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Abstract. Dynamic distributed constraint optimisation problems are a
very effective tool for solving multi-agent problems. However they require
protocols for agents to collaborate in optimising shared objectives in a
decentralised manner without necessarily revealing all of their private
constraints. In this paper, we present the details of the Support-Based
Distributed Optimisation (SBDO) algorithm for solving dynamic dis-
tributed constraint optimisation problems. This algorithm is complete
wrt hard constraints but not wrt objectives. Furthermore, we show that
SBDO is completely asynchronous, sound and fault tolerant. Finally, we
evaluate the performance of SDBO with respect to DynCOAA for Dyn-
DCOP and ADOPT, DPOP for DCOP. The results highlight that in
general, SBDO out performs these algorithms on criteria such as time,
solution quality, number of messages, non-concurrent constraint checks
and memory usage.

1 Introduction

Dynamic Distributed Constraint Optimisation Problems (DynDCOP) are a prob-
lem domain that has not been well explored. DynDCOPs allow us to model
problems that can not be assumed to be static, that is they change so frequently
that by the time a DCOP solver has found a solution it is already obsolete.
DynDCOPs are very useful for modelling and solving multi-agent coordination
and planning problems. These problems appear in many areas such as schedul-
ing patient treatment in a hospital or managing the airspace above an airport.
As DynDCOP is an extension of the well explored Distributed Constraint Op-
timisation Problem (DCOP), techniques utilised to solve DCOP present a good
foundation.

Very few of the DCOP algorithms consider what happens when agents fail.
The max-sum algorithms [11] have been shown to be robust even when 90%
of messages are not delivered. While none of the others consider what happens
when agents fail. There are many reasons, such as hardware failures or malicious
attack that may cause an agent to fail. It is particularly important to be able
to continue solving even when agents fail in dynamic solvers, as they are often
expected to run continuously for a long duration.
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1.1 Related Work

At this time there are only two other algorithms that can solve DynDCOPs,
Dynamic Constraint Optimisation Ant Algorithm (DynCOAA)[6] and Self-
Stabilising Distributed Psuedo-tree Optimisation Procedure (S-DPOP)[8]. Of
these two DynCOAA is incomplete and S-DPOP is complete. Neither of these
two algorithms consider the possibility of agent failure, so are unable to recover
from failures.

As DynDCOP is an extension of the well explored Distributed Constraint Op-
timisation Problem (DCOP), techniques utilised to solve DCOP present a good
foundation. There are a large number of DCOP algorithms, such as ADOPT
[7], NCBB [1], DALO [3] and Divide-and-Coordinate [12]. As none of these al-
gorithms are currently capable of solving dynamic problems we do not consider
them further.

In section 2, we will present the Support Based Distributed Optimisation al-
gorithm (SBDO) which improves on the existing DynDCOP solvers by being
completely asynchronous, fault tolerant and having no hierarchy among agents.
Section 3 describes the performance results comparison from the dynamic prob-
lems, the fault tolerance and static problem dimension. In section 4, we present
the conclusions.

2 Support Based Distributed Optimisation

SBDO is an extension of the SBDS algorithm[2]. SBDS is a complete Distributed
Constraint Satisfaction Problem solver. SBDO extends it by adding a local search
mechanism for optimising the solution found while maintaining the completeness
wrt hard constraints. SBDO also adds support for solving dynamic problems.

We define DynDCOPs as follows. Our definitions differ to that in the literature
as we treat hard constraints and soft constraints/objectives differently.

Definition 1. A Constraint Optimisation Problem (COP) is a tuple 〈X ,D, C,R〉
where X is a set {x1, . . . , xn} of variables, D is a set {d1, . . . , dn} of variable
domains, C is a set {c1, . . . , cm} of constraints defined over X and R is a set
{r1, . . . , ro} of utility functions defined over X .

Definition 2. A Distributed Constraint Optimisation Problem (DCOP) is a
tuple 〈A, COP, C,R〉 where A is a set {a1, . . . , ap} of agents, COP is a set
{COP1, . . . , COPp} of disjoint COPs, C is a set {c1, . . . , cm} of shared con-
straints and R is a set {r1, . . . , rq} of shared utility functions.

The shared constraints and utility functions are defined over variables from
several different COPs.

