Nirmit Desai
Alan Liu
Michael Winikoff (Eds.)

Principles and Practice
of Multi-Agent Systems

13th International Conference, PRIMA 2010
Kolkata, India, November 2010
Revised Selected Papers

@ Springer

Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbriicken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbriicken, Germany

7057

NirmitDesai AlanLiu Michael Winikoff (Eds.)

Principles and Practice
of Multi-Agent Systems

13th International Conference, PRIMA 2010
Kolkata, India, November 12-15, 2010
Revised Selected Papers

@ Springer

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jorg Siekmann, University of Saarland, Saarbriicken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbriicken, Germany

Volume Editors

Nirmit Desai

IBM Research — India, Manyata Embassy Business Park
Outer Ring Road, Block D4, 2nd Floor, Nagawara
Bangalore 560045, India

E-mail: nirmit.desai @in.ibm.com

Alan Liu

National Chung Cheng University, Department of Electrical Engineering
168 University Road, Min-Hsiung Chia-Yi, Taiwan

E-mail: aliu@ee.ccu.edu.tw

Michael Winikoff

University of Otago, Department of Information Science
60 Clyde Street, Dunedin, New Zealand

E-mail: mwinikoff @infoscience.otago.ac.nz

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-25919-7 e-ISBN 978-3-642-25920-3
DOI 10.1007/978-3-642-25920-3

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011944655
CR Subject Classification (1998): 1.2.11,1.2.9, 1.2, C.2.4, K.4, D.2, H.3-5

LNCS Sublibrary: SL 7 — Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable

to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws

and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Agent computing and technology is an exciting emerging paradigm expected to
play a key role in many society-changing practices from disaster response to
manufacturing, and from energy management to healthcare. Agent and multi-
agent researchers are focused on building working systems that bring together a
broad range of technical areas from market theory to software engineering to user
interfaces. Agent systems are expected to operate in real-world environments,
with all the challenges that such environments present.

This volume contains the papers presented at PRIMA 2010: the 13th In-
ternational Conference on Principles and Practice of Multi-Agent Systems held
during November 12-15, 2010 in Kolkata, India.

PRIMA is a leading scientific conference for research on intelligent agent and
multi-agent systems, attracting high-quality, state-of-the-art research from all
over the world. The conference endeavors to bring together researchers, develop-
ers, and academic and industry leaders who are active and interested in agents
and multi-agent systems, their practices and related areas. The conference has
a strong focus on practice, and is focused on becoming the premier forum for
prototype and deployed agent systems.

PRIMA 2010 continued to build on the success of its predecessor workshops
and conferences held in Nagoya, Hanoi, Bangkok, Guilin, Kuala Lumpur, Auck-
land, Seoul, Tokyo, Taipei, Melbourne, Kyoto, and Singapore. Since 2007, due
to the need for an additional high-quality forum for international researchers
and practitioners to meet and share their work, the meeting has been expanded
from a workshop to a full-fledged conference.

A key theme for PRIMA 2010 was agents and services, where the intent was
to explore the connections between agent technology and services (both in the
sense of service science and service-oriented computing).

PRIMA 2010 received 63 submissions, each of which was assigned to four
Program Committee (PC) members, who were overseen by a Senior PC (SPC)
member. Each paper received at least three reviews, which was followed by
an author response phase, and discussion amongst the PC, led by the SPC
member assigned to the paper. Of the 63 submissions, PRIMA 2010 accepted 18
full papers (acceptance rate: 29%), and 15 Early Innovation papers. The Early
Innovation papers are papers that were seen as being promising, but that were
not yet well enough developed to be full papers.

In addition to the accepted papers, the conference included a well-received
panel discussion (“What can agent-based computing offer service-oriented archi-
tectures, and vice versa?”), three keynote speeches (by Frank Dignum, Henry
Prakken, and Makoto Yokoo), and three workshops:

VI Preface

— The First International Workshop on Services and Agents (ServAgents 2010)

— The First International Workshop on Intelligent Agents in Health Care
(IAHC 2010)

— The First Pacific Rim Workshop on Agent-Based Modeling and Simulation
of Complex Systems (PRACSYS 2010)

This book serves as a scientific record of the PRIMA 2010 conference. It contains
the papers presented at the conference and at the workshops. The book has four
sections, the first being the panel discussion, the second the full papers, the third
the early innovation papers, and the last the workshop papers.

As Program Chairs, we sincerely thank the organizers, SPC and PC mem-
bers, and all contributors for this great event. In addition, we acknowledge the
organizers of these workshops and especially thank Hoa Khanh Dam for his effort
in overseeing the completion of the workshop papers. A special thanks goes to
Aditya Ghose and Abdul Sattar for their coordination, Natalie Dunstan for her
organization, Sankalp Khanna for managing registrations, Nabendu Chaki with
his colleagues at University of Calcutta for local arrangements, and the Smart
Services CRC for sponsorship. We especially acknowledge Jadavpur University
and the Institute for Integrated and Intelligent Systems at Griffith University
for providing a venue for workshops and substantial support. Finally, we ac-
knowledge the support from EasyChair in organizing the reviews and preparing
the proceedings.

Nirmit Desai
Alan Liu
Michael Winikoff

General Chairs

B.P. Sinha
Chandan Mazumdar
Abdul Sattar

ServAgents 2010

Hoa Khanh Dam

Aditya Ghose

Nirmit V. Desai

Srinivas Narasimhamurthy

TACH 2010

Andrew Miller

Chee Fon Chang
Graham Billiau
Konstantin Hoesch-Klohe
Evan Morrison

PRACSYS 2010

Alexis Drogoul

Benoit Gaudou
Patrick Taillandier
Jean Daniel Zucker

Advisory Board

Jane Hsu

Toru Ishida
Hideyuki Nakashima
Sung Joo Park

Munindar P. Singh
Zhongzhi Shi
Von-Wun Soo
Jung-Jin Yang

Organization

Indian Statistical Institute, India
Jadavpur University, India
Griffith University, Australia

University of Wollongong, Australia
University of Wollongong, Australia
IBM India Research Lab, India
Infosys Technologies, India

University of Wollongong, Australia
University of Wollongong, Australia
University of Wollongong, Australia
University of Wollongong, Australia
University of Wollongong, Australia

UMI 209 UMMISCO, IRD, UPMC, MSI-IFT,
Vietnam

UMI 209 UMMISCO, IRD, MSI-IFI, Vietnam

UMI 209 UMMISCO, IRD, MSI-IFI, Vietnam

UMI 209 UMMISCO, IRD, France

National Taiwan University, Taiwan

Kyoto University, Japan

Future University Hakodate, Japan

Korea Advanced Institute of Science and
Technology, Korea

North Carolina State University, USA

Chinese Academy of Sciences, China

National Tsing Hua University, Taiwan

The Catholic University of Korea, Korea

VIII Organization

Senior Program Committee

Victor Lesser
Michael Luck
John-Jules Meyer
Paul Scerri

Sandip Sen

Carles Sierra,
Munindar P. Singh

Wiebe Van Der Hoek

Makoto Yokoo

Program Committee

Salem Benferhat
Frances Brazier
Longbing Cao
Brahim Chaib-Draa

Nilanjan Chakraborty

Sanjay Chaudhary
Shih-Fen Cheng
Mohan Chhetri
Sung-Bae Cho
Amit Chopra
Khanh Hoa Dam
Mehdi Dastani
Frank Dignum
Patrick Doherty
Thomas Eiter
Edith Elkind
Marc Esteva
Joseph Giampapa
Robin Glinton
Eduardo Gomes
Guido Governatori
Nathan Griffiths
Chung-Wei Hang
Hiromitsu Hattori
Christopher Hazard
Koen Hindriks

Michal Jakob

University of Massachusetts Amherst, USA
King’s College London, UK

Utrecht University, The Netherlands
Carnegie Mellon University, USA
University of Tulsa, USA

ITA-CSIC, Spain

North Carolina State University, USA
University of Liverpool, UK

Kyushu University, Japan

CRIL UMR CNRS, France
TU Delft, The Netherlands
University of Technology Sydney, Australia
Laval University, Canada
Carnegie Mellon University, USA
DA-TICT, India
Singapore Management University, Singapore
Swinburne University of Technology, Australia
Yonsei University, Korea
University of Trento, Italy
University of Wollongong, Australia
Utrecht University, The Netherlands
Utrecht University, The Netherlands
Linkoping University, Sweden
Vienna University of Technology, Austria
Nanyang Technological University, Singapore
IITA-CSIC, Spain
Carnegie Mellon University, USA
Carnegie Mellon University, USA
Swinburne University of Technology, Australia
National ICT Australia Ltd., Australia
University of Warwick, UK
North Carolina State University, USA
Kyoto University, Japan
North Carolina State University, USA
Delft University of Technology,
The Netherlands
FEE Czech Technical University in Prague,
Czech Republic

Yichuan Jiang
Wan-Rong Jih

Zhi Jin

Benjamin Johnston
Kamalakar Karlapalem
Kee-Eung Kim

Yasuhiko Kitamura
Kazuhiro Kuwabara
Jérome Lang
Habin Lee

Jaeho Lee

Ho-Fung Leung
Minyi Li

Lin Liu

Wei Liu

Beatriz Lépez
Graham Low
Xinjun Mao

Shigeo Matsubara
Felipe Meneguzzi
Simon Miles

Yohei Murakami
Hideyuki Nakanishi
Mariusz Nowostawski
Nir Oren

Juan Pavén

Henry Prakken

Martin Purvis
Maryam Purvis
Jan Richter
Michael Rovatsos
Ji Ruan
Yuko Sakurai
Bastin Tony Roy
Savarimuthu
Tino Schlegel
Murat Sensoy
Kiam Tian Seow
Von-Wun Soo
Biplav Srivastava
Eugen Staab

Organization

Southeast University, China

National Taiwan University, Taiwan

Peking University, China

University of Sydney, Australia

CDE, IIIT Hyderabad, India

Korea Advanced Institute of Science and
Technology, Korea

Kwansei Gakuin University, Japan

Ritsumeikan University, Japan

LAMSADE, France

Brunel University, UK

The University of Seoul, Korea

The Chinese University of Hong Kong

Swinburne University of Technology, Australia

Tsinghua University, China

The University of Western Australia, Australia

University of Girona, Spain

University of New South Wales, Australia

National University of Defense Technology,
China

Kyoto University, Japan

Carnegie Mellon University, USA

King’s College London, UK

NICT, Japan

Osaka University, Japan

University of Otago, New Zealand

King’s College London, UK

Universidad Complutense Madrid, Spain

Utrecht University and University of
Groningen, The Netherlands

University of Otago, New Zealand

University of Otago, New Zealand

Swinburne University of Technology, Australia

The University of Edinburgh, UK

St. Francis Xavier University, Canada

Yahoo Japan Corporation, Japan

University of Otago, New Zealand

Swinburne University of Technology, Australia
University of Aberdeen, UK

Nanyang Technological University, Singapore
National Tsing Hua University, Taiwan

IBM India Research Labs, India

University of Luxembourg, Luxembourg

IX

X Organization

Bas Steunebrink
Toshiharu Sugawara
John Thangarajah
Nicolas Troquard
Leon Van Der Torre
M. Birna Van Riemsdijk
Pradeep Varakantham
Gerard Vreeswijk
Yonghong Wang
Glenn Wightwick
Brendon J. Woodford
Yang Xu

Yifeng Zeng

Universiteit Utrecht, The Netherlands

Waseda University, Japan

RMIT University, Australia

University of Liverpool, UK

University of Luxembourg, Luxembourg

TU Delft, The Netherlands

Singapore Management University, Singapore

Utrecht University, The Netherlands

North Carolina State University, USA

IBM Research and Development, Australia

University of Otago, New Zealand

University of Science and Technology of China,
China

Aalborg University, Denmark

Table of Contents

Panel Discussion

What Can Agent-Based Computing Offer Service-Oriented

Architectures, and Vice Versa? 0. 1
Wayne Wobcke, Nirmit Desai, Frank Dignum, Aditya Ghose,
Srinivas Padmanabhuni, and Biplav Srivastava

Conference Papers

Agent Communication

SBDO: A New Robust Approach to Dynamic Distributed Constraint
OptImiSationttt 11
Graham Billiau, Chee Fon Chang, and Aditya Ghose

Solving Distributed CSPs Using Dynamic, Partial Centralization
without Explicit Constraint Passing 27
Roger Mailler and Jacob Graves

A Distributed Task Specification Language for Mixed-Initiative
Delegationo e 42
Patrick Doherty, Fredrik Heintz, and David Landén

Adaptive and Non-adaptive Distribution Functions for DSA 58
Melanie Smith, Sandip Sen, and Roger Mailler

Agent Cooperation and Negotiation

Multiagent Based Scheduling of Elective Surgery 74
Sankalp Khanna, Timothy Cleaver, Abdul Sattar,
David Hansen, and Bela Stantic

Effect of Alternative Distributed Task Allocation Strategy Based on

Local Observations in Contract Net Protocol 90
Toshiharu Sugawara, Kensuke Fukuda, Toshio Hirotsu, and
Satoshi Kurihara

Gossip-Based Self-organising Open Agent Societies 105
Sharmila Savarimuthu, Martin Purvis,
Bastin Tony Roy Savarimuthu, and Maryam Purvis

Adaptive Negotiation in Managing Wireless Sensor Networks 121
Thao P. Le, Timothy J. Norman, and Wamberto Vasconcelos

XII Table of Contents

Negotiation Strategy for Mobile Agent-Based e-Negotiation
Raja Al-Jaljouli and Jemal Abawajy

Adaptive Choice of Behavior and Protocol Parameters................
Frank Grove, Sandip Sen, and Oly Mistry

Agent Reasoning

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free
NEtWOTKS © vttt e
Tenda Okimoto, Atsushi Iwasaki, and Makoto Yokoo

Multi-attribute Preference Logic i .
Koen V. Hindriks, Wietske Visser, and Catholijn M. Jonker

An Empirical Study of Patterns in Agent Programs
Koen V. Hindriks, M. Birna van Riemsdijk, and Catholijn M. Jonker

Agent-Based Simulation

A Modelling Language to Represent and Specify Emerging Structures
in Agent-Based Model i
Duc-An Vo, Alexis Drogoul, Jean-Daniel Zucker, and Tuong-Vinh Ho

Multi-model Based Simulation Platform for Urban Traffic Simulation . . .
Yuu Nakajima, Shohei Yamane, and Hiromitsu Hattori

GAMA: A Simulation Platform That Integrates Geographical
Information Data, Agent-Based Modeling and Multi-scale Control.
Patrick Taillandier, Duc-An Vo, Edouard Amourouz, and
Alezis Drogoul

Mobile and Semantic Agents

Ao Dai: Agent Oriented Design for Ambient Intelligence
Amal El Fallah Seghrouchni, Andrei Olaru,
Nga Thi Thuy Nguyen, and Diego Salomone

Probabilistic Approaches to Tag Recommendation in a Social
Bookmarking Network
Oly Mistry and Sandip Sen

152

166

181

196

212

228

242

259

Table of Contents XIII

Early Innovation Papers

Agent Cooperation and Negotiation

Complex Task Allocation in Mixed-Initiative Delegation: A UAV Case
StUAY o 288
David Landén, Fredrik Heintz, and Patrick Doherty

Affordance-Based Intention Recognition in Virtual Spatial
Environments 304
Michal Sindlar and John-Jules Meyer

A Robust Multi-unit Ascending-Price Auction with Complementarities
against Strategic Manipulation 320
Masabumi Furuhata

Mobile Agent Cloning for Servicing Networked Robots................ 336
W. Wilfred Godfrey and Shivashankar B. Nair
Agent Reasoning

Towards Distributing Agent Intelligence: Using Decentralized Software
Services for the Creation of Complex Problem Modelling 340
Quintin J. Balsdon and Elize M. Ehlers

Averting the Tragedy of the Commons by Adapting Aspiration
Levels ..o 355
Onkur Sen and Sandip Sen

Agent Technologies for Service Computing

The Role of Agents in Adaptive Service Oriented Architectures 371
Fernando Koch, Frank Dignum, Marcel Hiel, and Huib Aldewereld

Agent-Based Development for Business Processes 387
Hoa Khanh Dam and Aditya Ghose

TwitAg: A Multi-agent Feature Selection and Recommendation

Framework for Twitter 394
Frank Grove and Sandip Sen

Agent-Based Simulation

Automated Multi-agent Simulation Generation and Validation 398
Philippe Caillou

X1V Table of Contents

Inferring Equation-Based Models from Agent-Based Models: A Case

Study in Competition Dynamics,
Ngoc Doanh Nguyen, Patrick Taillandier, Alexis Drogoul, and
Pierre Auger

Towards a Methodology for the Participatory Design of Agent-Based

Models . .o
Thanh-Quang Chu, Alexis Drogoul, Alain Boucher, and
Jean-Daniel Zucker

Agent-Based System Development

A Framework for Validating Task Assignment in Multiagent Systems

Using Requirements Importance
Hiroyuki Nakagawa, Nobukazu Yoshioka, Akihiko Ohsuga, and
Shinichi Honiden

Task Knowledge Patterns Reuse in Multi-Agent Systems
Development
WaiShiang Cheah, Leon Sterling, and Kuldar Taveter

ServAgents Workshop

Energy-Aware Agents for Detecting Nonessential Appliances
Shih-chiang Lee, Gu-yuan Lin, Wan-rong Jih, Chi-Chia Huang, and
Jane Yung-jen Hsu

Medical Equipment Maintenance Support with Service-Oriented
Multi-agent Services.ttt
Beatriz Lopez, Albert Pla, David Daroca, Luis Collantes,
Sara Lozano, and Joaquim Meléndez

An Agent-Oriented Approach to Service Analysis and Design
Hoa Khanh Dam and Aditya Ghose

TAHC Workshop

Agent-Based Modelling for Risk Assessment of Routine Clinical
Processes
Wayne Wobcke and Adam Dunn

Healthgrids, the SHARE Project, Medical Data and Agents: Retrospect
and Prospecto e
Tony Solomonides

An Intelligent Approach to Surgery Scheduling
Sankalp Khanna, Abdul Sattar, Justin Boyle, David Hansen, and
Bela Stantic

Table of Contents

Using Distributed Agents for Patient Scheduling
Graham Billiau, Chee Fon Chang, Aditya Ghose, and
Alexis Andrew Miller

Software Agents in Clinical Workflow, Clinical Guidelines and Clinical
Trial Medicineo
Alexis Andrew Miller and Fiona Hegi-Johnson

PRACSYS Workshop

Using Belief Theory to Formalize the Agent Behavior: Application to

the Simulation of Avian Flu Propagation
Patrick Taillandier, Edouard Amourouz, Duc An Vo, and
Ana-Maria Olteanu-Raimond

A Cluster-Based Approach for Disturbed, Spatialized, Distributed
Information Gathering Systems i i
Quang-Anh Nguyen Vu, Benoit Gaudou, Richard Canal,
Salima Hassas, and Frédéric Armetta

Simulation of the Emotion Dynamics in a Group of Agents in an
Evacuation Situation
Le Van Minh, Carole Adam, Richard Canal, Benoit Gaudou,
Ho Tuong Vinh, and Patrick Taillandier

From Biological to Urban Cells: Lessons from Three Multilevel
Agent-Based Models.
Javier Gil-Quijano, Thomas Louail, and Guillaume Hutzler

Multi-agent Based Simulation of Traffic in Vietnam
The Duy Bui, Duc Hai Ngo, and Cong Tran

Author Index

What Can Agent-Based Computing Offer
Service-Oriented Architectures, and Vice Versa?

Wayne Wobcke!, Nirmit Desai?, Frank Dignum?®, Aditya Ghose?,
Srinivas Padmanabhuni®, and Biplav Srivastava®

L School of Comp. Sci. and Eng., University of New South Wales, Sydney NSW 2052, Australia
wobcke@cse.unsw.edu.au
2 IBM India Research Lab, Embassy Golf Links Business Park
Bangalore 560071, India
nirmit.desai@in.ibm.com
3 Dept of Information and Comp. Sciences, Utrecht University, 3508 TB Utrecht,
The Netherlands
dignum@cs.uu.nl
4 School of Comp. Sci. and Software Eng., University of Wollongong,
Wollongong NSW 2522, Australia
aditya@uow.edu.au
5 Software Engineering and Tech. Labs, Infosys Technologies Ltd, Bangalore 560100 India
srinivas p@infosys.com
6 IBM India Research Lab, Block 1, IIT Campus, Hauz Khas, New Delhi 110016, India
sbiplav@in.ibm.com

Abstract. This article serves as a record of a panel discussion held at PRIMA
in November, 2010. The panel consisted of two academic and three industry rep-
resentatives, and thus provided a rare opportunity to discuss the relationship be-
tween agent-based computing and service-oriented architectures from both points
of view. The basic question for the panel was to identify the key research and in-
dustry issues that arise in the deployment of systems based on service-oriented
architectures, and in particular to address whether the agent-based computing
paradigm offers any resolution of those issues. The question was also posed
whether applications based on service-oriented architectures provide a suitable
platform for implementing agent-based systems, which are presently limited in
application by comparison. This summary is presented with the aim of stimulat-
ing further academic and industry collaborative research in this fast growing area
which potentially has wide-ranging practical application.

1 Introduction: Wayne Wobcke (University of New South Wales)

By now it is hardly news that there is a close relationship between service-oriented
architectures [8] and agent-based computing. It was noticed quite early that, at a techni-
cal level, service-oriented computing platforms would require mechanisms for service
discovery (of the sort used in agent-based platforms such as KQML [6]), service ag-
gregation or composition (analogous to planning complex series of actions) [[13]], coor-
dination of multiple services (similar to multi-agent plan coordination [7]), execution
monitoring (as agent systems monitor plan execution), and quality assurance (involv-
ing mechanisms for selection of appropriate actions in dynamic environments, a central
concern of rational agent architectures [11]]).

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 1-]10] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

2 W. Wobcke et al.

The purpose of this panel discussion is to reconsider this connection in the light
of nearly a decade of industry experience during which service-oriented architectures
(SOA) have become mainstream in the software industry. The basic question is whether
the close technical relationship to agent-based computing still exists, and if so, whether
this connection is of purely theoretical interest or has genuine practical implications,
and, further, whether there are more fundamental obstacles to the deployment of SOA-
based systems in industry contexts that are not covered by the narrow technical view
outlined above. The implicit objective is to formulate a research agenda for the short-to-
medium term that would enable agent researchers to contribute to the fast growing area
of service-oriented computing, and (this is the “vice versa” part) to consider whether
service-oriented architectures offer suitable platformis for the implementation and ulti-
mately commercialization of agent-based systems. A concern here is whether there is
currently the degree of flexibility and interoperability in commercial service-oriented
computing platforms required to support agent-based applications. To this end, we are
grateful for the participation on the panel of representatives from Infosys Technologies
and IBM Research India who are able to provide an industry perspective on these issues.

The topic of the panel is deliberately framed towards technical aspects to encour-
age concrete discussion, in doing so presupposing that this close underlying technical
connection exists, and this partly to provoke panellists into possibly rejecting this as-
sumption (none of them did). Of course it is also recognized that “services” are far
broader than just SOA-based systems, and so the panellists are also invited to comment
on wider-ranging issues. Though not specifically the topic of the panel, the question
of the role of standardization generally and of standard ontologies and their associated
reasoning frameworks is one that naturally arises during discussion.

In keeping with the open ended nature of panel discussions, there is no formal con-
clusion given here. Readers must draw their own conclusions based on the panellist
statements that follow.

2 Frank Dignum (Utrecht University)

2.1 ALIVE: The Role of Agents in Adaptive Service-Oriented Architectures

Web services [3] and service-oriented architectures [9] have the potential to increase
significantly the utilization, compatibility and interoperability of information and com-
munication systems. This progress has, for the first time, raised the realistic possibility
of deploying large numbers of services in companies’ and public organizations’ in-
tranets and extranets, and in the public Internet, in order to create communities of ser-
vices which are always connected, always changing, open or semi-open, and form the
baseline environment for software applications. However, this shift brought about not
only potential benefits, but also serious challenges about how such systems and applica-
tions should be designed, managed and deployed. Existing approaches in some impor-
tant areas (such as security, transactions and federation) tend to only cover technology
issues such as, for example, how to secure a protocol or connect federated directories,
without considering the paradigm change that occurs when large numbers of services
are deployed and managed over time. In particular, existing approaches do not offer
satisfactory solutions to the following issues:

Agent-Based Computing and Service-Oriented Architectures 3

— How to dynamically compose services into workflows that serve a specific purpose
and adhere to some overall requirements (like efficiency, security, etc.).

— How to align the configurations and settings, needed by a service to operate, to the
operational environment.

— How service execution is affected by issues of trust, rights, obligations and permis-
sion.

— What if critical applications simply cease to function if services provisioned from
third parties disappear or malfunction?

— How to deal with knowledge representation, when connecting or binding together
two or more actual entities or services using different ontologies.

All these issues point to the need for a “social layer” as part of the service interaction
context. From an engineering perspective, new approaches are needed which take a
holistic view of service environments, and take into account not only the properties of
individual applications, but also the objectives, structure and dynamics of the system as
awhole. In the ALIVE proj ecl] [4/15], we have combined existing work in coordination
and organizational models with the state-of-the-art in service-oriented computing. The
project extends current trends in service-oriented engineering by adding three extra
layers [3]:

— The organization layer provides context for the other levels, specifying the organi-
zational roles, objectives and rules that govern interaction and using developments
in organization dynamics to allow structural adaptation of distributed systems over
time.

— The coordination layer provides the means to specify, at a high level, the patterns
of interactions between services, using a variety of coordination techniques. At this
level agent technology is used.

— The service layer augments the existing service models with semantic descriptions
to make components aware of their social context and rules of engagement with
other services.

In practical terms, agent solutions combined with organization structures facilitate the
implementation of purpose-oriented workflow mechanisms. The organization model de-
fines the purpose of the content composition — e.g. metrics for quality of information,
interaction patterns, acceptable processing time, etc. The workflow actors inherit the
goals and plan rules to implement these characteristics from the organization structure.
Using the three layers we are able to divide the knowledge and abilities that are neces-
sary to dynamically create and maintain the complex workflows of services in a natural
way.

At the service layer we concentrate on the knowledge necessary to see which service
is best suited for a certain purpose. For example, there might be many weather predic-
tion services; some predict weather for only one day, others for a week. If we want to
plan a holiday, we want to check the weather for a whole period but it does not have to
be very accurate, whereas for a farmer accuracy might be very important.

' ALIVE Project: http://www.ist-alive.cu/

4 W. Wobcke et al.

At the coordination layer we use typical agent methods to create plans of service
invocations to reach certain goals. Agents can interact to combine their plans in order
to profit from each other’s services. Especially useful is the fact that agents can recover
from failures of their plans and replan for a goal. This is very difficult to do in current
service-oriented tools.

At the organization level the overall objectives of the system can be specified such
that the autonomy of the agents is only used in order to reach those objectives. This is
also the level where service level agreements can be specified that should be fulfilled
by the service(-compositions) and the agents.

In the ALIVE project we have tested the above sketched framework in several use
cases. Although we can conclude that the framework indeed is useful, it also needs some
perseverance to get things working. Compared to a more traditional service-oriented ap-
proach a lot more constructs have to be specified and implemented. We need to specify
semantics for the services, tasks and plan rules for the agents, interaction patterns for
the agents to create workflows, organizational structures in which the agents have to
function, etc. These structures only start paying off with complex systems, especially
when services change, fail or are aborted. In these cases the ALIVE framework provides
a very high level of robustness.

A second lesson learnt is that it is far easier to construct the whole framework for a
specific application than to generate a software engineering tool set that can create the
framework for many different applications. We used a model driven approach to con-
nect the elements of the different layers. This does help to keep consistency throughout
the framework. However, it also means that meta-models have to be available for ev-
ery module in the framework. This is not trivial if existing (and especially third party)
components are used, e.g. one needs a meta-model for the agents (including their plan
structures).

Also in the ALIVE framework we had to device a general way for agents to find
the most suitable service to execute a (part of a) plan. Because the steps in a plan are
usually not all instantiated before executing the plan (in order to allow for flexibility
in planning) the queries for services also contain variables which have to be dealt with
on the service level and possibly passed back up. These mechanisms are not part of
traditional service-oriented methods and take much work and care to construct. This is
not just the case for the way we implemented the ALIVE framework, but is inherent in
any agent driven service-oriented system. Once agents are used to flexibly use and com-
pose the services, one needs this type of query mechanism that can deal with requests
for services that are not (fully) instantiated. Thus there is a seemingly inherent trade-
off between efficiency of implementing (note: not efficiency of the implementation) an
application and the flexibility of the system. The need of the flexibility of the system
should warrant the extra effort in the specification and design of the system. In our use
cases, flexibility was needed because services could fail and be changed on the fly. An
extreme case is that of our crisis management use case [10] where services might fail
at any moment due to the crisis, but you need your system to handle the crisis properly
nonetheless.

Agent-Based Computing and Service-Oriented Architectures 5

3 Biplav Srivastava (IBM Research — India)

3.1 The Problem Context

Changes are continuously happening in enterprises and they impact the Information
Technology (IT) landscape. This leads to widespread needs like quickly delivering new
applications and integrating existing applications. However, application development is
often done in an ad-hoc manner resulting in poor reuse of software assets and longer
time-to-delivery. Service-oriented architectures like web services have received much
interest due to their potential in facilitating seamless business-to-business or enterprise
application integration. A web service composition system can help automate the pro-
cess, from specifying business process functionalities, to developing executable work-
flows that capture non-functional (e.g. QoS) requirements, to deploying them on a run-
time infrastructure. Intuitively, web services can be viewed as software components and
the process of web service composition similar to software synthesis. In addition, ser-
vice composition needs to address the buildtime and runtime issues of the integrated
application, thereby making it a more challenging and practical problem than software
synthesis.

3.2 The Case for Service-Oriented Architecture and Issues Learnt in the Field

There are many approaches for composing and executing web services (see the sur-
vey [2]]) and open problems [13]]. Synthy is an example of one of the approaches which
has been tried in the enterprise setting [1]. It is based on a novel two-staged composition
approach that addresses the information modelling aspects of web services, provides
support for contextual information while composing services, employs efficient decou-
pling of functional and non-functional requirements, and leads to improved scalability
and failure handling. Synthy is a technology for semi-automatically composing SOA-
compliant components such that the new component meets the desired functional and
non-functional requirements and the resultant component can be flexibly executed.

The experience from the field has been that SOA can indeed help with application
integration [14]. But there are many issues in practice:

— Domain modelling is hard.

e SOA needs modelling of services, and if Business Process Management (BPM)
is being followed, the business services. But this is not easy. A common prob-
lem is which domain expert to believe.

e Companies in monopolistic situations (e.g. Microsoft, SAP) have an easier
time.

e Domain experts are expensive and there is an open question on the quality of
models built by typical IT professionals.

e An open research issue is to determine the right level of abstraction.

— Managing runtime is hard.

e How to prove a composition of services is correct at runtime? There is a human-
in-the-loop requirement for many applications.

e Graceful degradation during runtime is often required.

— Interoperable tooling is unavailable.

6 W. Wobcke et al.

3.3 The Case for Agent-Oriented Computing in SOA

Agent-oriented computing has delved extensively in modelling and coordination issues
for autonomous agents. Moreover, the community has experience in designing, sim-
ulating and executing agent-based solutions to long-running, mission-critical defence
problems. These are exactly the areas where SOA needs help.

The agent community needs help in standardization and wider adoption by main-
stream business. SOA has lessons on how to make a technology widely usable. After
all, WSDL, UDDI and BEPL4WS are the mainstay of modern SOA IT platforms, and
very widely supported by major IT vendors.

4 Srinivas Padmanabhuni (Infosys Technologies)

4.1 Agent Orientation: Complementing Process and Service Orientation for
Ultimate Flexibility

With the increase in the complexity of IT systems, it has become difficult for adminis-
trators to manually maintain and tune IT systems to meet the requirements of individual
consumers. To meet the increasing complexity of IT systems, there is a requirement for
the systems to become more human independent and self-managing. We firmly believe
agent technologies are a potent technology to address the issue of IT complexity, espe-
cially when viewed from the lens of flexible business processes.

As already well established, a service-oriented foundation, forming the bridge be-
tween IT implementations and business processes, is at the centre of the future proof
enterprise process architectures. Hence, service-oriented architecture (SOA) is consid-
ered an inherent foundational base for today’s Business Process Management (BPM)
implementations, wherein individual services form the crucial business activities, and
orchestration of the services forms the basis of executable business processes.

However, flexibility at process level is incomplete without a thorough understand-
ing of the different variations possible in the manifestations of an individual service
as part of a dynamic business process. In this context of dynamic reconfigurability of
individual services, we envisage a crucial role agent-based systems can play. The issue
of dynamic reconfigurability of individual service implementations in dynamic pro-
cesses is an important problem. Their need is to reconfigure themselves and coordinate
with participating components automatically (without human interaction) to cater to the
changing consumer requirements. We have researched the role of an agent-based ap-
proach to endow service variations, with the ability to dynamically reconfigure services
automatically to meet the needs of their users. The role of agent-based architectures lies
in dynamically sensing in an autonomic mode the external environmental variables, and
thereupon dynamically evolve the corresponding service implementation by embody-
ing the right variation, to evolve the right service interface, which will be the final true
face of the service, in the ongoing dynamic business process. Our ongoing research is
looking at a systematic exploration of several combinations of multi-agent system tools
and protocols in conjunction with dynamic services-based business processes.

Yet another area where agents are relevant is in the problem of policy reconciliation
of multiple actors interacting via service interfaces. We have researched approaches us-
ing soft constraints to provide an extensible and flexible mechanism for reconciliation

Agent-Based Computing and Service-Oriented Architectures 7

of policies between multiple interacting actors. In the context of multiple actors needing
to collaborate together to carry on shared activity, or a sequential activity with depen-
dence upon one another, the policy constraints need to be mutually consistent in order
to carry on a transaction. Especially in context of business-to-business (B2B) business
processes, where two heterogeneous actors work together as part of a B2B process, this
kind of policy reconciliation is a must. We are researching the role agent systems can
play in effective and dynamic policy reconciliation for B2B processes. The framework
is applicable to any heterogeneous environment in need of reconciling policies, and is
illustrated in the real business use case of a demand driven supply chain framework. For
details of the preliminary work in this area, please see [[12].

Overall, we see promise for multi-agent systems technology working to enable a
truly autonomic and dynamic environment for flexible service-based executable busi-
ness processes.

5 Nirmit Desai IBM Research — India)

5.1 Services Industry is the Application Area “Agents’ Have Been Waiting For!

The agent research community can benefit immensely by demonstrating what their re-
search can do for the services industry. Before I get into backing that statement up, let
me say what “services” are and what they are not.

— Services cannot be supported by SOA as it is. When services are proclaimed as
having major economic significance, we are not referring to services as in SOA.
We are referring to business services. SOA is too low-level a concept to support
services.

— Services are not invoked, they are engaged. When was the last time you “invoked”
your domestic help? How about the health care service? If you were to believe
SOA, these services would have a WSDL description. They would take input from
you, go off somewhere, and come back with a cleaned house or a mended tooth.

— Services are hardly automated. Would you go to a robot to have your disease di-
agnosed? It is good if the robot can serve you but we are far from it. As a result,
services involve people. There are specialized skills and deep domain knowledge
in almost any services industry. There is an aspect of face-to-face interaction.

— Services are measured by satisfaction. The customer needs vary greatly and they
evolve with time. Nonetheless they need to be satisfied to “buy” a service again.
However, “satisfaction” is not well understood. Can the customer be satisfied if the
provider meets the service level agreements (SLAs)? Can the customer be satisfied
even though some SLAs have been violated?

Most importantly, services comprise a major part of the world’s economy. Unfortu-
nately, most of the work by computer scientists that is branded as “services” research
does not meet these criteria. We need to meet these criteria because they characterize
services in a true sense. Fortunately, the multi-agent systems community has worked on
the principles underlying services for decades. So why worry about services now? And
why should we as an agent research community care?

8 W. Wobcke et al.

Distributed Al as an area has for long taken on this apparently difficult mission. We
have theories that explain how agents ought to communicate in a business environment
and how they can fulfil the needs of their principal. We have agents who are smart
enough to interact with humans. We draw ideas from philosophy, social sciences, and
cognitive psychology. We study automated negotiation and argumentation. We study
trust and commitments. We study rationality and decision making. All of these belong
to the heart of the service science.

So what is missing? Game changing applications. The Distributed Al community
cannot boast of scientific impact that several other fields of Computer Science can do.
For example, communication networks have revolutionized how we communicate, re-
lational databases have revolutionized business transactions. There is a need to justify
our programs of research. So far, services have not been a favourite application area
of scientists for three main reasons: (1) it is a low-margin and cost-based business — to
the service providers, immediate solutions have infinitely more “perceived” value than
a long-term scientific effort, (2) the fundamental issues in this area are too hard to make
an impact on, and (3) services did not command major economic significance.

However, there are two encouraging trends: (1) services have grown to be the largest
chunk of the world’s economy, and (2) we are starting to see a certain degree of success
in attacking these difficult problems. For example, we have Watson that can play Jeop-
ardy and beat the best players ever to play that game. While Deep Blue was 14 years
ago, chess is not exactly an area of difficulty to computers. Still, what Watson and Deep
Blue have accomplished is far short of the holistic vision of multi-agent research. This
is why we need to care for applying our research to the services industry.

6 Aditya Ghose (University of Wollongong)

6.1 An Agent-Based Response to the Climate Change Challenge@

The climate change crisis presents both a challenge and an opportunity of unprece-
dented proportions to the agent community. Current thinking on climate change re-
sponses emphasizes the development of alternative energy sources, the development of
smart automotive technology and the introduction of macro-economic levers (e.g. car-
bon taxes, emission trading schemes etc.) to alter energy consumption behaviour at the
level of both enterprises and individuals. Fundamental to any solution to the problem is
efficient planning and optimization (in particular, ensuring that energy use is optimized)
— yet this has been largely ignored in the current discourse.

Reducing energy consumption requires that we seek to make all behaviour efficient,
everywhere, all the time. This requires pervasive, distributed, continual, reactive and
autonomous decision support. The agent community prides itself on its ability to deliver
systems with precisely these attributes.

The Optimizing Web project at the University of Wollongong offers an example of
what can be achieved. The project is based on the following observations. First, opti-
mization is fundamental to carbon mitigation — optimization enables efficient resource

2 This response was prompted by a question on the “grand challenges” in a future “services
science”.

Agent-Based Computing and Service-Oriented Architectures 9

utilization, thus lowering energy consumption and the carbon footprint. Second, the
global industrial/technological infrastructure, including transportation systems, manu-
facturing plants, human habitat and so on, is typically operated in an ad-hoc and signif-
icantly sub-optimal fashion. This remains the case despite the availability of sophisti-
cated optimization technology for almost the past seven decades (present day operations
research techniques trace their roots to the work of George Dantzig in the early 1940s
that resulted in the original optimization algorithm — linear programming). Third, lo-
cally optimal behaviour does not guarantee “globally” optimal behaviour (i.e. if all
agents in a multi-agent system adopt locally efficient behaviours, that does not guar-
antee that the behaviour of the system as a whole is efficient). Conversely, an optimal
solution for a multi-agent problem might not necessarily be optimal for each of its
constituent sub-problems. This suggests that more widespread uptake of “piecemeal”
optimization alone will not work what is needed is a network of local optimizers that
collaborate (and potentially negotiate) to obtain system-wide solutions that improve
efficiency despite the competing pulls of local objectives.

The Optimizing Web leverages the global (near-)consensus (without being too pes-
simistic!) on a carbon-footprint minimization objective. It achieves large-scale collab-
orative optimization, where large numbers of agents collaborate to obtain an optimal
value for a shared objective function. The vision is to provide ubiquitous collaborative
optimization services, at the level of individual devices, vehicles within transportation
systems, units within organizations or manufacturing plants — as well aggregations of
all of these. The optimizing web provides a set of protocols for local optimizing agents
to interoperate to improve the value of a global carbon footprint minimization objective,
while making appropriate trade-offs in relation to their local objectives.

The Optimizing Web leverages and integrates two aspects of agent technology: (1)
distributed constraint optimization (DCOP) and (2) distributed reactive planning. While
we know that planning problems can be formulated as optimization problems, it is also
well understood that some problems are more naturally modelled as planning problems,
while others as optimization problems. The project therefore leverages DCOP insights
for distributed optimal reactive planning.

Ultimately, the agent community needs to do much more along similar lines. The
climate change crisis is real, and the agent community has real solutions to offer. This
is therefore a call to arms.

Acknowledgements. We would like to thank Smart Services Cooperative Research
Centre for its support of PRIMA 2010 which provided the impetus for this panel
discussion.

References

1. Agarwal, V., Chafle, G., Dasgupta, K., Karnik, N., Kumar, A., Mittal, S., Srivastava, B.:
Synthy: A System for End to End Composition of Web Services. Journal of Web Semantics 3,
311-339 (2005)

2. Agarwal, V., Chafle, G., Mittal, S., Srivastava, B.: Understanding Approaches for Web Ser-
vice Composition and Execution. In: Proceedings of the 1st Bangalore Annual Compute
Conference (2008)

10

10.

11.

12.

13.

14.

15.

W. Wobcke et al.

. Aldewereld, H., Penserini, L., Dignum, F., Dignum, V.: Regulating Organizations: The

ALIVE Approach. In: Proceedings of the International Workshop on Regulations Modelling
and Deployment (ReMoD 2008) Held in Conjunction with the CAiSE 2008 Conference, pp.
37-48 (2008)

. Alvarez-Napagao, S., Cliffe, O., Vazquez-Salceda, J., Padget, J.: Norms, Organisations and

Semantic Web Services: The ALIVE Approach. In: Proceedings of the Workshop on Coor-
dination, Organization, Institutions and Norms in Agent Systems in Online Communities at
MALLOW 2009 (2009)

. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchad, D.: Web

Services Architecture. W3C Working Group Note 11, The World Wide Web Consortium
(W3C) (February 2004)

. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communication Lan-

guage. In: Proceedings of the Third International Conference on Information and Knowledge
Management (CIKM 1994), pp. 456463 (1994)

. Jennings, N.R.: Controlling Cooperative Problem Solving in Industrial Multi-Agent Systems

Using Joint Intentions. Artificial Intelligence 75, 195-240 (1995)

. Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communications of

the ACM 40, 25-28 (2003)

. Papazoglou, M.P., van den Heuvel, W.-].: Service Oriented Architectures: Approaches, Tech-

nologies and Research Issues. The VLDB Journal 16, 389-415 (2007)

Quillinan, T., Brazier, F., Aldewereld, H., Dignum, F., Dignum, M.V., Penserini, L., Wi-
jngaards, N.: Developing Agent-Based Organizational Models for Crisis Management. In:
Proceedings of the Industry Track of the 8th International Joint Conference on Autonomous
Agents and Multi-Agent Systems (2009)

Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS 1995), pp. 312-319 (1995)
Schmid, A., Padmanabhuni, S., Schroeder, A.: A Soft Constraints-Based Approach for Rec-
onciliation of Non-Functional Requirements in Web Services-Based Multi-Agent Systems.
In: Proceedings of the 2007 IEEE International Conference on Web Services, pp. 711-718
(2007)

Srivastava, B., Koehler, J.: Web Service Composition - Current Solutions and Open Prob-
lems. In: Proceedings of the ICAPS 2003 Workshop on Planning and Scheduling for Web
Services (2003)

Srivastava, B., Mazzoleni, P.: Business Driven Consolidation of SOA Implementations. In:
Proceedings of the 2010 IEEE International Conference on Services Computing, pp. 49-56
(2010)

Viazquez-Salceda, J., Dignum, F., Vasconcelos, W., Padget, J., Clarke, S., Ceccaroni, L.,
Nieuwenhuis, K., Sergean, P.: ALIVE: Combining Organizational and Coordination Theory
with Model Driven Approaches to Develop Dynamic, Flexible Distributed Business Systems.
In: Telesca, L., Stanoevska-Slabeva, K., Rakocevic, V. (eds.) Digital Business. Springer,
Berlin (2009)

SBDO: A New Robust Approach
to Dynamic Distributed Constraint Optimisation

Graham Billiau, Chee Fon Chang, and Aditya Ghose

Decision Systems Lab
School of Computer Science and Software Engg
University of Wollongong, NSW, Australia
{gdb339,c03,aditya}@uow.edu.au

Abstract. Dynamic distributed constraint optimisation problems are a
very effective tool for solving multi-agent problems. However they require
protocols for agents to collaborate in optimising shared objectives in a
decentralised manner without necessarily revealing all of their private
constraints. In this paper, we present the details of the Support-Based
Distributed Optimisation (SBDO) algorithm for solving dynamic dis-
tributed constraint optimisation problems. This algorithm is complete
wrt hard constraints but not wrt objectives. Furthermore, we show that
SBDO is completely asynchronous, sound and fault tolerant. Finally, we
evaluate the performance of SDBO with respect to DynCOAA for Dyn-
DCOP and ADOPT, DPOP for DCOP. The results highlight that in
general, SBDO out performs these algorithms on criteria such as time,
solution quality, number of messages, non-concurrent constraint checks
and memory usage.

1 Introduction

Dynamic Distributed Constraint Optimisation Problems (DynDCOP) are a prob-
lem domain that has not been well explored. DynDCOPs allow us to model
problems that can not be assumed to be static, that is they change so frequently
that by the time a DCOP solver has found a solution it is already obsolete.
DynDCOPs are very useful for modelling and solving multi-agent coordination
and planning problems. These problems appear in many areas such as schedul-
ing patient treatment in a hospital or managing the airspace above an airport.
As DynDCOP is an extension of the well explored Distributed Constraint Op-
timisation Problem (DCOP), techniques utilised to solve DCOP present a good
foundation.

Very few of the DCOP algorithms consider what happens when agents fail.
The max-sum algorithms [I1I] have been shown to be robust even when 90%
of messages are not delivered. While none of the others consider what happens
when agents fail. There are many reasons, such as hardware failures or malicious
attack that may cause an agent to fail. It is particularly important to be able
to continue solving even when agents fail in dynamic solvers, as they are often
expected to run continuously for a long duration.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 117@ 2012.
© Springer-Verlag Berlin Heidelberg 2012

12 G. Billiau, C.F. Chang, and A. Ghose

1.1 Related Work

At this time there are only two other algorithms that can solve DynDCOPs,
Dynamic Constraint Optimisation Ant Algorithm (DynCOAA)[6] and Self-
Stabilising Distributed Psuedo-tree Optimisation Procedure (S-DPOP)[g]. Of
these two DynCOAA is incomplete and S-DPOP is complete. Neither of these
two algorithms consider the possibility of agent failure, so are unable to recover
from failures.

As DynDCOP is an extension of the well explored Distributed Constraint Op-
timisation Problem (DCOP), techniques utilised to solve DCOP present a good
foundation. There are a large number of DCOP algorithms, such as ADOPT
[7], NCBB [I], DALO [3] and Divide-and-Coordinate [12]. As none of these al-
gorithms are currently capable of solving dynamic problems we do not consider
them further.

In section 2l we will present the Support Based Distributed Optimisation al-
gorithm (SBDO) which improves on the existing DynDCOP solvers by being
completely asynchronous, fault tolerant and having no hierarchy among agents.
Section [3] describes the performance results comparison from the dynamic prob-
lems, the fault tolerance and static problem dimension. In section [, we present
the conclusions.

2 Support Based Distributed Optimisation

SBDO is an extension of the SBDS algorithm[2]. SBDS is a complete Distributed
Constraint Satisfaction Problem solver. SBDO extends it by adding a local search
mechanism for optimising the solution found while maintaining the completeness
wrt hard constraints. SBDO also adds support for solving dynamic problems.

We define DynDCOPs as follows. Our definitions differ to that in the literature
as we treat hard constraints and soft constraints/objectives differently.

Definition 1. A Constraint Optimisation Problem (COP) is a tuple (X,D,C,R)
where X is a set {x1,...,2,} of variables, D is a set {dy,...,dn} of variable
domains, C is a set {c1,...,cm} of constraints defined over X and R is a set
{r1,...,7o} of utility functions defined over X .

Definition 2. A Distributed Constraint Optimisation Problem (DCOP) is a
tuple (A,COP,C,R) where A is a set {a1,...,ap} of agents, COP is a set
{COP,...,COP,} of disjoint COPs, C is a set {ci,...,cm} of shared con-
straints and R is a set {r1,...,rq} of shared utility functions.

The shared constraints and utility functions are defined over variables from
several different COPs.

Definition 3. A Dynamic Distributed Constraint

Optimisation Problem (DynDCOP) is a sequence

(DCOP, ..., DCOP,) where each DCOP differs from the previous one by an
added or removed constraint/objective/agent. The goal is to find and maintain
a solution where all the constraints are satisfied and the objective function opti-
mised.

SBDO: A New Robust Approach 13

We assume the existence of a global objective function that the collection of
agents seeks to optimise, but we require that it must be possible to decompose
this function into agent-specific objective functions such that the optimal assign-
ment of variables for the decomposed set of objective functions corresponds to
the optimal assignment for the global objective.

Note that to maintain generality of this discussion, we leave the details for the
decomposition up to the designer. However, each objective function must return
a value proportionate to how good the partial solution is, a utility value, such
that a better solution returns a higher utility value. The utility values returned
by all of the objective functions must be comparable and can be aggregated.

To further increase the generality of the algorithm, shared objectives can be
used as well as local objectives. Shared objectives are used when a (sub)objective
can not be decomposed to include only the variables of one agent. In this case the
objective can be shared between the agents that together control the variables
used in the objective. The objective is evaluated by any of the agents that share
it as soon as that agent knows an assignment to all the variables in the objective.
The utility returned by the shared objective is added to the utility of the agent’s
local objective. If the agent does not have enough information to evaluate the
objective it is ignored and only the agent’s local objective is used.

2.1 Communication

The physical communication channels that agents must use to communicate are
never perfect, so it is desirable for algorithms to be able to tolerate messages
arriving in random order. That is the messages sent between two agents may
not arrive in the same order they were sent, or they may never arrive at all. The
proposed algorithm is robust against messages arriving in random order but not
robust against message loss.

The most common message used for communication in SBDO is an ‘isgood’,
which is very similar to a partial assignment and is in part inspired by techniques
used in formal argumentation, where the notion of an argument is used to encode
alternate points of view.

Definition 4. The neighbour graph is an undirected graph (N, E). N is the set
of agents and E C N x N such that there is an edge {A;, A;} iff there exists a
shared constraint or a shared objective defined over both A; and A;.

Definition 5. Given a DCOP = (A ,COP,C,R). An isgood is a se-
quence (Ai,...,A,) of assignments such thalt the sequence is a sim-
ple path through the neighbour graph. Fach assignment is a triple
(a,{{z1,D1s), ..., (Tn, Dn;)}, utility) such that none of the constraints in the
DCOP are violated. The total utility of an isgood is the aggregation of the utili-
ties of all the assignments within it. As such an isgood encodes a partial solution
to the problem as well as the relative utility of the partial solution.

An isgood can be considered as an argument, in which case the first n — 1 as-
signments form the justification and the last assignment is the conclusion. As

14 G. Billiau, C.F. Chang, and A. Ghose

in formal argumentation theories, an argument may attack/defeat other argu-
ments and the agent receiving these potentially competing arguments must pick
the winning argument. Because of this, each agent attempts to send stronger
arguments over time to influence their neighbours.

Definition 6. The ordering over isgoods is: First the total utility of the isgoods
18 compared, with higher being better. If they are equal then the number of as-
signments in each isgood is compared, with more being better. Finally if they are
equal then one is picked randomly but consistently That is, if an agent picks
isgood A over isgood B then in all future comparisons it will choose A over B.

Instead of using an ordering over the variables, which causes problems in dynamic
environments, we use a total ordering over the partial solutions, or isgoods. This
ordering is needed so that the solution can be optimised as well as to prevent
cyclic behaviour. Whenever we refer to one isgood being better than another in
this paper it is with respect to this ordering

To avoid cycles of oscillating values which might occur because there is no
variable ordering we increase the length of successive isgoods that are sent. This
is achieved by recording the last isgood sent and attempting to send a longer
one. As any cycle must be finite eventually the isgoods being sent will contain
the cycle itself. If the cycle is made up of inconsistent values then a nogood
will be generated, breaking the cycle. Else the cycle breaking mechanism of
update view() (alg.[2) will break the cycle. The proofs of soundness and ter-
mination from SBDS[10] still hold. Due to space limitation, readers are directed
to [2] for details.

Rather than using all the information contained in all the isgoods that an
agent has received, which is often inconsistent. Each agent picks a single isgood
to use as the justification for the assignments to its own variables. The agent
who has sent the best isgood is chosen as the support for the agent. The isgood
that agent sent is used as the basis for the agents view.

Definition 7. Given a DCOP (A,COP,C,R). A nogood is a pair (P,C) where
P is a set of variable value pairs {{x1,D1i),...,{(Tn, Dnj)} forming a partial
assignment and C C C, is the justification such that P wviolates at least one
constraint in C. As such a nogood represents a partial solution that is proven to
not be part of any global solution.

Hard constraints are handled differently to objectives in order to guarantee that
any solution found will satisfy all of the hard constraints. Nogoods with justifi-
cations [I0] are used as these allow us to guarantee that all the hard constraints
are satisfied (as shown in [2]) as well as allowing obsolete nogoods to be identified
after hard constraints are removed from the problem.

Due to the dynamic nature of the input problem the algorithm never ter-
minates (detecting that the network of agents has reached a quiescent state,
or detecting that the problem is over-constrained are in themselves insufficient
as terminating criteria, since new inputs from the environment, in the form of
added or deleted variables/constraints/objectives might invalidate them).

! Cryptographic hash functions can provide a suitable comparison.

SBDO: A New Robust Approach 15

2.2 Dynamic Problems

Unlike other dynamic algorithms we do not explicitly model the concept of solu-
tion stability. Instead we assume that if there is a cost associated with changing
the value of a variable the agent takes it into account in its local objective
function(s).

Most of the changes to the problem that can occur in a dynamic system are
straightforward to implement, except for removing hard constraints (which we
discuss later). Several messages are required to communicate any changes to
the problem to the agents: add constraint, pre-remove constraint, post-remove
constraint, add objective, remove objective, add domain and remove domain.
These messages all reflect changes to the environment and as such are referred
to as environment messages. With the exception of post-remove constraint they
are assumed to be sent by the environment. Only the agents that control the
variables involved in the objective or hard constraint that is added or removed
must be notified.

A change to the agents involved is handled implicitly by the other messages.
When an agent no longer has any links to one of its neighbours, that agent is no
longer a neighbour. Once an agent has no links to any other agents it is effectively
removed from the problem. Agents are added to the problem by creating a link
between them and another agent. In the process they are then also a neighbour
of that agent.

When a hard constraint is removed in an update to the underlying COP all of
the nogoods that were generated because of the removed constraint must also be
removed. They can be identified via the nogoods justification. If the justification
contains the deleted constraint then the nogood might be obsolete and must be
deleted. This does mean that a nogood which violates two or more constraints,
and so is still valid, may be deleted. If this occurs the nogood will be re-posted
later. As it is possible for a nogood to arrive after the message that renders it
obsolete, pre-remove constraint(C) (alg.Bl) and post-remove constraint ()
(alg. Bl are required to ensure correctness.

To catch any nogoods that arrive after the constraint removed message that
makes them obsolete, the agent must also check the removed constraints it knows
of when it receives a new nogood. If the nogood is obsolete then it is discarded
and the associated counter decremented.

2.3 Fault Tolerance

Due to the nature of the algorithm, when an agent fails it has a minimal impact
on the other agents. Unlike algorithms that impose a hierarchy, agents do not
require a message from the failed agent(s) before they can continue processing.
Instead all agents just continue oblivious to the fact that an agent has failed. The
only limitation is that the value assigned to affected variables can not change,
other agents must continue using the last known value for the variables.

When an agent fails all its knowledge regarding sent and received isgoods is
lost. This effectively means that messages have been lost, which this algorithm

16 G. Billiau, C.F. Chang, and A. Ghose

can not account for. So when the failed agent restarts it must request that its
neighbours send it the last isgood and all nogoods that they sent to this agent,
as well as the last isgood and all nogoods they have received from this agent.
This prevents most knowledge loss and allows the failed agent to resume solving
faster. But if two neighbouring agents both fail at the same time then some
information is irretrievably lost.There is a simple extension to the algorithm
that will ensure that will ensure it functions correctly wrt agent failure and
random message order. Unfortunately there is not enough space to present it
here. Only accounting for agent failure is affected by this issue.

Theorem 1. Given that messages always arrive in the order they are sent,
SBDO is correct when agents in the network fail.

Proof. When a single agent A fails all of the information required for correctness
is preserved by its neighbours. Each of its neighbours records the set of nogood
messages that it sent to A. Similarly they record all the nogood messages that
they received from A. When A restarts it requests this information from its
neighbours.

When two or more neighbouring agents A and B fail simultaneously, the
messages that A sent to and received from agents other than B will be preserved
by those other agents and vice versa. So only the messages exchanged between
A and B are lost. Between A and B, A forgets that it sent message M to B and
B forgets that it received message M from A. Because of this each agents set
of sent and received messages are still consistent. Therefore the procedure for
removing obsolete nogoods is still correct.

Theorem 2. SBDO can continue solving when one or more agents fail.

Proof. Because of the flat communication model no agent is ever waiting for a
message from a specific agent before they can continue solving (they may be
waiting for a message from any agent, but if this is the case they currently have
no work to do). Because of this the other agents can always continue to solve the
problem, using the last known value for the agents variables. When the agent
restarts it is immediately informed of the current state of the problem so that it
can resume solving.

2.4 Algorithm
Each agent must store the following information:

— view. This is an isgood consisting of the isgood received from support + an
assignment to all this agents variables.

— recv(A). This is a mapping from an agent A to the last isgood received from
that agent.

— nogoods. This is an unbounded store of all nogoods received.

— sent(A). This is a mapping from an agent A to the last isgood sent to that
agent.

SBDO: A New Robust Approach

Algorithm 1. main()

begin
while Not Terminated do
for All received nogoods N do
if this nogood is obsolete then
decrement counter on the removed-constraint message
if counter = zero then
delete constraint-removed message

else
Add N to nogoods

for All neighbours A do

if There is no valid assignment to myself wrt recv(A) then
send nogood (A)

for All received environment messages do
Process message

for All received isgoods I do
Let A be the agent who sent I
set recv(A) to 1

if There is no valid assignment to myself wrt I then
send nogood (A)

update view()
Let I be the best isgood in recv(A)

if I is better than view then
Set support to the agent that sent 1

Let view be recv(support) extended by a valid assignment to all local,

public variables, chosen greedily

for All neighbours A do
if self and A are the first two variables in view then

if view £ sent(A) or sent(A) is not consistent then
Send view to A

Set sent(A) to view

else
Let length be the longest sub-isgood that can be sent to A
Let preferred be 0
if sent(A) is () or sent(A) [Z view then
Set preferred to |sent(A)| + 1

if sent(A) < recv(A) and view is inconsistent with recv(A) then
Set preferred to maz(preferred,|recv(A)| 4+ 1)

if preferred > 0 then
Let I be an isgood such that I C view and |I| =

min(length, preferred)

Let U be the utility of I as returned by the local objective function

+ any shared objectives

Set the utility of the assignment to self in I to U
Send I to A

Set sent(A) to I

Wait until at least one message has been received

end

17

18 G. Billiau, C.F. Chang, and A. Ghose

Algorithm 2. update view()
begin
Let view’ be recv(support) extended by a valid assignment to all local, public
variables, chosen greedily
Let V be the first variable assigned in view’
if scope(view’) = scope(view) or view is better than view’ or the assignment
to V is the same in view’ and recv(A) or the assignment to V is unequal in

view and recv(A) then
Set view to view’

end

Algorithm 3. pre-remove constraint (M)

begin
Let C be the removed constraint

for Each neighbour A do
Let counter be 0

for Each nogood N sent to A do

if N contains C as part of its justification then
Increment counter by 1

Delete N from sent nogoods

if counter > 0 then
Let M be a new constraint removed message with C and counter
Send M to A

end

— support. The agent that this agent is using as its support.

— sent-nogoods. This is an unbounded store of all nogoods sent.

— removed-constraints. An unbounded store of received remove constraint mes-
sages.

We use the notation A C B to say that A is a sub-isgood of B. By sub-isgood
we mean that A is the tail (or entirety) of B, |A| to denote the number of
assignments in A and scope(A) is the set of variables that are assigned in A.

Each agent greedily chooses what agent to use as its support and the values
to assign to its own variables. As each agent may control many variables, each
agent requires its own centralised Dynamic COP solver. Because of the way the
support is selected a collection of agents can combine to cause an agent that has
chosen sub-optimal assignments to change its assignments.

The basic steps each agent takes are quite simple. First it processes all the
messages in its message queue. Then it decides what values to assign to its own
variables. Last it sends all of its neighbours a message telling them what values
it has chosen for its variables.

Processing messages starts with all of the nogoods received. Nogoods are
processed first in case they are later rendered obsolete by a message from the

SBDO: A New Robust Approach 19

Algorithm 4. send nogood(A)

begin
Let N be a nogood derived from recv(A)
Send N to A
Set recv(A) to none
if support = A then
Set support to self

end

Algorithm 5. post-remove constraint(M)
begin
Let C be the constraint referenced
if removed-constraints already contains a message regarding C' then
Increment the counter of that message by the counter in M
else
for Fach received nogood N do
if N is justified by C then
Delete N
Decrement the counter by 1

if counter # 0 then
Add M to removed-constraints
pre-remove constraint(C)

end

environment and because one of them might invalidate one of the isgoods in
the message queue. When a nogood is received it is added to the set of all
known nogoods. Once all nogoods are processed the received isgoods must be
rechecked to see if they are now inconsistent with this agent’s assignment. If so,
the isgood’s sender must be informed by sending a nogood. This will force the
sender to change their value in the next iteration. Next all environment messages
are processed. The order within this group doesn’t matter, but they may affect
how the isgoods are processed. Finally, the received isgoods are processed. First,
recv(A) is updated with this most recent isgood, then it checks if there is a valid
assignment to its own variable. If there isn’t, a nogood is created and sent back
to the agent that sent the isgood. This will force the sender to change their value
in the next iteration.

While the processing of most environment messages is straightforward, re-
moving constraints requires special mention. When a constraint is removed from
the problem all of the nogoods that were generated because of that constraint
must also be removed. This is made more difficult because it is possible for the
nogood message to arrive after the pre-remove constraint message that makes it
obsolete. In order to ensure they are all deleted each agent must also maintain a
store of all the nogoods it has sent and who it sent them to. When a pre-remove
constraint message is received by an agent it checks its sent nogood store to

20 G. Billiau, C.F. Chang, and A. Ghose

see if any of its neighbours must be notified. If any of the nogoods have the
removed constraint as part of their justification, they are now obsolete and the
agents neighbour must be notified. To notify the neighbour, this agent sends a
post-remove constraint message with the constraint that has been removed and
the total number of nogoods sent to that agent that are made obsolete.

Whenever an agent receives a post-remove constraint message it must go
through its store of received nogoods and delete any that have this constraint
as part of their justification. For each one that is deleted, the counter of total
obsolete nogoods in the post-remove constraint message is decremented. When
the counter reaches zero, all of the obsolete nogoods have been deleted and the
post-remove constraint message can be deleted. The agent must also check its
own store of sent nogoods to see if any of its neighbours must be notified of
the change. This is exactly as above. If an agent receives two or more post-
remove constraint messages for the same constraint, the counters are simply
added together.

Now that the agent has the most recent information about its environment, it
can choose the best assignments for its own variables. This will normally require
a centralised COP solver.

After the agent has updated its view it then checks to see if one of the other
agents would make a better support than the current one. To do so, it picks the
best isgood out of all of the isgoods it has received, then compares it with its
view. If the isgood is better then it changes its support to the agent which sent
the best isgood and then has to call update view() (alg.[l) again to update its
view. If its view is better then it keeps its current support.

Finally the agent must communicate changes to its local state to its neigh-
bours. If it detects that it is part of a cycle with the agent it is currently sending
an isgood to then it must send its entire view to that agent. Unless its view is
worse than the last isgood sent to that agent. In which case it postpones sending
a message to prevent cyclic behaviour. If it does not detect a cycle then it must
decide how long an isgood to send. If the agent is updating obsolete information
that it sent earlier then it attempts to send a longer isgood than sent previously.
If the agent is in conflict with the agent than it also attempts to send a longer
isgood than was received from the agent. However obviously it can’t send an
isgood longer than its view, but it also can not send an isgood that is self sup-
porting i.e. if view is ((B, (b, 1),4), (C, (¢, 5),20), (A, (a, 1), 3), (D, (d, 3), 15)) and
sending an isgood to A then the maximum length is 3.

2.5 Example

Ezample 1. Consider the following constraint optimisation problem with three
variables, ¢, # and 7, each controlled by one agent A, @ and I' respectively.
Their respective domains are {0,1,2},{—1,0,1} and {-1,0,1}. The objectives
are min(d x6), min(#), min(y) and there is one hard constraint, § < . The utility
of the best assignment is 2, and the worst is 0.

In this problem agents § and # are neighbours as they share an objective, and
agents € and are neighbours as they share a constraint.

SBDO: A New Robust Approach 21

Initially no agents have any information from their neighbours so in alg. 2lthey
chose their assignments based on only local information, in this case, # = —1 and
v = —1 from their local objectives, while § = 1 is chosen randomly. All agents
then inform their neighbours of their decision by sending isgoods. A sends the
isgood ((A, {(4,1)},0)) to O, O sends the isgood ({0, {(#,—1)},2)) to A and I
and I' sends the isgood (I, {{7,—1)},2)) to O.

When O receives the isgood from I, it notices that the isgood is inconsistent
with its knowledge, as there is no value in its domain less then —1. So © sends
the nogood ({(v,—1)},{6 < v}). After receiving the isgoods all the agents decide
which agent to use as their support. © has to chose between itself and A. The
utility of ©’s current view is 2, which is better than or equal to all the others
so it keeps itself as its support. Similarly A and I' change their support to O.
When A chooses © as its support, its view now includes the assignment to O,
therefore it now has enough information to evaluate the shared objective and
so picks 4 = 2. © and I' view’s have not changed, so they don’t send new
isgoods, while A sends the isgood ((A,{(5,2)},2)) to ©. Normally it would
include the assignment to 6 as well, but that would create a circular argument,
so the assignment to @ is trimmed. Next, I" receives the nogood from @ and so
is forced to change its assignment to v = 0 and sends another isgood to © with
its new assignment. Simultaneously © receives the new isgood from A, but does
not make any changes because of it, so does not send a new isgood.

Then the problem changes. The constraint § < + is removed from the problem.
So the environment sends messages to @ and I'. I" has not sent any nogoods so
has nothing to do, while @ has sent a nogood to I" which is now obsolete, so
it sends the constraint removed message ((6 < v),1) to I'. Also as there is no
longer a link between @ and I" they are no longer neighbours. Meanwhile A has
not received any messages so is still waiting.

Finally ~ receives the constraint removed message, deletes the obsolete no-
good and so is again able to adopt the assignment v = —1, however it has no
neighbours to send an isgood to. As no agents have any messages to send the
network has reached quiescence.

3 Results

To evaluate SBDO, we implemented it using Python and compared it with the
two other DynDCOP algorithms, S-DPOP and DynCOAA. We used the refer-
ence implementation of S-DPOP[4], written in Java and we implemented Dyn-
COAA and SBDO in python. We used the parameters for DynCOAA that are
recommended by its authors [6], with 15 ants in each swarm. The different imple-
mentation languages mean that the memory and time used by each algorithm
can’t be compared directly. The Quality, Non-Concurrent Constraint Checks
(NCCCs)[a], and messages required are independent of the implementation and
so still directly comparable.

22 G. Billiau, C.F. Chang, and A. Ghose

4000 —————
2
S L+ + N % 4
% ‘X‘X ¥ x DynCOAA
é; % + SBDO i
<

1000 ' L '

0 10 20
Delay (s)

Fig. 1. Average solution quality per time step

The test platform was an AMD Athlon X2 6000+ processor with 4GB of
RAM running OpenSolaris 10 release 06/09. Memory usage was measured by
using DTrace to count all anonymous memory allocations and deallocations.

We used three sets of test problems: easy, moderate and hard. The easy set
consists of the 120 handcrafted meeting scheduling problems provided in [9].
These problems have between 8 and 12 variables with a constraint density (num-
ber of constraints divided by number of variables) of between 1.333 and 1.875.
The moderate set consists of 12 randomly generated meeting scheduling prob-
lems. These problems have between 9 and 24 variables with a constraint density
between 1.000 and 1.860. The hard set consists of 16 randomly generated meet-
ing scheduling problems. These problems have between 12 and 48 variables with
a constraint density between 1.750 and 4.000. We ran each problem ten times to
ensure the results represent the average performance of each algorithm.

3.1 Dynamic Problems

To evaluate SBDQO’s performance on dynamic problems we compared it against
DynCOAA on the moderate and hard sets of problems. Both algorithms were
allowed to run for a set amount of time (1, 2, 3, 5, 8 and 13 seconds), after
which they were paused, the utility of the current solution calculated, then two
of the hard constraints were randomly replaced then the algorithm resumed. The
problems objective function was left unchanged. This was repeated 25 times for
each problem. By using the same random seed we guarantee that the dynamic
problems are the same for all trials. We could not compare against S-DPOP as
the provided implementation does not support terminating the current solving
process after a period of time.

As fig Bl shows, SBDO always outperforms DynCOAA, however it is obvious
that the solutions found by SBDO are not monotonically non-decreasing. This
is because it does not have a global communication mechanism to coordinate
value changes like DynCOAA does.

SBDO: A New Robust Approach 23
»w 2]
S 4x10° —— — 7 2x10 — .
2 E x
E x normal 1 © x normal x +7
o .
5 9% 10 + failure 1 g 104 + failure * i
2 =
£ = *
Z: * 1 wn r * 1
. % 0 ¥
go 0 e * L 1 2 0 L L L 1
< 10 30 50 10 30 50

Number of Variables Number of Variables

Fig. 2. Performance with unreliable agents

3.2 Fault Tolerance

To demonstrate the fault tolerance of SBDO it was run on the set of hard
problems. Every 3 seconds a random agent was killed, then restarted between 1
and 3 seconds later. So at most one of the 12 to 48 agents was not operating at
any time. We tried with other failure rates and got similar results. We choose
to restart failed agents as our test problems are from the meeting scheduling
domain. Where it is reasonable to expect that agents will be restarted when their
failure is detected. As shown in figure 1 the algorithm requires more NCCCs,
so therefore more time and messages to reach quiescence. Though as shown in
figure 1 when it does terminate the solution is only slightly worse than when no
agents fail.

3.3 Static Problems

To evaluate how SBDO performs on static problems we tested it against S-DPOP
and DynCOAA. Table [Tl describes the average and standard deviation for each
of the metrics. Separated by easy, moderate and hard problems respectively. We
were unable to measure NCCCs for DynCOAA, so they have not been reported.
It also represents the average and standard deviation of the ratio of the ‘utility’
(or objective function value) computed over the optimal utility (represented as
a percentage) for each of these algorithms. We note that SBDO generates near
optimal, but not optimal, solutions in general. The SBDO algorithm performs
very well, requiring slightly more messages and NCCCs, but less memory than
S-DPOP. While producing slightly worse solutions that DynCOAA, but with
much less time and messages.

3.4 Scalability

To evaluate how SBDO scales with different problem sizes we compared it against
DPOP and DynCOAA on the moderate and hard sets of problems. Each instance
was terminated after 10 minutes or if it used more than 3.5GB of memory. SBDO
completed 98.6% of the moderate problems and 61.8% of the hard problems.

24 G. Billiau, C.F. Chang, and A. Ghose

Table 1. Performance on static problems

Algorithm Quality Messages NCCCs Memory (MB) Time (s)

avg SD avg SD avg SD avg SD avg SD
SBDO 99.80% 0.87 70.48 25.87 643.45 451.73 0.49 0.04 0.16 0.06
DynCOAA 99.95% 2.4E-4 8715.35 2745.23 - - 0.34 0.02 14.22 5.58

S-DPOP 100% 0.00 19.73 3.24 591.75 155.54 46.08 4.34 0.16 0.06

% 2x10° = —
= o 400 b+t 4
5 = *

! 105 H +H+ X +

z 2 200 Eow -
Z] +# T

. g +, +F . x
:>:O 0 < O "—‘ﬁk+ 1
1 3 5
" . Link Density
8 @, 1010 i i i :
O &
Z < *
kS SR (L .
£ QE; Sk S i
z = 108 et -
a’o . '
< < 1 3 5
Link Density Link Density

x SBDO + DynCOAA % S-DPOP

Fig. 3. Scalability of SBDO, DynCOAA and DPOP

DPOP completed all of the moderate problems and 17.5% of the hard problems.
DynCOAA completed all of the moderate problems and 61.75% of the hard
problems.

The plots in figure 3 have been created by averaging the data collected from
all the instances the algorithms were tested on. The plots show that SBDO scales
well, though it does not scale as well as DPOP on most metrics, it scales much
better on memory usage.

4 Conclusion

We have presented the Support Based Distributed Optimisation algorithm that
can solve Dynamic Distributed Constraint Optimisation problems using a novel
approach inspired by argumentation. In this approach there is no hierarchy

SBDO: A New Robust Approach 25

among the different agents, instead each agent is able to send ‘isgoods’, which
can be viewed as arguments. An isgood contains the assignment to the variables
of an agent as well as the utility of the assignment and the context in which the
decision was made. Each agent can choose one of the other agents as its support
and in turn uses that agent’s assignment and context as the context for its own
decision. By constantly creating and communicating stronger and stronger argu-
ments each agent is able to influence the assignment to other agents. In this way
the agents are able to arrive at a good solution using few resources, as shown in
table [l Also figure 3 shows that the resources required scale well with the size
of the problem.

The lack of hierarchy makes this approach very flexible regarding change in
the environment. So it is highly suited for solving dynamic problems, as shown in
figure 1. This flexibility, coupled with the knowledge redundancy in the network
makes it fault tolerant. Other agents are able to continue solving unimpeded
when one or even many agents fail. Error recovery is hastened by allowing an
agent that has just restarted to recreate its previous state, as shown in figure 2.

The resulting algorithm is completely asynchronous, fault tolerant, complete
with respect to hard constraints but incomplete with respect to soft constraints.

In future we plan to extend the concept of objectives to allow stability con-
straints to be expressed. We also intend to identify how to make the algorithm
complete, or at least provide theoretical guarantees on solution quality.

References

1. Chechetka, A., Sycara, K.: No-commitment branch and bound search for dis-
tributed constraint optimization. In: AAMAS 2006, pp. 1427-1429. ACM (2006)

2. Harvey, P., Chang, C.F., Ghose, A.: Support-based distributed search: a new ap-
proach for multiagent constraint processing. In: AAMAS 2006, pp. 377-383. ACM
(2006)

3. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In: AAMAS,
pp. 133-140 (2010)

4. Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: An open-source framework for
distributed constraint optimization. In: Proceedings of the IJCATI 2009 Distributed
Constraint Reasoning Workshop (DCR 2009), Pasadena, California, USA, pp. 160
164 (July 13, 2009), http://liawww.epfl.ch/frodo/

5. Meisels, A., Kaplansky, E., Razgon, 1., Zivan, R.: Comparing performance of dis-
tributed constraints processing algorithms. In: Proceedings of DCR Workshop,
AAMAS 2002 (2002)

6. Mertens, K.: An Ant-Based Approach for Solving Dynamic Constraint Optimiza-
tion Problems. PhD thesis, Katholieke Universiteit Leuven (December 2006)

7. Modi, P.J., Shen, W.-M., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence 161, 149-180
(2005)

8. Petcu, A., Faltings, B.: S-dpop: Superstabilizing, fault-containing multiagent com-
binatorial optimization. In: Proceedings of the National Conference on Artificial
Intelligence, AAAI-2005, pp. 449-454. AAAI, Pittsburgh (July 2005)

http://liawww.epfl.ch/frodo/

26

11.

12.

G. Billiau, C.F. Chang, and A. Ghose

Portway, C.P.: USC dcop repository (2008), http://teamcore.usc.edu/dcop

. Schiex, T., Verfaillie, G.: Nogood recording for static and dynamic constraint sat-

isfaction problems. In: TAI 1993, pp. 48-55 (1993)

Stranders, R., Farinelli, A., Rogers, A., Jennings, N.R.: Decentralised coordina-
tion of continuously valued control parameters using the max-sum algorithm. In:
AAMAS, vol. (1), pp. 601-608 (2009)

Vinyals, M., Pujol, M., Rodriguez-Aguilar, J.A., Cerquides, J.: Divide-and-
coordinate: Dcops by agreement. In: AAMAS, pp. 149-156 (2010)

http://teamcore.usc.edu/dcop

Solving Distributed CSPs Using Dynamic,
Partial Centralization
without Explicit Constraint Passing

Roger Mailler and Jacob Graves

Computational Neuroscience and Adaptive Systems Lab
University of Tulsa, USA
roger-mailler@utulsa.edu
http://www.cnas.utulsa.edu

Abstract. Dynamic, partial centralization has received a considerable
amount of attention in the distributed problem solving community. As
the name implies, this technique works by dynamically identifying por-
tions of a shared problem to centralize in order to speed the problem
solving process. Currently, a number of algorithms have been created
which employ this simple, yet powerful technique to solve problems such
as distributed constraint satisfaction (DCSP), distributed constraint op-
timization (DCOP), and distributed resource allocation.

