the customer, or at the financial arbitrator, or at the court –
whichever necessary. Also, the broker becomes fully responsible for the thief’s
spendings only after the customer reports the CT loss – before that happens, it
is the customer who pays for the thief, up to a limit of AC150. That keeps the
customer somewhat motivated to take good care of her CT.

On the other hand, in case the customer reclaims a transaction without a theft
being involved, then the broker is again obliged to pay back for the transaction,
if the customer proves that she has not lost the CT and claims that she has
protected the PIN properly. This leaves the system vulnerable to a new set of
abuse vectors. Please refer to [1] for full details on the legal environment.

208 R. Žilka, V. Matyáš, and L. Kyncl

The rest of the paper will only deal with transactions where authorization
exists and is mandatory. For the sake of completeness let us add that in transac-
tions where no authorization is implemented at all the law rids the broker of the
obligation to pay back to the customer for all reclaimed transactions by default
– the customer herself covers all transactions in that case. Our PS will possi-
bly feature authorization-free transactions as well, but we have not yet decided
firmly on the details.

1.3 Basic Requirements

According to a business decision made by Y Soft, we limit ourselves to autho-
rization based on PINs – short decimal digit strings. We take it for granted that
a means of manual PIN input (“PINpad” henceforth) will be available to the
customer to carry out authorization at all selling points.

In each one of our authorization protocol (AP) designs we seek three qualities
that together ensure the AP’s soundness, i.e., security and proper functioning:

– C-Dependence: The sole possession of a CT is not enough to create a valid
piece of digital currency (e.g., a “cheque with authorization”, a cheque ac-
companied by another data structure, etc.). The correct PIN is a mandatory
parameter of the purchase procedure. Only the legitimate customer (and
possibly broker) is able to supply the correct PIN. For each purchase the
expected correct PIN may be different.

– B-Verifiability: From the aforementioned piece of currency it must be rec-
ognizable for the broker whether the entity that issued the piece deemed
authorization to have taken place correctly or not. This does not imply C-
dependence, but together with C-dependence gives the broker a trustworthy
means of telling authorized transactions from unauthorized ones.

– V-Verifiability: As with B-verifiability, but this time the said fact must be
recognizable to the vendor.

2 Payment Authorization Protocols

2.1 Protocol 1: A Trusted PINpad

Key prerequisites:

– (i) Integrity of the CT is uncompromised, i.e., it operates as the broker
intended and can be trusted in this sense by the customer and vendor.

– (ii) The CT and the PINpad share a secure communication channel (this
implies, above all, that the vendor cannot eavesdrop on or interfere with the
communication).

– (iii) The PINpad itself does not leak PINs outside the channel it shares with
the CT.

Four Authorization Protocols for an Electronic Payment System 209

– (iv) The PINpad is physically perfectly separated from the actual eyes and
fingers of every person but the legitimate customer.

Under such circumstances, it is safe to pre-equip the customer with a single PIN
to authorize all transactions. Authorization takes place just before step 7 of the
payment scheme, as shown in Fig. 1. The CT knows the same PIN and unless
it is supplied through the PINpad, the CT refuses to issue the cheque. Upon
receiving and validating a PIN, the CT inserts a pre-defined tag into the cheque
structure, signs the now-complete cheque and sends it to the vendor.

The AP is sound:

– C-Dependence: The CT refuses to hand over the (tagged) cheque to the
vendor, unless the legitimate customer had previously input the correct PIN.
No other person knows the PIN. The CT operates correctly, so its holder
can trust it.

– B-Verifiability: The broker recognizes an authorized transaction by checking
for the presence of the tag in the cheque.

– V-Verifiability: The same procedure.

An advantage of this AP is its low overhead: only a single PIN has to be given to
a customer. This handover can take place in a secure environment (such as the
broker’s quarters) before any actual transaction. At the same time, the PIN is a
single point of failure and because a human must memorize it, it must be short,
which makes guessing not entirely impossible. Moreover, prerequisites (ii), (iii)
and (iv) may be hard to realize.