Definition 3. A Dynamic Distributed Constraint
Optimisation Problem (DynDCOP) is a sequence
〈DCOP1, . . . , DCOPn〉 where each DCOP differs from the previous one by an
added or removed constraint/objective/agent. The goal is to find and maintain
a solution where all the constraints are satisfied and the objective function opti-
mised.
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We assume the existence of a global objective function that the collection of
agents seeks to optimise, but we require that it must be possible to decompose
this function into agent-specific objective functions such that the optimal assign-
ment of variables for the decomposed set of objective functions corresponds to
the optimal assignment for the global objective.

Note that to maintain generality of this discussion, we leave the details for the
decomposition up to the designer. However, each objective function must return
a value proportionate to how good the partial solution is, a utility value, such
that a better solution returns a higher utility value. The utility values returned
by all of the objective functions must be comparable and can be aggregated.

To further increase the generality of the algorithm, shared objectives can be
used as well as local objectives. Shared objectives are used when a (sub)objective
can not be decomposed to include only the variables of one agent. In this case the
objective can be shared between the agents that together control the variables
used in the objective. The objective is evaluated by any of the agents that share
it as soon as that agent knows an assignment to all the variables in the objective.
The utility returned by the shared objective is added to the utility of the agent’s
local objective. If the agent does not have enough information to evaluate the
objective it is ignored and only the agent’s local objective is used.

2.1 Communication

The physical communication channels that agents must use to communicate are
never perfect, so it is desirable for algorithms to be able to tolerate messages
arriving in random order. That is the messages sent between two agents may
not arrive in the same order they were sent, or they may never arrive at all. The
proposed algorithm is robust against messages arriving in random order but not
robust against message loss.

The most common message used for communication in SBDO is an ‘isgood’,
which is very similar to a partial assignment and is in part inspired by techniques
used in formal argumentation, where the notion of an argument is used to encode
alternate points of view.

Definition 4. The neighbour graph is an undirected graph 〈N,E〉. N is the set
of agents and E ⊆ N ×N such that there is an edge {Ai, Aj} iff there exists a
shared constraint or a shared objective defined over both Ai and Aj.

Definition 5. Given a DCOP = 〈A, COP, C,R〉. An isgood is a se-
quence 〈A1, . . . , An〉 of assignments such that the sequence is a sim-
ple path through the neighbour graph. Each assignment is a triple
〈a, {〈x1,D1i〉, . . . , 〈xn,Dnj〉}, utility〉 such that none of the constraints in the
DCOP are violated. The total utility of an isgood is the aggregation of the utili-
ties of all the assignments within it. As such an isgood encodes a partial solution
to the problem as well as the relative utility of the partial solution.

An isgood can be considered as an argument, in which case the first n − 1 as-
signments form the justification and the last assignment is the conclusion. As
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in formal argumentation theories, an argument may attack/defeat other argu-
ments and the agent receiving these potentially competing arguments must pick
the winning argument. Because of this, each agent attempts to send stronger
arguments over time to influence their neighbours.

Definition 6. The ordering over isgoods is: First the total utility of the isgoods
is compared, with higher being better. If they are equal then the number of as-
signments in each isgood is compared, with more being better. Finally if they are
equal then one is picked randomly but consistently.1 That is, if an agent picks
isgood A over isgood B then in all future comparisons it will choose A over B.

Instead of using an ordering over the variables, which causes problems in dynamic
environments, we use a total ordering over the partial solutions, or isgoods. This
ordering is needed so that the solution can be optimised as well as to prevent
cyclic behaviour. Whenever we refer to one isgood being better than another in
this paper it is with respect to this ordering

To avoid cycles of oscillating values which might occur because there is no
variable ordering we increase the length of successive isgoods that are sent. This
is achieved by recording the last isgood sent and attempting to send a longer
one. As any cycle must be finite eventually the isgoods being sent will contain
the cycle itself. If the cycle is made up of inconsistent values then a nogood
will be generated, breaking the cycle. Else the cycle breaking mechanism of
update view() (alg. 2) will break the cycle. The proofs of soundness and ter-
mination from SBDS[10] still hold. Due to space limitation, readers are directed
to [2] for details.

Rather than using all the information contained in all the isgoods that an
agent has received, which is often inconsistent. Each agent picks a single isgood
to use as the justification for the assignments to its own variables. The agent
who has sent the best isgood is chosen as the support for the agent. The isgood
that agent sent is used as the basis for the agents view.