In fact, one such algorithm, Asynchronous Partial Overlay (APO),
was shown to outperform the Asynchronous Weak Commitment (AWC)
protocol, which is one of the best known methods for solving DCSPs.
One of the key differences between these algorithms is that APO uses
explicit constraint passing. AWC, on the other hand, passed nogoods be-
cause it tries to provide security and privacy. Because of these differences
in underlying assumptions, a number of researchers have criticized the
comparison between these two protocols.

This paper attempts to resolve this disparity by introducing a new hy-
brid algorithm called Nogood-APO. Like AWC, this new algorithm uses
nogood passing to provide security and privacy, but like APO uses dy-
namic partial centralization to speed the problem solving process. Like its
parent algorithms, this new protocol is sound and complete and performs
nearly as well as APO, while still outperforming AWC, on distributed
3-coloring problems. In addition, this paper shows that Nogood-APO
provides more privacy to the agents than both APO and AWC on all
but the sparsest problems. These findings demonstrate that a dynamic,
partial centralization-based protocol can provide privacy and that even
when operating with the same assumptions as AWC still solves problems
in fewer cycles using less computation and communication.

1 Introduction

Over the years, distributed problem solving has received a great deal of attention
for a number of reasons. The most compelling reasons are that some problems are
naturally distributed, multiple processor can compute solution faster, and privacy

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 27 2012.
© Springer-Verlag Berlin Heidelberg 2012

28 R. Mailler and J. Graves

and security can be maintained. These reasons can often be quite contradictory
because, for example, the more information an agent is willing to reveal upfront as
part of the problem solving process, the faster a solution can be computed.

One methodology for solving distributed problems, called dynamic, partial
centralization tries to solve naturally distributed problems in the fastest manner
possible by performing focused, incremental and asynchronous centralization of
portions of a shared problem. Several protocols have already been created that
use this hybrid centralized/distributed search technique and have been shown to
outperform existing protocols on a large number of distributed problems.

One of the key characteristics of each of these algorithms, however, is that
the agents have to be willing to directly reveal a great deal of information to
each other. For example, in Asynchronous Partial Overlay (APO) [§], agents
willingly reveal their variable’s constraints and domain whenever requested. The
Asynchronous Weak Commitment (AWC) protocol [15], on the other hand, only
reveals information about a variable’s constraints and domain, using a nogood,
when it reaches a deadend in the problem solving process. The willingness to re-
veal information is one reason, although not the only one, that APO outperforms
AWC across a wide spectrum of problem sizes and difficulties.

The purpose of this paper is to present a new hybrid AWC/APO algorithm,
called Nogood-APO. Like APO, this new algorithm uses dynamic, partial cen-
tralization and like AWC only reveals information, in the form of a nogood, when
necessary during the problem solving process. The two main goals in creating
this algorithm are to show that although partial centralization involves revealing
knowledge in order to solve a shared problem, the knowledge that is exposed can
be minimized, obscured, or revealed in an incremental manner. The second goal
is to demonstrate that even when constraints are not explicitly revealed, that
dynamic, partial centralization still outperforms the AWC-like trial-and-error
approach to solving distributed problems.

The rest of this paper is organized as follows. In the next section, we will
introduce the distributed constraint satisfaction problem. We will go on to de-
scribe the Nogood-APO algorithm, give an example of its execution on a simple
problem, and mention the issues of soundness and completeness. We will then
present the setup for our experimental evaluation followed by the results. Finally,
we will present our conclusions and future work.

2 Distributed Constraint Satisfaction

A Distributed Constraint Satisfaction Problem (DCSP),
P =(V, A, D, R), consists of the following [16]:

— A set of n variables V = {z1,...,2,}.

— A set of g agents A = {a1,...,a4}

— discrete, finite domains for each of the variables D = {D;, ..., D,}.

— a set of constraints R = {R1, ..., Ry} where each R;(d;1,...,d;;) is a pred-
icate on the Cartesian product D;; X - - - x D;; that returns true iff the value
assignments of the variables satisfies the constraint.

Solving Distributed CSPs Using Dynamic, Partial Centralization 29

Mediator Receiving Agent
Have conflict and
= not expecting
amediation
Change value, Yes Can | fix the conflict Evaluate? Evaluate domain
send ok? (—— with a local value e elements
messages change?]
; : ' 1
M | !
e 1 :
Start a mediation ; 1
session B I
Evaluate! !
A a
Chaose a solution, Accept! | Apply solution,
link if needed send ok?
messages

Fig. 1. The basic APO protocol

The problem is to find an assignment S = {ds,...,d,|d; € D;} such that each
of the constraints in R is satisfied. DCSP, like its centralized counterpart CSP,
has been shown to be NP-complete, making some form of search a necessity.

In this work, we focus on the case where each agent is assigned a single variable
and the constraints are binary. Since each agent is assigned a single variable,
we will refer to the agent by the name of the variable it manages. Because the
constraints are binary, we can refer to the graph created by representing variables
as vertices and constraints as edges as the constraint graph. In addition, two
variables are considered to be neighbors if they share a constraint.

3 The Protocols

3.1 Asynchronous Weak Commitment (AWCQC)

The Asynchronous Weak Commitment (AWC) protocol is heavily based on its
predecessor the Asynchronous Backtracking (ABT) protocol [I7]. ABT works by
assigning each agent a priority value. These priority values establish an absolute
ordering amongst the agents that is used to control the search process. Agents
perform the search by sending value messages to lower priority agents they are
linked with. Value messages inform these lower priority agents about the variable
values of higher priority agents. The agents use these values to determine if any
of their domain values can satisfy their constraints with higher priority agents.
Whenever the values of the higher priority prevent them from assigning their
variable a conflict free value, the agent generates a nogood message.

Nogoods are composed of a set variable/value pairs that indicate that the
combination of the variable assignments cannot be part of a satisfying solution.
A nogood can be thought of as an implied constraint. After generating a nogood,
it is sent to all the agent that are contained within it. Upon receiving a nogood,
agents perform a linking step with any agent that is listed in the nogood and
was previously unknown. This step is necessary to ensure the completeness of the
search. Initially, the linking structure mirrors the constraint graph, but because

30 R. Mailler and J. Graves

of linking as a result of nogoods, can quickly grow causing higher priority agents
to send value messages to a large number of agents.

Like centralized backtracking algorithms, the ordering of the agents (variables)
in ABT strongly affects the speed of the search. To overcome this problem,
Yokoo created the AWC protocol [I5]. The AWC algorithm is a variant of the
ABT algorithm that allows the agents to re-prioritize themselves using the weak-
commitment search heuristic [I4]. This heuristic strategy basically says that
whenever a backtrack occurs, that variable that triggered the backtrack should
be moved up in the search tree. The principle idea behind this technique is to
identify variables that are at the center of complex or critical constraints and
assign them values first. Their values can then act as constraints on less critical
variables instead of the other way around. In practice, this techniques has been
shown to be quite effective in reducing the overall runtime of DCSP searches.

A later addition to the AWC protocol was the use of resolvent-based nogood
learning [6]. This technique works by selecting, for each of the variable’s possible
values, one nogood that prohibits that value. These nogood are then merged
together to form a new nogood. If the nogoods are selected wisely, they can
actually generate smaller, more powerful nogoods.

3.2 Asynchronous Partial Overlay (APO)

Conceptually, APO is based on the cooperative mediation paradigm [8]. Cooper-
ative mediation entails three main principles. The first is that agents use local,
centralized search to solve portions of the overall problem. Second, agents should
use experience to dynamically increase their understanding of their role in the
overall problem. Third, agents should overlap the knowledge that they have to
promote coherence. Together these three ideas create a powerful paradigm which
has been applied to several distributed problems [TOITT].

The basic APO algorithm is presented in Figure[Ill The APO algorithm works
by constructing two main data structures; the good list and the agent view.
The agent view holds the names, values, domains, and constraints of variables
to which an agent is linked. The good list holds the names of the variables that
are known to be connected to the owner by a path in the constraint graph.

As the problem solving unfolds, the agents try to solve the subproblem they
have centralized within their good list or determine that this subproblem is
unsolvable (indicating that the entire problem is overconstrained). To do this,
whenever an agent recognizes a constraint violation involving its variable, it
takes the role of the mediator and attempts to change the values of the variables
within the mediation session to achieve a satisfied subsystem. When this cannot
be achieved without causing a violation for agents outside of the session, the
mediator links with those agents assuming that they are somehow related to the
mediator’s variable. This step increases the size of the good list. This process
continues until one of the agents finds an unsatisfiable subsystem, or all of the
conflicts have been removed.

Like AWC, agents that use APO have a dynamic priority value that is used to
determine which agent mediates when a conflict is detected. Currently, the heuris-

Solving Distributed CSPs Using Dynamic, Partial Centralization 31

tic for setting this priority value is to use the size of the subproblem that the agent
knows. Although one could conceive of a number of other heuristics which optimize
different metrics, this particular heuristic was chosen to minimize the number of
parallel cycles needed to compute a solution. Benisch and Sadeh, for instance, de-
veloped an inverted mediator selection strategy that improves the parallelism of
the protocol at the expense of requiring additional communication cycles [1].

When an agent links in APO, the agents exchange the domain values, D;, and
constraints, VR; x; € R;, on the their variable. In many environments, particular
in ones where every agent is trusted and cooperative, the open exchange of
this knowledge is quite acceptable and leads to significant improvements in the
runtime of the algorithm. However, there are times when directly exchanging
this information is impossible due to privacy or security.

3.3 Nogood-APO

The Nogood-APO (NAPO) algorithm is very similar in nature to the APO
algorithm. The key difference is that instead of directly exchanging constraints,
the agents exchange nogoods as part of the problem solving process.

By exchanging nogoods, the agents gain two things. First, because the agents
incrementally reveal information, they may not have to reveal all of the details
about their constraints in order to solve a problem. This is particular important
in domains where the variables have very large domains. The second is that
agents can obscure their constraints by padding the most minimal nogood with
additional variable/value pairs. By padding them in this way, it is harder for
another agent to actually know the details of the constraints, but it slows the
execution of the algorithm because it is harder to identify when the problem is
unsolvable.

There are several secondary effects of changing the algorithm in this way. The
most important is that the agents need to maintain a nogood list. Like AWC,
the size of the nogood list can grow quite large (exponential in the worst case),
especially if agents try to hide their direct constraints by padding their nogoods.
However, if the agents are willing to exchange nogoods that are directly derived
from their constraints, the size of the nogood list becomes quite manageable
being directly related to the number and complexity of the constraints as opposed
to the number of possible assignments to the variables.

Initialization. Like APO, on startup, the agents are provided with the value
(they pick it randomly if one isn’t assigned) and the constraints on their variable.
Using these constraints, the agents derived their direct nogoods and place them
in their nogood lists. Unlike APO however, initialization proceeds by having each
of the agents send out an “ok?” message to its neighbors. The content of this
message is considerably different from the “ok?” messages in APO. In NAPO,
the agents send their current priority, the value of their variable, their variable’s
current domain, and the current set of violated nogoods from their nogood list
that involve their variable.

32 R. Mailler and J. Graves

Agents send their domain values as part of the “ok?” message because it
ensures that the mediator always has the current set of allowable values for the
variables in its good list. This is particularly important if an agent calculates
that one of its values is not arc-consistent. This can be thought of as the agent
deriving a unary nogood which disallows one of its variable’s values.

The “ok?” message also includes the set of currently violated nogoods that
include the agent’s variable. There are two reasons for including this informa-
tion. First, when this set is empty, it indicates that the agent does not wish to
mediate. Second, as will be illustrated later, this information is used to ensure
that mediators are informed of inadvertent nogood violations that result from
changing the values of multiple variables in a session without knowing that they
are related to one another.

When an agent receives an “ok?” message (either during the initialization,
through a later link request, or as a state update), it records the information in
its agent view and adds the variable to the good list if it can. A variable is only
added to the good list if it shares a nogood with a variable that is already in
the list. This restriction ensures that the graph created by the variables in the
good list always remains connected.

Checking the agent view. Whenever the agent receives a message that indicates
a possible change to the status of its variable, it checks the current agent view
(which contains the assigned, known variable values) to identify violated no-
goods. If, during this check, an agent finds a violation and has not been told
by a higher priority agent that they want to mediate, it assumes the role of the
mediator.

As the mediator, an agent first attempts to rectify the violation(s) by changing
its own variable. This simple, but effective technique prevents sessions from
occurring unnecessarily, which stabilizes the system and saves messages and
time. If the mediator finds a value that removes the violations, it makes the
change and sends out an “ok?” message to the agents in its agent view. If it
cannot find a non-conflicting value (it’s at a deadend), it starts a mediation
session.

Mediation. The most complex and certainly most interesting part of the protocol
is the mediation. The mediation starts with the mediator sending out “evaluate?”
messages to each of the agents in its good list. The purpose of this message
is two-fold. First, it informs the receiving agent that a mediation is about to
begin and tries to obtain a lock from that agent. This lock prevents the agent
from engaging in two sessions simultaneously or from doing a local value change
during the course of a session. The second purpose of the message is to obtain
information from the agent about the effects of making them change their local
value. This is a key point.

When an agent receives a mediation request, it will respond with either a
“wait!” or “evaluate!” message. The “wait” message indicates to the requester
that the agent is currently involved in a session with a higher priority agent or
is expecting a request from an higher priority agent. If the agent is available, it

Solving Distributed CSPs Using Dynamic, Partial Centralization 33

constraint constraint

=~ violation =~ violation

constraint
violation

(c) After second mediation.

Fig. 2. Example 3-coloring problem with 5 variables and 7 not-equals constraints

labels each of its domain elements with the nogoods that would be violated if it
were asked to take that value which is returned in an “evaluate!” message.

When the mediator has received either a “wait!” or “evaluate!” message from
all of the agents that it has sent a request to, it computes a solution using a
Branch and Bound search [3]. The goal of the search is to find a conflict-free
solution for the variables in the session and to minimize the number of conflicts
for variables outside the session (like the min-conflict heuristic [13]). During this
search, new nogoods can be derived using nogood learning [4]. These nogoods
are recorded in the nogood list and can be used during subsequent searches to
prune the search space.

If no satisfying assignments are found, the agent announces that the problem
is unsatisfiable and the algorithm terminates. If a solution is found, “accept!”
messages are sent to the agents in the session and “ok?” messages are sent to
the agents that are in its agent view, but, for whatever reason, were not in the
session, and to any agent that is not in its agent view, but it caused conflict for
as a result of selecting its solution.

3.4 Example Execution

Consider the 3-coloring problem in Figure Bh. In this problem there are 5 vari-
ables, each assigned to an agent and 7 constraints which represent the “not
equals” predicate. Being a 3-coloring problem, the variables can only take the
value red, green, or blue. There are currently two constraint violations, between
ND2 and ND4 and between NDO and ND3.

On initialization, each of the agents adds nogoods to their nogood lists for the
constraints that they have on their variable. They then send “ok?” messages to
the agents with whom they share constraints (their neighbors).

34 R. Mailler and J. Graves

Once the initialization has completed, each of the agents checks its agent view
to determine if its variable is involved in a violation. In this case, NDO, ND2,
ND3, and ND4 determine that have a conflict. Because of the priority ordering,
ND4 (priority 3) waits for ND2 (priority 4) to mediate. NDO (priority 3) and
ND2 wait for ND3 (priority 3 tie broken by name). ND3, knowing it is higher
priority than NDO and ND2, first checks to see if it can resolve its conflicts by
changing its value, which it can’t. It then starts a mediation session and sends
“evaluate?” messages to NDO, ND1, and ND2.

Upon receiving the “evaluate?” messages, NDO, ND1, and ND2 evaluate their
domain elements to identify the nogoods that would be violated by each of
them. This information is then returned to ND3 in an “evaluate!” message. The
following are the labeled domains for the agents in the session with ND3:

— NDO
Green violates (ND0=G,ND1=@G)
Blue violates (NDO0=B,ND3=B)
Red causes no violations
— ND1
Green cause no violations
Blue violates (ND1=B,ND0=B) and (ND1=B,ND3=B)
Red violates (ND1=R,ND2=R) and (ND1=R,ND4=R)
— ND2
Green violates (ND2=G,ND1=G)
Blue violates (ND2=B,ND3=B)
Red violates (ND2=R,ND4=R)

ND3 computes a solution that changes the values of all of the variables in the
session (see Figure [Zb). Based on the information that ND3 obtained from the
“evaluate!” messages, it believes that this solution solves its subproblem and
causes no conflicts for agents outside of the session. ND3 sends “accept!” message
to the agents in the session.

After receiving the “accept” messages, each agent changes its value and checks
its agent view. This time, ND1 and ND2 are in conflict. This happened because
ND3 changing their values to blue, inadvertently causing the violation. To pre-
vent this from happening again, the “ok?” messages that are sent by ND1 and
ND2 include their current conflict set. This allows ND3 to learn of the relation-
ship between ND2 and ND1 so it doesn’t repeat the same error.

ND1, the higher priority (priority 5) agent, cannot solve the conflict by making
a local value change, so it starts a mediation session. Below are the responses to
the “evaluate?” messages sent by ND1:

— NDO
Green violates (ND0=G,ND3=@G)
Blue violates (ND0=B,ND1=B)
Red causes no violations

— ND2
Green violates (ND2=G,ND3=@G)
Blue violates (ND2=B,ND1=B)
Red violates (ND2=R,ND4=R)

Solving Distributed CSPs Using Dynamic, Partial Centralization 35

— ND3
Green causes no violations
Blue violates (ND3=B,ND1=B)and (ND3=B,ND2=B);
Red violates (ND3=R,ND0=R)

— ND4
Green causes no violations
Blue violates (ND4=B,ND2=B)and (ND4=B,ND1=B)
Red causes no violations

ND1 computes a solution which changes its value to green and ND2’s to red and
sends “accept!” messages. All of the agent’s check their agent view and find no
conflicts so the problem is solved (Figure 2k).

3.5 Soundness and Completeness

The soundness and completeness of the NAPO algorithm are derived directly
from the soundness and completeness of APO. We refer the reader to [9] and
[5] for the complete details of the proofs for APO. Here is a basic outline of the
proof for NAPO:

— If at anytime an agent identifies a constraint subgraph that is not satisfiable,
it announces that the problem cannot be solved. Half of the soundness.

— If a nogood is violated, someone will try to fix it. The protocol is dead-lock
and live-lock free. The other half of the soundness proof.

— Eventually, in the worst case, one or more of the agents will centralize the
entire problem and will derive a solution, or report that no solution exists.
This is done by collecting nogoods from both “evaluate!” messages and “ok?”
messages. This ensures completeness.

4 Empirical Evaluation

4.1 Experimental Setup

To test the NAPO algorithm, we implemented the AWC, APO, and NAPO
algorithms and conducted experiments in the distributed 3-coloring domain. The
particular AWC algorithm we implemented can be found in [I8] which includes
the resolvent nogood learning mechanism described in [6]. We conducted two sets
of experiments.

In the first set of experiments we compared the algorithms using 30 variable,
randomly generated graph coloring problems while varying the edge densities
across the known phase transition for 3-coloring problems [2]. In the second set
of experiments, we tested the scalability of the algorithms by varying the size
of the problems from 15 to 60 variables in the three major regions of the phase
transition. Each data point represents an average over 30 randomly generated
problems. Each algorithm was given the same problems with the same initial

36 R. Mailler and J. Graves

Cycles n=30 i NCCC n=30 ——20 Messages n=30 ——w0
— —
ﬁ e . ARG
"
" \N‘ ’
:-'J-b—[i‘oooooo -’[
17282950 19192021222124282627282838 1$192021222324252627282930
Denuty D ity Coerary
Awg Info Gain n=30 Max Info Gain n=30 Awg Link Ine n=30 ——w0
™ - ; e
i et - a-u-g il
- - [=8
5. P 1 —] e 1
el s
! 10 Lt
1 4 5 e
e T ——
1 142 19202122 232425263 18 13 20 21
Doty Doty Doy

Max Link Inc n=30 p——Y

:

Fig. 3. Phase transition results for 30 node graphs of various density

variable assignments to minimize variance. The algorithms were allowed to run
for up to 1,000 cycles. This upper limit only affected the AWC protocol, which
frequently could not finish on larger, higher density problems. A total of 2,250
test runs were conducted.

During these tests we measured the number of messages, cycles, and non-
concurrent constraint checks (NCCCs) [12] used by the algorithms. During a
cycle, incoming messages are delivered, the agent is allowed to process the infor-
mation, and any messages that were created during the processing are added to
the outgoing queue to be delivered at the beginning of the next cycle. The actual
execution time given to one agent during a cycle varies according to the amount
of work needed to process all of the incoming messages. We also instrumented
the algorithms to measure the number of non-concurrent constraint checks used
during each cycle. This measure has gained popularity in the DCSP community
because it provides an implementation independent view of the parallel compu-
tation usage of a protocol.

In addition to these standard measures of computation and communication
cost, we also gathered data to quantify the information that the agents revealed
to one another during the problem solving process. One measure we used was
to count the number of links that the protocols created during execution. This
metric provides insight into "who” the agents send information to in order to
solve the problem. We also wanted to measure ”what” and how much information
was being sent. To do this we used the following measure of information gain:

gain(a;) = Z |Dj|"9| (1)

ngenogoods—rcvd;

Solving Distributed CSPs Using Dynamic, Partial Centralization 37

Cycles m=2.0n —— Messages m=2.0n

=i L0000 -t

g 81

aristies arsaies

Cycles m=2.3n Messages m=2.3n —— A NCCC m=2.3n

i1t
14

Variables Varissbes Varkables

Cycles m=2.7n =S Messages m=2.7n

) o — 'i.‘ZIZ_: P/

wariaties Variables Vasiables

2

Cycis

Fig. 4. Scalability cost results for AWC, APO, and NAPO

where a; is an agent, nogoods — rcvd; is the set of unique nogoods that have
been received from other agents by a;, |D;|, is the size of the domain, and |ng|
is the size of an individual nogood based on the number of variable/value pairs
it contains. The logic behind this equation is that the power of a nogood can be
measured based on the number of potential solutions that it invalidates in the
search space. Shorter nogoods are more powerful because they are more general
and eliminate a larger number of value combinations. This metric is similar to
the Value of Possible States (VPS) metric developed by Meheswaran et al. [7].
For both of these metrics we determined the average across the agents, measuring
the distribution of information gain, as well as the maximum value for any single
agent, measuring the amount of centralization.

To provide a frame of reference, we also included data for the average and
maximum information gain had the agents elected a leader and centralized the
problem. The centralized maximum and average information gain can easily be
computed as:

m(n—1)

mazx gain(a) =

mazx gain(a)

3)

avg gain(a) =
n

4.2 Results

The result of the phase transition experiments can be seen in Figure Bl These
graphs show that AWC outperforms both APO and NAPO on very sparse

38 R. Mailler and J. Graves

Avg Info Gain m=2.0n _:_‘: Avg Info Gain m=2.3n Avg Info Gain m=2.7n =i
At ———iit S
» s
3 > i naro
? = IR
¢ = —a— »J__Fd_r'
1:= 3 —
5 w0 a w0
j— Variables [—
Max Info Gain m=2.0n g Max Info Gain m=2.3n =i Max Info Gain m=2.7n i
. i — s -
iz == is g -
e 5 s n - 2 3 / .
5 e 0 R —

variabler arisbles waristles

Avg Link Inc m=2.0n Avg Link Inc m=2.3n —— A Avg Link Inc m=2.7n

Variabtes

ik
ks

ariables

Max Link Inc m=2.0n - Max Link Inc m=2.7n ——ar
” - -t
e " -
i // H i -
: o
r/ — e

Variabtes Variabtes ariables

Fig. 5. Scalability information results for AWC, APO, and NAPO

problems, but on problems at or above the phase transition, the story is quite dif-
ferent. APO uses the least number of NCCCs, cycles, and messages with NAPO
using slightly more. These results seem to contradict the findings of presented
by Grinshpoun and Meisels [5] who reported that APO used more NCCCs on
medium density problems across various levels of constraint tightness. The dis-
crepancy between these results can likely be explained by the difference in the
experiments that were conducted. Grinshpoun and Meisels used general CSP
instances where the variables have large domains (|D;| = 10) as opposed to the
small domain of the variables (]D;| = 3) and fixed tightness of the constraints
(p2 = 0.33) in 3-coloring. The large domains create equally large branching fac-
tors that severely impact the branch and bound solver used at the core of APO.

When looking at the results for information exchange, the nature of the proto-
cols becomes apparent. APO, which uses explicit constraint passing, has the worse
average information exchange across the entire transition, centralizes about 50% of
the problem within a single agent, but creates the least number of new links. NAPO
has the lowest average information gain, is equivalent to APO in the amount of in-
formation centralized in a single agent, and produces more links than APO. This
can be interpreted as meaning that NAPO centralizes as much as APO, but does
it in a more intelligent manner. AWC has the least average information gain on
very sparse problems, but within the phase transition performs worse than NAPO

Solving Distributed CSPs Using Dynamic, Partial Centralization 39

and actually approaches APO. AWC has very minimal centralization on sparse
problems, but as the density increases, the agent with the maximum information
gain actually gets more information than if the problem had just been completely
centralized. At first, this doesn’t appear to make sense, but AWC agents not only
send original constraints, they also send implied constraints. So the agent with the
maximum information gain is not only being told the other agents’ constraints, it
is being told about constraints that are learned by the other agents as well. AWC
also creates more links meaning that agents are exchanging information with more
of their peers than APO and NAPO

The results of the scalability experiments can be seen in Figures @ and [l
The results for the cost metrics are as expected with APO using the least cycles,
communication, and NCCCs of the three protocols. The protocol cost for NAPO
is somewhere between APO and AWC. In the NCCCs category it appears that
AWC and NAPO are competitive. However, one should keep in mind that many
of the AWC runs did not actually complete on the 60 node test cases because
they did not find a solution within 1,000 cycles. So the results for AWC in these
graphs are skewed toward being lower than they actually are.

The results for scalability of information gain also present some interesting
findings. They show that on sparse problem, both AWC and NAPO have less av-
erage information gain than APO. However, on denser problems, AWC becomes
less scalable having a rapid increase in average information gain that exceeds
even APO. The same trend holds true when looking at maximum information
gain. AWC is dominate on sparse problems, but on dense examples has poor
scalability. APO performs best overall in the number of new links it creates,
with NAPO in the middle and AWC creating the most links.

The take-home message from these experiments are not directly straightfor-
ward, but can be summarized as follows:

— On sparse 3-coloring problems, the AWC protocol exchanges the least amount
of information in order to compute a solution, but takes more cycles, uses
more messages, creates more links, and performs more NCCCs than APO.

— On dense 3-coloring problems, AWC exchanges more information, to more
agents, uses more cycles, more messages, and more NCCCs than either
NAPO or APO.

— If you are solely concerned about speed then APO is your best choice.

— If you are willing to trade speed for privacy than NAPO is the best choice
on everything except very sparse problems.

— The speedups associated with partial centralization cannot be directly at-
tributed to explicit constraint passing alone. Even when nogoods are ex-
changed, the algorithm performs as well or better than the distributed
backtracking-based search.

5 Conclusions and Future Work

In this paper, we presented a new hybrid AWC/APO algorithm called Nogood-
APO. As was shown in experimentation, this algorithm, like APO, outperform

40 R. Mailler and J. Graves

AWC on all but the simplest 3-coloring problems across various size and density
on several metrics. By creating this algorithm, we showed that constraint passing
is not necessary in an algorithm that is based on dynamic, partial centralization
and that the likely reason why algorithms like APO outperform AWC is the
combination of distributed/centralized search techniques they use.

A number of questions are raised as a result of this work. First, and foremost,
it revives the competition between DCSP algorithms that are based on partial
centralization and distributed backtracking because for the first time, we have
examples that are designed using the same basic assumptions. It also identifies
another dimension for doing scalability experiments, namely the size of the vari-
able’s domains. As these results indicate, on problems that have variables with
small domains, the performance characteristics AWC and APO are quite differ-
ent then they are on domains with larger domains. This may point to areas for
improvement in both of these protocols.

Acknowledgement. The authors gratefully acknowledge support of the De-
fense Advanced Research Projects Agency under DARPA grants HR0011-07-C-
0060. Views and conclusions contained in this document are those of the authors
and do not necessarily represent the official opinion or policies, either expressed
or implied of the US government or of DARPA.

References

1. Benisch, M., Sadeh, N.: Examining distributed constraint satisfaction problem
(desp) coordination tradeoffs. In: International Conference on Automated Agents
and Multi-Agent Systems, AAMAS (2006)

2. Culberson, J., Gent, I.: Frozen development in graph coloring. Theoretical Com-
puter Science 265(1-2), 227-264 (2001)

3. Freuder, E.C., Wallace, R.J.: Partial constraint satisfaction. Artificial Intelli-
gence 58(1-3), 21-70 (1992)

4. Frost, D., Dechter, R.: Dead-end driven learning. In: Proceedings of the Twelfth
Natioanl Conference on Artificial Intelligence, pp. 294-300 (1994)

5. Grinshpoun, T., Meisels, A.: Completeness and performance of the apo algorithm.
Journal of Artificial Intelligence Research 33, 223-258 (2008)

6. Hirayama, K., Yokoo, M.: The effect of nogood learning in distributed constraint
satisfaction. In: The 20th International Conference on Distributed Computing Sys-
tems (ICDCS), pp. 169-177 (2000)

7. Maheswaran, R.T., Pearce, J.P., Varakantham, P., Bowring, E., Tambe, M.: Val-
uations of possible states (vps):a quantitative framework for analysis of privacy
loss among collaborative personal assistant agents. In: Proceeding of Autonomous
Agents and Multi-Agents Systems (2005)

8. Mailler, Lesser: Asynchronous partial overlay: A new algorithm for solving dis-
tributed constraint satisfaction problems. Journal of Artificial Intelligence Re-
search 25, 529-576 (2006)

9. Mailler, R.: A Mediation-Based Approach to Cooperative, Distributed Problem
Solving. PhD thesis, University of Massachusetts (2004)

10. Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using
cooperative mediation. In: Proceeding of AAMAS-2004, pp. 438-445 (2004)

11.

12.

13.

14.

15.

16.

17.

18.

Solving Distributed CSPs Using Dynamic, Partial Centralization 41

Mailler, R., Lesser, V.: A cooperative mediation-based protocol for dynamic, dis-
tributed resource allocation. IEEE Transaction on Systems, Man, and Cybernetics,
Part C, Special Issue on Game-theoretic Analysis and Stochastic Simulation of Ne-
gotiation Agents (2006)

Meisels, A., Razgon, 1., Kaplansky, E., Zivan, R.: Comparing performance of dis-
tributed constraints processing algorithms. In: Proc. AAMAS-2002 Workshop on
Distributed Constraint Reasoning DCR, pp. 86-93 (2002)

Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: A heuris-
tic repair method for constraint satisfaction and scheduling problems. Artificial
Intelligence 58(1-3), 161-205 (1992)

Yokoo, M.: Weak-commitment search for solving constraint satisfaction problems.
In: Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-
1994), Seattle, WA, USA, vol, July 31-August 4, vol. 1, pp. 313-318. AAAI Press
(1994)

Yokoo, M.: Asynchronous weak-commitment search for solving distributed con-
straint satisfaction problems. In: Int’l Conf. on Principles and Practice of Con-
straint Programming, pp. 88-102 (1995)

Yokoo, M., Durfee, E.H.: Distributed constraint optimization as a formal model of
partially adversarial cooperation. Technical Report CSE-TR-101-91, University of
Michigan, Ann Arbor, MI 48109 (1991)

Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satisfac-
tion for formalizing distributed problem solving. In: Proceedings of the 12th Int’l
Conf. on Distributed Computing Systems, pp. 614-621 (1992)

Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A
review. Autonomous Agents and Multi-Agent Systems 3(2), 198-212 (2000)

A Distributed Task Specification Language
for Mixed-Initiative Delegation™

Patrick Doherty, Fredrik Heintz, and David Landén

Dept. of Computer and Information Science, Linkdping University, Sweden
{patrick .doherty, fredrik.heintz,david.landen}@liu.se

Abstract. In the next decades, practically viable robotic/agent systems are go-
ing to be mixed-initiative in nature. Humans will request help from such systems
and such systems will request help from humans in achieving the complex mis-
sion tasks required. Pragmatically, one requires a distributed task specification
language to define tasks and a suitable data structure which satisfies the spec-
ification and can be used flexibly by collaborative multi-agent/robotic systems.
This paper defines such a task specification language and an abstract data struc-
ture called Task Specification Trees which has many of the requisite properties
required for mixed-initiative problem solving and adjustable autonomy in a dis-
tributed context. A prototype system has been implemented for this delegation
framework and has been used practically with collaborative unmanned aircraft
systems.

1 Introduction

In the past decade, the Unmanned Aircraft Systems Technologies Latl at the
Department of Computer and Information Science, Link&ping University, has been in-
volved in the development of autonomous unmanned aircraft systems (UAS’s) and as-
sociated hardware and software technologies (7). The size of our research platforms
range from the RMAX helicopter system (100kg) (4,8, 23) developed by Yamaha Mo-
tor Company, to smaller micro-size rotor based systems such as the LinkQuacﬂ (1kg)
and LinkMAV (10, 20) (500g) in addition to a fixed wing platform, the PingWing (5)
(500g). These UAS platforms are shown in Figure [Il The latter three have been de-
signed and developed by the Unmanned Aircraft Systems Technologies Lab. All four
platforms are fully autonomous and have been deployed.

Previous work has focused on the development of robust autonomous systems for
UAS’s which seamlessly integrate control, reactive and deliberative capabilities that
meet the requirements of hard and soft real-time constraints (8, !18). More recently, our
research efforts have begun to focus on applications where UAS’s with heterogeneous

* This work is partially supported by grants from the Swedish Foundation for Strategic Re-
search (SSF) Strategic Research Center MOVIII, the Swedish Research Council (VR), the VR
Linnaeus Center CADICS, the ELLIIT Excellence Center at Linkoping-Lund for Information
Technology, and the Center for Industrial Information Technology CENIIT.

'www.ida.liu.se/divisions/aiics

2www .uastech. com

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 42f57]2012.
(© Springer-Verlag Berlin Heidelberg 2012

www.ida.liu.se/divisions/aiics
www.uastech.com

A Distributed Task Specification Language for Mixed-Initiative Delegation 43

Fig. 1. The UASTech RMAX (upper left), PingWing (upper right), LinkQuad (lower left) and
LinkMAV (lower right)

unmanned aircraft are required to collaborate not only with each other but also with
diverse human resources (9).

As UAS’s become more autonomous, mixed-initiative interaction between human
operators and such systems will be central in mission planning and tasking. In the near
future, the practical use and acceptance of UAS’s will have to be based on a verifiable,
principled and well-defined interaction foundation between one or more human oper-
ators and one or more autonomous systems. In developing a principled framework for
such complex interaction between UAS’s and humans in complex scenarios, a great
many interdependent conceptual and pragmatic issues arise and need clarification both
theoretically, but also pragmatically in the form of demonstrators.

In our current research, we have targeted a triad of fundamental, interdependent con-
ceptual issues: delegation, mixed-initiative interaction and adjustable autonomy. The
triad of concepts is being used as a basis for developing a principled and well-defined
framework for interaction that can be used to clarify, validate and verify different types
of interaction between human operators and UAS’s both theoretically and practically in
experimentation with our deployed platforms. The concept of delegation is particularly
important and in some sense provides a bridge between mixed-initiative interaction and
adjustable autonomy.

Delegation — In any mixed-initiative interaction, humans may request help from
robotic systems and robotic systems may request help from humans. One can abstract
and concisely model such requests as a form of delegation, Delegate(A, B, task,
constraints), where A is the delegating agent, B is the contractor, task is the task
being delegated and consists of a goal and possibly a plan to achieve the goal, and
constraints represents a context in which the request is made and the task should be
carried out. In our framework, delegation is formalized as a speech act and the delega-
tion process invoked can be recursive.

44 P. Doherty, F. Heintz, and D. Landén

Adjustable Autonomy — In solving tasks in a mixed-initiative setting, the robotic
system involved will have a potentially wide spectrum of autonomy, yet should only
use as much autonomy as is required for a task and should not violate the degree of
autonomy mandated by a human operator unless agreement is made. One can begin
to develop a principled means of adjusting autonomy through the use of the task and
constraint parameters in Delegate(A, B, task, constraints). A task delegated with
only a goal and no plan, with few constraints, allows the robot to use much of its au-
tonomy in solving the task, whereas a task specified as a sequence of actions and many
constraints allows only limited autonomy. It may even be the case that the delegator
does not allow the contractor to recursively delegate.

Mixed-Initiative Interaction — By mixed-initiative, we mean that interaction and
negotiation between a robotic system, such as an unmanned aerial vehicle (UAV) and
a human, will take advantage of each of their skills, capacities and knowledge in de-
veloping a mission plan, executing the plan and adapting to contingencies during the
execution of the plan. Mixed-initiative interaction involves a very broad set of issues,
both theoretical and pragmatic. One central part of such interaction is the ability of a
ground operator (GOP) to be able to delegate tasks to a UAV, Delegate(GOP, UAV,
task, constraints) and in a symmetric manner, the ability of a UAV to be able to dele-
gate tasks to a GOP, Delegate(UAV, GOP, task, constraints). Issues pertaining to
safety, security, trust, etc., have to be dealt with in the interaction process and can be
formalized as particular types of constraints associated with a delegated task.

An important conceptual and pragmatic issue which is central to the three concepts
and their theoretical and pragmatic integration is that of a task and its representation
and semantics in practical systems. The task representation must be highly flexible,
distributed and dynamic. Tasks need to be delegated at varying levels of abstraction
and also expanded and modified as parts of tasks are recursively delegated to different
UAS agents. Consequently, the structure must also be distributable. Additionally, a task
structure is a form of compromise between a compiled plan at one end of the spectrum
and a plan generated through an automated planner (14, |15) at the other end of the
spectrum. The task representation and semantics must seamlessly accommodate plan
representations and their compilation into the task structure. Finally, the task represen-
tation should support the adjustment of autonomy through the addition of constraints or
parameters by agents and human resources.

Paper Structure: The first part of the paper sets the broader context by providing a
short summary in Section [2] of a formal delegation framework based on the use of
speech acts in addition to a short summary about the pragmatics of implementing such
a system in a UAS in Section[3] The second part of the paper described in Section [is
specifically about task specification and provides details about task representation and
semantics through the use of Task Specification Trees. This section also provides an
example. The paper then concludes with related work and conclusions.

2 Semantic Perspective

In (1), [12), Falcone & Castelfranchi provide an illuminating, but informal discussion
about delegation as a concept from a social perspective. Their approach to delegation

A Distributed Task Specification Language for Mixed-Initiative Delegation 45

builds on a BDI model of agents, that is, agents having beliefs, goals, intentions, and
plans (2), but the specification lacks a formal semantics for the operators used. Based
on intuitions from their work, we have previously provided a formal characterization of
their concept of strong delegation using a communicative speech act with pre- and post-
conditions which update the belief states associated with the delegator and contractor,
respectively (9). In order to formally characterize the operators used in the definition of
the speech act, we use KARO (13) to provide a formal semantics. The KARO formalism
is an amalgam of dynamic logic and epistemic / doxastic logic, augmented with several
additional (modal) operators in order to deal with the motivational aspects of agents.

First, we define the notion of a task as a pair consisting of a goal and a plan for that
goal, or rather, a plan and the goal associated with that plan. Paraphrasing Falcone &
Castelfranchi into KARO terms, we consider a notion of strong delegation represented
by a speech act S-Delegate(A, B, 7) of A delegating a task 7 = («, ¢) to B, where «
is a possible plan and ¢ is a goal.

Preconditions:

1) Goala(¢)

(2) BelaCanp(1) (Note that this implies Bela Belg(Canp(T)))
(3) Bela(Dependent(A, B, 1))

4) BelgCanp(T)

Postconditions:

(1) Goalp(¢) and BelgGoalgp(¢)

(2) Committedp () (also written Committedp (7))

(3) BelpGoala(¢)

(4) Canp(7) (and hence BelgCanpg(7), and by (1) also Intendg(7))

(5) Intenda(dog())

(6) Mutual Bel 45 (the statements above” A SociallyCommitted(B, A,)

Informally speaking this expresses the following: the preconditions of the delegate act
of A delegating task 7 to B are that (1) ¢ is a goal of delegator A (2) A believes that B
can (is able to) perform the task 7 (which implies that A believes that B itself believes
that it can do the task) (3) A believes that with respect to the task 7 it is dependent on
B. The speech act S-Delegate is a communication command and can be viewed as a
request for a synchronization (a "handshake”) between sender and receiver. Of course,
this can only be successful if the receiver also believes it can do the task, which is
expressed by (4).

The postconditions of the strong delegation act mean: (1) B has ¢ as its goal and is
aware of this (2) it is committed to the task 7 (3) B believes that A has the goal ¢ (4) B
can do the task 7 (and hence believes it can do it, and furthermore it holds that B intends
to do the task, which was a separate condition in Falcone & Castelfranchi’s formaliza-
tion), (5) A intends that B performs « (so we have formalized the notion of a goal to
have an acheivement in Falcone & Castelfranchi’s informal theory to an intention to
perform a task) and (6) there is a mutual belief between A and B that all preconditions
and other postconditions mentioned hold, as well as that there is a contract between A

3 A discussion pertaining to the semantics of non-KARO modal operators may be found in (9).

46 P. Doherty, F. Heintz, and D. Landén

and B, i.e. B is socially committed to A to achieve 7 for A. In this situation we will
call agent A the delegator and B the contractor.

Typically a social commitment (contract) between two agents induces obligations to
the partners involved, depending on how the task is specified in the delegation action.
This dimension has to be added in order to consider how the contract affects the au-
tonomy of the agents, in particular the contractor’s autonomy. Falcone & Castelfranchi
discuss the following variants:

— Closed delegation: the task is completely specified and both the goal and the plan
should be adhered to.

— Open delegation: the task is not completely specified, either only the goal has to
be adhered to while the plan may be chosen by the contractor, or the specified plan
contains abstract actions that need further elaboration (a sub-plan) to be dealt with
by the contractor.

In open delegation the contractor may have some freedom in how to perform the dele-
gated task, and thus it provides a large degree of flexibility in multi-agent planning and
allows for truly distributed planning.

The specification of the delegation act above is based on closed delegation. In case of
open delegation, « in the postconditions can be replaced by an o/, and 7 by 7/ = (¢/, ¢).
Note that the fourth clause, Canpg(7’), now implies that ' is indeed believed to be an
alternative for achieving ¢, since it implies that Belg[a/|¢ (B believes that ¢ is true af-
ter o’ is executed). Of course, in the delegation process, A must agree that o is indeed
viable. This would depend on what degree of autonomy is allowed.

This particular specification of delegation follows Falcone & Castelfranchi closely.
One can easily foresee other constraints one might add or relax in respect to the basic
specification resulting in other variants of delegation (3, 16). In (9), we also provide an
instantiation of the framework using 2APL, a popular agent programming language.

3 Pragmatic Perspective

From a semantic perspective, delegation as a speech act provides us with conceptual
insight and an abstract specification which can be used as a basis for a more prag-
matic implementation on actual UAS platforms. There is a large gap between semantics
and pragmatics which one would like to reduce in a principled manner. To do this, we
have chosen to also work from a bottom-up perspective and have developed a proto-
type software system that implements the delegation framework using a JADE-based
architecture specified in the next section. This system has been tested using a number
of complex collaborative scenarios described in (15, 19).

One particularly interesting result of approaching the complex characterization of
delegation from a top-down abstract semantic perspective and a bottom-up implemen-
tation perspective is that one can ground the semantic insights into the implementation
in a very direct manner. A central component in the speech-act based characterization
of delegation is the use of C'an() in the pre-conditions to the speech act. It turns out
that verifying the truth of the Can() pre-conditions becomes equivalent to checking the
satisfiability of a distributed constraint network generated through recursive calls to the
delegation operator in the implementation. This will be shown in Section @]

A Distributed Task Specification Language for Mixed-Initiative Delegation 47

3.1 An Agent-Based UAS Architecture

Our RMAX UAV’s use a CORBA-based distributed architecture (8). For our experi-
mentation with collaborative UAS’s, we view this as a legacy system and extend it with
what is conceptually an additional outer layer in order to leverage the functionality of
JADE (11). ”JADE (Java Agent Development Framework) is a software environment to
build agent systems for the management of networked information resources in com-
pliance with the FIPA specifications for interoperable multi-agent systems.” (11). The
reason for using JADE is pragmatic. Our formal characterization of the Delegate() oper-
ator is as a speech act. We also use speech acts for agent communication and JADE pro-
vides a straightforward means for integrating the FIPA ACL language which supports
speech acts with our existing systems. The outer layer may be viewed as a collection of
JADE agents that interface to the legacy system. We are currently using four agents in
the outer layer:

1. Interface agent - This agent is the clearinghouse for communication. All requests
for delegation and other types of communication pass through this agent. Exter-
nally, it provides the interface to a specific robotic system or ground control station.

2. Delegation agent- The delegation agent coordinates delegation requests to and
from other robotic systems and ground control stations, with the Execution, Re-
source and Interface agents. It does this essentially by verifying that the pre-conditions
to a Delegate() request are satisfied.

3. Execution agent - After a task is contracted to a particular robotic system or ground
station operator, it must eventually execute that task relative to the constraints as-
sociated with it. The Execution agent coordinates this execution process.

4. Resource agent - The Resource agent determines whether the robotic system or
ground station of which it is part has the resources and ability to actually do a
task as a potential contractor. Such a determination may include the invocation of
schedulers, planners and constraint solvers in order to determine this.

A prototype implementation of this system has been tested both in the field with RMAX
UAV’s and in-the-loop simulation.

4 Task Specification Trees

Both the declarative and procedural representation and semantics of tasks are central
to the delegation process. The relation between the two representations is also essential
if one has the goal of formally grounding the delegation process in the system imple-
mentation. A task was previously defined abstractly as a pair («, ¢) consisting of a
composite action « and a goal ¢. In this section, we introduce a formal task specifica-
tion language which allows us to represent tasks as Task Specification Trees (TST’s).
The task specification trees map directly to procedural representations in our proposed
system implementation.

For our purposes, the task representation must be highly flexible, sharable, dynami-
cally extendible, and distributed in nature. Tasks need to be delegated at varying levels
of abstraction and also expanded and modified because parts of complex tasks can be

48 P. Doherty, F. Heintz, and D. Landén

recursively delegated to different robotic agents which are in turn expanded or modified.
Consequently, the structure must also be distributable. Additionally, a task structure is
a form of compromise between an explicit plan in a plan library at one end of the spec-
trum and a plan generated through an automated planner (14, [15) at the other end of the
spectrum. The task representation and semantics must seamlessly accommodate plan
representations and their compilation into the task structure. Finally, the task represen-
tation should support the adjustment of autonomy through the addition of constraints or
parameters by agents and human resources.

The flexibility allows for the use of both central and distributed planning, and also to
move along the scale between these two extremes. At one extreme, the operator plans
everything, creating a central plan, while at the other extreme the agents are delegated
goals and generate parts of the distributed plan themselves. Sometimes neither com-
pletely centralized nor completely distributed planning is appropriate. In those cases
the operator would like to retain some control of how the work is done while leaving
the details to the agents. Task Specification Trees provide a formalism that captures the
scale from one extreme to the next. This allows the operator to specify the task at the
point which fits the current mission and environment.

The task specification formalism should allow for the specification of various types
of task compositions, including sequential and concurrent, in addition to more general
constructs such as loops and conditionals. The task specification should also provide a
clear separation between tasks and platform specific details for handling the tasks. The
specification should focus on what should be done and hide the details about how it
could be done by different platforms.

In the general case, A TST is a declarative representation of a complex multi-agent
task. In the architecture realizing the delegation framework a TST is also a distributed
data structure. Each node in a TST corresponds to a task that should be performed.
There are six types of nodes: sequence, concurrent, loop, select, goal, and elementary
action. All nodes are directly executable except goal nodes which require some form of
expansion or planning to generate a plan for achieving the goal.

Each node has a node interface containing a set of parameters, called node parame-
ters, that can be specified for the node. The node interface always contains a platform
assignment parameter and parameters for the start and end times of the task, usually
denoted P, T's and T'g, respectively. These parameters can be part of the constraints as-
sociated with the node called node constraints. A TST also has tree constraints, express-
ing precedence and organizational relations between the nodes in the TST. Together the
constraints form a constraint network covering the TST. In fact, the node parameters
function as constraint variables in a constraint network, and setting the value of a node
parameter constrains not only the network, but implicitly, the degree of autonomy of an
agent.

4.1 TST Syntax

The syntax of a TST specification has the following BNF:

TST ::= NAME ((VARS ’)’)? =" (with VARS)? TASK (where CONS)?
TSTS ::=TST | TST ’;’ TSTS

A Distributed Task Specification Language for Mixed-Initiative Delegation 49

TASK ::= <elementary action> | <goal> | sequence TSTS | concurrent TSTS
| while <cond> TST | if <cond> then TST else TST

VAR ::= <var name> | <var name> ’.” <var name>

VARS ::= VAR | VAR ’;” VARS

CONSTRAINT ::= <constraint>

CONS ::= CONSTRAINT | CONSTRAINT and CONS

ARG ::= VAR | <value>

ARGS ::= ARG | ARG, ARGS

NAME ::= <node name>
Where <elementary action> is an elementary action name(py, ..., pn), <goal> is a
goal name(po, ..., PN), Po, ---, DN are parameters, and <cond> is a FIPA ACL query
message requesting the value of a boolean expression..

The TST clause introduces the main recursive pattern. The right hand side of the

equality provides the general pattern of providing a variable context for a task (using
with) and a set of constraints (using where) over the variables previously introduced.

Example. Consider a small scenario where the mission is to first scan Areapa and Areag,
and then fly to Desty. A TST describing this mission is shown in Figure 21 Nodes Ny
and N; are composite action nodes, sequential and concurrent, respectively. Nodes No,
N3 and N, are elementary action nodes. Each node specifies a task and has a node
interface containing node parameters and a platform assignment variable. In this case
only temporal parameters are shown representing the respective intervals a task should
be completed in. The nodes Ny to N4 have the task names 7y to 74 associated with them
respectively. The resulting TST specification is:

T0(Ts0,TE,) =
with Ts, , Tx,, Ts,, Tk, sequence
71(Ts,,TE,) =
with Ts,, Ty, , Ts,, T, concurrent
79(Ts,,Tr,) = scan(T’s,, T g, ,Speeds,Area 4);
T3(Ts,,T'r,) = scan(Ts,, T'r,,Speeds, Area)
where cons;,;
T4(Ls,, Tr,) =flyto(Ts,, Tr,,Speeds, Desty)
where cons;,
consr, =Ts, <Ts, NTs, <Tgp, NTg, <Ts, NTs, <Tg, NTg, <Tg,
consy, =Tg, <Ts,NTs, < Tp,NTg, <Tg,NTs, < TS3 /\TS3 < TE3 /\TE3 <Tg,

4.2 TST Semantics

A TST specifies a complex task (composite action) under a set of tree-specific and
node-specific constraints which together are intended to represent the context in which
a task should be executed in order to meet the task’s intrinsic requirements, in addition
to contingent requirements demanded by a particular mission. The leaf nodes of a TST
represent elementary actions used in the definition of the composite action the TST rep-
resents and the non-leaf nodes essentially represent control structures for the ordering
and execution of the elementary actions. The semantic meaning of non-leaf nodes is

50 P. Doherty, F. Heintz, and D. Landén

.INode interface: {TSO,TED}
’ Action:coordinate-sequence

o

Node interface: {Ts4,TE4}
N,: Action:flyto(Speed,, Dest,)

IN

.|Node interface: {T_ T}
. 3 3
3'|Action:scan (Speed,, Area,)

>

Node interface: {T_ T, }

Action:scan(Speed,, Area,)

Fig. 2. A TST for the example mission

essentially application independent, whereas the semantic meaning of the leaf nodes
are highly domain dependent. They represent the specific actions or processes that an
agent will in fact execute. The procedural correlate of a TST is a program.

During the delegation process, a TST is either provided or generated to achieve a
specific set of goals, and if the delegation process is successful, each node is associated
with an agent responsible for the execution of that node.

Informally, the semantics of a TST node will be characterized in terms of whether an
agent believes it can successfully execute the task associated with the node in a given
context represented by constraints, given its capabilities and resources. This can only be
a belief because the task will be executed in the future and even under the best of con-
ditions, real-world contingencies may arise which prevent the agent from successfully
completing the task. The formal semantics for TST nodes will be given in terms of the
logical predicate C'an() which we have used previously in the formal definition of the
S-Delegate speech act, although in this case, we will add additional arguments. This is
not a coincidence since our goal is to ground the formal specification of the S-Delegate
speech act into the implementation in a very direct manner.

Recall that in the formal semantics for the speech act S-Delegate (described in Sec-
tion [2)), the logical predicate Canx (7) is used to state that an agent X has the capa-
bilities and resources to achieve task 7. An important precondition for the successful
application of the speech act is that the delegator (A)believes in the contractor’s (3)
ability to achieve the task 7, (2): Bel4Canpg(7). Additionally, an important result of
the successful application of the speech act is that the contractor actually has the capa-
bilities and resources to achieve the task 7, (4): Canp (7). In order to directly couple
the semantic characterization of the S-Delegate speech act to the semantic characteriza-
tion of TST’s, we will assume that a task 7 = («, ¢) in the speech act characterization
corresponds to a TST. Additionally, the TST semantics will be characterized in terms
of a C'an predicate with additional parameters to incorporate constraints.

In this case, the C'an predicate is extended to include as arguments a list [p1, . . ., pi]
denoting all node parameters in the node interface together with other parameters

A Distributed Task Specification Language for Mixed-Initiative Delegation 51

provided in the (with VARS) construcﬂ and an argument for an additional constraint
set cons provided in the (where CONS) construct Observe that cons can be formed
incrementally and may in fact contain constraints inherited or passed to it through a re-
cursive delegation process. The formula Can(B, 7, [ts, t., . . .], cons) then asserts that
an agent B has the capabilities and resources for achieving task 7 if cons, which also
contains node constraints for 7, is consistent. The temporal variables ¢, and ¢, associ-
ated with the task 7 are part of the node interface which may also contain other variables
which are often related to the constraints in cons.

Determining whether a fully instantiated TST satisfies its specification, will now be
equivalent to the successful solution of a constraint problem in the formal logical sense.
The constraint problem in fact provides the formal semantics for a TST. Constraints
associated with a TST are derived from a reduction process associated with the Can/()
predicate for each node in the TST. The generation and solution of constraints will oc-
cur on-line during the delegation process. Let us provide some more specific details.
In particular, we will show the very tight coupling between the TST’s and their logical
semantics.

The basic structure of a Task Specification Tree is:

TST ::= NAME (' VARS; ’)’)? =" (with VARS,)? TASK (where CONS)?

where VARS; denotes node parameters, VARS» denotes additional variables used in the
constraint context for a TST node, and CONS denotes the constraints associated with a
TST node. Additionally, TASK denotes the specific type of TST node. In specifying a
logical semantics for a TST node, we would like to map these arguments directly over
to arguments of the predicate Can(). Informally, an abstraction of the mapping is

Can(agent;, TASK,VARS; UV ARS;, CONS) (1)

The idea is that for any fully allocated TST, the meaning of each allocated TST node
in the tree is the meaning of the associated Can() predicate instantiated with the TST
specific parameters and constraints. The meaning of the instantiated C'an() predicate
can then be associated with an equivalent Constraint Satisfaction Problem (CSP) which
turns out to be true or false dependent upon whether that CSP can be satisfied or not.
The meaning of the fully allocated TST is then the aggregation of the meanings of each
individual TST node associated with the TST, in other words, a conjunction of CSP’s.

One would also like to capture the meaning of partial TST’s. The idea is that as
the delegation process unfolds, a TST is incrementally expanded with additional TST
nodes. At each step, a partial TST may contain a number of fully expanded and allo-
cated nodes in addition to other nodes which remain to be delegated. In order to capture
this process semantically, one extends the semantics by providing meaning for an unal-
located TST node in terms of both a Can() predicate and a Delegate() predicate:

Jagents Delegate(agenty, agents, TASK,VARS, UVARS;,CONS) (2)

* For reasons of clarity, we only list the node parameters for the start and end times for a task,
[ts, te, - . .], in this article.

3 For pedagogical expediency, we can assume that there is a constraint language which is reified
in the logic and is used in the CONS constructs.

52 P. Doherty, F. Heintz, and D. Landén

Either agent; can achieve a task, or (exclusively) it can find an agent, agents, to which
the task can be delegated. In fact, it may need to find one or more agents if the task to
be delegated is a composite action.

Given the S-Delegate(agenty, agents, TASK) speech act semantics, we know
that if delegation is successful then as one of the postconditions of the speech act,
agents can in fact achieve T'ASK (assuming no additional contingencies):

Delegate(agenty, agente, TASK,VARS; UV ARS,, CONS) 3)
— Can(agents, TASK,VARS, UVARS;,CONS)

Consequently, during the computational process associated with delegation, as the
TST expands through delegation where previously unallocated nodes become allocated,
each instance of the Delegate() predicate associated with an unallocated node is re-
placed with an instance of the C'an() predicate. This recursive process preserves the
meaning of a TST as a conjunction of instances of the Can() predicate which in turn
are compiled into a (interdependent) set of CSPs and which are checked for satisfaction
using distributed constraint solving algorithms.

Sequence Node. For a sequence node, the child nodes should be executed in sequence,
from left to right, during the execution time of the sequence node.
Can(B, S(aq, ...,an), [ts, te, . . .], cons) <
3t1, ... ton, ... Npey (Can(B, ay, [tak—1, tak, . . .|, consy)

V Jay Delegate(B, ay, ok, [tak—1, tak, - - -], consy))
A consistent(cons)d
where cons = {ts <t A (/\;L:l to;_1 < t2i) AN (/\ZL:_ll to; < t2i+1) Nton, < te} Ucons’
Concurrent Node. For a concurrent node, the child nodes should be executed during
the time interval of the concurrent node.

Can(B,C(aq, ...,an), [ts, te, . . .], cons) <
3t1, ... ton, .. Aoy (Can(B, ay, [tak—1, tak, . . .|, consy)
V Jay Delegate(B, ay, ak, [tag—1, tak, - - -], consy))
A consistent(cons)
where cons = {\}_; ts <toi—1 < to; <te}Ucons'.

Observe that the constraint sets consy, in the semantics for the concurrent and se-
quential nodes are simply the constraint sets defined in the (where CONS) constructs
for the child nodes included with the sequential or concurrent nodes, respectively. Ad-
ditionally, the definition of the constraint set cons in the semantics for the concurrent
and sequential nodes contains the structural temporal constraints which define sequence
and concurrency, respectively, together with possibly additional constraints, denoted by
cons’ that one may want to include in the constraint set. Note also, that we are assuming
that scoping and overloading issues for variables in embedded TST structures are dealt
with appropriately in the recursive expansion of the C'an() predicates in the definitions.
Selector Node. Compared to a sequence or concurrent node, only one of the selector
node’s children will be executed, which one is determined by a test condition in the se-
lector node. The child node should be executed during the time interval of the selector

® The predicate consistent() has the standard logical meaning and checking for consistency
would be done through a call to a constraint solver which is part of the architecture.

A Distributed Task Specification Language for Mixed-Initiative Delegation 53

node. A selector node is used to postpone a choice which can not be known when the
TST is specified. When expanded at runtime, the net result can be any of the node types.

Loop Node. A loop node will add a child node for each iteration the loop condition al-
lows. In this way the loop node works as a sequence node but with an increasing number
of child nodes which are dynamically added. Loop nodes are similar to selector nodes,
they describe additions to the TST that can not be known when the TST is specified.
When expanded at runtime, the net result is a sequence node.

Goal. A goal node is a leaf node which can not be directly executed. Instead it has
to be expanded by using an automated planner or related planning functionality. After
expansion, a TST branch representing the generated plan is added to the original TST.

Can(B, Goal(9), [ts, te, .. .],cons) <
Jda (GeneratePlan(B, o, ¢, [ts, te, - . .|, cons) A Can(B, a, [ts, te, . . .], cons))
A consistent(cons)

Observe that the agent B can generate a partial or complete plan « and then further
delegate execution or completion of the plan recursively via the C'an() statement in the
second conjunct.

Elementary Action. An elementary action node is a leaf node that specifies a domain-
dependent action. The semantics of Can for an elementary action is platform depen-
dent.

Can(B, T, [ts, te,...],cons,...) <
Capabilities(B, T, [ts, te, - . .], cons) A Resources(B, T, [ts, te, . . .], cons)
A consistent(cons)

There are two parts to the definition of Clan for an elementary action node. These
are defined in terms of a platform specification which is assumed to exist for each agent
potentially involved in a collaborative mission. The platform specification has two com-
ponents.

The first, specified by the predicate Capabilities(B, T, [ts, te, - - .], cons) is intended
to characterize all static capabilities associated with platform B that are required as
capabilities for the successful execution of 7. If platform B has the necessary static
capabilities for executing task 7 in the interval [¢s, t.] with constraints cons, then this
predicate will be true.

The second, specified by the predicate Resources(B,T, [ts,te,...],cons) is
intended to characterize dynamic resources such as fuel and battery power, which are
consumable, or cameras and other sensors which are borrowable. Since resources gener-
ally vary through time, the semantic meaning of the predicate is temporally dependent.

Resources for an agent are represented as a set of parameterized resource constraint
predicates, one per task. The parameters to the predicate are the task’s parameters, in
addition to the start time and the end time for the task. For example, assume there
is a task flyto(dest, speed). The resource constraint predicate for this task would be
flyto(ts, te, dest, speed). The resource constraint predicate is defined as a conjunction
of constraints, in the logical sense. As an example, consider the task flyto(dest, speed)
with the corresponding resource constraint predicate flyto(ts,t., dest, speed). The
constraint model associated with the task for a particular platform P; might be:

te — ts + distance(pos(ts,P;),dest) A

speed (SpeedMin S Speed S SpeedMaw)

54 P. Doherty, F. Heintz, and D. Landén

4.3 Example

The constraint problem for a TST is derived by recursively reducing the C'an predicate
statements associated with each task node with formally equivalent expressions, begin-
ning with the top-node 7y until the logical statements reduce to a constraint network.
Below, we show the reduction of the TST from Figure[2] when there are three platforms,
Py, P, and P», with the appropriate capabilities. Py has been delegated the composite
actions 79 and 7. Py has recursively delegated parts of these tasks to P; (72 and 74)
and P2 (T 3).

Can(Po, 0, [tsg, teg], cons) = Can(Po, S(a1, aa), [tsgy, tey), cons) <>
Ftsy,teystsy,tey (Can(Po,an, [ts,,te,],conspy) V Ja1 Delegate(Po, a1, a1, [ts, , te,], consp,))
A (Can(Po, a4, [tsy,tey], consp,) V Jaz Delegate(Po, a2, o, [tsy, tey], consp,))

Let’s continue with a reduction of the 1st element in the sequence a; (the 1st conjunct
in the previous formula on the right-hand side of the biconditional):

Can(Py, a1, [ts,, te,], consp,) V Jay (Delegate(Po, a1, a1, [ts, , te,], consp,))

Since P, has been allocated a1, the 2nd disjunct is false.

Can(Po, a1, [ts, , te, |, consp,) = Can(Po, C(az,a3), [ts;, te,], consp,) <>
Ftsy,teystsy, tes (Can(Po, a2, [tsy, te,], conspy) V Ja1 Delegate(Po, a1, a2, [tsy, te,], conspy))
A (Can(Po, as, [tss, tes], consp,) V az Delegate(Po, a2, a3, [ts;, tes], consp,))

The node constraints for 75 and 7 are then added to F,’s constraint store. What remains
to be done is a reduction of tasks 75 and 74 associated with P; and 73 associated with
P>. We can assume that P, has been delegated as and P, has been delegated a3 as
specified. Consequently, we can reduce to

Can(Py, a1, [ts,, te,], consp,) = Can(Py, C(az, a3), [ts;, e,], consp,) <
Ftsyy teys bsgs tes Can(Pr, g, [tsy, tey], consp,) A Can(Py, s, [tss, tes], cOnsp,)

Since Py has recursively delegated a4 to P; (the 2nd conjunct in the original formula
on the right-hand side of the biconditional) we can complete the reduction and end up
with the following:

Can(Py, a, [tsy, tey], cons) = Can(Po, S(C(ag, ag),), [tsy, tey], cONS)
sy tersbsys tes
Ftsyyteys togs tes Can(Pr, g, [tsy, tey], consp,) A Can(Pa, as, [ts,, tes], consp,)
A Can(Py, o, [ts,, te,], consp,)

These remaining tasks are elementary actions and consequently the definitions of C'an
for these action nodes are platform dependent. When a platform is assigned to an el-
ementary action node a local constraint problem is created on the platform and then
connected to the global constraint problem through the node parameters of the assigned
node’s node interface. In this case, the node parameters only include temporal con-
straints and these are coupled to the internal constraint variables associated with the
elementary actions. The completely allocated and reduced TST is shown in Figure Bl
The reduction of C'an for an elementary action node contains no further Can pred-
icates, since an elementary action only depends on the platform itself. All remaining
Can predicates in the recursion are replaced with constraint sub-networks associated

A Distributed Task Specification Language for Mixed-Initiative Delegation 55

pos(tsg.Pz)

Speed,,

Fig. 3. The completely allocated and reduced TST showing the interaction between the TST con-
straints and the platform dependent constraints

with specific platforms as shown in Figure[Bl To check that distributed constraint prob-
lem is consistent we use local CSP solvers together with a DCSP solver (@).

In summary, the delegation process, if successful, provides a TST that is both valid
and completely allocated. During this process, a network of distributed constraints is
generated which if solved, guarantees the validity of the multi-agent solution to the
original problem, provided that additional contingencies do not arise when the TST is
actually executed in a distributed manner by the different agents involved in the collab-
orative solution. This approach is intended to ground the original formal specification
of the S-Delegate speech act with the actual processes of delegation used in the im-
plementation. Although the process is pragmatic in the sense that it is a computational
process, it in effect strongly grounds this process formally, due to the reduction of the
collaboration to a distributed constraint network which is in effect a formal representa-
tion. This results in real-world grounding of the semantics of the Delegation speech act
via the C'an predicate.

5 Related Work

Two related task specification languages which are representative of state of the art in
this area are the Configuration Description Language (17), used in MissionLab and the
task description language (TDL) (Iﬂ).

56 P. Doherty, F. Heintz, and D. Landén

CDL has a recursive composition of configurations, similar to our TST task structure.
In CDL a behavior and a set of parameters creates an agent. Agents can be composed
into larger entities, called assemblages, that function as macro-agents. Assemblages can
in turn be part of larger assemblages. CDL has been used as the basis for MissionLab, a
tool for mission specification using case based reasoning. Task-allocation is done using
a market-based paradigm with contract-nets. Task allocation can be done together with
mission specification, or at run time (22).

With TDL it is possible to specify task decomposition, synchronization, execution
monitoring, and exception handling. TDL is an extension to C++, meaning the specifi-
cation is compiled and executed on the robots. Task are in the form of task-trees. A task
has parameters and is either a goal or a command, where a command is similar to an
action node in a TST. Goal nodes can have both goal and command nodes as children,
but commands nodes have no goal children. An action can perform computations dy-
namically and add child nodes or perform some physical action in the world. An action
can contain conditional, iterative and recursive code.

Both CDL and TDL are similar to TST, but with the difference that the specification
of a TST is not precompiled and therefore allow more dynamic handling of tasks in the
case of changing circumstances. The specification remains through the stages of task-
allocation (delegation) and execution. Each node in a TST has parameter values which
are restricted by constraints. Each node has an executor object (for each platform) that
can be instantiated with the parameter values determined in the task allocation stage.
Since we have this separation between specification and execution of a task, connected
as a constraint problem of the node parameters and platform assignments, we can go
back and forth from the task-allocation and execution stage, which must be done when
monitoring formulas fails and an error is detected, or when the mission is changed
with mixed-initiative input. The loose coupling between specification and execution is
needed for combining the adjustable autonomy and mixed-initiative features.

6 Conclusions

The complexity of developing deployed architectures for realistic collaborative activi-
ties among agents that operate in the real world and under time and space constraints
is extreme when compared to much existing formal work which tackles parts of the
larger problem at very high levels of abstraction. We have tried to show the benefits of
using both strategies, working abstractly at a formal logical level and also concretely at
a system building level. More importantly, we have shown how one might relate the two
approaches to each other by grounding the formal abstractions into actual software im-
plementations. This of course guarantees the fidelity of the actual system to the formal
specification.

We proposed TST’s as a vehicle for representing tasks and showed how they relate
to the formal delegation abstraction, how its semantics can be described as a constraint
model and how that model is used in an actual implemented system to give meaning to
the ability of an agent to be able to do or execute a task. There is much future work to
be done in this complex research area, but work in this direction can continue based on
the foundations provided in this work.

A Distributed Task Specification Language for Mixed-Initiative Delegation 57

References

1.

hed

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

Castelfranchi, C., Falcone, R.: Toward a theory of delegation for agent-based systems. In:
Robotics and Autonomous Systems, vol. 24, pp. 141-157 (1998)

Cohen, P., Levesque, H.: Intention is choice with commitment. Al 42(3), 213-261 (1990)
Cohen, P., Levesque, H.: Teamwork. Nous 25(4), 487-512 (1991)

Conte, G., Doherty, P.: Vision-based unmanned aerial vehicle navigation using geo-
referenced information. EURASIP Journal of Advances in Signal Processing (2009)

Conte, G., Hempel, M., Rudol, P., Lundstrom, D., Duranti, S., Wzorek, M., Doherty, P.:
High accuracy ground target geo-location using autonomous micro aerial vehicle platforms.
In: Proceedings of the AIAA-2008 Guidance, Navigation, and Control Conference (2008)
Davis, E., Morgenstern, L.: A first-order theory of communication and multi-agent plans.
Journal Logic and Computation 15(5), 701-749 (2005)

Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nordberg, K., Skarman, E., Wik-
lund, J.: The WITAS unmanned aerial vehicle project. In: Proc. ECAI (2000)

Doherty, P., Haslum, P., Heintz, F., Merz, T., Persson, T., Wingman, B.: A distributed archi-
tecture for intelligent unmanned aerial vehicle experimentation. In: Proc. DARS (2004)
Doherty, P., Meyer, J.-J.C.: Towards a Delegation Framework for Aerial Robotic Mission
Scenarios. In: Klusch, M., Hindriks, K. V., Papazoglou, M.P., Sterling, L. (eds.) CIA 2007.
LNCS (LNAI), vol. 4676, pp. 5-26. Springer, Heidelberg (2007)

Duranti, S., Conte, G., Lundstrom, D., Rudol, P., Wzorek, M., Doherty, P.: LinkMAV, a
prototype rotary wing micro aerial vehicle. In: Proc. IFAC Symposium on Automatic Control
in Aerospace (2007)

Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - a Java agent development frame-
work. In: Multi-Agent Programming - Languages, Platforms and Applications (2005)
Falcone, R., Castelfranchi, C.: The human in the loop of a delegated agent: The theory of
adjustable social autonomy. IEEE Transactions on Systems, Man and Cybernetics—Part A:
Systems and Humans 31(5), 406418 (2001)

van der Hoek, W., van Linder, B., Meyer, J.J.C.: An integrated modal approach to rational
agents. In: Wooldridge, M., Rao, A. (eds.) Foundations of Rational Agency (1998)
Kvarnstrom, J.: Planning for loosely coupled agents using patrial order forward-chaining. In:
Proc. ICAPS (2011)

Kvarnstrom, J., Doherty, P.: Automated planning for collaborative systems. In: Proceedings
of the International Conference on Control, Automation, Robotics and Vision (2010)
Landén, D., Heintz, F., Doherty, P.: Complex Task Allocation in Mixed-Initiative Delegation:
A UAV Case Study (Early Innovation). In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA
2010. LNCS(LNALI), vol. 7057, pp. 288-303. Springer, Heidelberg (2011)

MacKenzie, D.C., Arkin, R., Cameron, J.M.: Multiagent mission specification and execution.
Auton. Robots 4(1), 29-52 (1997)

Merz, T., Rudol, P., Wzorek, M.: Control System Framework for Autonomous Robots Based
on Extended State Machines. In: Int. Conf. on Autonomic and Autonomous Systems (2006)
Olsson, P.M., Kvarnstrom, J., Doherty, P., Burdakov, O., Holmberg, K.: Generating UAV
communication networks for monitoring and surveillance. In: ICARCV (2010)

Rudol, P., Wzorek, M., Conte, G., Doherty, P.: Micro unmanned aerial vehicle visual servoing
for cooperative indoor exploration. In: Proc. of the IEEE Aerospace Conference (2008)
Simmons, R., Apfelbaum, D.: A task description language for robot control. In: IROS (1998)
Ulam, P., Endo, Y., Wagner, A., Arkin, R.C.: Integrated mission specification and task allo-
cation for robot teams - design and implementation. In: ICRA (2007)

Wzorek, M., Conte, G., Rudol, P., Merz, T., Duranti, S., Doherty, P.: From motion planning
to control — a navigation framework for an unmanned aerial vehicle. In: Proceedings of the
21st Bristol International Conference on UAV Systems (2006)

Adaptive and Non-adaptive Distribution
Functions for DSA

Melanie Smith, Sandip Sen, and Roger Mailler

Computational Neuroscience and Adaptive Systems Lab
University of Tulsa, USA
roger-mailler@utulsa.edu
http://www.cnas.utulsa.edu

Abstract. Distributed hill-climbing algorithms are a powerful, practi-
cal technique for solving large Distributed Constraint Satisfaction Prob-
lems (DSCPs) such as distributed scheduling, resource allocation, and
distributed optimization. Although incomplete, an ideal hill-climbing al-
gorithm finds a solution that is very close to optimal while also mini-
mizing the cost (i.e. the required bandwidth, processing cycles, etc.) of
finding the solution. The Distributed Stochastic Algorithm (DSA) is a
hill-climbing technique that works by having agents change their value
with probability p when making that change will reduce the number of
constraint violations. Traditionally, the value of p is constant, chosen
by a developer at design time to be a value that works for the gen-
eral case, meaning the algorithm does not change or learn over the time
taken to find a solution. In this paper, we replace the constant value of p
with different probability distribution functions in the context of solving
graph-coloring problems to determine if DSA can be optimized when the
probability values are agent-specific. We experiment with non-adaptive
and adaptive distribution functions and evaluate our results based on
the number of violations remaining in a solution and the total number
of messages that were exchanged.

1 Introduction

Distributed hill-climbing algorithms are very powerful tools for solving numerous
real-world problems including distributed scheduling, resource allocation, and
distributed optimization. These problems can be easily mapped to distributed
constraint satisfaction, and like DSCPs, they must be solved using algorithms
that can make decisions about how to best improve the global state of the prob-
lem from an agent’s limited, local perspective. The ultimate goal of distributed
constraint satisfaction is to find a solution, if one exists, while also minimizing
the cost (i.e. the required bandwidth, processing cycles, etc.) [8I7]. Complete al-
gorithms, such as Asynchronous Weak Commitment (AWC) [13], Asynchronous
Backtracking (ABT) [14], and Asynchronous Partial Overlay (APO) [6], are
guaranteed to find a solution if one exists, but tend not to be very scalable.
In practice, however, one must accept a close-enough solution, especially if the

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 58 2012.
© Springer-Verlag Berlin Heidelberg 2012

Adaptive and Non-adaptive Distribution Functions for DSA 59

problem is large or the solution needs to be derived quickly. Hill-climbing algo-
rithms tend to work very quickly even on large problems, but do not guarantee
that they will find a solution if there is one. One of the most powerful algorithms
from this class is the Distributed Stochastic Algorithm (DSA) [4,?].

DSA is a hill-climbing technique that works by having agents change their
value with probability p when making that change will reduce the number of
constraint violations. DSA requires the user to specify p. Traditionally, the value
of p is constant, chosen by a developer at design time to be a value that works
for the general case, meaning the algorithm does not adapt its behavior based
on the problem’s characteristics. In fact, the setting of p can have dramatic
effects on the behavior of the protocol and can be quite problem specific. For
instance, on very dense problems, having high values of p can cause the protocol
to converge more quickly, but the same setting on a sparse problem will cause it
to oscillate unnecessarily. Because p’s value is so crucial to the success of finding
a good solution, we believe choosing p to be more agent- and problem-specific
will improve the solution and the process by which the solution is found.