2.2 Protocol 2: Customer Token Not Involved

This and the subsequent APs do not rely on the difficult prerequisites (ii), (iii)
and (iv). As a consequence, the single-PIN strategy applied in the AP #1 does
not work anymore: only the very first transaction of a customer would satisfy
C-dependence. Transaction-specific single-use PINs are necessary then and we
cannot rely on the customer remembering a number of them at once or learning
them one after another at any reasonable pace. Single-use PINs are a specific
variety of one-time passwords – a well-studied sub-field of IT security (see [3]
and many others). Our protocols take heed of general recommendations; practical
details, however, are not within the rather theoretical scope of this paper.

Key prerequisites:

– (v) The vendor has a stable means of communication with the broker.
– (vi) The (legitimate) customer carries a mobile phone. The broker can make

use of that to contact her anytime; the broker-phone channel is considered
as private. The customer is in exclusive, full control of her phone.

210 R. Žilka, V. Matyáš, and L. Kyncl

Figure 2 lists1 the steps of the AP #2. While reading it, please bear in mind the
structure of the cheque as given in Sect. 1.1. The protocol takes over immediately
after step 7 as seen in Fig. 1. The CT does not appear in it at all. The vendor and
the customer make use of the trusted third party – the broker, who generates a
fresh PIN for each transaction.

1. V → B REQ = SV(cheque)
2. B V(certC, certV, cheque); VcertV (REQ)
3. B checks that cheque is fresh
4. B generates random PIN and salt; stores pair (PIN , cheque)
5. B HPIN = F(PIN , salt)
6. B → V RESP = SB(cheque, HPIN , salt)
7. B → C-Tel PIN ; phone number known by certC in cheque
8. C → pad PIN
9. pad → V PIN

10. V V(RESP); checks that F(PIN , salt) = HPIN
11. V stores RESP and pair (cheque, PIN)

Fig. 2. Authorization protocol #2 – a model run

The AP is sound:

– C-Dependence: The PIN is random for each transaction and is sent privately
to the legitimate owner of the CT. The broker announces that he will refuse
to redeem the cheque unless the PIN is submitted along with it. Matching
PINs with cheques is possible on part of the broker (see steps 2–4 in Fig. 2).
The broker knows whose phone number to send the PIN to by matching the
serial number of the customer certificate stored in the cheque against a local
customer phone number database. The vendor can only learn the correct
PIN from the legitimate holder of the certificate.

– B-Verifiability: Follows from C-dependence.
– V-Verifiability: The broker sends a hash of the correct single-use PIN to

the vendor as a response to the vendor’s original request. The hash does
not reveal the secret PIN to the vendor, yet allows him to verify whether
the customer attempts to authorize the transaction using the correct PIN.

1 For the sake of saving space we do not reflect the possible transmission errors and
attacks in any of the protocol listings, although checks are present in their com-
pleteness. We put ‘V’ = vendor terminal, ‘B’ = broker terminal, ‘CT’ = customer
token, ‘C’ = customer herself (the physical person), ‘C-Tel’ = customer’s mobile
phone, ‘pad’ = PINpad, ‘certC’ = customer certificate, ‘certV’ = vendor certificate,
SA(msg) = message and its signature made by the party A, VcertA (msg1, msg2, . . .)
= verification of signatures on messages using the public key found in the certA,
V(msg1, msg2, . . .) = verification of signatures on messages (using potentially dif-
ferent public keys), EK(msg) = message encrypted by the symmetric key K, F(msg)
= message processed by a slow one-way function.

Four Authorization Protocols for an Electronic Payment System 211

If so, the vendor can be sure that the customer-provided PIN will allow for
redemption of the current cheque.

Aside from soundness, the protocol takes measures to protect the PS from sec-
ondary attacks and errors. Above all, the threat of PIN-distribution infrastruc-
ture abuse (e.g., spamming, DoS) is countered by steps 2 and 3 as seen in Fig. 2.
Still, abuse of this nature is possible: for example, in cooperation with a vendor,
a thief could use a stolen CT to spam its owner’s phone with PINs.