Definition 7. Given a DCOP 〈A, COP, C,R〉. A nogood is a pair 〈P,C〉 where
P is a set of variable value pairs {〈x1,D1i〉, . . . , 〈xn,Dnj〉} forming a partial
assignment and C ⊂ C, is the justification such that P violates at least one
constraint in C. As such a nogood represents a partial solution that is proven to
not be part of any global solution.

Hard constraints are handled differently to objectives in order to guarantee that
any solution found will satisfy all of the hard constraints. Nogoods with justifi-
cations [10] are used as these allow us to guarantee that all the hard constraints
are satisfied (as shown in [2]) as well as allowing obsolete nogoods to be identified
after hard constraints are removed from the problem.

Due to the dynamic nature of the input problem the algorithm never ter-
minates (detecting that the network of agents has reached a quiescent state,
or detecting that the problem is over-constrained are in themselves insufficient
as terminating criteria, since new inputs from the environment, in the form of
added or deleted variables/constraints/objectives might invalidate them).

1 Cryptographic hash functions can provide a suitable comparison.
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2.2 Dynamic Problems

Unlike other dynamic algorithms we do not explicitly model the concept of solu-
tion stability. Instead we assume that if there is a cost associated with changing
the value of a variable the agent takes it into account in its local objective
function(s).

Most of the changes to the problem that can occur in a dynamic system are
straightforward to implement, except for removing hard constraints (which we
discuss later). Several messages are required to communicate any changes to
the problem to the agents: add constraint, pre-remove constraint, post-remove
constraint, add objective, remove objective, add domain and remove domain.
These messages all reflect changes to the environment and as such are referred
to as environment messages. With the exception of post-remove constraint they
are assumed to be sent by the environment. Only the agents that control the
variables involved in the objective or hard constraint that is added or removed
must be notified.

A change to the agents involved is handled implicitly by the other messages.
When an agent no longer has any links to one of its neighbours, that agent is no
longer a neighbour. Once an agent has no links to any other agents it is effectively
removed from the problem. Agents are added to the problem by creating a link
between them and another agent. In the process they are then also a neighbour
of that agent.

When a hard constraint is removed in an update to the underlying COP all of
the nogoods that were generated because of the removed constraint must also be
removed. They can be identified via the nogoods justification. If the justification
contains the deleted constraint then the nogood might be obsolete and must be
deleted. This does mean that a nogood which violates two or more constraints,
and so is still valid, may be deleted. If this occurs the nogood will be re-posted
later. As it is possible for a nogood to arrive after the message that renders it
obsolete, pre-remove constraint(C) (alg. 3) and post-remove constraint()

(alg. 5) are required to ensure correctness.
To catch any nogoods that arrive after the constraint removed message that

makes them obsolete, the agent must also check the removed constraints it knows
of when it receives a new nogood. If the nogood is obsolete then it is discarded
and the associated counter decremented.

2.3 Fault Tolerance

Due to the nature of the algorithm, when an agent fails it has a minimal impact
on the other agents. Unlike algorithms that impose a hierarchy, agents do not
require a message from the failed agent(s) before they can continue processing.
Instead all agents just continue oblivious to the fact that an agent has failed. The
only limitation is that the value assigned to affected variables can not change,
other agents must continue using the last known value for the variables.

When an agent fails all its knowledge regarding sent and received isgoods is
lost. This effectively means that messages have been lost, which this algorithm
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can not account for. So when the failed agent restarts it must request that its
neighbours send it the last isgood and all nogoods that they sent to this agent,
as well as the last isgood and all nogoods they have received from this agent.
This prevents most knowledge loss and allows the failed agent to resume solving
faster. But if two neighbouring agents both fail at the same time then some
information is irretrievably lost.There is a simple extension to the algorithm
that will ensure that will ensure it functions correctly wrt agent failure and
random message order. Unfortunately there is not enough space to present it
here. Only accounting for agent failure is affected by this issue.

Theorem 1. Given that messages always arrive in the order they are sent,
SBDO is correct when agents in the network fail.

Proof. When a single agent A fails all of the information required for correctness
is preserved by its neighbours. Each of its neighbours records the set of nogood
messages that it sent to A. Similarly they record all the nogood messages that
they received from A. When A restarts it requests this information from its
neighbours.

When two or more neighbouring agents A and B fail simultaneously, the
messages that A sent to and received from agents other than B will be preserved
by those other agents and vice versa. So only the messages exchanged between
A and B are lost. Between A and B, A forgets that it sent message M to B and
B forgets that it received message M from A. Because of this each agents set
of sent and received messages are still consistent. Therefore the procedure for
removing obsolete nogoods is still correct.

