

Lecture Notes in Artificial Intelligence 7057

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Nirmit Desai Alan Liu MichaelWinikoff (Eds.)

Principles and Practice
of Multi-Agent Systems
13th International Conference, PRIMA 2010
Kolkata, India, November 12-15, 2010
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Nirmit Desai
IBM Research – India, Manyata Embassy Business Park
Outer Ring Road, Block D4, 2nd Floor, Nagawara
Bangalore 560045, India
E-mail: nirmit.desai@in.ibm.com

Alan Liu
National Chung Cheng University, Department of Electrical Engineering
168 University Road, Min-Hsiung Chia-Yi, Taiwan
E-mail: aliu@ee.ccu.edu.tw

Michael Winikoff
University of Otago, Department of Information Science
60 Clyde Street, Dunedin, New Zealand
E-mail: mwinikoff@infoscience.otago.ac.nz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25919-7 e-ISBN 978-3-642-25920-3
DOI 10.1007/978-3-642-25920-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011944655

CR Subject Classification (1998): I.2.11, I.2.9, I.2, C.2.4, K.4, D.2, H.3-5

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Agent computing and technology is an exciting emerging paradigm expected to
play a key role in many society-changing practices from disaster response to
manufacturing, and from energy management to healthcare. Agent and multi-
agent researchers are focused on building working systems that bring together a
broad range of technical areas from market theory to software engineering to user
interfaces. Agent systems are expected to operate in real-world environments,
with all the challenges that such environments present.

This volume contains the papers presented at PRIMA 2010: the 13th In-
ternational Conference on Principles and Practice of Multi-Agent Systems held
during November 12–15, 2010 in Kolkata, India.

PRIMA is a leading scientific conference for research on intelligent agent and
multi-agent systems, attracting high-quality, state-of-the-art research from all
over the world. The conference endeavors to bring together researchers, develop-
ers, and academic and industry leaders who are active and interested in agents
and multi-agent systems, their practices and related areas. The conference has
a strong focus on practice, and is focused on becoming the premier forum for
prototype and deployed agent systems.

PRIMA 2010 continued to build on the success of its predecessor workshops
and conferences held in Nagoya, Hanoi, Bangkok, Guilin, Kuala Lumpur, Auck-
land, Seoul, Tokyo, Taipei, Melbourne, Kyoto, and Singapore. Since 2007, due
to the need for an additional high-quality forum for international researchers
and practitioners to meet and share their work, the meeting has been expanded
from a workshop to a full-fledged conference.

A key theme for PRIMA 2010 was agents and services, where the intent was
to explore the connections between agent technology and services (both in the
sense of service science and service-oriented computing).

PRIMA 2010 received 63 submissions, each of which was assigned to four
Program Committee (PC) members, who were overseen by a Senior PC (SPC)
member. Each paper received at least three reviews, which was followed by
an author response phase, and discussion amongst the PC, led by the SPC
member assigned to the paper. Of the 63 submissions, PRIMA 2010 accepted 18
full papers (acceptance rate: 29%), and 15 Early Innovation papers. The Early
Innovation papers are papers that were seen as being promising, but that were
not yet well enough developed to be full papers.

In addition to the accepted papers, the conference included a well-received
panel discussion (“What can agent-based computing offer service-oriented archi-
tectures, and vice versa?”), three keynote speeches (by Frank Dignum, Henry
Prakken, and Makoto Yokoo), and three workshops:

VI Preface

– The First International Workshop on Services and Agents (ServAgents 2010)
– The First International Workshop on Intelligent Agents in Health Care

(IAHC 2010)
– The First Pacific Rim Workshop on Agent-Based Modeling and Simulation

of Complex Systems (PRACSYS 2010)

This book serves as a scientific record of the PRIMA 2010 conference. It contains
the papers presented at the conference and at the workshops. The book has four
sections, the first being the panel discussion, the second the full papers, the third
the early innovation papers, and the last the workshop papers.

As Program Chairs, we sincerely thank the organizers, SPC and PC mem-
bers, and all contributors for this great event. In addition, we acknowledge the
organizers of these workshops and especially thank Hoa Khanh Dam for his effort
in overseeing the completion of the workshop papers. A special thanks goes to
Aditya Ghose and Abdul Sattar for their coordination, Natalie Dunstan for her
organization, Sankalp Khanna for managing registrations, Nabendu Chaki with
his colleagues at University of Calcutta for local arrangements, and the Smart
Services CRC for sponsorship. We especially acknowledge Jadavpur University
and the Institute for Integrated and Intelligent Systems at Griffith University
for providing a venue for workshops and substantial support. Finally, we ac-
knowledge the support from EasyChair in organizing the reviews and preparing
the proceedings.

Nirmit Desai
Alan Liu

Michael Winikoff

Organization

General Chairs

B.P. Sinha Indian Statistical Institute, India
Chandan Mazumdar Jadavpur University, India
Abdul Sattar Griffith University, Australia

ServAgents 2010

Hoa Khanh Dam University of Wollongong, Australia
Aditya Ghose University of Wollongong, Australia
Nirmit V. Desai IBM India Research Lab, India
Srinivas Narasimhamurthy Infosys Technologies, India

IACH 2010

Andrew Miller University of Wollongong, Australia
Chee Fon Chang University of Wollongong, Australia
Graham Billiau University of Wollongong, Australia
Konstantin Hoesch-Klohe University of Wollongong, Australia
Evan Morrison University of Wollongong, Australia

PRACSYS 2010

Alexis Drogoul UMI 209 UMMISCO, IRD, UPMC, MSI-IFI,
Vietnam

Benoit Gaudou UMI 209 UMMISCO, IRD, MSI-IFI, Vietnam
Patrick Taillandier UMI 209 UMMISCO, IRD, MSI-IFI, Vietnam
Jean Daniel Zucker UMI 209 UMMISCO, IRD, France

Advisory Board

Jane Hsu National Taiwan University, Taiwan
Toru Ishida Kyoto University, Japan
Hideyuki Nakashima Future University Hakodate, Japan
Sung Joo Park Korea Advanced Institute of Science and

Technology, Korea
Munindar P. Singh North Carolina State University, USA
Zhongzhi Shi Chinese Academy of Sciences, China
Von-Wun Soo National Tsing Hua University, Taiwan
Jung-Jin Yang The Catholic University of Korea, Korea

VIII Organization

Senior Program Committee

Victor Lesser University of Massachusetts Amherst, USA
Michael Luck King’s College London, UK
John-Jules Meyer Utrecht University, The Netherlands
Paul Scerri Carnegie Mellon University, USA
Sandip Sen University of Tulsa, USA
Carles Sierra IIA-CSIC, Spain
Munindar P. Singh North Carolina State University, USA
Wiebe Van Der Hoek University of Liverpool, UK
Makoto Yokoo Kyushu University, Japan

Program Committee

Salem Benferhat CRIL UMR CNRS, France
Frances Brazier TU Delft, The Netherlands
Longbing Cao University of Technology Sydney, Australia
Brahim Chaib-Draa Laval University, Canada
Nilanjan Chakraborty Carnegie Mellon University, USA
Sanjay Chaudhary DA-IICT, India
Shih-Fen Cheng Singapore Management University, Singapore
Mohan Chhetri Swinburne University of Technology, Australia
Sung-Bae Cho Yonsei University, Korea
Amit Chopra University of Trento, Italy
Khanh Hoa Dam University of Wollongong, Australia
Mehdi Dastani Utrecht University, The Netherlands
Frank Dignum Utrecht University, The Netherlands
Patrick Doherty Linkoping University, Sweden
Thomas Eiter Vienna University of Technology, Austria
Edith Elkind Nanyang Technological University, Singapore
Marc Esteva IIIA-CSIC, Spain
Joseph Giampapa Carnegie Mellon University, USA
Robin Glinton Carnegie Mellon University, USA
Eduardo Gomes Swinburne University of Technology, Australia
Guido Governatori National ICT Australia Ltd., Australia
Nathan Griffiths University of Warwick, UK
Chung-Wei Hang North Carolina State University, USA
Hiromitsu Hattori Kyoto University, Japan
Christopher Hazard North Carolina State University, USA
Koen Hindriks Delft University of Technology,

The Netherlands
Michal Jakob FEE Czech Technical University in Prague,

Czech Republic

Organization IX

Yichuan Jiang Southeast University, China
Wan-Rong Jih National Taiwan University, Taiwan
Zhi Jin Peking University, China
Benjamin Johnston University of Sydney, Australia
Kamalakar Karlapalem CDE, IIIT Hyderabad, India
Kee-Eung Kim Korea Advanced Institute of Science and

Technology, Korea
Yasuhiko Kitamura Kwansei Gakuin University, Japan
Kazuhiro Kuwabara Ritsumeikan University, Japan
Jérôme Lang LAMSADE, France
Habin Lee Brunel University, UK
Jaeho Lee The University of Seoul, Korea
Ho-Fung Leung The Chinese University of Hong Kong
Minyi Li Swinburne University of Technology, Australia
Lin Liu Tsinghua University, China
Wei Liu The University of Western Australia, Australia
Beatriz López University of Girona, Spain
Graham Low University of New South Wales, Australia
Xinjun Mao National University of Defense Technology,

China
Shigeo Matsubara Kyoto University, Japan
Felipe Meneguzzi Carnegie Mellon University, USA
Simon Miles King’s College London, UK
Yohei Murakami NICT, Japan
Hideyuki Nakanishi Osaka University, Japan
Mariusz Nowostawski University of Otago, New Zealand
Nir Oren King’s College London, UK
Juan Pavón Universidad Complutense Madrid, Spain
Henry Prakken Utrecht University and University of

Groningen, The Netherlands
Martin Purvis University of Otago, New Zealand
Maryam Purvis University of Otago, New Zealand
Jan Richter Swinburne University of Technology, Australia
Michael Rovatsos The University of Edinburgh, UK
Ji Ruan St. Francis Xavier University, Canada
Yuko Sakurai Yahoo Japan Corporation, Japan
Bastin Tony Roy

Savarimuthu University of Otago, New Zealand
Tino Schlegel Swinburne University of Technology, Australia
Murat Sensoy University of Aberdeen, UK
Kiam Tian Seow Nanyang Technological University, Singapore
Von-Wun Soo National Tsing Hua University, Taiwan
Biplav Srivastava IBM India Research Labs, India
Eugen Staab University of Luxembourg, Luxembourg

X Organization

Bas Steunebrink Universiteit Utrecht, The Netherlands
Toshiharu Sugawara Waseda University, Japan
John Thangarajah RMIT University, Australia
Nicolas Troquard University of Liverpool, UK
Leon Van Der Torre University of Luxembourg, Luxembourg
M. Birna Van Riemsdijk TU Delft, The Netherlands
Pradeep Varakantham Singapore Management University, Singapore
Gerard Vreeswijk Utrecht University, The Netherlands
Yonghong Wang North Carolina State University, USA
Glenn Wightwick IBM Research and Development, Australia
Brendon J. Woodford University of Otago, New Zealand
Yang Xu University of Science and Technology of China,

China
Yifeng Zeng Aalborg University, Denmark

Table of Contents

Panel Discussion

What Can Agent-Based Computing Offer Service-Oriented
Architectures, and Vice Versa? . 1

Wayne Wobcke, Nirmit Desai, Frank Dignum, Aditya Ghose,
Srinivas Padmanabhuni, and Biplav Srivastava

Conference Papers

Agent Communication

SBDO: A New Robust Approach to Dynamic Distributed Constraint
Optimisation . 11

Graham Billiau, Chee Fon Chang, and Aditya Ghose

Solving Distributed CSPs Using Dynamic, Partial Centralization
without Explicit Constraint Passing . 27

Roger Mailler and Jacob Graves

A Distributed Task Specification Language for Mixed-Initiative
Delegation . 42

Patrick Doherty, Fredrik Heintz, and David Landén

Adaptive and Non-adaptive Distribution Functions for DSA 58
Melanie Smith, Sandip Sen, and Roger Mailler

Agent Cooperation and Negotiation

Multiagent Based Scheduling of Elective Surgery . 74
Sankalp Khanna, Timothy Cleaver, Abdul Sattar,
David Hansen, and Bela Stantic

Effect of Alternative Distributed Task Allocation Strategy Based on
Local Observations in Contract Net Protocol . 90

Toshiharu Sugawara, Kensuke Fukuda, Toshio Hirotsu, and
Satoshi Kurihara

Gossip-Based Self-organising Open Agent Societies 105
Sharmila Savarimuthu, Martin Purvis,
Bastin Tony Roy Savarimuthu, and Maryam Purvis

Adaptive Negotiation in Managing Wireless Sensor Networks 121
Thao P. Le, Timothy J. Norman, and Wamberto Vasconcelos

XII Table of Contents

Negotiation Strategy for Mobile Agent-Based e-Negotiation 137
Raja Al-Jaljouli and Jemal Abawajy

Adaptive Choice of Behavior and Protocol Parameters 152
Frank Grove, Sandip Sen, and Oly Mistry

Agent Reasoning

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free
Networks . 166

Tenda Okimoto, Atsushi Iwasaki, and Makoto Yokoo

Multi-attribute Preference Logic . 181
Koen V. Hindriks, Wietske Visser, and Catholijn M. Jonker

An Empirical Study of Patterns in Agent Programs 196
Koen V. Hindriks, M. Birna van Riemsdijk, and Catholijn M. Jonker

Agent-Based Simulation

A Modelling Language to Represent and Specify Emerging Structures
in Agent-Based Model . 212

Duc-An Vo, Alexis Drogoul, Jean-Daniel Zucker, and Tuong-Vinh Ho

Multi-model Based Simulation Platform for Urban Traffic Simulation . . . 228
Yuu Nakajima, Shohei Yamane, and Hiromitsu Hattori

GAMA: A Simulation Platform That Integrates Geographical
Information Data, Agent-Based Modeling and Multi-scale Control 242

Patrick Taillandier, Duc-An Vo, Edouard Amouroux, and
Alexis Drogoul

Mobile and Semantic Agents

Ao Dai: Agent Oriented Design for Ambient Intelligence 259
Amal El Fallah Seghrouchni, Andrei Olaru,
Nga Thi Thuy Nguyen, and Diego Salomone

Probabilistic Approaches to Tag Recommendation in a Social
Bookmarking Network . 270

Oly Mistry and Sandip Sen

Table of Contents XIII

Early Innovation Papers

Agent Cooperation and Negotiation

Complex Task Allocation in Mixed-Initiative Delegation: A UAV Case
Study . 288

David Landén, Fredrik Heintz, and Patrick Doherty

Affordance-Based Intention Recognition in Virtual Spatial
Environments . 304

Michal Sindlar and John-Jules Meyer

A Robust Multi-unit Ascending-Price Auction with Complementarities
against Strategic Manipulation . 320

Masabumi Furuhata

Mobile Agent Cloning for Servicing Networked Robots 336
W. Wilfred Godfrey and Shivashankar B. Nair

Agent Reasoning

Towards Distributing Agent Intelligence: Using Decentralized Software
Services for the Creation of Complex Problem Modelling 340

Quintin J. Balsdon and Elize M. Ehlers

Averting the Tragedy of the Commons by Adapting Aspiration
Levels . 355

Onkur Sen and Sandip Sen

Agent Technologies for Service Computing

The Role of Agents in Adaptive Service Oriented Architectures 371
Fernando Koch, Frank Dignum, Marcel Hiel, and Huib Aldewereld

Agent-Based Development for Business Processes . 387
Hoa Khanh Dam and Aditya Ghose

TwitAg: A Multi-agent Feature Selection and Recommendation
Framework for Twitter . 394

Frank Grove and Sandip Sen

Agent-Based Simulation

Automated Multi-agent Simulation Generation and Validation 398
Philippe Caillou

XIV Table of Contents

Inferring Equation-Based Models from Agent-Based Models: A Case
Study in Competition Dynamics . 413

Ngoc Doanh Nguyen, Patrick Taillandier, Alexis Drogoul, and
Pierre Auger

Towards a Methodology for the Participatory Design of Agent-Based
Models . 428

Thanh-Quang Chu, Alexis Drogoul, Alain Boucher, and
Jean-Daniel Zucker

Agent-Based System Development

A Framework for Validating Task Assignment in Multiagent Systems
Using Requirements Importance . 443

Hiroyuki Nakagawa, Nobukazu Yoshioka, Akihiko Ohsuga, and
Shinichi Honiden

Task Knowledge Patterns Reuse in Multi-Agent Systems
Development . 459

WaiShiang Cheah, Leon Sterling, and Kuldar Taveter

ServAgents Workshop

Energy-Aware Agents for Detecting Nonessential Appliances 475
Shih-chiang Lee, Gu-yuan Lin, Wan-rong Jih, Chi-Chia Huang, and
Jane Yung-jen Hsu

Medical Equipment Maintenance Support with Service-Oriented
Multi-agent Services . 487

Beatriz Lopez, Albert Pla, David Daroca, Luis Collantes,
Sara Lozano, and Joaquim Meléndez

An Agent-Oriented Approach to Service Analysis and Design 499
Hoa Khanh Dam and Aditya Ghose

IAHC Workshop

Agent-Based Modelling for Risk Assessment of Routine Clinical
Processes . 511

Wayne Wobcke and Adam Dunn

Healthgrids, the SHARE Project, Medical Data and Agents: Retrospect
and Prospect . 523

Tony Solomonides

An Intelligent Approach to Surgery Scheduling . 535
Sankalp Khanna, Abdul Sattar, Justin Boyle, David Hansen, and
Bela Stantic

Table of Contents XV

Using Distributed Agents for Patient Scheduling . 551
Graham Billiau, Chee Fon Chang, Aditya Ghose, and
Alexis Andrew Miller

Software Agents in Clinical Workflow, Clinical Guidelines and Clinical
Trial Medicine . 561

Alexis Andrew Miller and Fiona Hegi-Johnson

PRACSYS Workshop

Using Belief Theory to Formalize the Agent Behavior: Application to
the Simulation of Avian Flu Propagation . 575

Patrick Taillandier, Edouard Amouroux, Duc An Vo, and
Ana-Maria Olteanu-Raimond

A Cluster-Based Approach for Disturbed, Spatialized, Distributed
Information Gathering Systems . 588

Quang-Anh Nguyen Vu, Benoit Gaudou, Richard Canal,
Salima Hassas, and Frédéric Armetta

Simulation of the Emotion Dynamics in a Group of Agents in an
Evacuation Situation . 604

Le Van Minh, Carole Adam, Richard Canal, Benoit Gaudou,
Ho Tuong Vinh, and Patrick Taillandier

From Biological to Urban Cells: Lessons from Three Multilevel
Agent-Based Models . 620

Javier Gil-Quijano, Thomas Louail, and Guillaume Hutzler

Multi-agent Based Simulation of Traffic in Vietnam 636
The Duy Bui, Duc Hai Ngo, and Cong Tran

Author Index . 649

What Can Agent-Based Computing Offer
Service-Oriented Architectures, and Vice Versa?

Wayne Wobcke1, Nirmit Desai2, Frank Dignum3, Aditya Ghose4,
Srinivas Padmanabhuni5, and Biplav Srivastava6

1 School of Comp. Sci. and Eng., University of New South Wales, Sydney NSW 2052, Australia
wobcke@cse.unsw.edu.au

2 IBM India Research Lab, Embassy Golf Links Business Park
Bangalore 560071, India

nirmit.desai@in.ibm.com
3 Dept of Information and Comp. Sciences, Utrecht University, 3508 TB Utrecht,

The Netherlands
dignum@cs.uu.nl

4 School of Comp. Sci. and Software Eng., University of Wollongong,
Wollongong NSW 2522, Australia

aditya@uow.edu.au
5 Software Engineering and Tech. Labs, Infosys Technologies Ltd, Bangalore 560100 India

srinivas p@infosys.com
6 IBM India Research Lab, Block 1, IIT Campus, Hauz Khas, New Delhi 110016, India

sbiplav@in.ibm.com

Abstract. This article serves as a record of a panel discussion held at PRIMA
in November, 2010. The panel consisted of two academic and three industry rep-
resentatives, and thus provided a rare opportunity to discuss the relationship be-
tween agent-based computing and service-oriented architectures from both points
of view. The basic question for the panel was to identify the key research and in-
dustry issues that arise in the deployment of systems based on service-oriented
architectures, and in particular to address whether the agent-based computing
paradigm offers any resolution of those issues. The question was also posed
whether applications based on service-oriented architectures provide a suitable
platform for implementing agent-based systems, which are presently limited in
application by comparison. This summary is presented with the aim of stimulat-
ing further academic and industry collaborative research in this fast growing area
which potentially has wide-ranging practical application.

1 Introduction: Wayne Wobcke (University of New South Wales)
By now it is hardly news that there is a close relationship between service-oriented
architectures [8] and agent-based computing. It was noticed quite early that, at a techni-
cal level, service-oriented computing platforms would require mechanisms for service
discovery (of the sort used in agent-based platforms such as KQML [6]), service ag-
gregation or composition (analogous to planning complex series of actions) [13], coor-
dination of multiple services (similar to multi-agent plan coordination [7]), execution
monitoring (as agent systems monitor plan execution), and quality assurance (involv-
ing mechanisms for selection of appropriate actions in dynamic environments, a central
concern of rational agent architectures [11]).

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 1–10, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 W. Wobcke et al.

The purpose of this panel discussion is to reconsider this connection in the light
of nearly a decade of industry experience during which service-oriented architectures
(SOA) have become mainstream in the software industry. The basic question is whether
the close technical relationship to agent-based computing still exists, and if so, whether
this connection is of purely theoretical interest or has genuine practical implications,
and, further, whether there are more fundamental obstacles to the deployment of SOA-
based systems in industry contexts that are not covered by the narrow technical view
outlined above. The implicit objective is to formulate a research agenda for the short-to-
medium term that would enable agent researchers to contribute to the fast growing area
of service-oriented computing, and (this is the “vice versa” part) to consider whether
service-oriented architectures offer suitable platformis for the implementation and ulti-
mately commercialization of agent-based systems. A concern here is whether there is
currently the degree of flexibility and interoperability in commercial service-oriented
computing platforms required to support agent-based applications. To this end, we are
grateful for the participation on the panel of representatives from Infosys Technologies
and IBM Research India who are able to provide an industry perspective on these issues.

The topic of the panel is deliberately framed towards technical aspects to encour-
age concrete discussion, in doing so presupposing that this close underlying technical
connection exists, and this partly to provoke panellists into possibly rejecting this as-
sumption (none of them did). Of course it is also recognized that “services” are far
broader than just SOA-based systems, and so the panellists are also invited to comment
on wider-ranging issues. Though not specifically the topic of the panel, the question
of the role of standardization generally and of standard ontologies and their associated
reasoning frameworks is one that naturally arises during discussion.

In keeping with the open ended nature of panel discussions, there is no formal con-
clusion given here. Readers must draw their own conclusions based on the panellist
statements that follow.

2 Frank Dignum (Utrecht University)

2.1 ALIVE: The Role of Agents in Adaptive Service-Oriented Architectures

Web services [5] and service-oriented architectures [9] have the potential to increase
significantly the utilization, compatibility and interoperability of information and com-
munication systems. This progress has, for the first time, raised the realistic possibility
of deploying large numbers of services in companies’ and public organizations’ in-
tranets and extranets, and in the public Internet, in order to create communities of ser-
vices which are always connected, always changing, open or semi-open, and form the
baseline environment for software applications. However, this shift brought about not
only potential benefits, but also serious challenges about how such systems and applica-
tions should be designed, managed and deployed. Existing approaches in some impor-
tant areas (such as security, transactions and federation) tend to only cover technology
issues such as, for example, how to secure a protocol or connect federated directories,
without considering the paradigm change that occurs when large numbers of services
are deployed and managed over time. In particular, existing approaches do not offer
satisfactory solutions to the following issues:

Agent-Based Computing and Service-Oriented Architectures 3

– How to dynamically compose services into workflows that serve a specific purpose
and adhere to some overall requirements (like efficiency, security, etc.).

– How to align the configurations and settings, needed by a service to operate, to the
operational environment.

– How service execution is affected by issues of trust, rights, obligations and permis-
sion.

– What if critical applications simply cease to function if services provisioned from
third parties disappear or malfunction?

– How to deal with knowledge representation, when connecting or binding together
two or more actual entities or services using different ontologies.

All these issues point to the need for a “social layer” as part of the service interaction
context. From an engineering perspective, new approaches are needed which take a
holistic view of service environments, and take into account not only the properties of
individual applications, but also the objectives, structure and dynamics of the system as
a whole. In the ALIVE project1 [4,15], we have combined existing work in coordination
and organizational models with the state-of-the-art in service-oriented computing. The
project extends current trends in service-oriented engineering by adding three extra
layers [3]:

– The organization layer provides context for the other levels, specifying the organi-
zational roles, objectives and rules that govern interaction and using developments
in organization dynamics to allow structural adaptation of distributed systems over
time.

– The coordination layer provides the means to specify, at a high level, the patterns
of interactions between services, using a variety of coordination techniques. At this
level agent technology is used.

– The service layer augments the existing service models with semantic descriptions
to make components aware of their social context and rules of engagement with
other services.

In practical terms, agent solutions combined with organization structures facilitate the
implementation of purpose-oriented workflow mechanisms. The organization model de-
fines the purpose of the content composition – e.g. metrics for quality of information,
interaction patterns, acceptable processing time, etc. The workflow actors inherit the
goals and plan rules to implement these characteristics from the organization structure.
Using the three layers we are able to divide the knowledge and abilities that are neces-
sary to dynamically create and maintain the complex workflows of services in a natural
way.

At the service layer we concentrate on the knowledge necessary to see which service
is best suited for a certain purpose. For example, there might be many weather predic-
tion services; some predict weather for only one day, others for a week. If we want to
plan a holiday, we want to check the weather for a whole period but it does not have to
be very accurate, whereas for a farmer accuracy might be very important.

1 ALIVE Project: http://www.ist-alive.eu/

4 W. Wobcke et al.

At the coordination layer we use typical agent methods to create plans of service
invocations to reach certain goals. Agents can interact to combine their plans in order
to profit from each other’s services. Especially useful is the fact that agents can recover
from failures of their plans and replan for a goal. This is very difficult to do in current
service-oriented tools.

At the organization level the overall objectives of the system can be specified such
that the autonomy of the agents is only used in order to reach those objectives. This is
also the level where service level agreements can be specified that should be fulfilled
by the service(-compositions) and the agents.

In the ALIVE project we have tested the above sketched framework in several use
cases. Although we can conclude that the framework indeed is useful, it also needs some
perseverance to get things working. Compared to a more traditional service-oriented ap-
proach a lot more constructs have to be specified and implemented. We need to specify
semantics for the services, tasks and plan rules for the agents, interaction patterns for
the agents to create workflows, organizational structures in which the agents have to
function, etc. These structures only start paying off with complex systems, especially
when services change, fail or are aborted. In these cases the ALIVE framework provides
a very high level of robustness.

A second lesson learnt is that it is far easier to construct the whole framework for a
specific application than to generate a software engineering tool set that can create the
framework for many different applications. We used a model driven approach to con-
nect the elements of the different layers. This does help to keep consistency throughout
the framework. However, it also means that meta-models have to be available for ev-
ery module in the framework. This is not trivial if existing (and especially third party)
components are used, e.g. one needs a meta-model for the agents (including their plan
structures).

Also in the ALIVE framework we had to device a general way for agents to find
the most suitable service to execute a (part of a) plan. Because the steps in a plan are
usually not all instantiated before executing the plan (in order to allow for flexibility
in planning) the queries for services also contain variables which have to be dealt with
on the service level and possibly passed back up. These mechanisms are not part of
traditional service-oriented methods and take much work and care to construct. This is
not just the case for the way we implemented the ALIVE framework, but is inherent in
any agent driven service-oriented system. Once agents are used to flexibly use and com-
pose the services, one needs this type of query mechanism that can deal with requests
for services that are not (fully) instantiated. Thus there is a seemingly inherent trade-
off between efficiency of implementing (note: not efficiency of the implementation) an
application and the flexibility of the system. The need of the flexibility of the system
should warrant the extra effort in the specification and design of the system. In our use
cases, flexibility was needed because services could fail and be changed on the fly. An
extreme case is that of our crisis management use case [10] where services might fail
at any moment due to the crisis, but you need your system to handle the crisis properly
nonetheless.

Agent-Based Computing and Service-Oriented Architectures 5

3 Biplav Srivastava (IBM Research – India)

3.1 The Problem Context

Changes are continuously happening in enterprises and they impact the Information
Technology (IT) landscape. This leads to widespread needs like quickly delivering new
applications and integrating existing applications. However, application development is
often done in an ad-hoc manner resulting in poor reuse of software assets and longer
time-to-delivery. Service-oriented architectures like web services have received much
interest due to their potential in facilitating seamless business-to-business or enterprise
application integration. A web service composition system can help automate the pro-
cess, from specifying business process functionalities, to developing executable work-
flows that capture non-functional (e.g. QoS) requirements, to deploying them on a run-
time infrastructure. Intuitively, web services can be viewed as software components and
the process of web service composition similar to software synthesis. In addition, ser-
vice composition needs to address the buildtime and runtime issues of the integrated
application, thereby making it a more challenging and practical problem than software
synthesis.

3.2 The Case for Service-Oriented Architecture and Issues Learnt in the Field

There are many approaches for composing and executing web services (see the sur-
vey [2]) and open problems [13]. Synthy is an example of one of the approaches which
has been tried in the enterprise setting [1]. It is based on a novel two-staged composition
approach that addresses the information modelling aspects of web services, provides
support for contextual information while composing services, employs efficient decou-
pling of functional and non-functional requirements, and leads to improved scalability
and failure handling. Synthy is a technology for semi-automatically composing SOA-
compliant components such that the new component meets the desired functional and
non-functional requirements and the resultant component can be flexibly executed.

The experience from the field has been that SOA can indeed help with application
integration [14]. But there are many issues in practice:

– Domain modelling is hard.
• SOA needs modelling of services, and if Business Process Management (BPM)

is being followed, the business services. But this is not easy. A common prob-
lem is which domain expert to believe.

• Companies in monopolistic situations (e.g. Microsoft, SAP) have an easier
time.

• Domain experts are expensive and there is an open question on the quality of
models built by typical IT professionals.

• An open research issue is to determine the right level of abstraction.
– Managing runtime is hard.

• How to prove a composition of services is correct at runtime? There is a human-
in-the-loop requirement for many applications.

• Graceful degradation during runtime is often required.
– Interoperable tooling is unavailable.

6 W. Wobcke et al.

3.3 The Case for Agent-Oriented Computing in SOA

Agent-oriented computing has delved extensively in modelling and coordination issues
for autonomous agents. Moreover, the community has experience in designing, sim-
ulating and executing agent-based solutions to long-running, mission-critical defence
problems. These are exactly the areas where SOA needs help.

The agent community needs help in standardization and wider adoption by main-
stream business. SOA has lessons on how to make a technology widely usable. After
all, WSDL, UDDI and BEPL4WS are the mainstay of modern SOA IT platforms, and
very widely supported by major IT vendors.

4 Srinivas Padmanabhuni (Infosys Technologies)

4.1 Agent Orientation: Complementing Process and Service Orientation for
Ultimate Flexibility

With the increase in the complexity of IT systems, it has become difficult for adminis-
trators to manually maintain and tune IT systems to meet the requirements of individual
consumers. To meet the increasing complexity of IT systems, there is a requirement for
the systems to become more human independent and self-managing. We firmly believe
agent technologies are a potent technology to address the issue of IT complexity, espe-
cially when viewed from the lens of flexible business processes.

As already well established, a service-oriented foundation, forming the bridge be-
tween IT implementations and business processes, is at the centre of the future proof
enterprise process architectures. Hence, service-oriented architecture (SOA) is consid-
ered an inherent foundational base for today’s Business Process Management (BPM)
implementations, wherein individual services form the crucial business activities, and
orchestration of the services forms the basis of executable business processes.

However, flexibility at process level is incomplete without a thorough understand-
ing of the different variations possible in the manifestations of an individual service
as part of a dynamic business process. In this context of dynamic reconfigurability of
individual services, we envisage a crucial role agent-based systems can play. The issue
of dynamic reconfigurability of individual service implementations in dynamic pro-
cesses is an important problem. Their need is to reconfigure themselves and coordinate
with participating components automatically (without human interaction) to cater to the
changing consumer requirements. We have researched the role of an agent-based ap-
proach to endow service variations, with the ability to dynamically reconfigure services
automatically to meet the needs of their users. The role of agent-based architectures lies
in dynamically sensing in an autonomic mode the external environmental variables, and
thereupon dynamically evolve the corresponding service implementation by embody-
ing the right variation, to evolve the right service interface, which will be the final true
face of the service, in the ongoing dynamic business process. Our ongoing research is
looking at a systematic exploration of several combinations of multi-agent system tools
and protocols in conjunction with dynamic services-based business processes.

Yet another area where agents are relevant is in the problem of policy reconciliation
of multiple actors interacting via service interfaces. We have researched approaches us-
ing soft constraints to provide an extensible and flexible mechanism for reconciliation

Agent-Based Computing and Service-Oriented Architectures 7

of policies between multiple interacting actors. In the context of multiple actors needing
to collaborate together to carry on shared activity, or a sequential activity with depen-
dence upon one another, the policy constraints need to be mutually consistent in order
to carry on a transaction. Especially in context of business-to-business (B2B) business
processes, where two heterogeneous actors work together as part of a B2B process, this
kind of policy reconciliation is a must. We are researching the role agent systems can
play in effective and dynamic policy reconciliation for B2B processes. The framework
is applicable to any heterogeneous environment in need of reconciling policies, and is
illustrated in the real business use case of a demand driven supply chain framework. For
details of the preliminary work in this area, please see [12].

Overall, we see promise for multi-agent systems technology working to enable a
truly autonomic and dynamic environment for flexible service-based executable busi-
ness processes.

5 Nirmit Desai (IBM Research – India)

5.1 Services Industry is the Application Area “Agents” Have Been Waiting For!

The agent research community can benefit immensely by demonstrating what their re-
search can do for the services industry. Before I get into backing that statement up, let
me say what “services” are and what they are not.

– Services cannot be supported by SOA as it is. When services are proclaimed as
having major economic significance, we are not referring to services as in SOA.
We are referring to business services. SOA is too low-level a concept to support
services.

– Services are not invoked, they are engaged. When was the last time you “invoked”
your domestic help? How about the health care service? If you were to believe
SOA, these services would have a WSDL description. They would take input from
you, go off somewhere, and come back with a cleaned house or a mended tooth.

– Services are hardly automated. Would you go to a robot to have your disease di-
agnosed? It is good if the robot can serve you but we are far from it. As a result,
services involve people. There are specialized skills and deep domain knowledge
in almost any services industry. There is an aspect of face-to-face interaction.

– Services are measured by satisfaction. The customer needs vary greatly and they
evolve with time. Nonetheless they need to be satisfied to “buy” a service again.
However, “satisfaction” is not well understood. Can the customer be satisfied if the
provider meets the service level agreements (SLAs)? Can the customer be satisfied
even though some SLAs have been violated?

Most importantly, services comprise a major part of the world’s economy. Unfortu-
nately, most of the work by computer scientists that is branded as “services” research
does not meet these criteria. We need to meet these criteria because they characterize
services in a true sense. Fortunately, the multi-agent systems community has worked on
the principles underlying services for decades. So why worry about services now? And
why should we as an agent research community care?

8 W. Wobcke et al.

Distributed AI as an area has for long taken on this apparently difficult mission. We
have theories that explain how agents ought to communicate in a business environment
and how they can fulfil the needs of their principal. We have agents who are smart
enough to interact with humans. We draw ideas from philosophy, social sciences, and
cognitive psychology. We study automated negotiation and argumentation. We study
trust and commitments. We study rationality and decision making. All of these belong
to the heart of the service science.

So what is missing? Game changing applications. The Distributed AI community
cannot boast of scientific impact that several other fields of Computer Science can do.
For example, communication networks have revolutionized how we communicate, re-
lational databases have revolutionized business transactions. There is a need to justify
our programs of research. So far, services have not been a favourite application area
of scientists for three main reasons: (1) it is a low-margin and cost-based business – to
the service providers, immediate solutions have infinitely more “perceived” value than
a long-term scientific effort, (2) the fundamental issues in this area are too hard to make
an impact on, and (3) services did not command major economic significance.

However, there are two encouraging trends: (1) services have grown to be the largest
chunk of the world’s economy, and (2) we are starting to see a certain degree of success
in attacking these difficult problems. For example, we have Watson that can play Jeop-
ardy and beat the best players ever to play that game. While Deep Blue was 14 years
ago, chess is not exactly an area of difficulty to computers. Still, what Watson and Deep
Blue have accomplished is far short of the holistic vision of multi-agent research. This
is why we need to care for applying our research to the services industry.

6 Aditya Ghose (University of Wollongong)

6.1 An Agent-Based Response to the Climate Change Challenge2

The climate change crisis presents both a challenge and an opportunity of unprece-
dented proportions to the agent community. Current thinking on climate change re-
sponses emphasizes the development of alternative energy sources, the development of
smart automotive technology and the introduction of macro-economic levers (e.g. car-
bon taxes, emission trading schemes etc.) to alter energy consumption behaviour at the
level of both enterprises and individuals. Fundamental to any solution to the problem is
efficient planning and optimization (in particular, ensuring that energy use is optimized)
– yet this has been largely ignored in the current discourse.

Reducing energy consumption requires that we seek to make all behaviour efficient,
everywhere, all the time. This requires pervasive, distributed, continual, reactive and
autonomous decision support. The agent community prides itself on its ability to deliver
systems with precisely these attributes.

The Optimizing Web project at the University of Wollongong offers an example of
what can be achieved. The project is based on the following observations. First, opti-
mization is fundamental to carbon mitigation – optimization enables efficient resource

2 This response was prompted by a question on the “grand challenges” in a future “services
science”.

Agent-Based Computing and Service-Oriented Architectures 9

utilization, thus lowering energy consumption and the carbon footprint. Second, the
global industrial/technological infrastructure, including transportation systems, manu-
facturing plants, human habitat and so on, is typically operated in an ad-hoc and signif-
icantly sub-optimal fashion. This remains the case despite the availability of sophisti-
cated optimization technology for almost the past seven decades (present day operations
research techniques trace their roots to the work of George Dantzig in the early 1940s
that resulted in the original optimization algorithm – linear programming). Third, lo-
cally optimal behaviour does not guarantee “globally” optimal behaviour (i.e. if all
agents in a multi-agent system adopt locally efficient behaviours, that does not guar-
antee that the behaviour of the system as a whole is efficient). Conversely, an optimal
solution for a multi-agent problem might not necessarily be optimal for each of its
constituent sub-problems. This suggests that more widespread uptake of “piecemeal”
optimization alone will not work what is needed is a network of local optimizers that
collaborate (and potentially negotiate) to obtain system-wide solutions that improve
efficiency despite the competing pulls of local objectives.

The Optimizing Web leverages the global (near-)consensus (without being too pes-
simistic!) on a carbon-footprint minimization objective. It achieves large-scale collab-
orative optimization, where large numbers of agents collaborate to obtain an optimal
value for a shared objective function. The vision is to provide ubiquitous collaborative
optimization services, at the level of individual devices, vehicles within transportation
systems, units within organizations or manufacturing plants – as well aggregations of
all of these. The optimizing web provides a set of protocols for local optimizing agents
to interoperate to improve the value of a global carbon footprint minimization objective,
while making appropriate trade-offs in relation to their local objectives.

The Optimizing Web leverages and integrates two aspects of agent technology: (1)
distributed constraint optimization (DCOP) and (2) distributed reactive planning. While
we know that planning problems can be formulated as optimization problems, it is also
well understood that some problems are more naturally modelled as planning problems,
while others as optimization problems. The project therefore leverages DCOP insights
for distributed optimal reactive planning.

Ultimately, the agent community needs to do much more along similar lines. The
climate change crisis is real, and the agent community has real solutions to offer. This
is therefore a call to arms.

Acknowledgements. We would like to thank Smart Services Cooperative Research
Centre for its support of PRIMA 2010 which provided the impetus for this panel
discussion.

References

1. Agarwal, V., Chafle, G., Dasgupta, K., Karnik, N., Kumar, A., Mittal, S., Srivastava, B.:
Synthy: A System for End to End Composition of Web Services. Journal of Web Semantics 3,
311–339 (2005)

2. Agarwal, V., Chafle, G., Mittal, S., Srivastava, B.: Understanding Approaches for Web Ser-
vice Composition and Execution. In: Proceedings of the 1st Bangalore Annual Compute
Conference (2008)

10 W. Wobcke et al.

3. Aldewereld, H., Penserini, L., Dignum, F., Dignum, V.: Regulating Organizations: The
ALIVE Approach. In: Proceedings of the International Workshop on Regulations Modelling
and Deployment (ReMoD 2008) Held in Conjunction with the CAiSE 2008 Conference, pp.
37–48 (2008)

4. Álvarez-Napagao, S., Cliffe, O., Vázquez-Salceda, J., Padget, J.: Norms, Organisations and
Semantic Web Services: The ALIVE Approach. In: Proceedings of the Workshop on Coor-
dination, Organization, Institutions and Norms in Agent Systems in Online Communities at
MALLOW 2009 (2009)

5. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchad, D.: Web
Services Architecture. W3C Working Group Note 11, The World Wide Web Consortium
(W3C) (February 2004)

6. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communication Lan-
guage. In: Proceedings of the Third International Conference on Information and Knowledge
Management (CIKM 1994), pp. 456–463 (1994)

7. Jennings, N.R.: Controlling Cooperative Problem Solving in Industrial Multi-Agent Systems
Using Joint Intentions. Artificial Intelligence 75, 195–240 (1995)

8. Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communications of
the ACM 40, 25–28 (2003)

9. Papazoglou, M.P., van den Heuvel, W.-J.: Service Oriented Architectures: Approaches, Tech-
nologies and Research Issues. The VLDB Journal 16, 389–415 (2007)

10. Quillinan, T., Brazier, F., Aldewereld, H., Dignum, F., Dignum, M.V., Penserini, L., Wi-
jngaards, N.: Developing Agent-Based Organizational Models for Crisis Management. In:
Proceedings of the Industry Track of the 8th International Joint Conference on Autonomous
Agents and Multi-Agent Systems (2009)

11. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS 1995), pp. 312–319 (1995)

12. Schmid, A., Padmanabhuni, S., Schroeder, A.: A Soft Constraints-Based Approach for Rec-
onciliation of Non-Functional Requirements in Web Services-Based Multi-Agent Systems.
In: Proceedings of the 2007 IEEE International Conference on Web Services, pp. 711–718
(2007)

13. Srivastava, B., Koehler, J.: Web Service Composition - Current Solutions and Open Prob-
lems. In: Proceedings of the ICAPS 2003 Workshop on Planning and Scheduling for Web
Services (2003)

14. Srivastava, B., Mazzoleni, P.: Business Driven Consolidation of SOA Implementations. In:
Proceedings of the 2010 IEEE International Conference on Services Computing, pp. 49–56
(2010)

15. Vázquez-Salceda, J., Dignum, F., Vasconcelos, W., Padget, J., Clarke, S., Ceccaroni, L.,
Nieuwenhuis, K., Sergean, P.: ALIVE: Combining Organizational and Coordination Theory
with Model Driven Approaches to Develop Dynamic, Flexible Distributed Business Systems.
In: Telesca, L., Stanoevska-Slabeva, K., Rakocevic, V. (eds.) Digital Business. Springer,
Berlin (2009)

SBDO: A New Robust Approach

to Dynamic Distributed Constraint Optimisation

Graham Billiau, Chee Fon Chang, and Aditya Ghose

Decision Systems Lab
School of Computer Science and Software Engg

University of Wollongong, NSW, Australia
{gdb339,c03,aditya}@uow.edu.au

Abstract. Dynamic distributed constraint optimisation problems are a
very effective tool for solving multi-agent problems. However they require
protocols for agents to collaborate in optimising shared objectives in a
decentralised manner without necessarily revealing all of their private
constraints. In this paper, we present the details of the Support-Based
Distributed Optimisation (SBDO) algorithm for solving dynamic dis-
tributed constraint optimisation problems. This algorithm is complete
wrt hard constraints but not wrt objectives. Furthermore, we show that
SBDO is completely asynchronous, sound and fault tolerant. Finally, we
evaluate the performance of SDBO with respect to DynCOAA for Dyn-
DCOP and ADOPT, DPOP for DCOP. The results highlight that in
general, SBDO out performs these algorithms on criteria such as time,
solution quality, number of messages, non-concurrent constraint checks
and memory usage.

1 Introduction

Dynamic Distributed Constraint Optimisation Problems (DynDCOP) are a prob-
lem domain that has not been well explored. DynDCOPs allow us to model
problems that can not be assumed to be static, that is they change so frequently
that by the time a DCOP solver has found a solution it is already obsolete.
DynDCOPs are very useful for modelling and solving multi-agent coordination
and planning problems. These problems appear in many areas such as schedul-
ing patient treatment in a hospital or managing the airspace above an airport.
As DynDCOP is an extension of the well explored Distributed Constraint Op-
timisation Problem (DCOP), techniques utilised to solve DCOP present a good
foundation.

Very few of the DCOP algorithms consider what happens when agents fail.
The max-sum algorithms [11] have been shown to be robust even when 90%
of messages are not delivered. While none of the others consider what happens
when agents fail. There are many reasons, such as hardware failures or malicious
attack that may cause an agent to fail. It is particularly important to be able
to continue solving even when agents fail in dynamic solvers, as they are often
expected to run continuously for a long duration.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 11–26, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

12 G. Billiau, C.F. Chang, and A. Ghose

1.1 Related Work

At this time there are only two other algorithms that can solve DynDCOPs,
Dynamic Constraint Optimisation Ant Algorithm (DynCOAA)[6] and Self-
Stabilising Distributed Psuedo-tree Optimisation Procedure (S-DPOP)[8]. Of
these two DynCOAA is incomplete and S-DPOP is complete. Neither of these
two algorithms consider the possibility of agent failure, so are unable to recover
from failures.

As DynDCOP is an extension of the well explored Distributed Constraint Op-
timisation Problem (DCOP), techniques utilised to solve DCOP present a good
foundation. There are a large number of DCOP algorithms, such as ADOPT
[7], NCBB [1], DALO [3] and Divide-and-Coordinate [12]. As none of these al-
gorithms are currently capable of solving dynamic problems we do not consider
them further.

In section 2, we will present the Support Based Distributed Optimisation al-
gorithm (SBDO) which improves on the existing DynDCOP solvers by being
completely asynchronous, fault tolerant and having no hierarchy among agents.
Section 3 describes the performance results comparison from the dynamic prob-
lems, the fault tolerance and static problem dimension. In section 4, we present
the conclusions.

2 Support Based Distributed Optimisation

SBDO is an extension of the SBDS algorithm[2]. SBDS is a complete Distributed
Constraint Satisfaction Problem solver. SBDO extends it by adding a local search
mechanism for optimising the solution found while maintaining the completeness
wrt hard constraints. SBDO also adds support for solving dynamic problems.

We define DynDCOPs as follows. Our definitions differ to that in the literature
as we treat hard constraints and soft constraints/objectives differently.

Definition 1. A Constraint Optimisation Problem (COP) is a tuple 〈X ,D, C,R〉
where X is a set {x1, . . . , xn} of variables, D is a set {d1, . . . , dn} of variable
domains, C is a set {c1, . . . , cm} of constraints defined over X and R is a set
{r1, . . . , ro} of utility functions defined over X .

Definition 2. A Distributed Constraint Optimisation Problem (DCOP) is a
tuple 〈A, COP, C,R〉 where A is a set {a1, . . . , ap} of agents, COP is a set
{COP1, . . . , COPp} of disjoint COPs, C is a set {c1, . . . , cm} of shared con-
straints and R is a set {r1, . . . , rq} of shared utility functions.

The shared constraints and utility functions are defined over variables from
several different COPs.

Definition 3. A Dynamic Distributed Constraint
Optimisation Problem (DynDCOP) is a sequence
〈DCOP1, . . . , DCOPn〉 where each DCOP differs from the previous one by an
added or removed constraint/objective/agent. The goal is to find and maintain
a solution where all the constraints are satisfied and the objective function opti-
mised.

SBDO: A New Robust Approach 13

We assume the existence of a global objective function that the collection of
agents seeks to optimise, but we require that it must be possible to decompose
this function into agent-specific objective functions such that the optimal assign-
ment of variables for the decomposed set of objective functions corresponds to
the optimal assignment for the global objective.

Note that to maintain generality of this discussion, we leave the details for the
decomposition up to the designer. However, each objective function must return
a value proportionate to how good the partial solution is, a utility value, such
that a better solution returns a higher utility value. The utility values returned
by all of the objective functions must be comparable and can be aggregated.

To further increase the generality of the algorithm, shared objectives can be
used as well as local objectives. Shared objectives are used when a (sub)objective
can not be decomposed to include only the variables of one agent. In this case the
objective can be shared between the agents that together control the variables
used in the objective. The objective is evaluated by any of the agents that share
it as soon as that agent knows an assignment to all the variables in the objective.
The utility returned by the shared objective is added to the utility of the agent’s
local objective. If the agent does not have enough information to evaluate the
objective it is ignored and only the agent’s local objective is used.

2.1 Communication

The physical communication channels that agents must use to communicate are
never perfect, so it is desirable for algorithms to be able to tolerate messages
arriving in random order. That is the messages sent between two agents may
not arrive in the same order they were sent, or they may never arrive at all. The
proposed algorithm is robust against messages arriving in random order but not
robust against message loss.

The most common message used for communication in SBDO is an ‘isgood’,
which is very similar to a partial assignment and is in part inspired by techniques
used in formal argumentation, where the notion of an argument is used to encode
alternate points of view.

Definition 4. The neighbour graph is an undirected graph 〈N,E〉. N is the set
of agents and E ⊆ N ×N such that there is an edge {Ai, Aj} iff there exists a
shared constraint or a shared objective defined over both Ai and Aj.

Definition 5. Given a DCOP = 〈A, COP, C,R〉. An isgood is a se-
quence 〈A1, . . . , An〉 of assignments such that the sequence is a sim-
ple path through the neighbour graph. Each assignment is a triple
〈a, {〈x1,D1i〉, . . . , 〈xn,Dnj〉}, utility〉 such that none of the constraints in the
DCOP are violated. The total utility of an isgood is the aggregation of the utili-
ties of all the assignments within it. As such an isgood encodes a partial solution
to the problem as well as the relative utility of the partial solution.

An isgood can be considered as an argument, in which case the first n − 1 as-
signments form the justification and the last assignment is the conclusion. As

14 G. Billiau, C.F. Chang, and A. Ghose

in formal argumentation theories, an argument may attack/defeat other argu-
ments and the agent receiving these potentially competing arguments must pick
the winning argument. Because of this, each agent attempts to send stronger
arguments over time to influence their neighbours.

Definition 6. The ordering over isgoods is: First the total utility of the isgoods
is compared, with higher being better. If they are equal then the number of as-
signments in each isgood is compared, with more being better. Finally if they are
equal then one is picked randomly but consistently.1 That is, if an agent picks
isgood A over isgood B then in all future comparisons it will choose A over B.

Instead of using an ordering over the variables, which causes problems in dynamic
environments, we use a total ordering over the partial solutions, or isgoods. This
ordering is needed so that the solution can be optimised as well as to prevent
cyclic behaviour. Whenever we refer to one isgood being better than another in
this paper it is with respect to this ordering

To avoid cycles of oscillating values which might occur because there is no
variable ordering we increase the length of successive isgoods that are sent. This
is achieved by recording the last isgood sent and attempting to send a longer
one. As any cycle must be finite eventually the isgoods being sent will contain
the cycle itself. If the cycle is made up of inconsistent values then a nogood
will be generated, breaking the cycle. Else the cycle breaking mechanism of
update view() (alg. 2) will break the cycle. The proofs of soundness and ter-
mination from SBDS[10] still hold. Due to space limitation, readers are directed
to [2] for details.

Rather than using all the information contained in all the isgoods that an
agent has received, which is often inconsistent. Each agent picks a single isgood
to use as the justification for the assignments to its own variables. The agent
who has sent the best isgood is chosen as the support for the agent. The isgood
that agent sent is used as the basis for the agents view.

Definition 7. Given a DCOP 〈A, COP, C,R〉. A nogood is a pair 〈P,C〉 where
P is a set of variable value pairs {〈x1,D1i〉, . . . , 〈xn,Dnj〉} forming a partial
assignment and C ⊂ C, is the justification such that P violates at least one
constraint in C. As such a nogood represents a partial solution that is proven to
not be part of any global solution.

Hard constraints are handled differently to objectives in order to guarantee that
any solution found will satisfy all of the hard constraints. Nogoods with justifi-
cations [10] are used as these allow us to guarantee that all the hard constraints
are satisfied (as shown in [2]) as well as allowing obsolete nogoods to be identified
after hard constraints are removed from the problem.

Due to the dynamic nature of the input problem the algorithm never ter-
minates (detecting that the network of agents has reached a quiescent state,
or detecting that the problem is over-constrained are in themselves insufficient
as terminating criteria, since new inputs from the environment, in the form of
added or deleted variables/constraints/objectives might invalidate them).

1 Cryptographic hash functions can provide a suitable comparison.

SBDO: A New Robust Approach 15

2.2 Dynamic Problems

Unlike other dynamic algorithms we do not explicitly model the concept of solu-
tion stability. Instead we assume that if there is a cost associated with changing
the value of a variable the agent takes it into account in its local objective
function(s).

Most of the changes to the problem that can occur in a dynamic system are
straightforward to implement, except for removing hard constraints (which we
discuss later). Several messages are required to communicate any changes to
the problem to the agents: add constraint, pre-remove constraint, post-remove
constraint, add objective, remove objective, add domain and remove domain.
These messages all reflect changes to the environment and as such are referred
to as environment messages. With the exception of post-remove constraint they
are assumed to be sent by the environment. Only the agents that control the
variables involved in the objective or hard constraint that is added or removed
must be notified.

A change to the agents involved is handled implicitly by the other messages.
When an agent no longer has any links to one of its neighbours, that agent is no
longer a neighbour. Once an agent has no links to any other agents it is effectively
removed from the problem. Agents are added to the problem by creating a link
between them and another agent. In the process they are then also a neighbour
of that agent.

When a hard constraint is removed in an update to the underlying COP all of
the nogoods that were generated because of the removed constraint must also be
removed. They can be identified via the nogoods justification. If the justification
contains the deleted constraint then the nogood might be obsolete and must be
deleted. This does mean that a nogood which violates two or more constraints,
and so is still valid, may be deleted. If this occurs the nogood will be re-posted
later. As it is possible for a nogood to arrive after the message that renders it
obsolete, pre-remove constraint(C) (alg. 3) and post-remove constraint()

(alg. 5) are required to ensure correctness.
To catch any nogoods that arrive after the constraint removed message that

makes them obsolete, the agent must also check the removed constraints it knows
of when it receives a new nogood. If the nogood is obsolete then it is discarded
and the associated counter decremented.

2.3 Fault Tolerance

Due to the nature of the algorithm, when an agent fails it has a minimal impact
on the other agents. Unlike algorithms that impose a hierarchy, agents do not
require a message from the failed agent(s) before they can continue processing.
Instead all agents just continue oblivious to the fact that an agent has failed. The
only limitation is that the value assigned to affected variables can not change,
other agents must continue using the last known value for the variables.

When an agent fails all its knowledge regarding sent and received isgoods is
lost. This effectively means that messages have been lost, which this algorithm

16 G. Billiau, C.F. Chang, and A. Ghose

can not account for. So when the failed agent restarts it must request that its
neighbours send it the last isgood and all nogoods that they sent to this agent,
as well as the last isgood and all nogoods they have received from this agent.
This prevents most knowledge loss and allows the failed agent to resume solving
faster. But if two neighbouring agents both fail at the same time then some
information is irretrievably lost.There is a simple extension to the algorithm
that will ensure that will ensure it functions correctly wrt agent failure and
random message order. Unfortunately there is not enough space to present it
here. Only accounting for agent failure is affected by this issue.

Theorem 1. Given that messages always arrive in the order they are sent,
SBDO is correct when agents in the network fail.

Proof. When a single agent A fails all of the information required for correctness
is preserved by its neighbours. Each of its neighbours records the set of nogood
messages that it sent to A. Similarly they record all the nogood messages that
they received from A. When A restarts it requests this information from its
neighbours.

When two or more neighbouring agents A and B fail simultaneously, the
messages that A sent to and received from agents other than B will be preserved
by those other agents and vice versa. So only the messages exchanged between
A and B are lost. Between A and B, A forgets that it sent message M to B and
B forgets that it received message M from A. Because of this each agents set
of sent and received messages are still consistent. Therefore the procedure for
removing obsolete nogoods is still correct.

Theorem 2. SBDO can continue solving when one or more agents fail.

Proof. Because of the flat communication model no agent is ever waiting for a
message from a specific agent before they can continue solving (they may be
waiting for a message from any agent, but if this is the case they currently have
no work to do). Because of this the other agents can always continue to solve the
problem, using the last known value for the agents variables. When the agent
restarts it is immediately informed of the current state of the problem so that it
can resume solving.

2.4 Algorithm

Each agent must store the following information:

– view. This is an isgood consisting of the isgood received from support + an
assignment to all this agents variables.

– recv(A). This is a mapping from an agent A to the last isgood received from
that agent.

– nogoods. This is an unbounded store of all nogoods received.
– sent(A). This is a mapping from an agent A to the last isgood sent to that

agent.

SBDO: A New Robust Approach 17

Algorithm 1. main()

begin
while Not Terminated do

for All received nogoods N do
if this nogood is obsolete then

decrement counter on the removed-constraint message
if counter = zero then

delete constraint-removed message

else
Add N to nogoods
for All neighbours A do

if There is no valid assignment to myself wrt recv(A) then
send nogood(A)

for All received environment messages do
Process message

for All received isgoods I do
Let A be the agent who sent I
set recv(A) to I
if There is no valid assignment to myself wrt I then

send nogood(A)

update view()

Let I be the best isgood in recv(A)
if I is better than view then

Set support to the agent that sent I
Let view be recv(support) extended by a valid assignment to all local,
public variables, chosen greedily

for All neighbours A do
if self and A are the first two variables in view then

if view �< sent(A) or sent(A) is not consistent then
Send view to A
Set sent(A) to view

else
Let length be the longest sub-isgood that can be sent to A
Let preferred be 0
if sent(A) is 〈〉 or sent(A) �� view then

Set preferred to |sent(A)|+ 1

if sent(A) < recv(A) and view is inconsistent with recv(A) then
Set preferred to max(preferred, |recv(A)|+ 1)

if preferred > 0 then
Let I be an isgood such that I � view and |I| =
min(length, preferred)
Let U be the utility of I as returned by the local objective function
+ any shared objectives
Set the utility of the assignment to self in I to U
Send I to A
Set sent(A) to I

Wait until at least one message has been received

end

18 G. Billiau, C.F. Chang, and A. Ghose

Algorithm 2. update view()

begin
Let view’ be recv(support) extended by a valid assignment to all local, public
variables, chosen greedily
Let V be the first variable assigned in view’
if scope(view’) = scope(view) or view is better than view’ or the assignment
to V is the same in view’ and recv(A) or the assignment to V is unequal in
view and recv(A) then

Set view to view’

end

Algorithm 3. pre-remove constraint (M)

begin
Let C be the removed constraint
for Each neighbour A do

Let counter be 0
for Each nogood N sent to A do

if N contains C as part of its justification then
Increment counter by 1
Delete N from sent nogoods

if counter > 0 then
Let M be a new constraint removed message with C and counter
Send M to A

end

– support. The agent that this agent is using as its support.
– sent-nogoods. This is an unbounded store of all nogoods sent.
– removed-constraints. An unbounded store of received remove constraint mes-

sages.

We use the notation A � B to say that A is a sub-isgood of B. By sub-isgood
we mean that A is the tail (or entirety) of B, |A| to denote the number of
assignments in A and scope(A) is the set of variables that are assigned in A.

Each agent greedily chooses what agent to use as its support and the values
to assign to its own variables. As each agent may control many variables, each
agent requires its own centralised Dynamic COP solver. Because of the way the
support is selected a collection of agents can combine to cause an agent that has
chosen sub-optimal assignments to change its assignments.

The basic steps each agent takes are quite simple. First it processes all the
messages in its message queue. Then it decides what values to assign to its own
variables. Last it sends all of its neighbours a message telling them what values
it has chosen for its variables.

Processing messages starts with all of the nogoods received. Nogoods are
processed first in case they are later rendered obsolete by a message from the

SBDO: A New Robust Approach 19

Algorithm 4. send nogood(A)

begin
Let N be a nogood derived from recv(A)
Send N to A
Set recv(A) to none
if support = A then

Set support to self

end

Algorithm 5. post-remove constraint(M)

begin
Let C be the constraint referenced
if removed-constraints already contains a message regarding C then

Increment the counter of that message by the counter in M
else

for Each received nogood N do
if N is justified by C then

Delete N
Decrement the counter by 1

if counter �= 0 then
Add M to removed-constraints

pre-remove constraint(C)

end

environment and because one of them might invalidate one of the isgoods in
the message queue. When a nogood is received it is added to the set of all
known nogoods. Once all nogoods are processed the received isgoods must be
rechecked to see if they are now inconsistent with this agent’s assignment. If so,
the isgood’s sender must be informed by sending a nogood. This will force the
sender to change their value in the next iteration. Next all environment messages
are processed. The order within this group doesn’t matter, but they may affect
how the isgoods are processed. Finally, the received isgoods are processed. First,
recv(A) is updated with this most recent isgood, then it checks if there is a valid
assignment to its own variable. If there isn’t, a nogood is created and sent back
to the agent that sent the isgood. This will force the sender to change their value
in the next iteration.

While the processing of most environment messages is straightforward, re-
moving constraints requires special mention. When a constraint is removed from
the problem all of the nogoods that were generated because of that constraint
must also be removed. This is made more difficult because it is possible for the
nogood message to arrive after the pre-remove constraint message that makes it
obsolete. In order to ensure they are all deleted each agent must also maintain a
store of all the nogoods it has sent and who it sent them to. When a pre-remove
constraint message is received by an agent it checks its sent nogood store to

20 G. Billiau, C.F. Chang, and A. Ghose

see if any of its neighbours must be notified. If any of the nogoods have the
removed constraint as part of their justification, they are now obsolete and the
agents neighbour must be notified. To notify the neighbour, this agent sends a
post-remove constraint message with the constraint that has been removed and
the total number of nogoods sent to that agent that are made obsolete.

Whenever an agent receives a post-remove constraint message it must go
through its store of received nogoods and delete any that have this constraint
as part of their justification. For each one that is deleted, the counter of total
obsolete nogoods in the post-remove constraint message is decremented. When
the counter reaches zero, all of the obsolete nogoods have been deleted and the
post-remove constraint message can be deleted. The agent must also check its
own store of sent nogoods to see if any of its neighbours must be notified of
the change. This is exactly as above. If an agent receives two or more post-
remove constraint messages for the same constraint, the counters are simply
added together.

Now that the agent has the most recent information about its environment, it
can choose the best assignments for its own variables. This will normally require
a centralised COP solver.

After the agent has updated its view it then checks to see if one of the other
agents would make a better support than the current one. To do so, it picks the
best isgood out of all of the isgoods it has received, then compares it with its
view. If the isgood is better then it changes its support to the agent which sent
the best isgood and then has to call update view() (alg. 2) again to update its
view. If its view is better then it keeps its current support.

Finally the agent must communicate changes to its local state to its neigh-
bours. If it detects that it is part of a cycle with the agent it is currently sending
an isgood to then it must send its entire view to that agent. Unless its view is
worse than the last isgood sent to that agent. In which case it postpones sending
a message to prevent cyclic behaviour. If it does not detect a cycle then it must
decide how long an isgood to send. If the agent is updating obsolete information
that it sent earlier then it attempts to send a longer isgood than sent previously.
If the agent is in conflict with the agent than it also attempts to send a longer
isgood than was received from the agent. However obviously it can’t send an
isgood longer than its view, but it also can not send an isgood that is self sup-
porting i.e. if view is 〈〈B, 〈b, 1〉, 4〉, 〈C, 〈c, 5〉, 20〉, 〈A, 〈a, 1〉, 3〉, 〈D, 〈d, 3〉, 15〉〉 and
sending an isgood to A then the maximum length is 3.

2.5 Example

Example 1. Consider the following constraint optimisation problem with three
variables, δ, θ and γ, each controlled by one agent Δ, Θ and Γ respectively.
Their respective domains are {0, 1, 2}, {−1, 0, 1} and {−1, 0, 1}. The objectives
are min(δ×θ),min(θ),min(γ) and there is one hard constraint, θ < γ. The utility
of the best assignment is 2, and the worst is 0.

In this problem agents δ and θ are neighbours as they share an objective, and
agents θ and γ are neighbours as they share a constraint.

SBDO: A New Robust Approach 21

Initially no agents have any information from their neighbours so in alg. 2 they
chose their assignments based on only local information, in this case, θ = −1 and
γ = −1 from their local objectives, while δ = 1 is chosen randomly. All agents
then inform their neighbours of their decision by sending isgoods. Δ sends the
isgood 〈〈Δ, {〈δ, 1〉}, 0〉〉 to Θ, Θ sends the isgood 〈〈Θ, {〈θ,−1〉}, 2〉〉 to Δ and Γ
and Γ sends the isgood 〈〈Γ, {〈γ,−1〉}, 2〉〉 to Θ.

When Θ receives the isgood from Γ , it notices that the isgood is inconsistent
with its knowledge, as there is no value in its domain less then −1. So Θ sends
the nogood 〈{〈γ,−1〉}, {θ < γ}〉. After receiving the isgoods all the agents decide
which agent to use as their support. Θ has to chose between itself and Δ. The
utility of Θ’s current view is 2, which is better than or equal to all the others
so it keeps itself as its support. Similarly Δ and Γ change their support to Θ.
When Δ chooses Θ as its support, its view now includes the assignment to Θ,
therefore it now has enough information to evaluate the shared objective and
so picks δ = 2. Θ and Γ view’s have not changed, so they don’t send new
isgoods, while Δ sends the isgood 〈〈Δ, {〈δ, 2〉}, 2〉〉 to Θ. Normally it would
include the assignment to θ as well, but that would create a circular argument,
so the assignment to Θ is trimmed. Next, Γ receives the nogood from Θ and so
is forced to change its assignment to γ = 0 and sends another isgood to Θ with
its new assignment. Simultaneously Θ receives the new isgood from Δ, but does
not make any changes because of it, so does not send a new isgood.

Then the problem changes. The constraint θ < γ is removed from the problem.
So the environment sends messages to Θ and Γ . Γ has not sent any nogoods so
has nothing to do, while Θ has sent a nogood to Γ which is now obsolete, so
it sends the constraint removed message ((θ < γ), 1) to Γ . Also as there is no
longer a link between Θ and Γ they are no longer neighbours. Meanwhile Δ has
not received any messages so is still waiting.

Finally γ receives the constraint removed message, deletes the obsolete no-
good and so is again able to adopt the assignment γ = −1, however it has no
neighbours to send an isgood to. As no agents have any messages to send the
network has reached quiescence.

3 Results

To evaluate SBDO, we implemented it using Python and compared it with the
two other DynDCOP algorithms, S-DPOP and DynCOAA. We used the refer-
ence implementation of S-DPOP[4], written in Java and we implemented Dyn-
COAA and SBDO in python. We used the parameters for DynCOAA that are
recommended by its authors [6], with 15 ants in each swarm. The different imple-
mentation languages mean that the memory and time used by each algorithm
can’t be compared directly. The Quality, Non-Concurrent Constraint Checks
(NCCCs)[5], and messages required are independent of the implementation and
so still directly comparable.

22 G. Billiau, C.F. Chang, and A. Ghose

1000

4000

A
v
er

a
g
e

U
ti
li
ty

0 10 20

Delay (s)

DynCOAA

SBDO

Fig. 1. Average solution quality per time step

The test platform was an AMD Athlon X2 6000+ processor with 4GB of
RAM running OpenSolaris 10 release 06/09. Memory usage was measured by
using DTrace to count all anonymous memory allocations and deallocations.

We used three sets of test problems: easy, moderate and hard. The easy set
consists of the 120 handcrafted meeting scheduling problems provided in [9].
These problems have between 8 and 12 variables with a constraint density (num-
ber of constraints divided by number of variables) of between 1.333 and 1.875.
The moderate set consists of 12 randomly generated meeting scheduling prob-
lems. These problems have between 9 and 24 variables with a constraint density
between 1.000 and 1.860. The hard set consists of 16 randomly generated meet-
ing scheduling problems. These problems have between 12 and 48 variables with
a constraint density between 1.750 and 4.000. We ran each problem ten times to
ensure the results represent the average performance of each algorithm.

3.1 Dynamic Problems

To evaluate SBDO’s performance on dynamic problems we compared it against
DynCOAA on the moderate and hard sets of problems. Both algorithms were
allowed to run for a set amount of time (1, 2, 3, 5, 8 and 13 seconds), after
which they were paused, the utility of the current solution calculated, then two
of the hard constraints were randomly replaced then the algorithm resumed. The
problems objective function was left unchanged. This was repeated 25 times for
each problem. By using the same random seed we guarantee that the dynamic
problems are the same for all trials. We could not compare against S-DPOP as
the provided implementation does not support terminating the current solving
process after a period of time.

As fig 3.1 shows, SBDO always outperforms DynCOAA, however it is obvious
that the solutions found by SBDO are not monotonically non-decreasing. This
is because it does not have a global communication mechanism to coordinate
value changes like DynCOAA does.

SBDO: A New Robust Approach 23

0

2 × 105

4 × 105

A
v
g
.

N
u
m

b
er

o
f
N

C
C

C
’s

10 30 50

Number of Variables

normal

failure

0

104

2 × 104

A
v
g
.

S
o
lu

ti
o
n

Q
u
a
li
ty

’s

10 30 50

Number of Variables

normal

failure

Fig. 2. Performance with unreliable agents

3.2 Fault Tolerance

To demonstrate the fault tolerance of SBDO it was run on the set of hard
problems. Every 3 seconds a random agent was killed, then restarted between 1
and 3 seconds later. So at most one of the 12 to 48 agents was not operating at
any time. We tried with other failure rates and got similar results. We choose
to restart failed agents as our test problems are from the meeting scheduling
domain. Where it is reasonable to expect that agents will be restarted when their
failure is detected. As shown in figure 1 the algorithm requires more NCCCs,
so therefore more time and messages to reach quiescence. Though as shown in
figure 1 when it does terminate the solution is only slightly worse than when no
agents fail.

3.3 Static Problems

To evaluate how SBDO performs on static problems we tested it against S-DPOP
and DynCOAA. Table 1 describes the average and standard deviation for each
of the metrics. Separated by easy, moderate and hard problems respectively. We
were unable to measure NCCCs for DynCOAA, so they have not been reported.
It also represents the average and standard deviation of the ratio of the ‘utility’
(or objective function value) computed over the optimal utility (represented as
a percentage) for each of these algorithms. We note that SBDO generates near
optimal, but not optimal, solutions in general. The SBDO algorithm performs
very well, requiring slightly more messages and NCCCs, but less memory than
S-DPOP. While producing slightly worse solutions that DynCOAA, but with
much less time and messages.

3.4 Scalability

To evaluate how SBDO scales with different problem sizes we compared it against
DPOP and DynCOAA on the moderate and hard sets of problems. Each instance
was terminated after 10 minutes or if it used more than 3.5GB of memory. SBDO
completed 98.6% of the moderate problems and 61.8% of the hard problems.

24 G. Billiau, C.F. Chang, and A. Ghose

Table 1. Performance on static problems

Algorithm Quality Messages NCCCs Memory (MB) Time (s)
avg SD avg SD avg SD avg SD avg SD

SBDO 99.80% 0.87 70.48 25.87 643.45 451.73 0.49 0.04 0.16 0.06
DynCOAA 99.95% 2.4E-4 8715.35 2745.23 – – 0.34 0.02 14.22 5.58
S-DPOP 100% 0.00 19.73 3.24 591.75 155.54 46.08 4.34 0.16 0.06

0

105

2 × 105

A
vg

.
N

um
.

of
M

sg
s.

1 3 5

Link Density

0

200

400

A
ve

ra
ge

T
im

e
(s

)
1 3 5

Link Density

0

105

2 × 105

A
vg

.
N

um
.

of
N

C
C

C
’s

1 3 5

Link Density

106

108

1010

A
vg

.
M

em
.

U
sa

ge
(B

)

1 3 5

Link Density

SBDO DynCOAA S-DPOP

Fig. 3. Scalability of SBDO, DynCOAA and DPOP

DPOP completed all of the moderate problems and 17.5% of the hard problems.
DynCOAA completed all of the moderate problems and 61.75% of the hard
problems.

The plots in figure 3 have been created by averaging the data collected from
all the instances the algorithms were tested on. The plots show that SBDO scales
well, though it does not scale as well as DPOP on most metrics, it scales much
better on memory usage.

4 Conclusion

We have presented the Support Based Distributed Optimisation algorithm that
can solve Dynamic Distributed Constraint Optimisation problems using a novel
approach inspired by argumentation. In this approach there is no hierarchy

SBDO: A New Robust Approach 25

among the different agents, instead each agent is able to send ‘isgoods’, which
can be viewed as arguments. An isgood contains the assignment to the variables
of an agent as well as the utility of the assignment and the context in which the
decision was made. Each agent can choose one of the other agents as its support
and in turn uses that agent’s assignment and context as the context for its own
decision. By constantly creating and communicating stronger and stronger argu-
ments each agent is able to influence the assignment to other agents. In this way
the agents are able to arrive at a good solution using few resources, as shown in
table 1. Also figure 3 shows that the resources required scale well with the size
of the problem.

The lack of hierarchy makes this approach very flexible regarding change in
the environment. So it is highly suited for solving dynamic problems, as shown in
figure 1. This flexibility, coupled with the knowledge redundancy in the network
makes it fault tolerant. Other agents are able to continue solving unimpeded
when one or even many agents fail. Error recovery is hastened by allowing an
agent that has just restarted to recreate its previous state, as shown in figure 2.

The resulting algorithm is completely asynchronous, fault tolerant, complete
with respect to hard constraints but incomplete with respect to soft constraints.

In future we plan to extend the concept of objectives to allow stability con-
straints to be expressed. We also intend to identify how to make the algorithm
complete, or at least provide theoretical guarantees on solution quality.

References

1. Chechetka, A., Sycara, K.: No-commitment branch and bound search for dis-
tributed constraint optimization. In: AAMAS 2006, pp. 1427–1429. ACM (2006)

2. Harvey, P., Chang, C.F., Ghose, A.: Support-based distributed search: a new ap-
proach for multiagent constraint processing. In: AAMAS 2006, pp. 377–383. ACM
(2006)

3. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In: AAMAS,
pp. 133–140 (2010)

4. Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: An open-source framework for
distributed constraint optimization. In: Proceedings of the IJCAI 2009 Distributed
Constraint Reasoning Workshop (DCR 2009), Pasadena, California, USA, pp. 160–
164 (July 13, 2009), http://liawww.epfl.ch/frodo/

5. Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing performance of dis-
tributed constraints processing algorithms. In: Proceedings of DCR Workshop,
AAMAS 2002 (2002)

6. Mertens, K.: An Ant-Based Approach for Solving Dynamic Constraint Optimiza-
tion Problems. PhD thesis, Katholieke Universiteit Leuven (December 2006)

7. Modi, P.J., Shen, W.-M., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence 161, 149–180
(2005)

8. Petcu, A., Faltings, B.: S-dpop: Superstabilizing, fault-containing multiagent com-
binatorial optimization. In: Proceedings of the National Conference on Artificial
Intelligence, AAAI-2005, pp. 449–454. AAAI, Pittsburgh (July 2005)

http://liawww.epfl.ch/frodo/

26 G. Billiau, C.F. Chang, and A. Ghose

9. Portway, C.P.: USC dcop repository (2008), http://teamcore.usc.edu/dcop
10. Schiex, T., Verfaillie, G.: Nogood recording for static and dynamic constraint sat-

isfaction problems. In: TAI 1993, pp. 48–55 (1993)
11. Stranders, R., Farinelli, A., Rogers, A., Jennings, N.R.: Decentralised coordina-

tion of continuously valued control parameters using the max-sum algorithm. In:
AAMAS, vol. (1), pp. 601–608 (2009)

12. Vinyals, M., Pujol, M., Rodŕıguez-Aguilar, J.A., Cerquides, J.: Divide-and-
coordinate: Dcops by agreement. In: AAMAS, pp. 149–156 (2010)

http://teamcore.usc.edu/dcop

Solving Distributed CSPs Using Dynamic,

Partial Centralization
without Explicit Constraint Passing

Roger Mailler and Jacob Graves

Computational Neuroscience and Adaptive Systems Lab
University of Tulsa, USA

roger-mailler@utulsa.edu

http://www.cnas.utulsa.edu

Abstract. Dynamic, partial centralization has received a considerable
amount of attention in the distributed problem solving community. As
the name implies, this technique works by dynamically identifying por-
tions of a shared problem to centralize in order to speed the problem
solving process. Currently, a number of algorithms have been created
which employ this simple, yet powerful technique to solve problems such
as distributed constraint satisfaction (DCSP), distributed constraint op-
timization (DCOP), and distributed resource allocation.

In fact, one such algorithm, Asynchronous Partial Overlay (APO),
was shown to outperform the Asynchronous Weak Commitment (AWC)
protocol, which is one of the best known methods for solving DCSPs.
One of the key differences between these algorithms is that APO uses
explicit constraint passing. AWC, on the other hand, passed nogoods be-
cause it tries to provide security and privacy. Because of these differences
in underlying assumptions, a number of researchers have criticized the
comparison between these two protocols.

This paper attempts to resolve this disparity by introducing a new hy-
brid algorithm called Nogood-APO. Like AWC, this new algorithm uses
nogood passing to provide security and privacy, but like APO uses dy-
namic partial centralization to speed the problem solving process. Like its
parent algorithms, this new protocol is sound and complete and performs
nearly as well as APO, while still outperforming AWC, on distributed
3-coloring problems. In addition, this paper shows that Nogood-APO
provides more privacy to the agents than both APO and AWC on all
but the sparsest problems. These findings demonstrate that a dynamic,
partial centralization-based protocol can provide privacy and that even
when operating with the same assumptions as AWC still solves problems
in fewer cycles using less computation and communication.

1 Introduction

Over the years, distributed problem solving has received a great deal of attention
for a number of reasons. The most compelling reasons are that some problems are
naturally distributed, multiple processor can compute solution faster, and privacy

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 27–41, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

28 R. Mailler and J. Graves

and security can be maintained. These reasons can often be quite contradictory
because, for example, the more information an agent is willing to reveal upfront as
part of the problem solving process, the faster a solution can be computed.

One methodology for solving distributed problems, called dynamic, partial
centralization tries to solve naturally distributed problems in the fastest manner
possible by performing focused, incremental and asynchronous centralization of
portions of a shared problem. Several protocols have already been created that
use this hybrid centralized/distributed search technique and have been shown to
outperform existing protocols on a large number of distributed problems.

One of the key characteristics of each of these algorithms, however, is that
the agents have to be willing to directly reveal a great deal of information to
each other. For example, in Asynchronous Partial Overlay (APO) [8], agents
willingly reveal their variable’s constraints and domain whenever requested. The
Asynchronous Weak Commitment (AWC) protocol [15], on the other hand, only
reveals information about a variable’s constraints and domain, using a nogood,
when it reaches a deadend in the problem solving process. The willingness to re-
veal information is one reason, although not the only one, that APO outperforms
AWC across a wide spectrum of problem sizes and difficulties.

The purpose of this paper is to present a new hybrid AWC/APO algorithm,
called Nogood-APO. Like APO, this new algorithm uses dynamic, partial cen-
tralization and like AWC only reveals information, in the form of a nogood, when
necessary during the problem solving process. The two main goals in creating
this algorithm are to show that although partial centralization involves revealing
knowledge in order to solve a shared problem, the knowledge that is exposed can
be minimized, obscured, or revealed in an incremental manner. The second goal
is to demonstrate that even when constraints are not explicitly revealed, that
dynamic, partial centralization still outperforms the AWC-like trial-and-error
approach to solving distributed problems.

The rest of this paper is organized as follows. In the next section, we will
introduce the distributed constraint satisfaction problem. We will go on to de-
scribe the Nogood-APO algorithm, give an example of its execution on a simple
problem, and mention the issues of soundness and completeness. We will then
present the setup for our experimental evaluation followed by the results. Finally,
we will present our conclusions and future work.

2 Distributed Constraint Satisfaction

A Distributed Constraint Satisfaction Problem (DCSP),
P = 〈V,A,D,R〉, consists of the following [16]:

– A set of n variables V = {x1, . . . , xn}.
– A set of g agents A = {a1, . . . , ag}
– discrete, finite domains for each of the variables D = {D1, . . . , Dn}.
– a set of constraints R = {R1, . . . , Rm} where each Ri(di1, . . . , dij) is a pred-

icate on the Cartesian product Di1 ×· · ·×Dij that returns true iff the value
assignments of the variables satisfies the constraint.

Solving Distributed CSPs Using Dynamic, Partial Centralization 29

Fig. 1. The basic APO protocol

The problem is to find an assignment S = {d1, . . . , dn|di ∈ Di} such that each
of the constraints in R is satisfied. DCSP, like its centralized counterpart CSP,
has been shown to be NP-complete, making some form of search a necessity.

In this work, we focus on the case where each agent is assigned a single variable
and the constraints are binary. Since each agent is assigned a single variable,
we will refer to the agent by the name of the variable it manages. Because the
constraints are binary, we can refer to the graph created by representing variables
as vertices and constraints as edges as the constraint graph. In addition, two
variables are considered to be neighbors if they share a constraint.

3 The Protocols

3.1 Asynchronous Weak Commitment (AWC)

The Asynchronous Weak Commitment (AWC) protocol is heavily based on its
predecessor the Asynchronous Backtracking (ABT) protocol [17]. ABT works by
assigning each agent a priority value. These priority values establish an absolute
ordering amongst the agents that is used to control the search process. Agents
perform the search by sending value messages to lower priority agents they are
linked with. Value messages inform these lower priority agents about the variable
values of higher priority agents. The agents use these values to determine if any
of their domain values can satisfy their constraints with higher priority agents.
Whenever the values of the higher priority prevent them from assigning their
variable a conflict free value, the agent generates a nogood message.

Nogoods are composed of a set variable/value pairs that indicate that the
combination of the variable assignments cannot be part of a satisfying solution.
A nogood can be thought of as an implied constraint. After generating a nogood,
it is sent to all the agent that are contained within it. Upon receiving a nogood,
agents perform a linking step with any agent that is listed in the nogood and
was previously unknown. This step is necessary to ensure the completeness of the
search. Initially, the linking structure mirrors the constraint graph, but because

30 R. Mailler and J. Graves

of linking as a result of nogoods, can quickly grow causing higher priority agents
to send value messages to a large number of agents.

Like centralized backtracking algorithms, the ordering of the agents (variables)
in ABT strongly affects the speed of the search. To overcome this problem,
Yokoo created the AWC protocol [15]. The AWC algorithm is a variant of the
ABT algorithm that allows the agents to re-prioritize themselves using the weak-
commitment search heuristic [14]. This heuristic strategy basically says that
whenever a backtrack occurs, that variable that triggered the backtrack should
be moved up in the search tree. The principle idea behind this technique is to
identify variables that are at the center of complex or critical constraints and
assign them values first. Their values can then act as constraints on less critical
variables instead of the other way around. In practice, this techniques has been
shown to be quite effective in reducing the overall runtime of DCSP searches.

A later addition to the AWC protocol was the use of resolvent-based nogood
learning [6]. This technique works by selecting, for each of the variable’s possible
values, one nogood that prohibits that value. These nogood are then merged
together to form a new nogood. If the nogoods are selected wisely, they can
actually generate smaller, more powerful nogoods.

3.2 Asynchronous Partial Overlay (APO)

Conceptually, APO is based on the cooperative mediation paradigm [8]. Cooper-
ative mediation entails three main principles. The first is that agents use local,
centralized search to solve portions of the overall problem. Second, agents should
use experience to dynamically increase their understanding of their role in the
overall problem. Third, agents should overlap the knowledge that they have to
promote coherence. Together these three ideas create a powerful paradigm which
has been applied to several distributed problems [10,11].

The basic APO algorithm is presented in Figure 1. The APO algorithm works
by constructing two main data structures; the good list and the agent view.
The agent view holds the names, values, domains, and constraints of variables
to which an agent is linked. The good list holds the names of the variables that
are known to be connected to the owner by a path in the constraint graph.

As the problem solving unfolds, the agents try to solve the subproblem they
have centralized within their good list or determine that this subproblem is
unsolvable (indicating that the entire problem is overconstrained). To do this,
whenever an agent recognizes a constraint violation involving its variable, it
takes the role of the mediator and attempts to change the values of the variables
within the mediation session to achieve a satisfied subsystem. When this cannot
be achieved without causing a violation for agents outside of the session, the
mediator links with those agents assuming that they are somehow related to the
mediator’s variable. This step increases the size of the good list. This process
continues until one of the agents finds an unsatisfiable subsystem, or all of the
conflicts have been removed.

Like AWC, agents that use APO have a dynamic priority value that is used to
determine which agentmediates when a conflict is detected. Currently, the heuris-

Solving Distributed CSPs Using Dynamic, Partial Centralization 31

tic for setting this priority value is to use the size of the subproblem that the agent
knows.Although one could conceive of a number of other heuristics which optimize
different metrics, this particular heuristic was chosen to minimize the number of
parallel cycles needed to compute a solution. Benisch and Sadeh, for instance, de-
veloped an inverted mediator selection strategy that improves the parallelism of
the protocol at the expense of requiring additional communication cycles [1].

When an agent links in APO, the agents exchange the domain values, Di, and
constraints, ∀Ri xi ∈ Ri, on the their variable. In many environments, particular
in ones where every agent is trusted and cooperative, the open exchange of
this knowledge is quite acceptable and leads to significant improvements in the
runtime of the algorithm. However, there are times when directly exchanging
this information is impossible due to privacy or security.

3.3 Nogood-APO

The Nogood-APO (NAPO) algorithm is very similar in nature to the APO
algorithm. The key difference is that instead of directly exchanging constraints,
the agents exchange nogoods as part of the problem solving process.

By exchanging nogoods, the agents gain two things. First, because the agents
incrementally reveal information, they may not have to reveal all of the details
about their constraints in order to solve a problem. This is particular important
in domains where the variables have very large domains. The second is that
agents can obscure their constraints by padding the most minimal nogood with
additional variable/value pairs. By padding them in this way, it is harder for
another agent to actually know the details of the constraints, but it slows the
execution of the algorithm because it is harder to identify when the problem is
unsolvable.

There are several secondary effects of changing the algorithm in this way. The
most important is that the agents need to maintain a nogood list. Like AWC,
the size of the nogood list can grow quite large (exponential in the worst case),
especially if agents try to hide their direct constraints by padding their nogoods.
However, if the agents are willing to exchange nogoods that are directly derived
from their constraints, the size of the nogood list becomes quite manageable
being directly related to the number and complexity of the constraints as opposed
to the number of possible assignments to the variables.

Initialization. Like APO, on startup, the agents are provided with the value
(they pick it randomly if one isn’t assigned) and the constraints on their variable.
Using these constraints, the agents derived their direct nogoods and place them
in their nogood lists. Unlike APO however, initialization proceeds by having each
of the agents send out an “ok?” message to its neighbors. The content of this
message is considerably different from the “ok?” messages in APO. In NAPO,
the agents send their current priority, the value of their variable, their variable’s
current domain, and the current set of violated nogoods from their nogood list
that involve their variable.

32 R. Mailler and J. Graves

Agents send their domain values as part of the “ok?” message because it
ensures that the mediator always has the current set of allowable values for the
variables in its good list. This is particularly important if an agent calculates
that one of its values is not arc-consistent. This can be thought of as the agent
deriving a unary nogood which disallows one of its variable’s values.

The “ok?” message also includes the set of currently violated nogoods that
include the agent’s variable. There are two reasons for including this informa-
tion. First, when this set is empty, it indicates that the agent does not wish to
mediate. Second, as will be illustrated later, this information is used to ensure
that mediators are informed of inadvertent nogood violations that result from
changing the values of multiple variables in a session without knowing that they
are related to one another.

When an agent receives an “ok?” message (either during the initialization,
through a later link request, or as a state update), it records the information in
its agent view and adds the variable to the good list if it can. A variable is only
added to the good list if it shares a nogood with a variable that is already in
the list. This restriction ensures that the graph created by the variables in the
good list always remains connected.

Checking the agent view. Whenever the agent receives a message that indicates
a possible change to the status of its variable, it checks the current agent view
(which contains the assigned, known variable values) to identify violated no-
goods. If, during this check, an agent finds a violation and has not been told
by a higher priority agent that they want to mediate, it assumes the role of the
mediator.

As the mediator, an agent first attempts to rectify the violation(s) by changing
its own variable. This simple, but effective technique prevents sessions from
occurring unnecessarily, which stabilizes the system and saves messages and
time. If the mediator finds a value that removes the violations, it makes the
change and sends out an “ok?” message to the agents in its agent view. If it
cannot find a non-conflicting value (it’s at a deadend), it starts a mediation
session.

Mediation. The most complex and certainly most interesting part of the protocol
is the mediation. The mediation starts with the mediator sending out “evaluate?”
messages to each of the agents in its good list. The purpose of this message
is two-fold. First, it informs the receiving agent that a mediation is about to
begin and tries to obtain a lock from that agent. This lock prevents the agent
from engaging in two sessions simultaneously or from doing a local value change
during the course of a session. The second purpose of the message is to obtain
information from the agent about the effects of making them change their local
value. This is a key point.

When an agent receives a mediation request, it will respond with either a
“wait!” or “evaluate!” message. The “wait” message indicates to the requester
that the agent is currently involved in a session with a higher priority agent or
is expecting a request from an higher priority agent. If the agent is available, it

Solving Distributed CSPs Using Dynamic, Partial Centralization 33

Fig. 2. Example 3-coloring problem with 5 variables and 7 not-equals constraints

labels each of its domain elements with the nogoods that would be violated if it
were asked to take that value which is returned in an “evaluate!” message.

When the mediator has received either a “wait!” or “evaluate!” message from
all of the agents that it has sent a request to, it computes a solution using a
Branch and Bound search [3]. The goal of the search is to find a conflict-free
solution for the variables in the session and to minimize the number of conflicts
for variables outside the session (like the min-conflict heuristic [13]). During this
search, new nogoods can be derived using nogood learning [4]. These nogoods
are recorded in the nogood list and can be used during subsequent searches to
prune the search space.

If no satisfying assignments are found, the agent announces that the problem
is unsatisfiable and the algorithm terminates. If a solution is found, “accept!”
messages are sent to the agents in the session and “ok?” messages are sent to
the agents that are in its agent view, but, for whatever reason, were not in the
session, and to any agent that is not in its agent view, but it caused conflict for
as a result of selecting its solution.

3.4 Example Execution

Consider the 3-coloring problem in Figure 2a. In this problem there are 5 vari-
ables, each assigned to an agent and 7 constraints which represent the “not
equals” predicate. Being a 3-coloring problem, the variables can only take the
value red, green, or blue. There are currently two constraint violations, between
ND2 and ND4 and between ND0 and ND3.

On initialization, each of the agents adds nogoods to their nogood lists for the
constraints that they have on their variable. They then send “ok?” messages to
the agents with whom they share constraints (their neighbors).

34 R. Mailler and J. Graves

Once the initialization has completed, each of the agents checks its agent view
to determine if its variable is involved in a violation. In this case, ND0, ND2,
ND3, and ND4 determine that have a conflict. Because of the priority ordering,
ND4 (priority 3) waits for ND2 (priority 4) to mediate. ND0 (priority 3) and
ND2 wait for ND3 (priority 3 tie broken by name). ND3, knowing it is higher
priority than ND0 and ND2, first checks to see if it can resolve its conflicts by
changing its value, which it can’t. It then starts a mediation session and sends
“evaluate?” messages to ND0, ND1, and ND2.

Upon receiving the “evaluate?” messages, ND0, ND1, and ND2 evaluate their
domain elements to identify the nogoods that would be violated by each of
them. This information is then returned to ND3 in an “evaluate!” message. The
following are the labeled domains for the agents in the session with ND3:

– ND0
Green violates (ND0=G,ND1=G)
Blue violates (ND0=B,ND3=B)
Red causes no violations

– ND1
Green cause no violations
Blue violates (ND1=B,ND0=B) and (ND1=B,ND3=B)
Red violates (ND1=R,ND2=R) and (ND1=R,ND4=R)

– ND2
Green violates (ND2=G,ND1=G)
Blue violates (ND2=B,ND3=B)
Red violates (ND2=R,ND4=R)

ND3 computes a solution that changes the values of all of the variables in the
session (see Figure 2b). Based on the information that ND3 obtained from the
“evaluate!” messages, it believes that this solution solves its subproblem and
causes no conflicts for agents outside of the session. ND3 sends “accept!” message
to the agents in the session.

After receiving the “accept” messages, each agent changes its value and checks
its agent view. This time, ND1 and ND2 are in conflict. This happened because
ND3 changing their values to blue, inadvertently causing the violation. To pre-
vent this from happening again, the “ok?” messages that are sent by ND1 and
ND2 include their current conflict set. This allows ND3 to learn of the relation-
ship between ND2 and ND1 so it doesn’t repeat the same error.

ND1, the higher priority (priority 5) agent, cannot solve the conflict by making
a local value change, so it starts a mediation session. Below are the responses to
the “evaluate?” messages sent by ND1:

– ND0
Green violates (ND0=G,ND3=G)
Blue violates (ND0=B,ND1=B)
Red causes no violations

– ND2
Green violates (ND2=G,ND3=G)
Blue violates (ND2=B,ND1=B)
Red violates (ND2=R,ND4=R)

Solving Distributed CSPs Using Dynamic, Partial Centralization 35

– ND3
Green causes no violations
Blue violates (ND3=B,ND1=B)and (ND3=B,ND2=B);
Red violates (ND3=R,ND0=R)

– ND4
Green causes no violations
Blue violates (ND4=B,ND2=B)and (ND4=B,ND1=B)
Red causes no violations

ND1 computes a solution which changes its value to green and ND2’s to red and
sends “accept!” messages. All of the agent’s check their agent view and find no
conflicts so the problem is solved (Figure 2c).

3.5 Soundness and Completeness

The soundness and completeness of the NAPO algorithm are derived directly
from the soundness and completeness of APO. We refer the reader to [9] and
[5] for the complete details of the proofs for APO. Here is a basic outline of the
proof for NAPO:

– If at anytime an agent identifies a constraint subgraph that is not satisfiable,
it announces that the problem cannot be solved. Half of the soundness.

– If a nogood is violated, someone will try to fix it. The protocol is dead-lock
and live-lock free. The other half of the soundness proof.

– Eventually, in the worst case, one or more of the agents will centralize the
entire problem and will derive a solution, or report that no solution exists.
This is done by collecting nogoods from both “evaluate!” messages and “ok?”
messages. This ensures completeness.

4 Empirical Evaluation

4.1 Experimental Setup

To test the NAPO algorithm, we implemented the AWC, APO, and NAPO
algorithms and conducted experiments in the distributed 3-coloring domain. The
particular AWC algorithm we implemented can be found in [18] which includes
the resolvent nogood learning mechanism described in [6]. We conducted two sets
of experiments.

In the first set of experiments we compared the algorithms using 30 variable,
randomly generated graph coloring problems while varying the edge densities
across the known phase transition for 3-coloring problems [2]. In the second set
of experiments, we tested the scalability of the algorithms by varying the size
of the problems from 15 to 60 variables in the three major regions of the phase
transition. Each data point represents an average over 30 randomly generated
problems. Each algorithm was given the same problems with the same initial

36 R. Mailler and J. Graves

Fig. 3. Phase transition results for 30 node graphs of various density

variable assignments to minimize variance. The algorithms were allowed to run
for up to 1,000 cycles. This upper limit only affected the AWC protocol, which
frequently could not finish on larger, higher density problems. A total of 2,250
test runs were conducted.

During these tests we measured the number of messages, cycles, and non-
concurrent constraint checks (NCCCs) [12] used by the algorithms. During a
cycle, incoming messages are delivered, the agent is allowed to process the infor-
mation, and any messages that were created during the processing are added to
the outgoing queue to be delivered at the beginning of the next cycle. The actual
execution time given to one agent during a cycle varies according to the amount
of work needed to process all of the incoming messages. We also instrumented
the algorithms to measure the number of non-concurrent constraint checks used
during each cycle. This measure has gained popularity in the DCSP community
because it provides an implementation independent view of the parallel compu-
tation usage of a protocol.

In addition to these standard measures of computation and communication
cost, we also gathered data to quantify the information that the agents revealed
to one another during the problem solving process. One measure we used was
to count the number of links that the protocols created during execution. This
metric provides insight into ”who” the agents send information to in order to
solve the problem.We also wanted to measure ”what” and howmuch information
was being sent. To do this we used the following measure of information gain:

gain(ai) =
∑

ng∈nogoods−rcvdi

1

|Di||ng|
(1)

Solving Distributed CSPs Using Dynamic, Partial Centralization 37

Fig. 4. Scalability cost results for AWC, APO, and NAPO

where ai is an agent, nogoods− rcvdi is the set of unique nogoods that have
been received from other agents by ai, |Di|, is the size of the domain, and |ng|
is the size of an individual nogood based on the number of variable/value pairs
it contains. The logic behind this equation is that the power of a nogood can be
measured based on the number of potential solutions that it invalidates in the
search space. Shorter nogoods are more powerful because they are more general
and eliminate a larger number of value combinations. This metric is similar to
the Value of Possible States (VPS) metric developed by Meheswaran et al. [7].
For both of these metrics we determined the average across the agents, measuring
the distribution of information gain, as well as the maximum value for any single
agent, measuring the amount of centralization.

To provide a frame of reference, we also included data for the average and
maximum information gain had the agents elected a leader and centralized the
problem. The centralized maximum and average information gain can easily be
computed as:

max gain(a) =
m(n− 1)

n ∗ |Di|
(2)

avg gain(a) =
max gain(a)

n
(3)

4.2 Results

The result of the phase transition experiments can be seen in Figure 3. These
graphs show that AWC outperforms both APO and NAPO on very sparse

38 R. Mailler and J. Graves

Fig. 5. Scalability information results for AWC, APO, and NAPO

problems, but on problems at or above the phase transition, the story is quite dif-
ferent. APO uses the least number of NCCCs, cycles, and messages with NAPO
using slightly more. These results seem to contradict the findings of presented
by Grinshpoun and Meisels [5] who reported that APO used more NCCCs on
medium density problems across various levels of constraint tightness. The dis-
crepancy between these results can likely be explained by the difference in the
experiments that were conducted. Grinshpoun and Meisels used general CSP
instances where the variables have large domains (|Di| = 10) as opposed to the
small domain of the variables (|Di| = 3) and fixed tightness of the constraints
(p2 = 0.33) in 3-coloring. The large domains create equally large branching fac-
tors that severely impact the branch and bound solver used at the core of APO.

When looking at the results for information exchange, the nature of the proto-
cols becomes apparent. APO, which uses explicit constraint passing, has the worse
average information exchange across the entire transition, centralizes about 50%of
the problemwithin a single agent, but creates the least number of new links. NAPO
has the lowest average information gain, is equivalent to APO in the amount of in-
formation centralized in a single agent, and produces more links than APO. This
can be interpreted as meaning that NAPO centralizes as much as APO, but does
it in a more intelligent manner. AWC has the least average information gain on
very sparse problems, but within the phase transition performs worse than NAPO

Solving Distributed CSPs Using Dynamic, Partial Centralization 39

and actually approaches APO. AWC has very minimal centralization on sparse
problems, but as the density increases, the agent with the maximum information
gain actually gets more information than if the problem had just been completely
centralized. At first, this doesn’t appear to make sense, but AWC agents not only
send original constraints, they also send implied constraints. So the agent with the
maximum information gain is not only being told the other agents’ constraints, it
is being told about constraints that are learned by the other agents as well. AWC
also creates more links meaning that agents are exchanging information with more
of their peers than APO and NAPO

The results of the scalability experiments can be seen in Figures 4 and 5.
The results for the cost metrics are as expected with APO using the least cycles,
communication, and NCCCs of the three protocols. The protocol cost for NAPO
is somewhere between APO and AWC. In the NCCCs category it appears that
AWC and NAPO are competitive. However, one should keep in mind that many
of the AWC runs did not actually complete on the 60 node test cases because
they did not find a solution within 1,000 cycles. So the results for AWC in these
graphs are skewed toward being lower than they actually are.

The results for scalability of information gain also present some interesting
findings. They show that on sparse problem, both AWC and NAPO have less av-
erage information gain than APO. However, on denser problems, AWC becomes
less scalable having a rapid increase in average information gain that exceeds
even APO. The same trend holds true when looking at maximum information
gain. AWC is dominate on sparse problems, but on dense examples has poor
scalability. APO performs best overall in the number of new links it creates,
with NAPO in the middle and AWC creating the most links.

The take-home message from these experiments are not directly straightfor-
ward, but can be summarized as follows:

– On sparse 3-coloring problems, the AWC protocol exchanges the least amount
of information in order to compute a solution, but takes more cycles, uses
more messages, creates more links, and performs more NCCCs than APO.

– On dense 3-coloring problems, AWC exchanges more information, to more
agents, uses more cycles, more messages, and more NCCCs than either
NAPO or APO.

– If you are solely concerned about speed then APO is your best choice.

– If you are willing to trade speed for privacy than NAPO is the best choice
on everything except very sparse problems.

– The speedups associated with partial centralization cannot be directly at-
tributed to explicit constraint passing alone. Even when nogoods are ex-
changed, the algorithm performs as well or better than the distributed
backtracking-based search.

5 Conclusions and Future Work

In this paper, we presented a new hybrid AWC/APO algorithm called Nogood-
APO. As was shown in experimentation, this algorithm, like APO, outperform

40 R. Mailler and J. Graves

AWC on all but the simplest 3-coloring problems across various size and density
on several metrics. By creating this algorithm, we showed that constraint passing
is not necessary in an algorithm that is based on dynamic, partial centralization
and that the likely reason why algorithms like APO outperform AWC is the
combination of distributed/centralized search techniques they use.

A number of questions are raised as a result of this work. First, and foremost,
it revives the competition between DCSP algorithms that are based on partial
centralization and distributed backtracking because for the first time, we have
examples that are designed using the same basic assumptions. It also identifies
another dimension for doing scalability experiments, namely the size of the vari-
able’s domains. As these results indicate, on problems that have variables with
small domains, the performance characteristics AWC and APO are quite differ-
ent then they are on domains with larger domains. This may point to areas for
improvement in both of these protocols.

Acknowledgement. The authors gratefully acknowledge support of the De-
fense Advanced Research Projects Agency under DARPA grants HR0011-07-C-
0060. Views and conclusions contained in this document are those of the authors
and do not necessarily represent the official opinion or policies, either expressed
or implied of the US government or of DARPA.

References

1. Benisch, M., Sadeh, N.: Examining distributed constraint satisfaction problem
(dcsp) coordination tradeoffs. In: International Conference on Automated Agents
and Multi-Agent Systems, AAMAS (2006)

2. Culberson, J., Gent, I.: Frozen development in graph coloring. Theoretical Com-
puter Science 265(1-2), 227–264 (2001)

3. Freuder, E.C., Wallace, R.J.: Partial constraint satisfaction. Artificial Intelli-
gence 58(1-3), 21–70 (1992)

4. Frost, D., Dechter, R.: Dead-end driven learning. In: Proceedings of the Twelfth
Natioanl Conference on Artificial Intelligence, pp. 294–300 (1994)

5. Grinshpoun, T., Meisels, A.: Completeness and performance of the apo algorithm.
Journal of Artificial Intelligence Research 33, 223–258 (2008)

6. Hirayama, K., Yokoo, M.: The effect of nogood learning in distributed constraint
satisfaction. In: The 20th International Conference on Distributed Computing Sys-
tems (ICDCS), pp. 169–177 (2000)

7. Maheswaran, R.T., Pearce, J.P., Varakantham, P., Bowring, E., Tambe, M.: Val-
uations of possible states (vps):a quantitative framework for analysis of privacy
loss among collaborative personal assistant agents. In: Proceeding of Autonomous
Agents and Multi-Agents Systems (2005)

8. Mailler, Lesser: Asynchronous partial overlay: A new algorithm for solving dis-
tributed constraint satisfaction problems. Journal of Artificial Intelligence Re-
search 25, 529–576 (2006)

9. Mailler, R.: A Mediation-Based Approach to Cooperative, Distributed Problem
Solving. PhD thesis, University of Massachusetts (2004)

10. Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using
cooperative mediation. In: Proceeding of AAMAS-2004, pp. 438–445 (2004)

Solving Distributed CSPs Using Dynamic, Partial Centralization 41

11. Mailler, R., Lesser, V.: A cooperative mediation-based protocol for dynamic, dis-
tributed resource allocation. IEEE Transaction on Systems, Man, and Cybernetics,
Part C, Special Issue on Game-theoretic Analysis and Stochastic Simulation of Ne-
gotiation Agents (2006)

12. Meisels, A., Razgon, I., Kaplansky, E., Zivan, R.: Comparing performance of dis-
tributed constraints processing algorithms. In: Proc. AAMAS-2002 Workshop on
Distributed Constraint Reasoning DCR, pp. 86–93 (2002)

13. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: A heuris-
tic repair method for constraint satisfaction and scheduling problems. Artificial
Intelligence 58(1-3), 161–205 (1992)

14. Yokoo, M.: Weak-commitment search for solving constraint satisfaction problems.
In: Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-
1994), Seattle, WA, USA, vol, July 31-August 4, vol. 1, pp. 313–318. AAAI Press
(1994)

15. Yokoo, M.: Asynchronous weak-commitment search for solving distributed con-
straint satisfaction problems. In: Int’l Conf. on Principles and Practice of Con-
straint Programming, pp. 88–102 (1995)

16. Yokoo, M., Durfee, E.H.: Distributed constraint optimization as a formal model of
partially adversarial cooperation. Technical Report CSE-TR-101-91, University of
Michigan, Ann Arbor, MI 48109 (1991)

17. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satisfac-
tion for formalizing distributed problem solving. In: Proceedings of the 12th Int’l
Conf. on Distributed Computing Systems, pp. 614–621 (1992)

18. Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A
review. Autonomous Agents and Multi-Agent Systems 3(2), 198–212 (2000)

A Distributed Task Specification Language
for Mixed-Initiative Delegation�

Patrick Doherty, Fredrik Heintz, and David Landén

Dept. of Computer and Information Science, Linköping University, Sweden
{patrick.doherty,fredrik.heintz,david.landen}@liu.se

Abstract. In the next decades, practically viable robotic/agent systems are go-
ing to be mixed-initiative in nature. Humans will request help from such systems
and such systems will request help from humans in achieving the complex mis-
sion tasks required. Pragmatically, one requires a distributed task specification
language to define tasks and a suitable data structure which satisfies the spec-
ification and can be used flexibly by collaborative multi-agent/robotic systems.
This paper defines such a task specification language and an abstract data struc-
ture called Task Specification Trees which has many of the requisite properties
required for mixed-initiative problem solving and adjustable autonomy in a dis-
tributed context. A prototype system has been implemented for this delegation
framework and has been used practically with collaborative unmanned aircraft
systems.

1 Introduction

In the past decade, the Unmanned Aircraft Systems Technologies Lab1 at the
Department of Computer and Information Science, Linköping University, has been in-
volved in the development of autonomous unmanned aircraft systems (UAS’s) and as-
sociated hardware and software technologies (7). The size of our research platforms
range from the RMAX helicopter system (100kg) (4, 8, 23) developed by Yamaha Mo-
tor Company, to smaller micro-size rotor based systems such as the LinkQuad2 (1kg)
and LinkMAV (10, 20) (500g) in addition to a fixed wing platform, the PingWing (5)
(500g). These UAS platforms are shown in Figure 1. The latter three have been de-
signed and developed by the Unmanned Aircraft Systems Technologies Lab. All four
platforms are fully autonomous and have been deployed.

Previous work has focused on the development of robust autonomous systems for
UAS’s which seamlessly integrate control, reactive and deliberative capabilities that
meet the requirements of hard and soft real-time constraints (8, 18). More recently, our
research efforts have begun to focus on applications where UAS’s with heterogeneous

� This work is partially supported by grants from the Swedish Foundation for Strategic Re-
search (SSF) Strategic Research Center MOVIII, the Swedish Research Council (VR), the VR
Linnaeus Center CADICS, the ELLIIT Excellence Center at Linköping-Lund for Information
Technology, and the Center for Industrial Information Technology CENIIT.

1 www.ida.liu.se/divisions/aiics
2 www.uastech.com

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 42–57, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.ida.liu.se/divisions/aiics
www.uastech.com

A Distributed Task Specification Language for Mixed-Initiative Delegation 43

Fig. 1. The UASTech RMAX (upper left), PingWing (upper right), LinkQuad (lower left) and
LinkMAV (lower right)

unmanned aircraft are required to collaborate not only with each other but also with
diverse human resources (9).

As UAS’s become more autonomous, mixed-initiative interaction between human
operators and such systems will be central in mission planning and tasking. In the near
future, the practical use and acceptance of UAS’s will have to be based on a verifiable,
principled and well-defined interaction foundation between one or more human oper-
ators and one or more autonomous systems. In developing a principled framework for
such complex interaction between UAS’s and humans in complex scenarios, a great
many interdependent conceptual and pragmatic issues arise and need clarification both
theoretically, but also pragmatically in the form of demonstrators.

In our current research, we have targeted a triad of fundamental, interdependent con-
ceptual issues: delegation, mixed-initiative interaction and adjustable autonomy. The
triad of concepts is being used as a basis for developing a principled and well-defined
framework for interaction that can be used to clarify, validate and verify different types
of interaction between human operators and UAS’s both theoretically and practically in
experimentation with our deployed platforms. The concept of delegation is particularly
important and in some sense provides a bridge between mixed-initiative interaction and
adjustable autonomy.

Delegation – In any mixed-initiative interaction, humans may request help from
robotic systems and robotic systems may request help from humans. One can abstract
and concisely model such requests as a form of delegation, Delegate(A, B, task,
constraints), where A is the delegating agent, B is the contractor, task is the task
being delegated and consists of a goal and possibly a plan to achieve the goal, and
constraints represents a context in which the request is made and the task should be
carried out. In our framework, delegation is formalized as a speech act and the delega-
tion process invoked can be recursive.

44 P. Doherty, F. Heintz, and D. Landén

Adjustable Autonomy – In solving tasks in a mixed-initiative setting, the robotic
system involved will have a potentially wide spectrum of autonomy, yet should only
use as much autonomy as is required for a task and should not violate the degree of
autonomy mandated by a human operator unless agreement is made. One can begin
to develop a principled means of adjusting autonomy through the use of the task and
constraint parameters in Delegate(A, B, task, constraints). A task delegated with
only a goal and no plan, with few constraints, allows the robot to use much of its au-
tonomy in solving the task, whereas a task specified as a sequence of actions and many
constraints allows only limited autonomy. It may even be the case that the delegator
does not allow the contractor to recursively delegate.

Mixed-Initiative Interaction – By mixed-initiative, we mean that interaction and
negotiation between a robotic system, such as an unmanned aerial vehicle (UAV) and
a human, will take advantage of each of their skills, capacities and knowledge in de-
veloping a mission plan, executing the plan and adapting to contingencies during the
execution of the plan. Mixed-initiative interaction involves a very broad set of issues,
both theoretical and pragmatic. One central part of such interaction is the ability of a
ground operator (GOP) to be able to delegate tasks to a UAV, Delegate(GOP , UAV ,
task, constraints) and in a symmetric manner, the ability of a UAV to be able to dele-
gate tasks to a GOP, Delegate(UAV , GOP , task, constraints). Issues pertaining to
safety, security, trust, etc., have to be dealt with in the interaction process and can be
formalized as particular types of constraints associated with a delegated task.

An important conceptual and pragmatic issue which is central to the three concepts
and their theoretical and pragmatic integration is that of a task and its representation
and semantics in practical systems. The task representation must be highly flexible,
distributed and dynamic. Tasks need to be delegated at varying levels of abstraction
and also expanded and modified as parts of tasks are recursively delegated to different
UAS agents. Consequently, the structure must also be distributable. Additionally, a task
structure is a form of compromise between a compiled plan at one end of the spectrum
and a plan generated through an automated planner (14, 15) at the other end of the
spectrum. The task representation and semantics must seamlessly accommodate plan
representations and their compilation into the task structure. Finally, the task represen-
tation should support the adjustment of autonomy through the addition of constraints or
parameters by agents and human resources.

Paper Structure: The first part of the paper sets the broader context by providing a
short summary in Section 2 of a formal delegation framework based on the use of
speech acts in addition to a short summary about the pragmatics of implementing such
a system in a UAS in Section 3. The second part of the paper described in Section 4 is
specifically about task specification and provides details about task representation and
semantics through the use of Task Specification Trees. This section also provides an
example. The paper then concludes with related work and conclusions.

2 Semantic Perspective

In (1, 12), Falcone & Castelfranchi provide an illuminating, but informal discussion
about delegation as a concept from a social perspective. Their approach to delegation

A Distributed Task Specification Language for Mixed-Initiative Delegation 45

builds on a BDI model of agents, that is, agents having beliefs, goals, intentions, and
plans (2), but the specification lacks a formal semantics for the operators used. Based
on intuitions from their work, we have previously provided a formal characterization of
their concept of strong delegation using a communicative speech act with pre- and post-
conditions which update the belief states associated with the delegator and contractor,
respectively (9). In order to formally characterize the operators used in the definition of
the speech act, we use KARO (13) to provide a formal semantics. The KARO formalism
is an amalgam of dynamic logic and epistemic / doxastic logic, augmented with several
additional (modal) operators in order to deal with the motivational aspects of agents.

First, we define the notion of a task as a pair consisting of a goal and a plan for that
goal, or rather, a plan and the goal associated with that plan. Paraphrasing Falcone &
Castelfranchi into KARO terms, we consider a notion of strong delegation represented
by a speech act S-Delegate(A, B, τ) of A delegating a task τ = (α, φ) to B, where α
is a possible plan and φ is a goal.