In this paper, we investigate different probability functions for the Distributed
Stochastic Algorithm in the context of solving graph-coloring problems. First,
we examine four non-adaptive techniques that define p as a function of how
much improvement an agent can have. The second set of techniques involves
adaptation, where the function used to compute p is modified over time based
on the agent’s experiences.

Section 2 presents a formalization of the distributed constraint satisfaction
problem that is used as the basis for this paper. Section 3 gives a detailed
description of DSA. Sections 4 and 5 discuss our non-adaptive and adaptive
approaches, and Section 6 discusses both the setup and results of empirical
testing that has been done to compare these adaptations to DSA. Finally, the
paper closes with some concluding remarks and some future directions for this
work.

2 Distributed Constraint Satisfaction

A Distributed Constraint Satisfaction Problem (DCSP) consists of the following
[14]:

— a set of n variables V = {z1,...,2,}

a set of k Agents A = {aq,...,ar}

discrete, finite domains for each of the variables

D ={Dy,...,D,}

a set of m constraints R = {Ry,..., Ry} where each R;(d;1,...,d;;) is a
predicate on the Cartesian product D;; x --- x D;; that returns true iff the
value assignments of the variables satisfy the constraint

The problem is to find an assignment, S = {dy,...,d, | d; € D;}, such that each
of the constraints in R is satisfied. DCSP, like its centralized counterpart, has
been shown to be NP-complete, making some form of search a necessity [2].

60 M. Smith, S. Sen, and R. Mailler

In DCSP, each agent is assigned one or more variables along with constraints
on those variables. The goal of each agent, from a local perspective, is to ensure
that each of the constraints on its variables is satisfied. For each of the agents,
achieving this goal is not independent of the goals of the other agents in the
system. In fact, in all but the simplest cases, the goals of the agents are strongly
interrelated. For example, in order for one agent to satisfy its local constraints,
another agent, potentially not directly related through a constraint, may have
to change the value of its variable.

In this paper, for the sake of clarity, each agent is assigned a single variable
and is given knowledge of the constraints on that variable. Since each agent is
assigned a single variable, the agent is referred to by the name of the variable it
manages. Also, this paper considers only binary constraints that are of the form
R;(x1,mi2). Tt is fairly easy to extend all the algorithms presented in this paper
to handle more general problems where these restrictions are removed, either by
changing the algorithm or by changing the problem as done in [IJ.

Definition 1. A binary CSP is a CSP where all of the constraints in R are of
the form R;(x1,xi2).

Definition 2. The constraint graph of a binary CSP is a graph G = < V, E >
where V is the set of variables in the CSP and E is the set of edges representing
the set of constraints in R (i.e. R;(x;1,%0) € R = (241,%i2) € E).

Additionally, throughout this paper the word neighbor is used to refer to agents
that share constraints. In other words, if an agent A has a constraint R; that
contains a variable owned by some other agent B, then agent A and agent B are
considered neighbors.

3 Related Work

3.1 Distributed Stochastic Algorithm

The Distributed Stochastic Algorithm (DSA) is one of a class of algorithms based
on the idea that at each step, each variable should change to its best value with
some probability p € [0,1]. Because each variable changes with p probability,
the likelihood of two neighbors changing at the same time is p?. As long as p is
selected correctly, the protocol will hill climb to a better state.

The DSA algorithm has a number of implementation variants. Figure[Il details
DSA-B, which follows the basic rule of DSA by changing values with probability
p when it reduces the number of constraint violations. However, it also changes
the value with p probability when the number of constraint violations remains
the same (i.e. its improve value is 0). In this way, the DSA-B variant is able
to escape certain types of local minima in the search space by making lateral
MOVES.

The DSA protocol is quite popular because it is by far the easiest protocol
to implement. However, it is also one of the hardest to tune because it requires
the user to specify p. The process of choosing this value can require a great

Adaptive and Non-adaptive Distribution Functions for DSA 61

procedure main
while (not terminated) do
update ageni_riew with incoming

) miessags;

e i choose_value;
If new_value £ dy do
di +— newvalue;
send ((0K7, (r,,d.)) to all x; € neighbors;
end If;
ened do;
end maln;

proveslure choose_value
If di has no conflicts do
return d;;
v+ the value with the least conflict (v f d));
il v has the same or fewer conflicts than d;
and random < p do
return v;
wlse
return d;;
end choose_value;

Fig. 1. The procedures of the DSA-B algorithm

deal of empirical testing because it is problem specific. Higher values of p cause
the protocol to exhibit a rapid decrease in the number of constraint violations,
which can level off far from an optimal solution depending on the problem. Lower
values of p tend to correct violations more slowly, but often end up with a better
solution in the end.

One of the greatest benefits of the DSA protocol is that it uses considerably
fewer messages than other protocols like the Distributed Breakout Algorithm
[15] because agents communicate only when they change their values. As the
protocol executes and the number of violations decrease, so do the number of
messages. However, while DSA converges on a solution in a reasonable amount
of time, finding a better solution in less time while using even fewer messages is
important.

Manipulating DSA’s probability variable allows the algorithm to vary its re-
sults. Some studies suggest that the most general value is about p = 0.3 [I6].
However, these values are simple constants and do not change based on the state
of the problem.

3.2 Distributed Breakout Algorithm

The Distributed Breakout Algorithm (DBA) [15] is a distributed adaptation of
the Centralized Breakout Algorithm [9]. DBA works by alternating between two
modes. The first mode (see figure2)) is called the wait 0k? mode where the agent
collects ok? messages from each of its neighbors. Once this has happened, the
agent calculates the best new value for its variable along with the improvement
in its local evaluation. The agent then sends out an improve? message to each
of its neighbors and changes to the wait improve? mode.

In the wait improve mode (see figure), the agent collects improve? messages
from each of its neighbors. Once all of the messages have been received, the
agent checks to see if its improvement is the best among its neighbors. If it
is, it changes its value to the new improved value. If the agent believes it is

62 M. Smith, S. Sen, and R. Mailler

in a quasi-local-minimum (QLM), it increase the weights on all its of violated
constraints. Finally, the agent sends ok? messages to each of its neighbors and
changes back to the wait ok? mode. The algorithm starts up with each agent
sending ok? messages and going into the wait ok? mode.

Because of the strict locking mechanism employed in the algorithm, the overall
behavior of the agents is to simultaneously switch back and forth between the
two modes. So, if one or more of the agents reacts slowly or messages are delayed,
the neighboring agents wait for the correct message to arrive. This makes the
protocol’s communication usage very predictable because in each mode, each
agent sends exactly one message to each of its neighbors. Thus, if there are m
constraints, exactly 2m messages are transmitted during each step.

Conversely, the locking mechanism in DBA can be very beneficial because it
does not allow neighboring agents to change their values at the same time, which
prevents oscillations. However, it can also prevent opportunities for additional
parallelism because it limits the number of variables that can change at each
wait improve step to at most half when they are in a fully connected problem.
These limitations effectively allow at most 1/4 of the variables to change during
any individual step of the protocol’s execution.

Two variants of the DBA protocol have been created to improve its overall
parallelism and prevent pathological behavior by introducing randomness [17].
The weak-probabilistic DBA protocol (DBA-WP) uses randomness to break ties
when two neighboring agents have the same improve value. The result is that
either one agent, both, or neither of the agents change values when this situation
occurs. The strong-probabilistic DBA protocol (DBA-SP) attempts to improve
parallelism by allowing agents to change their value with some probability when
they can improve, but don’t have the best improve among their neighbors. This
technique helps to improve parallelism because in many situations, the agent’s
neighbor with the best improve doesn’t have the the best improve among its
neighbors. This causes agents to wait unnecessarily for their neighbor to change
when their neighbor has no intention of actually doing so.

3.3 Distributed Probabilistic Protocol

Conceptually, the Distributed Probabilistic Protocol (DPP) is a hybrid of the
DSA and DBA protocols that aims to merge the benefits of both algorithms
while correcting their weakness. The DPP protocol uses a dynamic mixture of
randomness and direct control that changes based on the structure and current
state of the problem to mitigate the effects of asynchrony. The key insight that
inspired the creation of the protocol is that an agent doesn’t necessarily need
receive improve messages from all of its neighbors in order for it to determine
that it is or is not the best agent to make a value change.

DPP works by having agents exchange probability distributions (PDF) that
describe the likelihood they are going to have a particular improve value given
the configuration of the constraints on their variable(s). This allows the agents to
estimate the likelihood that it has the best improve value among its neighbors
without communicating at all. Using this likelihood as a basis for randomly

Adaptive and Non-adaptive Distribution Functions for DSA 63

when received (improve. ;. improve;, eval) do
if mode == wait_ok
add message to queue;
return;
else

when received (ok?, x;.d;) do record message;
if mode == wait_improve when received all improve messages do
add message to queue; send_ok;
return; clear agent_view;
else mode +— wait_ok;
add (z;.d;) to agent_view; end do:
when received all ok? messages do end if:

send_improve;

Sy end do;
mode < wait_improve;

an‘j“ic;: do procedure send_ok
end do; if improve; is better than all of my neighbors
' current_value +— new_value;
procedure send_improve end if;
current_cval + evaluation value of current_value; when in a quasi-local-minimum do
improve; +— possible maximum improvement; increase the weights on all viclated constraints;
new_value + the best value ; end do:
send (improve, z;, improve;, current_eval); send (o0k?, @, current_value) to neighbors;
end send_improve; end send_ok;

Fig. 2. The procedures of the wait ok? and wait improve modes in Distributed Break-
out

determining when to change an agent’s value, we end up with a DSA-like protocol
where each agent’s probability p; is dictated by the improve distributions of its
neighbors and its current improve value.

This process is further enhanced by considering the use of explicit improve
messages like those used in DBA. Unlike DBA, DPP sends out improve messages
with a probability that is associated with its estimate of a neighbor having a
prediction error of its improve value. This means that if agent X knows agent
Y’s improve PDF and agent Y behaves according to the protocol, agent X can
even predict the probability that Y will have an improve value less than its own,
even when Y has not sent X an improve message for a long period of time.

As a result of these modifications, DPP uses considerably fewer messages
than both DSA and DBA, does not require a user to define p values as in DSA,
and more quickly converges onto good solutions. The drawback to DPP is that
calculating the initial PDF function can be very difficult because it often does
not have a closed-form solution. Because of this, improve PDF's are created by
exhaustive enumeration or by employing some form of statistical sampling over
the possible configuration space of the constraints on an agent’s variable, both
of which cause a steep overhead when starting up the algorithm.

4 Non-adaptive DSA

DPP’s inspiration was that the probability of an agent changing its value should
be associated with how much improvement it expects to have. Similarly moti-
vated, we decided to investigate versions of the DSA protocol that determine
the value of p as a function of the current improve value for an agent. In the
non-adaptive version of the protocol, we altered the DSA-B algorithm to up-
date p based on a function, as shown in Figure[3l The algorithm uses the same

64 M. Smith, S. Sen, and R. Mailler

procedure choose value
if d; has no conflicts do
return d;;
v < the value with the least conflict (v # d;);
improve < d; — v;
maxImprove < number of neighbors for agent;
p « P(improve, maxImprove); (see text)
if improve > 0 and random < p do
return v;
else
return d;;
end choose value;

Fig. 3. The choose value procedure of the Non-Adaptive DSA-B algorithm

main procedure as DSA, but changes the choose value procedure to calcu-
late an improve value and uses that value to determine p. Like DBA and DPP,
the improve value for a variable is simply the difference between the current
number of conflicts and the number of conflicts for the best possible value. The
mazxImprove value, which is used to normalize the functions that calculate p, is
the maximum total cost of all of the variable’s constraints. This assumes that the
maximum improvement occurs when all constraints are in conflict and changing
the variable’s value causes all the conflicts to be resolved. The value of p gets
returned by the P(improve, maxImprove) function, and depending on whether
an improvement can be made, the agent’s value is changed with probability p.

For our tests, we tried four non-adaptive functions to compute p: linear, sub-
linear, super-linear, and Weibull. Figure [4] shows a graph of these non-adaptive
P functions. We initially chose the linear function on the basis that there should
be a higher probability of changing values if there is a higher improve value
associated with that move. The other three functions were chosen to examine
whether variations on the linear function would be better suited than using the
simple linear function.

4.1 Distribution Functions

For our first function, we looked at a simple linear function on the amount of
improve. Basically, when the linear function has a positive slope and a node
has a high improve value (i.e. changing colors would allow a large number of
conflicts to be abated), there is a good chance that the color will change. Using
a normalized linear distribution instead of a constant value for p allows the
change probability to be higher the more an agent can improve. We set pg = 0.1
to give some probability of change for the case where lateral movement occurs.
As a reminder, lateral movements occur when multiple values have an improve of
0 and the agent can switch between the values without violating any constraints.
The linear technique forms the basis of all the other functions we evaluate in
this paper. The normalized linear function is as follows:

Adaptive and Non-adaptive Distribution Functions for DSA 65

Non-Adaptive Distribution Functions

—]_inear
— = Weibull
---------- Sub-Linear
= = = - Super—Linear

po [mee

0 Xmax

improve value

Fig. 4. Non-Adaptive Distribution Functions: Linear, Sub-Linear, Super-Linear, and
Weibull Distributions

. imp
P(imp, maxImp) = (1 — pg) (mam[mp) ~+ po (1)

A sub-linear function is similar to a linear one, but keeps the probably of the
agent changing its value low until a sufficiently large improvement value is likely.
Below is the sub-linear function that we used in this paper:

. 2
. tmp

P(imp, maxImp) = (1 — 2

(impmastmg) = (1) ())

The opposite of sub-linear is super-linear. This function has the characteristic

that the agents have a higher-than-linear likelihood of changing their value,

except in the cases where they expect 0 or maximum improve. The following is
the super-linear function we use:

mmp

P(imp, mazxImp) = (1 —po)\/ + po (3)

maxImp

The Weibull distribution, part of the family of Sigmoid functions, is a combi-
nation of the sub- and super-linear cases, acting sub-linear until the amount of
improvement is approximately half of the maximum possible improvement and
then switching into a super-linear function. This means for small improvements,
the likelihood of an agent changing its value is slim, but for large improvements,
the likelihood is quite high. Below is the function used for our tests:

im maz Imp
P(imp, mazxImp) = (1 — pg) (1 — e (osxmaermn)) +po (4)

4.2 Example

Consider the 3-coloring problem presented in Figure Bl In this problem, there
are six agents, each with a variable and nine constraints between them. Because

66 M. Smith, S. Sen, and R. Mailler

Fig. 5. Example 3-coloring problem with six variables and nine constraints.

this is a 3-coloring problem, each variable can be assigned only one of the three
available colors {Black, Red, or Blue}. The goal is to find an assignment of colors
to the variables such that no two variables, connected by a constraint, have the
same color.

In this example, three constraints are in violation: (ND2, ND3), (ND2, ND4),
and (ND3, ND4). Following the protocol, at startup, each of the agents sends
its current value to all its neighbors in an ok? message. After receiving all the
messages, each agent determines their improve, maxImprove, and p values. In
this example, p is calculated using equation [

— NDO has improve = 0, maxImprove = 3, and p = 0.1
— ND1 has improve = 0, maxImprove = 3, and p = 0.1
— ND2 has improve = 1, maxImprove = 4, and p = 0.325
— ND3 has improve = 1, maxImprove = 4, and p = 0.325
— ND4 has improve = 2, maxImprove = 3, and p = 0.7
— ND?5 has improve = 0, maxImprove = 1, and p = 0.1

After finding the probability of change, a random number is generated such that
if the random number is less than p, the value for the node actually changes.
Every node that changes sends a message to all its neighbors and the process
starts over again until execution ends.

5 Adaptive DSA

In addition to looking at non-constant, although static functions for determining
the value of p, we also investigated two methods that allow the function to
adapt based on experience. The learning problem that the agents encounter
in this algorithm is to learn a mapping from their improve value at a time ¢
to a probability that determines whether they should be the one that changes
their value at t. In situations where this leads to an action being produced, the
agent is rewarded based on the relative goodness of the action (i.e. how much
improvement is actually made).

Like most learning methods, including Temporal difference (TD) learning [10],
the general form of the update we use in this paper can be seen in equation [B
Basically there is an error term calculated at each time step that is used to move
the probability by some small amount, «, toward the correct value.

Adaptive and Non-adaptive Distribution Functions for DSA 67

5.1 Algorithm

The modifications needed to support the ability to adapt the function used to
determine p are fairly simple. First, we introduce two global variables, a prob-
ability array, prob, of size maxImprove that holds the function values for each
improve value and an integer predImprove that holds the predicted improve-
ment value of the agent from the previous cycle. While still operating like the
DSA algorithm, we alter the main procedure to initialize maxImprove, prob,
and lastPred. Each time the main loop cycles, we save the predicted improve
from the previous cycle so that we can compare the actual change to what was
predicted. To find the actual change (actualImprove), we count the number of
conflicts before and after the messages are processed and take the difference.
The probability array is updated if the last predicted value is greater than 0,
meaning we made a change to our variable’s value on the last cycle. Each of our
approaches introduces a new update prob method that does the probability
array updating.

The choose value procedure is also changed in the adaptive algorithm, al-
though minimally. We initialize predImprove to —1 every time the method is
called to indicate that no change is made. If a change is made, predImprove is
set to the improve value. This value is what is saved to compare in the next iter-
ation to the actual improve of the agent and trigger the update prob procedure
call.

5.2 Update Methods

The discrete update function limits the impact that the error value has to only
correct the probablity assocated with the agent’s last predication. To initialize
the prob array, we calculate the linear value for each unit using equation[I} As the
problem is solved, the probabilities are changed to reflect whether the decision
made by the agent was a good decision.

After each cycle, the probability array is updated by taking into account the
current value of p and adding a fraction of the difference between the actual and
predicted improve values. The update prob procedure for the discrete algo-
rithm takes as input the actual improve value, the last predicted improvement,
and the maximum improvement possible for the particular agent. The procedure
changes the global prob array by changing the probpreq to increase (or decrease)
by a constant, «, times the normalized difference in the predicted value and the
actual value at time ¢. None of the other values in the prob array are affected,
and if no change is made to the agent’s value, the prob,,.q value will not change.
In our evaluation, we set a = 0.3.

actual — pred
) 6

¢ t—1
Proby,..q < prob, ., + « < ma

The exponential decay update technique updates to the prob array just like
in the discrete method, but also updates other values in the array based on

68 M. Smith, S. Sen, and R. Mailler

an exponential decay. Again, the array is initialized using the linear function
(equation) to initialize the probability array.

The update prob procedure for the exponential decay update algorithm con-
tains a loop that iterates through the prob array, adjusting each value a slight
amount based on how far from the pred position it is. For example, if the pred is
4, and 7 is 2, then the value for prob; will be adjusted by a factor of o, as will the
value of probg because it is the same distance from the center at 4. The further
away from one another ¢ and pred are, the smaller the factor, and the smaller the
change in the probability. One could easily think of this updating technique as
being similar in nature to a radial basis function [§] with each function centered
at an individual improve value. As you adjust one of the kernels, it affects the
probabilities in an exponentially decaying manner based on its distance from the
prediction.

(6)

probl < prob!~! + qllpred=i+l) (actual B pred>

max

6 Evaluation

To test our DSA variants, we implemented each in a distributed 3-coloring do-
main. The DSA algorithm was the DSA-B variant and the test series consisted
of randomly generated graphs with n = {100, 200, 300, 400, 500} variables and
m = {2.0n,2.3n,2.7n} constraint densities to cover under-constrained, normally
constrained, and over-constrained environments. For each setting of n and m, 30
problems were created and each of the probability distributions were used, both
adaptive and non-adaptive. Each run was given 500 cycles of execution time.
During a cycle, each agent was given the opportunity to process its incoming
messages, change its value, and queue up messages for delivery during the next
cycle. The actual amount of execution time per cycle varied depending on the
cycle, the problem, and the distribution function.

The test cases were compared on two main factors. During each cycle, the
number of current violations and the number of messages transmitted were mea-
sured. These values were used to plot the graphs shown in Figures 6l and [1 Al-
though not shown here, for the adaptive cases, we kept track of the probability
array values for each cycle to see how the probability functions were affected
over time. As expected, the exponential decay update technique changes more
often and to a greater degree because more values in prob change during each
cycle. One thing we noticed is that even though the values changed more, they
still didn’t change very much from their initial values. In future work, we plan
to use the resulting function from one run and using it as the input to the next
run so that each successive run would be improving the final function instead
of starting over with the linear values. This would make it work much more like
classical reinforcement learning because the agents would get multiple trials in
addition to multiple updates.

Adaptive and Non-adaptive Distribution Functions for DSA 69

Total Messages Received DSA Comparison
1300 nodes, 1.3 density)

12000

10245
10000

8000

Conflicts

6000 097 441 s 5129 — p=01
— p=03

- - pp=01pp =03

su66 5008

4000

2000

Super Weibal Discrete Exponestial
p=03 Liear Lnear Drecay Time Cycle

(a) (b)

Fig.6. (a) Number of messages sent for all algorithms at 500 nodes and 2.3 edge
density, and (b) Conflicts over time for DSA with p = 0.1,0.3 and DBH with po = 0.1
and P1...i = 0.3

6.1 Total Messages Received

In terms of total messages sent/received, all of our algorithms used less than
half of the number of messages that traditional DSA (see Figure[d) uses for all
combinations of nodes and edge densities. This seems to indicate that adapting
the p values to be more situation specific facilitated significantly more effective
communication between agents. Thus, it is our conjecture that it will require
half the transmission bandwidth and allow for a more scalable solution.

In comparison to DPP, based on the results presented in [5], the amount of
messaging is about the same. However, using any of our distribution functions
alleviates the need to calculate the initial PDF function. We plan to do a more
empirical comparison between DPP and our DSA variant in the future.

6.2 Total Conflicts

Even though our approach dramatically improves the communication cost, none
of our alterations to DSA showed consistent improvement to the solution found
by normal DSA as far as the total conflicts are concerned. Table 1 shows the
conflicts remaining for 2.3 density and all nodes after 500 cycles. Out of our six
probability functions, a clear leader did not emerge, although they were within
a standard deviation of one another and DSA.

One possible reason for finding a slightly worse solution is that when tra-
ditional DSA has an agent with only a small or no improvement possible, the
probability of having it change values is still fairly high at p = 0.3, whereas with
our experiments, we set pg = 0.1, which is significantly lower than traditional
DSA. The probability of an agent having only a small or no amount of improve
for any particular time cycle is also fairly high, meaning that the 0.2 difference
in initial probability values is likely a significant factor. In many cases, a proba-
bility function that has a high probability of change in the early part of the run

70 M. Smith, S. Sen, and R. Mailler

Table 1. Remaining Conflicts after 500 cycles for 2.3 density

Algorithm 100 nodes 200 nodes 300 nodes 400 nodes 500 nodes
DSA 6.1 12 15.9 22.5 28.6
Linear 6.0 12.8 18.4 24.8 30.7
Sub-Linear 7.1 12.5 20.1 24.9 30.2
Super-Linear 6.6 12.8 19.1 24.7 29.4
Weibull 6.9 12 18.6 23.6 30.8
Discrete 5.9 11.9 17.5 24 29.5
Contextual Discrete 6.2 12.4 17.9 24.3 31.0

is more likely to do well overall because the agent has the chance to hill-climb
to a better state. In the cases where the starting value is too low, the agent may
not have had the opportunity to find a better solution because it has already
hill climbed into such a bad state that there is no escape.

6.3 Further Analysis and Experimentation

To determine if the difference in pg is the cause of our solutions coming out with
slightly more constraint violations, we ran traditional DSA again with p = 0.1
instead of p = 0.3. In this case, the solutions ended up consistently worse with
the lower value of p because there is a smaller likelihood that an agent will
change its value no matter how much it can improve. Our probability functions
result in conflict curves over time that fall between the traditional DSA curves
for p = 0.1 and p = 0.3. This implies that there are two separate components at
play in finding good solutions with DSA-B: lateral movement and hill-climbing.

To test this hypothesis, we augmented the traditional DSA algorithm to give
po = 0.1 and pimprove>1 = 0.3 to segregate the approach into lateral movement
and hill-climbing portions. Figure [6] shows all three traditional DSA algorithms
with different static values for p at 300 nodes and 2.3 density. The higher the
value for pg, the faster the number of remaining conflicts falls due to the higher
probability of lateral motion. We also notice that the higher the number of
nodes, the more of an impact the lateral motion has. In Figure [§, we show
the average distribution of the improve value for an agent with 4 neighbors.
Because improve = 0 occurs more frequently than larger improve values, we
know that lateral movement plays a large part in finding a good solution. This
isn’t entirely surprising as it has been reported numerous times that randomness
in centralized hill-climbing searches has a fairly significant impact on the overall
solution quality [T1].

Examining the hill-climbing portion of the runs, we look at the slope of the
conflict lines in Figure [l The thicker line is DSA with p = 0.3, and the other
lines are our non-adaptive and adaptive results. The slope of each line indicates
the effectiveness of the hill-climbing part of the algorithm. Traditional DSA
flattens out as time goes on with little to no slope while our algorithms have a
more defined slope as time progresses. We believe that this indicates that our

Adaptive and Non-adaptive Distribution Functions for DSA 71

Total Conflicts for Non— Adaptive Approaches Total Conflicts for Adaptive Approaches

& — DSAp=03 - — DSAp=03
7 .« Linear DSA = -~ Dascrete DSA
[3
Sub-Linear DEA . -« Exponential Decay DSA
= - Super—Lmear DSA
— Weibul DA
] 100] 300 400 an 200 300 400 00
Time Cyele Time Cycle
(a) (b)

Fig. 7. Conflicts Remaining Over Time: (a) Non-Adaptive and (b) Adaptive

Lat
B

1.654

HC

Fig. 8. Average number of Lateral Moves (Lat) vs. Hill-Climbing Moves (HC) for
graph-coloring agents with four neighbors

hill-climbing methods are more effective than normal DSA | but that our choice of
p for the lateral movement case was sub-optimal. Our adaptive algorithms have
a steeper slope than our non-adaptive algorithms, indicating that having the
values for p evolve as the problem is solved improves the hill-climbing method
over finding p based on a static function. In addition, using static functions
results in a more defined slope than having p defined as a static constant. In
future work, we will explore this discovery and experiment with different pg
values over each of our distribution functions.

7 Conclusion

This paper presents different adaptive and non-adaptive alterations to the Dis-
tributed Stochastic Algorithm (DSA), which turns the traditional constant p
into an situation-specific function for p based on the predicted improvement of
the agent during a time cycle. By allowing p to change and adapt, we reduce
the number of messages needed to communicate between agents by more than
half. In discovering the heavy influence of lateral movement, we believe that
given a more optimal pg value, our DSA variants should improve even further.
Other work we have done includes experimenting with fine-tuning the lateral
movement probability [12].

72 M. Smith, S. Sen, and R. Mailler

As agent systems become more complex and start to evolve more
autonomously, and as this extends into complex software systems, cutting com-
munication costs (i.e. bandwidth and throughput needs) may become more de-
sirable than finding a more optimal solution if the difference is within a tolerable
range. In cases like these, using any of our techniques would make a dramatic
impact on the networking footprint required by traditional DSA, even without
an optimal py probability for lateral movement.

Because of the significant reduction in messaging, we believe fine-tuning the
lateral movement probability in our distribution functions can find more optimal
solutions. Running more tests in a variety of domains would help determine how
the algorithms adapt to more than just graph-coloring problems. Also testing
the adaptive approaches using different initialization vectors may result in find-
ing a more optimal probability function. We are also planning on incorporating
more complex machine learning, where each successive run takes the probabil-
ity function from previous runs as the initial value, allowing the simulation to
improve upon a function that starts off in a more optimal state than the static
functions we used in this paper.

Acknowledgments. The authors gratefully acknowledge support of the De-
fense Advanced Research Projects Agency under DARPA grants HR0011-07-C-
0060. Views and conclusions contained in this document are those of the authors
and do not necessarily represent the official opinion or policies, either expressed
or implied of the US government or of DARPA.

References

1. Bacchus, F., van Beek, P.: On the conversion between non-binary constraint
satisfaction problems. In: AAAT 1998/TAATI 1998: Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Applications of
Artificial Intelligence, pp. 311-318. American Association for Artificial Intelligence,
Menlo Park (1998)

2. Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint lan-
guages. In: STOC 2001: Proceedings of the Thirty-Third Annual ACM Symposium
on Theory of Computing, pp. 667-674. ACM, New York (2001)

3. Faltings, B.: Distributed constraint programming. In: van Beek, P., Rossi, F.,
Walsh, T. (eds.) Handbook of Constraint Programming. Foundations of Artificial
Intelligence, ch. 20, vol. 2, pp. 699-729. Elsevier (2006)

4. Fitzpatrick, S., Meertens, L.: Distributed Coordination Through Anarchic Opti-
mization. In: Distributed Sensor Networks: A Multiagent Perspective, pp. 257-294.
Kluwer Academic Publishers (2003)

5. Mailler, R.: Using prior knowledge to improve distributed hill climbing. In: Pro-
ceedings of the 2006 International Conference on Intelligent Agent Technology (IAT
2006) (2006)

6. Mailler, R., Lesser, V.: Using Cooperative Mediation to Solve Distributed Con-
straint Satisfaction Problems. In: Proceedings of Third International Joint Confer-
ence on Autonomous Agents and MultiAgent Systems (AAMAS 2004) (2004)

7. Meisels, A.: Distributed search by constrained agents: algorithms, performance,
communication. Springer, Heidelberg (2008)

10.

11.

12.

13.

14.

15.

16.

17.

Adaptive and Non-adaptive Distribution Functions for DSA 73

Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing
units. Neural Comput. 1(2), 281-294 (1989)

Morris, P.: The breakout method for escaping local minima. In: Proceedings of the
Eleventh National Conference on Artificial Intelligence, pp. 40-45 (1993)
Richard, A.G.B., Sutton, S.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1999)

Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In:
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI
1994), pp. 337-343 (1994)

Smith, M., Mailler, R.: Getting What You Pay For: Is Exploration in Distributed
Hill Climbing Really Worth It?. In: Int’l Conference on Web Intelligence and In-
telligent Agent Technology, WI-IAT (2010)

Yokoo, M.: Asynchronous Weak-Commitment Search for Solving Distributed Con-
straint Satisfaction Problems. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS,
vol. 976, pp. 88—-102. Springer, Heidelberg (1995)

Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satis-
faction for formalizing distributed problem solving. In: International Conference
on Distributed Computing Systems, pp. 614-621 (1992)

Yokoo, M., Hirayama, K.: Distributed breakout algorithm for solving distributed
constraint satisfaction problems. In: International Conference on Multi-Agent Sys-
tems, ICMAS (1996)

Zhang, W., Wang, G., Wittenburg, L.: Distributed stochastic search for constraint
satisfaction and optimization: Parallelism, phase transitions and performance. In:
Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, pp.
53-59 (2002)

Zhang, W., Wittenburg, L.: Distributed breakout revisited. In: Proceedings of the
Eighteenth National Conference on Artificial Intelligence (AAAI-2002), pp. 352—
357 (2002)

Multiagent Based Scheduling of Elective Surgery

Sankalp Khanna'2, Timothy Cleaver!, Abdul Sattar?,
David Hansen?, and Bela Stantic!

! Institute for Integrated and Intelligent Systems,
Griffith University, QLD 4111, Australia
{S.Khanna,T.Cleaver,A.Sattar,B.Stantic}@griffith.edu.au
2 The Australian e-Health Research Centre, 71/918 RBWH,
Herston, QLD 4029, Australia
David.Hansen@csiro.au

Abstract. Scheduling of patients, staff, and resources for elective
surgery in an under-resourced and overburdened public health system
represents an inherently distributed class of problems. The complex-
ity and dynamics of interacting factors demand a flexible, reactive and
timely solution, in order to achieve a high level of utilization. In this
paper, we present an Automated Scheduler for Elective Surgery (ASES)
wherein we model the problem using the multiagent systems paradigm.
ASES is designed to reflect and complement the existing manual meth-
ods of elective surgery scheduling, while offering efficient mechanisms for
negotiation and optimization. Inter-agent negotiation in ASES is pow-
ered by a distributed constraint optimization algorithm. This strategy
provides hospital departments with control over their individual sched-
ules while ensuring conflict free optimal scheduling. We evaluate ASES
to demonstrate the feasibility of our approach and demonstrate the effect
of fluctuation in staffing levels on theatre utilization. We also discuss on-
going development of the system, mapping key challenges in the journey
towards deployment.

Keywords: Multiagent Systems, Distributed Constraint Optimization.

1 Introduction

“ The performance of Australia’s public hospital system continues to deterio-
rate...... Waiting times for elective surgery have been getting longer. [1] 7
Scheduling in a complex, dynamic environment remains an open research
problem. The problem is made particularly difficult when scheduling needs to
occur in a distributed manner across several departments. While each depart-
ment is working at optimizing its own resources, optimal utilization requires
several departmental schedules to be optimized horizontally. The problem is fur-
ther compounded in the case of under-resourced and overburdened systems, and
even slight improvements in scheduling here can lead to much needed gains.
Faced with the challenge of an encumbered public health system, the Elective
Surgery Scheduling Problem (ESSP) presents an excellent real-world example of

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 74, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Multiagent Based Scheduling of Elective Surgery 75

this class of problems. A collaboration between leading national research facili-
ties in ICT for healthcare innovations and Artificial Intelligence, and a leading
public hospital, this research is focused on tackling problems of this nature.

Our research into public elective surgery wait times in Queensland, Australia,
found that a significant number of patients were subjected to longer than desir-
able wait times. This was despite recent initiatives including increased budget
allocation, treatment of long-wait patients in private hospitals, and increased
clinical staffing. As of 1 April 2010, 33,620 patients were waiting for elective
surgery, of whom almost 18% had waited longer than a clinically desirable time
[22]. Any improvement in scheduling processes would not only result in im-
proved staff and resource utilization, but also lead to reduced patient in-waiting
and in-care times, increased patient and staff satisfaction, and increased hospital
revenue.

We have developed ASES, an Automated Scheduler for Elective Surgery, in
an attempt to address this class of problems. ASES is a multiagent system de-
signed to reflect and complement existing manual methods of elective surgery
scheduling, while offering efficient mechanisms for negotiation and optimization.
The use of the multiagent paradigm is a natural fit given the distributed nature
of the problem. It also captures the autonomy of hospital departments in con-
structing and managing their individual schedules. In order to ensure optimality
and compatibility of departmental schedules, we employ distributed constraint
optimization to guide coordination and resolution of schedule conflicts. This
marriage of rational agency and distributed constraint optimization, wherein
the optimization algorithm forms the core of the agent negotiation protocol and
guides interaction between agents working on related but departmentally au-
tonomous problems, is novel and necessitated by the problem domain.

The rest of this paper is organized as follows. In Section[2] we motivate our re-
search with a discussion of the processes involved in scheduling elective surgery
at a large public hospital in Queensland. We then discuss state-of-the-art so-
lutions to the problem. This is followed by a brief introduction to multiagent
systems and distributed constraint optimization. In Section Bl we present the
intelligent agent architecture of the ASES system and justify our choice of dis-
tributed optimization algorithm. We then map the elective surgery scheduling
problem to a distributed constraint optimization problem and present partic-
ulars of the ASES implementation. In Section [we discuss the feasibility and
benefits of our approach and demonstrate the effect of fluctuation in staffing lev-
els on theatre utilization. We conclude with a description of ongoing and future
work, mapping key challenges in the journey towards deployment.

2 Background

2.1 Elective Surgery Scheduling - A Case Study

Elective surgery is a planned, non-emergency surgical procedure, which can be
scheduled at the patient’s and surgeon’s convenience. The escalating demand
for elective surgery is however compounded by a shortage of trained surgeons,

76 S. Khanna et al.

34 ~
32 ¢ /—/ |
e -+ Australia ||
26 /.

24

22 ‘\

2001-02 2002-03 2003-04 2004-05 2005-06

Days

20 - }

2006-07 2007-08

Fig. 1. Median Waiting Time for Elective Surgery

anaesthetists and nurses. Recent statistics [I] show that despite repeated gov-
ernment intervention, elective surgery wait times continue to grow in Australia
(Fig.). Though slightly better, Queensland statistics follow similar trends. We
discuss scheduling processes at a leading public hospital in Queensland to help
establish a better understanding of the intricacies involved.

21 operating theatres are available. The theatre schedule is divided into 3.5
hour slots. Two slots are allocated per day, one in the morning and one in the
afternoon. Elective procedures are generally rescheduled in case of emergency.

Each department connected (i.e. allocating staff or other resources) to the
surgery carries out their individual scheduling activity. The bookings department
assigns patients to slots in consultation with the relevant surgical teams. The
bookings are recorded into the Operating Room Management Information System
(ORMIS). The different departments can access this information by looking into
ORMIS or by accessing the latest Bookings Schedule on the shared drive, where
it is updated everyday at 3PM.

Every Thursday the managers of the different departments meet and review
bookings for the week ahead (Fig.). Each session is discussed and existing
schedule conflicts are resolved. However, events like unexpected emergencies, vari-
ation in patients’ health state, and sudden perturbations in staffing, often lead to
schedule changes. All changes made subsequent to the meeting are conducted on
a case-by-case basis by individual departments. Coordinating these changes re-
quires ad-hoc conventional communication. In keeping with the dynamics of the
domain, the schedule needs to be updated quickly and efficiently. This is often not
possible because of delays in inter-departmental communication. Changes made
under such circumstances can often result in inefficient or compromised schedules.
For example, if a procedure is canceled at the last minute, the bookings

Multiagent Based Scheduling of Elective Surgery 7

ORMI3 Director of S5
Supervisor Sugary -

=
[%

Charge Nurse

— Weekly Meeting =
"~ followed by

_~ email/telephone
negotiation

\ Iﬂ"‘\ |
N

Director of
Anaesthesia

Theatre Manager

Fig.2. Current Model for Scheduling Elective Surgery at the Princess Alexandra
Hospital

department may want to offer the slot to another patient. However, due to the
reliance on ad-hoc inter-departmental coordination, the involved parties may be
unreachable. As a consequence, the slot would then go unused.

2.2 Current State-of-the-Art

Historically, a number of solutions to the scheduling problem in the area of
intelligent (or semi-intelligent) scheduling can be found in literature. The first
“intelligent scheduling system” to be reported, ISIS [5], also introduced schedul-
ing (or specifically job shop scheduling) to the AT community. Over the last two
decades, several research efforts have been directed at solving the scheduling
problem, though most have been directed at the classical “job shop scheduling
problem” [25][2I][§]. Further, research in the Operations Research domain has
also looked at the problem of scheduling for Operating Theatres and proposed
efficient solvers [7][I5][20][14] to handle the task, but most such solvers approach
the problem as a centralized one. Given the need for maintaining the depart-
mental decision control nature of the problem domain, we focus our research
on distributed problem solving, specifically multiagent representations of the
problem.

A study conducted as part of this research evaluated state-of-the-art com-
mercial surgery scheduling software. Softwares like ORMIQEL OPERAE, and

! http://isoftsanidad.es/text/products/2593.asp
2 http://www.chca.ca/opera.php?lang=en

http://isoftsanidad.es/text/products/2593.asp
http://www.chca.ca/opera.php?lang=en

78 S. Khanna et al.

MEDITECH Operating Room Management solutiorﬁ, provide sophisticated in-
terfaces for users to enter scheduling decisions, and handy tools to detect con-
flicts and manage schedules, but decision making and optimization are largely
left to the operators of the system. This results in several staff hours being spent
each week on cumbersomely optimizing and aligning schedules. Krempels and
Panchenko [I3] reveal that in the Operation Theatre Scheduling domain they
study, it takes one person 3-5 full working days to create a Nurse Roster. Sev-
eral discussions and interviews with hospital administrators and schedulers also
revealed that the most popular tools for departmental scheduling were still pa-
per templates, excel spreadsheets and whiteboards, with software systems being
used to record manually optimized schedules.

A review and analysis of health-related scheduling systems proposed by re-
cent research revealed that most were based on simplistic case studies and did
not map the complexities of the domain they were modeling. While several sys-
tems, including DISA [6], MedPage|18], and Policy Agents [12], used multiagent
systems to model their domains, distributed schedule optimization was largely
overlooked or proposed as one of the future aims. We also found that since tran-
sient elective surgery scheduling data is not captured in any current mechanisms,
there is a lack of benchmark problems in this domain.

We believe that, while all of these methods help to improve the state-of-the-
art, what is missing is an intelligent flexible methodology that can adapt itself to
the complexity of the problem, without modifying or scaling it down. Optimally
solving local problems and handling changes caused by the dynamic nature of
the environment in a timely manner is also a non-trivial challenge. We argue
thus that incorporating optimization internally for each agent and as an integral
element of the inter-agent negotiation process is critical to the success of any
proposed system.

2.3 Multiagent Systems and Distributed Optimization

Multiagent Systems [24] are a popular paradigm for modeling distributed sys-
tems. Intelligent autonomous agents incorporate powerful capabilities such as re-
activity, proactiveness, cooperation, learning and intention management. Hospi-
tals exhibit a high level of departmental autonomy and thus multiagent
technology offers expressively rich tools for modeling the hospital scheduling
environment. Further, multiagent systems also offer the Distributed Constraint
Optimization Problem (DCOP) formalism for modeling and solving naturally
distributed optimization problems efficiently.
Formally, we can define a DCOP as consisting of:

1. A finite ordered set of Agents A = {43, As, ..., Ax|k € N*}, where, for each
Agent A there exists :
(a) A finite ordered set of variables V' = {V1, V3, ..., V,|n € N*},
(b) A domain set D = {D;, D, ..., D,}, containing a finite and discrete
domain D; for each V;,

3http://www.meditech.com/ProductBriefs/pages/productpageorm.htm

http://www.meditech.com/ProductBriefs/pages/productpageorm.htm

Multiagent Based Scheduling of Elective Surgery 79

Algorithm 1. The DCDCOP Algorithm

Calculate static measures
Solve local problem
Calculate dynamic measures
Send message (DU, CurrContext) to all neighbours
Receive messages
when received (message DU, msgContext) do
if msgContext and CurrContext are consistent then
add msgContext to CurrContext

if DU > msgDU then
Solve local problem

end
else if DU = msgDU and higher order then
Solve local problem
end
Calculate dynamic measures
Send message (DU, CurrContext) to all neighbours
end
end

Procedure: Solve local problem
Branch and Bound to solve local problem

(c) A constraint set C = {C1,Cy, ..., Cp, |m € N*}, where each C},Vj € [1,m],
is defined as a cost function (f) on a pair of variables (z,4). i.e. C; =
fir : D; x Dy — N, VV;, Vi € V, and

(d) An ordered solution set S = {vi,va,...,vn|v; € D;,Vi € [1,n]|} where
each v; is an instantiation of the variable V; and the aggregate cost of
the assignment F(S) = Z(m,miIEV) fii’ (dz, di/), Ti di, Ty < dy €8S,

2. The solution set of the DCOP S* is defined as the set of the solution sets of
each agent.

Employing techniques from search, dynamic programming, and cooperative me-
diation, DCOP offers efficient and sophisticated algorithms like ADOPT [I7],
DPOP [19], and NCBB [4], to model and solve a variety of naturally distributed
problems. Recent research efforts [16][3][L0] have however identified shortcomings
in DCOP algorithms when applied to dynamic and complex environments.

We have previously proposed DCDCOP [10] (see Algorithm [II), where agents
solve their local sub-problem using a local solver of their choice and then employ
a novel metric called Degree of Unsatisfaction to guide inter-agent negotiation
and solve inter-agent constraints. DCDCOP has been shown [J] to outperform
ADOPT, DPOP, and NCBB, by more than an order of magnitude.

80 S. Khanna et al.

3 ASES - an Automated Scheduler for Elective Surgery

3.1 Domain Mapping

The ESSP presented in Section Il can be viewed as a set of departmental
scheduling problems. Each department allocating staff or other resources to the
surgery prepares their own schedule and then negotiates with other departments
to ensure that the schedules are aligned and the resulting Operating Theatre
schedule is conflict free.

To map the ESSP to a multiagent DCOP notation (Fig.B]), we assign each de-
partmental scheduling problem to a single agent. The schedule slots are mapped
to variables, and the staff and resources to be scheduled form the domain of
values for the variables. Constraints between variables of the same agent rep-
resent conditions such as not being able to schedule a staff to two slots that
run in parallel, while constraints between variables belonging to different agents
represent conditions such as doctor-nurse team preference allocations. Domain
rules and preferences are used to define cost functions for individual constraints.
An optimal solution to the resultant DCOP problem will now lead to an optimal
elective surgery schedule.

/Agent >> Nursing \

O
[0

\ Variables >> Slots j

ﬂgent »> Anaesthesih

O
[0

Qariables >> Slots J

ﬂ\gent >> Resources\
7 o O
[~

\Variables >> Slots /

Fig. 3. Mapping the Problem

Multiagent Based Scheduling of Elective Surgery 81

3.2 Proposed Architecture

We propose an agent-oriented methodology where each department involved in
the scheduling of its resources, be they patients, staff or equipment, is repre-
sented by an intelligent agent. These agents are customized to the constraints,
preference and priorities of the party they represent. It is the responsibility of the
agents to react to messages from other agents and optimize their local schedule
accordingly. As necessary, the agents then negotiate in a privacy-preserving man-
ner to resolve inter-agent constraints (Fig. . The architecture of individual
agents (Fig. consists of a number of modules. An interface module handles
communication with other agents and users. Decision support and learning is
handled by the intelligence module. Negotiation and optimization is driven by
the DCOP engine.

The agents thus have a number of capabilities. They can learn user preferences
and domain knowledge. The environment is monitored for changes necessitating
updates to the schedule. They use logical reasoning to identify the need for and
to guide negotiation. An advanced DCOP algorithm is used to optimize local
schedules while ensuring efficient alignment of the global schedule.

3.3 The DCOP Engine

The DCOP algorithm we utilize needs to be robust in a number of ways. It must
be scalable to the variety and complexity of the involved agents’ sub-problems.
Negotiation resolution must be timely with respect to the environment under
which the negotiation is taking place. The ability to separate the communica-
tion protocol from the details of the local solver is also essential, as this facilitates
the customization of the local solver to each agent’s unique problem while main-
taining communication compatibility.

Given its ability to preserve the distributed sub-problem structure, and its
computational superiority over ADOPT, DPOP, and NCBB, we have chosen
DCDCOP to drive the DCOP engine in ASES. It is proposed to implement
other key algorithms, like ADOPT, within ASES at a later stage to empirically
validate our choice.

3.4 Implementation

ASES has been implemented using Jason [2]. Jason is a Java implementation
of Agentspeak(L) [23]. In addition to providing extended Agentspeak(L) syntax
and semantics for the development of individual agents, Jason provides facilities
for the specification of multiagent systems. Crucial in so doing is the provision
for speech-act-based communication. This speech-act-based communication un-
derlies our DCOP communication implementation.

ASES models the scheduling activity of 4 agents: Bookings, Nursing, Anaes-
thesiology and Theatre Resources. Each agent is discussed briefly to present a
better understanding of their activities.

82 S. Khanna et al.

Representing
ORMIS
Supervisor

Representing
Director of
Surges

Regular
Communication

Representing Al_ld ;
Director of Negotiation
Anaesthesia

Agent
Representing
Bookings
Supervisor

Intelligence Module DCOP Engine

N I

Decision Learning | | Message

Local
Support Handler

(b) Agent Architecture

Fig. 4. Scheduling Elective Surgery with ASES

Multiagent Based Scheduling of Elective Surgery 83

l.olx

Slot: 0 Slot: 1 Slot: 2 Slot: 3 =
Procedure: procedure? | |Procedure: procedured | |Procedure: procedure6 | |Procedure: procedure6
Patient: patient11 Patient: patient228 Patient: patientd43 Patient: patienta14

Slot: T Slot: 8 Slot: 9 Slot: 10
Procedure: procedures Procedure: procedured Procedure: procedured Procedure: procedured
Patient: patient581 Patient: patient913 Patient: patient699 Patient: patient728

Slot: 14 Slot: 15 Slot: 16- 5
Procedure: procedure3 | |Procedure: procedure1 | |Procedure: procedure? | | Procedure: proceduret
Patient: patient493 Patient: patient762 Patient: patient998 Patient: patientg44 5

Slot: 21 Slot: 22 Slot: 23 Slot: 24
Procedure: procedure? Procedure: procedured Procedure: procedure3 Procedure: procedurel
Patient: patientd91 Patient: patienta42 Patient: patient567 Patient: patient695

Slot: 28 Slot: 2 Slot: 30 Slot: 31
Procedure: procedured | |Procedure: procedure? [|Procedure: procedure? | |Procedure: procedure
Patient: patient130 Patient: patient755 Patient: patient244 Patient: patient776

Slot: 35 Slot: 36 Slot: 37 Slot: 38— 1 |
Procedure: procedure3 Procedure: procedured Procedure: procedure Procedure: procedure3
Patient: patient4&1 Patient: patient411 Patient: patient761 Patient: patient5a -
4] T — Tr] |

Start |

Fig. 5. Bookings Agent

The Bookings agent (Fig. [0l receives randomly generated requests to add or
modify bookings. Each request includes the patient and procedure information.
When a slot is allocated, the Bookings agent sends this information out to all
agents concerned. If an agent is unable to provide resources, a message is returned
to the Bookings agent, resulting in the allocation being cancelled and another
message being sent out to all agents concerned.

The Resource agent (Fig. [f]) calculates the equipment required for the proce-
dure to schedule. If the required resources are unavailable, the Resource agent
requests that the Bookings agent reschedule the procedure. Thus, equipment is
allocated on a first-come first-served basis. This models the hospital’s current
resource allocation strategy. However, work is underway to enhance this process
to utilize procedure/patient priorities if required.

The Nursing agent (Fig. []), upon receiving notification of a new procedure
allocation, must then schedule the nursing staff to accommodate the new alloca-
tion. Unlike the Resource agent, the resources available to the Nursing agent are
not fixed. The Nurse Unit Manager is able to hire casual /temporary nurses when
necessary. However, their use is to be minimized. This is modeled by assigning
a higher cost to casual/temporary nursing staff.

In managing the nursing schedule, the Nursing agent is required to ensure that
for each assignment of nurse to procedure, the nurse contributes a skill necessary
to the completion of the procedure. No more nurses than necessary should be as-
signed to a procedure. Each procedure must have its nursing skills requirements
met. Should the nursing agent be unable to allocate nurses to satisfy a procedure’s
requirements, a request is sent to the bookings agent to reschedule the procedure.

84 S. Khanna et al.

-1l
Stock COSts: i i
ltem # Resource Cost ltem #
resource(3 = |[|lresourceA 9.0 ~|[|Iresourced 0 =
resource 1 10 —|||/resourced 21.0 =|||resource1 1 E
resource2 15 —||Iresourceg 67.0 || |Iresource2 2 B
resource3 5 resourced 183.0 resourced 2
resource4 10 - ||||resource? 147.0 ~|[|resource4 2
E——
Resource Description
resourceA description of resource A -
resourced description of resource 0 =
resourced description of resource 9 u
resourced description of resource 8
resource? description of resource 7 -
Requi
Procedu../resource(resourc... resource2 resourc...fesourced resourc... resourcefi resourc. . resourced resourc...
proced.. |0 1 0 0 0 il 0 0 0 0 -
proced._. |0 0 1 0 0 0 0 1 0 0 E
proced... |1 1 0 0 0 0 0 0 0 0 —
proced... |0 1 0 0 0 0 1 0 0o 0
proced... |0 1 0 0 0 0 1 0 0 0 -
A
Slot |Proced...|resourc.. resourc.. fes ourc. .[esourc. ,fes 0urc.. feSourc../esourc..,/esourc.. fesourc.. resour...

0 proced...|1 1 0 0 0 0 0 0 -
2 proced... |0 0 * 0 1 0 0 0 0 0 1=
3 proced...|0 0 1 0 1 0 0 0 1] 0
5 proced...|0 0 0 0 L 0 1 0 0 0
6 proced...|1 1 0 0 0 0 0 0 0 0 -

Fig. 6. Resources Agent

Additional constraints representing preference, breaks, shifts and working regula-
tion also apply to the nursing schedule.

The Nursing agent also needs to match the allocation of nurses to procedures
with other staffing agents such as Anaesthesiology. Such negotiations are often
necessary to maximize the compatibility and efficiency of the operating team,
and also help maintain staff morale. This is modeled using inter-agent constraints
carrying appropriately high cost. An optimal solution would thus ensure that
these constraints were satisfied even if it came at the cost of hiring additional
casual staff.

The responsibilities of the Anaesthesiology agent largely mimic those of the
Nursing agent. The differences lie in the requirements of procedures, preferences
and number of staff to be assigned, use of temporary staff, and award and training
requirements of the department.

Finally, all agents are able to incrementally adjust and optimize the schedules
based on changing circumstances. Should a procedure be rescheduled, all sched-
ules must reflect this in a timely manner. As scheduled procedures draw near
to execution, additional constraints can be imposed to increase stability. This
would reflect the difficulty of successfully accommodating last minute changes.

However, at no point prior to the scheduled time of a procedure can a proce-
dure be confirmed. Emergency cases must be accommodated. Should theatres,
staff or resources be required by such emergencies, the system must be capable
of adjusting to these last minute needs.

Multiagent Based Scheduling of Elective Surgery 85

-1l
Cost D ipti

Nurse Cost Skill Description
nursel 0.0 = |||skill0 description0)
nursel 129.0 =||||skig descriptiond =
nurse2 16.0 - ||||skillg descriptiond
Total: 810 skill7 description? =
Procedu_.| skilld skill1 skill2 skill3 skill4 skill5 skille skill7 skilla skill9

roced... v 4 vl ¥ v v Cd 4 v I
proced... | v] v L] L] L] L] L] L] BEE
proced... | [L] L] [v] L] [v] L] L] | v |~

Qualifications-

MNurse skillo skilll skill2 skill3 skill4 skilla skillg skill? skillg skillg
nursed L L L L L L e e L] Ll i
nursel L] vl Ll vl L] L] Ll Ll = B E
nurse2 | L] v L] L] v] [v] [~ O |«

Rosts
Nurse Slotd Slott Slot2 Slot3 Slotd Slots Slotd

nursed w
nursel procedure2 |procedured procedured procedure2 |pi
nurse2 procedure? procedure?
nurse3 procedure? |procedured procedure2 |pi_
nursed procedured
nurses
nursef
nurse7

=]

[« 1

4| il ID

Fig. 7. Nursing Agent

In many scenarios, the system needs user-input to make a decision about a
negotiation request received. For example, if a slot opening permits a procedure
to be brought forward, the Bookings department may request such a change.
However, the Nurse Unit Manager may accommodate the change at short notice
only at her discretion, or after explicit discussion with the staff involved. In
situations such as this, there is no alternative to deferring the decision to the
user. We are currently working on implementing an Intelligence Module within
ASES that provides this decision support. The module is based on the system
suggested by Khanna et al. [I1]. It is designed to mimic the behaviour of the
domain expert in these scenarios and to build a knowledge bank by learning
from decisions taken by the domain expert. The decision flow of this module is
presented in Fig.

4 Evaluation

Since current hospital processes do not capture transient scheduling information,
real-world data could not be used to drive the simulation. Parameters such as
the number of theatre slots, average procedure time and number of staff per
department were selected based on data collected from interviews with domain
experts and the tools currently in the hospitals employ. These were used to gen-
erate statistically significant random test data to drive the ASES system and
evaluate the feasibility of our approach. However, we did make some simplifying
assumptions. We did not model all of the constraints we identified as crucial.
This was due to the immaturity of the system, as this process would require

86 S. Khanna et al.

New Negotiation
Request received

l

Check against Knowledge Bank
and compute Confidence Score

Is
Confidence
Score
acceptable
?

N

Refer to Domain Expert

l

Learn from Domain
Expert's decision

Create new constraint
and add to system
if needed

Fig. 8. Intelligent Decision Support

considerable domain expert interaction, and not to any technical difficulty. Fur-
ther, given the absence of suitable comparison benchmarks, the efficiency of the
DCDCOP algorithm was not specifically evaluated within the system.

As procedures were booked, the information flowed in real time to other
agents, who updated their schedule accordingly. Conflicts were identified and ne-
gotiation initiated to resolve them. Similarly, cancellations resulted in resources
being freed up and made available instantly. The system thus reduces ineffi-
ciencies caused by delays in current communication and negotiation procedures.
With all resources and staff available, ASES reported resolving an average of
226 conflicts at 70% theatre utilization and an average of 325 conflicts at 100%
theatre utilization. When available resources were reduced by 10% (to simulate
situations where equipment was unavailable), the number of conflicts increased
to 384 at 70% utilization and ASES managed to achieve only a maximum of
93% theatre utilization (Fig. [).

In automating the scheduling process, thus, ASES significantly reduces delays
in inter-departmental information flow and negotiation. The ability to automat-
ically generate optimal departmental schedules also offers a saving of several
hours of manual work that currently goes into preparing the schedules. For ex-
ample, the Nurse Unit Manager currently spends an average of 50 hours a month
creating the following month’s schedule and an average of 2 hours a day han-

Multiagent Based Scheduling of Elective Surgery 87

400 /‘
300

200

Conflicts

—8—100% Resoures

—de—00% Resources
0 T T T T T T T T T

0.1 0.2 03 04 035 g6 ET 08 09 1
Utilization

Fig. 9. Conflicts Vs Theatre Utilization

dling the rescheduling. Though delays resulting from waiting for user interaction
are unavoidable, the need for such interaction will also decrease as the system
learns and builds its knowledge bank for automated decision support. Further, as
the departmental schedules are always maintained conflict free, ASES altogether
does away with the need for weekly meetings.

Another key enhancement offered by ASES revolves around the efficient man-
agement of operating theatre resources. In the current manual system, proce-
dures are scheduled without foreknowledge of the availability of resources, often
resulting in a compromised schedule. This is corroborated in the current eval-
uation as we observe that unavailability of resources can quickly lead to poor
theatre utilization. Integrating resource management and scheduling within the
ASES system can allow sufficient time to overcome resource shortages and im-
prove theatre utilization.

5 Conclusion and Future Work

We have presented ASES, an Automated Scheduler for Elective Surgery. ASES
models the challenging Elective Surgery Scheduling Problem using the multia-
gent system paradigm, and is powered by a DCOP engine capable of handling
the complex and dynamic nature of the problem. Through this novel integra-
tion of multiagent modeling and state-of-the-art artificial intelligence techniques,
ASES represents a significant advance towards solving this particularly challeng-
ing class of complex distributed dynamic problems. Our preliminary evaluation
of the system shows that automated scheduling using ASES offers real-world
efficiency improvements.

88 S. Khanna et al.

We are currently working towards implementing intelligent decision support
and learning within ASES. This module would gradually learn to mimic the
domain expert’s decision making process and help overcome delays caused by
the unavailability of the domain experts. We are also implementing other DCOP
algorithms within ASES to aid empirical evaluation of DCDCOP’s performance
within the system.

Several challenges need to be addressed before ASES can be deployed in hos-
pitals. Firstly, much of the knowledge utilized to generate current departmen-
tal schedules is informal and undocumented. Creating domain rules that could
be used to define and quantify constraint cost functions is a non trivial task.
Achieving this milestone, however, would also serve the purpose of streamlin-
ing current scheduling processes. Secondly, quantifying confidence scores and
managing dynamically changing priorities also poses a challenge for intelligent
decision support. Manual curation of the schedules, and the system’s ability to
learn from this process, however, provides a mechanism for assisting with the
latter. Lastly, gaining acceptance from the end-users of the system is critical,
and we are working closely with these practitioners to ensure that the system
optimally serves their scheduling needs.

Acknowledgments. The authors wish to thank Dr. Peter Moran and his col-
leagues at the Princess Alexandra Hospital for their ongoing support, for allowing
us into their world, and for sharing their invaluable expertise.

References

1. Australian Medical Association: Public Hospital Report Card 2009 (2009),
http://ama.com.au/node/5030

2. Bordini, R.H., Wooldridge, M., Hiibner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

3. Burke, D.A.: Exploiting Problem Structure in Distributed Constraint Optimisa-
tion with Complex Local Problems. PhD thesis, Department of Computer Science,
University College Cork, Ireland (2008)

4. Chechetka, A., Sycara, K.: An Any-Space Algorithm for Distributed Constraint
Optimization. In: AAAI Spring Symposium on Distributed Plan and Schedule
Management (2006)

5. Fox, M.S., Allen, B., Strohm, G.: Job-Shop Scheduling: An Investigation in
Constraint-Directed Reasoning. In: 2nd Conference of The American Association
for Artificial Intelligence, pp. 155-158 (1982)

6. Friha, L.: DISA: Distributed Interactive Scheduler using Abstractions, PhD thesis,
University of Geneva, Geneva (1998)

7. Jebali, A., Hadj Alouane, A.B., Ladet, P.: Operating Rooms Scheduling. Interna-
tional Journal of Production Economics 99(1-2), 52-62 (2006)

8. Jones, A., Rabelo, J.: Survey of Job Shop Scheduling Techniques. NISTIR, National
Institute of Standards and Technology, Gaithersburg, USA (1998)

9. Khanna, S.: Distributed Constraint Optimization and Scheduling in Dynamic En-
vironments. PhD Thesis, Institute for Integrated and Intelligent Systems, Griffith
University, Australia (2010)

http://ama.com.au/node/5030

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Multiagent Based Scheduling of Elective Surgery 89

Khanna, S., Sattar, A., Hansen, D., Stantic, B.: An Efficient Algorithm for Solv-
ing Dynamic Complex DCOP Problems. In: 2009 IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT
2009), Milano, Italy, pp. 339-346 (2009)

Khanna, S., Sattar, A., Maeder, A., Stantic, B.: Intelligent Scheduling in Complex
Dynamic Distributed Environments. In: 12th World Congress on Health (Medi-
cal) Informatics; Building Sustainable Health System (Medinfo 2007), Brisbane,
Australia, pp. 1665-1666 (2007)

Krempels, K., Panchenko, A.: An Approach for Automated Surgery Schedul-
ing. In: 6th International Conference on the Practice and Theory of Automated
Timetabling, Brno, Czech Republic, pp. 209-233 (2006)

Krempels, K., Panchenko, A.: Dialog-Based Intelligent Operation Theatre Sched-
uler. In: 6th International Conference on the Practice and Theory of Automated
Timetabling, Brno, Czech Republic, pp. 524-527 (2006)

Lamiri, M., Grimaud, F., Xie, X.: Optimization Methods for a Stochastic Surgery
Planning Problem. International Journal of Production Economics, Special Issue
on Introduction to Design and Analysis of Production Systems 120(2), 400-410
(2009)

Lamiri, M., Xie, X., Dolgui, A., Grimaud, F.: A Stochastic Model for Operat-
ing Room Planning with Elective and Emergency Demand For Surgery. European
Journal of Operational Research 185(3), 1026-1037 (2008)

Lass, R.N., Sultanik, E.A., Regli, W.C.: Dynamic Distributed Constraint Rea-
soning. In: 23rd AAAI Conference on Artificial Intelligence, Chicago, USA, pp.
1466-1469 (2008)

Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: An Asynchronous Complete Method
for Distributed Constraint Optimization. In: 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems, Melbourne, Australia, pp. 161-168
(2003)

Paulussen, T., Zoller, A., Rothlauf, F., Heinzl, A., Braubach, L., Pokahr, A.
Lamersdorf, W.: Agent-Based Patient Scheduling in Hospitals. In: Multiagent Engi-
neering, Theory and Applications in Enterprises, pp. 255-275. Springer, Heidelberg
(2006)

Petcu, A., Faltings, B.: A Scalable Method for Multiagent Constraint Optimization.
In: Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, pp. 266271 (2005)

Pham, D.N., Klinkert, A.: Surgical Case Scheduling as a Generalized Job Shop
Scheduling Problem. European Journal of Operational Research 185(3), 1011-1025
(2008)

Prosser, P., Buchanan, I.: Intelligent Scheduling: Past, Present and Future. Intel-
ligent Systems Engineering 3(2), 67-78 (1994)

Queensland Health: Quarterly Public Hospitals Performance Report March Quar-
ter 2010 (2010), http://www.health.qld.gov.au/surgical_access

Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42-55. Springer, Heidelberg (1996)

Woolridge, M.: Introduction to Multiagent Systems, 2nd edn. John Wiley & Sons
(2009)

Zweben, M., Fox, M.: Intelligent Scheduling. Morgan Kaufmann, San Francisco
(1994)

http://www.health.qld.gov.au/surgical_access

Effect of Alternative Distributed Task Allocation
Strategy Based on Local Observations
in Contract Net Protocol

Toshiharu Sugawara®, Kensuke Fukuda?, Toshio Hirotsu?, and Satoshi Kurihara*

! Department of Computer Science and Engineering
Waseda University,
Tokyo 1698555, Japan
sugawara@waseda. jp
2 National Institute of Informatics
Chiyoda, Tokyo 100-000, Japan
kensuke@nii.ac.jp
3 Faculty of Computer and Information Sciences
Hosei University, Tokyo, Japan
hirotsu@hosei.ac.jp
4 Institute of Scientific and Industrial Research
Osaka University
kurihara@ist.osaka-u.ac.jp

Abstract. This paper presents a distributed task allocation method whose strate-
gies are alternatively selected based on the estimated workloads of the local
agents. Recent Internet, sensor-network, and cloud computing applications are
large-scale and fully-distributed, and thus, require sophisticated multi-agent sys-
tem technologies to enable a large number of programs and computing resources
to be effectively used. To elicit the capabilities of all the agents in a large-scale
multi-agent system (LSMAS) in which thousands of agents work concurrently re-
quires a new negotiation strategy for appropriately allocating tasks in a distributed
manner. We start by focusing on the contract net protocol (CNP) in LSMAS and
then examine the effects of the awardee selection strategies, that is, the task al-
location strategies. We will show that probabilistic awardee selections improve
the overall performance in specific situations. Next, the mixed strategy in which
a number of awardee selections are alternatively used based on the analysis of the
bid from the local agents is proposed. Finally, we show that the proposed strategy
does not only avoid task concentrations but also reduces the wasted efforts, thus
it can considerably improve the performance.

Keywords: Distributed task allocation, Adaptive Behavior, Negotiation, Load-
balancing.

1 Introduction

Recent Internet technologies enable for advanced large-scale applications, such as e-
commerce, grid computing, distributed computing, and cloud computing. Within these
applications, thousands of computational entities, called agents, have their own tasks,

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 90-104] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Effect of Alternative Distributed Task Allocation Strategy 91

such as user authentication, stock control, customer recommendation, purchasing man-
agement, and shipping control in e-commerce applications, work concurrently and col-
laborate with each other. In this kind of system, which can be modeled as a large-scale
multi-agent system (LSMAS), these tasks must be appropriately assigned to the agents
based on their abilities. However, they often interfere with each other. For example, if
many tasks are allocated to only a few specific agents, this may lead to a delay of one
of the task fragments (or subtasks), resulting in the delay of the whole task.

On the other hand, new Internet applications have been and will be more dynamic,
agents will have different computational resources/abilities, and new services and new
servers will frequently come and go. Of course, the agents’ states will also change over
time. These facts indicate that agents cannot acquire the most accurate global states of
the entire system. Thus, the key issue is how the agents will effectively allocate subtasks
to other agents using only locally available information so as to exploit the capabilities
of the entire system. For this requirement, contract- and auction-based approaches to
task and resource allocations [2] have received a lot of attention for future wide-area
distributed network applications.

Although a number of researches on (distributed) task allocations have already been
conducted such as Ref. [7], we first focus on a task allocation using a contract net
protocol (CNP) because it is used in many applications [9.16]. In the CNP, an agent
plays one of two roles: managers who are responsible for allocating tasks and monitor-
ing processes and contractors who are responsible for executing the allocated tasks. A
manager agent makes a task known to the contractor agents in the announcement phase,
and the contractors tender the bid on the task with certain values, such as the cost, es-
timated duration to process, or required payment, in the bid phase. In the award phase,
the manager awards the contractor (or awardee) who tendered the best bid.

The objective of our research is to clarify the characteristics of the CNP in a busy LS-
MAS and to propose contract strategy, more precisely awarding strategy in the award
phase, resulting in a more efficient cumulative processing of the entire system than
the contract strategy in a conventional CNP. This is a challenging issue because in-
terference among agents is intricately intertwined in this kind of negotiation protocol
if many managers have tasks to allocate simultaneously. In a naive CNP, a contractor
agent responds to the task announcements one by one, but if many managers announce
tasks simultaneously in a busy LSMAS, the managers may have to wait a long time
to receive a sufficient number of bids. This significantly reduces the performance of
the entire system [[6]. In the original conception of CNP [12], the use of multiple bids
was proposed as a way to concurrently handle many announcements. If a contractor
is awarded multiple bids simultaneously, however, it may not be able to provide the
quality or performance it declared in the bids. In fact, managers tend to select highly
capable contractor agents. Additionally, if the task has a structure, meaning if the task
consists of a number of different subtasks, the situation becomes ever more complex.

In this paper, we propose a novel awarding strategy that leads to a more efficient pro-
cessing of LSMAS. This is a meta-level strategy that selects one from a set of awarding
strategies on the basis of the local observations. References [14/15] already tackled this
issue, but they assumed a simplified model in which the tasks have no structure, which
means a task is singleton and indivisible, and have the same cost. However, our model

92 T. Sugawara et al.

is more general, that is, a task is plural consisting of a number of subtasks, and their
method in [[15]] cannot be applied to plural tasks.

In addition, another significant issue, wasted efforts, appears in the plural task struc-
ture model. Of course, in both the singleton and plural models, we have to avoid task
concentrations that lead to inefficient processing and many drops of subtasks. In ad-
dition, the failure (or delay) of only one subtask means the failure (or delay) of the
whole task in the plural model. Therefore, the agents’ resources used for other subtasks
become useless. This also significantly reduces the performance of the entire LSMAS.
Thus, the required strategy has to be able to reduce the number of wasted efforts as well
as the task concentration so that it can considerably improve the overall performance.

This paper is organized as follows: In the next section, we explain our models, the
issues to be addressed, and our simulation environment. Then, we introduce the prob-
abilistic awardee selection strategy, under which an awardee is selected with certain
fixed probabilities based on the bid values. We show that by changing the award strate-
gies according to the local workload, the overall performance can be considerably im-
proved for a specific task consisting of a number of subtasks. After that, we optimize
this award strategy under which a probabilistic award strategy and the conventional
award strategy are selected alternatively according to the estimated local workloads of
the agents within the environments where certain tasks are blended. We experimen-
tally show that the extended strategy can significantly improve the overall performance.
Finally, we try to explain the reason for this improvement.

2 Problem Description

2.1 Model of Agents and Tasks

Let A= {1,...,n} beaset of agents, 7 be a task, and F = {f',..., f?} be the set of
skills or functions that agents can perform. We assume that task 7 consists of subtasks,
ti,...,t, (e, T = {t1,..., 4} and |T| = 1) and that subtask ¢(€ T) requires the
s(t)-th skill, f5(), where 1 < s(t) < d. A subtask is denoted by the lower-case letter
t and is simply called a task unless this creates confusion. Agent ¢ is expressed as a
tuple, (a, Li, Si, Q;), where ai; = (a}, ..., a?) is the set of agent’s capabilities (a
corresponds to the h-th skill, ", and a* > 0; a? = 0 indicates agent i does not have
skill f h), L; is the location of 4, and Q; is the queue where the agent’s tasks are stored,
which are waiting to be executed one by one. The maximum queue length, (Q;, can be
finite or infinite, but was assumed 20 in our experiments. The set S;(C .A) is #’s scope,
i.e., the set of agents that 7 knows. The metric between the agents, 0(4,), is based on
their locations, L; and L;, and is used to define the communication time (or delay) of
the messages between ¢ and j.

Subtask ¢ has an associated cost, (), which is the cost to complete it. Subtask ¢ can
be done by i in [y(t)/ af(t)1 time units, where [x] denotes the ceiling function. The
time it takes to complete ¢ is also called the execution time of t by . T is completed
when all its subtasks are completed.

In every unit time, £(> 0) tasks on average are generated according to a Poisson
distribution and are randomly assigned to different managers. The parameter L is called
the task load and is denoted by L tasks per unit time, or simply £ T/t.

Effect of Alternative Distributed Task Allocation Strategy 93

2.2 Task Allocations for LSMAS

For CNP, we define M = {m;}(C A) as the set of managers who allocate tasks
and C = {cx}(C A) as the set of contractors who execute the allocated tasks. Let us
assume that |A| is large (on the order of thousands); therefore, | M| and |C| are also
large; Moreover, we shall assume that the agents are widely distributed, like servers on
the Internet.

In our experiments, we used a CNP modified for use in a LSMAS for the sake of ef-
ficiency. In this CNP, (1) multiple bids and regret and no-bid messages are allowed, and
(2) manager m announces each subtask in 7 to the contractors that are selected from
its scope, S;,,, on the basis of an announcement strategy. This procedure can reduce the
number of messages. Regret messages are sent in the award phase to contractors who
were not awarded the contract; no-bid messages are sent to managers by contractors
who decided not to bid on an announced task. These messages prevent long waits for
bids and award messages (e.g., [9/17]).

When manager m receives 7, it immediately initiates the modified CNP for each task
t(e T). It first sends announcement messages to the contractors selected from its scope.
Each of these contractors sends back a bid message with a certain bid value. The bid
values might include parameters such as the price for executing the task, the quality of
the result, or a combination of these values. Since we are concerned with the efficiency of
processing using multiple agents, we assume that their bid values contain the estimated
required times for completing the task. Thus, the bid value of contractor c is:

[v@®/axP1 4 Y () /az D] + B,
teQe

where 3 is the time required to complete the task currently being executed. For multiple
bidding, ¢ might have a number of outstanding bids. These bids are not considered
because it is uncertain whether they will be accepted. Then, m selects a contractor, the
awardee, on the basis of the award strategy and sends the awardee a message along with
the announced task. Selecting the best bidder is the award strategy in the naive CNP.

When contractor c is awarded a task, it immediately executes it if it has no other
tasks. If ¢ is already executing a task, the new task is stored in)., and the tasks in Q).
are executed in turn.

2.3 Performance Measures

Since the queue length of agent 7 is finite, some allocated subtasks might not be storable
in its queue and so they are dropped. If all the subtasks in 7 are dropped, 7 is called a
dropped task. If ‘T contains both dropped and not-dropped tasks, it is called a wasting
task. From the viewpoints of the users and clients in actual applications such as e-
commerce, dropped and wasting tasks appear as refused or non-responding requests due
to the congestion of servers. From the viewpoints of the servers, and thus, the investors
who prepared the equipment to provide the services, the wasting task contains wasted
efforts, that is, a number of uselessly executed subtasks, whereas the dropped task does
not. So, more wasting tasks lowers the performance of the entire LSMAS.

We assume that manager agents can observe, for each subtask ¢, the completion time,
which is the elapsed time from the time the award message is sent, m(t), to the time

94 T. Sugawara et al.

the message indicating that the subtask has been completed is received, m.(t). The
completion time thus includes the communication time in both directions, the queue
time, and the execution time. The completion time of T is defined as max;c7(m.(t)) —
minge7(ms(t)). A smaller average completion time is better. The overall performance
of a LSMAS, denoted by g, is defined as the average of the completion times observed
by all managers and used as the system’s performance measure. The issues we address
are thus the overall performance of a LSMAS under various award strategies and how to
improve it by combining the advantages of these award strategies. Moreover, dropped
and wasting tasks are counted as a separate performance measure; they are non-zero
only if the systems are busy or overloaded.

2.4 Simulation Environment

We set |C| = 500 and |[M| = 10,000 in our simulation. The agents were randomly
placed on a 150 x 150 grid with a torus topology, which is denoted by G. The Manhattan
distance was chosen as G’s metric. The communication time ranged from 1 to 14 (in
ticks, the time unit in the simulation), in proportion to the value of (3, 7).

We express the cost structure of the subtasks by using the superscript of 7, if nec-
essary. For example, 72°~5 consists of two subtasks, {¢1,#2} such that y(¢;) = 2500
and «y(t2) = 5001 Contractor c; is assigned different capabilities so that the values of
2500/ aéi (c; € C) will be uniformly distributed over the range 20-100; the values of
ag, range from 25 — 125. Therefore, for T2°7% = {t1,t,}, ¢; can execute ¢, and ¢,
within 20-100 ticks and 4-20 ticks, respectively. We assume that the manager agents
can not do the tasks themselves (al, = a2, = 0) forcing them to assign the tasks to
agents who can, and that aéi = a%i; the latter condition means that a high-performance
PC can effectively execute any task if the functions are defined.

The results presented here are the mean values from ten independent trials. In these
trials, the maximal numbers of T's being executed every tick, as derived from the cu-
mulative capabilities of all contractors Zcec a¢, ranged from 8.15 to 8.30 T/t, with an
average of 8.25 T/t. This is the theoretical upper limit, meaning that if the task allocation
is ideal, the contractors can execute 8.25 tasks every tick.