The AP #2 is advantageous over the AP #1 by allowing for slightly longer
PINs (approx. 10 digits). That reduces the probability of a successful guess and
makes brute-force attack on HPIN infeasible within a reasonable time limit
(please note that F is a slow function). Moreover, the PIN is different every time
– once the customer has decided to use it, it would not matter if it were literally
publicized. The mechanism is also immune to human forgetfulness.

A noteworthy disadvantage, on the other hand, is the protocol’s very high
overhead in communication and computation. This would be even greater if the
protocol included the vendor’s confirmation of accepting the hashed PIN from
the broker. By omitting this step we force the broker to accept (and respond)
only once to every single cheque. This, in return, triggers the need to dismiss a
cheque and create another one to re-purchase the same goods in case the broker’s
response to the vendor gets lost or PIN delivery to the customer fails. Comfort
of use is lower as well – the customer has to carry her mobile phone with her
and copy a PIN from it during every transaction.

2.3 Protocol 3: Pre-distributed PINs

Key prerequisites:

– Prerequisite (i).
– (vii) The customer carries an item which can store PINs in hundreds; for the

sake of simplicity and conformance to expected practice we will assume that
it is a mobile phone. The customer is in exclusive, full control of this phone.

– (viii) New broker-produced random PINs are generated in batches – ordered
sets (“PIN lists”). A copy of the PIN list is uploaded to the customer’s mobile
phone and another copy on her CT. Both these transfers are considered as
private.

– (ix) From her own initiative the customer seeks out a broker terminal to
receive new PINs whenever she deems it necessary.

– (x) The PIN list on a customer’s CT and the list in her mobile phone are
both immutable, except for the option to mark one or more PINs as ‘used’.
These marks are permanent for a given list.

In the AP #3 single-use PINs are delivered to the customer not only after a
payment protocol run has begun, but beforehand in groups. The protocol does
without a secure, reliable PINpad, but makes use of the CT. The typical run of
the AP is depicted in Fig. 3. In terms of Fig. 1 it starts immediately after step
6 and is followed immediately by step 7.

212 R. Žilka, V. Matyáš, and L. Kyncl

1. CT all standard cheque components P1, P2, . . . prepared
2. CT let PIN1 = the last PIN marked as ‘used’
3. CT let PIN2 = the first PIN not marked as ‘used’
4. CT cheque = SC(PIN2, P1, P2, . . .)
5. CT marks PIN2 as ‘used’
6. CT indicates on its display PIN1

7. C → pad PINC = PIN from phone which follows the one on display
8. pad → CT PINC

9. CT if PINC �= PIN2, discards cheque and terminates

Fig. 3. Authorization protocol #3 – a model run

The AP is sound:

– C-Dependence: The broker-generated PINs are random, so we can assume
they will not be guessed. The broker will only redeem cheques that bear
a valid signature and contain a PIN. A CT produces such cheque only if
the correct single-use PIN is supplied. Only the legitimate customer knows
this PIN. Furthermore, the CT only starts accepting a PIN as input after
it has marked the first unused PIN as used and bound it irreversibly to the
cheque that is to be handed over once the current transaction is authorized.
This bound PIN can thus only authorize the current transaction and no
other. Even if a malicious third party takes control of the PINpad, learns
the PIN as it is input by the customer, prevents the PIN from reaching the
CT, terminates the current transaction, later takes a hold of the CT and
initiates a new transaction with it, the stolen PIN will be useless.

– B-Verifiability: A cheque bearing a valid signature is a sufficient proof.
– V-Verifiability: Analogous to B-verifiability.

Positives of this AP include ease of deployment, simplicity, absence of interaction
with the broker during a transaction and feasibility of long and varying PINs. The
foremost negative facet is the customer’s and vendor’s reliance on the integrity
of the CT, as seen in the AP #1. Borrowed from the AP #2 is the trait of the
customer having to carry around her PIN list. The prerequisite (ix) may feel
somewhat inconvenient.