Preconditions:

(1) GoalA(φ)
(2) BelACanB(τ) (Note that this implies BelABelB(CanB(τ)))
(3) BelA(Dependent(A,B, τ))
(4) BelBCanB(τ)

Postconditions:

(1) GoalB(φ) and BelBGoalB(φ)
(2) CommittedB(α) (also written CommittedB(τ))
(3) BelBGoalA(φ)
(4) CanB(τ) (and hence BelBCanB(τ), and by (1) also IntendB(τ))
(5) IntendA(doB(α))
(6) MutualBelAB(”the statements above” ∧ SociallyCommitted(B,A, τ))3

Informally speaking this expresses the following: the preconditions of the delegate act
of A delegating task τ to B are that (1) φ is a goal of delegator A (2) A believes that B
can (is able to) perform the task τ (which implies that A believes that B itself believes
that it can do the task) (3) A believes that with respect to the task τ it is dependent on
B. The speech act S-Delegate is a communication command and can be viewed as a
request for a synchronization (a ”handshake”) between sender and receiver. Of course,
this can only be successful if the receiver also believes it can do the task, which is
expressed by (4).

The postconditions of the strong delegation act mean: (1) B has φ as its goal and is
aware of this (2) it is committed to the task τ (3) B believes that A has the goal φ (4) B
can do the task τ (and hence believes it can do it, and furthermore it holds that B intends
to do the task, which was a separate condition in Falcone & Castelfranchi’s formaliza-
tion), (5) A intends that B performs α (so we have formalized the notion of a goal to
have an acheivement in Falcone & Castelfranchi’s informal theory to an intention to
perform a task) and (6) there is a mutual belief between A and B that all preconditions
and other postconditions mentioned hold, as well as that there is a contract between A

3 A discussion pertaining to the semantics of non-KARO modal operators may be found in (9).

46 P. Doherty, F. Heintz, and D. Landén

and B, i.e. B is socially committed to A to achieve τ for A. In this situation we will
call agent A the delegator and B the contractor.

Typically a social commitment (contract) between two agents induces obligations to
the partners involved, depending on how the task is specified in the delegation action.
This dimension has to be added in order to consider how the contract affects the au-
tonomy of the agents, in particular the contractor’s autonomy. Falcone & Castelfranchi
discuss the following variants:

– Closed delegation: the task is completely specified and both the goal and the plan
should be adhered to.

– Open delegation: the task is not completely specified, either only the goal has to
be adhered to while the plan may be chosen by the contractor, or the specified plan
contains abstract actions that need further elaboration (a sub-plan) to be dealt with
by the contractor.

In open delegation the contractor may have some freedom in how to perform the dele-
gated task, and thus it provides a large degree of flexibility in multi-agent planning and
allows for truly distributed planning.

The specification of the delegation act above is based on closed delegation. In case of
open delegation,α in the postconditions can be replaced by anα′, and τ by τ ′ = (α′, φ).
Note that the fourth clause, CanB(τ

′), now implies that α′ is indeed believed to be an
alternative for achieving φ, since it implies that BelB[α

′]φ (B believes that φ is true af-
ter α′ is executed). Of course, in the delegation process, A must agree that α′ is indeed
viable. This would depend on what degree of autonomy is allowed.

This particular specification of delegation follows Falcone & Castelfranchi closely.
One can easily foresee other constraints one might add or relax in respect to the basic
specification resulting in other variants of delegation (3, 6). In (9), we also provide an
instantiation of the framework using 2APL, a popular agent programming language.

3 Pragmatic Perspective

From a semantic perspective, delegation as a speech act provides us with conceptual
insight and an abstract specification which can be used as a basis for a more prag-
matic implementation on actual UAS platforms. There is a large gap between semantics
and pragmatics which one would like to reduce in a principled manner. To do this, we
have chosen to also work from a bottom-up perspective and have developed a proto-
type software system that implements the delegation framework using a JADE-based
architecture specified in the next section. This system has been tested using a number
of complex collaborative scenarios described in (15, 19).

One particularly interesting result of approaching the complex characterization of
delegation from a top-down abstract semantic perspective and a bottom-up implemen-
tation perspective is that one can ground the semantic insights into the implementation
in a very direct manner. A central component in the speech-act based characterization
of delegation is the use of Can() in the pre-conditions to the speech act. It turns out
that verifying the truth of the Can() pre-conditions becomes equivalent to checking the
satisfiability of a distributed constraint network generated through recursive calls to the
delegation operator in the implementation. This will be shown in Section 4.

A Distributed Task Specification Language for Mixed-Initiative Delegation 47

3.1 An Agent-Based UAS Architecture

Our RMAX UAV’s use a CORBA-based distributed architecture (8). For our experi-
mentation with collaborative UAS’s, we view this as a legacy system and extend it with
what is conceptually an additional outer layer in order to leverage the functionality of
JADE (11). ”JADE (Java Agent Development Framework) is a software environment to
build agent systems for the management of networked information resources in com-
pliance with the FIPA specifications for interoperable multi-agent systems.” (11). The
reason for using JADE is pragmatic. Our formal characterization of the Delegate() oper-
ator is as a speech act. We also use speech acts for agent communication and JADE pro-
vides a straightforward means for integrating the FIPA ACL language which supports
speech acts with our existing systems. The outer layer may be viewed as a collection of
JADE agents that interface to the legacy system. We are currently using four agents in
the outer layer:

1. Interface agent - This agent is the clearinghouse for communication. All requests
for delegation and other types of communication pass through this agent. Exter-
nally, it provides the interface to a specific robotic system or ground control station.

2. Delegation agent- The delegation agent coordinates delegation requests to and
from other robotic systems and ground control stations, with the Execution, Re-
source and Interface agents. It does this essentially by verifying that the pre-conditions
to a Delegate() request are satisfied.

3. Execution agent - After a task is contracted to a particular robotic system or ground
station operator, it must eventually execute that task relative to the constraints as-
sociated with it. The Execution agent coordinates this execution process.

4. Resource agent - The Resource agent determines whether the robotic system or
ground station of which it is part has the resources and ability to actually do a
task as a potential contractor. Such a determination may include the invocation of
schedulers, planners and constraint solvers in order to determine this.

A prototype implementation of this system has been tested both in the field with RMAX
UAV’s and in-the-loop simulation.

4 Task Specification Trees

Both the declarative and procedural representation and semantics of tasks are central
to the delegation process. The relation between the two representations is also essential
if one has the goal of formally grounding the delegation process in the system imple-
mentation. A task was previously defined abstractly as a pair (α, φ) consisting of a
composite action α and a goal φ. In this section, we introduce a formal task specifica-
tion language which allows us to represent tasks as Task Specification Trees (TST’s).
The task specification trees map directly to procedural representations in our proposed
system implementation.

For our purposes, the task representation must be highly flexible, sharable, dynami-
cally extendible, and distributed in nature. Tasks need to be delegated at varying levels
of abstraction and also expanded and modified because parts of complex tasks can be

48 P. Doherty, F. Heintz, and D. Landén

recursively delegated to different robotic agents which are in turn expanded or modified.
Consequently, the structure must also be distributable. Additionally, a task structure is
a form of compromise between an explicit plan in a plan library at one end of the spec-
trum and a plan generated through an automated planner (14, 15) at the other end of the
spectrum. The task representation and semantics must seamlessly accommodate plan
representations and their compilation into the task structure. Finally, the task represen-
tation should support the adjustment of autonomy through the addition of constraints or
parameters by agents and human resources.

The flexibility allows for the use of both central and distributed planning, and also to
move along the scale between these two extremes. At one extreme, the operator plans
everything, creating a central plan, while at the other extreme the agents are delegated
goals and generate parts of the distributed plan themselves. Sometimes neither com-
pletely centralized nor completely distributed planning is appropriate. In those cases
the operator would like to retain some control of how the work is done while leaving
the details to the agents. Task Specification Trees provide a formalism that captures the
scale from one extreme to the next. This allows the operator to specify the task at the
point which fits the current mission and environment.

The task specification formalism should allow for the specification of various types
of task compositions, including sequential and concurrent, in addition to more general
constructs such as loops and conditionals. The task specification should also provide a
clear separation between tasks and platform specific details for handling the tasks. The
specification should focus on what should be done and hide the details about how it
could be done by different platforms.

In the general case, A TST is a declarative representation of a complex multi-agent
task. In the architecture realizing the delegation framework a TST is also a distributed
data structure. Each node in a TST corresponds to a task that should be performed.
There are six types of nodes: sequence, concurrent, loop, select, goal, and elementary
action. All nodes are directly executable except goal nodes which require some form of
expansion or planning to generate a plan for achieving the goal.

Each node has a node interface containing a set of parameters, called node parame-
ters, that can be specified for the node. The node interface always contains a platform
assignment parameter and parameters for the start and end times of the task, usually
denoted P , TS and TE , respectively. These parameters can be part of the constraints as-
sociated with the node called node constraints. A TST also has tree constraints, express-
ing precedence and organizational relations between the nodes in the TST. Together the
constraints form a constraint network covering the TST. In fact, the node parameters
function as constraint variables in a constraint network, and setting the value of a node
parameter constrains not only the network, but implicitly, the degree of autonomy of an
agent.

4.1 TST Syntax

The syntax of a TST specification has the following BNF:

TST ::= NAME (’(’ VARS ’)’)? ’=’ (with VARS)? TASK (where CONS)?
TSTS ::= TST | TST ’;’ TSTS

A Distributed Task Specification Language for Mixed-Initiative Delegation 49

TASK ::= <elementary action> | <goal> | sequence TSTS | concurrent TSTS
| while <cond> TST | if <cond> then TST else TST

VAR ::= <var name> | <var name> ’.’ <var name>
VARS ::= VAR | VAR ’,’ VARS
CONSTRAINT ::= <constraint>
CONS ::= CONSTRAINT | CONSTRAINT and CONS
ARG ::= VAR | <value>
ARGS ::= ARG | ARG ’,’ ARGS
NAME ::= <node name>

Where <elementary action> is an elementary action name(p0, ..., pN), <goal> is a
goal name(p0, ..., pN), p0, ..., pN are parameters, and <cond> is a FIPA ACL query
message requesting the value of a boolean expression..

The TST clause introduces the main recursive pattern. The right hand side of the
equality provides the general pattern of providing a variable context for a task (using
with) and a set of constraints (using where) over the variables previously introduced.

Example. Consider a small scenario where the mission is to first scan AreaA and AreaB,
and then fly to Dest4. A TST describing this mission is shown in Figure 2. Nodes N0

and N1 are composite action nodes, sequential and concurrent, respectively. Nodes N2,
N3 and N4 are elementary action nodes. Each node specifies a task and has a node
interface containing node parameters and a platform assignment variable. In this case
only temporal parameters are shown representing the respective intervals a task should
be completed in. The nodes N0 to N4 have the task names τ0 to τ4 associated with them
respectively. The resulting TST specification is:

τ0(TS0 ,TE0) =
with TS1 , TE1, TS4 , TE4 sequence
τ1(TS1 ,TE1) =

with TS2 , TE2 , TS3, TE3 concurrent
τ2(TS2 ,TE2) = scan(TS2 ,TE2 ,Speed2,AreaA);
τ3(TS3 ,TE3) = scan(TS3 ,TE3 ,Speed3,AreaB)

where consτ1 ;
τ4(TS4 ,TE4) = flyto(TS4 ,TE4 ,Speed4,Dest4)

where consτ0
consτ0 = TS0 ≤ TS1 ∧ TS1 < TE1 ∧ TE1 ≤ TS4 ∧ TS4 < TE4 ∧ TE4 ≤ TE0

consτ1 = TS1 ≤ TS2∧TS2 < TE2∧TE2 ≤ TE1∧TS1 ≤ TS3∧TS3 < TE3∧TE3 ≤ TE1

4.2 TST Semantics

A TST specifies a complex task (composite action) under a set of tree-specific and
node-specific constraints which together are intended to represent the context in which
a task should be executed in order to meet the task’s intrinsic requirements, in addition
to contingent requirements demanded by a particular mission. The leaf nodes of a TST
represent elementary actions used in the definition of the composite action the TST rep-
resents and the non-leaf nodes essentially represent control structures for the ordering
and execution of the elementary actions. The semantic meaning of non-leaf nodes is

50 P. Doherty, F. Heintz, and D. Landén

Fig. 2. A TST for the example mission

essentially application independent, whereas the semantic meaning of the leaf nodes
are highly domain dependent. They represent the specific actions or processes that an
agent will in fact execute. The procedural correlate of a TST is a program.

During the delegation process, a TST is either provided or generated to achieve a
specific set of goals, and if the delegation process is successful, each node is associated
with an agent responsible for the execution of that node.

Informally, the semantics of a TST node will be characterized in terms of whether an
agent believes it can successfully execute the task associated with the node in a given
context represented by constraints, given its capabilities and resources. This can only be
a belief because the task will be executed in the future and even under the best of con-
ditions, real-world contingencies may arise which prevent the agent from successfully
completing the task. The formal semantics for TST nodes will be given in terms of the
logical predicate Can() which we have used previously in the formal definition of the
S-Delegate speech act, although in this case, we will add additional arguments. This is
not a coincidence since our goal is to ground the formal specification of the S-Delegate
speech act into the implementation in a very direct manner.

Recall that in the formal semantics for the speech act S-Delegate (described in Sec-
tion 2), the logical predicate CanX(τ) is used to state that an agent X has the capa-
bilities and resources to achieve task τ . An important precondition for the successful
application of the speech act is that the delegator (A)believes in the contractor’s (B)
ability to achieve the task τ , (2): BelACanB(τ). Additionally, an important result of
the successful application of the speech act is that the contractor actually has the capa-
bilities and resources to achieve the task τ , (4): CanB(τ). In order to directly couple
the semantic characterization of the S-Delegate speech act to the semantic characteriza-
tion of TST’s, we will assume that a task τ = (α, φ) in the speech act characterization
corresponds to a TST. Additionally, the TST semantics will be characterized in terms
of a Can predicate with additional parameters to incorporate constraints.

In this case, the Can predicate is extended to include as arguments a list [p1, . . . , pk]
denoting all node parameters in the node interface together with other parameters

A Distributed Task Specification Language for Mixed-Initiative Delegation 51

provided in the (with VARS) construct4 and an argument for an additional constraint
set cons provided in the (where CONS) construct.5 Observe that cons can be formed
incrementally and may in fact contain constraints inherited or passed to it through a re-
cursive delegation process. The formula Can(B, τ, [ts, te, . . .], cons) then asserts that
an agent B has the capabilities and resources for achieving task τ if cons, which also
contains node constraints for τ , is consistent. The temporal variables ts and te associ-
ated with the task τ are part of the node interface which may also contain other variables
which are often related to the constraints in cons.

Determining whether a fully instantiated TST satisfies its specification, will now be
equivalent to the successful solution of a constraint problem in the formal logical sense.
The constraint problem in fact provides the formal semantics for a TST. Constraints
associated with a TST are derived from a reduction process associated with the Can()
predicate for each node in the TST. The generation and solution of constraints will oc-
cur on-line during the delegation process. Let us provide some more specific details.
In particular, we will show the very tight coupling between the TST’s and their logical
semantics.

The basic structure of a Task Specification Tree is:

TST ::= NAME (’(’ VARS1 ’)’)? ’=’ (with VARS2)? TASK (where CONS)?

where VARS1 denotes node parameters, VARS2 denotes additional variables used in the
constraint context for a TST node, and CONS denotes the constraints associated with a
TST node. Additionally, TASK denotes the specific type of TST node. In specifying a
logical semantics for a TST node, we would like to map these arguments directly over
to arguments of the predicate Can(). Informally, an abstraction of the mapping is

Can(agent1, TASK, V ARS1 ∪ V ARS2, CONS) (1)

The idea is that for any fully allocated TST, the meaning of each allocated TST node
in the tree is the meaning of the associated Can() predicate instantiated with the TST
specific parameters and constraints. The meaning of the instantiated Can() predicate
can then be associated with an equivalent Constraint Satisfaction Problem (CSP) which
turns out to be true or false dependent upon whether that CSP can be satisfied or not.
The meaning of the fully allocated TST is then the aggregation of the meanings of each
individual TST node associated with the TST, in other words, a conjunction of CSP’s.

One would also like to capture the meaning of partial TST’s. The idea is that as
the delegation process unfolds, a TST is incrementally expanded with additional TST
nodes. At each step, a partial TST may contain a number of fully expanded and allo-
cated nodes in addition to other nodes which remain to be delegated. In order to capture
this process semantically, one extends the semantics by providing meaning for an unal-
located TST node in terms of both a Can() predicate and a Delegate() predicate:

∃agent2Delegate(agent1, agent2, TASK, V ARS1 ∪ V ARS2, CONS) (2)

4 For reasons of clarity, we only list the node parameters for the start and end times for a task,
[ts, te, . . .], in this article.

5 For pedagogical expediency, we can assume that there is a constraint language which is reified
in the logic and is used in the CONS constructs.

52 P. Doherty, F. Heintz, and D. Landén

Either agent1 can achieve a task, or (exclusively) it can find an agent, agent2, to which
the task can be delegated. In fact, it may need to find one or more agents if the task to
be delegated is a composite action.

Given the S-Delegate(agent1, agent2, TASK) speech act semantics, we know
that if delegation is successful then as one of the postconditions of the speech act,
agent2 can in fact achieve TASK (assuming no additional contingencies):

Delegate(agent1, agent2, TASK, V ARS1 ∪ V ARS2, CONS) (3)

→ Can(agent2, TASK, V ARS1 ∪ V ARS2, CONS)

Consequently, during the computational process associated with delegation, as the
TST expands through delegation where previously unallocated nodes become allocated,
each instance of the Delegate() predicate associated with an unallocated node is re-
placed with an instance of the Can() predicate. This recursive process preserves the
meaning of a TST as a conjunction of instances of the Can() predicate which in turn
are compiled into a (interdependent) set of CSPs and which are checked for satisfaction
using distributed constraint solving algorithms.

Sequence Node. For a sequence node, the child nodes should be executed in sequence,
from left to right, during the execution time of the sequence node.

Can(B,S(α1, ..., αn), [ts, te, . . .], cons) ↔
∃t1, . . . , t2n, . . .

∧n
k=1(Can(B,αk, [t2k−1, t2k, . . .], consk)

∨ ∃akDelegate(B, ak, αk, [t2k−1, t2k, . . .], consk))
∧ consistent(cons)6

where cons = {ts ≤ t1∧(
∧n

i=1 t2i−1 < t2i)∧(
∧n−1

i=1 t2i ≤ t2i+1)∧t2n ≤ te}∪cons′

Concurrent Node. For a concurrent node, the child nodes should be executed during
the time interval of the concurrent node.

Can(B,C(α1, ..., αn), [ts, te, . . .], cons) ↔
∃t1, . . . , t2n, . . .

∧n
k=1(Can(B,αk, [t2k−1, t2k, . . .], consk)

∨ ∃akDelegate(B, ak, αk, [t2k−1, t2k, . . .], consk))
∧ consistent(cons)
where cons = {

∧n
i=1 ts ≤ t2i−1 < t2i ≤ te} ∪ cons′.

Observe that the constraint sets consk in the semantics for the concurrent and se-
quential nodes are simply the constraint sets defined in the (where CONS) constructs
for the child nodes included with the sequential or concurrent nodes, respectively. Ad-
ditionally, the definition of the constraint set cons in the semantics for the concurrent
and sequential nodes contains the structural temporal constraints which define sequence
and concurrency, respectively, together with possibly additional constraints, denoted by
cons′ that one may want to include in the constraint set. Note also, that we are assuming
that scoping and overloading issues for variables in embedded TST structures are dealt
with appropriately in the recursive expansion of the Can() predicates in the definitions.

Selector Node. Compared to a sequence or concurrent node, only one of the selector
node’s children will be executed, which one is determined by a test condition in the se-
lector node. The child node should be executed during the time interval of the selector

6 The predicate consistent() has the standard logical meaning and checking for consistency
would be done through a call to a constraint solver which is part of the architecture.

A Distributed Task Specification Language for Mixed-Initiative Delegation 53

node. A selector node is used to postpone a choice which can not be known when the
TST is specified. When expanded at runtime, the net result can be any of the node types.

Loop Node. A loop node will add a child node for each iteration the loop condition al-
lows. In this way the loop node works as a sequence node but with an increasing number
of child nodes which are dynamically added. Loop nodes are similar to selector nodes,
they describe additions to the TST that can not be known when the TST is specified.
When expanded at runtime, the net result is a sequence node.

Goal. A goal node is a leaf node which can not be directly executed. Instead it has
to be expanded by using an automated planner or related planning functionality. After
expansion, a TST branch representing the generated plan is added to the original TST.

Can(B,Goal(φ), [ts, te, . . .], cons) ↔
∃α (GenerateP lan(B,α, φ, [ts, te, . . .], cons) ∧Can(B,α, [ts, te, . . .], cons))
∧ consistent(cons)

Observe that the agent B can generate a partial or complete plan α and then further
delegate execution or completion of the plan recursively via the Can() statement in the
second conjunct.

Elementary Action. An elementary action node is a leaf node that specifies a domain-
dependent action. The semantics of Can for an elementary action is platform depen-
dent.

Can(B, τ, [ts, te, . . .], cons, . . .) ↔
Capabilities(B, τ, [ts, te, . . .], cons) ∧Resources(B, τ, [ts, te, . . .], cons)
∧ consistent(cons)

There are two parts to the definition of Can for an elementary action node. These
are defined in terms of a platform specification which is assumed to exist for each agent
potentially involved in a collaborative mission. The platform specification has two com-
ponents.

The first, specified by the predicate Capabilities(B, τ, [ts, te, . . .], cons) is intended
to characterize all static capabilities associated with platform B that are required as
capabilities for the successful execution of τ . If platform B has the necessary static
capabilities for executing task τ in the interval [ts, te] with constraints cons, then this
predicate will be true.

The second, specified by the predicate Resources(B, τ, [ts, te, . . .], cons) is
intended to characterize dynamic resources such as fuel and battery power, which are
consumable, or cameras and other sensors which are borrowable. Since resources gener-
ally vary through time, the semantic meaning of the predicate is temporally dependent.

Resources for an agent are represented as a set of parameterized resource constraint
predicates, one per task. The parameters to the predicate are the task’s parameters, in
addition to the start time and the end time for the task. For example, assume there
is a task flyto(dest, speed). The resource constraint predicate for this task would be
flyto(ts, te, dest, speed). The resource constraint predicate is defined as a conjunction
of constraints, in the logical sense. As an example, consider the task flyto(dest, speed)
with the corresponding resource constraint predicate flyto(ts, te, dest, speed). The
constraint model associated with the task for a particular platform P1 might be:

te = ts +
distance(pos(ts ,P1),dest)

speed ∧ (SpeedMin ≤ speed ≤ SpeedMax)

54 P. Doherty, F. Heintz, and D. Landén

4.3 Example

The constraint problem for a TST is derived by recursively reducing the Can predicate
statements associated with each task node with formally equivalent expressions, begin-
ning with the top-node τ0 until the logical statements reduce to a constraint network.
Below, we show the reduction of the TST from Figure 2 when there are three platforms,
P0, P1 and P2, with the appropriate capabilities. P0 has been delegated the composite
actions τ0 and τ1. P0 has recursively delegated parts of these tasks to P1 (τ2 and τ4)
and P2 (τ3).

Can(P0, α0, [ts0 , te0], cons) = Can(P0, S(α1, α4), [ts0 , te0], cons) ↔
∃ts1 , te1 , ts4 , te4 (Can(P0, α1, [ts1 , te1], consP0

) ∨ ∃a1Delegate(P0, a1, α1, [ts1 , te1], consP0
))

∧ (Can(P0, α4, [ts4 , te4], consP0
) ∨ ∃a2Delegate(P0, a2, α4, [ts4 , te4], consP0

))

Let’s continue with a reduction of the 1st element in the sequence α1 (the 1st conjunct
in the previous formula on the right-hand side of the biconditional):

Can(P0, α1, [ts1 , te1], consP0) ∨ ∃a1(Delegate(P0, a1, α1, [ts1 , te1], consP0))

Since P0 has been allocated α1, the 2nd disjunct is false.

Can(P0, α1, [ts1 , te1], consP0
) = Can(P0, C(α2, α3), [ts1 , te1], consP0

) ↔
∃ts2 , te2 , ts3 , te3 (Can(P0, α2, [ts2 , te2], consP0

) ∨ ∃a1Delegate(P0, a1, α2, [ts2 , te2], consP0
))

∧ (Can(P0, α3, [ts3 , te3], consP0
) ∨ ∃a2Delegate(P0, a2, α3, [ts3 , te3], consP0

))

The node constraints for τ0 and τ1 are then added to P0’s constraint store. What remains
to be done is a reduction of tasks τ2 and τ4 associated with P1 and τ3 associated with
P2. We can assume that P1 has been delegated α2 and P2 has been delegated α3 as
specified. Consequently, we can reduce to

Can(P0, α1, [ts1 , te1], consP0) = Can(P0, C(α2, α3), [ts1 , te1], consP0) ↔
∃ts2 , te2 , ts3 , te3Can(P1, α2, [ts2 , te2], consP1) ∧ Can(P2, α3, [ts3 , te3], consP2)

Since P0 has recursively delegated α4 to P1 (the 2nd conjunct in the original formula
on the right-hand side of the biconditional) we can complete the reduction and end up
with the following:

Can(P0, α0, [ts0 , te0], cons) = Can(P0, S(C(α2, α3), α4), [ts0 , te0], cons) ↔
∃ts1 , te1 , ts4 , te4

∃ts2 , te2 , ts3 , te3Can(P1, α2, [ts2 , te2], consP1) ∧ Can(P2, α3, [ts3 , te3], consP2)
∧ Can(P1, α4, [ts4 , te4], consP1)

These remaining tasks are elementary actions and consequently the definitions of Can
for these action nodes are platform dependent. When a platform is assigned to an el-
ementary action node a local constraint problem is created on the platform and then
connected to the global constraint problem through the node parameters of the assigned
node’s node interface. In this case, the node parameters only include temporal con-
straints and these are coupled to the internal constraint variables associated with the
elementary actions. The completely allocated and reduced TST is shown in Figure 3.
The reduction of Can for an elementary action node contains no further Can pred-
icates, since an elementary action only depends on the platform itself. All remaining
Can predicates in the recursion are replaced with constraint sub-networks associated

A Distributed Task Specification Language for Mixed-Initiative Delegation 55

Fig. 3. The completely allocated and reduced TST showing the interaction between the TST con-
straints and the platform dependent constraints

with specific platforms as shown in Figure 3. To check that distributed constraint prob-
lem is consistent we use local CSP solvers together with a DCSP solver (16).

In summary, the delegation process, if successful, provides a TST that is both valid
and completely allocated. During this process, a network of distributed constraints is
generated which if solved, guarantees the validity of the multi-agent solution to the
original problem, provided that additional contingencies do not arise when the TST is
actually executed in a distributed manner by the different agents involved in the collab-
orative solution. This approach is intended to ground the original formal specification
of the S-Delegate speech act with the actual processes of delegation used in the im-
plementation. Although the process is pragmatic in the sense that it is a computational
process, it in effect strongly grounds this process formally, due to the reduction of the
collaboration to a distributed constraint network which is in effect a formal representa-
tion. This results in real-world grounding of the semantics of the Delegation speech act
via the Can predicate.

5 Related Work

Two related task specification languages which are representative of state of the art in
this area are the Configuration Description Language (17), used in MissionLab and the
task description language (TDL) (21).

56 P. Doherty, F. Heintz, and D. Landén

CDL has a recursive composition of configurations, similar to our TST task structure.
In CDL a behavior and a set of parameters creates an agent. Agents can be composed
into larger entities, called assemblages, that function as macro-agents. Assemblages can
in turn be part of larger assemblages. CDL has been used as the basis for MissionLab, a
tool for mission specification using case based reasoning. Task-allocation is done using
a market-based paradigm with contract-nets. Task allocation can be done together with
mission specification, or at run time (22).

With TDL it is possible to specify task decomposition, synchronization, execution
monitoring, and exception handling. TDL is an extension to C++, meaning the specifi-
cation is compiled and executed on the robots. Task are in the form of task-trees. A task
has parameters and is either a goal or a command, where a command is similar to an
action node in a TST. Goal nodes can have both goal and command nodes as children,
but commands nodes have no goal children. An action can perform computations dy-
namically and add child nodes or perform some physical action in the world. An action
can contain conditional, iterative and recursive code.

Both CDL and TDL are similar to TST, but with the difference that the specification
of a TST is not precompiled and therefore allow more dynamic handling of tasks in the
case of changing circumstances. The specification remains through the stages of task-
allocation (delegation) and execution. Each node in a TST has parameter values which
are restricted by constraints. Each node has an executor object (for each platform) that
can be instantiated with the parameter values determined in the task allocation stage.
Since we have this separation between specification and execution of a task, connected
as a constraint problem of the node parameters and platform assignments, we can go
back and forth from the task-allocation and execution stage, which must be done when
monitoring formulas fails and an error is detected, or when the mission is changed
with mixed-initiative input. The loose coupling between specification and execution is
needed for combining the adjustable autonomy and mixed-initiative features.

6 Conclusions

The complexity of developing deployed architectures for realistic collaborative activi-
ties among agents that operate in the real world and under time and space constraints
is extreme when compared to much existing formal work which tackles parts of the
larger problem at very high levels of abstraction. We have tried to show the benefits of
using both strategies, working abstractly at a formal logical level and also concretely at
a system building level. More importantly, we have shown how one might relate the two
approaches to each other by grounding the formal abstractions into actual software im-
plementations. This of course guarantees the fidelity of the actual system to the formal
specification.

We proposed TST’s as a vehicle for representing tasks and showed how they relate
to the formal delegation abstraction, how its semantics can be described as a constraint
model and how that model is used in an actual implemented system to give meaning to
the ability of an agent to be able to do or execute a task. There is much future work to
be done in this complex research area, but work in this direction can continue based on
the foundations provided in this work.

A Distributed Task Specification Language for Mixed-Initiative Delegation 57

References

1. Castelfranchi, C., Falcone, R.: Toward a theory of delegation for agent-based systems. In:
Robotics and Autonomous Systems, vol. 24, pp. 141–157 (1998)

2. Cohen, P., Levesque, H.: Intention is choice with commitment. AI 42(3), 213–261 (1990)
3. Cohen, P., Levesque, H.: Teamwork. Nous 25(4), 487–512 (1991)
4. Conte, G., Doherty, P.: Vision-based unmanned aerial vehicle navigation using geo-

referenced information. EURASIP Journal of Advances in Signal Processing (2009)
5. Conte, G., Hempel, M., Rudol, P., Lundström, D., Duranti, S., Wzorek, M., Doherty, P.:

High accuracy ground target geo-location using autonomous micro aerial vehicle platforms.
In: Proceedings of the AIAA-2008 Guidance, Navigation, and Control Conference (2008)

6. Davis, E., Morgenstern, L.: A first-order theory of communication and multi-agent plans.
Journal Logic and Computation 15(5), 701–749 (2005)

7. Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nordberg, K., Skarman, E., Wik-
lund, J.: The WITAS unmanned aerial vehicle project. In: Proc. ECAI (2000)

8. Doherty, P., Haslum, P., Heintz, F., Merz, T., Persson, T., Wingman, B.: A distributed archi-
tecture for intelligent unmanned aerial vehicle experimentation. In: Proc. DARS (2004)

9. Doherty, P., Meyer, J.-J.C.: Towards a Delegation Framework for Aerial Robotic Mission
Scenarios. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L. (eds.) CIA 2007.
LNCS (LNAI), vol. 4676, pp. 5–26. Springer, Heidelberg (2007)

10. Duranti, S., Conte, G., Lundström, D., Rudol, P., Wzorek, M., Doherty, P.: LinkMAV, a
prototype rotary wing micro aerial vehicle. In: Proc. IFAC Symposium on Automatic Control
in Aerospace (2007)

11. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE – a Java agent development frame-
work. In: Multi-Agent Programming - Languages, Platforms and Applications (2005)

12. Falcone, R., Castelfranchi, C.: The human in the loop of a delegated agent: The theory of
adjustable social autonomy. IEEE Transactions on Systems, Man and Cybernetics–Part A:
Systems and Humans 31(5), 406–418 (2001)

13. van der Hoek, W., van Linder, B., Meyer, J.J.C.: An integrated modal approach to rational
agents. In: Wooldridge, M., Rao, A. (eds.) Foundations of Rational Agency (1998)

14. Kvarnström, J.: Planning for loosely coupled agents using patrial order forward-chaining. In:
Proc. ICAPS (2011)

15. Kvarnström, J., Doherty, P.: Automated planning for collaborative systems. In: Proceedings
of the International Conference on Control, Automation, Robotics and Vision (2010)

16. Landén, D., Heintz, F., Doherty, P.: Complex Task Allocation in Mixed-Initiative Delegation:
A UAV Case Study (Early Innovation). In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA
2010. LNCS(LNAI), vol. 7057, pp. 288–303. Springer, Heidelberg (2011)

17. MacKenzie, D.C., Arkin, R., Cameron, J.M.: Multiagent mission specification and execution.
Auton. Robots 4(1), 29–52 (1997)

18. Merz, T., Rudol, P., Wzorek, M.: Control System Framework for Autonomous Robots Based
on Extended State Machines. In: Int. Conf. on Autonomic and Autonomous Systems (2006)

19. Olsson, P.M., Kvarnström, J., Doherty, P., Burdakov, O., Holmberg, K.: Generating UAV
communication networks for monitoring and surveillance. In: ICARCV (2010)

20. Rudol, P., Wzorek, M., Conte, G., Doherty, P.: Micro unmanned aerial vehicle visual servoing
for cooperative indoor exploration. In: Proc. of the IEEE Aerospace Conference (2008)

21. Simmons, R., Apfelbaum, D.: A task description language for robot control. In: IROS (1998)
22. Ulam, P., Endo, Y., Wagner, A., Arkin, R.C.: Integrated mission specification and task allo-

cation for robot teams - design and implementation. In: ICRA (2007)
23. Wzorek, M., Conte, G., Rudol, P., Merz, T., Duranti, S., Doherty, P.: From motion planning

to control – a navigation framework for an unmanned aerial vehicle. In: Proceedings of the
21st Bristol International Conference on UAV Systems (2006)

Adaptive and Non-adaptive Distribution

Functions for DSA

Melanie Smith, Sandip Sen, and Roger Mailler

Computational Neuroscience and Adaptive Systems Lab
University of Tulsa, USA

roger-mailler@utulsa.edu

http://www.cnas.utulsa.edu

Abstract. Distributed hill-climbing algorithms are a powerful, practi-
cal technique for solving large Distributed Constraint Satisfaction Prob-
lems (DSCPs) such as distributed scheduling, resource allocation, and
distributed optimization. Although incomplete, an ideal hill-climbing al-
gorithm finds a solution that is very close to optimal while also mini-
mizing the cost (i.e. the required bandwidth, processing cycles, etc.) of
finding the solution. The Distributed Stochastic Algorithm (DSA) is a
hill-climbing technique that works by having agents change their value
with probability p when making that change will reduce the number of
constraint violations. Traditionally, the value of p is constant, chosen
by a developer at design time to be a value that works for the gen-
eral case, meaning the algorithm does not change or learn over the time
taken to find a solution. In this paper, we replace the constant value of p
with different probability distribution functions in the context of solving
graph-coloring problems to determine if DSA can be optimized when the
probability values are agent-specific. We experiment with non-adaptive
and adaptive distribution functions and evaluate our results based on
the number of violations remaining in a solution and the total number
of messages that were exchanged.

1 Introduction

Distributed hill-climbing algorithms are very powerful tools for solving numerous
real-world problems including distributed scheduling, resource allocation, and
distributed optimization. These problems can be easily mapped to distributed
constraint satisfaction, and like DSCPs, they must be solved using algorithms
that can make decisions about how to best improve the global state of the prob-
lem from an agent’s limited, local perspective. The ultimate goal of distributed
constraint satisfaction is to find a solution, if one exists, while also minimizing
the cost (i.e. the required bandwidth, processing cycles, etc.) [3,7]. Complete al-
gorithms, such as Asynchronous Weak Commitment (AWC) [13], Asynchronous
Backtracking (ABT) [14], and Asynchronous Partial Overlay (APO) [6], are
guaranteed to find a solution if one exists, but tend not to be very scalable.
In practice, however, one must accept a close-enough solution, especially if the

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 58–73, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Adaptive and Non-adaptive Distribution Functions for DSA 59

problem is large or the solution needs to be derived quickly. Hill-climbing algo-
rithms tend to work very quickly even on large problems, but do not guarantee
that they will find a solution if there is one. One of the most powerful algorithms
from this class is the Distributed Stochastic Algorithm (DSA) [4,?].

DSA is a hill-climbing technique that works by having agents change their
value with probability p when making that change will reduce the number of
constraint violations. DSA requires the user to specify p. Traditionally, the value
of p is constant, chosen by a developer at design time to be a value that works
for the general case, meaning the algorithm does not adapt its behavior based
on the problem’s characteristics. In fact, the setting of p can have dramatic
effects on the behavior of the protocol and can be quite problem specific. For
instance, on very dense problems, having high values of p can cause the protocol
to converge more quickly, but the same setting on a sparse problem will cause it
to oscillate unnecessarily. Because p’s value is so crucial to the success of finding
a good solution, we believe choosing p to be more agent- and problem-specific
will improve the solution and the process by which the solution is found.

In this paper, we investigate different probability functions for the Distributed
Stochastic Algorithm in the context of solving graph-coloring problems. First,
we examine four non-adaptive techniques that define p as a function of how
much improvement an agent can have. The second set of techniques involves
adaptation, where the function used to compute p is modified over time based
on the agent’s experiences.

Section 2 presents a formalization of the distributed constraint satisfaction
problem that is used as the basis for this paper. Section 3 gives a detailed
description of DSA. Sections 4 and 5 discuss our non-adaptive and adaptive
approaches, and Section 6 discusses both the setup and results of empirical
testing that has been done to compare these adaptations to DSA. Finally, the
paper closes with some concluding remarks and some future directions for this
work.

2 Distributed Constraint Satisfaction

A Distributed Constraint Satisfaction Problem (DCSP) consists of the following
[14]:

– a set of n variables V = {x1, . . . , xn}
– a set of k Agents A = {a1, . . . , ak}
– discrete, finite domains for each of the variables

D = {D1, . . . , Dn}
– a set of m constraints R = {R1, . . . , Rm} where each Ri(di1, . . . , dij) is a

predicate on the Cartesian product Di1 × · · · ×Dij that returns true iff the
value assignments of the variables satisfy the constraint

The problem is to find an assignment, S = {d1, . . . , dn | di ∈ Di}, such that each
of the constraints in R is satisfied. DCSP, like its centralized counterpart, has
been shown to be NP-complete, making some form of search a necessity [2].

60 M. Smith, S. Sen, and R. Mailler

In DCSP, each agent is assigned one or more variables along with constraints
on those variables. The goal of each agent, from a local perspective, is to ensure
that each of the constraints on its variables is satisfied. For each of the agents,
achieving this goal is not independent of the goals of the other agents in the
system. In fact, in all but the simplest cases, the goals of the agents are strongly
interrelated. For example, in order for one agent to satisfy its local constraints,
another agent, potentially not directly related through a constraint, may have
to change the value of its variable.

In this paper, for the sake of clarity, each agent is assigned a single variable
and is given knowledge of the constraints on that variable. Since each agent is
assigned a single variable, the agent is referred to by the name of the variable it
manages. Also, this paper considers only binary constraints that are of the form
Ri(xi1, xi2). It is fairly easy to extend all the algorithms presented in this paper
to handle more general problems where these restrictions are removed, either by
changing the algorithm or by changing the problem as done in [1].

Definition 1. A binary CSP is a CSP where all of the constraints in R are of
the form Ri(xi1, xi2).

Definition 2. The constraint graph of a binary CSP is a graph G = < V,E >
where V is the set of variables in the CSP and E is the set of edges representing
the set of constraints in R (i.e. Ri(xi1, xi2) ∈ R ⇒ (xi1, xi2) ∈ E).

Additionally, throughout this paper the word neighbor is used to refer to agents
that share constraints. In other words, if an agent A has a constraint Ri that
contains a variable owned by some other agent B, then agent A and agent B are
considered neighbors.

3 Related Work

3.1 Distributed Stochastic Algorithm

The Distributed Stochastic Algorithm (DSA) is one of a class of algorithms based
on the idea that at each step, each variable should change to its best value with
some probability p ∈ [0, 1]. Because each variable changes with p probability,
the likelihood of two neighbors changing at the same time is p2. As long as p is
selected correctly, the protocol will hill climb to a better state.

The DSA algorithm has a number of implementation variants. Figure 1 details
DSA-B, which follows the basic rule of DSA by changing values with probability
p when it reduces the number of constraint violations. However, it also changes
the value with p probability when the number of constraint violations remains
the same (i.e. its improve value is 0). In this way, the DSA-B variant is able
to escape certain types of local minima in the search space by making lateral
moves.

The DSA protocol is quite popular because it is by far the easiest protocol
to implement. However, it is also one of the hardest to tune because it requires
the user to specify p. The process of choosing this value can require a great

Adaptive and Non-adaptive Distribution Functions for DSA 61

Fig. 1. The procedures of the DSA-B algorithm

deal of empirical testing because it is problem specific. Higher values of p cause
the protocol to exhibit a rapid decrease in the number of constraint violations,
which can level off far from an optimal solution depending on the problem. Lower
values of p tend to correct violations more slowly, but often end up with a better
solution in the end.

One of the greatest benefits of the DSA protocol is that it uses considerably
fewer messages than other protocols like the Distributed Breakout Algorithm
[15] because agents communicate only when they change their values. As the
protocol executes and the number of violations decrease, so do the number of
messages. However, while DSA converges on a solution in a reasonable amount
of time, finding a better solution in less time while using even fewer messages is
important.

Manipulating DSA’s probability variable allows the algorithm to vary its re-
sults. Some studies suggest that the most general value is about p = 0.3 [16].
However, these values are simple constants and do not change based on the state
of the problem.

3.2 Distributed Breakout Algorithm

The Distributed Breakout Algorithm (DBA) [15] is a distributed adaptation of
the Centralized Breakout Algorithm [9]. DBA works by alternating between two
modes. The first mode (see figure 2) is called the wait ok? mode where the agent
collects ok? messages from each of its neighbors. Once this has happened, the
agent calculates the best new value for its variable along with the improvement
in its local evaluation. The agent then sends out an improve? message to each
of its neighbors and changes to the wait improve? mode.

In the wait improve mode (see figure 2), the agent collects improve? messages
from each of its neighbors. Once all of the messages have been received, the
agent checks to see if its improvement is the best among its neighbors. If it
is, it changes its value to the new improved value. If the agent believes it is

62 M. Smith, S. Sen, and R. Mailler

in a quasi-local-minimum (QLM), it increase the weights on all its of violated
constraints. Finally, the agent sends ok? messages to each of its neighbors and
changes back to the wait ok? mode. The algorithm starts up with each agent
sending ok? messages and going into the wait ok? mode.

Because of the strict locking mechanism employed in the algorithm, the overall
behavior of the agents is to simultaneously switch back and forth between the
two modes. So, if one or more of the agents reacts slowly or messages are delayed,
the neighboring agents wait for the correct message to arrive. This makes the
protocol’s communication usage very predictable because in each mode, each
agent sends exactly one message to each of its neighbors. Thus, if there are m
constraints, exactly 2m messages are transmitted during each step.

Conversely, the locking mechanism in DBA can be very beneficial because it
does not allow neighboring agents to change their values at the same time, which
prevents oscillations. However, it can also prevent opportunities for additional
parallelism because it limits the number of variables that can change at each
wait improve step to at most half when they are in a fully connected problem.
These limitations effectively allow at most 1/4 of the variables to change during
any individual step of the protocol’s execution.

Two variants of the DBA protocol have been created to improve its overall
parallelism and prevent pathological behavior by introducing randomness [17].
The weak-probabilistic DBA protocol (DBA-WP) uses randomness to break ties
when two neighboring agents have the same improve value. The result is that
either one agent, both, or neither of the agents change values when this situation
occurs. The strong-probabilistic DBA protocol (DBA-SP) attempts to improve
parallelism by allowing agents to change their value with some probability when
they can improve, but don’t have the best improve among their neighbors. This
technique helps to improve parallelism because in many situations, the agent’s
neighbor with the best improve doesn’t have the the best improve among its
neighbors. This causes agents to wait unnecessarily for their neighbor to change
when their neighbor has no intention of actually doing so.

3.3 Distributed Probabilistic Protocol

Conceptually, the Distributed Probabilistic Protocol (DPP) is a hybrid of the
DSA and DBA protocols that aims to merge the benefits of both algorithms
while correcting their weakness. The DPP protocol uses a dynamic mixture of
randomness and direct control that changes based on the structure and current
state of the problem to mitigate the effects of asynchrony. The key insight that
inspired the creation of the protocol is that an agent doesn’t necessarily need
receive improve messages from all of its neighbors in order for it to determine
that it is or is not the best agent to make a value change.

DPP works by having agents exchange probability distributions (PDF) that
describe the likelihood they are going to have a particular improve value given
the configuration of the constraints on their variable(s). This allows the agents to
estimate the likelihood that it has the best improve value among its neighbors
without communicating at all. Using this likelihood as a basis for randomly

Adaptive and Non-adaptive Distribution Functions for DSA 63

Fig. 2. The procedures of the wait ok? and wait improve modes in Distributed Break-
out

determining when to change an agent’s value, we end up with a DSA-like protocol
where each agent’s probability pi is dictated by the improve distributions of its
neighbors and its current improve value.

This process is further enhanced by considering the use of explicit improve
messages like those used in DBA. Unlike DBA, DPP sends out improve messages
with a probability that is associated with its estimate of a neighbor having a
prediction error of its improve value. This means that if agent X knows agent
Y’s improve PDF and agent Y behaves according to the protocol, agent X can
even predict the probability that Y will have an improve value less than its own,
even when Y has not sent X an improve message for a long period of time.

As a result of these modifications, DPP uses considerably fewer messages
than both DSA and DBA, does not require a user to define p values as in DSA,
and more quickly converges onto good solutions. The drawback to DPP is that
calculating the initial PDF function can be very difficult because it often does
not have a closed-form solution. Because of this, improve PDFs are created by
exhaustive enumeration or by employing some form of statistical sampling over
the possible configuration space of the constraints on an agent’s variable, both
of which cause a steep overhead when starting up the algorithm.

4 Non-adaptive DSA

DPP’s inspiration was that the probability of an agent changing its value should
be associated with how much improvement it expects to have. Similarly moti-
vated, we decided to investigate versions of the DSA protocol that determine
the value of p as a function of the current improve value for an agent. In the
non-adaptive version of the protocol, we altered the DSA-B algorithm to up-
date p based on a function, as shown in Figure 3. The algorithm uses the same

64 M. Smith, S. Sen, and R. Mailler

procedure choose value
if di has no conflicts do

return di;
v ← the value with the least conflict (v �= di);
improve ← di − v;
maxImprove ← number of neighbors for agent;
p ← P (improve,maxImprove); (see text)
if improve ≥ 0 and random < p do

return v;
else

return di;
end choose value;

Fig. 3. The choose value procedure of the Non-Adaptive DSA-B algorithm

main procedure as DSA, but changes the choose value procedure to calcu-
late an improve value and uses that value to determine p. Like DBA and DPP,
the improve value for a variable is simply the difference between the current
number of conflicts and the number of conflicts for the best possible value. The
maxImprove value, which is used to normalize the functions that calculate p, is
the maximum total cost of all of the variable’s constraints. This assumes that the
maximum improvement occurs when all constraints are in conflict and changing
the variable’s value causes all the conflicts to be resolved. The value of p gets
returned by the P (improve, maxImprove) function, and depending on whether
an improvement can be made, the agent’s value is changed with probability p.

For our tests, we tried four non-adaptive functions to compute p: linear, sub-
linear, super-linear, and Weibull. Figure 4 shows a graph of these non-adaptive
P functions. We initially chose the linear function on the basis that there should
be a higher probability of changing values if there is a higher improve value
associated with that move. The other three functions were chosen to examine
whether variations on the linear function would be better suited than using the
simple linear function.

4.1 Distribution Functions

For our first function, we looked at a simple linear function on the amount of
improve. Basically, when the linear function has a positive slope and a node
has a high improve value (i.e. changing colors would allow a large number of
conflicts to be abated), there is a good chance that the color will change. Using
a normalized linear distribution instead of a constant value for p allows the
change probability to be higher the more an agent can improve. We set p0 = 0.1
to give some probability of change for the case where lateral movement occurs.
As a reminder, lateral movements occur when multiple values have an improve of
0 and the agent can switch between the values without violating any constraints.
The linear technique forms the basis of all the other functions we evaluate in
this paper. The normalized linear function is as follows:

Adaptive and Non-adaptive Distribution Functions for DSA 65

Linear
Weibull
Sub�Linear
Super�Linear

0 xmax
0

p0

0.5

1

improve value

p

Non�Adaptive Distribution Functions

Fig. 4. Non-Adaptive Distribution Functions: Linear, Sub-Linear, Super-Linear, and
Weibull Distributions

P (imp,maxImp) = (1− p0)

(
imp

maxImp

)
+ p0 (1)

A sub-linear function is similar to a linear one, but keeps the probably of the
agent changing its value low until a sufficiently large improvement value is likely.
Below is the sub-linear function that we used in this paper:

P (imp,maxImp) = (1− p0)

(
imp

maxImp

)2

+ p0 (2)

The opposite of sub-linear is super-linear. This function has the characteristic
that the agents have a higher-than-linear likelihood of changing their value,
except in the cases where they expect 0 or maximum improve. The following is
the super-linear function we use:

P (imp,maxImp) = (1− p0)

√
imp

maxImp
+ p0 (3)

The Weibull distribution, part of the family of Sigmoid functions, is a combi-
nation of the sub- and super-linear cases, acting sub-linear until the amount of
improvement is approximately half of the maximum possible improvement and
then switching into a super-linear function. This means for small improvements,
the likelihood of an agent changing its value is slim, but for large improvements,
the likelihood is quite high. Below is the function used for our tests:

P (imp,maxImp) = (1− p0)
(
1− e−(

imp
0.5×maxImp)

maxImp)
+ p0 (4)

4.2 Example

Consider the 3-coloring problem presented in Figure 5. In this problem, there
are six agents, each with a variable and nine constraints between them. Because

66 M. Smith, S. Sen, and R. Mailler

Fig. 5. Example 3-coloring problem with six variables and nine constraints.

this is a 3-coloring problem, each variable can be assigned only one of the three
available colors {Black, Red, or Blue}. The goal is to find an assignment of colors
to the variables such that no two variables, connected by a constraint, have the
same color.

In this example, three constraints are in violation: (ND2, ND3), (ND2, ND4),
and (ND3, ND4). Following the protocol, at startup, each of the agents sends
its current value to all its neighbors in an ok? message. After receiving all the
messages, each agent determines their improve, maxImprove, and p values. In
this example, p is calculated using equation 1.

– ND0 has improve = 0, maxImprove = 3, and p = 0.1

– ND1 has improve = 0, maxImprove = 3, and p = 0.1

– ND2 has improve = 1, maxImprove = 4, and p = 0.325

– ND3 has improve = 1, maxImprove = 4, and p = 0.325

– ND4 has improve = 2, maxImprove = 3, and p = 0.7

– ND5 has improve = 0, maxImprove = 1, and p = 0.1

After finding the probability of change, a random number is generated such that
if the random number is less than p, the value for the node actually changes.
Every node that changes sends a message to all its neighbors and the process
starts over again until execution ends.

5 Adaptive DSA

In addition to looking at non-constant, although static functions for determining
the value of p, we also investigated two methods that allow the function to
adapt based on experience. The learning problem that the agents encounter
in this algorithm is to learn a mapping from their improve value at a time t
to a probability that determines whether they should be the one that changes
their value at t. In situations where this leads to an action being produced, the
agent is rewarded based on the relative goodness of the action (i.e. how much
improvement is actually made).

Like most learning methods, including Temporal difference (TD) learning [10],
the general form of the update we use in this paper can be seen in equation 5.
Basically there is an error term calculated at each time step that is used to move
the probability by some small amount, α, toward the correct value.

Adaptive and Non-adaptive Distribution Functions for DSA 67

5.1 Algorithm

The modifications needed to support the ability to adapt the function used to
determine p are fairly simple. First, we introduce two global variables, a prob-
ability array, prob, of size maxImprove that holds the function values for each
improve value and an integer predImprove that holds the predicted improve-
ment value of the agent from the previous cycle. While still operating like the
DSA algorithm, we alter the main procedure to initialize maxImprove, prob,
and lastPred. Each time the main loop cycles, we save the predicted improve
from the previous cycle so that we can compare the actual change to what was
predicted. To find the actual change (actualImprove), we count the number of
conflicts before and after the messages are processed and take the difference.
The probability array is updated if the last predicted value is greater than 0,
meaning we made a change to our variable’s value on the last cycle. Each of our
approaches introduces a new update prob method that does the probability
array updating.

The choose value procedure is also changed in the adaptive algorithm, al-
though minimally. We initialize predImprove to −1 every time the method is
called to indicate that no change is made. If a change is made, predImprove is
set to the improve value. This value is what is saved to compare in the next iter-
ation to the actual improve of the agent and trigger the update prob procedure
call.

5.2 Update Methods

The discrete update function limits the impact that the error value has to only
correct the probablity assocated with the agent’s last predication. To initialize
the prob array, we calculate the linear value for each unit using equation 1. As the
problem is solved, the probabilities are changed to reflect whether the decision
made by the agent was a good decision.

After each cycle, the probability array is updated by taking into account the
current value of p and adding a fraction of the difference between the actual and
predicted improve values. The update prob procedure for the discrete algo-
rithm takes as input the actual improve value, the last predicted improvement,
and the maximum improvement possible for the particular agent. The procedure
changes the global prob array by changing the probpred to increase (or decrease)
by a constant, α, times the normalized difference in the predicted value and the
actual value at time t. None of the other values in the prob array are affected,
and if no change is made to the agent’s value, the probpred value will not change.
In our evaluation, we set α = 0.3.

probtpred ← probt−1
pred + α

(
actual− pred

max

)
(5)

The exponential decay update technique updates to the prob array just like
in the discrete method, but also updates other values in the array based on

68 M. Smith, S. Sen, and R. Mailler

an exponential decay. Again, the array is initialized using the linear function
(equation 1) to initialize the probability array.

The update prob procedure for the exponential decay update algorithm con-
tains a loop that iterates through the prob array, adjusting each value a slight
amount based on how far from the pred position it is. For example, if the pred is
4, and i is 2, then the value for probi will be adjusted by a factor of α3, as will the
value of prob6 because it is the same distance from the center at 4. The further
away from one another i and pred are, the smaller the factor, and the smaller the
change in the probability. One could easily think of this updating technique as
being similar in nature to a radial basis function [8] with each function centered
at an individual improve value. As you adjust one of the kernels, it affects the
probabilities in an exponentially decaying manner based on its distance from the
prediction.

probti ← probt−1
i + α(|pred−i|+1)

(
actual − pred

max

)
(6)

6 Evaluation

To test our DSA variants, we implemented each in a distributed 3-coloring do-
main. The DSA algorithm was the DSA-B variant and the test series consisted
of randomly generated graphs with n = {100, 200, 300, 400, 500} variables and
m = {2.0n, 2.3n, 2.7n} constraint densities to cover under-constrained, normally
constrained, and over-constrained environments. For each setting of n and m, 30
problems were created and each of the probability distributions were used, both
adaptive and non-adaptive. Each run was given 500 cycles of execution time.
During a cycle, each agent was given the opportunity to process its incoming
messages, change its value, and queue up messages for delivery during the next
cycle. The actual amount of execution time per cycle varied depending on the
cycle, the problem, and the distribution function.

The test cases were compared on two main factors. During each cycle, the
number of current violations and the number of messages transmitted were mea-
sured. These values were used to plot the graphs shown in Figures 6 and 7. Al-
though not shown here, for the adaptive cases, we kept track of the probability
array values for each cycle to see how the probability functions were affected
over time. As expected, the exponential decay update technique changes more
often and to a greater degree because more values in prob change during each
cycle. One thing we noticed is that even though the values changed more, they
still didn’t change very much from their initial values. In future work, we plan
to use the resulting function from one run and using it as the input to the next
run so that each successive run would be improving the final function instead
of starting over with the linear values. This would make it work much more like
classical reinforcement learning because the agents would get multiple trials in
addition to multiple updates.

Adaptive and Non-adaptive Distribution Functions for DSA 69

(a) (b)

Fig. 6. (a) Number of messages sent for all algorithms at 500 nodes and 2.3 edge
density, and (b) Conflicts over time for DSA with p = 0.1, 0.3 and DBH with p0 = 0.1
and p1...i = 0.3

6.1 Total Messages Received

In terms of total messages sent/received, all of our algorithms used less than
half of the number of messages that traditional DSA (see Figure 6) uses for all
combinations of nodes and edge densities. This seems to indicate that adapting
the p values to be more situation specific facilitated significantly more effective
communication between agents. Thus, it is our conjecture that it will require
half the transmission bandwidth and allow for a more scalable solution.

In comparison to DPP, based on the results presented in [5], the amount of
messaging is about the same. However, using any of our distribution functions
alleviates the need to calculate the initial PDF function. We plan to do a more
empirical comparison between DPP and our DSA variant in the future.

6.2 Total Conflicts

Even though our approach dramatically improves the communication cost, none
of our alterations to DSA showed consistent improvement to the solution found
by normal DSA as far as the total conflicts are concerned. Table 1 shows the
conflicts remaining for 2.3 density and all nodes after 500 cycles. Out of our six
probability functions, a clear leader did not emerge, although they were within
a standard deviation of one another and DSA.

One possible reason for finding a slightly worse solution is that when tra-
ditional DSA has an agent with only a small or no improvement possible, the
probability of having it change values is still fairly high at p = 0.3, whereas with
our experiments, we set p0 = 0.1, which is significantly lower than traditional
DSA. The probability of an agent having only a small or no amount of improve
for any particular time cycle is also fairly high, meaning that the 0.2 difference
in initial probability values is likely a significant factor. In many cases, a proba-
bility function that has a high probability of change in the early part of the run

70 M. Smith, S. Sen, and R. Mailler

Table 1. Remaining Conflicts after 500 cycles for 2.3 density

Algorithm 100 nodes 200 nodes 300 nodes 400 nodes 500 nodes

DSA 6.1 12 15.9 22.5 28.6
Linear 6.0 12.8 18.4 24.8 30.7
Sub-Linear 7.1 12.5 20.1 24.9 30.2
Super-Linear 6.6 12.8 19.1 24.7 29.4
Weibull 6.9 12 18.6 23.6 30.8
Discrete 5.9 11.9 17.5 24 29.5
Contextual Discrete 6.2 12.4 17.9 24.3 31.0

is more likely to do well overall because the agent has the chance to hill-climb
to a better state. In the cases where the starting value is too low, the agent may
not have had the opportunity to find a better solution because it has already
hill climbed into such a bad state that there is no escape.

6.3 Further Analysis and Experimentation

To determine if the difference in p0 is the cause of our solutions coming out with
slightly more constraint violations, we ran traditional DSA again with p = 0.1
instead of p = 0.3. In this case, the solutions ended up consistently worse with
the lower value of p because there is a smaller likelihood that an agent will
change its value no matter how much it can improve. Our probability functions
result in conflict curves over time that fall between the traditional DSA curves
for p = 0.1 and p = 0.3. This implies that there are two separate components at
play in finding good solutions with DSA-B: lateral movement and hill-climbing.

To test this hypothesis, we augmented the traditional DSA algorithm to give
p0 = 0.1 and pimprove≥1 = 0.3 to segregate the approach into lateral movement
and hill-climbing portions. Figure 6 shows all three traditional DSA algorithms
with different static values for p at 300 nodes and 2.3 density. The higher the
value for p0, the faster the number of remaining conflicts falls due to the higher
probability of lateral motion. We also notice that the higher the number of
nodes, the more of an impact the lateral motion has. In Figure 8, we show
the average distribution of the improve value for an agent with 4 neighbors.
Because improve = 0 occurs more frequently than larger improve values, we
know that lateral movement plays a large part in finding a good solution. This
isn’t entirely surprising as it has been reported numerous times that randomness
in centralized hill-climbing searches has a fairly significant impact on the overall
solution quality [11].

Examining the hill-climbing portion of the runs, we look at the slope of the
conflict lines in Figure 7. The thicker line is DSA with p = 0.3, and the other
lines are our non-adaptive and adaptive results. The slope of each line indicates
the effectiveness of the hill-climbing part of the algorithm. Traditional DSA
flattens out as time goes on with little to no slope while our algorithms have a
more defined slope as time progresses. We believe that this indicates that our

Adaptive and Non-adaptive Distribution Functions for DSA 71

(a) (b)

Fig. 7. Conflicts Remaining Over Time: (a) Non-Adaptive and (b) Adaptive

Fig. 8. Average number of Lateral Moves (Lat) vs. Hill-Climbing Moves (HC) for
graph-coloring agents with four neighbors

hill-climbing methods are more effective than normal DSA, but that our choice of
p for the lateral movement case was sub-optimal. Our adaptive algorithms have
a steeper slope than our non-adaptive algorithms, indicating that having the
values for p evolve as the problem is solved improves the hill-climbing method
over finding p based on a static function. In addition, using static functions
results in a more defined slope than having p defined as a static constant. In
future work, we will explore this discovery and experiment with different p0
values over each of our distribution functions.

7 Conclusion

This paper presents different adaptive and non-adaptive alterations to the Dis-
tributed Stochastic Algorithm (DSA), which turns the traditional constant p
into an situation-specific function for p based on the predicted improvement of
the agent during a time cycle. By allowing p to change and adapt, we reduce
the number of messages needed to communicate between agents by more than
half. In discovering the heavy influence of lateral movement, we believe that
given a more optimal p0 value, our DSA variants should improve even further.
Other work we have done includes experimenting with fine-tuning the lateral
movement probability [12].

72 M. Smith, S. Sen, and R. Mailler

As agent systems become more complex and start to evolve more
autonomously, and as this extends into complex software systems, cutting com-
munication costs (i.e. bandwidth and throughput needs) may become more de-
sirable than finding a more optimal solution if the difference is within a tolerable
range. In cases like these, using any of our techniques would make a dramatic
impact on the networking footprint required by traditional DSA, even without
an optimal p0 probability for lateral movement.

Because of the significant reduction in messaging, we believe fine-tuning the
lateral movement probability in our distribution functions can find more optimal
solutions. Running more tests in a variety of domains would help determine how
the algorithms adapt to more than just graph-coloring problems. Also testing
the adaptive approaches using different initialization vectors may result in find-
ing a more optimal probability function. We are also planning on incorporating
more complex machine learning, where each successive run takes the probabil-
ity function from previous runs as the initial value, allowing the simulation to
improve upon a function that starts off in a more optimal state than the static
functions we used in this paper.

Acknowledgments. The authors gratefully acknowledge support of the De-
fense Advanced Research Projects Agency under DARPA grants HR0011-07-C-
0060. Views and conclusions contained in this document are those of the authors
and do not necessarily represent the official opinion or policies, either expressed
or implied of the US government or of DARPA.

References

1. Bacchus, F., van Beek, P.: On the conversion between non-binary constraint
satisfaction problems. In: AAAI 1998/IAAI 1998: Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Applications of
Artificial Intelligence, pp. 311–318. American Association for Artificial Intelligence,
Menlo Park (1998)

2. Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint lan-
guages. In: STOC 2001: Proceedings of the Thirty-Third Annual ACM Symposium
on Theory of Computing, pp. 667–674. ACM, New York (2001)

3. Faltings, B.: Distributed constraint programming. In: van Beek, P., Rossi, F.,
Walsh, T. (eds.) Handbook of Constraint Programming. Foundations of Artificial
Intelligence, ch. 20, vol. 2, pp. 699–729. Elsevier (2006)

4. Fitzpatrick, S., Meertens, L.: Distributed Coordination Through Anarchic Opti-
mization. In: Distributed Sensor Networks: A Multiagent Perspective, pp. 257–294.
Kluwer Academic Publishers (2003)

5. Mailler, R.: Using prior knowledge to improve distributed hill climbing. In: Pro-
ceedings of the 2006 International Conference on Intelligent Agent Technology (IAT
2006) (2006)

6. Mailler, R., Lesser, V.: Using Cooperative Mediation to Solve Distributed Con-
straint Satisfaction Problems. In: Proceedings of Third International Joint Confer-
ence on Autonomous Agents and MultiAgent Systems (AAMAS 2004) (2004)

7. Meisels, A.: Distributed search by constrained agents: algorithms, performance,
communication. Springer, Heidelberg (2008)

Adaptive and Non-adaptive Distribution Functions for DSA 73

8. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing
units. Neural Comput. 1(2), 281–294 (1989)

9. Morris, P.: The breakout method for escaping local minima. In: Proceedings of the
Eleventh National Conference on Artificial Intelligence, pp. 40–45 (1993)

10. Richard, A.G.B., Sutton, S.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1999)

11. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In:
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI
1994), pp. 337–343 (1994)

12. Smith, M., Mailler, R.: Getting What You Pay For: Is Exploration in Distributed
Hill Climbing Really Worth It?. In: Int’l Conference on Web Intelligence and In-
telligent Agent Technology, WI-IAT (2010)

13. Yokoo, M.: Asynchronous Weak-Commitment Search for Solving Distributed Con-
straint Satisfaction Problems. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS,
vol. 976, pp. 88–102. Springer, Heidelberg (1995)

14. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satis-
faction for formalizing distributed problem solving. In: International Conference
on Distributed Computing Systems, pp. 614–621 (1992)

15. Yokoo, M., Hirayama, K.: Distributed breakout algorithm for solving distributed
constraint satisfaction problems. In: International Conference on Multi-Agent Sys-
tems, ICMAS (1996)

16. Zhang, W., Wang, G., Wittenburg, L.: Distributed stochastic search for constraint
satisfaction and optimization: Parallelism, phase transitions and performance. In:
Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, pp.
53–59 (2002)

17. Zhang, W., Wittenburg, L.: Distributed breakout revisited. In: Proceedings of the
Eighteenth National Conference on Artificial Intelligence (AAAI-2002), pp. 352–
357 (2002)

Multiagent Based Scheduling of Elective Surgery

Sankalp Khanna1,2, Timothy Cleaver1, Abdul Sattar1,
David Hansen2, and Bela Stantic1

1 Institute for Integrated and Intelligent Systems,
Griffith University, QLD 4111, Australia

{S.Khanna,T.Cleaver,A.Sattar,B.Stantic}@griffith.edu.au
2 The Australian e-Health Research Centre, 71/918,RBWH,

Herston, QLD 4029, Australia
David.Hansen@csiro.au

Abstract. Scheduling of patients, staff, and resources for elective
surgery in an under-resourced and overburdened public health system
represents an inherently distributed class of problems. The complex-
ity and dynamics of interacting factors demand a flexible, reactive and
timely solution, in order to achieve a high level of utilization. In this
paper, we present an Automated Scheduler for Elective Surgery (ASES)
wherein we model the problem using the multiagent systems paradigm.
ASES is designed to reflect and complement the existing manual meth-
ods of elective surgery scheduling, while offering efficient mechanisms for
negotiation and optimization. Inter-agent negotiation in ASES is pow-
ered by a distributed constraint optimization algorithm. This strategy
provides hospital departments with control over their individual sched-
ules while ensuring conflict free optimal scheduling. We evaluate ASES
to demonstrate the feasibility of our approach and demonstrate the effect
of fluctuation in staffing levels on theatre utilization. We also discuss on-
going development of the system, mapping key challenges in the journey
towards deployment.

Keywords: Multiagent Systems, Distributed Constraint Optimization.

1 Introduction

“ The performance of Australia’s public hospital system continues to deterio-
rate......Waiting times for elective surgery have been getting longer. [1] ”

Scheduling in a complex, dynamic environment remains an open research
problem. The problem is made particularly difficult when scheduling needs to
occur in a distributed manner across several departments. While each depart-
ment is working at optimizing its own resources, optimal utilization requires
several departmental schedules to be optimized horizontally. The problem is fur-
ther compounded in the case of under-resourced and overburdened systems, and
even slight improvements in scheduling here can lead to much needed gains.
Faced with the challenge of an encumbered public health system, the Elective
Surgery Scheduling Problem (ESSP) presents an excellent real-world example of

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 74–89, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multiagent Based Scheduling of Elective Surgery 75

this class of problems. A collaboration between leading national research facili-
ties in ICT for healthcare innovations and Artificial Intelligence, and a leading
public hospital, this research is focused on tackling problems of this nature.

Our research into public elective surgery wait times in Queensland, Australia,
found that a significant number of patients were subjected to longer than desir-
able wait times. This was despite recent initiatives including increased budget
allocation, treatment of long-wait patients in private hospitals, and increased
clinical staffing. As of 1 April 2010, 33,620 patients were waiting for elective
surgery, of whom almost 18% had waited longer than a clinically desirable time
[22]. Any improvement in scheduling processes would not only result in im-
proved staff and resource utilization, but also lead to reduced patient in-waiting
and in-care times, increased patient and staff satisfaction, and increased hospital
revenue.

We have developed ASES, an Automated Scheduler for Elective Surgery, in
an attempt to address this class of problems. ASES is a multiagent system de-
signed to reflect and complement existing manual methods of elective surgery
scheduling, while offering efficient mechanisms for negotiation and optimization.
The use of the multiagent paradigm is a natural fit given the distributed nature
of the problem. It also captures the autonomy of hospital departments in con-
structing and managing their individual schedules. In order to ensure optimality
and compatibility of departmental schedules, we employ distributed constraint
optimization to guide coordination and resolution of schedule conflicts. This
marriage of rational agency and distributed constraint optimization, wherein
the optimization algorithm forms the core of the agent negotiation protocol and
guides interaction between agents working on related but departmentally au-
tonomous problems, is novel and necessitated by the problem domain.

The rest of this paper is organized as follows. In Section 2, we motivate our re-
search with a discussion of the processes involved in scheduling elective surgery
at a large public hospital in Queensland. We then discuss state-of-the-art so-
lutions to the problem. This is followed by a brief introduction to multiagent
systems and distributed constraint optimization. In Section 3, we present the
intelligent agent architecture of the ASES system and justify our choice of dis-
tributed optimization algorithm. We then map the elective surgery scheduling
problem to a distributed constraint optimization problem and present partic-
ulars of the ASES implementation. In Section 4, we discuss the feasibility and
benefits of our approach and demonstrate the effect of fluctuation in staffing lev-
els on theatre utilization. We conclude with a description of ongoing and future
work, mapping key challenges in the journey towards deployment.

2 Background

2.1 Elective Surgery Scheduling - A Case Study

Elective surgery is a planned, non-emergency surgical procedure, which can be
scheduled at the patient’s and surgeon’s convenience. The escalating demand
for elective surgery is however compounded by a shortage of trained surgeons,

76 S. Khanna et al.

Fig. 1. Median Waiting Time for Elective Surgery

anaesthetists and nurses. Recent statistics [1] show that despite repeated gov-
ernment intervention, elective surgery wait times continue to grow in Australia
(Fig. 1). Though slightly better, Queensland statistics follow similar trends. We
discuss scheduling processes at a leading public hospital in Queensland to help
establish a better understanding of the intricacies involved.

21 operating theatres are available. The theatre schedule is divided into 3.5
hour slots. Two slots are allocated per day, one in the morning and one in the
afternoon. Elective procedures are generally rescheduled in case of emergency.

Each department connected (i.e. allocating staff or other resources) to the
surgery carries out their individual scheduling activity. The bookings department
assigns patients to slots in consultation with the relevant surgical teams. The
bookings are recorded into the Operating Room Management Information System
(ORMIS). The different departments can access this information by looking into
ORMIS or by accessing the latest Bookings Schedule on the shared drive, where
it is updated everyday at 3PM.

Every Thursday the managers of the different departments meet and review
bookings for the week ahead (Fig. 2). Each session is discussed and existing
schedule conflicts are resolved. However, events like unexpected emergencies, vari-
ation in patients’ health state, and sudden perturbations in staffing, often lead to
schedule changes. All changes made subsequent to the meeting are conducted on
a case-by-case basis by individual departments. Coordinating these changes re-
quires ad-hoc conventional communication. In keeping with the dynamics of the
domain, the schedule needs to be updated quickly and efficiently. This is often not
possible because of delays in inter-departmental communication. Changes made
under such circumstances can often result in inefficient or compromised schedules.
For example, if a procedure is canceled at the last minute, the bookings

Multiagent Based Scheduling of Elective Surgery 77

Fig. 2. Current Model for Scheduling Elective Surgery at the Princess Alexandra
Hospital

department may want to offer the slot to another patient. However, due to the
reliance on ad-hoc inter-departmental coordination, the involved parties may be
unreachable. As a consequence, the slot would then go unused.

2.2 Current State-of-the-Art

Historically, a number of solutions to the scheduling problem in the area of
intelligent (or semi-intelligent) scheduling can be found in literature. The first
“intelligent scheduling system” to be reported, ISIS [5], also introduced schedul-
ing (or specifically job shop scheduling) to the AI community. Over the last two
decades, several research efforts have been directed at solving the scheduling
problem, though most have been directed at the classical “job shop scheduling
problem” [25][21][8]. Further, research in the Operations Research domain has
also looked at the problem of scheduling for Operating Theatres and proposed
efficient solvers [7][15][20][14] to handle the task, but most such solvers approach
the problem as a centralized one. Given the need for maintaining the depart-
mental decision control nature of the problem domain, we focus our research
on distributed problem solving, specifically multiagent representations of the
problem.

A study conducted as part of this research evaluated state-of-the-art com-
mercial surgery scheduling software. Softwares like ORMIS1, OPERA2, and

1 http://isoftsanidad.es/text/products/2593.asp
2 http://www.chca.ca/opera.php?lang=en

http://isoftsanidad.es/text/products/2593.asp
http://www.chca.ca/opera.php?lang=en

78 S. Khanna et al.

MEDITECH Operating Room Management solution3, provide sophisticated in-
terfaces for users to enter scheduling decisions, and handy tools to detect con-
flicts and manage schedules, but decision making and optimization are largely
left to the operators of the system. This results in several staff hours being spent
each week on cumbersomely optimizing and aligning schedules. Krempels and
Panchenko [13] reveal that in the Operation Theatre Scheduling domain they
study, it takes one person 3-5 full working days to create a Nurse Roster. Sev-
eral discussions and interviews with hospital administrators and schedulers also
revealed that the most popular tools for departmental scheduling were still pa-
per templates, excel spreadsheets and whiteboards, with software systems being
used to record manually optimized schedules.

A review and analysis of health-related scheduling systems proposed by re-
cent research revealed that most were based on simplistic case studies and did
not map the complexities of the domain they were modeling. While several sys-
tems, including DISA [6], MedPage[18], and Policy Agents [12], used multiagent
systems to model their domains, distributed schedule optimization was largely
overlooked or proposed as one of the future aims. We also found that since tran-
sient elective surgery scheduling data is not captured in any current mechanisms,
there is a lack of benchmark problems in this domain.

We believe that, while all of these methods help to improve the state-of-the-
art, what is missing is an intelligent flexible methodology that can adapt itself to
the complexity of the problem, without modifying or scaling it down. Optimally
solving local problems and handling changes caused by the dynamic nature of
the environment in a timely manner is also a non-trivial challenge. We argue
thus that incorporating optimization internally for each agent and as an integral
element of the inter-agent negotiation process is critical to the success of any
proposed system.

2.3 Multiagent Systems and Distributed Optimization

Multiagent Systems [24] are a popular paradigm for modeling distributed sys-
tems. Intelligent autonomous agents incorporate powerful capabilities such as re-
activity, proactiveness, cooperation, learning and intention management. Hospi-
tals exhibit a high level of departmental autonomy and thus multiagent
technology offers expressively rich tools for modeling the hospital scheduling
environment. Further, multiagent systems also offer the Distributed Constraint
Optimization Problem (DCOP) formalism for modeling and solving naturally
distributed optimization problems efficiently.

Formally, we can define a DCOP as consisting of:

1. A finite ordered set of Agents A = {A1, A2, ..., Ak|k ∈ N∗}, where, for each
Agent A there exists :
(a) A finite ordered set of variables V = {V1, V2, ..., Vn|n ∈ N∗},
(b) A domain set D = {D1, D2, ..., Dn}, containing a finite and discrete

domain Di for each Vi,

3 http://www.meditech.com/ProductBriefs/pages/productpageorm.htm

http://www.meditech.com/ProductBriefs/pages/productpageorm.htm

Multiagent Based Scheduling of Elective Surgery 79

Algorithm 1. The DCDCOP Algorithm

Calculate static measures
Solve local problem
Calculate dynamic measures
Send message (DU,CurrContext) to all neighbours
Receive messages
when received (messageDU,msgContext) do

if msgContext and CurrContext are consistent then
add msgContext to CurrContext
if DU > msgDU then

Solve local problem
end
else if DU = msgDU and higher order then

Solve local problem
end
Calculate dynamic measures
Send message (DU,CurrContext) to all neighbours

end

end

Procedure: Solve local problem
Branch and Bound to solve local problem

(c) A constraint set C = {C1, C2, ..., Cm |m ∈ N∗}, where each Cj , ∀j ∈ [1,m],
is defined as a cost function (f) on a pair of variables (i, i′). i.e. Cj =
fii′ : Di ×Di′ → N, ∀Vi, Vi′ ∈ V , and

(d) An ordered solution set S = {v1, v2, ..., vn|vi ∈ Di, ∀i ∈ [1, n]} where
each vi is an instantiation of the variable Vi and the aggregate cost of
the assignment F (S) =

∑
(xi,xi′∈V) fii′ (di, di′), xi ← di, xi′ ← di′ ∈ S.

2. The solution set of the DCOP S� is defined as the set of the solution sets of
each agent.

Employing techniques from search, dynamic programming, and cooperative me-
diation, DCOP offers efficient and sophisticated algorithms like ADOPT [17],
DPOP [19], and NCBB [4], to model and solve a variety of naturally distributed
problems. Recent research efforts [16][3][10] have however identified shortcomings
in DCOP algorithms when applied to dynamic and complex environments.

We have previously proposed DCDCOP [10] (see Algorithm 1), where agents
solve their local sub-problem using a local solver of their choice and then employ
a novel metric called Degree of Unsatisfaction to guide inter-agent negotiation
and solve inter-agent constraints. DCDCOP has been shown [9] to outperform
ADOPT, DPOP, and NCBB, by more than an order of magnitude.

80 S. Khanna et al.

3 ASES - an Automated Scheduler for Elective Surgery

3.1 Domain Mapping

The ESSP presented in Section 2.1 can be viewed as a set of departmental
scheduling problems. Each department allocating staff or other resources to the
surgery prepares their own schedule and then negotiates with other departments
to ensure that the schedules are aligned and the resulting Operating Theatre
schedule is conflict free.

To map the ESSP to a multiagent DCOP notation (Fig. 3), we assign each de-
partmental scheduling problem to a single agent. The schedule slots are mapped
to variables, and the staff and resources to be scheduled form the domain of
values for the variables. Constraints between variables of the same agent rep-
resent conditions such as not being able to schedule a staff to two slots that
run in parallel, while constraints between variables belonging to different agents
represent conditions such as doctor-nurse team preference allocations. Domain
rules and preferences are used to define cost functions for individual constraints.
An optimal solution to the resultant DCOP problem will now lead to an optimal
elective surgery schedule.

Fig. 3. Mapping the Problem

Multiagent Based Scheduling of Elective Surgery 81

3.2 Proposed Architecture

We propose an agent-oriented methodology where each department involved in
the scheduling of its resources, be they patients, staff or equipment, is repre-
sented by an intelligent agent. These agents are customized to the constraints,
preference and priorities of the party they represent. It is the responsibility of the
agents to react to messages from other agents and optimize their local schedule
accordingly. As necessary, the agents then negotiate in a privacy-preserving man-
ner to resolve inter-agent constraints (Fig. 4(a)). The architecture of individual
agents (Fig. 4(b)) consists of a number of modules. An interface module handles
communication with other agents and users. Decision support and learning is
handled by the intelligence module. Negotiation and optimization is driven by
the DCOP engine.

The agents thus have a number of capabilities. They can learn user preferences
and domain knowledge. The environment is monitored for changes necessitating
updates to the schedule. They use logical reasoning to identify the need for and
to guide negotiation. An advanced DCOP algorithm is used to optimize local
schedules while ensuring efficient alignment of the global schedule.

3.3 The DCOP Engine

The DCOP algorithm we utilize needs to be robust in a number of ways. It must
be scalable to the variety and complexity of the involved agents’ sub-problems.
Negotiation resolution must be timely with respect to the environment under
which the negotiation is taking place. The ability to separate the communica-
tion protocol from the details of the local solver is also essential, as this facilitates
the customization of the local solver to each agent’s unique problem while main-
taining communication compatibility.

Given its ability to preserve the distributed sub-problem structure, and its
computational superiority over ADOPT, DPOP, and NCBB, we have chosen
DCDCOP to drive the DCOP engine in ASES. It is proposed to implement
other key algorithms, like ADOPT, within ASES at a later stage to empirically
validate our choice.

3.4 Implementation

ASES has been implemented using Jason [2]. Jason is a Java implementation
of Agentspeak(L) [23]. In addition to providing extended Agentspeak(L) syntax
and semantics for the development of individual agents, Jason provides facilities
for the specification of multiagent systems. Crucial in so doing is the provision
for speech-act-based communication. This speech-act-based communication un-
derlies our DCOP communication implementation.

ASES models the scheduling activity of 4 agents: Bookings, Nursing, Anaes-
thesiology and Theatre Resources. Each agent is discussed briefly to present a
better understanding of their activities.

82 S. Khanna et al.

(a) Proposed Model

(b) Agent Architecture

Fig. 4. Scheduling Elective Surgery with ASES

Multiagent Based Scheduling of Elective Surgery 83

Fig. 5. Bookings Agent

The Bookings agent (Fig. 5) receives randomly generated requests to add or
modify bookings. Each request includes the patient and procedure information.
When a slot is allocated, the Bookings agent sends this information out to all
agents concerned. If an agent is unable to provide resources, a message is returned
to the Bookings agent, resulting in the allocation being cancelled and another
message being sent out to all agents concerned.

The Resource agent (Fig. 6) calculates the equipment required for the proce-
dure to schedule. If the required resources are unavailable, the Resource agent
requests that the Bookings agent reschedule the procedure. Thus, equipment is
allocated on a first-come first-served basis. This models the hospital’s current
resource allocation strategy. However, work is underway to enhance this process
to utilize procedure/patient priorities if required.

The Nursing agent (Fig. 7), upon receiving notification of a new procedure
allocation, must then schedule the nursing staff to accommodate the new alloca-
tion. Unlike the Resource agent, the resources available to the Nursing agent are
not fixed. The Nurse Unit Manager is able to hire casual/temporary nurses when
necessary. However, their use is to be minimized. This is modeled by assigning
a higher cost to casual/temporary nursing staff.

In managing the nursing schedule, the Nursing agent is required to ensure that
for each assignment of nurse to procedure, the nurse contributes a skill necessary
to the completion of the procedure. No more nurses than necessary should be as-
signed to a procedure. Each procedure must have its nursing skills requirements
met. Should the nursing agent be unable to allocate nurses to satisfy a procedure’s
requirements, a request is sent to the bookings agent to reschedule the procedure.

84 S. Khanna et al.

Fig. 6. Resources Agent

Additional constraints representing preference, breaks, shifts and working regula-
tion also apply to the nursing schedule.

The Nursing agent also needs to match the allocation of nurses to procedures
with other staffing agents such as Anaesthesiology. Such negotiations are often
necessary to maximize the compatibility and efficiency of the operating team,
and also help maintain staff morale. This is modeled using inter-agent constraints
carrying appropriately high cost. An optimal solution would thus ensure that
these constraints were satisfied even if it came at the cost of hiring additional
casual staff.

The responsibilities of the Anaesthesiology agent largely mimic those of the
Nursing agent. The differences lie in the requirements of procedures, preferences
and number of staff to be assigned, use of temporary staff, and award and training
requirements of the department.

Finally, all agents are able to incrementally adjust and optimize the schedules
based on changing circumstances. Should a procedure be rescheduled, all sched-
ules must reflect this in a timely manner. As scheduled procedures draw near
to execution, additional constraints can be imposed to increase stability. This
would reflect the difficulty of successfully accommodating last minute changes.

However, at no point prior to the scheduled time of a procedure can a proce-
dure be confirmed. Emergency cases must be accommodated. Should theatres,
staff or resources be required by such emergencies, the system must be capable
of adjusting to these last minute needs.

Multiagent Based Scheduling of Elective Surgery 85

Fig. 7. Nursing Agent

In many scenarios, the system needs user-input to make a decision about a
negotiation request received. For example, if a slot opening permits a procedure
to be brought forward, the Bookings department may request such a change.
However, the Nurse Unit Manager may accommodate the change at short notice
only at her discretion, or after explicit discussion with the staff involved. In
situations such as this, there is no alternative to deferring the decision to the
user. We are currently working on implementing an Intelligence Module within
ASES that provides this decision support. The module is based on the system
suggested by Khanna et al. [11]. It is designed to mimic the behaviour of the
domain expert in these scenarios and to build a knowledge bank by learning
from decisions taken by the domain expert. The decision flow of this module is
presented in Fig. 8.

4 Evaluation

Since current hospital processes do not capture transient scheduling information,
real-world data could not be used to drive the simulation. Parameters such as
the number of theatre slots, average procedure time and number of staff per
department were selected based on data collected from interviews with domain
experts and the tools currently in the hospitals employ. These were used to gen-
erate statistically significant random test data to drive the ASES system and
evaluate the feasibility of our approach. However, we did make some simplifying
assumptions. We did not model all of the constraints we identified as crucial.
This was due to the immaturity of the system, as this process would require

86 S. Khanna et al.

Fig. 8. Intelligent Decision Support

considerable domain expert interaction, and not to any technical difficulty. Fur-
ther, given the absence of suitable comparison benchmarks, the efficiency of the
DCDCOP algorithm was not specifically evaluated within the system.

As procedures were booked, the information flowed in real time to other
agents, who updated their schedule accordingly. Conflicts were identified and ne-
gotiation initiated to resolve them. Similarly, cancellations resulted in resources
being freed up and made available instantly. The system thus reduces ineffi-
ciencies caused by delays in current communication and negotiation procedures.
With all resources and staff available, ASES reported resolving an average of
226 conflicts at 70% theatre utilization and an average of 325 conflicts at 100%
theatre utilization. When available resources were reduced by 10% (to simulate
situations where equipment was unavailable), the number of conflicts increased
to 384 at 70% utilization and ASES managed to achieve only a maximum of
93% theatre utilization (Fig. 9).

In automating the scheduling process, thus, ASES significantly reduces delays
in inter-departmental information flow and negotiation. The ability to automat-
ically generate optimal departmental schedules also offers a saving of several
hours of manual work that currently goes into preparing the schedules. For ex-
ample, the Nurse Unit Manager currently spends an average of 50 hours a month
creating the following month’s schedule and an average of 2 hours a day han-

Multiagent Based Scheduling of Elective Surgery 87

Fig. 9. Conflicts Vs Theatre Utilization

dling the rescheduling. Though delays resulting from waiting for user interaction
are unavoidable, the need for such interaction will also decrease as the system
learns and builds its knowledge bank for automated decision support. Further, as
the departmental schedules are always maintained conflict free, ASES altogether
does away with the need for weekly meetings.

Another key enhancement offered by ASES revolves around the efficient man-
agement of operating theatre resources. In the current manual system, proce-
dures are scheduled without foreknowledge of the availability of resources, often
resulting in a compromised schedule. This is corroborated in the current eval-
uation as we observe that unavailability of resources can quickly lead to poor
theatre utilization. Integrating resource management and scheduling within the
ASES system can allow sufficient time to overcome resource shortages and im-
prove theatre utilization.

5 Conclusion and Future Work

We have presented ASES, an Automated Scheduler for Elective Surgery. ASES
models the challenging Elective Surgery Scheduling Problem using the multia-
gent system paradigm, and is powered by a DCOP engine capable of handling
the complex and dynamic nature of the problem. Through this novel integra-
tion of multiagent modeling and state-of-the-art artificial intelligence techniques,
ASES represents a significant advance towards solving this particularly challeng-
ing class of complex distributed dynamic problems. Our preliminary evaluation
of the system shows that automated scheduling using ASES offers real-world
efficiency improvements.

88 S. Khanna et al.

We are currently working towards implementing intelligent decision support
and learning within ASES. This module would gradually learn to mimic the
domain expert’s decision making process and help overcome delays caused by
the unavailability of the domain experts. We are also implementing other DCOP
algorithms within ASES to aid empirical evaluation of DCDCOP’s performance
within the system.

Several challenges need to be addressed before ASES can be deployed in hos-
pitals. Firstly, much of the knowledge utilized to generate current departmen-
tal schedules is informal and undocumented. Creating domain rules that could
be used to define and quantify constraint cost functions is a non trivial task.
Achieving this milestone, however, would also serve the purpose of streamlin-
ing current scheduling processes. Secondly, quantifying confidence scores and
managing dynamically changing priorities also poses a challenge for intelligent
decision support. Manual curation of the schedules, and the system’s ability to
learn from this process, however, provides a mechanism for assisting with the
latter. Lastly, gaining acceptance from the end-users of the system is critical,
and we are working closely with these practitioners to ensure that the system
optimally serves their scheduling needs.

Acknowledgments. The authors wish to thank Dr. Peter Moran and his col-
leagues at the Princess Alexandra Hospital for their ongoing support, for allowing
us into their world, and for sharing their invaluable expertise.

References

1. Australian Medical Association: Public Hospital Report Card 2009 (2009),
http://ama.com.au/node/5030

2. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

3. Burke, D.A.: Exploiting Problem Structure in Distributed Constraint Optimisa-
tion with Complex Local Problems. PhD thesis, Department of Computer Science,
University College Cork, Ireland (2008)

4. Chechetka, A., Sycara, K.: An Any-Space Algorithm for Distributed Constraint
Optimization. In: AAAI Spring Symposium on Distributed Plan and Schedule
Management (2006)

5. Fox, M.S., Allen, B., Strohm, G.: Job-Shop Scheduling: An Investigation in
Constraint-Directed Reasoning. In: 2nd Conference of The American Association
for Artificial Intelligence, pp. 155–158 (1982)

6. Friha, L.: DISA: Distributed Interactive Scheduler using Abstractions, PhD thesis,
University of Geneva, Geneva (1998)

7. Jebali, A., Hadj Alouane, A.B., Ladet, P.: Operating Rooms Scheduling. Interna-
tional Journal of Production Economics 99(1-2), 52–62 (2006)

8. Jones, A., Rabelo, J.: Survey of Job Shop Scheduling Techniques. NISTIR, National
Institute of Standards and Technology, Gaithersburg, USA (1998)

9. Khanna, S.: Distributed Constraint Optimization and Scheduling in Dynamic En-
vironments. PhD Thesis, Institute for Integrated and Intelligent Systems, Griffith
University, Australia (2010)

http://ama.com.au/node/5030

Multiagent Based Scheduling of Elective Surgery 89

10. Khanna, S., Sattar, A., Hansen, D., Stantic, B.: An Efficient Algorithm for Solv-
ing Dynamic Complex DCOP Problems. In: 2009 IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT
2009), Milano, Italy, pp. 339–346 (2009)

11. Khanna, S., Sattar, A., Maeder, A., Stantic, B.: Intelligent Scheduling in Complex
Dynamic Distributed Environments. In: 12th World Congress on Health (Medi-
cal) Informatics; Building Sustainable Health System (Medinfo 2007), Brisbane,
Australia, pp. 1665–1666 (2007)

12. Krempels, K., Panchenko, A.: An Approach for Automated Surgery Schedul-
ing. In: 6th International Conference on the Practice and Theory of Automated
Timetabling, Brno, Czech Republic, pp. 209–233 (2006)

13. Krempels, K., Panchenko, A.: Dialog-Based Intelligent Operation Theatre Sched-
uler. In: 6th International Conference on the Practice and Theory of Automated
Timetabling, Brno, Czech Republic, pp. 524–527 (2006)

14. Lamiri, M., Grimaud, F., Xie, X.: Optimization Methods for a Stochastic Surgery
Planning Problem. International Journal of Production Economics, Special Issue
on Introduction to Design and Analysis of Production Systems 120(2), 400–410
(2009)

15. Lamiri, M., Xie, X., Dolgui, A., Grimaud, F.: A Stochastic Model for Operat-
ing Room Planning with Elective and Emergency Demand For Surgery. European
Journal of Operational Research 185(3), 1026–1037 (2008)

16. Lass, R.N., Sultanik, E.A., Regli, W.C.: Dynamic Distributed Constraint Rea-
soning. In: 23rd AAAI Conference on Artificial Intelligence, Chicago, USA, pp.
1466–1469 (2008)

17. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: An Asynchronous Complete Method
for Distributed Constraint Optimization. In: 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems, Melbourne, Australia, pp. 161–168
(2003)

18. Paulussen, T., Zöller, A., Rothlauf, F., Heinzl, A., Braubach, L., Pokahr, A.,
Lamersdorf, W.: Agent-Based Patient Scheduling in Hospitals. In: Multiagent Engi-
neering, Theory and Applications in Enterprises, pp. 255–275. Springer, Heidelberg
(2006)

19. Petcu, A., Faltings, B.: A Scalable Method for Multiagent Constraint Optimization.
In: Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, pp. 266–271 (2005)

20. Pham, D.N., Klinkert, A.: Surgical Case Scheduling as a Generalized Job Shop
Scheduling Problem. European Journal of Operational Research 185(3), 1011–1025
(2008)

21. Prosser, P., Buchanan, I.: Intelligent Scheduling: Past, Present and Future. Intel-
ligent Systems Engineering 3(2), 67–78 (1994)

22. Queensland Health: Quarterly Public Hospitals Performance Report March Quar-
ter 2010 (2010), http://www.health.qld.gov.au/surgical_access

23. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

24. Woolridge, M.: Introduction to Multiagent Systems, 2nd edn. John Wiley & Sons
(2009)

25. Zweben, M., Fox, M.: Intelligent Scheduling. Morgan Kaufmann, San Francisco
(1994)

http://www.health.qld.gov.au/surgical_access

Effect of Alternative Distributed Task Allocation
Strategy Based on Local Observations

in Contract Net Protocol

Toshiharu Sugawara1, Kensuke Fukuda2, Toshio Hirotsu3, and Satoshi Kurihara4

1 Department of Computer Science and Engineering
Waseda University,

Tokyo 1698555, Japan
sugawara@waseda.jp

2 National Institute of Informatics
Chiyoda, Tokyo 100-000, Japan

kensuke@nii.ac.jp
3 Faculty of Computer and Information Sciences

Hosei University, Tokyo, Japan
hirotsu@hosei.ac.jp

4 Institute of Scientific and Industrial Research
Osaka University

kurihara@ist.osaka-u.ac.jp

Abstract. This paper presents a distributed task allocation method whose strate-
gies are alternatively selected based on the estimated workloads of the local
agents. Recent Internet, sensor-network, and cloud computing applications are
large-scale and fully-distributed, and thus, require sophisticated multi-agent sys-
tem technologies to enable a large number of programs and computing resources
to be effectively used. To elicit the capabilities of all the agents in a large-scale
multi-agent system (LSMAS) in which thousands of agents work concurrently re-
quires a new negotiation strategy for appropriately allocating tasks in a distributed
manner. We start by focusing on the contract net protocol (CNP) in LSMAS and
then examine the effects of the awardee selection strategies, that is, the task al-
location strategies. We will show that probabilistic awardee selections improve
the overall performance in specific situations. Next, the mixed strategy in which
a number of awardee selections are alternatively used based on the analysis of the
bid from the local agents is proposed. Finally, we show that the proposed strategy
does not only avoid task concentrations but also reduces the wasted efforts, thus
it can considerably improve the performance.

Keywords: Distributed task allocation, Adaptive Behavior, Negotiation, Load-
balancing.

1 Introduction

Recent Internet technologies enable for advanced large-scale applications, such as e-
commerce, grid computing, distributed computing, and cloud computing. Within these
applications, thousands of computational entities, called agents, have their own tasks,

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 90–104, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Effect of Alternative Distributed Task Allocation Strategy 91

such as user authentication, stock control, customer recommendation, purchasing man-
agement, and shipping control in e-commerce applications, work concurrently and col-
laborate with each other. In this kind of system, which can be modeled as a large-scale
multi-agent system (LSMAS), these tasks must be appropriately assigned to the agents
based on their abilities. However, they often interfere with each other. For example, if
many tasks are allocated to only a few specific agents, this may lead to a delay of one
of the task fragments (or subtasks), resulting in the delay of the whole task.

On the other hand, new Internet applications have been and will be more dynamic,
agents will have different computational resources/abilities, and new services and new
servers will frequently come and go. Of course, the agents’ states will also change over
time. These facts indicate that agents cannot acquire the most accurate global states of
the entire system. Thus, the key issue is how the agents will effectively allocate subtasks
to other agents using only locally available information so as to exploit the capabilities
of the entire system. For this requirement, contract- and auction-based approaches to
task and resource allocations [2] have received a lot of attention for future wide-area
distributed network applications.

Although a number of researches on (distributed) task allocations have already been
conducted such as Ref. [7], we first focus on a task allocation using a contract net
protocol (CNP) because it is used in many applications [9,16]. In the CNP, an agent
plays one of two roles: managers who are responsible for allocating tasks and monitor-
ing processes and contractors who are responsible for executing the allocated tasks. A
manager agent makes a task known to the contractor agents in the announcement phase,
and the contractors tender the bid on the task with certain values, such as the cost, es-
timated duration to process, or required payment, in the bid phase. In the award phase,
the manager awards the contractor (or awardee) who tendered the best bid.

The objective of our research is to clarify the characteristics of the CNP in a busy LS-
MAS and to propose contract strategy, more precisely awarding strategy in the award
phase, resulting in a more efficient cumulative processing of the entire system than
the contract strategy in a conventional CNP. This is a challenging issue because in-
terference among agents is intricately intertwined in this kind of negotiation protocol
if many managers have tasks to allocate simultaneously. In a naive CNP, a contractor
agent responds to the task announcements one by one, but if many managers announce
tasks simultaneously in a busy LSMAS, the managers may have to wait a long time
to receive a sufficient number of bids. This significantly reduces the performance of
the entire system [6]. In the original conception of CNP [12], the use of multiple bids
was proposed as a way to concurrently handle many announcements. If a contractor
is awarded multiple bids simultaneously, however, it may not be able to provide the
quality or performance it declared in the bids. In fact, managers tend to select highly
capable contractor agents. Additionally, if the task has a structure, meaning if the task
consists of a number of different subtasks, the situation becomes ever more complex.

In this paper, we propose a novel awarding strategy that leads to a more efficient pro-
cessing of LSMAS. This is a meta-level strategy that selects one from a set of awarding
strategies on the basis of the local observations. References [14,15] already tackled this
issue, but they assumed a simplified model in which the tasks have no structure, which
means a task is singleton and indivisible, and have the same cost. However, our model

92 T. Sugawara et al.

is more general, that is, a task is plural consisting of a number of subtasks, and their
method in [15] cannot be applied to plural tasks.

In addition, another significant issue, wasted efforts, appears in the plural task struc-
ture model. Of course, in both the singleton and plural models, we have to avoid task
concentrations that lead to inefficient processing and many drops of subtasks. In ad-
dition, the failure (or delay) of only one subtask means the failure (or delay) of the
whole task in the plural model. Therefore, the agents’ resources used for other subtasks
become useless. This also significantly reduces the performance of the entire LSMAS.
Thus, the required strategy has to be able to reduce the number of wasted efforts as well
as the task concentration so that it can considerably improve the overall performance.

This paper is organized as follows: In the next section, we explain our models, the
issues to be addressed, and our simulation environment. Then, we introduce the prob-
abilistic awardee selection strategy, under which an awardee is selected with certain
fixed probabilities based on the bid values. We show that by changing the award strate-
gies according to the local workload, the overall performance can be considerably im-
proved for a specific task consisting of a number of subtasks. After that, we optimize
this award strategy under which a probabilistic award strategy and the conventional
award strategy are selected alternatively according to the estimated local workloads of
the agents within the environments where certain tasks are blended. We experimen-
tally show that the extended strategy can significantly improve the overall performance.
Finally, we try to explain the reason for this improvement.

2 Problem Description

2.1 Model of Agents and Tasks

Let A = {1, . . . , n} be a set of agents, T be a task, and F = {f1, . . . , fd} be the set of
skills or functions that agents can perform. We assume that task T consists of subtasks,
t1, . . . , tl, (i.e., T = {t1, . . . , tl} and |T | = l) and that subtask t(∈ T) requires the
s(t)-th skill, f s(t), where 1 ≤ s(t) ≤ d. A subtask is denoted by the lower-case letter
t and is simply called a task unless this creates confusion. Agent i is expressed as a
tuple, (αi, Li, Si, Qi), where αi = (a1i , . . . , a

d
i) is the set of agent’s capabilities (ahi

corresponds to the h-th skill, fh, and ahi ≥ 0; ahi = 0 indicates agent i does not have
skill fh), Li is the location of i, and Qi is the queue where the agent’s tasks are stored,
which are waiting to be executed one by one. The maximum queue length, Qi, can be
finite or infinite, but was assumed 20 in our experiments. The set Si(⊂ A) is i’s scope,
i.e., the set of agents that i knows. The metric between the agents, δ(i, j), is based on
their locations, Li and Lj , and is used to define the communication time (or delay) of
the messages between i and j.

Subtask t has an associated cost, γ(t), which is the cost to complete it. Subtask t can
be done by i in �γ(t)/as(t)i � time units, where �x� denotes the ceiling function. The
time it takes to complete t is also called the execution time of t by i. T is completed
when all its subtasks are completed.

In every unit time, L(≥ 0) tasks on average are generated according to a Poisson
distribution and are randomly assigned to different managers. The parameter L is called
the task load and is denoted by L tasks per unit time, or simply L T/t.

Effect of Alternative Distributed Task Allocation Strategy 93

2.2 Task Allocations for LSMAS

For CNP, we define M = {mj}(⊂ A) as the set of managers who allocate tasks
and C = {ck}(⊂ A) as the set of contractors who execute the allocated tasks. Let us
assume that |A| is large (on the order of thousands); therefore, |M| and |C| are also
large; Moreover, we shall assume that the agents are widely distributed, like servers on
the Internet.

In our experiments, we used a CNP modified for use in a LSMAS for the sake of ef-
ficiency. In this CNP, (1) multiple bids and regret and no-bid messages are allowed, and
(2) manager m announces each subtask in T to the contractors that are selected from
its scope, Sm, on the basis of an announcement strategy. This procedure can reduce the
number of messages. Regret messages are sent in the award phase to contractors who
were not awarded the contract; no-bid messages are sent to managers by contractors
who decided not to bid on an announced task. These messages prevent long waits for
bids and award messages (e.g., [9,17]).

When managerm receives T , it immediately initiates the modified CNP for each task
t̃(∈ T). It first sends announcement messages to the contractors selected from its scope.
Each of these contractors sends back a bid message with a certain bid value. The bid
values might include parameters such as the price for executing the task, the quality of
the result, or a combination of these values. Since we are concerned with the efficiency of
processing using multiple agents, we assume that their bid values contain the estimated
required times for completing the task. Thus, the bid value of contractor c is:

�γ(t̃)/as(t̃)c �+
∑
t∈Qc

�γ(t)/as(t)c �+ β,

where β is the time required to complete the task currently being executed. For multiple
bidding, c might have a number of outstanding bids. These bids are not considered
because it is uncertain whether they will be accepted. Then, m selects a contractor, the
awardee, on the basis of the award strategy and sends the awardee a message along with
the announced task. Selecting the best bidder is the award strategy in the naive CNP.

When contractor c is awarded a task, it immediately executes it if it has no other
tasks. If c is already executing a task, the new task is stored in Qc, and the tasks in Qc

are executed in turn.

2.3 Performance Measures

Since the queue length of agent i is finite, some allocated subtasks might not be storable
in its queue and so they are dropped. If all the subtasks in T are dropped, T is called a
dropped task. If T contains both dropped and not-dropped tasks, it is called a wasting
task. From the viewpoints of the users and clients in actual applications such as e-
commerce, dropped and wasting tasks appear as refused or non-responding requests due
to the congestion of servers. From the viewpoints of the servers, and thus, the investors
who prepared the equipment to provide the services, the wasting task contains wasted
efforts, that is, a number of uselessly executed subtasks, whereas the dropped task does
not. So, more wasting tasks lowers the performance of the entire LSMAS.

We assume that manager agents can observe, for each subtask t, the completion time,
which is the elapsed time from the time the award message is sent, ms(t), to the time

94 T. Sugawara et al.

the message indicating that the subtask has been completed is received, me(t). The
completion time thus includes the communication time in both directions, the queue
time, and the execution time. The completion time of T is defined as maxt∈T (me(t))−
mint∈T (ms(t)). A smaller average completion time is better. The overall performance
of a LSMAS, denoted by ℘, is defined as the average of the completion times observed
by all managers and used as the system’s performance measure. The issues we address
are thus the overall performance of a LSMAS under various award strategies and how to
improve it by combining the advantages of these award strategies. Moreover, dropped
and wasting tasks are counted as a separate performance measure; they are non-zero
only if the systems are busy or overloaded.

2.4 Simulation Environment

We set |C| = 500 and |M| = 10, 000 in our simulation. The agents were randomly
placed on a 150×150 grid with a torus topology, which is denoted by G. The Manhattan
distance was chosen as G’s metric. The communication time ranged from 1 to 14 (in
ticks, the time unit in the simulation), in proportion to the value of δ(i, j).

We express the cost structure of the subtasks by using the superscript of T , if nec-
essary. For example, T 25−5 consists of two subtasks, {t1, t2} such that γ(t1) = 2500
and γ(t2) = 500.1 Contractor ci is assigned different capabilities so that the values of
2500/a1ci (ci ∈ C) will be uniformly distributed over the range 20–100; the values of
a1ci range from 25 – 125. Therefore, for T 25−5 = {t1, t2}, ci can execute t1 and t2
within 20–100 ticks and 4–20 ticks, respectively. We assume that the manager agents
can not do the tasks themselves (a1m = a2m = 0) forcing them to assign the tasks to
agents who can, and that a1ci = a2ci ; the latter condition means that a high-performance
PC can effectively execute any task if the functions are defined.

The results presented here are the mean values from ten independent trials. In these
trials, the maximal numbers of T s being executed every tick, as derived from the cu-
mulative capabilities of all contractors

∑
c∈C ac, ranged from 8.15 to 8.30 T/t, with an

average of 8.25 T/t. This is the theoretical upper limit, meaning that if the task allocation
is ideal, the contractors can execute 8.25 tasks every tick.

Manager m’s scope, Sm, consists of the nearest 50 contractors. More precisely, for
a positive integer n, let Sm(n) = {c ∈ C|δ(m, c) ≤ n}. It follows that Sm(n) ⊂
Sm(n + 1). Sm is defined as the smallest Sm(n) such that |Sm(n)| ≥ 50. Then, m
announces tasks to N(≤ 50) contractors who were randomly selected from Sm. The
overall performance varied depending on N and was optimal when N was 20 in our
simulation environment [13]. Thus, we assume N = 20 in what follows so we can
focus on the award strategies.

3 Usage of Probability in the Award Phase

A small number of high-capability agents that receive multiple awards will likely bear
an excessive workload whenever many managers simultaneously announce numerous

1 As another example, T 18−8−4 means a task consisting of three subtasks {t1, t2, t3} whose
costs are 1800, 800 and 400, respectively.

Effect of Alternative Distributed Task Allocation Strategy 95

tasks. A simple awarding strategy for alleviating the burden of too many awards is
to allocate some tasks to the non-best contractor by introducing a probability in the
award phase. In this section, we discuss the effect of this type of probabilistic award by
comparing it with that for the naive CNP.

3.1 Effect of Probabilistic Award

Reference [15] reported that some degree of fluctuation in the award phase could im-
prove the overall performance when a task has no structure. The objective of the first
experiment was to verify this effect when a task consists of a number of subtasks.

Let {c1, . . . , cp} be the contractors that bid on the announced task. We denote the
bid value from contractor ci by bci . In the naive CNP, m selects the contractor who
submitted the best bid (a smaller bid is better). The first award strategy selects the
awardee according to the following probability:

Pr(ci) =
1/(bci)

k∑p
j=1 1/(bcj)

k
. (1)

This probabilistic awardee selection strategy is denoted by PASk . Non-negative integer
k is a parameter called the fluctuation factor, or simply the f-factor. The larger the k, the
smaller the degree of fluctuation: PAS0 and PAS∞ respectively correspond to “random
selection” and “no randomness.” Therefore, PAS∞ is the award strategy in the naive
CNP.

We evaluated the overall performance by gradually increasing L from 0.1 (idle) to
10 (extremely busy, over the cumulative capabilities) in 5-K ticks and then returning
it to 0.1. The total duration was 160-K ticks. We plotted the improvement ratios ICNP

from PASk to PAS∞ every 5-K ticks:

ICNP(PASk) =
℘(PAS∞)− ℘(PASk)

℘(PAS∞)
× 100, (2)

where ℘(str) indicates the overall performance when award selection strategy str is
used. Note that ICNP(PAS∞) = 0.

We assumed T = {t1, t2} and examined T 25−5 and T 20−10; the results are labeled
“PAS3” and “PAS6” in Fig. 1. The graphs also list the task loads over time along the
horizontal axis. These curves indicate that when task load L is small (very few multiple
awards occur) or very large (over the theoretical limit of cumulative capability), PAS∞
performs well (PASk is worse up to 34%). When L is in the middle range, PASk (k = 3
or 6) improves the overall efficiency by as much as 29%. We can thus expect that when
the system is busy but does not reach the theoretical limit, PASk can avoid the concen-
tration of the workload and maintain the efficiency. However, this is not always true if
the system is too busy to process the given tasks. When the system is extremely busy,
ICNP(PAS6) for T 25−5 is better than ICNP(PAS6) for T 20−10, and ICNP(PAS6) > 0
for T 25−5 but ICNP(PAS6) < 0 for T 20−10. After a number of experiments, we ob-
served that ICNP(PASk) was lower in an extremely busy environment if (1) |γ(t1) −
γ(t2)| is small or (2) γ(t1) + γ(t2) is large. For the former situation, we introduce

96 T. Sugawara et al.

-40

-30

-20

-10

0

10

20

30

0 20000 40000 60000 80000 100000 120000 140000 160000

PAS PAS FPAS 3 6

-40

-30

-20

-10

0

10

20

30

20000 40000 60000 80000 100000 120000 140000 160000

PAS PAS FPAS 3 6

T 25-5

T 20-10

0.1 0.5 1 2 3 3.5 4 4.5 5 6 6.5 7 7.5 8 9 10 10 9 8 7.5 7 6.5 6 5 4.5 4 3.5 3 2 1 0.5 0.1 L

(b)

(a)

0.1 0.5 1 2 3 3.5 4 4.5 5 6 6.5 7 7.5 8 9 10 10 9 8 7.5 7 6.5 6 5 4.5 4 3.5 3 2 1 0.5 0.1 L

Time (ticks)

Im
pr

ov
em

en
t r

at
io

 I

(s

tr
) (

%
)

Time (ticks)

Im
pr

ov
em

en
t r

at
io

 I

(s

tr
) (

%
)

C
N
P

C
N
P

Fig. 1. Ratio of completion times ICNP(PASk) (k = 3 and 6) and ICNP(FPAS)

a phantom task, which will be discussed later. Note that the center of the curves in
Fig. 1 are shifted slightly to the left because of the effect of the delay in executing tasks
queuing during the overload.

3.2 ‘Flexible’ Probabilistic Award

The f-factor of PASk should be adaptively controlled according to the system’s task
loads in order to utilize the full capabilities of a LSMAS from the experimental results in
the previous section. However, it is impossible to assess the system’s task load, because
it is non-local information. Instead, Ref. [14] estimated the task load of the LSMAS
from the average queue length of contractors. However, this estimate cannot be easily
applied to our case, because if the queue is long but the costs of the queuing tasks are
small, the agents cannot conclude whether the system is busy.

Our idea to resolve this issue is to estimate the situations by statistically analyzing the
bid values from the local contractors. More precisely, we used the differences between
the standard deviations (SDs) of the bid values for different tasks that had different
costs. Assume that, for announced task t, manager m received bids whose values were
Bm(t) = {b1(t), b2(t), . . . }. Let the SD of Bm(t) be denoted by SDm(t), and DSD

m (T)
be |SDm(t1)− SDm(t2)| for T = {t1, t2}. Figure 2 shows how the average values and
standard deviations of DSD

m (T 25−5) for ∀m ∈ M vary every 5000 ticks.
When comparing Figs. 1 and 2, we see that DSD

m (T 25−5) can be used as the signal
for optimizing the degree of fluctuation; more precisely, the f-factor k can be chosen by
using the following strategy,

Effect of Alternative Distributed Task Allocation Strategy 97

0

5

10

15

20

0 20000 40000 60000 80000 100000 120000 140000 160000

Avg. of { }DSD
m

Standard Deviation of { }DSD
m

Time (Tick)

Av
g.

 o
r S

D

Fig. 2. Average values and SDs of DSD
m (T 25−5) over time

k = ∞ if DSD
m (T) ≥ 12.0,

k = 6 if 12.0 > DSD
m (T) ≥ 8.8, and (S1)

k = 3 if DSD
m (T) < 8.8.

This is called the flexible probabilistic awardee selection strategy or FPAS. The thresh-
old values are determined on the basis of a detailed analysis of each trial from the
previous experiments, especially those of T 25−5. The aim of this strategy is to combine
the best from PAS∞, PAS3, and PAS6.

The results for ICNP(FPAS) are also plotted in Fig. 1. Figure 1 clearly indicates that
FPAS usually provides a better overall performance than the other individual strategies
for T 25−5 and T 20−10. The improvement ratios are particularly large just before the
task load reaches the theoretical limit of the LSMAS and right after the contractors
surmount the overload caused by the huge number of queued tasks. This is the most
important characteristic and will be discussed in Section 5.

0
30
60
90

120
150
180

0 20000 40000 60000 80000 100000 120000 140000 160000

FPAS

PAS∞

Time (ticks)St
an

da
rd

 d
ev

ia
tio

n
of

 ta

sk
 e

xe
cu

tio
n

tim
es

Fig. 3. Standard deviation of completion times under PAS∞ and FPAS over time

We should also emphasize that FPAS is beneficial to any agent. Figure 3 plots the
SDs of the average completion times of individual agents using PAS∞ and FPAS. The
SDs for FPAS are smaller than those for PAS∞. Therefore, FPAS fairly and impartially
performs better for almost all agents.

98 T. Sugawara et al.

4 Adaptive Strategy Based on Bid Statistics

4.1 Adaptively Probabilistic Awardee Selection

Since FPAS under strategy (S1) is mainly based on the data for T 25−5, it does not
necessarily perform well in tasks that have other cost structures. For example, Fig. 1
(b), which indicates the improvement ratio for T 20−10, shows that FPAS did not result
in a better performance, especially when the task load was low. In this section, we
propose a new strategy whereby managers learn how they should determine the f-factor
in their environments. The aim of this strategy is to perform in a way that is comparable
to that of FPAS for T 25−5 and that is generally better than that of PAS∞ for all tasks.