Manager m’s scope, Sy, consists of the nearest 50 contractors. More precisely, for
a positive integer n, let S, (n) = {¢ € C|6(m,c) < n}. It follows that Sy, (n) C
Sm(n + 1). Sy, is defined as the smallest S,,(n) such that |S,,(n)| > 50. Then, m
announces tasks to N (< 50) contractors who were randomly selected from S,,. The
overall performance varied depending on /N and was optimal when N was 20 in our
simulation environment [13]. Thus, we assume N = 20 in what follows so we can
focus on the award strategies.

3 Usage of Probability in the Award Phase

A small number of high-capability agents that receive multiple awards will likely bear
an excessive workload whenever many managers simultaneously announce numerous

! As another example, 78 57* means a task consisting of three subtasks {t1,t2,¢3} whose
costs are 1800, 800 and 400, respectively.

Effect of Alternative Distributed Task Allocation Strategy 95

tasks. A simple awarding strategy for alleviating the burden of too many awards is
to allocate some tasks to the non-best contractor by introducing a probability in the
award phase. In this section, we discuss the effect of this type of probabilistic award by
comparing it with that for the naive CNP.

3.1 Effect of Probabilistic Award

Reference [[15] reported that some degree of fluctuation in the award phase could im-
prove the overall performance when a task has no structure. The objective of the first
experiment was to verify this effect when a task consists of a number of subtasks.

Let {c1,...,cp} be the contractors that bid on the announced task. We denote the
bid value from contractor c¢; by b.,. In the naive CNP, m selects the contractor who
submitted the best bid (a smaller bid is better). The first award strategy selects the
awardee according to the following probability:

1/(be,)k
Pr(c;) = 5_/1<1/<)bcj>’“'

This probabilistic awardee selection strategy is denoted by PASj. Non-negative integer
k is a parameter called the fluctuation factor, or simply the f-factor. The larger the k, the
smaller the degree of fluctuation: PAS, and PAS respectively correspond to “random
selection” and “no randomness.” Therefore, PAS, is the award strategy in the naive
CNP.

We evaluated the overall performance by gradually increasing £ from 0.1 (idle) to
10 (extremely busy, over the cumulative capabilities) in 5-K ticks and then returning
it to 0.1. The total duration was 160-K ticks. We plotted the improvement ratios Zcyp
from PASy to PAS, every 5-K ticks:

D

©(PASo) — p(PASy)

Tene(PASE) =
enp(k) o(PAS...)

x 100, 2)
where p(str) indicates the overall performance when award selection strategy str is
used. Note that Zeyp(PAS) = 0.

We assumed 7 = {t,t2} and examined 725~ and 72°~19; the results are labeled
“PAS3” and “PASg” in Fig. [l The graphs also list the task loads over time along the
horizontal axis. These curves indicate that when task load £ is small (very few multiple
awards occur) or very large (over the theoretical limit of cumulative capability), PAS
performs well (PASy, is worse up to 34%). When L is in the middle range, PAS; (kK = 3
or 6) improves the overall efficiency by as much as 29%. We can thus expect that when
the system is busy but does not reach the theoretical limit, PAS; can avoid the concen-
tration of the workload and maintain the efficiency. However, this is not always true if
the system is too busy to process the given tasks. When the system is extremely busy,
Zene(PASg) for 72575 is better than Zeyp(PASg) for 720719, and Zeyp(PASg) > 0
for 72572 but Zenp(PASg) < 0 for 72°719. After a number of experiments, we ob-
served that Zeyp(PASy) was lower in an extremely busy environment if (1) |y(t1) —
~(t2)| is small or (2) v(t1) + 7(t2) is large. For the former situation, we introduce

96 T. Sugawara et al.

w
S

- -=-PAS3 -o PASg —a—FPAs] ~

-
N
0% 051 23 354 45 56 65775 8_9 10109 8 75,7 656 5454 353 2 1050«r

&
S

/0\

g (@) T2 sy

20
g
X 10
] . oo
N o . . B0

o p _ »
2 t- 20ePA - N Tg.
5 o=~ 20000 40000 60000 80000 100000 120000 140000, ~6.160000
S0 Time (ticks) e
= / . \
£ .20 ”
9
g
£
S

A
=)

(b) 720-10

T o 7
40000 60000 1 80d000-" 109000 120000
Time (ticks)
/

. ®PAS; --PAS; —A—FPAS
30— e # =

400108, 1. 2 3384 45 5 6657758 09 10109 8 75 7 65 65454 353 2 1 _0501«r

Improvement ratio Ioyp(str) (%)
o

Fig. 1. Ratio of completion times Zeyp (PAS) (k = 3 and 6) and Zeyp (FPAS)

a phantom task, which will be discussed later. Note that the center of the curves in
Fig. [Tl are shifted slightly to the left because of the effect of the delay in executing tasks
queuing during the overload.

3.2 ‘Flexible’ Probabilistic Award

The f-factor of PAS should be adaptively controlled according to the system’s task
loads in order to utilize the full capabilities of a LSMAS from the experimental results in
the previous section. However, it is impossible to assess the system’s task load, because
it is non-local information. Instead, Ref. [14] estimated the task load of the LSMAS
from the average queue length of contractors. However, this estimate cannot be easily
applied to our case, because if the queue is long but the costs of the queuing tasks are
small, the agents cannot conclude whether the system is busy.

Our idea to resolve this issue is to estimate the situations by statistically analyzing the
bid values from the local contractors. More precisely, we used the differences between
the standard deviations (SDs) of the bid values for different tasks that had different
costs. Assume that, for announced task ¢, manager m received bids whose values were
By (t) = {b1(t),ba(t), ... }. Let the SD of B,,(t) be denoted by SD,,(t), and D3P (T)
be [SDyy, (t1) — SDyy, (t2)| for T = {t1,t2}. Figure 2l shows how the average values and
standard deviations of DSP(T2575) for ¥m € M vary every 5000 ticks.

When comparing Figs. [l and 2l we see that D3P(725-5) can be used as the signal
for optimizing the degree of fluctuation; more precisely, the f-factor £ can be chosen by
using the following strategy,

Effect of Alternative Distributed Task Allocation Strategy 97

20

-o- Avg. of {D5P}
15 .\'\'\ - Standard Deviation of {D57}
%) \ //o—o\‘\
810
g w W
Z 5
0 T T T T T r r ,
0 20000 40000 60000 80000 100000 120000 140000 160000
Time (Tick)

Fig. 2. Average values and SDs of D3P (72575) over time

k = ooif DSP(T) > 12.0,
k=6 if 12.0> D3P(T) > 8.8, and (S1)
k=3 if DP(T) <8.S8.

This is called the flexible probabilistic awardee selection strategy or FPAS. The thresh-
old values are determined on the basis of a detailed analysis of each trial from the
previous experiments, especially those of 72°~5. The aim of this strategy is to combine
the best from PAS ., PAS3, and PASg.

The results for Zcyp(FPAS) are also plotted in Fig.[Il Figure [Tl clearly indicates that
FPAS usually provides a better overall performance than the other individual strategies
for 725=5 and 720719, The improvement ratios are particularly large just before the
task load reaches the theoretical limit of the LSMAS and right after the contractors
surmount the overload caused by the huge number of queued tasks. This is the most
important characteristic and will be discussed in Section[3

8 180

E1s0 3
e !
5.8 120 PAS. 47 \[&
ki 3 % ‘\x "/ H ‘L
S0 ! |
55 60 204

O ~O-

SRV 30 1
s FPAS
I~ 4
= 0 T T T T T T T
=
g 0 20000 40000 60000 80000 100000 120000 140000 160000

Time (ticks)

Fig. 3. Standard deviation of completion times under PAS, and FPAS over time

We should also emphasize that FPAS is beneficial to any agent. Figure 3] plots the
SDs of the average completion times of individual agents using PAS., and FPAS. The
SDs for FPAS are smaller than those for PAS . Therefore, FPAS fairly and impartially
performs better for almost all agents.

98 T. Sugawara et al.

4 Adaptive Strategy Based on Bid Statistics

4.1 Adaptively Probabilistic Awardee Selection

Since FPAS under strategy (S1) is mainly based on the data for 72°7°, it does not
necessarily perform well in tasks that have other cost structures. For example, Fig. [I]
(b), which indicates the improvement ratio for 72°~19, shows that FPAS did not result
in a better performance, especially when the task load was low. In this section, we
propose a new strategy whereby managers learn how they should determine the f-factor
in their environments. The aim of this strategy is to perform in a way that is comparable
to that of FPAS for 72575 and that is generally better than that of PAS, for all tasks.

The algorithm for selecting the f-factor is listed in Fig. [First, manager m calcu-
lates the SDs of the bid values for each t; € T and the maximum difference between
these SDs (denoted by D3P (T)). It also retains the maximum and minimum values of
D3P(T) (denoted by maxSDdiff, and minSDdiff) that have been obtained thus far. It
estimates the current task load using maxSDdiff, minSDdiff, and DSP(T). We call this
award strategy adaptively probabilistic awardee selection, or APAS.

Parameter « and variable minMaxAv in Fig. [are referred to in order to determine
whether maxSDdiff and minSDdiff should be revised. The SDs of {DS3P} in Fig.
indicate that the minimum values of D3P (T), maxSDdiff, and minSDdiff, will likely
be over-estimated in busy situations because the SD of D3P increases. Condition (1)
in Fig. [estimates this state of overestimation, so we set « = 1.5. The constant ¢ in
the figure is used to define the threshold Th to switch between award strategies. In our
experiments, we chose ¢ = 0.58 on the basis of the average D3 and the SDs of the
preliminary experiment shown in Fig. 2l APAS is quite simple in that only PAS3 or
PAS is alternatively selected. Of course, we can extend this to select the appropriate
strategy from the set of awarding strategies S, although we set S ={PAS3, PAS..} in
our experiment.

Figure[§plots the improvement ratios for 72°~® and 72°~ 10 over time. Zcyp (PAS3)
is also plotted because APAS is a mixed strategy involving PAS3 and PAS,. Figure
indicates that APAS performs as efficiently as FPAS for 72°~° and excellently per-
forms even for 72°~29, Note that APAS performs slightly worse than PAS.,, only when
the system is not busy. The learned 7/ might not have been sufficient in this case. Nev-
ertheless, APAS performs excellently in busier situations; it outperforms both PAS3 and
PAS ., whereas it is the mixed strategy of these two.

4.2 Performance for Different Task Structures and Phantom Task

We also investigated the effect of APAS in tasks with other cost structures. The results
are plotted in Fig.[6l These curves indicate that APAS outperforms PAS,, for 72278,
T18-8-4 and T15-8-5-2 FPAS does not perform well. We fixed the sum of the costs
of these tasks at 3000 to standardize the theoretical upper limit of the task executions
by all agents. We used the same changes in the task loads over time because we only
wanted to compare their performances under APAS and PAS.

Furthermore, we examined situations in which a number of different tasks occur. For
the sake of convenience, let

Effect of Alternative Distributed Task Allocation Strategy 99

Initialize:

maxSDdiff = 0, minSDdiff = minMaxAv = oo.

for each T

Manager m announces all tasks t1,...,¢, (€ T) to

the local contractors@, and m calculates the average
value, Av,, (t;), and the SD, SD,, (t;), of bid values for
ti.

/* Then, it calculates some statistical values. */
Av (T) = maxy, e Avpn (t);

SD,,(T) = maxy,e7 SDy (t:);

SD,,(T) = miny, e SD, (t;);

DSP(T) = 8D, (T) — SD,,,(T);

minMaxAv = min(minMaxAv, Av,, (T));

/* If the system is not so busy, */

if (minMaxAv x o« > Av,,,(T)){ /* Condition (1) */
maxSDdiff = max(maxSDdiff, SD,, (T));
minSDdiff = min(minSDdiff, SD,, (T));

/* Defining threshold values: */
Th = ¢ - maxSDdiff + (¢ — 1) - minSDdiff
/* where 0 < e < 1. %/

/* Then output PAS, by following the rule: */
if (D3P(T) > Th) k = oo;
else k=3

Fig. 4. Outline of APAS strategy

C1 = {7255, 722-8 T20-10 1812}

C2 = {T25-3-2 J20-8-2 18841
T (or T¢?) in Fig.[@ corresponds to a situation in which the tasks in CI (or C2) are
generated with equal probability. The results in the figure show that APAS performs
well in these situations.

If T consisted of a single subtask or a number of subtasks with almost identical
costs, D3P(T) could not be calculated or would always be small. For such tasks, we
can introduce a phantom task, which is announced but is never awarded as a way to
estimate the current local workload.

We also investigated the performance of APAS for 7'°~1% = {t,,¢,} using phan-
tom task ¢,,, whose cost is 500, and found that APAS outperforms PAS;, and PAS,
although the details were omitted here due to space limitations. In this case, managers
with 715~15 announce t1, 2, and ¢, and calculate DP (T15~15%) but never select
an awardee for ?,,.

100 T. Sugawara et al.

Improvement ratio Iy (str) (%)
o

' 3 160000
; 40000 60000 X goba = 120000 "
10 20000 Time (ticks) ¥, 80000 ;
220 =)A(—o- APAS for 777 _a- PAS; for 77 X %
a0l x o= APAS for T2 - PAS for T2/ | A\ x” I
r'd e S
-40
S5
5 20
a
5151
S
£ 10+
§ e
T 51 ;
s . R 160000
i) - T T T T T T — ===t
S 40000 60000 80000 100000 120000 140000 8- -8
g5 Time (tick
£ ime (ticks)

Fig. 6. Improvement ratios of APAS for various tasks

Table 1. Numbers of Dropped and Wasting Tasks

25-5 18-8-4 15-8-5-2 Cl1

PAS.. dropped 8526.4 4741.3 2538.1 8519.3
wasting 41517.4 68230 64270.1 40457.5

total 50043.8 72971.3 66808.2 48976.8

PAS3 dropped 5473.8 1593.6 5854 5452.1
wasting 41383.2 66467.7 87807.8 41124.3

total 46857 68061.3 88393.2 46576.4

APAS dropped 8542 4655.7 2616.2 9297.9
wasting 29211.6 47084 62123 29944.3

total 37753.6 51739.7 64739.2 39242.2

4.3 Analysis of Dropped and Wasting Tasks

In this section we try to analyze why APAS can improve the overall performance.
Table [1 lists the numbers of dropped and wasting tasks for different task types in the
experiments. We can see that PAS3 clearly reduces the dropped tasks, and that APAS
reduces the wasting tasks. APAS also has fewer total numbers of dropped and wasting
tasks compared with PAS., and PAS3. Having fewer wasting tasks improves the effi-
ciency of the entire system, because wasting tasks consume more of the contractors’
resources.

The main reason for this phenomenon is a small spatial fluctuation in the task load in
a busy environment when looking closely at the workloads in each area. As mentioned
in the previous section, even in extremely busy cases (near or beyond the theoretical

Effect of Alternative Distributed Task Allocation Strategy 101

limit), the workload is not spatially uniform although the tasks are randomly assigned
to managers. In certain parts of G, agents are overloaded and their queues are full,
whereas in other parts the agents have completed some tasks and are somewhat less
busy. APAS enables agents to adaptively select PAS3 or PAS, in accordance with their
local conditions. When the workload is beyond the theoretical limit, PAS, (and APAS
usually select PAS) results in a large number of dropped and wasting tasks in return
for a better performance, . In particular, many dropped tasks occur in this case. Unlike
PAS.., PAS3 can turn some dropped tasks into wasting ones due to the fluctuation in the
award phase. However, wasting tasks are still useless. Thus, PAS3 is less efficient but
has less dropped tasks in extremely busy cases. At the moment of becoming somewhat
less busy (APAS usually selects PAS3), more wasting tasks occur than dropped ones
and then PAS3 can turn some wasting tasks into completed ones. From these results
and our analysis, APAS can reduce the number of wasting tasks, comparing with those
under PAS3 and PAS.. The analysis in this section implies both a better performance
and the presence of less wasting (and dropped) tasks when using the APAS strategy.

4.4 Effect of Maximum Queue Length

In the above experiments, we assumed that the maximum queue length of agent |Q|
is 20. This affects the overall performance only during extremely busy periods; the
number of tasks in the queue in other situations do not increase. We investigate how the
maximum queue length affects the improvement ratios in the paragraphs that follow.

Let |Q| = oo and use task 72°~5 as an example. Zcyp(PAS3) improves slightly
from its value at || = 20, whereas Zcyp(PASg) remains better than Zeyp(PAS3). In
extremely busy situations, PASg was better than PAS,, when |Q| = 20, as shown in
Fig.[T] but it was worse than PAS, when |Q| = co. Thus,

ICNP(PA53) < ICNP(PASG) <0

when || = oo. On the other hand, Zcyp (APAS) is nearly 0 in extremely busy situation,
because the queues of the contractors become very long, and none of the managers ever
become less busy. Therefore, APAS almost always selects PAS.

5 Discussion

First, we want to point out that the improvement elicited by the proposed strategy was
at its largest just before and right after the task load reached the theoretical upper limit.
We believe that this feature of our strategy is crucial for real applications. If the task
load is low, any task allocation strategy can provide a satisfactory service. However, if
it is extremely heavy and over the theoretical limit, no strategy leads to an acceptable
performance. In other situations, the system should yield a maximum performance and
perform at its fullest potential. Our experimental results revealed that our strategy is
excellent in these situations.

When comparing the results in this paper with those in [15], we found that there
was significant difference in the mechanism for improving the efficiency. In [[15], their
method improved the efficiency by avoiding excessive concentration. They dealt with
a singleton task, so there was no concept of wasting tasks. In real application systems,
however, many wasting tasks that heavily impair the performance are likely to actually

102 T. Sugawara et al.

occur when they are busy. So, our model is more realistic and from the discussion in
the previous section, our proposed task allocation method can improve the performance
by reducing the number of dropped and wasting tasks when the agents were extremely
busy in the situations mentioned above.

To reduce the number of wasting tasks, it may be possible to propose another and
more complex protocol that tracks where the tasks are allocated, monitors them, and
if one of the subtask is dropped, stops other subtasks by sending messages to the con-
cerned agents. However, a problem still remains in that the efforts by agents before
the arrivals of the messages become meaningless. Another solution is to implement the
schedulers that have an accurate view of the other agents and that can compass the other
agents’ workloads. It is, however, almost impossible to know the other agents’ situations
because computers may be replaced by others, and tasks are allocated and processed in
a distributed way. Avoiding wasting tasks is crucial for the system’s efficiency.

Our experiments suggest that autonomous local decisions are more essential for the
performance improvement of the entire system. For example, APAS can perform bet-
ter than PAS3; and PAS., even though it is a mixture of them. We also examined the
performance when S = {PAS3, PASg, PAS. }, like for FPAS, but we found no major
differences in their performances. The possible reason for these phenomena is that the
appropriate and adaptive ratios of PAS3 and PAS., are more influential. If we closely
look at the results from our experiments, the tasks do not arrive at mangers uniformly as
discussed in Section.3l This small variation is only identified by the individual agents,
and only the local decisions can reflect it.

We think that the main reason of the phenomenon shown in this paper is the small
communication delay that increase the chances of simultaneous awarding. In our exper-
iments, we assume that managers announce its near agents in terms of communication
costs. However, in the actual situations, agent’s scope is determined the service-level
or upper-level relationships. This makes communication cost larger. So we believe that
the phenomena described in this paper are more strongly exposed.

6 Related Works

There is a lot of research currently focused on improving the performance and function-
ality of CNP. For example, reference [10] extends CNP by introducing levels of com-
mitment, i.e., making a commitment breakable with some penalty. References [8/10]]
try to reduce the number of messages and thereby improve the performance. From the
theoretical aspect, there are notable researches that discussed the algorithm of the dis-
tributed task allocation in the multi-agent contexts, such as in [7]. All these studies
assume, however, that the agents are not very busy and that there are not that many of
them, making any interference among them insignificant.

Reference [11]] discussed the issue of the eager-bidder problem occurring in a LS-
MAS, where a number of tasks are announced concurrently so that a CNP with certain
levels of commitment does not work well. These authors propose another CNP extension
based on statistical risk management. However, their experiments still used fewer agents
than in ours. More importantly, the types of resources and tasks considered are quite dif-
ferent; specifically, the resources are exclusive, such as airplane seats, so they should be
selectively allocated. In our case, the resources are divisible, e.g., CPUs or network band-
width, which can accept any number of tasks simultaneously but with reduced quality.

Effect of Alternative Distributed Task Allocation Strategy 103

As aresult, many agents with many tasks in our experiments cause a floating uncertainty,
which affects the learning, statistical estimation, and rational decisionmaking.

From an organizational perspective, reference [3] proposes an agent organizational
network and investigates what features are required to effectively make teams perform a
large task. In [[1]], the issue of an adaptive organizational structure to improve the (over-
all) efficiency was also addressed. However, these studies do not discuss the allocation
strategies for the tasks.

Task allocation to hosts for minimizing the makespan is also one of the central research
topics in other domains such as grid computing [3/4]. Programs called mappers or sched-
ulers assign requested tasks to appropriate hosts. However, the costs of the tasks and the
capabilities of the hosts are often given so that the mapper accurately knows the process-
ing time of each host. A number of agent-based mapping methods have been proposed;
reference [4]] uses auction- or contract-based protocols for task allocation. However, these
methods are limited to hierarchical mapping structures so they assume geographically
close clusters. They also do not take into account the communication delays that may
cause uncertainty between the estimated processing status and the actual status.

7 Conclusion

We proposed an optimization method for the probabilistic award strategy in CNP for a
large-scale MAS to elicit the potential capabilities of all agents. In a strategy with this
optimization, called APAS, a manager agent (a) announces subtasks, (b) statistically ana-
lyzes the bids for each of these, (c) estimates the current local task load, and (d) introduces
an adaptive degree of fluctuation in the award phase. We experimentally demonstrated
that this strategy provides considerably a better performance than the naive CNP.

Although the proposed method performs better than the naive CNP, it still might
not be optimal. We must emphasize that the characteristics affecting the overall perfor-
mance of a LSMAS are complicated and quite different from those of small-scale multi-
agent systems, so managers should adaptively select the most appropriate strategy. The
strategy presented in this paper is simple but can elicit an excellent performance in
comparison with the naive CNP. We believe that we can tailor controls to improve the
system’s performance even further. Moreover, we have to clarify (1) how to vary task
types over time and (2) how agent-agent network structures affect the performance un-
der the strategy proposed in this paper. These issues are our future works.

We focused on CNP because it is the well-known and most useful protocol at this
time, but CNP is not the only approach to task allocation. Other protocols (with some
modification) need to be investigated or a new protocol for busy LSMASs needs to be
created. This is also one of our future research topics.

Acknowledgement. This work is, in part, supported by KAKENHI (22300056) and
Kayamori Foundation.

References

1. Abdallah, S., Lesser, V.: Multiagent Reinforcement Learning and Self-Organization in a Net-
work of Agents. In: Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multi-Agent Systems, pp. 172-179. IFAAMAS, Honolulu (2007)

104

2.

10.

11.

12.

13.

14.

15.

16.

17.

T. Sugawara et al.

Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource man-
agement and scheduling in grid computing. Concurrency and Computation: Practice and
Experience 14(13-15), 1507-1542 (2003)

. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for Scheduling Param-

eter Sweep Applications in Grid Environments. In: Proceedings of the 9th Heterogeneous
Computing Workshop, pp. 349-363 (2000)

. Dalheimer, M., Pfreundt, F.-J., Merz, P.: Agent-Based Grid Scheduling with Calana. In:

Wyrzykowski, R., Dongarra, J., Meyer, N., Wasniewski, J. (eds.) PPAM 2005. LNCS,
vol. 3911, pp. 741-750. Springer, Heidelberg (2006)

. Gaston, M.E., desJardins, M.: Agent-organized networks for dynamic team formation.

In: Proceedings of 4th Int. Joint Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2005), pp. 230-237 (2005)

. Gu, C,, Ishida, T.: Analyzing the Social Behavior of Contract Net Protocol. In: Perram, J.,

Van de Velde, W. (eds.) MAAMAW 1996. LNCS(LNAI), vol. 1038, pp. 116-127. Springer,
Heidelberg (1996)

. Kraus, S., Plotkin, T.: Algorithms of distributed task allocation for cooperative agents. The-

oretical Computer Science 242(1-2), 1-27 (2000)

. Parunak, H.V.D.: Manufacturing experience with the contract net. In: Huhns, M. (ed.) Dis-

tributed Artificial Intelligence, pp. 285-310. Pitman Publishing, Morgan Kaufmann, London,
San Mateo (1987)

. Sandholm, T.: An Implementation of the Contract Net Protocol Based on Marginal Cost

Calculations. In: Proceedings of the Eleventh National Conference on Artificial Intelligence,
pp- 256262 (1993)

Sandholm, T., Lesser, V.: Issues in automated negotiation and electronic commerce: Extend-
ing the contract net framework. In: Lesser, V. (ed.) Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS 1995), pp. 328-335. The MIT Press, Cam-
bridge (1995)

Schillo, M., Kray, C., Fischer, K.: The Eager Bidder Problem: A Fundamental Problem of
DALI and Selected Solutions. In: Proceedings of First International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2002), pp. 599-606 (2002)

Smith, R.G.: The Contract Net Protocol: High-Level Communication and Control in a Dis-
tributed Problem Solver. IEEE Transactions on Computers C-29(12), 1104—1113 (1980)
Sugawara, T., Hirotsu, T., Kurihara, S., Fukuda, K.: Performance Variation Due to Inter-
ference Among a Large Number of Self-Interested Agents. In: Proceedings of 2007 IEEE
Congress on Evolutionary Computation, pp. 766773 (2007)

Sugawara, T., Hirotsu, T., Kurihara, S., Fukuda, K.: Adaptive Manager-side Control Policy in
Contract Net Protocol for Massively Multi-Agent Systems. In: Proceedings of 7th Int. Joint
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008), pp. 1433-1436.
IFMAS (May 2008)

Sugawara, T., Hirotsu, T., Kurihara, S., Fukuda, K.: Controling Contract Net Protocol by
Local Observation for Large-Scale Multi-Agent Systems. In: Klusch, M., Péchoucek, M.,
Polleres, A. (eds.) CIA 2008. LNCS (LNAI), vol. 5180, pp. 206-220. Springer, Heidelberg
(2008)

Weyns, D., Boucké, N., Holvoet, T.: Gradient Field-Based Task Assignment in an AGV
Transportation System. In: Proceedings of Sth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2006), pp. 842-849 (2006)

Xu, L., Weigand, H.: The Evolution of the Contract Net Protocol. In: Wang, X.S., Yu, G.,
Lu, H. (eds.) WAIM 2001. LNCS, vol. 2118, pp. 257-264. Springer, Heidelberg (2001)

Gossip-Based Self-organising Open Agent Societies

Sharmila Savarimuthu, Martin Purvis, Bastin Tony Roy Savarimuthu,
and Maryam Purvis

Department of Information Science, University of Otago, Dunedin, New Zealand
{sharmilas,mpurvis, tonyr, tehrany}@infoscience.otago.ac.nz

Abstract. The objective of this work is to demonstrate how cooperative sharers
and uncooperative free riders can be placed in different groups of an electronic
society in a decentralized manner. We have simulated an agent-based open and
decentralized P2P system which self-organises itself into different groups to
avoid cooperative sharers being exploited by uncooperative free riders. This
approach encourages sharers to move to better groups and restricts free riders
into those groups of sharers without needing centralized control. Our approach
is suitable for current P2P systems that are open and distributed. Gossip is used
as a social mechanism for information sharing which facilitates the formation of
groups. Using multi-agent based simulations we demonstrate how the adaptive
behaviour of agents lead to self-organization.

Keywords: Self-organising systems, Gossip; Multi-agent Based Simulation,
Cooperation, Sharing behavior, Peer-to-Peer, Artificial Societies.

1 Introduction

One of the most common problems in P2P networks is free riding [5, 17]. In our context,
free riders are those agents that do not contribute to the collective goals of the networked
society, but make use of the resources of the network [17]. These free riders decrease the
overall performance of the society by degrading the common good [5].

Electronic societies suffer from these free riders who exploit the common resources
(e.g. bandwidth in a file sharing system). Many existing approaches employ
centralized social regulations to control free riders. Researchers have used monitoring
agents or governor agents to control agent behaviour [7]. But these centralized
mechanisms are computationally expensive for a system. Centralized mechanisms are
known to cause performance bottlenecks and also suffer from scalability issues [17].

With the increase in processing power and storage capacity of low-cost,
lightweight computing devices such as smart phones, the arena of computing is
becoming much more distributed. The clients of file sharing systems are not only
personal computers but also smaller devices such as smart phones. There is a need for
decentralized solutions to deal with the free riders. Additionally, the openness of the
Internet allows users to dynamically join and leave the system at any point of time.
So, a solution to the free-riding problem should take into account the open, dynamic
and distributed nature of modern software systems.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 105-1120} 2012.
© Springer-Verlag Berlin Heidelberg 2012

106 S. Savarimuthu et al.

To that extent, this paper proposes a decentralized solution that makes use of social
mechanisms such as gossip [10] and ostracism [11]. The inspiration to use social
mechanisms for our work comes from the human societies, which have evolved over
millennia to work effectively in groups. For human beings group mechanisms provide
social machinery that supports cooperation and collaboration. Social control is a
fundamental concept that has evolved in human societies. Social control can be
employed through leadership mechanisms. For example, the leader can impose rules
on his followers. The disadvantage of this approach is that it is centralized. On the
other hand, social control can be achieved using a bottom up approach.

For example, a gossip-based mechanism can be used to achieve social control as it
serves as a distributed referral mechanism where information about a person or a
group is spread informally among the agents. This approach can be used to achieve
control in agent groups. Another social mechanism that can be employed to deal with
free riders is ostracism. Members that do not adhere to the values or expectations of
the groups can be sanctioned by the other agents by their refusal to interact with those
agents.

In this work we demonstrate how these social mechanisms can be employed in an
open, dynamic and decentralized society where several groups are formed and are
ranked based on their performance.

The remainder of the paper is organised as follows. The social concepts used in
this work are introduced in Section 2. Our experimental setting and selected
experimental results are described in Sections 3 and 4. In Section 5 we present the
related work and the comparison with our previous work. Finally, Section 6 concludes
the paper.

2 Modeling Social Dilemma between Sharing and Non-sharing

Our experimental model presents a social situation in which the agents have the
option to share or not to share. Sharing would cost the donor who shares. But the
receiver receives the benefit without incurring any cost. Non-sharing (defection) is the
selfish option which benefits the individual but is not good for the society. Sharing
benefits the society by improving the performance of the whole system, which leads
to the overall betterment of the society. Since the donating agent spends some effort
(e.g. bandwidth) in the process of donating, it incurs some cost in our model. That
sharing agent could have decided to be selfish and thereby avoid incurring that cost.
Thus free riding becomes a threat to the society, causing damage to the common
good. This is the issue of the “Tragedy of the Commons” [5]. A brief overview of the
social mechanisms used in our experiments to deal with free riding are described
below.

2.1 Gossip

Gossip is a powerful social mechanism found in human societies for information
sharing. Gossip is a public opinion which leads to the benefit of a social group [10].

Gossip-Based Self-organising Open Agent Societies 107

According to research done by evolutionary biologists humans have shown more
interest in gossip than the truth [16]. The research has shown that gossip is more
powerful than the truth in human societies when the participants were presented with
both types of information (the gossip information and the real information).

They note that “gossip has a strong influence even when participants have access
to the original information as well as gossip about the same information” and also
have noted that “gossip has a strong manipulative potential”. There are other
examples of agent based simulation and P2P systems [4, 6] which have used a gossip
based protocol [3]. Gossip can be considered to be a distributed referral mechanism.

2.2 Ostracism

It has long been a feature of human and animal societies that the member of a group
who do not abide by rules or norms can be punished by other members of the group
(the followers of the rule/norm). One kind of punishment is ostracism [11]. Other
members will stop interacting with the member who is being ostracized and don’t
consider that person as a part of their group by ignoring or refusing to interact. This
social sanctioning mechanism works without a centralized control or authority.

3 Experimental Setup

In our experimental arrangement agents are engaged in the sharing of digital goods in
a P2P environment of a simulated artificial agent society. The system is developed as
a distributed system without central control.

3.1 3.1 Agent Attributes

For this experimental model we have used the agents which have fixed, randomly
assigned attribute values which represent how they behave.

e Cooperativeness value: This attribute concerns how cooperative an agent is.
Agents have a randomly assigned cooperation value between 0 and 10 that
represents how much they cooperate (share), with O representing an agent
that never cooperates and 10 representing an agent that cooperates every
time. This value is known as the cooperativeness of the agent.

e Tolerance value: Agents have a tolerance value between 1 and 10, which
characterizes how much non-cooperation the agent can tolerate before it
decides to leave the group. A value of 1 identifies the least tolerant agent,
and 10 identifies the most tolerant agent.

e Rejection limit: Rejection limit represents how many rejections the agent
can face before it decides to leave for another group.

¢ Gossip blackboard length: Each agent has a gossip blackboard of certain
length to store the gossip messages from other agents of its group. Each
agent also has a memory of certain number of previous groups to which it
belonged.

108 S. Savarimuthu et al.

e Life span: Agents are set to have life spans, which determine how long the
agents remain in the society (i.e. die). When an agent’s life span is over it
leaves the society.

e Cost and benefit for sharing: A sharing agent loses 0.1 as cost for sharing
and the receiving agent receives 1 as benefit.

3.2 Experimental Parameters

In the initial setup agents are put into random groups. Each group can be imagined to be
represented by a tag (badge). Agents within a group have the same tag. They interact
within their group, and they can also move to other groups under certain conditions. In
such cases they join the other, jumped-to group, and the tag changes accordingly. Agents
can ask for gossip feedback about other agents’ behavior. Groups are formed or
dismantled based on their size. The procedure of the experiment is explained in the
following sections. The experimental parameters are listed in Table 1.

Table 1. Experimental parameters

Experimental parameters Values
Number of agents to start with 100
Number of groups to start with 5
Number of iterations 5000

Agent’s cooperative value:

0-10 (random)

Agent’s tolerance value:

1-10 (random)

Agent’s rejection limit

10

Agent’s gossip blackboard length 10
Agents group memory limit 4
Agent’s lifespan Varies
Number of gossip feedbacks 5
Group’s size for dismantling 5
Group’s size for splitting 40
Cost for sharing -0.1

Benefit for receiving

1

The procedure of the experiment is explained below.

3.3 Publishing Gossip

In each iteration, a certain number of random players (agents) may ask for files from
other players of their group. A player can gossip about the outcome of an interaction
with another agent (random) in its group (report whether the other agent was
cooperative or not). In this gossip mechanism we assume that there is no lying. Since
this happens within the group (agents in a group have same tags), we have assumed
that the agent has no motivation to lie. In this fashion, every transaction is reported

Gossip-Based Self-organising Open Agent Societies 109

(gossiped about) to one of the other agents in the group. Thus the overall system has
some partial information about the cooperativeness of each agent, maintained in a
distributed way. For further illustration, the operation of how peers publish gossip is
explained in the following example. Consider A, B and C as the three random agents
in a group. A is the taking-player, B is the giving-player and C is the gossip holder. A
asks for a file from B. If B shares then A gossips positively about him to C, otherwise
A gossips negatively about him to C.

3.4 Using Gossip

Each peer has a limited amount of memory space for storing new gossip information.
After reaching the storage limit, the memory register rolls over, based on a First-In-
First-Out (FIFO) algorithm. When a player requests a file, the giving-player can
check with a certain number of (e.g. five) other random agents (asking them what
they know from the gossip information they have received) whether this taking-player
is the worst cooperator of their group. The worst player is the one who has been
uncooperative most times in its group (according to the available gossip information).
If the taking-player is the worst player, the giving-player refuses to interact with the
taking-player (ostracism). Otherwise this giving-player interacts (sharing a file or not
based on its own cooperativeness). The operation of how peers use gossip is
explained by the example given below.

Assume C and D are the players in the group where C is the taking-player, D is the
giving-player. D checks with five other players in the group in order to see whether C
is the worst player in their group. If so D refuses to play with (share file with) C. Thus
C is ostracized. Otherwise D plays with C. When only a few agents (less than five)
have gossip about the taking-player, then only the available information is taken into
consideration. Sometimes it can be the case that none of the players have gossip about
the taking-player. In such a case the taking-player is not considered to be the worst
player, a privilege similar to what happens when a new player joins a group. By this
process agents share file taking gossip into consideration which is about other agents’
past behaviour.

3.5 Leaving a Group

An agent can leave a group for two reasons. A player can leave a group if its tolerance
level is surpassed or its rejection level is surpassed. We call this leaving agent a
“hopping peer”. If its tolerance limit is reached, that means this agent is in a group
where others do not cooperate at the rate that meets this agent’s minimum level of
expectation. Thus after a number of such non-sharing events from the group members
(the agent’s tolerance limit is surpassed) the agent will decide to leave that group and
move to another group. If its rejection limit is reached, that means this agent is in a
group where it is considered to be the worst cooperator by some other agents so it has
been refused a play more often than others. If the rejection level is met then the agent
will leave that group and move to another group.

110 S. Savarimuthu et al.

3.6 Choosing a New Group to Join

When an agent decides to leave a group and join another, it looks for a group that may
accept it. Agents can apply to enter into other groups they choose but they get entry
into a group which matches its cooperativeness. A good agent would get into a group
that is better than its current group while a bad agent should get into a group that is
worse than its current group. This process is explained in detail in [9]. We have
restated it in the following paragraphs.

The hopping peer collects information about other groups from their group
members. Then it decides to which group to request admission from. Every agent has
a memory record of its most recent groups (in our experiments the memory limit was
set to 4). For example, assume agent E has been in 3 other groups before, as shown
below in Table 2.

Table 2. Previous group history

Group No | Iteration No Cooperativeness
1 560 4.5
3 700 6.0
2 1200 6.4

Table 3. Latest available information

Group No Iteration No Cooperativeness
5 1330 8.1
3 1170 7.5
2 1200 6.4
1 1199 3.8

The first row of Table 2 shows that E has left group 1 at the 560th iteration, and the
cooperation value of that group was 4.5 at that time. E left group 3 at the 700th
iteration and group 2 at 1200th iteration. Since the composition of groups change over
time, the cooperativeness of the group also changes. So it is likely that the most recent
information will be the most accurate and useful for an agent. Since all agents have a
memory of their previous groups, the hopping peer can collect this information from
all its group members and calculates the latest information about other groups. In
particular, the agents who moved into this group recently from other groups have the
most recent information. Taking into consideration this information, the agent decides
where to move. For example assuming the current iteration is 1400, the latest
information collected from the group members is given in Table 3.

Assume here that agent L intends leaving group 4, and Group 4’s cooperativeness
is 6.6 at that moment. From the latest information agent L knows about other groups
and their cooperation value. For agent L, groups 5 and 3 are better, since the
cooperation value in those groups appear to be higher than L’s current group. Groups

Gossip-Based Self-organising Open Agent Societies 111

2 and 1 are lower-ranked groups. So agent L chooses to move to the groups in the
order of their ranking.

If L is intolerant of its current group (which means it is not happy about the
cooperativeness of its current group), it will try to enter into the best group that it can
find. This is the case of an agent being “too good” for its current group and wanting to
move to a more cooperative group. But if the better groups on its list does not allow
entry, then the intolerant agent L may determine that there is no group available that
is better than its current group, and it will remain in its current group. In this case its
tolerance limit is reset to O.

On the other hand, an agent may not be good enough for its current group i.e. it is
being shunned by the other members for being the worst member of its group.
Because of refusals from other agents to play, its wealth will not increase, and it will
want to leave and find some another group in which it can find players to play with. If
the better groups do not allow entry, the agent will go to lower groups, since it is
better off moving to any new group (even if it is a lower group) rather than staying in
the current group where it is known as the worst player. How a player gets entry to
another group is explained in the following section.

3.7 Joining Another Group

The hopping peer asks any randomly chosen agent in the group to which it seeks entry
for its permission to enter. We call this permission-granting agent in the group to
which entry is sought, the “checking peer”. The checking peer will accept an agent
whose cooperativeness value is greater than or equal to a value calculated by a
formula (given below). This formula is the same one used in our previous work [9].
This hopping peer will gain permission to enter the group whenever its
cooperativeness is greater or equal to the group’s entry value calculated by the
following formula:

EV=AC-(C1/(SL-S)C2)+ C3(S-SU) (1)

The group Entry Value (EV) is calculated considering the given group’s Average
Cooperativeness (AC) and its group Size (S). AC is the average cooperativeness of
the group calculated through the gossip mechanism, and S is the size of the group. C1,
C2, C3 are constants whose values in our experiments are 25, 2, 10, respectively.
These constants were adjusted to make the EV expression appropriate for
two\ “boundary values”, the upper size limit of a group (SU) and the lower size limit
of a group (SL). It is inappropriate or inefficient for groups of players or traders to
become too big or too small. In our experiments, SU was set to be 25, and SL was set
to be 10. That means if the size of the group is 10 or below the entry qualification
value is set at a low value, making entry into the group very easy to obtain. If the size
is 25 or above the entry qualification value is set to a high value and that would make
it difficult for any but the most cooperative agents to join. Any values of the EV
expression that fall below O are set to 0, and entry values above 10 are set to 10. Thus

112 S. Savarimuthu et al.

a group’s entry value is always between 0 and 10. A simple example illustrates the
use of this formula.

Consider that a group’s calculated cooperativeness (AC) is 6. When the group Size
(S) is 14 the group Entry Value (EV) is 4.43. When the group Size (S) is 25 the Group
Entry Value (EV) is 6.88. In our system, the checking peer needs to get an estimate of
the cooperativeness of the hopping peer (the agent seeking entry). So the checking
peer asks 5 randomly chosen players from the hopping peer’s group about the
hopping peer’s cooperation. It is thus inquiring into gossip information from the
hopping peer’s group. Consider a case where E and F are in different groups. E is the
checking peer, and F is the hopping peer that wants to enter E’s group. F asks E for
entry, and E asks 5 other randomly chosen players in F’s group for gossip information
about F’s cooperativeness. The averaged value is calculated (out of 10) from this
information considering the worst case scenario. This estimated cooperativeness
would be a value between 0 and 10. If F’s estimated cooperativeness calculated
through this gossip information is greater than or equal to the entry value (EV) of its
group, the checking peer allows entry for the hopping player; otherwise it denies
entry. In that case the hopping peer will try to enter into other groups. The hopping
peer will ultimately get into a group where its cooperativeness meets the eligibility
criteria to enter. If no such group is available, the hopping peer stays in its current
group.

The entire process is repeated for many iterations, and gradually, some groups will
emerge as elite groups with many cooperators, and other groups will have less
cooperative players. As a consequence, these mechanisms achieve a separation of
groups based on performance.

3.8 Groups Splitting and Dismantling

Our aim has been to develop a self-organizing open and dynamic system, where new
agents may come into the society and also agents may leave the society at any time.
To start with, new peers are allowed to join the society by gaining entry into random
groups in the society. They can build their way up to higher groups based on their
cooperativeness. A truly open and dynamic system will allow the formation of new
groups and dismantling of existing groups according to the population size. Our aim
was to achieve the same in a decentralized manner without explicit control at the top
level. Forming groups using tags is helpful, since it is scalable and robust [4].

The agents’ lifespan determines how long the agents remain in the society and
when they leave (i.e. “die”). At any time a new agent could join the society and an
existing agent could leave when its lifespan is over.

Since the number of agents in the society at any time is dynamic the system adapts
itself to form new groups if more agents join. It also dismantles groups if there are
fewer agents in the society (less than the lower size limit of a group).

The motivation for splitting and dismantling comes from real life societies. For
example, when the size of a group becomes too large, it becomes unmanageable.
Larger hunter-gatherer groups split because of reasons such as seasonal change or
inequality in resource sharing (e.g. when meat is not shared equally).

Gossip-Based Self-organising Open Agent Societies 113

In our approach, a group splits into two if the size of group reaches a certain limit
(40). Based on the local gossip information in the splitting group, the top cooperators
(first half) form one group and the rest (second half) form the other group.

If the size of the group decreases and goes below a certain limit (5) then the group
dismantles. The remaining agents in the group go to random groups where they could
enter. This is similar to a society where it can be functional only if the society has a
certain size. For example, in hunter-gatherer societies, in order to hunt larger preys a
group has to have a minimum size. Otherwise, the prey cannot be hunted. The same
holds in the context of playing a sport. For example, a team playing volleyball has to
have six players. Otherwise, the team cannot exist.

It should be noted that the splitting and dismantling functionalities account for the
scalability of the system and its robustness.

4 Results

Before we present the experiments we have conducted and the results obtained, we
would like turn the attention of the reader to the work reported in [9] where the results
of the closed society are presented. In this work, there were 5 groups. The total
number of agents in the society was 100. The work shows how the agents self-
organise themselves into these groups based on their cooperativeness values [12].

4.1 Experiment 1 — Self-organization in an Open Society

We have conducted experiments on an open system by varying the arrival and
departure rate of the agents. For all the experiments presented in this paper we start
with 100 agents in 5 groups initially. After that agents can join (new arrivals) or leave
(if life span is over) the society.

Figure 1 shows two graphs which share the same x-axis. The x-axis shows the number
of iterations. In the top graph y-axis shows the cooperativeness of groups. Each diamond
shown in the graph represents the cooperativeness of a particular group. For a given
iteration number in the x-axis, the y-axis shows the cooperativeness of all the groups that
were present in that iteration. For example, in iteration 100, there were 6 groups
(represented by diamonds), with different levels of cooperativeness. The graph given in
the bottom of Figure 1 shows the total number of agents (alive agents) in the society for a
given iteration. For example, in iteration 100 there were 130 agents in the society.

These two graphs together show the dynamic behavior of the system (the formation of
new groups and dismantling of old groups). It can be observed that, at the start the groups
had an average cooperativeness value of 5. As the number of agents increased, new
groups were formed (iteration 100). As the number of agents decreased (iteration 200),
the number of groups decreased. The separation between the good groups and the bad
groups is distinct. When the total number of agents was about 40 in iteration 300, there
were fewer groups. Note that the cooperativeness of these groups was about 5 at that
point. As the number of agents in the societies then increased, there were more groups
and the separation between the good and the bad groups is evident. We note this process
can be appreciated better by viewing the video shown in link [13].

114 S. Savarimuthu et al.

Group Formation
10
9
*
*
8
*
7
a 6
2 *
2 *
B s * ¢
o * *
§ s
© 4
*
3 .
*
2 *
*
1 *
0 - T T T T)
0 100 200 300 400 500
Iterations
140 4
120
@ 100
c
&
o 80
-
(=]
S 60
€
=
Z 40 A
20 1
0 T T T T T
0 100 200 300 400 500
Iterations

Fig. 1. Self-organisation of an open system when agents’ arrival and departure rates are
dynamic

There are two kinds of behavior we observe in the system. Firstly, the system
dynamically enlarges or shrinks by creating more groups or dismantling existing
groups based on the number of agents in the system. Secondly, it also forms groups
based on cooperativeness. Cooperators move towards other cooperators and

Gossip-Based Self-organising Open Agent Societies 115

non-cooperators end up with other non-cooperators. The agents self-organize into
groups that have different ranges of cooperativeness. Thus this system restricts the
non-cooperators taking advantage of cooperators by restricting their access to better
groups.

4.2 Experiment 2 — Arrival Rate Greater Than Departure Rate

We conducted experiments by keeping the arrival rate greater than the departure rate.
A run of this experiment is shown in Figure 2. It can be observed that when the
number of agents increase, the system is able to dynamically create more groups and
also these groups are separated based on the cooperativeness of the agents. This
shows the scalability of the system.

Group Formation
10
9
*
. 3
g
v . $ * 3 ¥
7 = : & % $ s
* b 3 [§ ®
“ . $
S 6 * $ 4 ¢ z
g * * * ‘ ’
Eo® + * . * * z
o +*
g b4 S | $
s 4 * & ‘ . 35 s 4 $
] + ‘ & & *
3 Py L] *
2 T T $ ¢
3 Py + $
. : s .
1
0
4] 50 100 150 200 250 300 350 £00 450 500
Iterations

Fig. 2. Self-organization of an open system when agents’ arrival rate is increased

4.3 Experiment 3 — Arrival Rate Equal to Departure Rate

When the number of new comers is roughly the same as the number of leaving agents
in the system, the system will have same number of agents and the number of groups
remain the same. But new agents who join the society have certain cooperativeness.
Because of this the composition of groups and the cooperativeness of groups change
over time. Figure 3 shows the cooperativeness of five different groups over 500
iterations. The cooperativeness of these groups varies depending upon the net effect
of the cooperativeness of the agents that are present in the society. A new agent

116 S. Savarimuthu et al.

whose cooperativeness value of nine joining a group whose average cooperativeness
value is five will increase the group’s average. In the same way, a bad agent leaving a
good group will increase the group’s cooperativeness average. Figure 3 shows how
the 5 groups change over time based on the number of agents (composition of the
group) and the cooperativeness of agents present in the system over time.

Group Formation
8
7 + + * hd <+
6 . [: * * ¢ Py 4
2 $ $. ¢ .
g 5 +* ¢ * *
@
> *
= a *» &»
[* * E 3 Py *
s 5 ° $. 4 a M
Qo v L J 4
Q
Q *
2 o +
i .
0
0 50 100 150 200 250 300 350 400 450 500
Iterations

Fig. 3. Self-organization of an open system when the arrival rate is equal to the departure rate
of the agents

4.4 Experiment 4 — Varying Life Spans of Agents

We varied the life span of the agents. We investigated the impact of the lifespan of
agents on the system’s behaviour. So we conducted two experiments by varying the
lifespan. The lifespan of an agent is governed by the minimum time to live (TTL)
parameter. The minimum TTL in one of the experiments was set to 300 and the other
was set to 500. Figures 4 and 5 show the cooperativeness values of the groups for
these two values of minimum TTL respectively.

Figures 4 and 5 show the result of groups’ cooperativeness for 1000 iterations.
From these results it can be observed that having longer life time (agents being in the
society for longer period of time) helps to achieve better segregation of groups. This
is because, when the agents live longer, they have a longer period to gather and use
gossip. Additionally, when agents live for a shorter period of time, the system has a
comparatively shorter period of time to segregate into groups than the system where
the agents live longer. This can be observed by comparing the results for iterations
400 and 500. The separation of groups is better when minimum TTL=500. The same
can also be observed in the circled regions of these two figures. The videos of these
simulations can be seen in these links [14, 15].

Gossip-Based Self-organising Open Agent Societies 117

Group formation with agents of 300+
lifespan
10
2 3 *
[* ’ \
£ k3 * 'Y
:° ; ¢ s T8 % Y T e
5 4 : . — o
= . . \® ;
S 2+ 3 * ¢ %
* Y Y
0 v s oifji :
1} 200 400 600 800 1000
Iterations
Fig. 4. Group formation with minimum TTL = 300
Group formation with agents of 500+
lifespan
10 R
2 g e o o I S
U ! \
g 6 4 ¢ ‘ * ! ¢ ¢ ‘1
2 3 $ B .
5o ¢ L 4 L 4 ! * P
% * + ¢ . 1 * * ,i
8 2 ‘\. *,
0 ¢ AP S ¢ ; * ot ,
0 200 400 600 800 T 1000
Iterations

Fig. 5. Group formation with minimum TTL=500

5 Related Work and Comparison

In our previous work [7], the self-organization of peers in different groups was
achieved by making use of tags and monitoring agents, where the population had a
mixture of cooperators and non-cooperators. By employing a monitoring agent for
each group, the system evolved into groups partitioned according to the performances
of their group members. Each monitoring agent employed a voting mechanism within
the group to determine which agents were the most and least cooperative members of
the group. Then the most cooperative member was allowed to move to a new group,
and the least cooperative member was expelled from the group. Those peers who left
voluntarily or those who were expelled from their groups obtained membership in a

118 S. Savarimuthu et al.

new group only if the local monitor agent of the other (new) group accepted them.
Since the local monitor agents picked players for their group based on performance,
the high performing player had a good chance to get entry into the best group, and the
reverse conditions applied for the worst performing player. As a result, the players
entered into groups based on their performances. Though this system produced good
results, this approach is semi-centralized, because it required a local monitoring agent
for each group. In addition the work considered a closed society. We believe this
system can be applied in a regimented, closed society but cannot be applied to the
modern systems which are open and distributed.

Hales’s work [4], extends his previous work on tags to networks, considers a
‘neighbor list of nodes’ as a tag. The ‘movement of node in a network’ is modeled as
a mutation. His results showed that tags work well for P2P systems in achieving
cooperation, scalability and robustness.

In our present work, instead of the Prisoner’s Dilemma game, we have adopted the
more practical scenario of sharing digital goods in electronic societies. We investigate
how a society can achieve the separation or self-organization of groups in a
decentralized manner in an open society. Such a system would help to protect
cooperators from being exploited by the non-cooperators. It would also restrict the
non-cooperators from taking advantage of cooperators by restricting their entry to
better groups where the access to resources is better. Hence, the quality of service
(e.g. the quality of file sharing) and the performance (e.g. utility of agents) in the
better groups will be higher. By doing so, the performance of the whole system can be
improved; as resources can be distributed in greater proportion to the better
performing groups [1]. Otherwise, it will be difficult to shield the cooperators from
the defectors who rarely or never share their resources.

For easy understanding, we differentiate our current system from our previous
work [7]. First we explain the results from the earlier system [7] for comparative
purposes. In that work, all the 5 groups started with a similar number of cooperators
in each group. Later the groups were separated into 2 groups having most of the
cooperators, 2 groups having most of the non-cooperators and the middle group
having a mixed population of both. But that earlier work employed localized group
monitors and was therefore less scalable and semi-centralized.

The work presented in [8] is based on a closed society but cannot be applied to
systems that are open and distributed. Even though the mechanism achieves self-
organization, it is suitable for systems in which the performances of the other groups
are directly revealed to the agents in the society.

The work presented in [9] shows the self-organization of groups using similar
mechanisms and it has been improved upon in this current work. The differences
between the work presented in [9] and current work are as follows. In earlier work [9]
the game was played for certain iterations and the gossip information was stored.
Later the agents use the stored gossip information when they play. In the current
setup, the agents start using the gossip right from the start. If there is no information
the agent is considered as a new player and allowed to play or enter into any group.
As they play, the gossip is also stored and used. In the earlier work wealth has been
taken into account. If the wealth of an agent has not increased in the last certain

Gossip-Based Self-organising Open Agent Societies 119

number of iterations then the agent decides to move. In the current setup, instead of
wealth if the rejection limit is met then the agent decides to move. We found that
using a rejection limit works better for group separation than basing the decision on
wealth, since it is likely that the wealth will increase for a certain number of iterations
(because the agents play with bad agents if the gossip information was not available,
hence the wealth of the bad players might increase).

In the earlier work [9] new players are introduced into the lowest group in the
society and they are expected to build their way up to the higher groups based on their
behaviour (cooperativeness). For that it was necessary to keep track of the lowest
group of the system all the time, which is not a recommended practice if we want to
achieve a decentralized environment. In the current setup new agents go to random
groups in the society. As they are new they have no past behaviour to track and they
are allowed in any group as they come in. Eventually they will end up in a group
based on their behaviour by the mechanism we have in place. In the earlier work the
remaining agents in a dismantling group go to the lowest performing group. In the
current setup, they can apply to other groups and go to the group that accepts them. If
they are not allowed then they keep trying to get entry into one of the groups.

In summary, our current work focuses on addressing the free-riding problem in an
open, dynamic and distributed society. The work presented here provides an improved
model when compared to the model presented in [9].

In future, we intend to include false gossip (lying) in the system and examine the
mechanisms for handling the lying problem.

6 Conclusion

We have presented a gossip based decentralized mechanism to facilitate the self-
organization of agent groups in open agent societies. Through agent based simulation
we have demonstrated that our mechanism helps the sharing agents (cooperators) to
move to better groups while the non-sharing agents are restricted from getting into the
better groups. Thus, the mechanism achieves the separation of groups. The
mechanism allows for dynamic group formation through the splitting and dismantling
processes. We have also demonstrated that our system is scalable. Finally, we have
compared our results with previous works.

Acknowledgments. Our sincere thanks to the New Zealand Federation of Graduate
Women (NZFGW-Otago branch) for the NZFGW Travel Award.

References

1. Antoniadis, P., Grand, B.L.: Incentives for resource sharing in self-organized communities:
From economics to social psychology. In: ICDIM, pp. 756-761. IEEE (2007)

2. de Pinninck, A.P., Sierra, C., Schorlemmer, M.: Distributed Norm Enforcement: Ostracism
in Open Multi-Agent Systems. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R.
(eds.) Computable Models of the Law. LNCS (LNAI), vol. 4884, pp. 275-290. Springer,
Heidelberg (2008)

120

10.

11.
12.

13.

14.

15.

16.

17.

S. Savarimuthu et al.

Eugster, P., Felber, P., Le Fessant, F.: The “art” of programming gossip-based systems.
SIGOPS Oper. Syst. Rev. 41(5), 37-42 (2007)

Hales, D.: Self-Organising, Open and Cooperative P2P Societies — From Tags to
Networks. In: Brueckner, S., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.)
ESOA 2005. LNCS (LNAI), vol. 3464, pp. 123—-137. Springer, Heidelberg (2005)

Hardin, G.: The Tragedy of the Commons. Science 162, 1243-1248 (1968)

Jelasity, M., Montresor, A., Babaoglu, O.: Detection and removal of malicious peers in
gossip-based protocols. In: FuDiCo II: S.O.S., Bertinoro, Italy (June 2004)

Purvis, M.K., Savarimuthu, S., De Oliveira, M., Purvis, M.: Mechanisms for Cooperative
Behaviour in Agent Institution. In: Nishida, T., Klusch, M., Sycara, K., Yokoo, M., Liu, J.,
Wah, B., Cheung, W., Cheung, Y.-M. (eds.) Proceedings of IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT 2006), pp. 121-124. IEEE Press, Los
Alamitos (2006) ISBN 0-7695-2748-5

Savarimuthu, S., Purvis, M.A., Purvis, M.K.: Self-Organization of Peers in Agent
Societies. In: IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology, Milan, Italy, Los Alamitos, CA, USA, September 15-18,
vol. 2, pp. 74-77 (2009) ISBN 978-0-7695-3801-3

Savarimuthu, S., Purvis, M., Purvis, M., Savarimuthu, B.T.R.: Mechanisms for the Self-
Organization of Peer Groups in Agent Societies. In: Bosse, T., Geller, A., Jonker, C.M.
(eds.) MABS 2010. LNCS, vol. 6532, pp. 93—107. Springer, Heidelberg (2011)

Rebecca, S.B.: Some Psychological Mechanisms Operative in Gossip. Social Forces 34(3),
262-267 (1956), Stable http: //www.jstor.org/stable/2574050

Thomsen, R.: The Origins of Ostracism, A Synthesis. Gyldendal, Copenhagen (1972)
Savarimuthu, S.: Self-organising groups (gui for closed society). University of Otago
(February 2010c), http: //unitube.otago.ac.nz/view?m=9GT31pgTPSk
Savarimuthu, S.: Self-organising groups (gui for open society). University of Otago
(February 2010d), http: //unitube.otago.ac.nz/view?m=HbOwlpni7gS
Savarimuthu, S.: Self-organising groups (gui for lifespan=300+). University of Otago
(February 2010a), http://unitube.otago.ac.nz/view?m=JHaY1lpoMt9P
Savarimuthu, S.: Self-organising groups (gui for lifespan=500+). University of Otago
(February 2010b), http: //unitube.otago.ac.nz/view?m=7SK81pp4dWP0
Sommerfeld, R.D., Krambeck, H.J., Semmann, D., Milinski, M.: Gossip as an Alternative
for Direct Observation in Games of Indirect Reciprocity. Proceedings of the National
Academy of Sciences of the United States of America 104(44), 17435-17440 (2007),
Stable http://www.jstor.org/stable/25450253

Saroiu, S., Gummadi, P., Gribbe, S.: A measurement study of peer-to-peer file-sharing
systems, Technical report UW-CSE-01-06002, University of Washington (2002)

Adaptive Negotiation in Managing Wireless
Sensor Networks

Thao P. Le, Timothy J. Norman, and Wamberto Vasconcelos

Department of Computer Science
King’s college, University of Aberdeen, AB24 3UE, UK
{thao.le,t.j.norman}@abdn.ac.uk,
wvasconcelos@acm.org

Abstract. The allocation of resources to tasks in an efficient manner is
a key problem in computer science. One important application domain
for solutions to this class of problem is the allocation of sensor resources
for environmental monitoring, surveillance, or similar sensing tasks. In
real-world problem domains, the problem is compounded by the fact
that the number of tasks and resources change over time, the number of
available resources is limited and tasks compete for resources. Thus, it
is necessary for a practical allocation mechanism to have the flexibility
to cope with dynamic environments, and to ensure that unfair advan-
tages are not given to a subset of the tasks (say, because they arrived
first). Typical contemporary approaches use agents to manage individ-
ual resources, and the allocation problem is modelled as a coordination
problem. In existing approaches, however, the successful allocation of
resources to a new task is strongly dependent upon the allocation of re-
sources to existing tasks. In this paper we propose a novel negotiation
mechanism for exchanging resources to accommodate the arrival of new
tasks, dynamically re-arranging the resource allocation. We have shown,
via a set of experiments, that our approach offers significantly better
results when compared with an agent-based approach without resource
re-allocation through concurrent negotiation.

1 Introduction

When a sensor network is deployed it is typically required to support multiple
simultaneous tasks. A given sensor can provide different amounts of information
to each individual task. Tasks are broken down as sub-tasks and can appear
at any time placing varying demands on sensor resources. In such multiple-
sensor and multiple-task problems in dynamic environments, conflicts between
sub-tasks may occur for the use of the same sensor resource. Thus, efficient
mechanisms to allocate individual sensors to appropriate sub-tasks on the basis
of information need are necessary.

The resource-task allocation problem is at least as hard as the Knapsack
problem which is NP-Complete [5]. In the current state of the art, there is no
generally adopted approach to solve this class of problems, and researchers have
made many assumptions in order to be able to provide a solution to a subset of
the generic problem (e.g. considering only systems where sensors are identical,

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 121 2012.
© Springer-Verlag Berlin Heidelberg 2012

122 T.P. Le, T.J. Norman, and W. Vasconcelos

sub-tasks are of the same type, or systems where sub-tasks require the exclu-
sive use of sensor resources). In an attempt to relax such assumptions, we have
focused on resource allocation problems in heterogeneous and dynamic sensor
networks. Specifically, we employ an agent-based approach allowing sensors to
be shared between sub-tasks. In so doing, however, the success of a sub-task
strongly depends on the allocation of earlier sub-tasks. Moreover, in practical
scenarios not all sub-tasks will operate in a cooperative manner (i.e. the agents
coordinating the sub-tasks might not be willing to participate in the reassign-
ment of sensors without compensation).

Negotiation techniques have long been used in multi-agent systems to resolve
disagreements between agents to enable them to come to agreements that all
parties can live with [I0]. It is, therefore, appropriate to investigate the use
of negotiation mechanisms for reassigning sensor resources. In doing this, we
introduce another objective for agents: maximising profit. A task (represented
by a buyer agent) in need of a particular sensor might be willing to give up
part of its profit to a potential seller (representing another task) in exchange for
the service of that sensor. If the seller can find an alternative sensor to replace
that particular sensor, it will be beneficial to do the exchange if it is able to
obtain additional profit from the buyer. For the buyer, it will have a chance of
completing its allocation, thus achieving the objective and also obtaining a profit
that is unavailable otherwise. We further demonstrate that it is advantageous
for the buyer to have a number of such negotiations concurrently because this
increases its chance of being successful.

In this paper, we make the following contributions to the state of the art.
First, we enhance sensor-task allocation mechanisms by employing an adaptive
negotiation mechanism in the allocation process. This makes our approach more
applicable in realistic situations where sub-tasks compete for resources. Addi-
tionally, to the best of our knowledge, this presents the first model introducing
negotiation as a post-processing step to improve the actual allocation process.
Through simulations, we empirically demonstrate that our extended model pro-
vides an improvement in the number of completed tasks.

The remainder of this paper is organized as follows: Section [2] formulates the
sensor-task allocation problem. Section [3] presents our agent-based approach and
Section M extends this model by incorporating a novel negotiation mechanism
specifically for resource exchange between self-interested task-agents. We present
an in-depth analysis of our experimental results in Section 5l followed by Section
where we relate our model to existing research in this area, discuss the short-
comings of our model and point towards avenues for future research. Finally,
Section [7] concludes.

2 Sensor-Task Allocation Problem

The problem considered in this paper involves allocating a collection of sensors
to a number of tasks in order to satisfy the information requirements of those
tasks.

Adaptive Negotiation in Managing Wireless Sensor Networks 123

A sensor s; is defined as a tuple (v;,1;, i, ¢;, u;) where v; € I' specifies s;’s
type (I is the set of all sensor types); I; and r; are the location and sensing range
of s;; ¢; is the cost of using s;; and u; is the maximum utility s; can provide in
a single time unit.

Tasks may arrive at any time and may last for any duration. A task M
is defined by a specific geographic location, starting time and duration. M is
composed by a set of sub-tasks 7. Each sub-task t; € T" has a specific type and
is defined as a tuple (I;,7;,d;,p;,b;) where I; and r; specifies ¢;’s location and
operational range; d; is the sensing demand that ¢; requires; p; is the profit ¢;
will achieve if successfully allocated; and lastly, b; is the overall budget for the
sub-task. The active time for ¢; is within the duration of task A/. We denote u;;
as the utility that s; can provide to t;, which is defined as a percentage of u;
calculated by the ratio between the overlap of the ranges of s; and t; and the
range of s;. If the operational areas of s; and ¢; do not intersect, the value of u;
will be 0.

Given a set of available sensors S = {s1, s2, ..., s } for t; at ¢;’s starting time,
we formulate the allocation for ¢; as a mathematical programming problem.
Specifically, an allocation to t; is defined as the matrix A; = (x;;)nx1 Where
zi; = {0,1} and z;; = 1 denotes that sensor s; is allocated to sub-task t;. The
utility that t; achieves is calculated as: U;; = Z?:l usj X ;. The cost of t;’s
allocation is calculated as: C’tj = Z?:l Ci X Xij.

An allocation A; is valid if, and only if:

1. the total cost of an allocation must be within budget: Cy, < b;

2. the utility achieved must greater than or equal to the sensing demand (within
a threshold &) for t;: Uy, > £ x dj,

3. the set of sensor types of the sensors allocated to t; must cover its information
requirements: for all required type vx3s; : x5 = 1,7 = &

4. sensors cannot be allocated to more than one type of sub-task at the same
time (i.e. the only permit sensors to be shared between sub-tasks of the same
type): 3 e @ij < 1 for all set T' of sub-tasks with different types.

If A; is valid, the profit that ¢; will receive is calculated as P, = min(Uy, /d;, 1)
xp;. Task M will have a successful allocation if all of its sub-tasks are satisfied
(A; is valid Vt; € T'). The profit that M receives in this case is Py = theT P,
th efT.

Formally, the allocation problem is defined as:

max: count(M), X Py
st AjisvalidVt; €T

In other words, we aim to utilize the set of sensors to maximize the number
of successful tasks as well as obtain as much profit as possible for such tasks
(emphasizing the number of successful tasks).

124 T.P. Le, T.J. Norman, and W. Vasconcelos

Find execution
{4¢— order for the sub- «—— Task M arrives
tasks

Agent for the sub-
task is created

v

Agent computes
the sub-task

Task M fails

deployable
configurations [y
For each sub-task

Process the
smallest execution Find candidate All required

order and —® sensors within the sensor types
unprocesied sub- operational range available? Allocate sensors

tasks

using MRA
[Negofiation |
mechanism as post
processing steps

Sub-task
requirements
satisfied?

Remove
— superfluous
sensor(s)

All sub-tasks
processed?

Task M succeeds

Fig. 1. Our proposed approach as a flowchart

3 Agent-Based Sensor-Task Allocation

In this section, we present an approach to continuous resource allocation problem
for sensor network management that offers significant efficiency improvements
over existing solutions, while generating high quality solutions.

We assume that sensors of different types are deployed in an environment in a
uniformly random manner, have varying sensing ranges and each sensor provides
different utilities to different sub-tasks. The utility each sensor can contribute is
computed by a predefined function for each task and depends on various factors
such as sensor type, range, location and so on.

By a task, we mean a sensing task that requires information of a certain type,
which may be contributed by one or more sensor types. Tasks can arrive at any
time, and there may be more than one task active at any given time. Tasks
may consist of a set of sub-tasks and each sub-task is defined by a specific loca-
tion, operational range and type. Moreover, each task has a profit representing
its importance, and this profit can only be achieved if the task is successfully
allocated. Tasks also require different numbers of sensing resources (i.e. it has
a sensing demand) and these requirements may not be met by a single sensor
type. In such cases, different sensor types should be allocated together to meet
the requirements of a sub-task. We use the term Deployable Configuration (DC')
to refer to the set of resource types that an atomic task requires.

We propose a multi-agent system where each task is represented by a task
agent. The task agent is responsible for the task. If a task is composed of sub-
tasks, then that task’s agent delegates those subtasks to other task agents. If
a task agent represents an atomic task (i.e. the task have no sub-tasks), then
the agent is only responsible for the determination and allocation of resources
required to execute the task. In summary, agents of tasks are responsible for the
delegation of subtasks to other agents while the agents of sub-tasks are respon-
sible for the determination and allocation of resources.

Adaptive Negotiation in Managing Wireless Sensor Networks 125

Resource determination and allocation for each atomic task is managed by the
agent of that task. Hence, for a composite task, overall resource determination
and allocation is achieved in a decentralized manner by the agents representing
atomic tasks within the composite task. The agents of the atomic tasks first
determine the necessary resource types and then interact with the resources
(sensors) on the area of their interest to allocate the necessary resources. In our
approach, each sensor is represented by a sensor agent, knowledgeable about the
location, range, type, battery life and utility of its sensor. Therefore, in order to
allocate sensors for a specific atomic task, the agent of this task should interact
with the sensor agents considering its requirements and constraints. Here, we
assume that task agents compete for resources while sensor agents are purely
cooperative.

As mentioned earlier, a task can arrive at any time and there may be more
than one task active at any given time. When a new task 7" arrives, T is delegated
to a task agent Ap (the sensor agent closest to the central of T's range). Ap is
responsible for controlling the process of finding an allocation for T" as follows
(see Figure [I)):

1. Establish the execution order for sub-tasks. Basically, two tasks ¢; and t;
belong to the same execution set (they can be executed at the same time) if
their operational ranges do not intersect or their sensor type requirements
do not overlap. However, if two tasks have the same type, both will be in the
same execution set. Initially, the execution set containing ¢ will be processed
first and followed by the set containing the next unprocessed task until all
the tasks have been handled. 4

2. Delegate the sub-tasks (e.g., t;) to task agents (e.g.,A%.).

A]f is knowledgeable about the constraints and requirements of the sub-task ;.
A]f computes the set of deployable configurations (DCs) for ¢;. These DCs are
determined by a semantic matchmaking process [I3] and then used as the input
for the actual allocation process. The key benefit in doing so is that the search
space for finding the allocation solution can be greatly reduced (A% only has
an interest in sensors of a specific type if the deployable configurations of its
sub-task contains this sensor type).

When a DC has been selected for t;, the actual allocation steps are as follows:

The task agent Al identifies candidate sensors within the operational range
of ¢j. A call for bids is issued to appropriate sensors. The call for bids includes
information regarding its type, location, etc. Each sensor agent then makes an
independent decision on whether and what to bid based on its type and workload.
A response to a call will include the utility that can be provided and the cost
associated with the use of this sensor.

Once bids are received, the coordinator agent attempts to allocate sensors to
the sub-task using a multi-round allocation algorithm (MRA). MRA operates
in the similar way to GAP-E algorithm [8]; typically, it is in the nature of this
allocation algorithm that the various agent-based techniques differ. If A7, fails
to satisfy its information requirements, it reports failure to the agent responsible

126 T.P. Le, T.J. Norman, and W. Vasconcelos

for Ar, and if the sub-task is critical to the overall task, all other task agents
coordinating dependent tasks/sub-tasks will be requested to abort and release
their resources. All sensor agents from which bids were received are informed of
whether they are required.

In the MRA algorithm, sensors of various types are allocated to the sub-
task in a number of rounds, one for each sensor type the sub-task requires.
The first step is to set the order of selection of potential sensors using their
priority. In this way, all sensors of the highest priority are considered first. Also,
MRA introduces a budget (a constraint that governs the number of sensors that
can be allocated to the atomic task) as part of its specification. From the bids
received the allocation algorithm also has the costs associated with using specific
sensors and the utilities they provide. The Fully Polynomial Time Approximation
Scheme (FPTAS) algorithm which offers an approximation guarantee of 2 + € is
then run with this as input along with an allocation from the remaining budget
and utilities that sensors can provide to the task. This algorithm returns a revised
allocation. If this allocation does not contain at least one sensor of the type being
considered, the atomic task fails. Otherwise, the algorithm then reassesses the
priority among sensor types (given the fact that sensors have been allocated)
and proceeds to the next round if additional resources are required.

4 Negotiation for (Re-)Allocation of Resources

In this section, we detail our novel negotiation mechanism which can be used
during the post-processing step in each round of the allocation algorithm out-
lined in the previous section. As has been argued, the problem inherent in a
decentralised (or agent-based) approaches to the sensor-task allocation problem
is that the order of task arrival (or, strictly, allocation by agents in the system)
can significantly affect the quality of the global solution, and hence the number
of tasks that are satisfied. The aim of concurrent negotiation is to alleviate the
impact that task arrival has on solution quality. Specifically, it is of benefit if:

1. there are selfish coordinating agents which are not willing to cooperate with-
out reward, and

2. asub-task ¢; of task M cannot find an available sensor of a particular type ;,
t; fails and, consequently, M fails. In many cases, t; cannot satisfy its sensing
requirement ¢; for sensor type «y; not because there is no such sensor within
t;’s range, but because there are sensors of type «; within its range that are
allocated to other sub-tasks. If one such sub-tasks can find a replacement,
that sensor can be allocated to ¢; and, thus, ¢; will succeed.

The negotiation mechanism detailed in this section allows an agent (buyer) rep-
resenting a task to negotiate concurrently with other task-agents (sellers) to
obtain a resource of type - that is currently allocated to one of these other tasks
in exchange for a fraction of its profit. Obviously, the buyer will only be inter-
ested in instances of resource type 7 that it can make use of (i.e. utility of the

Adaptive Negotiation in Managing Wireless Sensor Networks 127

resource instance to the buyer is not 0). The buyer will negotiate simultaneously
with all the sellers that currently employ a resource of type ~.

The buyer and the sellers work to different negotiation deadlines, each repre-
senting availability in terms of both resource and processing power. They follow
a Sequential Alternating Protocol where at each step an agent can either accept
the offer from the opponent, propose a counter-offer, renege from its commit-
ment or opt out of the negotiation (typically if its deadline is reached). At each
negotiation time period, the interest of each agent is represented by a proposal
¢, which refers to the profit that will be paid to the seller by the buyer.

The buyer agent (B) consists of two main components: a coordinator and a
number of negotiation threads. The negotiation threads deal directly with the
sellers (one per seller S) and are responsible for deciding what counter-offers to
send and what proposals to accept. Each thread inherits the preferences from the
main buyer agent, including the acceptable ranges of values for the profit, the
deadline of the negotiation and the current reservation value (the highest profit
value that the buyer is willing to pay). The coordinator decides the negotiation
strategies for each thread. If a thread reaches a deal with a particular seller,
it terminates and notifies the coordinator. The coordinator will then notify all
other negotiation threads of the new reservation value.

In this way, the buyer, B, will engage in simultaneous negotiations with all
the sellers that currently possess a resource of type b. In our model, the buyer
can either choose to terminate all negotiation threads once an agreement has
been reached (simple negotiation mode) or it can wait until all the negotiations
have been finished and then select the agreement that is most valuable (extended
negotiation mode) either with the smallest profit to pay or with the highest utility
achieved.

For each seller, if the negotiation succeeds, it will have to give up one of its
resources to the buyer. As a result, it is necessary for the seller to obtain a re-
placement resource before it can enter the negotiation. If there is an available
and appropriate alternative resource (i.e. a resource that achieves the require-
ments of the task — validates the allocation — without the original resource), it
can replace the previously allocated resource with the alternative. We label this
situation as 1-sequence negotiation. However, there exists a more complicated
case (2-sequence) in which the seller needs to negotiate with another seller for
a replacement resource before it can negotiate with the buyer (i.e. buyer B and
seller S are negotiating about a resource b but S needs to negotiate with seller
C about resource b’ which is the replacement for b). If the seller cannot manage
to find the replacement resource, it will not enter the negotiation.

The agents bargain about the profit that will be paid for the resource that the
seller is currently holding (the price being a share of the profit that the buyer
acquires in completing its task). The buyer and sellers use different negotiation
strategies that are based on the set of linear strategies as specified in [9]. This
strategy family is employed because it represents the neutral stances of both the
buyer and the seller, not favouring anyone in particular and allows a solution to
be found that is beneficial for both parties rather than having only one better

128 T.P. Le, T.J. Norman, and W. Vasconcelos

off. Furthermore, by doing so, it will increase the chance for more agents to
participate and in turn, improve the global goal of maximizing the number of
successful task allocations.