2.4 Protocol 4: On-Demand PIN List Delivery

Key prerequisites:

– Prerequisites (i), (v), (vi), (vii), (viii), (x).
– (xi) The broker and the CT share a secret symmetric key SKBC.

The core ideas of the AP #4 copy those of the previous protocol. Here, however,
the PIN list is sent to the customer’s phone always over the mobile network
(in the previous protocol the means of transport was unspecified), and the CT
downloads its list via a vendor-broker channel during a transaction. Both these

Four Authorization Protocols for an Electronic Payment System 213

1. CT → V a new PIN list request REQ = SC(nonce, certC)
2. V → B V -REQ = SV(REQ, certV)
3. B VcertV(V -REQ); V(certC, certV, REQ)
4. B checks that request with pair (nonce, certC) is fresh
5. B generates new random PIN list L; RESP = SB(L, nonce)
6. B → C-Tel L
7. C-Tel adds L to current working PIN list
8. B → V V -RESP = ESKBC(“PINLIST”, RESP)
9. V → CT V -RESP

10. CT V(RESP); checks nonce in RESP
11. CT adds L to current working PIN list

Fig. 4. PIN list transfer sub-protocol for the authorization protocol #4 – a model run

list updates are triggered by a CT request, which occurs whenever the number
of unused PINs on the CT has got too small. We deliberately avoid stating what
“too small” is. If the number of unused PINs is sufficient at the beginning of
a transaction, the procedure in Fig. 3 applies as AP with no changes. PIN list
transfer comprises inserting steps given in Fig. 4 in between steps 1 and 2 of the
protocol in Fig. 3.

The AP is sound:

– C-Dependence: The AP #3 is C-dependent. Even if the PIN list distribution
sub-protocol in Fig. 4 is included, C-dependence will not be flawed – the PIN
list is delivered only to the legitimate customer’s phone (by a safe route) and
to her CT (encrypted by SKBC). The CT makes use of a random nonce to
tell a fresh list from one replayed by an attacker.

– B-Verifiability: The AP #3 is B-verifiable.
– V-Verifiability: The AP #3 is V-verifiable.

The PIN list delivery infrastructure is susceptible to abuse in ways analogous
to those discussed in Sect. 2.2 (spamming, DoS attacks). Similar measures are
taken to counter such abuse.

This last AP can be viewed as a comfortable variation on the third one: the
PIN list is delivered to the customer automatically when necessary, and she is
not asked to regularly bring her CT (and mobile phone, if need be) to a broker
terminal – an existing on-site communication infrastructure of the vendor is
employed instead. This comfort brings about a range of negative traits almost
equivalent to a sum of those of the second and third protocol: above all, integrity
of the CT is assumed uncompromised, and a single run of the authorization sub-
protocol is lengthy if new PINs need to be obtained from the broker. That,
however, is expected to happen rarely. Because of that, in reality not every
vendor needs to be connected to the broker constantly.

3 Conclusions

In this paper we have introduced in detail four novel PIN-based authorization
protocols intended for our payment system. Each AP is suited for a different

214 R. Žilka, V. Matyáš, and L. Kyncl

configuration of the PS and we clearly state the expected initial conditions per
AP. Major prerequisites include an uncompromised customer token (in the APs
#1, #3, #4), a secure, reliable PINpad (in the AP #1), and a ready vendor-
broker communication channel (in the AP #2 and partially #4). Our aspiration
with this paper is to seek critique from specialists in the fields of electronic
security, protocol design, payment systems and possibly commercial and financial
law. We have explored the general legal context of PSs and plan on performing
a similar analysis of the APs themselves once their format is finalized.

Acknowledgements. Last but not least, we thank Ondřej Kraj́ıček (Y Soft)
and Andriy Stetsko (Masaryk Uni.) for their assistance and insight. We also
thank the anonymous reviewers for their comments and suggestions.