The algorithm for selecting the f-factor is listed in Fig. 4. First, manager m calcu-
lates the SDs of the bid values for each ti ∈ T and the maximum difference between
these SDs (denoted by DSD

m (T)). It also retains the maximum and minimum values of
DSD

m (T) (denoted by maxSDdiff, and minSDdiff) that have been obtained thus far. It
estimates the current task load using maxSDdiff, minSDdiff, and DSD

m (T). We call this
award strategy adaptively probabilistic awardee selection, or APAS.

Parameter α and variable minMaxAv in Fig. 4 are referred to in order to determine
whether maxSDdiff and minSDdiff should be revised. The SDs of {DSD

m } in Fig. 2
indicate that the minimum values of DSD

m (T), maxSDdiff, and minSDdiff, will likely
be over-estimated in busy situations because the SD of DSD

m increases. Condition (1)
in Fig. 4 estimates this state of overestimation, so we set α = 1.5. The constant ε in
the figure is used to define the threshold Th to switch between award strategies. In our
experiments, we chose ε = 0.58 on the basis of the average DSD

m and the SDs of the
preliminary experiment shown in Fig. 2. APAS is quite simple in that only PAS3 or
PAS∞ is alternatively selected. Of course, we can extend this to select the appropriate
strategy from the set of awarding strategies S, although we set S ={PAS3, PAS∞} in
our experiment.

Figure 5 plots the improvement ratios for T 25−5 and T 20−10 over time. ICNP(PAS3)
is also plotted because APAS is a mixed strategy involving PAS3 and PAS∞. Figure
5 indicates that APAS performs as efficiently as FPAS for T 25−5 and excellently per-
forms even for T 20−20. Note that APAS performs slightly worse than PAS∞ only when
the system is not busy. The learned Th might not have been sufficient in this case. Nev-
ertheless, APAS performs excellently in busier situations; it outperforms both PAS3 and
PAS∞, whereas it is the mixed strategy of these two.

4.2 Performance for Different Task Structures and Phantom Task

We also investigated the effect of APAS in tasks with other cost structures. The results
are plotted in Fig. 6. These curves indicate that APAS outperforms PAS∞ for T 22−8,
T 18−8−4, and T 15−8−5−2. FPAS does not perform well. We fixed the sum of the costs
of these tasks at 3000 to standardize the theoretical upper limit of the task executions
by all agents. We used the same changes in the task loads over time because we only
wanted to compare their performances under APAS and PAS∞.

Furthermore, we examined situations in which a number of different tasks occur. For
the sake of convenience, let

Effect of Alternative Distributed Task Allocation Strategy 99

Initialize:
maxSDdiff = 0, minSDdiff = minMaxAv = ∞.

for each T
Manager m announces all tasks t1, . . . , tl, (∈ T) to
the local contractors2, and m calculates the average
value, Avm(ti), and the SD, SDm(ti), of bid values for
ti.

/* Then, it calculates some statistical values. */
Avm(T)

←
= maxti∈T Avm(ti);

SDm(T)
←
= maxti∈T SDm(ti);

SDm(T)
←
= minti∈T SDm(ti);

DSD
m (T)

←
= SDm(T)− SDm(T);

minMaxAv
←
= min(minMaxAv,Avm(T));

/* If the system is not so busy, */
if (minMaxAv × α > Avm(T)){ /* Condition (1) */
maxSDdiff

←
= max(maxSDdiff, SDm(T));

minSDdiff
←
= min(minSDdiff, SDm(T));

}

/* Defining threshold values: */
Th = ε · maxSDdiff + (ε− 1) · minSDdiff;
/* where 0 < ε < 1. */

/* Then output PASk by following the rule: */
if (DSD

m (T) ≥ Th) k = ∞;
else k = 3;

Fig. 4. Outline of APAS strategy

C1 = {T 25−5, T 22−8, T 20−10, T 18−12}
C2 = {T 25−3−2, T 20−8−2, T 18−8−4}.

T C1 (or T C2) in Fig. 6 corresponds to a situation in which the tasks in C1 (or C2) are
generated with equal probability. The results in the figure show that APAS performs
well in these situations.

If T consisted of a single subtask or a number of subtasks with almost identical
costs, DSD

m (T) could not be calculated or would always be small. For such tasks, we
can introduce a phantom task, which is announced but is never awarded as a way to
estimate the current local workload.

We also investigated the performance of APAS for T 15−15 = {t1, t2} using phan-
tom task tp, whose cost is 500, and found that APAS outperforms PASk and PAS∞,
although the details were omitted here due to space limitations. In this case, managers
with T 15−15 announce t1, t2, and tp and calculate DSD

m (T 15−15−5), but never select
an awardee for tp.

100 T. Sugawara et al.

-40

-30

-20

-10

0

10

20

30

20000 40000 60000 80000 100000 120000 140000

160000

PAS for T 20-10
3

PAS for T 25-5
3APAS for T 25-5

APAS for T 20-10

Time (ticks)

Im
pr

ov
em

en
t r

at
io

 I

 (

st
r)

 (%
)

C
N

P

Fig. 5. Improvement ratios of APAS compared with PAS

-5

0

5

10

15

20

25

0 20000 40000 60000 80000 100000 120000 140000

160000

Time (ticks)

C
N

P

T 22-8

T 18-8-4

T 15-8-5-2

T C1

T C2

Im
pr

ov
em

en
t r

at
io

 I

 (

st
r)

 (%
)

Fig. 6. Improvement ratios of APAS for various tasks

Table 1. Numbers of Dropped and Wasting Tasks

25-5 18-8-4 15-8-5-2 C1
PAS∞ dropped 8526.4 4741.3 2538.1 8519.3

wasting 41517.4 68230 64270.1 40457.5
total 50043.8 72971.3 66808.2 48976.8

PAS3 dropped 5473.8 1593.6 585.4 5452.1
wasting 41383.2 66467.7 87807.8 41124.3

total 46857 68061.3 88393.2 46576.4
APAS dropped 8542 4655.7 2616.2 9297.9

wasting 29211.6 47084 62123 29944.3
total 37753.6 51739.7 64739.2 39242.2

4.3 Analysis of Dropped and Wasting Tasks

In this section we try to analyze why APAS can improve the overall performance.
Table 1 lists the numbers of dropped and wasting tasks for different task types in the
experiments. We can see that PAS3 clearly reduces the dropped tasks, and that APAS
reduces the wasting tasks. APAS also has fewer total numbers of dropped and wasting
tasks compared with PAS∞ and PAS3. Having fewer wasting tasks improves the effi-
ciency of the entire system, because wasting tasks consume more of the contractors’
resources.

The main reason for this phenomenon is a small spatial fluctuation in the task load in
a busy environment when looking closely at the workloads in each area. As mentioned
in the previous section, even in extremely busy cases (near or beyond the theoretical

Effect of Alternative Distributed Task Allocation Strategy 101

limit), the workload is not spatially uniform although the tasks are randomly assigned
to managers. In certain parts of G, agents are overloaded and their queues are full,
whereas in other parts the agents have completed some tasks and are somewhat less
busy. APAS enables agents to adaptively select PAS3 or PAS∞ in accordance with their
local conditions. When the workload is beyond the theoretical limit, PAS∞ (and APAS
usually select PAS∞) results in a large number of dropped and wasting tasks in return
for a better performance,℘. In particular, many dropped tasks occur in this case. Unlike
PAS∞, PAS3 can turn some dropped tasks into wasting ones due to the fluctuation in the
award phase. However, wasting tasks are still useless. Thus, PAS3 is less efficient but
has less dropped tasks in extremely busy cases. At the moment of becoming somewhat
less busy (APAS usually selects PAS3), more wasting tasks occur than dropped ones
and then PAS3 can turn some wasting tasks into completed ones. From these results
and our analysis, APAS can reduce the number of wasting tasks, comparing with those
under PAS3 and PAS∞. The analysis in this section implies both a better performance
and the presence of less wasting (and dropped) tasks when using the APAS strategy.

4.4 Effect of Maximum Queue Length

In the above experiments, we assumed that the maximum queue length of agent |Q|
is 20. This affects the overall performance only during extremely busy periods; the
number of tasks in the queue in other situations do not increase. We investigate how the
maximum queue length affects the improvement ratios in the paragraphs that follow.

Let |Q| = ∞ and use task T 25−5 as an example. ICNP(PAS3) improves slightly
from its value at |Q| = 20, whereas ICNP(PAS6) remains better than ICNP(PAS3). In
extremely busy situations, PAS6 was better than PAS∞ when |Q| = 20, as shown in
Fig. 1, but it was worse than PAS∞ when |Q| = ∞. Thus,

ICNP(PAS3) < ICNP(PAS6) < 0
when |Q| = ∞. On the other hand, ICNP(APAS) is nearly 0 in extremely busy situation,
because the queues of the contractors become very long, and none of the managers ever
become less busy. Therefore, APAS almost always selects PAS∞.

5 Discussion

First, we want to point out that the improvement elicited by the proposed strategy was
at its largest just before and right after the task load reached the theoretical upper limit.
We believe that this feature of our strategy is crucial for real applications. If the task
load is low, any task allocation strategy can provide a satisfactory service. However, if
it is extremely heavy and over the theoretical limit, no strategy leads to an acceptable
performance. In other situations, the system should yield a maximum performance and
perform at its fullest potential. Our experimental results revealed that our strategy is
excellent in these situations.

When comparing the results in this paper with those in [15], we found that there
was significant difference in the mechanism for improving the efficiency. In [15], their
method improved the efficiency by avoiding excessive concentration. They dealt with
a singleton task, so there was no concept of wasting tasks. In real application systems,
however, many wasting tasks that heavily impair the performance are likely to actually

102 T. Sugawara et al.

occur when they are busy. So, our model is more realistic and from the discussion in
the previous section, our proposed task allocation method can improve the performance
by reducing the number of dropped and wasting tasks when the agents were extremely
busy in the situations mentioned above.

To reduce the number of wasting tasks, it may be possible to propose another and
more complex protocol that tracks where the tasks are allocated, monitors them, and
if one of the subtask is dropped, stops other subtasks by sending messages to the con-
cerned agents. However, a problem still remains in that the efforts by agents before
the arrivals of the messages become meaningless. Another solution is to implement the
schedulers that have an accurate view of the other agents and that can compass the other
agents’ workloads. It is, however, almost impossible to know the other agents’ situations
because computers may be replaced by others, and tasks are allocated and processed in
a distributed way. Avoiding wasting tasks is crucial for the system’s efficiency.

Our experiments suggest that autonomous local decisions are more essential for the
performance improvement of the entire system. For example, APAS can perform bet-
ter than PAS3 and PAS∞ even though it is a mixture of them. We also examined the
performance when S = {PAS3, PAS6, PAS∞}, like for FPAS, but we found no major
differences in their performances. The possible reason for these phenomena is that the
appropriate and adaptive ratios of PAS3 and PAS∞ are more influential. If we closely
look at the results from our experiments, the tasks do not arrive at mangers uniformly as
discussed in Section 4.3. This small variation is only identified by the individual agents,
and only the local decisions can reflect it.

We think that the main reason of the phenomenon shown in this paper is the small
communication delay that increase the chances of simultaneous awarding. In our exper-
iments, we assume that managers announce its near agents in terms of communication
costs. However, in the actual situations, agent’s scope is determined the service-level
or upper-level relationships. This makes communication cost larger. So we believe that
the phenomena described in this paper are more strongly exposed.

6 Related Works

There is a lot of research currently focused on improving the performance and function-
ality of CNP. For example, reference [10] extends CNP by introducing levels of com-
mitment, i.e., making a commitment breakable with some penalty. References [8,10]
try to reduce the number of messages and thereby improve the performance. From the
theoretical aspect, there are notable researches that discussed the algorithm of the dis-
tributed task allocation in the multi-agent contexts, such as in [7]. All these studies
assume, however, that the agents are not very busy and that there are not that many of
them, making any interference among them insignificant.

Reference [11] discussed the issue of the eager-bidder problem occurring in a LS-
MAS, where a number of tasks are announced concurrently so that a CNP with certain
levels of commitment does not work well. These authors propose another CNP extension
based on statistical risk management. However, their experiments still used fewer agents
than in ours. More importantly, the types of resources and tasks considered are quite dif-
ferent; specifically, the resources are exclusive, such as airplane seats, so they should be
selectively allocated. In our case, the resources are divisible, e.g., CPUs or network band-
width, which can accept any number of tasks simultaneously but with reduced quality.

Effect of Alternative Distributed Task Allocation Strategy 103

As a result, many agents with many tasks in our experiments cause a floating uncertainty,
which affects the learning, statistical estimation, and rational decisionmaking.

From an organizational perspective, reference [5] proposes an agent organizational
network and investigates what features are required to effectively make teams perform a
large task. In [1], the issue of an adaptive organizational structure to improve the (over-
all) efficiency was also addressed. However, these studies do not discuss the allocation
strategies for the tasks.

Task allocation to hosts for minimizing the makespan is also one of the central research
topics in other domains such as grid computing [3,4]. Programs called mappers or sched-
ulers assign requested tasks to appropriate hosts. However, the costs of the tasks and the
capabilities of the hosts are often given so that the mapper accurately knows the process-
ing time of each host. A number of agent-based mapping methods have been proposed;
reference [4] uses auction- or contract-based protocols for task allocation. However, these
methods are limited to hierarchical mapping structures so they assume geographically
close clusters. They also do not take into account the communication delays that may
cause uncertainty between the estimated processing status and the actual status.

7 Conclusion

We proposed an optimization method for the probabilistic award strategy in CNP for a
large-scale MAS to elicit the potential capabilities of all agents. In a strategy with this
optimization, called APAS, a manager agent (a) announces subtasks, (b) statistically ana-
lyzes the bids for each of these, (c) estimates the current local task load, and (d) introduces
an adaptive degree of fluctuation in the award phase. We experimentally demonstrated
that this strategy provides considerably a better performance than the naive CNP.

Although the proposed method performs better than the naive CNP, it still might
not be optimal. We must emphasize that the characteristics affecting the overall perfor-
mance of a LSMAS are complicated and quite different from those of small-scale multi-
agent systems, so managers should adaptively select the most appropriate strategy. The
strategy presented in this paper is simple but can elicit an excellent performance in
comparison with the naive CNP. We believe that we can tailor controls to improve the
system’s performance even further. Moreover, we have to clarify (1) how to vary task
types over time and (2) how agent-agent network structures affect the performance un-
der the strategy proposed in this paper. These issues are our future works.

We focused on CNP because it is the well-known and most useful protocol at this
time, but CNP is not the only approach to task allocation. Other protocols (with some
modification) need to be investigated or a new protocol for busy LSMASs needs to be
created. This is also one of our future research topics.

Acknowledgement. This work is, in part, supported by KAKENHI (22300056) and
Kayamori Foundation.

References

1. Abdallah, S., Lesser, V.: Multiagent Reinforcement Learning and Self-Organization in a Net-
work of Agents. In: Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multi-Agent Systems, pp. 172–179. IFAAMAS, Honolulu (2007)

104 T. Sugawara et al.

2. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource man-
agement and scheduling in grid computing. Concurrency and Computation: Practice and
Experience 14(13-15), 1507–1542 (2003)

3. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for Scheduling Param-
eter Sweep Applications in Grid Environments. In: Proceedings of the 9th Heterogeneous
Computing Workshop, pp. 349–363 (2000)

4. Dalheimer, M., Pfreundt, F.-J., Merz, P.: Agent-Based Grid Scheduling with Calana. In:
Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS,
vol. 3911, pp. 741–750. Springer, Heidelberg (2006)

5. Gaston, M.E., desJardins, M.: Agent-organized networks for dynamic team formation.
In: Proceedings of 4th Int. Joint Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2005), pp. 230–237 (2005)

6. Gu, C., Ishida, T.: Analyzing the Social Behavior of Contract Net Protocol. In: Perram, J.,
Van de Velde, W. (eds.) MAAMAW 1996. LNCS(LNAI), vol. 1038, pp. 116–127. Springer,
Heidelberg (1996)

7. Kraus, S., Plotkin, T.: Algorithms of distributed task allocation for cooperative agents. The-
oretical Computer Science 242(1-2), 1–27 (2000)

8. Parunak, H.V.D.: Manufacturing experience with the contract net. In: Huhns, M. (ed.) Dis-
tributed Artificial Intelligence, pp. 285–310. Pitman Publishing, Morgan Kaufmann, London,
San Mateo (1987)

9. Sandholm, T.: An Implementation of the Contract Net Protocol Based on Marginal Cost
Calculations. In: Proceedings of the Eleventh National Conference on Artificial Intelligence,
pp. 256–262 (1993)

10. Sandholm, T., Lesser, V.: Issues in automated negotiation and electronic commerce: Extend-
ing the contract net framework. In: Lesser, V. (ed.) Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS 1995), pp. 328–335. The MIT Press, Cam-
bridge (1995)

11. Schillo, M., Kray, C., Fischer, K.: The Eager Bidder Problem: A Fundamental Problem of
DAI and Selected Solutions. In: Proceedings of First International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2002), pp. 599–606 (2002)

12. Smith, R.G.: The Contract Net Protocol: High-Level Communication and Control in a Dis-
tributed Problem Solver. IEEE Transactions on Computers C-29(12), 1104–1113 (1980)

13. Sugawara, T., Hirotsu, T., Kurihara, S., Fukuda, K.: Performance Variation Due to Inter-
ference Among a Large Number of Self-Interested Agents. In: Proceedings of 2007 IEEE
Congress on Evolutionary Computation, pp. 766–773 (2007)

14. Sugawara, T., Hirotsu, T., Kurihara, S., Fukuda, K.: Adaptive Manager-side Control Policy in
Contract Net Protocol for Massively Multi-Agent Systems. In: Proceedings of 7th Int. Joint
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008), pp. 1433–1436.
IFMAS (May 2008)

15. Sugawara, T., Hirotsu, T., Kurihara, S., Fukuda, K.: Controling Contract Net Protocol by
Local Observation for Large-Scale Multi-Agent Systems. In: Klusch, M., Pěchouček, M.,
Polleres, A. (eds.) CIA 2008. LNCS (LNAI), vol. 5180, pp. 206–220. Springer, Heidelberg
(2008)

16. Weyns, D., Boucké, N., Holvoet, T.: Gradient Field-Based Task Assignment in an AGV
Transportation System. In: Proceedings of 5th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2006), pp. 842–849 (2006)

17. Xu, L., Weigand, H.: The Evolution of the Contract Net Protocol. In: Wang, X.S., Yu, G.,
Lu, H. (eds.) WAIM 2001. LNCS, vol. 2118, pp. 257–264. Springer, Heidelberg (2001)

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 105–120, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Gossip-Based Self-organising Open Agent Societies

Sharmila Savarimuthu, Martin Purvis, Bastin Tony Roy Savarimuthu,
and Maryam Purvis

Department of Information Science, University of Otago, Dunedin, New Zealand
{sharmilas,mpurvis,tonyr,tehrany}@infoscience.otago.ac.nz

Abstract. The objective of this work is to demonstrate how cooperative sharers
and uncooperative free riders can be placed in different groups of an electronic
society in a decentralized manner. We have simulated an agent-based open and
decentralized P2P system which self-organises itself into different groups to
avoid cooperative sharers being exploited by uncooperative free riders. This
approach encourages sharers to move to better groups and restricts free riders
into those groups of sharers without needing centralized control. Our approach
is suitable for current P2P systems that are open and distributed. Gossip is used
as a social mechanism for information sharing which facilitates the formation of
groups. Using multi-agent based simulations we demonstrate how the adaptive
behaviour of agents lead to self-organization.

Keywords: Self-organising systems, Gossip; Multi-agent Based Simulation,
Cooperation, Sharing behavior, Peer-to-Peer, Artificial Societies.

1 Introduction

One of the most common problems in P2P networks is free riding [5, 17]. In our context,
free riders are those agents that do not contribute to the collective goals of the networked
society, but make use of the resources of the network [17]. These free riders decrease the
overall performance of the society by degrading the common good [5].

Electronic societies suffer from these free riders who exploit the common resources
(e.g. bandwidth in a file sharing system). Many existing approaches employ
centralized social regulations to control free riders. Researchers have used monitoring
agents or governor agents to control agent behaviour [7]. But these centralized
mechanisms are computationally expensive for a system. Centralized mechanisms are
known to cause performance bottlenecks and also suffer from scalability issues [17].

With the increase in processing power and storage capacity of low-cost,
lightweight computing devices such as smart phones, the arena of computing is
becoming much more distributed. The clients of file sharing systems are not only
personal computers but also smaller devices such as smart phones. There is a need for
decentralized solutions to deal with the free riders. Additionally, the openness of the
Internet allows users to dynamically join and leave the system at any point of time.
So, a solution to the free-riding problem should take into account the open, dynamic
and distributed nature of modern software systems.

106 S. Savarimuthu et al.

To that extent, this paper proposes a decentralized solution that makes use of social
mechanisms such as gossip [10] and ostracism [11]. The inspiration to use social
mechanisms for our work comes from the human societies, which have evolved over
millennia to work effectively in groups. For human beings group mechanisms provide
social machinery that supports cooperation and collaboration. Social control is a
fundamental concept that has evolved in human societies. Social control can be
employed through leadership mechanisms. For example, the leader can impose rules
on his followers. The disadvantage of this approach is that it is centralized. On the
other hand, social control can be achieved using a bottom up approach.

For example, a gossip-based mechanism can be used to achieve social control as it
serves as a distributed referral mechanism where information about a person or a
group is spread informally among the agents. This approach can be used to achieve
control in agent groups. Another social mechanism that can be employed to deal with
free riders is ostracism. Members that do not adhere to the values or expectations of
the groups can be sanctioned by the other agents by their refusal to interact with those
agents.

 In this work we demonstrate how these social mechanisms can be employed in an
open, dynamic and decentralized society where several groups are formed and are
ranked based on their performance.

The remainder of the paper is organised as follows. The social concepts used in
this work are introduced in Section 2. Our experimental setting and selected
experimental results are described in Sections 3 and 4. In Section 5 we present the
related work and the comparison with our previous work. Finally, Section 6 concludes
the paper.

2 Modeling Social Dilemma between Sharing and Non-sharing

Our experimental model presents a social situation in which the agents have the
option to share or not to share. Sharing would cost the donor who shares. But the
receiver receives the benefit without incurring any cost. Non-sharing (defection) is the
selfish option which benefits the individual but is not good for the society. Sharing
benefits the society by improving the performance of the whole system, which leads
to the overall betterment of the society. Since the donating agent spends some effort
(e.g. bandwidth) in the process of donating, it incurs some cost in our model. That
sharing agent could have decided to be selfish and thereby avoid incurring that cost.
Thus free riding becomes a threat to the society, causing damage to the common
good. This is the issue of the “Tragedy of the Commons” [5]. A brief overview of the
social mechanisms used in our experiments to deal with free riding are described
below.

2.1 Gossip

Gossip is a powerful social mechanism found in human societies for information
sharing. Gossip is a public opinion which leads to the benefit of a social group [10].

 Gossip-Based Self-organising Open Agent Societies 107

According to research done by evolutionary biologists humans have shown more
interest in gossip than the truth [16]. The research has shown that gossip is more
powerful than the truth in human societies when the participants were presented with
both types of information (the gossip information and the real information).

They note that “gossip has a strong influence even when participants have access
to the original information as well as gossip about the same information” and also
have noted that “gossip has a strong manipulative potential”. There are other
examples of agent based simulation and P2P systems [4, 6] which have used a gossip
based protocol [3]. Gossip can be considered to be a distributed referral mechanism.

2.2 Ostracism

It has long been a feature of human and animal societies that the member of a group
who do not abide by rules or norms can be punished by other members of the group
(the followers of the rule/norm). One kind of punishment is ostracism [11]. Other
members will stop interacting with the member who is being ostracized and don’t
consider that person as a part of their group by ignoring or refusing to interact. This
social sanctioning mechanism works without a centralized control or authority.

3 Experimental Setup

In our experimental arrangement agents are engaged in the sharing of digital goods in
a P2P environment of a simulated artificial agent society. The system is developed as
a distributed system without central control.

3.1 3.1 Agent Attributes

For this experimental model we have used the agents which have fixed, randomly
assigned attribute values which represent how they behave.

• Cooperativeness value: This attribute concerns how cooperative an agent is.
Agents have a randomly assigned cooperation value between 0 and 10 that
represents how much they cooperate (share), with 0 representing an agent
that never cooperates and 10 representing an agent that cooperates every
time. This value is known as the cooperativeness of the agent.

• Tolerance value: Agents have a tolerance value between 1 and 10, which
characterizes how much non-cooperation the agent can tolerate before it
decides to leave the group. A value of 1 identifies the least tolerant agent,
and 10 identifies the most tolerant agent.

• Rejection limit: Rejection limit represents how many rejections the agent
can face before it decides to leave for another group.

• Gossip blackboard length: Each agent has a gossip blackboard of certain
length to store the gossip messages from other agents of its group. Each
agent also has a memory of certain number of previous groups to which it
belonged.

108 S. Savarimuthu et al.

• Life span: Agents are set to have life spans, which determine how long the
agents remain in the society (i.e. die). When an agent’s life span is over it
leaves the society.

• Cost and benefit for sharing: A sharing agent loses 0.1 as cost for sharing
and the receiving agent receives 1 as benefit.

3.2 Experimental Parameters

In the initial setup agents are put into random groups. Each group can be imagined to be
represented by a tag (badge). Agents within a group have the same tag. They interact
within their group, and they can also move to other groups under certain conditions. In
such cases they join the other, jumped-to group, and the tag changes accordingly. Agents
can ask for gossip feedback about other agents’ behavior. Groups are formed or
dismantled based on their size. The procedure of the experiment is explained in the
following sections. The experimental parameters are listed in Table 1.

Table 1. Experimental parameters

Experimental parameters Values
Number of agents to start with 100
Number of groups to start with 5
Number of iterations 5000
Agent’s cooperative value: 0-10 (random)

Agent’s tolerance value: 1-10 (random)

Agent’s rejection limit 10
Agent’s gossip blackboard length 10
Agents group memory limit 4
Agent’s lifespan Varies
Number of gossip feedbacks 5

Group’s size for dismantling 5
Group’s size for splitting 40
Cost for sharing -0.1
Benefit for receiving 1

The procedure of the experiment is explained below.

3.3 Publishing Gossip

In each iteration, a certain number of random players (agents) may ask for files from
other players of their group. A player can gossip about the outcome of an interaction
with another agent (random) in its group (report whether the other agent was
cooperative or not). In this gossip mechanism we assume that there is no lying. Since
this happens within the group (agents in a group have same tags), we have assumed
that the agent has no motivation to lie. In this fashion, every transaction is reported

 Gossip-Based Self-organising Open Agent Societies 109

(gossiped about) to one of the other agents in the group. Thus the overall system has
some partial information about the cooperativeness of each agent, maintained in a
distributed way. For further illustration, the operation of how peers publish gossip is
explained in the following example. Consider A, B and C as the three random agents
in a group. A is the taking-player, B is the giving-player and C is the gossip holder. A
asks for a file from B. If B shares then A gossips positively about him to C, otherwise
A gossips negatively about him to C.

3.4 Using Gossip

Each peer has a limited amount of memory space for storing new gossip information.
After reaching the storage limit, the memory register rolls over, based on a First-In-
First-Out (FIFO) algorithm. When a player requests a file, the giving-player can
check with a certain number of (e.g. five) other random agents (asking them what
they know from the gossip information they have received) whether this taking-player
is the worst cooperator of their group. The worst player is the one who has been
uncooperative most times in its group (according to the available gossip information).
If the taking-player is the worst player, the giving-player refuses to interact with the
taking-player (ostracism). Otherwise this giving-player interacts (sharing a file or not
based on its own cooperativeness). The operation of how peers use gossip is
explained by the example given below.

Assume C and D are the players in the group where C is the taking-player, D is the
giving-player. D checks with five other players in the group in order to see whether C
is the worst player in their group. If so D refuses to play with (share file with) C. Thus
C is ostracized. Otherwise D plays with C. When only a few agents (less than five)
have gossip about the taking-player, then only the available information is taken into
consideration. Sometimes it can be the case that none of the players have gossip about
the taking-player. In such a case the taking-player is not considered to be the worst
player, a privilege similar to what happens when a new player joins a group. By this
process agents share file taking gossip into consideration which is about other agents’
past behaviour.

3.5 Leaving a Group

An agent can leave a group for two reasons. A player can leave a group if its tolerance
level is surpassed or its rejection level is surpassed. We call this leaving agent a
“hopping peer”. If its tolerance limit is reached, that means this agent is in a group
where others do not cooperate at the rate that meets this agent’s minimum level of
expectation. Thus after a number of such non-sharing events from the group members
(the agent’s tolerance limit is surpassed) the agent will decide to leave that group and
move to another group. If its rejection limit is reached, that means this agent is in a
group where it is considered to be the worst cooperator by some other agents so it has
been refused a play more often than others. If the rejection level is met then the agent
will leave that group and move to another group.

110 S. Savarimuthu et al.

3.6 Choosing a New Group to Join

When an agent decides to leave a group and join another, it looks for a group that may
accept it. Agents can apply to enter into other groups they choose but they get entry
into a group which matches its cooperativeness. A good agent would get into a group
that is better than its current group while a bad agent should get into a group that is
worse than its current group. This process is explained in detail in [9]. We have
restated it in the following paragraphs.

The hopping peer collects information about other groups from their group
members. Then it decides to which group to request admission from. Every agent has
a memory record of its most recent groups (in our experiments the memory limit was
set to 4). For example, assume agent E has been in 3 other groups before, as shown
below in Table 2.

Table 2. Previous group history

Group No Iteration No Cooperativeness

1 560 4.5

3 700 6.0

2 1200 6.4

Table 3. Latest available information

Group No Iteration No Cooperativeness
5 1330 8.1

3 1170 7.5

2 1200 6.4

1 1199 3.8

The first row of Table 2 shows that E has left group 1 at the 560th iteration, and the

cooperation value of that group was 4.5 at that time. E left group 3 at the 700th
iteration and group 2 at 1200th iteration. Since the composition of groups change over
time, the cooperativeness of the group also changes. So it is likely that the most recent
information will be the most accurate and useful for an agent. Since all agents have a
memory of their previous groups, the hopping peer can collect this information from
all its group members and calculates the latest information about other groups. In
particular, the agents who moved into this group recently from other groups have the
most recent information. Taking into consideration this information, the agent decides
where to move. For example assuming the current iteration is 1400, the latest
information collected from the group members is given in Table 3.

Assume here that agent L intends leaving group 4, and Group 4’s cooperativeness
is 6.6 at that moment. From the latest information agent L knows about other groups
and their cooperation value. For agent L, groups 5 and 3 are better, since the
cooperation value in those groups appear to be higher than L’s current group. Groups

 Gossip-Based Self-organising Open Agent Societies 111

2 and 1 are lower-ranked groups. So agent L chooses to move to the groups in the
order of their ranking.

If L is intolerant of its current group (which means it is not happy about the
cooperativeness of its current group), it will try to enter into the best group that it can
find. This is the case of an agent being “too good” for its current group and wanting to
move to a more cooperative group. But if the better groups on its list does not allow
entry, then the intolerant agent L may determine that there is no group available that
is better than its current group, and it will remain in its current group. In this case its
tolerance limit is reset to 0.

On the other hand, an agent may not be good enough for its current group i.e. it is
being shunned by the other members for being the worst member of its group.
Because of refusals from other agents to play, its wealth will not increase, and it will
want to leave and find some another group in which it can find players to play with. If
the better groups do not allow entry, the agent will go to lower groups, since it is
better off moving to any new group (even if it is a lower group) rather than staying in
the current group where it is known as the worst player. How a player gets entry to
another group is explained in the following section.

3.7 Joining Another Group

The hopping peer asks any randomly chosen agent in the group to which it seeks entry
for its permission to enter. We call this permission-granting agent in the group to
which entry is sought, the “checking peer”. The checking peer will accept an agent
whose cooperativeness value is greater than or equal to a value calculated by a
formula (given below). This formula is the same one used in our previous work [9].
This hopping peer will gain permission to enter the group whenever its
cooperativeness is greater or equal to the group’s entry value calculated by the
following formula:

EV = AC - (C1 / (SL - S) C2) + C3(S-SU) (1)

The group Entry Value (EV) is calculated considering the given group’s Average
Cooperativeness (AC) and its group Size (S). AC is the average cooperativeness of
the group calculated through the gossip mechanism, and S is the size of the group. C1,
C2, C3 are constants whose values in our experiments are 25, 2, 10, respectively.
These constants were adjusted to make the EV expression appropriate for
two\``boundary values”, the upper size limit of a group (SU) and the lower size limit
of a group (SL). It is inappropriate or inefficient for groups of players or traders to
become too big or too small. In our experiments, SU was set to be 25, and SL was set
to be 10. That means if the size of the group is 10 or below the entry qualification
value is set at a low value, making entry into the group very easy to obtain. If the size
is 25 or above the entry qualification value is set to a high value and that would make
it difficult for any but the most cooperative agents to join. Any values of the EV
expression that fall below 0 are set to 0, and entry values above 10 are set to 10. Thus

112 S. Savarimuthu et al.

a group’s entry value is always between 0 and 10. A simple example illustrates the
use of this formula.

Consider that a group’s calculated cooperativeness (AC) is 6. When the group Size
(S) is 14 the group Entry Value (EV) is 4.43. When the group Size (S) is 25 the Group
Entry Value (EV) is 6.88. In our system, the checking peer needs to get an estimate of
the cooperativeness of the hopping peer (the agent seeking entry). So the checking
peer asks 5 randomly chosen players from the hopping peer’s group about the
hopping peer’s cooperation. It is thus inquiring into gossip information from the
hopping peer’s group. Consider a case where E and F are in different groups. E is the
checking peer, and F is the hopping peer that wants to enter E’s group. F asks E for
entry, and E asks 5 other randomly chosen players in F’s group for gossip information
about F’s cooperativeness. The averaged value is calculated (out of 10) from this
information considering the worst case scenario. This estimated cooperativeness
would be a value between 0 and 10. If F’s estimated cooperativeness calculated
through this gossip information is greater than or equal to the entry value (EV) of its
group, the checking peer allows entry for the hopping player; otherwise it denies
entry. In that case the hopping peer will try to enter into other groups. The hopping
peer will ultimately get into a group where its cooperativeness meets the eligibility
criteria to enter. If no such group is available, the hopping peer stays in its current
group.

The entire process is repeated for many iterations, and gradually, some groups will
emerge as elite groups with many cooperators, and other groups will have less
cooperative players. As a consequence, these mechanisms achieve a separation of
groups based on performance.

3.8 Groups Splitting and Dismantling

Our aim has been to develop a self-organizing open and dynamic system, where new
agents may come into the society and also agents may leave the society at any time.
To start with, new peers are allowed to join the society by gaining entry into random
groups in the society. They can build their way up to higher groups based on their
cooperativeness. A truly open and dynamic system will allow the formation of new
groups and dismantling of existing groups according to the population size. Our aim
was to achieve the same in a decentralized manner without explicit control at the top
level. Forming groups using tags is helpful, since it is scalable and robust [4].

The agents’ lifespan determines how long the agents remain in the society and
when they leave (i.e. “die”). At any time a new agent could join the society and an
existing agent could leave when its lifespan is over.

Since the number of agents in the society at any time is dynamic the system adapts
itself to form new groups if more agents join. It also dismantles groups if there are
fewer agents in the society (less than the lower size limit of a group).

The motivation for splitting and dismantling comes from real life societies. For
example, when the size of a group becomes too large, it becomes unmanageable.
Larger hunter-gatherer groups split because of reasons such as seasonal change or
inequality in resource sharing (e.g. when meat is not shared equally).

 Gossip-Based Self-organising Open Agent Societies 113

In our approach, a group splits into two if the size of group reaches a certain limit
(40). Based on the local gossip information in the splitting group, the top cooperators
(first half) form one group and the rest (second half) form the other group.

If the size of the group decreases and goes below a certain limit (5) then the group
dismantles. The remaining agents in the group go to random groups where they could
enter. This is similar to a society where it can be functional only if the society has a
certain size. For example, in hunter-gatherer societies, in order to hunt larger preys a
group has to have a minimum size. Otherwise, the prey cannot be hunted. The same
holds in the context of playing a sport. For example, a team playing volleyball has to
have six players. Otherwise, the team cannot exist.

It should be noted that the splitting and dismantling functionalities account for the
scalability of the system and its robustness.

4 Results

Before we present the experiments we have conducted and the results obtained, we
would like turn the attention of the reader to the work reported in [9] where the results
of the closed society are presented. In this work, there were 5 groups. The total
number of agents in the society was 100. The work shows how the agents self-
organise themselves into these groups based on their cooperativeness values [12].

4.1 Experiment 1 – Self-organization in an Open Society

We have conducted experiments on an open system by varying the arrival and
departure rate of the agents. For all the experiments presented in this paper we start
with 100 agents in 5 groups initially. After that agents can join (new arrivals) or leave
(if life span is over) the society.

Figure 1 shows two graphs which share the same x-axis. The x-axis shows the number
of iterations. In the top graph y-axis shows the cooperativeness of groups. Each diamond
shown in the graph represents the cooperativeness of a particular group. For a given
iteration number in the x-axis, the y-axis shows the cooperativeness of all the groups that
were present in that iteration. For example, in iteration 100, there were 6 groups
(represented by diamonds), with different levels of cooperativeness. The graph given in
the bottom of Figure 1 shows the total number of agents (alive agents) in the society for a
given iteration. For example, in iteration 100 there were 130 agents in the society.

These two graphs together show the dynamic behavior of the system (the formation of
new groups and dismantling of old groups). It can be observed that, at the start the groups
had an average cooperativeness value of 5. As the number of agents increased, new
groups were formed (iteration 100). As the number of agents decreased (iteration 200),
the number of groups decreased. The separation between the good groups and the bad
groups is distinct. When the total number of agents was about 40 in iteration 300, there
were fewer groups. Note that the cooperativeness of these groups was about 5 at that
point. As the number of agents in the societies then increased, there were more groups
and the separation between the good and the bad groups is evident. We note this process
can be appreciated better by viewing the video shown in link [13].

114 S. Savarimuthu et al.

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500

Co
op

er
at

iv
en

es
s

Iterations

Group Formation

0

20

40

60

80

100

120

140

0 100 200 300 400 500

N
um

be
r o

f a
ge

nt
s

Iterations

Fig. 1. Self-organisation of an open system when agents’ arrival and departure rates are
dynamic

There are two kinds of behavior we observe in the system. Firstly, the system
dynamically enlarges or shrinks by creating more groups or dismantling existing
groups based on the number of agents in the system. Secondly, it also forms groups
based on cooperativeness. Cooperators move towards other cooperators and

 Gossip-Based Self-organising Open Agent Societies 115

non-cooperators end up with other non-cooperators. The agents self-organize into
groups that have different ranges of cooperativeness. Thus this system restricts the
non-cooperators taking advantage of cooperators by restricting their access to better
groups.

4.2 Experiment 2 – Arrival Rate Greater Than Departure Rate

We conducted experiments by keeping the arrival rate greater than the departure rate.
A run of this experiment is shown in Figure 2. It can be observed that when the
number of agents increase, the system is able to dynamically create more groups and
also these groups are separated based on the cooperativeness of the agents. This
shows the scalability of the system.

Fig. 2. Self-organization of an open system when agents’ arrival rate is increased

4.3 Experiment 3 – Arrival Rate Equal to Departure Rate

When the number of new comers is roughly the same as the number of leaving agents
in the system, the system will have same number of agents and the number of groups
remain the same. But new agents who join the society have certain cooperativeness.
Because of this the composition of groups and the cooperativeness of groups change
over time. Figure 3 shows the cooperativeness of five different groups over 500
iterations. The cooperativeness of these groups varies depending upon the net effect
of the cooperativeness of the agents that are present in the society. A new agent

116 S. Savarimuthu et al.

whose cooperativeness value of nine joining a group whose average cooperativeness
value is five will increase the group’s average. In the same way, a bad agent leaving a
good group will increase the group’s cooperativeness average. Figure 3 shows how
the 5 groups change over time based on the number of agents (composition of the
group) and the cooperativeness of agents present in the system over time.

Fig. 3. Self-organization of an open system when the arrival rate is equal to the departure rate
of the agents

4.4 Experiment 4 – Varying Life Spans of Agents

We varied the life span of the agents. We investigated the impact of the lifespan of
agents on the system’s behaviour. So we conducted two experiments by varying the
lifespan. The lifespan of an agent is governed by the minimum time to live (TTL)
parameter. The minimum TTL in one of the experiments was set to 300 and the other
was set to 500. Figures 4 and 5 show the cooperativeness values of the groups for
these two values of minimum TTL respectively.

Figures 4 and 5 show the result of groups’ cooperativeness for 1000 iterations.
From these results it can be observed that having longer life time (agents being in the
society for longer period of time) helps to achieve better segregation of groups. This
is because, when the agents live longer, they have a longer period to gather and use
gossip. Additionally, when agents live for a shorter period of time, the system has a
comparatively shorter period of time to segregate into groups than the system where
the agents live longer. This can be observed by comparing the results for iterations
400 and 500. The separation of groups is better when minimum TTL=500. The same
can also be observed in the circled regions of these two figures. The videos of these
simulations can be seen in these links [14, 15].

 Gossip-Based Self-organising Open Agent Societies 117

Fig. 4. Group formation with minimum TTL = 300

Fig. 5. Group formation with minimum TTL=500

5 Related Work and Comparison

In our previous work [7], the self-organization of peers in different groups was
achieved by making use of tags and monitoring agents, where the population had a
mixture of cooperators and non-cooperators. By employing a monitoring agent for
each group, the system evolved into groups partitioned according to the performances
of their group members. Each monitoring agent employed a voting mechanism within
the group to determine which agents were the most and least cooperative members of
the group. Then the most cooperative member was allowed to move to a new group,
and the least cooperative member was expelled from the group. Those peers who left
voluntarily or those who were expelled from their groups obtained membership in a

118 S. Savarimuthu et al.

new group only if the local monitor agent of the other (new) group accepted them.
Since the local monitor agents picked players for their group based on performance,
the high performing player had a good chance to get entry into the best group, and the
reverse conditions applied for the worst performing player. As a result, the players
entered into groups based on their performances. Though this system produced good
results, this approach is semi-centralized, because it required a local monitoring agent
for each group. In addition the work considered a closed society. We believe this
system can be applied in a regimented, closed society but cannot be applied to the
modern systems which are open and distributed.

Hales’s work [4], extends his previous work on tags to networks, considers a
‘neighbor list of nodes’ as a tag. The ‘movement of node in a network’ is modeled as
a mutation. His results showed that tags work well for P2P systems in achieving
cooperation, scalability and robustness.

In our present work, instead of the Prisoner’s Dilemma game, we have adopted the
more practical scenario of sharing digital goods in electronic societies. We investigate
how a society can achieve the separation or self-organization of groups in a
decentralized manner in an open society. Such a system would help to protect
cooperators from being exploited by the non-cooperators. It would also restrict the
non-cooperators from taking advantage of cooperators by restricting their entry to
better groups where the access to resources is better. Hence, the quality of service
(e.g. the quality of file sharing) and the performance (e.g. utility of agents) in the
better groups will be higher. By doing so, the performance of the whole system can be
improved; as resources can be distributed in greater proportion to the better
performing groups [1]. Otherwise, it will be difficult to shield the cooperators from
the defectors who rarely or never share their resources.

For easy understanding, we differentiate our current system from our previous
work [7]. First we explain the results from the earlier system [7] for comparative
purposes. In that work, all the 5 groups started with a similar number of cooperators
in each group. Later the groups were separated into 2 groups having most of the
cooperators, 2 groups having most of the non-cooperators and the middle group
having a mixed population of both. But that earlier work employed localized group
monitors and was therefore less scalable and semi-centralized.

The work presented in [8] is based on a closed society but cannot be applied to
systems that are open and distributed. Even though the mechanism achieves self-
organization, it is suitable for systems in which the performances of the other groups
are directly revealed to the agents in the society.

The work presented in [9] shows the self-organization of groups using similar
mechanisms and it has been improved upon in this current work. The differences
between the work presented in [9] and current work are as follows. In earlier work [9]
the game was played for certain iterations and the gossip information was stored.
Later the agents use the stored gossip information when they play. In the current
setup, the agents start using the gossip right from the start. If there is no information
the agent is considered as a new player and allowed to play or enter into any group.
As they play, the gossip is also stored and used. In the earlier work wealth has been
taken into account. If the wealth of an agent has not increased in the last certain

 Gossip-Based Self-organising Open Agent Societies 119

number of iterations then the agent decides to move. In the current setup, instead of
wealth if the rejection limit is met then the agent decides to move. We found that
using a rejection limit works better for group separation than basing the decision on
wealth, since it is likely that the wealth will increase for a certain number of iterations
(because the agents play with bad agents if the gossip information was not available,
hence the wealth of the bad players might increase).

In the earlier work [9] new players are introduced into the lowest group in the
society and they are expected to build their way up to the higher groups based on their
behaviour (cooperativeness). For that it was necessary to keep track of the lowest
group of the system all the time, which is not a recommended practice if we want to
achieve a decentralized environment. In the current setup new agents go to random
groups in the society. As they are new they have no past behaviour to track and they
are allowed in any group as they come in. Eventually they will end up in a group
based on their behaviour by the mechanism we have in place. In the earlier work the
remaining agents in a dismantling group go to the lowest performing group. In the
current setup, they can apply to other groups and go to the group that accepts them. If
they are not allowed then they keep trying to get entry into one of the groups.

In summary, our current work focuses on addressing the free-riding problem in an
open, dynamic and distributed society. The work presented here provides an improved
model when compared to the model presented in [9].

In future, we intend to include false gossip (lying) in the system and examine the
mechanisms for handling the lying problem.

6 Conclusion

We have presented a gossip based decentralized mechanism to facilitate the self-
organization of agent groups in open agent societies. Through agent based simulation
we have demonstrated that our mechanism helps the sharing agents (cooperators) to
move to better groups while the non-sharing agents are restricted from getting into the
better groups. Thus, the mechanism achieves the separation of groups. The
mechanism allows for dynamic group formation through the splitting and dismantling
processes. We have also demonstrated that our system is scalable. Finally, we have
compared our results with previous works.

Acknowledgments. Our sincere thanks to the New Zealand Federation of Graduate
Women (NZFGW-Otago branch) for the NZFGW Travel Award.

References

1. Antoniadis, P., Grand, B.L.: Incentives for resource sharing in self-organized communities:
From economics to social psychology. In: ICDIM, pp. 756–761. IEEE (2007)

2. de Pinninck, A.P., Sierra, C., Schorlemmer, M.: Distributed Norm Enforcement: Ostracism
in Open Multi-Agent Systems. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R.
(eds.) Computable Models of the Law. LNCS (LNAI), vol. 4884, pp. 275–290. Springer,
Heidelberg (2008)

120 S. Savarimuthu et al.

3. Eugster, P., Felber, P., Le Fessant, F.: The “art” of programming gossip-based systems.
SIGOPS Oper. Syst. Rev. 41(5), 37–42 (2007)

4. Hales, D.: Self-Organising, Open and Cooperative P2P Societies – From Tags to
Networks. In: Brueckner, S., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.)
ESOA 2005. LNCS (LNAI), vol. 3464, pp. 123–137. Springer, Heidelberg (2005)

5. Hardin, G.: The Tragedy of the Commons. Science 162, 1243–1248 (1968)
6. Jelasity, M., Montresor, A., Babaoglu, O.: Detection and removal of malicious peers in

gossip-based protocols. In: FuDiCo II: S.O.S., Bertinoro, Italy (June 2004)
7. Purvis, M.K., Savarimuthu, S., De Oliveira, M., Purvis, M.: Mechanisms for Cooperative

Behaviour in Agent Institution. In: Nishida, T., Klusch, M., Sycara, K., Yokoo, M., Liu, J.,
Wah, B., Cheung, W., Cheung, Y.-M. (eds.) Proceedings of IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT 2006), pp. 121–124. IEEE Press, Los
Alamitos (2006) ISBN 0-7695-2748-5

8. Savarimuthu, S., Purvis, M.A., Purvis, M.K.: Self-Organization of Peers in Agent
Societies. In: IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology, Milan, Italy, Los Alamitos, CA, USA, September 15-18,
vol. 2, pp. 74–77 (2009) ISBN 978-0-7695-3801-3

9. Savarimuthu, S., Purvis, M., Purvis, M., Savarimuthu, B.T.R.: Mechanisms for the Self-
Organization of Peer Groups in Agent Societies. In: Bosse, T., Geller, A., Jonker, C.M.
(eds.) MABS 2010. LNCS, vol. 6532, pp. 93–107. Springer, Heidelberg (2011)

10. Rebecca, S.B.: Some Psychological Mechanisms Operative in Gossip. Social Forces 34(3),
262–267 (1956), Stable http://www.jstor.org/stable/2574050

11. Thomsen, R.: The Origins of Ostracism, A Synthesis. Gyldendal, Copenhagen (1972)
12. Savarimuthu, S.: Self-organising groups (gui for closed society). University of Otago

(February 2010c), http://unitube.otago.ac.nz/view?m=9GT31pqTPSk
13. Savarimuthu, S.: Self-organising groups (gui for open society). University of Otago

(February 2010d), http://unitube.otago.ac.nz/view?m=HbOw1pni7qS
14. Savarimuthu, S.: Self-organising groups (gui for lifespan=300+). University of Otago

(February 2010a), http://unitube.otago.ac.nz/view?m=JHaY1poMt9P
15. Savarimuthu, S.: Self-organising groups (gui for lifespan=500+). University of Otago

(February 2010b), http://unitube.otago.ac.nz/view?m=7SK81pp4WP0
16. Sommerfeld, R.D., Krambeck, H.J., Semmann, D., Milinski, M.: Gossip as an Alternative

for Direct Observation in Games of Indirect Reciprocity. Proceedings of the National
Academy of Sciences of the United States of America 104(44), 17435–17440 (2007),
Stable http://www.jstor.org/stable/25450253

17. Saroiu, S., Gummadi, P., Gribbe, S.: A measurement study of peer-to-peer file-sharing
systems, Technical report UW-CSE-01-06002, University of Washington (2002)

Adaptive Negotiation in Managing Wireless

Sensor Networks

Thao P. Le, Timothy J. Norman, and Wamberto Vasconcelos

Department of Computer Science
King’s college, University of Aberdeen, AB24 3UE, UK

{thao.le,t.j.norman}@abdn.ac.uk,
wvasconcelos@acm.org

Abstract. The allocation of resources to tasks in an efficient manner is
a key problem in computer science. One important application domain
for solutions to this class of problem is the allocation of sensor resources
for environmental monitoring, surveillance, or similar sensing tasks. In
real-world problem domains, the problem is compounded by the fact
that the number of tasks and resources change over time, the number of
available resources is limited and tasks compete for resources. Thus, it
is necessary for a practical allocation mechanism to have the flexibility
to cope with dynamic environments, and to ensure that unfair advan-
tages are not given to a subset of the tasks (say, because they arrived
first). Typical contemporary approaches use agents to manage individ-
ual resources, and the allocation problem is modelled as a coordination
problem. In existing approaches, however, the successful allocation of
resources to a new task is strongly dependent upon the allocation of re-
sources to existing tasks. In this paper we propose a novel negotiation
mechanism for exchanging resources to accommodate the arrival of new
tasks, dynamically re-arranging the resource allocation. We have shown,
via a set of experiments, that our approach offers significantly better
results when compared with an agent-based approach without resource
re-allocation through concurrent negotiation.

1 Introduction

When a sensor network is deployed it is typically required to support multiple
simultaneous tasks. A given sensor can provide different amounts of information
to each individual task. Tasks are broken down as sub-tasks and can appear
at any time placing varying demands on sensor resources. In such multiple-
sensor and multiple-task problems in dynamic environments, conflicts between
sub-tasks may occur for the use of the same sensor resource. Thus, efficient
mechanisms to allocate individual sensors to appropriate sub-tasks on the basis
of information need are necessary.

The resource-task allocation problem is at least as hard as the Knapsack
problem which is NP-Complete [5]. In the current state of the art, there is no
generally adopted approach to solve this class of problems, and researchers have
made many assumptions in order to be able to provide a solution to a subset of
the generic problem (e.g. considering only systems where sensors are identical,

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 121–136, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 T.P. Le, T.J. Norman, and W. Vasconcelos

sub-tasks are of the same type, or systems where sub-tasks require the exclu-
sive use of sensor resources). In an attempt to relax such assumptions, we have
focused on resource allocation problems in heterogeneous and dynamic sensor
networks. Specifically, we employ an agent-based approach allowing sensors to
be shared between sub-tasks. In so doing, however, the success of a sub-task
strongly depends on the allocation of earlier sub-tasks. Moreover, in practical
scenarios not all sub-tasks will operate in a cooperative manner (i.e. the agents
coordinating the sub-tasks might not be willing to participate in the reassign-
ment of sensors without compensation).

Negotiation techniques have long been used in multi-agent systems to resolve
disagreements between agents to enable them to come to agreements that all
parties can live with [10]. It is, therefore, appropriate to investigate the use
of negotiation mechanisms for reassigning sensor resources. In doing this, we
introduce another objective for agents: maximising profit. A task (represented
by a buyer agent) in need of a particular sensor might be willing to give up
part of its profit to a potential seller (representing another task) in exchange for
the service of that sensor. If the seller can find an alternative sensor to replace
that particular sensor, it will be beneficial to do the exchange if it is able to
obtain additional profit from the buyer. For the buyer, it will have a chance of
completing its allocation, thus achieving the objective and also obtaining a profit
that is unavailable otherwise. We further demonstrate that it is advantageous
for the buyer to have a number of such negotiations concurrently because this
increases its chance of being successful.

In this paper, we make the following contributions to the state of the art.
First, we enhance sensor-task allocation mechanisms by employing an adaptive
negotiation mechanism in the allocation process. This makes our approach more
applicable in realistic situations where sub-tasks compete for resources. Addi-
tionally, to the best of our knowledge, this presents the first model introducing
negotiation as a post-processing step to improve the actual allocation process.
Through simulations, we empirically demonstrate that our extended model pro-
vides an improvement in the number of completed tasks.

The remainder of this paper is organized as follows: Section 2 formulates the
sensor-task allocation problem. Section 3 presents our agent-based approach and
Section 4 extends this model by incorporating a novel negotiation mechanism
specifically for resource exchange between self-interested task-agents. We present
an in-depth analysis of our experimental results in Section 5, followed by Section
6 where we relate our model to existing research in this area, discuss the short-
comings of our model and point towards avenues for future research. Finally,
Section 7 concludes.

2 Sensor-Task Allocation Problem

The problem considered in this paper involves allocating a collection of sensors
to a number of tasks in order to satisfy the information requirements of those
tasks.

Adaptive Negotiation in Managing Wireless Sensor Networks 123

A sensor si is defined as a tuple 〈γi, li, ri, ci, ui〉 where γi ∈ Γ specifies si’s
type (Γ is the set of all sensor types); li and ri are the location and sensing range
of si; ci is the cost of using si; and ui is the maximum utility si can provide in
a single time unit.

Tasks may arrive at any time and may last for any duration. A task M
is defined by a specific geographic location, starting time and duration. M is
composed by a set of sub-tasks T . Each sub-task tj ∈ T has a specific type and
is defined as a tuple 〈lj , rj , dj , pj , bj〉 where lj and rj specifies tj ’s location and
operational range; dj is the sensing demand that tj requires; pj is the profit tj
will achieve if successfully allocated; and lastly, bj is the overall budget for the
sub-task. The active time for tj is within the duration of task M . We denote uij

as the utility that si can provide to tj , which is defined as a percentage of ui

calculated by the ratio between the overlap of the ranges of si and tj and the
range of si. If the operational areas of si and tj do not intersect, the value of uij

will be 0.
Given a set of available sensors S = {s1, s2, ..., sn} for tj at tj’s starting time,

we formulate the allocation for tj as a mathematical programming problem.
Specifically, an allocation to tj is defined as the matrix Aj = (xij)n×1 where
xij = {0, 1} and xij = 1 denotes that sensor si is allocated to sub-task tj . The
utility that tj achieves is calculated as: Utj =

∑n
i=1 uij × xij . The cost of tj ’s

allocation is calculated as: Ctj =
∑n

i=1 ci × xij .
An allocation Aj is valid if, and only if:

1. the total cost of an allocation must be within budget: Ctj ≤ bj

2. the utility achieved must greater than or equal to the sensing demand (within
a threshold ξ) for tj : Utj ≥ ξ × dj ,

3. the set of sensor types of the sensors allocated to tj must cover its information
requirements: for all required type γk∃si : xij = 1, γi = γk

4. sensors cannot be allocated to more than one type of sub-task at the same
time (i.e. the only permit sensors to be shared between sub-tasks of the same
type):

∑
j∈T xij ≤ 1 for all set T of sub-tasks with different types.

If Aj is valid, the profit that tj will receive is calculated as Ptj = min(Utj/dj , 1)
×pj. Task M will have a successful allocation if all of its sub-tasks are satisfied
(Aj is valid ∀tj ∈ T). The profit that M receives in this case is PM =

∑
tj∈T Ptj ,

∀tj ∈ T .
Formally, the allocation problem is defined as:

max: count(M), ΣPM

s.t.: Aj is valid ∀tj ∈ T

In other words, we aim to utilize the set of sensors to maximize the number
of successful tasks as well as obtain as much profit as possible for such tasks
(emphasizing the number of successful tasks).

124 T.P. Le, T.J. Norman, and W. Vasconcelos

no

Task M arrives
Find execution

order for the sub-
tasks

Process the
smallest execution

order and
unprocessed sub-

tasks

All sub-tasks
processed?

Task M succeeds

Task M fails

Remove
superfluous
sensor(s)

Find candidate
sensors within the
operational range

All required
sensor types

available?

Sub-task
requirements

satisfied?

For each sub-task

yes

yes

yes

no

no

Allocate sensors
using MRA

Negotiation
mechanism as post

processing steps

Agent for the sub-
task is created

Agent computes
the sub-task
deployable

configurations

Fig. 1. Our proposed approach as a flowchart

3 Agent-Based Sensor-Task Allocation

In this section, we present an approach to continuous resource allocation problem
for sensor network management that offers significant efficiency improvements
over existing solutions, while generating high quality solutions.

We assume that sensors of different types are deployed in an environment in a
uniformly random manner, have varying sensing ranges and each sensor provides
different utilities to different sub-tasks. The utility each sensor can contribute is
computed by a predefined function for each task and depends on various factors
such as sensor type, range, location and so on.

By a task, we mean a sensing task that requires information of a certain type,
which may be contributed by one or more sensor types. Tasks can arrive at any
time, and there may be more than one task active at any given time. Tasks
may consist of a set of sub-tasks and each sub-task is defined by a specific loca-
tion, operational range and type. Moreover, each task has a profit representing
its importance, and this profit can only be achieved if the task is successfully
allocated. Tasks also require different numbers of sensing resources (i.e. it has
a sensing demand) and these requirements may not be met by a single sensor
type. In such cases, different sensor types should be allocated together to meet
the requirements of a sub-task. We use the term Deployable Configuration (DC)
to refer to the set of resource types that an atomic task requires.

We propose a multi-agent system where each task is represented by a task
agent. The task agent is responsible for the task. If a task is composed of sub-
tasks, then that task’s agent delegates those subtasks to other task agents. If
a task agent represents an atomic task (i.e. the task have no sub-tasks), then
the agent is only responsible for the determination and allocation of resources
required to execute the task. In summary, agents of tasks are responsible for the
delegation of subtasks to other agents while the agents of sub-tasks are respon-
sible for the determination and allocation of resources.

Adaptive Negotiation in Managing Wireless Sensor Networks 125

Resource determination and allocation for each atomic task is managed by the
agent of that task. Hence, for a composite task, overall resource determination
and allocation is achieved in a decentralized manner by the agents representing
atomic tasks within the composite task. The agents of the atomic tasks first
determine the necessary resource types and then interact with the resources
(sensors) on the area of their interest to allocate the necessary resources. In our
approach, each sensor is represented by a sensor agent, knowledgeable about the
location, range, type, battery life and utility of its sensor. Therefore, in order to
allocate sensors for a specific atomic task, the agent of this task should interact
with the sensor agents considering its requirements and constraints. Here, we
assume that task agents compete for resources while sensor agents are purely
cooperative.

As mentioned earlier, a task can arrive at any time and there may be more
than one task active at any given time. When a new task T arrives, T is delegated
to a task agent AT (the sensor agent closest to the central of T s range). AT is
responsible for controlling the process of finding an allocation for T as follows
(see Figure 1):

1. Establish the execution order for sub-tasks. Basically, two tasks ti and tj
belong to the same execution set (they can be executed at the same time) if
their operational ranges do not intersect or their sensor type requirements
do not overlap. However, if two tasks have the same type, both will be in the
same execution set. Initially, the execution set containing t0 will be processed
first and followed by the set containing the next unprocessed task until all
the tasks have been handled.

2. Delegate the sub-tasks (e.g., tj) to task agents (e.g.,Aj
T).

Aj
T is knowledgeable about the constraints and requirements of the sub-task tj .

Aj
T computes the set of deployable configurations (DCs) for tj . These DCs are

determined by a semantic matchmaking process [13] and then used as the input
for the actual allocation process. The key benefit in doing so is that the search
space for finding the allocation solution can be greatly reduced (Aj

T only has
an interest in sensors of a specific type if the deployable configurations of its
sub-task contains this sensor type).

When a DC has been selected for tj , the actual allocation steps are as follows:

The task agent Aj
T identifies candidate sensors within the operational range

of tj . A call for bids is issued to appropriate sensors. The call for bids includes
information regarding its type, location, etc. Each sensor agent then makes an
independent decision on whether and what to bid based on its type and workload.
A response to a call will include the utility that can be provided and the cost
associated with the use of this sensor.

Once bids are received, the coordinator agent attempts to allocate sensors to
the sub-task using a multi-round allocation algorithm (MRA). MRA operates
in the similar way to GAP-E algorithm [8]; typically, it is in the nature of this
allocation algorithm that the various agent-based techniques differ. If Aj

T fails
to satisfy its information requirements, it reports failure to the agent responsible

126 T.P. Le, T.J. Norman, and W. Vasconcelos

for AT , and if the sub-task is critical to the overall task, all other task agents
coordinating dependent tasks/sub-tasks will be requested to abort and release
their resources. All sensor agents from which bids were received are informed of
whether they are required.

In the MRA algorithm, sensors of various types are allocated to the sub-
task in a number of rounds, one for each sensor type the sub-task requires.
The first step is to set the order of selection of potential sensors using their
priority. In this way, all sensors of the highest priority are considered first. Also,
MRA introduces a budget (a constraint that governs the number of sensors that
can be allocated to the atomic task) as part of its specification. From the bids
received the allocation algorithm also has the costs associated with using specific
sensors and the utilities they provide. The Fully Polynomial Time Approximation
Scheme (FPTAS) algorithm which offers an approximation guarantee of 2 + ε is
then run with this as input along with an allocation from the remaining budget
and utilities that sensors can provide to the task. This algorithm returns a revised
allocation. If this allocation does not contain at least one sensor of the type being
considered, the atomic task fails. Otherwise, the algorithm then reassesses the
priority among sensor types (given the fact that sensors have been allocated)
and proceeds to the next round if additional resources are required.

4 Negotiation for (Re-)Allocation of Resources

In this section, we detail our novel negotiation mechanism which can be used
during the post-processing step in each round of the allocation algorithm out-
lined in the previous section. As has been argued, the problem inherent in a
decentralised (or agent-based) approaches to the sensor-task allocation problem
is that the order of task arrival (or, strictly, allocation by agents in the system)
can significantly affect the quality of the global solution, and hence the number
of tasks that are satisfied. The aim of concurrent negotiation is to alleviate the
impact that task arrival has on solution quality. Specifically, it is of benefit if:

1. there are selfish coordinating agents which are not willing to cooperate with-
out reward, and

2. a sub-task tj of taskM cannot find an available sensor of a particular type γi,
tj fails and, consequently,M fails. In many cases, tj cannot satisfy its sensing
requirement δj for sensor type γi not because there is no such sensor within
tj ’s range, but because there are sensors of type γi within its range that are
allocated to other sub-tasks. If one such sub-tasks can find a replacement,
that sensor can be allocated to tj and, thus, tj will succeed.

The negotiation mechanism detailed in this section allows an agent (buyer) rep-
resenting a task to negotiate concurrently with other task-agents (sellers) to
obtain a resource of type γ that is currently allocated to one of these other tasks
in exchange for a fraction of its profit. Obviously, the buyer will only be inter-
ested in instances of resource type γ that it can make use of (i.e. utility of the

Adaptive Negotiation in Managing Wireless Sensor Networks 127

resource instance to the buyer is not 0). The buyer will negotiate simultaneously
with all the sellers that currently employ a resource of type γ.

The buyer and the sellers work to different negotiation deadlines, each repre-
senting availability in terms of both resource and processing power. They follow
a Sequential Alternating Protocol where at each step an agent can either accept
the offer from the opponent, propose a counter-offer, renege from its commit-
ment or opt out of the negotiation (typically if its deadline is reached). At each
negotiation time period, the interest of each agent is represented by a proposal
φ, which refers to the profit that will be paid to the seller by the buyer.

The buyer agent (B) consists of two main components: a coordinator and a
number of negotiation threads. The negotiation threads deal directly with the
sellers (one per seller S) and are responsible for deciding what counter-offers to
send and what proposals to accept. Each thread inherits the preferences from the
main buyer agent, including the acceptable ranges of values for the profit, the
deadline of the negotiation and the current reservation value (the highest profit
value that the buyer is willing to pay). The coordinator decides the negotiation
strategies for each thread. If a thread reaches a deal with a particular seller,
it terminates and notifies the coordinator. The coordinator will then notify all
other negotiation threads of the new reservation value.

In this way, the buyer, B, will engage in simultaneous negotiations with all
the sellers that currently possess a resource of type b. In our model, the buyer
can either choose to terminate all negotiation threads once an agreement has
been reached (simple negotiation mode) or it can wait until all the negotiations
have been finished and then select the agreement that is most valuable (extended
negotiation mode) either with the smallest profit to pay or with the highest utility
achieved.

For each seller, if the negotiation succeeds, it will have to give up one of its
resources to the buyer. As a result, it is necessary for the seller to obtain a re-
placement resource before it can enter the negotiation. If there is an available
and appropriate alternative resource (i.e. a resource that achieves the require-
ments of the task — validates the allocation — without the original resource), it
can replace the previously allocated resource with the alternative. We label this
situation as 1-sequence negotiation. However, there exists a more complicated
case (2-sequence) in which the seller needs to negotiate with another seller for
a replacement resource before it can negotiate with the buyer (i.e. buyer B and
seller S are negotiating about a resource b but S needs to negotiate with seller
C about resource b’ which is the replacement for b). If the seller cannot manage
to find the replacement resource, it will not enter the negotiation.

The agents bargain about the profit that will be paid for the resource that the
seller is currently holding (the price being a share of the profit that the buyer
acquires in completing its task). The buyer and sellers use different negotiation
strategies that are based on the set of linear strategies as specified in [9]. This
strategy family is employed because it represents the neutral stances of both the
buyer and the seller, not favouring anyone in particular and allows a solution to
be found that is beneficial for both parties rather than having only one better

128 T.P. Le, T.J. Norman, and W. Vasconcelos

off. Furthermore, by doing so, it will increase the chance for more agents to
participate and in turn, improve the global goal of maximizing the number of
successful task allocations.

Specifically, a strategy is a sequence of decisions that an individual agent will
make during negotiation. These decisions could be either to send an initial offer to
the opponent, select an offer to propose, accept the offer proposed by the opponent
or withdraw from the negotiation. Here, the value of the profit is between the mini-
mum and the maximum limit of each agent. For the buyer, the proposed profit will
increase in value over time and conversely, the seller’s value will decrease. For each
seller, the reservation value or the minimum profit (minPS) it will accept is the
difference between the profit it received by having the resource s and that received
with the replacement resource s’. For example, if s receives a profit of 1.5 with s
and a profit of 1.2 with s’, the minimum profit it will accept from B is 0.3. The
maximum profit (maxPS) it can expect from the buyer is the difference between
the profit with s’ and the maximum profit it can obtain. This is the incentive for
the seller agents to enter into negotiation. For a seller S, at any time t between 0
and its negotiation deadline tSmax , the value of the proposal it will send to B is:

φ(S → B) = maxPS−(maxPS−minPS)×(t
tSmax

)
1.00
βS where βS is the parameter

that defines the shape of the function.
On the other hand, the buyer will attempt to give up as little of its profit

as possible. Thus, its minimum profit (minPB) it is willing to pay is 0. The
reservation value (maxPB) it is willing to pay is set at half of potential profit it
can obtain if s is allocated. If it is higher, the buyer might not get any profit at
all and it might not be tempted to enter the bargaining process. Thus, at any
time t between 0 and deadline tBmax , the value of the proposal B will send to

S is: φ(B → S) = minPB + (maxPB − minPB) × (t
tBmax

)
1.00
βB where βB is the

parameter that defines the shape of the function.
When an offer proposed by a party is between the minimum and the maxi-

mum acceptable profit of the other party, it will be accepted and a provisional
agreement (or deal) is created. If the negotiation is in the simple mode, the
buyer will terminate all other negotiation threads and select the resource in the
deal reached with the winning seller. If, however, it is in the extended mode,
the buyer will attempt to establish as many deals as possible, and then commit
to the best (based on its selection criteria), declining all others. The selection
criteria that the buyer has in this model are (i) the deal with the least amount
of profit, and (ii) the deal that can provide the highest utility value. The final
agreement and the final allocated resource plays an important role in determin-
ing the success rate of subsequent tasks and this is reflected in the results of our
empirical evaluation presented in Section 5.

5 Evaluation

Having defined our negotiation mechanism, we now present a detailed discus-
sion of our empirical evaluation aimed at assessing the benefit of employing our
concurrent negotiation mechanism in sensor-task allocation.

Adaptive Negotiation in Managing Wireless Sensor Networks 129

The sensors and tasks are deployed in uniformly random locations in a 400m
× 400m environment. Each sensor range (ri) is randomized between 20m and
40m and their maximum utility is calculated as (ri/40)

2, which ensures that
their the values lie between 0.25 and 1. The operational ranges of the sub-tasks
are set to be randomized between 40m and 80m. The values for βB and βS are
selected randomly between 0.95 and 1.05. The threshold ξ is set at 0.75.

The task arrival rates are controlled by the task per hour parameter, which
ranges from 2 to 8, and number of days parameter, which is kept at 2 days. Each
task can last for an arbitrary amount of time, ranging from 5 minutes to 4 hours.
There are total sensor types different sensor types, which will vary between 4 and
8 and, for each sensor type, there will be total sensors per type sensors. For each
task, the number of sub-tasks will be varied between 4 and 5. Each sub-task
type will require a number of different sensor types, which varies between 1 and
4. These individual sensor type requirements are generated randomly and have
the value between 1 and total sensor types.

To evaluate the negotiation mechanism, we benchmark our model with 3 dif-
ferent settings: 4tph 4st, 4tph 8st and 8tph 8st where tph stands for task per hour
and st stands for total sensor types. With each setting, we vary total sensors per
type between 30 and 250 to create additional 12 environments, each then carries
further 500 experiments with randomized data sets. The results are averaged and
put through a regression test to ensure that all differences are significant at the
99% confidence level.

We measure the number of successful tasks, the average profit achieved and
the running time. We also measure the performance of the different negotia-
tion modes: simple mode (terminate whenever an agreement is reached); and
extended mode with either smallest profit or highest utility selection criterion.
It would be reasonable to expect that the different ratios between the number
of tasks and sensors leads to different improvements in the number of success-
ful tasks between negotiation-enabled and non-negotiation models. For example,
when the number of tasks remain unchanged, the more sensors there are, fewer
negotiations are required and thus, any improvement due to negotiation might
decrease. Hence, we explored variations in these values.

We now turn to the specific results.

Hypothesis 1. By negotiating, agents will have a better chance of finding a
successful allocation as well as increasing the total profit achieved. Moreover, the
running time of the algorithm is still acceptable.

To evaluate this hypothesis, we measure the number of successful allocated tasks
and the total amount of profit achieved for the model with the 1-sequence ne-
gotiation featured in extended utility mode and the one without the negotiation
feature. The differences are shown in Figure 2.

As can be seen, negotiation allows the number of successful tasks to increase in
all cases, varying between 2% and 12%. This can be explained by the fact that, in
many situations, a sub-task in the standard model fails because it cannot find a
sensor of a particular type to satisfy its requirement. This same sub-task in the
negotiation-enabled model can now bargain with another sub-task to acquire

130 T.P. Le, T.J. Norman, and W. Vasconcelos

6

8

10

12

14

P e
rc

en
ta

ge

Improvement in successful tasks

4tph 4st

8t h 8 t

0

2

4

6

8

10

12

14

30 50 70 90 110 130 150 170 190 210 230 250

Pe
rc

en
ta

ge

Total sensors per type

Improvement in successful tasks

4tph 4st

8tph 8st

4tph 8st

Fig. 2. The improvement of successful tasks between 1-sequence concurrent negotiation
(simple negotiation mode) vs no negotiation

10

15

20

25

c e
nt

ag
e

Difference in running me

4tph 4st

8t h 8 t

-10

-5

0

5

10

15

20

25

30 50 70 90 110 130 150 170 190 210 230 250

Pe
rc

en
ta

ge

Total sensors per type

Difference in running me

4tph 4st

8tph 8st

4tph 8st

Fig. 3. The differences of the running time of the algorithm between 1 sequence con-
current negotiation (simple negotiation mode) vs no negotiation

a sensor that is unavailable otherwise and this helps it to obtain a successful
allocation and, eventually in some cases, lead to a successfully allocated task. As
the number of successful tasks increases, the overall profit achieved also increases.

We detail the differences between the running time of our model with and
without negotiation in Figure 3. This is the actual amount of time that the
machine took to solve the allocation problem. As can be seen from the graph, the
negotiation-enabled model takes longer than its counterpart when the number
of sensors is roughly between 5% and 22% which, we believe, is still acceptable
given the more beneficial outcomes achieved. However, as the number of sensors
increases, the time it took decreases such that there is a negligible impact on
running time. By far, the greatest impact on running time is the number of tasks
and sensors involved in a problem.

Hypothesis 2. The overall utility achieved through the use of negotiation is
higher than that without.

Adaptive Negotiation in Managing Wireless Sensor Networks 131

1

1.5

2

2.5

3

P e
rc

en
ta

ge

Improvement in u�lity achieved

4tph 4st

8t h 8 t

0

0.5

1

1.5

2

2.5

3

30 50 70 90 110 130 150 170 190 210 230 250

Pe
rc

en
ta

ge

Total sensors per type

Improvement in u�lity achieved

4tph 4st

8tph 8st

4tph 8st

Fig. 4. The improvement of utility achieved between 1 sequence concurrent negotiation
(simple negotiation mode) vs no negotiation

1

3

5

c e
nt

ag
e

Difference in successful tasks

4tph 4st

8tph 8st

-5

-3

-1

1

3

5

30 50 70 90 110 130 150 170 190 210 230 250Pe
rc

en
ta

ge

Total sensors per type

Difference in successful tasks

4tph 4st

8tph 8st

4tph 4st

8tph 8st

Fig. 5. The differences of the number of successful tasks between 1-sequence highest
utility agreement (straight line) vs 1-sequence lowest profit (dotted line) vs simple
negotiation mode

The differences between the averaged utility achieved by using model with and
without negotiation feature are displayed in Figure 4. As can be seen from hy-
pothesis 1, negotiation enabled model allows higher number of successfully al-
located tasks in all situations. Consequently, the utility achieved by successful
tasks is increased, leading to an increase in the averaged utility obtained by a
task. Also similar to hypothesis 1, the more sensors there are, the lower this
increase will be.

Hypothesis 3. There is no clear advantage of selecting the extended negotiation
mode.

To evaluate this hypothesis, we show the difference between the performance of
1-sequence lowest profit agreement and 1-sequence highest utility agreement vs
simple negotiation mode in Figure 5.

As can be seen, the difference between extended negotiation mode and the
simple negotiation mode are negligible with the highest value less than 1%.

132 T.P. Le, T.J. Norman, and W. Vasconcelos

1

3

5

ce
nt

ag
e

Difference in successful tasks: lowest profit

4tph 4st

-5

-3

-1

1

3

5

30 50 70 90 110 130 150 170 190 210 230 250Pe
rc

en
ta

ge

Total sensors per type

Difference in successful tasks: lowest profit

4tph 4st

8tph 8st

Fig. 6. The differences of the number of successful tasks between 1-sequence lowest
profit agreement vs simple negotiation mode

There is no decisive pattern of which negotiation mode provides a more desirable
outcome. Obviously, the extended negotiation mode strongly favours the buyer
sub-task (see Section 4) whereas the simple negotiation mode treats all agents
equally. Consequently, it is rational to select the simple mode as the negotiation
method since the sellers will be more willing to participate (they do not have to
wait for the buyer to finalize their agreements). Moreover, it will be faster for
an agreement to be reached.

Hypothesis 4. Allowing 2-sequence negotiation in the model provides higher
number of successful allocated tasks than 1-sequence negotiation enabled model.

2-sequence negotiation allows a sub-task agent to have a slightly better chance
of finding a replacement sensor (see Section 4). For most sellers, instead of only
finding free sensors, they can now negotiate with other potential seller for a
replacement sensor, having both the roles of buyer and seller at the same time.
By doing so, the chance of finding a replacement sensor for any seller is increased
and that results in a higher number of negotiations for the original buyer and,
consequently, a higher number of successful negotiations, eventually leading to
an increase in the number of successful negotiations compared to its 1-sequence
counterpart. The results are clearly demonstrated in Figure 7.

Hypothesis 5. The running time of 2-sequence negotiation enabled model is
considerably longer than that of 1-sequence counterpart.

Even though 2-sequence negotiation mode provides better outcomes than 1-
sequence mode, the running time of the algorithm is much higher (see Figure 8).
In the worst case, it is nearly 2.5 times worse and even in the best case, it takes
nearly 50% longer than its counterpart.

Now that the sellers can negotiate with other potential sellers, their chances of
finding a replacement is increased but also the number of negotiations carried out
is also increased. There is no way of knowing which negotiation will be beneficial
and thus, all the negotiations will need to be carried out. As a result, there will

Adaptive Negotiation in Managing Wireless Sensor Networks 133

6
8

10
12
14
16

Pe
rc

en
ta

ge

Improvement in successful tasks

4tph 4st

8tph 8st

0
2
4
6
8

10
12
14
16

30 50 70 90 110 130 150 170 190 210 230 250

Pe
rc

en
ta

ge

Total sensors per type

Improvement in successful tasks

4tph 4st

8tph 8st

4tph 4st

8tph 8st

Fig. 7. The differences of the number of successful tasks between 2-sequence vs 1-
sequence concurrent negotiation (dotted vs straight lines)

100

150

200

250

300

ce
nt

ag
e

Difference in running me

4tph 4st

8tph 8st

-50

0

50

100

150

200

250

300

30 50 70 90 110 130 150 170 190 210 230 250

Pe
rc

en
ta

ge

Total sensors per type

Difference in running me

4tph 4st

8tph 8st

4tph 4st

8tph 8st

Fig. 8. The differences of the algorithm running time between 2-sequence vs 1-sequence
concurrent negotiation (dotted vs straight lines)

be many unnecessary bargaining processes, leading to a dramatic increase in the
running time of our model.

As can be seen, even though the number of successful tasks increases with
2-sequence negotiation, the time it takes to complete is considerably longer than
that of 1-sequence counterpart. Thus, it will not be beneficial to support more
than 2-sequence negotiation in our model since the trade-off between the suc-
cessful task and the running time will be undesirable.

6 Discussion and Related Work

There are only a small number of sensor-task allocation studies that have consid-
ered the heterogeneous sensor, heterogeneous task case [11,5] and our work falls
in this class, which can be considered the most generic version of the sensor-task
allocation problem. In addition, the problem we are considering can be viewed
as a more general problem of resource allocation such as scheduling jobs on un-
related parallel machines [16] (the feasible constraint is that a job may need to

134 T.P. Le, T.J. Norman, and W. Vasconcelos

be performed by a set of families of machines) or the Bin Covering problem (our
problem is a generalization of this problem when the item may take a different
amount of space in different bins). Our MRA algorithm presented in Section 3
is an adaptation of the MRGAP algorithm proposed in [5] in which the idea is
to consider tasks as knapsacks that together form an instance of the Generalized
Assignment Problem (GAP).

Resource allocation models in multi agent systems have two major branches:
centralised and decentralised [1,4]. Centralised systems make use of a single
agent to assign resources to all tasks and optimal outcomes might be achieved
because that single agent has a global view of the situation. The most successful
centralised models are auctions and it comes in various form including regular
or combinatorial auctions [6]. Agents may submit the “best” bid(s) serving their
own interests and wait for the final allocation decided by the auctioneer. In
addition, advantage of such models is that the communication protocols required
are normally simpler than that of decentralised approaches [1]. Nonetheless, the
central agent creates a bottleneck and generally, these solutions do not scale well.
Decentralised systems are typically preferred in practical situations [4] and peer-
to-peer negotiation has long been a popular technique for agent coordination in
such system.

In sensor networks, various forms of negotiation have been explored. For exam-
ple, Sujit et al. [15] employ an auction-based negotiation model for distributing
UAVs (Unmanned Aerial Vehicles) to search and attack some targets in the en-
vironment. Similarly, Shima et al. [14] use an auction-based negotiation model to
establish information regarding other neighbouring nodes and estimate costs for
other members to assign to different targets in order to find an efficient solution
for all the participating nodes. The DISTINCT algorithm [12] uses negotiation
to distribute tasks among robots. The disadvantage of these approaches is that
they cannot guarantee all the negotiations will terminate after a finite number
of cycles.

Another model introduced by Howard et al. [3] uses a market-based approach
and the contract net protocol to allocate a group of robots to a number of tasks.
Each task is announced and all the robots bid for tasks. If a robot has already
been allocated to another task then the robot will select the better task and
broadcast the other. The major issue with this model is that there are a great
deal of duplicate allocations, resulting unnecessary time and resource consumed.

In [2,7], Kulik et al introduce four SPIN (Sensor Protocols for Information via
Negotiation) protocols for exchanging information in wireless sensor networks.
They are all negotiation based and can be applied in either point-to-point or
broadcast modes. In either mode, the sensor nodes use some variation of the
three-stage handshake protocol to negotiate for newly discovered data. Basi-
cally, whenever a sensor discovers new data, it will broadcast its findings (ADV
message) to its neighbouring sensors. These sensors, in turn, will decide whether
or not to ask for the actual data to be sent to them (REQ message) based on
their constraints. Finally the initiator will response to the REQ message with
a DATA message containing the actual data. Even though the communication

Adaptive Negotiation in Managing Wireless Sensor Networks 135

between sensors can be reduced by using these protocols, the sensors need to be
equipped with large buffers to store previous requests/data to avoid duplication.
Moreover, these protocols only provide best results when the topology of the
network is fixed.

As can be seen, using negotiation as the sole means to allocate resources
might not be beneficial. However, it is useful if negotiation is used to enhance
existing allocation algorithms. There are a number of negotiation models that
can be employed such as auctions, double auctions or bilateral negotiations.
However in this work, we consider the application of the multiple concurrent
bilateral negotiation model introduced by Nguyen et al. [10] since it allows the
agents to engage in real time and the results obtained are close to optimum
[10,9]. There are a number of shortcomings with our model, however. First,
the strategies employed by the agents are linear and constant throughout each
encounter. Ideally, they should adapt to their opponents so that the participating
agents might be able to obtain better outcomes. Second, we consider profit to be
exchangeable between tasks so that it can be used as the base for the negotiations
to happen. This is not always an appropriate assumption and this issue requires
further investigation.

7 Conclusion

In this paper, we have proposed a decentralised agent-based approach for han-
dling the sensor-task allocation problem in dynamic environments where the
tasks and resources can appear/disappear any time. Moreover, our model allows
various tasks to compete for the same resources in a graceful manner. In particu-
lar, we have incorporated a negotiation mechanism as a post-processing stage of
agent-based allocation models. The mechanism allows resources to be exchanged
between self-interested agents. Specifically, a task negotiates concurrently with
other tasks to obtain a resource that is currently allocated to one of these tasks
in exchange for a fraction of its profit which it will receive if it can obtain a valid
alternative allocation. Via empirical evaluation, we have demonstrated that this
offers significantly better results when compared with an agent-based allocation
model without resource re-allocation.

References

1. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Pad-
get, J., Phelps, S., Rodrguez-aguilar, J.A., Sousa, P.: Issues in multiagent resource
allocation. Informatica 30 (2006)

2. Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive protocols for information
dissemination in wireless sensor networks. In: Proceedings of the ACM MobiCom
1999, Seattle, Washington, pp. 174–185 (1999)

3. Howard, A., Viguria, A.: Controlled reconfiguration of robotic mobile sensor net-
works using distributed allocation formalisms. In: Proc. of the NASA Science Tech-
nology Conference, NSTC 2007 (2007)

136 T.P. Le, T.J. Norman, and W. Vasconcelos

4. Jacyno, M., Bullock, S., Payne, T., Luck, M.: Understanding decentralised control
of resource allocation in a minimal multi-agent system. In: AAMAS 2007: Pro-
ceedings of the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems. pp. 208–210 (2007)

5. Johnson, M.P., Rowaihy, H., Pizzocaro, D., Bar-Noy, A., Chalmers, S., La Porta,
T., Preece, A.: Frugal Sensor Assignment. In: Nikoletseas, S.E., Chlebus, B.S.,
Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 219–
236. Springer, Heidelberg (2008)

6. Krishna, V.: Auction Theory. Academic Press (2002)
7. Kulik, J., Heinzelman, W.: Negotiation-based protocols for disseminating informa-

tion in wireless sensor networks. Wireless Networks 8, 169–185 (2002)
8. Le, T.P., Norman, T.J., Vasconcelos, W.: Agent-based sensor-mission assignment

for tasks sharing assets. In: Proceeding of the Third International Workshop on
Agent Technology for Sensor Networks, Budapest, Hungary (May 2009)

9. Nguyen, T.D.: A heuristic model for concurrent bilateral negotiations in incomplete
information settings. Ph.D. thesis, University of Southampton, Southampton, Eng-
land (2005)

10. Nguyen, T.D., Jennings, N.R.: Coordinating multiple concurrent negotiations. In:
Proceedings of the Third International Conference on Autonomous Agents and
Multiagent Systems, New York, USA, pp. 1064–1071 (2004)

11. Preece, A., Pizzocaro, D., Borowiecki, K., de Mel, G., Gomez, M., Vasconcelos,
M., Bar-Noy, A., Johnson, M.P., La Porta, T.L., Rowaihy, H., Pearson, G., Pham,
T.: Reasoning and resource allocation for sensor-mission assignment in a coalition
context. In: MILCOM 2008 (2008)

12. Salemi, B., Will, P., min Shen, W.: Distributed task negotiation in modular robots.
Robotics Society of Japan, Special Issue (2003)

13. Sensoy, M., Le, T., Vasconcelos, W.W., Norman, T.J., Preece, A.D.: Resource
determination and allocation in sensor networks: A hybrid approach. Computer
Journal (2010) (to appear)

14. Shima, T., Rasmussen, S.J., Chandler, P.: UAV team decision and control using
efficient collaborative estimation. In: Proceedings of the 2005 American Control
Conference, vol. 6, pp. 4107–4112 (2005)

15. Sujit, P.B., Sinha, A., Ghose, D.: Multiple UAV task allocation using negotia-
tion. In: AAMAS 2006: Proceedings of the Fifth International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 471–478 (2006)

16. Sung, S.C., Vlach, M.: Maximizing weighted number of just-in-time jobs on unre-
lated parallel machines. Journal of Scheduling 8(5), 453–460 (2005)

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 137–151, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Negotiation Strategy
for Mobile Agent-Based e-Negotiation

Raja Al-Jaljouli and Jemal Abawajy

1 Deakin University, School of Information Technology,
Pigdons Road, Geelong,
Victoria 3217, Australia

{ralj,jemal}@deakin.com.au

Abstract. Negotiation is a vital component of electronic trading. It is the key
decision-making approach used to reach consensus between trading partners.
Generally, trading partners implement various negotiation strategies in an
attempt to maximize their utilities. As strategies have impact on the outcomes
of negotiation, it is imperative to have efficient negotiation strategies that truly
maximize clients’ utilities. In this paper, we propose a multi-attribute mobile
agent-based negotiation strategy that maximizes client’s utility. The strategy
focuses on one-to-many bilateral negotiation. It considers different factors that
significantly affect the scheduling of various negotiation phases: offer
collection, evaluation, negotiation, and bid award. The factors include offers
expiry time, market search space, communication delays, processing queues,
and transportation times. We reasoned about the correctness of the proposed
negotiation strategy with respect to the existing negotiation strategies. The
analysis showed that the proposed strategy enhances client’s utility, reduces
negotiation time, and ensures minimum search space.

Keywords: Negotiation strategy, e-Trade, temporal constraints, client’s
utilities, end of offer validity, negotiation deadline.

1 Introduction

Automated negotiation (e-negotiation) has been proposed for e-Trade applications
as a promising environment that facilitates negotiation without human
intervention/supervision. It overcomes problems associated with human negotiation that
includes rational and emotional responses. Moreover, it concludes verifiable agreements
and optimizes negotiation outcomes [6]. Mobile agents have been employed to act on
behalf of negotiators and reach a mutual agreement that satisfies their requirement
profiles and maximizes their individual utilities. They exhibit special characteristics
including heterogeneous execution, dynamic adaptation to environmental changes, and
cooperative capacity. In addition, they build knowledge about opponents' attitudes and
intensions through negotiation and can make decisions autonomously based on
negotiation threads. In this paper, we focus on mobile agent-based negotiation.

138 R. Al-Jaljouli and J. Abawajy

In e-Trade, a client who is interested in a service such as network maintenance
would place a request with a mobile agent and defines his own constraints,
preferences, and priorities. Constraints may include price of service, maintenance
period, penalty of breach of agreement, etc. Preferences may include payment
installments, response time, etc. Priorities may include quality of service. The mobile
agent would initially plan the bid and sets a deadline for bidding. It then collects
offers from potential suppliers and negotiates for an offer that meets client's
constraints and preferences and provides best quality of maintenance. It tries to make
an extensive market search with the aim of reaching an agreement that satisfies
client’s requirements profile and maximizes client’s utility. There exists a risk that the
mobile agent collects the most advantageous offer in last few minutes of its validity
and before it completes a thorough market search. The agent continues on negotiation
and might abort it few minutes later than its validity. The most advantageous offer
would be missed out and, hence, client’s utility would not be maximized.

Negotiation strategies presented in the literature delay offer evaluation till all offers
are collected. They do not consider offer expiry time and only consider particular
temporal constraints such as bidding deadline, goods/service delivery deadline or
negotiation deadline. Therefore, there is a need to develop a more efficient
negotiation strategy that avoids delayed evaluation of collected offers and considers
the effect of offer expiry time. It should also ensure accurate assessment of the market
through an adequate market search without the loss of advantageous offers that might
expire shortly before the negotiation deadline. The strategy should consider the risk of
missing out advantageous offers that are likely to expire earlier than the bidding
deadline and interrupts offer collection/negotiation earlier than the deadline,
whenever, the most advantageous offer is about to expire and an adequate market
search is completed. The bid may be awarded earlier than the bidding deadline. Thus,
various factors including: offer expiry time, market search space, communication
delays, processing queues, and transportation times should be considered to be able to
maximize client’s utility.

In this paper, we address the problem of limited-time offers in e-negotiation and
the probable deficit in optimizing the outcomes of negotiation. We propose a
negotiation strategy that overcomes the problem and maximizes client’s utility. We
focus on multi-attribute one-to-many bilateral negotiation.

The proposed negotiation strategy searches the marketplace for the most
competitive offers, carries preliminary evaluation of each offer at collection time and
computes its utility, and awards the bid to the offer that has the top utility. We show
that the proposed negotiation strategy maximizes client’s utility, ensures satisfactory
search and negotiation spaces, shortens negotiation time, and avoids loss of the top
utility offer that might expire before the negotiation deadline.

The rest of the paper is organized as follows. The background to the effect of
temporal constraints on negotiation is discussed in Section 2. The existing negotiation
strategies are discussed and the drawbacks as regards negotiation outcomes are
highlighted. A real example is also presented for illustration. In Section 3, the system
architecture of mobile agent-based one-to-many bilateral negotiation is described and
various phases of negotiation are discussed. In Section 4, the proposed negotiation

 Negotiation Strategy for Mobile Agent-Based e-Negotiation 139

strategy is described in details and negotiation algorithm is outlined. Performance
analysis of the proposed negotiation strategy is presented in Section 5. The
conclusions and future works are discussed in Section 6.

2 Background

In this section, we present related work and illustrate the effect of negotiation
strategies on the outcomes of e-negotiation.

2.1 Problem Overview

There are three negotiation strategies that mobile agents can employ based on a time
constraint: anxious, patient, and partially patient strategies. Strategies are constrained
by negotiation deadlines. In anxious strategy, the agent tries to settle an agreement
before the negotiation deadline and the soonest possible, whereas in patient strategy it
may extend negotiation till the negotiation deadline trying to settle an agreement at
the most possible utility. The partially patient strategy tries to reach an agreement
before the negotiation deadline and may interrupt negotiation earlier than the
negotiation deadline having received a good offer. There are some problems with the
existing negotiation strategies.

We present a real example that illustrates the effect of negotiation strategies on the
outcomes of e-negotiation. A client agent that searches various airlines for a flight on
24th March, 2011 from Montreal, QC Canada (YUL) to Bathurst, NB Canada (ZBF).
It searches for a non-stop cheap flight with a price limit of $500 and sets 14th March,
2011 00:05 EDT (Canada) as negotiation deadline. It starts the search on 13th March,
2011 11:55 EDT (Canada) being unaware of time-limited offers. It searched through
Yahootravel.com, Aircanada.com, Orbitz.com, Grab2Travel.com, and
Cheapoair.com. Different offers are provided for a non-stop flight with the prices of:
$471, $456, $370, $355, and $261.03. The offer of $471 is the first collected offer and
the offer of $261.03 is a limited-time offer that expires on 6th Sep, 2010 11.59 EDT.
The query retrieval time of mobile agents, excluding time needed for verification and
negotiation, varies from 125 - 450 seconds using Generic Algorithm (GA) that
implements short routes of local pre-fetched servers (LP) rather than long routes [12].
Assume the retrieval query time is 420 seconds.

The decisions an agent takes are based on preferences, priorities, constraints, and
implemented negotiation strategy, e.g. non-stop route as a flight preference, specific
travel dates as a priority, and upper limit of ticket price as a constraint. The anxious
strategy awards the bid to the first acceptable offer of $471, whereas the patient
strategy completes the search of various airlines 3 minutes later than the expiry time
of the best offer of $261.03. It would miss out the best offer and, thus, awards the bid
to the second advantageous offer of $355. The two strategies would miss out the best
offer of $261.03. Our proposed negotiation strategy would not complete the search of
various airlines due to the risk of missing out the most advantageous offer priced as
$261.03 that would expire before the agent completes its search plan. It interrupts the

140 R. Al-Jaljouli and J. Abawajy

search before the expiry of the offer priced $261.03 having completed an adequate
market search, e.g. four service providers and as long as the offer is the most
advantageous among the so far collected offers. Our strategy in this instance provides
44.5% and 22.6% additional savings as compared to anxious and patient strategies,
respectively.

The anxious negotiation strategy awards the bid to the first acceptable offer which
is most probably overpriced and, hence, does not maximize client's utility as it does
not give enough time for evaluating the market accurately. Whereas, the patient
negotiation strategy extends search till market search is completed trying to maximize
client's utility. It would miss out the best utility offer that has a short validity and
would expire before the bidding deadline and, hence, would not maximize client's
utility.

The partially patient negotiation strategy might interrupt offer collection if the so far
most advantageous offer would expire earlier than bidding deadline regardless of
satisfying a minimum market search. There is risk of interrupting negotiation at a very
early stage while more advantageous offer might be forthcoming, and hence, the strategy
would not maximize client utility. There is also another risk of a malicious vendor that
might provide a little bit competitive offer with an expiry earlier than the negotiation
deadline or would delay the agent till negotiation deadline so as to win the bid.

2.2 Related Work

Negotiation is a process in which two or more parties articulate conflicting requests
and try to reach a mutual agreement by search of acceptable alternatives or
concession. Negotiation can be described by cardinality (one-to-one, one-to-many, or
many-to-many), negotiation issues (single issue, multiple issues), and negotiation
attributes (single attribute, multi-attributes) of a particular issue. Searching for a
holiday package that includes flight, accommodation, and car hire represents multiple
issues negotiation, whereas, searching for a flight to a particular destination on
specific date within a limited budget represents multi-attributes negotiation. In this
paper, we address on one-to-many bilateral negotiation.

Research has mainly focused on one-to-one negotiation. Particular related issues
have been addressed including bidding deadline [4, 10] and multi-attribute negotiation
[4, 5, 7], negotiation protocols [9], and negotiation security [8, 14]. Collins et al. [3]
addressed one-to-many bilateral single issue negotiation. They discussed the
interdependencies between various temporal constraints and how they affect the
strategic behavior of agent participating in e-negotiation. They considered sealed bid
or Vickery auctions where the bids earliest evaluation time is later than the bidding
deadline. They proposed to shift the offer evaluation time to be earlier than the
bidding deadline, whenever, the expiry time of an offer is earlier than the bidding
deadline. The approach might result in awarding overpriced bids. Assume a vendor
was able to speculate that the bidding task is critical, he would then provide an offer
with a short validity forcing the bidder to reason early and award the bid before
waiting for more valuable offers that might be forthcoming. The approach would
result in inadequate search space and, hence, may not maximize client’s utility.

 Negotiation Strategy for Mobile Agent-Based e-Negotiation 141

Si et al. [13] proposed a negotiation framework for one-to-many bilateral
negotiation that maximizes client’s utility. The framework coordinates negotiations of
composite trading activities and models it as simultaneous one-to-one negotiations. It
considered particular temporal constraints including bidding time, turnaround time for
bidding, and offer expiry time. It assumed that bidding time is communicated to
vendors participating in trading activities and negotiation is purely price based.

There are different negotiation strategies [11]. The anxious strategy tries to close
the bidding as soon it finds an offer that meets client's preferences and constraints. It
may not achieve client's maximum utility. The patient strategy waits till negotiation
deadline and then chooses the best valid offer. It gives better chance for maximizing
client's utility. Negotiation participants may impose a negotiation deadline as the
negotiation may be endless. The optimized patient strategy evaluates the outcomes of
a negotiation round and accordingly amends bidding constraints so as to improve the
outcomes of the subsequent negotiation round. The negotiation continues till it
reaches the most possible utility before the negotiation deadline.

The patient strategy is usually implemented in one-to-many unilateral negotiation
e.g. sealed-bid auctions and in one-to-many bilateral negotiation e.g. e-commerce. A
major problem in the strategy is that offers and, in particular, limited-time offers have
expiry times that might be earlier than the negotiation deadline and, thus, there is a
risk of losing advantageous offers and reducing the chances of maximizing client’s
utility. The problem has not been sufficiently addressed in the literature.

The aim of the proposed negotiation strategy is to avoid loss of top utility offer that
might expire before bidding deadline. We assume that offers are non-retractable. The
withdrawal of an offer results in imposing a penalty on the respective trading partner.
The proposed strategy implements immediate response interaction, which evaluates
an incoming offer as soon as it is received. This is different from the strategies that
implement delayed response interaction [3], which delays the evaluation of offers till
all offers are collected, e.g. sealed bid or Vickery auctions. The delayed response
interaction does not surely maximize client’s utility as a top utility offer might expire
before bidding deadline.

3 System Architecture

The high-level system architecture for mobile agent-based one-to-many negotiation is
depicted in Figure. 1. There are six successive and non-concurrent phases the agent
passes through its lifetime. In phase 1, the client places a request with the mobile
agent that describes goods/service of interest and defines expected delivery time TED,
preferences, constraints, and priorities. The phase is referred to as Initiation phase.

In phase 2, the client agent plans a bid and sets a deadline for bidding TEB to be
earlier than the negotiation deadline allowing for offer negotiation and bid award. It
then migrates to the marketplace to collect offers from potential vendors (S1) until
bidding deadline is reached. The phase is referred to as Bidding phase.

In phase 3, it migrates to the trusted host, where it can securely verify and evaluate
collected offers. It then shortlists acceptable offers and identifies constraints to
negotiate with short-listed vendors. The phase is referred to as Evaluation phase.

142 R. Al-Jaljouli and J. Abawajy

Fig. 1. High-level system architecture of mobile agent-basedone-to-many negotiation

In phase 4, the client agent sets a negotiation strategy and selects attributes to
negotiate. It then runs multiple negotiation rounds as necessary e.g. a, b, c, etc. In the
first round, it migrates to the marketplace to negotiate with a shortlist of vendors (S2)
and collects amendments to their original offers if any exists. It would migrate back to
the trusted host to evaluate outcomes of negotiation. If client’s requirements are not
satisfied and there is a need for more negotiation, the agent runs a second round of
negotiation with a narrower shortlist of vendors (S3). It may run multiple rounds of
negotiation till client’s requirements are satisfied and adequate market search is
completed. It then concludes the offer of maximum utility and indentifies the winning
vendor. The phase is referred to as Negotiation phase.

Phase 5 consists of two stages. In the first stage, the client agent sends a purchase
order to the winning vendor and waits for acceptance. In the second stage, it then
makes a payment order to client’s bank to process a payment for the winning vendor.
The bank then processes the payment to the winning vendor. The phase is referred to
as Award phase. Upon receipt of payment, the winning vendor delivers service/goods
to the client.

In phase 6, the client agent receives an acknowledgement from the client
confirming the receipt of service/goods. It would then pass the acknowledgement to
the winning vendor and concludes the successful completion of client’s request. The
phase is referred to as Acknowledgement phase.

At initiation, the client agent sets temporal constraints defining start and end times
of the different phases. During negotiation different entities: client, client agent, and
vendor agents exchange messages till an agreement is congregated and service/goods
are delivered to the client.

 Negotiation Strategy for Mobile Agent-Based e-Negotiation 143

4 Negotiation Strategy

The proposed negotiation strategy focuses on one-to-many multi-constraint bilateral
negotiation. The utility of an offer can be assessed by calculating the offer value.
Scoring functions [14] defined in Equations: (1) – (5) estimate the value of a collected
offer based on constraints the client sets e.g. price and installment plan. Upper and
lower limits the client sets for each constraint (j) for (1 ≤ j ≤ m) e.g. , and
the constraint (X) given in the respective offer are substituted into Equations (2) and
(3) to estimate the value of each constraint S . The parameter (β) defines the
gradient of the scoring function. Equation (2) is used to evaluate small item values X,
while Equation (3) is used to evaluate large item values X.

The value of an offer S is calculated based on Equation (1) as the sums of each
constraint value S multiplied by its normalized constraint weight () that
indicates the priority level of the constraint [16]. The more the constraint weight is the
higher is the constraint priority and the less is the agent concession [16]. The sum of
constraints weights () for (1 ≤ j ≤ m) complies with Equation (4). Agents can pre-
define weights of constraints by implementing Q-learning approach [2]. S ∑ . S (1)

S (2)

S (3) ∑ … 1 where 0 1 (4)

The client might only define upper or lower limit of constraints. The value of each
constraint is then calculated based on Equations (5) and (6). The proposed
negotiation strategy deduces the best utility offer by sorting the collected offers by
their values.

 S (5)

 S (6)

The algorithm in Figure 2 shows the pseudo-code of the Proposed Negotiation_
tactic. Firstly, a mobile agent receives a request from a client that consists of bid
attributes (Y), expected delivery time TED, matrix (M) of upper and lower limits of
constraints (maxj, minj) for (1 ≤ j ≤ m).

144 R. Al-Jaljouli and J. Abawajy

Algorithm Proposed Negotiation_tactic
INPUT: Tc , t, TED
OUTPUT: Vw
Set temporal constraints, e.g. T

EB

Set W, Sp, NMIN
Q ← {Y, W, S

P
, M, NMIN, TEB}

Select Agent’s itinerary V←{V1 , … , Vj , … , Vz}

FOR (Vj ∈ V) DO
Vj ← Dispatch (MA)

Read timer value t and store current time at Vj as Tj

Calculate Drift time Tdj = Tc + t - Tj

IF (T
EB
 ≤ (Tj + Tdj)) THEN Abort_execution

ELSE
Execute (MA) and collect offer (Fj)

Compute offer’s value(Sj)using scoring functions

Compute number of visited vendors NT = NT +1
IF offer Fj satisfy:

a. Client’s constraints (maxj, minj) for (1 ≤ j ≤ m)
b. Offer value is equal to or greater than the preferred

offer value (Sj ≥ SP)
THEN
{
F • Append Fj (Y, Vj , Sj, TSV, TEV)

Sort offers' values (S) and store as vector (S)
IF (S 1 == Sj) AND (TEV ≤ TEB) THEN
{
Estimate award time
Ta • award time
Trj • Compute (TEV + Td - Ta)//Alert period of Fj

Set_Alert (Trj , Fj)

}
ENDIF
}

ELSE Exclude offer
ENDIF

ENDIF
ENDFOR

END Proposed Negotiation_tactic

Fig. 2. Pseudo code of the Proposed Negotiation_tactic

 Negotiation Strategy for Mobile Agent-Based e-Negotiation 145

The mobile agent (MA) initially sets bidding deadline (TEB), matrix of weights of
constraints (W), preferred offer value (SP), and minimum search space (NMIN). It then
stores the request into vector (Q). It then stores the current time at its host (T), and
initializes two parameters: Timer (t) and Number visited vendors NT and sets both to
zero. It initializes two empty vectors: offers vector (S) and offer values vector S). It then
selects an itinerary for the agent {V1, … , Vz} and stores it in vector (V).

The agent would search for the most similar need pattern to the client’s pattern
from the prefetched servers and then compares the current need pattern to previously
recorded ones. Based on similarities between the two patterns [15], they recommend
the minimum search space (NMIN) before a decision can be made.

The agent (MA) starts its itinerary and searches for offers. A visited vendor (Vj)
may provide an offer. The negotiation strategy carries out preliminary evaluation of
each offer as soon as it is received and computes its value (Sj) using Equations: (1) –
(5) and stores it in vector S .

The mobile agent verifies if the collected offer (Fi): (1) satisfies client’s constraints
(maxj, minj) for (1 ≤ j ≤ m); (2) has a value (Sj) equal to or greater than the preferred
offer value (SP). If the offer passes the verification, it appends the offer (Fj) to offer
vector (F), otherwise it excludes the offer and migrates to the next host in agent’s
itinerary.

The offer (Fj) consists of: offer attributes Y , vendor identity (Vk), offer value
(Sj), start of offer validity (TSV), end of offer validity (TEV). It then ranks the so far
collected offers by their values (Sj) by sorting vector (S) and short-lists the highly
ranked offers.

If the offer has best value i.e. (S 1 S) and would expire before the end time
of bidding phase, it then set a timer to signal before the so far most advantageous
offer expires. It estimates the time (Ta) the client agent needs to award the bid to the
winning vendor taking into consideration delays due to communication,
transportation, and processing queues. It sets a timer to signal an alert at (Trj). It is
calculated based on Equation (7) and is earlier than the expiry time (TEV) of offer (Fj)
to allow for awarding the bid to the winning vendor.

Trj = TEV + Td - Ta (7)

Whenever, the timer signals an alert at Trj, it indicates that an advantageous offer (Fk)

is about to expire. The mobile agent sorts the vector (S) to identify the utility of the
top offer and then verifies if the offer (Fk) has the top utility i.e. (S S 1). If the
offer passes the verification, the agent verifies if the number of visited vendors
satisfies the minimum number of searched vendors i.e. (NT ≥ NMIN). If the verification
passes, then the vendor (Vk) would be selected as the winning vendor. Offer
collection would be interrupted and vendor (Vk) would be awarded the bid.

The agent (MA) does not immediately award the bid to the vendor (Vk) for which
the alert is on as more advantageous offers may have been offered or an adequate
price of first best offer, price of second best offer, offer validity, and negotiation

146 R. Al-Jaljouli and J. Abawajy

deadline. Let market search has not yet been completed. It carries multiple
verifications to ensure maximum utility is achieved. It sorts the so far collected offers
and stores them in vector (S) and then verifies if offer for which the alert is on has the
best value i.e. (S 1 == Sk). If verification fails, it excludes the offer. If verification
passes, it then verifies if the constraint on minimum number of visited vendors is met
i.e. (NT == NMIN). If the verification passes, offers collection/negotiation would be
interrupted and the vendor (Vk) would be awarded the bid. Next, an agreement is
settled and payment is processed for the winning vendor. If the verification fails, then
the offer (Fk) would not be considered to any further extent and the client agent
migrates to the next vendor’s host in agent’s itinerary for offer collection or
negotiation.

5 Analysis of Strategy

The main objective of e-negotiation is to optimize negotiation outcomes in terms of
expected utility. Negotiation outcomes depend on multiple factors such as
negotiation deadline, eagerness, competition, and trading opportunities, etc [1].We
measure the performance of the system based on the expected utility as being the
fundamental evaluation criterion. We develop a function that computes the client’s
expected utility in one-to-many e-negotiation. As experiments may not fetch critical
cases that deal with advantageous offer that expire before negotiation deadline, we
simulate the system with all possible critical cases considering variations of four
variables: offers be collected at discrete time instants = {1, 2, … , i , … , n} and
expire at discrete time instants, = {2, 3, … , i , … , n) with the earliest expiry of a
collected offer at n = 2.

The negotiation deadline is at time instant n, where n = {10, 15, 20}. The price of the
first best offer varies from 0.5 to 0.9 of the price upper limit and the difference in price
between the first and the second best offers ranges from (5%) to (40%) with an increment
of (5%). We test (40*360) states and present numerical results of expected utility that
provide insight into the system performance. For simplicity, we consider price-based
negotiation. Let represents the price upper limit of service/goods, and represents

 the bid price of vendor i. The bidding time and the end of offer validity are denoted
as are denoted as , and respectively. The expected utility function is defined
in Equation (8).

 (8) where,

 Negotiation Strategy for Mobile Agent-Based e-Negotiation 147

Assume the client sets an upper-limit constraint on the price of service/goods
and a fixed bidding deadline n. The agent received offers from m vendors and intends
to run a single round of negotiation. The client's utility is inversely proportional
to offering better savings on purchases. Thus, the lower the bid price is as
compared to the better is the client's utility. Whereas, the utility is directly
proportional to offer validity that allows for broader search/negotiation space.
Thus, the longer the offer validity is as compared to the better is the client's
utility.

We present the results of simulating a system of a negotiating mobile agent that
sets n to 15. Let the price of the best offer be 0.5 of the price upper limit . Due
to space limitations we only analyze (14*3) states where the difference in price
between the first and the second best offers is as: 5%, 15% or 30% of the price upper
limit.

Figure 3 shows the increase in client utility if the best offer is awarded the bid just
before it expires. The utility is compared to the expected utility if negotiation
continues till its deadline. The intersection of the graph with the horizontal axis shows
the minimum acceptable validity of the best offer for negotiation to be interrupted.
For example, the client would benefit from the interruption of negotiation if the best
offer expires later than time instant t = 5 and there is a significant difference in price
of (30%). Conversely, the client would only benefit from the interruption of
negotiation if the best offer expires later than time instant t = 14 and there is a
marginal difference in price of (5%).

Fig. 3. Increase in expected utility (%) when negotiation ends before the best offer expires

The strategy encourages early interruption of negotiation if there is a significant
difference in price, whereas if does not if there is a marginal difference in price. The
more the difference in price between the first and second top offers, the earlier the

148 R. Al-Jaljouli and J. Abawajy

Table 1. Detailed reasoning of various negotiation strategies

Scenario

N
egotiation

Strategy

Criteria
N

egotiation
O

utcom
e

U
tility

E
nhancem

ent

Search
A

dequacy

TEV TEB TEV TEB S[1] = Sk NT ≥ NMIN

TEV TEB + Ta – Tdj

Proposed

Reject

Patient Reject

Anxious Accept

Proposed

Reject

Patient Reject

Anxious Accept

Proposed

Reject

Patient Reject

Anxious Accept

Proposed

Accept

Patient Reject

Anxious Accept

Proposed

Reject

Patient Reject

Anxious Accept

Proposed

Accept

Patient Reject

Anxious Accept

Proposed

Reject

Patient Reject

Anxious Accept

Proposed

Accept

Patient Reject

Anxious Accept

Proposed

Accept

Patient Accept

Anxious Accept

Proposed

Reject

Patient Reject

Anxious Accept

 Negotiation Strategy for Mobile Agent-Based e-Negotiation 149

negotiation can be interrupted with more gain in utility. The strategy weighs extended
market search more than a marginal gain difference in price For example, interrupting
negotiation before the best offer expires at time instant t = 9 would result in an
increase in utility by 76.8% and a drop in negotiation time by 40% having a
difference in price is (30%), whereas it would result in a drop in utility by 21.4% if
the difference in price is (5%).

Moreover, we reason the correctness of the proposed negotiation strategy by
examining the end results of various negotiation strategies for four decision-making
conditions. The first condition tests if the expiry time of a limited-time offer (TEV) is
earlier than the bidding deadline (TEB). The second condition tests if the expiry time of
a limited-time offer (TEV) is later than the bidding deadline (TEB) but earlier than the
bid award time (TEB + Ta – Tdj) at which the winning vendor receives an award
confirmation message. The third condition tests if the limited-time offer has the best
utility among the so far collected offers i.e. (Sk = S[1]). The fourth condition tests if
the number of visited vendors satisfies the minimum number of searched vendors i.e.
(NT ≥ NMIN). We examine all probable scenarios of different settings. We summarize
the reasoning results in Table 1 and highlight the enhancements the proposed strategy
presents as compared to patient and anxious strategies [6]. It avoids loss of the most
advantageous offer that expires earlier than the bidding deadline, increases client's
utility, and ensures adequacy of market search.

The reasoning shows the following:

- The proposed strategy carries out prompt evaluation of each collected offer and
verifies if the offer satisfies client's constraints and preferences. It then tests if a
collected offer has the best utility and would expire earlier than bidding
deadline. If the offer passes the test, it sets an alert and extends offer
negotiation/collection to (Ta) just before the expiry time of the offer. If the alert
signals soon expiry of the offer, it awards it the bid if it satisfies constraint on
minimum number of vendors to search and has the top utility among the so far
collected offers. The strategy interrupts offer collection/negotiation and awards
the bid to the vendor of the most advantageous limited-time offer in four
scenarios out of the ten scenarios confirming minimum market search. Thus, the
strategy improves utility while ensuring adequacy of market search. It would
further interrupt offer collection/negotiation earlier than bidding deadline,
which results in shortening offer collection/negotiation time.