Specifically, a strategy is a sequence of decisions that an individual agent will
make during negotiation. These decisions could be either to send an initial offer to
the opponent, select an offer to propose, accept the offer proposed by the opponent
or withdraw from the negotiation. Here, the value of the profit is between the mini-
mum and the maximum limit of each agent. For the buyer, the proposed profit will
increase in value over time and conversely, the seller’s value will decrease. For each
seller, the reservation value or the minimum profit (minpg) it will accept is the
difference between the profit it received by having the resource s and that received
with the replacement resource s’. For example, if s receives a profit of 1.5 with s
and a profit of 1.2 with s’, the minimum profit it will accept from B is 0.3. The
maximum profit (mazpg) it can expect from the buyer is the difference between
the profit with s’ and the maximum profit it can obtain. This is the incentive for
the seller agents to enter into negotiation. For a seller S, at any time t between 0
and its negotiation deadline tg the value of the proposal it will send to B is:

max)
¢(S = B) = maxps — (maxps —minpg) X (ts:m) 55 where Bs is the parameter
that defines the shape of the function.

On the other hand, the buyer will attempt to give up as little of its profit
as possible. Thus, its minimum profit (minpg) it is willing to pay is 0. The
reservation value (maxpp) it is willing to pay is set at half of potential profit it
can obtain if s is allocated. If it is higher, the buyer might not get any profit at
all and it might not be tempted to enter the bargaining process. Thus, at any
time t between 0 and deadline tp,, ,, the value of the proposal B will send to
S is: ¢(B — S) = minpp + (maxpg — minpg) X (tBiM)léoBO where g is the
parameter that defines the shape of the function.)

When an offer proposed by a party is between the minimum and the maxi-
mum acceptable profit of the other party, it will be accepted and a provisional
agreement (or deal) is created. If the negotiation is in the simple mode, the
buyer will terminate all other negotiation threads and select the resource in the
deal reached with the winning seller. If, however, it is in the extended mode,
the buyer will attempt to establish as many deals as possible, and then commit
to the best (based on its selection criteria), declining all others. The selection
criteria that the buyer has in this model are (i) the deal with the least amount
of profit, and (ii) the deal that can provide the highest utility value. The final
agreement and the final allocated resource plays an important role in determin-
ing the success rate of subsequent tasks and this is reflected in the results of our
empirical evaluation presented in Section

5 Evaluation

Having defined our negotiation mechanism, we now present a detailed discus-
sion of our empirical evaluation aimed at assessing the benefit of employing our
concurrent negotiation mechanism in sensor-task allocation.

Adaptive Negotiation in Managing Wireless Sensor Networks 129

The sensors and tasks are deployed in uniformly random locations in a 400m
x 400m environment. Each sensor range (r;) is randomized between 20m and
40m and their maximum utility is calculated as (r;/40)2, which ensures that
their the values lie between 0.25 and 1. The operational ranges of the sub-tasks
are set to be randomized between 40m and 80m. The values for S and Sg are
selected randomly between 0.95 and 1.05. The threshold ¢ is set at 0.75.

The task arrival rates are controlled by the task per hour parameter, which
ranges from 2 to 8, and number of days parameter, which is kept at 2 days. Each
task can last for an arbitrary amount of time, ranging from 5 minutes to 4 hours.
There are total sensor types different sensor types, which will vary between 4 and
8 and, for each sensor type, there will be total sensors per type sensors. For each
task, the number of sub-tasks will be varied between 4 and 5. Each sub-task
type will require a number of different sensor types, which varies between 1 and
4. These individual sensor type requirements are generated randomly and have
the value between 1 and total sensor types.

To evaluate the negotiation mechanism, we benchmark our model with 3 dif-
ferent settings: 4tph 4st, 4tph 8st and 8tph 8st where tph stands for task per hour
and st stands for total sensor types. With each setting, we vary total sensors per

type between 30 and 250 to create additional 12 environments, each then carries
further 500 experiments with randomized data sets. The results are averaged and
put through a regression test to ensure that all differences are significant at the
99% confidence level.

We measure the number of successful tasks, the average profit achieved and
the running time. We also measure the performance of the different negotia-
tion modes: simple mode (terminate whenever an agreement is reached); and
extended mode with either smallest profit or highest utility selection criterion.
It would be reasonable to expect that the different ratios between the number
of tasks and sensors leads to different improvements in the number of success-
ful tasks between negotiation-enabled and non-negotiation models. For example,
when the number of tasks remain unchanged, the more sensors there are, fewer
negotiations are required and thus, any improvement due to negotiation might
decrease. Hence, we explored variations in these values.

We now turn to the specific results.

Hypothesis 1. By negotiating, agents will have a better chance of finding a
successful allocation as well as increasing the total profit achieved. Moreover, the
running time of the algorithm is still acceptable.

To evaluate this hypothesis, we measure the number of successful allocated tasks
and the total amount of profit achieved for the model with the 1-sequence ne-
gotiation featured in extended utility mode and the one without the negotiation
feature. The differences are shown in Figure

As can be seen, negotiation allows the number of successful tasks to increase in
all cases, varying between 2% and 12%. This can be explained by the fact that, in
many situations, a sub-task in the standard model fails because it cannot find a
sensor of a particular type to satisfy its requirement. This same sub-task in the
negotiation-enabled model can now bargain with another sub-task to acquire

130 T.P. Le, T.J. Norman, and W. Vasconcelos

Improvement in successful tasks

14
12

——4tph 4st

Percentage
5
| /-L/ P

o N B O

—&— 8tph 8st

M
| T\s 4tph 8st

30 50 70 90 110 130 150 170 190 210 230 250

Total sensors per type

Fig. 2. The improvement of successful tasks between 1-sequence concurrent negotiation
(simple negotiation mode) vs no negotiation

Difference in running time

25
20

AN
10 ,;\\ ——4tph 4st

5 \\\ —o—8tph 8st

et

AW o
5 /30 50 70 90 110 130 56-120 m 0

-10

Percentage

Total sensors per type

Fig. 3. The differences of the running time of the algorithm between 1 sequence con-
current negotiation (simple negotiation mode) vs no negotiation

a sensor that is unavailable otherwise and this helps it to obtain a successful
allocation and, eventually in some cases, lead to a successfully allocated task. As
the number of successful tasks increases, the overall profit achieved also increases.

We detail the differences between the running time of our model with and
without negotiation in Figure Bl This is the actual amount of time that the
machine took to solve the allocation problem. As can be seen from the graph, the
negotiation-enabled model takes longer than its counterpart when the number
of sensors is roughly between 5% and 22% which, we believe, is still acceptable
given the more beneficial outcomes achieved. However, as the number of sensors
increases, the time it took decreases such that there is a negligible impact on
running time. By far, the greatest impact on running time is the number of tasks
and sensors involved in a problem.

Hypothesis 2. The overall utility achieved through the use of negotiation is
higher than that without.

Adaptive Negotiation in Managing Wireless Sensor Networks 131

Improvement in utility achieved

25 AN
S N —
15 \ —m—4tph 4st
1 —
—— —&—8tph 8st
0.5 ‘:-%Q:T 4tph 8st

30 50 70 90 110 130 150 170 190 210 230 250

Percentage

Total sensors per type

Fig. 4. The improvement of utility achieved between 1 sequence concurrent negotiation
(simple negotiation mode) vs no negotiation

Difference in successful tasks

g —@— 4tph 4st
9 1 g

g _

P e A gt e SRS
2 -1 130507090110 130-150-170-190-210-230250 4tph 4st

<--®--- 8tph 8st

Total sensors per type

Fig. 5. The differences of the number of successful tasks between 1-sequence highest
utility agreement (straight line) vs l-sequence lowest profit (dotted line) vs simple
negotiation mode

The differences between the averaged utility achieved by using model with and
without negotiation feature are displayed in Figure @ As can be seen from hy-
pothesis [[l negotiation enabled model allows higher number of successfully al-
located tasks in all situations. Consequently, the utility achieved by successful
tasks is increased, leading to an increase in the averaged utility obtained by a
task. Also similar to hypothesis [[l the more sensors there are, the lower this
increase will be.

Hypothesis 3. There is no clear advantage of selecting the extended negotiation
mode.

To evaluate this hypothesis, we show the difference between the performance of
1-sequence lowest profit agreement and 1-sequence highest utility agreement vs
simple negotiation mode in Figure

As can be seen, the difference between extended negotiation mode and the
simple negotiation mode are negligible with the highest value less than 1%.

132 T.P. Le, T.J. Norman, and W. Vasconcelos

Difference in successful tasks: lowest profit

Percentage

1
m o
-1 —o—8tph 8st

Total sensors per type

Fig. 6. The differences of the number of successful tasks between 1-sequence lowest
profit agreement vs simple negotiation mode

There is no decisive pattern of which negotiation mode provides a more desirable
outcome. Obviously, the extended negotiation mode strongly favours the buyer
sub-task (see Section M) whereas the simple negotiation mode treats all agents
equally. Consequently, it is rational to select the simple mode as the negotiation
method since the sellers will be more willing to participate (they do not have to
wait for the buyer to finalize their agreements). Moreover, it will be faster for
an agreement to be reached.

Hypothesis 4. Allowing 2-sequence negotiation in the model provides higher
number of successful allocated tasks than 1-sequence negotiation enabled model.

2-sequence negotiation allows a sub-task agent to have a slightly better chance
of finding a replacement sensor (see Section Hl). For most sellers, instead of only
finding free sensors, they can now negotiate with other potential seller for a
replacement sensor, having both the roles of buyer and seller at the same time.
By doing so, the chance of finding a replacement sensor for any seller is increased
and that results in a higher number of negotiations for the original buyer and,
consequently, a higher number of successful negotiations, eventually leading to
an increase in the number of successful negotiations compared to its 1-sequence
counterpart. The results are clearly demonstrated in Figure [

Hypothesis 5. The running time of 2-sequence megotiation enabled model is
considerably longer than that of 1-sequence counterpart.

Even though 2-sequence negotiation mode provides better outcomes than 1-
sequence mode, the running time of the algorithm is much higher (see Figure[]).
In the worst case, it is nearly 2.5 times worse and even in the best case, it takes
nearly 50% longer than its counterpart.

Now that the sellers can negotiate with other potential sellers, their chances of
finding a replacement is increased but also the number of negotiations carried out
is also increased. There is no way of knowing which negotiation will be beneficial
and thus, all the negotiations will need to be carried out. As a result, there will

Adaptive Negotiation in Managing Wireless Sensor Networks 133

Improvement in successful tasks

16

14
12
% 10 \
g \ —=— 4tph 4st
[X
5o LN —— 38tph 8st
9 <
4 4Atph 4st
5 NN e . m—n ph as
M V=g --o--8tphsst
0 —

30 50 70 90 110 130 150 170 190 210 230 250

Total sensors per type

Fig. 7. The differences of the number of successful tasks between 2-sequence vs 1-
sequence concurrent negotiation (dotted vs straight lines)

Difference in running time
300

250 5=
200 & s
g - o —m— 4tph 4
’ ~] st
g 150 2 AN P
H] & ® —e— 8tph 8st
g 100 %5
& N 4tph 4st
50 Ser
5 o =-=&=-8tph 8st
0 =t P ———0
50 13050 70 90 110 130 150 170 190 210 230 250

Total sensors per type

Fig. 8. The differences of the algorithm running time between 2-sequence vs 1-sequence
concurrent negotiation (dotted vs straight lines)

be many unnecessary bargaining processes, leading to a dramatic increase in the
running time of our model.

As can be seen, even though the number of successful tasks increases with
2-sequence negotiation, the time it takes to complete is considerably longer than
that of 1-sequence counterpart. Thus, it will not be beneficial to support more
than 2-sequence negotiation in our model since the trade-off between the suc-
cessful task and the running time will be undesirable.

6 Discussion and Related Work

There are only a small number of sensor-task allocation studies that have consid-
ered the heterogeneous sensor, heterogeneous task case [I15] and our work falls
in this class, which can be considered the most generic version of the sensor-task
allocation problem. In addition, the problem we are considering can be viewed
as a more general problem of resource allocation such as scheduling jobs on un-
related parallel machines [16] (the feasible constraint is that a job may need to

134 T.P. Le, T.J. Norman, and W. Vasconcelos

be performed by a set of families of machines) or the Bin Covering problem (our
problem is a generalization of this problem when the item may take a different
amount of space in different bins). Our MRA algorithm presented in Section Bl
is an adaptation of the MRGAP algorithm proposed in [5] in which the idea is
to consider tasks as knapsacks that together form an instance of the Generalized
Assignment Problem (GAP).

Resource allocation models in multi agent systems have two major branches:
centralised and decentralised [1/4]. Centralised systems make use of a single
agent to assign resources to all tasks and optimal outcomes might be achieved
because that single agent has a global view of the situation. The most successful
centralised models are auctions and it comes in various form including regular
or combinatorial auctions [6]. Agents may submit the “best” bid(s) serving their
own interests and wait for the final allocation decided by the auctioneer. In
addition, advantage of such models is that the communication protocols required
are normally simpler than that of decentralised approaches [I]. Nonetheless, the
central agent creates a bottleneck and generally, these solutions do not scale well.
Decentralised systems are typically preferred in practical situations [4] and peer-
to-peer negotiation has long been a popular technique for agent coordination in
such system.

In sensor networks, various forms of negotiation have been explored. For exam-
ple, Sujit et al. [15] employ an auction-based negotiation model for distributing
UAVs (Unmanned Aerial Vehicles) to search and attack some targets in the en-
vironment. Similarly, Shima et al. [14] use an auction-based negotiation model to
establish information regarding other neighbouring nodes and estimate costs for
other members to assign to different targets in order to find an efficient solution
for all the participating nodes. The DISTINCT algorithm [I2] uses negotiation
to distribute tasks among robots. The disadvantage of these approaches is that
they cannot guarantee all the negotiations will terminate after a finite number
of cycles.

Another model introduced by Howard et al. [3] uses a market-based approach
and the contract net protocol to allocate a group of robots to a number of tasks.
Each task is announced and all the robots bid for tasks. If a robot has already
been allocated to another task then the robot will select the better task and
broadcast the other. The major issue with this model is that there are a great
deal of duplicate allocations, resulting unnecessary time and resource consumed.

In [2/7], Kulik et al introduce four SPIN (Sensor Protocols for Information via
Negotiation) protocols for exchanging information in wireless sensor networks.
They are all negotiation based and can be applied in either point-to-point or
broadcast modes. In either mode, the sensor nodes use some variation of the
three-stage handshake protocol to negotiate for newly discovered data. Basi-
cally, whenever a sensor discovers new data, it will broadcast its findings (ADV
message) to its neighbouring sensors. These sensors, in turn, will decide whether
or not to ask for the actual data to be sent to them (REQ message) based on
their constraints. Finally the initiator will response to the REQ message with
a DATA message containing the actual data. Even though the communication

Adaptive Negotiation in Managing Wireless Sensor Networks 135

between sensors can be reduced by using these protocols, the sensors need to be
equipped with large buffers to store previous requests/data to avoid duplication.
Moreover, these protocols only provide best results when the topology of the
network is fixed.

As can be seen, using negotiation as the sole means to allocate resources
might not be beneficial. However, it is useful if negotiation is used to enhance
existing allocation algorithms. There are a number of negotiation models that
can be employed such as auctions, double auctions or bilateral negotiations.
However in this work, we consider the application of the multiple concurrent
bilateral negotiation model introduced by Nguyen et al. [10] since it allows the
agents to engage in real time and the results obtained are close to optimum
[10/9]. There are a number of shortcomings with our model, however. First,
the strategies employed by the agents are linear and constant throughout each
encounter. Ideally, they should adapt to their opponents so that the participating
agents might be able to obtain better outcomes. Second, we consider profit to be
exchangeable between tasks so that it can be used as the base for the negotiations
to happen. This is not always an appropriate assumption and this issue requires
further investigation.

7 Conclusion

In this paper, we have proposed a decentralised agent-based approach for han-
dling the sensor-task allocation problem in dynamic environments where the
tasks and resources can appear/disappear any time. Moreover, our model allows
various tasks to compete for the same resources in a graceful manner. In particu-
lar, we have incorporated a negotiation mechanism as a post-processing stage of
agent-based allocation models. The mechanism allows resources to be exchanged
between self-interested agents. Specifically, a task negotiates concurrently with
other tasks to obtain a resource that is currently allocated to one of these tasks
in exchange for a fraction of its profit which it will receive if it can obtain a valid
alternative allocation. Via empirical evaluation, we have demonstrated that this
offers significantly better results when compared with an agent-based allocation
model without resource re-allocation.

References

1. Chevaleyre, Y., Dunne, P.E.; Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Pad-
get, J., Phelps, S., Rodrguez-aguilar, J.A., Sousa, P.: Issues in multiagent resource
allocation. Informatica 30 (2006)

2. Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive protocols for information
dissemination in wireless sensor networks. In: Proceedings of the ACM MobiCom
1999, Seattle, Washington, pp. 174-185 (1999)

3. Howard, A., Viguria, A.: Controlled reconfiguration of robotic mobile sensor net-
works using distributed allocation formalisms. In: Proc. of the NASA Science Tech-
nology Conference, NSTC 2007 (2007)

136

4.

10.

11.

12.

13.

14.

15.

16.

T.P. Le, T.J. Norman, and W. Vasconcelos

Jacyno, M., Bullock, S., Payne, T., Luck, M.: Understanding decentralised control
of resource allocation in a minimal multi-agent system. In: AAMAS 2007: Pro-
ceedings of the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems. pp. 208-210 (2007)

Johnson, M.P., Rowaihy, H., Pizzocaro, D., Bar-Noy, A., Chalmers, S., La Porta,
T., Preece, A.: Frugal Sensor Assignment. In: Nikoletseas, S.E., Chlebus, B.S.,
Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 219-
236. Springer, Heidelberg (2008)

Krishna, V.: Auction Theory. Academic Press (2002)

Kulik, J., Heinzelman, W.: Negotiation-based protocols for disseminating informa-
tion in wireless sensor networks. Wireless Networks 8, 169-185 (2002)

Le, T.P., Norman, T.J., Vasconcelos, W.: Agent-based sensor-mission assignment
for tasks sharing assets. In: Proceeding of the Third International Workshop on
Agent Technology for Sensor Networks, Budapest, Hungary (May 2009)

. Nguyen, T.D.: A heuristic model for concurrent bilateral negotiations in incomplete

information settings. Ph.D. thesis, University of Southampton, Southampton, Eng-
land (2005)

Nguyen, T.D., Jennings, N.R.: Coordinating multiple concurrent negotiations. In:
Proceedings of the Third International Conference on Autonomous Agents and
Multiagent Systems, New York, USA, pp. 1064-1071 (2004)

Preece, A., Pizzocaro, D., Borowiecki, K., de Mel, G., Gomez, M., Vasconcelos,
M., Bar-Noy, A., Johnson, M.P., La Porta, T.L., Rowaihy, H., Pearson, G., Pham,
T.: Reasoning and resource allocation for sensor-mission assignment in a coalition
context. In: MILCOM 2008 (2008)

Salemi, B., Will, P., min Shen, W.: Distributed task negotiation in modular robots.
Robotics Society of Japan, Special Issue (2003)

Sensoy, M., Le, T., Vasconcelos, W.W., Norman, T.J., Preece, A.D.: Resource
determination and allocation in sensor networks: A hybrid approach. Computer
Journal (2010) (to appear)

Shima, T., Rasmussen, S.J., Chandler, P.: UAV team decision and control using
efficient collaborative estimation. In: Proceedings of the 2005 American Control
Conference, vol. 6, pp. 41074112 (2005)

Sujit, P.B., Sinha, A., Ghose, D.: Multiple UAV task allocation using negotia-
tion. In: AAMAS 2006: Proceedings of the Fifth International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 471-478 (2006)

Sung, S.C., Vlach, M.: Maximizing weighted number of just-in-time jobs on unre-
lated parallel machines. Journal of Scheduling 8(5), 453-460 (2005)

Negotiation Strategy
for Mobile Agent-Based e-Negotiation

Raja Al-Jaljouli and Jemal Abawajy

! Deakin University, School of Information Technology,
Pigdons Road, Geelong,
Victoria 3217, Australia
{ralj, jemal}@deakin.com.au

Abstract. Negotiation is a vital component of electronic trading. It is the key
decision-making approach used to reach consensus between trading partners.
Generally, trading partners implement various negotiation strategies in an
attempt to maximize their utilities. As strategies have impact on the outcomes
of negotiation, it is imperative to have efficient negotiation strategies that truly
maximize clients’ utilities. In this paper, we propose a multi-attribute mobile
agent-based negotiation strategy that maximizes client’s utility. The strategy
focuses on one-to-many bilateral negotiation. It considers different factors that
significantly affect the scheduling of various negotiation phases: offer
collection, evaluation, negotiation, and bid award. The factors include offers
expiry time, market search space, communication delays, processing queues,
and transportation times. We reasoned about the correctness of the proposed
negotiation strategy with respect to the existing negotiation strategies. The
analysis showed that the proposed strategy enhances client’s utility, reduces
negotiation time, and ensures minimum search space.

Keywords: Negotiation strategy, e-Trade, temporal constraints, client’s
utilities, end of offer validity, negotiation deadline.

1 Introduction

Automated negotiation (e-negotiation) has been proposed for e-Trade applications
as a promising environment that facilitates negotiation without human
intervention/supervision. It overcomes problems associated with human negotiation that
includes rational and emotional responses. Moreover, it concludes verifiable agreements
and optimizes negotiation outcomes [6]. Mobile agents have been employed to act on
behalf of negotiators and reach a mutual agreement that satisfies their requirement
profiles and maximizes their individual utilities. They exhibit special characteristics
including heterogeneous execution, dynamic adaptation to environmental changes, and
cooperative capacity. In addition, they build knowledge about opponents' attitudes and
intensions through negotiation and can make decisions autonomously based on
negotiation threads. In this paper, we focus on mobile agent-based negotiation.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 1374151] 2012.
© Springer-Verlag Berlin Heidelberg 2012

138 R. Al-Jaljouli and J. Abawajy

In e-Trade, a client who is interested in a service such as network maintenance
would place a request with a mobile agent and defines his own constraints,
preferences, and priorities. Constraints may include price of service, maintenance
period, penalty of breach of agreement, etc. Preferences may include payment
installments, response time, etc. Priorities may include quality of service. The mobile
agent would initially plan the bid and sets a deadline for bidding. It then collects
offers from potential suppliers and negotiates for an offer that meets client's
constraints and preferences and provides best quality of maintenance. It tries to make
an extensive market search with the aim of reaching an agreement that satisfies
client’s requirements profile and maximizes client’s utility. There exists a risk that the
mobile agent collects the most advantageous offer in last few minutes of its validity
and before it completes a thorough market search. The agent continues on negotiation
and might abort it few minutes later than its validity. The most advantageous offer
would be missed out and, hence, client’s utility would not be maximized.

Negotiation strategies presented in the literature delay offer evaluation till all offers
are collected. They do not consider offer expiry time and only consider particular
temporal constraints such as bidding deadline, goods/service delivery deadline or
negotiation deadline. Therefore, there is a need to develop a more efficient
negotiation strategy that avoids delayed evaluation of collected offers and considers
the effect of offer expiry time. It should also ensure accurate assessment of the market
through an adequate market search without the loss of advantageous offers that might
expire shortly before the negotiation deadline. The strategy should consider the risk of
missing out advantageous offers that are likely to expire earlier than the bidding
deadline and interrupts offer collection/negotiation earlier than the deadline,
whenever, the most advantageous offer is about to expire and an adequate market
search is completed. The bid may be awarded earlier than the bidding deadline. Thus,
various factors including: offer expiry time, market search space, communication
delays, processing queues, and transportation times should be considered to be able to
maximize client’s utility.

In this paper, we address the problem of limited-time offers in e-negotiation and
the probable deficit in optimizing the outcomes of negotiation. We propose a
negotiation strategy that overcomes the problem and maximizes client’s utility. We
focus on multi-attribute one-to-many bilateral negotiation.

The proposed negotiation strategy searches the marketplace for the most
competitive offers, carries preliminary evaluation of each offer at collection time and
computes its utility, and awards the bid to the offer that has the top utility. We show
that the proposed negotiation strategy maximizes client’s utility, ensures satisfactory
search and negotiation spaces, shortens negotiation time, and avoids loss of the top
utility offer that might expire before the negotiation deadline.

The rest of the paper is organized as follows. The background to the effect of
temporal constraints on negotiation is discussed in Section 2. The existing negotiation
strategies are discussed and the drawbacks as regards negotiation outcomes are
highlighted. A real example is also presented for illustration. In Section 3, the system
architecture of mobile agent-based one-to-many bilateral negotiation is described and
various phases of negotiation are discussed. In Section 4, the proposed negotiation

Negotiation Strategy for Mobile Agent-Based e-Negotiation 139

strategy is described in details and negotiation algorithm is outlined. Performance
analysis of the proposed negotiation strategy is presented in Section 5. The
conclusions and future works are discussed in Section 6.

2 Background

In this section, we present related work and illustrate the effect of negotiation
strategies on the outcomes of e-negotiation.

2.1 Problem Overview

There are three negotiation strategies that mobile agents can employ based on a time
constraint: anxious, patient, and partially patient strategies. Strategies are constrained
by negotiation deadlines. In anxious strategy, the agent tries to settle an agreement
before the negotiation deadline and the soonest possible, whereas in patient strategy it
may extend negotiation till the negotiation deadline trying to settle an agreement at
the most possible utility. The partially patient strategy tries to reach an agreement
before the negotiation deadline and may interrupt negotiation earlier than the
negotiation deadline having received a good offer. There are some problems with the
existing negotiation strategies.

We present a real example that illustrates the effect of negotiation strategies on the
outcomes of e-negotiation. A client agent that searches various airlines for a flight on
24"™ March, 2011 from Montreal, QC Canada (YUL) to Bathurst, NB Canada (ZBF).
It searches for a non-stop cheap flight with a price limit of $500 and sets 14™ March,
2011 00:05 EDT (Canada) as negotiation deadline. It starts the search on 13"™ March,
2011 11:55 EDT (Canada) being unaware of time-limited offers. It searched through
Yahootravel.com, Aircanada.com, Orbitz.com, Grab2Travel.com, and
Cheapoair.com. Different offers are provided for a non-stop flight with the prices of:
$471, $456, $370, $355, and $261.03. The offer of $471 is the first collected offer and
the offer of $261.03 is a limited-time offer that expires on 6™ Sep, 2010 11.59 EDT.
The query retrieval time of mobile agents, excluding time needed for verification and
negotiation, varies from 125 - 450 seconds using Generic Algorithm (GA) that
implements short routes of local pre-fetched servers (LP) rather than long routes [12].
Assume the retrieval query time is 420 seconds.

The decisions an agent takes are based on preferences, priorities, constraints, and
implemented negotiation strategy, e.g. non-stop route as a flight preference, specific
travel dates as a priority, and upper limit of ticket price as a constraint. The anxious
strategy awards the bid to the first acceptable offer of $471, whereas the patient
strategy completes the search of various airlines 3 minutes later than the expiry time
of the best offer of $261.03. It would miss out the best offer and, thus, awards the bid
to the second advantageous offer of $355. The two strategies would miss out the best
offer of $261.03. Our proposed negotiation strategy would not complete the search of
various airlines due to the risk of missing out the most advantageous offer priced as
$261.03 that would expire before the agent completes its search plan. It interrupts the

140 R. Al-Jaljouli and J. Abawajy

search before the expiry of the offer priced $261.03 having completed an adequate
market search, e.g. four service providers and as long as the offer is the most
advantageous among the so far collected offers. Our strategy in this instance provides
44.5% and 22.6% additional savings as compared to anxious and patient strategies,
respectively.

The anxious negotiation strategy awards the bid to the first acceptable offer which
is most probably overpriced and, hence, does not maximize client's utility as it does
not give enough time for evaluating the market accurately. Whereas, the patient
negotiation strategy extends search till market search is completed trying to maximize
client's utility. It would miss out the best utility offer that has a short validity and
would expire before the bidding deadline and, hence, would not maximize client's
utility.

The partially patient negotiation strategy might interrupt offer collection if the so far
most advantageous offer would expire earlier than bidding deadline regardless of
satisfying a minimum market search. There is risk of interrupting negotiation at a very
early stage while more advantageous offer might be forthcoming, and hence, the strategy
would not maximize client utility. There is also another risk of a malicious vendor that
might provide a little bit competitive offer with an expiry earlier than the negotiation
deadline or would delay the agent till negotiation deadline so as to win the bid.

2.2 Related Work

Negotiation is a process in which two or more parties articulate conflicting requests
and try to reach a mutual agreement by search of acceptable alternatives or
concession. Negotiation can be described by cardinality (one-to-one, one-to-many, or
many-to-many), negotiation issues (single issue, multiple issues), and negotiation
attributes (single attribute, multi-attributes) of a particular issue. Searching for a
holiday package that includes flight, accommodation, and car hire represents multiple
issues negotiation, whereas, searching for a flight to a particular destination on
specific date within a limited budget represents multi-attributes negotiation. In this
paper, we address on one-to-many bilateral negotiation.

Research has mainly focused on one-to-one negotiation. Particular related issues
have been addressed including bidding deadline [4, 10] and multi-attribute negotiation
[4, 5, 7], negotiation protocols [9], and negotiation security [8, 14]. Collins et al. [3]
addressed one-to-many bilateral single issue negotiation. They discussed the
interdependencies between various temporal constraints and how they affect the
strategic behavior of agent participating in e-negotiation. They considered sealed bid
or Vickery auctions where the bids earliest evaluation time is later than the bidding
deadline. They proposed to shift the offer evaluation time to be earlier than the
bidding deadline, whenever, the expiry time of an offer is earlier than the bidding
deadline. The approach might result in awarding overpriced bids. Assume a vendor
was able to speculate that the bidding task is critical, he would then provide an offer
with a short validity forcing the bidder to reason early and award the bid before
waiting for more valuable offers that might be forthcoming. The approach would
result in inadequate search space and, hence, may not maximize client’s utility.

Negotiation Strategy for Mobile Agent-Based e-Negotiation 141

Si et al. [13] proposed a negotiation framework for one-to-many bilateral
negotiation that maximizes client’s utility. The framework coordinates negotiations of
composite trading activities and models it as simultaneous one-to-one negotiations. It
considered particular temporal constraints including bidding time, turnaround time for
bidding, and offer expiry time. It assumed that bidding time is communicated to
vendors participating in trading activities and negotiation is purely price based.

There are different negotiation strategies [11]. The anxious strategy tries to close
the bidding as soon it finds an offer that meets client's preferences and constraints. It
may not achieve client's maximum utility. The patient strategy waits till negotiation
deadline and then chooses the best valid offer. It gives better chance for maximizing
client's utility. Negotiation participants may impose a negotiation deadline as the
negotiation may be endless. The optimized patient strategy evaluates the outcomes of
a negotiation round and accordingly amends bidding constraints so as to improve the
outcomes of the subsequent negotiation round. The negotiation continues till it
reaches the most possible utility before the negotiation deadline.

The patient strategy is usually implemented in one-to-many unilateral negotiation
e.g. sealed-bid auctions and in one-to-many bilateral negotiation e.g. e-commerce. A
major problem in the strategy is that offers and, in particular, limited-time offers have
expiry times that might be earlier than the negotiation deadline and, thus, there is a
risk of losing advantageous offers and reducing the chances of maximizing client’s
utility. The problem has not been sufficiently addressed in the literature.

The aim of the proposed negotiation strategy is to avoid loss of top utility offer that
might expire before bidding deadline. We assume that offers are non-retractable. The
withdrawal of an offer results in imposing a penalty on the respective trading partner.
The proposed strategy implements immediate response interaction, which evaluates
an incoming offer as soon as it is received. This is different from the strategies that
implement delayed response interaction [3], which delays the evaluation of offers till
all offers are collected, e.g. sealed bid or Vickery auctions. The delayed response
interaction does not surely maximize client’s utility as a top utility offer might expire
before bidding deadline.

3 System Architecture

The high-level system architecture for mobile agent-based one-to-many negotiation is
depicted in Figure. 1. There are six successive and non-concurrent phases the agent
passes through its lifetime. In phase 1, the client places a request with the mobile
agent that describes goods/service of interest and defines expected delivery time Tgp,
preferences, constraints, and priorities. The phase is referred to as Initiation phase.

In phase 2, the client agent plans a bid and sets a deadline for bidding Tgp to be
earlier than the negotiation deadline allowing for offer negotiation and bid award. It
then migrates to the marketplace to collect offers from potential vendors (S1) until
bidding deadline is reached. The phase is referred to as Bidding phase.

In phase 3, it migrates to the trusted host, where it can securely verify and evaluate
collected offers. It then shortlists acceptable offers and identifies constraints to
negotiate with short-listed vendors. The phase is referred to as Evaluation phase.

142 R. Al-Jaljouli and J. Abawajy

—"g"ﬁﬂ.mﬂ ! Marketplace 3:
2 @
- ‘45 1B
1 3 "2
Wk Trading agent ;{-
l— -3" @ 2
Client T H
0 4h 8
®lg] -
— b T
Bidding agent
92
Bank 5b
ank agent
§1 Bank host

Fig. 1. High-level system architecture of mobile agent-basedone-to-many negotiation

In phase 4, the client agent sets a negotiation strategy and selects attributes to
negotiate. It then runs multiple negotiation rounds as necessary e.g. a, b, c, etc. In the
first round, it migrates to the marketplace to negotiate with a shortlist of vendors (S2)
and collects amendments to their original offers if any exists. It would migrate back to
the trusted host to evaluate outcomes of negotiation. If client’s requirements are not
satisfied and there is a need for more negotiation, the agent runs a second round of
negotiation with a narrower shortlist of vendors (S3). It may run multiple rounds of
negotiation till client’s requirements are satisfied and adequate market search is
completed. It then concludes the offer of maximum utility and indentifies the winning
vendor. The phase is referred to as Negotiation phase.

Phase 5 consists of two stages. In the first stage, the client agent sends a purchase
order to the winning vendor and waits for acceptance. In the second stage, it then
makes a payment order to client’s bank to process a payment for the winning vendor.
The bank then processes the payment to the winning vendor. The phase is referred to
as Award phase. Upon receipt of payment, the winning vendor delivers service/goods
to the client.

In phase 6, the client agent receives an acknowledgement from the client
confirming the receipt of service/goods. It would then pass the acknowledgement to
the winning vendor and concludes the successful completion of client’s request. The
phase is referred to as Acknowledgement phase.

At initiation, the client agent sets temporal constraints defining start and end times
of the different phases. During negotiation different entities: client, client agent, and
vendor agents exchange messages till an agreement is congregated and service/goods
are delivered to the client.

Negotiation Strategy for Mobile Agent-Based e-Negotiation 143

4 Negotiation Strategy

The proposed negotiation strategy focuses on one-to-many multi-constraint bilateral
negotiation. The utility of an offer can be assessed by calculating the offer value.
Scoring functions [14] defined in Equations: (1) — (5) estimate the value of a collected
offer based on constraints the client sets e.g. price and installment plan. Upper and
lower limits the client sets for each constraint (j) for (1 <j <m) e.g. (minj, maxj) and
the constraint (X) given in the respective offer are substituted into Equations (2) and
(3) to estimate the value of each constraint S;(X). The parameter (5) defines the
gradient of the scoring function. Equation (2) is used to evaluate small item values X,
while Equation (3) is used to evaluate large item values X.

The value of an offer S(X) is calculated based on Equation (1) as the sums of each
constraint value S;(X) multiplied by its normalized constraint weight (w;) that
indicates the priority level of the constraint [16]. The more the constraint weight is the
higher is the constraint priority and the less is the agent concession [16]. The sum of
constraints weights (w;) for (1 <j < m) complies with Equation (4). Agents can pre-
define weights of constraints by implementing Q-learning approach [2].

S(X) = Z1sj5ij-Sj(X) (1)
1
_ X-min; \B
Sf (X) - <maxj—minj> (2)
1
_ maxj—X \B
Sj (X) - (maxj—minj) (3)
Yji=1.mW; =1 where 0 < w; <1 @

The client might only define upper or lower limit of constraints. The value of each
constraint S;(X) is then calculated based on Equations (5) and (6). The proposed
negotiation strategy deduces the best utility offer by sorting the collected offers by
their values.

5,1) = (X;n’fjff)%)
() = ("‘m—’JX)E ©)

The algorithm in Figure 2 shows the pseudo-code of the Proposed Negotiation_
tactic. Firstly, a mobile agent receives a request from a client that consists of bid
attributes (Y), expected delivery time Tgp, matrix (M) of upper and lower limits of
constraints (maxj, miny) for (1 <j <m).

144 R. Al-Jaljouli and J. Abawajy

Algorithm Proposed Negotiation_tactic
INPUT: T_ , t, T,
OUTPUT: Vw
Set temporal constraints, e.g. T..
Set W, Sp, N,
Q « {Y, W, s, M, N ., T}
Select Agent’s itinerary Ve{V, , w , V., ., V)3
FOR (Vj e V) DO
vV, Dispatch (MA)
Read timer value t and store current time at Vj as Tj
Calculate Drift time de =T, + t - T
IF (T < (Tj+de)) THEN Abort_execution
ELSE
Execute (MA) and collect offer (Fﬁ
Compute offer’'s value(Sj)using scoring functions
Compute number of visited vendors N, = N, +1
IF offer Fj satisfy:

a. Client’s constraints (maxj, minj) for (1 £ j £ m)

EB

b. Offer value is equal to or greater than the preferred
offer value (Sj 2 S,)
THEN

{
F « Append F. (Y, V., , S

J

, T T

sv’ EV)
Sort offers' values (%) and store as vector (§)
IF (S[1]== s;) AaND (T,, < T,) THEN
{
Estimate award time
T+ award time
Tr, » Compute (T,, + Tdj - T,)//Alert period of F,
Set_Alert (Trj , Fﬂ
}
ENDIF
}
ELSE Exclude offer
ENDIF
ENDIF
ENDFOR
END Proposed Negotiation_tactic

Fig. 2. Pseudo code of the Proposed Negotiation_tactic

Negotiation Strategy for Mobile Agent-Based e-Negotiation 145

The mobile agent (MA) initially sets bidding deadline (Tgg), matrix of weights of
constraints (W), preferred offer value (Sp), and minimum search space (Ny). It then
stores the request into vector (Q). It then stores the current time at its host (T.), and
initializes two parameters: Timer (f) and Number visited vendors Ny and sets both to
zero. It initializes two empty vectors: offers vector (S) and offer values vector (S). It then
selects an itinerary for the agent {Vy, ..., V,} and stores it in vector (V).

The agent would search for the most similar need pattern to the client’s pattern
from the prefetched servers and then compares the current need pattern to previously
recorded ones. Based on similarities between the two patterns [15], they recommend
the minimum search space (Nyn) before a decision can be made.

The agent (MA) starts its itinerary and searches for offers. A visited vendor (Vj)
may provide an offer. The negotiation strategy carries out preliminary evaluation of
each offer as soon as it is received and computes its value (S;) using Equations: (1) —
(5) and stores it in vector (S).

The mobile agent verifies if the collected offer (F;): (1) satisfies client’s constraints
(max;, min;) for (1 < j < m); (2) has a value (S;) equal to or greater than the preferred
offer value (Sp). If the offer passes the verification, it appends the offer (F)) to offer
vector (F), otherwise it excludes the offer and migrates to the next host in agent’s
itinerary.

The offer (F;) consists of: offer attributes (Y), vendor identity (v,), offer value
(S;), start of offer validity (Tsy), end of offer validity (Tgy). It then ranks the so far
collected offers by their values (S;) by sorting vector (S) and short-lists the highly
ranked offers.

If the offer has best value i.e. (5[1] == S]-) and would expire before the end time
of bidding phase, it then set a timer to signal before the so far most advantageous
offer expires. It estimates the time (T,) the client agent needs to award the bid to the
winning vendor taking into consideration delays due to communication,
transportation, and processing queues. It sets a timer to signal an alert at (Trj). It is
calculated based on Equation (7) and is earlier than the expiry time (Tgy) of offer (Fj)
to allow for awarding the bid to the winning vendor.

Trj = Tgy + Td; - Ta ™)

Whenever, the timer signals an alert at Tr;, it indicates that an advantageous offer (Fy)

is about to expire. The mobile agent sorts the vector (S) to identify the utility of the
top offer and then verifies if the offer (Fy) has the top utility i.e. (Sx = S[1]). If the
offer passes the verification, the agent verifies if the number of visited vendors
satisfies the minimum number of searched vendors i.e. (N > Nyyy). If the verification
passes, then the vendor (Vi) would be selected as the winning vendor. Offer
collection would be interrupted and vendor (Vi) would be awarded the bid.

The agent (MA) does not immediately award the bid to the vendor (Vi) for which
the alert is on as more advantageous offers may have been offered or an adequate
price of first best offer, price of second best offer, offer validity, and negotiation

146 R. Al-Jaljouli and J. Abawajy

deadline. Let market search has not yet been completed. It carries multiple
verifications to ensure maximum utility is achieved. It sorts the so far collected offers
and stores them in vector (S) and then verifies if offer for which the alert is on has the
best value i.e. (S[1] == Sy). If verification fails, it excludes the offer. If verification
passes, it then verifies if the constraint on minimum number of visited vendors is met
i.e. (Nt == Ny). If the verification passes, offers collection/negotiation would be
interrupted and the vendor (Vi) would be awarded the bid. Next, an agreement is
settled and payment is processed for the winning vendor. If the verification fails, then
the offer (Fx) would not be considered to any further extent and the client agent
migrates to the next vendor’s host in agent’s itinerary for offer collection or
negotiation.

5 Analysis of Strategy

The main objective of e-negotiation is to optimize negotiation outcomes in terms of
expected utility. Negotiation outcomes depend on multiple factors such as
negotiation deadline, eagerness, competition, and trading opportunities, etc [1].We
measure the performance of the system based on the expected utility as being the
fundamental evaluation criterion. We develop a function that computes the client’s
expected utility in one-to-many e-negotiation. As experiments may not fetch critical
cases that deal with advantageous offer that expire before negotiation deadline, we
simulate the system with all possible critical cases considering variations of four
variables: offers be collected at discrete time instants tiR= {1,2,...,i,...,n}and
expire at discrete time instants, tiE ={2,3,...,1, ..., n) with the earliest expiry of a
collected offer at n = 2.

The negotiation deadline is at time instant n, where n = {10, 15, 20}. The price of the
first best offer varies from 0.5 to 0.9 of the price upper limit and the difference in price
between the first and the second best offers ranges from (5%) to (40%) with an increment
of (5%). We test (40%360) states and present numerical results of expected utility that
provide insight into the system performance. For simplicity, we consider price-based
negotiation. Let (B4,) Tepresents the price upper limit of service/goods, and represents
(P,§ P) the bid price of vendor i. The bidding time and the end of offer validity are denoted
as are denoted as (Tgg), and (Tév) respectively. The expected utility function is defined
in Equation (8).

U= (M)(P (8)

Pmax

where, ¢ = (TEB)

7
Ty

Negotiation Strategy for Mobile Agent-Based e-Negotiation 147

Assume the client sets an upper-limit constraint on the price of service/goods P g
and a fixed bidding deadline n. The agent received offers from m vendors and intends
to run a single round of negotiation. The client's utility is inversely proportional
to (Pép) offering better savings on purchases. Thus, the lower the bid price is as
compared to (B,q.) the better is the client's utility. Whereas, the utility is directly
proportional to offer validity (Tév) that allows for broader search/negotiation space.
Thus, the longer the offer validity is as compared to (Tgg) the better is the client's
utility.

We present the results of simulating a system of a negotiating mobile agent that
sets n to 15. Let the price of the best offer be 0.5 of the price upper limit (B,). Due
to space limitations we only analyze (14*3) states where the difference in price
between the first and the second best offers is as: 5%, 15% or 30% of the price upper
limit.

Figure 3 shows the increase in client utility if the best offer is awarded the bid just
before it expires. The utility is compared to the expected utility if negotiation
continues till its deadline. The intersection of the graph with the horizontal axis shows
the minimum acceptable validity of the best offer for negotiation to be interrupted.
For example, the client would benefit from the interruption of negotiation if the best
offer expires later than time instant r = 5 and there is a significant difference in price
of (30%). Conversely, the client would only benefit from the interruption of
negotiation if the best offer expires later than time instant ¢+ = 14 and there is a
marginal difference in price of (5%).

200

—t— 5% price difference

=
n
=

—f@— 1% price differance

20%prica diffarancs

=

=

=]
|

=

P

o
=
|

-100 F

Increase in client's utility [%5)
i
=

-150

Offcrvalidity (t)

Fig. 3. Increase in expected utility (%) when negotiation ends before the best offer expires

The strategy encourages early interruption of negotiation if there is a significant
difference in price, whereas if does not if there is a marginal difference in price. The
more the difference in price between the first and second top offers, the earlier the

148 R. Al-Jaljouli and J. Abawajy
Table 1. Detailed reasoning of various negotiation strategies
AT . ozloclzy
g ?‘? “é Criteria § Ué g E2 5
| EE SEETES
é. Ty < Tgp Tev > Tes S[1] = Sk |Nt 2 Nyn E E A
Tgy < Tgg + Ta - Td; -
Proposed e} Reject| v v
@ | Patient @ O ® Reject| % v
Anxious Accept| % x
Proposed Reject| v v
@ | Patient ® ® ® Reject| % v
Anxious Accept| * x
Proposed Reject| v v
© | Patient ® @) @) Reject| % v
Anxious o Accept| * x
Proposed o) Accept| v v
O | Patient ® ® O Reject| % v
Anxious Accept| * x
Proposed Reject| v v
@ | Patient O @) ® Reject| % v
Anxious Accept| % x
Proposed Accept| v v
@ | Patient O ® ® Reject| % 4
Anxious ® Accept| % x
Proposed ® Reject| v v
@ | Patient O @) e Reject| % 4
Anxious Accept| % x
Proposed Accept| v v
©® | Patient O ® @) Reject| % v
Anxious Accept| % x
Proposed Accept| v v
© | Patient O ® e Accept| % 4
Anxious) Accept| % x
Proposed ® Reject| v v
Q| Patient O @) e Reject| % 4
Anxious o Accept| * x

Negotiation Strategy for Mobile Agent-Based e-Negotiation 149

negotiation can be interrupted with more gain in utility. The strategy weighs extended
market search more than a marginal gain difference in price For example, interrupting
negotiation before the best offer expires at time instant £ = 9 would result in an
increase in utility by 76.8% and a drop in negotiation time by 40% having a
difference in price is (30%), whereas it would result in a drop in utility by 21.4% if
the difference in price is (5%).

Moreover, we reason the correctness of the proposed negotiation strategy by
examining the end results of various negotiation strategies for four decision-making
conditions. The first condition tests if the expiry time of a limited-time offer (Tgy) is
earlier than the bidding deadline (Tgg). The second condition tests if the expiry time of
a limited-time offer (Tgy) is later than the bidding deadline (Tgg) but earlier than the
bid award time (Tgg + T, — Tdj) at which the winning vendor receives an award
confirmation message. The third condition tests if the limited-time offer has the best
utility among the so far collected offers i.e. (Sy = S[1]). The fourth condition tests if
the number of visited vendors satisfies the minimum number of searched vendors i.e.
(Nt =2 Ny). We examine all probable scenarios of different settings. We summarize
the reasoning results in Table 1 and highlight the enhancements the proposed strategy
presents as compared to patient and anxious strategies [6]. It avoids loss of the most
advantageous offer that expires earlier than the bidding deadline, increases client's
utility, and ensures adequacy of market search.

The reasoning shows the following:

- The proposed strategy carries out prompt evaluation of each collected offer and
verifies if the offer satisfies client's constraints and preferences. It then tests if a
collected offer has the best utility and would expire earlier than bidding
deadline. If the offer passes the test, it sets an alert and extends offer
negotiation/collection to (T,) just before the expiry time of the offer. If the alert
signals soon expiry of the offer, it awards it the bid if it satisfies constraint on
minimum number of vendors to search and has the top utility among the so far
collected offers. The strategy interrupts offer collection/negotiation and awards
the bid to the vendor of the most advantageous limited-time offer in four
scenarios out of the ten scenarios confirming minimum market search. Thus, the
strategy improves utility while ensuring adequacy of market search. It would
further interrupt offer collection/negotiation earlier than bidding deadline,
which results in shortening offer collection/negotiation time.

- The anxious strategy in all scenarios immediately accepts the first collected
offer that satisfies client's constraints and priorities. The strategy does not
improve client's utility, nor confirms adequacy of market search.

- The patient strategy losses any advantageous limited-time offer that expires
before bidding deadline or even expires later than the bidding time but before
the sent bid award notification is received by winning vendor. The strategy only
accepts one scenario out of the ten scenarios. It can only accept the top ranked
offer only if its expiry time is later than bidding deadline by enough time for
awarding it the bid. The offer has to satisfy conditions: (1) (Tgy > Tgg); (2)
(Tgy < Tgg + T, — Td;). It only ensures adequacy of market search, but does not
maximize utility.

150 R. Al-Jaljouli and J. Abawajy

The proposed strategy as compared to patient and anxious strategies results in: (1)
Better outcomes, (2) Increase in utility, (3) Adequacy of market search, (4) shorter
search time as compared to the patient strategy. It improves utility as it avoids loss of
top utility offer that expires before bidding deadline and avoids early bid award that
would result in overpriced bids. It also shortens the marketplace search time as the
search can be interrupted and the bid may be awarded earlier than the bidding
deadline, whenever, the most advantageous offer is about to expire and an adequate
market search is completed.

6 Conclusion

In this paper, we proposed a mobile agent-based one-to-many bilateral negotiation
strategy for e-Trade applications. The aim of the proposed strategy is to maximize
client's utility. It overcomes the risk of missing out limited-time advantageous offers
during offer collection/negotiation that have not been addressed in existing negotiation
strategies. Moreover, it confirms adequacy of market search and considers various
temporal constraints including bidding deadline, offer expiry time, award time,
communication delays, processing queues, and transportation times. The negotiation
strategy is more efficient than the existing negotiation strategies. It presents six
advantages: (1) attenuation in offer collection/negotiation time; (2) avoidance of loss of
best utility offer that would expire before offer collection or bid award is completed; (3)
assurance of a satisfactory market search; (4) maximizing client utility; (5) avoidance of
early bid award that would result in overpriced bids; (6) assurance of accurate
comparative analysis of top ranked offers in terms of offers value and offers validity.

The future works of the paper is to extend the proposed negotiation strategy with the
implementation of multi-agents that concurrently search sub-spaces of marketplace. It
shortens offer collection/negotiation time and, thus, minimizes the risk of missing out the
top utility offer that has a short validity.

References

1. An, B., Sim, K., Gui Tang, L., Qing Li, S., Cheng, D.: Continuous-Time Negotiation
Mechanism for Software Agents. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 36(6), 1261-1272 (2006)

2. Braun, P., Brzostowski, J., Kersten, G., Kim, J., Kowalczyk, R., Strecker, S., Vahidov, R.:
E-Negotiation Systems and Software Agents: Methods, Models, and Applications. In:
Intelligent Decision-Making Support Systems: Foundation, Applications, and Challenges.
Decision Engineering Series. Springer, Heidelberg (2006)

3. Collins, J., Jamison, S., Gini, M., Mobasher, B.: Temporal Strategies in Mult-Agent
Contracting Protocol. In: Proceedings of AAAI-1997 Workshop on Using Al in Electtronic
Commerce, Virtual Organizations, Enterprise Knowledge Management to Re-enginer the
Corporation, pp. 50-56 (1997)

4. Fatima, S., Wooldridge, M., Jennings, N.: Multi-Issue Negotiation with Deadlines. Journal
of Artificial Intelligence Research 6, 381-417 (2006)

10.

11.

12.

13.

14.

15.

16.

Negotiation Strategy for Mobile Agent-Based e-Negotiation 151

Fatima, S., Wooldridge, M., Jennings, N.R.: An Agenda Based Framework for Multi-Issue
Negotiation. Journal of Artificial Intelligence 152(1), 1-45 (2004)

Fatima, S., Wooldridge, M., Jennings, N.R.: Bargaining with incomplete information.
Annals of Mathematics and Artificial Intelligence 44(3), 207-232 (2005)

Kebriaei, H., Majd, V.: A Simultaneous Multi-Attribute Soft-Bargaining Design for
Bilateral Contracts. Journal of Expert Systems and Applications (2008)

Jaljouli, R., Abawajy, J.: Secure Mobile Agent-based E-negotiation for Online Trading. In:
Proceedings of the 7th IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT 2007), Cairo, Egypt, pp. 610-615 (2007)

Kersten, G.E., Lai, H.: Satisfiability and Completeness of Protocols for Electronic
Negotiations. European Journal of Operational Research 180(2), 922-937 (2007)

Levati, M.V., Maciejovsky, B.: Deadline Effects in Ultimatum Bargaining: an
Experimental Study of Concession Sniping with Low or no Costs of Delay. Journal Costs
of Delay: International Game Theory Review 7, 117-135 (2001)

Rahwan, I., Kowalczyk, R., Pham, H.: Intelligent Agents for Automated One-to-Many e-
Commerce Negotiation. In: Proceedings of the 25th Australian Conference on Computer
Science, pp. 197-204. Australian Computer Society Press (2002)

Selamat, A., Selamat, H.: Routing Algorithm of Mobile Agents for Query Retrieval Using
Generic Algorithm. Malaysian Journal of Computer Science 17(2), 1-10 (2004)

Si, Y., Edmond, D., Dumas, M., Hofstede, A.H.: Specification and Execution of
Composite Trading Activities. Journal of Electronic Commerce Research 7(3-4), 221-263
(2007)

Vogler, H., Spriestersbach, A., Moschgath, M.: Protecting Competitive Negotiation of
Mobile Agents. In: IEEE Workshop on Future Trends of Distributed Computing Systems
FTDCS (1999)

Zen, Z.: An Agent-Based Online Shopping System in E-Commerce. Journal of Computer
and Information Science 2(4), 14—19 (2009)

Zhuang, Y., Fong, S., Shi, M.: Knowledge-empowered Automated Negotiation System for
e-Commerce. Journal of Knowledge and Information Systems 17, 167-191 (2008)

Adaptive Choice of Behavior
and Protocol Parameters

Frank Grove, Sandip Sen, and Oly Mistry

University of Tulsa
800 South Tucker Avenue
Tulsa, OK 74104, USA

{dean-grove,sandip,oly-mistry}Qutulsa.edu

Abstract. Research on interaction between multiple self-interested
agents has focused on either designing rational behavior for agents given
the interaction protocol or designing the interaction protocol that will
promote desirable rational behavior by agents. We believe that in cer-
tain situations self-interested agents can be interested in both choosing
desirable protocols and deciding effective strategies to follow under the
chosen protocol. We experiment with a market situation where agents
repeatedly negotiate to decide on the allocation of indivisible resources.
We present a parameterized protocol selection scheme which can be used
by agents to select the interaction protocol to use. We show that learning
agents can greatly improve performance by adapting the protocol used
and the behavior adopted against a range of opponents.

1 Introduction

The research in agent coordination can be grouped into two general areas:
Coordination protocol design: Agents typically interact within a framework
that guides the nature, duration, and frequency of interaction as well as the
relative roles assumed by the participants. Auction protocols, bargaining frame-
works, negotiation protocols, cake-cutting protocols, etc are prominent protocols
that have received widespread use in the multiagent community [I5]. Protocol
design has been an active and influential area of research with notable advances
in key application areas like combinatorial auctions with the notion that it will
incentivize social welfare maximizing behavior by rational, strategic agents.
Agent behavior design: This branch of research focuses on designing efficient
and effective algorithms for agents to follow. The point of view assumed by this
body of work is that often an agent will find itself in an environment where it
has no control over the domain protocols or the “rules of the road” and can only
seek to optimize performance by selecting and executing appropriate behaviors.
We are interested in studying the problem of repeated negotiations in agent so-
cieties when the details of the interaction protocol are themeselves “negotiable”
and can be adapted online by the negotiating agengts. More specifically, agents
can both jointly choose from a range of parameterized protocols for interaction
and individually select their behaviors from the corresponding behavior spaces.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 1527 2012.
© Springer-Verlag Berlin Heidelberg 2012

Adaptive Choice of Behavior and Protocol Parameters 153

While mutually agreeing on an interaction protocol and then choosing appro-
priate behaviors is necessary in the absence of existing infrastructure, agents
may prefer to negotiate details of the interaction protocol even when such fa-
cilities and services are available. This is particularly true in the presence of
information asymmetry. For example, if one agent has more information about
the opponent than the latter has for itself, the former may prefer to use a version
of the protocol that requires less revelation of private information.

We assume that agents possess the basic communication skills and share a lan-
guage and vocabulary to negotiate the domain level interaction protocol. Hence
we will not address the meta-level or recursive problems of choosing a mecha-
nism to select a domain-level protocol. Rather, we will work with a parameterized
version of a protocol-selection scheme that we present in Section [3

Our domain of application is a system for allocating non-shareable resources
or services. We posit a framework where an agent requesting service or resources
can submit a request with a level of urgency (or strategy or bid), i.e., the maxi-
mum amount it is willing to pay, if necessary. If there is a conflict, i.e., multiple
requesters request a given item, they select a protocol that will both determine
the winner, i,e, the agent who gets the item, and what payment, if any, the
winner is going to pay to the system.

The protocol set available to the agents for selection ranges from the Vickrey’s
auction protocol at one end, where the winner has to pay the system the amount
of the second highest bid, to the trusting protocol where the winner does not
pay anything. We empower the agents with the ability to learn to choose the
protocol parameters such that exploitative behaviors will be suppressed while
rewarding agents who truthfully represented their resource requirements.

2 Related Work

In recent literature on multi-agent systems, negotiation is studied as isolated
incidents in one-shot stage games. Equilibrium conditions are analyzed under
different degree of available information, e.g., complete information [IOJIT],
incomplete information [5], or knowledge of a probability that they will negotiate
under same condition [8]. There has been research in multi-agent systems on
using helpful social attitudes [6], reciprocity mechanisms [13], and trust in
negotiation [I]. There has not been any work that deals with selecting a protocol
to negotiate indivisible resources utilizing trust. In particular there is very little
work on studying the effect of negotiation behavior on mutual trust, future
negotiation opportunities and agent utilities.

Research in economics and psychology have investigated the effectiveness of
strategic negotiation behaviors [4J16]. These studies are concerned with the be-
havior and utility of two general types of agents: egoistic and pro-social. The goal
of an egoistic agent is to maximize its own profit and it does not want to sacrifice
any utility to cooperate with other agents. On the other hand, pro-social agents
want to maximize the joint profit without considering their individual profitabil-
ity. De Dreu et al. have showed that a group of pro-social agents achieve higher

154 F. Grove, S. Sen, and O. Mistry

joint outcomes than egoistically motivated agents as the egoistic agents settle
on suboptimal agreements [4]. They have considered a homogeneous group of
agents, whereas real-world societies contain a great variety of negotiation be-
haviors. In a following paper, they demonstrated that groups with a majority of
egoistic agents settle on suboptimal agreements more frequently than a group
with a majority of pro-social agents. In both situations, they view the problem
from the perspective of the entire society. We, on the other hand, are inter-
ested in the analysis of negotiation behavior and utility from the perspective of
self-interested agents.

The CREDIT [14] trust model allows an agent to calculate the trust of other
agents and uses this trust measure during negotiation. This measurement ef-
fectively decreases the uncertainty in the environment and enables the agents
to reach more efficient agreements. Truth-telling behavior in the environment
can be rewarded by this incentive compatible scheme. The CREDIT model is
effective in producing the outcomes that maximizes all the negotiating agents’
utilities and in choosing the most reliable agents in the long run. Though we also
focus on utility maximization, we do not restrict the agents to playing against
only related opponents. Rather, we assume that agents may have to interact with
arbitrary opponents and hence must learn to play against potentially harmful
opponents and yet secure higher utility than any other agent in the population.

3 Domain and Interaction Model

3.1 Domain Assumptions

We now present our domain model which describes a facility for sharing resources
and services by a large agent society. We assume that resources or services are
atomic and are non-shareable. Typical example of such services include libraries
checking out limited copies of eBooks or organizations giving employees access to
software with limited number of licenses. Users are represented by their agents
who interact with similar agents to obtain the necessary resources or services.
Whenever two agents request the same resource for an overlapping period of
time, a conflict-of-interest (COI) happens and the agents need to directly resolve
such a COI as resources/services are atomic and non-shareable. We assume the
following characteristics of our domains of interest:

e The society is semi-stable, where users frequently request resources/services.

e The number of resources/services is limited and this leads to frequent COIs.

e The above two assumptions lead to the fact that agents with similar ser-
vice/resource requirements will have a history of COIs from which they can
learn about others negotiation behavior.

e Agents are interested in maximizing their satisfaction or utility but are not
spiteful (deliberately trying to reduce others’ utilities) or colluding to manipu-
late the system. Agent requirements or demands for a resource/service vary over
time. In particular, an important consideration in our work is the importance,
priority or urgency with which an agent requires a resource in the current time
period.

Adaptive Choice of Behavior and Protocol Parameters 155

e We assume an incomplete but perfect information scenario, i.e., agents will
not know about the true preferences of the opponent about the resource/service
under conflict but can observe the behavior or strategy chosen by other agent‘ﬂ.
We also assume that each agent makes its offer without knowledge of the other
agents’s choices.

3.2 Trust Considerations in Protocol Selection

Trust can be key in the protocol mechanism decision. An agent with a high trust
for its opponent is more inclined to prefer allocation based purely on reported
urgency or priority. On the other hand, an agent with low trust for its opponent
will be inclined to prefer the auction mechanism, a relatively safer bet that guards
against manipulations. We want to develop a new protocol selection framework
that allowed agents to range from a complete trusting to a complete distrusting
protocol. Hence, we adopt a parameterized protocol selection scheme that allows
selection from a continuous spectrum of protocols ranging from pure priority
based allocation to the Vickrey’s 27¢ price auction. In this range, the winner’s
payment is determined by the loser’s level of trust for the opponent. If the
loser has high trust in it’s opponent, the winner has to pay less to the system.
Conversely, low trust will cause the winner’s payment to the system to increase.

Note that from our perspective, we are only interested in the net utilities
(valuation minus payment) of the agents and the system is viewed only as a
sink and money paid to it is undesirable waste as it decreases the total utility to
the agents. This is somewhat different from the view of social welfare taken in
auction theory where the auctioneer is considered part of the society. To differ-
entiate our view, we will use the term “agent welfare”. Hence, while Vickrey’s
second price auction is the fall-back option for an agent when faced with an un-
trustworthy agent, this protocol reduces the overall agent welfare as payoffs to
the system will reduce agent utility. If agents are mutually trustworthy, however,
they can eliminate such “wasteful” payments to the system and truly maximize
agent welfare. The goal of this research, therefore, is to develop a protocole
selection framework by which non-manipulative agents can learn to trust each
other from experience and maximize their welfare while avoiding manipulation
by malevolent agents. Though manipulative agents can exploit this protocol and
receive a higher payoff in the short run (also resulting in suboptimal allocations),
the protocol selection framework gives adaptive agents the capability to punish
the exploitive agents while reciprocating the trust of an agent that truthfully
reports its priorities.

3.3 Trust-Based Protocol Selection Framework

We consider a society of N agents who repeatedly engage in resource allocation.
At each iteration, each agent’s valuation v; is derived from a uniform distribu-
tion of U(0.5,1). This assures a competitive society where agents have similar

! We use the term behavior and strategy interchangeably.

156 F. Grove, S. Sen, and O. Mistry

valuations and demands for the resource. Next, each agent interacts with the
rest N — 1 agents. During an interaction between two agents ¢ and j, each agent
specifies both a bid for the contested item and a trust value in its opponent.
Hence, agent i specifies a bid b; and a trust value o representing ¢’s trust in the
truthfulness of j. If b; > b;, the resource is allocated to i.

The payment of winner, i, to the system is determined to be

payment; = b; x a}. (1)

Hence, the payment of the winner is the product of the loser’s bid and the loser’s
trust in the winner reporting truthfully. The utility u; for the winner is defined
as u; = v; — payment;.

Each agent j € N stores a list of o € [0,1],¥i € N. 1 - gives the measure
of actual trust value of agent j on agent i. As a§ increases the ¢ must pay a
greater payment. When a; = 1, the winner pays the loser’s bid b;, i.e., the
second highest bid, which is equivalent to the 2"? price or Vickrey’s auction.
Conversely, when a§ = 0, representing total trust, the winner pays nothing and
the protocol reverts to priority based resource allocation. Hence, we see that this
protocol selection framework allows agents to use reported trust values to choose
radically different protocol instantiations. We will see later that adaptive agents
can learn to choose these parameters (trust values) to reward truthful agents
and punish greedy or untrustworthy behavior.

Over successive iterations, agents accumulate utility, and the agent with the
greatest utility is the optimal strategy within this society.

4 Strategizing over Trust

We now examine whether bidding truthfully is the dominant strategy for agents
in a single interaction in this setting. To examine the ability to strategize about
the opponents value of «, we must analyse whether the bidder can overbid to
achieve a greater utility than it achieves by bidding truthfully. We examine the
three cases where bidder i overbids. The payoff for the bidder is defined by
Equation [I if the bid b; > b;:

b; < w; : In this case overbidding yields the same utility as truth telling.

bj > b; : In this case regardless of overbidding the agent does not gain the good
and no utility is gained or lost.

v; < bj < b; : In this case the utility is given by the payment equation. However,
it is not clear where or not v; < b; * oz; and the subsequent utility from overbid-
ding is greater. When o’ = 0 the optimal strategy is to overbid, and the case of
a; = 1reduces to the Vickrey’s Auction dominant strategy of truth telling. How-
ever in the case where 0 < o < 1 the dominant strategy is not immediately clear
and depends on the opponents trust value o]. If agent i could deduce the value of
a’ and the b; values then the agent could easily determine the optimal amount
of overbidding necessary to achieve maximum utility. However the nature of the

Adaptive Choice of Behavior and Protocol Parameters 157

trust protocol makes it difficult to determine a?. While the Trust Based Protocol
lacks the dominant strategy of truth-telling, we show that our protocol is robust
against agents attempting to deduce the a values. It may be possible to elicit
the mean of another bidder’s « over time, especially if the agent can determine
the distribution from which the opposing bidder draws its valuation. However,
it is unlikely that an agent will know its opponent’s valuation distribution. In
most domains this is unlikely or unwanted. In fact a criticism of the standard
Vickrey’s Auction is that the agents are forced to make their valuations public.
However, without this knowledge it is not possible to determine the valuation or
the trust its opponent has. When agent ¢ wins, it is only made aware that b; > b;
but cannot know for certain what the value of b; actually is. For this reason we
argue that our Trust based Protocol is a robust mechanism for resource allo-
cation even though truth-telling is not always the dominant strategy. In cases
where bidders prefer to keep their valuations secret, the Trust based protocol is
indeed preferable. Only in trivial circumstances, where the opponent’s « is static
and opponent valuation distribution is known, is it possible to infer the « value
and thereafter obtain utility gains through overbidding.

5 Agents

To evaluate the effectiveness of our protocol selection mechanism in effectively
resolving COls, we experiment with a variety of agent types and observe the
resultant performance of these agents. We now describe the agent types used.

Bully Agent: A Bully agent always bids 1.0 irrespective of their resource need.
This bid represents the strategy to attempt to obtain the resource in all inter-
actions, regardless of another agent’s valuation. They also use an « value of 1
for all the other agents in the population. Therefore, any agents that obtain the
resource instead of the bully (can only happen with probability 0.5 where both
agents bid 1) will have a payment of 1 according to our protocol.

Naive Agents: Naive agents always bid their true valuation for the resource.
They use low a values for the other agents present in the population, i.e., they
trust other agents to bid their true valuation. Although this is not a rational
strategy, similar agents do exist in real-world markets. We do not expect naive
agents to be very successful, but it is important to study the effect of their
presence in a society.

Rational Myopic Agents: These agents always bid their true valuation but
always use o = 1, i.e., they do not trust other agents. This behavior is optimal for
a single interaction. It defends against exploitation from bullies by ensuring that
the agent never receives a negative utility. A society of rational myopic agents
always select Vickrey’s 2"? price auction. While this strategy is optimal from the
myopic perspective, it results in agents paying to the system the sum total of the
agent utilities and hence agents welfare is not maximized. The learning agents
introduced next are designed to maximize agent welfare by trusting truthful
agents.

158 F. Grove, S. Sen, and O. Mistry

a-Learning Agents: The a-learning agents always bid their true valuation.
However, they adapt their reported « values over time to more accurately rep-
resent their trust for the opponents. An a-learning agent records the number
of win (w) and loss (I) against each of its opponents. After every interaction, it
calculates a ratio (r):

= Y a Resul 2
where 7 is the forgetting factor and Result is a boolean value of 1 or 0 represent-
ing win or loss in the latest interaction. Based on r, these agents adapts their «
value using the sigmoid function given below:

1
X T 4 O (r-05) (3)

where C'is a constant. If > 0.5, we set C' to Cjo and otherwise set C' to Chigh.
For experiments reported in this paper, we used Ciow = 1 and Chign, = 30. We
expect an agent to win the contested resource 50% of the time as agent valua-
tions are drawn randomly. We used different learning rates for different regions
in Equation Bl as we want the learners to respond aggressively to potentially ex-
ploitative agents but should be more cautious about adapting its o value against
truthful agents.

a-Bid Learning Agents: Our next, more advanced, learning agent employs
the same learning algorithm as the a-learning agent when adapting its o values.
In addition, it also learns to adapt its bid to respond to exploitative agents such
as the Bully. Such an agent will identify other agents in the population that are
trying to corner the resources by overbidding their valuations.

If the fraction of wins in intearctions against a particulr opponent is below 7,
Le., 4, <T,the a-Bid learner agent will increase its bid against that opponent.
We use the following equation to update the advanced learning agent’s bid:

bid = (1 — valuation) - a* + valuation. (4)

Figure [shows the effect of « on the reported bid given the true valuation. We
used 7 = 0.2 in our initial simulations. The bid update equation (Equation H])
ensures that the bid increment is almost negligible against opponents for whom
the learner has a < 0.5. However, bid increment is significant against opponents
for whom « > 0.5. This implies that agents who are acting selfishly will be
punished over time if their behavior causes the learning agent to not receive a
fair share of required resources.

6 Experimental Results

Here we present our experimental results from simulations that evaluates the
performances of the agent types introduced above under different environmental
conditions. We observe their performances varying number and types of agents in

Adaptive Choice of Behavior and Protocol Parameters 159

Reported valuations

R
1
o

RRRARRRK
W

0 I I I I I
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

True valuations

Fig. 1. Function used by a-Bid learning agents to Update bid

the population. We also compare results using our parameterized trust protocol
with that using VCG auction in terms of agent welfare generated.

We sample valuations for an agent at every iteration ¢ from a Uniform Dis-
tribution U(0.5,1). We initialize the « values of the Bully, Naive and Myopic
agents at 1, 0.01 and 1 respectively. The a values of the learning agents are
randomly initialized in the range [0, 1].

6.1 One-on-One Interaction Results

We now discuss the performance of each learning agent type against every other
agent type in a society.

Bully vs. a Learner: In this situation, the basic learning agent quickly deter-
mines its opponent is selfish and responds by increasing « value. As the o value
increases, level of trust decreases, and the bully, though always winning the re-
source by bidding 1, is required to pay a greater percentage of the « learner’s
bid. Therefore, it receives mostly negatively utilities. Since all valuations are
sampled from the same distribution, the bully’s accumulated utility should ul-
timately converge to 0 after the basic learner learns not to trust its opponent.
Since we consider only a finite number of iterations, the actual cumulative utility
of a bully agent oscillates around 0 (see Figure2]). Since the basic learning agent
will never bid greater than its valuation, the bully’s selfish behavior will not be
punished more aggressively to produce larger negative values.

Bully vs. a-Bid Learner: Similar to the o learner, the a-bid learner quickly
learns to distrust the bully agent. In addition, the a-bid learner also increases
its bid against the bully agent following Equation [as the win-loss ratio shows

160 F. Grove, S. Sen, and O. Mistry

0.8

" Bully
o Learner

0.6
04 |

0.2

0 W |
-0.2

04 F 4

Utility

06 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

Iteration

Fig. 2. Bully vs. a Learner utilities

complete monopoly by the bully. The result of this bid increase on the bully
agent’s utility is reflected in Figure 3l The a-bid learner increases its bid close
to, but not equal to, 1 and thereby maximizes the payment for the bully with
high bid and « values. This minimizes the bully’s utility in every interaction and
the utility of the bully agent monotonically decreases (see Figure B]).

Naive vs. a Learner: In this case, the a learner learns to trust the naive agent
and its a value reaches 0. Over time their win-loss ratio reaches 0.5, resulting
in a positive utility gain for both the agents. The rate of utility increase for
the learning agent is found to be significantly higher than that of the Naive
agent (see Figure [3)). This result can be explained by the varying and static «
values of learning and naive agent respectively. The learner uses a non-zero «
value causing the naive agent to make a positive payment when winning, which
reduces the latter’s net utility.

Naive vs. a-Bid Learner: The a-bid learner also learns to trust the naive
agent. Initially, it increases its bid against the naive agent but that increment is
small. Also, ultimately its « value tends towards = 0.0. As the win-loss ration
also reaches its equilibrium value of 0.5, the a-bid learner bids its true valuation.
We do not report this utility graph as it is found to be very similar to that of
Figure Bl

Myopic vs. a Learner: In this case, myopic agents always accumulate higher
utility than the learners by imposing a higher payment on the winner (see Figure
B). And the learners learn to trust the myopic agents from a fair win-loss ration
(~0.5)

Adaptive Choice of Behavior and Protocol Parameters 161

180
a Leame -
150 *
-
120 ra
100
£ r o
3 3 ® .
% -
-~
40 E
T
o
= .4
i "
o = 100 50 W0 /0 W6 MW M0 80 S 0 50 100 150 200 250 300 0 30 400 450 500
S~ Herabon
180 450 T T T
Malva seesss By —
« Leamer i oo i
L ¥ 5
160 40 Learmer
b Leamer
180 350
120 00
100 1
E L]
L] o b
60 150
%0 100
E 50
3 . i . b . "
0 50 100 150 00 20 300 30 400 450 500] = 10 150 200 250 300

Fig. 3. Average utility over time for each agent strategy

Myopic vs. a-Bid Learner: This situation also yields similar results as shown
in Myopic vs. a Learner. With a balanced win-loss ratio the advanced learner does
not use its bid increment strategy and hence behaves similar to a basic learner.

6.2 Group Interaction

We now discuss the performance of the learning agents as a group in a multiagent
society. We consider the average utility of the group instead of that of individual
agents and observer performance trends over the course of a run.

All Agent types: We consider a population of N = 20 with 4 agents of each
type. Figure Bl shows the average cumulative utility for each group averaged over
10 simulations. Myopic agents have very high « values for all the other agents,
which incorporates higher payment in the system whenever any other agent loses
against myopic agents and this reduces their utility. Myopic agents get higher
utility in interactions against the naive agents because of the higher trust value
of naive agents which creates lower payment for myopic agents.

Bully, Naive, and Learning Agents: For these group interactions, we used
three agent types (Bully, Naive, and one learning type) with 4 agents of each
type for a total of twelve agents (N = 12). The cumulative utility of one of the

162 F. Grove, S. Sen, and O. Mistry

700 T T
Bully =——
Naive

o Learner i

600 o]

500

400

Utility

100 |- e i

I I I I
0 50 100 150 200 250 300
Iteration

Fig. 4. Bully, Naive, and a-learners

cases is shown in Figure @l This experiment demonstrates how bullies thrive in
a society. As bullies are most successful in one-on-one interaction with a naive
agent, they can utilize this advantage to outperform learning agents in a group
containing naive agents. We conducted a series of experiments for this group
configuration varying the ratio of bullies and naive agents in the population.
Results show that the ratio of naive to rational agents within a group can signif-
icantly impact the cumulative utility of the bully agent. A larger ratio of naive
to bully agents can allow the bully class to accumulate the greatest utility of
all classes. However, interactions with other bullies severely impact the bully
agent’s cumulative utility. Since bullies always bid 1 and use o = 1, they will
never receive positive utility from interactions amongst themselves. This is why
there must exist more naive agents than bullies within the population for the
bullies to thrive. The learning agents are able to quickly identify the bully as
selfish, and increases the o until a &~ 1.0. They also identify the naive agents,
and the respective a value quickly decreases until a = 0.

When initialized with the advanced learning agent, the bully’s cumulative
utility is significantly worse, since the advanced learning agent will adjust both
« and bid until both o =~ 1.0 and bid ~ 1.0 As bid < 1.0 so a bully will still
acquire the resource in every interaction with a learning agent, but will never
receive a positive cumulative utility in its interactions with the advanced learners.
In such a configuration, for the bully agents to accumulate positive utility, the
number of naive agents should be a majority in the society. Such a large number
of naive and irrational agents is unlikely in real world societies.