Theorem 2. SBDO can continue solving when one or more agents fail.

Proof. Because of the flat communication model no agent is ever waiting for a
message from a specific agent before they can continue solving (they may be
waiting for a message from any agent, but if this is the case they currently have
no work to do). Because of this the other agents can always continue to solve the
problem, using the last known value for the agents variables. When the agent
restarts it is immediately informed of the current state of the problem so that it
can resume solving.

2.4 Algorithm

Each agent must store the following information:

– view. This is an isgood consisting of the isgood received from support + an
assignment to all this agents variables.

– recv(A). This is a mapping from an agent A to the last isgood received from
that agent.

– nogoods. This is an unbounded store of all nogoods received.
– sent(A). This is a mapping from an agent A to the last isgood sent to that

agent.
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Algorithm 1. main()

begin
while Not Terminated do

for All received nogoods N do
if this nogood is obsolete then

decrement counter on the removed-constraint message
if counter = zero then

delete constraint-removed message

else
Add N to nogoods
for All neighbours A do

if There is no valid assignment to myself wrt recv(A) then
send nogood(A)

for All received environment messages do
Process message

for All received isgoods I do
Let A be the agent who sent I
set recv(A) to I
if There is no valid assignment to myself wrt I then

send nogood(A)

update view()

Let I be the best isgood in recv(A)
if I is better than view then

Set support to the agent that sent I
Let view be recv(support) extended by a valid assignment to all local,
public variables, chosen greedily

for All neighbours A do
if self and A are the first two variables in view then

if view �< sent(A) or sent(A) is not consistent then
Send view to A
Set sent(A) to view

else
Let length be the longest sub-isgood that can be sent to A
Let preferred be 0
if sent(A) is 〈〉 or sent(A) �� view then

Set preferred to |sent(A)|+ 1

if sent(A) < recv(A) and view is inconsistent with recv(A) then
Set preferred to max(preferred, |recv(A)|+ 1)

if preferred > 0 then
Let I be an isgood such that I � view and |I| =
min(length, preferred)
Let U be the utility of I as returned by the local objective function
+ any shared objectives
Set the utility of the assignment to self in I to U
Send I to A
Set sent(A) to I

Wait until at least one message has been received

end
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Algorithm 2. update view()

begin
Let view’ be recv(support) extended by a valid assignment to all local, public
variables, chosen greedily
Let V be the first variable assigned in view’
if scope( view’) = scope( view) or view is better than view’ or the assignment
to V is the same in view’ and recv(A) or the assignment to V is unequal in
view and recv(A) then

Set view to view’

end

Algorithm 3. pre-remove constraint (M)

begin
Let C be the removed constraint
for Each neighbour A do

Let counter be 0
for Each nogood N sent to A do

if N contains C as part of its justification then
Increment counter by 1
Delete N from sent nogoods

if counter > 0 then
Let M be a new constraint removed message with C and counter
Send M to A

end

– support. The agent that this agent is using as its support.
– sent-nogoods. This is an unbounded store of all nogoods sent.
– removed-constraints. An unbounded store of received remove constraint mes-

sages.

We use the notation A � B to say that A is a sub-isgood of B. By sub-isgood
we mean that A is the tail (or entirety) of B, |A| to denote the number of
assignments in A and scope(A) is the set of variables that are assigned in A.

Each agent greedily chooses what agent to use as its support and the values
to assign to its own variables. As each agent may control many variables, each
agent requires its own centralised Dynamic COP solver. Because of the way the
support is selected a collection of agents can combine to cause an agent that has
chosen sub-optimal assignments to change its assignments.

The basic steps each agent takes are quite simple. First it processes all the
messages in its message queue. Then it decides what values to assign to its own
variables. Last it sends all of its neighbours a message telling them what values
it has chosen for its variables.