- The anxious strategy in all scenarios immediately accepts the first collected
offer that satisfies client's constraints and priorities. The strategy does not
improve client's utility, nor confirms adequacy of market search.

- The patient strategy losses any advantageous limited-time offer that expires
before bidding deadline or even expires later than the bidding time but before
the sent bid award notification is received by winning vendor. The strategy only
accepts one scenario out of the ten scenarios. It can only accept the top ranked
offer only if its expiry time is later than bidding deadline by enough time for
awarding it the bid. The offer has to satisfy conditions: (1) (TEV TEB); (2)
(TEV TEB + Ta – Tdj). It only ensures adequacy of market search, but does not
maximize utility.

150 R. Al-Jaljouli and J. Abawajy

The proposed strategy as compared to patient and anxious strategies results in: (1)
Better outcomes, (2) Increase in utility, (3) Adequacy of market search, (4) shorter
search time as compared to the patient strategy. It improves utility as it avoids loss of
top utility offer that expires before bidding deadline and avoids early bid award that
would result in overpriced bids. It also shortens the marketplace search time as the
search can be interrupted and the bid may be awarded earlier than the bidding
deadline, whenever, the most advantageous offer is about to expire and an adequate
market search is completed.

6 Conclusion

In this paper, we proposed a mobile agent-based one-to-many bilateral negotiation
strategy for e-Trade applications. The aim of the proposed strategy is to maximize
client's utility. It overcomes the risk of missing out limited-time advantageous offers
during offer collection/negotiation that have not been addressed in existing negotiation
strategies. Moreover, it confirms adequacy of market search and considers various
temporal constraints including bidding deadline, offer expiry time, award time,
communication delays, processing queues, and transportation times. The negotiation
strategy is more efficient than the existing negotiation strategies. It presents six
advantages: (1) attenuation in offer collection/negotiation time; (2) avoidance of loss of
best utility offer that would expire before offer collection or bid award is completed; (3)
assurance of a satisfactory market search; (4) maximizing client utility; (5) avoidance of
early bid award that would result in overpriced bids; (6) assurance of accurate
comparative analysis of top ranked offers in terms of offers value and offers validity.

The future works of the paper is to extend the proposed negotiation strategy with the
implementation of multi-agents that concurrently search sub-spaces of marketplace. It
shortens offer collection/negotiation time and, thus, minimizes the risk of missing out the
top utility offer that has a short validity.

References

1. An, B., Sim, K., Gui Tang, L., Qing Li, S., Cheng, D.: Continuous-Time Negotiation
Mechanism for Software Agents. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 36(6), 1261–1272 (2006)

2. Braun, P., Brzostowski, J., Kersten, G., Kim, J., Kowalczyk, R., Strecker, S., Vahidov, R.:
E-Negotiation Systems and Software Agents: Methods, Models, and Applications. In:
Intelligent Decision-Making Support Systems: Foundation, Applications, and Challenges.
Decision Engineering Series. Springer, Heidelberg (2006)

3. Collins, J., Jamison, S., Gini, M., Mobasher, B.: Temporal Strategies in Mult-Agent
Contracting Protocol. In: Proceedings of AAAI-1997 Workshop on Using AI in Electtronic
Commerce, Virtual Organizations, Enterprise Knowledge Management to Re-enginer the
Corporation, pp. 50–56 (1997)

4. Fatima, S., Wooldridge, M., Jennings, N.: Multi-Issue Negotiation with Deadlines. Journal
of Artificial Intelligence Research 6, 381–417 (2006)

 Negotiation Strategy for Mobile Agent-Based e-Negotiation 151

5. Fatima, S., Wooldridge, M., Jennings, N.R.: An Agenda Based Framework for Multi-Issue
Negotiation. Journal of Artificial Intelligence 152(1), 1–45 (2004)

6. Fatima, S., Wooldridge, M., Jennings, N.R.: Bargaining with incomplete information.
Annals of Mathematics and Artificial Intelligence 44(3), 207–232 (2005)

7. Kebriaei, H., Majd, V.: A Simultaneous Multi-Attribute Soft-Bargaining Design for
Bilateral Contracts. Journal of Expert Systems and Applications (2008)

8. Jaljouli, R., Abawajy, J.: Secure Mobile Agent-based E-negotiation for Online Trading. In:
Proceedings of the 7th IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT 2007), Cairo, Egypt, pp. 610–615 (2007)

9. Kersten, G.E., Lai, H.: Satisfiability and Completeness of Protocols for Electronic
Negotiations. European Journal of Operational Research 180(2), 922–937 (2007)

10. Levati, M.V., Maciejovsky, B.: Deadline Effects in Ultimatum Bargaining: an
Experimental Study of Concession Sniping with Low or no Costs of Delay. Journal Costs
of Delay: International Game Theory Review 7, 117–135 (2001)

11. Rahwan, I., Kowalczyk, R., Pham, H.: Intelligent Agents for Automated One-to-Many e-
Commerce Negotiation. In: Proceedings of the 25th Australian Conference on Computer
Science, pp. 197–204. Australian Computer Society Press (2002)

12. Selamat, A., Selamat, H.: Routing Algorithm of Mobile Agents for Query Retrieval Using
Generic Algorithm. Malaysian Journal of Computer Science 17(2), 1–10 (2004)

13. Si, Y., Edmond, D., Dumas, M., Hofstede, A.H.: Specification and Execution of
Composite Trading Activities. Journal of Electronic Commerce Research 7(3-4), 221–263
(2007)

14. Vogler, H., Spriestersbach, A., Moschgath, M.: Protecting Competitive Negotiation of
Mobile Agents. In: IEEE Workshop on Future Trends of Distributed Computing Systems
FTDCS (1999)

15. Zen, Z.: An Agent-Based Online Shopping System in E-Commerce. Journal of Computer
and Information Science 2(4), 14–19 (2009)

16. Zhuang, Y., Fong, S., Shi, M.: Knowledge-empowered Automated Negotiation System for
e-Commerce. Journal of Knowledge and Information Systems 17, 167–191 (2008)

Adaptive Choice of Behavior

and Protocol Parameters

Frank Grove, Sandip Sen, and Oly Mistry

University of Tulsa
800 South Tucker Avenue
Tulsa, OK 74104, USA

{dean-grove,sandip,oly-mistry}@utulsa.edu

Abstract. Research on interaction between multiple self-interested
agents has focused on either designing rational behavior for agents given
the interaction protocol or designing the interaction protocol that will
promote desirable rational behavior by agents. We believe that in cer-
tain situations self-interested agents can be interested in both choosing
desirable protocols and deciding effective strategies to follow under the
chosen protocol. We experiment with a market situation where agents
repeatedly negotiate to decide on the allocation of indivisible resources.
We present a parameterized protocol selection scheme which can be used
by agents to select the interaction protocol to use. We show that learning
agents can greatly improve performance by adapting the protocol used
and the behavior adopted against a range of opponents.

1 Introduction

The research in agent coordination can be grouped into two general areas:
Coordination protocol design: Agents typically interact within a framework
that guides the nature, duration, and frequency of interaction as well as the
relative roles assumed by the participants. Auction protocols, bargaining frame-
works, negotiation protocols, cake-cutting protocols, etc are prominent protocols
that have received widespread use in the multiagent community [15]. Protocol
design has been an active and influential area of research with notable advances
in key application areas like combinatorial auctions with the notion that it will
incentivize social welfare maximizing behavior by rational, strategic agents.
Agent behavior design: This branch of research focuses on designing efficient
and effective algorithms for agents to follow. The point of view assumed by this
body of work is that often an agent will find itself in an environment where it
has no control over the domain protocols or the “rules of the road” and can only
seek to optimize performance by selecting and executing appropriate behaviors.

We are interested in studying the problem of repeated negotiations in agent so-
cieties when the details of the interaction protocol are themeselves “negotiable”
and can be adapted online by the negotiating agengts. More specifically, agents
can both jointly choose from a range of parameterized protocols for interaction
and individually select their behaviors from the corresponding behavior spaces.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 152–165, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Adaptive Choice of Behavior and Protocol Parameters 153

While mutually agreeing on an interaction protocol and then choosing appro-
priate behaviors is necessary in the absence of existing infrastructure, agents
may prefer to negotiate details of the interaction protocol even when such fa-
cilities and services are available. This is particularly true in the presence of
information asymmetry. For example, if one agent has more information about
the opponent than the latter has for itself, the former may prefer to use a version
of the protocol that requires less revelation of private information.

We assume that agents possess the basic communication skills and share a lan-
guage and vocabulary to negotiate the domain level interaction protocol. Hence
we will not address the meta-level or recursive problems of choosing a mecha-
nism to select a domain-level protocol. Rather, we will work with a parameterized
version of a protocol-selection scheme that we present in Section 3.

Our domain of application is a system for allocating non-shareable resources
or services. We posit a framework where an agent requesting service or resources
can submit a request with a level of urgency (or strategy or bid), i.e., the maxi-
mum amount it is willing to pay, if necessary. If there is a conflict, i.e., multiple
requesters request a given item, they select a protocol that will both determine
the winner, i,e, the agent who gets the item, and what payment, if any, the
winner is going to pay to the system.

The protocol set available to the agents for selection ranges from the Vickrey’s
auction protocol at one end, where the winner has to pay the system the amount
of the second highest bid, to the trusting protocol where the winner does not
pay anything. We empower the agents with the ability to learn to choose the
protocol parameters such that exploitative behaviors will be suppressed while
rewarding agents who truthfully represented their resource requirements.

2 Related Work

In recent literature on multi-agent systems, negotiation is studied as isolated
incidents in one-shot stage games. Equilibrium conditions are analyzed under
different degree of available information, e.g., complete information [10,11],
incomplete information [5], or knowledge of a probability that they will negotiate
under same condition [8]. There has been research in multi-agent systems on
using helpful social attitudes [6], reciprocity mechanisms [13], and trust in
negotiation [1]. There has not been any work that deals with selecting a protocol
to negotiate indivisible resources utilizing trust. In particular there is very little
work on studying the effect of negotiation behavior on mutual trust, future
negotiation opportunities and agent utilities.

Research in economics and psychology have investigated the effectiveness of
strategic negotiation behaviors [4,16]. These studies are concerned with the be-
havior and utility of two general types of agents: egoistic and pro-social. The goal
of an egoistic agent is to maximize its own profit and it does not want to sacrifice
any utility to cooperate with other agents. On the other hand, pro-social agents
want to maximize the joint profit without considering their individual profitabil-
ity. De Dreu et al. have showed that a group of pro-social agents achieve higher

154 F. Grove, S. Sen, and O. Mistry

joint outcomes than egoistically motivated agents as the egoistic agents settle
on suboptimal agreements [4]. They have considered a homogeneous group of
agents, whereas real-world societies contain a great variety of negotiation be-
haviors. In a following paper, they demonstrated that groups with a majority of
egoistic agents settle on suboptimal agreements more frequently than a group
with a majority of pro-social agents. In both situations, they view the problem
from the perspective of the entire society. We, on the other hand, are inter-
ested in the analysis of negotiation behavior and utility from the perspective of
self-interested agents.

The CREDIT [14] trust model allows an agent to calculate the trust of other
agents and uses this trust measure during negotiation. This measurement ef-
fectively decreases the uncertainty in the environment and enables the agents
to reach more efficient agreements. Truth-telling behavior in the environment
can be rewarded by this incentive compatible scheme. The CREDIT model is
effective in producing the outcomes that maximizes all the negotiating agents’
utilities and in choosing the most reliable agents in the long run. Though we also
focus on utility maximization, we do not restrict the agents to playing against
only related opponents. Rather, we assume that agents may have to interact with
arbitrary opponents and hence must learn to play against potentially harmful
opponents and yet secure higher utility than any other agent in the population.

3 Domain and Interaction Model

3.1 Domain Assumptions

We now present our domain model which describes a facility for sharing resources
and services by a large agent society. We assume that resources or services are
atomic and are non-shareable. Typical example of such services include libraries
checking out limited copies of eBooks or organizations giving employees access to
software with limited number of licenses. Users are represented by their agents
who interact with similar agents to obtain the necessary resources or services.
Whenever two agents request the same resource for an overlapping period of
time, a conflict-of-interest (COI) happens and the agents need to directly resolve
such a COI as resources/services are atomic and non-shareable. We assume the
following characteristics of our domains of interest:

• The society is semi-stable, where users frequently request resources/services.
• The number of resources/services is limited and this leads to frequent COIs.
• The above two assumptions lead to the fact that agents with similar ser-
vice/resource requirements will have a history of COIs from which they can
learn about others negotiation behavior.
• Agents are interested in maximizing their satisfaction or utility but are not
spiteful (deliberately trying to reduce others’ utilities) or colluding to manipu-
late the system. Agent requirements or demands for a resource/service vary over
time. In particular, an important consideration in our work is the importance,
priority or urgency with which an agent requires a resource in the current time
period.

Adaptive Choice of Behavior and Protocol Parameters 155

• We assume an incomplete but perfect information scenario, i.e., agents will
not know about the true preferences of the opponent about the resource/service
under conflict but can observe the behavior or strategy chosen by other agents1.
We also assume that each agent makes its offer without knowledge of the other
agents’s choices.

3.2 Trust Considerations in Protocol Selection

Trust can be key in the protocol mechanism decision. An agent with a high trust
for its opponent is more inclined to prefer allocation based purely on reported
urgency or priority. On the other hand, an agent with low trust for its opponent
will be inclined to prefer the auction mechanism, a relatively safer bet that guards
against manipulations. We want to develop a new protocol selection framework
that allowed agents to range from a complete trusting to a complete distrusting
protocol. Hence, we adopt a parameterized protocol selection scheme that allows
selection from a continuous spectrum of protocols ranging from pure priority
based allocation to the Vickrey’s 2nd price auction. In this range, the winner’s
payment is determined by the loser’s level of trust for the opponent. If the
loser has high trust in it’s opponent, the winner has to pay less to the system.
Conversely, low trust will cause the winner’s payment to the system to increase.

Note that from our perspective, we are only interested in the net utilities
(valuation minus payment) of the agents and the system is viewed only as a
sink and money paid to it is undesirable waste as it decreases the total utility to
the agents. This is somewhat different from the view of social welfare taken in
auction theory where the auctioneer is considered part of the society. To differ-
entiate our view, we will use the term “agent welfare”. Hence, while Vickrey’s
second price auction is the fall-back option for an agent when faced with an un-
trustworthy agent, this protocol reduces the overall agent welfare as payoffs to
the system will reduce agent utility. If agents are mutually trustworthy, however,
they can eliminate such “wasteful” payments to the system and truly maximize
agent welfare. The goal of this research, therefore, is to develop a protocole
selection framework by which non-manipulative agents can learn to trust each
other from experience and maximize their welfare while avoiding manipulation
by malevolent agents. Though manipulative agents can exploit this protocol and
receive a higher payoff in the short run (also resulting in suboptimal allocations),
the protocol selection framework gives adaptive agents the capability to punish
the exploitive agents while reciprocating the trust of an agent that truthfully
reports its priorities.

3.3 Trust-Based Protocol Selection Framework

We consider a society of N agents who repeatedly engage in resource allocation.
At each iteration, each agent’s valuation vt is derived from a uniform distribu-
tion of U(0.5, 1). This assures a competitive society where agents have similar

1 We use the term behavior and strategy interchangeably.

156 F. Grove, S. Sen, and O. Mistry

valuations and demands for the resource. Next, each agent interacts with the
rest N − 1 agents. During an interaction between two agents i and j, each agent
specifies both a bid for the contested item and a trust value in its opponent.
Hence, agent i specifies a bid bi and a trust value αj

i representing i’s trust in the
truthfulness of j. If bi > bj , the resource is allocated to i.

The payment of winner, i, to the system is determined to be

paymenti = bj ∗ αi
j . (1)

Hence, the payment of the winner is the product of the loser’s bid and the loser’s
trust in the winner reporting truthfully. The utility ui for the winner is defined
as ui = vi − paymenti.

Each agent j ∈ N stores a list of αi
j ∈ [0, 1], ∀i ∈ N . 1−αi

j gives the measure

of actual trust value of agent j on agent i. As αi
j increases the i must pay a

greater payment. When αi
j = 1, the winner pays the loser’s bid bj, i.e., the

second highest bid, which is equivalent to the 2nd price or Vickrey’s auction.
Conversely, when αi

j = 0, representing total trust, the winner pays nothing and
the protocol reverts to priority based resource allocation. Hence, we see that this
protocol selection framework allows agents to use reported trust values to choose
radically different protocol instantiations. We will see later that adaptive agents
can learn to choose these parameters (trust values) to reward truthful agents
and punish greedy or untrustworthy behavior.

Over successive iterations, agents accumulate utility, and the agent with the
greatest utility is the optimal strategy within this society.

4 Strategizing over Trust

We now examine whether bidding truthfully is the dominant strategy for agents
in a single interaction in this setting. To examine the ability to strategize about
the opponents value of α, we must analyse whether the bidder can overbid to
achieve a greater utility than it achieves by bidding truthfully. We examine the
three cases where bidder i overbids. The payoff for the bidder is defined by
Equation 1 if the bid bi > bj:

bj < vi : In this case overbidding yields the same utility as truth telling.
bj > bi : In this case regardless of overbidding the agent does not gain the good
and no utility is gained or lost.
vi < bj < bi : In this case the utility is given by the payment equation. However,
it is not clear where or not vi < bj ∗αi

j and the subsequent utility from overbid-

ding is greater. When αi
j = 0 the optimal strategy is to overbid, and the case of

αi
j = 1 reduces to the Vickrey’s Auction dominant strategy of truth telling. How-

ever in the case where 0 < αi
j < 1 the dominant strategy is not immediately clear

and depends on the opponents trust value αi
j . If agent i could deduce the value of

αi
j and the bj values then the agent could easily determine the optimal amount

of overbidding necessary to achieve maximum utility. However the nature of the

Adaptive Choice of Behavior and Protocol Parameters 157

trust protocol makes it difficult to determine αi
j . While the Trust Based Protocol

lacks the dominant strategy of truth-telling, we show that our protocol is robust
against agents attempting to deduce the α values. It may be possible to elicit
the mean of another bidder’s α over time, especially if the agent can determine
the distribution from which the opposing bidder draws its valuation. However,
it is unlikely that an agent will know its opponent’s valuation distribution. In
most domains this is unlikely or unwanted. In fact a criticism of the standard
Vickrey’s Auction is that the agents are forced to make their valuations public.
However, without this knowledge it is not possible to determine the valuation or
the trust its opponent has. When agent i wins, it is only made aware that bi > bj
but cannot know for certain what the value of bj actually is. For this reason we
argue that our Trust based Protocol is a robust mechanism for resource allo-
cation even though truth-telling is not always the dominant strategy. In cases
where bidders prefer to keep their valuations secret, the Trust based protocol is
indeed preferable. Only in trivial circumstances, where the opponent’s α is static
and opponent valuation distribution is known, is it possible to infer the α value
and thereafter obtain utility gains through overbidding.

5 Agents

To evaluate the effectiveness of our protocol selection mechanism in effectively
resolving COIs, we experiment with a variety of agent types and observe the
resultant performance of these agents. We now describe the agent types used.

Bully Agent: A Bully agent always bids 1.0 irrespective of their resource need.
This bid represents the strategy to attempt to obtain the resource in all inter-
actions, regardless of another agent’s valuation. They also use an α value of 1
for all the other agents in the population. Therefore, any agents that obtain the
resource instead of the bully (can only happen with probability 0.5 where both
agents bid 1) will have a payment of 1 according to our protocol.

Naive Agents: Naive agents always bid their true valuation for the resource.
They use low α values for the other agents present in the population, i.e., they
trust other agents to bid their true valuation. Although this is not a rational
strategy, similar agents do exist in real-world markets. We do not expect naive
agents to be very successful, but it is important to study the effect of their
presence in a society.

Rational Myopic Agents: These agents always bid their true valuation but
always use α = 1, i.e., they do not trust other agents. This behavior is optimal for
a single interaction. It defends against exploitation from bullies by ensuring that
the agent never receives a negative utility. A society of rational myopic agents
always select Vickrey’s 2nd price auction. While this strategy is optimal from the
myopic perspective, it results in agents paying to the system the sum total of the
agent utilities and hence agents welfare is not maximized. The learning agents
introduced next are designed to maximize agent welfare by trusting truthful
agents.

158 F. Grove, S. Sen, and O. Mistry

α-Learning Agents: The α-learning agents always bid their true valuation.
However, they adapt their reported α values over time to more accurately rep-
resent their trust for the opponents. An α-learning agent records the number
of win (w) and loss (l) against each of its opponents. After every interaction, it
calculates a ratio (r):

r =
w

(w + l)
· (1 − γ) +Result · γ (2)

where γ is the forgetting factor and Result is a boolean value of 1 or 0 represent-
ing win or loss in the latest interaction. Based on r, these agents adapts their α
value using the sigmoid function given below:

α =
1

1 + eC·(r−0.5)
(3)

where C is a constant. If r ≥ 0.5, we set C to Clow and otherwise set C to Chigh.
For experiments reported in this paper, we used Clow = 1 and Chigh = 30. We
expect an agent to win the contested resource 50% of the time as agent valua-
tions are drawn randomly. We used different learning rates for different regions
in Equation 3 as we want the learners to respond aggressively to potentially ex-
ploitative agents but should be more cautious about adapting its α value against
truthful agents.

α-Bid Learning Agents: Our next, more advanced, learning agent employs
the same learning algorithm as the α-learning agent when adapting its α values.
In addition, it also learns to adapt its bid to respond to exploitative agents such
as the Bully. Such an agent will identify other agents in the population that are
trying to corner the resources by overbidding their valuations.

If the fraction of wins in intearctions against a particulr opponent is below τ ,
i.e., w

w+l < τ , the α-Bid learner agent will increase its bid against that opponent.
We use the following equation to update the advanced learning agent’s bid:

bid = (1− valuation) · α4 + valuation. (4)

Figure 1 shows the effect of α on the reported bid given the true valuation. We
used τ = 0.2 in our initial simulations. The bid update equation (Equation 4)
ensures that the bid increment is almost negligible against opponents for whom
the learner has α < 0.5. However, bid increment is significant against opponents
for whom α � 0.5. This implies that agents who are acting selfishly will be
punished over time if their behavior causes the learning agent to not receive a
fair share of required resources.

6 Experimental Results

Here we present our experimental results from simulations that evaluates the
performances of the agent types introduced above under different environmental
conditions. We observe their performances varying number and types of agents in

Adaptive Choice of Behavior and Protocol Parameters 159

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ep

or
te

d
va

lu
at

io
ns

True valuations

α = 0.01
α = 0.5
α = 0.6
α = 0.7
α = 0.8
α = 0.9
α = 1.0

Fig. 1. Function used by α-Bid learning agents to Update bid

the population. We also compare results using our parameterized trust protocol
with that using VCG auction in terms of agent welfare generated.

We sample valuations for an agent at every iteration t from a Uniform Dis-
tribution U(0.5, 1). We initialize the α values of the Bully, Naive and Myopic
agents at 1, 0.01 and 1 respectively. The α values of the learning agents are
randomly initialized in the range [0, 1].

6.1 One-on-One Interaction Results

We now discuss the performance of each learning agent type against every other
agent type in a society.

Bully vs. α Learner: In this situation, the basic learning agent quickly deter-
mines its opponent is selfish and responds by increasing α value. As the α value
increases, level of trust decreases, and the bully, though always winning the re-
source by bidding 1, is required to pay a greater percentage of the α learner’s
bid. Therefore, it receives mostly negatively utilities. Since all valuations are
sampled from the same distribution, the bully’s accumulated utility should ul-
timately converge to 0 after the basic learner learns not to trust its opponent.
Since we consider only a finite number of iterations, the actual cumulative utility
of a bully agent oscillates around 0 (see Figure 2). Since the basic learning agent
will never bid greater than its valuation, the bully’s selfish behavior will not be
punished more aggressively to produce larger negative values.

Bully vs. α-Bid Learner: Similar to the α learner, the α-bid learner quickly
learns to distrust the bully agent. In addition, the α-bid learner also increases
its bid against the bully agent following Equation 4, as the win-loss ratio shows

160 F. Grove, S. Sen, and O. Mistry

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 50 100 150 200 250 300 350 400 450 500

U
til

ity

Iteration

Bully
α Learner

Fig. 2. Bully vs. α Learner utilities

complete monopoly by the bully. The result of this bid increase on the bully
agent’s utility is reflected in Figure 3. The α-bid learner increases its bid close
to, but not equal to, 1 and thereby maximizes the payment for the bully with
high bid and α values. This minimizes the bully’s utility in every interaction and
the utility of the bully agent monotonically decreases (see Figure 3).

Naive vs. α Learner: In this case, the α learner learns to trust the naive agent
and its α value reaches 0. Over time their win-loss ratio reaches 0.5, resulting
in a positive utility gain for both the agents. The rate of utility increase for
the learning agent is found to be significantly higher than that of the Naive
agent (see Figure 3). This result can be explained by the varying and static α
values of learning and naive agent respectively. The learner uses a non-zero α
value causing the naive agent to make a positive payment when winning, which
reduces the latter’s net utility.

Naive vs. α-Bid Learner: The α-bid learner also learns to trust the naive
agent. Initially, it increases its bid against the naive agent but that increment is
small. Also, ultimately its α value tends towards ≈ 0.0. As the win-loss ration
also reaches its equilibrium value of 0.5, the α-bid learner bids its true valuation.
We do not report this utility graph as it is found to be very similar to that of
Figure 3.

Myopic vs. α Learner: In this case, myopic agents always accumulate higher
utility than the learners by imposing a higher payment on the winner (see Figure
3). And the learners learn to trust the myopic agents from a fair win-loss ration
(≈ 0.5)

Adaptive Choice of Behavior and Protocol Parameters 161

Fig. 3. Average utility over time for each agent strategy

Myopic vs. α-Bid Learner: This situation also yields similar results as shown
in Myopic vs. α Learner.With a balanced win-loss ratio the advanced learner does
not use its bid increment strategy and hence behaves similar to a basic learner.

6.2 Group Interaction

We now discuss the performance of the learning agents as a group in a multiagent
society. We consider the average utility of the group instead of that of individual
agents and observer performance trends over the course of a run.

All Agent types: We consider a population of N = 20 with 4 agents of each
type. Figure 3 shows the average cumulative utility for each group averaged over
10 simulations. Myopic agents have very high α values for all the other agents,
which incorporates higher payment in the system whenever any other agent loses
against myopic agents and this reduces their utility. Myopic agents get higher
utility in interactions against the naive agents because of the higher trust value
of naive agents which creates lower payment for myopic agents.

Bully, Naive, and Learning Agents: For these group interactions, we used
three agent types (Bully, Naive, and one learning type) with 4 agents of each
type for a total of twelve agents (N = 12). The cumulative utility of one of the

162 F. Grove, S. Sen, and O. Mistry

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

U
til

ity

Iteration

Bully
Naive

α Learner

Fig. 4. Bully, Naive, and α-learners

cases is shown in Figure 4. This experiment demonstrates how bullies thrive in
a society. As bullies are most successful in one-on-one interaction with a naive
agent, they can utilize this advantage to outperform learning agents in a group
containing naive agents. We conducted a series of experiments for this group
configuration varying the ratio of bullies and naive agents in the population.
Results show that the ratio of naive to rational agents within a group can signif-
icantly impact the cumulative utility of the bully agent. A larger ratio of naive
to bully agents can allow the bully class to accumulate the greatest utility of
all classes. However, interactions with other bullies severely impact the bully
agent’s cumulative utility. Since bullies always bid 1 and use α = 1, they will
never receive positive utility from interactions amongst themselves. This is why
there must exist more naive agents than bullies within the population for the
bullies to thrive. The learning agents are able to quickly identify the bully as
selfish, and increases the α until α ≈ 1.0. They also identify the naive agents,
and the respective α value quickly decreases until α ≈ 0.

When initialized with the advanced learning agent, the bully’s cumulative
utility is significantly worse, since the advanced learning agent will adjust both
α and bid until both α ≈ 1.0 and bid ≈ 1.0 As bid < 1.0 so a bully will still
acquire the resource in every interaction with a learning agent, but will never
receive a positive cumulative utility in its interactions with the advanced learners.
In such a configuration, for the bully agents to accumulate positive utility, the
number of naive agents should be a majority in the society. Such a large number
of naive and irrational agents is unlikely in real world societies.

6.3 Homogeneous Populations

When the population consists of a homogeneous group of Myopic rational agents,
all COIs are resolved using Vickrey’s 2nd Price auction. Since the myopic agents

Adaptive Choice of Behavior and Protocol Parameters 163

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

U
til

ity

Iteration

Myopic
α Learner

α-bid Learner

Fig. 5. Agent utilities in homogeneous populations

always report their bid truthfully from their true valuation, and the α value is
always reported as 1, the winner payment is equivalent to the loser’s bid.

Homogeneous groups of α as well as α-bid learners, however, adopt their α
values to use the Trusting protocol and no agent pays any significant amount
after some interactions. Hence these groups exhibit significantly higher agent
utility compared to the homogeneous groups of myopic, rational agents (see
Figure 5). This observation proves our initial claim about achieving higher social
utility when using the Trust protocol than Vickrey’s auction.

7 Conclusion

By using a parameterized protocol selection scheme we allow agents to negotiate
domain-level or problem-solving protocols. This protocol seems best suited for
negotiating the allocation of indivisible, non-shareable resources. For example,
licenses and eBooks within an organization would be appropriate resources to
be allocated using this protocol. From the perspective of resource allocation this
allows agents to function without need for considerable amount of negotiation or
communication, therefore reducing load on the system. If agents are willing to
adapt their trust in other agents, they can use this framework to maximize agent
welfare. The continuous range of choice from Trusting to Vickrey’s 2nd price
auction allows agents to effectively negotiate the appropriate type of protocol for
resource allocation. This allows a simple learning agent to punish a selfish agent
while reciprocating the trust of a friendly agent. Such adaptation can lead to a
higher agent welfare compared to Vickrey’s 2nd Price auction in homogeneous
groups where the agent welfare is maximized as the protocol reverts to the
Trusting protocol.

To our knowledge, this is the first attempt to implement trust within a proto-
col for negotiated resource allocation. Resource allocation is an important field

164 F. Grove, S. Sen, and O. Mistry

of study, and the introduction of trust has the capability to increase the utility
of all members involved in repeated resource allocation scenarios. Rational and
strategic agents can take advantage of this protocol to increase their respective
utilities while decreasing the utility of irrational and selfish agents.

We plan to investigate new scenarios in which we can introduce the param-
eterized protocol and examine the possible interactions between more strategic
agent types. The development of strategic and adaptive exploitative agent is also
key for a more thorough examination of this framework.

We observed that learners lose out to myopic rational agents in head-to-head
interactions. This is because learners continue to trust the myopic agents while
the latter did not reciprocate that trust. A more responsive bid and trust adapta-
tion mechanism can use the actual utilities received rather than just the win-loss
ratios. We plan to implement and experiment with such more “rational”, utility-
centric learners.

References

1. Broersen, J., Dastani, M., van der Torre, L.: Leveled commitment and trust in
negotiation. In: Workshop on Deception, Fraud and Trust in Agent Societies (2000)

2. Chavez, A., Maes, P.: Kasbah: An agent marketplace for buying and selling goods.
In: PAAM-1996, London, UK, pp. 75–90 (1996)

3. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N.,
Padget, J., Phelps, S., Rodriguez-Aguilar, J.A., Sousa, P.: Issues in multiagent
resource allocation. Informatica 30, 3–31 (2006)

4. Dreu, C.K.D., Weingart, L.R., Kwon, S.: Influence of social motives on integrative
negotiations: A meta-analytic review and test of two theories. Journal of Person-
ality and Social Psychology 78, 889–905 (2000)

5. Fatima, S.S., Wooldridge, M., Jennings, N.R.: Bargaining with incomplete infor-
mation. Annals of Mathematics and Artificial Intelligence 44(3), 207–232 (2005)

6. Glass, A., Grosz, B.: Socially conscious decision-making. Autonomous Agents and
Multi-Agent Systems 6(3), 317–339 (2003)

7. Jennings, N., Faratin, P., Parsons, A.R.L.S., Sierra, C., Wooldridge, M.: Auto-
mated negotiation: prospects, methods and challenges. Group Decision and Nego-
tiation 10(2), 199–215 (2001)

8. Kraus, S.: Strategic negotiation in multiagent environments. MIT Press, Cambridge
(2001)

9. Maes, P., Guttman, R.H., Moukas, A.G.: Agents that buy and sell. Communica-
tions of the ACM 42(3) (March 1999)

10. Nash, J.: The bargaining problem. Econometrica 18(2), 155–162 (1950)
11. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50, 97–

110 (1982)
12. Rubinstein, A., Wolinsky, A.: Decentralized trading, strategic behavior and the

walrasian outcome. Review of Economic Studies 57, 63–78 (1990)
13. Sen, S.: Believing others: Pros and cons. Artificial Intelligence 142(2), 179–203

(2002)

Adaptive Choice of Behavior and Protocol Parameters 165

14. Ramchurn, S.D.: Multi-Agent Negotiation using Trust and Persuasion PhD thesis,
University of Southampton (2004)

15. Shoham, Y., Lleyton-Brown, K.: Multiagent Systems: Algorithmic, Game-
theoretic, & Logical Foundations. Cambridge University Press, New York (2009)

16. ten Velden, F., Beersma, B., Dreu, C.K.D.: Heterogeneous social motives in nego-
tiating groups: The moderating effects of decision rule and interest position. In:
17th Annual of International Association for Conflict Management (2004)

Effect of DisCSP Variable-Ordering Heuristics

in Scale-Free Networks

Tenda Okimoto, Atsushi Iwasaki, and Makoto Yokoo

Kyushu University, Fukuoka 8190395, Japan
{tenda,iwasaki,yokoo}@is.kyushu-u.ac.jp

Abstract. A Distributed Constraint Satisfaction Problem (DisCSP) is
a constraint satisfaction problem in which variables and constraints are
distributed among multiple agents. Various algorithms for solving DisC-
SPs have been developed, which are intended for general purposes, i.e.,
they can be applied to any network structure. However, if a network
has some particular structure, e.g., the network structure is scale-free,
we can expect that some specialized algorithms or heuristics, which are
tuned for the network structure, can outperform general purpose algo-
rithms/heuristics.

In this paper, as an initial step toward developing specialized algo-
rithms for particular network structures, we examine variable-ordering
heuristics in scale-free networks. We use the classic asynchronous back-
tracking algorithm as a baseline algorithm and examine the effect of
variable-ordering heuristics. First, we show that the choice of variable-
ordering heuristics is more influential in scale-free networks than in
random networks. Furthermore, we develop a novel variable-ordering
heuristic that is specialized to scale-free networks. Experimental results
illustrate that our new variable-ordering heuristic is more effective than a
standard degree-based variable-ordering heuristic. Our proposed heuris-
tic reduces the required cycles by 30% at the critical point.

1 Introduction

A surprisingly wide variety of Artificial Intelligence (AI) problems can be for-
malized as constraint satisfaction problems (CSPs). A CSP is a problem that
finds a consistent assignment of values to variables. A Distributed Constraint
Satisfaction Problem (DisCSP) is formalized as a CSP in which variables and
constraints are distributed among multiple agents [1]. In DisCSP, agents assign
values to variables, attempting to generate a locally consistent assignment that
is also consistent with all the constraints between agents.

Asynchronous BackTracking algorithm (ABT), which was first presented by
Yokoo [2], is the most basic algorithm for solving DisCSPs. It is also the first
complete and asynchronous search algorithm for DisCSPs. ABT allows agents
to act asynchronously and concurrently without any global control, while guar-
anteeing the completeness of the algorithm. Various algorithms have been devel-
oped for solving DisCSPs, e.g., Distributed BackTracking algorithm [3], an ABT

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 166–180, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 167

based algorithm without adding links [4], Dynamic Distributed BackJumping [5],
Asynchronous Partial Overlay [6], and Dynamic ordering for ABT [7, 8].

Since the topology of real large networks like the Internet substantially differs
from the topology of random graphs, new methods, tools, and models must
be developed. Traditionally, a network of complex topology is described by a
random graph, for example, the graph of Erdös and Rényi (ER model) [9]. One
feature of the ER model is that the connectivity distribution of the network peaks
at an average value and decays exponentially. Such an exponential network is
homogeneous in nature. In other words, each node has roughly the same number
of connections.

Recently, scale-free graphs in complex networks, introduced by Barabási and
Albert [10, 11], has become a very popular interdisciplinary research topic. These
graphs have been proposed as a generic and universal model of network topolo-
gies that exhibit power-law distributions in the connectivity of network nodes. A
scale-free network is inhomogeneous in nature, i.e., there exist a small number of
nodes that have many connections, while most nodes have very few connections.

There already exist several works on examining the effect of such network
structures in CSPs [12, 13, 14]. For example, Walsh showed several application
domains of CSPs, e.g., graph-coloring problems (which are generated from regis-
ter allocation problems), time-tabling, and quasi-group problems, actually have
small-world like structures, and the cost of solving such problem instances can
have a heavy-tailed distribution. Later, he also showed that high-degree nodes
can frequently occur these problem instances and the existence of such high-
degree nodes can eliminate the long heavy tail in search costs [14]. Devlin and
O’Sullivan showed that several real-world applications, such as a car configura-
tion problem, radio line frequency assignment, and logic circuit diagnosis, exhibit
degree distributions similar to scale-free graphs [12]. They also showed that the
effect of standard degree-based search heuristics is greater for such problems
than for problems with a uniform random structure.

However, as far as the authors aware, there exists virtually no work on exam-
ining the effect of such network structures in DisCSPs. As shown in [12, 13, 14],
various CSP application problems actually have structures similar to small-
world/scale-free graphs. If the knowledge of such problem instances are dis-
tributed among multiple agents, there would be a need for solving them using
DisCSP techniques.

Furthermore, let us consider a situation where there exists an agent who acts
as a representative/secretary for each person in a social network [15]. A social
network tends to have a scale-free like structure. When solving a meeting schedul-
ing problem [16] in such a social network, we can apply DisCSP techniques.

In this paper, as an initial step toward developing specialized algorithms/
heuristics for particular network structures in DisCSP, we examine the effect of
variable-ordering heuristics of ABT in scale-free networks. Although a variety of
more efficient, sophisticated algorithms have been developed for solving DisC-
SPs, we focus on ABT as a baseline algorithm, since it is one of the simplest
algorithms and is suitable for our purpose and we are interested in developing

168 T. Okimoto, A. Iwasaki, and M. Yokoo

a good variable-ordering heuristic for scale-free networks. We believe that our
analysis and results can be applied to other sophisticated algorithms.

First, we show that the choice of variable-ordering heuristics is more influential
in scale-free networks than in random networks. Specifically, we show that the
performances of ABT in the former network depend on which variable-ordering
heuristics is used much more than that in the latter network, since the degree
distribution of scale-free networks is significantly different from that of random
networks. This result is consistent with the result for CSPs reported in [12].

Furthermore, we examine how the performance of ABT in scale-free networks
changes in terms of the depth and number of the backedges of pseudo-trees. Given
a variable-ordering, ABT determines a pseudo-tree and searches for a solution
from it. Since the depth and number of backedges greatly affect the network
structure, it is expected that the performance of ABT changes based on those
factors. However, surprisingly, our experiments reveal that the performance does
not significantly change.

Finally, we develop a novel variable-ordering heuristic called Average Length
between Hubs (ALH) specialized for scale-free networks. Our experiments show
that ALH outperforms a standard degree-based variable-ordering heuristic in
scale-free networks. As far as the authors aware, there exists virtually no work
on variable-ordering heuristics specialized for scale-free networks in DisCSP, al-
though many studies have dealt with variable-ordering heuristics [7, 17, 18, 19,
20].

The rest of our paper is organized as follows. We describe the definition of a
DisCSP (Section 2) and introduce a scale-free network (Section 3). We examine
the performance of ABT in scale-free and random networks (Section 4). Next,
we present a novel variable-ordering heuristic that is specialized to scale-free
networks and show that our new variable-ordering heuristic is effective for scale-
free networks (Section 5). Finally, we give a discussion (Section 6) and present
a conclusion and some future work (Section 7).

2 Distributed Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) [21] consists of m variables x1, ..., xm,
whose values are taken from finite, discrete domainsD1, ..., Dm, respectively, and
a set of constraints on their values. A constraint is defined by a predicate. That is,
the constraint p(k;xk1, ..., xkj) is a predicate that is defined on Cartesian product
Dk1 × ...×Dkj . This predicate is true iff the value assignment of these variables
satisfies this constraint. Solving a CSP is equivalent to finding an assignment of
values to all variables such that all constraints are satisfied.

A Distributed Constraint Satisfaction Problem (DisCSP) is a CSP in which
the variables and constraints are distributed among multiple agents [1, 2]. We
assume the following communication model:

– Agents communicate by sending messages. An agent can send messages to
other agents iff the agent knows the addresses of the agents.

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 169

– The delay in delivering a message is finite, although random. For transmis-
sion between any pair of agents, messages are received in the order in which
they were sent.

Note that although algorithms for solving DisCSPs seem similar to paral-
lel/distributed processing methods for solving CSPs, the research motivations
are fundamentally different. Each agent has variables and tries to determine
their values. However, there exist interagent constraints, and the value assign-
ment must satisfy these interagent constraints. Formally, there exist m agents
{1, 2, ...,m}. Each variable xj belongs to one agent i (this relation is represented
as belongs(xj ,i)). Constraints are also distributed among agents. The fact that
agent l knows constraint predicate pk is represented as know(pk,l).

A DisCSP is solved iff the following conditions are satisfied:

– ∀i, ∀xj where belongs(xj ,i), the value of xj is assigned to dj , and ∀l, ∀pk
where know(pk,l), pk is true under the assignment x1=d1, x2=d2,....., xn=dn.

For example, the n-queens problem is well known for CSP. If we assume there
exists an agent that corresponds to a queen of each row and these queens try
to find their positions so that they do not kill each other, this problem can be
formalized as a DisCSP.

Asynchronous BackTracking algorithm (ABT), which was first presented by
Yokoo [1, 2], is the most basic algorithm for solving DisCSPs. We make the
following assumptions while describing this algorithm for simplicity. Relaxing
these assumptions to general cases is relatively straightforward:

– Each agent has exactly one variable.
– All constraints are binary.
– Each agent knows all constraint predicates relevant to its variable.

In ABT, the priority order among agents is determined. First, agents instantiate
their variables concurrently and send their assigned values to the agents that
are connected to them by outgoing links, i.e., there exists a link between two
agents who are involved by a binary constraint, and the link is directed from
the higher priority agent to the lower priority agent. Then all agents wait for
and respond to messages. After each update of its assignment, an agent sends
its new assignment to all outgoing links. An agent that receives an assignment
from an incoming link, tries to find an assignment for its variable that does not
violate a constraint with the assignment it received.

The main message types communicated among agents are ok? messages and
nogood messages. An ok? message carries an assignment of an agent. When agent
Ai receives an ok? message from agent Aj , it places the received assignment in
a data structure called Agent View, which holds the last assignment Ai received
from higher priority neighbors such as Aj . Next, Ai checks if its current assign-
ment is still consistent with its Agent View. If it is consistent, Ai does nothing.
If not, then Ai searches its domain for a new consistent value. If it finds one, it
assigns its variable and sends ok? messages to all lower priority agents linked to
it. Otherwise, Ai backtracks.

170 T. Okimoto, A. Iwasaki, and M. Yokoo

The backtrack operation is executed by sending a nogood message that con-
tains an inconsistent partial assignment. nogood messages are sent to the agent
with the lowest priority among the agents whose assignments are included in the
inconsistent tuple in the nogood message. Agent Ai that sends a nogood message
to agent Aj assumes that Aj will change its assignment. Therefore, Ai removes
from its Agent View the assignment of Aj and makes an attempt to find an
assignment for its variable that is consistent with the updated Agent View.

3 Scale-Free Network

In recent years, various complex networks have been identified as having a scale-
free structure [10, 11, 22, 23], e.g., the Internet, SNS, and the citation relation
graphs of scientific articles. Traditionally, these networks are approximated as
random graphs, but the degree distributions of these networks (and other net-
works in nature) are significantly different from the degree distribution of random
graphs.

The term random graph refers to the disordered nature of the arrangement
of edges between different nodes. In this network, the majority of nodes have
approximately the same degree (symmetry of degree distribution). It starts with
N nodes and connects each pair of nodes with probability p. In ER model, the
probability that a node has k edges follows a Poisson distribution:

p(k) = e−λλk/k!,

where

λ = N

(
N − 1

k

)
pk(1 − p)N−1−k.

Several complex networks have a scale-free structure. Their degree distribu-
tion follows a power-law for a large k. Even for those real networks for which p(k)
has an exponential tail, the degree distribution significantly deviates from Pois-
son. Random graph theory is unable to reproduce this feature, which was found
to be a consequence of two generic mechanisms. Networks expand continuously
by the addition of new nodes, and new nodes attach themselves preferentially
to sites that are already well connected. The random network models assume
that the probability that two nodes are connected is random and uniform. In
contrast, most real networks exhibit preferential connectivity. For example, a
newly created webpage will more likely include edges to well-known, popular
documents that already have high connectivity. This example indicates that the
probability with which a new node connects to existing nodes is not uniform, but
there is a higher probability to be linked to a node that already has a large num-
ber of connections. Because a few nodes have a large number of connections, the
distribution of real networks has a power-law tail. Such a highly connected node
is called a hub. The following are the typical properties of scale-free networks:

– Degree distribution p(k) is approximated by a power-law that the form

p(k) ∝ k−γ ,

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 171

where k is a degree and γ is the exponent that depends on each network
structure.

– Scale-free networks have no scale because there is no typical number of links
(asymmetry of degree distribution).

– Scale-free networks have highly connected hubs that “hold the network to-
gether” and give the “robust yet fragile” features of error tolerance but attack
vulnerability.

– Scale-free networks are self-similar.

4 Influence of Variable-Ordering Heuristics in Scale-Free
Networks

In this section, we show that the choice of variable-ordering heuristics can be
more influential in scale-free networks than in random networks. Furthermore,
we show that the performance of ABT is not affected by the depth and the
number of backedges of a pseudo-tree. First, let us explain how we measure the
performance of a DisCSP algorithm. We use the number of simulated time steps
(cycles), which is counted as follows.

By a discrete event simulation, each agent maintains its own simulated clock.
An agent’s time is incremented by one simulated time unit whenever it performs
one cycle of computation. One cycle consists of reading all incoming messages,
performing local computation, and then sending messages. We assume that a
message issued at time t is available to the recipient at time t+1. We analyze
the performance in terms of the number of cycles required to solve the problem.
One cycle corresponds to a series of agent actions, in which an agent recognizes
the state of the world (the value assignments of other agents), then decides
its response to that state (its own value assignment), and communicates its
decisions.

There are some other simulations to evaluate DisCSP algorithms, e.g., Non
Concurrent Constraints Checks (NCCCs). However, we analyze different variable
ordering heuristics on a single algorithm and the computational cost for each
cycle is almost identical. Therefore, we believe that using only cycles rather
than NCCCs is enough.

In this paper, the Java program developed by Sun Microsystems Laboratories
is used as a scale-free network formation tool [24]. This program can generate
scale-free networks giving the number of nodes, exponent γ, and the minimal
degree of each agent md. More specifically, this program can generate a power-
law list of nodes and edges.

We examine the performance of ABT in random and scale-free networks.
Scale-free networks are generated by the tool with the following parame-
ters: nodes=100, md=2, and γ=1.8. To generate random networks, we chose
nodes=100 and edges=247, so that the number of constraints will resemble
those of the scale-free networks 1. We set the domain size of each variable to

1 For γ=2.2, 2.6, 3.0, the essential results did not change.

172 T. Okimoto, A. Iwasaki, and M. Yokoo

C
yc

le
s

Constraint Tightness

 0

 500

 1000

 1500

 0.2 0.4 0.6 0.8 1

Random-ABT-Max
Random-ABT-Min

Random-ABT-Degree

(a) Performance of ABT in random net-
work r1

C
yc

le
s

Constraint Tightness

 0

 500

 1000

 1500

 0.2 0.4 0.6 0.8 1

SF-ABT-Max
SF-ABT-Min

SF-ABT-Degree

(b) Performance of ABT in scale-free net-
work sf1

Fig. 1. Performance of ABT in random network r1 and scale-free network sf1

three, i.e., domain=3 which means |D1|=,...,=|Dm|=3 for m variables x1, ..., xm.
For the evaluations, we generate ten random and ten scale-free networks. As-
sume r1,...,r10 for the ten random networks and sf1,...,sf10 for the ten scale-free
networks. For each network, the constraint tightness is varied from 0.1 to 0.9
by 0.1. For each constraint tightness, 100 random problem instances are gener-
ated. Thus, the results represent the averages of these 100 instances in all ten
networks. For a variable-ordering of ABT, we determine ten different random
variable-orderings.

In Figure 1(a)-(b), we show the performance of ABT with three different
random variable-orderings in random network r1 and scale-free network sf1 that
exhibit characteristic results. When the constraint tightness is less than 0.3 or
greater than 0.3, ABT can terminate early, i.e., ABT can easily find a solution
for less than 0.3, and it can easily find that the problem is unsolvable for greater
than 0.3. When the constraint tightness equals 0.3, the required cycles of ABT
are maximum in r1 and sf1. We call such a peak the critical point.

Random-ABT-Max (Random-ABT-Min) represents the performance of ABT
in random network r1, whose required cycles at the critical point are maximum
(minimum). SF-ABT-Max and SF-ABT-Min represent the performance of ABT
as above in scale-free network sf1. In addition, Random-ABT-Degree and SF-
ABT-Degree represent the performance of ABT with a standard degree-based
variable-ordering heuristic. In this heuristic, the priority of nodes is determined
one by one. First, we choose node n1st, which has the highest degree. Second, we
choose node n2nd, which has the highest degree and connected to n1st. Similarly,
we keep on choosing a node, that has the highest degree without the nodes
already chosen, breaking ties using the degree with the unchosen nodes.

The performance of ABT significantly depends on variable-ordering in scale-
free networks. In random network r1, the required cycles at the critical point vary
from 235 to 283 cycles (Figure 1(a)). On the other hand, in scale-free network sf1,
the required cycles vary from 47 to 1171 cycles (Figure 1(b)). We confirmed that
similar results were obtained in other networks, i.e., in r2,...,r10 and sf2,...,sf10.

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 173

Table 1. Depth and number of backedges of pseudo-trees and required cycles at critical
point

ABT Depth Backedges Cycles

ABT 1 17 207 10253

ABT 2 14 176 7815

ABT 3 15 220 2279

ABT 4 22 327 1673

ABT 5 13 173 777

ABT 6 12 175 380

Particularly, in scale-free networks, ABT with a standard degree-based variable-
ordering heuristic requires the smallest cycles at the critical point.

Additionally, we examine the effect of the depth and the number of backedges
in a pseudo-tree on the performance of ABT in scale-free networks. According to
a variable-ordering, a pseudo-tree is determined whose depth is the length of the
longest path from the root agent to one of the leaf agents. A backedge is a link
between two agents that are not in a direct parent-child relationship. Our initial
expectation was that the performance of ABT would improve with shallower
depth and fewer backedges. In Table 1, we show the depth and the number of
backedges of the pseudo-trees and the required cycles of ABT at the critical point
with six different variable-orderings, where domain=10. Here, we increased the
domain size to make the required cycles vary significantly according to variable-
orderings. As shown in Table 1, we cannot see any direct relationship between
the performance and the parameters we examined (i.e., tree depth and number
of backedges). For example, in “ABT 1”, the required cycle at the critical point
is 10253, the depth is 17, and the number of backedges is 207. On the other
hand, in “ABT 4”, the required cycle at the critical point is 1673, the depth is
22, and the number of backedges is 327.

The experimental results reveal that the choice of variable-ordering heuris-
tics is influential in scale-free networks. Particularly, a standard degree-based
variable-ordering heuristic is effective in scale-free networks. We don’t see any
direct relationship between the performance of ABT and the parameters of a
pseudo-tree (i.e., depth and number of backedges).

5 A Variable-Ordering Heuristic for Scale-Free Networks

In this section, we propose a novel variable-ordering heuristic called Average
Length between Hubs (ALH). Based on the results so far, since ALH focuses
on the average length between hubs, it is specialized for scale-free networks.
This section introduces our proposed variable-ordering heuristics and shows that
ALH outperforms a standard degree-based variable-ordering heuristic in scale-
free networks.

174 T. Okimoto, A. Iwasaki, and M. Yokoo

5.1 Heuristic

Let G = (N,E) be a graph, where N = {ni|i ∈ N} is a set of nodes (agents)
and E = {e(ni, nj)|ni, nj ∈ N,ni �= nj} is a set of edges. The ABT for graph G
needs to predetermine the variable-ordering to reach a solution. A pseudo-tree
in which each hub in a graph is placed on different branches is constructed by
the variable-ordering.

A node is called a hub if it has a larger number of connections than constant
c ∈ N. Let H be set of hubs

H = {ni|ni ∈ N, deg(ni) ≥ c}

where deg(ni) is the degree of node ni. Each agent knows whether he belongs to
H .

Next, we define border-set nodes by using the distance between nodes dis :
N ×N → N, i.e., dis(ni, nj) gives the number of the edges of the shortest path
between ni and nj . For node ni, the average distance of the shortest paths to
each hub in H is defined as follows:

nav
i = Σnj∈Hdis(ni, nj)/|H |.

The average distance between hubs is defined as follows:

hav = Σni∈Hnav
i /|H |.

Then, border-set BS is defined as:

BS = {ni | nav
i ≤ hav}.

The priorities of agents are determined using BS. Basically, A node in BS has
a higher priority than a node that is not in BS. Between two nodes in BS, the
node that is not in H has a higher priority. If two nodes, ni and nj, in BS are
also in H , then ni has a higher priority than nj when deg(ni) > deg(nj) (and
vice versa). If two nodes, ni and nj, in BS are not in H , then ni has a higher
priority than nj when nav

i < nav
j (and vice versa). Ties are broken using the

degrees. Further ties are broken using the lexicographical order of identifiers.
Then the priority among two nodes that are not in BS is determined by the
total distance between BS. More specifically, for node ni �∈ BS, denote the total
distance to the nodes of BS as td(ni) =

∑
nj∈BS dis(ni, nj). For two nodes, ni

and nj that are not in BS, ni has a higher priority than nj when td(ni) < td(nj)
(and vice versa). Ties are broken using the degrees. Further ties are broken using
the lexicographical order of identifiers.

If all hubs are directly connected, ALH becomes equivalent to a degree-based
heuristic, since BS contains only nodes in H . Consider a scale-free network
where each hub is not directly connected. In ALH, the nodes in BS have the
highest priority, i.e., the node in BS has a higher priority than the hubs. Let us
consider the pseudo-tree defined by this ordering. In the pseudo-tree, the hubs
are placed below the nodes in BS, i.e., the hubs are siblings of the nodes in

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 175

(a) (b) (c)

H2

H1

2

3

4

1

H2

H1

4

12

3

H2H1

2

3

4

1

Fig. 2. (a) Constraint network representing a DisCSP where H1 and H2 are hubs, (b)
Pseudo-tree determined by degree-based heuristic, and (c) Pseudo-tree determined by
ALH

BS. Also, under each hub, we can expect that there exists a cluster of nodes,
which is independent from other clusters, given that the values of variables in
BS are determined. Thus, we can expect that ABT can efficiently solve such a
problem instance since these clusters can be solved independently. The cost of
implementing the proposed heuristic ALH is enough low compared to the cost
of the ABT, since finding a shortest path can be done in O(n) time.

Let us show a simple example. A constraint network of a DisCSP represented
as Figure 2(a) exists, where H1 and H2 are hubs. For nodes H1, H2, n1, . . . , n4,
their degrees satisfy the following condition: deg(H1) > deg(H2) > deg(n1) >
deg(n2) > deg(n3) > deg(n4). Figure 2(b) represents the pseudo-tree determined
by a degree-based heuristic.

Since H1 has the highest degree, it becomes the root of this pseudo-tree. Since
hav=1, nav

1 =nav
2 =1, nav

3 =2, and nav
4 =3, BS is determined as follows:

BS = {H1, H2, n1, n2}.

Thus, among these nodes, priority ordering is determined as:

n1, n2, H1, H2, n3, n4,

where n1 is the highest and n4 is the lowest.
Figure 2(c) represents the pseudo-tree determined by ALH. The nodes in BS

are placed around the root of the pseudo-tree. The hubs are placed just below

176 T. Okimoto, A. Iwasaki, and M. Yokoo

Constraint Tightness

C
yc

le
s

 0

 500

 1000

 1500

 0.2 0.4 0.6 0.8 1

ALH-ABT-Average
Degree-ABT-Average

(a) Effect of ALH and standard degree-
based heuristics in SFN 1

C
yc

le
s

Constraint Tightness

 0

 2000

 4000

 6000

 8000

 0.2 0.4 0.6 0.8 1

Degree-ABT-Average
ALH-ABT-Average

(b) Effect of ALH and standard degree-
based heuristics in SFN 2

C
yc

le
s

Constraint Tightness

 0

 500

 1000

 1500

 2000

 2500

 0.2 0.4 0.6 0.8 1

ALH-ABT-Average
Degree-ABT-Average

(c) Effect of ALH and standard degree-
based heuristics in SFN 3

Fig. 3. Effect of ALH compared to standard degree-based heuristics in SFN 1, SFN 2
and SFN 3

the root as siblings, and in particular, hubs H1 and H2 are placed on different
branches in this pseudo-tree.

Generally, the hubs are siblings in a pseudo-tree determined by the ALH
variable-ordering heuristic, i.e., the given hubs are placed on different branches.
When a pseudo-tree is determined by a standard degree-based variable-ordering
heuristic, the hub with the highest degree becomes the root of the pseudo-tree.
The remaining hubs become the descendant nodes of this hub. In this pseudo-
tree, each hub is either the root or is placed on the upper part of the pseudo-tree.
On the other hand, when a pseudo-tree is determined by the ALH variable-
ordering heuristic, the nodes in the border-set are placed on the upper part of
the pseudo-tree. The hubs are below the upper part of the pseudo-tree and the
siblings.

5.2 Evaluations

In our evaluations, we show that ALH is effective and can reduce the required
cycles at the critical point in scale-free networks. More specifically, we compare

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 177

the effect of ALH with a standard degree-based heuristic in the following three
kinds of scale-free networks:

(SFN 1): nodes =100, γ=1.8, and md=2,
(SFN 2): nodes =200, γ=1.8, and md=2,
(SFN 3): nodes =100, γ=1.8, and md=3.

The evaluations were conducted with domain=10. For each parameter we gen-
erated ten scale-free networks. For each network, the constraint tightness was
varied from 0.1 to 0.9 by 0.1. For each constraint tightness, 100 random con-
straint instances were generated. The results represent the averages of these 100
instances for all ten scale-free networks (1000 in total). The experimental results
in SFN 1 are summarized in Figure 3(a), in which ALH-ABT-Average represents
the performance of ABT with ALH and Degree-ABT-Average represents the
performance of ABT with the standard degree-based variable-ordering heuris-
tic. Here, the critical point appears when the constraint tightness is around 0.4.
At the critical point, ALH-ABT-Average requires 678 cycles while Degree-ABT-
Average requires 955 cycles. Thus, ALH-ABT-Average performs approximately
30% better than Degree-ABT-Average at the critical point in SFN 1. We con-
firmed that ALH is also effective in SFN 2 and SFN 3.

The experimental results in SFN 2 are summarized in Figure 3(b). The net-
work in SFN 2 is larger than that in SFN 1, i.e, the number of nodes in SFN
2 is 200, compared to 100 in SFN 1. ALH-ABT-Average requires 6156 cycles
and Degree-ABT-Average requires 7487 cycles at the critical point. Thus, ALH-
ABT-Average performs approximately 19% better than Degree-ABT-Average.

The experimental results in SFN 3 are summarized in Figure 3(c). The net-
work in SFN 3 is more complicated than SFN 1, i.e., the minimal degree of each
agent increased from md=2 to md=3. ALH-ABT-Average requires 1489 cycles
and Degree-ABT-Average requires 2083 cycles at the critical point. ALH-ABT-
Average performs approximately 30% better than Degree-ABT-Average at the
critical point in SFN 3.

The experimental results reveal that ALH outperforms the standard degree-
based heuristic in three scale-free networks, varying the number of nodes and the
minimal degree. We also confirmed that fact did not change with other parameter
settings.

6 Discussion

The previous section showed that the standard degree-based heuristic is outper-
formed by ALH. One might expect that it is also outperformed by the other
simple heuristics, since ALH, particularly its way of determining the border set,
is somewhat complicated. Thus, we consider a simple variable-ordering heuristic,
called a naive heuristic described below.

Let us define a naive border-set (NBS) for that heuristic, instead of a BS for
ALH. Whether a node belongs to NBS is determined by the distance between
the two nearest hubs to the node. Formally, for node ni ∈ N , denote the two

178 T. Okimoto, A. Iwasaki, and M. Yokoo

C
yc

le
s

Constraint Tightness

 0

 1000

 2000

 3000

 4000

 0.2 0.4 0.6 0.8 1

ALH-ABT
Naive-ABT

Fig. 4. Effect of ALH compared to naive
heuristic in SFN 3

C
yc

le
s

Constraint Tightness

 0

 500

 1000

 1500

 2000

 0.2 0.4 0.6 0.8 1

Degree-ABT
ABT-Hub-2
ABT-Hub-3
ABT-Hub-4
ABT-Hub-5

Fig. 5. Effect of ALH by increasing num-
ber of hubs from 2 to 5 in SFN 3

nearest hubs from ni as hi,1st, hi,2nd ∈ H and denote the distances to hi,1st and
hi,2nd from the node as dis1st(ni), dis2nd(ni), respectively. Then, we define NBS
as follows:

NBS = {ni | |dis1st(ni)− dis2nd(ni)| ≤ 1}.

In short, NBS contains nodes that lies exactly in the middle of the two near-
est hubs. The priority among nodes is determined in exactly the same way as
ALH, except that we use NBS instead of BS. The experimental result is sum-
marized in Figure 4. Naive-ABT represents the performance of ABT with the
naive heuristic. ALH-ABT performs approximately 3.7 times better than Naive-
ABT at the critical point. Precisely, the required cycles for ALH-ABT is 1016,
while that for Naive-ABT is 3744 at that point. As a result, we can say that the
simplified version of the heuristics fails to perform as well as ALH.

We examined the reason why the performance of the naive heuristic is much
worse than that of ALH, and found that the size of NBS of the naive heuristic
is much larger than the size of BS of ALH. In fact, NBS contains at least twice
as many agents as BS. Therefore, we conjecture that the size of BS should be
small; otherwise, the priority based on BS becomes less informative.

In previous evaluations, we set the number of hubs to two. This seems to be
a reasonable choice to make the size of the border-set (BS) small. We further
examine the performance of ABT with ALH by varying the number of hubs from
two to five. The experimental results are summarized in Figure 5, in which ABT-
Hub-k represents the performance of ABT when choosing the number of hubs
as k. The performance is basically unchanged even if we change the number of
hubs, i.e., the required cycles at the critical point for ABT-Hub-5 is 1048, while
that for ABT-Hub-2 is 1004. These results imply that the choice of the number
of hubs is not so influential to the performance of ABT with ALH.

Note also that, this result does not explain how many hubs we should choose
in any scale-free networks. We will research a good value for some of constants
(constant for selecting hubs) as a future work.

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks 179

7 Conclusions

In this paper, we showed that the choice of variable-ordering heuristics is more
influential in scale-free networks than in random networks. We observed that in
scale-free networks there is more significant difference between maximum and
minimum of the required cycles than in random networks.

Furthermore, we examined how the performance of ABT in scale-free networks
changes in terms of the depth and number of backedges of pseudo-trees. We
chose six different variable-orderings, i.e., six different pseudo-trees of different
of depths. We compared the differences of the depth or the number of backedges
and the differences of the performances of ABT. The experimental result revealed
that these parameters do not significantly affect the performance of ABT in
scale-free networks.

Finally, we developed a novel variable-ordering heuristic called Average Length
between Hubs (ALH) specialized for scale-free networks. We showed that ALH
outperforms a standard degree-based variable-ordering heuristic in scale-free net-
works and can reduce the required cycles by 30% at the critical point.

As future works, we must show that our experimental results are common
with other different scale-free networks, e.g., scale-free networks with 1,000 or
10,000 nodes. Furthermore, we hope to develop dynamic variable-ordering heuris-
tics/algorithms that are specialized to scale-free networks.

References

[1] Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint sat-
isfaction problem: formalization and algorithms. IEEE Transactions on Knowledge
and Data Engineering 10(5), 673–685 (1998)

[2] Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A
review. Journal of Autonomous Agents and Multi-agent Systems 3(2), 189–211
(2000)

[3] Hamadi, Y.: Backtracking in distributed constraint networks. International Jour-
nal on Artificial Intelligence Tools, 219–223 (1998)

[4] Bessiere, C., Brito, I., Maestre, A., Meseguer, P.: Asynchronous backtracking with-
out adding links: a new member in the ABT family. Artificial Intelligence 161,
7–24 (2005)

[5] Nguyen, V., Sam-Haroud, D., Faltings, B.: Dynamic distributed backjumping.
In: Joint ERCIM/CoLogNet International Workshop on Constraint Solving and
Constraint Logic Programming, pp. 71–85 (2004)

[6] Mailler, R., Lesser, V.: Asynchronous partial overlay: A new algorithm for solv-
ing distributed constraint satisfaction problems. Journal of Artificial Intelligence
Research 25, 529–576 (2006)

[7] Silaghi, M.-C.: Framework for modeling reordering heuristics for asynchronous
backtracking. In: IEEE/WIC/ACM International Conference on intelligent Agent
Technology, pp. 529–536 (2006)

[8] Zivan, R., Meisels, A.: Dynamic ordering for asynchronous backtracking on DisC-
SPs. Constraints 11(2-3), 179–197 (2006)

[9] Erdös, P., Rényi, A.: On random graphs I. Publicationes Mathematicae Debre-
cen 6, 290–297 (1959)

180 T. Okimoto, A. Iwasaki, and M. Yokoo

[10] Barabási, A.-L.: Linked: The new science of networks. Perseus Publishing, Cam-
bridge (2003)

[11] Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

[12] Devlin, D., O’Sullivan, B.: Preferential attachment in constraint networks. In: 21st
International Conference on Tools with Artificial Intelligence, pp. 708–715 (2009)

[13] Walsh, T.: Search in a small world. In: 16th International Joint Conference on
Artificial Intelligence, pp. 1172–1177 (1999)

[14] Walsh, T.: Search on high degree graphs. In: 17th International Joint Conference
on Artificial Intelligence, pp. 266–274 (2001)

[15] Chalupsky, H., Gil, Y., Knoblock, C.A., Lerman, K., Oh, J., Pynadath, D.V.,
Russ, T.A., Tambe, M.: Electric elves: Agent technology for supporting human
organizations. AI Magazine 23(2), 11–24 (2002)

[16] Brito, I., Meseguer, P.: Distributed meeting scheduling. In: Computer & Commu-
nications Industry Association, pp. 38–45 (2007)

[17] Arbelaez, A., Hamadi, Y.: Exploiting weak dependencies in tree-based search. In:
24th Annual ACM Symposium on Applied Computing, pp. 1385–1391 (2009)

[18] Ezzahir, R., Bessiere, C., Wahbi, M., Benelallam, I., Bouyakhf, E.H.: Asyn-
chronous Inter-Level Forward-Checking for DisCSPs. In: Gent, I.P. (ed.) CP 2009.
LNCS, vol. 5732, pp. 304–318. Springer, Heidelberg (2009)

[19] Hamadi, Y.: Interleaved backtracking in distributed constraint networks. Interna-
tional Journal on Artificial Intelligence Tools 11(2), 167–188 (2002)

[20] Sultanik, E., Lass, R.N., Regli, W.C.: Dynamic configuration of agent organiza-
tions. In: 21st International Joint Conference on Artificial Intelligence, pp. 305–
311 (2009)

[21] Mackworth, A.K.: Constraint Satisfaction. In: Encyclopedia of Artificial Intelli-
gence, pp. 285–293 (1992)

[22] Buchanan, M.: Nexus: Small worlds and the groundbreaking science of networks.
W. W. Norton & Company, London (2003)

[23] Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free
graphs: Definition, properties, and implications. Internet Mathematics 2(4), 431–
523 (2005)

[24] Densmore, O.: An exploration of power-law networks (2009),
http://backspaces.net/sun/PLaw/index.html

http://backspaces.net/sun/PLaw/index.html

Multi-attribute Preference Logic

Koen V. Hindriks, Wietske Visser, and Catholijn M. Jonker

Man Machine Interaction Group, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

K.V.Hindriks@tudelft.nl, Wietske.Visser@tudelft.nl,
C.M.Jonker@tudelft.nl

Abstract. Preferences for objects are commonly derived from ranked sets of
properties or multiple attributes associated with these objects. There are several
options or strategies to qualitatively derive a preference for one object over an-
other from a property ranking. We introduce a modal logic, called multi-attribute
preference logic, that provides a language for expressing such strategies. The
logic provides the means to represent and reason about qualitative multi-attribute
preferences and to derive object preferences from property rankings. The main
result of the paper is a proof that various well-known preference orderings can be
defined in multi-attribute preference logic.

1 Introduction

Preferences may be associated with various entities such as states of affairs, properties,
objects and outcomes in e.g. games. Our main concern here are object preferences. A
natural approach to obtain preferences about objects is to start with a set of proper-
ties of these objects and derive preferences from a ranking of these properties, where
the ranking indicates the relative importance or priority of each of these properties.
This approach to obtain preferences is typical in multi-attribute decision theory, see e.g.
Keeney and Raiffa [10]. Multi-attribute decision theory provides a quantitative theory
that derives object preferences from utility values assigned to outcomes which are de-
rived from numeric weights associated with properties or attributes of objects. As it is
difficult to obtain such quantitative utility values and weights, however, several qualita-
tive approaches have been proposed instead, see e.g. [2,4,5,6,11]. There is also exten-
sive literature on preference logic following the seminal work of Von Wright [12,9], but
such logics are not specifically suited for the multi-attribute case. To illustrate what we
are after, we first present a motivating example that is used throughout the paper.

Example 1. Suppose we want to buy a house. The properties that we find important are
that we can afford the house, that it is close to our work, and that it is large, in that order.
Consider three houses, house1, house2 and house3, whose properties are listed in Figure
1, which we have to order according to our preferences. It seems clear that we would
prefer house1 over the other two, because it has two of the most important properties,
while both other houses only have one of these properties. But what about the relative
preference of house2 and house3? house3 has two out of three of the relevant properties
where house2 has only one. If the property that house2 has is considered more important
than both properties of house3, house2 would be preferred over house3.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 181–195, 2012.
© Springer-Verlag Berlin Heidelberg 2012

182 K.V. Hindriks, W. Visser, and C.M. Jonker

⊺

⊺⊺

⊺

⊺

�

�

�

�

affordable closeToWork large

house1

house2

house3

≻ ≻

Fig. 1. Properties of three houses

Key to a logic of multi-attribute preferences is the representation of property rank-
ings. Encodings of property rankings have been explored in Coste-Marquis et al. [6]
where they are called goal bases, and in Brewka [4] where they are called ranked knowl-
edge bases. Such ranked goals are binary, and in this paper we also consider desired
attributes that are binary (as opposed to numeric or ordinal ones). Coste-Marquis et al.
and Brewka moreover discuss various options, or strategies, for deriving object prefer-
ences from a property ranking. The preference orderings thus obtained are not expressed
in a logic, however. Brewka et al. [5] propose a non-monotonic logic called qualitative
choice logic to reason about multi-attribute preferences. An alternative approach to-
wards a logic of multi-attribute preferences is presented in Liu [11] where property
rankings called priority sequences are encoded in first-order logic. Both approaches are
based on one particular strategy, namely lexicographic ordering, and cannot be used to
reason about preference orderings.

In this paper a generic logic of qualitative multi-attribute preferences is proposed in
which property rankings and associated strategies for deriving object preferences from
such rankings can be defined. In Section 2 the syntax and semantics of multi-attribute
preference logic is introduced. Section 3 shows how various strategies to obtain object
preferences from a property ranking can be defined in the logic. Section 4 presents the
main result of the paper and shows that property rankings encoded as ranked knowledge
bases and a number of related strategies to obtain preference orderings can be equiva-
lently translated into multi-attribute preference logic. Section 5 concludes the paper.

2 Multi-attribute Preference Logic

2.1 Syntax and Semantics

The logic of multi-attribute preferences that we introduce here is an extension of the
modal binary preference logic presented in [7]. This logic is a propositional modal
logic with a modal operator ◻≤ϕ , and its dual ◇≤ϕ . Here ◻≤ϕ expresses that ϕ is true
in all states that are at least as good as the current state. Binary preference relations
over formulae are subsequently defined. One of the more natural binary preference
statements is ϕ <∀∀ ψ which expresses that any state where ψ is true is strictly better

Multi-attribute Preference Logic 183

than any state where ϕ is true. That is, whenever ϕ is the case, ψ is preferred, and
never vice versa. By adding a global modality U to the language, the binary preference
operator <∀∀ can be defined by U(ψ →◻≤¬ϕ), when it is assumed that the underlying
order on worlds or states has been completely specified, i.e. is total.

Multi-attribute preference logic adds two operators to binary preference logic. First,
multi-attribute preference logic, as in hybrid logic [1] adds names for objects to the
language by adding nullary modal operators i, j to the language. The semantics of the
operators introduced here, however, differs from the standard semantics of hybrid logic.
Here i, j are used as names for objects which semantically are more complex entities
than the usual worlds of modal semantics. In order to avoid confusion, we will refer to
i, j as object names below. This language extension allows us to talk about objects and
associated preferences explicitly.

Second, the logic introduces a new modal operator ◻≠. The language of multi-
attribute preference logic consists of four unary modal operators. Instead of the single
operator ◻≤ it is more convenient to introduce the two operators ◻< and ◻=: informally,
◻
<ϕ expresses that at all worlds that are ranked higher than the current one ϕ is true,

whereas ◻=ϕ expresses that at all worlds that are equally ranked to the current one ϕ is
true. The modal operator ◻≠ is introduced to inspect worlds that are not ranked equally
to the current one.

Definition 1. (Language) Let At be a set of propositional atoms with typical element
p and Nom be a set of names, with typical elements i, j. The language Lpref is defined
as follows:

ϕ ∈ Lpref ∶∶= p ∣ i ∣ ¬ϕ ∣ ϕ ∧ϕ ∣ ◻=ϕ ∣ ◻≠ϕ ∣ ◻<ϕ ∣Uϕ

Disjunction ∨, implication →, and bi-implication↔ are defined as the usual abbrevia-
tions.◇<ϕ ,◇=,◇≠ are abbreviations for ¬◻<¬ϕ , ¬◻=¬ϕ , and ¬◻≠ ¬ϕ . ◻≤ϕ is short
for ◻<ϕ ∨◻=ϕ and ◇≤ϕ is its dual. The dual of the global modal operator, Eϕ , is de-
fined as ¬U¬ϕ . We also write Uiϕ for U(i → ϕ) and Eiϕ for E(i∧ϕ) for i ∈ Nom.
Finally, the set of purely propositional formulae is denoted by L0 and consists of all
formulae without any occurrences of modal operators or names i ∈Nom. ϕ ∈ L0 is also
called an objective formula.

The basic concepts in the semantics for multi-attribute preference logic are objects
and properties those objects may have. Properties are naturally represented by sets of
worlds. As we want to use properties to classify the ranking of objects, properties are
ordered in correspondence with their relative importance; such an order is called a prop-
erty ranking here. To order properties, i.e. sets of worlds, it is required that properties
are disjoint sets of worlds. Property rankings will be derived from an order on worlds
below.

Objects are also identified with particular sets of worlds. The idea is that the proper-
ties (in the sense of the previous paragraph) of an object can be derived from the worlds
which define the object. To ensure that objects are coherent, that is have a uniquely de-
fined set of properties, the worlds that define the object need to be copies of each other,
which means that these worlds need to assign the same truth values to propositional
atoms. Objects are identified with equivalence classes of worlds with respect to a truth
assignment.

184 K.V. Hindriks, W. Visser, and C.M. Jonker

Definition 2. (Object) Let W be a set of worlds and V be a mapping of W to truth
assignments 2At . An object is an equivalence class on W with respect to V . The set OV

denotes the set of all objects defined by W and V and is formally defined by:

OV = {[w]V ∣w ∈W}

where [w]V = {v ∈W ∣V(w) =V(v)}. Whenever V is clear from the context, we drop the
subscript V . As an object o is the equivalence class of a world w with respect to V , we
also say that world w identifies object o.

Definition 3. (Model) A multi-attribute preference model M is a tuple ⟨W,≾,V,N⟩
where W is a set of worlds with typical elements u,v,w, ≾ is a total pre-order (i.e. a
reflexive, transitive and total relation) on W, V is a valuation function mapping worlds
in W onto truth assignments in 2At , and N is a naming function. The strict subrelation
≺ of ≾ is defined by: v ≺w ∶= v ≾w & w /≾ v. We write v ∼w whenever v ≾w and w ≾ v.

Although the strict order ≺ derived from ≾ indicates a ranking of worlds where v ≺ w
means that w is ranked higher than v, we do not say that w is preferred over v, because
we want to reserve this terminology for talking about objects. A preference between
objects is derived from the ranking ≾ over worlds. The naming function N maps names
i to objects o.

The truth definition for propositional atoms and Boolean operators is standard. Given
a modelM= ⟨W,≾,V,N⟩, the semantics of names i ∈ Nom is provided by the naming
function N. The truth definitions for most modal operators are also standard definitions
using the associated accessibility relations for these operators. The semantic clause for
◻
= is defined by means of the relation ∼, which is derived from the order ≾. Similarly, the

semantic clause for ◻< is provided by means of the strict order ≺. The global operator
U simply inspects all worlds in a model.

The truth definition for ◻≠ is not directly defined in terms of a given relation on
W . It inspects all worlds that (i) are not ranked equally as the current one, and (ii) are
not copies of worlds that are ranked equally as the current one. The motivation for this
definition will become clear in Section 2.2 when clusters are introduced.

Definition 4. (Truth Definition) LetM= ⟨W,≾,V,N⟩ be an MPL model and w ∈W a
world. The truth of a formula ϕ ∈ Lpref inM at w is defined by:
M,w ⊧ p ⇔ p ∈V(w)
M,w ⊧ i ⇔ w ∈N(i)
M,w ⊧ ¬ϕ ⇔M,w /⊧ ϕ
M,w ⊧ ϕ ∧ψ ⇔M,w ⊧ ϕ &M,w ⊧ψ
M,w ⊧ ◻=ϕ ⇔ ∀v ∶w ∼ v ⇒ M,v ⊧ ϕ
M,w ⊧ ◻≠ϕ ⇔ ∀u ∈ ⋃{[v]V ∣w ∼ v} ∶M,u ⊧ ϕ
M,w ⊧ ◻<ϕ ⇔ ∀v ∶w ≺ v ⇒ M,v ⊧ ϕ
M,w ⊧Uϕ ⇔ ∀v ∶M,v ⊧ ϕ

A name i ∈Nom refers to an object o and, semantically, is true at a world w that identifies
the object o, i.e. w ∈ o. A name thus is a special kind of operator that is true in all worlds
that identify a certain object, and false in all other worlds. We can express that an object

Multi-attribute Preference Logic 185

i has a property ϕ by Eiϕ = E(i∧ϕ). As we have E(i) as a validity and the worlds
that identify the corresponding object o are copies of each other, we have Eiϕ ↔Uiϕ
for objective ϕ . This shows that an object is coherent in the sense that an object has a
consistent set of objective properties and can be uniquely identified by this set.

The language also allows us to express properties that concern comparison of objects.
For example, U(i→◇< j) expresses that for every property of object i object j has a
property that is strictly better. The formula E(j∧¬◇≤ i) expresses that object j has a
property that object i cannot match, i.e. i has no property that is strictly better than this
property of j. We have E(j∧¬◇≤ i)→U(i→◇< j) in multi-attribute preference logic.
This validity is based on the assumption that the pre-order in models for Lpref is total.

Recall that the binary preference operator ϕ <∀∀ ψ can be defined as U(ψ →◻≤¬ϕ).
Using <∀∀ it is possible to define property rankings and express that a property ψ is
ranked higher than property ϕ . Using the truth definitions for Uϕ , ◻=ϕ and ◻<ϕ and
the definition of ◻≤ϕ as ◻=ϕ ∧◻<ϕ , it can be shown that ϕ <∀∀ ψ has the following
truth definition:

M,w ⊧ ϕ <∀∀ ψ ⇔∀u,v ∶M,u ⊧ ϕ &M,v ⊧ ψ⇒ u ≺ v

The intuitive reading of ϕ <∀∀ ψ is that every ψ-state is ranked higher than every ϕ-
state (cf. [7]). Returning to the comparison of objects again, i<∀∀ j expresses that object
j is preferred over i. The preference expressed in this way is a very strong kind of pref-
erence, however. It requires that all of object j’s relevant properties are considered more
important than objects i’s properties, which corresponds with the definition of i<∀∀ j by
U(j→◻≤¬i). In contrast, multi-attribute preference logic is able to specify principles
that allow to derive preferences over objects from their properties in a weaker sense. It
enables, for example, to specify orderings where object j is preferred over object i even
when object i has at least one property that is considered more important than a property
that object j has (compare e.g. object c and f in Figure 2). The logic thus facilitates the
specification of different ordering strategies, and, given such a specification, provides
the means to derive a preference of one object over another from a property ranking and
an additional specification of the objects’ properties.

Proposition 1 supports our claim that multi-attribute preference logic extends binary
preference logic as all listed axioms of this logic are valid in multi-attribute preference
logic as well (cf. [7], p. 66). We have listed only those axioms that can straightfor-
wardly be expressed without the need to introduce additional definitions of other binary
preference operators; all of the remaining axioms are valid as well in multi-attribute
preference logic when such definitions are added. Below we use that ∧ and ∨ bind their
arguments stronger than→ to be able to remove some brackets.

Proposition 1. We have the following validities:
1. ⊧ Eiϕ↔Uiϕ for ϕ ∈ L0.
2. ⊧ ϕ <∀∀ ψ ∧U(ξ →ψ) → ϕ <∀∀ ξ
3. ⊧ ϕ <∀∀ ψ ∧U(ξ → ϕ) → ξ <∀∀ ψ
4. ⊧ ϕ <∀∀ ψ ∧ψ <∀∀ ξ ∧Eξ → ϕ <∀∀ ξ
5. ⊧U¬ϕ ∨U¬ψ → ϕ <∀∀ ψ
6. ⊧ ϕ <∀∀ ψ →U(ϕ <∀∀ ψ)

186 K.V. Hindriks, W. Visser, and C.M. Jonker

What multi-attribute preference logic adds to binary preference logic are names for
objects, and most importantly, the ◻≠ operator that allows us to define clusters (see
Section 2.2) that represent desirable attributes. All of the modal operators ◻=,◻<,◻≠

and U are normal modal operators and satisfy the K axiom. In addition, we prove some
properties of the ◻= and ◻≠ operators (some of the more obvious axioms have not been
listed below). Proposition 2.3 shows that multi-attribute preference logic is related to
the logic of only knowing, see [8].

Proposition 2. We have:
1. ⊧ ◻=◻≠ϕ↔◻≠ϕ
2. ⊧ ◻=◻<ϕ↔◻<ϕ
3. ⊧ ◻=ϕ →¬◻≠ϕ where ¬ϕ ∈ L0 is consistent

Proof. We prove item 3. Suppose ◻=ϕ is true at world w. Then ϕ is true in all worlds
v ∼ w. Since the truth of objective formulae is the same within an object, ϕ is also
true in every world u ∈ {[v]V ∣ w ∼ v}. Since ¬ϕ is a consistent objective formula and
all valuations are present in the model, ¬ϕ must be true in some world in the model.
So there must be some world in {[v]V ∣w ∼ v} that satisfies ¬ϕ , so we have ¬◻≠ ϕ at
world w.

2.2 Clusters

The total pre-order ≾ in a multi-attribute preference model induces a strict linear order
on sets of worlds, which we call clusters. Formally, a cluster is an equivalence class
induced by ≾. Intuitively, such clusters represent the properties or attributes considered
relevant for deriving object preferences. The order on clusters induced by ≾ represents
a property ranking, i.e. the relative importance of one property compared to another.
The relation between objects and properties may now be clarified as follows. The idea
is that if an object has a particular property it should be represented within the cluster of
worlds that represents the property. Technically, this is realized by making sure that (at
least) one of the copies of a world that identifies the object is an element of the cluster
that represents the property. The worlds that identify an object act as representatives
for the object within a certain cluster and thus indicate that the object has that property.
As clusters are disjoint and objects may have multiple properties, this also explains the
need for introducing copies of worlds.

Definition 5. (Cluster) Let ≾ be a total pre-order on W. A cluster c is an equivalence
class induced by ≾, i.e. c = [w]≾ = {v ∣w ∼ v} for some w ∈W.

Example 2. The relation between clusters (properties) and sets of copies (objects) is vi-
sualized in Figure 2 (this is a model of the theory in Example 4). The ellipses (columns)
represent the clusters or properties and the boxes (rows) represent objects. Objects in
this case are supposed to be houses. For example, the house labelled b consists of two
worlds, w4 and w5. As these worlds are part of the same object, they must be copies of
each other. One of these worlds, w4, is also part of the cluster representing the property
of being affordable. This means that house b is affordable, as affordable is true at w4

Multi-attribute Preference Logic 187

≻ ≻ ≻

a

b

c

d

e

f

g

h

C(affordable) C(closeToWork) C(large) C(¬(affordable ∨

closeToWork ∨ large))

w1 w2 w3

w4 w5

w6 w7

w8

w9 w10

w11

w12

w13

Fig. 2. Visualization of an MPL model

(and thus also at w5). Similarly, it follows that house b is close to work, a property that
is true at w5 (and thus at w4). As there is no world that is part of object b as well as in the
cluster representing the property large, house b is not large. The ranking of the proper-
ties is indicated by the ≺ symbol: property affordable is more important than close to
work which in turn is more important than large. As a result, in any natural preference
ordering based on this ranking one would expect house b to be preferred over house c.

The modality ◻= can be used to express a property of a cluster. For example, E◻=ϕ
expresses that there is a cluster where ϕ is true everywhere. ◻=ϕ expresses that at least
ϕ is true in the cluster. In Figure 2, for example, in the third cluster we have that ◻=large
is true. This means that every object that is represented by a world in this cluster is large.
But we also want every object that is large to be represented in the cluster. To specify
this, we use the modality ◻≠. We can now explain why simply defining the truth of ◻≠ϕ
in terms of truth of ϕ in all worlds that are not equally ranked to the current one does not
work. The point is that there may be copies v of worlds w that have a different ranking
than world w. As copies have the same truth assignment, at such copies a propositional
formula ϕ would be assigned the same truth value. This is illustrated in Figure 3, where
large is true in all worlds in the shaded area. The key observation here is that worlds of
a particular ranking identify a set of objects, i.e. copies of these worlds which must be
part of these objects (by Definition 2 of an object). This is why ◻≠ϕ evaluates ϕ at all
objects, or, more precisely, the worlds that define these objects, that are not identified
by any of the worlds that have the same ranking as the current one.

By combining both operators we are able to characterize a cluster. For the third
cluster in Figure 2, we have that ◻=large∧◻≠¬large where large exactly characterizes
the cluster. The characterization of a cluster by ϕ is abbreviated as Cϕ , and defined by:

Cϕ ∶∶= ◻=ϕ ∧◻≠¬ϕ

188 K.V. Hindriks, W. Visser, and C.M. Jonker

≻ ≻ ≻

a

b

c

d

e

f

g

h

C(affordable) C(closeToWork) C(large) C(¬(affordable ∨

closeToWork ∨ large))

w1 w2 w3

w4 w5

w6 w7

w8

w9 w10

w11

w12

w13

Fig. 3. Visualization of an MPL model. All worlds where large is true are in the shaded section.

ϕ is true for all objects identified by (worlds in) the cluster and not true in all worlds that
identify other objects. As an object may consist of several copies to represent that it has
various properties represented by different clusters, copies of such worlds outside the
cluster need to be excluded in the evaluation of ¬ϕ which explains the truth condition
for ◻≠.

Proposition 3 shows that properties and objects are related in such a way that object
preferences can be derived. The first item of the proposition states that if there is an
object that has property ϕ and the current world identifies a cluster characterized by ϕ ,
then within the cluster there is a world that is named i, i.e. identifies the object i. The
second item states that the converse is true for an object that does not satisfy a property
ϕ that characterizes a cluster. That is, if object i does not satisfy ϕ and the current world
identifies a cluster characterized by ϕ , then no world that identifies the object labelled i
is part of that cluster. The third item generalizes the first item. It states that if there is a
cluster characterized by ϕ , and there is an object named i that satisfies ϕ , then there is
an i-world in that cluster. The last item states that when a world satisfies C(ϕ), then all
worlds within the same cluster satisfy C(ϕ).

Proposition 3. We have:
1. ⊧C(ϕ)∧Eiϕ →◇=i
2. ⊧C(ϕ)∧¬Eiϕ →¬◇= i
3. ⊧ EC(ϕ)∧Eiϕ → EiC(ϕ)
4. ⊧C(ϕ) → ◻=C(ϕ)

Proof. We prove item 1. SupposeM,w ⊧C(ϕ)∧Eiϕ . This means thatM,w ⊧ ◻≠¬ϕ .
By the truth definition for ◻≠, this is equivalent to ∀u ∈ ⋃{[v]V ∣w ∼ v} ∶M,u ⊧¬ϕ . By
the definition of Eiϕ we must also have a world u′ such thatM,u′ ⊧ i∧ϕ . This means
that we cannot have u′ ∈⋃{[v]V ∣w ∼ v} and we have that u′ ∈⋃{[v]V ∣w∼ v}. It follows

Multi-attribute Preference Logic 189

that u′ ∈ [v]V for some v ∼w; as u′ must be a copy of v this means that we haveM,v⊧ i
and, by the truth definition for◇=, we haveM,w ⊧◇=i.

The operator C provides exactly what we need to define property rankings. Se-
mantically, we have already seen that the pre-order ≾ induces a strict linear order on
clusters. The formula Cϕ allows us to express that a cluster is characterized by a for-
mula ϕ . Using this operator and the binary preference operator <∀∀ we can express
that property ψ (represented by a cluster) is ranked higher than another property ϕ
(represented by another cluster) by Cϕ <∀∀ Cψ . For example, in Figure 2, we have
C(large) <∀∀ C(closeToWork) <∀∀ C(affordable). By combining this with specifica-
tions of particular preferences orderings and statements that an object has a particular
property (cf. Proposition 3), this will allow the derivation of object preferences from a
property ranking.

3 Preference Orderings

In this Section, we show how to use multi-attribute preference logic to define multi-
attribute preference orderings derived from property rankings. Coste-Marquis et al. [6]
describe three frequent orderings based on prioritized goals: best-out, discrimin and
leximin ordering. Brewka [4] defines a preference language in which different basic
preference orderings can be combined and identifies four ‘fundamental strategies’ for
deriving preferences from what he calls a ranked knowledge base: ⊺, κ , ⊆ and #. As
best-out is the same as κ , discrimin is ⊆, and leximin is #, we will base the remainder
of our discussion on Brewka [4].

We first informally introduce these orderings and then present definitions for each of
them in the logic. Section 4 presents the definitions of [4] and a proof that the defini-
tions in multi-attribute preference logic match those provided in [4]. The advantage of
defining preference orderings in a logic instead of providing set-theoretical definitions
is that it formalizes the reasoning about object preferences. From a practical point of
view, the logic allows us to provide rigorous formal proofs for object preferences de-
rived from property rankings. From a theoretical point of view, it provides the tools to
reason about preference orderings and allows, for example, to prove that whenever an
object is preferred over another by the ⊺ strategy it also is preferred by the # strategy
(see Proposition 4 below).

The two orderings ⊆ and # first consider the most important property. If some ob-
ject has that property and another does not, then the first is preferred over the second.
So in the example, both house1 and house2 would be preferred over house3. If two
houses both have the property or if neither of them has it, the next property is consid-
ered. house1 and house2 are both affordable, but house1 is close to work and house2 is
not, so house1 would be preferred over house2. Note that although house3 satisfies two
properties and house house2 only satisfies one property, house2 is still preferred over
house3 because the single property of house2 is considered more important than both
properties of house3. The ⊆ and # orderings only differ if multiple properties are equally
important. As we will make the assumption that no two properties can have the same
importance, we will not discuss the difference and only refer to the # ordering in the
following.

190 K.V. Hindriks, W. Visser, and C.M. Jonker

The ⊺ ordering looks at the highest ranked or most important property that is sat-
isfied. If that property of one object is ranked higher than that of another object, then
the first object is preferred over the second. If those properties are equally ranked, then
both objects are equally preferred. In our running example, house1 and house2 are both
preferred over house3, since the property ranked highest that is satisfied by both house1

and house2 is affordable, and this property is ranked higher than the highest ranked
property satisfied by house3, i.e. closeToWork. Since the most important property satis-
fied by house1 is the same as the most important property satisfied by house2, house1

and house2 are equally preferred.
The κ ordering looks at the most important property that is not satisfied. If that

property of one object is less important than the property of another object, then the
first object is preferred over the second. If those properties are equally important, then
both objects are equally preferred. In our running example, the highest ranked property
that is not satisfied by house1 is large, that of house2 is closeToWork and that of house3

is affordable. Since large is the least important property of these properties, house1

is preferred over both other houses. As closeToWork is less important than affordable,
house2 is preferred over house3.

All preference orderings introduced can be defined in multi-attribute preference logic.
We use pre f s

∼
(i, j) to stand for: object i is weakly preferred over object j according to

strategy s, where s is one of ⊺, κ and #; pre f s
(i, j) is used to express strict preference.

Definition 6. (Preference Orderings) pre f κ
(i, j), pre f κ

∼
(i, j), pre f #

(i, j), pre f #
∼
(i, j),

pre f ⊺(i, j) and pre f ⊺
∼
(i, j) are defined by:

pre f ⊺(i, j)∶∶=E(i∧¬◇= j∧◻<(¬i∧¬ j))
pre f ⊺

∼
(i, j)∶∶=pre f ⊺(i, j)∨

U((◇=i∧◻<¬i)↔ (◇= j∧◻<¬ j))
pre f κ

(i, j)∶∶=E(i∧¬◇= j∧◻<(◇=i∧◇= j))
pre f κ

∼
(i, j)∶∶=pre f κ

(i, j)∨
U((¬◇= i∧◻<◇= i)↔ (¬◇= j∧◻<◇= j))

pre f #
(i, j)∶∶=E(i∧¬◇= j∧◻<(◇=i↔◇= j))

pre f #
∼
(i, j)∶∶=pre f #

(i, j)∨U(◇=i↔◇= j)

To understand these definitions, recall that we say that a world identifies an object
when it is part of that object and the object consists of copies of one and the same
world. These copies are used to represent that an object has a property present in a
property ranking. In Figure 2, for example, world w7 is a representative of object c for
the property large. Thus, the formula Ei¬◇

= j may be read as ‘object i has a property
that object j does not have’. Similarly, ◇<i can be read as ‘there is a more important
property (than the current one) that object i has’. These readings may help explain the
definitions. pre f ⊺(i, j) may be read as ‘there is a property such that i has it and j does
not, and for all more important properties, neither i nor j has any of them’. The second
disjunct in the definition of pre f ⊺

∼
(i, j) defines when two objects are equally preferred

with respect to ⊺, and may be read as ‘if there is a property that i has, but i does not
have any more important properties, then j has that property too and does not have any
more important properties either, and vice versa’. Similar readings can be provided for
the other preference operators.

Multi-attribute Preference Logic 191

Proposition 4 shows that the relation between weak and strict preference is as usual,
and, moreover, a strict preference according to ⊺ or κ implies a strict preference accord-
ing to #.

Proposition 4. We have:
1. ⊧ pre f s

(i, j)↔ pre f s
∼
(i, j)∧¬pre f s

∼
(j, i) for s ∈ {⊺,κ ,#}.

2. ⊧ pre f ⊺(i, j) → pre f #
(i, j)

3. ⊧ pre f κ
(i, j) → pre f #

(i, j)

Example 3. Given the model of Figure 2, we can derive that pre f #
(b,d). By definition,

this is the case when E(b∧¬◇= d ∧◻<(◇=b↔◇=d)) is true. This means that there
must be a world w that is named b that has no equally ranked world named d, and,
moreover, for every higher ranked world v there is an equally ranked world named b if
and only if there is an equally ranked world with name d. By inspection of Figure 2,
world w5 fits the description.

4 MPL Defines Ranked Knowledge Bases

Here we prove that the preference orderings of Definition 6 define those of Brewka [4].
Brewka [4] calls property rankings ranked knowledge bases, defined as follows:

Definition 7. (Ranked Knowledge Base) A ranked knowledge base (RKB) is a set
F ⊆ L0 of objective formulae together with a total pre-order ≥ on F. Ranked knowledge
bases are represented as a set of ranked formulae (f ,k), where f is an objective formula
and k, the rank of f , is a non-negative integer such that f1 ≥ f2 iff rank(f1) ≥ rank(f2).
That is, higher rank is expressed by higher indices.

In the setting of [4], comparing objects given a ranked knowledge base means compar-
ing truth assignments which represent these objects, analogously to the representation
of the three houses used in Figure 1. It is easy to see that this example is represented by
the following ranked knowledge base: {(affordable,3), (closeToWork,2), (large,1)}.

Object preferences can be derived in multiple ways from a ranked knowledge base.
In order to define these strategies, some auxiliary definitions are introduced next. Below,
Kn
(m) denotes the set of properties of a certain rank n that are satisfied with respect

to truth assignment m; maxsatK
(m) denotes the highest rank associated with the prop-

erties that are satisfied by assignment m, and maxunsatK
(m) denotes the highest rank

associated with the properties that are not satisfied by m.

Definition 8. Let K be a ranked knowledge base and m ∈ 2At .

Kn
(m) ∶∶= { f ∣ (f ,n) ∈K,m ⊧ f}

maxsatK
(m) ∶∶= −∞ if m /⊧ fi for all (fi,vi) ∈K,

max{i ∣ (f , i) ∈K,m ⊧ f} otherwise
maxunsatK

(m) ∶∶= −∞ if m ⊧ fi for all (fi,vi) ∈K,
max{i ∣ (f , i) ∈K,m /⊧ f} otherwise

Using these auxiliary definitions, preference orderings m1 ≥
K
s m2 are defined which

mean that object (truth assignment) m1 is (weakly) preferred over object m2 according
to strategy s.

192 K.V. Hindriks, W. Visser, and C.M. Jonker

Definition 9. (Preference Orderings) Let K be a ranked knowledge base. Then the
following preference orderings over truth assignments are defined:
● m1 ≥

K
⊺

m2 iff maxsatK
(m1) ≥maxsatK

(m2).
● m1 ≥

K
κ m2 iff maxunsatK

(m1) ≤maxunsatK
(m2).

● m1 ≥
K
m2 iff ∣Kn

(m1)∣ = ∣Kn
(m2)∣ for all n, or there is n s.t. ∣Kn

(m1)∣ > ∣Kn
(m2)∣, and

for all j > n ∶ ∣K j
(m1)∣ = ∣K j

(m2)∣.

To simplify, we make the assumption here that different properties cannot have the
same ranking. In that case, the set of all satisfied properties of a given rank is a singleton
set or the empty set, we have that ≥ is a strict linear order on F - also denoted by
>, and, as a result, the ⊆ and # orderings coincide. We also assume that properties in a
ranked knowledge base are consistent. Finally, we may assume that a ranked knowledge
base does not contain logically equivalent properties with different ranks since such
occurrences except for the one ranked highest can be discarded as it has no influence
on any of the preference orderings.

Definition 10. (Translation Function) The function τ translates ranked knowledge
bases K = ⟨F,≥⟩ and truth assignments m to formulae and is defined by:
● τ(K) ∶∶= ⋀{EC(ϕ) ∣ ϕ ∈ F}∧

U(⋁{C(ϕ) ∣ ϕ ∈ F or ϕ = ¬⋁{χ ∣ χ ∈ F}})
⋀{C(ϕ) <∀∀ C(ψ) ∣ ϕ ,ψ ∈ F & ψ > ϕ}∧
⋀{C(¬⋁{ϕ ∣ ϕ ∈ F}) <∀∀ ψ ∣ψ ∈ F}∧

● τname(m) ∈Nom
● τ(m) ∶∶= ⋀{Eiϕ ∣m ⊧ ϕ}∪{¬Eiϕ ∣m /⊧ ϕ} with i = τname(m)

The translation of a ranked knowledge base K expresses that for each property ϕ
in K, there exists a corresponding cluster by Cϕ , that there are no other clusters than
those specified by the properties, and one extra cluster for the case in which none of
the properties is satisfied. It forces the ranking of these clusters to be the same as the
property ranking induced by K, with the added extra cluster as least important one. The
translation also associates an object name with a truth assignment and states for each
property whether the object (truth assignment) has the property or not.

Example 4. Using the translation function, and assuming that τname(house1) =

b, τname(house2) = d and τname(house3) = e, the RKB {(affordable,3),
(closeToWork,2),(large,1)} translates into:

1. E(C(affordable))∧E(C(closeToWork))∧E(C(large))
2. U(C(affordable)∨C(closeToWork)∨C(large)∨
C(¬(affordable∨closeToWork∨ large)))
3. C(¬(affordable∨closeToWork∨ large)) <∀∀
C(large) <∀∀ C(closeToWork) <∀∀ C(affordable)
4. Eb(affordable)∧Eb(closeToWork)∧¬Eb(large)
5. Ed(affordable)∧¬Ed(closeToWork)∧¬Ed(large)
6. ¬Ee(affordable)∧Ee(closeToWork)∧Ee(large)

A model of this theory is shown in Figure 2. Although only objects b, d and e are spec-
ified in the theory, for illustrative reasons this model contains all possible objects (there

Multi-attribute Preference Logic 193

is a world, and hence an object, for every possible valuation of the three propositional
atoms). Every property has its own cluster, which means that every object satisfying
that property has a world in that cluster, and that every world in that cluster satisfies
that property. No worlds exist outside the four specified clusters, and the order among
clusters is fixed. The only ways a model of this theory can be structurally different from
the one shown are by removing objects that are not b, d or e (but then all worlds be-
longing to that object have to be removed at once), or by adding more worlds, but only
at the same ‘places’ as the worlds shown.

Theorem 1 shows that every multi-attribute preference model that is a model of the
translation of a particular RKB yields the same preference ordering as the original RKB.

Theorem 1. m1 ≥
K
s m2 iff ⊧ τ(K) ∧ τ(m1) ∧ τ(m2) → pre f s

∼
(τname(m1),τname(m2))

where s ∈ {⊺,κ ,#}.

Proof. Assume that τname(m1) = i and τname(m2) = j, and observe that the translation
of K = ⟨F,≥⟩ is equivalent to:
(1) C(¬(f1 ∨ . . .∨ fn)) <∀∀ C(f1) <∀∀ . . . <∀∀ C(fn),
(2) ∀ f ∈ F ∶ E(C(f)) and
(3) U(C(f1)∨ . . .∨C(fn)∨C(¬(f1∨ . . .∨ fn))).
For brevity, we only prove the left to right direction for the case m1 >

K
κ m2. Then we have

maxunsatK
(m1) <maxunsatK

(m2) and maxunsatK
(m2) > −∞, so there is a formula fk

in F such that
(4) m2 /⊧ fk,
(5) m1 ⊧ fk and
(6) ∀ f ′ > fk ∶m1 ⊧ f ′ & m2 ⊧ f ′.
Applying the translation function τ , we then get:
(4) ¬E j fk,
(5) Ei fk and
(6) ∀ f ′ > fk ∶ Ei f ′ ∧E j f ′.

From (5), (2) and Prop. 3.3 it then follows that
(8) EiC(fk).
From (8), (4) and Prop. 3.2 it follows that
(9) Ei¬◇

= j∧C(fk).
And from (6) and Prop. 3.1 it follows that
(10) ∀ f ′ > fk ∶ ◇

=i∧◇= j.
Using (1) and (3) we obtain
(11) C(fk) → ◻

<
(C(fk+1)∨ . . .∨C(fn)).

From (10) and (11) we obtain
(12) C(fk) → ◻

<
◇
= i∧◻<◇= j.

Then (9) and (12) can be combined into E(i∧¬◇= j∧◻<(◇=i∧◇= j)), which is the
definition of pre f κ

(i, j).

Example 5. We now show how to formally derive a preference statement from the for-
mulae obtained by translating a ranked knowledge base in Example 4. As an illustration,
we show that pre f κ

(b,d) can be derived.
From (4.4) Eb(closeToWork), (4.1) E(C(closeToWork)) and Proposition 3.3 we obtain

194 K.V. Hindriks, W. Visser, and C.M. Jonker

(1) EbC(closeToWork).
From (4.5) ¬Ed(closeToWork) and Proposition 3.2 it follows that
(2a) C(closeToWork) → ¬◇= d.
From 4.3 and 4.2 we can derive that
(2b) C(closeToWork) → ◻<C(affordable).
By combining (1), (2a) and (2b) we derive
(3) Eb(¬◇

= d∧◻<C(affordable)).
Now, from Proposition 3.1, (4.4) Eb(affordable) and (4.5) Ed(affordable), we derive
(4a) C(affordable)→◇=b and
(4b) C(affordable) →◇=b.
Using (3), (4a), and (4b), we obtain Eb(¬◇

= d∧◻<(◇=b∧◇=d)), which is the defini-
tion of pre f κ

(b,d).

5 Conclusion

In this paper we introduced a modal logic for qualitative multi-attribute preferences. The
logic is based on Girard’s binary preference logic [7], but extends this logic with objects
and clusters that introduce the possibility to reason explicitly about multiple attributes.
We showed that multi-attribute preference logic is expressive enough to define various
natural preference orderings based on property rankings [4,6]. The additional value
of the logic is that it is possible to reason about these different preference orderings
within the logic. This means we cannot only reason about which objects are preferred
according to a certain ordering, but also about the relation between different orderings
as is shown in Proposition 4.

One possible extension to multi-attribute preference logic is the introduction of in-
dices for different agents. In this way, distinct preference orderings for several agents
can be expressed. This introduces the possibility to reason about properties such as
pareto-optimality of objects (an object is pareto-optimal if there is no other object that
is better for at least one agent and not worse for the other agents), which is useful in the
context of e.g. joint decision making or negotiation.

We have made the assumptions that attributes are binary, and that priority orderings
are total linear orders. In future work we plan to investigate how we can loosen these
assumptions. For example, if multiple attributes can have the same importance, the #
and ⊆ orderings will differ and we will be able to encode trade-offs between attributes.

Our main concern in this paper has been the expressiveness of multi-attribute prefer-
ence logic. Other questions such as a complete axiomatization of the logic, succinctness
and complexity remain future work. We plan to develop a reasoning system in which
agents can reason about qualitative multi-attribute preferences in various settings. In
our future work we will focus more on the reasoning mechanism and how different
domains can be modelled accurately in our approach.

A more detailed comparison of multi-attribute preference logic with other preference
logics such as Qualitative Choice Logic [5] is planned. Other areas for future work
concern the representation of dependent properties and the relation of multi-attribute
preference logic to e.g. CP-nets [3].

Multi-attribute Preference Logic 195

Acknowledgements. This research is supported by the Dutch Technology Founda-
tion STW, applied science division of NWO and the Technology Program of the Min-
istry of Economic Affairs. It is part of the Pocket Negotiator project with grant number
VICI-project 08075.

References

1. Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and Informa-
tion 4(3), 251–272 (1995)

2. Boutilier, C.: Toward a logic for qualitative decision theory. In: 4th International Conference
on Principles of Knowledge Representation and Reasoning (KR), pp. 75–86 (1994)

3. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for rep-
resenting and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research 21, 135–191 (2004)

4. Brewka, G.: A rank based description language for qualitative preferences. In: 16th European
Conference on Artificial Intelligence (ECAI), pp. 303–307 (2004)

5. Brewka, G., Benferhat, S., Le Berre, D.: Qualitative choice logic. Artificial Intelli-
gence 157(1-2), 203–237 (2004)

6. Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and succinctness
of propositional languages for preference representation. In: 9th International Conference on
Principles of Knowledge Representation and Reasoning (KR), pp. 203–212 (2004)

7. Girard, P.: Modal Logic for Belief and Preference Change. PhD thesis, Universiteit van Am-
sterdam (2008)

8. Halpern, J.Y., Lakemeyer, G.: Multi-agent only knowing. Journal of Logic and Computa-
tion 11(1), 41–70 (2001)

9. Hansson, S.O.: Preference logic. In: Gabbay, D.M., Günthner, F. (eds.) Handbook of Philo-
sophical Logic, 2nd edn., vol. 4, pp. 319–393. Kluwer (2001)

10. Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: preferences and value trade-
offs. Cambridge University Press (1993)

11. Liu, F.: Changing for the Better: Preference Dynamics and Agent Diversity. PhD thesis,
Universiteit van Amsterdam (2008)

12. von Wright, G.H.: The Logic of Preference: An Essay. Edinburgh University Press (1963)

An Empirical Study

of Patterns in Agent Programs

Koen V. Hindriks, M. Birna van Riemsdijk, and Catholijn M. Jonker

Delft University of Technology, P.O. Box 5031, 2600 GA, Delft, The Netherlands
{k.v.hindriks,m.b.vanriemsdijk,c.m.jonker}@tudelft.nl

Abstract. Various agent programming languages and frameworks have
been developed by now, but very few systematic studies have been done
as to how the language constructs in these languages may and are in fact
used in practice. Performing a study of these aspects contributes to the
design of best practices or programming guidelines for agent program-
ming. Following a first empirical study of agent programs written in the
Goal agent programming language for the dynamic blocks world, in this
paper we perform a considerably more extensive analysis of agent pro-
grams for the first-person shooter game Unreal Tournament 2004. We
identify and discuss several structural code patterns based on a qualita-
tive analysis of the code, and analyze for which purposes the constructs
of Goal are typically used. This provides insight into more practical
aspects of the development of agent programs, and forms the basis for
development of programming guidelines and language improvements.

1 Introduction

Shoham was one of the first who proposed to use common sense notions such
as beliefs and goals to build rational agents [15], coining a new programming
paradigm called agent-oriented programming. Inspired by Shoham, a variety of
agent-oriented programming languages and frameworks have been proposed since
then [3]. For several of them, interpreters and Integrated Development Environ-
ments (IDEs) are being developed. Some of them have been designed mainly
with a focus on building practical applications (e.g., JACK [18] and Jadex [14]),
while for others the focus has been also or mainly on the languages’ theoretical
underpinnings (e.g., 2APL [6], Goal [8], and Jason [4]).

In this paper, we take the language Goal as object of study. Goal is a high-
level programming language to program rational agents that derive their choice
of action from their beliefs and goals. Although the language’s theoretical basis
is important, it is designed by taking a definite engineering stance and aims at
providing useful programming constructs to develop agent programs. Starting
with small-size applications such as (dynamic) blocks world , the language is
being applied more and more in larger domains where agents have to function
in real-time and highly dynamic environments. To be more specific, recently the
language has been used in a project with first year BSc students of computer
science, in which groups of students had to program a team of agents to control
bots in the first-person shooter game Unreal Tournament 2004 (UT2004).

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 196–211, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Empirical Study of Patterns in Agent Programs 197

Software engineering aspects become increasingly important as applications
get more complex. For this reason, in [16] a first empirical study was presented
on how the language constructs are used in practice to program agents, and how
easy it is to read the resulting programs with the aim of designing a set of best
practices and programming guidelines that support Goal programmers. In that
paper, three Goal programs for the dynamic blocks world domain were studied.

In this paper, we take this a step further and analyze Goal programs that
were developed for UT2004 by the students of the project. This study is much
more extensive than [16]: the application domain of UT2004 is far more challeng-
ing than the dynamic blocks world, which has resulted in much larger programs
(approximately 800 lines of code per agent for the larger ones, in comparison with
around 100 for the dynamic blocks world); the Goal language has been extended
significantly since the programs studied in [16] were developed; the number of
available programs to study is much larger, namely 12 for the UT2004 domain
in contrast with 3 for the blocks world domain; the programs are multi-agent
systems, rather than single agents, which gives us the opportunity to study or-
ganization structures as used and understood by students.

The focus is on a qualitative study of the code of the agent programs. In
addition, we analyze several metrics on the code. Due to the size of the study
we do not consider run-time behavior in this paper. We identify and discuss
structural code patterns for the programming abstractions present in the latest
version of Goal, and analyze for which purposes the constructs are typically
used. Through this empirical software engineering, we contribute to forming a
body of knowledge leading to widely accepted and well-formed theories about
engineering Goal agents.

2 The Agent Programming Language GOAL

In this study, the agent programming language Goal has been used. Goal is
a high-level language for programming rational agents using cognitive concepts
such as beliefs and goals. The language is similar to other agent programming
languages such as 2APL, Jadex, and Jason. Due to space limitations, the pre-
sentation of Goal itself here will be very limited and we cannot illustrate all
features present in the language. For more information, we refer to [8].

Goal agents are logic-based agents in the sense that they use a knowledge
representation language to represent their knowledge, beliefs and goals to reason
about the environment in which they act. The knowledge representation tech-
nology we used is SWI Prolog [1]. One of Goal’s distinguishing features is that
Goal agents have a mental state that consists of the knowledge, beliefs and goals
of the agent. Knowledge is used to represent conceptual and domain knowledge
that is static. During a computation of the agent the knowledge of that agent
is never modified. As knowledge is always true, it can be used in combination
with both beliefs and goals to derive new beliefs and goals, respectively. For
example, if an agent has a conjunctive goal to have a weapon and ammo, and
knows that that combination always results in a loaded weapon, it also has the

198 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

derived goal to have a loaded weapon. The belief base and goal base are the
dynamic components of an agent’s mental state. Beliefs change by performing
actions; Goal also provides two built-in actions insert(ϕ) and delete(ϕ) to
insert and remove information from an agent’s belief base. Goals in a Goal

agent represent so-called achievement goals. An achievement goal is a condition
that the agent wants to be true but which is currently not believed to be true by
the agent. An achievement goal ϕ thus never follows from the agent’s beliefs (in
combination with its knowledge) and this constraint is enforced as a rationality
constraint. The rationale is that an agent should not put time and resources into
realizing an achievement goal that has already been achieved. This also means
that whenever a goal has been (believed to be) completely realized, the goal is
automatically removed from the goal base of the agent. Goal also provides two
built-in actions adopt(ϕ) and drop(ϕ) to, respectively, adopt a new achieve-
ment goal and drop some of the agent’s current goals. The drop action allows
an agent to revise its goals in light of, for example, changing circumstances.