References

1. Act No. 284/2009 Sb., Payment System Act, as amended
2. Directive 2007/64/EC of the European Parliament and of the Council of 13, on pay-

ment services in the internal market amending Directives 97/7/EC, 2002/65/EC,
2005/60/EC and 2006/48/EC and repealing Directive 97/5/EC, as amended
(November 2007)

3. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (2001)

4. Žilka, R., Tuček, P., Matyáš, V., Stetsko, A.: Otevřené mikroplatebńı schéma pro
rozsáhlé infrastruktury. In: Rudolf, V. (ed.) Sborńık př́ıspěvk̊u z 36. konference
EurOpen.CZ. pp. 63–80. EurOpen.CZ, Plzeň, Czech Republic (May 2010), ISBN
978-80-86583-19-8, http://www.europen.cz/Anot/36/eo-1-10.pdf

http://www.europen.cz/Anot/36/eo-1-10.pdf

Author Index

Babka, Vlastimil 63
Balodis, Kaspars 76
Barnat, Jǐŕı 84
Basu, Ananda 1
Bensalem, Saddek 1
Bentley, Peter J. 20, 179
Bourgos, Paraskevas 1
Bozga, Marius 1

Černá, Ivana 84
Chatterjee, Krishnendu 37
Cmorik, Roland 94

Doyen, Laurent 37

Fey, Görschwin 47
Freivalds, Rūsiņš 76

Hliněný, Petr 155
Holub, Petr 136

Jirásková, Galina 94

Klusáček, Dalibor 103
Krausová, Monika 114
Křena, Bohuslav 123
Kucevalovs, Ilja 76
Kyncl, Libor 205

Laarman, Alfons 191
Letko, Zdeněk 123

Matela, Jǐŕı 136
Matyáš, Vashek 205
Mažgut, Jakub 146
Morǐs, Ondrej 155

Obdržálek, Jan 167

Paulinyová, Martina 146

Renner, Renato 57
Rudová, Hana 103

Sakellariou, Christos 179
Sifakis, Joseph 1
Slabý, Jǐŕı 167
Šrom, Martin 136

Tiňo, Peter 146
Trt́ık, Marek 167
Tůma, Petr 63
Tůmová, Jana 84

van der Vegt, Steven 191
Vojnar, Tomáš 123

Žilka, Roman 205

	Title
	Preface
	Organization
	Table of Contents
	Rigorous System Design: The BIP Approach
	System Design
	The BIP Design Flow
	The BIP Language
	Translating Application Software into BIP
	Compositional Verification by Using D-Finder
	Integrating Architectural Constraints in BIP
	Generating Distributed Implementations

	Case Studies
	MJPEG Decoder
	Heterogeneous Communication System

	Discussion and Future Work
	References

	Natural Born Computing
	Introduction
	Origins
	Embodied Computation
	Physical Information
	Systemic Computation
	Summary
	References

	Games and Markov Decision Processes with Mean-Payoff Parity and Energy Parity Objectives
	Introduction
	Definitions
	Games
	Games with Parity, Mean-Payoff, and Energy Objectives
	Games with Mean-Payoff Parity and Energy Parity Objectives

	Markov Decision Process
	MDPs with Parity, Mean-Payoff and Energy Objectives
	MDPs with Mean-Payoff Parity and Energy Parity Objectives
	New Result: Improved Algorithm for Mean-Payoff Parity Objectives

	Conclusion
	References

	Assessing System Vulnerability Using Formal Verification Techniques
	Introduction
	Basics
	Representation of Circuits and Systems
	Faults and Errors
	Fault Tolerance and Reliability

	Assessing Vulnerability
	General Model
	Existing Approaches
	Potential Pitfalls

	Conclusions
	References

	Information Security in a Quantum World
	Introduction
	Limitations of Classical Information Theory
	An Example: The Bounded Storage Model
	Conclusions
	References

	Computer Memory: Why We Should Care What Is under the Hood
	Introduction
	Motivating Examples
	Hardware Features
	Caches: Not Just Size
	Bandwidth: Far From Peak
	Prefetching: Do Be Linear
	Ordering: Hard to Get Right
	Coherency: Not for Heavy Use
	Controllers: No Longer Uniform