Processing messages starts with all of the nogoods received. Nogoods are
processed first in case they are later rendered obsolete by a message from the
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Algorithm 4. send nogood(A)

begin
Let N be a nogood derived from recv(A)
Send N to A
Set recv(A) to none
if support = A then

Set support to self

end

Algorithm 5. post-remove constraint(M)

begin
Let C be the constraint referenced
if removed-constraints already contains a message regarding C then

Increment the counter of that message by the counter in M
else

for Each received nogood N do
if N is justified by C then

Delete N
Decrement the counter by 1

if counter �= 0 then
Add M to removed-constraints

pre-remove constraint(C)

end

environment and because one of them might invalidate one of the isgoods in
the message queue. When a nogood is received it is added to the set of all
known nogoods. Once all nogoods are processed the received isgoods must be
rechecked to see if they are now inconsistent with this agent’s assignment. If so,
the isgood’s sender must be informed by sending a nogood. This will force the
sender to change their value in the next iteration. Next all environment messages
are processed. The order within this group doesn’t matter, but they may affect
how the isgoods are processed. Finally, the received isgoods are processed. First,
recv(A) is updated with this most recent isgood, then it checks if there is a valid
assignment to its own variable. If there isn’t, a nogood is created and sent back
to the agent that sent the isgood. This will force the sender to change their value
in the next iteration.

While the processing of most environment messages is straightforward, re-
moving constraints requires special mention. When a constraint is removed from
the problem all of the nogoods that were generated because of that constraint
must also be removed. This is made more difficult because it is possible for the
nogood message to arrive after the pre-remove constraint message that makes it
obsolete. In order to ensure they are all deleted each agent must also maintain a
store of all the nogoods it has sent and who it sent them to. When a pre-remove
constraint message is received by an agent it checks its sent nogood store to
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see if any of its neighbours must be notified. If any of the nogoods have the
removed constraint as part of their justification, they are now obsolete and the
agents neighbour must be notified. To notify the neighbour, this agent sends a
post-remove constraint message with the constraint that has been removed and
the total number of nogoods sent to that agent that are made obsolete.

Whenever an agent receives a post-remove constraint message it must go
through its store of received nogoods and delete any that have this constraint
as part of their justification. For each one that is deleted, the counter of total
obsolete nogoods in the post-remove constraint message is decremented. When
the counter reaches zero, all of the obsolete nogoods have been deleted and the
post-remove constraint message can be deleted. The agent must also check its
own store of sent nogoods to see if any of its neighbours must be notified of
the change. This is exactly as above. If an agent receives two or more post-
remove constraint messages for the same constraint, the counters are simply
added together.

Now that the agent has the most recent information about its environment, it
can choose the best assignments for its own variables. This will normally require
a centralised COP solver.

After the agent has updated its view it then checks to see if one of the other
agents would make a better support than the current one. To do so, it picks the
best isgood out of all of the isgoods it has received, then compares it with its
view. If the isgood is better then it changes its support to the agent which sent
the best isgood and then has to call update view() (alg. 2) again to update its
view. If its view is better then it keeps its current support.

Finally the agent must communicate changes to its local state to its neigh-
bours. If it detects that it is part of a cycle with the agent it is currently sending
an isgood to then it must send its entire view to that agent. Unless its view is
worse than the last isgood sent to that agent. In which case it postpones sending
a message to prevent cyclic behaviour. If it does not detect a cycle then it must
decide how long an isgood to send. If the agent is updating obsolete information
that it sent earlier then it attempts to send a longer isgood than sent previously.
If the agent is in conflict with the agent than it also attempts to send a longer
isgood than was received from the agent. However obviously it can’t send an
isgood longer than its view, but it also can not send an isgood that is self sup-
porting i.e. if view is 〈〈B, 〈b, 1〉, 4〉, 〈C, 〈c, 5〉, 20〉, 〈A, 〈a, 1〉, 3〉, 〈D, 〈d, 3〉, 15〉〉 and
sending an isgood to A then the maximum length is 3.

2.5 Example

Example 1. Consider the following constraint optimisation problem with three
variables, δ, θ and γ, each controlled by one agent Δ, Θ and Γ respectively.
Their respective domains are {0, 1, 2}, {−1, 0, 1} and {−1, 0, 1}. The objectives
are min(δ×θ),min(θ),min(γ) and there is one hard constraint, θ < γ. The utility
of the best assignment is 2, and the worst is 0.

In this problem agents δ and θ are neighbours as they share an objective, and
agents θ and γ are neighbours as they share a constraint.
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Initially no agents have any information from their neighbours so in alg. 2 they
chose their assignments based on only local information, in this case, θ = −1 and
γ = −1 from their local objectives, while δ = 1 is chosen randomly. All agents
then inform their neighbours of their decision by sending isgoods. Δ sends the
isgood 〈〈Δ, {〈δ, 1〉}, 0〉〉 to Θ, Θ sends the isgood 〈〈Θ, {〈θ,−1〉}, 2〉〉 to Δ and Γ
and Γ sends the isgood 〈〈Γ, {〈γ,−1〉}, 2〉〉 to Θ.