Actions are selected by a Goal agent by inspecting their mental state and
by means of rules. Goal agents are able to inspect their mental state by means
of mental state conditions. Mental state conditions allow the agent to inspect
both its beliefs and its goals, and provide Goal agents with expressive reason-
ing capabilities. In an agent program, mental atoms of the form bel(ϕ) and
a-goal(ϕ) are used to verify whether ϕ is believed or ϕ is an achievement goal.

Actions are selected in Goal by rules of the form
if < cond > then < action > where < cond > is a mental state condition.
The < action > part may consist of single actions, or of multiple actions that
are combined by means of the + operator. Rules provide Goal agents with the
capability to react flexibly and reactively to environment changes but also allow
a programmer to define more complicated strategies. Rules may be located in
either the program section or the perceptrule section of an agent program. In the
program section, every cycle of the interpreter a single applicable rule is selected
and rules in this section are typically used to select actions that are executed
in the environment. In the perceptrule section, every cycle of the interpreter
all applicable rules are executed in order. Rules in the perceptrule section are
typically used to process percepts from the environment and messages received
from other agents. All built-in actions of Goal may occur in both sections but
user-specified actions of both internal or environment actions may only occur in
the program section. This restriction implies that the number of environment
actions executed every cycle is limited to at most one.

Modules provide a means to structure action rules into clusters and to define
different strategies for different situations [8]. In particular, modules facilitate
structuring the tasks and role assignment of an agent, as it allows an agent to
focus on some of its current goals and disregard others for the moment. Different
types of modules are distinguished based on whether the module is entered by
means of a trigger related to the beliefs or the goals of an agent.

Finally, mas files provide a recipe for launching multi-agent systems composed
of several Goal agents. A mas file specifies which environment to start and how

An Empirical Study of Patterns in Agent Programs 199

it should be initialized, which agent source code files are used to create agents,
and when to create an agent. An agent may or may not be connected to an
environment. In our UT2004 case study agents may be connected to bots; an
agent may be launched e.g. when a bot becomes available in the environment.
Agents connected to an environment are able to execute environment actions
to change the environment and receive percepts from the environment which
enables an agent to monitor its environment. Percepts - received every cycle of
the interpreter - are stored in an agent’s percept base. At the end of each cycle
this percept base is cleared again and all percepts are removed. This implies that
each cycle all percepts need to be processed immediately.

Additional features of Goal include among others a macro definition con-
struct to associate intuitive labels with mental state conditions to increase the
readability of the agent code, options to apply rules in various ways, and com-
munication. Various communication primitives are available but the most basic
action is the send action to send a message to another agent. Messages that are
sent as well as those that are received are archived in the mailbox of an agent,
and are only removed when the agent explicitly does so.

3 Experimental Setup

We perform a qualitative study (rather than a quantitative study) since it better
fits the aim of this paper, namely to analyze how students use Goal as a step
towards developing programming guidelines for Goal. Qualitative methods are
used for exploratory research in which hypotheses are formed, while quantitative
methods are used to test pre-determined hypothesis and produce generalizable
results [12]. Our research is exploratory, since we are in the process of investigat-
ing which structural code patterns might be part of programming guidelines for
Goal, as examples of recommended or not recommended uses of the language
(comparable to design patterns and antipatterns used in software engineering).

In programming language research, several criteria for good language design
have been identified. The following are particularly relevant in the context of this
paper. The value of linear flow of control was, for example, recognized, primar-
ily for its value in program debugging and verification, it was recognized that
a language must be comprehensible, so that programs written in the language
can be read and maintained, and modular program structures were observed to
make an important contribution to the production of large software systems [17].
Moreover, in [10] several language evaluation criteria are distinguished among
which: human factors (to what degree does the language alow a competent pro-
grammer to code algorithms easily and correctly, how easy is the language to
learn), software engineering (maintainability, reusability, etc.), and application
domain (how well a language supports development for a specific domain).

In agent research, software engineering has mainly been studied in the context
of agent-oriented software engineering methodolgies such as Prometheus [13].
These methodologies, however, are either too abstract to provide programming
guidelines for concrete agent programming languages, or, to the extent to which

200 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

they provide concrete implementation guidance, do not fit the programming
abstractions as used in languages like Goal. In the agent programming field,
[11] focuses on structural metrics related to dependencies between abstractions,
which among others indirectly predict the likelihood of bugs. This paper can be
viewed as complementary to ours.

Subjects. The programmers whose code we have analyzed are first-year BSc com-
puting science students who followed our second-semester course on Program-
ming Multi-Agent Systems and the consecutive Project Multi-Agent Systems.
These students are the subjects of our experimental research. In the course the
students were trained in both Prolog as well as the agent programming language
Goal. As an indication of the level these students had, we briefly provide some
observations related to their skills in Prolog which is a prerequisite for writing
Goal agents since Prolog is used as the knowledge representation language in
these agents. The Prolog skills demonstrated by students are basic but sufficient.
Students were, for example, able to apply negation as failure and recursion.

Project. UT2004 is an interactive, multi-player computer game where bots can
compete with each other in various arenas. The game provides ten different game
types. The game type that was used in the student project is called Capture The
Flag (CTF). In this type of game, two teams compete with each other that have
as main goal to conquer the flag located in the home base of the other team.
Points are scored by bringing the flag of the opponent’s team to ones own home
base while making sure ones own flag remains in its home base. Students have
to implement basic agent skills regarding walking around in the environment
and collecting weapons and other relevant materials, communication between
agents, fighting against bots of the other team, and the strategy and teamwork
for capturing the flag. We chose CTF because teams of bots have to cooperate,
which requires students to think about coordination and teamwork in a mas.

In the project, students are divided into teams of five students each. Every
group has to develop a team of Goal agents that control three UT bots in the
CTF scenario. In the project manual, it was suggested that although the number
of bots in the UT environment is three, students can also implement agents that
do not control bots in the environment, e.g., for coordination purposes. The
time available for developing the agent team was approximately two months,
in which each student has to spend about 1 to 1,5 days a week working on
the project. At the end of the project, there was a competition in which the
developed agent teams compete against one another. The grade is determined
based on the students’ report and their final presentation.

For the project, an interface was designed that is suitable for connecting logic-
based BDI (Belief-Desire-Intention) agents to a real-time game. Such an interface
needs to be designed at the right abstraction level. The reasoning typically em-
ployed by logic-based BDI agents does not make them suitable for controlling
low-level details of a bot. It makes little sense, for example, to require such agents
to deliberate about the degrees of rotation a bot should make when it makes
a turn. Such low-level control is better delegated to a more behavioral control

An Empirical Study of Patterns in Agent Programs 201

layer, which was built on top of Pogamut [5]. At the same time, however, the
BDI agent should be able to remain in control and the interface should support
sufficiently finegrained control. Details on the interface can be found in [9].

Sample. In quantitative research, a random and relatively large sample of sub-
jects to study is selected such that results can be generalized to the population
of interest. By contrast, in qualitative research the most productive sample to
answer the research question is selected, e.g., based on experience or expertise
of the subjects. In our case, 12 teams of 5 students participated in the project.
The focus of our qualitative analysis is on the code of Teams 1, 2, and 3 who
performed best in terms of code and performance in the competition, and Team
12 who performed worst in terms of code and performance.

4 Identification of Patterns

In this section, we present the observations we made by doing a qualitative
analysis of the code of our sample. We identify numerous structural code patterns,
and augment this qualitative analysis with metrics concerning, e.g., the number
of times certain Goal constructs were used. Also, we analyze for which purposes
the constructs are typically used. Sections 4.1 to 4.7 each treat a particular
language element; sect. 4.8 discusses coordination and mas organization; sect.
4.9 discusses more general software engineering aspects.

4.1 Knowledge and Belief Base

The knowledge base typically was used to define predicates for computing, e.g.,
distances and other relevant aspects related to navigation. The belief base was
used to keep track of the actual state of the environment and typical functions of
code in the belief base are to (i) represent global features of the environment (e.g.,
where is the flag), and (ii) represent assigned tasks or roles (agents were typically
assigned a single role or task at any one time). On average the knowledge base
was significantly larger than the belief base (23.25 versus 15.67 clauses, with a
standard deviation of 24.23 versus 8.7, respectively); moreover, the number of
predicates defined in the knowledge base is larger (ranging from 7 to more than
25 predicates) than that in the belief base (about 5) with some exceptions. This
suggests that most of the domain logic was located in the knowledge base, in
line with its main function to represent conceptual and domain knowledge.

One observation made by inspecting the code of various teams is that this code
includes predicates in the knowledge base that have motivational connotations
such as priority to indicate relative importance and needItem and wants. The
code fragments for defining these predicates are significant portions of the code,
sometimes more than a 100 lines of code.

4.2 Goal Base

The use of explicit goals has been limited. On average about 1.13 initial goals
were used with a standard deviation of 1.36. By inspection of code, it turns out

202 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

that initial goals most of the time are abstract goals such as visitFlags or
even win. These abstract goals are not actually used in action or percept rules
and are never removed, neither explicitly using a drop action nor implicitly by
inserting a belief into the belief base which implies the goal has been achieved.
These abstract goals thus are redundant and serve no functional purpose. In 6
out of 12 teams goals are added during runtime by using the adopt action; on
average 3.86 adopts are used by these 6 teams with a standard deviation of 4.29.

The goals adopted dynamically are used in context conditions of modules.
In these cases, the context condition consists of a check on a single goal which
forms the goal of the module, e.g., goal protectBot for the module protector

(Team 3). In these cases, goals are removed explicitly (never implicitly) using
drop actions (occurring in both action and percept rules). In Team 3, the goal
of a module is removed only after the module was exited explicitly based on
beliefs about role changes. In Team 2, an action rule if goal(not(camp))

then exit-module. is present at the top of the camp module, to express that
the module should be exited if the agent no longer has the camp goal. How-
ever, this behavior is already in the semantics of Goal, and thus the rule is
redundant. Another observation on the goals used by Team 3 is that some goals
could naturally be modelled as achievement goals (even though not used as
such), while others rather express an activity over time. For example, the goal
getFlag (which expresses an activity) could be replaced by the achievement
goal haveFlag. In fact, Team 3 uses an action rule to drop the goal getFlag
if the agent believes haveFlag. The goal protectBot expresses a behavior that
is not so easily transformed into an achievement goal, since it is not clear in
which state the agent has “achieved” protecting a bot. Finally, Team 12 has a
one-to-one relation between goals and modules where each module corresponds
with a different role or task. The use of goals in conjunction with modules and
their function is a recurrent pattern in the code that has been analyzed.

We investigated various hypotheses related to the use of goals, built-in goal-
related actions, and modules. First, for all teams except Team 6, whenever the
code contains occurrences of drop actions the code also contained adopt actions.
The reason that in one agent of Team 6 only one drop action was used is that
the agent has one goal start in the initial goal base that is used to initialize
the roles of other agents and thereafter is dropped. Second, whenever an adopt

action occurs it occurs in tandem with drop actions. And, finally, occurrences
of adopt actions entail the presence of modules. The latter suggests that goals
have been typically used to implement roles.

4.3 Rules

As explained, rules in a Goal agent can be placed in the program and the
perceptrule section. The former kind of rules are called action rules and are used
among others to select actions that are performed in the environment. These
rules define the agent’s strategy or action selection policy, and determine what
the bot that the agent controls will do in the environment. The latter kind of
rules are called percept rules and are used, among others, to process percepts

An Empirical Study of Patterns in Agent Programs 203

and messages. Rules can be classified along other dimensions based on their use
and in comments in analyzed code we find that rules are used as communication
rules to send messages, exit rules to exit a module, as mailbox cleanup rules to
cleanup messages stored in an agent’s mailbox, etc.

Some examples of patterns observed in rules are:

if bel(received(_, role(X)), role(Y))

then insert(role(X)) + delete(role(Y))

This rule inserts an instance of a predicate role that has been received via
communication and overwrites an old instance of that predicate.

The following rule retrieves the agent’s name and communicates the role with
the name to all other agents once:

if bel(me(X)) then sendonce(allother, navServer(X)).

Although the last rule can only be used to select the single sendonce action, using
the + operator multiple actions may be selected simultaneously as illustrated by
the second last rule above. This feature allows an agent to execute more than
one action in a cycle of the interpreter. All teams make frequent use of the +

operator to execute multiple actions with one action rule.
The average number of action rules per agent over all twelve teams is approxi-

mately 28. The average number for agents that are connected to the environment
is 42. The average number for agents connected to the environment for Teams 1,
2 and 3 is 65.5. As action rules determine strategy, this suggests that Teams 1, 2,
and 3 have implemented the most elaborate strategies and suggests more strate-
gic programming. This is in line with performance in the competition where
Teams 1, 2, and 3 outperformed other teams. The hypothesis that Teams 1, 2,
and 3 have coded more elaborate strategies is also corroborated by the fact that
the number of percept rules used by these teams is only little above average.

Since goals are used to a very limited extent, the majority of mental state con-
ditions in action rules consists of conditions on beliefs. The number of conjuncts
of belief conditions varies, but typically no more than five conjuncts are used.
Since most conditions are on beliefs only, never more than one belief operator is
used per action rule. This holds for all twelve teams.

Percept rules, i.e. rules in the perceptrule section, are used for several main
purposes: processing percepts and messages, sending messages, cleaning up the
mailbox, and adoption and dropping of goals (e.g. Team 3). The average number
of percept rules per agent over all twelve teams is approximately 51. The average
number for agents that are connected to the environment is 69. The average
number for agents connected to the environment for Teams 1, 2 and 3 is 78.
Note that the number of percept rules overall is higher than the number of
action rules per agent. This probably is related to the fact that all applicable
percept rules are executed in every cycle of the interpreter whereas only one
applicable action rule is executed in that same cycle. The perceptrule section
thus allows to process all incoming percepts and all received messages. It also
facilitates updating mental states in other ways, for example, to adopt a goal
when the agent learns the environment has changed.

204 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

4.4 Program Section

The program section contains all the action rules, from which exactly one of
the applicable action rules is selected for execution. This section comes with the
option to evaluate rules randomly or in linear order. When rules are evaluated
randomly, a rule is chosen randomly, and the conditions associated with the
rule and action(s) are evaluated; in case these conditions hold, the action(s) is
executed, otherwise randomly another rule is chosen. Linear order evaluation
means that rules are evaluated in order. This type of evaluation is deterministic
and potentially ease programming as conditions of rules that have been evaluated
but failed can be assumed to be false in rules below these rules. Linear order may
provide a programmer thus with a greater sense of control. It turns out that all
teams use the option order=linear to enforce linear execution of action rules.

The management bot of Team 1 does not have action rules in the program
section. All other agents have (functional) action rules in the program section.
The number of action rules on top level, i.e., not within modules, is typically
small (ranging from 0 to 2 in Teams 1, 2 and 3).

4.5 Modules

Modules facilitate structuring code as well as the behavior of agents and are
used by all teams. A module may be entered when an associated context con-
dition holds and thereafter only action rules inside the module are executed. A
module can be exited automatically or by means of selecting and executing an
exit-module action. Automated exit of modules works differently for the two
types of modules, namely reactive and goal-based modules. Reactive modules
have a context condition that does not check whether goals are present but does
inspect the beliefs of the agent; such modules are automatically exited when
there are no options anymore to execute an action. Goal-based modules have
context conditions that inspect the goal base of an agent and after entering the
module focus on goals that satisfy the context condition; such modules are auto-
matically exited when all goals have been achieved. Note that the semantics of
exiting a module is built-in but is a delayed effect. That is, exiting may happen
after a number of cycles of the interpreter that is not easily predicted.

Teams 1, 2, and 12, who make use of a management agent, have significantly
fewer (sub)modules for this agent (0, 1, and 0 respectively) than for the agents
that are connected to bots (13, 7, and 4, respectively). The average number
of (sub)modules used in the agents of all twelve teams is approximately 3. Al-
though a module may contain the same sections as a Goal agent except for the
perceptrule section, often, only the program section is used in modules.

Modules are used to encapsulate behavior for roles or (high-level) tasks. For
example, Team 2 distinguishes the modules defender, assault, bodyguard, flag-
carrier, and hunter on top level, which form the roles as indicated by correspond-
ing context conditions such as bel (role(defender)). Team 1 distinguishes
capture, defend, attack, and waitAtEnemyBase, which form tasks as indicated
by corresponding context conditions such as bel(task(capture())).

An Empirical Study of Patterns in Agent Programs 205

If submodules are used, they are used one level deep, i.e., a module within a
module. Team 1 makes frequent use of submodules (1 to 3 per top level module)
and Team 2 uses one submodule (camp as a submodule of defender). Teams 3
and 12 do not make use of submodules.

Several patterns can be observed concerning strategies for entering and exiting
modules. The context condition usually consists of a single belief or goal condition,
expressing the task (Team 1 uses, e.g., bel(task(capture()) and similarly for
othermodules) as the context condition for the module capture), the role (Team 2
uses, e.g., the context condition bel (role(defender)) in the module defender
and similarly for other modules), or the goal of the module (Team 3 uses, e.g., the
context condition a-goal (getFlag) in the attacker module and similarly for
other modules). Teams 1, 2, 3 and 12 use the exit-module action to explicitly
specify when to exit the module. Modules typically start with such an action rule,
which has as the condition the negation of the context condition of the module,
e.g., Team 2 uses bel(not(role(defender))) in the defender module where the
context condition is bel (role(defender)). Sometimes, additional action rules
for explicitly exiting modules are introduced. For example, Team 1 uses rules that
allow the agent to exit the module because it has a more important task (if the
agent sees an item it needs, it will get it and afterwards continue).

Interestingly, Team 6 uses modules for initialization purposes. Their manage-
ment agent uses a single goal start which is present in the initial goal base of
that agent to enter a module that contains some initialization code; after ex-
ecuting that code the initial goal start is dropped and the module is exited.
(Recall that Team 6 also is the only team that has an agent with a drop action
without an adopt action; this explains why.)

4.6 Actions Specification

The action specification section needs to contain specifications for all actions that
are used in the agent program but not built-in intoGoal. Such actions are called
user-specified actions, and can be actions with effects only on the mental state,
called internal actions, as well as actions which also change the environment,
called environment actions. In principle there is no need to introduce internal
actions as whatever can be achieved with such actions can be achieved with the
built-in actions of Goal but introducing such actions may increase readability.

Concerning internal actions, i.e., actions that are not executed in the envi-
ronment, we observe that only Teams 1, 2 and 4 have used these. Team 1 only
implements a dummy nothing action. Teams 2 and 4 implement internal actions
only in the management bot which is not connected to the environment.

All agents that are connected to the environment contain action specifica-
tions for environment actions. The interface to the UT2004 environment made
available in the student project [9] provides 9 different actions with a range of
different parameters to select from. Actions, without mentioning parameters, in-
clude, for example, selectWeapon, goto, pursue, lookAt. On average the goto
and halt actions are used 23 times versus 13 times that other actions are used.

206 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

The goto and halt actions thus are used about 4 to 5 times more often than
other actions. This suggests that navigational issues are dominant in the project.

In action specifications, we make several observations concerning the use of
pre- and postconditions in environment actions. First, we can distinguish actions
for moving around in the environment, namely goto, pursue, halt and respawn,
from other actions such as selectWeapon. For moving actions, Teams 1, 2, and 3
use pre- and postconditions that express how to change the agent’s moving state.
The moving state is expressed by all three teams as state(moving(Route)),
state(pursue), or state(reached([]). This is related to the fact that moving
actions are typically durative (except for the halt action), and it needs to be
recorded whether the agent is currently executing such an action. For instan-
taneous actions, postconditions typically express the (immediate) effect of the
action, such as the current weapon for selectWeapon (Teams 2 and 3), or the
postcondition true, in which case percepts are used for observing the effect of
the action in the agent’s next reasoning cycle (Team 1).

4.7 Communication

Plain communication in which send actions of the form send(A,Proposition)

are used is distinguished from advanced communication with mental models
in which actions of the form send(A,:Proposition), send(A,!Proposition),
send(A,?Proposition) are used. Mostly plain communication is used. Team 3
uses a few messages with :, e.g., send(allother, :myTeam(MyName, MyRole)).
The management agent of Team 1 uses a few instances of messages with !, e.g.,
send(Bot, !task(capture(return))), to tell other agents what to do.

Two main ways of handling received messages can be distinguished. The first
is by preprocessing messages using percept rules, which insert the received in-
formation into the belief base and delete the received message. The following
pattern for preprocessing messages is used by Teams 1 and 3, and the agent
connected to the environment of Team 2.

if bel(received(A,Proposition))

then insert(Proposition) + delete(received(A,Proposition))

The second is by using the received messages directly in conditions of action
rules to select the next action (the management agent of Team 2), without pre-
processing them. Team 2 also uses the received predicate in the knowledge base
of the management agent. The first method yields better readable code because
action rules and knowledge base are not cluttered with received predicate, and
allows reasoning with the added propositions using the knowledge and belief
base. The second method may have efficiency benefits since no preprocessing is
needed, and is simpler since no preprocessing rules have to be written.

4.8 Coordination and MAS Organization

The organisation structures chosen by the students were hierarchical and net-
work [7]. Irrespective of the organisation structure the teams used roles (or tasks)

An Empirical Study of Patterns in Agent Programs 207

to differentiate in behaviour and let the bots change their behaviour over time,
with the exception of Team 11. Team 11 had a static role division over the bots.
Team 7 uses a bit of a mixture; two of their bots have to change roles depending
on the game state, the third always has to defend the flag.

The hierarchical models all consist of one management agent and three team
member bots, where the team members were just copies of each other. The bots
in the teams using a network organisation (Teams 3, and 11) did not collectively
deliberate about strategy and tactics. Each bot decides for itself when to switch
roles and only informs the others of its new role. In the hierarchical teams the
management agent gets progress information from the team member bots and
on the basis of that information decides on role changes for the bots.

The initialisation differed at bit over the teams. Some had the management
agent assign the roles arbitrary over the bots (e.g., Team 12), some initially gave
the bots a kind of nothing role (e.g., Team 1), some intially gave each of the
bots a specific active rol like defender, attacker (e.g., Team 3), and Team 11 used
three differently coded bots (an attacker, a defender and a support bot).

The roles and their number in different teams vary. The smallest number
of roles used is two: attacker and defender (Team 5). Some introduced three
roles: hunter, defender, and supporter. Typically, however, a bit more variation
was used, as for example by Team 2 who used: attacker, bodyguard, defender,
flagcarrier, hunter, and none. The more roles, the more rules were defined to
switch between behaviours, and in general the more sophisticated the code to
determine the expected behaviour for the various roles.

4.9 Human Factors and Software Engineering

We make several observations concerning human factors and software engineer-
ing, in particular with respect to readability, maintainability, and reusability.

We observe that none of the teams have used macros. Readability of mental
state conditions in rules might have been improved by the use of macros, since the
number of conjuncts in these conditions can become relatively large (see Section
4.3). A large number of conjuncts can make it difficult to grasp what is expressed
by the condition. Macros may not have been used because they received little
attention in the lectures preceding the project, since their definition and meaning
is relatively simple. Another reason may be related to the fact that the students
used only one belief operator per rule. This may make it less natural to use
macros, since one might expect that multiple macro definitions would be used
to replace belief conditions with many conjuncts. This would then require the
use of multiple macros in rules, instead of using a single belief condition.

Another observation related to human factors and software engineering is that
we found frequent occurrences of duplicate code. The most notable example was
found in the code of Team 3, which coded two agent files that are almost exact
duplicates (lines of code = 884). The only difference seems to concern the initial
role of the agents. Duplicates are undesirable since it makes it more difficult to
understand resulting programs (readability), as it is often not easy to identify the

208 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

differences between very similar pieces of code. Also, it has a negative influence
on maintainability, since changes have to be duplicated too.

Further, we observe that Team 1 uses hardcoding of agent names both in the
manager agent as well as in the agent program that is used to launch agents
that are connected to a bot in the environment. This introduces dependencies
between these files which are hard to maintain as, for example, such hardcoding
makes it difficult to extend or reduce the number of agents launched in a mas
file. Reducing the number of agents would cause runtime errors (as messages
are being sent to agents that do not exist) and extending the number of agents
would decrease the functionality of these new agents as messages will never be
sent to these additional agents. An example of the use of hardcoded agent names
is the following. In the agent program that is connected to the environment,
percept rules are used to store information about the environment in the belief
base, and to send this information to the manager agent. The information sent
to the manager agent is divided over the other agents, yielding the following
patterns for percept rules, where zombieA is the name of an agent connected to
the environment, and godMother is the name of the manager agent:

if bel (me(zombieA), percept(<Percept>))

then insert(<Percept>) + send(godMother, :<Percept>)

if bel (not(me(zombieA)), percept(<Percept>))

then insert(<Percept>).

5 Discussion

Explicit Control Several of our observations suggest that programmers prefer
explicit control over built-in semantics with delayed effects. In particular, de-
terminism (by selecting linear rule order evaluation, Section 4.4) is preferred
over non-determinism (random action option selection). This is related to linear
flow of control, which has been proposed as a criterion for good language de-
sign (see Section 3). Another well-known paradigm of computing that involves
non-determinism is concurrent programming. Non-determinism in concurrent
programming stems from the fact that it is unknown how much of one pro-
cess is executed during the time another one executes an instruction. Interest-
ingly, high-school students of concurrent programming were found to avoid using
concurrency [2]. Another observation related to explicit control is that explicit
strategies for exiting modules were programmed using the exit-module action,
rather than relying on the automatic exit mechanisms of the language (see Sec-
tion 4.5). Also, goals were not used as often as could have been. What’s more,
if goals were used, automatic goal deletion upon achievement was not exploited,
since corresponding beliefs were never added to the belief base.

We conjecture that these findings are on the one hand due to an inherent pref-
erence for explicit control, and on the other hand due to lack of understanding of
these mechanisms. Exam results indicate that students were more competent in
explaining and/or applying action rules, action specifications, linear rule order

An Empirical Study of Patterns in Agent Programs 209

option and basic Prolog than they were able to do so for modules and subtle dif-
ferences between communication primitives (send versus sendonce command).
Scores on questions related to the former were significantly higher than those
related to the latter. Moreover, the use of explicit module exit strategies in cases
where use of built-in mechanisms would have been simpler, also suggest a lack of
understanding. To some extent, lack of understanding of the nature of achieve-
ment goals is indicated by the fact that corresponding beliefs are never inserted
into the belief base, but more research is needed to explain the code fragments
in some agent programs related to motivational notions in the knowledge base
instead of the goal base. These findings provide valuable input for teaching the
language, since it suggests more time needs to be devoted to explaining and prac-
ticing with the features of Goal that have built-in semantics with delayed effect.
In particular, programming examples and patterns will have to be developed to
demonstrate possible uses of the language.

A possible pattern for using modules, derived from the observations and dis-
cussion above, is the following. For each role that the agent should be able to
take, create a module with the goal of the module as the context condition. If
the goal of the module is adopted, the agent can enter the module to perform
the corresponding role. The program rules of the module should aim at achiev-
ing the goal of the module. If the goal is reached, the agent will automatically
exit the module. If the agent should no longer pursue the goal because, e.g.,
more important goals should be pursued, percept rules can be used for specify-
ing when the goal should be dropped, in which case the agent would also exit
the module automatically. It is important to specify such goal revision policies,
due to incomplete information and incomplete control over the environment.
New observations of or changes in the environment may cause an adopted goal
to become obsolete, requiring the need for specifying when the goal should be
dropped. A similar observation about dropping of goals being used for dealing
with dynamics of the environment was made in [16].

Language Design. The idenfication of patterns has yielded not only insights on
how Goal constructs are (to be) used, but also gives rise to multiple possibilities
for language improvement and further investigation of language design choices.
For reasons of space, we briefly discuss some of them.

Mailbox clean-up as performed in percept rules suggests investigation of
whether keeping received and sent messages by default in the mailbox is to
be preferred over cleaning up the mailbox in every cycle. This can be done by
introducing these modes as an option in an agent program. In this way, we can
find out by experience and practice what is preferred by the programmer.

One of the difficulties of continuous language design is to monitor whether
code parts keep providing useful functionality throughout the changes that are
made to the language. For example, the Goal syntax requires agent files to
provide an agent name. However, this agent name is just a label at the top of an
agent file which is never used as the functionality of naming and making agent
names public has been delegated to the mas file. Using these labels in agent
files thus only creates confusion and it is better to remove these agent names.

210 K.V. Hindriks, M.B. van Riemsdijk, and C.M. Jonker

Similarly, early requirements on syntax may not be so useful anymore as the
language is extended. In particular, after introducing the perceptrule section the
requirement to have at least one action rule in the program section seems not
as useful anymore (Team 1 introduced a trivial ‘obligatory’ rule in the program
section in their management agent). We plan to remove this requirement and
allow an empty program section, and only generate a warning at parse time.

We will consider the introduction of warnings and automatic dependency
analysis and checks: check on whether goals can ever become beliefs of the agent
(to indicate proper use of achievement goals); check for single send actions in the
program section, since these could just as well have been added in the percept
rules; automated support for dependency analysis to identify duplicate code, etc.
Also, support will have to be added to prevent duplicate code, e.g., by providing
import and extension functionalities.

6 Conclusion

In this paper, we have studied Goal programs that were written by first year
computer science students for the domain of UT2004. This study is far more
extensive than a previous study of Goal programs for the dynamic blocks world.
It has provided insights into how students use Goal to program agent teams
for a real-time dynamic environment. Overall, we can conclude that Goal and
the interface that was provided between Goal and UT2004 allow students to
program multi-agent systems in which high-level team strategies are used, in
combination with navigation and interaction with the virtual environment.

Our analysis has identified patterns that seem to be very useful, such as the
use of modules to implement agent roles; patterns that indicate a preference for
explicit control and lack of understanding of implicit built-in semantics, such as
use of the exit-module action to explicitly exit modules; patterns that suggest
improvements to the language are needed, such as the frequent occurrence of
duplicate code; patterns that require further analysis, such as the use of prepro-
cessing of received messages versus direct use of messages, and the limited use
of goals. One issue that is hard to disentangle is whether problems we identified
in the source code are due to programming skills and teaching effort, or rather
due to the design and semantics of the language studied. To deal with this issue,
here we have tried to establish by looking at exam results, for example, if code
practices could be related to skills. More research is needed to get a better grip
on this issue, however. It remains to be established, for example, why students
use the knowledge base in ways not envisaged at design time.

Through this analysis, we have come closer to the development of best prac-
tices and programming guidelines for Goal, we have identified aspects that can
be improved in the language, and we have gained a better understanding of which
aspects of the language are easy to use and which are more difficult to grasp.
A better understanding of problems that programmers face when using the lan-
guage will help us make better debugging and development software. Note also
that some of our main findings seem applicable to other agent programming lan-
guages as well. E.g. the use of modules to program roles has also been suggested

An Empirical Study of Patterns in Agent Programs 211

elsewhere [3]. Our method and the results obtained may extend in particular to
languages such as 2apl and Jason as the components in these languages are
similar in many respects, but, of course, more research is required.

In future work, we plan on improving Goal along the lines suggested in this
paper, using the identified patterns to improve teaching of how to use Goal

and studying the effects of this, and further investigating the hypotheses formed
through our analysis, e.g., concerning the reasons for the use of explicit control
rather than built-in semantics.

References

1. SWI Prolog, http://www.swi-prolog.org/
2. Ben-Ari, M., Ben-David Kolikant, Y.: Thinking parallel: The process of learn-

ing concurrency. In: Fourth SIGCSE Conference on Innovation and Technology in
Computer Science Education, pp. 13–16 (1999)

3. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Program-
ming: Languages, Tools and Applications. Springer, Heidelberg (2009)

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak using Jason. Wiley (2007)

5. Burkert, O., Kadlec, R., Gemrot, J., B́ıda, M., Havĺıček, J., Dörfler, M., Brom,
C.: Towards Fast Prototyping of IVAs Behavior: Pogamut 2. In: Pelachaud, C.,
Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007.
LNCS (LNAI), vol. 4722, pp. 362–363. Springer, Heidelberg (2007)

6. Dastani, M.: 2APL: a practical agent programming language. JAAMAS 16(3),
214–248 (2008)

7. Dignum, V.: A Model for Organizational Interaction: Based on Agents, Founded
in Logic. PhD thesis (2004)

8. Hindriks, K.V.: GOAL Programming Guide (2010),
http://mmi.tudelft.nl/~koen/goal

9. Hindriks, K.V., Birna van Riemsdijk, M., Behrens, T., Korstanje, R., Kraaijenbrink,
N., Pasman, W., de Rijk, L.: Unreal GOAL agents. In: Proc. of AGS 2010 (2010)

10. Howatt, J.: A project-based approach to programming language evaluation. ACM
SIGPLAN Notices 30(7), 37–40 (1995)

11. Jordan Howell, R., Collier, R.: Evaluating agent-oriented programs: Towards multi-
paradigm metrics. In: Proc. of ProMAS 2010, pp. 63–79 (2010)

12. Marshall, M.N.: Sampling for qualitative research. Family Practice 13(6), 522–525
(1996)

13. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. Wiley Series in Agent Technology. John Wiley and Sons (2004)

14. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In:
Multi-Agent Programming. Springer, Berlin (2005)

15. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60, 51–92 (1993)
16. van Riemsdijk, M.B., Hindriks, K.V.: An Empirical Study of Agent Programs: A

Dynamic Blocks World Case Study in GOAL. In: Yang, J.-J., Yokoo, M., Ito, T.,
Jin, Z., Scerri, P. (eds.) PRIMA 2009. LNCS, vol. 5925, pp. 200–215. Springer,
Heidelberg (2009)

17. Wasserman, A.I.: Issues in programming language design— an overview. SIGPLAN
Notices (1975)

18. Winikoff, M.: JACKTM intelligent agents: an industrial strength platform. In:
Multi-Agent Programming: Languages, Platforms and Applications. Springer, Hei-
delberg (2005)

http://www.swi-prolog.org/
http://mmi.tudelft.nl/~koen/goal

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 212–227, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Modelling Language to Represent and Specify
Emerging Structures in Agent-Based Model

Duc-An Vo1,2, Alexis Drogoul1,2, Jean-Daniel Zucker1,2, and Tuong-Vinh Ho2

1 IRD, UMI UMMISCO 209,
32 avenue Henri Varagnat, 93143 Bondy, France

2 IFI, MSI, UMI 209,
ngo 42 Ta Quang Buu, Hanoi, Vietnam

{alexis.drogoul,jdzucker}@gmail.com, voducanvn@yahoo.com,
ho.tuong.vinh@auf.org

Abstract. All modellers have come across, one day, one of these popular toy
agent-based models (ABMs), like "Ants", for instance, which depicts the
appearance of pheromone trails built by simulated ants. They are simple, but
representative of the way "real", more complex, ABMs are designed: in
addition to explicitly describe the individual entities used to represent the
system, modellers make implicit references to abstractions corresponding to the
emerging structures they are tracking in the simulations. Yet, these abstractions
are not represented in the models themselves as first-class entities: they are
either hidden in ex-post computations or only part of visualization tasks, as if an
explicit representation could somehow damage the processes at work in their
emergence. This clearly constitutes an obstacle to the development of multi-
level models, where emergence is likely to occur at different levels of
abstraction of the system: if some of these levels are not represented in the
models, the emergence of higher-level structures is not likely to be observed.
This paper describes a modelling language that allows a modeller to represent
and specify emerging structures in agent-based models. Firstly, to ease the
description, we present these structures and their properties in four toy ABMs:
Schelling, Boids, Collective Sort and Ants. Then we define the operations that
are needed to represent and specify them without sacrificing the properties of
the original model. An implementation of these operations in the GAML
modelling language (part of the GAMA agent-based platform) is then
presented. Finally, two simulations of the Boids model are used to illustrate the
expressivity of this language and the multiple advantages it brings in terms of
analysis, visualization and modeling of multi-level ABMs.

Keywords: Agent-based modelling, modelling language, emergence, GAMA
simulation platform.

1 Introduction

When developing agent-based models (ABMs), modellers represent explicit entities
of the system modelled as agents. The choice of entities depends on the level of

 A Modelling Language to Represent and Specify Emerging Structures 213

abstraction of the reference system the modeller is working with, and this in turn
depends on the question he/she wants to answer with the model, on the data available
at hand, on the scale at which this data is described, etc.

What is remarkable in ABMs, however, contrary to other modelling techniques, is
that at least two different scales are involved in the modelling process: the scale at
which the agents are described, and the scale at which the simulations are to be
observed and their results analysed. This is especially true when modellers try to
capture and understand the emergence of functions (social, biological, ecological,
etc.) structures or functions by means of simulation [10]. These structures, emerging
in the course of the simulations, are often the result of non-linear interactions between
the agents defined in the model and they can play significant roles in its dynamics by
providing feedback constraints on the behaviour of the underlying agents composing
them.

As we will see in the presentation of the toy agent-based models in section 2, these
emerging structures are normally not explicitly represented in the models as agents.
They are either hidden in ex-post computations or only part of visualization tasks, as
if an explicit representation could somehow damage the processes at work in their
emergence. This deliberate choice may lead the modeller to the following difficulties:

• If certain structures emerge during the simulation, for example groups of agents
having certain common similarities or spatial-temporal regularities, they can be
only identified posteriorly (using classification method or analyzing statistic for
example) and hence play no role in the dynamic of the simulation.

• If the data, possessed by the modeller, are distributed on several levels of
abstraction (for example the data of individual, the data of group and the data of
the population level), it is not evident to simultaneously represent them in the
model.

Currently, there is no explicit support in term of agent-based modelling language for
representing the relationships and interactions between multiple levels of abstraction
in the model. To remedy this deficiency of current agent-based platforms, the
modeller can develop his multi-level model from scratch. He thus has to develop a set
of proprietary abstractions representing explicit entities and emerging structures
concerned. Several multi-level agent-based models are developed this way such as
[8], [9]. This approach has several drawbacks. Firstly, the modeller doesn’t take
advantage of all the services offered by an agent-based modelling platform. Secondly,
he has to manually manage all issues specific to multi-level model, which is in fact an
error prone process. Hence these drawbacks raise the question of reusability and ease
of modelling. So the goal of this work is to propose a modelling language to assist the
modeller in representing and specifying emerging structures in an agent-based model.

When working with emerging structures in agent-based models, we propose the
modeller a process with two complementary tasks as depicted in figure 1:

214 D.-A. Vo et al.

Fig. 1. Detection and Representation of Emerging Structures

Detection of emerging structures. This task, illustrated in the upper-box of figure 1,
concerns the detection of emerging structures in the course of a simulation. An
emerging structure normally consists of a group of interacting agents sharing certain
similarities. This detection task uses several clustering techniques [11] that classify
agents into groups according to certain criteria. These criteria depend of course on
what the modeller wants to observe.

Representation and specification of emerging structures. This task, depicted in the
lower-box of figure 1, concerns the representation and specification of emerging
structure in an agent-based model. The modeller describes what he expects as
emerging structures. He specifies the conditions under which a group of interacting
agents is considered to form an emergent structure. In order to describe the emerging
structure, the modeller employs a set of representing abstraction. He models also the
relationships and interactions between the emerging structure and the composing
agents.

Figure 1 separates the two tasks a modeller deals with when working with
emerging structures in an agent-based model. Some existing works aim at addressing
the first task such as [7]. They propose techniques to detect emerging structures in an
agent-based simulation. Emerging structures vary a lot according to the concerning
model. Each detection technique may adapt well to certain emerging structures and
not well to other ones. This is understandable because a detection technique is
normally developed to address a precise problem [11]. In this context, the author may
make certain “optimizations” to adapt the technique to the characteristics of the
emerging structures he is interested in.

The modelling language proposed by this work aims at addressing the second task,
which corresponds to the lower-box of the figure. For the detection task, we would
like to reuse the existing detection techniques of the communities. We integrate our
work, focusing on the description level of emerging structures, with existing detection

 A Modelling Language to Represent and Specify Emerging Structures 215

techniques. With this integration, the way that a modeller models (represents and
specifies) emerging structures remains (almost) intact as he changes the underlying
clustering techniques employed to detect these structures. The modeller can thus
“switch back and forth” opting for a detection techniques optimal to his problem. This
modular approach of separating the detection task and the representation task has two
significant advantages: 1) It favours the reusability of existing detection techniques;
2) It abstracts the modeller from the internal detail of how a detection technique
functions which rather interests computer scientists.

To ease the description of the language, in the second section, we present four toy
agent-based models along with the corresponding emerging structures. Then in the
third section, we point out the common characteristic of the presented emerging
structures. From this common characteristic, we discuss the operations a modeller
needs in order to work with these structures in an agent-based model. After that, we
describe how the operations discussed in the third section are implemented in the
GAML modelling language of the GAMA agent-based modelling platform [1], [2]. In
the experimentation section, we illustrate the expressivity of GAML language through
some demos of the representation of emerging structures in the Boids model. Finally,
we conclude this article by resuming the initial contribution and discussing some
future works.

2 Emerging Structures in Some Toy Agent-Based Models

We present in this section four popular toy agent-based models. With each model, we
introduce briefly its origin and purpose. Then we indicate the emerging structures in
the simulation that may interest the modeler.

2.1 “Schelling” Model of Segregation

Fig. 2. Intitial distribution of residents

Fig. 3. Groups of same colour residents appear
as emerging structures

This model, proposed by Thomas Schelling in 1969, attempts at understanding the
phenomenon of residential segregation in cities [4] by seeing it as an aggregated result
of the decisions of residents in choosing their housings. Residents are represented

216 D.-A. Vo et al.

explicitly as agents in the model. Residents having certain similarities are classified as
belonging to the same class. In reality, criteria used to classify resident may be
educational level, religion, annual income, skin colour, political point of view, …
Same class residents are represented by same colour agents. When the simulation
runs, we see groups of nearby same colour residents appear. We call these groups
emerging structures because they are not explicitly represented in the model as agents.

As soon as these emerging structures appear in the simulation, isolated residents
tend to be attracted to them. Isolated residents move to join group of other residents
similar to them. The forming of such emerging structures is the result of residents’
decision in choosing places where they live in a city. Vice-versa, these emerging
structures have certain feedback influences on the behaviours of the residents.

2.2 “Boids” Model

“Boids”, proposed by Craig Reynolds in 1986, is
a model of coordinated animal motion such as
bird flocks or fish schools [3]. The behaviour of
each agent is represented by simple rules:
separation, alignment, cohesion and obstacle
avoidance. There is no group leader, but when the
simulation runs, depending on the parameters
chosen, coherent flocks appear. They are coherent
in space, coherent in time, but yet the result of
only local interactions between bird agents. In that
sense, they can be considered as emerging
structures.

2.3 “Collective Sort” Model

The “Collective Sort” model concerns the activity of agents in gathering objects of
different types scattered in an environment [5]. Objects of the same type have the
same colour. Agents move in the environment picking up and dropping down objects.
Their behaviour is simple. Let us call similarity_index the number of objects of the
same colour around one object in the environment. Agents move the objects in order
to locally increase the similarity_index of each object. When the simulation runs,
groups of objects of similar colour appear. The larger a group becomes, the higher the
probability that a robot drops an object on it is. This is similar to the influence of
groups of birds on the behaviours of individual birds. If the simulation runs long
enough, all the objects of the same colour end up gathered in one group. In this case,
as groups result from the interactions between robots, objects and the environment,
they can be considered as emerging structures.

Fig. 4. Formation of bird flock

 A Modelling Language to Represent and Specify Emerging Structures 217

Fig. 5. Scattered objects at t = 0

Fig. 6. Same color (type) objects aggregate
into groups

2.4 “Ants” Model

The “Ants” model mimics the foraging activity of an
ant colony [10]. Around a nest, where the ants are
located at the beginning of simulations, sources of
food are placed in an environment. Ants initially
move at random, searching for food. If they detect
some, they pick it and bring it back to the nest. On
the returning journey, they deposit a “signal” on the
ground (pheromone) that other agents can detect and
follow to the food.

As the simulation runs, it is easy to see “roads” of
pheromone built by ants bringing food back to nest.

The larger this road, the higher the probability ants will follow it. Pheromone roads
and groups of ants following them are emerging structures resulting from the
interactions between ants with their environment.

3 Representing Emerging Structures

All the emerging structures described in the previous section are implicit entities
resulting from interactions between explicit entities, and they only appear in the
course of the simulation. The modeller somehow implicitly “waits for” their
emergence, and they are sometimes the goal of the simulation itself. Yet, these
structures are not represented in the model as explicit entities. Thus it is impossible
for a modeller to track what is happening in the run of a simulation in terms of
emergence. The visual feedback provided by the user interface is a poor and
imprecise substitute for this.

In our proposal, in order to let modellers dynamically track the emergence of these
structures, we let them represent these structures as explicit (albeit potential) entities
in the model. We call these entities “emergent agents”. They are regular agents
(which can be provided with their own attributes or behaviours if necessary), except
that their instantiation is dependent on the appearance of certain properties during the
simulation.

Fig. 7. Ants foraging for food

218 D.-A. Vo et al.

In this section, we describe the common features of these agents. Then we discuss
the operations that a modeller needs in order to represent and specify them in an
ABM.

First of all, the emergent agents found in the previous models can be described as
composed of several other agents (micro-agents) that appear to share certain
similarities: a segregated group is composed of multiple inhabitants located close to
each other and sharing some characteristics (at least the colour); a flock contains
several birds flying in the same direction within a certain distance; a pile of objects is
exclusively composed of nearby objects of the same colour; a pheromone trail is a
group of adjacent cells in the environment that are provided with a pheromone signal
and an ant group is a group of ants that follow the same pheromone trail.

In addition to the attributes and behaviours a modeller might provide them with, and
in order to manage both their instantiation and the relationships with their micro-agents,
emergent agents have then to be provided with the five following behaviours, specific
to their lifecycle: creation, update, merge, disposal and top-down feedback control.

The “creation” operation helps to
specify when an emergent agent
representing an emerging structure is
created. For instance, it might be the
case that, when the spatial distance
between three flying birds in the Boids
model is less than 10 meters, an

emergent agent composed of these three birds is created in the simulation. This
operation allows the modeller to express the rule governing the instantiation of
emergent agents during the simulation. Figure 8 illustrates this operation. An
emergent agent representing the emergent structure is created with three micro-agents
as components.

The “update” operation describes
how micro-agents are added to or
removed from an emergent agent. Some
micro-agents may no longer satisfy a
condition to belong to an emergent
agent, while others, still “free” may
now fulfil it: this operation helps to
specify how these agents are added or
removed from the structure.

Figure 9 illustrates the “update” operation. On the left side, we have one free micro-
agent and one emergent agent with three micro-agents. The “update” operation helps
the modeller in describing when one micro-agent, already part of the emergent agent,
doesn’t satisfy the condition to be considered as a component anymore and when,
possibily at the same time, one free micro-agent meets the condition to become a
component. Its purpose is to keep the list of components up-to-date with respect to the
meaning of the emergent agent.

Fig. 8. Creation of an emergent agent

Fig. 9. Update of an emergent agent

 A Modelling Language to Represent and Specify Emerging Structures 219

The “merge”
operation allows the
modeller to specify
how several
emergent agents

representing
different structures
can be merged into
one unique emergent
agent. The fusion of

their respective components then becomes the components of the new unique
emergent agent.

Figure 10 illustrates the “merge” operation. On the left, we have two emergent
agents representing two emerging structures. Supposing that these two emergent
agents satisfy certain predefined criteria, the “merge” operation then merges these two
emergent agents into one unique emergent agent.

The purpose of the “disposal”
operation is to express when an
emerging structure should not
considered to be an agent in the
simulation anymore. The emergent agent
representing the structure is cleared out
of the simulation and its components
become free.

Figure 11 illustrates the “disposal” operation. On the left, we have an emergent agent
with three micro-agents. If the corresponding emerging structure doesn’t meet a
predefined condition anymore, then the “disposal” operation helps to specify how the
emergent agent is cleared out of the simulation.

The top-down feedback control
finally allows the modeller to describe
which feedback constraint an emergent
agent is exercising on its underlying
micro-agents. As emergent agents usually
emerge because of the interactions of
certain micro-agents, these agents have an
influence on its attributes and behaviour.
Vice-versa, an emergent agent may also
provide a feedback on the behaviour of
its components, either implicitly or
explicitly [10]. In order to describe it
when it is necessary to do so, the
modeller needs to have some way to
alter the behaviour of a micro-agent (by

changing parameters, adding, or removing entire behaviours) before and after it enters
an emergent agent.

QuickTimeô and a
 decompressor

are needed to see this picture.

Fig. 12. Feedbacks between micro- and
emergent agents behaviour

Fig. 10. Fusion of different emergent agents

Fig. 11. Destruction of an emergent agent

220 D.-A. Vo et al.

4 Representing Emergent Agents in GAMA

We describe in this section how the operations introduced in the previous section are
implemented as commands in the GAML modelling language. We begin with a brief
introduction of the GAMA agent-based platform and the GAML modelling language.
Then we detail how the ability of working with emergent agent is taken into account
in the GAML modelling language.

GAMA (Generic Agent-based Modelling Architecture) is an agent-based
modelling platform, developed by the MSI research team (part of UMI 209
UMMISCO research unit) since 2007 [1] [2]. GAMA aims at providing field expert,
modeller and computer scientists with a complete modelling and simulation
development environment for building spatially explicit multi-agent simulation.

GAML (GAMA Modelling Language) is the modelling language used to develop
agent-based models in the GAMA platform. Besides some common concepts for
modelling agent and environment, GAML supplies a large and extensible library of
commands, primitives and expressions facilitating the model development task.
Because of the space limitation, we don’t elaborate on the detail of GAML, interested
readers can refer to [2] for a detailed tutorial of this language.

An emergent agent composes of constituent agents. Constituent agents can be
considered as micro-agents compared to the emergent agent. Then the emergent agent
can be seen as a macro-agent compared to its constituent agents. In turn, several
emergent agents can be merged to form another emergent agent at a higher level of
abstraction. Thus an agent in GAMA can play the role of macro-agent in one level of
abstraction and micro-agent in another (higher) level of abstraction. This design aims at
permitting the modeller to represent as many levels of abstraction as he needs in his
model.

To manipulate the five specific operations in the lifecycle of an emergent agent
(create, update, merge, disposal, top-down constraint control), six new GAML
commands are introduced: creation, update, merge, disposal, enable and disable.

• The “creation” command helps to specify when emergent agents are created in
the simulation.

• The “update” command describes how the constituent micro-agents are added
and removed from an emergent agent.

• The “merge” command determines how several emergent agents are merged.
• The “disposal” command indicates when an emergent agent is cleared out of the

simulation.
• The “disable” command permits the modeller to disable certain behaviour units

appropriately. While the “enable” command helps the modeller to enable the
inactive behaviour units.

These GAML commands help the modeller to model/describe the life-cycle of an
emergent agent. They aim at addressing the task (of representing and specifying the
emerging structure) depicted in the lower-box of figure 1. Through the GAML
language, we would like to offer a set of abstractions and “vocabulary” that are usable
for describing the relationship and interactions between multiple levels of abstraction
in an agent-based model.

As mentioned in the introduction section, concerning the task of detecting
emerging structure (corresponding to the upper-box in figure 1), we integrate, in the

 A Modelling Language to Represent and Specify Emerging Structures 221

GAMA platform, a set of existing clustering techniques of the community [10].
Through the primitive mechanism of GAML language, the modeller can invoke these
clustering algorithms directly from his/her model (depicted by the black upper-arrow
in figure 1) in order to initialize, update, merge and dispose emergent agents
appropriately during the course of the simulation.

5 Experimentations

This section shows how to use the GAML commands presented in the last section to
represent the emerging structure in the Boids model. Continuing section 2.2, we detail
a little bit more about how Craig Reynolds models the behaviour of each bird in a
flock. Let consider a flock of birds, each bird has a perceptional radius within which it
reacts on the behaviour of others neighbours. Motion of bird is modelled by the
following rules:

• Separation rule helps a bird to maintain a minimum distance with its neighbours
so that they don’t collide.

• Alignment rule permits a bird to maintain the same flying direction with its
neighbours.

• Cohesion rule ensures that a bird is not left far away from its neighbours.
• Obstacles avoidance rule helps a bird to avoid obstacles in the environment.

Table 1. Behaviour of birds [3]

Separation

Alignment

Cohesion

Obstacles

avoidance

As mentioned in section 2.2, a group of birds is an
emerging structure formed by nearby flying birds
within a predefined distance. We would like to capture
its dynamic in the simulation. Basing on the GAML
commands proposed in section 4, the following
modification is introduced to the original version of
Boids model.

A new species, named bird_group, is introduced to the
model, representing a group of nearby birds. An agent of
bird_group species is considered as an emergent agent
and contains birds as constituent micro-agents.

With the bird_group species, we have now a new
version of Boids model with two levels of abstraction.
At the micro-level, we have bird species. At the macro-
level, we have bird_group species. As described in
figure 13, interactions between birds at micro-level
result in the emergence of groups of bird, represented
as bird_group emergent agents, at macro-level.

Fig. 13. Boids model with two
levels of organization

222 D.-A. Vo et al.

The four operations of creation of a bird_group agent, update of a bird_group
agent, merge between bird_group agents and disposal of a bird_group agent are
represented in GAML language as following:

• Creation of a bird_group agent:
The “creation” command is used to
model the creation of bird_group
emergent agents. When birds are
found flying near together within a
predefined distance and these birds
haven’t belong to any bird_group
agent yet, a bird_group emergent

agent is initialized representing
these nearby birds.

• Update of a bird_group agent:
As birds move, separate birds
can enter an existing group of
bird. Birds belonging to an
existing group can leave group.
The “update” command is where
the code to add birds to and
remove birds from a bird_group
agent is implemented.

• Merge between bird_group

agents: When several bird_group
emergent agents are found near
together in a predefined distance,
then these bird_groups will be

merged into one unique bird_group. In this
case, our implementation approach is to keep
the biggest bird_group emergent agent.
Constituent birds of others bird_group agent
will become constituents of this biggest
bird_group agent. Other bird_group agents
are cleared out of the simulation. This
operation is implemented in the “merge”
command.

• Disposal of a bird_group agent: when a bird_group agent has less than two
constituent birds then we don’t consider it as an agent anymore. This bird_group
agent will be cleared out of the simulation. Corresponding bird agents will become
free. We specify this operation in the “disposal” command.

Fig. 16. Sss

First simulation. We run several simulations of this model in the GAMA platform to
test the operation of the four commands “creation”, “merge”, “update” and
“disposal”. Main parameters of one simulation are as following:

Fig. 14. Creation of a bird_group agent

Fig. 15. Update of a bird_group agent

Fig. 16. Fusion between bird_group agents

Fig. 17. Disposal of a bird_group
agent

 A Modelling Language to Represent and Specify Emerging Structures 223

• The number of bird agents: 200
• The distance within which two birds are considered as nearby: 10 meters
• Update radius: a dynamic value basing on size of the bird_group agent. This plays

the role of the perceptional radius of the bird_group agent.
• If free birds are found within this radius, they will become constituents of the

corresponding bird_group.
• If a bird of a bird_group has no other constituents as neighbours within this

radius, it won’t be considered as member of the bird_group anymore.
• Merge distance: the distance within which two bird_group agents are merged is 10

meters
• If a group of bird has less than two birds, the corresponding emergent agent will be

cleared out of the simulation.

Figure 21 captures the variation of the number of bird_group emergent agent and
micro-agent bird during 280 steps of the simulation is captured. This chart is quite
intuitive. The horizontal axis represents the simulation step. The vertical one signifies
the number of agent of each species. The red line captures the number of bird_group
emergent agent. While the green one indicates the number of free bird agent. Bird
agent is represented graphically by a black bird-shape image. Emergent agents,
bird_group, are represented as polygons covering all the constituent birds. At the
beginning of the simulation, as bird agents are scattered in the environment so there
are not many bird_group agents. There is an agent representing a target point (goal)
that birds follow in the simulation. This target point (represented graphically as circle)
periodically changes its position and colour after certain random amount of simulation
step. As the simulation runs, bird_group emergent agents are created, updated,
merged and disposed dynamically.

We see the significant change in the number of birds and groups of bird between
two consecutive steps of the simulation. Whenever number of free birds decreases,
the number of bird groups increase and vice-versa. This explains that the creation of
new bird_group emergent agents diminishes the number of free birds because when a
bird agent becomes the constituent of a bird_group agent it isn’t considered as free
bird anymore. And the disposal of bird_group emergent agents makes the number of
free birds increase. From step 240 to step 280 of the simulation, although the
significant change between two consecutive simulation steps continues, we see that
both the number of free birds and the number of bird groups follow the decreasing
trend. Because all birds are approaching the goal at the upper left corner of the
environment (figure 20), so the distance between them decreases. Hence all the
emergent agents are thus merged into a big one making the number of emergent agent
decrease. The bigger the emergent agent, the more attractive this agent has on others
free birds. Hence others free birds will join this emergent agent easier and/or faster
making the number of free birds decrease to almost 0.

Fig. 17.

Second simulation. The previous simulation shows that interactions between birds at
micro-level make groups of birds emerge at macro-level. However, such emergent
agents, bird_group, have no explicit influence on the behaviour of constituent micro-
agents. As described in figure 12 and [10], when interactions between micro-level
agents result in the emergence of dynamic structures, these structures often have
influences on the behaviour of constituent agents through some feedback constraints.

224 D.-A. Vo et al.

Fig. 18. Snapshot of the simulation at step 0

Fig. 19. Snapshot (focus on certain bird_gorup
agents) of the simulation at step 70

Fig. 20. Snapshot (focus on the biggest
bird_group agent) of the simulation at step
280

Fig. 21. Number of bird_group agents and
free bird agents

To model this feedback constraint, we use two GAML commands “enable” and
“disable”. Some modifications are introduced to the model used in previous
simulation. A species name “obstacle” is introduced to represent obstacles in the
environment. Agents of obstacle species move slowly in the environment in order to
perturb the birds. There is a small modification on the behaviour of bird_group
species. A bird_group agent has a perceptional radius calculated dynamically basing
on the number of constituent birds. If a bird_group agent doesn’t “perceive” any
obstacles within its perceptional radius, it will deactivate the behaviour model of its
constituent birds using the “disable” command. Movement of constituent birds will be
governed rather by the macro-agent bird_group. The macro-agent simply asks its
constituent birds to move towards the goal agent. We call this macro-agent active

 A Modelling Language to Represent and Specify Emerging Structures 225

bird_group. Vice-versa, if a bird_group agent “perceives” obstacles within its
perceptional range, it will withdraw its influence from the constituent birds using the
“enable” command. Hence bird agents are become autonomous and interact with
others neighbours through their local perception in order to move towards the target
point. We call this macro-agent passive bird_group. This simulation uses the same
principal parameters like the previous one. We create additionally 40 agents
representing 40 moving obstacles in the environment. Obstacles are visually
represented as red squares in the environment. Figure 23 captures the number of
active bird_group agents (red line) and passive bird_group agents (green line). At the
beginning of the simulation, like the previous one, the number of both active and
passive bird_group agents is almost 0 because bird agents are scattered in the
environment. As the simulation runs, the number of active bird_group agents
increases fast and is a lot more than the number of passive bird_group agents. This is
quite intuitive because the obstacles are distributed sparsely in the environment
(Figure 22, 23). So not many bird_group agents “perceive” obstacles within their
perceptional radius. This results in less passive bird_group agents and more active
bird_group agents.

Fig. 22. Snapshot of the simulation at step 0

Fig. 23. Number of active and passive
bird_group agents

Fig. 24. Snap shot (focus on certain bird_group agents) of the simulation at step 120

226 D.-A. Vo et al.

6 Conclusion and Future Work

We have introduced a modelling language to represent and specify emerging structure
in agent-based model. We begin by describing the two complementary tasks a
modeller deals with when working with emerging structure: (1) Detection of
emerging structure; (2) Representation and specification of emerging structure. The
proposed language aims at addressing the second task. For the first task, we integrate
in GAMA platform a set of clustering techniques, which the modeller can use if
necessary to detect emerging structures during the course of the simulation. After
presenting emerging structures in four toy agent-based models, we discuss the
operations a modeller needs in order to model the lifecycle of an emergent agent. We
implement these operations as commands of the GAML language. These commands
are employed to represent the emergent agent (bird_group) in the Boids model. We
explore also the possibility of modelling the top-down feedback constraint of the
emergent agents at macro-level on agents at the micro-level (birds). As we see in the
experimentation section, emergent agents are created, merged, updated, disposed in a
dynamical way.

With the proposed commands as initial result of the work, we supply the modeller
with some basic “bricks” he can use to represent the emerging structure in some
simple agent-based models. This opens several interesting problems to tackle. As we
would like to develop GAML as a multi-level agent-based modelling language, so
more test should be done on multi-level models, which have more than two levels of
abstraction. When there are multiple levels of abstraction, there will be conflicts in
time-scale, space-scale, data and concurrent interactions between different levels of
abstraction [12]. We need to supply in GAMA a framework to maintain the
consistency between agents at different levels of abstraction. Basing on this
framework, through the GAML language, the modeller should be able to express in
the model how the consistency is ensured between different abstraction levels.

References

1. Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: An Environment for
Implementing and Running Spatially Explicit Multi-Agent Simulations. In: Ghose, A.,
Governatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS, vol. 5044, pp. 359–371.
Springer, Heidelberg (2009)

2. GAMA platform, http://gama-platform.googlecode.com
3. Reynolds, C.: Boids, Background and update,

http://www.red3d.com/cwr/boids
4. Schelling, T.: Schelling Segregation model,

http://web.mit.edu/www/alife/schelling.html
5. Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.:

The Dynamics of Collective Sorting Robot-Like Ants and Ant-Like Robots (1991)
6. Grimm, V., Railsback, S.F.: Individual-based Modelling and Ecology (2005)
7. Moncion, T., Amar, P., Hutzler, G.: Automatic characterization of emergent phenomena in

complex system. In: JBPC 2010 (2010)

 A Modelling Language to Represent and Specify Emerging Structures 227

8. Servat, D., Perrier, E., Treuil, J.-P., Drogoul, A.: When Agents Emerge from Agents:
Introducing Multi-Scale Viewpoints in Multi-Agent Simulations. In: Sichman, J.S., Conte,
R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 183–198. Springer,
Heidelberg (1998)

9. Breton, L., Zucker, J.-D., Clément, E.: A Multi-Agent Based Simulation of Sand Piles in a
Static Equilibrium. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI),
vol. 1979, pp. 108–118. Springer, Heidelberg (2001)

10. Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.:
Self-Organization in Biological Systems (2001)

11. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques
(2005)

12. Natrajan, A.: Doctoral thesis: Consistency Maintenance in Concurrent Representations
(2000)

Multi-model Based Simulation Platform

for Urban Traffic Simulation

Yuu Nakajima, Shohei Yamane, and Hiromitsu Hattori

Department of Social Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan

{nkjm,hatto}@i.kyoto-u.ac.jp
yamane@ai.soc.i.kyoto-u.ac.jp

Abstract. Multiagent-based simulations are regarded as a useful tech-
nology for analyzing complex social systems; for example, traffic in a city.
Traffic in a city has various aspects such as route planning on the road
network and driving operations on a certain road. Both types of human
behavior are being studied separately by specialists in their respective
domains. We believe that traffic simulation platforms should integrate
the various paradigms underlying agent decision making and the tar-
get environment. We focus on urban traffic as the target problem and
attempt to realize a multiagent simulation platform based on the multi-
model approach. While traffic flow simulations using simple agents are
popular in the traffic domain, it has been recognized that driving behav-
ior simulations with sophisticated agents are also beneficial. However,
there is no software platform that can integrate traffic simulators deal-
ing with different aspects of urban traffic. In this paper, we propose a
traffic simulation platform that can execute citywide traffic simulations
that take account of the aspects of route selection on a road network and
driving behavior on individual roads. The proposed simulation platform
enables the multiple aspects of city traffic to be reproduced while still
retaining scalability.

1 Introduction

Multiagent-based simulations are increasingly seen as the most attractive
approach to reproducing and analyzing diverse social systems including au-
tonomous and heterogeneous decision making entities, i.e., humans [5]. The
multiagent-based simulation is a paradigm that can reproduce macroscopic com-
plex phenomena through localized interactions among heterogeneous agents.
Multiagent-based simulations have been applied in various fields in the city, ex-
amples include traffic planning, rescues, and pandemic responses[1,8,4]. Although
numerous attempts have been made to conduct multiagent-based simulations in
various domains, no study has fully captured and analyzed social systems from
various aspects.

The challenge tackled in this paper is a massive urban traffic simulation plat-
form based on the multi-model approach to agent decision making and the target

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 228–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multi-model Based Simulation Platform for Urban Traffic Simulation 229

environment in a city. Traffic, which is one of the most complex systems in mod-
ern society, is a highly suitable target for our research because vehicular traffic
is a phenomenon that includes various aspects: route selection and driving be-
havior.

While traffic flow simulations using simple agents are popular in the traffic do-
main, it has been recognized that driving behavior simulations with sophisticated
agents provide many additional benefits for analyzing the relation between local
driving behaviors and global traffic flow in a city. However, no published software
platform can integrate traffic simulators dealing with different aspects of urban
traffic. We design an architecture and develop a framework to integrate multi-
ple simulators founded on different paradigms. The proposed platform provides
a collaborative environment to experts who traditionally use different simula-
tors in different domains. We also propose a traffic simulation platform that can
execute citywide traffic simulations that include the aspects of route selection
aspect and driving behavior.

More specifically, this paper has three goals:

1. Design multiagent simulation platform based on multi-model of a city
The phenomena that occur in a city cannot be captured with a single model.
For realizing traffic simulations of a whole city, it is required that the plat-
form enable us to integrate different aspects of agent decision making and
the target environment in the relevant areas. It is also necessary that the
platform take advantage of multiple models proposed in different works.

2. Implement urban traffic simulation capturing various aspects of a city and
agents
We develop an urban traffic simulator based on the proposed architecture.
In this platform, we focus on two aspects of the traffic domain in a city:
global route processing and local driving behavior.

3. Evaluate platform performance
We investigate the potential of the developed platform to realize more realis-
tic urban traffic simulations. We verify that the simulation platform enables
the introduction of multiple aspects of traffic while still retaining scalability.
We also conduct an experiment that demonstrates how the number of agents
impacts simulation results such as traffic flow.

The remainder of this paper is as follows. Section 2 describes our approach
to designing the multi-model traffic simulator platform. Section 3 shows the
implementation of the platform. Section 4 describe an analysis of the platform’s
performance and Section 5 demonstrates the effects of the number of agents.

2 Architecture

We consider that agents in the traffic simulation should be covered by flexible
combinations of various decision-making models. This is because agents face
various situations and make decisions according to their current situations while
they move around the city. In addition, the simulation has to include traffic

230 Y. Nakajima, S. Yamane, and H. Hattori

Shared Environment

Simulation

Controller

Shared

environment

Controller

Output Data

Log of

shared

environment

Simulation

module

Local

environment
Log of local

environment

Data on memory FileProcess
Data

Control

Local

environment

data

Shared

environment

data

Simulator based on one model Input data

Event

Fig. 1. Architecture for Multi-model Simulation Platform

systems such as traffic control systems and car navigation systems. The platform
must integrate various aspects of the city environment.

Figure 1 shows the architecture proposed in this paper. This architecture
includes multiple simulators and each simulator captures a specialized aspect of
the traffic domain (e.g. route selection aspect and driving behavior aspect).

Settings unique to the environment covered by each simulator and the envi-
ronment settings shared by the simulators are input. When the result of a certain
simulator influences another simulator, the result is stored in the shared envi-
ronment. On the other hand, information that is unique to one simulator cannot
be accessed by other simulators. Such data is accumulated in the corresponding
local environment.

Simulation controller should manage the simulation processes in order to com-
bine the multiple simulators. The controller requests simulators to calculate the
state of the next step. Basically, the simulators receive a request to output a
result for the next time step. When an event that should be sent to another
simulator occurs in the calculation, the event is sent to that simulator through
the simulation controller.

When all simulations finish, the logs of local environments and the logs of the
shared environment are written to external files.

Some platforms that combine multiple simulators have been proposed, but
these platforms mainly focus on use in a distributed environment [11].

Multi-model Based Simulation Platform for Urban Traffic Simulation 231

Shared Environment

Simulation

controller

Shared environment

Input data

Controller

Output Data

Road network, Person, Plan

Position on network

Route log,

Traffic flaw

log

Position on road

Person

Road shape

Road network

Driving behavior module

Drivers

settings

Route execution module

Route selection module

Road

IN: Road network, OD

OUT : Route

IN: Route

OUT : Position on network

Position on

road logIN: Position on network

Event

Data on memory File
Process

Data

Control, EventSimulator for global traffic

Simulator for local traffic

Event

Time

Agent models

Agent models

Agent models

Fig. 2. System Diagram of Platform

3 Implementation

Previous traffic simulation research consists of either route selection on a road
network or local driving behavior on single roads. Research on route selection has
lead to the modeling of decision processes and route utility functions. Research
on local driving behavior has considered the observation of and responses to road
geometry, signals, and surrounding cars. There are gaps between the global traffic
flow based on route selection and local traffic flows based on driving behavior.

Nagel and his colleagues worked on global traffic flow in a city with multiagent-
based traffic simulators based on the queue model [1]. However, their approach
fails to support realistic driving behavior simulations on particular roads. This
is because details of the road structure (e.g., the width of lanes) or surrounding
environment including neighboring vehicles cannot be represented, so that the
simulated driving behavior fails to consider such local factors.

We assume that there is some interaction between local driving behavior and
global route selection. What we need to do is to analyze how local driving behav-
ior impacts citywide traffic patterns. Therefore, the simulation platform must be
able to incorporate both driving behavior models and route selection models.

We implemented a traffic simulation platform on the proposed architecture.
Figure 2 depicts the system diagram of the platform. We used the open source

232 Y. Nakajima, S. Yamane, and H. Hattori

traffic simulation tool kit MATSim1 to create the platform. We select MATSim
because it has been applied to various traffic simulations and its source codes
are completely open [7,2,3]. The global traffic simulation part of our platform is
mainly owe to MATSim.

In the following sections, each module is described precisely.

3.1 Simulator for Global Traffic

Route Selection Module. The route selection module reads road network
data and OD (Origin-Destination) data of agents from the shared environment.
Road network data mainly describes the structure of the road network while the
OD data consists of tuples of the starting point and the destination point of each
agent.

The road network has travel times of each link; we use either initial default
values or the results of the traffic flow simulation of the previous day. The route
selection module calculates the average trip time of each road based on the traffic
information of the previous day.

In the route selection module, an agent is regarded as the entity performing
route selection. The agent selects the route that has minimum cost considering
map information and the average trip time of each road. A route plan consists
of paths, mode choice, daily activity, and so on.

This module outputs the routes selected by the agents to the shared environ-
ment.

Route Execution Module. The route execution module deals with abstracted
road networks, not two-dimensional spaces. The route execution module is im-
plemented for handling a queue-based simulator; that is, the road network is rep-
resented as a network of FIFO (First-In, First-Out) queues. Each agent moves
over this queue-network between queues according to its scheduled routing plan
given vacancies in the next queue. Traffic flows in this platform are composed of
agent transfers between queues.

The route execution module reads the route plan of each driver agent from
the shared environment. In the route execution module, the agent is regarded as
the plan executor.

The road network is abstracted as a network consisting of nodes and links.
The agent acquires location information on the basis of nodes and links. A road
node pops a driver agent from the waiting queue and pushes it onto the running
queue of the next road link, if the running queue on the next road link has
enough space.

The route execution module writes agent positions, using node and link de-
scriptions, to the shared environment.

1 MATSim (Multiagent Transport Simulation Toolkit:
(http://sourceforge.net/projects/matsim/) is an open source toolkit developed
by the Technical University Berlin and the Swiss Federal Institute of Technology
Zurich for conducting large-scale agent-based traffic simulations. Revision 7476 is
used in this paper.

http://sourceforge.net/projects/matsim/

Multi-model Based Simulation Platform for Urban Traffic Simulation 233

3.2 Simulator for Local Traffic

Driving Behavior Module. In order to achieve traffic simulations that cover
the driving behavior level, we add a driving behavior module. In the driving
behavior module, the agent is regarded as a virtual driver and vehicle. They
move in a two-dimensional space rather than the abstract road network.

The driving behavior module starts calculating driving behavior when an
agent enters a link in the route execution module. The module reads agent
ID and road ID from the shared environment and gets details of the road’s
structure and surrounding environment including neighboring vehicles from the
road module in the local environment.

Data that is used by only one simulator must be accumulated in the local
environment for the simulator. Other simulators do not use specific road details
such as width and slope, but deal with more abstract data such as transit time
or link loads. Accordingly, these elements are stored in the road module of the
local environment.

The execution process of agents in the driving behavior module is summarized
as follows.

1. Observation
Controller requests the driving behavior module to determine the next op-
eration. At first, the driver agent demands information on the surrounding
environment, i.e., sensor data. He observes state of own car, surrounding
cars, and the roads in the immediate vicinity.

2. Recognition
Drivers may not be able to recognize all observed information. This step
filters the observed information based on the driver’s characteristic. For ex-
ample, an aged driver is unable to mentally map the surrounding traffic
situation as quickly as a young driver.

3. Decision
Driver agents decide which driving behavior should be executed next
considering the recognized information. They determine their accelera-
tion/brake/steering operations.

4. Execution
The driver agents execute the acceleration/brake/steering operations. This
involves not only setting the accelerator/brake/steering values directly but
also the execution of sequential acts such as changing lanes. The driver agent
has own vehicle module which holds car specifications, such as size, maximum
speed, car type and so on. The vehicle module converts the operations set
by the driver agent into direction and acceleration/deceleration values.

5. Update location
Vehicle module calculates the vehicle’s next state, such as its speed, velocity,
and direction, based on the driving operation. Vehicle module updates the
location information for the road module by accumulating the positions of
vehicles in the local environment.

234 Y. Nakajima, S. Yamane, and H. Hattori

- Next time

- Enter node

- Load route

Driving behavior

module

Route execution

module

Route selection

module

Simulation controller

- Next day

- Congestion
-Next time

-Enter link

- Congestion

- Go to next link

- Leave link-Finish selection

Fig. 3. Message Control Provided by Simulation Controller

Using the location information, the driving behavior module checks whether the
driver agent should be transferred to the next link or not. The result is then
reported to the route execution module via the simulation controller.

3.3 Simulation Controller

The simulation controller administers the entire simulation process. Simulator
communication is based on message passing. At the beginning of a city traffic
simulation, the route selection module is called to create a route from starting
point to goal point for each agent. After that, the traffic simulation is started.
The route execution module is called every second to calculate the route traces
of agents on the abstracted road network. The driving behavior module can be
called on shorter periods, such as 0.1 seconds.

Figure 3 shows how the simulators work together by sending messages.

– When a simulation is started, the controller requests the route selection mod-
ule to calculate a route from starting point to goal point (“Next Day”). When
congestion occurs on an intersection, the route selection module receives a
“Congestion” message from the route execution module and rerouting is be-
gun. The route selection module returns “Finish selection” message. After
that, the controller sends “Load route” to the route execution module which
triggers the module into reloading the appropriate routes.

– When the route execution module receives “Next time” message, the module
calculates the state expected at the next time step. If the route execution
module receives “Enter node” message which is raised by the “Leave link”
message sent by the driving behavior module, the route execution module
registers the agent mentioned in the message as an object to calculate the
route trace of the agent on the road network. The agents on the route exe-
cution module decide the next link toward their goals and send “Go to next
link” messages with agent ID and road ID to the simulation controller.

Multi-model Based Simulation Platform for Urban Traffic Simulation 235

– When the driving behavior module receives “Next time” message, the module
calculates the state expected at the next time step. If the driving behavior
module receives “Enter link” message which is raised from “Go to next link”
from the route execution module, the driving behavior module registers the
agent mentioned in the message as an object to calculate its driving behavior.
The driver agents in the driving behavior module check whether they have
reached the end of the link or not. If they have arrived at the end of the
link, “Leave link” messages are sent to the route execution module via the
simulation controller.

In this manner, our platform for traffic simulations can integrate the simulators
that reflect different aspects of driving in a city, i.e., global route planning-
execution and local reactive behavior.

3.4 Shared Environment

The shared environment manages data shared by agents on different simulators.
This technique allows transitions in the data to be handled. At the step of time
t, all agents read data at time t and decide actions for time t. At the end of
the step, the shared environment fixes the data for time t+ 1. In doing so, the
simulators do not need to consider the order in which agents are processed.

In general, several simulators may access the shared environment simultane-
ously, so we need to implement the lock and rollback functions for the shared
environment. At present, the shared environment does not have facilities for lock
and rollback because these agents on the simulator do not write to the shared
environment simultaneously and so do not cause conflicts in terms of the results
of actions in our traffic simulation2. If the actions of the agents cause a conflict,
for example the agents intend to occupy the same spatial position at the same
time step in the driving behavior module; the shared environment rollbacks the
data and requests the agents to recalculate. With the conflict in mind, they
recast their operations at time t all over again.

When other simulation modules are added in this platform, the simulation
modules have to implement the interfaces that support event control and data
sharing, which are defined by the simulation controller and the shared environ-
ment.

4 Performance Analyses

It is important to achieve adequate scalability as well as the ability to handle
multiple aspects of traffic. This is because traffic is a phenomenon that emerges
from the mass actions of agents.

2 In the driving behavior module, driver agents can recognize surrounding agents and
they move only a short distance from one time step to the next because the time
offset is small. Therefore, agents should not collide with each other.

236 Y. Nakajima, S. Yamane, and H. Hattori

0

10

20

30

40

50

1000 4000 7000 10000 13000 16000 19000 220001000 4000 7000 10000 13000 16000 19000 22000

The Number of Agents

Ti
m

e
[m

in
]

Fig. 4. Computation Time

For example, Paruchuri et al. reproduced some traffic situations with around
30 vehicles [9]. Increasing the number of vehicles yielded different results. Agent-
based auction simulations were executed in [12], this research indicated that the
simulation results were affected by the number of agents.

The challenge tackled in this paper is to achieve massive urban traffic sim-
ulations based on the multi-model simulator. In this section, we show that the
implemented simulation platform has sufficient scalability. This is because there
is a trade-off between the scale of multiagent-based simulations and the diversity
of traffic models (decision making of agent and the target environment) in terms
of the computation time.

In this experiment, we generated 100 ODs (origin-destination) by pairing two
randomly selected points from 25 main intersections within an area that repre-
sents the heart of the city of Kyoto (2km x 2km square with 1700 links). For
simplicity, all agents used the same route selection model and the same driving
behavior model. The simulation time was 2 hours. We ran our experiments on a
desktop computer with a Core2Duo 2.53 GHz CPU and 3GB of main memory.

Figure 4 plots the computation time versus the number of agents. As you can
see, the computation time is directly proportional to the number of agents. In
fact, with the largest number of agents (22,000), the computation time is around
50 minutes.

5 Effect of the Number of Agents

As shown above, we implemented a traffic simulation platform and in this section,
we experimentally confirm that our platform has the ability to reproduce actual
urban traffic created by a large number of agents. As an example, we investigated
how the number of agents impacted city traffic.

Multi-model Based Simulation Platform for Urban Traffic Simulation 237

Oike St.

Shijo St.

Gojo St.

Rokujo St.

Karasuma St. Kawaramachi St.

Fig. 5. Simulation Target Area

5.1 Settings

We conducted simulations with 8000 vehicle agents, each of which was assigned
an OD selected from 36 types of ODs. We prepared an OD set considering two
types of traffic, i.e., traffic in the central part of the target area of the experiment
and traffic through the central area. The simulation period was set to 90 minutes
and the simulation was iterated 50 times following [10].

Figure 5 shows the simulation target area, which is the central part in the
city of Kyoto. Circled points are big intersections. Agents mainly depart from
and arrive at these big intersections. The dashed red lines are main streets. We
applied the road network data, including all road links in Kyoto city, prepared for
commercial programs. Figure 6 shows a screen shot of a simulation experiment.
Red rectangles are simulated vehicles.

The aim of this experiment was to investigate how the number of agents
influences global traffic flow via agents’ route selection.

5.2 Execution

In this platform, multiagent-based urban traffic simulations are conducted with
agents who can make decisions on both global route planning-execution and
local driving operation. An agent has functions to interact with both simulation
modules so that it can determine the most suitable route to the destination and
run on that route while expressing its preferred driving behavior (accelerating,
braking, lane-changing) given the surrounding environment. The agents decide
their behavior according to the assigned models.

238 Y. Nakajima, S. Yamane, and H. Hattori

Fig. 6. Simulations of the Traffic in the heart of Kyoto city

Within a simulation, the agents iteratively execute the day-to-day re-planning
process which consists of route-planning, traffic flow simulation, and scoring. The
traffic flow simulation is calculated every second. The details of the process are
as follows:

1. At the initial step, a set of initial plans (routes) is generated based on free
speed travel times in the route selection module.

2. The traffic simulation is run using the generated plans in the route execution
module and the driving behavior module.

3. Each agent calculates the score of his/her plan based on the performance
identified by the simulation at end of the day in the route selection module.

4. In the route selection module, some of the population (10% is used in this
paper) explore new plans based on the updated travel times resulting from
the last simulation. The remaining agents use the previously executed plan.

5. Step 2 to step 4 must be iterated many times before the optimized demand
can be identified.

In this paper, we iterated steps 2 to 4 over 50 days and the length of step 2 was
90 minutes.

5.3 Results

We investigate how the number of agents affects the outcome of the simulation,
such as visible traffic flows. In order to analyze the effect of the number of agents,
we changed only the number of agents; from 2,000 to 12,000 in steps of 2,000.

Multi-model Based Simulation Platform for Urban Traffic Simulation 239

0 0.25 0.50 0.75 1.000 0.25 0.50 0.75 1.00

10000

8000

6000

4000

2000

Oike St Shijo St Gojo St Rokujo St

12000

[Rate]

[Num. of agents]

Fig. 7. Impact of the Number of Vehicle Agents: Traffic Share Rate of Four Streets

We counted the number of vehicles that drove through four streets (Oike St.,
Shijo St., Gojo St., and Rokujo St.) from Karasuma St. to Kawaramachi St.
(accordingly, we did not count vehicles which changed their route in the middle
of the streets). Rokujo St. is relatively narrow and the three other streets are
main streets in the city.

Figure 7 shows the traffic share rates of these four streets in the result of
simulation iteration 50. Starting from the left, each column lists the share rates
of Oike St., Shijo St., Gojo St. and Rokujo St. Because Rokujo St. is rather a
short route between Kawaramachi St. from Karasuma St. (see Figure 5), the
share rate of Rokujo St. was high. As shown in the figure, this situation, traffic
flows are biased to Rokujo St., is unchanged regardless of the number of agents.
However, the share rate of Rokujo St. is reduced at agent numbers of 8000 and
1,0000, while the rates of Oike St., Shijo St and Gojo St. are increased. These
results presumably mean that Rokujo St. becomes full and the agents avoid it by
selecting other routes including the three other streets even though the routes
are longer than routes through Rokujo St.

The important point is that these results are obtained by only changing of the
number of the agents. These results indicate that traffic modality patterns do
depend on simulation scale. Thanks to the scalability of our simulation platform,
we can capture the effect of volume of agents on the city traffic.

6 Conclusion

Multiagent-based simulations yield multiagent societies that well reproduce hu-
man societies, and so are seen as an excellent tool for analyzing the real world.

240 Y. Nakajima, S. Yamane, and H. Hattori

Although numerous attempts have been made to conduct multiagent-based sim-
ulations in the traffic domain, it has, up to now, been impossible to reproduce
and analyze the traffic from various aspects.

Existing research on city traffic falls into two camps; research focused on global
route selection and research focused on local driving behavior. However, these
two behaviors clearly affect each other. Phenomena that occur in a city cannot
be captured with single model.

For realizing city-wide traffic simulations, the different aspects of agent deci-
sion making and the target environment must be integrated. Toward our objec-
tive, we developed a wide-area traffic simulation platform based on the multi-
model approach that enables us to execute social simulations from various as-
pects of city traffic.

Our contributions are as follows.

1. Designed multiagent simulation platform based on multi-model approach
For realizing city-wide traffic simulations, we designed a multi-model plat-
form for urban traffic simulations that can take account of the different
aspects of the decision making of agents and the target environment. The
platform allows us to take advantage of the multiple models proposed in
related works.

2. Implemented urban traffic simulation capturing various aspects
We developed an urban traffic simulator based on the proposed architecture.
This integrated simulator includes two models; route processing and driving
behavior.

3. Evaluate platform performance
We evaluated the scalability of the platform. As a simulation example, we
examined how the number of agents impacts simulation results such as traffic
flow.

One future direction of this study is to create more sophisticated behavior mod-
els. It is clear that human drivers have very diverse driving behaviors with com-
plicated decision making processes. We are going to use participatory modeling
methodologies to extract more realistic driving behavior models [6].

Acknowledgment. This work was supported by Panasonic Corp. - Kyoto Uni-
versity Joint Research: Crowd Navigation for Region EMS Considering Indi-
vidual Behaviors and Preferences and Kyoto University Global COE Program:
Informatics Education and Research Center for Knowledge-Circulating Society.

References

1. Balmer, M., Cetin, N., Nagel, K., Raney, B.: Towards truly agent-based traffic and
mobility simulations. In: The 3rd International Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2004), pp. 60–67 (2004)

2. Balmer, M., Meister, K., Rieser, M., Nagel, K., Axhausen, K.W.: Agent-based
simulation of travel demand: Structure and computational performance of matsim-
t. In: The 2nd TRB Conference on Innovations in Travel Modeling (2008)

Multi-model Based Simulation Platform for Urban Traffic Simulation 241

3. Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K.:
MATSim-T: Architecture and Simulation Times. In: Multi-Agent Systems for Traf-
fic and Transportation Engineering, pp. 57–78. IGI Global (2009)

4. Deguchi, H., Kanatani, Y., Kaneda, T., Koyama, Y., Ichikawa, M., Tanuma, H.:
Social simulation design for pandemic protection. In: The First World Congress on
Social Simulation (WCSS-2006), vol. 1, pp. 21–28 (2006)

5. Epstein, J., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom
Up. MIT Press (1996)

6. Hattori, H., Nakajima, Y., Ishida, T.: Learning from humans: Agent modeling with
individual human behaviors. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part A 41(1), 1–9 (2011)

7. Illenberger, J., Flotterod, G., Nagel, K.: Enhancing matsim with capabilities of
within-day re-planning. In: The IEEE Intelligent Transportation Systems Confer-
ence, pp. 94–99 (2007)

8. Kitano, H., Tadokor, S., Noda, H., Matsubara, I., Takahasi, T., Shinjou, A.,
Shimada, S.: Robocup rescue: search and rescue in large-scale disasters as a
domain for autonomous agents research. In: The IEEE Conference on Sys-
tems, Men, and Cybernetics, Tokyo, vol. VI, pp. 739–743 (October 1999),
citeseer.ist.psu.edu/kitano99robocup.html

9. Paruchuri, P., Pullalarevu, A.R., Karlapalem, K.: Multi agent simulation of unor-
ganized traffic. In: The 1st International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2002), pp. 176–183 (2002)

10. Raney, B., Nagel, K.: Iterative route planning for large-scale modular transporta-
tion simulations. Future Generation Computer Systems 20(7), 1101–1118 (2004)

11. Scerri, D., Hickmott, S., Padgham, L., Drogoul, A.: An Architecture for Modular
Distributed Simulation with Agent-Based Models. In: Ninth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-2010), pp.
541–548 (2010)

12. Yamamoto, G., Tai, H., Mizuta, H.: A Platform for Massive Agent-Based Simula-
tion and Its Evaluation. In: Jamali, N., Scerri, P., Sugawara, T. (eds.) MMAS 2006,
LSMAS 2006, and CCMMS 2007. LNCS (LNAI), vol. 5043, pp. 1–12. Springer,
Heidelberg (2008)

citeseer.ist.psu.edu/kitano99robocup.html

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 242–258, 2012.
© Springer-Verlag Berlin Heidelberg 2012

GAMA: A Simulation Platform That Integrates
Geographical Information Data, Agent-Based Modeling

and Multi-scale Control

Patrick Taillandier1,2, Duc-An Vo1,2, Edouard Amouroux1,2,
and Alexis Drogoul1,2

1 IRD, UMI UMMISCO 209,
32 avenue Henri Varagnat, 93143 Bondy, France

2 IFI, MSI, UMI 209,
ngo 42 Ta Quang Buu, Hanoi, Vietnam

voducanvn@yahoo.com, edouard.amouroux@ird.fr,
{patrick.taillandier,alexis.drogoul}@gmail.com

Abstract. The agent-based modeling is now widely used to study complex
systems. Its ability to represent several levels of interaction along a detailed
(complex) environment representation favored such a development. However,
in many models, these capabilities are not fully used. Indeed, only simple,
usually discrete, environment representation and one level of interaction (rarely
two or three) are considered in most of the agent-based models. The major
reason behind this fact is the lack of simulation platforms assisting the work of
modelers in these domains. To tackle this problem, we developed a new
simulation platform, GAMA. This platform allows modelers to define spatially
explicit and multi-levels models. In particular, it integrates powerful tools
coming from Geographic Information Systems (GIS) and Data Mining easing
the modeling and analysis efforts. In this paper, we present how this platform
addresses these issues and how such tools are available right out of the box to
modelers.

Keywords: Simulation platform, Agent-based modeling, Geographical vector
data, Multi-level control.

1 Introduction

The agent-based modeling has brought a new way to study the complex systems. It
allows to take into account different levels of interactions as well as the heterogeneity
of the entities composing the system.

Even if numerous simulation platforms exist, most of the complex models are still
developed from scratch. Indeed, very few platforms allow to directly work with
geographical vector data (series of coordinates defining geometries) and/or to define
multi-level models. Moreover, these platforms are often complex to use and their
understanding can require a time investment from the modeler that can be similar to
the one needed to develop a model from scratch.

 GAMA: A Simulation Platform That Integrates Geographical Information Data 243

In this paper, we present the GAMA agent-based simulation platform [1], [2]. This
platform provides a complete modeling and simulation development environment for
building spatially explicit multi-agent simulations. Many models have already been
implemented using this platform (e.g. [3][4][5][6]). Its main advantages come from its
versatility (domain independent) and the simplicity to define a model with it. Indeed,
GAMA provides a rich, yet accessible, modeling language based on XML, GAML,
that allows to define complex models integrating at the same time entities of different
scales and geographical vector data.

The paper is organized as follow. In Section 2, we present the capabilities of
GAMA concerning the integration of geographical vector data. Section 3 is dedicated
to the presentation of its multi-scale modeling capabilities. In Section 4, we
investigate a way to couple the use of geographical data and multi-scale modeling.
Section 5 discusses about the contributions of this paper. At last, Section 6 concludes.

2 Integrating Geographical Vector Data in Simulation

2.1 Why Using Geographical Vector Data in Models?

These last years have seen the development on a large scale of geographical vector
datasets. Today, most of the decision makers use this type of data when they have to
face a problem integrating a spatial dimension.

In the context of simulations, using this type of data allows to make the simulations
closer to the field situation. In addition, it allows to use tools, like spatial analysis,
coming from Geographic Information Systems (GIS) to manage these data.

2.2 Use of Geographical Data in Models

If more and more models integrate geographical vector data, their use can take
different forms. In the following sections, we present three different ways of using
vector data, from the simplest (reading/writing of geographical data) to the most
complex (agentification of geographical data).

2.2.1 Reading and Writing of Geographical Vector Data
The most basic functions concerning the use of geographical vector data are the
reading and the writing of geographical data from files and from database. The goal is
to integrate seamlessly the vector data as the simulation’s environment (input) and to
store the resulting environment (output).

Once geographical vector data has been read, several uses can be made of them.
The most straightforward one consists in translating them as a grid where agents are
localized.

2.2.2 Using Geographical Vector Data as Background Layers
A more complex use consists in using these data as a “background layer” constituted
of geographical objects: the agents will be able to move according to this layer.

244 P. Taillandier et al.

For example, some agents will be able to move along a network of road, or inside a
complex polygon (e.g. inside a forest represented by a polygon.

This use requires the integration in the simulator of GIS specific primitives such as
moving an agent inside a geometry, computing a shortest path between two points of
this geometry (or on a network), etc.

2.2.3 Agentification of Geographical Vector Data
A richer ways of integrating geographical vector data in a model is to consider each
geographical object as an agent. Thus, a road will be an agent, a building or a city,
and each object contained in a geographical dataset will also be represented by an
agent. Remark that this kind of geographical data agentification was already used for
other application contexts such as cartographic generalization [7]. In the context of
simulation, the advantage of this approach is to give the possibility to manage
geographical objects exactly like other agents in the simulation: it will be possible to
give them an internal state and a behavior.

Reciprocally, it is possible to go further and to consider that every “spatialized”
(localized and with a geometry) agents of the simulation has a geometry and can be
viewed as a geographical object in a geographical dataset. In this way, the
management of agents and geographical objects is equivalent and trouble-free.
Indeed, no difference is made anymore between agents and geographical objects.

2.3 Geographical Vector Data in Existing Simulation Platforms

2.3.1 Simulation Platforms with Basic Support of Geographical Vector Data
Swarm [8] is a well-established simulation platform and inspiration for many others.
Its original version does not allow to integrate geographical vector data. However, a
library called Kenge [9] allows to load layers of geographical vector data. Practically,
this extension allows to create a cellular automata from a shape file. In addition, an ad
hoc access to geographical data has been developed for specific models (e.g. [10]).
Unfortunately, they do not provide any spatial primitives neither the possibility to
store the resulted environment.

Netlogo [11] is also a well-established simulation platform. It is largely used for
educational purpose and for research. The GIS support has been added recently
through an extension [12]. It allows import and export of vector data and support the
projection system (the method used to represent the geographical data on a plane).
The attributes of the vector data are made accessible as well as their geometrical
characteristics (centroid, list of vertex, etc.). Some basic geometrical operations are
also available (bounding rectangles, union of polygons, etc.). However, many more
advanced spatial analysis operation are not offered.

CORMAS [13] is a platform dedicated to the modeling in ecology and especially
the natural resources management where space representation and interaction is
essential. It proposes two environment modes: vector and raster. They share the same
organization of 3 classes «spatial entity», «agent», and «object». This organization,
though being rigid, ease the development of model by abstracting the interaction with

 GAMA: A Simulation Platform That Integrates Geographical Information Data 245

environment, thus allows to switch from a discrete environment to a continuous (or
vector) one. Unfortunately, CORMAS provides only basic services for the discrete
environment. Moreover, GIS support is limited to loading and storing shapefiles (a
popular vector data format) and creating elementary areas. GIS primitives (union,
intersection, shortest path, etc.) and access to polygon attributes have to be
programmed.

In 2008, Urbani proposed the SMAG (portmanteau word from SMA-SIG or MAS-
GIS in English) architecture linking a GIS and MABS simulator for decision support
system. The author implemented it over CORMAS, calling it CORMGIS [14]. The
integration is relatively basic as access to geo-referenced data is done through a data-
connection to ArcGIS. In addition, no GIS primitive (union, intersection, etc) is
available.

2.3.2 Simulation Platforms with Advanced Support of Geographical Vector
Data

Repast J [15] is a modeling toolkit inspired by Swarm. As a toolkit, it provides a
structure with only basic services readily available. Different grids are implemented
(hexagonal or rectangular, torus or not, etc.) but agents are not (only an interface is
given). The GIS support is done through the OpenMap library. It provides the
minimal services of a GIS: importing/exporting shapefiles and raster data, some
geometrical operations, access to data attributes, etc. Nevertheless, as Repast J
provides access to OpenMap, the modeler can implement more complex operations.
Unfortunately, this programming is far from reach of the vast majority of modelers.

Repast Symphony (Repast S) [16] is the up-to-date version of the Repast toolkit. It
provides the same basic features as Repast J, but is based on a more advanced GIS
library, Geotools, which provides additional GIS services. In particular, Repast S
allows to directly model a network of lines as a graph and to compute the shortest
paths from one point to another. It allows as well to visualize and manage 3D data.
Nevertheless, the number of GIS operations available is still fairly limited and
localized agents are still to be programmed. More advanced operations have to be
programmed (using the Geotools librabry) which is again, evidently, far from reach
for many modelers.

2.4 Geographical Vector Data in GAMA

In order to address these shortcomings we developed the GAMA platform, which
goes much further by making available many more GIS services and operations and
especially an advance management of geographical vector data.

The first version of GAMA that was presented in [1] proposed the idea of using a
continuous environment to serve as a reference for all other environments (e.g. grid
environment). In this former version, all situated agents had a point for geometry. The
use of geographical vector data was very limited: there were just to initialize the
initial location of the agents and as a background layer.

If the new version of GAMA (GAMA 1.3) kept the same idea of a reference
environment, it goes further by providing a true geometry to all situated agents. This

246 P. Taillandier et al.

geometry, which is based on vector representation, can be simple (point, polyline or
polygon) or complex (composed of several sub-geometries).

The geometry of the agents can be defined by the modeler (a list of points) or
directly loaded from a shapefile. Indeed, GAMA allows to use geographical vector
data to create agents of a specific species (a prototype of agents that defines both the
agent internal state and their behavior): each object of the geographical data will be
automatically used to instantiate an agent, GAMA taking care of managing the spatial
projection of the data and, if necessary, of reading the values of the attributes.
Consequently GAMA considers localized agents and geographical objects in the exact
same way.

Example: the following GAML lines allow to create a set of building agents from
the shapefile shape_file_building.shp and to set the value of the attribute nature of
each created building agent according to the attribute NATURE of the shapefile:

<create species="building" from="shape_file_building.shp"

with="[nature:: read ‘NATURE’]"/>

Figure 1 gives an example of the agentification of 4 buildings from a shapefile.

Fig. 1. Example of geographical data agentification

In the same way, GAMA allows to save a set of agents in a shapefile.
Example: the following GAML lines allow to save all the agents of the species

building in the shapefile shape_file_building.shp and to set the value of the attribute
NATURE of each geographical object according to the attribute nature of the agents:

<save species="building" to="shape_file_building.shp"

with="[nature:: ‘NATURE’]"/>

In order to ease the manipulation of the vector geometries, GAMA integrates different
GIS features that are directly available through the GAML language. Thus, GAMA
allows to:
• Compute the area and the perimeter of a geometry.

Example: The following GAML line allows to compute the area of the geometry of
the agent ag:

 GAMA: A Simulation Platform That Integrates Geographical Information Data 247

<let name="the_area" value="ag.area" />

• Test if two geometries intersect, touch, cross, overlap each other.
Example: The following GAML lines allow to test if the geometry of the agent that

is applying the action intersects the geometry geom:
<do action="interection" return="is_true">

<arg name="geometry" value="geom" />
</do>

• Compute the convex hull and the buffer geometry of a geometry (Figure 2).

Fig. 2. Example of convex hull and buffer actions

Example: The following GAML line allows to compute the convex hull of the
geometry of the agent that is applying the action:

<do action="convex_hull" return="result"/>
• Apply translation, rotation and scaling operations on a geometry (Figure 3).

Fig. 3. Example of scaling, rotation and translation actions

Example: The following GAML lines allow to rotate the geometry of the agent that
is applying the action with an angle of 90°:

<do action="rotation ">
<arg name="angle" value="90" />

</do>

• Compute the geometry resulting from the union, intersection or difference of two
geometries (Figure 4).

Fig. 4. Example of union, intersection and difference actions

248 P. Taillandier et al.

Example: The following GAML lines allow to compute the difference between the
geometry geom1 and the geometry geom2:

<do action="difference" return="result">
<arg name="geometry1" value="geom1" />

<arg name="geometry2" value="geom2" />

</do>

• Compute the distance between two geometries (minimal distance).
Example: The following GAML lines allow to compute the distance between the

geometry of the agent that is applying the action and the geometry geom:

<do action="distance_geometry" return="result">
<arg name="geometry" value="geom" />

</do>

• Compute the neighborhood of an agent, i.e. all the agents that are localized at a
distance lower than a given thresholds to the agent.
Example: The following GAML lines allow to compute the neighborhood of the

agent ag:

<let name="neighborhood" value="ag.neighbours_geometry "/>

• Compute a random point inside a geometry.
Example: The following GAML lines allow to compute a random point inside the

geometry geom:

<do action="place_in" return="result">
<arg name="geometry" value="geom" />

</do>

Fig. 5. Example of Tessellations (square and triangle)

• Compute the point of a geometry that is the closest to the agent location.
Example: The following GAML lines allow to compute the point of the geometry

geom that is the closest to the agent that is applying the action.

 GAMA: A Simulation Platform That Integrates Geographical Information Data 249

<do action="closest_point_in" return="result">
<arg name="geometry" value="geom" />

</do>

• Apply a tessellation operation (square or triangle) on a geometry (Figure 5).
Example: The following GAML lines allow to compute the Delaunay triangulation

of the geometry (polygon) geom:

<do action="triangulation" return="result">
<arg name="geometry" value="geom" />

</do>

• Compute the skeleton of a geometry (Figure 6).

Fig. 6. Example of Skeletonization

Example: The following GAML lines allow to compute the skeleton of the
geometry (polygon) geom:

<do action="skeletonization" return="result">
<arg name="geometry" value="geom" />

</do>

• Compute the shortest path (or the distance) inside a geometry (line network or
polygon) between two points located in the geometry. For this computation, our
approach consists in modeling the geometry as a graph, and in computing from it
the shortest path linking the two points. In the context of a line network, the
modeling as a graph is trivial. In the context of a polygon, this one is based on a
Delaunay triangulation of the geometry: each triangle resulting from the
triangulation is modeled as a node and an edge represents the fact that two triangles
are adjacent. Figure 7 shows an example of graph computation. Two algorithms are
implemented for the shortest path computation: Dijkstra [17] and Floyd Warshall
[18].
Example: the following GAML lines allow to move the agent that is applying the

action toward the point the_target, at a speed of 5 km/h, inside the geometry geom
(which can be a graph or a polygon):

<do action="goto">

<arg name="target" value="the_target" />

<arg name="speed" value="5 km/s" />

<arg name="geometry" value="geom" />

</do>

250 P. Taillandier et al.

Fig. 7. Example of graph computation

3 Multi-scale Modeling

3.1 Context

Another advantage of the agent-based modeling approach is its representation
versatility. Indeed, an “agent” can represent any individual or aggregation/structure of
individuals of the reference system, at any spatial scale and across different time
horizons. Thus the modeler is free in her/his choice of the entities of the reference
system that will be represented by agents. This choice will depend on the level of
abstraction of the reference system the modeler is working with. This, in turn,
depends on the question he/she wants to answer with the model, on the data available
at hand, on the scale at which this data is described, etc.

In addition to the agent representing entities of the reference system, the modeler
can need to explicitly represent emergent structures. Indeed, during the simulation
stage (execution of the model), some structure can emerge: appearance of pheromone
trail built by ant [19], evolution of social group within a population [20], formation of
arches in granular environment [21], etc. These structures are often the result of non-
linear interactions between the agents defined in the model and can play a significant
role in the model dynamics. They can be considered as a higher level of abstraction
(upper scale) compare to the underlying agents composing them. It is important, if not
crucial, to be able to detect and to generate them dynamically (i.e. might simplified
the simulation run).

Current agent-based modeling platforms lack support in term of agent-based
modeling language to represent these structures as explicit entities in the model and
tools to detect them. Thus, modelers face difficulties when they need to represent
them and to follow their dynamics during the course of the simulation.

3.2 Multi-scale Modeling in GAMA

In GAMA, in order to let modelers dynamically track the emergence of dynamic
structures, we let them represent these structures as explicit entities in the model. We

 GAMA: A Simulation Platform That Integrates Geographical Information Data 251

call these entities “emergent agents”. As regular agent, an emergent agent can have
attributes and behaviors. Beside, its instantiation depends on the appearance of certain
properties during the simulation and its life-cycle possesses some specific operations.

3.2.1 Representing Emergent Structure
The “creation” operation helps to specify when an emergent agent is instantiated.
This operation allows the modeler to express in an explicit way the rules governing
the instantiation of emergent agents during the simulation. For example, consider a
simulation of city dynamics: a modeler can decide to instantiate an emergent agent of
species building block when two or more building agents are close enough. Figure 8
illustrates this example: an emergent agent (building block) representing the emergent
structure is created with six micro-agents (building) as components.

Fig. 8. Creation of an emergent agent (building block agent)

The “update” operation describes how micro-agents are added to or removed
from an emergent agent. Some micro-agents may no longer satisfy a condition to
belong to an emergent agent, while others, still “free” may now fulfill it: this
operation allows to specify how these agents are added or removed from the structure.
The purpose of this operation is to keep the list of components up-to-date with respect
to the meaning of the emergent agent.

Figure 9 illustrates the “update” operation. It follows the example of city dynamic
simulation presented Figure 8. We consider that a building block agent composes of
three building agents. One building agent doesn’t satisfy the condition to belong to
the building block agent anymore. A free building agent satisfies the condition
to become a member of the building block agent. This operation helps the modeler to
remove one building agent from the building block agent and add one building agent
to the building block agent.

The “merge” operation allows the modeler to specify how several emergent
agents representing different structures can be merged into one unique emergent
agent. The fusion of their respective components then becomes the components of the
new unique emergent agent.

Figure 10 illustrates the “merge” operation using the same example as Figure 8 and
9. We consider a new building block agent (in yellow) has been created. This agent is
close enough to the existing building block agent (in green) to merge with it. The
resulting agent will be composed of the 5 building agents composing the two building
block agents.

252 P. Taillandier et al.

Fig. 9. Update of an emergent agent (building block agent)

Fig. 10. Fusion of different emergent agents

The purpose of the “disposal” operation is to express when an emerging
structure should not consider to be an agent in the simulation anymore. The emergent
agent representing the structure is cleared out of the simulation and its components
become free.

Fig. 11. Death of an emergent agent

Figure 11 illustrates the “disposal” operation. Following the example presented
Figure 10, we consider that three of the building agents composing the building block
agent died. Now, the remaining building agents are too far from each other to
compose a building block agent. Then, the building block agent is going to die.

 GAMA: A Simulation Platform That Integrates Geographical Information Data 253

The top-down feedback control allows the modeler to describe which feedback
constraint an emergent agent is exercising on its underlying micro-agents. As
emergent agents usually emerge because of the interactions of certain micro-agents,
these agents have an influence on its attributes and behavior. Reciprocally, an
emergent agent may also provide a feedback on the behavior of its components, either
implicitly or explicitly. In order to describe it, the modeler needs to have some way to
alter the behavior of a micro-agent (by changing parameters, adding, or removing
entire behaviors) before and after it enters an emergent agent.

Typically, in our city dynamic simulation example, a building agent, once part of
building block agent, has more chance to attract residents to live in, and thus to lead to
construction of new buildings in the neighborhood (for example, shops).

3.2.2 Representing Emergent Agents in GAMA
An emergent agent is composed of constituent agents. Constituent agents can be
considered as micro-agents compared to the emergent agent. Reciprocally, the
emergent agent can be seen as a macro-agent compared to its constituent agents. In
turn, several emergent agents can be merged to form another emergent agent at a
higher level of abstraction. Thus, an agent in GAMA can play the role of macro-agent
in one level of organization and micro-agent in a higher level of abstraction. This
design aims at permitting the modeler to represent as many levels of abstraction as he
needs in his model. Figure 12 shows an example of abstraction level hierarchy for the
city dynamic simulation problem: a city agent is composed of a set of district agents
that are each composed of a set of building block agents that are at their turn
composed of a set of building agents.

Fig. 12. Example of level of abstraction hierarchy

To manipulate the five specific operations in the lifecycle of an emergent agent
(create, update, merge, disposal, top-down constraint control), six GAML commands
are defined: creation, update, merge, disposal, enable and disable.

254 P. Taillandier et al.

• The creation command allows to specify when emergent agents are created in the
simulation.
Example: the following GAML lines create a building block agent which has for

components the building agent contained in the list list_buildings:

<creation>

 <create with="[components::list_buildings]"

species="building" />

</creation>

• The update command allows the modeler to define how the constituent micro-
agents are added and removed from an emergent agent.
Example: the following GAML lines update the components of the building block

agent that is applying this command by adding the building agents contained in
added_buildings and removing the ones contained in removed_buildings:

<update>

 <set name="components" value ="components + added_buildings -

removed_buildings"/>

</update>

• The merge command allows the modeler to define how several emergent agents are
merged.
Example: the following GAML lines allow to merge several building block agents

(the ones contained in the nearby_bb list) with the building block agent applying this
command. All the constituent building agents of the building block agents contained
in the nearby_bb list are added to the component list of the one applying the
command. Then, the other building block agents die (i.e. are removed from the
simulation):

<merge>

 <loop over="nearby_bb" var="one_bb">

 <set name="components" value ="components +

one_bb.components"/>

 <ask target="one_bb">

 <do action="die">

 </ask>

 </loop>

</merge>

• The disposal command allows the modeler to specify when an emergent agent is
cleared out of the simulation.
Example: the following GAML line specifies that a building block agent will be

removed from the simulation if it contains less than two building agents:

<disposal when="(length components) < 2"/>

• The disable command allows the modeler to disable certain behavior units
appropriately. While the enable command allows the modeler to enable the
inactive behavior units.
Example: the following GAML lines enable the behavior “expansion” and disable

the behavior “destruction” of the building agent one_building_agent:

 GAMA: A Simulation Platform That Integrates Geographical Information Data 255

<ask target="one_building_agent">

 <enable behavior="'expansion'">

 <enable behavior="'destruction'">

</ask>

Note that GAMA provides several clustering algorithms (e.g. hierarchical clustering,
X-Means [22], Cobweb [23]) that can be used to dynamically detect if an emergent
agent has to be instantiate. For example, these algorithms can be used to detect groups
of close agents, or agents sharing some specific attributes.

Example: the following GAML lines allows to regroup the building agents
contained in the buildings list into a set of groups; each group being composed of
building agents of which the distance to each other is lower or equal to 10m:

<do action="simple_clustering_by_distance" return="groups">

<arg name="agents" value="buildings" >

<arg name="dist_max" value="10m" >

</do>

4 Coupling Geographical Vector Data and Multi-scale
Modeling

In Section 2.4, we presented the GIS capacities and in Section 3.2 its multi-scale
modeling capacities of GAMA. In this section, we investigate a way to couple the use
of geographical data and multi-scale modeling: we propose to decompose an agent
into a set of constituent agents on geometric basis. One of the main interests of such
decomposition is to improve the dynamicity of the special operations applied on the
agent.

Indeed, consider an agent with a geometry, which is used to constraint the
movement of other agents: for example, a road network agent on which some people
agents are moving, a forest agent in which animal agents are moving, etc.. Moving
agents on this geometry requires to compute a new graph from the geometry each
time it is modified. This computation can be very time consuming if the geometry is
complex. An approach to face this problem is to decompose the agent in a set of
constituent agents on a geometric basis: each constituent agent will represent a part of
the macro agent geometry (for example, a line in the context of line network, or a
triangle in the context of a polygon). Instead of computing the new graph each time
the geometry is modified, the complete graph will be computed only once and each
constituent agent will remember its role in the graph. Then, each time the macro agent
geometry is modified, it will locally update its list of micro agents (delete the micro
agents which geometry is no more part of the global geometry, create new ones if
necessary and modify the geometry of existing ones), and each micro agent will
update its role in the graph. Figure 13 gives an example, where a graph was already
computed for a geometry, and where the modification of the geometry has lead to a
local update of the graph.

256 P. Taillandier et al.

Fig. 13. Example of a local modification of a graph

In GAMA, using such an approach can be easily achieved. Indeed, in Section 2.4,
we presented how GAMA allows to compute the square or triangle tessellation of a
geometry and a graph from a geometry. More-over, as seen in Section 3.2, GAMA
allows to define macro-agents (emergent agent). Thus, GAMA provides all the
features that are required to apply this approach.

5 Discussion

We see the contributions of this work as threefold:

1. There is a difference between an idea and its implementation. What we incorporate
into GAMA are implementations of ideas that may have been (or not) already
proposed by other people but rarely found their way into operational instances.
They are implemented into the platform and linked with the modeling language, so
that they can be used by anyone building a model in GAMA. In our point of view,
these implementations are contributions to the field, because they eliminate the
ambiguities and the lack of formalism often found in ABM/MAS contributions
and, most important, can be experimented.

2. Integrating existing techniques in a framework and enabling the researchers to
easily choose the most appropriate is a delicate exercise. In GAMA, we have
ensured that all the proposed techniques are tightly coupled, and that they are
usable even by novice users through GAML. This allows us to build, in the same
platform, simple models (a la NetLogo) alongside more complex models. Actually,
our efforts of integration tend to the point that there are no real differences between
a "simple" and a "complex" model. So, while it is true that, for instance, we did not
invent graph-related techniques, we believe we contribute to the field by providing
a way, for researchers, to use the most appropriate, transparently, into their models.

3. Following the previous point, we see GAMA as a contribution by itself, filling the
gap between NetLogo, interesting for prototyping small models, but which does
not scale well when it comes to real ones, and RePast, more a complete toolbox
than a platform. The fact, for instance, that every agent in GAMA is provided with

 GAMA: A Simulation Platform That Integrates Geographical Information Data 257

a geometry, and that any environment can be discretized, means that researchers
can begin with a simple prototype (where agents are points on a grid, like in
Netlogo) to test the logic of a model, and turn this model into a more realistic one,
for example by loading data from a GIS base, without having to change anything to
the logic. This radically transforms the experimental processes of ABM.

6 Conclusion

In this paper, we present the new advance features included in the last version of the
GAMA platform (version 1.3)[2]. These features concern the use of geographical
vector data and the definition of multi-scale models.

This version of GAMA is already used in several projects related to different
application domains such as the avian flu local propagation in North Vietnam, the rift
valley fever in Senegal, the brown hopper invasion in South Vietnam, the effect of
emotions on waves of panic.

The next version of GAMA, version 1.4, is going to include a new integrated
development environment (IDE) with a new modeling language. The goal is to ease
the work of the modelers by providing a less extensive and easier to learn language.
This version will also include all the classic features provide by most of the modern
IDE (auto-completion, automatic detection of errors, etc.). In addition, we plan to
improve the integration of the approach proposed in Section 4. Practically, for the
moment, the use of this approach with GAMA is still complex and require much
GAML code. Methods allowing to automate this approach are required.