6.3 Homogeneous Populations

When the population consists of a homogeneous group of Myopic rational agents,
all COls are resolved using Vickrey’s 2nd Price auction. Since the myopic agents

Adaptive Choice of Behavior and Protocol Parameters 163

300

Myo;‘)ic "
o Learner
o-bid Learner

250

200' |

150 - i

Utility

50

Iteration
Fig. 5. Agent utilities in homogeneous populations

always report their bid truthfully from their true valuation, and the « value is
always reported as 1, the winner payment is equivalent to the loser’s bid.

Homogeneous groups of a as well as a-bid learners, however, adopt their a
values to use the Trusting protocol and no agent pays any significant amount
after some interactions. Hence these groups exhibit significantly higher agent
utility compared to the homogeneous groups of myopic, rational agents (see
Figure[]). This observation proves our initial claim about achieving higher social
utility when using the Trust protocol than Vickrey’s auction.

7 Conclusion

By using a parameterized protocol selection scheme we allow agents to negotiate
domain-level or problem-solving protocols. This protocol seems best suited for
negotiating the allocation of indivisible, non-shareable resources. For example,
licenses and eBooks within an organization would be appropriate resources to
be allocated using this protocol. From the perspective of resource allocation this
allows agents to function without need for considerable amount of negotiation or
communication, therefore reducing load on the system. If agents are willing to
adapt their trust in other agents, they can use this framework to maximize agent
welfare. The continuous range of choice from Trusting to Vickrey’s 2nd price
auction allows agents to effectively negotiate the appropriate type of protocol for
resource allocation. This allows a simple learning agent to punish a selfish agent
while reciprocating the trust of a friendly agent. Such adaptation can lead to a
higher agent welfare compared to Vickrey’s 2nd Price auction in homogeneous
groups where the agent welfare is maximized as the protocol reverts to the
Trusting protocol.

To our knowledge, this is the first attempt to implement trust within a proto-
col for negotiated resource allocation. Resource allocation is an important field

164 F. Grove, S. Sen, and O. Mistry

of study, and the introduction of trust has the capability to increase the utility
of all members involved in repeated resource allocation scenarios. Rational and
strategic agents can take advantage of this protocol to increase their respective
utilities while decreasing the utility of irrational and selfish agents.

We plan to investigate new scenarios in which we can introduce the param-
eterized protocol and examine the possible interactions between more strategic
agent types. The development of strategic and adaptive exploitative agent is also
key for a more thorough examination of this framework.

We observed that learners lose out to myopic rational agents in head-to-head
interactions. This is because learners continue to trust the myopic agents while
the latter did not reciprocate that trust. A more responsive bid and trust adapta-
tion mechanism can use the actual utilities received rather than just the win-loss
ratios. We plan to implement and experiment with such more “rational”, utility-
centric learners.

References

1. Broersen, J., Dastani, M., van der Torre, L.: Leveled commitment and trust in
negotiation. In: Workshop on Deception, Fraud and Trust in Agent Societies (2000)

2. Chavez, A., Maes, P.: Kasbah: An agent marketplace for buying and selling goods.
In: PAAM-1996, London, UK, pp. 75-90 (1996)

3. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N.,
Padget, J., Phelps, S., Rodriguez-Aguilar, J.A., Sousa, P.: Issues in multiagent
resource allocation. Informatica 30, 3-31 (2006)

4. Dreu, C.K.D., Weingart, L.R., Kwon, S.: Influence of social motives on integrative
negotiations: A meta-analytic review and test of two theories. Journal of Person-
ality and Social Psychology 78, 889-905 (2000)

5. Fatima, S.S., Wooldridge, M., Jennings, N.R.: Bargaining with incomplete infor-
mation. Annals of Mathematics and Artificial Intelligence 44(3), 207-232 (2005)

6. Glass, A., Grosz, B.: Socially conscious decision-making. Autonomous Agents and
Multi-Agent Systems 6(3), 317-339 (2003)

7. Jennings, N., Faratin, P., Parsons, A.R.L.S., Sierra, C., Wooldridge, M.: Auto-
mated negotiation: prospects, methods and challenges. Group Decision and Nego-
tiation 10(2), 199-215 (2001)

8. Kraus, S.: Strategic negotiation in multiagent environments. MIT Press, Cambridge
(2001)

9. Maes, P., Guttman, R.H., Moukas, A.G.: Agents that buy and sell. Communica-
tions of the ACM 42(3) (March 1999)

10. Nash, J.: The bargaining problem. Econometrica 18(2), 155-162 (1950)

11. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50, 97—
110 (1982)

12. Rubinstein, A., Wolinsky, A.: Decentralized trading, strategic behavior and the
walrasian outcome. Review of Economic Studies 57, 63-78 (1990)

13. Sen, S.: Believing others: Pros and cons. Artificial Intelligence 142(2), 179-203
(2002)

Adaptive Choice of Behavior and Protocol Parameters 165

14. Ramchurn, S.D.: Multi-Agent Negotiation using Trust and Persuasion PhD thesis,
University of Southampton (2004)

15. Shoham, Y., Lleyton-Brown, K.. Multiagent Systems: Algorithmic, Game-
theoretic, & Logical Foundations. Cambridge University Press, New York (2009)

16. ten Velden, F., Beersma, B., Dreu, C.K.D.: Heterogeneous social motives in nego-
tiating groups: The moderating effects of decision rule and interest position. In:
17th Annual of International Association for Conflict Management (2004)

Effect of DisCSP Variable-Ordering Heuristics
in Scale-Free Networks

Tenda Okimoto, Atsushi Iwasaki, and Makoto Yokoo

Kyushu University, Fukuoka 8190395, Japan
{tenda, iwasaki,yokoo}@is.kyushu-u.ac.jp

Abstract. A Distributed Constraint Satisfaction Problem (DisCSP) is
a constraint satisfaction problem in which variables and constraints are
distributed among multiple agents. Various algorithms for solving DisC-
SPs have been developed, which are intended for general purposes, i.e.,
they can be applied to any network structure. However, if a network
has some particular structure, e.g., the network structure is scale-free,
we can expect that some specialized algorithms or heuristics, which are
tuned for the network structure, can outperform general purpose algo-
rithms/heuristics.

In this paper, as an initial step toward developing specialized algo-
rithms for particular network structures, we examine variable-ordering
heuristics in scale-free networks. We use the classic asynchronous back-
tracking algorithm as a baseline algorithm and examine the effect of
variable-ordering heuristics. First, we show that the choice of variable-
ordering heuristics is more influential in scale-free networks than in
random networks. Furthermore, we develop a novel variable-ordering
heuristic that is specialized to scale-free networks. Experimental results
illustrate that our new variable-ordering heuristic is more effective than a
standard degree-based variable-ordering heuristic. Our proposed heuris-
tic reduces the required cycles by 30% at the critical point.

1 Introduction

A surprisingly wide variety of Artificial Intelligence (AI) problems can be for-
malized as constraint satisfaction problems (CSPs). A CSP is a problem that
finds a consistent assignment of values to variables. A Distributed Constraint
Satisfaction Problem (DisCSP) is formalized as a CSP in which variables and
constraints are distributed among multiple agents [I]. In DisCSP, agents assign
values to variables, attempting to generate a locally consistent assignment that
is also consistent with all the constraints between agents.

Asynchronous BackTracking algorithm (ABT), which was first presented by
Yokoo [2], is the most basic algorithm for solving DisCSPs. It is also the first
complete and asynchronous search algorithm for DisCSPs. ABT allows agents
to act asynchronously and concurrently without any global control, while guar-
anteeing the completeness of the algorithm. Various algorithms have been devel-
oped for solving DisCSPs, e.g., Distributed BackTracking algorithm [3], an ABT

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 166 2012.
© Springer-Verlag Berlin Heidelberg 2012

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 167

based algorithm without adding links [4], Dynamic Distributed BackJumping [5],
Asynchronous Partial Overlay [0], and Dynamic ordering for ABT [7], [§].

Since the topology of real large networks like the Internet substantially differs
from the topology of random graphs, new methods, tools, and models must
be developed. Traditionally, a network of complex topology is described by a
random graph, for example, the graph of Erdos and Rényi (ER model) [9]. One
feature of the ER model is that the connectivity distribution of the network peaks
at an average value and decays exponentially. Such an exponential network is
homogeneous in nature. In other words, each node has roughly the same number
of connections.

Recently, scale-free graphs in complex networks, introduced by Barabasi and
Albert [I0] TT], has become a very popular interdisciplinary research topic. These
graphs have been proposed as a generic and universal model of network topolo-
gies that exhibit power-law distributions in the connectivity of network nodes. A
scale-free network is inhomogeneous in nature, i.e., there exist a small number of
nodes that have many connections, while most nodes have very few connections.

There already exist several works on examining the effect of such network
structures in CSPs [12), 13|, [14]. For example, Walsh showed several application
domains of CSPs, e.g., graph-coloring problems (which are generated from regis-
ter allocation problems), time-tabling, and quasi-group problems, actually have
small-world like structures, and the cost of solving such problem instances can
have a heavy-tailed distribution. Later, he also showed that high-degree nodes
can frequently occur these problem instances and the existence of such high-
degree nodes can eliminate the long heavy tail in search costs [I4]. Devlin and
O’Sullivan showed that several real-world applications, such as a car configura-
tion problem, radio line frequency assignment, and logic circuit diagnosis, exhibit
degree distributions similar to scale-free graphs [12]. They also showed that the
effect of standard degree-based search heuristics is greater for such problems
than for problems with a uniform random structure.

However, as far as the authors aware, there exists virtually no work on exam-
ining the effect of such network structures in DisCSPs. As shown in [12] [13] [14],
various CSP application problems actually have structures similar to small-
world/scale-free graphs. If the knowledge of such problem instances are dis-
tributed among multiple agents, there would be a need for solving them using
DisCSP techniques.

Furthermore, let us consider a situation where there exists an agent who acts
as a representative/secretary for each person in a social network [I5]. A social
network tends to have a scale-free like structure. When solving a meeting schedul-
ing problem [16] in such a social network, we can apply DisCSP techniques.

In this paper, as an initial step toward developing specialized algorithms/
heuristics for particular network structures in DisCSP, we examine the effect of
variable-ordering heuristics of ABT in scale-free networks. Although a variety of
more efficient, sophisticated algorithms have been developed for solving DisC-
SPs, we focus on ABT as a baseline algorithm, since it is one of the simplest
algorithms and is suitable for our purpose and we are interested in developing

168 T. Okimoto, A. Iwasaki, and M. Yokoo

a good variable-ordering heuristic for scale-free networks. We believe that our
analysis and results can be applied to other sophisticated algorithms.

First, we show that the choice of variable-ordering heuristics is more influential
in scale-free networks than in random networks. Specifically, we show that the
performances of ABT in the former network depend on which variable-ordering
heuristics is used much more than that in the latter network, since the degree
distribution of scale-free networks is significantly different from that of random
networks. This result is consistent with the result for CSPs reported in [12].

Furthermore, we examine how the performance of ABT in scale-free networks
changes in terms of the depth and number of the backedges of pseudo-trees. Given
a variable-ordering, ABT determines a pseudo-tree and searches for a solution
from it. Since the depth and number of backedges greatly affect the network
structure, it is expected that the performance of ABT changes based on those
factors. However, surprisingly, our experiments reveal that the performance does
not significantly change.

Finally, we develop a novel variable-ordering heuristic called Average Length
between Hubs (ALH) specialized for scale-free networks. Our experiments show
that ALH outperforms a standard degree-based variable-ordering heuristic in
scale-free networks. As far as the authors aware, there exists virtually no work
on variable-ordering heuristics specialized for scale-free networks in DisCSP, al-
though many studies have dealt with variable-ordering heuristics |7}, 17, [I8] [T9]
20).

The rest of our paper is organized as follows. We describe the definition of a
DisCSP (Section 2l) and introduce a scale-free network (Section [3)). We examine
the performance of ABT in scale-free and random networks (Section). Next,
we present a novel variable-ordering heuristic that is specialized to scale-free
networks and show that our new variable-ordering heuristic is effective for scale-
free networks (Section [Bl). Finally, we give a discussion (Section [B) and present
a conclusion and some future work (Section [7).

2 Distributed Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) [21] consists of m variables @1, ..., Ty,
whose values are taken from finite, discrete domains Dy, ..., D,,, respectively, and
a set of constraints on their values. A constraint is defined by a predicate. That is,
the constraint p(k; xx1, ..., x;) is a predicate that is defined on Cartesian product
Dy x ... x Dy;. This predicate is true iff the value assignment of these variables
satisfies this constraint. Solving a CSP is equivalent to finding an assignment of
values to all variables such that all constraints are satisfied.

A Distributed Constraint Satisfaction Problem (DisCSP) is a CSP in which
the variables and constraints are distributed among multiple agents [T} [2]. We
assume the following communication model:

— Agents communicate by sending messages. An agent can send messages to
other agents iff the agent knows the addresses of the agents.

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 169

— The delay in delivering a message is finite, although random. For transmis-
sion between any pair of agents, messages are received in the order in which
they were sent.

Note that although algorithms for solving DisCSPs seem similar to paral-
lel/distributed processing methods for solving CSPs, the research motivations
are fundamentally different. Each agent has variables and tries to determine
their values. However, there exist interagent constraints, and the value assign-
ment must satisfy these interagent constraints. Formally, there exist m agents
{1,2,...,m}. Each variable x; belongs to one agent ¢ (this relation is represented
as belongs(z;,i)). Constraints are also distributed among agents. The fact that
agent | knows constraint predicate py is represented as know(pg,!l).
A DisCSP is solved iff the following conditions are satisfied:

— Vi,Vz; where belongs(z;,i), the value of z; is assigned to d;, and VI, Vpy
where know(pg,l), px is true under the assignment x1=d;, zo=ds,....., T,=d,,.

For example, the n-queens problem is well known for CSP. If we assume there
exists an agent that corresponds to a queen of each row and these queens try
to find their positions so that they do not kill each other, this problem can be
formalized as a DisCSP.

Asynchronous BackTracking algorithm (ABT), which was first presented by
Yokoo [II, 2], is the most basic algorithm for solving DisCSPs. We make the
following assumptions while describing this algorithm for simplicity. Relaxing
these assumptions to general cases is relatively straightforward:

— Each agent has exactly one variable.
— All constraints are binary.
— Each agent knows all constraint predicates relevant to its variable.

In ABT, the priority order among agents is determined. First, agents instantiate
their variables concurrently and send their assigned values to the agents that
are connected to them by outgoing links, i.e., there exists a link between two
agents who are involved by a binary constraint, and the link is directed from
the higher priority agent to the lower priority agent. Then all agents wait for
and respond to messages. After each update of its assignment, an agent sends
its new assignment to all outgoing links. An agent that receives an assignment
from an incoming link, tries to find an assignment for its variable that does not
violate a constraint with the assignment it received.

The main message types communicated among agents are ok? messages and
nogood messages. An ok? message carries an assignment of an agent. When agent
A; receives an ok? message from agent A;, it places the received assignment in
a data structure called Agent View, which holds the last assignment A; received
from higher priority neighbors such as A;. Next, A; checks if its current assign-
ment is still consistent with its Agent View. If it is consistent, A; does nothing.
If not, then A; searches its domain for a new consistent value. If it finds one, it
assigns its variable and sends ok? messages to all lower priority agents linked to
it. Otherwise, A; backtracks.

170 T. Okimoto, A. Iwasaki, and M. Yokoo

The backtrack operation is executed by sending a nogood message that con-
tains an inconsistent partial assignment. nogood messages are sent to the agent
with the lowest priority among the agents whose assignments are included in the
inconsistent tuple in the nogood message. Agent A; that sends a nogood message
to agent A; assumes that A; will change its assignment. Therefore, A; removes
from its Agent View the assignment of A; and makes an attempt to find an
assignment for its variable that is consistent with the updated Agent View.

3 Scale-Free Network

In recent years, various complex networks have been identified as having a scale-
free structure [10, [IT, 22} 23], e.g., the Internet, SNS, and the citation relation
graphs of scientific articles. Traditionally, these networks are approximated as
random graphs, but the degree distributions of these networks (and other net-
works in nature) are significantly different from the degree distribution of random
graphs.

The term random graph refers to the disordered nature of the arrangement
of edges between different nodes. In this network, the majority of nodes have
approximately the same degree (symmetry of degree distribution). It starts with
N nodes and connects each pair of nodes with probability p. In ER model, the
probability that a node has k edges follows a Poisson distribution:

p(k) = e N/,

where
N -1

Several complex networks have a scale-free structure. Their degree distribu-
tion follows a power-law for a large k. Even for those real networks for which p(k)
has an exponential tail, the degree distribution significantly deviates from Pois-
son. Random graph theory is unable to reproduce this feature, which was found
to be a consequence of two generic mechanisms. Networks expand continuously
by the addition of new nodes, and new nodes attach themselves preferentially
to sites that are already well connected. The random network models assume
that the probability that two nodes are connected is random and uniform. In
contrast, most real networks exhibit preferential connectivity. For example, a
newly created webpage will more likely include edges to well-known, popular
documents that already have high connectivity. This example indicates that the
probability with which a new node connects to existing nodes is not uniform, but
there is a higher probability to be linked to a node that already has a large num-
ber of connections. Because a few nodes have a large number of connections, the
distribution of real networks has a power-law tail. Such a highly connected node
is called a hub. The following are the typical properties of scale-free networks:

— Degree distribution p(k) is approximated by a power-law that the form
p(k) oc k™7,

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 171

where k is a degree and <y is the exponent that depends on each network
structure.

— Scale-free networks have no scale because there is no typical number of links
(asymmetry of degree distribution).

— Scale-free networks have highly connected hubs that “hold the network to-
gether” and give the “robust yet fragile” features of error tolerance but attack
vulnerability.

— Scale-free networks are self-similar.

4 Influence of Variable-Ordering Heuristics in Scale-Free
Networks

In this section, we show that the choice of variable-ordering heuristics can be
more influential in scale-free networks than in random networks. Furthermore,
we show that the performance of ABT is not affected by the depth and the
number of backedges of a pseudo-tree. First, let us explain how we measure the
performance of a DisCSP algorithm. We use the number of simulated time steps
(cycles), which is counted as follows.

By a discrete event simulation, each agent maintains its own simulated clock.
An agent’s time is incremented by one simulated time unit whenever it performs
one cycle of computation. One cycle consists of reading all incoming messages,
performing local computation, and then sending messages. We assume that a
message issued at time t is available to the recipient at time t+1. We analyze
the performance in terms of the number of cycles required to solve the problem.
One cycle corresponds to a series of agent actions, in which an agent recognizes
the state of the world (the value assignments of other agents), then decides
its response to that state (its own value assignment), and communicates its
decisions.

There are some other simulations to evaluate DisCSP algorithms, e.g., Non
Concurrent Constraints Checks (NCCCs). However, we analyze different variable
ordering heuristics on a single algorithm and the computational cost for each
cycle is almost identical. Therefore, we believe that using only cycles rather
than NCCCs is enough.

In this paper, the Java program developed by Sun Microsystems Laboratories
is used as a scale-free network formation tool [24]. This program can generate
scale-free networks giving the number of nodes, exponent v, and the minimal
degree of each agent md. More specifically, this program can generate a power-
law list of nodes and edges.

We examine the performance of ABT in random and scale-free networks.
Scale-free networks are generated by the tool with the following parame-
ters: nodes=100, md=2, and v=1.8. To generate random networks, we chose
nodes=100 and edges=247, so that the number of constraints will resemble
those of the scale-free networks []. We set the domain size of each variable to

! For v=2.2, 2.6, 3.0, the essential results did not change.

172 T. Okimoto, A. Iwasaki, and M. Yokoo

1500 T T T 1500 T T
Random-ABT-Max 3 SF-ABT-Max -+
Random-ABT-Min - SF-ABT-Min -+t
Random-ABT-Degree —e— X SF-ABT-Degree ——
1000 1000 it
O 500 O 500
L A_._,_._H .
0 -t 0 .

02 0.4 0.6 0.8 1 0.2 04 06 0.8 1
Constraint Tightness Constraint Tightness
(a) Performance of ABT in random net- (b) Performance of ABT in scale-free net-
work 71 work s fi

Fig. 1. Performance of ABT in random network r; and scale-free network sf1

three, i.e., domain=3 which means | D1 |=,...,=|D,,|=3 for m variables 1, ..., .
For the evaluations, we generate ten random and ten scale-free networks. As-
sume rq,...,r19 for the ten random networks and sf1,...,sf10 for the ten scale-free
networks. For each network, the constraint tightness is varied from 0.1 to 0.9
by 0.1. For each constraint tightness, 100 random problem instances are gener-
ated. Thus, the results represent the averages of these 100 instances in all ten
networks. For a variable-ordering of ABT, we determine ten different random
variable-orderings.

In Figure [L(a)}(b), we show the performance of ABT with three different
random variable-orderings in random network r; and scale-free network s f; that
exhibit characteristic results. When the constraint tightness is less than 0.3 or
greater than 0.3, ABT can terminate early, i.e., ABT can easily find a solution
for less than 0.3, and it can easily find that the problem is unsolvable for greater
than 0.3. When the constraint tightness equals 0.3, the required cycles of ABT
are maximum in r; and sf;. We call such a peak the critical point.

Random-ABT-Max (Random-ABT-Min) represents the performance of ABT
in random network 71, whose required cycles at the critical point are maximum
(minimum). SF-ABT-Max and SF-ABT-Min represent the performance of ABT
as above in scale-free network sfi. In addition, Random-ABT-Degree and SF-
ABT-Degree represent the performance of ABT with a standard degree-based
variable-ordering heuristic. In this heuristic, the priority of nodes is determined
one by one. First, we choose node n1s, which has the highest degree. Second, we
choose node ns,4, which has the highest degree and connected to n1;. Similarly,
we keep on choosing a node, that has the highest degree without the nodes
already chosen, breaking ties using the degree with the unchosen nodes.

The performance of ABT significantly depends on variable-ordering in scale-
free networks. In random network r1, the required cycles at the critical point vary
from 235 to 283 cycles (Figure. On the other hand, in scale-free network s f1,
the required cycles vary from 47 to 1171 cycles (Figure . We confirmed that
similar results were obtained in other networks, i.e., in rs,...,r19 and sfo,...,sf10.

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 173

Table 1. Depth and number of backedges of pseudo-trees and required cycles at critical
point

ABT Depth Backedges Cycles
ABT1 17 207 10253

ABT 2 14 176 7815
ABT 3 15 220 2279
ABT 4 22 327 1673
ABT 5 13 173 T
ABT 6 12 175 380

Particularly, in scale-free networks, ABT with a standard degree-based variable-
ordering heuristic requires the smallest cycles at the critical point.

Additionally, we examine the effect of the depth and the number of backedges
in a pseudo-tree on the performance of ABT in scale-free networks. According to
a variable-ordering, a pseudo-tree is determined whose depth is the length of the
longest path from the root agent to one of the leaf agents. A backedge is a link
between two agents that are not in a direct parent-child relationship. Our initial
expectation was that the performance of ABT would improve with shallower
depth and fewer backedges. In Table [Il we show the depth and the number of
backedges of the pseudo-trees and the required cycles of ABT at the critical point
with six different variable-orderings, where domain=10. Here, we increased the
domain size to make the required cycles vary significantly according to variable-
orderings. As shown in Table [II we cannot see any direct relationship between
the performance and the parameters we examined (i.e., tree depth and number
of backedges). For example, in “ABT 1”7, the required cycle at the critical point
is 10253, the depth is 17, and the number of backedges is 207. On the other
hand, in “ABT 47, the required cycle at the critical point is 1673, the depth is
22, and the number of backedges is 327.

The experimental results reveal that the choice of variable-ordering heuris-
tics is influential in scale-free networks. Particularly, a standard degree-based
variable-ordering heuristic is effective in scale-free networks. We don’t see any
direct relationship between the performance of ABT and the parameters of a
pseudo-tree (i.e., depth and number of backedges).

5 A Variable-Ordering Heuristic for Scale-Free Networks

In this section, we propose a novel variable-ordering heuristic called Average
Length between Hubs (ALH). Based on the results so far, since ALH focuses
on the average length between hubs, it is specialized for scale-free networks.
This section introduces our proposed variable-ordering heuristics and shows that
ALH outperforms a standard degree-based variable-ordering heuristic in scale-
free networks.

174 T. Okimoto, A. Iwasaki, and M. Yokoo

5.1 Heuristic

Let G = (N, E) be a graph, where N = {n;|i € N} is a set of nodes (agents)
and E = {e(n;,n;)|n;,n; € N,n; # n;} is a set of edges. The ABT for graph G
needs to predetermine the variable-ordering to reach a solution. A pseudo-tree
in which each hub in a graph is placed on different branches is constructed by
the variable-ordering.

A node is called a hub if it has a larger number of connections than constant
c € N. Let H be set of hubs

H = {n;|n; € N,deg(n;) > c}

where deg(n;) is the degree of node n;. Each agent knows whether he belongs to
H.

Next, we define border-set nodes by using the distance between nodes dis :
N x N — N, i.e., dis(n;,n;) gives the number of the edges of the shortest path
between n; and n;. For node n;, the average distance of the shortest paths to
each hub in H is defined as follows:

ny" = Xy, endis(ng, n;)/|H|.
The average distance between hubs is defined as follows:
h = Xy enni”/|H|.
Then, border-set BS is defined as:
BS = {n; | n{¥ < h*}.

The priorities of agents are determined using BS. Basically, A node in BS has
a higher priority than a node that is not in BS. Between two nodes in B.S, the
node that is not in H has a higher priority. If two nodes, n; and n;, in BS are
also in H, then n; has a higher priority than n; when deg(n;) > deg(n;) (and
vice versa). If two nodes, n; and n;, in BS are not in H, then n; has a higher
priority than n; when n{” < nj” (and vice versa). Ties are broken using the
degrees. Further ties are broken using the lexicographical order of identifiers.
Then the priority among two nodes that are not in BS is determined by the
total distance between B.S. More specifically, for node n; € BS, denote the total
distance to the nodes of BS as td(n;) = aneBS dis(n;,n;). For two nodes, n;
and n; that are not in BS, n; has a higher priority than n; when td(n;) < td(n;)
(and vice versa). Ties are broken using the degrees. Further ties are broken using
the lexicographical order of identifiers.

If all hubs are directly connected, ALH becomes equivalent to a degree-based
heuristic, since BS contains only nodes in H. Consider a scale-free network
where each hub is not directly connected. In ALH, the nodes in B.S have the
highest priority, i.e., the node in B.S has a higher priority than the hubs. Let us
consider the pseudo-tree defined by this ordering. In the pseudo-tree, the hubs
are placed below the nodes in BS, i.e., the hubs are siblings of the nodes in

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 175

Fig. 2. (a) Constraint network representing a DisCSP where H; and Hz are hubs, (b)
Pseudo-tree determined by degree-based heuristic, and (¢) Pseudo-tree determined by
ALH

BS. Also, under each hub, we can expect that there exists a cluster of nodes,
which is independent from other clusters, given that the values of variables in
BS are determined. Thus, we can expect that ABT can efficiently solve such a
problem instance since these clusters can be solved independently. The cost of
implementing the proposed heuristic ALH is enough low compared to the cost
of the ABT, since finding a shortest path can be done in O(n) time.

Let us show a simple example. A constraint network of a DisCSP represented
as Figure [J(a) exists, where H; and Hy are hubs. For nodes Hy, Ha,nq,...,ny4,
their degrees satisfy the following condition: deg(H1) > deg(Hs) > deg(ni) >
deg(ng) > deg(ns) > deg(nyg). Figure[A(b) represents the pseudo-tree determined
by a degree-based heuristic.

Since H; has the highest degree, it becomes the root of this pseudo-tree. Since
h*’=1, n{*=ng"=1, n§"=2, and n{"=3, BS is determined as follows:

BS = {Hh HQ, ni, 77,2}.
Thus, among these nodes, priority ordering is determined as:
ni,ng, H17 H27n37n47

where n, is the highest and n4 is the lowest.
Figure [Z(c) represents the pseudo-tree determined by ALH. The nodes in BS
are placed around the root of the pseudo-tree. The hubs are placed just below

176 T. Okimoto, A. Iwasaki, and M. Yokoo

1500 . : .
8000 ‘ ‘ ‘
ALH-ABT-Average X ALH-ABT-Average —e—
Degree-ABT-Average -3 i} Degree-ABT-Average =3
6000 &
1000 X ;
8 2 %
o ‘e = 4000 - \d
RN &
500
J 2000 j ¢
0.2 04 06 0.8 1 0% 04 Rl Tl
Constraint Tightness Constraint Tightness
(a) Effect of ALH and standard degree- (b) Effect of ALH and standard degree-
based heuristics in SFN 1 based heuristics in SFN 2

2500 T
ALH-ABT-Average —o—|
xDegree-ABT-Average x|

2000

1500

1000 1 \
500 ;

0

Cycles

0.2 04 0.6 0.8 1
Constraint Tightness

(c) Effect of ALH and standard degree-
based heuristics in SFN 3

Fig. 3. Effect of ALH compared to standard degree-based heuristics in SFN 1, SFN 2
and SFN 3

the root as siblings, and in particular, hubs H; and Hs are placed on different
branches in this pseudo-tree.

Generally, the hubs are siblings in a pseudo-tree determined by the ALH
variable-ordering heuristic, i.e., the given hubs are placed on different branches.
When a pseudo-tree is determined by a standard degree-based variable-ordering
heuristic, the hub with the highest degree becomes the root of the pseudo-tree.
The remaining hubs become the descendant nodes of this hub. In this pseudo-
tree, each hub is either the root or is placed on the upper part of the pseudo-tree.
On the other hand, when a pseudo-tree is determined by the ALH variable-
ordering heuristic, the nodes in the border-set are placed on the upper part of
the pseudo-tree. The hubs are below the upper part of the pseudo-tree and the
siblings.

5.2 Evaluations

In our evaluations, we show that ALH is effective and can reduce the required
cycles at the critical point in scale-free networks. More specifically, we compare

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 177

the effect of ALH with a standard degree-based heuristic in the following three
kinds of scale-free networks:

(SEN 1): nodes =100, y=1.8, and md=2,
(SFN 2): nodes =200, y=1.8, and md=2,
(SEN 3): nodes =100, y=1.8, and md=3.

The evaluations were conducted with domain=10. For each parameter we gen-
erated ten scale-free networks. For each network, the constraint tightness was
varied from 0.1 to 0.9 by 0.1. For each constraint tightness, 100 random con-
straint instances were generated. The results represent the averages of these 100
instances for all ten scale-free networks (1000 in total). The experimental results
in SFN 1 are summarized in Figure[3(a)] in which ALH-ABT-Average represents
the performance of ABT with ALH and Degree-ABT-Average represents the
performance of ABT with the standard degree-based variable-ordering heuris-
tic. Here, the critical point appears when the constraint tightness is around 0.4.
At the critical point, ALH-ABT-Average requires 678 cycles while Degree-ABT-
Average requires 955 cycles. Thus, ALH-ABT-Average performs approximately
30% better than Degree-ABT-Average at the critical point in SFN 1. We con-
firmed that ALH is also effective in SFN 2 and SFN 3.

The experimental results in SFN 2 are summarized in Figure The net-
work in SEN 2 is larger than that in SFN 1, i.e, the number of nodes in SFN
2 is 200, compared to 100 in SEN 1. ALH-ABT-Average requires 6156 cycles
and Degree-ABT-Average requires 7487 cycles at the critical point. Thus, ALH-
ABT-Average performs approximately 19% better than Degree-ABT-Average.

The experimental results in SFN 3 are summarized in Figure The net-
work in SFN 3 is more complicated than SFN 1, i.e., the minimal degree of each
agent increased from md=2 to md=3. ALH-ABT-Average requires 1489 cycles
and Degree-ABT-Average requires 2083 cycles at the critical point. ALH-ABT-
Average performs approximately 30% better than Degree-ABT-Average at the
critical point in SFN 3.

The experimental results reveal that ALH outperforms the standard degree-
based heuristic in three scale-free networks, varying the number of nodes and the
minimal degree. We also confirmed that fact did not change with other parameter
settings.

6 Discussion

The previous section showed that the standard degree-based heuristic is outper-
formed by ALH. One might expect that it is also outperformed by the other
simple heuristics, since ALH, particularly its way of determining the border set,
is somewhat complicated. Thus, we consider a simple variable-ordering heuristic,
called a naive heuristic described below.

Let us define a naive border-set (N BS) for that heuristic, instead of a BS for
ALH. Whether a node belongs to NBS is determined by the distance between
the two nearest hubs to the node. Formally, for node n; € N, denote the two

178 T. Okimoto, A. Iwasaki, and M. Yokoo

4000

2000

X ALH-ABT —e— >< Degree-ABT 3¢
Naive-ABT « X ABT-Hub-2 —e—
3000 1500 ABT-Hub-3 —a—
P ABT-Hub-4 —»—
- - ABT-Hub-5 —e—
= 2000 = 1000
= >
) O
1000 i 500
Ealar 04 06 0.8 1 0 0.2 04 0.6 0.8 1
Constraint Tightness Constraint Tightness

Fig. 4. Effect of ALH compared to naive Fig. 5. Effect of ALH by increasing num-
heuristic in SFN 3 ber of hubs from 2 to 5 in SFN 3

nearest hubs from n; as h; 14, hi2nd € H and denote the distances to h; 15 and
hi 2nq from the node as disist(n;), disand(n;), respectively. Then, we define NBS
as follows:

NBS = {n; | |dis1st(ni) — disana(ni)| < 1}.

In short, NBS contains nodes that lies exactly in the middle of the two near-
est hubs. The priority among nodes is determined in exactly the same way as
ALH, except that we use NBS instead of BS. The experimental result is sum-
marized in Figure @l Naive-ABT represents the performance of ABT with the
naive heuristic. ALH-ABT performs approximately 3.7 times better than Naive-
ABT at the critical point. Precisely, the required cycles for ALH-ABT is 1016,
while that for Naive-ABT is 3744 at that point. As a result, we can say that the
simplified version of the heuristics fails to perform as well as ALH.

We examined the reason why the performance of the naive heuristic is much
worse than that of ALH, and found that the size of N BS of the naive heuristic
is much larger than the size of BS of ALH. In fact, NBS contains at least twice
as many agents as BS. Therefore, we conjecture that the size of B.S should be
small; otherwise, the priority based on BS becomes less informative.

In previous evaluations, we set the number of hubs to two. This seems to be
a reasonable choice to make the size of the border-set (BS) small. We further
examine the performance of ABT with ALH by varying the number of hubs from
two to five. The experimental results are summarized in Figure[dl in which ABT-
Hub-k represents the performance of ABT when choosing the number of hubs
as k. The performance is basically unchanged even if we change the number of
hubs, i.e., the required cycles at the critical point for ABT-Hub-5 is 1048, while
that for ABT-Hub-2 is 1004. These results imply that the choice of the number
of hubs is not so influential to the performance of ABT with ALH.

Note also that, this result does not explain how many hubs we should choose
in any scale-free networks. We will research a good value for some of constants
(constant for selecting hubs) as a future work.

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 179

7 Conclusions

In this paper, we showed that the choice of variable-ordering heuristics is more
influential in scale-free networks than in random networks. We observed that in
scale-free networks there is more significant difference between maximum and
minimum of the required cycles than in random networks.

Furthermore, we examined how the performance of ABT in scale-free networks
changes in terms of the depth and number of backedges of pseudo-trees. We
chose six different variable-orderings, i.e., six different pseudo-trees of different
of depths. We compared the differences of the depth or the number of backedges
and the differences of the performances of ABT. The experimental result revealed
that these parameters do not significantly affect the performance of ABT in
scale-free networks.

Finally, we developed a novel variable-ordering heuristic called Average Length
between Hubs (ALH) specialized for scale-free networks. We showed that ALH
outperforms a standard degree-based variable-ordering heuristic in scale-free net-
works and can reduce the required cycles by 30% at the critical point.

As future works, we must show that our experimental results are common
with other different scale-free networks, e.g., scale-free networks with 1,000 or
10,000 nodes. Furthermore, we hope to develop dynamic variable-ordering heuris-
tics/algorithms that are specialized to scale-free networks.

References

[1] Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint sat-
isfaction problem: formalization and algorithms. IEEE Transactions on Knowledge
and Data Engineering 10(5), 673-685 (1998)

[2] Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A
review. Journal of Autonomous Agents and Multi-agent Systems 3(2), 189-211
(2000)

[3] Hamadi, Y.: Backtracking in distributed constraint networks. International Jour-
nal on Artificial Intelligence Tools, 219-223 (1998)

[4] Bessiere, C., Brito, I., Maestre, A., Meseguer, P.: Asynchronous backtracking with-
out adding links: a new member in the ABT family. Artificial Intelligence 161,
7-24 (2005)

[5] Nguyen, V., Sam-Haroud, D., Faltings, B.: Dynamic distributed backjumping.
In: Joint ERCIM/CoLogNet International Workshop on Constraint Solving and
Constraint Logic Programming, pp. 71-85 (2004)

[6] Mailler, R., Lesser, V.: Asynchronous partial overlay: A new algorithm for solv-
ing distributed constraint satisfaction problems. Journal of Artificial Intelligence
Research 25, 529-576 (2006)

[7] Silaghi, M.-C.: Framework for modeling reordering heuristics for asynchronous
backtracking. In: IEEE/WIC/ACM International Conference on intelligent Agent
Technology, pp. 529-536 (2006)

[8] Zivan, R., Meisels, A.: Dynamic ordering for asynchronous backtracking on DisC-
SPs. Constraints 11(2-3), 179-197 (2006)

[9] Erdos, P., Rényi, A.: On random graphs I. Publicationes Mathematicae Debre-
cen 6, 290-297 (1959)

180
[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

T. Okimoto, A. Iwasaki, and M. Yokoo

Barabdsi, A.-L.: Linked: The new science of networks. Perseus Publishing, Cam-
bridge (2003)

Barabdsi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286,
509-512 (1999)

Devlin, D., O’Sullivan, B.: Preferential attachment in constraint networks. In: 21st
International Conference on Tools with Artificial Intelligence, pp. 708-715 (2009)
Walsh, T.: Search in a small world. In: 16th International Joint Conference on
Artificial Intelligence, pp. 1172-1177 (1999)

Walsh, T.: Search on high degree graphs. In: 17th International Joint Conference
on Artificial Intelligence, pp. 266-274 (2001)

Chalupsky, H., Gil, Y., Knoblock, C.A.; Lerman, K., Oh, J., Pynadath, D.V.,
Russ, T.A., Tambe, M.: Electric elves: Agent technology for supporting human
organizations. Al Magazine 23(2), 11-24 (2002)

Brito, I., Meseguer, P.: Distributed meeting scheduling. In: Computer & Commu-
nications Industry Association, pp. 38—45 (2007)

Arbelaez, A., Hamadi, Y.: Exploiting weak dependencies in tree-based search. In:
24th Annual ACM Symposium on Applied Computing, pp. 1385-1391 (2009)
Ezzahir, R., Bessiere, C., Wahbi, M., Benelallam, I., Bouyakhf, E.H.: Asyn-
chronous Inter-Level Forward-Checking for DisCSPs. In: Gent, I.P. (ed.) CP 2009.
LNCS, vol. 5732, pp. 304-318. Springer, Heidelberg (2009)

Hamadi, Y.: Interleaved backtracking in distributed constraint networks. Interna-
tional Journal on Artificial Intelligence Tools 11(2), 167188 (2002)

Sultanik, E., Lass, R.N., Regli, W.C.: Dynamic configuration of agent organiza-
tions. In: 21st International Joint Conference on Artificial Intelligence, pp. 305—
311 (2009)

Mackworth, A.K.: Constraint Satisfaction. In: Encyclopedia of Artificial Intelli-
gence, pp. 285-293 (1992)

Buchanan, M.: Nexus: Small worlds and the groundbreaking science of networks.
W. W. Norton & Company, London (2003)

Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free
graphs: Definition, properties, and implications. Internet Mathematics 2(4), 431—
523 (2005)

Densmore, O.: An exploration of power-law networks (2009),
http://backspaces.net/sun/PLaw/index.html

http://backspaces.net/sun/PLaw/index.html

Multi-attribute Preference Logic

Koen V. Hindriks, Wietske Visser, and Catholijn M. Jonker

Man Machine Interaction Group, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
K.V.Hindriks@tudelft.nl, Wietske.Visser@tudelft.nl,
C.M.Jonker@tudelft.nl

Abstract. Preferences for objects are commonly derived from ranked sets of
properties or multiple attributes associated with these objects. There are several
options or strategies to qualitatively derive a preference for one object over an-
other from a property ranking. We introduce a modal logic, called multi-attribute
preference logic, that provides a language for expressing such strategies. The
logic provides the means to represent and reason about qualitative multi-attribute
preferences and to derive object preferences from property rankings. The main
result of the paper is a proof that various well-known preference orderings can be
defined in multi-attribute preference logic.

1 Introduction

Preferences may be associated with various entities such as states of affairs, properties,
objects and outcomes in e.g. games. Our main concern here are object preferences. A
natural approach to obtain preferences about objects is to start with a set of proper-
ties of these objects and derive preferences from a ranking of these properties, where
the ranking indicates the relative importance or priority of each of these properties.
This approach to obtain preferences is typical in multi-attribute decision theory, see e.g.
Keeney and Raiffa [[10]]. Multi-attribute decision theory provides a quantitative theory
that derives object preferences from utility values assigned to outcomes which are de-
rived from numeric weights associated with properties or attributes of objects. As it is
difficult to obtain such quantitative utility values and weights, however, several qualita-
tive approaches have been proposed instead, see e.g. [2J4/506/11]. There is also exten-
sive literature on preference logic following the seminal work of Von Wright [[1219]], but
such logics are not specifically suited for the multi-attribute case. To illustrate what we
are after, we first present a motivating example that is used throughout the paper.

Example 1. Suppose we want to buy a house. The properties that we find important are
that we can afford the house, that it is close to our work, and that it is large, in that order.
Consider three houses, house|, house; and houses, whose properties are listed in Figure
[Il which we have to order according to our preferences. It seems clear that we would
prefer house; over the other two, because it has two of the most important properties,
while both other houses only have one of these properties. But what about the relative
preference of house, and houses? houses has two out of three of the relevant properties
where house, has only one. If the property that house, has is considered more important
than both properties of houses, house, would be preferred over houses.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 181 2012.
© Springer-Verlag Berlin Heidelberg 2012

182 K.V. Hindriks, W. Visser, and C.M. Jonker

affordable > closeToWork > large

house; 1
houses 1 1
housey 1

Fig. 1. Properties of three houses

Key to a logic of multi-attribute preferences is the representation of property rank-
ings. Encodings of property rankings have been explored in Coste-Marquis et al. [6]
where they are called goal bases, and in Brewka [4]] where they are called ranked knowl-
edge bases. Such ranked goals are binary, and in this paper we also consider desired
attributes that are binary (as opposed to numeric or ordinal ones). Coste-Marquis ef al.
and Brewka moreover discuss various options, or strategies, for deriving object prefer-
ences from a property ranking. The preference orderings thus obtained are not expressed
in a logic, however. Brewka et al. [5]] propose a non-monotonic logic called qualitative
choice logic to reason about multi-attribute preferences. An alternative approach to-
wards a logic of multi-attribute preferences is presented in Liu [11] where property
rankings called priority sequences are encoded in first-order logic. Both approaches are
based on one particular strategy, namely lexicographic ordering, and cannot be used to
reason about preference orderings.

In this paper a generic logic of qualitative multi-attribute preferences is proposed in
which property rankings and associated strategies for deriving object preferences from
such rankings can be defined. In Section [2] the syntax and semantics of multi-attribute
preference logic is introduced. Section 3 shows how various strategies to obtain object
preferences from a property ranking can be defined in the logic. Section 4] presents the
main result of the paper and shows that property rankings encoded as ranked knowledge
bases and a number of related strategies to obtain preference orderings can be equiva-
lently translated into multi-attribute preference logic. Section [5 concludes the paper.

2 Multi-attribute Preference Logic

2.1 Syntax and Semantics

The logic of multi-attribute preferences that we introduce here is an extension of the
modal binary preference logic presented in [7]. This logic is a propositional modal
logic with a modal operator O<¢, and its dual <>=¢. Here 0% ¢ expresses that ¢ is true
in all states that are at least as good as the current state. Binary preference relations
over formulae are subsequently defined. One of the more natural binary preference
statements is ¢ <yy ¥ which expresses that any state where v is true is strictly better

Multi-attribute Preference Logic 183

than any state where @ is true. That is, whenever ¢ is the case, y is preferred, and
never vice versa. By adding a global modality U to the language, the binary preference
operator <yv can be defined by U (y — 0°-¢), when it is assumed that the underlying
order on worlds or states has been completely specified, i.e. is total.

Multi-attribute preference logic adds two operators to binary preference logic. First,
multi-attribute preference logic, as in hybrid logic [1] adds names for objects to the
language by adding nullary modal operators i, j to the language. The semantics of the
operators introduced here, however, differs from the standard semantics of hybrid logic.
Here i, j are used as names for objects which semantically are more complex entities
than the usual worlds of modal semantics. In order to avoid confusion, we will refer to
i, j as object names below. This language extension allows us to talk about objects and
associated preferences explicitly.

Second, the logic introduces a new modal operator 0F. The language of multi-
attribute preference logic consists of four unary modal operators. Instead of the single
operator O it is more convenient to introduce the two operators 0% and O~ : informally,
O°@ expresses that at all worlds that are ranked higher than the current one @ is true,
whereas O~ ¢ expresses that at all worlds that are equally ranked to the current one ¢ is
true. The modal operator O* is introduced to inspect worlds that are not ranked equally
to the current one.

Definition 1. (Language) Let At be a set of propositional atoms with typical element
p and Nom be a set of names, with typical elements i, j. The language L, is defined
as follows:

QeLlyi=plil-olorgp|D |07 0| 0@ |Uep

Disjunction v, implication —, and bi-implication <> are defined as the usual abbrevia-
tions. &G<@, O, O are abbreviations for -0 —¢, -0~ —¢@, and ~O* —~¢. 0% is short
for 0@ vO~¢@ and &< is its dual. The dual of the global modal operator, E @, is de-
fined as ~U-¢. We also write U;¢p for U(i — ¢) and E;¢ for E(i A @) for i € Nom.
Finally, the set of purely propositional formulae is denoted by £y and consists of all
formulae without any occurrences of modal operators or names i € Nom. ¢ € Ly is also
called an objective formula.

The basic concepts in the semantics for multi-attribute preference logic are objects
and properties those objects may have. Properties are naturally represented by sets of
worlds. As we want to use properties to classify the ranking of objects, properties are
ordered in correspondence with their relative importance; such an order is called a prop-
erty ranking here. To order properties, i.e. sets of worlds, it is required that properties
are disjoint sets of worlds. Property rankings will be derived from an order on worlds
below.

Objects are also identified with particular sets of worlds. The idea is that the proper-
ties (in the sense of the previous paragraph) of an object can be derived from the worlds
which define the object. To ensure that objects are coherent, that is have a uniquely de-
fined set of properties, the worlds that define the object need to be copies of each other,
which means that these worlds need to assign the same truth values to propositional
atoms. Objects are identified with equivalence classes of worlds with respect to a truth
assignment.

184 K.V. Hindriks, W. Visser, and C.M. Jonker

Definition 2. (Object) Let W be a set of worlds and V be a mapping of W to truth
assignments 2. An object is an equivalence class on W with respect to V. The set Oy
denotes the set of all objects defined by W and V and is formally defined by:

Ov={[w]v|W€W}

where [w]y ={veW |V (w) =V (v)}. WheneverV is clear from the context, we drop the
subscript V. As an object o is the equivalence class of a world w with respect to'V, we
also say that world w identifies object o.

Definition 3. (Model) A multi-attribute preference model M is a tuple (W,5,V,N)
where W is a set of worlds with typical elements u,v,w, 5 is a total pre-order (i.e. a
reflexive, transitive and total relation) on W, V is a valuation function mapping worlds
in W onto truth assignments in 2*', and N is a naming function. The strict subrelation
< of 3 is defined by: v<w:=v3sw&w % v. We write v~w whenevervsw and w 5 v.

Although the strict order < derived from < indicates a ranking of worlds where v <w
means that w is ranked higher than v, we do not say that w is preferred over v, because
we want to reserve this terminology for talking about objects. A preference between
objects is derived from the ranking 5 over worlds. The naming function N maps names
i to objects o.

The truth definition for propositional atoms and Boolean operators is standard. Given
a model M = (W,3,V,N), the semantics of names i € Nom is provided by the naming
function N. The truth definitions for most modal operators are also standard definitions
using the associated accessibility relations for these operators. The semantic clause for
O~ is defined by means of the relation ~, which is derived from the order 3. Similarly, the
semantic clause for O is provided by means of the strict order <. The global operator
U simply inspects all worlds in a model.

The truth definition for 0 is not directly defined in terms of a given relation on
W. It inspects all worlds that (i) are not ranked equally as the current one, and (ii) are
not copies of worlds that are ranked equally as the current one. The motivation for this
definition will become clear in Section[2.2] when clusters are introduced.

Definition 4. (Truth Definition) Let M = (W, 5,V,N) be an MPL model and w e W a
world. The truth of a formula ¢ € L,,,.r in M at w is defined by:

M,wEp < peV(w)

M,wEi < weN(i)

MweE-@ < Mwie

MweEOAY = MweE& M wEey

MweED @ < Vviw~y = MvEQ

MweD* e < VYueU{[vly|w~v}: MuE=@

MwEDQ < Yviw<y = MyvEQ

MwelUp < Yv:MyvEQ

A name i € Nom refers to an object o and, semantically, is true at a world w that identifies
the object o, i.e. w € 0. A name thus is a special kind of operator that is true in all worlds
that identify a certain object, and false in all other worlds. We can express that an object

Multi-attribute Preference Logic 185

i has a property @ by E;@ = E(i A). As we have E(i) as a validity and the worlds
that identify the corresponding object o are copies of each other, we have E;¢ < U@
for objective ¢. This shows that an object is coherent in the sense that an object has a
consistent set of objective properties and can be uniquely identified by this set.

The language also allows us to express properties that concern comparison of objects.
For example, U (i — &< j) expresses that for every property of object i object j has a
property that is strictly better. The formula E(jA - <<i) expresses that object j has a
property that object i cannot match, i.e. i has no property that is strictly better than this
property of j. We have E(j A—~<<i) — U(i - ©<) in multi-attribute preference logic.
This validity is based on the assumption that the pre-order in models for £, is total.

Recall that the binary preference operator ¢ <yy Y can be defined as U (y — 0%-¢).
Using <yy it is possible to define property rankings and express that a property v is
ranked higher than property ¢. Using the truth definitions for U@, O~ ¢ and 0°¢ and
the definition of O%¢ as O~ ¢ AO<@, it can be shown that ¢ <yy ¥ has the following
truth definition:

MWEQ<yy W Vuv:i MuE & MyvEY=u<v

The intuitive reading of ¢ <yvy Y is that every y-state is ranked higher than every ¢-
state (cf. [7]). Returning to the comparison of objects again, i <yy j expresses that object
Jj is preferred over i. The preference expressed in this way is a very strong kind of pref-
erence, however. It requires that all of object j’s relevant properties are considered more
important than objects i’s properties, which corresponds with the definition of i <yy j by
U(j —» 0%=i). In contrast, multi-attribute preference logic is able to specify principles
that allow to derive preferences over objects from their properties in a weaker sense. It
enables, for example, to specify orderings where object j is preferred over object i even
when object i has at least one property that is considered more important than a property
that object j has (compare e.g. object ¢ and f in Figure 2)). The logic thus facilitates the
specification of different ordering strategies, and, given such a specification, provides
the means to derive a preference of one object over another from a property ranking and
an additional specification of the objects’ properties.

Proposition [l supports our claim that multi-attribute preference logic extends binary
preference logic as all listed axioms of this logic are valid in multi-attribute preference
logic as well (cf. [7]], p. 66). We have listed only those axioms that can straightfor-
wardly be expressed without the need to introduce additional definitions of other binary
preference operators; all of the remaining axioms are valid as well in multi-attribute
preference logic when such definitions are added. Below we use that A and v bind their
arguments stronger than — to be able to remove some brackets.

Proposition 1. We have the following validities:
.EEi@ < U for ¢ € L.

CEQ<wy YAU(E > y) > p<wy

EQ<wy YAU(E > @) > E<wy y

LEQ@<yy WAY<yy EAEE > @ <yy &
CEU-@VU-y > @<y Y

CEQ<yy Y= U(@Q<yy y)

AN AW N~

186 K.V. Hindriks, W. Visser, and C.M. Jonker

What multi-attribute preference logic adds to binary preference logic are names for
objects, and most importantly, the 0% operator that allows us to define clusters (see
Section 2.2)) that represent desirable attributes. All of the modal operators O~,0°,0%
and U are normal modal operators and satisfy the K axiom. In addition, we prove some
properties of the 0~ and OF operators (some of the more obvious axioms have not been
listed below). Proposition 213 shows that multi-attribute preference logic is related to
the logic of only knowing, see [8]].

Proposition 2. We have:

lLEOT O 0%

22070 < 0%

3. EO°@ - —~0O% @ where —@ € L is consistent

Proof. We prove item 3. Suppose O~ ¢ is true at world w. Then @ is true in all worlds
v ~w. Since the truth of objective formulae is the same within an object, ¢ is also
true in every world u € {[v]y | w ~v}. Since —~@ is a consistent objective formula and
all valuations are present in the model, —~¢ must be true in some world in the model.
So there must be some world in {[v]y |w~V} that satisfies =@, so we have -O% ¢ at
world w.

2.2 Clusters

The total pre-order 5 in a multi-attribute preference model induces a strict linear order
on sets of worlds, which we call clusters. Formally, a cluster is an equivalence class
induced by 3. Intuitively, such clusters represent the properties or attributes considered
relevant for deriving object preferences. The order on clusters induced by 3 represents
a property ranking, i.e. the relative importance of one property compared to another.
The relation between objects and properties may now be clarified as follows. The idea
is that if an object has a particular property it should be represented within the cluster of
worlds that represents the property. Technically, this is realized by making sure that (at
least) one of the copies of a world that identifies the object is an element of the cluster
that represents the property. The worlds that identify an object act as representatives
for the object within a certain cluster and thus indicate that the object has that property.
As clusters are disjoint and objects may have multiple properties, this also explains the
need for introducing copies of worlds.

Definition 5. (Cluster) Let 5 be a total pre-order on W. A cluster c is an equivalence
class induced by 5, i.e. c = [w]s ={v|w~v} for some weW.

Example 2. The relation between clusters (properties) and sets of copies (objects) is vi-
sualized in Figurel(this is a model of the theory in Example[]). The ellipses (columns)
represent the clusters or properties and the boxes (rows) represent objects. Objects in
this case are supposed to be houses. For example, the house labelled b consists of two
worlds, wy and ws. As these worlds are part of the same object, they must be copies of
each other. One of these worlds, w4, is also part of the cluster representing the property
of being affordable. This means that house b is affordable, as affordable is true at wy

Multi-attribute Preference Logic 187

C(affordable) C(closeToWork) C(large) C(—(affordable v
closeToWork V large))

Fig. 2. Visualization of an MPL model

(and thus also at ws). Similarly, it follows that house b is close to work, a property that
is true at ws (and thus at wy). As there is no world that is part of object b as well as in the
cluster representing the property large, house b is not large. The ranking of the proper-
ties is indicated by the < symbol: property affordable is more important than close to
work which in turn is more important than large. As a result, in any natural preference
ordering based on this ranking one would expect house b to be preferred over house c.

The modality O™ can be used to express a property of a cluster. For example, E 0~ ¢
expresses that there is a cluster where ¢ is true everywhere. O~ ¢ expresses that at least
@ is true in the cluster. In Figure[2] for example, in the third cluster we have that 0= large
is true. This means that every object that is represented by a world in this cluster is large.
But we also want every object that is large to be represented in the cluster. To specify
this, we use the modality O*. We can now explain why simply defining the truth of 0* ¢
in terms of truth of ¢ in all worlds that are not equally ranked to the current one does not
work. The point is that there may be copies v of worlds w that have a different ranking
than world w. As copies have the same truth assignment, at such copies a propositional
formula @ would be assigned the same truth value. This is illustrated in Figure 3, where
large is true in all worlds in the shaded area. The key observation here is that worlds of
a particular ranking identify a set of objects, i.e. copies of these worlds which must be
part of these objects (by Definition 2] of an object). This is why 0¥ ¢ evaluates ¢ at all
objects, or, more precisely, the worlds that define these objects, that are not identified
by any of the worlds that have the same ranking as the current one.

By combining both operators we are able to characterize a cluster. For the third
cluster in Figure 2l we have that O~ large A O -large where large exactly characterizes
the cluster. The characterization of a cluster by ¢ is abbreviated as C¢, and defined by:

Co == 0 QA0 -@

188 K.V. Hindriks, W. Visser, and C.M. Jonker

C(affordable) C(closeToWork) C(large) C(—(affordable v
closeToWork V large))

Fig. 3. Visualization of an MPL model. All worlds where large is true are in the shaded section.

¢ is true for all objects identified by (worlds in) the cluster and not true in all worlds that
identify other objects. As an object may consist of several copies to represent that it has
various properties represented by different clusters, copies of such worlds outside the
cluster need to be excluded in the evaluation of —¢ which explains the truth condition
for O%.

Proposition 3] shows that properties and objects are related in such a way that object
preferences can be derived. The first item of the proposition states that if there is an
object that has property ¢ and the current world identifies a cluster characterized by ¢,
then within the cluster there is a world that is named i, i.e. identifies the object i. The
second item states that the converse is true for an object that does not satisfy a property
¢ that characterizes a cluster. That is, if object i does not satisfy ¢ and the current world
identifies a cluster characterized by ¢, then no world that identifies the object labelled i
is part of that cluster. The third item generalizes the first item. It states that if there is a
cluster characterized by ¢, and there is an object named i that satisfies ¢, then there is
an i-world in that cluster. The last item states that when a world satisfies C(@), then all
worlds within the same cluster satisfy C(¢).

Proposition 3. We have:

1. EC(Q)ANEi@p—~ OTi
2.5C(Q)A-Eip >0
3. EEC(Q)NE;@p — EC(0)
4. EC(p) >0 C(9)

Proof. We prove item 1. Suppose M,w = C(@) AE;@. This means that M,w = 0*-@.
By the truth definition for OF, this is equivalent to Yu € U{[v]y |w~v}: M,uE -¢. By
the definition of E;¢ we must also have a world u’ such that M,u’ =i A . This means
that we cannot have u' € J{[v]y | w ~ v} and we have that u' € J{[v]y |w ~v}. It follows

Multi-attribute Preference Logic 189

that u' € [v]y for some v ~w; as u’ must be a copy of v this means that we have M,v =i
and, by the truth definition for &7, we have Muw E O7IL

The operator C provides exactly what we need to define property rankings. Se-
mantically, we have already seen that the pre-order 5 induces a strict linear order on
clusters. The formula C¢ allows us to express that a cluster is characterized by a for-
mula ¢. Using this operator and the binary preference operator <yy we can express
that property (represented by a cluster) is ranked higher than another property ¢
(represented by another cluster) by C¢ <yy Cy. For example, in Figure 2l we have
C(large) <yy C(closeToWork) <yv C(affordable). By combining this with specifica-
tions of particular preferences orderings and statements that an object has a particular
property (cf. Proposition[3), this will allow the derivation of object preferences from a
property ranking.

3 Preference Orderings

In this Section, we show how to use multi-attribute preference logic to define multi-
attribute preference orderings derived from property rankings. Coste-Marquis et al. [6]
describe three frequent orderings based on prioritized goals: best-out, discrimin and
leximin ordering. Brewka [4] defines a preference language in which different basic
preference orderings can be combined and identifies four ‘fundamental strategies’ for
deriving preferences from what he calls a ranked knowledge base: T, k, C and #. As
best-out is the same as x, discrimin is €, and leximin is #, we will base the remainder
of our discussion on Brewka [4]].

We first informally introduce these orderings and then present definitions for each of
them in the logic. Section 4] presents the definitions of [4] and a proof that the defini-
tions in multi-attribute preference logic match those provided in [4]. The advantage of
defining preference orderings in a logic instead of providing set-theoretical definitions
is that it formalizes the reasoning about object preferences. From a practical point of
view, the logic allows us to provide rigorous formal proofs for object preferences de-
rived from property rankings. From a theoretical point of view, it provides the tools to
reason about preference orderings and allows, for example, to prove that whenever an
object is preferred over another by the T strategy it also is preferred by the # strategy
(see Proposition] below).

The two orderings C and # first consider the most important property. If some ob-
ject has that property and another does not, then the first is preferred over the second.
So in the example, both house; and house, would be preferred over houses. If two
houses both have the property or if neither of them has it, the next property is consid-
ered. house; and house, are both affordable, but house; is close to work and house; is
not, so house; would be preferred over house,. Note that although houses satisfies two
properties and house house, only satisfies one property, house, is still preferred over
houses because the single property of house; is considered more important than both
properties of houses. The C and # orderings only differ if multiple properties are equally
important. As we will make the assumption that no two properties can have the same
importance, we will not discuss the difference and only refer to the # ordering in the
following.

190 K.V. Hindriks, W. Visser, and C.M. Jonker

The T ordering looks at the highest ranked or most important property that is sat-
isfied. If that property of one object is ranked higher than that of another object, then
the first object is preferred over the second. If those properties are equally ranked, then
both objects are equally preferred. In our running example, house; and house; are both
preferred over houses, since the property ranked highest that is satisfied by both house;
and house; is affordable, and this property is ranked higher than the highest ranked
property satisfied by houses, i.e. closeToWork. Since the most important property satis-
fied by house; is the same as the most important property satisfied by house,, house;
and house, are equally preferred.

The x ordering looks at the most important property that is not satisfied. If that
property of one object is less important than the property of another object, then the
first object is preferred over the second. If those properties are equally important, then
both objects are equally preferred. In our running example, the highest ranked property
that is not satisfied by house is large, that of house; is closeToWork and that of houses
is affordable. Since large is the least important property of these properties, house;
is preferred over both other houses. As closeToWork is less important than affordable,
house, is preferred over houses.

All preference orderings introduced can be defined in multi-attribute preference logic.
We use pref:(i,j) to stand for: object i is weakly preferred over object j according to
strategy s, where s is one of T, k and #; pref*(i, j) is used to express strict preference.

Definition 6. (Preference Orderings) pref*(i, j), pref¥(i, j), pref*(i,), pref* (i,),
prefT(i,j) and pref!(i,j) are defined by:

prefT(i,))E(r-O" janS(=in-)))
prefl(i,j)=pref (i, j)v

U((OTino™=i) < (O7jA0%)))
pref (i,)E(AA-OT jAOS(OTIAOT)))
prefX (i, jy=pref*(i,j)v

U((-0Ting=OTi) « (=07 jATT 07)
pref*(i,)pEIA-O7 jaa<(OTi 7))
prefi(i, jy=pref*(i,j) vU(O%i & O)

To understand these definitions, recall that we say that a world identifies an object
when it is part of that object and the object consists of copies of one and the same
world. These copies are used to represent that an object has a property present in a
property ranking. In Figure 2] for example, world w7 is a representative of object ¢ for
the property large. Thus, the formula E;— &~ j may be read as ‘object i has a property
that object j does not have’. Similarly, <><i can be read as ‘there is a more important
property (than the current one) that object i has’. These readings may help explain the
definitions. pref” (i, j) may be read as ‘there is a property such that i has it and j does
not, and for all more important properties, neither i nor j has any of them’. The second
disjunct in the definition of pref. (i, j) defines when two objects are equally preferred
with respect to T, and may be read as ‘if there is a property that i has, but i does not
have any more important properties, then j has that property too and does not have any
more important properties either, and vice versa’. Similar readings can be provided for
the other preference operators.

Multi-attribute Preference Logic 191

Proposition @ shows that the relation between weak and strict preference is as usual,
and, moreover, a strict preference according to T or K implies a strict preference accord-
ing to #.

Proposition 4. We have:

1. pref’(i,j) < prefi(i,j) n—prefi(j,i) for s € {T,K,#}.
2. = prefT (i, j) > pref* (i,)

3. & pref*(i,j) - pref*(i, j)

Example 3. Given the model of Figure2] we can derive that pref*(b,d). By definition,
this is the case when E(bA-<O~d AOS(O™h < O7d)) is true. This means that there
must be a world w that is named b that has no equally ranked world named d, and,
moreover, for every higher ranked world v there is an equally ranked world named b if
and only if there is an equally ranked world with name d. By inspection of Figure 2]
world ws fits the description.

4 MPL Defines Ranked Knowledge Bases

Here we prove that the preference orderings of Definition [6] define those of Brewka [4]].
Brewka [4]] calls property rankings ranked knowledge bases, defined as follows:

Definition 7. (Ranked Knowledge Base) A ranked knowledge base (RKB) is a set
F ¢ Ly of objective formulae together with a total pre-order > on F. Ranked knowledge
bases are represented as a set of ranked formulae (f,k), where f is an objective formula
and k, the rank of f, is a non-negative integer such that fy > f> iff rank(f1) > rank(f2).
That is, higher rank is expressed by higher indices.

In the setting of [4], comparing objects given a ranked knowledge base means compar-
ing truth assignments which represent these objects, analogously to the representation
of the three houses used in Figure[Il It is easy to see that this example is represented by
the following ranked knowledge base: {(affordable,3), (closeToWork,2), (large,1)}.

Object preferences can be derived in multiple ways from a ranked knowledge base.
In order to define these strategies, some auxiliary definitions are introduced next. Below,
K"(m) denotes the set of properties of a certain rank n that are satisfied with respect
to truth assignment m; maxsat® (m) denotes the highest rank associated with the prop-
erties that are satisfied by assignment m, and maxunsatX (m) denotes the highest rank
associated with the properties that are not satisfied by m.

Definition 8. Let K be a ranked knowledge base and m € 2.

K" (m) s={f|(f,n) eK,m= [}

maxsat®(m) u= —co if m# f; for all (f;,v;) €K,
max{i| (f,i) e K,mE f} otherwise

maxunsat®(m) == —oco if me f; for all (f;,v;) €K,

max{i| (f,i) e K,m¥ f} otherwise

Using these auxiliary definitions, preference orderings m; >X m, are defined which
mean that object (truth assignment) m, is (weakly) preferred over object m; according
to strategy s.

192 K.V. Hindriks, W. Visser, and C.M. Jonker

Definition 9. (Preference Orderings) Let K be a ranked knowledge base. Then the
following preference orderings over truth assignments are defined:

o my 2K my iff maxsat® (my) > maxsat® (my).

o my >K my iff maxunsat® (my) < maxunsat® (my).

o my 2K my iff |[K"(m1)| = |K" (m2)| for all n, or there is n s.t. K" (my)| > |K"(m2)|, and
forall j>n:|K/(my)| = |K/(my)|.

To simplify, we make the assumption here that different properties cannot have the
same ranking. In that case, the set of all satisfied properties of a given rank is a singleton
set or the empty set, we have that > is a strict linear order on F - also denoted by
>, and, as a result, the ¢ and # orderings coincide. We also assume that properties in a
ranked knowledge base are consistent. Finally, we may assume that a ranked knowledge
base does not contain logically equivalent properties with different ranks since such
occurrences except for the one ranked highest can be discarded as it has no influence
on any of the preference orderings.

Definition 10. (Translation Function) The function T translates ranked knowledge
bases K = (F,>) and truth assignments m to formulae and is defined by:
e 7(K) == A{EC(9) | p e F}
UV{C(g)|peF oro=-V{x|xeF}})
NC(@) <vv C(¥) | @, W e F &y > @A
MNMC(=V{ploeF})<ww y|yeF}a
® Tyume(m) € Nom
o 7(m) = N{Eip |mE= @} U{=E;@|mH @} with i = Tuame(m)

The translation of a ranked knowledge base K expresses that for each property ¢
in K, there exists a corresponding cluster by C¢, that there are no other clusters than
those specified by the properties, and one extra cluster for the case in which none of
the properties is satisfied. It forces the ranking of these clusters to be the same as the
property ranking induced by K, with the added extra cluster as least important one. The
translation also associates an object name with a truth assignment and states for each
property whether the object (truth assignment) has the property or not.

Example 4. Using the translation function, and assuming that Ty, (house;) =
b, Tuame(housey) = d and Tygme(houses) = e, the RKB {(affordable,3),
(closeToWork,2), (large, 1)} translates into:

1. E(C(affordable)) nE(C(closeToWork)) AE(C(large))
2. U(C(affordable) v C(closeToWork) v C(large) v
C(-(affordablev closeToWork v large)))

3. C(~(affordablev closeToWork v large)) <yv

C(large) <yvy C(closeToWork) <yy C(affordable)

4. Ey(affordable) A Ep(closeToWork) A —Ej,(large)

5. E;(affordable) A —~E4(closeToWork) A —-E,(large)

6. ~E,.(affordable) NE,(closeToWork) AE,(large)

A model of this theory is shown in Figure[2l Although only objects b, d and e are spec-
ified in the theory, for illustrative reasons this model contains all possible objects (there

Multi-attribute Preference Logic 193

is a world, and hence an object, for every possible valuation of the three propositional
atoms). Every property has its own cluster, which means that every object satisfying
that property has a world in that cluster, and that every world in that cluster satisfies
that property. No worlds exist outside the four specified clusters, and the order among
clusters is fixed. The only ways a model of this theory can be structurally different from
the one shown are by removing objects that are not b, d or e (but then all worlds be-
longing to that object have to be removed at once), or by adding more worlds, but only
at the same ‘places’ as the worlds shown.

Theorem [shows that every multi-attribute preference model that is a model of the
translation of a particular RKB yields the same preference ordering as the original RKB.

Theorem 1. m; >X my iff = ©(K) A t(m1) A T(m2) = prefS(Tuame (M1); Taame (m2))
where s € {T,K,#}.

Proof. Assume that Tyame(m1) =i and Tyame(ma) = j, and observe that the translation
of K = (F,>) is equivalent to:
(]) C(—|(f1 V... an)) <vv C(fl) <yy ...<yy C(fn),
(2)VfeF:E(C(f)) and
(UC(f1)V...vC(fu)VC(=(fiVv...V[a))).
For brevity, we only prove the left to right direction for the case mi >X my. Then we have
maxunsat® (my) < maxunsat® (my) and maxunsat® (my) > —oo, so there is a formula f;
in F such that
(4) ma ¥ fi
(5)my E fi and
) Vf'> firmi = ff &myE f.
Applying the translation function T, we then get:
(4) =Ej fi,
(5) Eifi and
(6) Vf, >fk ZEl‘f,/\Ejf,.
From (5), (2) and Prop.[313 it then follows that
(8) EC(fi):
From (8), (4) and Prop.[312 it follows that
(9) Ei=O7 jAC(fr).
And from (6) and Prop.[31 it follows that
(10)Vf'> fi : OTiAnOT]
Using (1) and (3) we obtain
(11) C(fk) - |:|<(C(fk+1) V... \/C(fn))
From (10) and (11) we obtain
(12)C(fi) > O T iAo O™ .
Then (9) and (12) can be combined into E(i A~ jAQ<(OTiAOT))), which is the
definition of pref* (i, j).

Example 5. We now show how to formally derive a preference statement from the for-
mulae obtained by translating a ranked knowledge base in Exampled] As an illustration,
we show that pref*(b,d) can be derived.

From [@4) Ej,(closeToWork), @l1) E(C(closeToWork)) and PropositionBl3 we obtain

194 K.V. Hindriks, W. Visser, and C.M. Jonker

(1) EpC(closeToWork).

From [@5) -E;(closeToWork) and Proposition B2 it follows that

(2a) C(closeToWork) — =&~ d.

From[@!3 andEl2 we can derive that

(2b) C(closeToWork) — 0<C(affordable).

By combining (1), (2a) and (2b) we derive

(3) Ep (- O~ d AOC(affordable)).

Now, from Proposition[Bl1, @4) E}, (affordable) and @5) E;(affordable), we derive
(4a) C(affordable) -~ <&>=b and

(4b) C(affordable) — <>™b.

Using (3), (4a), and (4b), we obtain E, (-~ d AD0(O~bA<O™d)), which is the defini-
tion of pref*(b,d).

5 Conclusion

In this paper we introduced a modal logic for qualitative multi-attribute preferences. The
logic is based on Girard’s binary preference logic [7]], but extends this logic with objects
and clusters that introduce the possibility to reason explicitly about multiple attributes.
We showed that multi-attribute preference logic is expressive enough to define various
natural preference orderings based on property rankings [4l6]. The additional value
of the logic is that it is possible to reason about these different preference orderings
within the logic. This means we cannot only reason about which objects are preferred
according to a certain ordering, but also about the relation between different orderings
as is shown in Proposition 4]

One possible extension to multi-attribute preference logic is the introduction of in-
dices for different agents. In this way, distinct preference orderings for several agents
can be expressed. This introduces the possibility to reason about properties such as
pareto-optimality of objects (an object is pareto-optimal if there is no other object that
is better for at least one agent and not worse for the other agents), which is useful in the
context of e.g. joint decision making or negotiation.

We have made the assumptions that attributes are binary, and that priority orderings
are total linear orders. In future work we plan to investigate how we can loosen these
assumptions. For example, if multiple attributes can have the same importance, the #
and ¢ orderings will differ and we will be able to encode trade-offs between attributes.

Our main concern in this paper has been the expressiveness of multi-attribute prefer-
ence logic. Other questions such as a complete axiomatization of the logic, succinctness
and complexity remain future work. We plan to develop a reasoning system in which
agents can reason about qualitative multi-attribute preferences in various settings. In
our future work we will focus more on the reasoning mechanism and how different
domains can be modelled accurately in our approach.

A more detailed comparison of multi-attribute preference logic with other preference
logics such as Qualitative Choice Logic [3] is planned. Other areas for future work
concern the representation of dependent properties and the relation of multi-attribute
preference logic to e.g. CP-nets [3]].

Multi-attribute Preference Logic 195

Acknowledgements. This research is supported by the Dutch Technology Founda-
tion STW, applied science division of NWO and the Technology Program of the Min-
istry of Economic Affairs. It is part of the Pocket Negotiator project with grant number
VICI-project 08075.

References

10.

11.

12.

Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and Informa-
tion 4(3), 251-272 (1995)

Boutilier, C.: Toward a logic for qualitative decision theory. In: 4th International Conference
on Principles of Knowledge Representation and Reasoning (KR), pp. 75-86 (1994)
Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for rep-
resenting and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research 21, 135-191 (2004)

Brewka, G.: A rank based description language for qualitative preferences. In: 16th European
Conference on Artificial Intelligence (ECAI), pp. 303-307 (2004)

Brewka, G., Benferhat, S., Le Berre, D.: Qualitative choice logic. Artificial Intelli-
gence 157(1-2), 203-237 (2004)

Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and succinctness
of propositional languages for preference representation. In: 9th International Conference on
Principles of Knowledge Representation and Reasoning (KR), pp. 203-212 (2004)

Girard, P.: Modal Logic for Belief and Preference Change. PhD thesis, Universiteit van Am-
sterdam (2008)

Halpern, J.Y., Lakemeyer, G.: Multi-agent only knowing. Journal of Logic and Computa-
tion 11(1), 41-70 (2001)

Hansson, S.O.: Preference logic. In: Gabbay, D.M., Giinthner, F. (eds.) Handbook of Philo-
sophical Logic, 2nd edn., vol. 4, pp. 319-393. Kluwer (2001)

Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: preferences and value trade-
offs. Cambridge University Press (1993)

Liu, F.: Changing for the Better: Preference Dynamics and Agent Diversity. PhD thesis,
Universiteit van Amsterdam (2008)

von Wright, G.H.: The Logic of Preference: An Essay. Edinburgh University Press (1963)

An Empirical Study
of Patterns in Agent Programs

Koen V. Hindriks, M. Birna van Riemsdijk, and Catholijn M. Jonker

Delft University of Technology, P.O. Box 5031, 2600 GA, Delft, The Netherlands
{k.v.hindriks,m.b.vanriemsdijk,c.m. jonker }@tudelft.nl

Abstract. Various agent programming languages and frameworks have
been developed by now, but very few systematic studies have been done
as to how the language constructs in these languages may and are in fact
used in practice. Performing a study of these aspects contributes to the
design of best practices or programming guidelines for agent program-
ming. Following a first empirical study of agent programs written in the
GOAL agent programming language for the dynamic blocks world, in this
paper we perform a considerably more extensive analysis of agent pro-
grams for the first-person shooter game UNREAL TOURNAMENT 2004. We
identify and discuss several structural code patterns based on a qualita-
tive analysis of the code, and analyze for which purposes the constructs
of GoAL are typically used. This provides insight into more practical
aspects of the development of agent programs, and forms the basis for
development of programming guidelines and language improvements.