	Software Techniques
	References

	Frequency Prediction of Functions
	Introduction
	Results
	References

	Timed Automata Approach to Verification of Systems with Degradation
	Introduction
	Preliminaries
	Verification of Systems with Degradation
	Modeling Systems with Degradation
	Temporal Logic for Systems with Degradation
	DLTL Model Checking

	DLTL Viewed as a Probabilistic Logic
	Conclusions and Future Work
	References

	Basic Operations on Binary Suffix-Free Languages
	Introduction
	Suffix-Free Languages and Suffix-Free Automata
	Basic Operations on Binary Suffix-Free Languages
	Conclusions
	References

	Efficient Data Representation of Large Job Schedules
	Introduction
	Problem Description
	Data Representation of the Schedule
	UpdateSchedule Procedure
	Complexity of the UpdateSchedule Procedure

	Experimental Evaluation
	Conclusion
	References

	Prefix-Free Regular Languages: Closure Properties, Difference, and Left Quotient
	Introduction
	Preliminaries
	Closure Properties
	State Complexity of Difference
	State Complexity of Left Quotient
	Conclusions
	References

	Noise Injection Heuristics for Concurrency Testing
	Introduction
	Existing Noise Injection Heuristics
	A New Coverage-Based Noise Injection Heuristics
	A Comparison of Noise Injection Techniques
	A Comparison of ConTest's Noise Seeding Settings
	A Comparison of Heuristics for Determining Where to Generate Noise

	Conclusions
	References

	Low GPU Occupancy Approach to Fast Arithmetic Coding in JPEG2000
	Introduction
	Arithmetic Coding in JPEG2000
	Accelerating MQ-Coder Using GPU
	MQ-Coder Concurrency and Speedup Techniques
	Low GPU Occupancy Approach
	Experimental Results and Discussion

	Conclusion and Future Work
	References

	Using Dimensionality Reduction Method for Binary Data to Questionnaire Analysis
	Introduction
	Dimensionality Reduction Methods for Binary Data
	The Model
	Data
	Questionnaire Analysis
	Conclusion
	References

	Generalized Maneuvers in Route Planning
	Introduction
	Maneuvers: Basic Terms
	Strongly Connected Road Network

	Route Planning Queries
	M-Dijkstra’s Algorithm
	Processing Negative Maneuvers
	Correctness and Complexity Analysis

	Conclusion
	References

	STANSE: Bug-Finding Framework for C Programs
	Introduction
	Framework Functionality
	Configuration
	Parsing Source Files
	Program Internal Representation
	Pointer Analysis in Stanse
	Matching Language Constructs
	Traversing Internal Representation
	Support for Function Summaries
	The Concept of Checkers
	Processing Errors

	Checkers
	Results on the Linux Kernel
	Important Bugs Found by Stanse

	Conclusions and Future Work
	References

	Introducing the FPGA-Based Hardware Architecture of Systemic Computation (HAoS)
	Introduction
	Systemic Computation
	Overview
	Prior SC Implementations

	The Proposed SC Hardware Architecture
	The SC Architecture
	The Control Unit
	The SC Core

	Testing and Evaluation
	Conclusion
	References

	A Parallel Compact Hash Table
	Introduction
	Background
	Bidirectional Linear Probing
	A Compact Hash Table Using the Cleary Algorithm
	Related Work on Parallel Hash Tables

	Dynamic Region-Based Locking
	Parallel FIND-OR-PUT Algorithm
	Complexity and Scalability
	Proof of Correctness

	Experiments
	Discussion and Conclusions
	References

	Four Authorization Protocols for an Electronic Payment System
	Motivation and Setting
	The Original Payment System
	Motivation for Payment Authorization
	Basic Requirements

	Payment Authorization Protocols
	Protocol 1: A Trusted PINpad
	Protocol 2: Customer Token Not Involved
	Protocol 3: Pre-distributed PINs
	Protocol 4: On-Demand PIN List Delivery

	Conclusions
	References

	Author Index