References

1. Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: An Environment for
Implementing and Running Spatially Explicit Multi-agent Simulations. In: Ghose, A.,
Governatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS, vol. 5044, pp. 359–371.
Springer, Heidelberg (2009)

2. GAMA platform, http://gama-platform.googlecode.com
3. Amouroux, E., Desvaux, S., Drogoul, A.: Towards Virtual Epidemiology: An Agent-

Based Approach to the Modeling of H5N1 Propagation and Persistence in North-Vietnam.
In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357,
pp. 26–33. Springer, Heidelberg (2008)

4. Nguyen Vu, Q.A., Gaudou, B., Canal, R., Hassas, S.: Coherence and robustness in a
disturbed MAS. In: IEEE-RIVF, Danang, Vietnam. IEEE (2009)

5. Chu, T.Q., Drogoul, A., Boucher, A., Zucker, J.: Interactive Learning of Independent
Experts’ Criteria for Rescue Simulations. Journal of Universal Computer Science 15(13),
2701–2725 (2009)

6. Taillandier, P., Buard, E.: Designing Agent Behaviour in Agent-Based Simulation
Through Participatory Method. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.)
PRIMA 2009. LNCS, vol. 5925, pp. 571–578. Springer, Heidelberg (2009)

258 P. Taillandier et al.

7. Ruas, A., Duchêne, C.: A prototype generalisation system based on the multi-agent system
paradigm. In: Generalisation of Geographic Information: Cartographic Modelling and
Applications, pp. 269–284. Elsevier Ltd. (2007)

8. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The Swarm Simulation System: A
Toolkit for Building Multi-Agent Simulations, SFI Working Paper 96-06-042 (1996)

9. Box, P.: Spatial Units as Agents. In: Integrating GIS and Agent-Based Modelling
Techniques, Oxford (2002)

10. Haklay, M., O’Sullivan, D., Thurstain-Goodwin, M., Schelhorn, T.: So Go Downtown:
Simulating Pedestrian Movement in Town Centres. Environment and Planning B: Planning
and Design 28(3), 343–359 (2001)

11. Wilensky, U.: NetLogo. In: Center for Connected Learning and Computer-Based
Modeling. Northwestern University, Evanston (1999),
http://ccl.northwestern.edu/netlogo/

12. Russell, E., Wilensky, U.: Consuming spatial data in NetLogo using the GIS Extension. In:
The Annual Meeting of the Swarm Development Group, Chicago, IL (2008)

13. Bousquet, F., Bakam, I., Proton, H., Le Page, C.: Cormas: common-pool resources and
multi-agents systems. In: IEA/AIE, vol. 2, pp. 826–837 (1998)

14. Urbani, D., Delhom, M.: Analyzing Knowledge Exchanges in Hybrid MAS GIS Decision
Support Systems, Toward a New DSS Architecture. In: Nguyen, N.T., Jo, G.-S., Howlett,
R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS (LNAI), vol. 4953, pp. 323–332.
Springer, Heidelberg (2008)

15. North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the
Repast Agent Modeling Toolkit. ACM Transactions on Modeling and Computer
Simulation 16(1), 1–25 (2006)

16. North, M.J., Tatara, E., Collier, N.T., Ozik, J.: Visual Agent-based Model Development
with Repast Simphony. In: Conference on Complex Interaction and Social Emergence
(2007)

17. Dijkstra, E.W.: A short introduction to the art of programming. Technological Univ.
Eindhoven, Rep. EWD316 (1971)

18. Floyd, R.W.: Algorithm 97: Shortest Path. Communications of the ACM 5(6), 345 (1962)
19. Camazine, S., et al.: Self-Organization in Biological Systems. Princeton University Press,

Princeton (2001)
20. Schelling, http://web.mit.edu/www/lab/alife/schelling.html
21. Breton, L., Zucker, J.-D., Clément, E.: A Multi-Agent Based Simulation of Sand Piles in a

Static Equilibrium. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI),
vol. 1979, pp. 108–118. Springer, Heidelberg (2001)

22. Pelleg, D., Moore, A.W.: X-means: Extending K-means with Efficient Estimation of the
Number of Clusters. In: International Conference on Machine Learning, pp. 727–734
(2000)

23. Gennari, J.H., Langley, P., Fisher, D.: Models of incremental concept formation. Artificial
Intelligence 40, 11–61 (1990)

Ao Dai: Agent Oriented Design

for Ambient Intelligence

Amal El Fallah Seghrouchni1, Andrei Olaru1,2,�,
Nga Thi Thuy Nguyen1,3, and Diego Salomone1

1 Laboratoire d’Informatique de Paris 6, University Pierre et Marie Curie,
4 Place Jussieu, 75005 Paris, France

2 Computer Science Department, University Politehnica of Bucharest,
313 Splaiul Independentei, 060042 Bucharest, Romania

3 Institute of French-Speaking Countries for Informatics,
42 Ta Quang Buu, Hanoi, Vietnam

ngaagn@gmail.com, amal.elfallah@lip6.fr,cs@andreiolaru.ro,

diego.salomone@sma.lip6.fr

Abstract. In this paper we present mobile Multi-Agent Systems (MAS)
as a specific paradigm to design intelligent and distributed applications
in the context of Ambient Intelligence (AmI). We discuss how mobility,
coupled with MAS, can be useful to meet the requirements of AmI. In-
deed, the main features of mobile MAS, such as natural distribution of
the system, inherent intelligence of the agents, and their mobility help to
address a large scope of distributed applications in the domain of AmI.
Other features of MAS, like multi-agent planning, context-awareness and
self-adaptation are also very useful to bring an added value to AmI ap-
plications. They allow the implementation of both intelligent and col-
laborative agent behavior. This paper presents the Ao Dai project, that
employs the mobile MAS paradigm, and serves as a prototype AmI en-
vironment. We also illustrate the functioning of the application through
a scenario of user guidance in a smart environment.

Keywords: Ambient Intelligence, Mobile Multi-Agent Systems,
Context-Awareness.

1 Mobile Multi-Agent Systems

A Multi-Agent System (MAS) is an organization of a set of autonomous and
potentially heterogeneous agents acting in a shared and dynamic environment.
MAS represents (e.g. manages, models and / or simulates) physical systems (in
robotics) or, more often, software systems. The MAS keystone is the double
inference mechanism that is used by the agents. Agents, unlike other design
paradigms such as objects or components, distinguish the level of task comple-
tion (or problem solving) from the level of solution control. Thus, they may act,

� This author is a PhD student in cotutelle between University Politehnica of
Bucharest and University Pierre et Marie Curie.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 259–269, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

260 A. El Fallah Seghrouchni et al.

observe their actions and change their own course of action. Agents have specific
properties such as autonomy (an agent controls its condition and its actions re-
gardless of any outside intervention); reactivity (an agent senses its environment
and reacts to its changes); pro-activity (an agent tends to generate and achieve
goals all by itself); and sociability (an agent interacts with other agents in the
system). Within a MAS, agents interact to achieve cooperative (e.g. distributed
problem solving) or competitive (e.g. coalition formation, auction) group be-
havior. Finally, a MAS is deployed in a environment that impacts its dynamic
behavior.

The agent-based paradigm is particularly appropriate for the implementation
of Ambient Intelligence [6,16], because agents offer features that originate from
the field of Artificial Intelligence and that are vital to the needs of Ambient
Intelligence [11]. Autonomy is useful because individual devices in an Ambient
Intelligence environment must be able to act on their own, without the need for
user intervention or permanent control from centralized components. Learning
can serve to adapt to the user’s habits. And reasoning – as well as the capability
to make plans – is what makes a system appear intelligent to the user.

The agent-oriented paradigm is also useful in modeling real-world and social
systems, where optimal solutions are not needed and problems are solved by
cooperation and communication, in a fully distributed fashion [11]. Currently,
several agent-oriented programming languages exist [2], that allow the program-
mer to describe an application only by specifying the behaviour of individual
agents.

Such an agent-oriented programming language is CLAIM, that also features
a deployment platform for agents, called Sympa [14]. In CLAIM, each agent has
a knowledge base, offers to the exterior a certain number of capabilities and is
capable of both reactive (by means of rules) and proactive behaviours. More im-
portantly, the multi-agent system has a structure that is inspired from ambient
calculus [3]: agents are placed in a hierarchical structure and an agent can have
another agent as parent, as well as several other agents as children. Agents in
CLAIM are mobile – they are able to change the host on which they are execut-
ing, and they are also able to change their place in the hierarchical structure.
Moreover, when an agent moves, its children move with it automatically.

Mobility means that agents can move (or migrate) within the organization
of their associated MAS. In our framework, migration allows for dynamics that
cover several aspects:

– the structure of the MAS (the organization of agents) may change over time
due to openness (arrival and departure of agents) and to the evolution of
functional requirements (creation / removal of agents).

– the dynamics of acquaintances between agents may appear (arrival or cre-
ation of agents), others may disappear (departure or removal of agents)
and / or change (e.g. for mobile agents).

– the environment of the MAS may change which requires that agents perceive
the changes and take them into account incrementally.

Ao Dai: Agent Oriented Design for Ambient Intelligence 261

It is the hierarchical structure of CLAIM, as well as the strong mobility that it
offers, that makes it especially appropriate for the implementation of an Ambi-
ent Intelligence system. That is because CLAIM makes it easier to implement
context-awareness. An agent’s ambient – formed by itself and all if its children
– can represent a context. Agents can represent smart places, can manage smart
devices, or can offer services.

The next section discusses several aspects in the implementation of Ambient
Intelligence, like context awareness and representation. Section 3 describes the
scenario and the implementation of the Ao Dai project – a proof-of-concept
Ambient Intelligence systems implemented in CLAIM. The last section draws
the conclusions.

2 Context-Awareness

One of the central features that makes distributed systems ”intelligent” is context
awareness. One of the definitions of context is the set of environmental states
and settings that either determines an application’s behaviour or in which an
application event occurs and is interesting to the user [4]. One important point
in the above definition is the relevance to the user. Either an event must be rel-
evant to the user, or the application’s behaviour must change so that it becomes
relevant to the user. Context-awareness is the characteristic of an application
that makes it change its behaviour depending on, and according to, context.

Research in the domain of context awareness has shown that there are many
aspects of context. One classification of context [4] divides it into computational
context – available computing and networking resources, including the cost for
using them; user context – user’s profile, location, people and objects nearby,
social situation; physical context – light and noise levels, temperature, traffic
conditions, etc; and time context – the current time coordinate of the user and
related information (like the season, for instance). Context can be further clas-
sified [5] as primary – sensed directly by sensors and specialized devices – and
secondary – which is inferred from the primary context.

If many authors consider context as merely a set of sensed values [1,7], a par-
ticularly interesting approach to context-awareness is taken by Henricksen et al
[8,9], that model context as associations between entities or between entities and
attributes, where an entity can be a person, a place, a communication device,
etc. These associations can be of different types: static – associations that remain
fixed for the lifetime of the entity; dynamic and sensed – obtained from sensors,
usually transformed afterwards, changing frequently and subject to sensing er-
rors; dynamic and derived – information that is inferred, usually from sensed
or static associations; dynamic and profiled – introduced explicitly by the user,
leading to greater reliability, but also subject to staleness.

In a context-aware system, there are several layers that deal with context
information. One possible organization [15] uses three layers: data acquisition,
data interpretation and data utilization. However, considering that much context
information is volatile (e.g. user’s location and time), a context-aware system
must also feature components for the degradation of context information.

262 A. El Fallah Seghrouchni et al.

Another important point in context-aware applications is the representation
of context information. The choice of the representation technique is closely
related to the system itself but some approaches are more appropriate to the
field of AmI, like ontology-based models. This technique is the most promising
for context modeling in ubiquitous environments [13]. It combines the assets of
logic-based models and object-oriented technology [10], showing a higher level
of robustness and expressiveness with the possibility of semantic representation.

In AmI systems, the heterogeneity of entities makes the global context repre-
sentation more difficult due the differences between the context models of each
agent. The ontology-based approach allows the different representations since it
permits the agents to compare and share information. We need to process the
information to compare the similarities between the possible representations to
eventually arrive at a common understanding [12]. To avoid this problem, the
most part of the implemented projects of Ubiquitous Computing usually work
with a smaller part of a bigger scenario. For the sake of simplicity, they cover a
closed environment with a global ontology as the base for context representation.

The main drawback of this approach is the definition of a centralized and
universal ontology to be used by the system and all of its agents. In open AmI
applications, the sensing capacity and incoming agents may change over time,
affecting the system’s needs. Thus, the MAS should be able to absorb, in some
way, the new ontology information and, also, provide tools for the new agents’
communication. This distributed ontology issue is an active research domain in
part because of the Semantic Web 1 requirements.

3 Ao Dai Project

3.1 Ao Dai Project Scenario

In this project, we have studied several scenarios including the following (see also
Figure 1): a user has a meeting in a building that he / she does not previously
know. When arriving at the right floor, the user’s PDA automatically connects
to a local wireless access point. A CLAIM agent executes on the user’s PDA
– we will call this agent PDA. Another agent executes on a local machine and
manages the context of the building’s floor – call it Floor. Floor detects the
presence of the user’s PDA, and instructs the PDA agent to move in the agent
structure and become a child of Floor. The movement is only logical: the agents
keep executing on the same machines as before.

When PDA enters the floor, Floor also spawns a new agent – called Navigator
– and instructs it to move as a child of PDA. This time, the movement is not
only logical: Navigator is a mobile agent that actually arrives on the user’s PDA
and will execute there for all the time during which the user is on the floor.
The Navigator can provide PDA (and, inherently, the user) with a map of the
floor, can translate indications of the floor’s sensors (sent to Navigator by Floor,
and through PDA) into positions on the graphical map, and can calculate paths

1 Semantic Web: http://www.w3.org/2001/sw/

Ao Dai: Agent Oriented Design for Ambient Intelligence 263

(a) (b)

Fig. 1. Sequences of messages exchanged between agents: (a) Floor announces PDA of
its new position, and instructs it to move as its child, then creates a Navigator that
will offer services to PDA; (b) Agenda announces a new meeting, PDA asks a path
from Navigator, which in turn requires a larger screen – which is searched on the floor,
and found, then Screen moves as a child of PDA

between the offices on the floor. Navigator is an agent that offers to the user
services that are available and only makes sense in the context of the floor.

For displaying the map, PDA may detect that its screen is too small too
appropriately display the map, so PDA will proactively initiate the search for a
larger screen in the nearby area. The search can have several criteria: the space
in which the search will take place (the current office, a nearby office, the whole
floor), the range in which to search, and the minimal size of the searched screen.
Devices are searched by the capabilities they offer – in this case the display
capability is needed. PDA sends the query to its parent – Floor – which in turn
locates among its children an agent Screen, that manages a physical screen that
fits the requirements: it is located near the user and it is available. Screen answers
the query and PDA asks it to move to become its child. Being a child of PDA
also marks the fact that Screen is in use by the user, and PDA gains control over
the displayed information. Agent Screen may either run on the actual intelligent
screen, or may only manage the screen while being executed on a server. When
the user moves farther from the screen, the PDA will detect that the context
is no longer compatible and will free Screen, which will return to be a child of
Floor.

3.2 Implementation

In the Ao Dai project, we have implemented a prototype of multi-agent sys-
tem that handles several aspects of context-awareness, like user’s location, avail-
able resources and user preferences. We have based ourselves in an extension
of the scenario defined above. The project has been developed by Thi Thuy
Nga Nguyen, Diego Salomone Bruno and Andrei Olaru, under the supervision
of Prof. Amal El Fallah Seghrouchni.

The prototype is implemented in CLAIM and executes on the Sympa plat-
form. It features several types of agents: Site, which is used for ”smart” places
like Floor and Office; PDA, which directly assists the user from his personal

264 A. El Fallah Seghrouchni et al.

Fig. 2. The map shown by different screens in Ao Dai. There are three Site agents:
Floor and two Office agents. Each one has a child of type Screen, representing the
screens in the different places. The user starts on the floor (1) then moves to one office
(2) and then to the other (3).

device; Navigator and Agenda, which offer services to the user; and Screen,
which represents a ”smart” device with the capability of displaying information.

The prototype has been demonstrated during the 5th NII-LIP6 Workshop
held on June 21-22 in Paris, France. The prototype was run on 2 machines. The
Floor agent (of type Site) ran on one machine, and two Office agents (also of
Site type) ran on the other machine. The floor and the two offices all featured
screens of different sizes, managed by Screen agents (see Figure 2). During the
demonstration, a PDA agent entered the floor, becoming a child of the Floor
agent. A Navigator was created and sent to PDA. When the time of the meeting
approached, Agenda announced PDA, which asked Navigator to find the path to
the right office. PDA also searched for a larger screen, and found one near to the
user, and automatically used it to display the map and the path. When the user
– together with the PDA – moved to an office, the screen was freed and PDA
with all children (Agenda and Navigator) moved to the other machine. There,
the user explicitly requires a large screen, and PDA finds an appropriate one in
the next room, and announces the user. The user then moves to the other office
and PDA and all of its children move to become children of the agent managing
that office. To simulate the interaction between the user and his personal agent
PDA, an interface was created in Java (see Figure 2).

3.3 Programming in CLAIM

As an agent-oriented programming language, CLAIM [14] eases the task of im-
plementing MAS. It works on top of Java, giving direct access to Java resources
if needed. This language is based on explicit declaration of agent’s characteris-
tics. The following code shows a part of the definition of agent PDA in the Ao
Dai project.

defineAgentClass PDA(?w,?h,?xi,?yi){
authority = null;

parent = null;

Ao Dai: Agent Oriented Design for Ambient Intelligence 265

knowledge = {location(?xi,?yi); type(1);}
goals = null;

messages = null;

capabilities = {
message = PDAatLoc (?name,?xnew,?ynew);

condition = null;

do{send(this,migrateTo(?name))}
effects = null;

}

migrate{
message = migrateTo(?name);
condition = not(Java(PDA.isParent(this,?name)));
do{send(this,removeOldNavi(?name))

.moveTo(this,?name).send(this,demandNavi(?name))}
effects = null;

}
...

processes = {send(this,starting())}
agents = null;

}

When the agent PDA (the PDA is initially characterized by its location and
the size – w, h – of its screen) receives a message about its new location, it
will execute the action ”migrate”. In this action, it checks if its actual location
is already the location in the message (the variable ?name). If it is, the agent
ignores the message. Otherwise, it moves to the new site by calling the function
”moveTo()”. If the new site is located in another computer in the network, the
agent and its children will migrate to the new computer.

These characteristics are used to build the hierarchical relationship between
agents in CLAIM. As a result, the MAS will be a set of hierarchies distributed
over a network [14]. In the Ao Dai project, the agents of type Floor and Office
ran on different machines to simulate the agents’ migration.

The developer, in this case, need not to worry about the code migration and
registration problems that may arise. The language takes care of it, concentrating
the agents’ information on the Administration System (see Figure 3). To address
the security issues concerning mobile code, CLAIM offers some features like the
agent’s authority validation. The language also allows the developer to decide if
an agent must have some special access or if an agent must have some resource
denied. The sum of these features creates a powerful platform to the development
of agent-oriented mobile applications.

3.4 Ao Dai Agents

The given scenario has three major types of agents: Site agent (Floor, Office),
Device / Service agent (Navigator, Agenda, Screen) and PDA agent. The latter
with the specific role of representing the user during the simulation.

266 A. El Fallah Seghrouchni et al.

(a) (b)

Fig. 3. System distribution in CLAIM: (a) Distribution over the network with each
system deployed on a different machine; (b) An example hierarchy in Ao Dai.

– The Site agent is used to determine the physical relationship between the
agents. It means that an Office agent is a child of a Floor agent only if it is
physically located on the given floor.

– The Service (or Device) agent has the capability to offer to the other agents
some specific service. It may be in a direct or indirect way, like showing some
information on the screen or advising other agents of the user meeting.

– The PDA agent works like a personal device that follows the user through
his tasks. The most important features of this agent are that the PDA moves
physically with user and has the CLAIM capability of managing requests for
services or devices. It also stores the user’s preferences.

3.5 Context Representation in Ao Dai

Location is, notably, the most used type of context in applications [5], because
it reflects an important set of physical contents. In the Ao Dai project, besides
location, we also consider, as part of the user’s context, the available computing
resources around him and his preferences.

In the first version of this project, the context is directly sensed (in a simu-
lated manner) by the PDA and the Site Agents, but it is known that, in real
applications, an additional layer is needed to capture the sensor information and
translate it in useful data.

The context-awareness in Ao Dai is done by exploiting the particular hier-
archical agent structure that is offered by the CLAIM language. In CLAIM it
is very easy for the developer to instruct agents to move from one parent to
another, and an agent moves automatically along with its entire sub-hierarchy
of agents. This resembles the mobile ambients of Cardelli [3] and is an essen-
tial advantage when implementing context-awareness. That is because agents,
while representing devices or locations, can also represent contexts, allowing the
developer to describe, in fact, a hierarchy of contexts.

For example, when the user is inside a room, its PDA agent is a child of the
respective Site agent. The children of PDA – devices or services – are also in the

Ao Dai: Agent Oriented Design for Ambient Intelligence 267

same context. When the user moves to another room, the PDA agent changes
parent and, along with it, its children move as well, therefore changing context.
Some devices may not be able to move along with the user (e.g. fixed screens,
etc.) so they will determine that the new context is incompatible with their
properties, moving away from PDA.

But context is not only about location, and the hierarchical structure that
is offered by CLAIM can be used for easy implementation of other types of
context. One of them is computational context. When the user uses a service, a
Service agent is created and becomes a child of PDA. It is easy for the service to
interrogate its parent in order to find out more about its capabilities. Conversely,
it is easy for PDA to check on its children – Services or Devices – in order to
find the resources and capabilities that the user is able to use.

One last type of context that is handled in Ao Dai is user preferences. The
user is able to input preferences on the capabilities of devices that it needs
to use. These preferences are then integrated in the queries that are launched
by the PDA (see Section 3.1). While the structure offered by CLAIM is not
directly useful for this aspect, the preferences help find not only the closest device
with the required capability, but also the closest device that fulfills certain user
requirements. Preferences can also be used to limit the range of the search, which
is meaningful from the context-aware point of view: a Device that is closer in
the agent hierarchy also shares more context with the user.

3.6 Interaction Protocol

In a highly distributed AmI environment, a good representation of context and
context-related relations between devices means that most of the communication
will happen only at a local level, within the structure formed by these relations.
In Ao Dai, the CLAIM agent hierarchy facilitates this: agents sharing a parent
share a context.

To preserve the hierarchy, agents interact only with their parent and their
children. Take for example the search for devices (see Figure 1). When agent
PDA wants to search for a device with a certain capability and certain criteria,
it must send a request to its parent, for example agent Floor. Once the request
is received, agent Floor searches itself to see if it has the requested capability
and satisfies the criteria. If it does, Floor answers immediately to agent PDA,
in the other case, it searches in all of its children (if any) except the agent who
invoked the search (agent PDA). After all of its children have answered, agent
Floor checks if there are one or more children that have the capability requested
and satisfy the criteria. If it has a confirmation answer, it sends the search result
which contains the information about the found device(s) to agent PDA and the
search is finished. If not, agent Floor has to search in its parent (if any). After
the parent has answered, agent Floor sends the search result to agent PDA and
finishes the search. The process is executed recursively. User preferences can be
used to limit the range of the search to closer contexts.

The advantage of using such a protocol in conjunction with mapping context
over the agent hierarchy is that the search will usually end very quickly, assuming

268 A. El Fallah Seghrouchni et al.

the user will most times ask for devices that are likely to exist in his context. The
search is executed in the current context first, and then in the parent context
and sibling contexts.

4 Conclusion

In this paper we have discussed the use of Mobile Multi-Agent Systems for Am-
bient Intelligence. Features like distribution, inherent intelligence of the agents,
and mobility make MMAS a natural solution for the problems raised in the im-
plementation of Ambient Intelligence environments. Other features of MAS, like
multi-agent planning, collective learning and adaptation bring added value by
allowing intelligent collaborative behaviour.

Additional challenges that MAS have to deal with in the context of Ambient
Intelligence are issues like context-awareness, anticipation and user modeling.
The paper discusses some of these issues and then presents the Ao Dai project,
a prototype AmI environment, implemented as a multi-agents system, using the
agent-oriented language CLAIM.

Ao Dai project is a preliminary work that will serve as a foundation of an
international collaboration between four teams 2.

The prototype has been developed as a proof of concept and gave promis-
ing results. It shows that the hierarchy of the CLAIM language is very useful
to capture different aspects of context-awareness. CLAIM also provides native
primitives that allow agents to move – in a single step – between contexts, while
their own context follows their movement.

As future steps in our research, integration of better mechanisms of antic-
ipation, more types of contexts and improved context representation into the
project will bring it closer to dealing with realistic requirements.

References

1. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. In-
ternational Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

2. Bordini, R.H., Braubach, L., Dastani, M., El Fallah-Seghrouchni, A., Gómez-Sanz,
J.J., Leite, J., O’Hare, G.M.P., Pokahr, A., Ricci, A.: A survey of programming
languages and platforms for multi-agent systems. Informatica (Slovenia) 30(1), 33–
44 (2006)

3. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213
(2000)

4. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Tech-
nical Report TR2000-381, Dartmouth College (November 2000)

5. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-
awareness. In: CHI 2000 Workshop on the What, Who, Where, When, and How of
Context-Awareness, pp. 304–307 (2000)

2 MAS team from Paris 6, AIMAS from Politehnica of Bucharest, IFI form Hanoi and
PUC-Rio from Brazil.

Ao Dai: Agent Oriented Design for Ambient Intelligence 269

6. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.: Scenarios
for ambient intelligence in 2010. Technical report, Office for Official Publications
of the European Communities (February 2001)

7. Feng, L., Apers, P.M.G., Jonker, W.: Towards Context-Aware Data Management
for Ambient Intelligence. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.)
DEXA 2004. LNCS, vol. 3180, pp. 422–431. Springer, Heidelberg (2004)

8. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing ap-
plications: Models and approach. Pervasive and Mobile Computing 2(1), 37–64
(2006)

9. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling Context Information in
Pervasive Computing Systems. In: Mattern, F., Naghshineh, M. (eds.) PERVA-
SIVE 2002. LNCS, vol. 2414, pp. 167–180. Springer, Heidelberg (2002)

10. Krummenacher, R., Lausen, H., Strang, T., Kopeckỳ, J.: Analyzing the modeling
of context with ontologies. In: International Workshop on Context-Awareness for
Self-Managing Systems (2007)

11. Ramos, C., Augusto, J.C., Shapiro, D.: Ambient intelligence - the next step for
artificial intelligence. IEEE Intelligent Systems 23(2), 15–18 (2008)

12. Sansonnet, J.-P., Valencia, E.: Terminological heterogeneity between agents using
a generalized simplicial representation. In: Gleizes, M.P., Kaminka, G.A., Nowé,
A., Ossowski, S., Tuyls, K., Verbeeck, K. (eds.) EUMAS, pp. 363–374. Koninklijke
Vlaamse Academie van Belie voor Wetenschappen en Kunsten (2005)

13. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Ad-
vanced Context Modelling, Reasoning and Management as Part of UbiComp, pp.
1–8 (2004)

14. Suna, A., El Fallah Seghrouchni, A.: Programming mobile intelligent agents: An
operational semantics. Web Intelligence and Agent Systems 5(1), 47–67 (2004)

15. Viterbo, J., Mazuel, L., Charif, Y., Endler, M., Sabouret, N., Breitman, K., El Fal-
lah Seghrouchni, A., Briot, J.P.: Ambient intelligence: Management of distributed
and heterogeneous context knowledge. In: Ambient Intelligence: Management of
Distributed and Heterogeneous Context Knowledge. CRC Studies in Informatics
Series, pp. 1–44. Chapman & Hall (2008)

16. Weiser, M.: The computer for the 21st century. Scientific American 272(3), 78–89
(1995)

Probabilistic Approaches

to Tag Recommendation
in a Social Bookmarking Network

Oly Mistry and Sandip Sen

University of Tulsa
800 South Tucker Avenue
Tulsa, OK 74104, USA

{oly-mistry,sandip}@utulsa.edu

Abstract. Tagging has become increasingly popular with the explosion
of user-created content on the web. A ‘tag’ can be defined as a group
of keywords that makes organizing, browsing and searching for content
more efficient. Users apply tags to a variety of web-based, shareable con-
tent including photos, videos, news articles, bookmarks, friends, etc. Tag
suggestions for blog posts or web-pages have changed the focus of the
tagging process from generation to recognition, thus making it less time
and effort intensive. We propose tag recommendation algorithms for per-
sonalized agents, that recommend tags for bookmarks stored in a popular
social bookmarking website, Del.ici.ous [6]. Our tag recommender agents
learn to classify the tags according to their semantic similarity based on
collaborative tagging by the users. Hence this approach can be used to
facilitate folksonomy formation for the social network. In this paper, we
first empirically verify our hypothesis that web pages with similar con-
tent are tagged with similar tags. We compare both Content-based and
Collaborative approaches to recommend tags to the users. We analyze
the performance of two probabilistic approaches to recommend tags from
users with similar tagging behavior.

1 Introduction

Tags are labels or keywords associated with items that facilitates organizing,
browsing and searching for information [17]. Tags are used for diverse items
including photos, URLs, blogs, etc. The use of tag suggestions for blog posts
or web-pages has changed the focus of the tagging processes from generation to
recognition, thereby making tagging less time and effort intensive [8]. In addition
to this immediate tangible benefit of tag recommendation, it has greater impact
on online information distribution and sharing. Efficient tag recommendation
algorithms can also facilitate emergence of folksonomies for a web-environment,
e.g., blog and bookmark sharing.

Researchers have posited that tagging bridges the gap between browsing and
searching [21]. When a web-environment allows free-form tagging for articles, it
creates the possibility of formation of Tag-Clouds [5]. A Tag Cloud represents

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 270–287, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Probabilistic Approaches to Tag Recommendation 271

the popularity of different tags based on their frequency of use. This is the most
primitive building block for folksonomy formation in a collaborative web environ-
ment. Folksonomy is viewed as a type of classification achieved by collaborative
effort. T. Vander [19] describes folksonomy as “result of personal free tagging
of information and objects for one’s own retrieval”. This collaboration is driven
by the bias of the user pool. Using tag recommendations from the system will
provide an added measure to facilitate the emergence of folksonomy. It will also
provide consistent definition and scope for particular tags.

The magnitude of information content including social bookmarking makes
the tag recommendation problem significantly harder. Another challenge for
building tag recommendation systems is the limited access to data in these do-
mains. Fortunately, the Del.ici.ous website allows extensive data access.

We propose a personalized agent based system for recommending appropriate
tags to users in the online bookmarking website, Del.ici.ous. Users can apply
any tag(s) to classify these bookmarks. These bookmarks can also be used for
searching by other users in the social network. Users typically tag the saved
bookmarks for easy access and retrieval. We develop tag recommender agents
that are dedicated to each user and maintains a history of bookmarks tagged by
the user with the list of tags for each such bookmark, thereby, learning users’
tagging behavior. We assume that there is a central repository that stores the
bookmarks in the system and the users who tagged them. Each user agent can
query this repository to get a list of other users who has tagged a particular
document, and then can query the agents of those users to get the tag lists for
that document. Then it uses collaborative filtering mechanism to recommend
tags to the user. We suggest two variations of collaborative filtering for these tag
recommender agents to recommend tags to users.

In one approach we directly estimate the probability of one user using a tag
given other users using that same tag for a common URL or document. In
the other approach, we compute the likelihood that a user is going to use a
tag depending on the position of the tag on the tag list of another user for
the same document. This approach uses an ordered list of tags associated with
documents or links. We also propose a content based recommendation technique.
We base our approach on the following hypothesis: Similar documents are tagged
by similar tags. We provide empirical verification of this hypothesis. The success
of our approach for developing the tag recommendation system opens up the
possibility of using this approach for diverse item recommendation. For example,
this approach can be used for recommending tags for blogs or even other non-
textual items. In this paper we refer to agents associated with individual users as
the recommendation agents and the central repository as the recommendation
system.

2 Related Work

In recent years, tagging has become extremely popular in online communities
with the increase in user-created content on the web. Though self interest is

272 O. Mistry and S. Sen

the primary driving factor for tagging, tags have an important and potential
effect on online information clustering and sharing. Tagging has the potential to
facilitate folksonomy formation and this process can be influenced by intelligent
tag suggestion or recommendation engines. Moreover, tags may be suggested
for different types of media: photos, videos, news, blogs, web-pages, users (in a
social network). There has been a vast quantity of research on this area over
the past decade. To automate the tagging process, researchers have used and
verified various techniques, e.g., information retrieval, support vector machines,
clustering, probabilistic reasoning, etc [21], [14], [15],[18], [11].

Xu et al [21] has suggested a set of desired criteria for “good tags”: high
popularity, least effort and uniformity. They suggest that a good tagging system
should allow the free-form of tagging. Based on those criteria, Xu et al developed
a collaborative tag suggestion system. The “goodness”of a <tag(t), object(o)>
tuple is defined as the sum of the authority scores of all users who have tagged
the object o with the tag t. The authority score of a user is iteratively com-
puted by the average “goodness”of the used tags. The authority computation
process implements collaborative filtering in their system. This algorithm does
not facilitate the emergence of new tags, as it analyzes only existing tags. Such
shortcomings can be overcome by incorporating significant term determination
using Information Retrieval (IR) techniques.

Sigma and Andy [14] presents a collaborative tagging approach for automatic
tag suggestions for blog posts based on their semantic content using a hybrid
artificial neural network (ANN). Their algorithm consists of two stages: the train-
ing phase of the ANN followed by the execution phase for tag suggestion. After
retrieving blog-posts, the algorithm performs key-word extraction from the doc-
uments using the popular TF/IDF technique for both unigrams and bi-grams.
These keywords are then organized into a synonymous set (synset) using Word-
Net [7]. This keyword set with its synset is then used to construct the first layer
of the neural network, followed by the hidden layer and the suggested tag layer.
Instead of selecting one tag from this ANN, they modified the back propagation
algorithm to sort them according to the activation value of the link (connecting
the nodes). To achieve this, they also modified the error calculation-propagation
algorithm. This paper demonstrates a unique approach for automatic tag recom-
mendation by incorporating neural network training for blog posts and validating
it on a subset of blogs from the Technorati API [2]. However, this approach needs
to be modified to recommend tags in real-time for larger-scale data.

Song [15] addresses the automatic tag recommendation problem from a ma-
chine learning perspective. Researchers generally use either a document-centered
or a user-centered approach for tag recommendation. The document centered
approach uses analysis of documents grouped by broader topics while the user
centered approach uses the historical tagging behavior of similar users or user
groups.Using empirical analysis of large-scale dataset, Song has shown that the
user-centered approach is not as effective as the document-centered approach.
The user-centered approach is not very effective because the distribution of users
vs. the number of tags used by them follows a long-tail power law distribution.

Probabilistic Approaches to Tag Recommendation 273

The reuseability of the tags is also very low. Even if the users are clustered to
overcome the sparseness it is highly inefficient to cope with the changing interest
of users.

Song et al have suggested two document-centered approaches: Graph Based
and Prototype Based.The former is comprised of four basic steps: Step 1 rep-
resents the relationship between documents, words and tags by two bipartite
graphs (followed by their Singular Value Decomposition (SVD) to lower the or-
der of the adjacency matrix), which are subsequently partitioned into sub-graphs
creating topic based clusters using Spectral Recursive Embedding (SRE). Step 2
calculates the ranks of the tags found in those clusters as a function of their av-
erage frequency of occurrence given the cluster (N-Precision) and their posterior
probability of occurrence in the cluster (N-Recall). Step 3 learns the document
distribution over the words using the Poisson mixture model (PMM). Finally,
step 4 performs a soft classification over the new document and recommends
the highest probability tag to that.The first three steps of their algorithm are
offline, and the final step is performed online with the appearance of a new doc-
ument.This graph based approach uses techniques like SVD, SRE and PMM to
make it scalable for real world data.

In the prototype-based approach, they reduce the training data by select-
ing a representative subset to reduce the learning complexity. This supervised
learning approach classifies the documents into some predefined categories where
these categories are determined by the popularity of existing tags. Then tags are
ranked in a manner similar to the graph-based approach and recommended for
a new document based on their joint probability.

To make the prototype selection process efficient for online recommendation,
Song has proposed a Sparse Gaussian Process (GP) framework [15]. Song has
successfully extended the multi-class GP classifier for multi-label (tag) scenar-
ios. This classification expedites the process of searching for the most suitable
prototype and suggests the highest-ranked tags. The non-parametric nature of
GP makes their approach model-independent and hence it does not suffer from
performance degradation for false model assumptions, unlike Naive-Based ap-
proaches.

Song performed their experiments on Del.ici.ous, CiteULike and BibSonomy
datasets. They presented a range of performance measures, i.e., Top-k accuracy,
Exact-k accuracy and Tag precision to validate the efficiency and effectiveness of
their algorithm. They provide a comparison of tags suggested by their algorithm
to those assigned to them by actual users in those networks. The precision and
recall value of their approaches are found to be better than the other existing ap-
proaches in the literature. This paper contributes to the literature by validating
the mechanisms suitable for analyzing real-world data.

Tso-Sutter [18] introduced a tag-aware recommendation system to recom-
mend items. The authors use the tagging information of a user to determine
the correlation between the users and the items they like. Tso-sutter provides a
3-dimensional correlation between the users, items and tags as < user, item, tag
>. This 3-dimensional matrix is decomposed into 3 two-dimensional matrices:

274 O. Mistry and S. Sen

< user, tag >, < item, tag > and < user, item >. This matrix decomposition
is performed after the user profile U and the item profile I are extended by the
tags as follows: Uextended = U + Ti, where Ti is the set of tags that describe
item i by users, andIextended = I + Tu, where Tu is the set of tags that are used
by u.

They perform collaborative filtering in the extended < user, item > ma-
trix for item-based and user-based recommendations. Results from these two
collaborative filtering systems are then fused using an algorithm developed by
Wang et al [20]. This fusion system is basically a computation of conditional
probabilities. Their algorithm performs better in terms of Recall value than the
algorithm that does not use tag information. However, their decomposition of
the ternary relationship between user, tag, and items can be improved as sug-
gested by Liang [11]. Liang proposes a modification for user modeling. Users are
modeled by using three aspects, i.e., the tags used by the users, the items tagged
by the users and the relations between the tags and the items tagged. A user pro-
file is described by the formulation E(ui, tj , pk) = {0, 1} where E(ui, tj , pk) = 1
indicates that ui has used the tag tj for item pk. Liang et. al proposes three
similarity measures to determine similar users:

– UTsim(ui, uj): Percentage of common tag used by users i and j,
– UPsim(ui, uj): Percentage of common items tagged by users i and j, and
– UTPsim(ui, uj): Percentage of common items tagged using common tags

by users i and j.

These measures are averaged using weights wUT , wUP and wUTP that add
up to 1. Liang also describe the similarity between items in a similar way. The
user similarity is combined with the item similarity to produce the recommen-
dation. Liang’s method for both item-based and user-based recommendation
outperforms Tso-sutter’s method.

Song suggests a clustering approach for real time tag recommendation in [16].
After training the documents are treated as triplets < docs, words, tags >. The
authors breaks this graph into two bi-partite graphs of < docs, tags > and <
docs, words >. A Bipartite graph is represented by very sparse adjacency ma-
trix. Song et al use Lanczos algorithm [9] to lower the rank of this adjacency
matrix. They perform multi-clustering on these graphs to cluster the documents
according to the topic by applying Spectral Recursive Embedding (SRE) algo-
rithm [22]. They determine the effectiveness of this clustering using N-Precision
and N-Recall. N-Precision measures the importance of a node (document) in
a cluster (topic space) in comparison to other nodes. N-Recall determines the
posterior probability of a node (document) for a given cluster. Combining these
two metrics produces the Rank of a node (document). They use the Poisson
Mixture Model [10] to classify a new document in the trained cluster of docu-
ments. Closest neighbors of the document are located in the cluster and tags are
recommended from the tag list of that document.

Probabilistic Approaches to Tag Recommendation 275

3 Tag Recommendation Approaches

In this section, we describe the tag recommendation problem with respect to
a specific domain. We describe the features of the domain and behavior of the
users pertinent to our research. We also introduce a hypothesis we believe ap-
plies to domains similar to the one we have considered. We formally present
our tag recommendation approaches. We also introduce metrics to evaluate the
performance of the proposed recommendation approaches.

3.1 Del.ici.ous Dataset

We propose a tag recommendation system for the online social bookmarking
website Del.ici.ous [6]. Del.ici.ous provides an open network for storing and
sharing URLs as bookmarks. Users can apply various tags to organize and search
their own bookmarks. The Del.ici.ous website first opened on March 2005 and
currently serves more than 5 million users and contains 150 million bookmarks.
We have used a part of the dataset provided by the Information Retrieval &
Machine Learning department of the Berlin Institute of Technology [4]. The
complete dataset contains about 132 million public bookmarks, 420 million tag
assignments by 950, 000 users retrieved from Del.ici.ous between Sepetember
2003 and December 2007. Each line of these datafiles contains one instance of
tag assignment described by the following tuple, [date, userName, URL, tag].

Due to computational constraints, we have only used the data from November
2007 for training (2.4 GB in size) and a part of the data from December 2007
for testing the accuracy of our recommendation algorithms. We scraped the
webpages specified by the URLs in the datafiles and stemmed the contents using
the Porter-Stemmer’s stemming algorithm [1]. We used Python and MySQL
to manage the corresponding databases and Java to perform analysis on the
dataset.

3.2 Hypothesis: Correlating Tag and Document Similarity

We hypothesize that in a social networking site that encourages tagging and
sharing of articles (photos, videos, bookmark etc.), similar groups of articles are
tagged with similar sets of tag. To investigate the correlation of tag-similarity
and document-similarity between the bookmarks, we have considered a subset
of the bookmarks from the Del.ici.ous dataset: we consider only the bookmark
that was tagged by “programming”.

Each webpage or document di has multiple lists of tags assigned to them
by different users. We create the combined tag set for each document di as
tagdi = {tagi1, tagi2, . . . tagin}. All the tags that are used by users are considered
to create this tag set but each tag is considered only once in this set. We compute
the tag similarity, TSi,j between these tag sets tagdi and tagdj associated with
documents di and dj respectively, using the following:

TSi,j =
|tagdi

⋂
tagdj |

|tagdi|+ |tagdj |
. (1)

276 O. Mistry and S. Sen

This formulation limits the maximum value of tag similarity to 0.5. Using
Equation 1, we segregate the documents di into 5 groups. These groups are
based on the TSi,j values of the documents, and contain either lists of documents
having TSi,j within that range. These groups are [(0.49−0.4), (0.39−0.3), (0.29−
0.2), (0.19− 0.1), (0.09− 0.01)]. We determine the document similarity DSi,j of
the documents belonging to each of these sub groups.

To obtain the correlation between the tag similarity TSi,j and document
similarity DSi,j for the documents, we use the bag of word representation of
documents approach. This representation involves the use of the following terms:

Term Frequency: For a document di, we calculate the term frequency, tfwj ,di ,
which is the frequency of occurrence of the term wj in document di. However,
in order to compute DSi,j between two documents, all terms should not be
considered equally important. To consider only the relevant terms we need
to incorporate their Inverse Document Frequency idfw,D [12].

Inverse Document Frequency: idfw,D is the inverse of the frequency of oc-
currence of the term w in the entire document corpora D =

⋃
j dj .

Term Weight: Combining tfw,d and idfw,D for a term, we calculate the Term
Weight tww,D of each term wj as follows:

tww,D = tfw,d · idfw,D. (2)

This is a standard procedure for preparing document vectors for similarity com-
putation [12] that consider only relevant terms. Given a document we first elim-
inate the most commonly occurring English stopwords (Such as prepositions,
articles and pronouns). Then we follow the procedure mentioned above to rep-

resent the document vector
−→
di in terms of the tww,D of the constituent terms:

−→
di = [(w1, tww1,D), (w2, tww2,D), . . . (wn, twwn,D)]. (3)

The use of term weight ensures that the components of the document vector
consists of the terms that are relevant. We use this form of the document vector
shown in Equation 3 to measure the document similarity, DSi,j using the cosine
similarity measure as follows:

DSi,j =

−→
di ·

−→
dj

|−→di | · |
−→
dj |

. (4)

As mentioned earlier, we have grouped documents with high tag similarity TSi,j

between them. We find out the fraction of documents that have higher DSi,j as
for each of these groups. We present the results in the Figure 1.

In Figure 1 we plot the DSi,j on the horizontal axis and the percentage of
document with corresponding DSi,j on the vertical axis. We plot the DSi,j

for three of the groups with different TSi,j values. We find that documents
that have high DSi,j also typically have high TSi,j values (for DSi,j > 0.5).
This is particularly true for DSi,j = 1. This proves our hypothesis that similar
documents are tagged with similar tags.

Probabilistic Approaches to Tag Recommendation 277

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.5 0.6 0.7 0.8 0.9 1

D
oc

um
en

t P
er

ce
nt

ag
e

Document Similarity (DSi,j)

TSi,j>0.4
TSi,j>0.3
TSi,j>0.2

Fig. 1. Document Similarity vs. Tag Similarity

3.3 Content-Based Recommendation

A content based recommendation system recommends items similar to the one
the user has already liked. In the case of tag recommendation, this process in-
volves the recommendation of tags from the previously used tag set of a par-
ticular user. Different heuristic and probability based approaches can be used
for selecting the appropriate tags to be recommended for a document. In our
research we use probabilistic approaches for recommending tags for new doc-
uments. Given the new document d, we represent it in the form of document
vector as shown in equation 3. Using equation 4 we rank the documents that
were previously tagged by user i. We then recommend tags from similar docu-
ments until the recommended tag list reaches a length close to the average tag
list length used by this user.

3.4 Collaborative Recommendation

A collaborative recommender system suggests items that are liked by users sim-
ilar to the target user. In our tag recommendation framework, we determine the
similarity between the users using two different algorithms. We recommend tags
to user u from the tag list of the users similar to u for the given document. In
the following Sections 3.4 and 3.4 we formally specify the algorithms we have
developed for recommending tags using the collaborative approaches.

Tag Based Approach. In this algorithm, we determine users that are sim-
ilar to our target user based on their choice of tags for the same documents.

278 O. Mistry and S. Sen

We follow a Bayesian approach to determine this similarity. For two users i and
j that have tagged some common document, we compute the probability that
user i will use tag t given that user j has used it as P (i | j, t). We calculate
P (i | j, t) for all the tags t that have been used by users i and j for the set of
common documents. Using Bayes Theorem we can rewrite this probability as:

P (i|j, t) = P (j|i, t) · P (i|t)
P (j|t) =

P (i, j|t)
P (j|t) . (5)

Now,

P (i, j|t) = # documents where both i and j used tag t

documents where tag t was used
. (6)

and

P (j|t) = # documents where j used tag t

documents where tag t was used
. (7)

Combining Equation 5, 6 and 7, we get:

P (i|j, t) = # documents where both i and j used tag t

documents where j used tag t
. (8)

As mentioned earlier, given our user i, we determine the probabilities P (i|j, t)
for each tag t for all user j. For a target user i we calculate a user similarity
score SUi,j for user j as follows:

SUi,j = (1 −
∏

∀t common between i and j

(1 − P (i|j, t))). (9)

In Equation 9, (1 − P (i|j, t)) is the probability that user i will not use tag t
given user j has used it. The quantity

∏
t(1 − P (i|j, t)) denotes the probability

that none of the tags used by user j will be used by user i. And the similarity
score, SUi,j , quantifies the probability that at least one tag that has been used
by j will be used by i. However, this score does not immediately suggest which
of user j’s tag will be used by user i. Users j with SUi,j > δ are selected for
recommendation of tags.

For any user i we extract all the documents tagged by user i with their
corresponding tag list.

Document Set(Di): Document Set Di is the set of all the documents tagged
by user i.

Tag List Set(TagListid): Tag List TagListid consists of the list of tags that
user i assigned to a document d, where d ∈ Di.

Given a new document d for our target user i, we first find all sufficiently similar
users j, i.e., SUi,j > δ, who have also tagged that document, Ud

i,δ. We then find all

the tags used by those users on this document, TagListdi,δ =
⋃

j∈Ud
i,δ

TagListjd.

For each such tag t ∈ TagListdi,δ we calculate the probability, P (i|t, Ud
i,δ), that

Probabilistic Approaches to Tag Recommendation 279

user i will use that t given its use by other users in Ud
i,δ for document d as follows:

P (i|t, Ud
i,δ) = (1−

∏
j∈Ud

i,δ

(1− P (i|j, t))). (10)

This is essentially the probability of user i using the tag based on the “rec-
ommendation” from one of the users with sufficiently similar tagging behavior,
Ud
i,δ. Using Equation 10, we get a list of tag, probability pairs < t,P (i|t, Ud

i,δ) >
where, t ∈ {Set of all tags t assigned to document d by sufficiently similar users
j ∈ Ud

i,δ}. We sort these tags in descending order of P (i|t, Ud
i,δ) and recommend

a subset of them that are likely to be used by user i.

Position Based Approach. In the Tag-Based approach to collaborative rec-
ommendation, to identify users with similar tagging behavior, we locate those
users that have applied the same tag t to the same document d. We have also
investigated the presence of additional factor in the tagging behavior of other
users that may help us recommend appropriate tags for our target user. We sur-
mise that the position of a tag in the tag list may be predictive of its usefulness,
i.e., it might be that one user always uses the first few tags used by given user
on a common document.

In this approach, we find the probability Pn
i,j that user i will use user j’s

nth tag for a common document d. To determine Pn
i,j we first find the set of

documents Dij that has been tagged by both users i and j. For any document
d ∈ Dij , let the list of tags used by j indexed by their position n be

TagListjd = [(t1, pos1), (t2, pos2), . . . (tn, posn)]. (11)

For the document set Dij , we denote the number of times i has used the nth

tag in j’s taglist as Usedi,j[n] and number of times i has not used the nth tag
in j’s taglist as NotUsedi,j [n] for all the common documents that are tagged

by both i and j. The ratio
Usedi,j [n]

Usedi,j [n]+NotUsedi,j [n]
for each position of the tag

list then provides an estimate of Pn
i,j . This estimate of Pn

i,j , however can be poor

when Usedi,j[n]+NotUsedi,j [n] is very small. In that case
Usedi,j [n]

Usedi,j [n]+NotUsedi,j [n]

produces a biased estimate that can skew the Bayesian probability calculation.
To alleviate this bias, we use the m-estimate approach [13] and calculate Pn

i,j as
follows:

Pn
i,j =

Usedi,j [n] +mp

Usedi,j [n] +NotUsedi,j [n] +m
, (12)

where p = 0.5 is the prior probability estimate of Pn
i,j and m is a constant

called the equivalent sample size. The value of m determines how much the prior
estimate should be weighted relative to the observed data. The information
required to determine Pn

i,j for user i is similar to the one explained for the Tag
Based Approach in 3.4. However, as shown in Equation 11, we also store the
position of the tags in the TagListjd.

280 O. Mistry and S. Sen

Once we have determined these probabilities Pn
i,j , given a new URL d we first

form the list of tags TagListjd assigned to the document d by other similar users
who have tagged d. Let, Users(d, t) be the users who have tagged d with tag
t ∈ TagListd, the list of all tags used for document d. Let index(t, TL) be the
position of tag t in the ordered taglist TL, i.e., index(tx, T agList

j
d) = posx from

Equation 11. We determine the TagScoretd of all tags t ∈ TagListd as follows:

TagScoretd = (1 −
∏

u∈Users(d,t)

(1− P
index(t,TagListud)
i,u)). (13)

where, P
index(t,TagListud)
i,u is estimated using Equation 12. Using the tag scores

calculated using Equation 13 we construct a list of tuples < t, TagScoretd >.
We the sort this list in the descending order of the tag scores and recommend
a subset of the tags with high tag scores to the user. This subset is determined
by using different thresholds for probability Pn

i,j or by restricting the number of
recommendations to some multiple of the average number of tags, avgi, used by
the user i.

We have used this position based approach for tag recommendation because
the tags assigned by users in online social networks are generally ranked by their
importance. The tag assignment process has been identified by recent researchers
as a type of classification process where an article is classified by users using
different tags [19]. Users generally provide a tag to associate an article with a
pre-existing group of articles. These tags range from general to specific keywords.
Often the first tag gives the general identification of the article. Tags tends
to become more specific further along the tag list. As user’s tagging behavior
suggests the importance of tag position in a tag list, we conjectured that a
position based approach can be useful for recommending tags.

3.5 Evaluation Metrics

The efficiency of any recommendation system is generally computed using two
metrics Precision and Recall [3]:

Precision corresponds to the fraction of the recommended items that were
actually used by the user

Precision =
Set of items recommended

⋂
Set of items used

Set of items recommended
. (14)

Recall corresponds to the fraction of items that are used by the user that were
recommended by the recommendation system.

Recall =
Set of items recommended

⋂
Set of items used

Set of items used
. (15)

4 Experimental Results

In this section we present the results from the evaluation of the tag recommen-
dation approaches discussed in Section 3. We also present a comparison between

Probabilistic Approaches to Tag Recommendation 281

the proposed recommendation approaches. As mentioned in Section 3.1, we have
used part of the November 2007 dataset for training our recommendation sys-
tem. For computational reasons, for most of the experiments we have considered
only those bookmarks that are tagged with “programming”. Before building the
recommendation system, we have collected some statistics about the user behav-
ior from the training data. There are 82631 users who has tagged 15060 distinct
links in November 2007.

To test the efficiency of our recommendation systems we consider the most
active users: we have selected only those users who have tagged more than 50
bookmarks. There are 32 such users in this dataset. An extremely active user has
tagged over 250 documents and used over 200 unique tag on those documents
over a period of a month. For each user i, we stored all the bookmarks and
corresponding list of tags. We also extracted the other users who have tagged
any of the bookmarks tagged by i and their corresponding tag lists. We refer to
these users as the neighbors of user i.

To construct the test dataset, we collected the bookmarks tagged by these
users in December 2007. For any user i we have considered only those bookmarks
for testing that were also tagged by the neighbors of this user.

4.1 Content-Based Recommendation

Figure 2 shows the results for our content based recommendation system
(described in Section 3.3). Recall values are better than precision values for
most of the users. This is due to the reduced data set we have used. We have
considered the bookmarks tagged by these users in only one month. However,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 10 15 20 25 30

P
re

ci
si

on
, R

ec
al

l

Users

Precision and Recall for Each User
 Content based Recommendation

Precision
Recall

Fig. 2. Precision and Recall for Content Based Recommendation

282 O. Mistry and S. Sen

utilizing larger training data for each of the users will lead to better precision
values.

4.2 Collaborative Recommendation

Tag Based Approach. We have tested the collaborative recommendation
mechanism with tag based approach using different thresholds. We determine
the similarity SUi,j between user i and j using Equation 9. To recommend tags
for user i, we select all those user j who has SUi,j > 0 (δ = 0). We then calculate
the probability P (i|t, Ud

i,δ) for all the tags that are used by these j users and
recommend tags using different tag thresholds. A tag threshold of τ means a
tag t is recommended if P (i|t, Ud

i,δ) > τ . We recorded the maximum, minimum,
and average precision and recall values for the 32 users with three different tag
thresholds τ : 0.0, 0.3 and 0.5. As the number of tags satisfying the threshold
criterion can be large, we considered further limits on the number of tags rec-
ommended based on the average number of tags used by a user i for his/her
bookmarks, avgi. For each threshold value, we consider the following number of
recommended tags: no limit, avgi, 1.5 ∗ avgi. We expected to see an increase in
the precision values and decrease in the recall values when we reduce the number
of recommended tags. Figure 3 shows the precision and recall values for the 32
users where the threshold for P (i|t, Ud

i,δ) was τ = 0.0. The plots are consistent
with our expectations. Precision value is maximized when we restrict the rec-
ommendation length to be equal to avgi, whereas recall is highest when all tags
are recommend. We have found similar results for other τ .

 0

 0.2

 0.4

 0.6

 0.8

 1

NoLim avgi 1.5*avgi

Precision and Recall for Bayesian Approach
 (All tags recommended)

precision
recall

Fig. 3. Precision and Recall for Collaborative Recommendation using Tag Based
Approach

Probabilistic Approaches to Tag Recommendation 283

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 T

ag
s

P
re

ci
si

on

Probability P(i|t,Ud
i, δ)

Probability Threshold (τ=0)

Recommended
Used

Precision

Fig. 4. Histogram for Collaborative Recommendation using Tag Based Approach
(Number of Recommendations=avgi)

We also plot the number of tags recommended and tags actually used for dif-
ferent P (i|t, Ud

i,δ) values in Figure 4. For drawing histograms we have rounded up

the P (i|t, Ud
i,δ) values to the nearest 10th decimal place. Note that as P (i|t, Ud

i,δ)
increases, the precision values increase. This fact confirms the effectiveness of
the tag recommendation scheme. We observed similar trends for the other two
cases (no limit and 1.5 ∗ avgi). Only the number of tags recommended in the no
limit scenario is significantly higher than that of Figure 4.

Position Based Approach. To evaluate the recommendation efficiency for the
position based approach, we present the precision and recall values in Figure 5.
In our experiment, we have used m = 5 as the equivalent sample size. We have
suggested two different approaches using the probabilities Pn

i,j estimated using
Equation 12:

Thresholding: In this case, for each position n we only recommend any tag
t such that Pn

i,j > τ , for some j. We do not restrict the length of the rec-
ommended tag list. The τ levels we have used for experiments are 0.25, 0.5,
0.75 and 0.9. Precision and recall values for these schemes are represented
as Th 25, Th 50, Th 75 and Th 90 respectively in Figure 5.

Weighted: In this case we calculate the TagScoretd of each tag t using Equa-
tion 13. Then we rank these tags according to the tag scores and recom-
mend only the first x tags. We have used two different values for x: avgi and
1.5 ∗ avgi. Precision and recall values for these schemes are represented as
Wt avgi and Wt 1.5 ∗ avgi in Figure 5.

284 O. Mistry and S. Sen

 0

 0.2

 0.4

 0.6

 0.8

 1

Th 25
Th 50

Th 75
Th 90

Wt avg i

Wt 1.5*avg i

Precision and Recall for Positional Approach

precision
recall

Fig. 5. Precision and Recall for Collaborative Recommendation using Position based
Approach

We expected that the precision values will increase and the recall values will
decrease for the Thresholding approach as we increase the thresholds. We also
expected the precision to be significantly higher for avgi than 1.5avgi for the
Weighted scheme. The plots in Figure 5 confirms our expectation.

We also noted the correlation of Pn
i,j values of recommended tags with their

adoption by the target user. From Figure 6 we see that as Pn
i,j increases, the

precision values increase. However, fewer tags have higher Pn
i,j values and hence

the number of total recommendation for higher Pn
i,j values decreases. We also

collect and analyze data to see whether tags higher in tag lists are used more
often or not. Figure 7 shows that higher position tags are recommended more
often (as they have higher conditional probability of being used by the user) and
are also used more frequently.

4.3 Comparison of Proposed Recommendation Approaches

In this section we present a comparison of the recommendation systems described
earlier. We have shown the precision and recall values for the different recom-
mender approaches in Figures 2, 3 and 5. In Figure 3, we see that the precision
and recall values are maximum when recommendation length is restricted to
avgi. In Figure 5, we observe that the precision and recall values are maximized
for the weighted scheme with avgi recommendation length. In Table 1 we present
the precision and recall values from content based and the collaborative systems
selecting the best performance from each. We see that the position based collab-
orative recommender performs better than the content based and the tag based

Probabilistic Approaches to Tag Recommendation 285

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

0.5 0.6 0.7 0.8 0.9
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 T

ag
s

P
re

ci
si

on

Probability (Pn
i,j)

Number of Tags VS. Pn
i,j

Recommended
Used

Precision

Fig. 6. Histogram for Collaborative Recommendation using Position based Approach

collaborative approach. This observation was based on the bookmarks that had
a “programming” tag associated with them. We observer that the position based
system performs significantly better than the other two. Moreover, the Position
based system can actually recommend tags that had never been used by the
target user but can be appropriate for the current document. The Tag based
approach lack this capability.

Table 1. Comparison of Recommendation Systems

Content Collaborative Collaborative
Based Tag Based Position Based

τ = 0, avgi Wt avgi
Precision 0.15 0.34 0.56

Recall 0.31 0.36 0.58

5 Conclusion

We have successfully demonstrated a tag recommendation system that suggests
tags using probabilistic analysis of past user behavior. We have observed distinc-
tive user behavior for tag assignment in a social bookmarking website Del.ici.ous.
Some of the tags provided by the users are more general than others, and their
tag lists are generally sorted from general to specific according to the cardinal
position of the tags. We have shown the correlation between document similarity
and tag similarity in a social-tagging environment. We introduce two collabora-
tive tag recommendation approaches and empirically demonstrate higher preci-
sion and recall of recommendation of the position-based approach compared to

286 O. Mistry and S. Sen

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r

tim
es

 T
ag

 r
ec

om
m

en
de

d
w

as
 u

se
d

 (
Lo

g
S

ca
le

)

Position

RecommendedTH
UsedTH

RecommendedWT
UsedWT

Fig. 7. Histogram for Collaborative Recommendation using Position based Approach

the tag-based approach. We compare the effectiveness of the content-based and
the collaborative approach and find that the collaborative approaches perform
better.

We want to compare our approach with some of the existing approach men-
tioned in the Section 2. We also want to test the performance of our recommen-
dation system using data from other online bookmarking websites.

References

1. P. S. Algorithm. Stemming algorithm, http://en.wikipedia.org/wiki/Stemming

2. T. API. Technorati was founded to help bloggers succeed by collecting, highlighting,
and distributing the global online conversation, http://technorati.com/

3. Basu, C., Hirsh, H., Cohen, W.W.: Recommendation as classification: Using social
and content-based information in recommendation. In: AAAI/IAAI, pp. 714–720
(1998)

4. I.R. .M.L.D.D.-L. Berlin Institute of Technology. Dai labor, berlin,
http://www.dai-labor.de/en/competence_centers/irml/datasets/

5. T. Cloud. Delicous, http://delicious.com/tag

6. Delicious. Social bookmarking website, http://www.delicious.com

7. Fellbaum, C.: WordNet: An Electronical Lexical Database. The MIT Press, Cam-
bridge (1998)

8. Goldstein, D.G., Gigerenzer, G.: The recognition heuristic: How ignorance makes
us smart. In: Gigerenzer, G., Todd, P.M., The ABC Research Group (eds.) Simple
Heuristics That Make Us Smart, ch. 2, pp. 37–58. Oxford University Press, New
York (1999)

http://en.wikipedia.org/wiki/Stemming
http://technorati.com/
http://www.dai-labor.de/en/competence_centers/irml/datasets/
http://delicious.com/tag
http://www.delicious.com

Probabilistic Approaches to Tag Recommendation 287

9. Golub, G.H., Van Loan, C.F.: Matrix Computations (Johns Hopkins Studies in
Mathematical Sciences). The Johns Hopkins University Press (October 1996)

10. Li, J., Zha, H.: Two-way poisson mixture models for simultaneous document clas-
sification and word clustering. Computational Statistics & Data Analysis 50(1),
163–180 (2006)

11. Liang, H., Xu, Y., Li, Y., Nayak, R.: Collaborative filtering recommender sys-
tems using tag information. In: Web Intelligence/IAT Workshops, pp. 59–62. IEEE
(2008)

12. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval,
1st edn. Cambridge University Press (July 2008)

13. Mitchell, T.M.: Machine Learning. McGraw-Hill Science/Engineering/Math
(March 1997)

14. Sigma, Andy: Automatic tag recommendation for the web 2.0 blogosphere using
collaborative tagging and hybrid ann semantic structures. In: ACOS 2007, pp.
88–93. WSEAS, Stevens Point (2007)

15. Song, Y.: Automatic tag recommendation algorithms for social recommender sys-
tems - microsoft research. ACM Transactions on Web (2009)

16. Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W.C., Giles, C.L.: Real-time
automatic tag recommendation. In: SIGIR 2008, pp. 515–522. ACM, New York
(2008)

17. Sood, S., Owsley, S., Hammond, K., Birnbaum, L.: Tagassist: Automatic tag sug-
gestion for blog posts

18. Tso Sutter, K.H.L., Marinho, L.B., Thieme, L.S.: Tag-aware recommender systems
by fusion of collaborative filtering algorithms. In: SAC 2008, pp. 1995–1999. ACM,
New York (2008)

19. Wal, T.V.: Folksonomy definition and wikipedia :: Off the top :: vanderwal.net.
20. Wang, J., de Vries, A.P., Reinders, M.J.T.: Unifying user-based and item-based

collaborative filtering approaches by similarity fusion. In: SIGIR 2006, pp. 501–
508. ACM Press, New York (2006)

21. Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: Collaborative tag sugges-
tions. In: WWW 2006: Proceedings of the Collaborative Web Tagging Workshop,
Edinburgh, Scotland (2006) æ

22. Zha, H., He, X., Ding, C., Simon, H., Gu, M.: Bipartite graph partitioning and
data clustering. In: CIKM 2001, pp. 25–32. ACM Press, New York (2001)

Complex Task Allocation in Mixed-Initiative Delegation:
A UAV Case Study�

David Landén, Fredrik Heintz, and Patrick Doherty

Dept. of Computer and Information Science, Linköping University, Sweden
{david.landen,fredrik.heintz,patrick.doherty}@liu.se

Abstract. Unmanned aircraft systems (UAS’s) are now becoming technologi-
cally mature enough to be integrated into civil society. An essential issue is
principled mixed-initiative interaction between UAS’s and human operators. Two
central problems are to specify the structure and requirements of complex tasks
and to assign platforms to these tasks. We have previously proposed Task Speci-
fication Trees (TST’s) as a highly expressive specification language for complex
multi-agent tasks that supports mixed-initiative delegation and adjustable auton-
omy. The main contribution of this paper is a sound and complete distributed
heuristic search algorithm for allocating the individual tasks in a TST to plat-
forms. The allocation also instantiates the parameters of the tasks such that all
the constraints of the TST are satisfied. Constraints are used to model dependen-
cies between tasks, resource usage as well as temporal and spatial requirements
on complex tasks. Finally, we discuss a concrete case study with a team of un-
manned aerial vehicles assisting in a challenging emergency situation.

1 Introduction

Unmanned aircraft systems (UAS’s) are now becoming technologically mature enough
to be integrated into civil society. Principled interaction between UAS’s and human re-
sources is an essential component in the future uses of UAS’s in complex emergency
services scenarios. Mixed-initiative interaction between human operators and such sys-
tems will be central. By mixed-initiative, we mean that interaction and negotiation be-
tween a UAS and a human will take advantage of each of their skills, capacities, and
knowledge in developing a mission plan, executing the plan, and adapting to contingen-
cies during the execution of the plan. In developing a principled framework for such
sophisticated interaction in complex scenarios, a great many interdependent conceptual
and pragmatic issues arise and need clarification both theoretically and pragmatically
in the form of demonstrators.

Two central problems are to define complex mixed-initiative missions and given a
mission find platforms which together can execute it. We have previously proposed Task
Specification Trees (TST’s) as a highly expressive specification language for multi-
agent tasks that supports mixed-initiative delegation and adjustable autonomy (3). A

� This work is partially supported by grants from the Swedish Foundation for Strategic Re-
search (SSF) Strategic Research Center MOVIII, the Swedish Research Council (VR), the VR
Linnaeus Center CADICS, the ELLIIT Excellence Center at Linköping-Lund for Information
Technology, and the Center for Industrial Information Technology CENIIT.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 288–303, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Complex Task Allocation in Mixed-Initiative Delegation: A UAV Case Study 289

task is recursively defined as a tree of tasks where temporal requirements and inter-
dependencies among tasks are specified as constraints. In this paper we describe an
allocation algorithm for TST’s together with a concrete unmanned aerial vehicle (UAV)
case study. The allocation algorithm assigns platforms to tasks and instantiates the pa-
rameters of the tasks such that all the constraints of the TST are satisfied. The algorithm
recursively searches among the potential allocations in a distributed manner and uses
distributed constraint satisfaction techniques to check if an allocation satisfies the task
and platform constraints. The case study gives a detailed example of the allocation algo-
rithm applied to a team of UAV’s assisting in a challenging emergency services scenario
involving delivery of food and medical supplies to injured people.

2 The Delegation Framework

To support cooperative goal achievement among a group of agents a delegation frame-
work has been developed (3, 4). It provides a formal framework for describing and
reasoning about what it means for an agent to delegate an objective, which can be either
a goal or a plan, to another agent. The concept of delegation allows for studying not
only cooperation but also mixed-initiative problem-solving and adjustable autonomy.

By delegating a partially specified objective the delegee is given the autonomy to
complete the specification itself. By making the objective more specific the autonomy
is limited. If the delegated objective is completely specified then the agent has no auton-
omy when it comes to achieving the objective. By allowing both agents and human op-
erators to partially specify an objective, mixed-initiative problem-solving is supported.

2.1 Task Specification Trees

A Task Specification Tree (TST) is a distributed data structure with a declarative repre-
sentation that describes a complex multi-agent task. Each node in a TST corresponds
to a task that should be performed. Each node has a node interface consisting of a
set of parameters called node parameters that can be specified for the node. The node
parameters determine task specific details of the node.

Nodes in a TST either specify actions or goals. Actions can either be elementary or
composite. A elementary action is a leaf node in the TST while a composite action is
an interior node. Action nodes can be executed when instantiated, whereas goal nodes
first require a plan to be generated. The plan then becomes a new TST branch that in
turn can be instantiated and executed. A TST without any goal nodes is called fully ex-
panded. Nodes can also be removed and added during execution, for example, to repair
a TST after a failure. When a TST has been executed, the resulting TST represents the
history of the mission, including concrete task instantiations, errors, and repairs.

Figure 1 shows an example TST for first scanningAreaA and AreaB concurrently and
then flying to Dest4. Nodes N0 and N1 are composite action nodes, sequential (S) and
concurrent (C), respectively. Nodes N2, N3 and N4 are elementary action nodes. Each
node specifies a task and has a node interface containing node parameters. In this case
only temporal parameters are shown representing the respective intervals a task should
be completed in.

290 D. Landén, F. Heintz, and P. Doherty

Fig. 1. An example TST for first scanning AreaA and AreaB concurrently and then flying to Dest4

Each node can have constraints associated with it, called node constraints. These
constraints limit the valid values of the node parameters. A TST can also have tree con-
straints, expressing precedence, dependence, and organizational relations between the
nodes in the TST. Together the node parameters and the constraints form a constraint
network. Setting the value of a parameter constrains not only the network, but implic-
itly, also the degree of autonomy of an agent. Figure 2 shows the constraint network
defined by the TST in Figure 1.

3 Allocating TST Specified Tasks

Given a TST representing a complex task, an important problem is to find a set of plat-
forms that can execute these tasks according to the specification. The problem is to
allocate tasks to platforms and assign values to parameters such that each task can be
carried out by its assigned platform and all the constraints of the TST are satisfied.

For a platform to be able to carry out a task, it must have the capabilities and the
resources required for the task. A platform that can be assigned a task in a TST is called
a candidate. The capabilities of a platform are fixed while the available resources will
vary depending on its commitments, including the tasks it has already been allocated.
The resources and the commitments are modeled with constraints. Resources are repre-
sented by variables and commitments by constraints. The resources used by a platform
when executing a particular action are represented by a parameterized set of constraints.
The action parameters must be part of the node interface for any node containing that
action. These constraints are local to the platform and different platforms may have dif-
ferent constraints for the same action. Figure 3 shows the constraints for the scan action
for platform P1.

When a platform is assigned an action node in a TST, the constraints associated with
that action are instantiated and added to the constraints of the platform. The platform
constraints are connected to the constraint problem defined by the TST through the node
parameters in the node interface. Figure 4 shows the constraint network after allocating
node N2 from the example TST to platform P1.

A platform can be allocated more than one node. This may introduce implicit de-
pendencies between the actions since each allocation adds constraints to the constraint

Complex Task Allocation in Mixed-Initiative Delegation: A UAV Case Study 291

Fig. 2. The constraint network defined by the TST in Figure 1

problem of the platform. There can for example be a shared resource that both actions
use. Figure 5 shows the constraint network of platform P1 after it has been allocated
nodes N2 and N4 from the example TST. In this example the position of the platform
is implicitly shared since the first action will change the location of the platform.

A complete allocation is an allocation which allocates every node in a TST to a plat-
form. A completely allocated TST defines a constraint problem that represents all the
constraints for this particular allocation of the TST. As the constraints are distributed
among the platforms it is in effect a distributed constraint problem. If the constraint
problem is consistent then a valid allocation has been found and each solution can be
seen as a potential execution schedule of the TST. The consistency of an allocation can
be checked by a distributed constraint satisfaction problem (DCSP) solver such as the
Asynchronous Weak Commitment Search (AWCS) algorithm (17) or ADOPT (12).

4 Multi-Robot Task Allocation

Multi-robot task allocation (MRTA) is an important problem in the multi-agent com-
munity (6, 7, 11, 15, 18). It deals with the complexities involved in taking a description
of a set of tasks and deciding which of the available robots should do what. Often the
problem also involves maximizing some utility function or minimizing a cost function.
Important aspects of the problem are what types of tasks and robots can be described,
what type of optimization is being done, and how computationally expensive the allo-
cation is. In this section we discuss the MRTA problem and how it relates to allocating
complex tasks specified as TST’s. In the process, we extend the classification introduced
by Gerkey and Matarić (6, 8) with four new dimensions.

The task allocation problem can be traced back to the Optimal Assignment Problem
(OAP) (5). In OAP, m workers should be assigned to n jobs, one worker per job, where
the worker-job combinations have different utilities depending on how well suited the
worker is for the job. The problem is to find the optimal allocation.

The following assumptions are made in OAP: A worker can only have one job at a
time. A job only needs one worker. The assignment is instantaneous. There are no more
jobs to take care of later. The jobs are atomic in the sense that they do not relate to each
other. Both utilities and jobs are independent. Since assigning a worker to a job does not

292 D. Landén, F. Heintz, and P. Doherty

Fig. 3. The parameterized platform constraints for the scan action

change the utilities of other workers, the jobs can be assigned in any order. One can see
that the problem has three dimensions: worker capacity, job complexity, and allocation
horizon.

4.1 Classifying Multi-Robot Task Allocation

The multi-robot task allocation problem is in its simplest form equal to the OAP. By
varying the problem along the three OAP dimensions Gerkey and Matarić define seven
more complex variants (8). Single task robots (ST) vs. multi-task robots (MT), i.e. can
a robot execute one or many tasks at the same time (worker capacity). Single robot tasks
(SR) vs. multi-robot tasks (MR), where SR means that each task can be executed by a
single robot, while with MR a task may need more than one robot (job complexity). The
final dimension, allocation horizon, is instantaneous assignment (IA) vs. time-extended
assignment (TE). In IA there is no information available to reason about further alloca-
tions, instead an allocation can be done directly with the information that is available.
For TE there is more information such as information about all tasks that need to be
assigned or a model of how tasks are expected to arrive in time.

In his thesis (6), Gerkey points out that the classification does not really apply to
tasks that have interrelated utilities (e.g., the utility of task 1 for platform A is depen-
dent on whether it is also allocated task 2) and tasks that have constraints between them
(e.g., a TST with sequential tasks). To cover these cases we extend the classification
model with the dimensions unrelated utilities (UU) vs. interrelated utilities (IU) and
independent tasks (IT) vs. constrained tasks (CT).

Another aspect of the task allocation problem is who is making the task allocation. In
OAP, solving the allocation problem is separate from executing the allocated tasks. The
allocation itself is not seen as something that has to be done by a worker, instead it is an
external process. If the allocation is done by a worker, then both the tasks and the task
allocation are tasks for the multi-agent system. Making task allocation a task is part of
the delegation concept. A delegation is a task allocation performed by a particular plat-
form. We call this new dimension external allocation view (EV) vs. internal allocation
view (IV). Whether IV is harder than EV depends on how much information about the
task allocation problem that the allocator has. In EV it is assumed that all the informa-
tion can be given to the external allocator. This does not have to be the case for IV.

Related to, but not directly included in the task allocation problem is the task allo-
cation environment dimension. A task allocation environment can be even more chal-
lenging than TE, if the task allocator not only has to take into account future tasks to

Complex Task Allocation in Mixed-Initiative Delegation: A UAV Case Study 293

Fig. 4. The combined constraint problem after allocating node N2 to platform P1

allocate, but also that the task allocation problem can change unexpectedly. Changes
could include addition or removal of robots, changes to constraints, and changes to
variables. Such environments introduce the additional problem of task re-allocation.
We call this extra dimension static allocation environment (SA) vs. dynamic allocation
environment (DA).

4.2 Classifying Allocating TST Specified Tasks

Following the above classification, the problem of allocating a complex task according
to a TST is classified as a MT-SR-TE-IU-CT-IV-DA problem. Each platform can do
more than one task at a time (MT) since it is only restricted by its resources. Only one
platform is needed (SR) for each task if we view each node in the TST as an individual
task. If we view the entire TST as a task, then it is in the MR class. This shows that spec-
ifying a multi-robot task as a TST avoids the problem of allocating multiple robots to the
same task. More generally, the class SR-CT includes parts of the MR class. Since a TST
models the tasks that should be allocated and how they relate to each other the problem
is in TE. Since a TST can specify constraints such as execution order and global timing,
the problem is in CT. The problem is also in IU due to shared resources for example.
Since allocating tasks is an active part in the delegation, the problem is in IV. In addi-
tion, the problem is in DA, meaning that we also have to think about task re-allocation.

5 An Algorithm for Allocating Complex Tasks Specified by TST’s

This section presents a heuristic search algorithm for allocating a fully expanded TST to
a set of platforms. A successful allocation allocates each node to a platform and assigns

294 D. Landén, F. Heintz, and P. Doherty

Fig. 5. The constraints of platform P1 when allocated nodes N2 and N4

values to parameters such that each task can be carried out by its assigned platform
and all the constraints of the TST are satisfied. During the allocation, variables will be
instantiated resulting in a schedule for executing the TST.

The algorithm starts with an empty allocation and extends it one node at a time
in a depth-first order over the TST. To extend the allocation, the algorithm takes the
current allocation, finds a consistent allocation of the next node, and then recursively
allocates the rest of the TST. Since a partial allocation corresponds to a distributed con-
straint satisfaction problem, a DCSP solver is used to check whether the constraints are
consistent. If all possible allocations of the next node violate the constraints, then the
algorithm uses backtracking with backjumping to find the next allocation.

The algorithm is both sound and complete. It is sound since the consistency of the
corresponding constraint problem is verified in each step and it is complete since every
possible allocation is eventually tested. Since the algorithm is recursive the search can
be distributed among multiple platforms.

To improve the search, a heuristic function is used to determine the order platforms
are tested. The heuristic function is constructed by auctioning out the node to all plat-
forms with the required capabilities. The bid is the marginal cost for the platform to
accept the task relative to the current partial allocation. The cost could for example be
the total time required to execute all tasks allocated to the platform.

To increase the efficiency of the backtracking, the algorithm uses backjumping to
find the latest partial allocation which has a consistent allocation of the current node.
This preserves the soundness as only partial allocations that are guaranteed to violate
the constraints are skipped.

The AllocateTST algorithm takes a TST rooted in the node N as input and finds a
valid allocation of the TST if possible. To check whether a node N can be allocated to
a specific platform P the TryAllocateTST algorithm is used. It tries to allocate the top
node N to P and then recursively finding an allocation of the sub-TST’s.

AllocateTST(Node N)

1. Find the set of candidates C for N .
2. Run an auction for N among the candidates in C and order C according to the bids.

Complex Task Allocation in Mixed-Initiative Delegation: A UAV Case Study 295

3. For each candidate c in the ordered set C:
(a) If TryAllocateTST(c, N) then return success.

4. Return failure.

TryAllocateTST(Platform P, Node N)

1. AllocateTST P to N .
2. If the allocation is inconsistent then undo the allocation and return false.
3. For each sub-TST n of N do

(a) If AllocateTST(n) fails then undo the allocation and do a backjump.
4. An allocation has been found, return true.

The implementation of TryAllocateTST is based on the contract-net protocol (14). For
a platform A to try to allocate a TST rooted in N to platform B it sends a call-for-
proposal (cfp) message containing the TST to platform B. If TryAllocateTST is suc-
cessful then A will send a propose message back to A otherwise it will send a refuse
message.

5.1 Node Auctions

Broadcasting for candidates for a node N only returns platforms with the required ca-
pabilities for the node. There is no information about the usefulness or cost of allocating
the node to the candidate. Blindly testing candidates for a node is an obvious source of
inefficiency. Instead, the node is auctioned out to the candidates. Each bidding platform
bids its marginal cost for executing the node. I.e., taking into account all previous tasks
the platform has been allocated, how much more would it cost the platform to take on
the extra task. The cost could for example be the total time needed to complete all tasks.
To be efficient, it is important that the cost can be computed by the platform locally. We
are currently only evaluating the cost of the current node, not the sub-TST rooted in
the node. This leaves room for interesting extensions. Low bids are favorable and the
candidates are sorted according to their bids. The bids are used as a heuristic function
that increases the chance of finding a suitable platform early in the search.

5.2 Distributed Backjumping

A dead-end is reached when a platform is trying to allocate a node Nk but there is no
consistent allocation. The platform must then undo previous allocations until a partial
allocation is found where Nk can be allocated. This is the backjump point where the
backtracking will start.

More formally, the current partial allocation can be seen as the assignment
A1, . . . , Ak of platforms to each node in the sequence N1, . . . , Nk. Instead of back-
tracking over the next allocation for N1, . . . , Nk−1 as in normal chronological back-
tracking, the algorithm finds the node Nj with the highest index j such that a consistent
allocation for Nk can be found given the partial allocation A1, . . . , Aj . The node Nj

is called the backjump point. Using the fact that Nk must be allocated we can skip all
partial allocations of Nj+1, . . . , Nk−1 that do not lead to a consistent allocation of Nk.

296 D. Landén, F. Heintz, and P. Doherty

The backjump point is found by disconnecting parts of the DCSP network and then
trying all possible allocations for Nk. When the node can be allocated with parts of
the network disconnected, it means that the backjump point resides in the disconnected
part of the network. The localization of the backjump point continues in the previously
disconnected network by recursively dividing it into smaller parts. Each new partial
allocation is checked by trying to extend it with an allocation of Nk. Since the task
allocation process is distributed the backjump process must also be distributed.

To describe the algorithm, the following definitions are used. A platform is in charge
of all nodes below a node it has been allocated. The node that could not be allocated
is called the failure point. The platform trying to find an allocation for the failure point
is called failure point allocator. Disconnecting a network means temporarily remov-
ing the variables in the network from the DCSP which is equivalent to removing the
corresponding allocations. When a platform disconnects networks and checks for con-
sistency, an activation message is sent from the platform to the failure point allocator.
The failure point allocator will then try applicable platforms for the failure point until
an allocation is found or none exists. The failure point allocator sends an allocation
succeed if an allocation is found, otherwise an allocation failed message.

The procedures Search Upwards and Search Downwards are used to find the back-
jump point, beginning with the Search Upwards procedure. Two different search pro-
cedures are necessary since we first have to find which platform is in control over the
backjump point, and second to find the actual backjump point.

Search Upwards

1. Disconnect all child branches (that have been allocated) except the branch that con-
tains the failure point. Signal the failure point allocator to start finding an allocation
for the failure point.
(a) If the failed node can be allocated, reconnect all child branches and start search-

ing for the backjump point by calling Search Downwards.
(b) If no allocation can be found, then do a Search Upwards starting from the par-

ent of the node. If the node has no parent then there is no allocation.

Search Downwards

1. Disconnect child branches one at the time in the reverse order they were allocated
and check the consistency. If the network is consistent then the backjump point is
in that branch.

2. When a branch containing the backjump point is located, check if the child branch
has a composite action node as the top-node. In that case, do a recursive Search
Downwards starting at that node. Otherwise, the backjump point has been found.

6 A Collaborative UAV Case Study

On December 26, 2004, a devastating earthquake of high magnitude occurred off the
west coast of Sumatra. This resulted in a tsunami which hit the coasts of India, Sri
Lanka, Thailand, Indonesia, and many other islands. Both the earthquake and the
tsunami caused great devastation. During the initial stages of the catastrophe, there was

Complex Task Allocation in Mixed-Initiative Delegation: A UAV Case Study 297

a great deal of confusion and chaos in setting into motion rescue operations in such wide
geographic areas. The problem was exacerbated by a shortage of manpower, supplies,
and machinery. The highest priorities in the initial stages of the disaster were searching
for survivors in many isolated areas where road systems had become inaccessible and
providing relief in the form of delivery of food, water, and medical supplies. Similar
real-life scenarios have occurred more recently in China and Haiti where devastating
earthquakes have caused tremendous material and human damage.

Let us assume that one has access to a fleet of autonomous unmanned helicopter sys-
tems with ground operation facilities. How could such a resource be used in the real-life
scenario described?

A prerequisite for the successful operation would be the existence of a multi-agent
software infrastructure for assisting emergency services. At the very least, one would
require the system to allow mixed-initiative interaction with multiple platforms and
ground operators in a robust, safe, and dependable manner. As far as the individual
platforms are concerned, one would require a number of different capabilities, not nec-
essarily shared by each individual platform, but by the fleet in total. These capabilities
would include: the ability to scan and search for salient entities such as injured humans,
building structures, or vehicles; the ability to monitor or survey these salient points of
interest and continually collect and communicate information back to ground opera-
tors and other platforms to keep them situationally aware of current conditions; and
the ability to deliver supplies or resources to these salient points of interest if required.
For example, identified injured persons should immediately receive a relief package
containing food, water, and medical supplies.

To be more specific in terms of the scenario, we can assume there are two separate
legs or parts to the emergency relief scenario in the context sketched previously.

Leg I. In the first part of the scenario, it is essential that for specific geographic areas,
the unmanned aircraft platforms cooperatively scan large regions in an attempt to
identify injured persons. The result of such a cooperative scan would be a saliency
map pinpointing potential victims and their geographical coordinates and associ-
ating sensory output such as high resolution photos and thermal images with the
potential victims. The saliency map could then be used directly by emergency
services or passed on to other unmanned aircrafts as a basis for additional tasks.

Leg II. In the second part of the scenario, the saliency map from Leg I would be used
for generating and executing a plan for the UAV’ to deliver relief packages to
the injured. This should also be done in a cooperative manner.

We will now consider a particular instance of the emergency services assistance sce-
nario. In this instance there is a UAS consisting of two UAV platforms (P1 and P2)
and an operator (OP1). In the first part of the scenario the UAS is given the task of
searching two areas for victims. The main capability required by the platforms is to fly
a search pattern scanning for people. It is implemented by looking for salient features
in the fused video streams from color and thermal cameras (13). In the second part the
UAS is given the task to deliver boxes with food and medical supplies to the identified
victims. To transport a box it can either be carried directly by an unmanned aircraft or
it can be loaded onto a carrier which is then transported to a key position from where
the boxes are distributed to their final locations. In this scenario, both platforms have

298 D. Landén, F. Heintz, and P. Doherty

Fig. 6. The TST for the supply delivery case study

the capability to transport a single box while only platform P1 has the capability to
transport a carrier. Both platforms also have the capabilities to coordinate sequential
and concurrent tasks.

In this paper, we will focus on the second part of the emergency services assistance
scenario, the supply delivery. One approach to solving this type of logistics problems
is to use a task planner to generate a sequence of actions that will transport each box to
its destination. Each action must then be executed by a platform. We have previously
shown how to generate pre-allocated plans and monitor their execution (2, 10). In this
paper we show how a plan without explicit allocations expressed as a TST can be co-
operatively allocated to a set of UAV’s which where not known at the time of planning.

In this particular scenario, five survivors (S1–S5) are found in Leg I, and there are
two platforms (P1–P2) and one carrier available. At the same time another operator
OP2 is performing a mission with the platforms P3 and P4 north of the area. P3 is
currently idle and OP1 is therefore allowed to borrow it if necessary.

To start Leg II, the operator creates a TST, for example using a planner, that will
achieve the goal of distributing relief packages to all survivor locations in the saliency
map. The resulting TST is shown in Figure 6. The TST contains a sub-TST (N1–N12)
for loading a carrier with four boxes (N2–N6), delivering the carrier (N7), and unload-
ing the packages from the carrier and delivering them to the survivors (N8–N12). A
package must also be delivered to the survivor in the right uppermost part of the region,
far away from where most of the survivors were found (N13). The delivery of packages
can be done concurrently to save time, while the loading, moving, and unloading of the
carrier is a sequential operation.

To delegate the TST, the Delegation Agent of OP1 searches for a platform that can
achieve the TST. It starts by finding all platforms that have the capabilities for the top
node N0, which is both platforms. It then auctions out N0 to both platforms to find the
best initial choice. In this case, the marginal cost is the same for both platforms and
the first platform, P1 is chosen. The Delegation Agent of OP1 then sends a call-for-
proposal message with the TST to the winner, P1.

Complex Task Allocation in Mixed-Initiative Delegation: A UAV Case Study 299

P1 is now responsible for N0 and for recursively delegating the nodes in the TST
that it is not able to do itself. The allocation algorithm traverses the TST in depth-first
order. P1 will first find a platform for node N1. When the entire sub-TST rooted in N1

is allocated then it will find an allocation for nodeN13. Nodes N1 and N2 are composite
action nodes which have the same marginal cost for all platforms. P1 therefore allocates
N1 and N2 to itself. The constraints from nodes N0–N2 are added to the constraint
network of P1. The network is consistent because the composite action nodes describe
a schedule without any restrictions.

Below node N2 are four elementary action nodes. Since P1 is responsible for N2,
it tries to allocate them one at the time. For elementary action nodes, the choice of
platform is the key to a successful allocation. This is because of each platform’s unique
state, constraint model for the action, and available resources. The candidates for node
N3 are platforms P1 and P2. P1 is closest to the package depot and therefore gives the
best bid for the node. P1 is allocated to N3. For node N4, platform P1 is still the best
choice, and it is allocated to N4. Given the new position of P1 after being allocated N3

and N4, P2 is now closest to the depot resulting in the lowest bid and is allocated to N5

and N6. The schedule initially defined by nodes N0–N2 is now also constrained by how
long it takes for P1 and P2 to carry out action nodes N3–N6. The constraint network is
distributed among platforms P1 and P2.

The next node to allocate for P1 is node N7, the carrier delivery node. P1 is the only
platform that has the capabilities for the fly carrier task and is allocated the node. Con-
tinuing with nodes N8–N12, the platform with the lowest bid for each node is platform
P1, since it is in the area after delivering the carrier. P1, is therefore allocated all the
nodes N8–N12. The final node, N13, is allocated to P2 and the allocation is complete.

The only non-local information used by P1 was the capabilities of the available plat-
forms which was gathered through a broadcast. Everything else is local. The bids are
made by each platform based on local information and the consistency of the constraint
network is checked through distributed constraint satisfaction techniques.

The total mission time is 58 minutes, which is much longer than the operator ex-
pected. Since the constraint problem defined by the allocation of the TST is distributed
between the platforms, it is possible for the operator to modify the constraint problem
by adding more constraints, and in this way modify the resulting task allocation. The
operator puts a time constraint on the mission, restricting the total time to 30 minutes.

To re-allocate the TST with the added constraint, operator OP1 sends a reject-
proposal to platform P1. The added time constraint makes the current allocation incon-
sistent. The last allocated node must therefore be re-allocated. However, no platform for
N13 can make the allocation consistent, not even the unused platform P3. Backtracking
starts. Platform P1 is in charge, since it is responsible for allocating node N13. The
N1 sub-network is disconnected. Trying different platforms for node N13, P1 discovers
that N13 can be allocated to P2. P1 sends a backjump-search message to the platform
in charge of the sub-TST with top-node N1, which happens to be P1. When receiv-
ing the message, P1 continues the search for the backjump point. Since removing all
constraints due to the allocation of node N1 and its children made the problem consis-
tent, the backjump point is in the sub-TST rooted in N1. Removing the allocations for
sub-tree N8 does not make the problem consistent so further backjumping is necessary.

300 D. Landén, F. Heintz, and P. Doherty

Fig. 7. Allocation time for each group of platforms, when extending the size of TST

Notice that with a single consistency check the algorithm could deduce that no possible
allocation of N8 and its children can lead to a consistent allocation of N13. Removing
the allocation for node N7 does not make a difference either. However, removing the
allocations for the sub-TST N2 makes the problem consistent. When finding an allo-
cation of N13 after removing the constraints from N6 the allocation process continues
from N6 and tries the next platform for the node, P1.

When the allocation reaches node N11 it is discovered that since P1 has taken on
nodes N3–N8, there is not enough time left for P1 to unload the last two packages from
the carrier. Instead P3, even though it makes a higher bid for N11–N12, is allocated
to both nodes. Finally platform P2 is allocated to node N13. It turns out that since
platform P2 helped P1 loading the carrier, it has not enough time to deliver the final
package. Instead, a new backjump point search starts, finding node N5. The search
continues from N5. This time, nodes N3–N9 are allocated to platform P1, platform P3

is allocated to node N10–N12, and platform P2 is allocated to node N13. The allocation
is consistent. The allocation algorithm finishes on platform P1, by sending a propose
message back to the operator. The operator inspects the allocation and approves it,
thereby confirming the delegation and starting the execution of the mission.

6.1 Empirical Evaluation

As an initial evaluation of the task allocation algorithm it has been applied to different
instances of the logistics task described above. To evaluate the scalability we varied the
size of the TST (number of boxes to be delivered), the number of available platforms
and the total time available to achieve the task. The task to be allocated is described by
the TST in Figure 6 without the last fly box action (N13). To vary the TST size, the load–
move–unload carrier pattern corresponding to the sub-TST rooted in N1 is repeated.
The TST with n carriers is called Cn, consists of 12n+ 1 nodes and moves 4n boxes.

In the first experiment, the size of the TST and the number of available platforms
is varied. The number of carriers varied between 1 and 8 (C1–C8), corresponding to
between 4 and 32 boxes and between 13 and 97 nodes. The number of platforms var-
ied between 2 and 4. For each combination, the total number of messages exchanged

Complex Task Allocation in Mixed-Initiative Delegation: A UAV Case Study 301

Fig. 8. The number of messages sent (left) and the constraint solver activity (right) for allocating
the C1 TST to 2 platforms when the bound on the available time to complete the task varies

is measured when the algorithm allocated the TST to the available platforms using
chronological backtracking. The time available to complete the task is unlimited.

The result of the experiment is shown in Figure 7. As expected, the number of mes-
sages increases more or less exponentially with the size of the TST while the number of
platforms does not significantly influence the number of messages. It should be noted
that a TST with n carriers corresponds to a constraint satisfaction problem with 33n+2
variables. To solve constraint problems with hundreds of variables is currently not fea-
sible with distributed constraint solvers. The results are therefore quite good.

In the second experiment the total time available to complete the task is varied while
the size of the TST is fixed to C1 and the number of available platforms is fixed to 2.
The available time, called the bound, is varied between 10 and 100. When the total time
is limited the constraint problem becomes harder and there are fewer solutions. The
optimal solution, with respect to the total time used to complete the task, is 65. This
means that for bounds less than 65 there is no solution.

The result of the experiment is shown in Figure 8. The left graph shows the total
number of messages sent and the right the number of invocations of the AWCS algo-
rithm and calls to the local constraint solvers. As expected, the number of messages is
high when there is no solution and the bound is close to the lowest value. As the bound
increases the algorithm uses relatively few messages to find an acceptable solution.

The experiments show that the algorithm is capable of allocating relatively large
TST’s and that the number of platforms does not significantly influence the number of
messages sent when there is no bound on the available time. They also show that global
constraints, such as bounds on the time to complete a task, is a highly significant factor.

7 Related Work

The closest work to allocating TST’s is the work on task allocation for task trees (18).
In task trees, tasks are related to each other either by precedence constraints or by

302 D. Landén, F. Heintz, and P. Doherty

compositions as expressed by logical connectives. The authors call this “complex task
allocation”. A major difference is that these task trees can not express interrelated util-
ities (IU), which TST’s can.

Many task allocation algorithms are auction-based (1). There, tasks are auctioned
out and allocated to the agent that makes the best bid. Bids are determined by a utility
function. The auction concept decentralizes the task allocation process which is very
useful especially in multi-robot systems, where centralized solutions are impractical.
For tasks that have unrelated utilities, this approach has been very successful. The rea-
son is that UU guarantees that each task can be treated as an independent entity, and
can be auctioned out without affecting other parts of the allocation. This means that a
robot does not have to take other tasks into consideration when making a bid.

In complex task allocation sub-tasks may not be independent. A complex task has
structure and there are relations between its atomic tasks. It is also often the case that
a complex task must be allocated to a group of agents, creating relations between the
agents relative to the task. Complex task allocation must therefore take into account
synergy effects between allocations which influence the bids for tasks. A bid could for
example be different depending on other commitments of the platform.

More advanced auction protocols have been developed to handle dependencies
among tasks. These are constructed to deal with complementarities (substitution ef-
fects, which we call interrelated utilities). Examples are sequential single item auc-
tions (9) and combinatorial auctions (16). These auctions typically handle that different
combinations of tasks have different bids, which can be compared to our model where
different sets of allocations result in different restrictions to the constraint network be-
tween the platforms.

The sequential single item (SSI) auction (9) is of special interest as it is similar to
our algorithm. In SSI auctions, the tasks are auctioned out in sequence, one at a time
to make sure the new task fits with the previous allocations. Normally SSI auctions are
applied to problems where it is easy to find a solution but it is hard to find a good solu-
tion. They are therefore normally not complete for problems where it is hard to find a
solution, like with TST allocation.

Combinatorial auctions deal with complementarities by bidding on bundles contain-
ing multiple items. Each bidder places bids on all the bundles that are of interest, which
could be exponentially many. The auctioneer must then select the best set of bids, called
the winner determination problem, which is NP-hard (16). I.e., even in the best case
there is a very high computational cost involved in using combinatorial auctions.

8 Conclusions

Two central problems in our research with collaborative unmanned aerial vehicles are
to define complex mixed-initiative missions and given a mission find UAV platforms
that can execute it. We have previously introduced a formal delegation framework and
within that proposed Task Specification Trees as a highly expressive specification lan-
guage for multi-agent tasks that supports mixed-initiative delegation with adjustable
autonomy. In this paper we have discussed the problem of allocating complex tasks to
robots. We extended the multi-robot task allocation classification introduced by Gerkey

Complex Task Allocation in Mixed-Initiative Delegation: A UAV Case Study 303

and Matarić (8) with four new dimensions and argued that allocating Task Specifica-
tion Trees is more challenging than most allocation problems currently considered. The
problem of allocating TST’s to robot platforms was defined and a heuristic algorithm
for finding a consistent allocation was presented. The heuristic is based on auctions. The
algorithm recursively searches among the potential allocations in a distributed manner
and uses distributed constraint satisfaction techniques to check if an allocation satisfies
the constraints. We also presented a detailed case study with a team of unmanned aerial
vehicles assisting in a challenging emergency services scenario.

In conclusion, specifying and allocating complex tasks are important research prob-
lems in multi-agent systems, especially when dealing with real world robotic agents.
The presented approach takes another step towards practical multi-robot collaboration.

References

1. Dias, M., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and
analysis. Proc. of IEEE 94(1), 1257–1270 (2006)

2. Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and execution mon-
itoring framework for unmanned aircraft systems. Journal of Automated Agents and Multi-
Agent Systems 19(3), 332–377 (2009)

3. Doherty, P., Landén, D., Heintz, F.: A Distributed Task Specification Language for Mixed-
Initiative Delegation. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010, vol. 7057, pp.
42–57. Springer, Heidelberg (2011)

4. Doherty, P., Meyer, J.-J.C.: Towards a Delegation Framework for Aerial Robotic Mission
Scenarios. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L. (eds.) CIA 2007.
LNCS (LNAI), vol. 4676, pp. 5–26. Springer, Heidelberg (2007)

5. Gale, D.: The Theory of Linear Economic Models. McGraw-Hill Book Company, Inc. (1960)
6. Gerkey, B.: On multi-robot task allocation. Ph.D. thesis (2003)
7. Gerkey, B., Mataric, M.: Sold!: Auction methods for multi-robot coordination. IEEE Trans-

actions on Robotics and Automation (2001)
8. Gerkey, B., Mataric, M.: A formal analysis and taxonomy of task allocation in multi-robot

systems. Int. Journal of Robotic Research 23(9), 939–954 (2004)
9. Koenig, S., Keskinocak, P., Tovey, C.: Progress on agent coordination with cooperative auc-

tions. In: Proc. AAAI (2010)
10. Kvarnström, J., Doherty, P.: Automated planning for collaborative systems. In: Proceedings

of the International Conference on Control, Automation, Robotics and Vision (2010)
11. Lemaire, T., Alami, R., Lacroix, S.: A distributed tasks allocation scheme in multi-uav con-

text. In: Proc. ICRA (2004)
12. Modi, P., Shen, W.-M., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed constraint

optimization with quality guarantees. AI 161 (2006)
13. Rudol, P., Doherty, P.: Human body detection and geolocalization for UAV search and rescue

missions using color and thermal imagery. In: Proc. IEEE Aerospace Conference (2008)
14. Smith, R.: The contract net protocol. IEEE Transactions on Computers C-29(12) (1980)
15. Viguria, A., Maza, I., Ollero, A.: Distributed service-based cooperation in aerial/ground

robot teams applied to fire detection and extinguishing missions. Adv. Robotics 24 (2010)
16. de Vries, S., Vohra, R.: Combinatorial auctions: A survey. J. on Computing 15(3) (2003)
17. Yokoo, M.: Asynchronous weak-commitment search for solving distributed constraint satis-

faction problems. In: Proc. CP (1995)
18. Zlot, R., Stentz, A.: Market-based multirobot coordination for complex tasks. International

Journal of Robotics Research 25(1) (2006)

��������	
���	� ��	����� �	���������

�� ������� ������� ��������	���

������ ���	��
 ��	 ��������� ����
Æ

���������	
� ������� �� ����������
��������		
�������

��������� �� ���������
�� �
� �������������
� ��������� �����
�
�
���������
���� ����� ����� �� ������� �����
������ ��� ������� ������
��
�� ��� ���
��
���� �
� ������ ���
������� �������� ������� ������
���� ��� ����
	 ��
������
� ���� �����
����� �� ����
���� ��
�� ��
�
���
� �������
��
�
��� ���������� �������
� ����� �
����������
�
 ���� ������������	� ��� ����� �������� ��������� ����� ��� �
 ���
�!����� �����"���
����� �#
������� ���
������� �����
�
� ���������
�
 ��$�� ��
������� ����
���� ��
�� ��� �����
�� �� ���� ��
�������
����
�� ��
�� �� �����
�
� ������� ���
�
�
�� ������� ��
������
�
�����
����
������ ����� ��� ���
 �� ����
	��� ��� �� �
�����"�� �	 �!�
������� ������� �
��
� ������ ����� �������
�
� %&������� ������ ���
�� ����� ��� ��������� ���� �� ����������
� �� ��������� �����������
��� ��������� �!�������

� �������	�
��

�������
 ��	�� ����� ����� ����� ���� ����� �� ������� ��
���� ����
�������
����� �
� ��������	 �� ��
���� ���
����
�� ���� �
����
��� ������
� ��������
!"#$%& ������
� �����&
������� ��
����� �����& ��	
���������� ����� ���
�	
�� ���		�� ��	����� !'$%� (�� ���� ���	� ��
 �
������ ������������ ����
�
� ���	 �� ��� ������
� �
 ����� ��
����� �� ����� ����
��
���
��
����������� ��
��� ����
������ ���
� ��
������ �� �� ���
����)� ���� ��� �
 ��
� ����� ��
���
������ �
� �������	 �� ���
���������	 ������������& ���
��� �� ��
���� ���
����
�
�� ��������� �����	�
� �� ���� �� ������* ��	�� �����
����
� ���� ���
����
�
����
����� �� �����
�+ ��,������ �� ��� ����& ��	 �
������ ������������
����
�
���� ����
 �������
 ������� ����������� �� �
������ ��,�������� -��� ���	� �� ��
����������
����
� ���
����
� �� �.����� ���������� �������
& ��	 �� ����
������
�� ��� �� ��
������� �� �����	�
 ���������� ������� �� ���� �������
�

/����� !"0$ �������� ����
��
����
������ ��
 ��
���� ���
����
�+ �������������
����� ��
���� �� ������ ����
������& ��	 ���
 ���	���� ��	������ ���� �����
�
��
���������� ����� �
� ��� �������	 ���� ��� ������������� �� ��
���� ���
�����
 ���
����
� �� ����
������ !"$� ������ ������ 1 ����

��� ��	
������� ��

Æ ��� ������� �� ���� ����
���� �	 �� '(�) ��
����� ������ �	 �� ����������
*�����"���
� �
� �������$� +������ ,�-*. ��� �� ���������� �/� +������ ���
���
����
� (��
���	 ,�/� +����.�

�� ������ 	�
��� �� �� ������� ������ ����	 �����
�	� ����� ��� �!" �#� �����
$© %�&��'�&()�&*�' +�&*�� ,���*-�&' ����

(#
�������%���� �������
� +��
�����
� �� 0������ �������)����
������ 123

��� �
�����	 ������� ��	 ����� �� ����
� 1 ��� �� ��������	 �� ��
���� ����*
���� ���
����
� ��� �� ��
����	 �� ���� ����
 �������
 �����
 ������� ���
����
�+
������ ��� �� 	���
����	 ��
������� �� ���� �� ����
� �� �������� ���
�����
�� ����
�+ ����� 2������3����	����%� �
 ���
����
� ��� �� ����� ����
������
�� ��� ������ �������3����� �� ����
 ��
���� ���
����
� ��	 ��� ���� ����
������
�� ����
 ��� 	�������������& �������� ���� � ��
��� �� �

�
 �� �� ��� �� ����
���������� !45&"6&7$�)� ���� ����
& �� �� ������	 ���� ���
����
�
������
������	������� ��
�����
� 	��� ���� ��,����& �������%& ��	 ��� ���� 	��� ��

���������
���������� ���� ����

��� ��� ����������3����� ��	 �
�	������ ����
�
�������
 �� ����
 ���
����
�%� 8���� �� �� ��
����9����� �� � ��
���� ����
��
�

(�� ���� ����
������� �� ��� ����
 �� � ��	�� ��
 ���������
���������� ����
�����9�� � �
��
� ��������� 	���& �� ��� ����� ���� �� �� ����
����������� ��	 ������
����	 �� ������
�� ������������� (��� ��
� �� �� �� �����	�
�	 :��
�� ����������+
������� �� �
������ � �
�����
� �� ����� ��� ����
������ ��	 ���������� ����	�
����� �
� ����
 ��	 ����� �� �������������� 	����	& ��� ��
 ����� 	���������
����
���� ���������� ��
����
�	� (�� ����
 �� ��
����
�	 �� �������� (�� ����

������ ��	�� �� ��� ����
��
 �� 	���
���	 �� ������� 4� ;���� ���� ��	�� ��	
��� ���������� �� ��
������
 �����������& �������� < ��	 ' ��
����9� ��� ����
��

�������� ����� ��� �������
 �� ���
����
� ����	 �� ������	�� �� �=�
	�	 ��
����� ��	 ��� ���
����
+� ���������	��
�� ������
�)� ��� ���
����
 ����
��	 ��
��� ����
��
 �� ��
���� ���� ��������%& ���� �� �� �������� ���� �� �� �����������	
�� �� ���������� ��
���� ����� ���� ����� ��� ������� �� �
	�
 �� ������� ���
����� �� ���
����
������� �	����	 ������������ �� ����� !"#$%�)� ������� 0 ���
������������� ���
������ �� �
���	��� �������� �
� ������	 �� ��
 ��
���
 ��
�
�� ->)����	% ���������
���������� !"?&"7$& ����	��� � ���
�	 ��	��� ������� 6
���� 	��������
�����	 ��
� �� ���� 	�����& ��	 ������� # ������	�� ��� ����
�

� ��
������� �����

(��� ������� 	���
���� ��� ����
������ ��	�� ���	 �� �� ����
��
 �� �.�����3�
�
	��� ����
��	 ���
����
�+ �������
�

��� �����	
�� �����	

���� ������������ 1 ���� �����& �����������& �
������ ����
������� 1 �������
��
���� ����
������� ���� ���� � ������� ����������)� ��� �
����� �����.�& ����
����� ���� ���� ��� ��
��
������	 �� � 4	���������� 4>% �
 <	����������
 <>% �����
 �����& ���� ���� �������� �������	 �� ����� ����
������� ��� �� ��
�����	 ���
	������ �� ���� ������)� �� ������	 ���� ���
� �
� ��� ������� ��
�������� �� ��� ����
������ ����� �
� �� ����
��� �� ��� ����
��
* ������ ��	
�������� /�� Ag �� ��� ��� �� ������ ��	 Obj ��� ��� �� ��,����& ��	 ��� R

d ��
� �����
 ����� �� 	������������� d� (�� �������� p : �Ag � Obj� �� R

d ����
������� � ������� �������� ���� ���
	����� �����
 ���� 	�������� d% �� �� ������
x�)� �����	 �� ����	 ���� ���� �������� �� ��
���� �� ��� ����
��
 	��� ��� ��
����% ���� ����
������ ����� ���
� ������+� ��������& ��	 ���� �� �� ������	 ��

���������� ���� �������� ��� ��
��
������	 ���� � ������ ���
	������

124 5� ������� ��� 6��6� 5�	��

@����� ��	 ��,���� ���� 	�=�
���
���� �� ��� ����
������� ������ �
� ����
���� ����� ��� ��
��
� �������& ��	 ��,���� �
� �������� �� ����� ������� ���
�� ��
��
��	� (�� ����� ���� �� ��,���� �� �� ���� ���� ��� ������������ �����
;�����+� ������� �� ���
����� !""$& ����� ��� �� 	����	 �� A������ �������������
������ �� ��� ����
������B ��	 ����� �� ��
� ������	 �� ��,����� C��� ���� ���
�.�������� �� ��� �������� :������+ ��	 :��,����+ �
� ��� ��
 	�������� ��������
�.�������* �� ������ ��� ���� ���� ���
��� �� ����� ������ ������% ��	 ��,���
 ����� ����	 ����%� @=�
	���� �� ���� ���	 �� ��� �����.� �� ������������
����
������& ���
� ��
���
� �� �� ��,���+� ������ ������������� �� ��
������ �� ��
����� � ��	�
 ���� �����
 	�������� �� �� �������
���

�	 �� �� ��
������ ���
������
)� ��� �
����� �����.� �� ���� ��� �=�
	���� �� �� ��,��� �� ���� ��� ������
������������� �
���	�	 �� ���� ��,��� ����
���� �� �� ����
��
� -������ 	�=�

��� ������ ����� ���� 	�=�
��� ������������& ��� �=�
	���� �� ��,���� �� ��
�
�����	�
�	
������� �� ������� � ��
��� 	�������� �� ����� �� ������� 4�<�

��� ������	

(�� �����
 ����� ����
��
������ ��� ����
������ ��� ������� �� ���� ��	���	���
������& ��	 ��������� �� ��� �� ������ �� ����� �� �������� ������ �� ��
���� �
����
��� ������)� Rd �� � d	���������� �����
 �����& ���� � ���������� �� ������
R � R

d ��
���

�	 �� �� �
����� �� ����� ������ �
� ���
��
������
�����	� ��
���� ����
& �� ��
����
�	 ���� ���� �
� �	,������� �����	�
���
������ ��� �� �
������ ���
����� ��
�������� ����� ����
��	 �������
& ��
 �.����� �� ��� ����� ��
�������	 �� �� �������
� ���� �
���% ���
� �� �� ����������� �� �
��� �	,������
���
	������ �� ��
�����	�

8�
 �.�����& 8���
� " ����� � 4> �
�	 ����
������ ���� � �����	 �������
�
�� ����� � ���� ��	 � �
������ �
� ���������	�)� �0, 0� 	������ ��� ������ ����
����
�& ���� ��� �
������ �� ���������	 �� �3, 3� ��	 ��� ���� �� �7, 8�� �����	

������ �� ��
��	 ��� �� ���� ����
������& ���� � �
������ ������ �� �� �����	�

��� ����
� ���� �5, 5� �� ������ ���� ��	 �9, 9� �� ���
���� �� � ������ (���
�����
��� �� �.���	�	 �� �����	� ��� ����� �3, 3�& �4, 3�& �5, 3�& ��	 �5, 4�� D�����
& �� ��
���� ,��������� �� �����	�
 ��� ����
� ��	 �3, 3�E�5, 3� �� ��� 	�=�
���
������&
��	 �5, 4� �� ��� ������

����� ���� �������� ����� ���� (��� ������
���� ����
	������
������ �� ����� � �����
 �� 	����� �������

��� �������� �����
���

)� ������� 4�" ��� ������� �� �=�
	���� ��� ���
�	���	& ��	 �� ����
���
	�������� ��� ������ D�
�& ��� �������� aff �� 	����	 ��
���
� ��� ��� �� ��
����� ���� ���� ��,��� �=�
	� �� ���� ����� ����
���� �� �� ����
��
� (��
��
��������
��������� �� �=�
	���� �� ��
���
��
� ������
���	 �� ��� ���� ���� ��
������ �=�
	�	 �� ���� ��,��� �� � ��
������
 ����� ��� �� :��
� ����
������+
�� ��� ����
��
 ���� ����
 ������� ���� ��,��� �=�
	� �� ���� ���� �����& �

����� �=�
	�	 �� ����
 ��,����� F���
	���� �� ��������& �� �� ��
� ������	 ����
��� ����
��
+� �=�
	���� �������� ������� � ������ �� ���� ������
��
��������
��� ����
��
+� ����
��� ���
���& ���� ���� �� �� 	����	 �� aff : Obj � Ag ��

(#
�������%���� �������
� +��
�����
� �� 0������ �������)����
������ 127

	
�� �� (������ 8& ���� �����
�����

℘�Act �� R�� C��� ���� aff ���� �� � ��� �� ���������& �� �� �� ������	 ���� ��

��,���3����� ���
 � ������ ������ �� �������	 �� ���� �� ��� �=�
	�	 ��������

(�� ��������� �� ������� �
� �����.�	����	���� ��
 �.�����& �� ������ 	�=�
�
��
��� ��,���� ��� �� �������� ��
 ���
� ������ �=�
	�	 �� ��	���	��� ��,����
���� �� ���
��
����� ��� �������� �� ��,���� �� ��� ����
��
 ��	3�
 ����� �� ���
����
��
+� ���������� @���
��������& �� �� ��
��� ��
��� ������� ��� �� �������� ��

��,���� ���� �� �����
��
����� ��� ��%	���
�������& �
�� ��� ����� �� ���� �� ���
����
��
& �� ������� ����� ��
��
��	� (��� ����
 	��� ��� 	���� ���� ��������� ��
�������& ��� ����� ��� ����� �����
��� ���� ��� ����� �� ���� ����
* ��	����� ��
����
��
 ���� �.������ �
 �
�	���� ��� �������
 �� ������� @ ���� ���� �����
��
��,����& ����� ��� ����
����� �� �����	 �� ��������� �� ��� ����
������ ����
�=�
	 ������� �� �������

� ���
�
�������� ����
	�
��

(�� ����
��
 	���
���	 �� ���� ����
 ������� �� ������ �� � ������� ����
�������
G
�	������ �� ����
� ������� �� �� ������ ��
�������� ����� ����� ������+ ��
�����
& ��	 �� ���� ������� �� �� ����� ��� ��� ����
��
 ��� �����9� ��� ��������
�� �� ����
��	 ����� �� ���� �.�����)����
����� ��
����� ��
� �� >��
�	� ��	
��
����� !?$& ����� ������� �� ����������	 ������������ ��� ����� ���� 1 �� ���
1 ��������� �� �����.���� ����
������ ���� �� �=�
	����%�

��� ���������� �
���	

)� ���� ���������� �� ������ �� ������	 ���� ��� ����
��
 ��� ���� ��
������� ��
��� ����� ��	 ��� ��

���	����& �����
 �
�� � �������� ����� �� ���� ���� �� ���
����
��
 �� �������	 �� ��� ����
������ �������
 ���� ��� ����� ��	 ��� ������
�� �����
�	% �
 ������� ��
���
����	
����
��� �� ��� ����
��
 ��� �
����� ����
� ��
���� ������ �� ��
������� 	���%� @�	 ���� �� ���� ��
������� �� �������� ��

129 5� ������� ��� 6��6� 5�	��

�
�������& �� ��� ��� �� 	���
���� ��
����9� ��� ��
 �������� �� ����� ���
� � �����
��
������ ��� �� ���������	 �� ������ ��� ����
��
 ���������� ��
�������� (��
�����
 ��
���

�	 �� �� �����
� ������ !"<$& ������� ���� ���
����
� �
� �
���	�	
���� ��
������� 	��� 	����	 ������
 �� ���� ������ ��
������

@ �������� ���
���� �� ��	�� ��
������� �� ��� ����
��
 �� �� �����	�

������
�� ��� ����
��	 �����+� ��������& �� ��� ��� �������� vic : Rd �� ℘�Rd�
���
� ���

����� �% 1 ���� �� �	,������ ��� �� ������ 1 ���� ��

���	 � ����� �� ��� �����

������ (�� �������� �� ���� �������� �
� ���� ��������* �� ��
������� �� ��������
���� �� �����
���
� ��� ����
� �����& �� �� �� ��� ���� ���� ��
� �� ���� �����
����� ��
���
��	� 8����
� ���� �������� 	���
���� ����� �������� �
� ��������	
�� ��� �
������ ��
��
����)� ��� ����& ���
������
���
��	 �� vic
��
����� ���
��
�������
������ �� ��� ����
��
 ����
���
	 �� ���� ����� �� ��� �����
 �����&
	���
������ ���� �� ���� ���� ��� :���	 �� ����+%�

��� ��	�
���
�� �����
���

G
�	������ �� �� �����+� ������� �� 	��� �� �
���	� �� ��� �������� �� ��� ��
��
������� �����������& ��� �������� �� ��,���� ���� �=�
	 ������� �������� /��
d : Ag � R

d � R
d �� R �� ��� �������� ���� ��
 �����
���
�� ��� 	�������

������� ��� ������ �� ��� �����
 ������ C��� ���� ���� 	������� ���	 ��� �� ���
H����	��� 	�������I H��� ������ �� ����� �� ��� H����	��� 	������� �� ��
����
�����& �� ���� ����
������� ����
 	������� �����
�� ���� �� ��� ���
���� ����%
�
� ��
� �
��������� ���� ����� ������ ���� �������� ����
����� ���� A� ��

�������� ���
����
+� �����& ����� ��� ���� �� ���	 �� 	���
������ d� �����
�������� ���� ���	 ��� �� �
���������* �� ���� �������� �� ���	 �� ��� ���� ��
��
���� ������%& ���� �������� �� ��� ���� �������� �
����� ��� ��
����	 �� ���
����
��
+� 	������� ���������)� ���� �� �����
���� ���
����
� H����	��� 	�������
��� �� ���	 �� ��
�
����	 �����
�� �
��� ��� ������& � �����
� ����� �� �����
�� ������� ������ ������������� ���
���	 !?$�

-���	 �� ��� ����
��	 �����+� ��������& ��� 	������� �� ��,���� �� ��� ��������
��� �� 	���
����	 �� ��� ����
��
�)� ����
������� ���
� ����
������ ���� ��
,���� �
������ � ���������� ��
� �� ���
����
 �������
& ���� 	������� �����
��
���� �� ��	������� ��
 ��� ���
����
�+ �.�����	 �������
� /�� obj : ℘�Rd� ��
℘�Obj� �� ��� �������� ����
���
�� ��� ��� �� ��,���� ���� �
� �������	 �� ����

����� ���
� �� �� ������	 ���� ��,���� 	� ��� ���� ��
���
������%� ;���� ���
���
���������	 ��
��� ���
�	�����& �� �� �������� �� 	���� ��� ��������� ��������
����	 �
�	������ ���������

��������� � ���	������
	�� ������������ ��� i � Ag �� �� ���

��
��� ������ aff , d, obj, p, vic �� ������ ����
�� ��� A 	
�x, α, w� �x �
obj�vic�p�i���& �α,w� � aff�x, i�� � ��� �� ������ �� ������� ���
��� ������� ���

� �� ���� :������; ��� �� ��� ������� �������
� :����;< ���� �� ��� �� �
�����������
� �� � ���� �����
����� �� �������� �� =����� > �� �
����� ��� ��
� ��	 � ���� �

��	 ����
����	 ���
����� � ���� ,���� ��
� �0, 0� �
 �1, 1�. �� �
� �2 ,��� �� ��
)�������� ��������. ��� 2� �
� ������ ��� �
��
��	
��"
�����	 ��� ���������	�

(#
�������%���� �������
� +��
�����
� �� 0������ �������)����
������ 12?