When Θ receives the isgood from Γ , it notices that the isgood is inconsistent
with its knowledge, as there is no value in its domain less then −1. So Θ sends
the nogood 〈{〈γ,−1〉}, {θ < γ}〉. After receiving the isgoods all the agents decide
which agent to use as their support. Θ has to chose between itself and Δ. The
utility of Θ’s current view is 2, which is better than or equal to all the others
so it keeps itself as its support. Similarly Δ and Γ change their support to Θ.
When Δ chooses Θ as its support, its view now includes the assignment to Θ,
therefore it now has enough information to evaluate the shared objective and
so picks δ = 2. Θ and Γ view’s have not changed, so they don’t send new
isgoods, while Δ sends the isgood 〈〈Δ, {〈δ, 2〉}, 2〉〉 to Θ. Normally it would
include the assignment to θ as well, but that would create a circular argument,
so the assignment to Θ is trimmed. Next, Γ receives the nogood from Θ and so
is forced to change its assignment to γ = 0 and sends another isgood to Θ with
its new assignment. Simultaneously Θ receives the new isgood from Δ, but does
not make any changes because of it, so does not send a new isgood.

Then the problem changes. The constraint θ < γ is removed from the problem.
So the environment sends messages to Θ and Γ . Γ has not sent any nogoods so
has nothing to do, while Θ has sent a nogood to Γ which is now obsolete, so
it sends the constraint removed message ((θ < γ), 1) to Γ . Also as there is no
longer a link between Θ and Γ they are no longer neighbours. Meanwhile Δ has
not received any messages so is still waiting.

Finally γ receives the constraint removed message, deletes the obsolete no-
good and so is again able to adopt the assignment γ = −1, however it has no
neighbours to send an isgood to. As no agents have any messages to send the
network has reached quiescence.

3 Results

To evaluate SBDO, we implemented it using Python and compared it with the
two other DynDCOP algorithms, S-DPOP and DynCOAA. We used the refer-
ence implementation of S-DPOP[4], written in Java and we implemented Dyn-
COAA and SBDO in python. We used the parameters for DynCOAA that are
recommended by its authors [6], with 15 ants in each swarm. The different imple-
mentation languages mean that the memory and time used by each algorithm
can’t be compared directly. The Quality, Non-Concurrent Constraint Checks
(NCCCs)[5], and messages required are independent of the implementation and
so still directly comparable.
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The test platform was an AMD Athlon X2 6000+ processor with 4GB of
RAM running OpenSolaris 10 release 06/09. Memory usage was measured by
using DTrace to count all anonymous memory allocations and deallocations.

We used three sets of test problems: easy, moderate and hard. The easy set
consists of the 120 handcrafted meeting scheduling problems provided in [9].
These problems have between 8 and 12 variables with a constraint density (num-
ber of constraints divided by number of variables) of between 1.333 and 1.875.
The moderate set consists of 12 randomly generated meeting scheduling prob-
lems. These problems have between 9 and 24 variables with a constraint density
between 1.000 and 1.860. The hard set consists of 16 randomly generated meet-
ing scheduling problems. These problems have between 12 and 48 variables with
a constraint density between 1.750 and 4.000. We ran each problem ten times to
ensure the results represent the average performance of each algorithm.

3.1 Dynamic Problems

To evaluate SBDO’s performance on dynamic problems we compared it against
DynCOAA on the moderate and hard sets of problems. Both algorithms were
allowed to run for a set amount of time (1, 2, 3, 5, 8 and 13 seconds), after
which they were paused, the utility of the current solution calculated, then two
of the hard constraints were randomly replaced then the algorithm resumed. The
problems objective function was left unchanged. This was repeated 25 times for
each problem. By using the same random seed we guarantee that the dynamic
problems are the same for all trials. We could not compare against S-DPOP as
the provided implementation does not support terminating the current solving
process after a period of time.