1 Introduction

Shoham was one of the first who proposed to use common sense notions such
as beliefs and goals to build rational agents [15], coining a new programming
paradigm called agent-oriented programming. Inspired by Shoham, a variety of
agent-oriented programming languages and frameworks have been proposed since
then [3]. For several of them, interpreters and Integrated Development Environ-
ments (IDEs) are being developed. Some of them have been designed mainly
with a focus on building practical applications (e.g., JACK [I8] and Jadex [14]),
while for others the focus has been also or mainly on the languages’ theoretical
underpinnings (e.g., 2APL [6], GoAL [§], and Jason [4]).

In this paper, we take the language GOAL as object of study. GOAL is a high-
level programming language to program rational agents that derive their choice
of action from their beliefs and goals. Although the language’s theoretical basis
is important, it is designed by taking a definite engineering stance and aims at
providing useful programming constructs to develop agent programs. Starting
with small-size applications such as (dynamic) blocks world , the language is
being applied more and more in larger domains where agents have to function
in real-time and highly dynamic environments. To be more specific, recently the
language has been used in a project with first year BSc students of computer
science, in which groups of students had to program a team of agents to control
bots in the first-person shooter game UNREAL TOURNAMENT 2004 (UT2004).

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 196 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Empirical Study of Patterns in Agent Programs 197

Software engineering aspects become increasingly important as applications
get more complex. For this reason, in [16] a first empirical study was presented
on how the language constructs are used in practice to program agents, and how
easy it is to read the resulting programs with the aim of designing a set of best
practices and programming guidelines that support GOAL programmers. In that
paper, three GOAL programs for the dynamic blocks world domain were studied.

In this paper, we take this a step further and analyze GOAL programs that
were developed for UT2004 by the students of the project. This study is much
more extensive than [I6]: the application domain of UT2004 is far more challeng-
ing than the dynamic blocks world, which has resulted in much larger programs
(approximately 800 lines of code per agent for the larger ones, in comparison with
around 100 for the dynamic blocks world); the GOAL language has been extended
significantly since the programs studied in [16] were developed; the number of
available programs to study is much larger, namely 12 for the UT2004 domain
in contrast with 3 for the blocks world domain; the programs are multi-agent
systems, rather than single agents, which gives us the opportunity to study or-
ganization structures as used and understood by students.

The focus is on a qualitative study of the code of the agent programs. In
addition, we analyze several metrics on the code. Due to the size of the study
we do not consider run-time behavior in this paper. We identify and discuss
structural code patterns for the programming abstractions present in the latest
version of GOAL, and analyze for which purposes the constructs are typically
used. Through this empirical software engineering, we contribute to forming a
body of knowledge leading to widely accepted and well-formed theories about
engineering GOAL agents.

2 The Agent Programming Language GOAL

In this study, the agent programming language GOAL has been used. GOAL is
a high-level language for programming rational agents using cognitive concepts
such as beliefs and goals. The language is similar to other agent programming
languages such as 2APL, Jadex, and Jason. Due to space limitations, the pre-
sentation of GOAL itself here will be very limited and we cannot illustrate all
features present in the language. For more information, we refer to [g].

GoOAL agents are logic-based agents in the sense that they use a knowledge
representation language to represent their knowledge, beliefs and goals to reason
about the environment in which they act. The knowledge representation tech-
nology we used is SWI Prolog [1]. One of GoAL’s distinguishing features is that
GOAL agents have a mental state that consists of the knowledge, beliefs and goals
of the agent. Knowledge is used to represent conceptual and domain knowledge
that is static. During a computation of the agent the knowledge of that agent
is never modified. As knowledge is always true, it can be used in combination
with both beliefs and goals to derive new beliefs and goals, respectively. For
example, if an agent has a conjunctive goal to have a weapon and ammo, and
knows that that combination always results in a loaded weapon, it also has the

198 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

derived goal to have a loaded weapon. The belief base and goal base are the
dynamic components of an agent’s mental state. Beliefs change by performing
actions; GOAL also provides two built-in actions insert(y) and delete(p) to
insert and remove information from an agent’s belief base. Goals in a GOAL
agent represent so-called achievement goals. An achievement goal is a condition
that the agent wants to be true but which is currently not believed to be true by
the agent. An achievement goal ¢ thus never follows from the agent’s beliefs (in
combination with its knowledge) and this constraint is enforced as a rationality
constraint. The rationale is that an agent should not put time and resources into
realizing an achievement goal that has already been achieved. This also means
that whenever a goal has been (believed to be) completely realized, the goal is
automatically removed from the goal base of the agent. GOAL also provides two
built-in actions adopt (¢) and drop(y) to, respectively, adopt a new achieve-
ment goal and drop some of the agent’s current goals. The drop action allows
an agent to revise its goals in light of, for example, changing circumstances.

Actions are selected by a GOAL agent by inspecting their mental state and
by means of rules. GOAL agents are able to inspect their mental state by means
of mental state conditions. Mental state conditions allow the agent to inspect
both its beliefs and its goals, and provide GOAL agents with expressive reason-
ing capabilities. In an agent program, mental atoms of the form bel(p) and
a-goal () are used to verify whether ¢ is believed or ¢ is an achievement goal.

Actions are selected in GOAL by rules of the form
if < cond > then < action > where < cond > is a mental state condition.
The < action > part may consist of single actions, or of multiple actions that
are combined by means of the + operator. Rules provide GOAL agents with the
capability to react flexibly and reactively to environment changes but also allow
a programmer to define more complicated strategies. Rules may be located in
either the program section or the perceptrule section of an agent program. In the
program section, every cycle of the interpreter a single applicable rule is selected
and rules in this section are typically used to select actions that are executed
in the environment. In the perceptrule section, every cycle of the interpreter
all applicable rules are executed in order. Rules in the perceptrule section are
typically used to process percepts from the environment and messages received
from other agents. All built-in actions of GOAL may occur in both sections but
user-specified actions of both internal or environment actions may only occur in
the program section. This restriction implies that the number of environment
actions executed every cycle is limited to at most one.

Modules provide a means to structure action rules into clusters and to define
different strategies for different situations [§]. In particular, modules facilitate
structuring the tasks and role assignment of an agent, as it allows an agent to
focus on some of its current goals and disregard others for the moment. Different
types of modules are distinguished based on whether the module is entered by
means of a trigger related to the beliefs or the goals of an agent.

Finally, mas files provide a recipe for launching multi-agent systems composed
of several GOAL agents. A mas file specifies which environment to start and how

An Empirical Study of Patterns in Agent Programs 199

it should be initialized, which agent source code files are used to create agents,
and when to create an agent. An agent may or may not be connected to an
environment. In our UT2004 case study agents may be connected to bots; an
agent may be launched e.g. when a bot becomes available in the environment.
Agents connected to an environment are able to execute environment actions
to change the environment and receive percepts from the environment which
enables an agent to monitor its environment. Percepts - received every cycle of
the interpreter - are stored in an agent’s percept base. At the end of each cycle
this percept base is cleared again and all percepts are removed. This implies that
each cycle all percepts need to be processed immediately.

Additional features of GOAL include among others a macro definition con-
struct to associate intuitive labels with mental state conditions to increase the
readability of the agent code, options to apply rules in various ways, and com-
munication. Various communication primitives are available but the most basic
action is the send action to send a message to another agent. Messages that are
sent as well as those that are received are archived in the mailbox of an agent,
and are only removed when the agent explicitly does so.

3 Experimental Setup

We perform a qualitative study (rather than a quantitative study) since it better
fits the aim of this paper, namely to analyze how students use GOAL as a step
towards developing programming guidelines for GOAL. Qualitative methods are
used for exploratory research in which hypotheses are formed, while quantitative
methods are used to test pre-determined hypothesis and produce generalizable
results [12]. Our research is exploratory, since we are in the process of investigat-
ing which structural code patterns might be part of programming guidelines for
GOAL, as examples of recommended or not recommended uses of the language
(comparable to design patterns and antipatterns used in software engineering).

In programming language research, several criteria for good language design
have been identified. The following are particularly relevant in the context of this
paper. The value of linear flow of control was, for example, recognized, primar-
ily for its value in program debugging and verification, it was recognized that
a language must be comprehensible, so that programs written in the language
can be read and maintained, and modular program structures were observed to
make an important contribution to the production of large software systems [17].
Moreover, in [I0] several language evaluation criteria are distinguished among
which: human factors (to what degree does the language alow a competent pro-
grammer to code algorithms easily and correctly, how easy is the language to
learn), software engineering (maintainability, reusability, etc.), and application
domain (how well a language supports development for a specific domain).

In agent research, software engineering has mainly been studied in the context
of agent-oriented software engineering methodolgies such as Prometheus [I3].
These methodologies, however, are either too abstract to provide programming
guidelines for concrete agent programming languages, or, to the extent to which

200 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

they provide concrete implementation guidance, do not fit the programming
abstractions as used in languages like GOAL. In the agent programming field,
[11] focuses on structural metrics related to dependencies between abstractions,
which among others indirectly predict the likelihood of bugs. This paper can be
viewed as complementary to ours.

Subjects. The programmers whose code we have analyzed are first-year BSc com-
puting science students who followed our second-semester course on Program-
ming Multi-Agent Systems and the consecutive Project Multi-Agent Systems.
These students are the subjects of our experimental research. In the course the
students were trained in both Prolog as well as the agent programming language
GOAL. As an indication of the level these students had, we briefly provide some
observations related to their skills in Prolog which is a prerequisite for writing
GOAL agents since Prolog is used as the knowledge representation language in
these agents. The Prolog skills demonstrated by students are basic but sufficient.
Students were, for example, able to apply negation as failure and recursion.

Project. UT2004 is an interactive, multi-player computer game where bots can
compete with each other in various arenas. The game provides ten different game
types. The game type that was used in the student project is called Capture The
Flag (CTF). In this type of game, two teams compete with each other that have
as main goal to conquer the flag located in the home base of the other team.
Points are scored by bringing the flag of the opponent’s team to ones own home
base while making sure ones own flag remains in its home base. Students have
to implement basic agent skills regarding walking around in the environment
and collecting weapons and other relevant materials, communication between
agents, fighting against bots of the other team, and the strategy and teamwork
for capturing the flag. We chose CTF because teams of bots have to cooperate,
which requires students to think about coordination and teamwork in a mas.

In the project, students are divided into teams of five students each. Every
group has to develop a team of GOAL agents that control three UT bots in the
CTF scenario. In the project manual, it was suggested that although the number
of bots in the UT environment is three, students can also implement agents that
do not control bots in the environment, e.g., for coordination purposes. The
time available for developing the agent team was approximately two months,
in which each student has to spend about 1 to 1,5 days a week working on
the project. At the end of the project, there was a competition in which the
developed agent teams compete against one another. The grade is determined
based on the students’ report and their final presentation.

For the project, an interface was designed that is suitable for connecting logic-
based BDI (Belief-Desire-Intention) agents to a real-time game. Such an interface
needs to be designed at the right abstraction level. The reasoning typically em-
ployed by logic-based BDI agents does not make them suitable for controlling
low-level details of a bot. It makes little sense, for example, to require such agents
to deliberate about the degrees of rotation a bot should make when it makes
a turn. Such low-level control is better delegated to a more behavioral control

An Empirical Study of Patterns in Agent Programs 201

layer, which was built on top of Pogamut [5]. At the same time, however, the
BDI agent should be able to remain in control and the interface should support
sufficiently finegrained control. Details on the interface can be found in [9].

Sample. In quantitative research, a random and relatively large sample of sub-
jects to study is selected such that results can be generalized to the population
of interest. By contrast, in qualitative research the most productive sample to
answer the research question is selected, e.g., based on experience or expertise
of the subjects. In our case, 12 teams of 5 students participated in the project.
The focus of our qualitative analysis is on the code of Teams 1, 2, and 3 who
performed best in terms of code and performance in the competition, and Team
12 who performed worst in terms of code and performance.

4 Identification of Patterns

In this section, we present the observations we made by doing a qualitative
analysis of the code of our sample. We identify numerous structural code patterns,
and augment this qualitative analysis with metrics concerning, e.g., the number
of times certain GOAL constructs were used. Also, we analyze for which purposes
the constructs are typically used. Sections 1] to [£71 each treat a particular
language element; sect. [discusses coordination and mas organization; sect.
discusses more general software engineering aspects.

4.1 Knowledge and Belief Base

The knowledge base typically was used to define predicates for computing, e.g.,
distances and other relevant aspects related to navigation. The belief base was
used to keep track of the actual state of the environment and typical functions of
code in the belief base are to (i) represent global features of the environment (e.g.,
where is the flag), and (ii) represent assigned tasks or roles (agents were typically
assigned a single role or task at any one time). On average the knowledge base
was significantly larger than the belief base (23.25 versus 15.67 clauses, with a
standard deviation of 24.23 versus 8.7, respectively); moreover, the number of
predicates defined in the knowledge base is larger (ranging from 7 to more than
25 predicates) than that in the belief base (about 5) with some exceptions. This
suggests that most of the domain logic was located in the knowledge base, in
line with its main function to represent conceptual and domain knowledge.

One observation made by inspecting the code of various teams is that this code
includes predicates in the knowledge base that have motivational connotations
such as priority to indicate relative importance and needItem and wants. The
code fragments for defining these predicates are significant portions of the code,
sometimes more than a 100 lines of code.

4.2 Goal Base

The use of explicit goals has been limited. On average about 1.13 initial goals
were used with a standard deviation of 1.36. By inspection of code, it turns out

202 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

that initial goals most of the time are abstract goals such as visitFlags or
even win. These abstract goals are not actually used in action or percept rules
and are never removed, neither explicitly using a drop action nor implicitly by
inserting a belief into the belief base which implies the goal has been achieved.
These abstract goals thus are redundant and serve no functional purpose. In 6
out of 12 teams goals are added during runtime by using the adopt action; on
average 3.86 adopts are used by these 6 teams with a standard deviation of 4.29.

The goals adopted dynamically are used in context conditions of modules.
In these cases, the context condition consists of a check on a single goal which
forms the goal of the module, e.g., goal protectBot for the module protector
(Team 3). In these cases, goals are removed explicitly (never implicitly) using
drop actions (occurring in both action and percept rules). In Team 3, the goal
of a module is removed only after the module was exited explicitly based on
beliefs about role changes. In Team 2, an action rule if goal(not(camp))
then exit-module. is present at the top of the camp module, to express that
the module should be exited if the agent no longer has the camp goal. How-
ever, this behavior is already in the semantics of GOAL, and thus the rule is
redundant. Another observation on the goals used by Team 3 is that some goals
could naturally be modelled as achievement goals (even though not used as
such), while others rather express an activity over time. For example, the goal
getFlag (which expresses an activity) could be replaced by the achievement
goal haveFlag. In fact, Team 3 uses an action rule to drop the goal getFlag
if the agent believes haveFlag. The goal protectBot expresses a behavior that
is not so easily transformed into an achievement goal, since it is not clear in
which state the agent has “achieved” protecting a bot. Finally, Team 12 has a
one-to-one relation between goals and modules where each module corresponds
with a different role or task. The use of goals in conjunction with modules and
their function is a recurrent pattern in the code that has been analyzed.

We investigated various hypotheses related to the use of goals, built-in goal-
related actions, and modules. First, for all teams except Team 6, whenever the
code contains occurrences of drop actions the code also contained adopt actions.
The reason that in one agent of Team 6 only one drop action was used is that
the agent has one goal start in the initial goal base that is used to initialize
the roles of other agents and thereafter is dropped. Second, whenever an adopt
action occurs it occurs in tandem with drop actions. And, finally, occurrences
of adopt actions entail the presence of modules. The latter suggests that goals
have been typically used to implement roles.

4.3 Rules

As explained, rules in a GOAL agent can be placed in the program and the
perceptrule section. The former kind of rules are called action rules and are used
among others to select actions that are performed in the environment. These
rules define the agent’s strategy or action selection policy, and determine what
the bot that the agent controls will do in the environment. The latter kind of
rules are called percept rules and are used, among others, to process percepts

An Empirical Study of Patterns in Agent Programs 203

and messages. Rules can be classified along other dimensions based on their use
and in comments in analyzed code we find that rules are used as communication
rules to send messages, exit rules to exit a module, as mailbozr cleanup rules to
cleanup messages stored in an agent’s mailbox, etc.

Some examples of patterns observed in rules are:

if bel(received(_, role(X)), role(Y))
then insert(role(X)) + delete(role(Y))

This rule inserts an instance of a predicate role that has been received via
communication and overwrites an old instance of that predicate.

The following rule retrieves the agent’s name and communicates the role with
the name to all other agents once:

if bel(me(X)) then sendonce(allother, navServer(X)).

Although the last rule can only be used to select the single sendonce action, using
the + operator multiple actions may be selected simultaneously as illustrated by
the second last rule above. This feature allows an agent to execute more than
one action in a cycle of the interpreter. All teams make frequent use of the +
operator to execute multiple actions with one action rule.

The average number of action rules per agent over all twelve teams is approxi-
mately 28. The average number for agents that are connected to the environment
is 42. The average number for agents connected to the environment for Teams 1,
2 and 3 is 65.5. As action rules determine strategy, this suggests that Teams 1, 2,
and 3 have implemented the most elaborate strategies and suggests more strate-
gic programming. This is in line with performance in the competition where
Teams 1, 2, and 3 outperformed other teams. The hypothesis that Teams 1, 2,
and 3 have coded more elaborate strategies is also corroborated by the fact that
the number of percept rules used by these teams is only little above average.

Since goals are used to a very limited extent, the majority of mental state con-
ditions in action rules consists of conditions on beliefs. The number of conjuncts
of belief conditions varies, but typically no more than five conjuncts are used.
Since most conditions are on beliefs only, never more than one belief operator is
used per action rule. This holds for all twelve teams.

Percept rules, i.e. rules in the perceptrule section, are used for several main
purposes: processing percepts and messages, sending messages, cleaning up the
mailbox, and adoption and dropping of goals (e.g. Team 3). The average number
of percept rules per agent over all twelve teams is approximately 51. The average
number for agents that are connected to the environment is 69. The average
number for agents connected to the environment for Teams 1, 2 and 3 is 78.
Note that the number of percept rules overall is higher than the number of
action rules per agent. This probably is related to the fact that all applicable
percept rules are executed in every cycle of the interpreter whereas only one
applicable action rule is executed in that same cycle. The perceptrule section
thus allows to process all incoming percepts and all received messages. It also
facilitates updating mental states in other ways, for example, to adopt a goal
when the agent learns the environment has changed.

204 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

4.4 Program Section

The program section contains all the action rules, from which exactly one of
the applicable action rules is selected for execution. This section comes with the
option to evaluate rules randomly or in linear order. When rules are evaluated
randomly, a rule is chosen randomly, and the conditions associated with the
rule and action(s) are evaluated; in case these conditions hold, the action(s) is
executed, otherwise randomly another rule is chosen. Linear order evaluation
means that rules are evaluated in order. This type of evaluation is deterministic
and potentially ease programming as conditions of rules that have been evaluated
but failed can be assumed to be false in rules below these rules. Linear order may
provide a programmer thus with a greater sense of control. It turns out that all
teams use the option order=linear to enforce linear execution of action rules.

The management bot of Team 1 does not have action rules in the program
section. All other agents have (functional) action rules in the program section.
The number of action rules on top level, i.e., not within modules, is typically
small (ranging from 0 to 2 in Teams 1, 2 and 3).

4.5 Modules

Modules facilitate structuring code as well as the behavior of agents and are
used by all teams. A module may be entered when an associated context con-
dition holds and thereafter only action rules inside the module are executed. A
module can be exited automatically or by means of selecting and executing an
exit-module action. Automated exit of modules works differently for the two
types of modules, namely reactive and goal-based modules. Reactive modules
have a context condition that does not check whether goals are present but does
inspect the beliefs of the agent; such modules are automatically exited when
there are no options anymore to execute an action. Goal-based modules have
context conditions that inspect the goal base of an agent and after entering the
module focus on goals that satisfy the context condition; such modules are auto-
matically exited when all goals have been achieved. Note that the semantics of
exiting a module is built-in but is a delayed effect. That is, exiting may happen
after a number of cycles of the interpreter that is not easily predicted.

Teams 1, 2, and 12, who make use of a management agent, have significantly
fewer (sub)modules for this agent (0, 1, and 0 respectively) than for the agents
that are connected to bots (13, 7, and 4, respectively). The average number
of (sub)modules used in the agents of all twelve teams is approximately 3. Al-
though a module may contain the same sections as a GOAL agent except for the
perceptrule section, often, only the program section is used in modules.

Modules are used to encapsulate behavior for roles or (high-level) tasks. For
example, Team 2 distinguishes the modules defender, assault, bodyguard, flag-
carrier, and hunter on top level, which form the roles as indicated by correspond-
ing context conditions such as bel (role(defender)). Team 1 distinguishes
capture, defend, attack, and waitAtEnemyBase, which form tasks as indicated
by corresponding context conditions such as bel(task(capture())).

An Empirical Study of Patterns in Agent Programs 205

If submodules are used, they are used one level deep, i.e., a module within a
module. Team 1 makes frequent use of submodules (1 to 3 per top level module)
and Team 2 uses one submodule (camp as a submodule of defender). Teams 3
and 12 do not make use of submodules.

Several patterns can be observed concerning strategies for entering and exiting
modules. The context condition usually consists of a single belief or goal condition,
expressing the task (Team 1 uses, e.g., bel(task(capture()) and similarly for
other modules) as the context condition for the module capture), the role (Team 2
uses, e.g., the context condition bel (role(defender)) in the module defender
and similarly for other modules), or the goal of the module (Team 3 uses, e.g., the
context condition a-goal (getFlag) in the attacker module and similarly for
other modules). Teams 1, 2, 3 and 12 use the exit-module action to explicitly
specify when to exit the module. Modules typically start with such an action rule,
which has as the condition the negation of the context condition of the module,
e.g., Team 2 uses bel (not (role(defender))) in the defender module where the
context condition is bel (role(defender)). Sometimes, additional action rules
for explicitly exiting modules are introduced. For example, Team 1 uses rules that
allow the agent to exit the module because it has a more important task (if the
agent sees an item it needs, it will get it and afterwards continue).

Interestingly, Team 6 uses modules for initialization purposes. Their manage-
ment agent uses a single goal start which is present in the initial goal base of
that agent to enter a module that contains some initialization code; after ex-
ecuting that code the initial goal start is dropped and the module is exited.
(Recall that Team 6 also is the only team that has an agent with a drop action
without an adopt action; this explains why.)

4.6 Actions Specification

The action specification section needs to contain specifications for all actions that
are used in the agent program but not built-in into GOAL. Such actions are called
user-specified actions, and can be actions with effects only on the mental state,
called internal actions, as well as actions which also change the environment,
called environment actions. In principle there is no need to introduce internal
actions as whatever can be achieved with such actions can be achieved with the
built-in actions of GOAL but introducing such actions may increase readability.

Concerning internal actions, i.e., actions that are not executed in the envi-
ronment, we observe that only Teams 1, 2 and 4 have used these. Team 1 only
implements a dummy nothing action. Teams 2 and 4 implement internal actions
only in the management bot which is not connected to the environment.

All agents that are connected to the environment contain action specifica-
tions for environment actions. The interface to the UT2004 environment made
available in the student project [9] provides 9 different actions with a range of
different parameters to select from. Actions, without mentioning parameters, in-
clude, for example, selectWeapon, goto, pursue, lookAt. On average the goto
and halt actions are used 23 times versus 13 times that other actions are used.

206 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

The goto and halt actions thus are used about 4 to 5 times more often than
other actions. This suggests that navigational issues are dominant in the project.

In action specifications, we make several observations concerning the use of
pre- and postconditions in environment actions. First, we can distinguish actions
for moving around in the environment, namely goto, pursue, halt and respawn,
from other actions such as selectWeapon. For moving actions, Teams 1, 2, and 3
use pre- and postconditions that express how to change the agent’s moving state.
The moving state is expressed by all three teams as state(moving(Route)),
state(pursue), or state(reached ([]). This is related to the fact that moving
actions are typically durative (except for the halt action), and it needs to be
recorded whether the agent is currently executing such an action. For instan-
taneous actions, postconditions typically express the (immediate) effect of the
action, such as the current weapon for selectWeapon (Teams 2 and 3), or the
postcondition true, in which case percepts are used for observing the effect of
the action in the agent’s next reasoning cycle (Team 1).

4.7 Communication

Plain communication in which send actions of the form send(A,Proposition)
are used is distinguished from advanced communication with mental models
in which actions of the form send (A, :Proposition), send (A, !Proposition),
send (A, ?Proposition) are used. Mostly plain communication is used. Team 3
uses a few messages with :, e.g., send(allother, :myTeam(MyName, MyRole)).
The management agent of Team 1 uses a few instances of messages with !, e.g.,
send(Bot, !task(capture(return))), to tell other agents what to do.

Two main ways of handling received messages can be distinguished. The first
is by preprocessing messages using percept rules, which insert the received in-
formation into the belief base and delete the received message. The following
pattern for preprocessing messages is used by Teams 1 and 3, and the agent
connected to the environment of Team 2.

if bel(received(A,Proposition))
then insert(Proposition) + delete(received(A,Proposition))

The second is by using the received messages directly in conditions of action
rules to select the next action (the management agent of Team 2), without pre-
processing them. Team 2 also uses the received predicate in the knowledge base
of the management agent. The first method yields better readable code because
action rules and knowledge base are not cluttered with received predicate, and
allows reasoning with the added propositions using the knowledge and belief
base. The second method may have efficiency benefits since no preprocessing is
needed, and is simpler since no preprocessing rules have to be written.

4.8 Coordination and MAS Organization

The organisation structures chosen by the students were hierarchical and net-
work [7]. Irrespective of the organisation structure the teams used roles (or tasks)

An Empirical Study of Patterns in Agent Programs 207

to differentiate in behaviour and let the bots change their behaviour over time,
with the exception of Team 11. Team 11 had a static role division over the bots.
Team 7 uses a bit of a mixture; two of their bots have to change roles depending
on the game state, the third always has to defend the flag.

The hierarchical models all consist of one management agent and three team
member bots, where the team members were just copies of each other. The bots
in the teams using a network organisation (Teams 3, and 11) did not collectively
deliberate about strategy and tactics. Each bot decides for itself when to switch
roles and only informs the others of its new role. In the hierarchical teams the
management agent gets progress information from the team member bots and
on the basis of that information decides on role changes for the bots.

The initialisation differed at bit over the teams. Some had the management
agent assign the roles arbitrary over the bots (e.g., Team 12), some initially gave
the bots a kind of nothing role (e.g., Team 1), some intially gave each of the
bots a specific active rol like defender, attacker (e.g., Team 3), and Team 11 used
three differently coded bots (an attacker, a defender and a support bot).

The roles and their number in different teams vary. The smallest number
of roles used is two: attacker and defender (Team 5). Some introduced three
roles: hunter, defender, and supporter. Typically, however, a bit more variation
was used, as for example by Team 2 who used: attacker, bodyguard, defender,
flagcarrier, hunter, and none. The more roles, the more rules were defined to
switch between behaviours, and in general the more sophisticated the code to
determine the expected behaviour for the various roles.

4.9 Human Factors and Software Engineering

We make several observations concerning human factors and software engineer-
ing, in particular with respect to readability, maintainability, and reusability.
We observe that none of the teams have used macros. Readability of mental
state conditions in rules might have been improved by the use of macros, since the
number of conjuncts in these conditions can become relatively large (see Section
E3). A large number of conjuncts can make it difficult to grasp what is expressed
by the condition. Macros may not have been used because they received little
attention in the lectures preceding the project, since their definition and meaning
is relatively simple. Another reason may be related to the fact that the students
used only one belief operator per rule. This may make it less natural to use
macros, since one might expect that multiple macro definitions would be used
to replace belief conditions with many conjuncts. This would then require the
use of multiple macros in rules, instead of using a single belief condition.
Another observation related to human factors and software engineering is that
we found frequent occurrences of duplicate code. The most notable example was
found in the code of Team 3, which coded two agent files that are almost exact
duplicates (lines of code = 884). The only difference seems to concern the initial
role of the agents. Duplicates are undesirable since it makes it more difficult to
understand resulting programs (readability), as it is often not easy to identify the

208 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

differences between very similar pieces of code. Also, it has a negative influence
on maintainability, since changes have to be duplicated too.

Further, we observe that Team 1 uses hardcoding of agent names both in the
manager agent as well as in the agent program that is used to launch agents
that are connected to a bot in the environment. This introduces dependencies
between these files which are hard to maintain as, for example, such hardcoding
makes it difficult to extend or reduce the number of agents launched in a mas
file. Reducing the number of agents would cause runtime errors (as messages
are being sent to agents that do not exist) and extending the number of agents
would decrease the functionality of these new agents as messages will never be
sent to these additional agents. An example of the use of hardcoded agent names
is the following. In the agent program that is connected to the environment,
percept rules are used to store information about the environment in the belief
base, and to send this information to the manager agent. The information sent
to the manager agent is divided over the other agents, yielding the following
patterns for percept rules, where zombieA is the name of an agent connected to
the environment, and godMother is the name of the manager agent:

if bel (me(zombieA), percept(<Percept>))

then insert(<Percept>) + send(godMother, :<Percept>)
if bel (not(me(zombiel)), percept(<Percept>))

then insert(<Percept>).

5 Discussion

Ezxplicit Control Several of our observations suggest that programmers prefer
explicit control over built-in semantics with delayed effects. In particular, de-
terminism (by selecting linear rule order evaluation, Section [£4]) is preferred
over non-determinism (random action option selection). This is related to linear
flow of control, which has been proposed as a criterion for good language de-
sign (see Section B]). Another well-known paradigm of computing that involves
non-determinism is concurrent programming. Non-determinism in concurrent
programming stems from the fact that it is unknown how much of one pro-
cess is executed during the time another one executes an instruction. Interest-
ingly, high-school students of concurrent programming were found to avoid using
concurrency [2]. Another observation related to explicit control is that explicit
strategies for exiting modules were programmed using the exit-module action,
rather than relying on the automatic exit mechanisms of the language (see Sec-
tion [43)). Also, goals were not used as often as could have been. What’s more,
if goals were used, automatic goal deletion upon achievement was not exploited,
since corresponding beliefs were never added to the belief base.

We conjecture that these findings are on the one hand due to an inherent pref-
erence for explicit control, and on the other hand due to lack of understanding of
these mechanisms. Exam results indicate that students were more competent in
explaining and/or applying action rules, action specifications, linear rule order

An Empirical Study of Patterns in Agent Programs 209

option and basic Prolog than they were able to do so for modules and subtle dif-
ferences between communication primitives (send versus sendonce command).
Scores on questions related to the former were significantly higher than those
related to the latter. Moreover, the use of explicit module exit strategies in cases
where use of built-in mechanisms would have been simpler, also suggest a lack of
understanding. To some extent, lack of understanding of the nature of achieve-
ment goals is indicated by the fact that corresponding beliefs are never inserted
into the belief base, but more research is needed to explain the code fragments
in some agent programs related to motivational notions in the knowledge base
instead of the goal base. These findings provide valuable input for teaching the
language, since it suggests more time needs to be devoted to explaining and prac-
ticing with the features of GOAL that have built-in semantics with delayed effect.
In particular, programming examples and patterns will have to be developed to
demonstrate possible uses of the language.

A possible pattern for using modules, derived from the observations and dis-
cussion above, is the following. For each role that the agent should be able to
take, create a module with the goal of the module as the context condition. If
the goal of the module is adopted, the agent can enter the module to perform
the corresponding role. The program rules of the module should aim at achiev-
ing the goal of the module. If the goal is reached, the agent will automatically
exit the module. If the agent should no longer pursue the goal because, e.g.,
more important goals should be pursued, percept rules can be used for specify-
ing when the goal should be dropped, in which case the agent would also exit
the module automatically. It is important to specify such goal revision policies,
due to incomplete information and incomplete control over the environment.
New observations of or changes in the environment may cause an adopted goal
to become obsolete, requiring the need for specifying when the goal should be
dropped. A similar observation about dropping of goals being used for dealing
with dynamics of the environment was made in [16].

Language Design. The idenfication of patterns has yielded not only insights on
how GOAL constructs are (to be) used, but also gives rise to multiple possibilities
for language improvement and further investigation of language design choices.
For reasons of space, we briefly discuss some of them.

Mailbox clean-up as performed in percept rules suggests investigation of
whether keeping received and sent messages by default in the mailbox is to
be preferred over cleaning up the mailbox in every cycle. This can be done by
introducing these modes as an option in an agent program. In this way, we can
find out by experience and practice what is preferred by the programmer.

One of the difficulties of continuous language design is to monitor whether
code parts keep providing useful functionality throughout the changes that are
made to the language. For example, the GOAL syntax requires agent files to
provide an agent name. However, this agent name is just a label at the top of an
agent file which is never used as the functionality of naming and making agent
names public has been delegated to the mas file. Using these labels in agent
files thus only creates confusion and it is better to remove these agent names.

210 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

Similarly, early requirements on syntax may not be so useful anymore as the
language is extended. In particular, after introducing the perceptrule section the
requirement to have at least one action rule in the program section seems not
as useful anymore (Team 1 introduced a trivial ‘obligatory’ rule in the program
section in their management agent). We plan to remove this requirement and
allow an empty program section, and only generate a warning at parse time.

We will consider the introduction of warnings and automatic dependency
analysis and checks: check on whether goals can ever become beliefs of the agent
(to indicate proper use of achievement goals); check for single send actions in the
program section, since these could just as well have been added in the percept
rules; automated support for dependency analysis to identify duplicate code, etc.
Also, support will have to be added to prevent duplicate code, e.g., by providing
import and extension functionalities.

6 Conclusion

In this paper, we have studied GOAL programs that were written by first year
computer science students for the domain of UT2004. This study is far more
extensive than a previous study of GOAL programs for the dynamic blocks world.
It has provided insights into how students use GOAL to program agent teams
for a real-time dynamic environment. Overall, we can conclude that GOAL and
the interface that was provided between GOAL and UT2004 allow students to
program multi-agent systems in which high-level team strategies are used, in
combination with navigation and interaction with the virtual environment.

Our analysis has identified patterns that seem to be very useful, such as the
use of modules to implement agent roles; patterns that indicate a preference for
explicit control and lack of understanding of implicit built-in semantics, such as
use of the exit-module action to explicitly exit modules; patterns that suggest
improvements to the language are needed, such as the frequent occurrence of
duplicate code; patterns that require further analysis, such as the use of prepro-
cessing of received messages versus direct use of messages, and the limited use
of goals. One issue that is hard to disentangle is whether problems we identified
in the source code are due to programming skills and teaching effort, or rather
due to the design and semantics of the language studied. To deal with this issue,
here we have tried to establish by looking at exam results, for example, if code
practices could be related to skills. More research is needed to get a better grip
on this issue, however. It remains to be established, for example, why students
use the knowledge base in ways not envisaged at design time.

Through this analysis, we have come closer to the development of best prac-
tices and programming guidelines for GOAL, we have identified aspects that can
be improved in the language, and we have gained a better understanding of which
aspects of the language are easy to use and which are more difficult to grasp.
A better understanding of problems that programmers face when using the lan-
guage will help us make better debugging and development software. Note also
that some of our main findings seem applicable to other agent programming lan-
guages as well. E.g. the use of modules to program roles has also been suggested

An Empirical Study of Patterns in Agent Programs 211

elsewhere [3]. Our method and the results obtained may extend in particular to
languages such as 2APL and Jason as the components in these languages are
similar in many respects, but, of course, more research is required.

In future work, we plan on improving GOAL along the lines suggested in this

paper, using the identified patterns to improve teaching of how to use GOAL
and studying the effects of this, and further investigating the hypotheses formed
through our analysis, e.g., concerning the reasons for the use of explicit control
rather than built-in semantics.

References

1.
2.

10.

11.

12.

13.

14.

15.
16.

17.

18.

SWI Prolog, http://www.swi-prolog.org/

Ben-Ari, M., Ben-David Kolikant, Y.: Thinking parallel: The process of learn-
ing concurrency. In: Fourth SIGCSE Conference on Innovation and Technology in
Computer Science Education, pp. 13-16 (1999)

. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Program-

ming: Languages, Tools and Applications. Springer, Heidelberg (2009)

. Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming Multi-agent Systems

in AgentSpeak using Jason. Wiley (2007)

. Burkert, O., Kadlec, R., Gemrot, J., Bida, M., Havlicek, J., Dorfler, M., Brom,

C.: Towards Fast Prototyping of IVAs Behavior: Pogamut 2. In: Pelachaud, C.,
Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007.
LNCS (LNAI), vol. 4722, pp. 362-363. Springer, Heidelberg (2007)

. Dastani, M.: 2APL: a practical agent programming language. JAAMAS 16(3),

214-248 (2008)

. Dignum, V.: A Model for Organizational Interaction: Based on Agents, Founded

in Logic. PhD thesis (2004)

. Hindriks, K.V.: GOAL Programming Guide (2010),

http://mmi.tudelft.nl/~koen/goal

. Hindriks, K.V., Birna van Riemsdijk, M., Behrens, T., Korstanje, R., Kraaijenbrink,

N., Pasman, W., de Rijk, L.: Unreal GOAL agents. In: Proc. of AGS 2010 (2010)
Howatt, J.: A project-based approach to programming language evaluation. ACM
SIGPLAN Notices 30(7), 37-40 (1995)

Jordan Howell, R., Collier, R.: Evaluating agent-oriented programs: Towards multi-

paradigm metrics. In: Proc. of ProMAS 2010, pp. 63-79 (2010)

Marshall, M.N.: Sampling for qualitative research. Family Practice 13(6), 522-525
1996

%’adgl“)lam, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. Wiley Series in Agent Technology. John Wiley and Sons (2004)

Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In:
Multi-Agent Programming. Springer, Berlin (2005)

Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60, 51-92 (1993)

van Riemsdijk, M.B., Hindriks, K.V.: An Empirical Study of Agent Programs: A
Dynamic Blocks World Case Study in GOAL. In: Yang, J.-J., Yokoo, M., Ito, T.,
Jin, Z., Scerri, P. (eds.) PRIMA 2009. LNCS, vol. 5925, pp. 200-215. Springer,
Heidelberg (2009)

Wasserman, A.IL: Issues in programming language design— an overview. SIGPLAN
Notices (1975)

Winikoff, M.: JACK™ intelligent agents: an industrial strength platform. In:
Multi-Agent Programming: Languages, Platforms and Applications. Springer, Hei-
delberg (2005)

http://www.swi-prolog.org/
http://mmi.tudelft.nl/~koen/goal

A Modelling Language to Represent and Specify
Emerging Structures in Agent-Based Model

Duc-An Vo'?, Alexis Drogoul'?, Jean-Daniel Zucker'?, and Tuong-Vinh Ho?

'IRD, UMI UMMISCO 209,
32 avenue Henri Varagnat, 93143 Bondy, France
2 IFI, MSI, UMI 209,
ngo 42 Ta Quang Buu, Hanoi, Vietnam
{alexis.drogoul, jdzucker}@gmail.com, voducanvn@yahoo.com,
ho.tuong.vinh@auf.org

Abstract. All modellers have come across, one day, one of these popular toy
agent-based models (ABMs), like "Ants", for instance, which depicts the
appearance of pheromone trails built by simulated ants. They are simple, but
representative of the way "real", more complex, ABMs are designed: in
addition to explicitly describe the individual entities used to represent the
system, modellers make implicit references to abstractions corresponding to the
emerging structures they are tracking in the simulations. Yet, these abstractions
are not represented in the models themselves as first-class entities: they are
either hidden in ex-post computations or only part of visualization tasks, as if an
explicit representation could somehow damage the processes at work in their
emergence. This clearly constitutes an obstacle to the development of multi-
level models, where emergence is likely to occur at different levels of
abstraction of the system: if some of these levels are not represented in the
models, the emergence of higher-level structures is not likely to be observed.
This paper describes a modelling language that allows a modeller to represent
and specify emerging structures in agent-based models. Firstly, to ease the
description, we present these structures and their properties in four toy ABMs:
Schelling, Boids, Collective Sort and Ants. Then we define the operations that
are needed to represent and specify them without sacrificing the properties of
the original model. An implementation of these operations in the GAML
modelling language (part of the GAMA agent-based platform) is then
presented. Finally, two simulations of the Boids model are used to illustrate the
expressivity of this language and the multiple advantages it brings in terms of
analysis, visualization and modeling of multi-level ABMs.

Keywords: Agent-based modelling, modelling language, emergence, GAMA
simulation platform.

1 Introduction

When developing agent-based models (ABMs), modellers represent explicit entities
of the system modelled as agents. The choice of entities depends on the level of

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 212-227]2012.
© Springer-Verlag Berlin Heidelberg 2012

A Modelling Language to Represent and Specify Emerging Structures 213

abstraction of the reference system the modeller is working with, and this in turn
depends on the question he/she wants to answer with the model, on the data available
at hand, on the scale at which this data is described, etc.

What is remarkable in ABMs, however, contrary to other modelling techniques, is
that at least two different scales are involved in the modelling process: the scale at
which the agents are described, and the scale at which the simulations are to be
observed and their results analysed. This is especially true when modellers try to
capture and understand the emergence of functions (social, biological, ecological,
etc.) structures or functions by means of simulation [10]. These structures, emerging
in the course of the simulations, are often the result of non-linear interactions between
the agents defined in the model and they can play significant roles in its dynamics by
providing feedback constraints on the behaviour of the underlying agents composing
them.

As we will see in the presentation of the toy agent-based models in section 2, these
emerging structures are normally not explicitly represented in the models as agents.
They are either hidden in ex-post computations or only part of visualization tasks, as
if an explicit representation could somehow damage the processes at work in their
emergence. This deliberate choice may lead the modeller to the following difficulties:

e If certain structures emerge during the simulation, for example groups of agents
having certain common similarities or spatial-temporal regularities, they can be
only identified posteriorly (using classification method or analyzing statistic for
example) and hence play no role in the dynamic of the simulation.

e If the data, possessed by the modeller, are distributed on several levels of
abstraction (for example the data of individual, the data of group and the data of
the population level), it is not evident to simultaneously represent them in the
model.

Currently, there is no explicit support in term of agent-based modelling language for
representing the relationships and interactions between multiple levels of abstraction
in the model. To remedy this deficiency of current agent-based platforms, the
modeller can develop his multi-level model from scratch. He thus has to develop a set
of proprietary abstractions representing explicit entities and emerging structures
concerned. Several multi-level agent-based models are developed this way such as
[8], [9]. This approach has several drawbacks. Firstly, the modeller doesn’t take
advantage of all the services offered by an agent-based modelling platform. Secondly,
he has to manually manage all issues specific to multi-level model, which is in fact an
error prone process. Hence these drawbacks raise the question of reusability and ease
of modelling. So the goal of this work is to propose a modelling language to assist the
modeller in representing and specifying emerging structures in an agent-based model.

When working with emerging structures in agent-based models, we propose the
modeller a process with two complementary tasks as depicted in figure 1:

214 D.-A. Voetal.

Medelling

Yy -

Simulation

Representation and specification of emerging structures

Fig. 1. Detection and Representation of Emerging Structures

Detection of emerging structures. This task, illustrated in the upper-box of figure 1,
concerns the detection of emerging structures in the course of a simulation. An
emerging structure normally consists of a group of interacting agents sharing certain
similarities. This detection task uses several clustering techniques [11] that classify
agents into groups according to certain criteria. These criteria depend of course on
what the modeller wants to observe.

Representation and specification of emerging structures. This task, depicted in the
lower-box of figure 1, concerns the representation and specification of emerging
structure in an agent-based model. The modeller describes what he expects as
emerging structures. He specifies the conditions under which a group of interacting
agents is considered to form an emergent structure. In order to describe the emerging
structure, the modeller employs a set of representing abstraction. He models also the
relationships and interactions between the emerging structure and the composing
agents.

Figure 1 separates the two tasks a modeller deals with when working with
emerging structures in an agent-based model. Some existing works aim at addressing
the first task such as [7]. They propose techniques to detect emerging structures in an
agent-based simulation. Emerging structures vary a lot according to the concerning
model. Each detection technique may adapt well to certain emerging structures and
not well to other ones. This is understandable because a detection technique is
normally developed to address a precise problem [11]. In this context, the author may
make certain “optimizations” to adapt the technique to the characteristics of the
emerging structures he is interested in.

The modelling language proposed by this work aims at addressing the second task,
which corresponds to the lower-box of the figure. For the detection task, we would
like to reuse the existing detection techniques of the communities. We integrate our
work, focusing on the description level of emerging structures, with existing detection

A Modelling Language to Represent and Specify Emerging Structures 215

techniques. With this integration, the way that a modeller models (represents and
specifies) emerging structures remains (almost) intact as he changes the underlying
clustering techniques employed to detect these structures. The modeller can thus
“switch back and forth” opting for a detection techniques optimal to his problem. This
modular approach of separating the detection task and the representation task has two
significant advantages: 1) It favours the reusability of existing detection techniques;
2) It abstracts the modeller from the internal detail of how a detection technique
functions which rather interests computer scientists.

To ease the description of the language, in the second section, we present four toy
agent-based models along with the corresponding emerging structures. Then in the
third section, we point out the common characteristic of the presented emerging
structures. From this common characteristic, we discuss the operations a modeller
needs in order to work with these structures in an agent-based model. After that, we
describe how the operations discussed in the third section are implemented in the
GAML modelling language of the GAMA agent-based modelling platform [1], [2]. In
the experimentation section, we illustrate the expressivity of GAML language through
some demos of the representation of emerging structures in the Boids model. Finally,
we conclude this article by resuming the initial contribution and discussing some
future works.

2 Emerging Structures in Some Toy Agent-Based Models
We present in this section four popular toy agent-based models. With each model, we

introduce briefly its origin and purpose. Then we indicate the emerging structures in
the simulation that may interest the modeler.

2.1 “Schelling” Model of Segregation

Fig. 2. Intitial distribution of residents Fig. 3. Groups of same colour residents appear
as emerging structures

This model, proposed by Thomas Schelling in 1969, attempts at understanding the
phenomenon of residential segregation in cities [4] by seeing it as an aggregated result
of the decisions of residents in choosing their housings. Residents are represented

216 D.-A. Voetal.

explicitly as agents in the model. Residents having certain similarities are classified as
belonging to the same class. In reality, criteria used to classify resident may be
educational level, religion, annual income, skin colour, political point of view, ...
Same class residents are represented by same colour agents. When the simulation
runs, we see groups of nearby same colour residents appear. We call these groups
emerging structures because they are not explicitly represented in the model as agents.
As soon as these emerging structures appear in the simulation, isolated residents
tend to be attracted to them. Isolated residents move to join group of other residents
similar to them. The forming of such emerging structures is the result of residents’
decision in choosing places where they live in a city. Vice-versa, these emerging
structures have certain feedback influences on the behaviours of the residents.

2.2 “Boids” Model

o “Boids”, proposed by Craig Reynolds in 1986, is
M oo v a model of coordinated animal motion such as
A - 1S bird flocks or fish schools [3]. The behaviour of
k?.h " each agent is represented by simple rules:
7 A AN ~ separation, alignment, cohesion and obstacle
7 530 P g
: * ¥ | avoidance. There is no group leader, but when the
1. group
7 il oo simulation runs, depending on the parameters
-
777 s chosen, coherent flocks appear. They are coherent
u ‘g’ PP NN *| in space, coherent in time, but yet the result of
774 ' S only local interactions between bird agents. In that
A | M " sense, they can be considered as emerging
: i structures.

Fig. 4. Formation of bird flock

2.3 “Collective Sort’” Model

The “Collective Sort” model concerns the activity of agents in gathering objects of
different types scattered in an environment [5]. Objects of the same type have the
same colour. Agents move in the environment picking up and dropping down objects.
Their behaviour is simple. Let us call similarity_index the number of objects of the
same colour around one object in the environment. Agents move the objects in order
to locally increase the similarity_index of each object. When the simulation runs,
groups of objects of similar colour appear. The larger a group becomes, the higher the
probability that a robot drops an object on it is. This is similar to the influence of
groups of birds on the behaviours of individual birds. If the simulation runs long
enough, all the objects of the same colour end up gathered in one group. In this case,
as groups result from the interactions between robots, objects and the environment,
they can be considered as emerging structures.

A Modelling Language to Represent and Specify Emerging Structures 217

Fig. 5. Scattered objects at t =0 Fig. 6. Same color (type) objects aggregate
into groups

24 “Ants” Model

The “Ants” model mimics the foraging activity of an
ant colony [10]. Around a nest, where the ants are
located at the beginning of simulations, sources of
food are placed in an environment. Ants initially
move at random, searching for food. If they detect
some, they pick it and bring it back to the nest. On
the returning journey, they deposit a “signal” on the
ground (pheromone) that other agents can detect and
follow to the food.

As the simulation runs, it is easy to see “roads” of
pheromone built by ants bringing food back to nest.
The larger this road, the higher the probability ants will follow it. Pheromone roads
and groups of ants following them are emerging structures resulting from the
interactions between ants with their environment.

Fig. 7. Ants foraging for food

3 Representing Emerging Structures

All the emerging structures described in the previous section are implicit entities
resulting from interactions between explicit entities, and they only appear in the
course of the simulation. The modeller somehow implicitly “waits for” their
emergence, and they are sometimes the goal of the simulation itself. Yet, these
structures are not represented in the model as explicit entities. Thus it is impossible
for a modeller to track what is happening in the run of a simulation in terms of
emergence. The visual feedback provided by the user interface is a poor and
imprecise substitute for this.

In our proposal, in order to let modellers dynamically track the emergence of these
structures, we let them represent these structures as explicit (albeit potential) entities
in the model. We call these entities “emergent agents”. They are regular agents
(which can be provided with their own attributes or behaviours if necessary), except
that their instantiation is dependent on the appearance of certain properties during the
simulation.

218 D.-A. Voetal.

In this section, we describe the common features of these agents. Then we discuss
the operations that a modeller needs in order to represent and specify them in an
ABM.

First of all, the emergent agents found in the previous models can be described as
composed of several other agents (micro-agents) that appear to share certain
similarities: a segregated group is composed of multiple inhabitants located close to
each other and sharing some characteristics (at least the colour); a flock contains
several birds flying in the same direction within a certain distance; a pile of objects is
exclusively composed of nearby objects of the same colour; a pheromone trail is a
group of adjacent cells in the environment that are provided with a pheromone signal
and an ant group is a group of ants that follow the same pheromone trail.

In addition to the attributes and behaviours a modeller might provide them with, and
in order to manage both their instantiation and the relationships with their micro-agents,
emergent agents have then to be provided with the five following behaviours, specific
to their lifecycle: creation, update, merge, disposal and top-down feedback control.

The ‘“‘creation” operation helps to
specify when an emergent agent
representing an emerging structure is
created. For instance, it might be the
case that, when the spatial distance
between three flying birds in the Boids
model is less than 10 meters, an
emergent agent composed of these three birds is created in the simulation. This
operation allows the modeller to express the rule governing the instantiation of
emergent agents during the simulation. Figure 8 illustrates this operation. An
emergent agent representing the emergent structure is created with three micro-agents
as components.

Fig. 8. Creation of an emergent agent

The “update” operation describes
how micro-agents are added to or
removed from an emergent agent. Some
micro-agents may no longer satisfy a
condition to belong to an emergent
agent, while others, still “free” may
now fulfil it: this operation helps to
specify how these agents are added or
removed from the structure.

Fig. 9. Update of an emergent agent

Figure 9 illustrates the “update” operation. On the left side, we have one free micro-
agent and one emergent agent with three micro-agents. The “update” operation helps
the modeller in describing when one micro-agent, already part of the emergent agent,
doesn’t satisfy the condition to be considered as a component anymore and when,
possibily at the same time, one free micro-agent meets the condition to become a
component. Its purpose is to keep the list of components up-to-date with respect to the
meaning of the emergent agent.

A Modelling Language to Represent and Specify Emerging Structures

219

The “merge”
operation allows the
modeller to specify
how several
emergent agents
representing
different structures

Fig. 10. Fusion of different emergent agents

can be merged into
one unique emergent
agent. The fusion of

their respective components then becomes the components of the new unique

emergent agent.

Figure 10 illustrates the “merge” operation. On the left, we have two emergent
agents representing two emerging structures. Supposing that these two emergent
agents satisfy certain predefined criteria, the “merge” operation then merges these two
emergent agents into one unique emergent agent.

Fig. 11. Destruction of an emergent agent

The purpose of the “disposal”
operation is to express when an
emerging structure should not

considered to be an agent in the
simulation anymore. The emergent agent
representing the structure is cleared out
of the simulation and its components
become free.

Figure 11 illustrates the “disposal” operation. On the left, we have an emergent agent
with three micro-agents. If the corresponding emerging structure doesn’t meet a
predefined condition anymore, then the “disposal” operation helps to specify how the
emergent agent is cleared out of the simulation.

QuickTimes and a

lec ssor
are needed to see this picture.

Fig. 12. Feedbacks between micro- and

emergent agents behaviour

The top-down feedback control
finally allows the modeller to describe
which feedback constraint an emergent
agent is exercising on its underlying
micro-agents. As emergent agents usually
emerge because of the interactions of
certain micro-agents, these agents have an
influence on its attributes and behaviour.
Vice-versa, an emergent agent may also
provide a feedback on the behaviour of
its components, either implicitly or
explicitly [10]. In order to describe it
when it is necessary to do so, the
modeller needs to have some way to
alter the behaviour of a micro-agent (by

changing parameters, adding, or removing entire behaviours) before and after it enters

an emergent agent.

220 D.-A. Voetal.

4 Representing Emergent Agents in GAMA

We describe in this section how the operations introduced in the previous section are
implemented as commands in the GAML modelling language. We begin with a brief
introduction of the GAMA agent-based platform and the GAML modelling language.
Then we detail how the ability of working with emergent agent is taken into account
in the GAML modelling language.

GAMA (Generic Agent-based Modelling Architecture) is an agent-based
modelling platform, developed by the MSI research team (part of UMI 209
UMMISCO research unit) since 2007 [1] [2]. GAMA aims at providing field expert,
modeller and computer scientists with a complete modelling and simulation
development environment for building spatially explicit multi-agent simulation.

GAML (GAMA Modelling Language) is the modelling language used to develop
agent-based models in the GAMA platform. Besides some common concepts for
modelling agent and environment, GAML supplies a large and extensible library of
commands, primitives and expressions facilitating the model development task.
Because of the space limitation, we don’t elaborate on the detail of GAML, interested
readers can refer to [2] for a detailed tutorial of this language.

An emergent agent composes of constituent agents. Constituent agents can be
considered as micro-agents compared to the emergent agent. Then the emergent agent
can be seen as a macro-agent compared to its constituent agents. In turn, several
emergent agents can be merged to form another emergent agent at a higher level of
abstraction. Thus an agent in GAMA can play the role of macro-agent in one level of
abstraction and micro-agent in another (higher) level of abstraction. This design aims at
permitting the modeller to represent as many levels of abstraction as he needs in his
model.

To manipulate the five specific operations in the lifecycle of an emergent agent
(create, update, merge, disposal, top-down constraint control), six new GAML
commands are introduced: creation, update, merge, disposal, enable and disable.

e The “creation” command helps to specify when emergent agents are created in
the simulation.

e The “update” command describes how the constituent micro-agents are added
and removed from an emergent agent.

e The “merge” command determines how several emergent agents are merged.

e The “disposal” command indicates when an emergent agent is cleared out of the
simulation.

e The “disable” command permits the modeller to disable certain behaviour units
appropriately. While the “enable” command helps the modeller to enable the
inactive behaviour units.

These GAML commands help the modeller to model/describe the life-cycle of an
emergent agent. They aim at addressing the task (of representing and specifying the
emerging structure) depicted in the lower-box of figure 1. Through the GAML
language, we would like to offer a set of abstractions and “vocabulary” that are usable
for describing the relationship and interactions between multiple levels of abstraction
in an agent-based model.

As mentioned in the introduction section, concerning the task of detecting
emerging structure (corresponding to the upper-box in figure 1), we integrate, in the

A Modelling Language to Represent and Specify Emerging Structures 221

GAMA platform, a set of existing clustering techniques of the community [10].
Through the primitive mechanism of GAML language, the modeller can invoke these
clustering algorithms directly from his/her model (depicted by the black upper-arrow
in figure 1) in order to initialize, update, merge and dispose emergent agents
appropriately during the course of the simulation.

5 Experimentations

This section shows how to use the GAML commands presented in the last section to
represent the emerging structure in the Boids model. Continuing section 2.2, we detail
a little bit more about how Craig Reynolds models the behaviour of each bird in a
flock. Let consider a flock of birds, each bird has a perceptional radius within which it
reacts on the behaviour of others neighbours. Motion of bird is modelled by the
following rules:

e Separation rule helps a bird to maintain a minimum distance with its neighbours
so that they don’t collide.

e Alignment rule permits a bird to maintain the same flying direction with its
neighbours.

e Cohesion rule ensures that a bird is not left far away from its neighbours.

e Obstacles avoidance rule helps a bird to avoid obstacles in the environment.

Table 1. Behaviour of birds [3]

L 3
A 1)
e Nl Al 4 5

T b K ™
i\ A P 4 4

<D
Obstacles
avoidance

Separation Alignment Cohesion

As mentioned in section 2.2, a group of birds is an
emerging structure formed by nearby flying birds
within a predefined distance. We would like to capture
its dynamic in the simulation. Basing on the GAML
commands proposed in section 4, the following
modification is introduced to the original version of
Boids model.

A new species, named bird_group, is introduced to the
model, representing a group of nearby birds. An agent of
bird_group species is considered as an emergent agent

Emerging structure:
bird_group
>

/ =
¥
4

Micro-level: bird

A

Fig. 13. Boids model with two

levels of organization

and contains birds as constituent micro-agents.

With the bird_group species, we have now a new
version of Boids model with two levels of abstraction.
At the micro-level, we have bird species. At the macro-
level, we have bird_group species. As described in
figure 13, interactions between birds at micro-level
result in the emergence of groups of bird, represented
as bird_group emergent agents, at macro-level.

222 D.-A. Voetal.

The four operations of creation of a bird_group agent, update of a bird_group
agent, merge between bird_group agents and disposal of a bird_group agent are
represented in GAML language as following:

> creation
>
-

e Creation of a bird_group agent:
The “creation” command is used to
model the creation of bird_group
emergent agents. When birds are
found flying near together within a

Fig. 14. Creation of a bird_group agent

predefined distance and these birds
haven’t belong to any bird_group
agent yet, a bird_group emergent

agent is initialized representing

A=y

these nearby birds.

e Update of a bird_group agent:
As birds move, separate birds
can enter an existing group of
bird. Birds belonging to an
existing group can leave group.

»

Fig. 15. Update of a bird_group agent

The “update” command is where
the code to add birds to and
remove birds from a bird_group
agent is implemented.

e Merge between bird_group
agents: When several bird_group

Fig. 17. Disposal of a bird_group
agent

Fig. 16. Fusion between bird_group agents

emergent agents are found near
together in a predefined distance,
then these bird_groups will be
merged into one unique bird_group. In this
case, our implementation approach is to keep
the biggest bird_group emergent agent.
Constituent birds of others bird_group agent
will become constituents of this biggest
bird_group agent. Other bird_group agents
are cleared out of the simulation. This
operation is implemented in the “merge”
command.

e Disposal of a bird_group agent: when a bird_group agent has less than two
constituent birds then we don’t consider it as an agent anymore. This bird_group
agent will be cleared out of the simulation. Corresponding bird agents will become
free. We specify this operation in the “disposal” command.

First simulation. We run several simulations of this model in the GAMA platform to

test the operation of the four commands ‘“creation”, “merge”, ‘“update” and

“disposal”. Main parameters of one simulation are as following:

A Modelling Language to Represent and Specify Emerging Structures 223

e The number of bird agents: 200
e The distance within which two birds are considered as nearby: 10 meters
e Update radius: a dynamic value basing on size of the bird_group agent. This plays
the role of the perceptional radius of the bird_group agent.
e If free birds are found within this radius, they will become constituents of the
corresponding bird_group.
e If a bird of a bird_group has no other constituents as neighbours within this
radius, it won’t be considered as member of the bird_group anymore.
e Merge distance: the distance within which two bird_group agents are merged is 10
meters
e If a group of bird has less than two birds, the corresponding emergent agent will be
cleared out of the simulation.

Figure 21 captures the variation of the number of bird_group emergent agent and
micro-agent bird during 280 steps of the simulation is captured. This chart is quite
intuitive. The horizontal axis represents the simulation step. The vertical one signifies
the number of agent of each species. The red line captures the number of bird_group
emergent agent. While the green one indicates the number of free bird agent. Bird
agent is represented graphically by a black bird-shape image. Emergent agents,
bird_group, are represented as polygons covering all the constituent birds. At the
beginning of the simulation, as bird agents are scattered in the environment so there
are not many bird_group agents. There is an agent representing a target point (goal)
that birds follow in the simulation. This target point (represented graphically as circle)
periodically changes its position and colour after certain random amount of simulation
step. As the simulation runs, bird_group emergent agents are created, updated,
merged and disposed dynamically.

We see the significant change in the number of birds and groups of bird between
two consecutive steps of the simulation. Whenever number of free birds decreases,
the number of bird groups increase and vice-versa. This explains that the creation of
new bird_group emergent agents diminishes the number of free birds because when a
bird agent becomes the constituent of a bird_group agent it isn’t considered as free
bird anymore. And the disposal of bird_group emergent agents makes the number of
free birds increase. From step 240 to step 280 of the simulation, although the
significant change between two consecutive simulation steps continues, we see that
both the number of free birds and the number of bird groups follow the decreasing
trend. Because all birds are approaching the goal at the upper left corner of the
environment (figure 20), so the distance between them decreases. Hence all the
emergent agents are thus merged into a big one making the number of emergent agent
decrease. The bigger the emergent agent, the more attractive this agent has on others
free birds. Hence others free birds will join this emergent agent easier and/or faster
making the number of free birds decrease to almost 0.

Second simulation. The previous simulation shows that interactions between birds at
micro-level make groups of birds emerge at macro-level. However, such emergent
agents, bird_group, have no explicit influence on the behaviour of constituent micro-
agents. As described in figure 12 and [10], when interactions between micro-level
agents result in the emergence of dynamic structures, these structures often have
influences on the behaviour of constituent agents through some feedback constraints.

Fig. 18. Snapshot of the simulation at step O Fig. 19. Snapshot (focus on certain bird_gorup
agents) of the simulation at step 70

Fig. 20. Snapshot (focus on the biggest Fig. 21. Number of bird_group agents and
bird_group agent) of the simulation at step free bird agents
280

To model this feedback constraint, we use two GAML commands “enable” and
“disable”. Some modifications are introduced to the model used in previous
simulation. A species name “obstacle” is introduced to represent obstacles in the
environment. Agents of obstacle species move slowly in the environment in order to
perturb the birds. There is a small modification on the behaviour of bird_group
species. A bird_group agent has a perceptional radius calculated dynamically basing
on the number of constituent birds. If a bird_group agent doesn’t “perceive” any
obstacles within its perceptional radius, it will deactivate the behaviour model of its
constituent birds using the “disable” command. Movement of constituent birds will be
governed rather by the macro-agent bird_group. The macro-agent simply asks its
constituent birds to move towards the goal agent. We call this macro-agent active

A Modelling Language to Represent and Specify Emerging Structures 225

bird_group. Vice-versa, if a bird_group agent “perceives” obstacles within its
perceptional range, it will withdraw its influence from the constituent birds using the
“enable” command. Hence bird agents are become autonomous and interact with
others neighbours through their local perception in order to move towards the target
point. We call this macro-agent passive bird_group. This simulation uses the same
principal parameters like the previous one. We create additionally 40 agents
representing 40 moving obstacles in the environment. Obstacles are visually
represented as red squares in the environment. Figure 23 captures the number of
active bird_group agents (red line) and passive bird_group agents (green line). At the
beginning of the simulation, like the previous one, the number of both active and
passive bird_group agents is almost 0 because bird agents are scattered in the
environment. As the simulation runs, the number of active bird_group agents
increases fast and is a lot more than the number of passive bird_group agents. This is
quite intuitive because the obstacles are distributed sparsely in the environment
(Figure 22, 23). So not many bird_group agents “perceive” obstacles within their
perceptional radius. This results in less passive bird_group agents and more active
bird_group agents.

T Wumber of agents of each specks

Fig. 22. Snapshot of the simulation at step 0 Fig. 23. Number of active and passive
bird_group agents

Fig. 24. Snap shot (focus on certain bird_group agents) of the simulation at step 120

226 D.-A. Voetal.

6 Conclusion and Future Work

We have introduced a modelling language to represent and specify emerging structure
in agent-based model. We begin by describing the two complementary tasks a
modeller deals with when working with emerging structure: (1) Detection of
emerging structure; (2) Representation and specification of emerging structure. The
proposed language aims at addressing the second task. For the first task, we integrate
in GAMA platform a set of clustering techniques, which the modeller can use if
necessary to detect emerging structures during the course of the simulation. After
presenting emerging structures in four toy agent-based models, we discuss the
operations a modeller needs in order to model the lifecycle of an emergent agent. We
implement these operations as commands of the GAML language. These commands
are employed to represent the emergent agent (bird_group) in the Boids model. We
explore also the possibility of modelling the top-down feedback constraint of the
emergent agents at macro-level on agents at the micro-level (birds). As we see in the
experimentation section, emergent agents are created, merged, updated, disposed in a
dynamical way.

With the proposed commands as initial result of the work, we supply the modeller
with some basic “bricks” he can use to represent the emerging structure in some
simple agent-based models. This opens several interesting problems to tackle. As we
would like to develop GAML as a multi-level agent-based modelling language, so
more test should be done on multi-level models, which have more than two levels of
abstraction. When there are multiple levels of abstraction, there will be conflicts in
time-scale, space-scale, data and concurrent interactions between different levels of
abstraction [12]. We need to supply in GAMA a framework to maintain the
consistency between agents at different levels of abstraction. Basing on this
framework, through the GAML language, the modeller should be able to express in
the model how the consistency is ensured between different abstraction levels.

References

1. Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: An Environment for
Implementing and Running Spatially Explicit Multi-Agent Simulations. In: Ghose, A.,
Governatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS, vol. 5044, pp. 359-371.
Springer, Heidelberg (2009)

2. GAMA platform, http://gama-platform.googlecode.com

3. Reynolds, C.: Boids, Background and update,
http://www.red3d.com/cwr/boids

4. Schelling, T.: Schelling Segregation model,
http://web.mit.edu/www/alife/schelling.html

5. Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.:
The Dynamics of Collective Sorting Robot-Like Ants and Ant-Like Robots (1991)

6. Grimm, V., Railsback, S.F.: Individual-based Modelling and Ecology (2005)

7. Moncion, T., Amar, P., Hutzler, G.: Automatic characterization of emergent phenomena in
complex system. In: JBPC 2010 (2010)

10.

11.

12.

A Modelling Language to Represent and Specify Emerging Structures 227

Servat, D., Perrier, E., Treuil, J.-P., Drogoul, A.: When Agents Emerge from Agents:
Introducing Multi-Scale Viewpoints in Multi-Agent Simulations. In: Sichman, J.S., Conte,
R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 183-198. Springer,
Heidelberg (1998)

Breton, L., Zucker, J.-D., Clément, E.: A Multi-Agent Based Simulation of Sand Piles in a
Static Equilibrium. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI),
vol. 1979, pp. 108-118. Springer, Heidelberg (2001)

Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.:
Self-Organization in Biological Systems (2001)

Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques
(2005)

Natrajan, A.: Doctoral thesis: Consistency Maintenance in Concurrent Representations
(2000)

Multi-model Based Simulation Platform
for Urban Traffic Simulation

Yuu Nakajima, Shohei Yamane, and Hiromitsu Hattori

Department of Social Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
{nkjm,hatto}@i.kyoto-u.ac.jp
yamane@ai.soc.i.kyoto-u.ac. jp

Abstract. Multiagent-based simulations are regarded as a useful tech-
nology for analyzing complex social systems; for example, traffic in a city.
Traffic in a city has various aspects such as route planning on the road
network and driving operations on a certain road. Both types of human
behavior are being studied separately by specialists in their respective
domains. We believe that traffic simulation platforms should integrate
the various paradigms underlying agent decision making and the tar-
get environment. We focus on urban traffic as the target problem and
attempt to realize a multiagent simulation platform based on the multi-
model approach. While traffic flow simulations using simple agents are
popular in the traffic domain, it has been recognized that driving behav-
ior simulations with sophisticated agents are also beneficial. However,
there is no software platform that can integrate traffic simulators deal-
ing with different aspects of urban traffic. In this paper, we propose a
traffic simulation platform that can execute citywide traffic simulations
that take account of the aspects of route selection on a road network and
driving behavior on individual roads. The proposed simulation platform
enables the multiple aspects of city traffic to be reproduced while still
retaining scalability.

1 Introduction

Multiagent-based simulations are increasingly seen as the most attractive
approach to reproducing and analyzing diverse social systems including au-
tonomous and heterogeneous decision making entities, i.e., humans [5]. The
multiagent-based simulation is a paradigm that can reproduce macroscopic com-
plex phenomena through localized interactions among heterogeneous agents.
Multiagent-based simulations have been applied in various fields in the city, ex-
amples include traffic planning, rescues, and pandemic responses[I|84]. Although
numerous attempts have been made to conduct multiagent-based simulations in
various domains, no study has fully captured and analyzed social systems from
various aspects.

The challenge tackled in this paper is a massive urban traffic simulation plat-
form based on the multi-model approach to agent decision making and the target

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 228 2012.
© Springer-Verlag Berlin Heidelberg 2012

Multi-model Based Simulation Platform for Urban Traffic Simulation 229

environment in a city. Traffic, which is one of the most complex systems in mod-
ern society, is a highly suitable target for our research because vehicular traffic
is a phenomenon that includes various aspects: route selection and driving be-
havior.

While traffic flow simulations using simple agents are popular in the traffic do-
main, it has been recognized that driving behavior simulations with sophisticated
agents provide many additional benefits for analyzing the relation between local
driving behaviors and global traffic flow in a city. However, no published software
platform can integrate traffic simulators dealing with different aspects of urban
traffic. We design an architecture and develop a framework to integrate multi-
ple simulators founded on different paradigms. The proposed platform provides
a collaborative environment to experts who traditionally use different simula-
tors in different domains. We also propose a traffic simulation platform that can
execute citywide traffic simulations that include the aspects of route selection
aspect and driving behavior.

More specifically, this paper has three goals:

1. Design multiagent simulation platform based on multi-model of a city
The phenomena that occur in a city cannot be captured with a single model.
For realizing traffic simulations of a whole city, it is required that the plat-
form enable us to integrate different aspects of agent decision making and
the target environment in the relevant areas. It is also necessary that the
platform take advantage of multiple models proposed in different works.

2. Implement urban traffic simulation capturing various aspects of a city and
agents
We develop an urban traffic simulator based on the proposed architecture.
In this platform, we focus on two aspects of the traffic domain in a city:
global route processing and local driving behavior.

3. Evaluate platform performance
We investigate the potential of the developed platform to realize more realis-
tic urban traffic simulations. We verify that the simulation platform enables
the introduction of multiple aspects of traffic while still retaining scalability.
We also conduct an experiment that demonstrates how the number of agents
impacts simulation results such as traffic flow.

The remainder of this paper is as follows. Section [describes our approach
to designing the multi-model traffic simulator platform. Section [shows the
implementation of the platform. Section] describe an analysis of the platform’s
performance and Section [0l demonstrates the effects of the number of agents.

2 Architecture

We consider that agents in the traffic simulation should be covered by flexible
combinations of various decision-making models. This is because agents face
various situations and make decisions according to their current situations while
they move around the city. In addition, the simulation has to include traffic

230 Y. Nakajima, S. Yamane, and H. Hattori

Controller

Control Simulation
Controller

I E‘ie_rlt_\ Output Data

Simulator based on one model
—
Log of local
environment

Input data

Local
environment

SN Simulation

module

Local
environment
data

Shared
environment
data

Shared
environment

shared

Shared Environment environment

[Process J| Data on memory) T
ata

Fig. 1. Architecture for Multi-model Simulation Platform

systems such as traffic control systems and car navigation systems. The platform
must integrate various aspects of the city environment.

Figure [shows the architecture proposed in this paper. This architecture
includes multiple simulators and each simulator captures a specialized aspect of
the traffic domain (e.g. route selection aspect and driving behavior aspect).

Settings unique to the environment covered by each simulator and the envi-
ronment settings shared by the simulators are input. When the result of a certain
simulator influences another simulator, the result is stored in the shared envi-
ronment. On the other hand, information that is unique to one simulator cannot
be accessed by other simulators. Such data is accumulated in the corresponding
local environment.

Simulation controller should manage the simulation processes in order to com-
bine the multiple simulators. The controller requests simulators to calculate the
state of the next step. Basically, the simulators receive a request to output a
result for the next time step. When an event that should be sent to another
simulator occurs in the calculation, the event is sent to that simulator through
the simulation controller.

When all simulations finish, the logs of local environments and the logs of the
shared environment are written to external files.

Some platforms that combine multiple simulators have been proposed, but
these platforms mainly focus on use in a distributed environment [IT].

Multi-model Based Simulation Platform for Urban Traffic Simulation 231

Controller

Event

Simulation

controller

Simulator for global traffic Control, Event

IN:Road network, OD

OUT : Route | Route selection module

L Agent models

Route execution module

Agent models

IN: Route
OUT :Position or) network

Input data
P Simulator for local trpffic Output Data
Position on road
Road sh v r
oac Sape Road " A2 Position on
——— IN:Position on nefwork Driving behavior module road log

Drivers
settings

Road network

| T T

N

Shared environment

b Road network, Person, Plan ;

Route log,
Traffic flaw
log

Person .
Position on network

Shared Environment

.
<~
[Poces) [oateonmemory Dato

Fig. 2. System Diagram of Platform

3 Implementation

Previous traffic simulation research consists of either route selection on a road
network or local driving behavior on single roads. Research on route selection has
lead to the modeling of decision processes and route utility functions. Research
on local driving behavior has considered the observation of and responses to road
geometry, signals, and surrounding cars. There are gaps between the global traffic
flow based on route selection and local traffic flows based on driving behavior.

Nagel and his colleagues worked on global traffic flow in a city with multiagent-
based traffic simulators based on the queue model [I]. However, their approach
fails to support realistic driving behavior simulations on particular roads. This
is because details of the road structure (e.g., the width of lanes) or surrounding
environment including neighboring vehicles cannot be represented, so that the
simulated driving behavior fails to consider such local factors.

We assume that there is some interaction between local driving behavior and
global route selection. What we need to do is to analyze how local driving behav-
ior impacts citywide traffic patterns. Therefore, the simulation platform must be
able to incorporate both driving behavior models and route selection models.

We implemented a traffic simulation platform on the proposed architecture.
Figure [depicts the system diagram of the platform. We used the open source

232 Y. Nakajima, S. Yamane, and H. Hattori

traffic simulation tool kit MATSim to create the platform. We select MATSim
because it has been applied to various traffic simulations and its source codes
are completely open [7I2I3]. The global traffic simulation part of our platform is
mainly owe to MATSim.

In the following sections, each module is described precisely.

3.1 Simulator for Global Traffic

Route Selection Module. The route selection module reads road network
data and OD (Origin-Destination) data of agents from the shared environment.
Road network data mainly describes the structure of the road network while the
OD data consists of tuples of the starting point and the destination point of each
agent.

The road network has travel times of each link; we use either initial default
values or the results of the traffic flow simulation of the previous day. The route
selection module calculates the average trip time of each road based on the traffic
information of the previous day.

In the route selection module, an agent is regarded as the entity performing
route selection. The agent selects the route that has minimum cost considering
map information and the average trip time of each road. A route plan consists
of paths, mode choice, daily activity, and so on.

This module outputs the routes selected by the agents to the shared environ-
ment.

Route Execution Module. The route execution module deals with abstracted
road networks, not two-dimensional spaces. The route execution module is im-
plemented for handling a queue-based simulator; that is, the road network is rep-
resented as a network of FIFO (First-In, First-Out) queues. Each agent moves
over this queue-network between queues according to its scheduled routing plan
given vacancies in the next queue. Traffic flows in this platform are composed of
agent transfers between queues.

The route execution module reads the route plan of each driver agent from
the shared environment. In the route execution module, the agent is regarded as
the plan executor.

The road network is abstracted as a network consisting of nodes and links.
The agent acquires location information on the basis of nodes and links. A road
node pops a driver agent from the waiting queue and pushes it onto the running
queue of the next road link, if the running queue on the next road link has
enough space.

The route execution module writes agent positions, using node and link de-
scriptions, to the shared environment.

! MATSim (Multiagent Transport Simulation Toolkit:
(http://sourceforge.net/projects/matsim/)) is an open source toolkit developed
by the Technical University Berlin and the Swiss Federal Institute of Technology
Zurich for conducting large-scale agent-based traffic simulations. Revision 7476 is
used in this paper.

http://sourceforge.net/projects/matsim/

Multi-model Based Simulation Platform for Urban Traffic Simulation 233
3.2 Simulator for Local Traffic

Driving Behavior Module. In order to achieve traffic simulations that cover
the driving behavior level, we add a driving behavior module. In the driving
behavior module, the agent is regarded as a virtual driver and vehicle. They
move in a two-dimensional space rather than the abstract road network.