���
����� ������ P : Ag �� ℘�Obj � Act � R� �� ��� �� �������������� �
��
������� ���������

P�i� 	
 �x, α, r� � �x, α, w� � A &

r 	 �w f�d�i, p�i�, p�x���� �

C��� �� ��� �������� P 	����	 �� >��� " ���� r � R �� 	�
���	 �
�� ��� ��������
������ �� w& ��� �=�
	���� ������ �� �� ��,���& ���� � �������� f �� ��� �����+�
	������� �� ���� ��,���� (�� �������� f : R �� R ��	��� ��� ���� ���� :��2�����+
�� �� ��,��� ���
����� ���� 	�������� @� �.����� �� ���� 	��
�	����� �������� ��
f�d� 	 �1�d�& ��� ��
� �������������� �� �� ���
�� ��������� (����� �x, α, r� ����
�
�
���
��	 �� ��� �������� P ���� ����
��� �� � ��
���� �
	�
��� �� ���
� �x, α�
���� ������� ��� �
	�
��� �� ���
���� r � R� /�� P��i� �� ���� ����� ��
 ����
����� i& ����� ����
��
������ ��� ��,���3������ ���
� ��� ����
��
 �
�	���� ��

���� �����& ����	 �� ��� �����+� ����
��	 �������� ����
������ �� ����� ��,����&
��
���� �� ����
 �������	 �=�
	�����

��� !
"�#�

)� ���� �.����� ��� 4> �
�	 �� 8���
� " �� ���	 ��
 ������
������ @����� ���
����
��
 �� ����
�� �� ����� i ������	 �� ���
	����� Pi 	 �6, 6�� (�� ���

	������ �� ��� ���� ��	 �
������ �
� �� ��� ���
� �����& ���� Pb 	 �7, 8�
��	 Pt 	 �3, 3�&
������������ /�� i �� � ������� �����& ��	 ��� aff �bomb, i� 	

�pickup, 1�, �detonate, 4�� �� ��� ������� �=�
	�	 �� ��� ���� �� ��� ������ (��
��
�����	
�����
���
��	 �� vic�Pi� �� ��� ��� �� ���������� ����� �� � 4����
�	���
�
���	 ��� ����� ���� ��� ����
� �
�� �4, 4� �� �8, 8� ����� ��� �����%& ���� ����
obj�vic�Pi�� 	
bomb� 	 O� /�� A 	
�bomb, pickup, 1�, �bomb, detonate, 4��& ��
�� >��� "& ������ d�i, Pi, Pb� 	 3& ����� ����� f 	 �1�d� ����	� ��� �
�	������
P�i� 	
�bomb, pickup, 1

3 �, �bomb, detonate, 4
3 ���

@���
������ �� ��� �����& ��� j �� �� ����� ���� �������� Pj 	 �5, 5� ��
 �����
�� ���	� ���� aff �bomb, j� 	
�pickup, 1�, �disarm, 1��� 8�
���
��
�& ������ ����
���� �� ��� ����
��
 �� ��������	 ��� ����� ��� ��
��	� �����	 �� � ���� �� ���	�
���� aff�j, trashcan� 	
�deposit, 1��� C��� d�j, Pj , Pb� 	 5 ��	 d�j, Pj , Pt� 	 4&
��	 ������ ��� ����
��
 �� ��������	 ���� j ��� ��� ��� �����	 �� � ����
�� ���� P�j� 	
�bomb, pickup, 1

5 �, �bomb, disarm, 1
5 ��� J� ��� ����
 ���	& �� ���

����
��
 �� ��������	 ��� ����� 	�	 ��
��	� ���� �� � ����& ���� P�j�� 	 P�j��

�trashcan, deposit, 1

4 �� ���� ���� ��� �����
 �� ��� �����
 �
�	�������

��$ ��%������

(�� �������� P& �� 	����	 �����& ����� � ���������� ���
����� @� ����
������
���
���� ����	 ��������� ���� �������� ���
�������� �� ��� �
�� ���� ���
������
A��
� �����B �� ��� ����� ��� �� �����	�
�	& �� ��� �����	 ���� ��
���
 ��������

������ ��� �� �����	�
�	& ���� (���& ��� ����
��
 ��� �����	�
 ��� �������� ��
��� ����
��	 ����� �� � ��������� �������& �� �� ��� ����
��
 �� ��	�
 �
����
�
��� ��������� ��
 ��� ����� ��	 ��� ��

���	���� �� ������	� (��� �� ��������� �� ���

1>2 5� ������� ��� 6��6� 5�	��

����
��
 �� �� �� ����������& ����� ���� ����� ��
������� �
�������� �������� ��
����� �� 	��
���� ���� ���
����	 	����	 �� ���������
����
��� !"5$�

� ���
�������� ����
	�
��

K���� ��� P �������� 	����	 �� ������� < ��� ����
��
 ��� 	���
���� � ��
������
�
	�
�	 ��� �� ������� �� �.����� �� ����
��	 ����� �� ��
��
� �� ��
������

��,����� (��� ��� �� ����	 �� � :��������+ �� ��� ����� ��	 ��� ��

���	�����
)� �� ������ �� ��
����9� ���� ������ �� ��� ����
��
+� ��
������� �� �
�������
��
)� �� �� ��� ���� ��� ����
��
 ��� �����	�
 �������� �� ��� ����
��	 �����& ��
��
����9�	 �� ��� ��

��� ������� ���
��������� �� ��� �
������ �������& �� ���
����� ���� ����
�� �� ��� ��������� 	����	 ���
� �
� �������	�

$�� &���#��� �'�
"��	

(�� ������ �� ����	��� �� ���	������� �� ���� ������� ��	 	���
��� �.������ ���
�����)� ��� ����
��
 �����	�
� ������ �� ��� �����& ���� ������ �� ����� ����
�� ��	���	� (� ���� �.���� ��	� �� ���
�	���	 ���� ��
 ��	��& ����� �� ������
�����9�	 �� �� �		������� 	�������� ���� ���� �����������
�� �������
 ��� ��

��
������	 �� � ������������� �� :���������+ �� ��� �����
 ������)� ��� ����
��

�� ��
���� ����� ��� ���� ��	 	��� ��� �����	�
 ����
� ������ �� �
�	������& �� ��
������& ���� ���� �� � �����
 �������� �� �������

/�� tnow � R �� ��� �
����� ����& ��	 ��� Snow �� ��� �
����� ����� ���� �����

����� ���� ��,����& ����& �� 	���
���	 �� ������� 4%� (�� ����
��
 �
�����	��
���� ���
��
����������� �� ���� ������ �� ���� �����& ����� ��� ��
��
������	
�� ������ �Spast, tpast�& ��
 ����� �� ���	� ���� tpast � tnow� 8�
 ����������& ��
�� ������	 ��
� ���� ��� ����
�������% 	�=�
���� ������� Spast ��	 Snow ��
��� �������� �� ���� ����
��	 ������ (��� ���������� ������� ���� ���� �� ���
����
������ �� Spast ���	 ��� �� :
������
�	+ �� ��� ����
��
& �.���� ��
 ���
�������� �� ��� ����� �� tpast�

$�� ��	�#
��"���()�
��� �* ��	�����

@� �.������	 �� ������� '�"& ������ ������� ���� ��	 �
����� ������ �����	�
�	
�� ��� ����
��
 ��
���
����	 �� ��� ����
��	 �����+� ���������)� �
	�
 �� ���������
�������� �� � ��
������
 ����& ��� p : �Ag�Obj��R �� R

d �� � ��
���� ��������
���� �.���	� ��� �������� �������� 	����	 �� ������� 4& ������� ���
� �� ��������
 ���� ������ �
 ��,����% ��	 ���� ������ t � R �� ���
	������ �� ��� �����
 �����&
���
� ��,���� 1 �� ����	 ����
� 1 �
� ������& ��	 ��������+ �������� ��� ��

��
������	 ���� � ������ ���
	������)� ���������& ��������	��� 	���
���� ��

� ��� ���������
� �� �������� ������������
��@ �� �����
����� ���� ��
� ��� �
������ ���
������ ����	 ����� �
����
� �� ���<
� ��
������� �
�������
��	 �
��
���� ������ ��� ��#�� ��
� �� ������� �� ������ �
 �� �����;�<
� ��
�������
��������� ��� �������
� �
 ����
�� �� ���
��	 �� ����� �
����
� ������ ��� �������
�

��� �������� �� �� �����
������

(#
�������%���� �������
� +��
�����
� �� 0������ �������)����
������ 1>>

������+� ��������
������� �� ���� ������� ��������� D�
�& ����
��� �� �� ������+
	�����������
������� �� ��,����& �� ��� Δ : Ag �Obj �� R �� ��� �������� ����
���������� ���� 	������������ 8�
 ����������& ��� ����
��
 �����	�
� � ������ ����
����� �� ���� t�& �� ���� ���� ��	 �
�����
����� �������� �� ��� �������
� �� Δ�
(��� ������� �� ���� �� ����
�����& ����� �����
�� �
������� ��� �� ����
��
���	�

/�� i �� ��� ����
��	 �����& t ��� �
����� ���� ��	 t� ���� ���� ����& ����
���� ��� �����+� �������� �� ����� ����� �� Pt 	 p�i, t� ��	 Pt� 	 p�i, t��� (���
�����+� 	����������� ����
������ �� ���� ��,��� x �� ���� 	����	 �� Δ�i, x� 	
d�i, Pt, Px� � d�i, Pt� , Px�& ���
� Px 	 p�x, t� 	 p�x, t�� �� ����
	���� ���� ���
���������� ���� ��,���� 	��+� ���� ��������� ��� ���� ������ �����	�
�	 ��

����������	 �
�	�������)� ����
 ��
	�& Δ
���
�� ��� ������ ������ �� 	�������
�
�� �� ����� �� ���� ��,���� �� �� �� �������� ���� ��� ����� �� �����
 �� ���
��,��� �� ���� t �� ��� ���� �����
%& �� �� �� �������� ���� ��� ����� �� ��
���

���� ��� 	�������	 ������%�)� �����	 ���� ��
� ����	 ���� 	������� ���	 ��� ��
H����	���& �� ����� ���� Δ ����� ��� ��& ��
 �.�����& 	����������� �� ��
��
�� ��� ���
����% ���� �
�� i �� x�

$�� +�������
���� &�����

)� ������� '�4 ��� �������� Δ ��� 	����	 ��
���
� ��� �����	% 	�����������
�� ������ ��
������� �� ��,����& ���� �������� 	����������� ��	������� ���
����
��	 �������� 	����������� ��	������� 	���������� (���� ���
�	����� �
� ���	 ��
	���� � ����������	 �
�	������ ���������

��������� � �"������
	�� ������������ ��� i � Ag �� �� ����
��� ������
Pt �� ������� �������� ��� Pt� ��� ���� ��������� ��� ��� O 	 �obj�vic�Pt�� �
obj�vic�Pt���� ��� A 	
�x, α, w� �x � O& �α,w� � aff�x, i�� �� � ��� �� ������ ��
������� ���
��� ������� ��� ���
����� ������ ����� �� ��������� ������ ��
���
�

 � �������� M : Ag �� ℘�Obj � Act � R� �� ��� �� 	����������� �
��������
��������� ������ �� ��������

M�i� 	
 �x, α, r� � �x, α, w� � A &

r 	 w g�Δ�i, x�, � t� t� �� �

@� ���� P �����
����	 �� f & ��� �������� M ����
����� �� �� �		������� ����
����& ������ g& ��	����� ��� ���� ���� ��� �������	% �=�
	���� �� ��,���� ��
��2�����	 �� ���� ��� �� ��� ������ �� ��� �����& ����
	��� �� ��� ����
��
�
(�� �������� �� ��� �������� g : R � R �� R 	����	 �� ��
���� �����
�� (�
���& �� ��������� ���������& �������� �� ���
��� �� ������ �� �������� ���� ����
������ �.������& ����� 	�
������� �� ������
�����& ���� ��� ��,���+�
��� �� ������
�� ��������� (�� ���
��� �������� ��	 ������
����� �� ���� ��,��� 	�
��� ����
���� ����
��� ��� �� �.�
����	 �� ��� ��,���+� 	����������� 	�
��� ���� ����
���
�� �����& ��	 �����
 ��� �� ���	 �� 	������ g� 8�
 �.�����& g ��� ��	�� ���
���� ���� �� ��� ����� ���
������ ���� ��,��� ���� ���� �������� ��	3�
 �����
�
����� �� �� :������+ �� ��
��
� ���� ������ ���������	 ���� ���� ��,���& ����
���� ��
���� g ��� �������	% �=�
	���� �� ���� ��,��� �� ��2�����	 �����������

1>8 5� ������� ��� 6��6� 5�	��

	
�� � &����������� �������� �

������ �� � 1& ������� �����
�����

(�� �����
�� ��� ���	 �� ��� ����� 	�������� ������ �
�� ���� ��,���� ������

��������� ���� ���� �����	�
�	 �� ����
���
�� ��� !?$� (�� ����������	 �
�	������
�������� �� >��� 4 ����	� ������
 ������ �� ��� ������������	 �
�	������ ��������
�� >��� "& ���� ���� �� ���� ������ ��
 � 	�
���	 	�������� �� M��i�& ����� ����
�� � ��
������ �
	�
�	 ��� ��
 ����� ��� �
	�
��� �� ���
� �x, α� �� �
���	�	 ��
��� �
	�
��� �� r ��
 ��

�����	��� �x, α, r� �M�i��

$�$!
"�#�

8���
� 4 ������
���� ��� ���
���� �� ���� ������� ���� ��� ������ �� �� ����
��	
�����& �� �� ����
�
���	 �� ��������� �� tpast ����% ��	 tnow
����%& ��	 ���
��,���� �� ��� ��������& � ������ ��	 � ���
	& �������	 �� � <> ����
�������! (��
����� �������� ��
� ����� ����������% ��,���� �� ��� ����
������& ��� ����� 	��
�� ��� ���� ��
� �� ��� ����� ��
�� ��� �����+� �������� �� tpast& ��� ����
 ���� ��	
����

���� 	��� �� ���
���� ��
� ��
� ��� �����+� �������� �� tpast ��	 tnow&

�����������& ��	������� ��� 	������������ H��� ������� ��
��� ������
�����& 8��
�
� 4 �����	 ���� ����
 ���� �����	�
��� ��� �����+� ������& ����	 �� ���������
�� tpast ��	 tnow&
������� �� ��� ��,���� �� ��� �������� �
������ ��	������ �����
����� �����
���� ��� ���
	 ��������& ��
 ��� ���� �� ��� �.�����& ��� ������
�� �=�
	�	 ������� �� �� �����%�

$�, ��%������

)� �� �� ������	 ���� ��,���� �
� ���� ��2�����	 �� ������� �� ������& ���� ���
���������� ��	� �� ������� '�" 1 �� ������+ ��������� ����� ��� ����
�������
�����
 �� ������ 1 �� ����	� @���
 ���& �� ��� ����
��
 �� �����
��	 ���� �
��������
������� �� ������ �� ��,����& ���� �� ��
��������� �� �����	�
 ����� ����������
������ �� ����� ���� �������� �� ������ ��� ����

�	 ��	 �� ��,���� ���� ����

� �� ����� �� �
��
���
� ��
 �
��$�� �������
��
� � ������� �� �� ���� *�����
��

����� �
� ������� �� �� ��)��� /
��������
� ��� ABC�

(#
�������%���� �������
� +��
�����
� �� 0������ �������)����
������ 1>1

����	 ����� C���& ������& ���� �� �����
��� ���
� ������ ������% ��� ���� ��
�����	�
�	 �� ��,���� ����	 ����%& ���� ��� ���������� ����� ��� �� ���������
@� �.����� �� ���� � �����
�� �� ����
������ ������� ������ ��������� �����
������+ ����������)� ���� � ���� ��
 ��	�� �����	 �� �.���	�	 �� 	��� ����
:������ ��,����+& ����� ��� ��� ���� 	��� �� �
����� ��
 ��������� ���������� ��	
�� �������� � ����

������� ������� ������ ��	 ��� ������� �� :������+�

� ������
�� ��	���
�
��

(��� ������� �.���	� ��
 ��
���
 ��
� �� 	����� ����� ��������� !"?&"7$& �����
	���� ���� ����
���� �� � ������
� �����+� ������ ����� �� �
���	� �� ������� �� ��
����
��	 �� ��
��
�& ��	 �� �� �������� �� ������� ����3���������
���������� !#$�
@����� �
� ������	 �� �
��
����	 �� � ->)����	 !6$ ����� �
��
������ ���
����� ���� ������ ��
 	��������� ������
� �� ����������� ��
�� !0$� (�� �����
�	�� �� ���� �� ��� �������
��
���� �� ��� ����� �
� ����� ��	 ��
���� ������
����� ���	 ����
���
	 �� ��� ���
�����& ���� �������� ����
��	 ������ ���������
������� ����� ����
���	 �� ��� �����+� ����� ������ ��
 	��������� ����

��� ���
������ ����� ���
 �� ����������� ���� ��	 ������� ������ ��
���� �
���+� �
����
	�����% �� ��� ����
������ ��������

)� ��� ���
���� �
������	 ��
�& ��	���	 ����� �
� �����	�
�	 ��
���
	 �� ���
�����+� ���������& �������� �� ������� �������& ��	 �������	 � ����
���� �����
����	 �� ��� ���
���� �
������	 �� �������� < ��	 '� (���& � ���
�	 ��	�� ��
�������	 ����� ����
��
���� 	��������� ����
������
���
	��� ��� �����+� ������
�����& ���
�	 �� �
���	� �� �� ����
��
+� ������	�� �� ��� �����+� ����
������
��	 ��� �������
� @���� ��� ���������� ��	� ����
���
	 �� ��� �����+� ���

����� �
� ��� ���� ���� ���
���� �
� ����� �� ��� ����
��
& ��	 ���� �� 	��� ���
����
����� ����� ���� ��� ���� � ������ ���������%� (���� ����������� ��� ����
��
���& ��� �
� �������� �� ��� �����.� �� ����� �
 �
������ ������������ ���
�
��� 	������
+� ��,������ �� �� �
���� ���������� ��
���� ���
����
�& ��	 �
� ����
��� �������� �� ����
���
� �� ����3���������
���������� ���� !"4&#$%�

,�� -�"�#�*'��� �#
�	

G���� �� ->)����	 ������
� ������ ��������� �����9� �
��
������ �����
����
���� ���������� �����������& ���	������� ������ ��	 ���
������ /�� π � LΠ �� ���
������� ������� �� ������+ �����& 	����	 �� ��� -C8 �
����
 �����& ���
�
α � Act �� ��� 	�������� �� ����� �� ��� ������� ������� ��
 ����
����� �������&
��	 φ � L0 �� � �
����������� ������� �.�
�������

π : :	 α �π1;π2 � �* φ ���� π1 �#	� π2 �.��#� φ �� π

)� �
	�
 �� ��
��
� ���������
����������& ��� ����
��
 ����
����� ������� ��
��
������ �� ����� �� �
������ ��� ����� �� ���� �� ��� 	����������� J���� ��
����
��
 ��� ���� ����
�� � ������ �� ��� �����+� ������� �� ���� ��� ����
��
����
��� ��	���� �
 �����& ��
 �.�����% ��	 �� ��� ������� �� ��� ����
�� �� ����
���� �� ����
����	 �� ����� (�� ������� ��� ����
��
 �� ����
����	 �� �
� ��
�

1>B 5� ������� ��� 6��6� 5�	��

���

�	 �� �� !�� �������& ��	 �� �� ������	 ��
 ��� ���� �� ��������� �.��������
���� ����� �
� ���������	 ���� ��,���� �� ��� ����
�������)� �� ������& �
�� �
������������� ����� �� ����& �� ���� � ��������	
��
���������� �� ��� �����+�
����� ��������� ��

����������& ����������� ��� ����� 	��� ��� ������� ���
�����
 ��� .��#�/�� �����
���%� D�
�& �� �� ������	 ���� �� ��� ������� ����
 �� ���
����� �� ���
�����& ���� ���� ����� ��� ����
��
 �����	�
� �
� ����� �� �������
������� �π � L

�Π & ���
� L
�Π � LΠ �

�π : :	 α � �π1; �π2 � �* φ ���� �π2 �#	� �π2

(���& ��� ����� �� ����
��	 ������ ��� ������� ���
�����& ��� ��� ����
��
 ��
��
�� ����� ���
����� ��
�� �� ���������� ��
����� ����
��	 �������� (�� �������
��� ����
��
 �� ����
����	 �� 	� ��� �����
 ����	� ��� ����� �� ���
����� ������&
��	 ������������� �� ���� � ���� 	��� ��� ���� ��������� �
�������)� �� ��

���
��
� ,��������� �������
��������� ������� ����� �����
� ��������& �����
���� ���
���� 	���� ���� ����
������� @���& �� ����� ����� ��� ��
���
����	 ��
����� ��
 ��������������)� �����	 �� ����	 ���� ���
����� �� ���� ����
�	 �� ���
����
��
 �� ��� ����� �� ������ �� ����� �
��
������ ���
����� ���� ����
� ��
��� ����� ��
���� ���� �� �
��� �� ������	
������	��%& ����� ��
 ��	�� 	���
������� ��
� ;���� ��� �����& �� �� �������� �� ��
��
� ���������
���������� ��

������� ����
��	 ������� �� ����� ����
����� �
���� �� ����� �� ����
��� ��� ���
������
����� ��	 ���� �� ��� ������ ������� �
�� ��������	 ����� �� L

�Π �

,�� 0�' -�1�����	

J���
����� ��������� �� ��� ������� ��� �� 	�
���	 �� ������������� �� ������+
�����& �� 	���
���	 �� ������� 0�"� /�� α �� �� ����
����� ��� ������& ���� ����
��� 	����� LΣ � L

�Π �� ����
����� !�� ��������� �� 	����	 ��
���� ��� �������
������� σ � LΣ �� σ : :	 α �σ1;σ2� (�� ����
��
 ���� ���� �
��
���������� ��
� ���� �� � ��� �� ��� ��������� �� ����
������ ������� �� ��� ���������
����������
�
������)� ��� ������	 ���� ��� ����� 	��� ��� ����
����� ��� �����& ��	 �����
����� ����� ������� ���� ���������� ����������� ��� ����
��
 ���� ��
������ ��
�����+� ������� ������������� ���� ��� �����

������)� �� ��
���
��
� ������	 ����
��� ����
��
 ���� ��� ���% ������� �� ��� �����& �� ���� ��
������� ����
��	
��������� �� ��� ��������� 	�
���	 �
�� ����� �� 	��� ��� ���� �� ���� :����+ ����
��������� (��� ������� ���� ���� �� ������ ����
��	 �������� ��	 ��� ���������
	�
���	 �
�� � ��������	 ���� �
� �� LΣ & ��	 ��
� �� ������ ��� ��������
KS : L

�Π �� ℘�LΣ� �� �
������� � ��������	 ���� �� ��� ��� �� ��� ���������
�� ����
��� ��� ������
����� �������� ��� !"?&"7$%� (�� ���������� �� ��������
����
������ ���� ������� ����& ������� ���
� ������ ��� ����� ��
��
�� �� ����
��	
�� ��� ����
��
& ���� ��� ����
��	 �������� σ ���� �� � �
��" �� ���� σ� � Σ�

� ��� �� ������� �����	 �
� �������� ���������	<
�� ������� �
�� A>9C �
�� ���� ���
���
������ ��������
��

(#
�������%���� �������
� +��
�����
� �� 0������ �������)����
������ 1>3

,�� !�#
�����
�� ���������� ������	

/�� Γ �� � ��� �� ���
� �φ, �π� ���� �
� ��� ����
��
+�
��
���������� �� �� �����+�
�������
��
����& ���
� φ � L0 �� �� �.�
������ �
�� ��� �
����������� ��������
L0 �����
��
������ ��� ����������� ���� ��
 ����� ���
��� �������& ��	 �π �� ���
����
��
+� ��������	
��
���������� �� ��� ���� ���� ��� �� �������	 �� ��� �����
�� ������� φ� (�� ������ ���	����� ��	�
 ����� � ���� ��� �� �������	 �� ����
�	
�� ��
 ��	��& ������� ����� �� ���� �� ����
����� ������� ��
������� �� ������+
�
�����	 ������)�& ������
& ��� ����
��
 ����� �
��� �� ������+ �
�����	 �������
�� ���� 1 ���� ��� � ����
� �� ���	 1 ���� ���� ����
������ ��� �� ���	 �� ������
� ������ ��
���� ��� ����
��
 �����	�
� �����������

@� ����
��	 �������� �� ������� �� ����� �� �� �"������� �� ��� ����
��
 ��
��
�� �� � �
�����	 ���� ��
 ����� �� �������& �� �� ��� �� �
��.������	 ����
� ��� �������� �� � ���� ���� ��� �� �������	 ��
 ���� ���� !"?&"7$� ;���� ����
�� �.��������� ��� ����
��
 ��� ��
���
��
� �
����� ��� ����� �� ��
��
� ���
���������� ������� �� ���� ��� ���������

��������� � ���#��
	�� �!�#
�
����/������������ ��� i � Ag �� �� ���
��
��� ������ σ � LΣ ��� ����
��� �������� ��� Γi ���
���� �� !���� �� ��

����
��
� � �������� R : Ag � LΣ �� L0 � LΣ � R �� ��� ��
���������

�"��������� ��� �
�������� ��������� ������ �� ��������

R�i, σ� 	
 �φ, σ�, r� � ��φ, �π� � Γi : �σ;σ
� � KS � �π��&

r 	 h�σ�, cost�i, σ�, p�i��� �

)� >��� <& φ � L0 �� ����� i+� �
�����	 ����& ����� �.������ ��� ����
��	
�������� �� ��� ������� σ � LΣ ����	 �� ��� ���� ���� σ �� ��� �
��. �� ���� ���
�������� σ� �� ���� ��������	% ���� �π ��
 ��������� φ& ���� σ� 	 σ;σ� ���� ����
σ� �� � ��L.� C���
����& σ� �� ���� ��� �
�	����	 ���������)� �����	 �� ����	
���� �� ��
 ��
���
 ��
� !"?&"7$ ��� �����
��� �
��. ��� �����	�
�	& �� ����� ����
σ� ����	 �� ��� ����� ��L. ���� ��� �
�	������ �� �� ��
���
 ��� �������%�)�
����� �� ��������� ���������� �
��.�� �
� �� �
�����
����
�	 �� �� ��
���& �������
)� �� ��� �������� ��
 �������� 	������� �.���������� �� �.��� ��	3�
 ��������
��

�����	��� �
�	�������%& �� ����� ���� �� �� ������ ��
 ��� ����
��
 �� ����
���� �����
� �� ������������ �� ����� �.���������� ���� ���� �� ��� ������ ���
:����+ ���� (��
��� r ������� ����
���& ����	 �� � �������� h : LΣ �R �� R ��
� �������� σ� ��	 ���� cost : Ag � LΣ � R

d �� R& ���� ��� ����& ����
	��� ��
��� ����
��
& �� ��� ����� ��
��
���� ���� ���������)� ���� ���� ��� ���������
	����	 ��
���
& R �����
��� �� R��i, σ� ����� ���� �� � ��
������ �
	�
�	 ��� ��
���
� �φ, σ��& ��������� ��� �
	�
 �� ��

�����	��� r � R�

(��
�������� �����	 cost �� �� �������* ������� ������� �
� ���������	 ����
��,���� ��	 ��������
����
� ��� ����� �� ���� ������ ��� ����
������& �� �����
��� ����� � ��
���� ������ �� �=�
� �� ��
��
� � �������� �� ��������)� ����
�����
��� ��,���3������ ������������ ��� �� ���� ���� ��� ���� �� � �������� ���
�� ���������	 �
�� ��� ������� ������ �� ����
 ����� ���� ����������� �� �����

��
��
��	 �����2�& 	����	��� �� ��� �������� ��������% ����� �� ����� ��	
����
������� 8�
 ��� ��
������
 ���� �������� ���	 ��
�& �� �� ������	 ���� ���

1>4 5� ������� ��� 6��6� 5�	��

�����+� �������� 	���
����� ��� ������� �� ���� ��������� @ �������� �������������
�� ���� �� �������& ���
� ��������� p ��	 d �
� �� 	����	 ����
�& ��	 fno :
Ag �Act �R

d �� Obj �R �� � �������� ���� ���� � ����� �� �����& ������ ��	
���
	����� �� ��� ��,��� ���
��� �� ���� ���
	����� ����� ������ ���� ����� ��
��
��
� ���� ������& ����� ���� ��� �=�
	���� ������� C��� ���� ��� 	��������
�� cost ����� ����� ��
���
����& ��	 �������� ����� �� ���� �� 	��� ��� ����
������ �� ��� ����
������ ���� �������� @��� ���� ���� ��� ���� �� 	���	�	 ��
��� �=�
	���� ������&
�2������ ��� ���������� �� ��� ����
��
 ���� ��� ���� ��
��
��
���� ��
� ����
���� ������� �� ���� �����������

cost�i, σ, P � 	

���
��

d�i, P, P �� �1�w� �

cost�i, σ�, P �� �� �α � Act�σ� � LΣ : �σ 	 α;σ��

d�i, P, P �� �1�w� �� �α � Act : �σ 	 α�

��
� fno�i, α, P � 	 �O,w�& p�O� 	 P �

(�� �������� h �� � 	��
�	����� �����
 ���� 	����	� �� ��� ������ �� � ��������
��	 ��� ����&
�2������ ��� ���� ���� ���
��
 �
�	����	 ��������� ���� ����� ����
���� �������% �
� :�����
+ �� ��������� � ���� ���� �����
 ����� @ �������� ������
������� �� ���� �������� �� h�α1 αn, c� 	 1��n c��

,�$!
"�#�

8�
 ���� �.�����& ��� 4> ����
������ �� 8���
� " �� ���� ��
� �����	�
�	�
@����� �� ����� �� ����
��	 �� ��� ����
��
& ��� ����� �� �� �� � ->)����	
������
� ����� ���� ��� ���������
��� �����	 ��
� �� ��
�� �� ��� ���� ��
 �����
�� �������& ��� ������ ���	����� ��	�
 ����� �� ��� �� �������	& ��	 ��� ���� ��
������� ��� ����%�

;J@/* bombMdisposed -H/)H8* bombMat�X,Y �

G/@C* .��#� �bombMat�X,Y � � �at�X,Y �� ��
moveMtowards�X,Y ��;

�* standingMonMbomb ����
pickup;.��#��trashMat�A,B���at�A,B��

��
moveMtowards�A,B��; deposit� �#	�
�

/�� π �� ��� ����� ����& �� ����� ���� ��� ������������� ���� ��� ������� ��
�π 	 �* standingMonMbomb ����
pickup; deposit� �#	�
� ��	 ���� KS� �π� 	

pickup; deposit�� @ �����	
��� �� ��� ����� �� ��� ���������& �� ����� disarm ��
��� ���� ��� �������

;J@/* bombMdisarmed -H/)H8* bombMat�X,Y �

G/@C* .��#� �bombMat�X,Y � � �at�X,Y �� ��
moveMtowards�X,Y ��;

�* standingMonMbomb ����
disarm� �#	�
�

@����� ��� ����� �� ��� �
���	�� ����� j �� ������� <�<& ���� p�j� 	 �5, 5�& ��	
������ ��� ����
��
+� ��
�����	 �=�
	���� ��� ������ �� aff % �� ��� ���� �� ��
���� �.������ (�� ����
��
+� �
�	������& ����	 �� ��� ����
��	 �����+� ��������&

(#
�������%���� �������
� +��
�����
� �� 0������ �������)����
������ 1>7

�� ���� �� �������& ���
� ε �� � ������� ������� 	������� ��� :����� ����
������+
����� �
��.�� ��� ���������

R�j, ε� 	
�bombMdisposed, pickup; deposit, 1�28�,

�bombMdisarmed, disarm, 1�5��

(�� 	�
���	 �������� R��j, ε� ���	� �� �bombMdisarmed, disarm� �����
����	 ��
��� ���� �.���������3�
�	������& �������	 �� �bombMdisposed, pickup; deposit��
@���
 ����
���� pickup& ����� ���� p�j��9, 9�& ���� ��� ��������� ��������

R�j, pickup� 	
�bombMdisposed, deposit, 1�12��

(��� �.����� �� ������	 �� ��9� ��	 ����� ������� �� �����
���
�������& ���
�����	 ���� �� �	�� �� ��� �.��������� ��	 �
�	������ ����	 �� ������� ���
���
 �� �
������	 �� �������� < ��	 '% ��� ���������� �������� ���
������ �� ����	
���
�	 ��	��� �� ���������
�����������

,�, 2
#�
����
�� ��%������

@� ��	���� �����
���� ������� ��� ���
�	 ���
���� �
������	 �� ���� �������
��	 ��
� �������� ���
������ !"4&"?$ �� �����	� ��� ����� �� ���� ����
� C��
�
�������& �� ����� �� ��� ���� ���� ��� ���
���� �
������	 �� ���� ������� ����	�
���� ��
 ��
���
 ��
�& �� ��� ����� ���� �� ���
���� ���� ���� ��
�� ���� ��
���& �� �� ������ ���� �.���������3�
�	������ ���
� �
� �
	�
�	 ���� ���� :�����
+
��	 :��
��+ ���,����
�� ��� �� 	�����������	� D�����
& ����
���� ���������� ��
��� ���
���� ��
����
�	 �� �� �� �� �� 	������	 �� � �
������� �������& ���� ��
� ���� �
 �
������ ������������)� ��� ����& �� �� ��
 ���������� ���� � ��.��
�
�� �������� ��	 ������������� �����	� ���� �
��� � ������ ����� �� ����
������&
�� �� ��� ��� ���	 �� ������ ��
 �� ����
��
 ���� ������� ���������
��������
����� ��,���� ��	 ��� �������& �������� �� �
���	� �� ��
����
�	 ���������� ��

������� �� ����� ��	 �����& ����� ����
������ �
��
��������� ������� �� �����
�� ������� ���
��� ����� �
���	� �
���	� ��
 �
	�
��� �.�����������)� �����	 ��
����	 ���� �� ��� �������� R �� >��� < ��� �����
 r �� 	����	 ����
������ �� ���
�����+� ��������& ��	 	��� ��� �����	�
 ��� �������

� ������� ����

(��
� �.���� ���� ��
� �� ����3���������
����������& ��� !#$ ��
 �� ���
�����
)� ���� ������� ���� ����� �� �� ���
����� ����
� ����� �
� ����� �� ��
 ��
�&
������� ���� ������� ������� ���
��� �� ���
���������� �� �������� ����������&
�
� ����	 �� �����& ��	 	� ��� ������ � �
����������� ��	���

>��
�	� ��	 ��
����� !?$ ���
� ��
 ���� �� �
������ ���������� ��
���� ���

����
�& ��	 ���
� ��
 ������ ���� ���������
���������� �� � ���� �� ���� 	�
�������
(���
 ��	�� ������� ������ H����	��� ���
��� �� ������+
������� 	������� ��	
������
�����& ����� ���� �����
�� �� ���.�����	���� �� ����� ������� (���
 ��	��
�� ���������
���������� �� �������� ����������* �� �� ������	 ���� A������
������

1>9 5� ������� ��� 6��6� 5�	��

�
�� � ����
�� ����������� �� �������� ��	 ��
���B& ��	 �� ��
��� ������ ��
�=�
	���� �
 ����� �� �����9�	�)�����	& ��� ����
������ ����� ��������� �� ����
�
�	 �
�� ����	���� �
 ���
���� �������
 �� �������)� ����
������ ��� ��� ��
 �������	% �=�
	���� �� ��
� ������������	& �� �� ������ ��
 	���
��������� ���
����� ���� �� ��,����� 8�
���
��
�& ������� ������� �
� ��
����9�	 �� ��
 ��	��&
�� �� �������� ��
����� ����
��	 ��������� �� ��
����
�	 ���������� ���� �����%�
��������� ���� ��� ��	�� �� >��
�	� ��	 ��
����� 	��� ��� ����� ��	 �����
���� ���������� �����	�
 � ���
�������� @ �
� �� ����
 ���
���� �� ���� �� 	����
���� ����
����� ���������)� � �������� ���
� ���������� �
� ����
 ���� ���
��� �����
��� ���
� ��� ���� ���������� �
� :����+ ��	 :2��+% ���� �� � ������
����
������ �
 ���������� �� ��
 ���
�����

N����
 ��	 ������	�
 !"'$ �.���
� �����.������������ �� ������� ���������
����
������ �� ��	�����
���������� �� �� �������� �� ��
���� ��	
�	����� ���������
��
���� ��� ��� �� ������� �
���	���� (���
 ��
� ��
���� �
�����
�	 ���� ��
������� ��� ��� �� ;G� ����������& �� ����� �������
 �������� �� ���
�� ���������
�� ������ ��,�����	����	���% �������� (��� ���
���� ��	 ��
� �
� ���������
��
�& �� ��� ����� ����
�����
�	 ������������ ���� ����
� ����	 �� �.���	�	 ��	
���
���	 �� ��� ����� �� ��
 ����������& �� ��� ���
��
���� ����
������ ���� ��
,��� �=�
	����� ��	3�
 �����% �� ���������� K�� �� ;G� ����
�� ��� ������������
�� ������� ���
���� G
����������� ���
������ �� ���������
���������� �����	 !#$&
���� ������� �� ����� !4$& ��� �
� ��� �
���
���
������� ��
� ����� ��
 ������
���� ���� ����������� 	��� �� ��� ����������)� � ������
�	 ���
����& �� ��������	
�� !<$& ��
 ����
���� ��	�� ����	 ���������� � �
����������� ��	�� ��

������
��� ����
�	 ������ �� � ��������
������9�
�

� ��	���
��

(��� ����
 �
������ ���������� ��
 ���������
���������� ���� ������� ��
������
�
�� ��� ����
������ ���
� �� ����
��	 ����� �� �������	� @ ��
��� ����
������
��	�� �� �
������	& ����
����� ������ ��	 ��,����& �������
������& ��	 �=�
	�	
������� ���� ��� �� �������	 �������� H������ �������� ������ ���� ��	�� �� ��

����9��� ������������	 ��	 ����������	 ���������
����������& �� �����	�
���
��� 	�������3������ �� ��� ����
��	 ����� ��
���
	 �� ��,���� �� ��� ���������)�
�� ���� ����� ��� ��� �
�����
� �� ��������� ���� ��
 ��
���
 ��
� �� ���������

���������� �� ->)����	 ������& ���	��� �� � ���
�	 ��	�� ���� ��������� ���
�.�
�������� �� �������� ���
������ ��	 �������� �� ���� � ����
���� ����
������
���
 ������� �������& ��	����� �� �
	�
��� �� �.�����������

8���
�
����
�� �����	 ����� �� ������������ ��� �
�����	 ��	�� ��
 ��
��
���� ����������� (�� ��	�� ����	 �� ������� ���
��� �����	 �� ��������	 ��
��� ��� ����
	 ����

�������� �� �
���	� �� ����
���� ���	����� �������� ����
�� ����������� ���� ����������� ���
����% �����	��)� �� ��
���
��
� ������

��� ���� �� �������������� �� ������ ����� ��	������ �� ����� �
��
������ ���
���� ��� ��
��
	 !"7$& ����� ��� ��
� ��� ����� ��
 � ���
�	 ��	�� ����	 ��
��� ���
���� �
������	 �� ���� ����
� /��� ��� ��� �����& ��
���� ����
������ ��
�����+� �������
 �����	 �� ����� ���� �������& �������� ����� ��� ����� �� !"?$�

(#
�������%���� �������
� +��
�����
� �� 0������ �������)����
������ 1>?

��!����	��

>� (�
��
� ��� D����� +�@ (����� ��� +�����@ ����
���� �� �
���� %�����������	
�
�
��D��	�� /�������� �� +
���D��	��� '����� ��@ �������� ��5�� ���������
� ��6�
,����. �/)/ 8229� E�/�� �
�� 312?� ��� 1BFB3� ��������� G��������� ,8229.

8� (������� &�� H�������� ��� ���
��
�� (�@ %�	����� �
���� �
� ��	
�� ���� ���
��
����
� �� �� ��������� ����� ���� 5
������ ��� �����(������ ���������
� 9,>�8.�
3FB7 ,>??9.

1� (�������H����������� &�� I������� '�(�@ =��� ��� �
������ �	��
��� ���� ���
��
����
�� ��@ D�
��
� �� >?� ���������
��� 6
��� /
��������
� (���$���� ������������
,�6/(�.� ��� 431F439 ,8223.

B� %������ '��� �����
�� ��)���� ���
��� �0@ *�����
� ,8224.�
��������������������������

3� %
������ +�� &������� 5�� &�!� 6��)� =���� ����
����� (� ,����.@ 5�����(����
D�
��������@ E��������� �

�� ��� (��������
��� ��������� G��������� ,822?.

4� %������� 5�@ �������
��� D����� ��� D�������� +���
�� G������ ���������	 D�����
/�������� ,>?97.

7� /������	� ��@ ����� ��� �
� ���� ���
�����
�� ���� 5
������ J �����(�� ��������
��
� >>,>�8.� 1>FB9 ,822>.

9� &
����
�)�� 5�����
� /�@ � ���� ��K &�������� ���� �������
�� �
 ������ ����������
�����
�� �
� ������� ������ �� ������ ��@ D�
��
� �� ?� ���������
��� /
���
�
(��
�
�
�� (����� ��� 5��������� �	����� ,((5(�.� ��� 91F?2 ,82>2.

?� =����� 6�@ (���$���� ������������ �
� /
������ '����@ (� ����
�����
�� D�����
/
��� ,822B.

>2� '�""������ 5���� ���	� +�%�� 5������ '�+�@ /
������� ����
�������@ �� %�
�
�	

� �� 5���� -� -� �
��
� J /
����	 ,>??9.

>>� '���
�� 6�6�@ �� ��
�	
� �#
�������� ��@ ���� +�� %�����
��� 6� ,����. D�������
���� (������ ��� I�
����� E�������)������ ,>?77.

>8� '
��������� (�� E���L������ M�@ ����������� ���� ���
�����
� �� �� ����� ��
�����
���� ������
��� ��@ D�
��������
� �� (((� -
���
�
� D���� (������	 ���
������ +��
�����
� ,D(�+.� ��� 38F3? ,8227.

>1� ����� &�� %�������� %�@ ��� ��������� �
� �������������� (� �
� ������ ��@ D�
��

� �� (((� ������ �	���
� (� ��� �����������)������������� ������ ���28�2>
�� (((� ���� +��� ,8228.

>B� I������ D�� ��������� /�@)!��
���� �
���!������������	 �� ������� �������
� ���
��
����
�� ��@ D�
��
� �� -
���
�
� %����
�� 5
���
���� ��� ������������
�
,%5�.� ��� >28F>>4 ,8227.

>3� E
	���� (�%�@ %��������� (������ D& ������ /������� 5���
� ���������	 ,>??7.
>4� 5�������
�� ��@ (���$���� ������������ �
� '����� 5
���� I�������� ��� =�������

,8224.
>7� *����� 6�@ (���� ����������� �
���������
�� �
� ��������� �������� �� ������ ��@

D�
��
� �� =���� (� ��� ����������� &������)������������ /
�������� ,(��&).�
��� >23F>>2 ,8223.

>9� �������� 5�D�� &������� 5�5�� &������ =�D�5�� 5�	��� 6��6�/�@ 5����� ����� ���
�����
�
� %&������� ������� ��@ %���
��� 5�� �
�� ��/�� ��� +��������� 5�%��
-����
#� 5� ,����. &(E� 8229� E�/� ,E�(�.� �
�� 31?7� ��� >4>F>79� ���������
G��������� ,822?.

>?� �������� 5�D�� &������� 5�� 5�	��� 6��6�/�@ D�
�������� ������ ����� �������
��
��@ D�
��������
� �� >2� ���������
��� /
��������
� (��
�
�
�� (����� ���
5�����(���� �	������ ((5(� ,82>>. ,�
���
����.

82� -���� 5�@ ����������� ��������@ G
� �
 ���
��
���� ��������	 ���
 	
�� (� �
���
'�������� ,5��� 822?.

http://www.elderscrolls.com/

A Robust Multi-unit Ascending-Price Auction
with Complementarities

against Strategic Manipulation�

Masabumi Furuhata

Computer Science Department, University of Southern California,
Los Angeles, CA 90089, USA

Abstract. Auctions have become enormously popular in recent years. A typi-
cal example is spectrum auction for distributions of licenses for electromagnetic
spectrum based on simultaneous ascending-price auction. Even though this auc-
tion is popular, it is not robust against some strategic manipulations of buyers.
While allowing buyers to submit alternative choices (due dates in this paper) in
XOR bids, we propose a new auction mechanism called simultaneous ascending-
price auction with option proposal (SAA-OP). One of the important characteris-
tics of this mechanism is that there are two types of auction winners: an auctioneer
chooses winners (exact fulfillments) or buyers take options proposed by the auc-
tioneer (partial fulfillments). Due to this characteristic, the proposing mechanism
implements an ex-post efficient equilibrium.

1 Introduction

With the emergence of Internet and electronic commerce, auctions have been
enormously popular in recent years. In AI community, combinatorial auctions have
particularly attracted attention due to their practical advantages and issues such as com-
putational complexity [11], bidding protocols to describe alternative options [9,11], and
preference elicitation of buyers [10]. In practice, spectrum auction is a successful exam-
ple under which the government distributes licenses for the electromagnetic spectrum
use to telecommunication companies. Starting in 1994, the FCC in US uses a simulta-
neous ascending-price auction (SAA) under which multiple goods are offered for sale,
and the process involves several rounds of bidding [4,8]. In a typical ascending-price
auction, the auctioneer commences the auction by calling a low price which is incre-
mented with a progress of rounds. Corresponding to the called price, the buyers declare
their demands to the auctioneer. The auction is iterated unless the overall demand does
not exceed the total selling unit.

Practices of spectrum auctions for “third-generation” mobile phones in six European
countries in 2000 are lessons of strategic manipulations of buyers [7]. One of the strate-
gic manipulations is addressed by Ausubel and Cramton [2] which is demand reduction
of buyers under uniform price auction. Against this problem, Ausubel proposes a new
auction [1], however this mechanism raises another problem over declaration. Iwasaki

� This material is based upon work supported by Innovation Creation Project of the Ministry of
Education, Culture, Sports, Science and Technology-Japan while serving at Japan Advanced
Institute of Science and Technology.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 320–335, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Robust Multi-unit Ascending-Price Auction 321

et al. [5] propose ascending-price option allocation protocol (AOP) to solve these two
problems in a single-item multi-unit case. We further detail these problems and existing
solutions in Section 3.

The presence of complementarities and substitutability in auctions arise an issue of
preference elicitation of buyers. In some cases, the buyers may necessary to consider
valuations of all combinations of choices that may not be wholly considered in the
auctions. Against this issue, ascending-price auctions or iterative auctions reduce the
cost of preference elicitation of buyers, since the buyers only provide focused elicitation
corresponding to the calling price [10]. Another issue regarding to complementarities is
a bid language which has enough expressive power to describe complicated preference
of buyers and enables effective communication with the auctioneer. An XOR bid aka
XOR-of-OR bid is a popular language in which the set of purchasing alternatives has
semantics “a buyer will purchase at most one of these alternatives” [9,10,11].

While allowing XOR bids of buyers, we propose a new ascending-price mechanism
which is robust against strategic manipulations of buyers in this paper. In order to pre-
vent the over declaration problem, the payment rule of this mechanism is uniform price
under which an auction winner pays the same unit price for all units unlike Ausubel’s
auction [1]. In order to prevent the demand reduction problem, the allocation rules of
this mechanism are either an exact fulfillment with an immediate execution of a trans-
action or a partial fulfillment with an option proposal to a buyer. While the output of
this mechanism is a straightforward similarly to AOP, the winner determination process
is complicated in order to avoid conflictions among proposing options and situations of
future disadvantages of other buyers.

We emphasize that the proposing mechanism is positioning in between typical com-
binatorial auctions and single item auctions. While this auction is able to handle substi-
tuting items at once similarly to typical combinatorial auctions, a calling price is raised
uniformly like single item auctions. In general, it is not practical to use the same calling
price for totally different items. However, this auction mechanism is targeting on items
having slight differences on characteristics or delivery conditions. For a clarification,
representative examples of characteristics are color, quality and specs of items. Even
though these differences are not significant for all buyers, these items are normally sold
at different auctions in practice. The proposing mechanism intends to improve allo-
cation efficiency by consolidation of these auctions. Probably, due date is one of the
most extensive aspect among these slight differences and we demonstrate the propos-
ing mechanism using due date as an example of substitutable dimensions of auction
items.

This paper is organized as follows. In Section 2, we describe the model. We address
some problems of ascending-price auctions and existing solutions in Section 3. Based
on the model, we introduce our proposing mechanism in Section 4. Then, we present
properties of this mechanism in Section 5. We show a numerical example how this
mechanism works for the over declaration problem in Section 6. In Section 7, we show
simulation results in order to compare the performances of our proposing mechanism
and an existing mechanism. Finally, we conclude this paper in Section 8.

322 M. Furuhata

2 The Model

We consider a multi-unit ascending-price auction with strategic complementarities. Us-
ing due dates as strategic complementarities, we demonstrate our model in this paper.
We remark that our model is not restricted on due dates and it is possible to replace with
other kinds of complementarities like colors of auction items as mentioned above.

Let T = {0, 1, 2, . . . , T } be discrete time periods in which a single type of identical
peishable commodities is traded in an auction. In each time period, there are upper
limits of supply, namely capacities. Let k be a vector of capacity in time horizon T ,
i.e., k = (k0, k1, . . . , kT) ∈ �T+1. We assume that each capacity is only available
in the respective period. Hence, there is no carry over of the capacity. Each capacity
possibly consists of capacities of several different sellers, i.e., several different sellers
are consolidated in a single auction. In other words, we assume that the buyers only
concern price, quantity and avaibale time of the commodities. In this sence, the buyers
make decisions according to the overall capacity k.

Let B be the set of all potential buyers. We assume that each buyer i ∈ B has the set
of all possible demand vectors Di. Let di = (di,0, . . . , di,T) ∈ Di be a demand vector
for buyer i. Let us denote Di =

∑
t∈T

di,t be the overall demand in the time horizon. We

assume that valuation of a demand vector is obtained from a private valuation function
vi. Notice that the value of an item may not be unique for all due dates for a buyer. We
also assume that vi(di) = 0 if di = (0, . . . , 0); vi(di) ≤ vi(d

′
i) if di ≤ d′

i, which
means di,t ≤ d′i,t for all t ∈ T . We assume a quasi-linear utility for each buyer

ui(di, p) = vi(di)− p (1)

where p is a payment to purchase di.
Let xi ∈ Di be a purchase plan and we denote the overall planned quantitiy Xi =∑

t∈T
xi,t. Let Xi be the set of alternative purchase plans of buyer i. With these plans, we

consider exclusive-or (XOR) bids defined as follows:

Definition 1. Let Xi = {x1
i , . . .x

Z
i } be the set of alternative purchase plans of buyer i

where Z is the number of alternative plans. An exclusive-or (XOR) bid is said to be
accepted by an auctioneer if at most one of the set of alternative purchase plans is
accepted: (. . . ((x1

i XOR x2
i) XOR x3

i) XOR . . .) XOR xZ
i .

In XOR bids, the different purchase plans are processed through a cascade of binary
exclusive-or operations: the first two plans are fed into an XOR operation, then the out-
put of that operation is fed into a second XOR operation together with the third plan, and
so on for any remaining plans. For instance, if a buyer submits Xi = {x1

i ,x
2
i ,x

3
i ,x

4
i },

it means that the buyer requests one of the four alternative purchase plans be accepted:
((x1

i XOR x2
i) XOR x3

i) XOR x4
i . In the following, we may use a symbol ⊕ to

describe XOR as well. The truthful order quantity may change how amount of payment
is calculated in Equation (1). If a payment p is calculated by unit price γ times the over-
all quantity Di, the utility is ui(di, γ) = vi(di) − γDi. Hence, we obtain the set of
sincere purchase plans of buyer i,

XSin
i = {x : arg max

x∈Di

{ui(x, γ)}}. (2)

A Robust Multi-unit Ascending-Price Auction 323

We assume that buyers are rational. Hence, each plan xi satisfies the following condi-
tion, ui(xi, γ) > 0, at unit price γ.

We focus on design of iterative auctions or more specifically ascending-price auc-
tions where an auctioneer calls a bidding price incrementally in each round and buy-
ers correspond to the called price by submissions of alternative purchase plans. Let
l = {1, 2, . . .} be a round of auctions. At the beginning of each round l, there is a re-
maining capacity plan kl. Let T l = {t ∈ T : klt > 0} be a remaining planning periods
and Bl be the set of active buyers.

Prior to submit alternative purchase plans, we assume that each buyer knows the
rules of the auction, i.e., auction mechanism. Let A be a mechanism that consists of an
allocation rule g and a payment rule h, i.e., A = (g, h) where g :

∏
i∈B

DZ
i → �n×(T+1)

and h :
∏
i∈B

DZ
i → �n if there are n potential buyers. Let us denote

J =
∏
i∈Bl

X l
i (3)

as the set of Cartesian products of alternative plans. Let j ∈ J be a choice which is
|B|-tuples of purchase plans. We focus on mechanisms that are feasible, i.e.,:

Definition 2. (Feasible Mechanism) Given capacity k, the set of alternative plans of
all buyers X and its Cartesian products J , a mechanism A = (g, h) is feasible if the
following condition is satisfied:

1. gi(X) ≤ ji for all i ∈ B where j ∈ J ,
2.

∑
i∈B

gi(X) ≤ k.

The first condition specifies that each allocation does not exceed a choice of each buyer
at each time period. The second condition does not allow the auctionner to allocate
quantities exceeding the overall capacities at each time period.

Among feasible auctions, we focus on mechanisms that implement ex-post equilib-
rium defined as follows,

Definition 3. (Ex-post Equilibrium) Mechanism A = (g, h) is said to implement ex-
post equilibrium if the following holds:

ui(gi(XSin), hi(XSin)) ≥ ui(gi(X ′
i ,XSin

−i), hi(X ′
i ,XSin

−i))

for all i ∈ B and for all XSin
i and X ′

i . Hence, if an auctioneer uses such a mechanism
and all buyers submit their sincere plans, the utility of each buyer according to the
output of the mechanism is maximized.

3 Problem Specification

Now, we address a few problems in iterative auctions using three typical mechanisms.

324 M. Furuhata

3.1 Demand Reduction and Uniform-Price Auction

Uniform-price auction is one of the simplest auctions among the iterated auctions. We
present this mechanism to sell K units in a single time period. In each round l, an
auctioneer calls a unit-price γl and each buyer i ∈ B submits an order xi simultaneously
and independently. If the overall orders do not exceed K , the market is cleared at γl and
the auction is terminated. Otherwise, the auctioneer proceeds a successive round with an
increased unit price γl+1. A well-known problem of uniform-price auction is a demand
reduction problem which occurs if the utility of a partial fulfillment of an order at a
certain round exceeds the utility of an exact fulfillment at a future unit-price. In such a
case, buyers reduce their declaring demands to increase their utilities.

3.2 Over Declaration and Ausubel Auction

Ausubel auction [2], which is an ascending-price format, is one of solutions of the
demand reduction problem shown in the previous section. A key point of this auc-
tion is the winner determination process which includes partial fulfillments of orders.
In round l, an auctioneer provides a right to purchase yl−i(γ

l) units at γl if an order
of buyer i is able to be partially fulfilled xl

i(γ
l) > yl−i(γ

l) > 0 where yl−i(γ
l) =

max
{
kl −

∑
ι∈B\{i}

xι(γ
l), 0

}
is a residual supply without an order of buyer i. Notice

that this right and price are valid in the future round. This pricing rule is called as
a clinch which works for a problem of demand reduction. However, there is another
problem called over declaration. This problem occurs if one buyer aims to prevent a
clinch of opponents by inflating his order.

3.3 Acending-Price Option Allocation Protocol

Iwasaki et al. [5] propose ascending-price option allocation protocol (AOP) for the
problems specified in Section 3.1 and 3.2. A key idea of AOP is to provide clinching op-
tions similarly to Ausubel auction; however the clearing price of each buyer is uniform
like uniform-price auction. In each round, an auctioneer provides a paired clinching op-
tion for buyer i, (γl

i , o
l
i), where γ is a unit price and o is the maximum quantity to take

the option. Among the set of proposed options, the buyer i may take an option.

While all the above auctions correspond to multi-unit auctions, they do not deal
with the presence of complementarities and substitutability. If an auctioneer accepts
XOR-bids, which is the input of mechanisms, auction mechanisms are necessary to
be redesigned. In the following section, we detail our proposing mechanism dealing
with substitutability with respect to time. Similarly to the AOP, our mechanism pro-
poses some options in some cases in order to be robust against the demand reduction
problem and the over declaration problem. However, our mechanism does not propose
options in the same way due to corresponding to some complex situations with com-
plementarities. While efficient options without conflictions are easily obtained without
considering XOR bids, it requires some treatments to deal with alternative plans. Hence,
our proposing mechanism has different procedures to determine auction winners from
the ones under AOP.

A Robust Multi-unit Ascending-Price Auction 325

4 Simultaneous Ascending-Price Auction with Option Proposal

In this section, we propose a new ascending-price auction, simultaneous ascending-
price auction with option proposal (SAA-OP), which is able to accept XOR bids from
buyers and robust against the demand reduction problem and the over declaration prob-
lem. We present an overview of this mechanism in Section 4.1 and the rest of this
section covers detailed procedures of this mechanism.

4.1 Overview of SAA-OP

Similarly to other ascending-price auctions, an auctioneer calls a unit price in each
round. Buyers may submit several alternative purchase plans corresponding to this unit
price that are exclusively accepted. Since SAA-OP accepts XOR bids, the winner de-
termination processes are complex. There are three ways to win under this auction and
the winner determination conditions are sequential as follows:

WC1. If the auctioneer is able to find a feasible allocation choice, buyers are exactly
fulfilled. If there are multiple choices, the auctioneer randomly selects a choice.

WC2. If there is an allocation choice for particular buyers which may not disturb
plans of other buyers, the auctioneer selects these buyers as winners with exact
fulfillments.

WC3. The auctioneer proposes an option if the residual supply is independent from
requirements of other plans of other buyers. The buyer may take an option if it
maximizes his utility.

The procedure of SAA-OP is briefly shown:

1. An announcement of an opening round.
2. Submissions of alternative purchase plans by buyers and a calculation of residual

supplies by the auctioneer. If there is no submission, the auction terminates.
3. The auctioneer checks WC1. If there is an allocation choice, the auctioneer allo-

cates the capacity with exact fulfillments and terminates the auction.
4. The auctioneer checks WC2. The auctioneer allocates capacities to buyers satisfy-

ing WC2.
5. The auctioneer proposes options to buyers if they satisfy WC3.
6. Taking an option if it maximizes a utility of a buyer.
7. A procedure for the successive round if there is a remaining capacity, otherwise

terminates the auction.

The clearing price is uniform in the above three winning cases.

4.2 Announcement of Opening Round

In step 1, an auctioneer announces an opening of round l in order to synchronize ac-
tivities of buyers and an auctioneer. In addition to the announcement of opening round,

unit price γl and remaining capacity kl are announced to active buyers Bl =
{
i : i ∈

B \
l−1⋃
λ=1

B̂λ if l > 1; i ∈ B otherwise
}

where B̂λ is the set of auction winners in

326 M. Furuhata

round λ. In the initial round, active buyers are the set of all buyers B. In other rounds,
active buyers are remaining buyers that have not been allocated until the previous round.
Hereafter, we may omit the symbol of round l for the ease of readbility if it is obvious.

4.3 Submission of Purchase Plans and Calculation of Residual Supplies

In step 2, each active buyer i ∈ Bl submits the set of alternative purchase plans X l
i in

order to maximize his utility. The auctioneer realizes the set of allocation choices J l

as shown in Equation (3). If there are no active choices J l = {∅}, the auction is termi-
nated. Once the auctioneer receives the set of alternative purchase plans, the auctioneer
checks all residual supplies. Let y−i(j) =

(
max

{
0, k0 −

∑
ι∈Bl\{i}

jι,0
}
, . . . ,min

{
0,

kT −
∑

ι∈Bl\{i}
jι,T

})
be the residual supply of buyer i if choice j ∈ J l is taken. Let us

denote Y as the set of residual supplies. Based on the residual supply, the auctioneer is
able to calculate all potential choices that are feasible Ψ l

Pot:

Ψ l
Pot =

{
ψ :

{
((min{j1,0, y−1,0(j)}, . . . ,min{j1,T , y−1,T (j)}), . . . ,

(min{j|Bl|,0, y−|Bl|,0(j)}, . . . ,min{j|Bl|,T , y−|Bl|,T (j)}))
}

for every j ∈ J l
}

(4)

4.4 Exact Fulfillments

The potential choices in Equation (4) may not always fully fulfill the requirements of
buyers. In the following condition (WC1), we check if the potential choices are exact
fulfillments of requirements:

Ψ l
WC1 =

{
ψ ∈ Ψ l

Pot : ψ = j ∈ J l
}

If there is only one choice in Ψ l
WC1, an allocation ψ̂ is simply determined. If there are

some choices, the auctioneer randomly chooses one allocation ψ̂ among Ψ l
WC1. Let us

denote Bl
ψ̂

as the set of auction winners according to an allocation ψ̂. A buyer i ∈ Bl
ψ̂

is allocated x̂i = ψ̂i at unit price γ̂i = γl. If there is at least one choice in Ψ l
WC1, the

auction is terminated.

4.5 Additional Winners

A feasible allocation investigated in the previous step is able to satisfy the requirements
of all buyers. This allocation is not always found. In some cases, there are some alloca-
tions that are able to fulfill the requirements of part of buyers. If such allocations do not
conflict with requirements of others, the auctioneer is able to set those buyers as auction
winners.

Let us denote Bl,Ful
ψ as the set of buyers that are fully allocated if ψ is taken. In

addition, let T l
Bψ = {t ∈ T l :

∑
i∈B

ψi,t > 0} be the effective time periods of the set of

A Robust Multi-unit Ascending-Price Auction 327

buyers B if a potential choice ψ is taken. Among the potential choices, the auctioneer
checks candidate choices Ψ l

Can1 in which allocations of auction winners do not conflict
with requirements of others:

Ψ l
Can1 =

{
ψ ∈ Ψ l

Pot : T l
Bl,Ful
ψ

⋂
T l
Bl
ψ′\B

l,Ful
ψ

= {∅} for any ψ′ ∈ Ψ l
pot \ {ψ}

}
The effective time periods of winners under a certain candidate should not conflict
with the effective time periods of the rest of buyers. Notice that candidate choices in
the set of candidates Ψ l

Can1 may not maximize the total allocation of fully fulfilled
buyers. Hence, the auctioneer checks the candidates according to the second winner
determination condition Ψ l

WC2:

Ψ l
WC2 =

{
ψ ∈ Ψ l

Can1 :
∑

i∈Bl,Ful
ψ

∑
t∈T

ψi,t ≥
∑

i∈Bl,Ful
ψ

∑
t∈T

ψ′
i,t for any ψ′ ∈ Ψ l

Can1 \ {ψ}
}
.

According to the above condition, the auctioneer obtains the set of feasible and effi-
cient allocation among the choices for buyers having locally independent requirements.
If there is at least one allocation choice |Ψ l

WC2| ≥ 1, the auctioneer (randomly) deter-
mines one allocation choice ψ̂. Hence, an allocation for winning buyer i ∈ Bl,Ful

ψ̂
is

x̂i = ψ̂i at unit price γ̂i = γl. If there is at least one winner in this step, the auctioneer
updates the set of active buyers Bl := Bl \ Bl,Ful

ψ̂
and goes to the following step.

4.6 Proposal of Options

This step is executed if the auctioneer is not able to find any allocation choices in step 3.
The auctioneer chekcs whether he is able to propose some options that are partial fulfill-
ment of requirements of buyers. These options should not conflict with other options.

First the auctioneer prepares all the potential choices for proposing options. Let ψ̃
be a partitioned choice of ψ ∈ Ψ l

Pot such that, for all i ∈ Bl, ψ̃i,t = ψi,t for all
t ∈ Tψ̃ ⊂ T and ψ̃i,t = 0 for all t ∈ T \ Tψ̃ . The set of these partitioned choices are:

Ψ l
Pot2 =

{
ψ̃ : ψ̃i,t = ψi,t for all i ∈ Bl and for all t ∈ Tψ̃ ⊂ T ; ψ̃i,t = 0 for all i ∈

Bl and for all t ∈ T \ Tψ̃ , where ψ ∈ Ψ l
Pot}. Then, among the partitioned choices in

Ψ l
Pot2, the auctioneer investigates choices that do not conflict with other choices. Let

Ψ l
Can2 be the set of independent partitioned choices:

Ψ l
Can2 =

{
ψ̃ ∈ Ψ l

Pot2 :
∑

i∈Bl\Bl
ψ̃

ψi,t = 0 for all t ∈ Tψ̃ and for all ψ ∈ Ψ l
Pot

}
The candidate choices Ψ l

Can2 are obtained if effective time periods of ψ̂ do not con-
flict with requirements of the rest of buyers in Ψ l

Pot. Notice that the candidate choices
Ψ l

Can2 may contain some choices that are not efficient. Hence the auctioneer inves-
tigates efficient choices Ψ l

WC3 according to the following third winner determination
condition:

Ψ l
WC3 =

{
ψ̃∈Ψ l

Can2 :there does not exist ψ̃′ such that ψ̃′≥ψ̃ for all ψ̃′∈Ψ l
Can2 \{ψ̃}

}
According to the partitioned choices Ψ l

WC3, each buyer i ∈ Bψ̃ where ψ̃ ∈ Ψ l
WC3 is

proposed an option oi = ψ̃i. Let Ol be the set of options.

328 M. Furuhata

4.7 Exercise of Option

Corresponding to the proposed options in the previous step, buyer i may choose an
option oi ∈ Ol

i if it maximizes the utility of buyer i. In this step, we detail the decision
process of buyers. Notice that buyer i may have already been proposed several different
options in other rounds. These options are still active for those buyers. Buyer i may
choose one of these options if it exceeds the maximum utility possibly obtained in the
successive round.

Let Ql
i be a set of utility maximizing quantities in round l, i.e.,

Ql
i =

{
qi ∈ �T+1 : argmax

qi
{ui(qi, γ

l)} where qi ≤ oi for any oi ∈ Ol
}

Let Qi =
⋃

λ∈{1,...,l}
Qλ

i be the set of utility maximizing quantities of each round up to

round l. Let L̂i be the set of rounds that is able to maximize the utility of buyer i, i.e.,

L̂i =
{
λ ∈ {1, . . . , l} : argmax

λ
{ui(q

λ
i , γ

λ)} where qλ
i ∈ Qi}

}
Let l̂i = inf{L̂i} be the best candidate round for buyer i among the set of options.

Buyer i takes an option ql̂i
i at unit price γ l̂i if there does not exist xl+1

i such that

ui(x
l+1
i , γl+1) > ui(q

l̂i
i , γ

l̂i) (5)

for xl+1
i ≤ xl

i for any xl
i ∈ X l

i . Hence, the allocation of buyer i is x̂i = ql̂i
i at price

γ̂i = γ l̂i . Once the option is taken, the auctioneer updates both remaining capacities:
klt := klt − x̂i,t for all t ∈ T and active buyers Bl := Bl \ {i}.

4.8 Procedures for the Successive Round

In this step, the auctioneer checks whether he terminates the auction. The condition is
T l = {∅}. If the condition is not satisfied, the auction goes back to step 1 with the
succesive round l + 1.

4.9 The Output of the Auction

According to the above steps, the output of the mechanism is as follows. If a buyer i is a
winner in round l, an allocation is gi(X l) = x̂i and the payment is hi(X l) = γ̂i

∑
t∈T

x̂i,t

that are determined either in step 3, 4, or 5. Otherwise, the allocation is gi(X) = 0 and
the payment is hi(X) = 0.

5 Theoretical Results

We show how SAA-OP prevents strategic manipulations of buyers. In addition to the
quantity-dependent manipulations presented in Section 3, there are time-dependent ma-
nipulations in our model.

A Robust Multi-unit Ascending-Price Auction 329

With respect to available due dates, there are two types of insincere plans: restriction
and relaxation of available due dates. First, we check the effect of the former behavior.
Let us consider the case where buyer i has the following alternative purchase plans Xi =
{x1

i , . . . ,x
Z
i }. Let TXi be an effective time periods of plans Xi such that TXi = {t ∈

T :
Z∑

z=1
xz
i,t > 0 where (xz

i,0, . . . , x
z
i,T) ∈ Xi}. Let X ′

i be alternative restricted due-

dates plans of Xi such that TXi ⊇ TX ′
i

and Xi = X ′
i. For such Xi and X ′

i , a mechanism
is said to be available due date-monotonic if the following inequation holds∑

t∈T
gi,t(Xi,X−i) ≥

∑
t∈T

gi,t(X ′
i ,X−i)

for all X−i and for all i. Hence, due-date monotonic mechanisms allocate greater quan-
tities on alternative purchase plans having greater flexible due-dates. In the following
lemma, we show that SAA-OP satisfies this property.

Lemma 1. SAA-OP is available due date-monotonic.

Proof. Consider that there are two sets of alternative purchase plans Xi and X ′
i such

that TXi ⊇ TX ′
i
; for any xi ∈ Xi and x′

i ∈ X ′
i satisfying Xi = X ′

i . Under this
auction mechanism, there are two ways to win: meeting one of purchase plans (in step 3
or 4 of the protocol) or choosing an option (in step 6). Since Xi and X ′

i have differnet
avaliable due dates TXi ⊇ TX ′

i
, if xi is chosen as an allocation in round l, there are

three different cases of results for the buyer would have submitted x′
i: (i) x′

i is chosen

as an allocation in the same round, (ii) an option q′ l̂i
i is chosen in the same round, (iii)

the output quantitiy x̂′
i is determined in the future round. Similary, if an option ql̂i

i is
chosen in step 6, there are two cases for the buyer would have submitted x′

i: (iv) an

option q′ l̂i
i is chosen in the same round, and (v) the output quantity x̂′

i is determined
in the future round. Therefore, it is enough to show that X̂i ≥ X̂ ′

i for all the five cases
above. In case (i), it is obvious X̂i = X̂ ′

i. In case (ii), it must be X l
i > Qλ

i for any
λ = {1, . . . , l − 1}, since buyer i would not have taken any options in the previous
round according to Equation (5). According to step 6, there does not exist an option
oi ∈ Ol

i such that Oi ≥ Xi for all xi ∈ X l
i . Therefore, we have X̂i > X̂ ′

i. In case
(iii), it must be xi /∈ X ′l

i and any other x′
i ∈ X ′

i does not meet in either case (i) or (ii).
Therefore, in future rounds, any X ′λ

i where λ > l does not exceed X l
i . This implies

that X̂i > X̂ ′
i. In case (iv), it is obvious that X̂i = X̂ ′

i. In case (v), buyer i chooses an
option in round l means that there are no plans such that ui(x̂

l
i, γ

l) < ui(x
l+1
i , γl+1)

according to Equation (5). Therefore, we obtain X̂i ≥ X ′l+1
i for any x′l+1

i ∈ X ′l+1
i .

This impies that X̂ l
i ≥ X̂ ′λ

i where λ > l.

This lemma shows that this mechanism assigns more allocations if purchase plans have
more flexibility on due dates. This is because this mechanism searches feasible allo-
cations and options from all the possible combinations of purchase plans. Therefore,
buyers do not need to restrict their due dates.

A disadvantage of monotonicity with respect to due dates is realized if buyers have
benefit by declaring phantom due dates. In the following lemma, we show that such a
behavior does not increase the utility of buyers under this mechanism.

330 M. Furuhata

Lemma 2. Buyer i does not increase his utility by relaxing his available due dates of
sincere orders XSin

i under SAA-OP.

Proof. Let x′
i ∈ X ′

i be a purchase plan having a relaxed due date of a sincere plan
xSin
i ∈ XSin

i satisfying X ′
i = XSin

i . In order to prove this lemma, we show that the
following inequation does not hold,

ui(gi(X ′
i ,X−i), hi(X ′

i ,X−i)) > ui(gi(XSin
i ,X−i), hi(XSin

i ,X−i)) (6)

for any X ′
i , X−i and XSin

i . Hence, it is necessary that either x′
i is allocated or an op-

tion o′
i based on x′

i is chosen, meanwhile xSin
i is not allocated in the same round.

In the former case, an option oSin
i such that oSin

i,t = x′
i,t for all t ∈ TxSin

i,t

⋂
Tx′

i,t

and oSin
i,t = 0 for all t ∈ T \ TxSin

i,t

⋂
Tx′

i,t
must be proposed according to step 6

in this auction. In the latter case, an option oSin
i such that oSin

i,t = o′i,t for all t ∈
TxSin

i,t

⋂
Tx′

i,t
and oSin

i,t = 0 for all t ∈ T \ TxSin
i,t

⋂
Tx′

i,t
must be proposed. Hence, we

have vi(gi(X ′
i ,X−i))− vi(gi(XSin

i ,X−i)) = vi(x
′
i)− vi(x

Sin
i). Recall the definition

of sincere plan in Equation (2), it must be vi(x
Sin
i) − γXSin

i > vi(x
′
i) − γX ′

i which
implies vi(xSin

i) > vi(x
′
i). Hence, we have vi(gi(X ′

i ,X−i))−vi(gi(XSin
i ,X−i)) < 0.

Since gi(X ′
i ,X−i) ≥ gi(XSin

i ,X−i) according to Lemma 1, we have hi(X ′
i ,X−i) ≥

hi(XSin
i ,X−i). This leads to a contradiction of Equation (6) due to the following case

holds ui(gi(X ′
i ,X−i), hi(X ′

i ,X−i)) < ui(gi(XSin
i ,X−i), hi(XSin

i ,X−i)).

The above proof is obtained according to a contradiction of inequality indicating that
the utility regarding to the auction output based on a purchase plan having a relaxed
due date exceeds the one corresponding to a sincere plan. A key difference of the out-
puts between two plans is relevant to time periods that are not covered by the sincere
plan. According to the definitions of valuations and the sincere plans, the allocation
corresponding to these periods have a negative effect with respect to utilities. Hence,
we obtain a contradiction.

Based on the above two lemmas, we show that the proposing mehcnaism is a robust
mechanism for a multi-period case in the following theorem.

Theorem 1. Sincere bidding by every buyer is an equilibrium under SAA-OP.

Proof. According to the definition of ex-post equilibrium, it is sufficient to contradict
that insincere plans increases the utilities of buyers. In Lemma 1 and 2, we have shown
that insincere plans with respect to due dates do not increase the utilities of buyers.
Hence, within the same due dates, we focus on the effects of changing plans that are
dropping a plan from XSin

i and adding a plan to XSin
i .

In the set of sincere plans XSin
i , there are two types of plans: rapping plans XRP

i ={
xi : there exists a plan x′

i such that xi ≥ x′
i where x′

i ∈ XSin
i \ {xi}

}
and non-

rapping plans XNP
i =

{
xi : xi ∈ XSin

i \ XRP
i

}
. If buyer i drops a non-rapping plan,

it decreases a chance to win by this non-rapping plan which does not increase the utility
of the buyer. Similarly, if buyer i drops a rapping plan, let us consider a special case
where a rapping plan xl,RP

i in round l is an only plan that conflicts with a plan of other
buyer i′ having no options and planning to decline the auction in the following round.
In this case, dropping a plan decreases an opportunity of buyer i to win in the following

A Robust Multi-unit Ascending-Price Auction 331

round. Hence, dropping a sincere plan of either type does not increase the utility of the
buyer.

Let us consider an effect of adding an insincere plan. The utility of the buyer changes
if this plan is a reason to win the auction. If it is selected in step 3 or 4, the same plan is
proposed in step 5 at least in the case without adding an insincere plan. Hence it does
not increase the utility. If an option based on the insincere plan is selected in step 6,
there are no choices of exact fulfillments in step 3 or 4. Therefore, the selected option
based on the insincere plan does not exceed a plan of sincere plans. Hence, the same
plan is proposed in step 5 at least in the case without adding an insincere plan which
does not increase the utility.

The above proof is obtained since there are no ways to increase the utility of buyers
to submit insincere plans. While the cases of the time-dependent strategic manipula-
tions are proved in Lemma 1 and 2, the proof of this theorem focus on the cases of the
quantity-dependent strategic manipulations. Due to the three different winner determi-
nation conditions, the buyer is not able to increase his utility by those manipulations.

6 Numerical Analysis

We demonstrate how SAA-OP works using some numerical examples. Example 1 in-
cludes a case of the demand reduction problem under uniform price auction 3.1; Ex-
ample 2 includes a case of the over declaration problem under Ausubel auction 3.2.
These numerical examples are based on the examples in [5] that are extended for cases
of complementarities. In Example 3, we show how SAA-OP deals with locally inde-
pendent requirements. This case is a specific issue under consolidated auctions.

The following example shows a procedure of SAA-OP which is relevant to demand
reduction problem under uniform auction.

Example 1. Let us consider SAA-OP with the initial calling price $1 and a price-tick
$1 in each round. We assume that T = {0, 1}, k = (1, 1) and B = {1, 2}. The val-
uations of the buyers are as follows: v1((1, 0)) = v1((0, 1)) = $5, v1((1, 1)) = $8;

Table 1. Procedure of Example 1 under SAA-
OP (Robust against Demand Reduction)

Round 1 . . . 3 4 5

X1 (1, 1) . . . [(1, 1) ⊕ (1, 0)] (1, 0) ⊕ (0, 1) (0, 0)
⊕(0, 1)

X2 (1, 1) . . . (1, 1) (1, 1) (0, 0)∑
Xi (2, 2) . . . [(2, 2) ⊕ (2, 1)] (2, 1) ⊕ (1, 2) (0, 0)

⊕(1, 2)
k (1, 1) . . . (1, 1) (1, 1) (1, 1)

Y−1 (0, 0) . . . (0, 0) (0, 0) (0, 0)
Y−2 (0, 0) . . . [(0, 0) ⊕ (0, 1)] (0, 1) ⊕ (1, 0) (0, 0)

⊕(1, 0)
O1 . . .
O2 . . . (0, 1) ⊕ (1, 0)

T = {0, 1}, k = (1, 1), B = {1, 2},
v1((1, 0)) = v1((0, 1)) = $5, v1((1, 1)) = $8;
v2((1, 0)) = v2((0, 1)) = $6, v2((1, 1)) = $12.

Table 2. Procedure of Example 2 under SAA-
OP(Robust against Over Declaration)

Round 1 2 . . . 5

X1 [(1, 1) ⊕ (1, 0)] (1, 0) ⊕ (0, 1) . . . (1, 0) ⊕ (0, 1)
⊕(0, 1)

X2 (1, 1) (1, 1) . . . (0, 0)∑
Xi [(2, 2) ⊕ (2, 1)] (2, 1) ⊕ (1, 2) . . . (1, 0) ⊕ (0, 1)

⊕(1, 2)
k (1, 1) (1, 1) . . . (1, 1)

Y−1 (0, 0) (0, 0) . . . (1, 1)
Y−2 [(0, 0) ⊕ (0, 1)] (0, 1) ⊕ (1, 0) . . . (0, 1) ⊕ (1, 0)

⊕(1, 0)
O1 . . . (1, 0) ⊕ (0, 1)
O2 (0, 1) ⊕ (1, 0) . . .

T = {0, 1}, k = (1, 1), B = {1, 2},
v1((1, 0)) = v1((0, 1)) = $7, v1((1, 1)) = $8;
v2((1, 0)) = v2((0, 1)) = $0, v2((1, 1)) = $10.

332 M. Furuhata

v2((1, 0)) = v2((0, 1)) = $6, v2((1, 1)) = $12. Hence, buyer 1 values the commod-
ity to obtain 1 unit as $5 at time period either 0 or 1 and to obtain 1 unit each at
time period 0 and 1 as $8. A procedure of this example is shown in Table 1. In the
first round, both buyers submit purchase plans (1, 1), since this plan maximizes the
utilities: u1((1, 1), 2) = 8 − 2 = 6 > u1((1, 0), 1) = u1((0, 1), 1) = 5 − 1 = 4;
u2((1, 1), 2) = 12 − 2 = 10 > u2((1, 0), 1) = u2((0, 1), 1) = 6 − 1 = 5. In
this case, the aggregated purchase plans of buyers exceed the overall capacity. Hence,
the auctioneer proceeds to round 2 in which both buyers take the same actions as
in round 1. Buyer 1 changes its action in round 3 in which the utility function is
u1((1, 1), 6) = u1((1, 0), 3) = u1((0, 1), 3) = 2. Hence, buyer 1 submits a purchase
plan {[(1, 1) XOR (1, 0)] XOR (0, 1)} instead of a single plan (1, 1). These alterna-
tive purchase plans mean that buyer 1 will purchase at most one of these plans. There
are three types of the aggregated purchase plans. In all three cases, all of them exceed
the capacity plan. Hence, the auctioneer proceeds to the next round. In round 4, buyer
drops a plan (1, 1) from the plans in the previous round. In this case, there are residual
supplies for buyer 2 either (0, 1) or (1, 0). Hence, buyer 2 is proposed options (0, 1)
XOR (1, 0). Taking an either option exceeds the maximum utility obtained in the suc-
cessive round. Hence, a buyer takes one option and the remaining capacity becomes
either (1, 0) or (0, 1). In round 5, buyer 1 declines their plans since there are no ways
to earn positive profit.

This example illustrates a procedure under SAA-OP. A key point is that buyer 2 is
proposed some options and takes an option either (0, 1) or (1, 0) in round 4 which is
a partial fulfillment of a plan (1, 1). If we consider a case of unifrom auction with the
same setting, buyer 2 reduces plans (1, 0) XOR (0, 1) from the truthful demand (1, 1)
in round 4, since this reduction exceeds a case where buyer 2 obtains 1 unit in round 5
at $5. Hence, this example shows how SAA-OP solves a problem of demand reduction
under uniform auction.

The following example includes all-or-nothing plan of a buyer which is relevant to
over declaration problem under Ausubel auction.

Example 2. Similarly to Example 1, the procedure and the parameters of this exam-
ple are presented in Table 2. In round 1, buyer 1 submits alternative purchase plans
{(1, 1), (1, 0), (0, 1)} which means an XOR bid and buyer 2 submits a plan (1, 1). Since
all the potential choices conflict each other, there are not feasible allocations or propos-
als of options. In round 2, buyer 1 drops a plan (1, 1) and buyer 2 submits the same plan.
In this case, the auctioneer is able to propose options (1, 0) XOR (0, 1). However, these
options are not taken, since buyer 2 prefers all-or-nothing. All buyers behave similarly
until round 4. In round 5, buyer 2 declines his plan and buyer 1 wins 1 unit at $5.

This example shows a situation where a buyer does not take any proposed options,
since his requirement is all-or-nothing. The consequence of this example is buyer 1
obtains 1 unit at round 5, since buyer 2 declines his plan in this round. If we consider a
case of Ausubel auction, buyer 2 clinches 1 unit in round 2; buyer 2 wins two units in
round 7 with a payment $9 = $2 + $7. Buyer 1 is able to increase his utility by over
declaration. If he submits a plan (1, 1) until round 4, buyer 2 is not able to clinch and
declines his plan in round 5. Hence, buyer 2 obtains 1 unit in round 5 according to a

A Robust Multi-unit Ascending-Price Auction 333

misrepresentation of his requirement. SAA-OP obtains the same consequence without
the problem of over declaration.

7 Simulation

We present how complementarities and substitutability of buyers influence on perfor-
mance of our proposing mechanism (the SAA-OP). For this purpose, we conduct sim-
ulation analysis with the existing mechanism, the AOP presented in Section 3.3. As we
have mentioned, the AOP does not deal with the complementing choices of buyers.

In the simulation analysis, we model an identical scenario where an auctioneer runs
the SAA-OP or sequentially opening (and closing) auctions for complimenting choices
on the AOP for a perishable item. In this case, a buyer is able to bid substituting item
in the successive auction if the buyer could not win an item in the preceding auction.
Of course, the SAA-OP is run for complementing items at once. We consider a single
auction item with different due dates in T = t0, t1. For each buyer, we assign an in-
dependent integer valuation drawn from a given uniform distribution ranging from $ 1
to $ 20 for each unit and for each due date. We consider two types of buyers, com-
plementarity buyer and straight buyer. The former buyer has a substitutable choice on
due date, and the latter buyer has a strict single due date only. We assume production
capacity for 4-unit per day.

We test the following 5 cases for simulations based on the ratio of complementarity
buyers: (i) 0 %, (ii) 25 %, (iii) 50 %, (iv) 75 %, and (v) 100 %. For an ease of com-
parison, we set the maximum purchase quantity as 4-unit per buyer and assign 4 buyers
in each due date. Hence, for the case (ii), we assign 3 straight buyers on due date t0
and t1, respectively; 2 comlementarity buyers. For the respective 5 cases, we run simu-
lations 1,000 times. We compare the performances of the SAA-OP and AOP on social
surplus and profit of sellers that are obtained by the ratio of the actual social surplus
including profits of sellers to the Pareto efficient social surplus, and the overall profits
of sellers. Notice that we use the same valuations for buyers to run two types of auction
mechanisms in each simulation.

Based on the above settings, we conduct the simulation analysis. First, we present
how the average social surplus is given impact by the auction mechanisms in Figure 1.
Notice that the SAA-OP and the AOP has the same results if all buyers are straight
buyers (ratio of complementarity buyers = 0), since the winner determination process
in the SAA-OP for complementing choices is not used. While the SAA-OP increases its
performance with respect to social surplus as the increase of complementarity buyers,
the AOP decreases its performance in contrast. Main reasons of these observations are
two-folds: (i) the SAA-OP is able to determine auction winners more efficient if buyers
have greater number of alternative choices, and (ii) the buyers under the AOP are more
competitive, since the auction losers in the preceding auction submit different orders in
the successive auctions.

Next, we focus on the overall profit of sellers. We depict the overall profit of sellers
in Figure 2. The overall profit of sellers indicates that the performances of the SAA-OP
and the AOP are significantly different for the comlementarity buyers. Under the SAA-
OP, there is a strict difference on the overall profit of sellers between all straight buyers
and other cases. In our simulation settings, the number of choices of a complementarity

334 M. Furuhata

O
O O O O

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

Ratio of Complementarity Buyers

S
oc

ia
l S

ur
pl

us
 R

at
io

O O O
O

O

SAA−OP
AOP

Fig. 1. Social Surplus

O

O O O O

0.0 0.2 0.4 0.6 0.8 1.0

70
75

80
85

Ratio of Complementarity Buyers
P

ro
fit

 o
f S

el
le

rs

O

O

O

O

O

SAA−OP
AOP

Fig. 2. The Overall Profit of Sellers

buyer is double compared to the one of a straight buyer. Subsequently, the complemen-
tarity buyers tend to sustain bidding at higher prices than the straight buyers. Hence, the
SAA-OP corresponds to this difference efficiently in its winner determination process
unlike the AOP, which is observed in the figure. While there is a jump under the SAA-
OP at 0.25 of the ratio of complementarity buyers, similar phenomenon is not observed
under the AOP.

Overall, the SAA-OP is able to efficiently allocate auction items for complementarity
buyers without decreasing the profit of sellers and buyers. In contrast, the AOP for
comlementality buyers compels competition for bidding prices. As a result, the overall
profit of buyers is decreased.

8 Conclusions and Future Work

An allowance of multiple choices gives buyers expressive power of their complex pref-
erences in auctions. These choices are significant if auctions are simultaneously under-
taken with respect to multiple time periods, since valuations depend on available due
dates. This scenario is important for corporate buyers concerning long-term procure-
ments with several different business plans. A typical example is in device industries,
such as chemical, papers, steels and mills industries, in which a change of production
schedules or capacities is not simple due to contamination problems and production
device installation lead-times and costs, while demands of customers change over time.
In such a case, a flexible auction is a candidate solution to deal with a gap between
supply and demand. As a solution for the scenario, this paper proposes a new multi-unit
simultaneous ascending-price auction with option proposal (SAA-OP) with XOR bids
in Section 4. To prevent strategic manipulations of buyers, this mechanism has complex
winner determination processes. We have shown that SAA-OP implements an ex-post

A Robust Multi-unit Ascending-Price Auction 335

efficient equilibrium in Section 5. Therefore, this mechanism provides the efficient out-
comes as long as all buyers submit sincere plans. We have also presented a numerical
example how SAA-OP solves the over declaration problem in Section 6.

AOP proposed by Iwasaki et al. [5] and an option-based auction proposed by Juda
and Parkes [6] are similar auctions to ours. The former is for a multi-unit without com-
plementarities and the latter is for a sequential auction in a single-unit case. Our auction
is for a multi-unit with complementarities.

In this paper, we have not discussed about susceptibility to collusion and false-name
bid. The collusion problem occurs if buyers are able to agree to misrepresent their
demands and share the gained benefits among them. Against this problem, Che and
Kim [3] propose a collusion-free mechanism for a single item auction. A false-name
bid, which is a loophole in the electronic business era addressed by [12], is effective if
a trader gains additional profits by splitting his orders using several different identities
such as free e-mail addresses. Iwasaki et al. [5] prove that AOP is a false-name-proof
mechanism in a single-item auction. We will consider how to extend their ideas to
multi-item auctions.

References

1. Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. The RAND Journal
of Economics 94(5), 1452–1475 (2004)

2. Ausubel, L.M., Cramton, P.: Demand reduction and inefficiency in multi-unit auction. Work-
ing paper no. 96-07, Department of Economics, University of Maryland (1996)

3. Che, Y.K., Kim, J.: Robustly collusion-proof implementation. Econometrica 74(4), 1063–
1107 (2006)

4. Günlü, O., Ladányi, L., de Vries, S.: A branch-and-price algorithm and new test problems
for spectrum auctions. Management Science 51(3), 391–406 (2005)

5. Iwasaki, A., Yokoo, M., Terada, K.: A robust open scending-price multi-unit auction protocol
against false-name bids. Decision Support Systems 39, 23–39 (2005)

6. Juda, A.I., Parkes, D.C.: An options-based solution to the sequential auction problem. Arti-
ficial Intelligence 173(7-8), 876–899 (2009)

7. Klemperer, P.: What really matters in auction design. Journal of Economic Perspec-
tives 16(1), 169–189 (2002)

8. Milgrom, P.: Putting auction theory to work: The simultaneous ascending auction. Journal of
Political Economy 108(2), 245–272 (2000)

9. Nisan, N.: Bidding and allocation in combinatorial auctions. In: Proceedings of EC-2000,
pp. 1–12 (2000)

10. Parkes, D.C.: Iterative combinatorial auctions. In: Cramton, P., Shoham, Y., Steinberg, R.
(eds.) Combinatorial Auctions, ch. 2. MIT Press (2006)

11. Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. Arti-
ficial Intelligence 135, 1–54 (2002)

12. Yokoo, M., Sakurai, Y., Matsubara, S.: Robust combinatorial auction protocol against false-
name bids. Artificial Intelligence 130(2), 167–181 (2001)

Mobile Agent Cloning for Servicing

Networked Robots

W. Wilfred Godfrey and Shivashankar B. Nair

Department of Computer Science & Engg., Indian Institute of Technology
Guwahati-781039 India

{w.godfrey,sbnair}@iitg.ernet.in

Abstract. In this work we present how the concept of cloning of mobile
agents can aid in enhancing the performance of a multi robot system by
providing faster services to the robots. The mobile agents carry solutions
to problems faced by robots, as their payload. These agents move con-
scientiously in the network till they sense a pheromone gradient formed
by a Robot Requesting Service (RRS) and its neighbours. Mobile agents
tend to clone when they discover pheromones diffused by different RRSs
thereby resulting in a faster and concurrent service. Simulation results
have shown that cloning agents in high density RRS areas greatly de-
creases the waiting times for a service.

Keywords: Mobile Agents, Multi-Robot Systems and Pheromone
Diffusion.

1 Introduction

An architecture for a multi-robot system based on mobile agents has been pro-
posed by Godfrey and Nair [1]. The major objective of the work is to realize
a multi-robot system, wherein robots need not initially have programs to exe-
cute every task they are capable of. Instead, mobile agents which carry these
programs, written and deployed by a third party, could on-demand, arrive at
such robotic nodes and provide for the relevant code to effect a task. Such a
framework will allow even novice robotics enthusiasts to attach robots onto this
network and make them execute commands for which they have not embedded
the relevant program. The work reported herein describes the strategies by which
a robotic node requiring a service (or a program) attracts mobile agents that
carry the relevant programs needed to execute the task at hand.

2 Mobile Agent Based Multi-robot System

Fig. 1 depicts the architecture of the system being developed. It consists of
multiple robots connected to one another by wireless links. A robot can thus
communicate directly only with its immediate neighbours which are within the
wireless range. Every robot has a platform capable of hosting mobile agents.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 336–339, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Mobile Agent Cloning for Servicing Networked Robots 337

When a robot is issued a command to perform a task for which it does not
have the relevant code, it sends out a pheromone-like volatile signal which tends
to diffuse into the network through its immediate neighbours. As they diffuse
their concentration decreases at each hop. When the mobile agents carrying the
specific code for this task, sense these pheromones at a robotic node, they are
guided directly towards the Robot Requesting their Service (RRS) along the in-
creasing pheromone gradient. In contrast to the conventional virtual pheromone
[2,3] where trails are left out by a moving agent, these pheromones are gener-
ated by a robotic node. These nodes proactively diffuse by themselves onto the
neighbours till their concentration finally reduces to zero. In our scenario, the
mobile agents forage for RRSs while the latter diffuse their aroma to attract
the former much like what has been reported in [4].

An RRS starts diffusing a pheromone once it knows that it needs a service. A
service could mean a (i) Request for a code required to accomplish a specific task
which the robot is unaware of, (ii) Rules or information that could improve the
performance of a robot or (iii) Information on how it could overcome a trap or an
undesired situation. The RRS diffuses pheromone onto its immediate or one-hop
neighbours with the maximum concentration. In subsequent time steps these
neighbours diffuse the pheromones to their one-hop neighbours with a decreased
concentration. The process continues till the concentration of pheromone dies
down to zero.

Apart from the RRS, each robotic node also ensures the diffusion and evap-
oration of the pheromones. An RRS proactively attracts the mobile agents that
in turn provide the relevant service. The mobile agents in turn also move in
a proactive fashion towards the robot along the pheromone gradient. Both the
robots and the mobile agents thus actively involve themselves in a parallel and
bidirectional search for one another in the network.

The mobile agents are hosted by a platform within the robotic nodes. While
pheromones are diffused radially, the agent migration is based on a combination
of conscientious [5] and pheromone oriented strategies. The mobile agent nor-
mally uses conscientious strategy when it finds itself in non-pheromoned robotic
nodes. The absence of pheromones at a node indicates that it is not within the
near vicinity of an RRS. The agent thus opts for a conscientious strategy by
migrating to a neighbouring node that it has not visited recently. It thus main-
tains a list of nodes visited as it migrates and tries to uniformly distribute its
frequency of visits to the nodes comprising the network. When an agent finds
itself within a node that has pheromones diffused onto it, it uses a pheromone
tracking strategy. It tries to find whether it can service the RRS that diffused
it, based on specific parameters embedded in the pheromone. If so, the agent
chooses the pheromone link that has maximum concentration and migrates to
the node pointed by it.

3 Cloning of Agents

When several RRSs diffuse pheromones for the same service, an agent may per-
ceive pheromones directing it along multiple paths leading these RRSs. The

338 W.W. Godfrey and S.B. Nair

Fig. 1. Architecture of the Mobile Agent based Multi-robot system using pheromones

mobile agent needs to decide as to which RRS should be serviced first. The
decision could be made based on either a random or conscientious strategy.

If an RRS were to be randomly selected and serviced, then there would be
no streamlined way of finding the other RRSs requiring its service. To avoid a
redundant service, the agent stays within the RRS till the time its pheromones
have evaporated. The agent thus has no real means of finding the other RRSs
and therefore switches back to the conscientious strategy of discovering RRSs
without any memory of the previous dilemma encountered.

One solution to this problem would be to make the agent remember its path
back to the node where it detected multiple pheromone paths to other RRSs and
then retrace them after the first RRS is serviced. This may decrease the waiting
times of the other RRS to some extent.

The best option under such conditions would be to trigger the cloning mecha-
nism within the agent and then send each of the clones along pheromones diffused
by the other RRSs. This will lead to a parallel service of all the RRSs thereby
improving performance. Cloning can be beneficial in the sense that while more
RRSs can be serviced in parallel, it greatly reduces the repeated diffusion of
the pheromones by the other RRSs, thereby saving bandwidth as also resources
consumed in pheromone diffusion.

3.1 Clonal Model

Though cloning can easily lead to better performance, there are several issues to
be handled. Each clone generated is embedded with the following information:

Lifetime. If clones contained the same logic as their parent, they would further
clone when faced with a similar situation. This could lead to an avalanche of
clones infesting the network finally choking the bandwidth. This is why a lifetime
is conferred on every clone so that they live just about as long as they are needed.

Mobile Agent Cloning for Servicing Networked Robots 339

The lifetime of the clone is fixed at a value which is not more than the total
pheromone spanning length. Further clones are rendered sterile, in the sense that
their cloning logic is inhibited at the time when they are created. This ensures
that they do not clone like their parent agents.

Service Information. When the parent clones, it embeds within the clone
information regarding the RRS it needs to track down and service. Its pheromone
tracking behavior is fixed to enable it to track and service only a specific RRS.
However it may happen that en route to the RRS, such a clone may find that
the pheromone trail has evaporated. Under such conditions, it may fail to reach
the specific RRS and die a natural death when its lifetime equals zero.

4 Conclusion

In this paper, we described how mobile agents, coupled with their abilities to
clone and carry service-oriented programs, can be used to service robots within
a network. We also discussed how cloning significantly decreases RRSs waiting
times in a network of robots. Mobile agents carry service programs as payload
and search for RRSs that need a service within the network, using a conscientious
algorithm.When they sense an RRS initiated pheromone diffused area, they tend
to take a path along its concentration gradient and are thus directly guided to
the RRS. On encountering pheromones from different RRSs requesting the same
service the agent clones thereby effecting a parallel search and service procedure
and decreasing waiting times on part of the RRS.

The use of a combined Conscientious and Pheromone based strategy results
in a sort of bidirectional parallel search on part of the agent and the robots
forming the network. Blending this approach with cloning can further improve
performance over a mere conscientious approach. We are in the process of real-
izing the entire servicing model using real networked robots and mobile agents.
Preliminary results using this blended approach on the real network of robots
and mobile agents are encouraging.

References

1. Godfrey, W.W., Nair, S.B.: An Immune System Based Multi-robot Mobile Agent
Network. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132,
pp. 424–433. Springer, Heidelberg (2008)

2. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone Robotics. J.
Autonomous Robots 11(3), 319–324 (2001)

3. Purnamadjaja, A.H., Andrew, R.: Bi-directional pheromone communication be-
tween robots. Robotica 28(1), 69–79 (2010)

4. Li, Z., Zhou, W., Xu, B., Li, K.: An Ant Colony Genetic Algorithm Based on
Pheromone Diffusion. In: Proceedings of the 4th International Conference on Nat-
ural Computation, ICNC 2008, Jinan, China, October 18-20, vol. 7, pp. 471–474
(2008)

5. Minar, N., Kwindla, H.K., Maes, P.: Cooperating Mobile Agents for Mapping Net-
works. In: Proceedings of the 1st Hungarian National Conference on Agent Based
Computing, Hungary, pp. 34–41 (1999)

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 340–354, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards Distributing Agent Intelligence:
Using Decentralized Software Services

for the Creation of Complex Problem Modelling

Quintin J. Balsdon and Elize M. Ehlers

The University of Johannesburg, Corner of Kingsway and University Road,
Auckland Park, 2006, South Africa

qbalsdon@gmail.com, emehelers@uj.ac.za

Abstract. Autonomous agents are often restricted by the programs that make up
their ‘intelligence’ because they are installed on the same hardware as the agent.
Since intelligence is software and therefore abstract, it is possible to separate
the components which ‘create’ the agent’s intelligence from the agent itself.
The disembodiment of intelligence allows agents to access components that
may not be suited to their hardware for physical reasons, such as storage
capacity or computational complexity.

It has been long established that humans find solutions to problems by dividing
a problem into a series or smaller sub-problems [1; 2]. Using web services,
‘intelligence components’ can be created which perform a simple generic task on
behalf of a client agent. These components may be used in different combinations
in order to create customized solutions for particular problems.

Intelligence components may be distributed across servers in different
locations, allowing other agents to benefit from the differing implementations.
In addition, software may be updated remotely by updating individual
components. The model is aimed at creating a repository of useful functionality
which may enable intelligent agents to focus on the process of intelligence
rather than processing individual environmental states.

The solution presented demonstrates that an agent may access distributed
components in order to control behaviour, taking into consideration that
components themselves have no concept of the environment in which the
requesting agent exists. The problem of translating a ‘model’ solution into the
environment-specific solution is therefore left to the agent.

Keywords: Coordination and Concurrency Runtime, Distributed Software
Services, Microsoft Robotics Developer Studio, Serialization.

1 Introduction

In the field of robotics, two types of software components are required: those that
interface with the hardware and those that process the information gathered from
sensors [3; 4; 5]. It is often difficult to manage all the incoming information with the
processes that are designed to handle that information. A robotic entity would have to
wait for all the required inputs to be received before continuing with a particular task,
whilst at the same time being plagued with continuous information that requires

 Towards Distributing Agent Intelligence 341

processing. The Concurrency and Coordination Runtime (CCR) [4; 5; 6] enables a
programmer to run threaded tasks without concerning themselves with the timing of
thread completion, using delegates to run a particular subroutine when all the required
inputs have been gathered. In addition components have been separated into
Decentralized Software Services (DSS), software components which allows for
processing to continue within an agent while the data manipulation occurs in a
separate thread, possibly on a separate processor [4; 5].

It has been shown that these services may even be utilized to distribute behaviour
of the effectors of a robotic agent [7], however, these services could also be used in
the problem solving process of all types of agents, robotic and software-oriented. The
distributed nature of the components also allows for functional elements of code to be
shared amongst different agents.

In any problem solving process, the problem must be broken down into a series of
sub-problems[1; 2]. These sub-problems can then be solved using different methods,
but will always refer to axioms which define the problem space. A system which
controls individual components that perform smaller tasks on behalf of agents will
allow the computationally complex aspects of intelligent agents to be distributed
across various platforms. The agents which use such a system must appropriately
model the environment (also known as a belief state, in the Belief-Desire-Intention or
BDI model) in which it exists (the model must not exclude information that is
imperative to the solution [1]) and properly sub-divide its problems. In addition, a
formal method of model representation and communication is required, which will
enforce standards in intelligent agents to be created and maintained [8].

The Microsoft Robotics Developer Studio (MRDS) provides the ideal platform not
only for embeddable intelligence, but also for the proposed agent model. A state
object is used for transferring of behavioural suggestions and changes within an
agent’s internal structure. In addition, the C# language provides many interesting
aspects for artificial intelligence. For example, delegates allow for functions to be
passed like parameters and when combined with services, allow for embeddable
intelligent behaviour using the predefined state transfer mechanisms.

The purpose of the following paper is to propose a method of utilizing
Decentralized Software Services for the purpose of creating components which solve
a particular problem independent of agent hardware and environment. These
components may then be strung together in such a fashion that various types of
problems may be solved in variable degrees of complexity.

2 Model

Intelligence is not simply the ability to achieve the task that is presented. The aim of
intelligent systems is to achieve a solution that is adaptable to all the complexities that
surround a particular problem. While systems are capable of self modification it has
been proven that a no system will be so complete in its knowledge that it is capable of
solving any problem [2; 9], as in human intelligence. The resulting system, therefore,
is not an attempt to solve all problems but rather an experiment to evaluate the degree
to which a system may increase complexity while maintaining autonomy.

342 Q.J. Balsdon and E.M. Ehlers

Fig. 1. The manner in which a robotic agent relates to individual intelligence components

The goal of the agent model is to prove that systems are capable of real-time self
modification that will enable them to access remote components, which provide
‘elemental’ solutions to problems. The framework will enable any intelligent agent to
solve basic problems and problems that it is capable of sub-dividing. As discussed
earlier, many problems are solved by breaking down the problem into a series of sub-
problems until the sub-problems may be solved by elementary processes [1 ;2]. Figure
1 depicts a robotic agent making use of the framework. Each Distributed Intelligence
Component (DIC) is accessible to any agent requesting its use, making the system
advantageous to multi-agent settings and those where agents exist in entirely different
environments and in different systems.

In order to distribute components, some mechanism by which components may be
accessed needs to be created. Since agents will be distinct from the components that
they use to create their ‘intelligence’ [10; 11], the means by which they will gain
access to these components is known as the ‘component pool,’ which is actually a
distributed component itself. Agents will be required to register with one service
which will in turn have registered with all the other services, leaving the burden of
service discovery outside of the agent. The manner in which the component pool
operates is discussed in section 2.2.

The agent is responsible for perceiving the environment in the correct manner. It
will be required to remove noise from the environment and develop an appropriate
internal model of the environment. In addition, the problem space needs to be
correctly mapped including only the correct aspects of the problem, i.e. by not
removing so much as to make the problem unsolvable, but not putting so much detail
in to the model that every problem becomes unique. The particular problem that an
agent is dealing with at the time needs to be more generic than that of the entire world
space. Some problems may be more complex than others. However, it is possible that
the underlying solution will not change, because the environmental factors creating
the perceived complexity do not necessitate a change in problem approach (figure 1).

Agents in an environment like figure 2 (a) will have far less problems than agents
existing in figure 2 (b) in terms of perception and noise reduction, however the nature

 Towards Distributing Agent Intelligence 343

(a)

(b)

Fig. 2. Distinction of problem and environment: the figures represent that the change from two
dimensional (a) to three dimensional (b) environment while the underlying problem remains the
same

of solution that the agent employs (A* search, depth-first search etc.) is not required
to differ. Intelligent agents, as long as their problem representation remains
consistent, could employ the same components in both environments [7].

For example agents may be required to navigate through a maze (such as in figure
2). While mazes may differ in their setting, the problem has been solved via breadth-
first, A* and other uninformed search strategies [10; 11; 12]. Whatever strategy an
agent may wish to employ is insignificant to the environment in which it is placed.
Any agent, whether in a two or three dimensional space, for example, is able to apply
the same strategies based on the type of problem being solved. It can be seen from
figure 2 that whilst the environment may change in its own complexity, the nature of
the problem may not be as different. Therefore components for intelligence need not
be situated inside an agent, but can be placed inside service components divorced
from the environment.

The agent model aims to provide all agents with ubiquitous components that may
be ‘strung’ together in any fashion [7; 12], allowing them to construct novel solutions
to the challenges they face, while removing the non-essential complexities of the
environment (figure 3).

Fig. 3. A possible network of DIC components forming a complex behaviour

The solution to more complex problems is also the task of the agent. The agent
must be able to map problems to some series of steps that will result in the solution.
The agent must also be capable of constructing the entire solution from a sequence of
sub-solutions. However is possible that the task of problem sub-dividing and solution
construction can become components themselves.

344 Q.J. Balsdon and E.M. Ehlers

An agent making use of these distributed components must be able to send and receive
data to and from these components in such a manner that the solution provided by the
component is of practical value to the agent. There are therefore six stages that have been
determined that an agent will advance through in order to ensure the utility of a solution:

1. Filter the environment. The environment must be correctly perceived by the
agent. The agent then is required to remove any noise from the perception that
does not contribute to the problem at hand. The perception will be required to
remove elements from the problem, but this must be carefully done so as not
to modify the problem in any way. It is vital that an appropriate model is
formed by the agent without adding or removing essential information [1].

2. Format the input. The filtered data must be represented in standard manner in
order that it may be communicated effectively with other components. For
example, a robot navigating a factory floor can represent its problem space
using the same data structures as the agent in a GPS navigation application.

3. Fragment the problem. The problem needs to be broken down into a series of
sub-problems (stages). These sub-problems must be ordered so that when
solutions are found, the complete solution may be re-constructed by ordering
the solutions to sub-problems. It is in this stage that components will be put
together in order to form solutions.

4. Find the sub-solutions. Each component will start attempting solutions to each
sub-problem assigned to it. In this stage the components are executing their
functionality. The results are returned to the calling agent.

5. Fit the solution. Once a solution has been found, the agent must be capable of
taking the generic information provided by the components and applying the
solution to the particular environment in which the agent exists. This is the
reverse procedure of stage two.

6. Finalize. The agent must not assume that a goal has been attained simply
because it attempted a solution. The agent must once again perceive the
environment and check that the goal state has in fact been reached. Once stage
six is completed, the agent may be faced with other factors that have been
created by ‘side-effects’ to the solution.

These stages define the manner in which the distributed components will integrate
with modern artificial intelligence techniques. The following section will highlight the
individual components themselves and in what manner they fit together.

2.1 Distributed Intelligence Components

Each intelligence component in the model will be implemented inside a separate DSS.
The DSS Intelligence Components (DIC) may be combined in various arrangements
to create solutions more complex than any individual component. If the DIC inputs
and outputs are defined in a machine-readable manner, a network of DICs may be
formed by an agent (figures 1 and 3), and all the components have a full listing of the
inputs required by other components, combined with the ability to be ‘aware’ of what
manner of output is expected [13].