As fig 3.1 shows, SBDO always outperforms DynCOAA, however it is obvious
that the solutions found by SBDO are not monotonically non-decreasing. This
is because it does not have a global communication mechanism to coordinate
value changes like DynCOAA does.
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Fig. 2. Performance with unreliable agents

3.2 Fault Tolerance

To demonstrate the fault tolerance of SBDO it was run on the set of hard
problems. Every 3 seconds a random agent was killed, then restarted between 1
and 3 seconds later. So at most one of the 12 to 48 agents was not operating at
any time. We tried with other failure rates and got similar results. We choose
to restart failed agents as our test problems are from the meeting scheduling
domain. Where it is reasonable to expect that agents will be restarted when their
failure is detected. As shown in figure 1 the algorithm requires more NCCCs,
so therefore more time and messages to reach quiescence. Though as shown in
figure 1 when it does terminate the solution is only slightly worse than when no
agents fail.

3.3 Static Problems

To evaluate how SBDO performs on static problems we tested it against S-DPOP
and DynCOAA. Table 1 describes the average and standard deviation for each
of the metrics. Separated by easy, moderate and hard problems respectively. We
were unable to measure NCCCs for DynCOAA, so they have not been reported.
It also represents the average and standard deviation of the ratio of the ‘utility’
(or objective function value) computed over the optimal utility (represented as
a percentage) for each of these algorithms. We note that SBDO generates near
optimal, but not optimal, solutions in general. The SBDO algorithm performs
very well, requiring slightly more messages and NCCCs, but less memory than
S-DPOP. While producing slightly worse solutions that DynCOAA, but with
much less time and messages.

3.4 Scalability

To evaluate how SBDO scales with different problem sizes we compared it against
DPOP and DynCOAA on the moderate and hard sets of problems. Each instance
was terminated after 10 minutes or if it used more than 3.5GB of memory. SBDO
completed 98.6% of the moderate problems and 61.8% of the hard problems.
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Table 1. Performance on static problems

Algorithm Quality Messages NCCCs Memory (MB) Time (s)
avg SD avg SD avg SD avg SD avg SD

SBDO 99.80% 0.87 70.48 25.87 643.45 451.73 0.49 0.04 0.16 0.06
DynCOAA 99.95% 2.4E-4 8715.35 2745.23 – – 0.34 0.02 14.22 5.58
S-DPOP 100% 0.00 19.73 3.24 591.75 155.54 46.08 4.34 0.16 0.06
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Fig. 3. Scalability of SBDO, DynCOAA and DPOP

DPOP completed all of the moderate problems and 17.5% of the hard problems.
DynCOAA completed all of the moderate problems and 61.75% of the hard
problems.

The plots in figure 3 have been created by averaging the data collected from
all the instances the algorithms were tested on. The plots show that SBDO scales
well, though it does not scale as well as DPOP on most metrics, it scales much
better on memory usage.

4 Conclusion

We have presented the Support Based Distributed Optimisation algorithm that
can solve Dynamic Distributed Constraint Optimisation problems using a novel
approach inspired by argumentation. In this approach there is no hierarchy
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among the different agents, instead each agent is able to send ‘isgoods’, which
can be viewed as arguments. An isgood contains the assignment to the variables
of an agent as well as the utility of the assignment and the context in which the
decision was made. Each agent can choose one of the other agents as its support
and in turn uses that agent’s assignment and context as the context for its own
decision. By constantly creating and communicating stronger and stronger argu-
ments each agent is able to influence the assignment to other agents. In this way
the agents are able to arrive at a good solution using few resources, as shown in
table 1. Also figure 3 shows that the resources required scale well with the size
of the problem.

The lack of hierarchy makes this approach very flexible regarding change in
the environment. So it is highly suited for solving dynamic problems, as shown in
figure 1. This flexibility, coupled with the knowledge redundancy in the network
makes it fault tolerant. Other agents are able to continue solving unimpeded
when one or even many agents fail. Error recovery is hastened by allowing an
agent that has just restarted to recreate its previous state, as shown in figure 2.

The resulting algorithm is completely asynchronous, fault tolerant, complete
with respect to hard constraints but incomplete with respect to soft constraints.

In future we plan to extend the concept of objectives to allow stability con-
straints to be expressed. We also intend to identify how to make the algorithm
complete, or at least provide theoretical guarantees on solution quality.

References

1. Chechetka, A., Sycara, K.: No-commitment branch and bound search for dis-
tributed constraint optimization. In: AAMAS 2006, pp. 1427–1429. ACM (2006)

2. Harvey, P., Chang, C.F., Ghose, A.: Support-based distributed search: a new ap-
proach for multiagent constraint processing. In: AAMAS 2006, pp. 377–383. ACM
(2006)

3. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In: AAMAS,
pp. 133–140 (2010)
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