The driving behavior module starts calculating driving behavior when an
agent enters a link in the route execution module. The module reads agent
ID and road ID from the shared environment and gets details of the road’s
structure and surrounding environment including neighboring vehicles from the
road module in the local environment.

Data that is used by only one simulator must be accumulated in the local
environment for the simulator. Other simulators do not use specific road details
such as width and slope, but deal with more abstract data such as transit time
or link loads. Accordingly, these elements are stored in the road module of the
local environment.

The execution process of agents in the driving behavior module is summarized
as follows.

1. Observation
Controller requests the driving behavior module to determine the next op-
eration. At first, the driver agent demands information on the surrounding
environment, i.e., sensor data. He observes state of own car, surrounding
cars, and the roads in the immediate vicinity.

2. Recognition
Drivers may not be able to recognize all observed information. This step
filters the observed information based on the driver’s characteristic. For ex-
ample, an aged driver is unable to mentally map the surrounding traffic
situation as quickly as a young driver.

3. Decision
Driver agents decide which driving behavior should be executed next
considering the recognized information. They determine their accelera-
tion/brake/steering operations.

4. Execution
The driver agents execute the acceleration/brake/steering operations. This
involves not only setting the accelerator /brake/steering values directly but
also the execution of sequential acts such as changing lanes. The driver agent
has own vehicle module which holds car specifications, such as size, maximum
speed, car type and so on. The vehicle module converts the operations set
by the driver agent into direction and acceleration/deceleration values.

5. Update location
Vehicle module calculates the vehicle’s next state, such as its speed, velocity,
and direction, based on the driving operation. Vehicle module updates the
location information for the road module by accumulating the positions of
vehicles in the local environment.

234 Y. Nakajima, S. Yamane, and H. Hattori

[Simulation controller]
- Next time - Congestion
- Enter node - Go to next link
- Load route
— Next day —Next time
— Congestion —Finish selection —Enter link — Leave link

y
Route selection Route execution Driving behavior
module module module

Fig. 3. Message Control Provided by Simulation Controller

Using the location information, the driving behavior module checks whether the
driver agent should be transferred to the next link or not. The result is then
reported to the route execution module via the simulation controller.

3.3 Simulation Controller

The simulation controller administers the entire simulation process. Simulator
communication is based on message passing. At the beginning of a city traffic
simulation, the route selection module is called to create a route from starting
point to goal point for each agent. After that, the traffic simulation is started.
The route execution module is called every second to calculate the route traces
of agents on the abstracted road network. The driving behavior module can be
called on shorter periods, such as 0.1 seconds.
Figure Bl shows how the simulators work together by sending messages.

— When a simulation is started, the controller requests the route selection mod-
ule to calculate a route from starting point to goal point (“Next Day”). When
congestion occurs on an intersection, the route selection module receives a
“Congestion” message from the route execution module and rerouting is be-
gun. The route selection module returns “Finish selection” message. After
that, the controller sends “Load route” to the route execution module which
triggers the module into reloading the appropriate routes.

— When the route execution module receives “Next time” message, the module
calculates the state expected at the next time step. If the route execution
module receives “Enter node” message which is raised by the “Leave link”
message sent by the driving behavior module, the route execution module
registers the agent mentioned in the message as an object to calculate the
route trace of the agent on the road network. The agents on the route exe-
cution module decide the next link toward their goals and send “Go to next
link” messages with agent ID and road ID to the simulation controller.

Multi-model Based Simulation Platform for Urban Traffic Simulation 235

— When the driving behavior module receives “Next time” message, the module
calculates the state expected at the next time step. If the driving behavior
module receives “Enter link” message which is raised from “Go to next link”
from the route execution module, the driving behavior module registers the
agent mentioned in the message as an object to calculate its driving behavior.
The driver agents in the driving behavior module check whether they have
reached the end of the link or not. If they have arrived at the end of the
link, “Leave link” messages are sent to the route execution module via the
simulation controller.

In this manner, our platform for traffic simulations can integrate the simulators
that reflect different aspects of driving in a city, i.e., global route planning-
execution and local reactive behavior.

3.4 Shared Environment

The shared environment manages data shared by agents on different simulators.
This technique allows transitions in the data to be handled. At the step of time
t, all agents read data at time ¢ and decide actions for time t. At the end of
the step, the shared environment fixes the data for time ¢ + 1. In doing so, the
simulators do not need to consider the order in which agents are processed.

In general, several simulators may access the shared environment simultane-
ously, so we need to implement the lock and rollback functions for the shared
environment. At present, the shared environment does not have facilities for lock
and rollback because these agents on the simulator do not write to the shared
environment simultaneously and so do not cause conflicts in terms of the results
of actions in our traffic simulation. If the actions of the agents cause a conflict,
for example the agents intend to occupy the same spatial position at the same
time step in the driving behavior module; the shared environment rollbacks the
data and requests the agents to recalculate. With the conflict in mind, they
recast their operations at time ¢ all over again.

When other simulation modules are added in this platform, the simulation
modules have to implement the interfaces that support event control and data
sharing, which are defined by the simulation controller and the shared environ-
ment.

4 Performance Analyses

It is important to achieve adequate scalability as well as the ability to handle
multiple aspects of traffic. This is because traffic is a phenomenon that emerges
from the mass actions of agents.

2 In the driving behavior module, driver agents can recognize surrounding agents and
they move only a short distance from one time step to the next because the time
offset is small. Therefore, agents should not collide with each other.

236 Y. Nakajima, S. Yamane, and H. Hattori

50 o]

40

w
S

e

i

o
(=}

Time [min]

0

1000 4000 7000 10000 13000 16000 19000 22000
The Number of Agents

Fig. 4. Computation Time

For example, Paruchuri et al. reproduced some traffic situations with around
30 vehicles [9]. Increasing the number of vehicles yielded different results. Agent-
based auction simulations were executed in [12], this research indicated that the
simulation results were affected by the number of agents.

The challenge tackled in this paper is to achieve massive urban traffic sim-
ulations based on the multi-model simulator. In this section, we show that the
implemented simulation platform has sufficient scalability. This is because there
is a trade-off between the scale of multiagent-based simulations and the diversity
of traffic models (decision making of agent and the target environment) in terms
of the computation time.

In this experiment, we generated 100 ODs (origin-destination) by pairing two
randomly selected points from 25 main intersections within an area that repre-
sents the heart of the city of Kyoto (2km x 2km square with 1700 links). For
simplicity, all agents used the same route selection model and the same driving
behavior model. The simulation time was 2 hours. We ran our experiments on a
desktop computer with a Core2Duo 2.53 GHz CPU and 3GB of main memory.

Figure M plots the computation time versus the number of agents. As you can
see, the computation time is directly proportional to the number of agents. In
fact, with the largest number of agents (22,000), the computation time is around
50 minutes.

5 Effect of the Number of Agents

As shown above, we implemented a traffic simulation platform and in this section,
we experimentally confirm that our platform has the ability to reproduce actual
urban traffic created by a large number of agents. As an example, we investigated
how the number of agents impacted city traffic.

Multi-model Based Simulation Platform for Urban Traffic Simulation 237

I
Karasuma St Kawaramgchi St

| 1
' O-0O

£ e Q
: ijoSt N /
" 1 1]
|] { 1
\ { U]

/ ! 1

! 7 { 1
I 7 7 f
1) 1 I
1 ’ 7 I

L ! . 1

O----- 'Q ¢_]

I Gojo St / s — I
| 7 1 ~o d
1) 1 ~.
| Rokujo St 7 ,’
I 7 1
1]

1

Fig. 5. Simulation Target Area

5.1 Settings

We conducted simulations with 8000 vehicle agents, each of which was assigned
an OD selected from 36 types of ODs. We prepared an OD set considering two
types of traffic, i.e., traffic in the central part of the target area of the experiment
and traffic through the central area. The simulation period was set to 90 minutes
and the simulation was iterated 50 times following [10].

Figure [0l shows the simulation target area, which is the central part in the
city of Kyoto. Circled points are big intersections. Agents mainly depart from
and arrive at these big intersections. The dashed red lines are main streets. We
applied the road network data, including all road links in Kyoto city, prepared for
commercial programs. Figure [6] shows a screen shot of a simulation experiment.
Red rectangles are simulated vehicles.

The aim of this experiment was to investigate how the number of agents
influences global traffic flow via agents’ route selection.

5.2 Execution

In this platform, multiagent-based urban traffic simulations are conducted with
agents who can make decisions on both global route planning-execution and
local driving operation. An agent has functions to interact with both simulation
modules so that it can determine the most suitable route to the destination and
run on that route while expressing its preferred driving behavior (accelerating,
braking, lane-changing) given the surrounding environment. The agents decide
their behavior according to the assigned models.

238 Y. Nakajima, S. Yamane, and H. Hattori

o b s s s e s |]

[d i doman g, -
P Sy i g

; ' § = - - = } t

x i f. " ’]

% e G Y ¢ " g

Lt oo ot f {:

o ! i # ! A ’ ! s

! b il > L]

vlu- Iv--?--u-p- B w"rfm'-nf . m y
il : Vb

s | {] - F .i.

i b e = . * » '

! =y [

L__.- __._!‘- A l; !r

e A A i TS, ™
&
T

e e

Fig. 6. Simulations of the Traffic in the heart of Kyoto city

Within a simulation, the agents iteratively execute the day-to-day re-planning

process which consists of route-planning, traffic flow simulation, and scoring. The
traffic flow simulation is calculated every second. The details of the process are

as

1.

In

90

follows:

At the initial step, a set of initial plans (routes) is generated based on free
speed travel times in the route selection module.

. The traffic simulation is run using the generated plans in the route execution

module and the driving behavior module.
Each agent calculates the score of his/her plan based on the performance
identified by the simulation at end of the day in the route selection module.

. In the route selection module, some of the population (10% is used in this

paper) explore new plans based on the updated travel times resulting from
the last simulation. The remaining agents use the previously executed plan.
Step 2 to step 4 must be iterated many times before the optimized demand
can be identified.

this paper, we iterated steps 2 to 4 over 50 days and the length of step 2 was
minutes.

5.3 Results

We investigate how the number of agents affects the outcome of the simulation,
such as visible traffic flows. In order to analyze the effect of the number of agents,
we changed only the number of agents; from 2,000 to 12,000 in steps of 2,000.

Multi-model Based Simulation Platform for Urban Traffic Simulation 239

B Oike St Shijo St Gojo St M Rokujo St

[Num. of agents]

=

10000

3000 (e — N
6000 |
200 (R N

0 0.25 0.50 0.75 1.00
[Rate]

Fig. 7. Impact of the Number of Vehicle Agents: Traffic Share Rate of Four Streets

We counted the number of vehicles that drove through four streets (Oike St.,
Shijo St., Gojo St., and Rokujo St.) from Karasuma St. to Kawaramachi St.
(accordingly, we did not count vehicles which changed their route in the middle
of the streets). Rokujo St. is relatively narrow and the three other streets are
main streets in the city.

Figure [0 shows the traffic share rates of these four streets in the result of
simulation iteration 50. Starting from the left, each column lists the share rates
of Oike St., Shijo St., Gojo St. and Rokujo St. Because Rokujo St. is rather a
short route between Kawaramachi St. from Karasuma St. (see Figure [l), the
share rate of Rokujo St. was high. As shown in the figure, this situation, traffic
flows are biased to Rokujo St., is unchanged regardless of the number of agents.
However, the share rate of Rokujo St. is reduced at agent numbers of 8000 and
1,0000, while the rates of Oike St., Shijo St and Gojo St. are increased. These
results presumably mean that Rokujo St. becomes full and the agents avoid it by
selecting other routes including the three other streets even though the routes
are longer than routes through Rokujo St.

The important point is that these results are obtained by only changing of the
number of the agents. These results indicate that traffic modality patterns do
depend on simulation scale. Thanks to the scalability of our simulation platform,
we can capture the effect of volume of agents on the city traffic.

6 Conclusion

Multiagent-based simulations yield multiagent societies that well reproduce hu-
man societies, and so are seen as an excellent tool for analyzing the real world.

240 Y. Nakajima, S. Yamane, and H. Hattori

Although numerous attempts have been made to conduct multiagent-based sim-
ulations in the traffic domain, it has, up to now, been impossible to reproduce
and analyze the traffic from various aspects.

Existing research on city traffic falls into two camps; research focused on global
route selection and research focused on local driving behavior. However, these
two behaviors clearly affect each other. Phenomena that occur in a city cannot
be captured with single model.

For realizing city-wide traffic simulations, the different aspects of agent deci-
sion making and the target environment must be integrated. Toward our objec-
tive, we developed a wide-area traffic simulation platform based on the multi-
model approach that enables us to execute social simulations from various as-
pects of city traffic.

Our contributions are as follows.

1. Designed multiagent simulation platform based on multi-model approach
For realizing city-wide traffic simulations, we designed a multi-model plat-
form for urban traffic simulations that can take account of the different
aspects of the decision making of agents and the target environment. The
platform allows us to take advantage of the multiple models proposed in
related works.

2. Implemented urban traffic simulation capturing various aspects
We developed an urban traffic simulator based on the proposed architecture.
This integrated simulator includes two models; route processing and driving
behavior.

3. Evaluate platform performance
We evaluated the scalability of the platform. As a simulation example, we
examined how the number of agents impacts simulation results such as traffic
flow.

One future direction of this study is to create more sophisticated behavior mod-
els. It is clear that human drivers have very diverse driving behaviors with com-
plicated decision making processes. We are going to use participatory modeling
methodologies to extract more realistic driving behavior models [0].

Acknowledgment. This work was supported by Panasonic Corp. - Kyoto Uni-
versity Joint Research: Crowd Navigation for Region EMS Considering Indi-
vidual Behaviors and Preferences and Kyoto University Global COE Program:
Informatics Education and Research Center for Knowledge-Circulating Society.

References

1. Balmer, M., Cetin, N., Nagel, K., Raney, B.: Towards truly agent-based traffic and
mobility simulations. In: The 3rd International Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2004), pp. 60-67 (2004)

2. Balmer, M., Meister, K., Rieser, M., Nagel, K., Axhausen, K.W.: Agent-based
simulation of travel demand: Structure and computational performance of matsim-
t. In: The 2nd TRB Conference on Innovations in Travel Modeling (2008)

10.

11.

12.

Multi-model Based Simulation Platform for Urban Traffic Simulation 241

Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K.:
MATSim-T: Architecture and Simulation Times. In: Multi-Agent Systems for Traf-
fic and Transportation Engineering, pp. 57-78. IGI Global (2009)

Deguchi, H., Kanatani, Y., Kaneda, T., Koyama, Y., Ichikawa, M., Tanuma, H.:
Social simulation design for pandemic protection. In: The First World Congress on
Social Simulation (WCSS-2006), vol. 1, pp. 21-28 (2006)

Epstein, J., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom
Up. MIT Press (1996)

Hattori, H., Nakajima, Y., Ishida, T.: Learning from humans: Agent modeling with
individual human behaviors. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part A 41(1), 1-9 (2011)

Illenberger, J., Flotterod, G., Nagel, K.: Enhancing matsim with capabilities of
within-day re-planning. In: The IEEE Intelligent Transportation Systems Confer-
ence, pp. 94-99 (2007)

Kitano, H., Tadokor, S., Noda, H., Matsubara, I., Takahasi, T., Shinjou, A.,
Shimada, S.: Robocup rescue: search and rescue in large-scale disasters as a
domain for autonomous agents research. In: The IEEE Conference on Sys-
tems, Men, and Cybernetics, Tokyo, vol. VI, pp. 739-743 (October 1999),
citeseer.ist.psu.edu/kitano99robocup.html

Paruchuri, P., Pullalarevu, A.R., Karlapalem, K.: Multi agent simulation of unor-
ganized traffic. In: The 1st International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2002), pp. 176-183 (2002)

Raney, B., Nagel, K.: Iterative route planning for large-scale modular transporta-
tion simulations. Future Generation Computer Systems 20(7), 1101-1118 (2004)
Scerri, D., Hickmott, S., Padgham, L., Drogoul, A.: An Architecture for Modular
Distributed Simulation with Agent-Based Models. In: Ninth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-2010), pp.
541-548 (2010)

Yamamoto, G., Tai, H., Mizuta, H.: A Platform for Massive Agent-Based Simula-
tion and Its Evaluation. In: Jamali, N., Scerri, P., Sugawara, T. (eds.) MMAS 2006,
LSMAS 2006, and CCMMS 2007. LNCS (LNAI), vol. 5043, pp. 1-12. Springer,
Heidelberg (2008)

citeseer.ist.psu.edu/kitano99robocup.html

GAMA: A Simulation Platform That Integrates
Geographical Information Data, Agent-Based Modeling
and Multi-scale Control

Patrick Taillandier-2, Duc-An Vo2, Edouard Amouroux'?,
and Alexis Drogoul!?

'IRD, UMI UMMISCO 209,
32 avenue Henri Varagnat, 93143 Bondy, France
2 IFI, MSI, UMI 209,
ngo 42 Ta Quang Buu, Hanoi, Vietnam
voducanvn@yahoo.com, edouard.amouroux@ird.fr,
{patrick.taillandier,alexis.drogoul}@gmail.com

Abstract. The agent-based modeling is now widely used to study complex
systems. Its ability to represent several levels of interaction along a detailed
(complex) environment representation favored such a development. However,
in many models, these capabilities are not fully used. Indeed, only simple,
usually discrete, environment representation and one level of interaction (rarely
two or three) are considered in most of the agent-based models. The major
reason behind this fact is the lack of simulation platforms assisting the work of
modelers in these domains. To tackle this problem, we developed a new
simulation platform, GAMA. This platform allows modelers to define spatially
explicit and multi-levels models. In particular, it integrates powerful tools
coming from Geographic Information Systems (GIS) and Data Mining easing
the modeling and analysis efforts. In this paper, we present how this platform
addresses these issues and how such tools are available right out of the box to
modelers.

Keywords: Simulation platform, Agent-based modeling, Geographical vector
data, Multi-level control.

1 Introduction

The agent-based modeling has brought a new way to study the complex systems. It
allows to take into account different levels of interactions as well as the heterogeneity
of the entities composing the system.

Even if numerous simulation platforms exist, most of the complex models are still
developed from scratch. Indeed, very few platforms allow to directly work with
geographical vector data (series of coordinates defining geometries) and/or to define
multi-level models. Moreover, these platforms are often complex to use and their
understanding can require a time investment from the modeler that can be similar to
the one needed to develop a model from scratch.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 242 2012.
© Springer-Verlag Berlin Heidelberg 2012

GAMA: A Simulation Platform That Integrates Geographical Information Data 243

In this paper, we present the GAMA agent-based simulation platform [1], [2]. This
platform provides a complete modeling and simulation development environment for
building spatially explicit multi-agent simulations. Many models have already been
implemented using this platform (e.g. [3][4][5][6]). Its main advantages come from its
versatility (domain independent) and the simplicity to define a model with it. Indeed,
GAMA provides a rich, yet accessible, modeling language based on XML, GAML,
that allows to define complex models integrating at the same time entities of different
scales and geographical vector data.

The paper is organized as follow. In Section 2, we present the capabilities of
GAMA concerning the integration of geographical vector data. Section 3 is dedicated
to the presentation of its multi-scale modeling capabilities. In Section 4, we
investigate a way to couple the use of geographical data and multi-scale modeling.
Section 5 discusses about the contributions of this paper. At last, Section 6 concludes.

2 Integrating Geographical Vector Data in Simulation

2.1 Why Using Geographical Vector Data in Models?

These last years have seen the development on a large scale of geographical vector
datasets. Today, most of the decision makers use this type of data when they have to
face a problem integrating a spatial dimension.

In the context of simulations, using this type of data allows to make the simulations
closer to the field situation. In addition, it allows to use tools, like spatial analysis,
coming from Geographic Information Systems (GIS) to manage these data.

2.2 Use of Geographical Data in Models

If more and more models integrate geographical vector data, their use can take
different forms. In the following sections, we present three different ways of using
vector data, from the simplest (reading/writing of geographical data) to the most
complex (agentification of geographical data).

2.2.1 Reading and Writing of Geographical Vector Data
The most basic functions concerning the use of geographical vector data are the
reading and the writing of geographical data from files and from database. The goal is
to integrate seamlessly the vector data as the simulation’s environment (input) and to
store the resulting environment (output).

Once geographical vector data has been read, several uses can be made of them.
The most straightforward one consists in translating them as a grid where agents are
localized.

2.2.2 Using Geographical Vector Data as Background Layers
A more complex use consists in using these data as a “background layer” constituted
of geographical objects: the agents will be able to move according to this layer.

244 P. Taillandier et al.

For example, some agents will be able to move along a network of road, or inside a
complex polygon (e.g. inside a forest represented by a polygon.

This use requires the integration in the simulator of GIS specific primitives such as
moving an agent inside a geometry, computing a shortest path between two points of
this geometry (or on a network), etc.

2.2.3 Agentification of Geographical Vector Data

A richer ways of integrating geographical vector data in a model is to consider each
geographical object as an agent. Thus, a road will be an agent, a building or a city,
and each object contained in a geographical dataset will also be represented by an
agent. Remark that this kind of geographical data agentification was already used for
other application contexts such as cartographic generalization [7]. In the context of
simulation, the advantage of this approach is to give the possibility to manage
geographical objects exactly like other agents in the simulation: it will be possible to
give them an internal state and a behavior.

Reciprocally, it is possible to go further and to consider that every “spatialized”
(localized and with a geometry) agents of the simulation has a geometry and can be
viewed as a geographical object in a geographical dataset. In this way, the
management of agents and geographical objects is equivalent and trouble-free.
Indeed, no difference is made anymore between agents and geographical objects.

2.3 Geographical Vector Data in Existing Simulation Platforms

2.3.1 Simulation Platforms with Basic Support of Geographical Vector Data
Swarm [8] is a well-established simulation platform and inspiration for many others.
Its original version does not allow to integrate geographical vector data. However, a
library called Kenge [9] allows to load layers of geographical vector data. Practically,
this extension allows to create a cellular automata from a shape file. In addition, an ad
hoc access to geographical data has been developed for specific models (e.g. [10]).
Unfortunately, they do not provide any spatial primitives neither the possibility to
store the resulted environment.

Netlogo [11] is also a well-established simulation platform. It is largely used for
educational purpose and for research. The GIS support has been added recently
through an extension [12]. It allows import and export of vector data and support the
projection system (the method used to represent the geographical data on a plane).
The attributes of the vector data are made accessible as well as their geometrical
characteristics (centroid, list of vertex, etc.). Some basic geometrical operations are
also available (bounding rectangles, union of polygons, etc.). However, many more
advanced spatial analysis operation are not offered.

CORMAS [13] is a platform dedicated to the modeling in ecology and especially
the natural resources management where space representation and interaction is
essential. It proposes two environment modes: vector and raster. They share the same
organization of 3 classes «spatial entity», «agent», and «object». This organization,
though being rigid, ease the development of model by abstracting the interaction with

GAMA: A Simulation Platform That Integrates Geographical Information Data 245

environment, thus allows to switch from a discrete environment to a continuous (or
vector) one. Unfortunately, CORMAS provides only basic services for the discrete
environment. Moreover, GIS support is limited to loading and storing shapefiles (a
popular vector data format) and creating elementary areas. GIS primitives (union,
intersection, shortest path, etc.) and access to polygon attributes have to be
programmed.

In 2008, Urbani proposed the SMAG (portmanteau word from SMA-SIG or MAS-
GIS in English) architecture linking a GIS and MABS simulator for decision support
system. The author implemented it over CORMAS, calling it CORMGIS [14]. The
integration is relatively basic as access to geo-referenced data is done through a data-
connection to ArcGIS. In addition, no GIS primitive (union, intersection, etc) is
available.

2.3.2 Simulation Platforms with Advanced Support of Geographical Vector
Data
Repast J [15] is a modeling toolkit inspired by Swarm. As a toolkit, it provides a
structure with only basic services readily available. Different grids are implemented
(hexagonal or rectangular, torus or not, etc.) but agents are not (only an interface is
given). The GIS support is done through the OpenMap library. It provides the
minimal services of a GIS: importing/exporting shapefiles and raster data, some
geometrical operations, access to data attributes, etc. Nevertheless, as Repast J
provides access to OpenMap, the modeler can implement more complex operations.
Unfortunately, this programming is far from reach of the vast majority of modelers.
Repast Symphony (Repast S) [16] is the up-to-date version of the Repast toolkit. It
provides the same basic features as Repast J, but is based on a more advanced GIS
library, Geotools, which provides additional GIS services. In particular, Repast S
allows to directly model a network of lines as a graph and to compute the shortest
paths from one point to another. It allows as well to visualize and manage 3D data.
Nevertheless, the number of GIS operations available is still fairly limited and
localized agents are still to be programmed. More advanced operations have to be
programmed (using the Geotools librabry) which is again, evidently, far from reach
for many modelers.

2.4 Geographical Vector Data in GAMA

In order to address these shortcomings we developed the GAMA platform, which
goes much further by making available many more GIS services and operations and
especially an advance management of geographical vector data.

The first version of GAMA that was presented in [1] proposed the idea of using a
continuous environment to serve as a reference for all other environments (e.g. grid
environment). In this former version, all situated agents had a point for geometry. The
use of geographical vector data was very limited: there were just to initialize the
initial location of the agents and as a background layer.

If the new version of GAMA (GAMA 1.3) kept the same idea of a reference
environment, it goes further by providing a true geometry to all situated agents. This

246 P. Taillandier et al.

geometry, which is based on vector representation, can be simple (point, polyline or
polygon) or complex (composed of several sub-geometries).

The geometry of the agents can be defined by the modeler (a list of points) or
directly loaded from a shapefile. Indeed, GAMA allows to use geographical vector
data to create agents of a specific species (a prototype of agents that defines both the
agent internal state and their behavior): each object of the geographical data will be
automatically used to instantiate an agent, GAMA taking care of managing the spatial
projection of the data and, if necessary, of reading the values of the attributes.
Consequently GAMA considers localized agents and geographical objects in the exact
same way.

Example: the following GAML lines allow to create a set of building agents from
the shapefile shape_file_building.shp and to set the value of the attribute nature of
each created building agent according to the attribute NATURE of the shapefile:

<create species="building" from="shape_file_building.shp"
with="[nature:: read ‘NATURE’]"/>

Figure 1 gives an example of the agentification of 4 buildings from a shapefile.

14 Shapefile \

. 4 C:ﬁ
« |3

Nature

Residential —
Residential N g

Commercial

\ Residential /

Fig. 1. Example of geographical data agentification

Simulation (GAMA)

nature:
Residential

ture
Residential

o

wN| =

~

In the same way, GAMA allows to save a set of agents in a shapefile.

Example: the following GAML lines allow to save all the agents of the species
building in the shapefile shape_file_building.shp and to set the value of the attribute
NATURE of each geographical object according to the attribute nature of the agents:

<save species="building" to="shape_file_building.shp"
with="[nature:: ‘NATURE’']"/>

In order to ease the manipulation of the vector geometries, GAMA integrates different
GIS features that are directly available through the GAML language. Thus, GAMA
allows to:
e Compute the area and the perimeter of a geometry.

Example: The following GAML line allows to compute the area of the geometry of
the agent ag:

GAMA: A Simulation Platform That Integrates Geographical Information Data 247

<let name="the area" value="ag.area" />
e Test if two geometries intersect, touch, cross, overlap each other.
Example: The following GAML lines allow to test if the geometry of the agent that
is applying the action intersects the geometry geom:

<do action="interection" return="is_true">

<arg name="geometry" value="geom" />
</do>

e Compute the convex hull and the buffer geometry of a geometry (Figure 2).

Convex hull

w®| = o0
o

:> o —/3

Buffer -

Fig. 2. Example of convex hull and buffer actions

Example: The following GAML line allows to compute the convex hull of the
geometry of the agent that is applying the action:

<do action="convex_hull" return="result"/>

e Apply translation, rotation and scaling operations on a geometry (Figure 3).

o | = | pag

Scaling -

=% = I

Rotation

e | B

Translation o

Fig. 3. Example of scaling, rotation and translation actions

Example: The following GAML lines allow to rotate the geometry of the agent that
is applying the action with an angle of 90°:
<do action="rotation ">
<arg name="angle" value="90" />
</do>

e Compute the geometry resulting from the union, intersection or difference of two
geometries (Figure 4).

; Q‘ —y *
O Union
f.‘.’ E:> S
£ | Intersection
Difference b

Fig. 4. Example of union, intersection and difference actions

248 P. Taillandier et al.

Example: The following GAML lines allow to compute the difference between the
geometry geom; and the geometry geom,:

<do action="difference" return="result">
<arg name="geometryl" value="geoml" />
<arg name="geometry2" value="geom2" />
</do>
e Compute the distance between two geometries (minimal distance).
Example: The following GAML lines allow to compute the distance between the
geometry of the agent that is applying the action and the geometry geom:

<do action="distance_geometry" return="result">
<arg name="geometry" value="geom" />
</do>
e Compute the neighborhood of an agent, i.e. all the agents that are localized at a
distance lower than a given thresholds to the agent.
Example: The following GAML lines allow to compute the neighborhood of the
agent ag:
<let name="neighborhood" value="ag.neighbours_geometry "/>
e Compute a random point inside a geometry.
Example: The following GAML lines allow to compute a random point inside the
geometry geom:

<do action="place_in" return="result">
<arg name="geometry" value="geom" />
</do>

Initial geometry
(in black)

Delaunay
Triangulation

Fig. 5. Example of Tessellations (square and triangle)

e Compute the point of a geometry that is the closest to the agent location.
Example: The following GAML lines allow to compute the point of the geometry
geom that is the closest to the agent that is applying the action.

GAMA: A Simulation Platform That Integrates Geographical Information Data 249

<do action="closest_point_in" return="result">
<arg name="geometry" value="geom" />
</do>
e Apply a tessellation operation (square or triangle) on a geometry (Figure 5).
Example: The following GAML lines allow to compute the Delaunay triangulation
of the geometry (polygon) geom:

<do action="triangulation" return="result">
<arg name="geometry" value="geom" />
</do>
e Compute the skeleton of a geometry (Figure 6).

Initial geometry Skeleton
(in black)

Fig. 6. Example of Skeletonization

Example: The following GAML lines allow to compute the skeleton of the
geometry (polygon) geom:

<do action="skeletonization" return="result">
<arg name="geometry" value="geom" />
</do>
e Compute the shortest path (or the distance) inside a geometry (line network or
polygon) between two points located in the geometry. For this computation, our
approach consists in modeling the geometry as a graph, and in computing from it
the shortest path linking the two points. In the context of a line network, the
modeling as a graph is trivial. In the context of a polygon, this one is based on a
Delaunay triangulation of the geometry: each triangle resulting from the
triangulation is modeled as a node and an edge represents the fact that two triangles
are adjacent. Figure 7 shows an example of graph computation. Two algorithms are
implemented for the shortest path computation: Dijkstra [17] and Floyd Warshall
[18].
Example: the following GAML lines allow to move the agent that is applying the
action toward the point the_target, at a speed of 5 km/h, inside the geometry geom
(which can be a graph or a polygon):

<do action="goto">
<arg name="target" value="the_target" />
<arg name="speed" value="5 km/s" />
<arg name="geometry" value="geom" />

</do>

250 P. Taillandier et al.

b i

Initial geometry Resulting graph
m 5"
Initial geometry Triangulation Resulting graph

Fig. 7. Example of graph computation

3 Multi-scale Modeling

3.1 Context

Another advantage of the agent-based modeling approach is its representation
versatility. Indeed, an “agent” can represent any individual or aggregation/structure of
individuals of the reference system, at any spatial scale and across different time
horizons. Thus the modeler is free in her/his choice of the entities of the reference
system that will be represented by agents. This choice will depend on the level of
abstraction of the reference system the modeler is working with. This, in turn,
depends on the question he/she wants to answer with the model, on the data available
at hand, on the scale at which this data is described, etc.

In addition to the agent representing entities of the reference system, the modeler
can need to explicitly represent emergent structures. Indeed, during the simulation
stage (execution of the model), some structure can emerge: appearance of pheromone
trail built by ant [19], evolution of social group within a population [20], formation of
arches in granular environment [21], etc. These structures are often the result of non-
linear interactions between the agents defined in the model and can play a significant
role in the model dynamics. They can be considered as a higher level of abstraction
(upper scale) compare to the underlying agents composing them. It is important, if not
crucial, to be able to detect and to generate them dynamically (i.e. might simplified
the simulation run).

Current agent-based modeling platforms lack support in term of agent-based
modeling language to represent these structures as explicit entities in the model and
tools to detect them. Thus, modelers face difficulties when they need to represent
them and to follow their dynamics during the course of the simulation.

3.2 Multi-scale Modeling in GAMA

In GAMA, in order to let modelers dynamically track the emergence of dynamic
structures, we let them represent these structures as explicit entities in the model. We

GAMA: A Simulation Platform That Integrates Geographical Information Data 251

call these entities “emergent agents”. As regular agent, an emergent agent can have
attributes and behaviors. Beside, its instantiation depends on the appearance of certain
properties during the simulation and its life-cycle possesses some specific operations.

3.2.1 Representing Emergent Structure

The “creation” operation helps to specify when an emergent agent is instantiated.
This operation allows the modeler to express in an explicit way the rules governing
the instantiation of emergent agents during the simulation. For example, consider a
simulation of city dynamics: a modeler can decide to instantiate an emergent agent of
species building block when two or more building agents are close enough. Figure 8
illustrates this example: an emergent agent (building block) representing the emergent
structure is created with six micro-agents (building) as components.

oo . B

@ building agent
. building block agent

Fig. 8. Creation of an emergent agent (building block agent)

The ‘“‘update” operation describes how micro-agents are added to or removed
from an emergent agent. Some micro-agents may no longer satisfy a condition to
belong to an emergent agent, while others, still “free” may now fulfill it: this
operation allows to specify how these agents are added or removed from the structure.
The purpose of this operation is to keep the list of components up-to-date with respect
to the meaning of the emergent agent.

Figure 9 illustrates the “update” operation. It follows the example of city dynamic
simulation presented Figure 8. We consider that a building block agent composes of
three building agents. One building agent doesn’t satisfy the condition to belong to
the building block agent anymore. A free building agent satisfies the condition
to become a member of the building block agent. This operation helps the modeler to
remove one building agent from the building block agent and add one building agent
to the building block agent.

The “merge” operation allows the modeler to specify how several emergent
agents representing different structures can be merged into one unique emergent
agent. The fusion of their respective components then becomes the components of the
new unique emergent agent.

Figure 10 illustrates the “merge” operation using the same example as Figure 8 and
9. We consider a new building block agent (in yellow) has been created. This agent is
close enough to the existing building block agent (in green) to merge with it. The
resulting agent will be composed of the 5 building agents composing the two building
block agents.

252 P. Taillandier et al.

© building agent
. building block agent

Fig. 9. Update of an emergent agent (building block agent)

o

@)

Mergeg
©) ==

Q
o
g

© building agent
. building block agent

Fig. 10. Fusion of different emergent agents
The purpose of the ‘“disposal” operation is to express when an emerging

structure should not consider to be an agent in the simulation anymore. The emergent
agent representing the structure is cleared out of the simulation and its components

become free.
. Dispo saﬁ

&

® building agent
. building block agent

g

Fig. 11. Death of an emergent agent

Figure 11 illustrates the “disposal” operation. Following the example presented
Figure 10, we consider that three of the building agents composing the building block
agent died. Now, the remaining building agents are too far from each other to
compose a building block agent. Then, the building block agent is going to die.

GAMA: A Simulation Platform That Integrates Geographical Information Data 253

The top-down feedback control allows the modeler to describe which feedback
constraint an emergent agent is exercising on its underlying micro-agents. As
emergent agents usually emerge because of the interactions of certain micro-agents,
these agents have an influence on its attributes and behavior. Reciprocally, an
emergent agent may also provide a feedback on the behavior of its components, either
implicitly or explicitly. In order to describe it, the modeler needs to have some way to
alter the behavior of a micro-agent (by changing parameters, adding, or removing
entire behaviors) before and after it enters an emergent agent.

Typically, in our city dynamic simulation example, a building agent, once part of
building block agent, has more chance to attract residents to live in, and thus to lead to
construction of new buildings in the neighborhood (for example, shops).

3.2.2 Representing Emergent Agents in GAMA

An emergent agent is composed of constituent agents. Constituent agents can be
considered as micro-agents compared to the emergent agent. Reciprocally, the
emergent agent can be seen as a macro-agent compared to its constituent agents. In
turn, several emergent agents can be merged to form another emergent agent at a
higher level of abstraction. Thus, an agent in GAMA can play the role of macro-agent
in one level of organization and micro-agent in a higher level of abstraction. This
design aims at permitting the modeler to represent as many levels of abstraction as he
needs in his model. Figure 12 shows an example of abstraction level hierarchy for the
city dynamic simulation problem: a city agent is composed of a set of district agents
that are each composed of a set of building block agents that are at their turn
composed of a set of building agents.

. Cityagent

® Districtagents @]

Building block
agents .

(O} Building agents

o)

Fig. 12. Example of level of abstraction hierarchy

To manipulate the five specific operations in the lifecycle of an emergent agent
(create, update, merge, disposal, top-down constraint control), six GAML commands
are defined: creation, update, merge, disposal, enable and disable.

254 P. Taillandier et al.

e The creation command allows to specify when emergent agents are created in the
simulation.
Example: the following GAML lines create a building block agent which has for
components the building agent contained in the list list_buildings:

<creation>
<create with="[components::1list_buildings]"
species="building" />
</creation>
e The update command allows the modeler to define how the constituent micro-
agents are added and removed from an emergent agent.
Example: the following GAML lines update the components of the building block
agent that is applying this command by adding the building agents contained in
added_buildings and removing the ones contained in removed_buildings:

<update>
<set name="components" value ="components + added_buildings -
removed_buildings" />
</update>
e The merge command allows the modeler to define how several emergent agents are
merged.

Example: the following GAML lines allow to merge several building block agents
(the ones contained in the nearby_bb list) with the building block agent applying this
command. All the constituent building agents of the building block agents contained
in the nearby_bb list are added to the component list of the one applying the
command. Then, the other building block agents die (i.e. are removed from the
simulation):

<merge>
<loop over="nearby_bb" var="one_bb">
<set name="components" value ="components +
one_bb.components" />
<ask target="one_bb">
<do action="die">
</ask>
</loop>
</merge>
e The disposal command allows the modeler to specify when an emergent agent is
cleared out of the simulation.
Example: the following GAML line specifies that a building block agent will be
removed from the simulation if it contains less than two building agents:

<disposal when=" (length components) < 2"/>
e The disable command allows the modeler to disable certain behavior units
appropriately. While the enable command allows the modeler to enable the
inactive behavior units.
Example: the following GAML lines enable the behavior “expansion” and disable
the behavior “destruction” of the building agent one_building_agent:

GAMA: A Simulation Platform That Integrates Geographical Information Data 255

<ask target="one_building_agent">
<enable behavior="'expansion'">
<enable behavior="'destruction'">

</ask>

Note that GAMA provides several clustering algorithms (e.g. hierarchical clustering,
X-Means [22], Cobweb [23]) that can be used to dynamically detect if an emergent
agent has to be instantiate. For example, these algorithms can be used to detect groups
of close agents, or agents sharing some specific attributes.

Example: the following GAML lines allows to regroup the building agents
contained in the buildings list into a set of groups; each group being composed of
building agents of which the distance to each other is lower or equal to 10m:

<do action="simple_clustering_by_distance" return="groups">
<arg name="agents" value="buildings" >
<arg name="dist_max" value="10m" >

</do>

4 Coupling Geographical Vector Data and Multi-scale
Modeling

In Section 2.4, we presented the GIS capacities and in Section 3.2 its multi-scale
modeling capacities of GAMA. In this section, we investigate a way to couple the use
of geographical data and multi-scale modeling: we propose to decompose an agent
into a set of constituent agents on geometric basis. One of the main interests of such
decomposition is to improve the dynamicity of the special operations applied on the
agent.

Indeed, consider an agent with a geometry, which is used to constraint the
movement of other agents: for example, a road network agent on which some people
agents are moving, a forest agent in which animal agents are moving, etc.. Moving
agents on this geometry requires to compute a new graph from the geometry each
time it is modified. This computation can be very time consuming if the geometry is
complex. An approach to face this problem is to decompose the agent in a set of
constituent agents on a geometric basis: each constituent agent will represent a part of
the macro agent geometry (for example, a line in the context of line network, or a
triangle in the context of a polygon). Instead of computing the new graph each time
the geometry is modified, the complete graph will be computed only once and each
constituent agent will remember its role in the graph. Then, each time the macro agent
geometry is modified, it will locally update its list of micro agents (delete the micro
agents which geometry is no more part of the global geometry, create new ones if
necessary and modify the geometry of existing ones), and each micro agent will
update its role in the graph. Figure 13 gives an example, where a graph was already
computed for a geometry, and where the modification of the geometry has lead to a
local update of the graph.

256 P. Taillandier et al.

Triangulation Resulting graph

Sub-agents
update

= =

Initial geometry
|

Geomelry
maedification

A 4

Fig. 13. Example of a local modification of a graph

In GAMA, using such an approach can be easily achieved. Indeed, in Section 2.4,
we presented how GAMA allows to compute the square or triangle tessellation of a
geometry and a graph from a geometry. More-over, as seen in Section 3.2, GAMA
allows to define macro-agents (emergent agent). Thus, GAMA provides all the
features that are required to apply this approach.

5 Discussion

We see the contributions of this work as threefold:

1. There is a difference between an idea and its implementation. What we incorporate
into GAMA are implementations of ideas that may have been (or not) already
proposed by other people but rarely found their way into operational instances.
They are implemented into the platform and linked with the modeling language, so
that they can be used by anyone building a model in GAMA. In our point of view,
these implementations are contributions to the field, because they eliminate the
ambiguities and the lack of formalism often found in ABM/MAS contributions
and, most important, can be experimented.

2. Integrating existing techniques in a framework and enabling the researchers to
easily choose the most appropriate is a delicate exercise. In GAMA, we have
ensured that all the proposed techniques are tightly coupled, and that they are
usable even by novice users through GAML. This allows us to build, in the same
platform, simple models (a la NetLogo) alongside more complex models. Actually,
our efforts of integration tend to the point that there are no real differences between
a "simple" and a "complex" model. So, while it is true that, for instance, we did not
invent graph-related techniques, we believe we contribute to the field by providing
a way, for researchers, to use the most appropriate, transparently, into their models.

3. Following the previous point, we see GAMA as a contribution by itself, filling the
gap between NetLogo, interesting for prototyping small models, but which does
not scale well when it comes to real ones, and RePast, more a complete toolbox
than a platform. The fact, for instance, that every agent in GAMA is provided with

GAMA: A Simulation Platform That Integrates Geographical Information Data 257

a geometry, and that any environment can be discretized, means that researchers
can begin with a simple prototype (where agents are points on a grid, like in
Netlogo) to test the logic of a model, and turn this model into a more realistic one,
for example by loading data from a GIS base, without having to change anything to
the logic. This radically transforms the experimental processes of ABM.

6 Conclusion

In this paper, we present the new advance features included in the last version of the
GAMA platform (version 1.3)[2]. These features concern the use of geographical
vector data and the definition of multi-scale models.

This version of GAMA is already used in several projects related to different
application domains such as the avian flu local propagation in North Vietnam, the rift
valley fever in Senegal, the brown hopper invasion in South Vietnam, the effect of
emotions on waves of panic.

The next version of GAMA, version 1.4, is going to include a new integrated
development environment (IDE) with a new modeling language. The goal is to ease
the work of the modelers by providing a less extensive and easier to learn language.
This version will also include all the classic features provide by most of the modern
IDE (auto-completion, automatic detection of errors, etc.). In addition, we plan to
improve the integration of the approach proposed in Section 4. Practically, for the
moment, the use of this approach with GAMA is still complex and require much
GAML code. Methods allowing to automate this approach are required.

References

1. Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: An Environment for
Implementing and Running Spatially Explicit Multi-agent Simulations. In: Ghose, A,
Governatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS, vol. 5044, pp. 359-371.
Springer, Heidelberg (2009)

2. GAMA platform, http://gama-platform.googlecode.com

3. Amouroux, E., Desvaux, S., Drogoul, A.: Towards Virtual Epidemiology: An Agent-
Based Approach to the Modeling of HSN1 Propagation and Persistence in North-Vietnam.
In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357,
pp. 26-33. Springer, Heidelberg (2008)

4. Nguyen Vu, Q.A., Gaudou, B., Canal, R., Hassas, S.: Coherence and robustness in a
disturbed MAS. In: IEEE-RIVF, Danang, Vietnam. IEEE (2009)

5. Chu, T.Q., Drogoul, A., Boucher, A., Zucker, J.: Interactive Learning of Independent
Experts’ Criteria for Rescue Simulations. Journal of Universal Computer Science 15(13),
2701-2725 (2009)

6. Taillandier, P., Buard, E.: Designing Agent Behaviour in Agent-Based Simulation
Through Participatory Method. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.)
PRIMA 2009. LNCS, vol. 5925, pp. 571-578. Springer, Heidelberg (2009)

258

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

P. Taillandier et al.

Ruas, A., Duchéne, C.: A prototype generalisation system based on the multi-agent system
paradigm. In: Generalisation of Geographic Information: Cartographic Modelling and
Applications, pp. 269-284. Elsevier Ltd. (2007)

Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The Swarm Simulation System: A
Toolkit for Building Multi-Agent Simulations, SFI Working Paper 96-06-042 (1996)

Box, P.: Spatial Units as Agents. In: Integrating GIS and Agent-Based Modelling
Techniques, Oxford (2002)

Haklay, M., O’Sullivan, D., Thurstain-Goodwin, M., Schelhorn, T.: So Go Downtown:
Simulating Pedestrian Movement in Town Centres. Environment and Planning B: Planning
and Design 28(3), 343-359 (2001)

Wilensky, U.: NetLogo. In: Center for Connected Learning and Computer-Based
Modeling. Northwestern University, Evanston (1999),
http://ccl.northwestern.edu/netlogo/

Russell, E., Wilensky, U.: Consuming spatial data in NetLogo using the GIS Extension. In:
The Annual Meeting of the Swarm Development Group, Chicago, IL (2008)

Bousquet, F., Bakam, 1., Proton, H., Le Page, C.: Cormas: common-pool resources and
multi-agents systems. In: IEA/AIE, vol. 2, pp. 826-837 (1998)

Urbani, D., Delhom, M.: Analyzing Knowledge Exchanges in Hybrid MAS GIS Decision
Support Systems, Toward a New DSS Architecture. In: Nguyen, N.T., Jo, G.-S., Howlett,
RJ., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS (LNAI), vol. 4953, pp. 323-332.
Springer, Heidelberg (2008)

North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the
Repast Agent Modeling Toolkit. ACM Transactions on Modeling and Computer
Simulation 16(1), 1-25 (2006)

North, M.J., Tatara, E., Collier, N.T., Ozik, J.: Visual Agent-based Model Development
with Repast Simphony. In: Conference on Complex Interaction and Social Emergence
(2007)

Dijkstra, E.-W.: A short introduction to the art of programming. Technological Univ.
Eindhoven, Rep. EWD316 (1971)

Floyd, R.W.: Algorithm 97: Shortest Path. Communications of the ACM 5(6), 345 (1962)
Camazine, S., et al.: Self-Organization in Biological Systems. Princeton University Press,
Princeton (2001)

Schelling, http://web.mit.edu/www/lab/alife/schelling.html

Breton, L., Zucker, J.-D., Clément, E.: A Multi-Agent Based Simulation of Sand Piles in a
Static Equilibrium. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI),
vol. 1979, pp. 108-118. Springer, Heidelberg (2001)

Pelleg, D., Moore, A.W.: X-means: Extending K-means with Efficient Estimation of the
Number of Clusters. In: International Conference on Machine Learning, pp. 727-734
(2000)

Gennari, J.H., Langley, P., Fisher, D.: Models of incremental concept formation. Artificial
Intelligence 40, 11-61 (1990)

Ao Dai: Agent Oriented Design
for Ambient Intelligence

Amal El Fallah Seghrouchni!, Andrei Olaru®?*,
Nga Thi Thuy Nguyen!:3, and Diego Salomone!

! Laboratoire d’Informatique de Paris 6, University Pierre et Marie Curie,
4 Place Jussieu, 75005 Paris, France
2 Computer Science Department, University Politehnica of Bucharest,

313 Splaiul Independentei, 060042 Bucharest, Romania

3 Institute of French-Speaking Countries for Informatics,
42 Ta Quang Buu, Hanoi, Vietnam

ngaagn@gmail.com, amal.elfallah@lip6.fr,cs@andreiolaru.ro,
diego.salomone@sma.lip6.fr

Abstract. In this paper we present mobile Multi-Agent Systems (MAS)
as a specific paradigm to design intelligent and distributed applications
in the context of Ambient Intelligence (Aml). We discuss how mobility,
coupled with MAS, can be useful to meet the requirements of Aml. In-
deed, the main features of mobile MAS, such as natural distribution of
the system, inherent intelligence of the agents, and their mobility help to
address a large scope of distributed applications in the domain of AmlI.
Other features of MAS, like multi-agent planning, context-awareness and
self-adaptation are also very useful to bring an added value to AmlI ap-
plications. They allow the implementation of both intelligent and col-
laborative agent behavior. This paper presents the Ao Dai project, that
employs the mobile MAS paradigm, and serves as a prototype Aml en-
vironment. We also illustrate the functioning of the application through
a scenario of user guidance in a smart environment.

Keywords: Ambient Intelligence, Mobile Multi-Agent Systems,
Context-Awareness.

1 Mobile Multi-Agent Systems

A Multi-Agent System (MAS) is an organization of a set of autonomous and
potentially heterogeneous agents acting in a shared and dynamic environment.
MAS represents (e.g. manages, models and / or simulates) physical systems (in
robotics) or, more often, software systems. The MAS keystone is the double
inference mechanism that is used by the agents. Agents, unlike other design
paradigms such as objects or components, distinguish the level of task comple-
tion (or problem solving) from the level of solution control. Thus, they may act,

* This author is a PhD student in cotutelle between University Politehnica of
Bucharest and University Pierre et Marie Curie.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 259 2012.
© Springer-Verlag Berlin Heidelberg 2012

260 A. El Fallah Seghrouchni et al.

observe their actions and change their own course of action. Agents have specific
properties such as autonomy (an agent controls its condition and its actions re-
gardless of any outside intervention); reactivity (an agent senses its environment
and reacts to its changes); pro-activity (an agent tends to generate and achieve
goals all by itself); and sociability (an agent interacts with other agents in the
system). Within a MAS, agents interact to achieve cooperative (e.g. distributed
problem solving) or competitive (e.g. coalition formation, auction) group be-
havior. Finally, a MAS is deployed in a environment that impacts its dynamic
behavior.

The agent-based paradigm is particularly appropriate for the implementation
of Ambient Intelligence [6/T6], because agents offer features that originate from
the field of Artificial Intelligence and that are vital to the needs of Ambient
Intelligence [I1]. Autonomy is useful because individual devices in an Ambient
Intelligence environment must be able to act on their own, without the need for
user intervention or permanent control from centralized components. Learning
can serve to adapt to the user’s habits. And reasoning — as well as the capability
to make plans — is what makes a system appear intelligent to the user.

The agent-oriented paradigm is also useful in modeling real-world and social
systems, where optimal solutions are not needed and problems are solved by
cooperation and communication, in a fully distributed fashion [I1]. Currently,
several agent-oriented programming languages exist [2], that allow the program-
mer to describe an application only by specifying the behaviour of individual
agents.

Such an agent-oriented programming language is CLAIM, that also features
a deployment platform for agents, called Sympa [14]. In CLAIM, each agent has
a knowledge base, offers to the exterior a certain number of capabilities and is
capable of both reactive (by means of rules) and proactive behaviours. More im-
portantly, the multi-agent system has a structure that is inspired from ambient
calculus [3]: agents are placed in a hierarchical structure and an agent can have
another agent as parent, as well as several other agents as children. Agents in
CLAIM are mobile — they are able to change the host on which they are execut-
ing, and they are also able to change their place in the hierarchical structure.
Moreover, when an agent moves, its children move with it automatically.

Mobility means that agents can move (or migrate) within the organization
of their associated MAS. In our framework, migration allows for dynamics that
cover several aspects:

— the structure of the MAS (the organization of agents) may change over time
due to openness (arrival and departure of agents) and to the evolution of
functional requirements (creation / removal of agents).

— the dynamics of acquaintances between agents may appear (arrival or cre-
ation of agents), others may disappear (departure or removal of agents)
and / or change (e.g. for mobile agents).

— the environment of the MAS may change which requires that agents perceive
the changes and take them into account incrementally.

Ao Dai: Agent Oriented Design for Ambient Intelligence 261

It is the hierarchical structure of CLAIM, as well as the strong mobility that it
offers, that makes it especially appropriate for the implementation of an Ambi-
ent Intelligence system. That is because CLAIM makes it easier to implement
context-awareness. An agent’s ambient — formed by itself and all if its children
— can represent a context. Agents can represent smart places, can manage smart
devices, or can offer services.

The next section discusses several aspects in the implementation of Ambient
Intelligence, like context awareness and representation. Section [l describes the
scenario and the implementation of the Ao Dai project — a proof-of-concept
Ambient Intelligence systems implemented in CLAIM. The last section draws
the conclusions.

2 Context-Awareness

One of the central features that makes distributed systems ”intelligent” is context
awareness. One of the definitions of context is the set of environmental states
and settings that either determines an application’s behaviour or in which an
application event occurs and is interesting to the user [4]. One important point
in the above definition is the relevance to the user. Either an event must be rel-
evant to the user, or the application’s behaviour must change so that it becomes
relevant to the user. Context-awareness is the characteristic of an application
that makes it change its behaviour depending on, and according to, context.

Research in the domain of context awareness has shown that there are many
aspects of context. One classification of context [4] divides it into computational
context — available computing and networking resources, including the cost for
using them; user context — user’s profile, location, people and objects nearby,
social situation; physical context — light and noise levels, temperature, traffic
conditions, etc; and time context — the current time coordinate of the user and
related information (like the season, for instance). Context can be further clas-
sified [5] as primary — sensed directly by sensors and specialized devices — and
secondary — which is inferred from the primary context.

If many authors consider context as merely a set of sensed values [II[7], a par-
ticularly interesting approach to context-awareness is taken by Henricksen et al
[819], that model context as associations between entities or between entities and
attributes, where an entity can be a person, a place, a communication device,
etc. These associations can be of different types: static — associations that remain
fixed for the lifetime of the entity; dynamic and sensed — obtained from sensors,
usually transformed afterwards, changing frequently and subject to sensing er-
rors; dynamic and derived — information that is inferred, usually from sensed
or static associations; dynamic and profiled — introduced explicitly by the user,
leading to greater reliability, but also subject to staleness.

In a context-aware system, there are several layers that deal with context
information. One possible organization [I5] uses three layers: data acquisition,
data interpretation and data utilization. However, considering that much context
information is volatile (e.g. user’s location and time), a context-aware system
must also feature components for the degradation of context information.

262 A. El Fallah Seghrouchni et al.

Another important point in context-aware applications is the representation
of context information. The choice of the representation technique is closely
related to the system itself but some approaches are more appropriate to the
field of Aml, like ontology-based models. This technique is the most promising
for context modeling in ubiquitous environments [13]. It combines the assets of
logic-based models and object-oriented technology [10], showing a higher level
of robustness and expressiveness with the possibility of semantic representation.

In Aml systems, the heterogeneity of entities makes the global context repre-
sentation more difficult due the differences between the context models of each
agent. The ontology-based approach allows the different representations since it
permits the agents to compare and share information. We need to process the
information to compare the similarities between the possible representations to
eventually arrive at a common understanding [I2]. To avoid this problem, the
most part of the implemented projects of Ubiquitous Computing usually work
with a smaller part of a bigger scenario. For the sake of simplicity, they cover a
closed environment with a global ontology as the base for context representation.

The main drawback of this approach is the definition of a centralized and
universal ontology to be used by the system and all of its agents. In open AmlI
applications, the sensing capacity and incoming agents may change over time,
affecting the system’s needs. Thus, the MAS should be able to absorb, in some
way, the new ontology information and, also, provide tools for the new agents’
communication. This distributed ontology issue is an active research domain in
part because of the Semantic Web [requirements.

3 Ao Dai Project

3.1 Ao Dai Project Scenario

In this project, we have studied several scenarios including the following (see also
Figure[Dl): a user has a meeting in a building that he / she does not previously
know. When arriving at the right floor, the user’s PDA automatically connects
to a local wireless access point. A CLAIM agent executes on the user’s PDA
— we will call this agent PDA. Another agent executes on a local machine and
manages the context of the building’s floor — call it Floor. Floor detects the
presence of the user’s PDA, and instructs the PDA agent to move in the agent
structure and become a child of Floor. The movement is only logical: the agents
keep executing on the same machines as before.

When PDA enters the floor, Floor also spawns a new agent — called Navigator
— and instructs it to move as a child of PDA. This time, the movement is not
only logical: Navigator is a mobile agent that actually arrives on the user’s PDA
and will execute there for all the time during which the user is on the floor.
The Navigator can provide PDA (and, inherently, the user) with a map of the
floor, can translate indications of the floor’s sensors (sent to Navigator by Floor,
and through PDA) into positions on the graphical map, and can calculate paths

! Semantic Web: http://www.w3.org/2001/sw/

Ao Dai: Agent Oriented Design for Ambient Intelligence 263

Floor
5. search

4. search

o’ - ‘.‘ o
. NS
PDA| .) RS
X, 2. find path
s AN, 3. show map
A S, T
3 N { Screen
\\ /
- \ /
6. move to PDA \\ 8. r/r)bve to PDA
PDA Sereen - agenda PDA Screen agenda “ Navigator /"

S

(a) (b)

Fig. 1. Sequences of messages exchanged between agents: (a) Floor announces PDA of
its new position, and instructs it to move as its child, then creates a Navigator that
will offer services to PDA; (b) Agenda announces a new meeting, PDA asks a path
from Navigator, which in turn requires a larger screen — which is searched on the floor,
and found, then Screen moves as a child of PDA

between the offices on the floor. Navigator is an agent that offers to the user
services that are available and only makes sense in the context of the floor.

For displaying the map, PDA may detect that its screen is too small too
appropriately display the map, so PDA will proactively initiate the search for a
larger screen in the nearby area. The search can have several criteria: the space
in which the search will take place (the current office, a nearby office, the whole
floor), the range in which to search, and the minimal size of the searched screen.
Devices are searched by the capabilities they offer — in this case the display
capability is needed. PDA sends the query to its parent — Floor — which in turn
locates among its children an agent Screen, that manages a physical screen that
fits the requirements: it is located near the user and it is available. Screen answers
the query and PDA asks it to move to become its child. Being a child of PDA
also marks the fact that Screen is in use by the user, and PDA gains control over
the displayed information. Agent Screen may either run on the actual intelligent
screen, or may only manage the screen while being executed on a server. When
the user moves farther from the screen, the PDA will detect that the context
is no longer compatible and will free Screen, which will return to be a child of
Floor.

3.2 Implementation

In the Ao Dai project, we have implemented a prototype of multi-agent sys-
tem that handles several aspects of context-awareness, like user’s location, avail-
able resources and user preferences. We have based ourselves in an extension
of the scenario defined above. The project has been developed by Thi Thuy
Nga Nguyen, Diego Salomone Bruno and Andrei Olaru, under the supervision
of Prof. Amal El Fallah Seghrouchni.

The prototype is implemented in CLAIM and executes on the Sympa plat-
form. It features several types of agents: Site, which is used for "smart” places
like Floor and Office; PDA, which directly assists the user from his personal

264 A. El Fallah Seghrouchni et al.

/[;;
Fig. 2. The map shown by different screens in Ao Dai. There are three Site agents:
Floor and two Office agents. Each one has a child of type Screen, representing the

screens in the different places. The user starts on the floor (1) then moves to one office
(2) and then to the other (3).

device; Navigator and Agenda, which offer services to the user; and Screen,
which represents a ”smart” device with the capability of displaying information.

The prototype has been demonstrated during the 5th NII-LIP6 Workshop
held on June 21-22 in Paris, France. The prototype was run on 2 machines. The
Floor agent (of type Site) ran on one machine, and two Office agents (also of
Site type) ran on the other machine. The floor and the two offices all featured
screens of different sizes, managed by Screen agents (see Figure 2]). During the
demonstration, a PDA agent entered the floor, becoming a child of the Floor
agent. A Navigator was created and sent to PDA. When the time of the meeting
approached, Agenda announced PDA, which asked Navigator to find the path to
the right office. PDA also searched for a larger screen, and found one near to the
user, and automatically used it to display the map and the path. When the user
— together with the PDA — moved to an office, the screen was freed and PDA
with all children (Agenda and Navigator) moved to the other machine. There,
the user explicitly requires a large screen, and PDA finds an appropriate one in
the next room, and announces the user. The user then moves to the other office
and PDA and all of its children move to become children of the agent managing
that office. To simulate the interaction between the user and his personal agent
PDA, an interface was created in Java (see Figure [2).

3.3 Programming in CLAIM

As an agent-oriented programming language, CLAIM [I4] eases the task of im-
plementing MAS. Tt works on top of Java, giving direct access to Java resources
if needed. This language is based on explicit declaration of agent’s characteris-
tics. The following code shows a part of the definition of agent PDA in the Ao
Dai project.

defineAgentClass PDA(?w,?h,?z;,7y;){
authority = null;
parent = null;

Ao Dai: Agent Oriented Design for Ambient Intelligence 265

knowledge = {location(?z;,?y;); type(1);}

goals = null;

messages = null;

capabilities = {

message = PDAatLoc (?name,?Tnecw Ynew) ;

condition = null;
do{send(this,migrateTo(?name))}
effects = null;

}
migrate{
message = migrateTo(?name) ;
condition = not(Java(PDA.isParent(this,?name)));
do{send(this,remove0ldNavi(?name))
.moveTo (this, ?name) .send(this,demandNavi(?name))}
effects = null;
}

processes = {send(this,starting())}
agents = null;

}

When the agent PDA (the PDA is initially characterized by its location and
the size — w, h — of its screen) receives a message about its new location, it
will execute the action ”migrate”. In this action, it checks if its actual location
is already the location in the message (the variable ?name). If it is, the agent
ignores the message. Otherwise, it moves to the new site by calling the function
"moveTo()”. If the new site is located in another computer in the network, the
agent and its children will migrate to the new computer.

These characteristics are used to build the hierarchical relationship between
agents in CLAIM. As a result, the MAS will be a set of hierarchies distributed
over a network [I4]. In the Ao Dai project, the agents of type Floor and Office
ran on different machines to simulate the agents’ migration.

The developer, in this case, need not to worry about the code migration and
registration problems that may arise. The language takes care of it, concentrating
the agents’ information on the Administration System (see Figure[3)). To address
the security issues concerning mobile code, CLAIM offers some features like the
agent’s authority validation. The language also allows the developer to decide if
an agent must have some special access or if an agent must have some resource
denied. The sum of these features creates a powerful platform to the development
of agent-oriented mobile applications.

3.4 Ao Dai Agents

The given scenario has three major types of agents: Site agent (Floor, Office),
Device / Service agent (Navigator, Agenda, Screen) and PDA agent. The latter
with the specific role of representing the user during the simulation.

266 A. El Fallah Seghrouchni et al.

Campus

Room
Device

Device PDA Device
(b)

Fig. 3. System distribution in CLAIM: (a) Distribution over the network with each
system deployed on a different machine; (b) An example hierarchy in Ao Dai.

— The Site agent is used to determine the physical relationship between the
agents. It means that an Office agent is a child of a Floor agent only if it is
physically located on the given floor.

— The Service (or Dewvice) agent has the capability to offer to the other agents
some specific service. It may be in a direct or indirect way, like showing some
information on the screen or advising other agents of the user meeting.

— The PDA agent works like a personal device that follows the user through
his tasks. The most important features of this agent are that the PDA moves
physically with user and has the CLAIM capability of managing requests for
services or devices. It also stores the user’s preferences.

3.5 Context Representation in Ao Dai

Location is, notably, the most used type of context in applications [5], because
it reflects an important set of physical contents. In the Ao Dai project, besides
location, we also consider, as part of the user’s context, the available computing
resources around him and his preferences.

In the first version of this project, the context is directly sensed (in a simu-
lated manner) by the PDA and the Site Agents, but it is known that, in real
applications, an additional layer is needed to capture the sensor information and
translate it in useful data.

The context-awareness in Ao Dai is done by exploiting the particular hier-
archical agent structure that is offered by the CLAIM language. In CLAIM it
is very easy for the developer to instruct agents to move from one parent to
another, and an agent moves automatically along with its entire sub-hierarchy
of agents. This resembles the mobile ambients of Cardelli [3] and is an essen-
tial advantage when implementing context-awareness. That is because agents,
while representing devices or locations, can also represent contexts, allowing the
developer to describe, in fact, a hierarchy of contexts.

For example, when the user is inside a room, its PDA agent is a child of the
respective Site agent. The children of PDA — devices or services — are also in the

Ao Dai: Agent Oriented Design for Ambient Intelligence 267

same context. When the user moves to another room, the PDA agent changes
parent and, along with it, its children move as well, therefore changing context.
Some devices may not be able to move along with the user (e.g. fixed screens,
etc.) so they will determine that the new context is incompatible with their
properties, moving away from PDA.

But context is not only about location, and the hierarchical structure that
is offered by CLAIM can be used for easy implementation of other types of
context. One of them is computational context. When the user uses a service, a
Service agent is created and becomes a child of PDA. It is easy for the service to
interrogate its parent in order to find out more about its capabilities. Conversely,
it is easy for PDA to check on its children — Services or Devices — in order to
find the resources and capabilities that the user is able to use.

One last type of context that is handled in Ao Dai is user preferences. The
user is able to input preferences on the capabilities of devices that it needs
to use. These preferences are then integrated in the queries that are launched
by the PDA (see Section BI]). While the structure offered by CLAIM is not
directly useful for this aspect, the preferences help find not only the closest device
with the required capability, but also the closest device that fulfills certain user
requirements. Preferences can also be used to limit the range of the search, which
is meaningful from the context-aware point of view: a Device that is closer in
the agent hierarchy also shares more context with the user.

3.6 Interaction Protocol

In a highly distributed Aml environment, a good representation of context and
context-related relations between devices means that most of the communication
will happen only at a local level, within the structure formed by these relations.
In Ao Dai, the CLAIM agent hierarchy facilitates this: agents sharing a parent
share a context.

To preserve the hierarchy, agents interact only with their parent and their
children. Take for example the search for devices (see Figure [l). When agent
PDA wants to search for a device with a certain capability and certain criteria,
it must send a request to its parent, for example agent Floor. Once the request
is received, agent Floor searches itself to see if it has the requested capability
and satisfies the criteria. If it does, Floor answers immediately to agent PDA,
in the other case, it searches in all of its children (if any) except the agent who
invoked the search (agent PDA). After all of its children have answered, agent
Floor checks if there are one or more children that have the capability requested
and satisfy the criteria. If it has a confirmation answer, it sends the search result
which contains the information about the found device(s) to agent PDA and the
search is finished. If not, agent Floor has to search in its parent (if any). After
the parent has answered, agent Floor sends the search result to agent PDA and
finishes the search. The process is executed recursively. User preferences can be
used to limit the range of the search to closer contexts.

The advantage of using such a protocol in conjunction with mapping context
over the agent hierarchy is that the search will usually end very quickly, assuming

268 A. El Fallah Seghrouchni et al.

the user will most times ask for devices that are likely to exist in his context. The
search is executed in the current context first, and then in the parent context
and sibling contexts.

4 Conclusion

In this paper we have discussed the use of Mobile Multi-Agent Systems for Am-
bient Intelligence. Features like distribution, inherent intelligence of the agents,
and mobility make MMAS a natural solution for the problems raised in the im-
plementation of Ambient Intelligence environments. Other features of MAS, like
multi-agent planning, collective learning and adaptation bring added value by
allowing intelligent collaborative behaviour.

Additional challenges that MAS have to deal with in the context of Ambient
Intelligence are issues like context-awareness, anticipation and user modeling.
The paper discusses some of these issues and then presents the Ao Dai project,
a prototype Aml environment, implemented as a multi-agents system, using the
agent-oriented language CLAIM.

Ao Dai project is a preliminary work that will serve as a foundation of an
international collaboration between four teams [.

The prototype has been developed as a proof of concept and gave promis-
ing results. It shows that the hierarchy of the CLAIM language is very useful
to capture different aspects of context-awareness. CLAIM also provides native
primitives that allow agents to move — in a single step — between contexts, while
their own context follows their movement.

As future steps in our research, integration of better mechanisms of antic-
ipation, more types of contexts and improved context representation into the
project will bring it closer to dealing with realistic requirements.

References

1. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. In-
ternational Journal of Ad Hoc and Ubiquitous Computing 2(4), 263-277 (2007)

2. Bordini, R.H., Braubach, L., Dastani, M., El Fallah-Seghrouchni, A., Gémez-Sanz,
J.J., Leite, J., O’'Hare, G.M.P., Pokahr, A., Ricci, A.: A survey of programming
languages and platforms for multi-agent systems. Informatica (Slovenia) 30(1), 33—
44 (2006)

3. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177-213
(2000)

4. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Tech-
nical Report TR2000-381, Dartmouth College (November 2000)

5. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-
awareness. In: CHI 2000 Workshop on the What, Who, Where, When, and How of
Context-Awareness, pp. 304-307 (2000)

2 MAS team from Paris 6, AIMAS from Politehnica of Bucharest, IFI form Hanoi and
PUC-Rio from Brazil.

10.

11.

12.

13.

14.

15.

16.

Ao Dai: Agent Oriented Design for Ambient Intelligence 269

. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.: Scenarios

for ambient intelligence in 2010. Technical report, Office for Official Publications
of the European Communities (February 2001)

. Feng, L., Apers, P.M.G., Jonker, W.: Towards Context-Aware Data Management

for Ambient Intelligence. In: Galindo, F., Takizawa, M., Traunmiiller, R. (eds.)
DEXA 2004. LNCS, vol. 3180, pp. 422-431. Springer, Heidelberg (2004)

. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing ap-

plications: Models and approach. Pervasive and Mobile Computing 2(1), 37-64
(2006)

. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling Context Information in

Pervasive Computing Systems. In: Mattern, F., Naghshineh, M. (eds.) PERVA-
SIVE 2002. LNCS, vol. 2414, pp. 167-180. Springer, Heidelberg (2002)
Krummenacher, R., Lausen, H., Strang, T., Kopecky, J.: Analyzing the modeling
of context with ontologies. In: International Workshop on Context-Awareness for
Self-Managing Systems (2007)

Ramos, C., Augusto, J.C., Shapiro, D.: Ambient intelligence - the next step for
artificial intelligence. IEEE Intelligent Systems 23(2), 15-18 (2008)

Sansonnet, J.-P.; Valencia, E.: Terminological heterogeneity between agents using
a generalized simplicial representation. In: Gleizes, M.P., Kaminka, G.A., Nowé,
A., Ossowski, S., Tuyls, K., Verbeeck, K. (eds.) EUMAS, pp. 363-374. Koninklijke
Vlaamse Academie van Belie voor Wetenschappen en Kunsten (2005)

Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Ad-
vanced Context Modelling, Reasoning and Management as Part of UbiComp, pp.
1-8 (2004)

Suna, A., El Fallah Seghrouchni, A.: Programming mobile intelligent agents: An
operational semantics. Web Intelligence and Agent Systems 5(1), 47-67 (2004)
Viterbo, J., Mazuel, L., Charif, Y., Endler, M., Sabouret, N., Breitman, K., El Fal-
lah Seghrouchni, A., Briot, J.P.: Ambient intelligence: Management of distributed
and heterogeneous context knowledge. In: Ambient Intelligence: Management of
Distributed and Heterogeneous Context Knowledge. CRC Studies in Informatics
Series, pp. 1-44. Chapman & Hall (2008)

Weiser, M.: The computer for the 21st century. Scientific American 272(3), 78-89
(1995)

Probabilistic Approaches
to Tag Recommendation
in a Social Bookmarking Network

Oly Mistry and Sandip Sen

University of Tulsa
800 South Tucker Avenue
Tulsa, OK 74104, USA
{oly-mistry,sandip}@utulsa.edu

Abstract. Tagging has become increasingly popular with the explosion
of user-created content on the web. A ‘tag’ can be defined as a group
of keywords that makes organizing, browsing and searching for content
more efficient. Users apply tags to a variety of web-based, shareable con-
tent including photos, videos, news articles, bookmarks, friends, etc. Tag
suggestions for blog posts or web-pages have changed the focus of the
tagging process from generation to recognition, thus making it less time
and effort intensive. We propose tag recommendation algorithms for per-
sonalized agents, that recommend tags for bookmarks stored in a popular
social bookmarking website, Del.ici.ous [6]. Our tag recommender agents
learn to classify the tags according to their semantic similarity based on
collaborative tagging by the users. Hence this approach can be used to
facilitate folksonomy formation for the social network. In this paper, we
first empirically verify our hypothesis that web pages with similar con-
tent are tagged with similar tags. We compare both Content-based and
Collaborative approaches to recommend tags to the users. We analyze
the performance of two probabilistic approaches to recommend tags from
users with similar tagging behavior.

1 Introduction

Tags are labels or keywords associated with items that facilitates organizing,
browsing and searching for information [I7]. Tags are used for diverse items
including photos, URLs, blogs, etc. The use of tag suggestions for blog posts
or web-pages has changed the focus of the tagging processes from generation to
recognition, thereby making tagging less time and effort intensive [§]. In addition
to this immediate tangible benefit of tag recommendation, it has greater impact
on online information distribution and sharing. Efficient tag recommendation
algorithms can also facilitate emergence of folksonomies for a web-environment,
e.g., blog and bookmark sharing.

Researchers have posited that tagging bridges the gap between browsing and
searching [2I]. When a web-environment allows free-form tagging for articles, it
creates the possibility of formation of Tag-Clouds [5]. A Tag Cloud represents

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 270[287 2012.
© Springer-Verlag Berlin Heidelberg 2012

Probabilistic Approaches to Tag Recommendation 271

the popularity of different tags based on their frequency of use. This is the most
primitive building block for folksonomy formation in a collaborative web environ-
ment. Folksonomy is viewed as a type of classification achieved by collaborative
effort. T. Vander [19] describes folksonomy as “result of personal free tagging
of information and objects for one’s own retrieval”. This collaboration is driven
by the bias of the user pool. Using tag recommendations from the system will
provide an added measure to facilitate the emergence of folksonomy. It will also
provide consistent definition and scope for particular tags.

The magnitude of information content including social bookmarking makes
the tag recommendation problem significantly harder. Another challenge for
building tag recommendation systems is the limited access to data in these do-
mains. Fortunately, the Del.ici.ous website allows extensive data access.

We propose a personalized agent based system for recommending appropriate
tags to users in the online bookmarking website, Del.ici.ous. Users can apply
any tag(s) to classify these bookmarks. These bookmarks can also be used for
searching by other users in the social network. Users typically tag the saved
bookmarks for easy access and retrieval. We develop tag recommender agents
that are dedicated to each user and maintains a history of bookmarks tagged by
the user with the list of tags for each such bookmark, thereby, learning users’
tagging behavior. We assume that there is a central repository that stores the
bookmarks in the system and the users who tagged them. Each user agent can
query this repository to get a list of other users who has tagged a particular
document, and then can query the agents of those users to get the tag lists for
that document. Then it uses collaborative filtering mechanism to recommend
tags to the user. We suggest two variations of collaborative filtering for these tag
recommender agents to recommend tags to users.

In one approach we directly estimate the probability of one user using a tag
given other users using that same tag for a common URL or document. In
the other approach, we compute the likelihood that a user is going to use a
tag depending on the position of the tag on the tag list of another user for
the same document. This approach uses an ordered list of tags associated with
documents or links. We also propose a content based recommendation technique.
We base our approach on the following hypothesis: Similar documents are tagged
by similar tags. We provide empirical verification of this hypothesis. The success
of our approach for developing the tag recommendation system opens up the
possibility of using this approach for diverse item recommendation. For example,
this approach can be used for recommending tags for blogs or even other non-
textual items. In this paper we refer to agents associated with individual users as
the recommendation agents and the central repository as the recommendation
system.

2 Related Work

In recent years, tagging has become extremely popular in online communities
with the increase in user-created content on the web. Though self interest is

272 O. Mistry and S. Sen

the primary driving factor for tagging, tags have an important and potential
effect on online information clustering and sharing. Tagging has the potential to
facilitate folksonomy formation and this process can be influenced by intelligent
tag suggestion or recommendation engines. Moreover, tags may be suggested