DICs may be hosted locally or on a server, which describe some basic behaviour
that may be performed by any artificially intelligent entity. These DICs will be loaded
by an agent’s component pool [7; 12], which handles the manner in which DICs are
used (figure 1). The agent is responsible for determining the nature of the surrounding

 Towards Distributing Agent Intelligence 345

environment, and ‘cleaning’ the information in such a way that the data may be sent
to the DIC in a standard format, see code sample (1).

The definition of the inputs of the DIC is required so that the agent has the ability
to properly utilize the DIC functionality. This is usually done programmatically, in
other words, by writing and compiling code. However, since the construction of these
networks must be dynamically (done by the agent) the program may define the inputs
and outputs in another manner, such as XML (and thus utilized at run time) so that the
desired network of components is generated by the agent.

The DICs will allow any intelligent agent system, robotic and software, to
interchange components at runtime for any purpose. Further advantages include:

• Fast process change without compilation. Since each DIC is a separate
embeddable component, the manner in which a problem is solved may be
modified to suite the agent.

• Component reuse. Many agents may access the host for any purpose and
there is no requirement for every solution to have the same algorithms
implemented in the same manner.

• Platform independence. Intelligence should not need to exist based on the
environment in which it is required to operate.

• Distinction of problem from environment. The obstacle facing the agent will be
differentiated from the environmental aspects and challenges the agent faces.

Each DIC will correlate to an individual function that may be performed by any agent.
These DICs may be hosted on some network, for example the Internet, in order to
increase availability.

[DataContract]
public class BehaviourRequest
{
 private object _input;
 private Type _type;

 /// <summary>
 /// Returns the object-typed input from source
 /// </summary>
 [DataMember]
 public object Input
 {
 get { return _input; }
 }

 /// <summary>
 /// Returns the type of the input
 /// </summary>
 [DataMember]
 public Type Type
 {
 get { return _type; }
 }

}

(1)

346 Q.J. Balsdon and E.M. Ehlers

2.2 The Component Pool

MRDS services are modules designed for reuse in several different robotics
applications. In addition, Microsoft has made provision for services to be hosted by a
single service. The component pool is therefore a service utilised as a platform for
other services. The advantage of using a pool as the host, rather than the agent, is that
the additional layer of abstraction makes the agent ‘unaware’ of the explicit
components provided by the pool. The agent’s code does not have to be recompiled
after a new component is created. Instead, the component just needs to be added to the
pool of existing services, as seen in figure 1.

The purpose of the component pool is to load and group specific DICs which relate
to the function of the agent itself. The component pool is used by the agent for
achieving its goals. The component pool does not only host components for use in the
solution of a particular problem, but is also able to construct a solution to more
complex problems by combining different components’ functionality together.

The component pool may host DICs in a certain manner for a number of reasons.
For example, if the agent has only simple goals (or the problems are easily broken
down into simple goals), and a corresponding set of DICs exist to solve the agent’s
problems, then it is best for the component pool to host the DICs based on solution,
requiring the agent to formulate the inputs for each individual component. However,
if the agent requires a specific solution based on a set of data or based on specific data
representation models, the component pool is better off grouping the available
components by input, in order to minimize communication. The timing of a solution
may also become an issue: perhaps a rating system may be required so that agents will
select a component based on the turnaround time of particular DICs. There may be
multiple implementations of certain algorithms which have been optimised with
different design goals (for example, time versus accuracy). However, when DICs are
grouped by input, it needs to be noted that:

1. The correct DIC may not be chosen based on solution, and the agent must
therefore take care to ensure the correct DIC is chosen.

2. Many DICs may be able to produce a solution, and so the agent must be sure to
have a mechanism by which it can select a single DIC, based on some
measurement of utility.

The services are hosted using the proxy that is produced at compilation, which
contains the ‘contract’ of the service. This allows messages to be marshalled and
passed between the two services[5]. After the services have been registered using
their proxy, commands are sent to the service requesting their state. The state is then
transferred to the host and may be manipulated and used.

3 Implementation

3.1 Creating Generic Behaviours

Every service that is created for MRDS must register the operations that are to be
used in the PortSet [6]. The PortSet class encapsulates several ports so that multiple
messages may be sent in a queue [4; 5; 6]. DIC components designed in MRDS for

 Towards Distributing Agent Intelligence 347

the component pool must have a common agreement on structure since the detection
of method signatures is significantly more difficult than the detection of output types.
The UML diagram shown in figure 4 depicts all the operations for the behaviours that
were created. It is important to note that it is normal to leave the operations class
blank (in this case, BehaviourOperations) as the messages that can be passed are
described by the inherited PortSet. The operations class serves solely to register the
operations provided by the DIC hosted on the DSS. The function of the operations is
defined in a customised handler implemented in the DICBehaviour1Service class.

For a particular Behaviour to exist, an encapsulation class must be declared, in
which the message may be passed. The BehaviourRequest class must be declared with
the [DataContract] attribute, which registers the class as part of the contract that is
passed using REprestational State Transfer, or REST [5; 6]. MRDS has been designed
in such a manner that properties may also be passed as part of the REST, using
serialisation. A property method may be written for each attribute in a class and,
depending on the type, may be registered for serialisation using the [DataMember]
attribute. In this manner the data type may be communicated to another DIC.

Fig. 4. UML Diagram describing the structure of an individual behaviour

The BehaviourHandler method in the DICBehaviour1Service class is the core
functionality of the service. In this method, input is received and may be processed in
order to generate a solution to a problem. The solution may be as simple as a calculation
or as complex as an array of behavioural steps for a robotic agent to follow. This is the
manner in which a problem may be resolved. The solution must be returned via the _state
object declared within the DICBehaviour1Service. The _state of the service has two
types returned: object and a type. The type field specifies the data type in which to cast
the object variable. The object variable can be an array of more objects (each with a
corresponding type array) or simply one solution for the recipient.

348 Q.J. Balsdon and E.M. Ehlers

3.2 The Component Pool: DIC Hosting

In order to effectively create networks of DICs, each DIC must be hosted by a pool. The
possibility exists for multiple pools to be created, in order to differentiate between types
of DICs. Each sub-pool could then be hosted by an overall pool. The pool is designed to
be a static container of DICs to which any agent may connect. The pool is responsible for
communication between the agent and the DICs contained within the pool. The simplest
approach for grouping behaviours at the moment is to sort them based on their input,
however many options remain (output, implementation, problem type). Upon receiving a
message, the pool may forward it to all the hosted DICs, or a specified DIC, specified by
some variable. These messages would be passed in the same way as any other messages
described in the model. Figure 5 indicates the class diagram for the component pool. An
agent utilizing the model only hosts the pool service and makes use of the function calls
provided by that service to access DICs.

It is important to note that certain Behaviours may be specific to the type of agent
requesting the solution, i.e. that some solutions may result in an operation tailored for
a specific environment. For example, a type of Behaviour in the pool may require that
the agent has a (physical) differential drive. The differential drive is run by setting
each wheel to a specific power (a real value ranging from -1 to 1) in which differing
powers allow a robot with such hardware to turn. In addition, the differential drive
must be permitted to run for a certain time before the next request is made. The reason
for ensuring such an action is that the CCR does not guarantee the order in which
requests are received, but only that it will wait until all messages have been received.
Therefore the robot must wait between the executions of behavioural steps. Since the
time it takes for a robot to drive one metre is different from the time it would take the
same robot to drive ten metres, the time is as variable as the distance that the robot is
requested to drive. Thus the time or distance may be abstracted to the pool as well,
depending on the particular component.

Fig. 5. Structure of the Component pool

 Towards Distributing Agent Intelligence 349

3.3 Agent-Pool Interaction

The interaction sequence diagram (figure 6) describe the message passing between the
three basic components, namely the behaviours, the pool and the agent entity.
However, control needs to be carefully handled within the agent owing to the
Concurrency and Coordination (CCR)-managed threading. Every threaded method
has a return type of IEnumerator<ITask>. The robot will read its environment
(read_environment); seek the embedded objects output (send_inputs) and may then
issue actuator commands (e.g. driveRobot). The Behaviour of the entity is centrally
controlled by the perform_behaviour method.

It is important to note that the agent is never locked in a particular behaviour, since
the methods are threaded using the CCR library. This allows the agent to continue
with other internal operations, such as reactive control, even when in the middle of
requesting an embedded behaviour.

The start up sequence is the process where an agent invokes the pool service,
which in turn invokes the behavioural services (DICs). This is accomplished using the
managed asynchronous message passing of the CCR. Figure 8 depicts the message
passing when the agent is in normal operating mode.

The agent is only aware of the pool service. After the pool service is loaded, the
pool becomes responsible for loading and hosting the services. The agent loads the
pool service which makes all the embeddable components available. The agent now
has access to all the DIC components that are hosted by the pool service. Code sample
(2) is the implementation of the agent calling the Get() method of the pool. In the
same manner, sensor input can be sent through to the pool to the hosted services using
the Component Pool’s SendInput method.

The agent may load the pool service which makes all the embeddable components
available. The agent will then have access to all the Distributed Software Service
Protocol (DSSP) operations that are implemented in the pool service, which can
access the DSSP operations in each hosted service. In the same manner, sensor input
is sent through to the pool to the hosted services. Since the behaviour of the services
is input driven, it is advisable that pools only associate with services (for the moment)
that have the same inputs so that the Behaviour remains abstracted from the agent.

Upon an execution, the thread is able to return its control to the agent, thereby
completely managing the threading issues. This obviates the need for the programmer
to release locks or determine the schedule of other threads. Similarly, all the levels of
the internal element component, including the reactive components, may be
implemented. With the pools implemented to handle their specific behaviour and
inputs, the framework will successfully embed components. The CCR manages all
incoming messages, and so the order of incoming messages is not an issue since the
agent can continue operation while different components execute remotely.

In order to run a certain behaviour as the result of a DSSP operation, such as Get(),
the agent may simply spawn a thread to execute the Behaviour, while remaining in
control of the Behaviour that is being executed. In this way, the agent is not simply
executing a Behaviour blindly, but rather runs a result step by step, inside a thread
that may be interrupted – for safety purposes. Figure 8 is the method that is run inside
a thread, executing a specific behaviour.

350 Q.J. Balsdon and E.M. Ehlers

:Agent :ComponentPool DICBehaviour1 DICBehaviour2

send_inputs(input)

BehaviourRequest(input)

BehaviourRequest(input)

behaviour

behaviour

behaviours

perform_behaviour

read_environment

Fig. 6. The manner in which messages are passed

read_environment();//percieve the environment
yield return Arbiter.Choice(DICpool.Get(),
delegate(behaviourPool.BehaviourPoolState success)

 {
 LogInfo("AGENT: GetPool: ServicePool loaded: "
 + success.Status);
 LogInfo("AGENT: GetPool: number of activities
 in pool: " +
 success.Behaviours.GetLength(0));
 _state.Pool = success;
 agent_initiate();//use DIC components
},
delegate(W3C.Soap.Fault failure)
{
 LogError("AGENT: GetPool: Could not retrieve
 pool state");
 agent_fail();//report the failed load
}

);
LogInfo("AGENT: Get sequence complete");

(2)

 Towards Distributing Agent Intelligence 351

The agent may also send messages to the services inside the pool. The DICs may
then alter their behaviour based on these inputs. The ability to alter behaviour based
on inputs within hosted services allows the DICs to remain unacquainted with the
particular environment, but able to provide functional intelligence on the behaviour
that should follow certain inputs. Code sample 3 presents how the service pool
receives a message from an agent and encapsulates the message that must be
forwarded to the hosted service.

4 Challenges

Communication must always be handled with great care in such models, since there is
the added complexity of distribution. In modular programmed systems, complex data
types (classes and objects) are shared by the entire system, however in distributed
models, custom complex data types are not. It is entirely possible that a valid
communication is created by the agent with a custom data type, which is passed
through the component pool to a DIC that does not recognize the data type of the
parameter. The problem may also occur in the DIC, where a solution is represented
within a customized data type. A method of distributing complex custom data types
must be implemented in order for the solution to be completely generic in terms of
transferrable data types.

Since any solution that is presented by an agent is dependent on the model of the
environment that is created by the agent, that model becomes an important aspect of
the system in two aspects: first, that the manner in which environmental models are
created is incorrect. This implies that the agent is either overloading a model with too
much information or is culling information that is vital to the solution. Secondly,
models are created with certain assumptions in mind, and these assumptions may or
may not reflect reality [1], as a bias may have been programmed into the system.
There may be an axiom within the agent system used to generate a model which
creates a distorted view of reality for the agent.

[ServiceHandler(ServiceHandlerBehavior.Exclusive)]
public IEnumerator<ITask>
 InputRequestHandler(SendInput ipt)
{
 bh1.BehaviourRequest b1req = new
 bh1.BehaviourRequest();
 b1req.Input = ipt.Body.Input;

 yield return
 Arbiter.Choice(pool_1.GenBehaviour(b1req),
 delegate(bh1.Behaviour1State success)
 {
 LogInfo("Pool load Successful");
 _state.Status += " ServicePool: " +
 success.Status;

 _state.Behaviours.SetValue
 (success.Actions, 0);

(3)

352 Q.J. Balsdon and E.M. Ehlers

 },
 delegate(W3C.Soap.Fault failure)
 {
 LogError("Pool state fail");
 }
);

 LogInfo("Sequence Complete");
 ipt.ResponsePort.Post(_state);
}

One of the issues for consideration is that the DIC model requires a mechanism for
effective component grouping. As the number of components available increases,
there will need to be a mechanism by which agents can identify and use components.
In addition, agents may wish to rate components on their utility. For example, one
implementation of the breadth first search algorithm will have a complexity of O(n2),
while another may have O(n+m), depending on the data representation [14].
Components may either be grouped by solution or by input [7; 12]. Grouping of
DICs, for now, is static and controlled by the programmer on an individual basis.

In addition, components must be made available to agents. If an agent is reliant on
hosted services to solve a problem, these services need to be present and available.
Presence is an issue since agents cannot solve a particular problem using only one
solution method. If the agent only has a hammer, ever problem may be treated as if it
were a nail [1].

5 Conclusion

Components have been created which take an external stimulus from an agent,
perform a function and return a result which the agent may then act upon. This
behaviour demonstrates the concept of distributing intelligent behaviour in the form
of embeddable components. Agent and robotic systems can now be developed where
the robotic entity is responsible for perceiving and acting in the environment, but the
task of processing the perceptions may be passed onto another component, which may
not even operate on the same machine, or even in the same location as the robot itself.
The implication is that intelligent behaviour may be generated as a result of
combinations of small algorithms, rather than one consistent algorithm attempting to
solve all problems. The usage of services allows for agent entities to be created
independently of the software algorithms they are running. The agents need only be
concerned about the particular environment in which they will be placed.

The concept that an agent may be independent of its software places a burden of
reliance on the sensors of the agent. Sensors will be required to ‘clean’ the received
information in such a manner that the perceptions may be fed into a standard
algorithm for processing. However, the cost is minimal when the agent is made
capable of solving a wide variety of problems rather than simply building a robotic
system designed to solve one problem.

 Towards Distributing Agent Intelligence 353

The demonstration of services being capable of receiving input is in itself
significant. Customised services were originally intended to produce output, but input
sent from the robotic entity means that behaviour may be adjusted in response to
particular situations, not the direct environment. In other words, the services may be
completely independent of the environment, should the designers wish to employ
services in this manner.

MRDS as an agent platform has been discussed, as well as the agent model
operating as an orchestration service within MRDS. It has been demonstrated that the
proposed framework operates successfully within the bounds of the DSSs and
managed threading run-times provided by MRDS. It has also been demonstrated
successfully that the agent entity is capable of operating in such a manner that
intelligence may be embedded into agent entities.

The agent model presented is capable of distributing software components tailored
to enabling agents to embed the functions which assist in the problem solving process.
The model does not attempt to create intelligence in computational or robotic entities
but rather provide a strong platform by which agents may begin solving larger
problems due to more available resources.

The model demonstrates that the creation of intelligence is not in the production of
components, but in the effective use of problem-solving techniques. The model allows
an agent to focus more of its local (on-board) processing power to real problem
solving techniques than having to perform all the mundane tasks of solution
discovery.

There are still many opportunities for the model to expand upon, such as
formalising a standard by which agents represent their belief states, creating a
mechanism by which components are effectively grouped and implementing a system
where components may be rated for specific use, such as accuracy versus time-
sensitivity.

References

1. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics, vol. 2. Spriger,
Heidelberg (2004) 3-540-22494-7

2. Li, D., Du, Y.: Artificial Intelligence with Uncertainty. CRC Press, Oxon (2008) 1-28488-
998-5

3. Matarić, M.J.: The Robotics Primer. The MIT Press, Cambridge (2007) 978-0-262-63354-
3

4. Morgan, S.: Programming Microsoft Robotics Studio. Microsoft Press, Redmond (2008)
978-0-7356-2432-0

5. Johns, K., Taylor, T.: Professional Microsoft Robotics Developer Studio. Wiley
Publishing, Inc., Indianapolis (2008) 978-0470-14107-6

6. Chrysanthakopoulos, G., Singh, S.: An Asynchronous Messaging Library for C#,
California, USA (2005)

7. Balsdon, Q.J., Ehlers, E.M.: Agent Framework for Self-Embedding Intelligence
Components Using Simulated Robotics as a Test bed, pp. 1–200. The University of
Johannesburg, Johannesburg (2009); Masters Dissertation

354 Q.J. Balsdon and E.M. Ehlers

8. Poslad, S.: Specifying protocols for multi-agent systems interaction. ACM, New York
(2007) 1556-4665

9. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn., 1152 pages.
Prentice-Hall (2009) 978-0136042594

10. Gui, N., De Florio, V., Sun, H., Blondia, C.: A hybrid real-time component model for
reconfigurable embedded systems, pp. 1590–1596. ACM, Fortaleza (2008)

11. Peper, C., Schneider, D.: Component engineering for adaptive ad-hoc systems, pp. 49–56.
ACM (2008)

12. Balsdon, Q.J., Ehlers, E.M.: A Robust, Modular Agent Architecture With Embeddable
Components for use In Various Multi-Agent Environments: Applying Simulated Robotics,
vol. 2. The Faculty of Industrial Design Engineering, Delft University of Technology,
Izmir, Turkey (2008) 978-90-5155-044-3

13. Burmester, S., Giese, H., Oberschelp, O.: Hybrid UML Components for the Design of
Complex Self-Optimizing Mechatronic Systems, pp. 281–288. Springer Netherlands
(2006)

14. Goodrich, M.T., Tamassia, R.: Data Structures and Algorithms in Java, 5th edn. Wiley
(2010) 978-0470383261

15. Capretz, L.F., Capretz, M.A.M., Li, D.: Component-Based Software Development, pp.
1834–1837. Industrial Electronics Society (2001)

16. Guerrouat, A., Richter, H.: A component-based specification approach for embedded
systems using FDTs. ACM, Lisbon (2005) 1-59593-371-9

Averting the Tragedy of the Commons

by Adapting Aspiration Levels

Onkur Sen1 and Sandip Sen2

1 Rice University
Houston, TX, USA
onkursen@gmail.com
2 University of Tulsa

Tulsa, OK, USA
sandip@utulsa.edu

Abstract. The Tragedy of the Commons involves a community utiliz-
ing a shared resource (the “commons”) which can sustain a maximum
load capacity beyond which its performance degrades. If utility received
is proportional to the load applied on the system, individuals will maxi-
mize their applied load. Such greedy behavior will eventually lead to the
total load exceeding the capacity of the commons. Thereafter, individuals
will get less for adding more load on the system, which signifies a social
dilemma. We develop a distributed solution approach to the tragedy of
the commons that require individuals in the society to adapt their aspira-
tions and apply loads based on their own aspirations. An aspiration level
corresponds to the satisficing return for an individual, which is adjusted
based on experience. In our model, individuals choose the load applied on
the system based on their aspiration levels, thereby affecting the stability
and performance of the “commons.” We evaluate two different aspiration
and load adjustment policies as well as effects of asynchronous decision
making on the stability and performance of populations of varying sizes.
Interesting results include mitigation of free-riding for larger populations.
We also develop a mathematical model to predict the convergence time
for such populations and verify the predictions experimentally.

Keywords: Aspiration levels, Tragedy of the Commons, free-riding.

1 Introduction

In a society, the common infrastructures, goods, and services are typically shared
between members. Often the shared resource has a fixed capacity, and if the
load exceeds its capacity, the resource performance, or its perceived utility to the
users, decreases sharply. For example, if we consider the problem of city traffic, we
find that congestion problems arise out of self-interested drivers sharing common
resources like roads and bridges.

In a society of self-interested, rational members, each individual will try to
maximize its utility via more extensive use of the shared resource. We focus on
resources where the utility returned is proportional to load when the total load

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 355–370, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

356 O. Sen and S. Sen

on the system is below the threshold and decreases rapidly when the thresh-
old is crossed. In a distributed scenario, each individual will have an incentive
to myopically increase its load and hence the combined load will exceed the
capacity of the common resource and everyone’s utility will be adversely af-
fected. This situation corresponds to the well-recognized social dilemma known
as the Tragedy of the Commons (TOC) [9]. TOC represents critical problems
for large-scale systems with multiple independent actors (henceforth referred to
as agents) as individual behavior based on short-term gains leads to long-term
global losses [13].

Real-world examples of the TOC are increasingly recognized at different scales
and societal contexts, e.g., unsustainable agricultural practices, habitat destruc-
tion, traffic congestion. A case of the Tragedy of the Commons lies in the case of
network congestion if every packet is sent with highest possible priority. Suppose
a network contains some routes of different quality. If all agents behave selfishly,
they will try to use the best possible route, leading to a congestion which worsens
every routing through that route.

More recently, attention has been drawn to the Tragedy of the Commons in
the context of autonomous agent systems [21]. Such problems arise in multia-
gent societies [16] as multiple distributed decision-makers try to maximize local
utility based only on limited global knowledge. We are particularly interested in
Tragedy of the Commons situations in distributed computational frameworks,
such as computer networks, peer-to-peer (P2P) and grid systems, modem pools,
shared databases, printers, and servers. The adverse effects of Tragedy of the
Commons often lead to reduced throughput, system inefficiency and failure, and
undermine user satisfaction and trust in such distributed systems. For example,
when the number of users connecting to a fixed-size modem increases, the time
required to connect increases, which leads individuals to hog available resources,
i.e., users tend to maintain their connection rather than logging off after finishing
their work. This, in turn, leads to further delays in establishing a connection.

We propose and evaluate a distributed computational approach to solve the
TOC, where each agent maintains an aspiration level that is adapted based on
observed utilities and is used to determine the load the agent applies on the
system. The goal is to evaluate if the use of aspirations can suppress greedy
behavior and allow agents to choose effective loads, based only on local informa-
tion, that will provide satisfactory performance [5]. We assume agents have very
limited information about the system, e.g., the agent does not know the number
of agents in the system, the load other agents apply, or the total load. An agent
adjusts its load on the commons based only on its own experience of applying
loads and receiving corresponding utilities. Our research goal is to develop local
decision-making procedures that will allow the system to work at near-optimum
capacity without the total load being significantly higher than the threshold,
thus avoiding the Tragedy of the Commons.

The rest of the paper is organized as follows: Section 2 discusses some related
work; Section 3 presents our problem formulation; Section 4 discusses our pro-
posal for adapting the load to be applied and aspiration levels; Section 5 presents

Averting the Tragedy of the Commons by Adapting Aspiration Levels 357

a mathematical model which predicts convergence times for one decision proce-
dure; Section 6 outlines our experimental framework; Section 7 analyzes our
experimental results and their implications; in Section 8 we form a conclusion
about our results and propose future work.

2 Related Work

2.1 Social Dilemmas

A social dilemma arises when agents have to decide whether or not to con-
tribute towards a public good without the enforcement mechanism of a central
authority [7]. Individual agents have to trade off local and global interests while
choosing their actions. A selfish individual will prefer not to contribute towards
the public good but utilize the benefits once the service is in place. If enough
agents choose selfishly, the public good may not survive, causing everyone to
suffer. In general, social laws, taxes, etc., are enforced to guarantee the preser-
vation of necessary public goods. In the following, we present two quintessential
social dilemmas:

Consider a scenario where a public good is to be initiated. Public goods are
benefits produced by the society and available to all of its members regardless
of individual contribution. Examples of public goods in human societies include
provision of parks, roads, a clean environment, and national defense. Further-
more, any public good needs the contribution of a certain percentage of the
populace to be initiated and maintained. Therefore, if enough agents in the pop-
ulace make the selfish choice, the public good may not be produced. Every agent
then faces the dilemma of whether to contribute or to exploit. Let us assume that
the public good G incurs a cost C, and the benefit received by each individual
in the populace is B. Let us also assume that in a society of N agents, P < N
individuals decide to contribute to the public good. Assuming that the cost is
uniformly shared by the contributors, each contributing agent incurs a personal
cost of C

P . If enough agents contribute, we have C
P < B, i.e. even the contributors

will benefit from the public good since the cost incurred per individual is less
than the benefit received. However, since we do not preclude non-contributors
from enjoying the public good in this model, they will benefit more than the
contributors. If we introduce a ceiling M on the cost that any individual can
bear, then the public good will not be offered if C

P > M . In this case, everyone
is denied the benefit from the public good.

Similarly, in a resource-sharing problem, the cost of utilizing a resource in-
creases with the number of agents sharing it (for example, congestion on traffic
lanes). Assume that initially the agents are randomly assigned to one of two
identical resources. Now, if every agent opts for the resource with the least cur-
rent usage, the overall system cost increases [10]. So, the dilemma for each agent
is whether or not to make the greedy choice.

358 O. Sen and S. Sen

2.2 Tragedy of the Commons

In his book The Wealth of Nations, Adam Smith conjectured that an individual
is prompted by an “invisible hand” to benefit the group [19] for his own gain.
As a rebuttal to this theory, William Forster Lloyd presented the Tragedy of the
Commons scenario in 1833 [14]. Lloyd’s scenario consisted of a pasture shared by
a number of herdsmen for grazing cattle. This pasture has a capacity L such that
each time a cattle added by a herdsman results in a gain as long as x ≤ L, where x
is the total number of cattle in the pasture. When x > L, each addition of a cattle
results in a decrease in the quality of grazing for all. Lloyd showed that when
the utilization of the pasture gets close to its capacity, overgrazing is guaranteed
to doom the pastureland. For each herdsman, the incentive is to add more cattle
to his herd as he receives the full proceeds from the sale of additional cattle, but
shares the cost of overgrazing with all herdsmen. Whereas the common resource
could have been reasonably shared if the herdsmen exhibited restraint, instead,
they make greedy, locally optimal choices which quickly lead to overgrazing and
destruction of the pasture. The question each herdsman faces is “What is the
utility of adding one more animal to my herd?” [9]. Lloyd observes that “Freedom
in a commons brings ruin to all,” and convincingly argues that enforced laws, and
not appeals to conscience, are necessary to avoid the Tragedy of the Commons.

Recent literature about the Tragedy of the Commons is extensive [9]. Diecidue
and van de Ven show how aspiration levels are linked to expected utility [5].
Gilboa and Schmeidler extend on this and provide mathematical procedures to
adjust aspiration levels based on utility returned [8]. Macy and Flache indi-
cate how agents learn over time in social dilemmas [16]. Researchers have also
discussed the existence of the Tragedy of the Commons in computational sys-
tems [3,12,21]. Muhsam [15] has shown that if some or all other herdsmen add
cattle when x > L, a rational, utility-maximizing agent will have no choice but
to add to the herd to reduce the loss suffered as a result, while contributing to
the overall deterioration of the resource performance. This means that it is only
possible to reach a co-operative equilibrium. Our contribution is to successfully
adapt the aspiration level mechanism to solve the Tragedy of the Commons.

2.3 Computational Approaches

Multiagent systems researchers have addressed the problem of effectively sharing
common resources [2] by proposing a planner agent who makes all resource allo-
cation decisions. However, this central planning approach requires nearly perfect
global knowledge of all agents and the environment, which is not very reasonable
in complex, distributed and dynamic domains. Durfee and Lesser proposed a dis-
tributed partial-global planning [4] approach for coherent coordination between
distributed problem solvers through the exchange of partial local plans.

Approaches that emphasize economic mechanisms, such as contracting and
auctions, allocate resources based on perceived utility [18]. While economic ap-
proaches are interesting, we believe that they do not provide a satisfactory res-
olution to social dilemma problems without an adequate discussion of varying

Averting the Tragedy of the Commons by Adapting Aspiration Levels 359

individual wealth and interpersonal utility comparisons. The COIN approach to
solving social dilemmas allows distributed computation but requires an “omni-
scient” agent to set up the utility functions to be optimized locally [20]. Glance
and Hogg [6] observe that computational social dilemmas can produce situa-
tions where globally optimal system configurations are impossible to reach via
distributed, rational decision-making with only local knowledge. They contrast
such computational problems with traditional complexity analysis in algorithm
theory where solutions are hard, but not impossible, to find.

The motivation of our work on computational social dilemmas has been to
investigate mechanisms to resolve conflicts while requiring minimal global knowl-
edge and imposing minimal behavioral restrictions on the agents. For example,
in [1] it is shown that a genetic algorithm (GA)-based optimization framework
can solve a well-known social dilemma problem, the Braess’ Paradox [11]. The
GA-based function optimization approach is a centralized mechanism. Mundhe
et. al. used a more decentralized, adaptive systems approach using GAs, to ad-
dress both the Braess’ paradox and the Tragedy of the Commons [17]. Though
decision-making is decentralized in this approach, the survival of individuals, as
determined by fitness-proportionate selection scheme, is a centralized procedure.
Though the latter procedure can be approximated in a decentralized manner,
a further criticism of the approach, the somewhat altruistic decision procedure
used by the distributed agents, is difficult to address.

3 Problem Formulation

We now formalize the Tragedy of the Commons problem used in our experimen-
tation. For an agent a ∈ N , where N is the set of all agents, we denote Ua

t ,
ha
t , and La

t as the utility, aspiration level, and load, respectively, at time t. In
addition, let Lt =

∑
a∈N La

t be the total load of the system at time t. Let φ be
the threshold load and n = |N | be the population size. The function to calculate
an agent a’s utility can be expressed as:

Ua
t =

{
La
t ;Lt < φ

La
t × δe−k(Lt−φ);Lt > φ

where k is the environmental factor, which is an exponential factor determining
the rate at which system performance deteriorates after the threshold is crossed.

4 Adjusting Aspiration Levels and Loads

The load applied by an agent on the system depends on their aspirations which
are updated based on utilities received from their loads. The initial load used

by an agent a ∈ N , La
0 , is selected from the interval

(
0,

Lmax
0

n

)
and the initial

load increment is a constant, δ0. Agents increase loads by δ0 as long as utility
received is higher than aspiration level. But once utility received does not match

360 O. Sen and S. Sen

aspirations, loads are reduced. In the following, we present two schemes for
adjusting aspiration levels and loads and refer to the corresponding agent types
as eager and prudent agents.

4.1 Eager Agents

If Ut > ht, eager agents adjust their aspirations as follows:

ht+1 = αUt + (1− α)Ut−1,

where α ∈ (0, 1] is the learning rate, which is used to weigh the utility imme-
diately received with the previous utility. The initial load applied by an agent

is chosen randomly from the range (0,
Lmax

0

n). An agent subsequently increases
its applied load by a constant δ as long as utility received is higher than its
aspiration level. However, once the utility drops below the aspiration level, an
agent chooses the next load to be the average of the current load and Lτ , where
τ is the last time its aspiration level increased. Therefore,

Lt+1 =

{
Lt + δ;Ut > ht
Lt+Lτ

2 ;Ut < ht

Each time the agent experiences utility less than aspiration, i.e., when reverting
back to a lower load, the agent reduces its load increment by a constant factor
of ρ < 1.

The algorithm used by eager agents at time step t is:

Data: Aspiration level, load, utility
Ut = getUtility();
if Ut < ht then

ht+1 = ht;
Lt+1 = Lt+Lτ

2 ;
if τ = t− 1 then

δt+1 = ρδt;
end

else
ht+1 = αUt + (1− α)Ut−1;
τ = t;
Lτ = Lt;
Lt+1 = Lt + δ;

end

4.2 Prudent Agents

If Ut > ht, prudent agents adjust their aspiration level and load as follows:

Ut > ht =⇒ ht+1 = αUt + (1− α)ht.

Lt+1 =

{
Lt + δ;Ut > ht

Lt−1;Ut < ht

Averting the Tragedy of the Commons by Adapting Aspiration Levels 361

We see that while setting the aspiration level, the prudent model takes the
previous aspiration level into account whereas the eager model simply weights
the utility received in the current and immediately previous time steps. When
utilities are steadily rising, i.e., Ut > Ut−1, an eager agent will have a higher
aspiration level as aspiration levels typically trail utilities in such scenarios, i.e.,
ht ≤ Ut−1.

Furthermore, prudent agents err on the side of caution when utility received
is less than the aspiration by immediately reverting to the previous load, which
saw a rise in aspiration level. In contrast, eager agents reduce load optimistically
and approach that previous level only asymptotically.

We now present the algorithm used by a prudent agent at each time step t:

Data: Aspiration level, load, utility
Ut = getUtility();
if Ut < ht then

Lt+1 = Lt−1;
ht+1 = ht;
if τ = t− 1 then

δt+1 = ρδt;
end

else
ht+1 = αUt + (1− α)ht;
Lt+1 = Lt + δt;

end

5 Convergence Model

We present a mathematical model that determines an upper bound on conver-
gence time.

First we model the initial load on the system, L0, and the initial total load
increment before the threshold is crossed, Δ0:

∀
a∈N

La
0 ∈

(
0,

Lmax
0

n

)
=⇒ L0 ∈ (0, Lmax

0).

Δ0 = nδ0.

Let tf be the first time step when the total load crosses the threshold, i.e., tf
is the smallest t for which Lt > φ. As initial agent loads are uniformly selected

from the interval
(
0,

Lmax
0

n

)
, the expected initial total load is L̄0 =

Lmax
0

2 . Then:

L̄0 +Δ0tf > φ =⇒ tf >
φ− L̄0

Δ0
=⇒ tf >

2φ− Lmax
0

2Δ0

For our model we adopt the strategy of the prudent agent, who adjusts load
such that when the threshold is crossed at t = tr, L

a
tr+1 = La

tr−1. In addition,

362 O. Sen and S. Sen

each agent a reduces δa by a factor ρ at t = tr. This leads to a reduction of the
total load increment Δ in the system. We denote by Δs = Δ0ρ

s the total load
increment after the sth such reduction. We define the system to be approximately
stable when Δs < Δmin. Therefore:

Δ0ρ
s < Δmin =⇒ s < logρ

Δmin

Δ0
.

Now, after the system threshold is crossed for the first time, all agents reduce
load, and, hence, the total load falls back under the threshold. At this time,
agents again increase their loads, albeit by a smaller amount, until the threshold
is again breached. This cycle repeats1 but the amount by which the threshold is
breached decreases over time as individual load increments and hence the total
load increment per time step decreases every time the threshold is crossed. A key
observation here is that the number of time steps between successive threshold
crossings, tc, is a constant, 1

ρ + 1: though the load increments become smaller
with each additional threshold crossing, the load difference to be added to cross
the threshold, after the agents revert back to their loads prior to the last crossing,
is proportionately shorter.

We now derive an upper bound on convergence time tconv:

tconv < stc + tf =⇒ tconv <

(
logρ

Δmin

Δ0

)(
1

ρ
+ 1

)
+

2φ− Lmax
0

2Δ0
.

For our experiments, we have used the following parameter values: δ0 = 1
100 =⇒

Δ0 = n
100 , L

max
0 = 2, φ = 7.5, ρ = 1

2 , Δmin = 1
1000 . This reduces the inequality

for the convergence time to:

tconv < 3 log2(10n) +
650

n
=⇒ tmax

conv = �3 log2(10n) +
650

n
 .

where tmax
conv gives an upper bound on the time required by the system to attain

stability. Note that our mathematical model produces this bound based only on
the population size n and without considering the environmental factor k.

6 Experimental Framework

We introduce the performance metrics used and the different scenarios we use
to evaluate our approach to solving the Tragedy of the Commons.

6.1 Performance Metrics

We have used the following ealuation metrics:

Social Welfare: Social welfare, Ut =
∑

a∈N Ua
t , is the total utility received

by all agents and captures the overall system performance. This was our
primary metric.

Total Load: To evaluate system efficiency, we attempted to minimize |Lt −φ|.
A truly efficient system will have a load close to but below the threshold.

1 This is only approximately true as it assumes the absence of free riders.

Averting the Tragedy of the Commons by Adapting Aspiration Levels 363

6.2 Base Case Scenario

To help better understand the underlying system dynamics and the working of
our approach, we created and experimented with a base case scenario. We chose
parameters that would allow us to perform representative experiments while
still allowing us to inspect individual behavior and environment modules. For
the base case, we choose ∀

a∈N
α = 1, δa0 = 0.01, and ha

0 = 0. In addition, we used

n = 10 and k = 3 as our default system parameters.

6.3 Parameters for Other Scenarios

In addition to the base case, we generated a large variety of environments to
evaluate the strengths and weaknesses of our proposed approach. To create these
environments, we vary the following parameters over the stated ranges.

Environmental Factor: k ∈ {0.25, 0.5, 1, 3, 5}.
Population Size: n ∈ {10, 100, 1000}.
Learning Rate: α ∈ {0.5, 0.75, 1}.

For statistical verification, we averaged results over 10 independent runs.

6.4 Asynchronous Decisions

With prudent agents, another aspect of the Tragedy of the Commons which
we tested was the concept of asynchronicity, i.e., not all agents update their
load at the same time. We simulate this by assigning each agent a probability
ε ∈ {0.1, 0.25, 0.5, 0.75, 0.9, 1} of acting at each time step.

7 Results and Discussion

7.1 Eager Agents

Base Case. As seen in Figure 1, initially agents receive higher utility with
increased load, resulting in increased aspirations. With increasingly higher indi-
vidual loads applied by agents on the system, L surpasses φ between iterations
65 and 70, and the social welfare drops immediately. Correspondingly, individ-
ual agent utilities drop below their aspiration levels, and they revert back to
applying lower loads. Hence, L drops under φ, then goes back over by a smaller
margin between iterations 70 and 85. There are further overshoots and under-
shoots until the system stabilizes with L ≈ U ≈ φ. Therefore, the social dilemma
was successfully solved by adapting aspiration levels in the base case.

Varying Environmental Factor (k). As seen in Figure 2, for k �= 0.25, the
system stabilizes at φ. However, when k = 0.25, some agents acting as free riders
are able to increase their load and utility while others decrease their load. This is
because while others are decreasing their load, a free rider can still receive utility
higher than its aspiration level and, hence, increase its load. This process occurs

364 O. Sen and S. Sen

Fig. 1. Total Load and Social Welfare for the base case

Fig. 2. Total Load (left) and Social Welfare (right) for various k (n = 10)

in a cycle, which leads the system to increase its load until the other agents can
no longer decrease their load, at which point the free-riding stops and the total
load and social welfare plateau at a suboptimal level.

Essentially, for k = 0.25, the utility of free riders does not decrease rapidly
enough as they apply more load. Hence, such environments sustain a minority
of free riders at the expense of the majority. This result is an intriguing outcome
of the dynamics of aspiration level adaptation and environmental characteristics
that deserve further investigation.

Varying Population Size (n). Figures 3 and 4 show graphs for total load and
social welfare for different population sizes with different k values. For n = 100,
we see a similar converging pattern as for n = 10, i.e., for all k �= 0.25, the
system stabilizes; else, the presence of free riders at k = 0.25 causes the load on
the system to increase and the utility to decrease.

When n = 1000, however, we do not observe runaway free-riding with social
welfare plummeting. Rather, the social welfare of the system stabilizes quickly,
albeit suboptimally. This intriguing result can be explained by observing that
free-riding can only occur if a small number of agents attempt it. However, in a
larger society, there are more free riders, which means that the number of “vic-
timized”, non free-riding agents is smaller. Therefore, free-riding can only occur
for a short period of time until the system reaches a state where further increase

Averting the Tragedy of the Commons by Adapting Aspiration Levels 365

Fig. 3. Total Load (left) and Social Welfare (right) for various k (n = 100)

of load is detrimental for all. Hence, though free-riding is not eliminated, its
effect is curtailed. This self-stabilizing nature of the system for larger population
sizes is a very interesting and unexpected property of the use of aspiration levels.
It would be worthwhile to further study this phenomenon to see if the drop in
system performance can be minimized while avoiding free-riding.

Additionally, populations with 100 and 1000 agents fare better with k = 0.25
than with k = 0.5, 1. However, the total load on the system when k = 0.25 is
actually higher than when k = 0.5, 1 (Figure 4). This can be mathematically
explained in general. Suppose we have two systems S1 = (L1,U1, k1) and S2 =
(L2,U2, k2) such that L2 > L1 > φ. Then:

U1 > U2 =⇒ L1e
−k1(L1−φ) < L2e

−k2(L2−φ). =⇒ ek2(L2−φ)−k1(L1−φ) <
L2

L1
.

k2(L2 − φ)− k1(L1 − φ) < ln
L2

L1
. =⇒ k2 <

ln L2

L1
+ k1(L1 − φ)

L2 − φ
.

Thus, although L2 > L1, U2 > U1 is possible if k2 is sufficiently small.

Fig. 4. Total Load (left) and Social Welfare (right) for various k (n = 1000)

366 O. Sen and S. Sen

Varying Learning Rate (α) The graphs in Figure 5 show a substantial dif-
ference in the system when α is changed. The system stabilizes optimally when
α = 1, performs slightly worse when α = 0.75, and degrades further when
α = 0.5. This is because the aspiration level is not being adjusted quickly enough
towards the current utility level. This suggests that fast learners will be able to
avoid social dilemmas more consistently.

Fig. 5. Total Load (left) and Social Welfare (right) for Various α, k = 3, n = 10

7.2 Prudent Agents

As seen in Figure 6, which shows the social welfare for a society of prudent agents
for n = 10, 100, 1000, the prudent agents’ performance is similar to that of the
eager agents. However, we notice that a prudent society does perform better in
larger populations, where the stabilization is not as suboptimal as in the case of
a society of eager agents. In addition, we do not see any attempts of free-riding
in large populations for the prudent model, which is another reason to favor the
prudent society in terms of performance.

Verification of model predictions. As discussed before we developed a math-
ematical model to predict convergence times for a society of prudent agents. We
now present data to verify those predictions. The predicted convergence times,
tmax
conv was 84, 36, and 40 for n = 10, 100, 1000. The corresponding approximate
convergence times tconv from experiments were 80, 32, and 35 respectively. Thus,
we conclude that our mathematical model was quite successful in predicting con-
vergence times, with tmax

conv − tconv < 5 for all cases.

Asynchronous decisions. We examined how asynchronicity of decisions
affected system performance in a prudent society. For n = 10, higher asyn-
chronicity, i.e., smaller ε, delays convergence without affecting performance at
convergence (see Figure 7). Only a fraction of the population, i.e.,m = εn agents,
acts each time step in the asynchronous mode. Therefore, if the convergence time
for ε = 1 is t1, one would expect that the convergence time for ε < 1 would be
tε ≈ t1

ε .

Averting the Tragedy of the Commons by Adapting Aspiration Levels 367

Fig. 6. Social welfare for the prudent model for n = 10, 100, 1000 (top left, top right,
bottom)

However, we noticed that if we maintain the asynchronicity and environmen-
tal factor constant (k = 3 and ε = 0.1) and increase the population size, system
performance became increasingly suboptimal (see Figure 8). This is because asyn-
chornicity acts as an avenue for free-riding in very small increments by amultitude
of individuals. We first observe that the probability that the same agent acts for
t successive time steps is εt, which decreases rapidly with t for ε values not very
close to 1. Thus, at each time step, there is minimal or very low overlap between
the subsets of m agents acting in successive generations, i.e., no agent can con-
tinually free ride as was the case in the previous examples. Instead, some agents
see an opportunity for free-riding whenever they are able to act and hence exploit
the system for one time step. This small increment is countered by other agents
bringing their loads down as they are suffering.When the free-rider acts again (not
necessarily in the near future), it may be the case that the system is performing
much more poorly and thus that agent is inclined not to increase its load any fur-
ther. Hence, over time, continually increasing load will become unattractive since
an agent cannot benefit from it for a sustained period of time. Though free-riding
stops, the system does not revert back to loads below the threshold. Rather, with
more agents, the convergence occurs at higher total loads producing lower agent
utilities.

368 O. Sen and S. Sen

Fig. 7. Total load (left) and social welfare (right) for prudent agents with asynchronic-
ity (n = 10)

Fig. 8. Population effects on convergence for prudent agents with asynchronicity

8 Conclusions and Future Work

Our research goal is to develop a distributed computational approach to solve
the Tragedy of the Commons. We investigate distributed solution for this social
dilemma with two types of agents who adapt their aspiration levels based on
limited, local information about the system. The aspiration levels were adjusted
based on utility returned after applying load on the system. In addition, we de-
veloped a mathematical model which successfully predicted convergence times
for a society of prudent agents. We systematically varied environmental factors
as well as an agent’s behavioral parameters to observe and analyze the scope
and the effectiveness of our approach. An interesting result was that in benign
environments where the system degrades slowly above its threshold load, a mi-
nority of free riders was able to benefit at the expense of the community. For
large systems with many agents, however, free riders limit each others’ exploita-
tion and mitigate the adversarial effect on the system. We also observed that
faster learners were more robust in avoiding the social dilemma. In addition, we
noted that asynchronicity in the system prolonged convergence in smaller sys-
tems while hindering large populations. We plan to run experiments to evaluate
our proposed mechanism in the following scenarios:

Averting the Tragedy of the Commons by Adapting Aspiration Levels 369

Dynamically Changing Population: We plan to investigate situations where
agents may enter and leave the population, thereby changing the population
size.

Irreversible Systems: In the environments we studied, system performance
returns to its previous level if the load is reduced after crossing the thresh-
old. We plan to study environments where crossing the threshold causes irre-
versible damage, i.e., the maximum utility cannot be regained after crossing
the threshold.

References

1. Arora, N., Sen, S.: Resolving social dilemmas using genetic algorithms: Initial re-
sults. In: Proceedings of the 7th International Conference on Genetic Algorithms,
pp. 689–695. Morgan Kaufman, San Mateo (1997)

2. Cammarata, S., McArthur, D., Steeb, R.: Strategies of cooperation in distributed
problem solving. In: Proceedings of the Eighth International Joint Conference on
Artificial Intelligence, Karlsruhe, Federal Republic of Germany, pp. 767–770 (Au-
gust 1983)

3. de Cote, E.M., et al.: Learning to cooperate in multi-agent social dilemmas. In:
Proceedings of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 783–785 (2006)

4. Durfee, E.H., Lesser, V.R.: Using partial global plans to coordinate distributed
problem solvers. In: Proceedings of the Tenth International Joint Conference on
Artificial Intelligence, Milan, Italy, pp. 875–883 (August 1987)

5. Diecidue, E., van de Ven, J.: Aspiration Level, Probability of Success and Failure,
and Expected Utility. International Economic Review 49(2), 683–700 (2008)

6. Glance, N.S., Hogg, T.: Dilemmas in computational societies. In: First International
Conference on Multiagent Systems, pp. 117–124. AAAI Press/MIT Press, Menlo
Park, CA (1995)

7. Glance, N.S., Huberman, B.A.: The dynamics of social dilemmas. Scientific Amer-
ican 270(3), 76–81 (1994)

8. Gilboa, I., Schmeidler, D.: Reaction to price changes and aspiration level adjust-
ments. Review of Economic Design 6, 215–223 (2001)

9. Hardin, G.: The tragedy of the commons. Science 162, 1243–1248 (1968)
10. Hogg, T., Huberman, B.A.: Controlling chaos in distributed systems. IEEE Trans-

actions on Systems, Man, and Cybernetics 21(6), 1325–1332 (1991) Special Issue
on Distributed AI

11. Irvine, A.D.: How Braess’ paradox solves Newcomb’s problem. International Stud-
ies in the Philosophy of Science 7(2), 141–160 (1993)

12. Ito, A.: How do autonomous agents solve social dilemmas? In: Cavedon, L., Wobcke,
W., Rao, A. (eds.) PRICAI-WS 1996. LNCS, vol. 1209, pp. 177–188. Springer,
Heidelberg (1997)

13. Kollock, P.: Social Dilemmas: The Anatomy of Cooperation. Annual Review of
Sociology 24, 183–214 (1998)

14. Lloyd, W.F.: Two Lectures on the Checks to Population. Oxford University Press,
Oxford (1833)

15. Muhsam, H.V.: A world population policy for the World Population Year. Journal
of Peace Research 1(2), 97–99 (1973)

370 O. Sen and S. Sen

16. Macy, M.W., Flache, A.: Learning Dynamics in Social Dilemmas. Proceedings of
the National Academy of Sciences of the United States of America, 7229–7236
(May 14, 2002)

17. Mundhe, M., Sen, S.: Evolving agent societies that avoid social dilemmas. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO-2000,
pp. 809–816 (2000)

18. Sandholm, T.W., Lesser, V.R.: Equilibrium analysis of the possibilities of unen-
forced exchange in multiagent systems. In: 14th International Joint Conference on
Artificial Intelligence, pp. 694–701. Morgan Kaufmann, San Francisco (1995)

19. Smith, A.: The Wealth of Nations, 10th edn. A. Strahan, Printer-stree; for T.
Cadell Jun. and W. Davies, in the Strand, Boston, MA (1802)

20. Tumer, K., Wolpert, D.H.: Collective intelligence and Braess’ paradox. In: Proceed-
ings of the Seventeenth National Conference on Artificial Intelligence, pp. 104–109.
AAAI Press, Menlo Park (2000)

21. Turner, R.M.: The tragedy of the commons and distributed AI systems. In: Working
Papers of the 12th International Workshop on Distributed Artificial Intelligence,
pp. 379–390 (May 1993)

The Role of Agents

in Adaptive Service Oriented Architectures

Fernando Koch, Frank Dignum, Marcel Hiel, and Huib Aldewereld

Department of Information and Computing Sciences
Utrecht University

Utrecht, The Netherland
{fkoch,dignum,hiel,huib}@cs.uu.nl

Abstract. This work analyses the role of agent-based software and or-
ganisation theoretical solutions in the development of Adaptive Service
Oriented Architectures. This solution aims to support integrated, scal-
able, and re-usable information delivery systems. This technology is
required in applications that operate in complex service delivery environ-
ments, such as Electronic Government (eGov) systems, emergency
response coordinators, social networks, and mobile services. In these
scenarios, the intricacy of service orchestration strategies grows propor-
tionally with the number of operational components, complexity of in-
teractions, and degree of dynamism of the environment. We argue that
strategies based on fixed workflows are insufficient to support complex
content delivery services. To that end, we propose a solution that encom-
passes an organisation-based system architecture enacted by agent-based
software components. It inherently provides the features of contextualisa-
tion, adaptiveness, flexible workflow mechanism, and proactiveness based
on desirable characteristics of the agent technology. We introduce a con-
ceptual model, detail the technical proposal, and demonstrate how the so-
lution supports the demands of complex content delivery services.

1 Introduction

Web-Services [3], Service Oriented Architectures [10], and Mashup Environments
[13] have the potential to increase significantly the utilisation, compatibility
and interoperability of information and communication systems. Research has
focused on designing efficient content delivery platforms based on methods of
service orchestration. These developments aim to improve the performance of
content composition systems in scenarios that involve dynamic environments and
complex information gathering. The challenge is to support contextualisation,
re-usability, and quality of services in solutions where the designer lacks complete
a priori knowledge of the service availability and composition.

For example, eGov systems must provide end-user tailored information across
diverse societal groups distinguished by location, demographic, cultural back-
ground, technology availability, and other cultural factors. Similarly, solutions for
emergency coordination support require highly degree of on-line adaptability and

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 371–386, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

372 F. Koch et al.

promote local control in order to cope with the often chaotic and unpredictable
environmental behaviour. Both these solutions must integrate information from
multiple sources, be robust, scalable, flexible, and deliver quality information.
This scenario imposes three major challenges:

1. the balance between adaptation and robustness, i.e. the system must be able
to adapt its internal functioning on-line in order to cope with the dynamic
environment.

2. the balance between reactive and proactive behaviour, i.e. the system must be
able to respond to both complete as well as acting upon incomplete condi-
tions in order to improve quality of service.

3. the balance between component autonomy and controllability, i.e. the solution
must provide the means to guarantee the performance, controllability and
predictability of the system while promoting a component autonomy and
local adaptation.

Given these challenges, we propose an agent organisation based solution for an
Adaptive Service Oriented Architecture. This proposal extends the work in [6].
It uses a type of service orchestration based on organisation models regulating
the behaviour of autonomous components (agents). Software agent components
provide innate support to adaptiveness, autonomy, situatedness, proactiveness,
and knowledge representation, addressing the issues of (1) adaptation and (2)
balance between reactiveness and proactiveness. Additionally, the organisation
model directs their behaviours promoting (3) the balance between component
autonomy and controllability. The integration of these technologies along with
practical solutions from Web Services and Mashup Environments leads to an
extended model of information delivery.

We leverage from previous work that promoted the integration of agent tech-
nology and service composition. For instance, [5] considers the several levels of
interaction between agents and web-services arguing for conceptual distinction
between the two classes of components and proposing a model of integration.
This work emphasises the desirable characteristics of agent technology, namely:
autonomy, sociability, knowledge representation, and adaptiveness. We extend
these models by incorporating higher-level coordination strategies in form of or-
ganisational structures, where one can think in terms of why, what, and how the
system must behave. In this environment, system administrators define decision-
making actions for workflow components and service providers. This feature
addresses the main concerns related to the use of autonomous components: con-
trollability, robustness, and quality assurance.

This development is part of a larger research programme covered in the ALIVE
project1 [2,12], which combines existing work in coordination and organisational
models with the state-of-the-art in service-oriented computing. The definitions
inherited from ALIVE provide the framework of the proposed model.

This work is structured as follows. Section 2 introduces a motivating scenario.
Section 3 details the role of intelligent agents and organisationmodel technologies

1 ALIVE Project: http://www.ist-alive.eu/

The Role of Agents in Adaptive Service Oriented Architectures 373

in supporting this development. Section 4 outlines the system design for the use
case. We give some conclusions in Section 5.

2 Motivation

In this section, we motivate our research by describing a use case in e-government
and highlighting the role of agent-based solutions in combination with services.

Figure 1 depicts a complex service delivery scenario. It involves a combination
of (1) Service Providers that vary in terms of format, stability, and availability,
and; (2) User Environment, that varies in terms of context, profile, and access
technology, between others. The role of the (3) Content Provisioning Service,
which implements the workflow engine that conciliates the variations and provide
stable services and coherent results.

For example, let us consider the case of an eGov system. This service aims to
improve information delivery on government initiatives and community issues,
and to provide better community engagement.

In this context, let us consider two variants of end-users in this context: User
1, 55-years old dairy farming business man living in the rural area, and; User
2, 30-years old entrepreneur living in the inner-city. Intuitively, the informa-
tion needs for both users accessing intuitively differ. User 1 will be looking for
regional weather information, development of the dairy industry market, and
governmental incentives for that industry. User 2 will be looking for weather
information for leisure purposes, and governmental incentives for the ICT indus-
try. So, although both users want weather info, the type of info they need might
differ and thus the service they would need also might be different. Nonetheless,

Fig. 1. Complex Service Delivery Scenario

374 F. Koch et al.

if the system implements a normal Web-service solution, then it will provide
the same content to both users. This situation happens because this solution
does not take into account extensive contextual information while selecting the
content to deliver.

Moreover, the information needs during state-wide emergency situation are
also widely different. For example, depending on the location, there is a need to
deliver tailored emergency response coordination information to User 1, whilst
User 2 is interested in generic news on the event. Also on the supply side things
change. In this exceptional circumstances several regional government bodies
will be delivering emergency coordination information, while standard services
might fail or not suffice for the kind of information that is needed in this circum-
stances and replacements have to be used. The (3) Content Provisioning Service
must consider these new content provisioning facilities and select the relevant
ones depending on the environment, end-user’s profile, and location. Because
the inherent chaotic nature of the scenario, it is not possible to consider the
combinations of environment and services availability beforehand.

A solution based on run-time adaptation in SOA has been proposed in [7].
This environment can adapt the composition rules in response to variations of
external information – i.e. change of context, such as location, end-user profile,
etc. What is not provided is a run-time selection and composition of services
that are available and can be selected based on the current situation and the
purpose of the service.

Therefore, both rigid workflow mechanisms implemented in Web-services and
inflexible mechanisms implemented in SOAs fail to adapt to the evolving situa-
tion. They require continuous reconfiguration of the content provisioning com-
ponent, context evaluation rules, and (most likely) the workflow rules by sys-
tem administrators (usually off-line). We propose a solution where adaptation
happens on-line , emerging from component level, providing an answer to this
problem scenario.

2.1 Problem Analysis

The scenario described above is prototypical for situations occurring in social
networks, mobile content provisioning, and emergency response coordination.
Their defining characteristics are: evolving environments; modifying elements,
and; evolving organisation relationships and regulations, which is the require-
ment to deliver contextualised, relevant information, any time, any where, mind-
ing the end-users’ profiles. We distill the following requirements based on these
characteristics:

– (a) Contextualisation is indispensable to support the requirement for infor-
mation quality and to provide solutions for a changing environment. For
example, an eGov portal must provide information most suitable to the tar-
get audience, contextualised to different locations and demographic groups.
Similarly, emergence response systems must consider the current situation
and target work group when delivering personal assistance information.

The Role of Agents in Adaptive Service Oriented Architectures 375

– (b) Adaptiveness is required to provide solutions for changing environments,
modifying elements, and heterogeneity. It supports both the requirements for
quality of information and the way in which information is presented. For
example, service composition must adapt in response to variations of content
provisioning facilities, like new governing bodies adding or removing services
and changing of services’ operation parameters. Likewise, the system must
adjust the provisioning rules depending on the evolution of societal relations,
as changes of circumstances impact end-user expectations.

– (c) Knowledge accessibility implies methods of dynamic content provision-
ing and composition. This is required to support quantity of information
and better ways to provide content. It addresses the challenges of evolving
societal relationships and technology heterogeneity. For example, methods
to support the on-line inclusion of governing bodies as content providers into
the system.

– (d) Technology heterogeneity impacts the ways in which information is pro-
vided. For example, eGov Systems that operate in developing countries where
the penetration of mobile devices supersedes other forms of Internet access
must consider ways to provide eGov information through this technology.
Moreover, issues of human-computer-interfacing (e.g. user familiarity, per-
vasiveness, easy to use, etc.) and software engineering (e.g. re-usability, de-
velopment costs, operation costs, etc.) must not be overlooked.

These requirements seem to point in the direction of agent-based solutions that
are capable of creating flexible workflows that can adapt to the current situations.
In the next section we sketch some of these elements as used in the ALIVE
project.

2.2 Solution Analysis

We propose an agent-based approach using Organisational models. We use the
definitions of the ALIVE project. The project extends current trends in service-
oriented engineering by adding three extra layers [1]:

– The Organisation Layer provides context for the other levels, specifying the
organisational roles, objectives and rules that govern interaction and using
developments in organisation dynamics to allow structural adaptation of
distributed systems over time.

– The Coordination layer provides the means to specify, at a high level, the
patterns of interactions between services, using a variety of coordination
techniques. At this level the agent technology is used.

– The Service layer augments the existing service models with semantic de-
scriptions to make components aware of their social context and rules of
engagement with other services.

Figure 2 depicts the information provision part of the proposed eGov service in
terms of organisation theoretical elements, simplified for the sake of this analysis.

376 F. Koch et al.

Fig. 2. Service Organisation Structure

The Organisation Layer describes the roles. We focus on the description of the
Information Provider in this section (the description of the Context Evaluator
and Content Composer roles will be detailed in Section 4). Let us consider three
classes of Information Providers :

– Weather Information Provider summarises weather information from more
detailed services, namely: Regional Historical Weather Provider, which pro-
vides historic regional weather information and trends, and; Regional Real-
Time Weather Providers, which provides information being collected from
weather stations in real-time.

– Market Information Provider summarises market information in specific
niches, such as dairy industry, ICT, etc, collected from services that pro-
vide data on specific activities. For example, information on consulting and
professional services activities in the ICT market, and farming and veteri-
narian information in the dairy industry.

– Government Information Provider summarises the information that govern-
ing bodies want to publicise. Information is collected from two more detailed
classes of services, namely: Regional Government Information, which pro-
vides regional government information and; Emergency Coordinator, which
provides coordination information on state-wide emergency situations.

The components of the Services Layer can consist of more detailed services,
which is not represented in the figure for the sake of conciseness. In this view,

The Role of Agents in Adaptive Service Oriented Architectures 377

service components are used by agents that manage the communication to exter-
nal information providers, like web-services, RSS feeds, and other communication
technologies. This way we promote the integration of diverse information sources
and create a “common interface” (proxying) to external information access us-
ing agent technology. Moreover, we consider that services can be entering and
leaving the system on-line, such as emergency coordination services entering the
system when a state-wide crises erupt. The agents use their goals to determine
which alternative services and service compositions are acceptable with respect
to the goals they try to achieve. Figure 2 depicts WS services that enact the
weather provider roles; MS services that enact the market information roles,
and; GSi services that enact the government information roles. Moreover, there
are the CE services for context evaluation and CC services for content com-
position. The Coordination Layer with the agents themselves is implicit in this
representation for the sake of conciseness.

Finally, the workflow mechanism that is enacted by the agents interacts with
multiple services to coordinate content gathering. Its behaviour is described by
the scenes in the Interaction Structure, represented in Figure 2. These scenes
“play” the scenario and are depicted below the other levels in the figure for
conciseness and explanation purposes. They are, however, specified in the or-
ganisation level.

Because of the dynamic nature of the environment – i.e. changing situation,
modifying services, variations in availability, etc – it is not possible to define
the workflow rules a priori. In this context, situatedness is characterised by the
workflow actors’ ability to reason autonomously respecting local representation
of the environment and varying service availability. Adaptiveness is characterised
by the actors’ ability to reconsider ongoing workflow plans and adjust the inter-
action patterns in response to changes in service availability. For example, during
the interaction step Collect Weather Information the workflow actor may find
that the real-time regional weather providers are unavailable. This generates an
execution exception that must be treated with plan reconsideration.

There are three key issues that are solved by using agent (organization)-based
solutions in this system:

1. The balance between adaptation and robustness, i.e. the system must be able
to adapt its internal functioning on-line in order to cope with dynamic en-
vironments. That is, solutions based on a priori descriptions are inclined
to produce undesirable results as the environment evolves in the short- and
long-term. It encompasses issues of monitoring, coordination, learning, and
structural adjustment.

In the illustrative example, the workflow actors must be able to adapt their
behaviour in reaction to varying service availability and changing circum-
stances. This can be achieved by both dynamic variation of workflow rules
and extended evaluation of the contextual information (implemented by the
Evaluate Context service). However, the actors must avoid to compromise
the overall system’s performance by respecting the system’s objectives and
constraints. For example, they must refrain from collecting and/or providing

378 F. Koch et al.

out-of-context information, and; misbehaving such as waiting too long for a
specific processing.

2. The balance between reactive and proactive behaviour, i.e. the system must
be able to respond to both complete as well as acting upon incomplete con-
ditions in order to improve quality of service. If the system is “too reactive”,
acting on complete conditions and in response to external actions, it implies
shorter response intervals, which means that it must compromise on quality
eventually. However, if the system is “too proactive”, acting with incomplete
information, it implies waste of resources utilisation when, e.g. pro-actively
computed information is not used.
In the example, the high-level information providers (i.e. Weather Informa-
tion Provider, Market Information provider, and Government Information
Providers) can pro-actively contact the regional counter-parts to collect and
cache relevant information, aiming at improving performance and stability.
Moreover, the system can implement notification actors that continuously
evaluate the environment and issue notification to selected end-users based
on determined rules. In both cases, it is expected that the majority of the
time the processed information will not be used by consumer actors, repre-
senting wasted resource utilisation.

3. The balance between component autonomy and controllability, i.e. a solu-
tion that implements components able to reason autonomously, as proposed
above, must consider the issue of controllability and performance. Whilst
autonomy is a desirable feature to support both novel and exceptional sit-
uations, it can yield unpredictable results if carelessly defined. That is, the
ability of adapting the workflow rules on-the-fly to cope with variations in
service availability can compromise the quality of information being pro-
vided.
For example, in the normal scenario it is acceptable that if the Collect
Weather Information actor cannot establish a connection to the Regional
Real-Time Weather Provider, then it can rely on information from the Re-
gional Historical Market Information to provide trend information. However,
for users located in the affected areas, the weather information must be more
precise and the actor must insist in providing real-time information as trend
analysis of historic information are irrelevant in this context.

Motivated by this scenario, we propose a model of service composition based
on adaptive components (agents) regulated by a central structure (organisation
model). In the scope of this paper, we focus on describing the role of intelli-
gent agents in this environment. At the same time, we acknowledge the crucial
importance of the regulating structure in controlling their behaviour.

3 The Role of Agents

The role of agent-based software solutions is to support the desirable features of
components’ autonomy, adaptivity, and proactiveness. Thus, it counter-balances

The Role of Agents in Adaptive Service Oriented Architectures 379

Fig. 3. The Role of Agents

(and complements) the support provided by other commercial software engineer-
ing technologies (e.g. Object-oriented methodologies) that focus on controllabil-
ity, robustness, and reactiveness. The combination of different software
development techniques has the potential to answer the aforementioned “balance
issues”.

In practical terms, agent solutions combined to organisation structures fa-
cilitate the implementation of purpose-oriented workflow mechanisms. The or-
ganisation model defines the purpose of the content composition – e.g. metrics
for quality of information, interaction patterns, acceptable processing time, etc.
The workflow actors inherit the goals and plan rules to implement these char-
acteristics from the organisation structure. This way, the system administrators
can define the purpose and methods of operation at a high-level and the agent
structures enforce the operation in order to fulfil the specifications. Moreover,
it facilitates the implementation of the following techniques in order to support
the requirements mentioned above:

– Flexible workflow supporting adaptation at the service orchestration level to
cope with changes of the environment. This technique can be implemented
by autonomous modules that adapt their operation aiming to improve the
overall system’s performance. This supports (a) contextualisation, (b) adap-
tiveness, and (at a certain extend) (d) technology heterogeneity.

– Advanced Context Evaluation allowing assessment of the situation and aug-
menting contextual information based on a holistic view of internal and
external conditions and data sources. It must also support adaptation of
the evaluation rules in order to cope with evolving environments aiming at
coherence and quality of service. This feature enhances (a) contextualisa-
tion and (at a certain extend) supports (b) adaptiveness and (c) knowledge
accessibility.

– Adaptable Service Provisioning promoting integration of information from
multiple sources that can be entering and leaving the system on-line. The ar-

380 F. Koch et al.

chitecture must provide both the interface to interact with these components
and an adaptable coordination strategy that considers the new configuration
on-line. This feature supports (b) adaptiveness, (c) knowledge accessibility,
and (d) technology heterogeneity.

– Advanced Content Composition in order to provide the methods for com-
posing content that best suit the target audience and artefacts’ availability.
This feature supports the requirement for (c) knowledge accessibility and (d)
technology heterogeneity and it is essential in promoting the ways in which
information is presented and made available.

– Proactiveness is the ability to prescribe solutions that deal with foreseeable
or unfolding situations, increasing the overall effectiveness of content delivery
strategies. Proactive solutions can work on behalf of the user without requir-
ing a direct command to execute an action. This feature aims to improve
system’s performance by supporting quantity and quality of information.

Research in agent based technology provides the following desirable features to
support this development:

– Advanced structures for knowledge representation provide an answer to rep-
resenting the situation, which is essential for contextualisation and knowl-
edge accessibility. Research in agent technologies has produced a variety of
methods for explicit representation of the environment, and for reasoning
about this environment to produce decisions. It supports flexible workflow
structure and advanced context evaluation mechanisms.

– Responsiveness and adaptivity are inherent features of agent components,
which are designed to adapt to constantly changing execution environment,
as pointed out by [8]. Agent technologies provide solutions for adaptation
of the deliberation process in several levels, as described in [9]. This fea-
ture support the development of flexible workflows and enhanced context
evaluators.

– Locality of interaction is a feature of agent technology where the components
are designed to interact and cooperate. Research provides diverse mecha-
nisms for information exchange, coordination, collaboration, and negotia-
tion. Such mechanisms offer great potential to address the local interaction
requirement in complex service composition as well as knowledge accessibil-
ity by end-users.

– Autonomy and Proactiveness are inherent features in agent technology, where
implementations vary from reactive architectures (based on pre-determined
rules) to mechanisms for proactive behaviour [4]. These features contribute
to support the requirements across the board, mainly to adaptiveness and
proactiveness.

Belief-Desire-Intention (BDI) agent models [11] provide desirable features in sup-
porting situatedness and adaptive processing. Agents can dynamically adapt
workflow rules based on the representation of the conditions (beliefs) and plan-
ning strategies. Moreover, this technology inherently provides plan reconsider-
ation strategies, required to support exceptional situations. For example, the

The Role of Agents in Adaptive Service Oriented Architectures 381

workflow threads are dynamically adjusted to consider change of resources when
new service providers are added to the system. This condition is represented
in the agent’s belief base and considered during the plan formation process.
Similarly, the agent’s belief base represents the external environment. If the con-
ditions change during the processing, then the deliberation process triggers plan
reconsideration rules to automatically review the composed choreography. These
features address the issues component autonomy and adaptation to evolving en-
vironment.

In addition, BDI-based agents provide a sound solution to compose personal
assistants. These are applications that take actions proactively on behalf of the
user. Instead of user-initiated interaction via commands and/or direct manipula-
tion, the user is engaged in a cooperative process in which human and computer
agents both initiate communication, monitor events and perform tasks. It can
be applied to monitor events and procedures, help different users collaborate,
and support user interactions, providing support to proactive behaviour.

Finally, organisation-based approaches addresses the requirement for overall
system control [1]. The organisation-based framework applies substantive norms
that define commitments agreed upon agents and are expected to be enforced
by authoritative components, imposing repair actions and sanctions if invalid
states are reached. Using this technology, system architects can define service-
oriented solutions based on the definition of organisational structures and how
their components should interact. That is, they can think in terms of why, what,
and how when defining the actions of workflow components and service providers.

Next, we introduce the system design, demonstrating the elements and inter-
actions.

4 Design and Implementation

Figure 4 depicts the system design for the organisation-based solution outlined
in Section 2.2. The figure highlights the fact that although we use agent organ-
isations for the conceptual design of the system, the actual software consists
for a large part of (existing) services. For the sake of modularity, we divide the
services in three groups, aligned to the required techniques introduced in the
previous section: Context Evaluation Services (CE SRV); Content Provision-
ing Services (CP SRV) and Content Composition Services (CC SRV). The
agents are constituting the Workflow Engine (WF). User Representation Ser-
vices (USR) support service pro-activeness by supplying user profile data.

The System Organisation Model SY S MD and workflow rules WF RL de-
fine the roles, norms, planning rules, and interaction patterns of the components,
related to the definitions of the Organisation layer. The system works by trans-
forming the incoming request and context information (step (1)) into responses
containing the augmented context information and composed content (step (5)).
The Workflow Engine coordinates the processing through the several service
groups. The system encompasses two kinds of interactions: (i) reactive requests,
in response to actions from end-users through the protocol interface (e.g. re-

382 F. Koch et al.

Fig. 4. System Design

quests from a web-browser), and; (ii) proactive requests, in response to actions
from the User Representation agents.

The (a) Context Evaluation Services CE SRV facilitates the analysis of the
contextual information CX supplied along the request RQ. They serve the Con-
text Evaluator role represented in Figure 2. The agents invoke a sub-set of the
CE SRV based on the processing rules and interaction patterns. This module
also includes a Context Learner Service (CE LRN) that supports learning of
the best information to provide based on feedback from end-users interactions.

The (b) Content Provisioning Services CP SRV integrate information from
multiple sources (the Information Providers depicted in Figure 2). The services
are invoked by the agents but always considering norms and interaction patterns
defined by the System Organisation Model SY S MD. Multiple content provi-
sioning services will compete to provide content and the agents have plans for
selecting the provider(s).

The (c) Content Composition Services CC SRV implement the Content Com-
poser role depicted in Figure 2.

The (d) Workflow Mechanism is implemented by the agents which enact the
interaction structure depicted in Figure 2. The interaction rules are determined
by the System Organisation Model SY S MD. The agents thus inherit their
“operation purpose” from the organisation structure. That is, the organisational
model defines the purpose of the information provision, which is reflected in the
agents rules of operations, i.e. belief representation, plan rules, and reconsidera-
tion strategies. This way, the system administrators can define the purpose and
methods of operation at a high-level.

We introduce the concept of (e) User Representation Services (USR) to pro-
mote proactive content delivery. This facility represents individual and collective

The Role of Agents in Adaptive Service Oriented Architectures 383

end-user information desires within the system. They are aligned to the idea of
personal assistants that take actions on behalf of the user proactively. The User
Representation Rules USR RL are BDI-based agent abstractions that represent
end-users’ beliefs, desires, and plans.

Finally, the system produces Performance Reports summarising the system
performance. This information can be used by system administrators and/or
other regulating structures to adjust the operational parameters (e.g. SY S MD
and WF RL). This feature supports the requirements for responsiveness, adap-
tiveness, and learning.

4.1 Use Case

Let us see how the proposed solution enacts the eGov scenario described in Sec-
tion 2. We recall that in this scenario there are two different end-users (i.e. User
1, 55-years old dairy farming business man living in the rural area and accessing
through a desktop-based web-browser, and; User 2, 30-years old entrepreneur
living in the inner-city and accessing through an iPhone device) interacting with
the system in two situations: normal conditions and during a state-wide crisis.
Let us consider that in both cases, both users issue the same request for infor-
mation RQ to the eGov System’s (i.e. request for the web-site’s root address).
Moreover, let us say that the context information CTX contains information
about the device profile, subscriber identification, and access location.

Initially, the agent in the MAS enacting the context evaluator role invokes con-
text evaluation services CE SRV to augment the information, such as extending
the user’s profile with information from a database; translating absolute loca-
tion information with situational information in that location, and; consulting
artefact’s capabilities from a database. Next, the agent fulfilling the information
provider role will coordinate with the set of content service providers CP SRV
that are meaningful in this context.

For example, in normal conditions, User 1 is interested in dairy industry in-
formation. After evaluating the context, the agent communicates with weather
providing agents that collect real-time regional weather information that might
be useful for farming and, in parallel, coordinate with the dairy market informa-
tion providers to collect relevant information. This information can be combined
with other relevant information to form the final content. During this process-
ing, it is possible that certain services are unavailable or become conflicting. The
agents adjust the internal processing rules in response to these exceptional con-
ditions. Accesses by User 2 trigger a similar processing line, but in this context
the agents collect higher-level (informative) weather information, news from the
ICT industry market with specific information on his areas of interest, like sup-
port to Consulting and Professional Services. The information can be augmented
by relevant government information.

Now, let us consider the scenario of a state-wide emergency situation. In this
exceptional scenario, several government bodies will be entering the system to
provide emergency coordination information as part of the Government Informa-
tion Provider roles. The agent enacting the information provider must consider

384 F. Koch et al.

this new content provisioning services and select the relevant ones depending on
end-user’s profile and location. Because the inherent chaotic nature of the sce-
nario, it is not possible to consider the combinations of environment and services
availability a priori. In this case, the facilities to augment the context information
and dynamic planning supports quick reaction to the changing circumstances.
For example, User 1 will receive emergency coordination information tailored to
his location and current situations (e.g. the need to evacuate the region), whilst
accesses by User 2 will be responded (in lower priority) with informative news.

Finally, the system can implement User Representation Agents USR to enact
end-user’s interests, such as an agent that notifies the users’ groups on relevant
information of their industries. In addition, emergency coordination personal as-
sistants can support decision making by notifying users on potentially hazardous
situations in the surrounding area and coordinate the information flow.

We conclude that the proposed technology provides a sound solution by deliv-
ering flexible workflow mechanisms, advanced context evaluation, and proactive
behaviour. Overall, it provides a better solution for scenarios that require contex-
tualisation, adaptiveness, knowledge accessibility, and technology heterogeneity.

5 Conclusion

The objective of this work was to outline an extended computational model
to support the development of Adaptive Service Oriented Architectures. We
demonstrated that the combination of intelligent software agents and regulating
organisationmodels provides a solution to the problem of highly adaptive content
provisioning systems.

We conclude that the proposed solution addresses the three requirement
drivers in this problem scenarios as follows.

– (i) the requirement for adaptation: software agents dynamically adapt the
workflow plans based on the representation of the conditions and planning
rules. In addition, rules for plan reconsideration support handling of ex-
ceptional situations, complement the process. This feature provides innate
support to local control and responsiveness, allowing the implementation of
advanced contextualisation techniques and flexible workflows.

– (ii) the balance between reactive and proactive behaviour : software agents
provide a solution to deliver personal assistants. This solution can be ap-
plied to monitor events and procedures, help different users collaborate, and
support user interactions, providing inherent support to end-user oriented
proactive behaviour.

– (iii) the balance between component autonomy and quality assurance: ap-
proaches for organisation-based agent framework provide solutions for overall
system control. Agents provide a sound solution for promoting the balance
between component autonomy and stability, providing controllability and
performance management.

The Role of Agents in Adaptive Service Oriented Architectures 385

We conclude that the proposed technology complements Web-Service and
SOA solutions by extending their capabilities with flexible mechanisms, ad-
vanced context evaluation, and proactive behaviour. These features allow these
systems to better operate in scenarios that require contextualisation, adaptive-
ness, knowledge accessibility, and technology heterogeneity, as demonstrated in
Section 4.1

We envision this technology being applied to a new generation of user-centric
information systems. The problem classification presented in this work will help
future research in the area by enabling the identification of opportunities and
novel uses of the proposed technology.

References

1. Aldewereld, H., Penserini, L., Dignum, F., Dignum, V.: Regulating Organiza-
tions: The ALIVE Approach. In: Proceedings of the International Workshop on
Regulations Modelling and Deployment (ReMoD 2008/CAiSE 2008), pp. 37–48
(2008)

2. Alvarez-Napagao, S., Cliffe, O., Vázquez-Salceda, J., Padget, J.: Norms, organisa-
tions and semantic web services: The alive approach. In: Workshop on Coordina-
tion, Organization, Institutions and Norms at MALLOW 2009 (2009)

3. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchad,
D.: Web Services Architecture. W3C Working Group Note 11, The World Wide
Web Consortium (W3C) (February 2004)

4. Dastani, M., Dignum, F., Meyer, J.-J.: Autonomy and Agent Deliberation. In:
Rovatsos, M., Nickles, M. (eds.) Proceedings of the First International Workshop
on Computatinal Autonomy - Potential, Risks, Solutions (Autonomous 2003), Mel-
bourne, Australia, pp. 23–35 (July 2003)

5. Dickinson, I., Wooldridge, M.: Agents are not (just) Web Services: Considering BDI
Agents and Web Services. In: Proceedings of the Workshop on Service-Oriented
Computing and Agent-Based Engineering, SOCABE 2005 (2005)

6. Hiel, M.: An Adaptive Service-Oriented Architecture - Automatically Solving In-
teroperability Problems. PhD thesis, Tilburg University (2010)

7. Irmert, F., Fischer, T., Mayer-Wegener, K.: Runtime adaptation in a service-
oriented component model. In: Proceedings of the 2008 International Workshop
on Software Engineering for Adaptive and Self-Managing Systems, pp. 94–104.
ACM, New York (2008)

8. Jennings, N.R.: Agent-Oriented Software Engineering. In: Garijo, F.J., Boman, M.
(eds.) MAAMAW 1999. LNCS, vol. 1647, pp. 1–7. Springer, Heidelberg (1999)

9. Koch, F., Dignum, F.: Enhanced deliberation behaviour for BDI-Agents in mo-
bile services. In: Proceedings of the 8th International Conference on Practical
Applications of Agents and Multi-Agent Systems (PAAMS 2010), Salamanca
(May 2010)

10. Papazoglou, M.P., Heuvel, W.-J.: Service oriented architectures: approaches, tech-
nologies and research issues. The VLDB Journal 16(3), 389–415 (2007)

386 F. Koch et al.

11. Rao, A.S., Georgeff, M.P.: BDI-Agents: from theory to practice. In: Proceedings
of the First International Conference on Multiagent Systems, San Francisco, USA
(1995)

12. Vazquez-Salceda, J., Dignum, F., Vasconcelos, W., Padget, J., Clarke, S., Cec-
caroni, L., Nieuwenhuis, K., Sergean, P.: ALIVE: Combining Organizational and
Coordination Theory with Model Driven Approaches to develop Dynamic, Flexi-
ble Distributed Business Systems. In: Proceedings of the First International ICST
Conference on Digital Business (2009)

13. Zhao, Q., Huang, G., Huang, J., Liu, X., Mei, H.: A web-based mashup environment
for on-the-fly service composition. In: Proceedings of the 2008 IEEE International
Symposium on Service-Oriented System Engineering, pp. 32–37. IEEE Computer
Society, Washington, DC (2008)

Agent-Based Development

for Business Processes

Hoa Khanh Dam and Aditya Ghose

School of Computer Science and Software Engineering
University of Wollongong

Northfields Av, Wollongong, NSW 2522, Australia
hoa@uow.edu.au, aditya@uow.edu.au

Abstract. Due to the ever-changing business environment, the support-
ing IT-systems that execute business processes within organisations must
be increasingly flexible and adaptable if those organisations are to remain
competitive in today’s environment. On the other hand, despite offering
promising solutions to autonomy, flexibility and adaptability, intelligent
agent technology still faces many challenges in being adopted by the
industry. Due to their distinct properties, agent-based systems provide
a powerful platform for business process execution. Our work focuses
in this area with the aim to bridge the gap between business process
modelling and agent-oriented development, and consequently contributes
to bring benefits to both communities. More specifically, we propose a
method for a seamless transition from business process models in Busi-
ness Process Modelling Notation (BPMN) to agent-oriented models in
the Prometheus methodology.

1 Introduction

Business process management (BPM) refers to all activities that support the
design, modelling, execution, monitoring and optimisation of business processes.
In recent years, the ever-changing business environment demands constant and
rapid evolution of an organisation. The flexibility in process execution through
IT-systems has significant impact on the success of an organisation’s business
operations. Existing BPM systems, which require a priori representation of a
business process and all potential deviations from that process, however, do not
provide adequate support to achieve these requirements in a satisfactory way [1].
On the other hand, despite its popularity and attractiveness as a research area,
agent technology still faces many challenges in being adopted by the industry [3].
Multi-agent systems (MAS) provide powerful and flexible execution platform for
business processes. Therefore, closing the gap between the business community,
BPM in particular, and agent technology can bring substantial benefits to both
sides: agents gaining better industry traction whilst BPM having a powerful
solution to deal with its current challenges.

In this paper we will propose a mapping between business process models
specified in BPMN to concepts and artefacts of the Prometheus agent-oriented

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 387–393, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

388 H.K. Dam and A. Ghose

methodology [2]. We have chosen BPMN since it is a standard for business pro-
cess modelling and has been widely used and supported in numerous modelling
tools. Figure 1 shows a BPMN diagram describing a typical process of a con-
ference management system (CMS). This translation is a starting point towards
the development of an agent system based on business processes and the use
of new, alternative, behaviours discovered from such an agent-based system to
enrich the original business processes.

2 BPMN to Prometheus Mapping

We now propose how details contained in BPMNmodels can be directly translated
to Prometheus concepts and/or be used to help develop Prometheus artefacts.

Non-system Pool to Actor: A non-system pool in BPMN represents a busi-
ness entity or a participant of a process. In this sense, a pool can represent either
a human, an organisation or another software system. Non-system pools that in-
teract (e.g. having message exchanged) with the pool representing the system
(i.e. the system pool) are candidates for an actor in Prometheus. For example,
in Figure 1 the pool “CMS” is a system pool while “Author” is a non-system
pool which can be mapped to an actor in Prometheus.

Lanes situated in System Pool to Roles: a lane is situated in a pool and
also stands for a process participant. Therefore, a lane represents the two-tier
hierarchy within a process participant. A lane can be mapped to a system role in

CM
S

Au
th

or

Re
vi

ew

M
an

ag
em

en
t

Pr
oc

ee
di

ng

M
an

ag
em

en
t

Su
bm

iss
io

n
M

an
ag

em
en

t

Submit
paper

Store
paper

Generate
Paper ID

Send
Ack

Send
camera-

ready

Prepare
camera-

ready

Collect
camera-

ready

Send to
publisher

Send
notification

Review

Paper received

Ack received

Accept

Reject

Camera-ready received

Notification
due date

Fig. 1. A process between an author and the conference management system (CMS)

Agent-Based Development for Business Processes 389

Prometheus. For example, the three swimlanes in the CMS pool, namely “Sub-
mission Management”, “Review Management” and “Proceeding Management”,
can be translated into three equivalent roles.

Fig. 2. A goal overview diagram for the CMS

Message Events to Percepts: Message Event which represents the arrival of
a message from a participant (i.e. a pool) may trigger the start of the process
(Start Event) or cause the process to continue (Intermediate Event). Such mes-
sage events, if takes place within a system pool, represent information from the
environment that the system receives. Hence, those message events can be trans-
formed into percepts in Prometheus. Start Message Events can be translated to
percepts that trigger a particular scenario while Intermediate Message Events
are mapped to other types of percepts. There are two Message Events in the
CMS pool (Figure 1) which can be translated to Prometheus percepts: “paper
received” and “camera-ready received”

Message Events to Actions: The sending of a message to a process participant
is represented as an Intermediate Message Event in BPMN. If the sender is the
system pool and the receiver is a non-system pool, then such a message event
represents an output from the system to an actor. Therefore, those events can be
transformed to actions. For example, in figure 1 there are two Message Events in
the CMS pool which can be translated to Prometheus actions: “ack received”,
“accept”, and ”reject”.

Processes and Activities to Goals: A complete (sub-)process in a busi-
ness process model leads to the achievement of a goal. Each activity within a

390 H.K. Dam and A. Ghose

Fig. 3. An analysis overview diagram for the CMS

(sub-)process represents a certain things that need to be done to contribute to
the achievement of the goal of the process. Therefore, each (sub-)process can
be mapped to a goal in Prometheus and each activity within the process can
be mapped to a (sub-)goal of the goal corresponding to the process. Figure 2
shows a goal diagram for the CMS. As can be seen, “manage conference” is the
top goal which contain a number of sub-goals, including “submitting papers”,
“print proceeding” and “review”. Each of these sub-goals are translated from a
corresponding process or sub-process. For instance, the sub-process “review” is
mapped to a sub-goal.

Processes to Scenarios: Business process models represent and support the
dynamic co-ordination of activities by having decision gateways. This allows the
model to represent many process instances, each of which contain a unique and
supported sequence of activity execution. Each process corresponds to a scenario
in Prometheus. An task can be transformed into a goal step whilst a sub-process
may be mapped to a sub-scenario. A message event can be mapped into either
a percept step or an action step, depending whether it is related to a sending
or receiving message. The path resulting from an exclusive (XOR) gateway can
be translated to a variation scenario, which represents alternative scenario to a
use case. In addition, the transformation from BPMN processes to Prometheus
scenarios should also preserve the order of activities and events.

Based on the previous transformation techniques, we can develop an analy-
sis overview diagram in Prometheus as shown in figure 3. The “Author” actor
interacts with the system by providing “paper” percepts that contain a paper.
The analysis overview diagram also shows which percepts are required by which
scenarios, e.g. the “submitting papers” scenario includes the “paper” percept. It
is noted that a message flow also implies a link in Prometheus. For example, a
message flow from the “submit paper” task in the “Author” pool to the “paper
received” event in the CMS pool indicates a link between the “Author” actor
and the “paper” percept.

Agent-Based Development for Business Processes 391

3 Discussion

In the previous section, we have proposed an approach to translate business re-
quirements in the form of business process models into a system specification
using Prometheus notation. We have used a conference management as an exam-
ple to illustrate our approach. From such a system specification, one can follow
the process proposed in the Prometheus methodology to further design and im-
plement an agent-based system that meets the original business requirements.
For instance, a similar conference management system has been developed and
presented in [5].

Business process models like BPMN tend to be initially designed in a high-
level, abstract manner which covers only the normal scenarios. Such business
process models do not provide in depth understanding of the processes and their
ability to achieve desired goals since they are developed at the analysis level.
Further details tend to be added as we move to the later stages of the soft-
ware development, i.e. design and implementation phases. For instance, at the
detailed design level in Prometheus (following a BDI style), we may need to
define collection of pre-defined plan recipes (or types) for an agent. Each plan
consists of: (a) an invocation condition which defines the event that triggers
this plan (i.e. the event that the plan is relevant for); (b) a context condi-
tion which defines the situation in which the plan is applicable, i.e. it is sen-
sible to use the plan in a particular situation; and a plan body containing a
sequence of primitive actions and subgoals that are performed for plan exe-
cution to be successful. It should be noted that subgoals can trigger further
plans.

At run time on a BDI platform [4], the agent achieves responds a partic-
ular event by selecting from its plan library a set of plans that are relevant
(i.e. match the invocation condition) for handling the event (by looking at the
plans’ definition). The agent then determines the subset of the relevant plans
that is applicable in terms of handling the particular event. The determina-
tion of a plan’s applicability involves checking whether the plan’s context con-
dition holds in the current situation. The agent selects one of the applicable
plans and executes it by performing its actions and sub-goals. A plan can be
successfully executed, in which case the (sub-)goal is regarded to have been ac-
complished. Execution of a plan, however, can fail in some situations, e.g. a
sub-goal may have no applicable plans, or an action can fail, or a test can be
false. In these cases, if the agent is attempting to achieve a goal, a mechanism
that handles failure is used. Typically, the agent tries an alternative applicable
plan for responding to the triggering event of the failed plan. It is also noted
that failures propagate upwards through the event-plan tree: if a plan fails its
parent event is re-posted; if this fails then the parent of the event fails and
so on.

BDI plans tend to correspond to business processes, e.g. a paper assign-
ment plan corresponding to a process of allocating papers to reviewers. Due
to such a flexibility of BDI plan composition at run-time which discussed above,
the plan/process execution at run-time may deviate from the original process

392 H.K. Dam and A. Ghose

specification, i.e. the business process models. More specifically, new behaviours
which were not previously specified in the BPMN models can be arisen. There-
fore, by capturing those new behaviours we may be able to refine the origi-
nal business process models. For this reason, agent-based systems can also be
used a simulation environment to validate business processes and assist busi-
ness process redesign. Further investigation on this area is a topic of our future
work.

4 Conclusions and Future Work

On the one hand, the BPM community is facing challenges in modelling and
implementing business processes that are able to adapt themselves to a chang-
ing environment. On the other hand, although multi-agent systems potentially
provide a powerful and flexible platform for process execution, they still fail to
attract a wide industry adoption. Therefore, it is very important to bridge the
gap between the BPM community and agent technology. This paper has aimed
to contribute to such an effort.

We have argued that providing mapping that automatically transforms busi-
ness languages directly to an agent platform is not feasible due to the significant
gap between the two different models and levels of abstraction. Therefore, we
have proposed to translate business languages in a form of BPMN models to
artefacts of Prometheus, a prominent agent-oriented methodology. Such arte-
facts are then used to implement an agent system that realizes those business
requirements.

There is a number of directions for future work. Firstly, we plan to develop a
more complete mapping from BPMN and Prometheus that covers other concepts
in the two modelling languages. More specifically, we would like to explore how
other types of events (e.g. timer, error, cancel) and decision gateways can be
translated to the internal of a plan in Prometheus (e.g. triggering events, context
conditions). Secondly, we plan to develop a tool which can be integrated to the
Eclipse-based version of the Prometheus Design Tool to support the automation
of a mapping between BPMN and Prometheus models. Another major topic for
our future work involves further investigation of how new behaviours discovered
from the execution of the agent-based system help improve the original business
process models that it implements.

References

1. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: BDI-Agents for agile goal-
oriented business processes. In: Padgham, Parkes, Müller, Parsons (eds.) Proceed-
ings of the 7th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), Estoril, Portugal, pp. 37–44 (May 2008)

2. Padgham, L., Winikoff, M.: Developing intelligent agent systems: A practical guide.
John Wiley & Sons, Chichester (2004) ISBN 0-470-86120-7

Agent-Based Development for Business Processes 393

3. Weyns, D., Parunak, H.V.D., Shehory, O. (eds.): International Journal of Agent-
Oriented Software Engineering (IJAOSE) - Special Issue on the Future of Soft-
ware Engineering and Multi-Agent Systems, vol. 3. Inderscience Publishers, Geneva
(2009)

4. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of
the First Intl. Conference on Multiagent Systems, San Francisco (1995)

5. Padgham, L., Thangarajah, J., Winikoff, M.: The Prometheus Design Tool – A
Conference Management System Case Study. In: Luck, M., Padgham, L. (eds.)
Agent-Oriented Software Engineering VIII. LNCS, vol. 4951, pp. 197–211. Springer,
Heidelberg (2008)

TwitAg: A Multi-agent Feature Selection

and Recommendation Framework for Twitter

Frank Grove and Sandip Sen

University of Tulsa
800 South Tucker Avenue
Tulsa, OK 74104, USA

{dean-grove,sandip,oly-mistry}@utulsa.edu

Abstract. With increasing number of users using social networking,
there has been a considerable increase in user-generated content. Social
networking is often used to connect with others, but in some domains
such as microblogging social networking is primarily used to find inter-
esting content. With the diversity of information sources available in
microblogs, it becomes difficult for users to find interesting information
sources. Recommendation engines have been developed to mitigate the
problem of interesting content location in many domains, however rec-
ommendation engine research within the domain of microblogs has not
been significantly explored. A key characteristic for any recommenda-
tion system is the ability to accurately classify users. Within the field
of classification research feature selection is a widely used technique for
improving classification accuracy. We demonstrate Unique Feature Se-
lection (UFS), an agent based feature selection mechanism which paral-
lelizes feature selection within the microblogging site Twitter. We show
the effectiveness of UFS in both minimizing the feature space and im-
proving classification results.

1 Introduction

Microblogging sites like Twitter are growing rapidly and people use these ser-
vices to gather news and opinion concerning many types of content. Effectively
searching the network to find other users that provide interesting content is a dif-
ficult problem in the context of social networks. To locate interesting users, one
can browse the local network of relations, e.g., followees of followees, or one can
search by keyword and manually select from the list of users that have recently
posted content relevant to that keyword. These techniques are not effective in
a network with millions of users. We seek the development of a novel technique
for identifying users in a large social network. Classification of user’s by con-
tent type is the first important mechanism of a recommendation engine. Our
method is based on the Bag of Words model (BoW) where keywords are stored
as an unordered set. The BoW model has been applied in information retrieval
and natural language processing and is used as the underlying assumption for
naive Bayes [6]. Each label, or single content type, is associated with a bag of

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 394–397, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

TwitAg: A Multi-agent Feature Selection and Recommendation Framework 395

words and each keyword within the bag is assumed to be conditionally indepen-
dent. For this work we utilize the keywords from Tweets, or short posts, posted
by labeled users in the network. We facilitate mining of labels in the Twitter
network through Twitter Lists. Lists segregate followees (friends) of users into
semantic categories to allow for ease in browsing each category visually in the
user interface. While these list names emerge from the network organically, and
lack any structured folksonomy, Twitter Lists have been shown to be coherent
labels for identification of users [2]. While the network lacks a structured folk-
sonomy, a number of Twitter lists names are commonly used within the network.
For example list names such as tech, politics, or travel are found often within
the network. The existence of common labels allows us to train our classifica-
tion model with multiple, independently generated instances. In this work we
demonstrate a multi-agent feature selection technique that dynamically builds
a feature space for classification. This feature space consists of keywords found
within th Tweets of labeled users.

2 Related Work

Previous research in Twitter has focused on network and community structure
analysis. Java et al. states that there exists three types of users within Twitter:
information seeking, information sources, and social users [3]. Krishnamurthy et
al. performed general analysis of the network structure, geographical, behavioral,
and growth patterns [5]. There has been less work analyzing Twitter from a
content perspective. Ramage et al. characterizes content based upon 6 categories
such as substance or style derived from surveys with Twitter users [1]. Dong Woo
et al. showed that Twitter lists were a useful source of information for identifying
latent characteristics of users [2].

3 Data Gathering

For results presented in this paper, we use a data set aggregated over the course
of 2 days with 10,908 users, 1,240,196 posts, and 193,714 lists (including 46,230
unique lists). Posts are tokenized on whitespace and we remove URLs, @replies,
retweet symbols and users with a majority of non-Latin characters. From the
data we filtered 60 users that had been listed with the content type food, politics,
travel, music or tech. This set of labels varies in the amount of data for each
label. Music has 320 users while food only has 20 users. This allows us to test the
effectiveness of our feature selection technique on labels of diverse popularity.
This is an important requirement because in open social networks there often
exists a highly diverse set of content with varying degrees of popularity.

4 Unique Feature Selection

To facilitate accurate classification of users within the Twitter Network we devel-
oped a simple yet effective multi-agent feature selection technique. We want three

396 F. Grove and S. Sen

primary advantages with this feature selection technique: dynamic aggregation
and selection of salient features corresponding to labels, ease of parallelization
and integration into task distribution managers, and improved classification per-
formance. We show in this work that the Unique Feature Selection (UFS) satisfies
each of these objectives. The UFS technique attempts to minimize the feature
space, selecting features which primarily correspond to a single label. For this
reason UFS considers only unique features, or features that only correspond to
a single label. For instance, the keyword CouchDB does not appear outside of
discussions within users labeled as programming. While many unlabeled users
that are interested in programming may use the keyword CouchDB, users that
are labeled with a different label such as politics will likely not use the keyword
CouchDB. This process also significantly reduces the size of the feature space.
The Twitter network is large and to effectively characterize millions of users the
effort must be parallelized. Additionally the feature selection technique must
be a integrated part of the classification and data aggregation system. There-
fore the classification model created by UFS must dynamically grow as data
is aggregated from the Twitter API, rather than requiring a batch process for
selecting features. The UFS method is by nature easily parallelizable and can be
integrated into a dynamic classification model. This also allows recommendation
engines employing this algorithm to utilize existing resource constraint satisfac-
tion algorithms for multi-agent systems to maximize data throughput for often
recommended labels.

We now describe UFS in more detail. For each label Lj, a unique bag of words
Luni
j is computed. Lcom

j is the union of the keywords of the n user’s keyword sets
with label Lj. Each user u consists of a bag ofm keywords Uu = (k1, k2, k3, ...km).
For each keyword ki, L

uni
j contains the number of times it has occurred, cui , and

the set of users (screen names), sni, that have used this keyword.

Lcom
j = (u1 ∪ u2 ∪ u3 ∪ ... ∪ un−1 ∪ un) (1)

Luni
j represents the features that only occur within label Lj ’s complete set of

keywords Lcom
j . To compute Luni

j keywords that intersect across multiple labels

must be removed. Luni
j is computed as the difference of Lcom

j and the union of
the m intersected keyword sets for each label.

Luni
j = Lcom

j − ((Lcom
j ∩ Lcom

1)... ∪ (Lcom
j ∩ Lcom

m)) (2)

5 Classification Experiment

We show through a k-fold classification experiment, that UFS more accurately
characterizes users when compared to using the entire feature space. Through
this classification experiment we also demonstrate the increase in accuracy using
the Unique Feature Selection method over the complete feature set with Twitter
data. We use Multinomial Bayes with 10-fold cross validation [4]. Table 1 shows
that the UFS feature selection technique gives a 18.9 % increase over the full

TwitAg: A Multi-agent Feature Selection and Recommendation Framework 397

Table 1. Classification Accuracy For Multinomial Bayes

Method Pol Trav Mus Tech Food

All 0.435 0.459 0.572 0.918 0.5

UFS 0.682 0.639 0.900 0.818 0.599

feature space. The UFS approach more accurately classifies each label except
the tech label, which suffers a 10 % decrease. However the accuracy for music
label, containing the largest feature space, is significantly increased. The accu-
racy of classifying users with labels travel, food, and politics are also increased.
Increase in classification accuracy for labels with various number of instances is
an important requirement for social network applications.

6 Conclusion and Future Work

We have demonstrated Unique Feature Selection, a multi-agent feature selection
technique designed for social networks. We have shown that this algorithm both
decreases the size of the feature space and improves classification accuracy. A
primary advantage of the UFS technique is it’s ease of integration into existing
multi-agent recommendation engines and ability to dynamically construct the
feature space. In future work we will analyze UFS more extensively with new
classification techniques and compare it against other feature selection tech-
niques. We also hope to utilize this technique within a recommendation engine
for Twitter.

References

1. Ramage, D., Dumais, S., Liebling, D.: Characterizing microblogs with topic models.
In: ICWSM (2010)

2. Dongwoo, K., Yohan, J., Il-Chul, M., Alice, O.: Analysis of twitter lists as a potential
source for discovering latent characteristics of users (2010)

3. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: Understanding microblog-
ging usage and communities. In: WebKDD/SNA-KDD. ACM (2007)

4. Kang, D.-K., Zhang, J., Silvescu, A., Honavar, V.: Multinomial Event Model Based
Abstraction for Sequence and Text Classification. In: Zucker, J.-D., Saitta, L. (eds.)
SARA 2005. LNCS (LNAI), vol. 3607, pp. 134–148. Springer, Heidelberg (2005)

5. Krishnamurthy, B., Gill, P., Arlitt, M.: A few chirps about twitter
6. McCallum, A., Nigam, K.: A comparison of event models for naive bayes text clas-

sification. In: AAAI-1998 Workshop on Learning for Text Categorization (1998)

Automated Multi-agent Simulation Generation
and Validation

Philippe Caillou

LRI, Universite Paris Sud, F-91405 Orsay France
caillou@lri.fr

http://www.lri.fr/˜caillou

Abstract. Multi-agent based simulation (MABS) is increasingly used for social
science studies. However, few methodologies and tools exist. A strong issue is
the choice of the number of simulation runs and the validation of the results by
statistical methods. In this article, we propose a model of tool which automati-
cally generates and runs new simulations until the results are statistically valid
using a chi-square test. The choice of the test configuration allows both a gen-
eral overview of the variable links and a more specific independence analysis.
We present a generic tool for any RePast-based simulation and apply it on an
Academic Labor Market economic simulation.

Keywords: Multi-Agent Based Simulation, Simulation Validation, Simulation
Tool, Chi-square test, statistical test.

1 Introduction

Multi-Agent Based Simulations (MABS) are increasingly being considered as flexible
and versatile modeling frameworks, enabling positive and normative investigations of
phenomena out of reach when one uses analytical studies[1,2]. However, few method-
ologies exist on MABS usage. The main problem of MABS is validation: since sim-
ulations are by definition too complex to be validated analytically (otherwise they are
only useful to inspire analytical analysis), other methods have to be considered. The
result of a simulation is a set of observations (for example a set of evacuation times
for a simulation of a stadium fire evacuation). As for empirical observations, statistical
tools can be used to validate results obtained by the simulation1. Their usage is grow-
ing, even if the expert validation is still mainly used [3]. One important condition to be
able to apply most statistical tests is to have a large enough number of observations.
Compared to empirical observations or biological experimentations, MABS has a big
advantage: it is easy and almost free to generate new simulation results. Our goal here
is to use this advantage to generate automatically new simulations until observed results
are statistically valid.

An ideal tool would work with any simulation framework and would select the best
statistical test considering the experimenter goal. As a first step, we will however begin

1 We consider here the validation of the results considering the model is sound. For example,
statistical tests can validate the fact that the most important variable for the evacuation time is
the number of exits in the simulation. However the model in itself - the agent behaviors, the
stadium model - needs to be validated separately.

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 398–412, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.lri.fr/~caillou

Automated Multi-agent Simulation Generation and Validation 399

with a single test and a single framework. The chosen framework is RePast[4] as one of
the most used framework for MABS. To be generic, we aim to keep the interaction with
the framework minimal: the tool reads and write parameter files, starts the simulation
program and analyzes result logs.

One of the first results of any MABS is usually the link between the observed vari-
ables and the parameters, which ones are the most important parameters and which
ones have an influence on the final result. As our goal is to propose a generic tool, we
consider here a test with a small number of hypotheses on the tested variables: the Pear-
son’s Chi-square test. It tests if two observed variables/parameters are independent or
not with a known percentage of error (by comparing the observed distribution of data
with an expected distribution obtained from the distribution of the two tested variables
considered independently).

Our objective here is to propose a model for a generic tool which automatically run
new simulations from any RePast simulation until the independence results (obtained
by chi-square tests) on selected variables are statistically valid. To test and illustrate our
method, we apply a corresponding tool on a simulation of the French Academic La-
bor Market (presented - without statistical validation - in [5,6]). The main parameters
describe the hiring system properties and the candidates and universities utility func-
tions, while the observed variables measure the quality of the hiring and the rate of jobs
fulfilled by local candidates.

In the following, we present the state of the art in simulation methodology and tools
in section 2. Then we describe the method, the chi-square test, propose some heuristics
to increase the analysis efficiency and discuss the possible applications of our tool in
section 3. The simulation of the French academic labor market is introduced in section
4, some results are presented in section 5 and finally we conclude.

2 Related Work

A variety of social and economic problems have been investigated using multi-agent
systems (MAS) [1]. MAS have demonstrated their ability to represent (cognitive) agents
and constrained interaction rules, and provide insightful pictures of the dynamics of
the system [7]. Several frameworks are available, such as RePast[4], NetLogo[8] and
ModulEco[9] (see a review in [10]). The use of automated simulation generation and
analysis is not yet integrated in these frameworks. NetLogo has the BehaviorSpace
tool (and its corresponding API), but it is mainly the equivalent of RePast parameter
files: it allows the user to choose parameter ranges to launch multiple experiments. An
alternative approach is the LEIA tool from the IODA Framework[11], which is able to
reverse-engineer agents and to explore there parameter space[12].

The closest approach to our work is the “robot scientist”[13] developed to achieve bi-
ological experiments autonomously. Our approach represents the equivalent for Multi-
Agent Simulation, and improves it with efficiency heuristics and the statistical tests
both for analysis and as a termination criterion. Another similar approach is the Sim-
Explorer project [14]. Its goal is to manage simulations parameters and results with a
generic framework. It is an ongoing project, with many limitations on parameter val-
ues, no possibility to ”program” simulation runs with stopping criteria. Their work is
very complementary to our objective, since they have no specific analysis tool in their

400 P. Caillou

system. An extension of our work would be to integrate it into SimExplorer to improve
its interface with our goal-oriented statistical analysis.

Calibration and validation have always been a serious issue for MABS. Few general
methodologies have been proposed, due to the huge variety of simulation types. Some
classifications of empirically observed methods have been done ([15][16]). A survey of
methods used from 1998 to 2008 [3] shows that usage of statistical tools for validation
stays marginal (less than 10%) even if it has increased since 1998. The chi-square test
is one of the most used for simulation analysis since it has very few requirements. A
good introduction to chi-square test can be found in [17] and a more precise discussion
on the test in [18].

3 Model
In this section we will first make a general presentation of our model (3.1), then we
will precise the notations (3.2) we use. The Chi-squared test is described (3.3), then
we detail the method algorithms (3.4), we propose some heuristics to improve our tool
efficiency (3.5), and finally we discuss the objectives achievable with our tool (3.6).

3.1 Presentation

The global objective is simple and is summarized Fig.1: on a simulation model, the user
chooses some parameters and observed variables, and the tool has to run simulations
and make statistical tests until the tests are valid for each couple of parameters/variables.
It finally indicates to the user which couple of variables are not independent and the
error margin.

More precisely, we can distinguish between four main steps:

– Parameters and variables extraction: Starting with an existing Parameter file and
result log, the tool extracts the set of parameters and variables used by the simula-
tion and their past values.

– Configuration and objective choice: The user chooses which observed variables
and parameters he wants to test, and gives eventually more configuration details
(specific number of classes, specific parameter ranges, ...).

– Parameter file generation and simulation run: The tool generates a new param-
eter file and starts the simulation.

– Results update: The observed data set is updated from the result log. For each
couple of variables/parameters a Chi-square test is made. If it is valid for every
couple, the results are presented, otherwise the previous step is executed again.

3.2 Notation

The following notations will be used in this article:

– V = {v1..vp+r} for the set of variables, including2:

2 Since the test is identical and we study both parameter/observed variable and observed vari-
able/observed variable independence, we use the same notation for parameters and observed
variables

Automated Multi-agent Simulation Generation and Validation 401

Fig. 1. Model overview: Starting with a configuration and a result file, the tool extracts the model
variables. The user chooses the configuration. The tool generates, runs and analyzes new simula-
tions until results are statistically valid, and finally present the results to the user.

– v1..vp for the simulation parameters.
– vp+1..vp+r for the observed variables.
– U ⊆ V for the set of selected variables for the independence tests (an independence

test is made for every couple vi × vj with vi ∈ U and vj ∈ U .
– x1..xp+r for observed values for variables v1..vp+r after a simulation run.
– ci for the number of classes used for variable vi.
– lit and lit+1 for the lower and upper bounds for class t of variable vi.
– n· for the total number of observations.
– ni

t for the number of observations for class t of variable vi.
– nij

tt′ for the number of observations simultaneously for class t of variable vi and
class t′ of variable vj .

– eijtt′ for the number of expected observations for class t of variable vi and class t′

of variable vj .
– Prij is the probability for variable vi and vj for not being independent according

to Chi-square test.
– nbrun for the number of simulation runs between each result update and statistical

test.

3.3 Chi-Square Test

The Pearson’s Chi-square test of independence applies to two binned variables (vari-
ables put into classes). The tested hypothesis is H0: Variable v1 is independent from
v2. Simply put, it tests if the lines and the columns of a contingency table are inde-
pendent. To test the hypothesis, the observed distribution (the contingency table) is

402 P. Caillou

compared to the expected distribution if the variables were independent. If H0 is true,
then P (v1

⋃
v2) = P (v1)× P (v2).

For example, to test if the sex of the candidate (v1) has an impact on the hiring
probability as assistant professor (v2), we consider the data presented table 1. The two
variables v1 and v2 have two classes: c1 = c2 = 2.

Table 1. Assistant professor candidate sex and hiring success, France, 2007

n12
tt′ Men Women Total n2

t′
Hired 1081 (11.7%) 725 (7.9%) 1806 (19.6%)
Not Hired 4234 (46.0%) 3173 (34.4%) 7407 (80.4%)
Total n1

t 5315 (57.7%) 3898 (42.3%) 9213 (100%)

From this observed distribution, we compute in table 2 the expected distribution (if

H0 is true) : e12tt′ =
n1
t∗n

2
t′

n·

Table 2. Expected distribution

e12tt′ Men Women Total e2t′
Hired 1041,9 764,1 1806
Not Hired 4273,1 3133,9 7407
Total n1

t 5315 3898 9213

The value of the test can be computed from the sum of the squared differences di-
vided by the expected distribution value:

X2 =
∑
t,t′

(n12
tt′ − e12tt′)

2

e12tt′

Here,X2 = 4, 317. This test value has to be compared to the Chi-square law valueχ2
df,α

to know if the hypothesis can be rejected or not with α% probability (see for example
[17] for a mathematical definition of the χ2

df,α function). The number of degree of
freedom is the product of the number of classes minus 1 : df = (c1 − 1)(c2 − 1). Here
df=1. With an error margin of 5%, the value of the Chi-square function is χ2

1,0.95 =
3.84. We can thus reject the hypothesis “The sex of the candidate has no impact on the
hiring” with only a 5% error margin. We could not have done it with an error margin of
only 1%, since χ2

1,0.99 = 6, 63.
One advantage of this test is the absence of hypothesis on the form of the variable

distribution. To apply it on continuous variables, the only requirement is to sample them
by defining automatic or user-defined classes.

To be valid, the test has 2 requirements: the independence of the observations and
a sufficiently large data set. A usual condition [19] is that the expected population has
to be greater than one (e12tt′ > 1) for every cell of the contingency table and greater
than 5 (e12tt′ > 5) for 80% of the cells. We use this condition, applied on every analyzed
variable couple, to determine when to stop the simulations.

Automated Multi-agent Simulation Generation and Validation 403

3.4 Model

The main algorithm of our tool model (Alg. 1) follows the basic steps presented in
section 3.1 :

ExtractV ariables();
ChooseObjective();
ChooseConfig();
ResV alid=false;
while ResV alid=false do

GenerateRunSimulation() → ResF ile;
UpdateResults(ResF ile);
UpdateClasses();

end
ShowResults();

Algorithm 1. Global simulation analysis algorithm

ExtractV ariables() is mainly a parsing function that extract parameters names
v1...vp and values from a parameter file and variables names vp+1...vp+r and values
from a result log file.

ChooseObjective() let the user choose the variables that will be tested (U) and,
eventually, to set manually the number and bounds of the initial classes for each variable
(c1...cp+r). By default, the first simulation run is used to determine cdefault uniform
classes for each variable. The choice of classes uniform in size rather than uniform in
observation number is made for two reasons: first, the number of observations is low at
the beginning of the process and the distribution is very likely to change. Second, it is
very common to have very concentrated variables (for example, 75% of the observations
have an unique value for one of the observed variable of our application example). To
use very small classes for v around a concentrated value x would influence the results
of the test, because the variables which influence v around x would have more influence
on the independence test than variables which influence v only for other values than x
(because classes will switch very quickly around x, whereas bigger changes are needed
to switch classes elsewhere). More discussions about user-defined classes can be found
in section 3.6.

ChooseConfig() let the user choose the parameters values for the simulations.
RePast parameter files accept sets and loops (For..step..until). For the test to be valid,
experiments have to be independent, which is not true for loops. For this reason, we
replace loops by random choices between possible values. For each parameter, the user
can choose between a set (containing one or several values) and a random value with or
without steps (a random value without steps is a continuous uniform random variable).
By default, the values are the ones used in the current parameter file. More discussion
about user-defined parameter values can be found in section 3.6.

404 P. Caillou

GenerateRunSimulation() creates a new parameter file using the chosen values
for nbrun new simulation runs, creates the adapted script file (to save the results in a
new file) and starts the simulations. To increase the tool efficiency, the random values
for one parameter can be biased (see section 3.5).

while new res x1..xp+r in ResF ile do
inc(n·);
for each vi, vj with vi ∈ U and vj ∈ U and i <= j do

for each class cit do
if lit ≤ xi < lit+1 then inc(ni

t)
end
for each cit × cjt′ do

if lit ≤ xi < lit+1 and ljt′ ≤ xj < ljt′+1 then inc(nij
tt′)

end
end

end
ResV alid = true;
for each vi, vj with vi ∈ U and vj ∈ U and i <= j do

Nb5 = 0;
for each cit × cjt′ do

eijtt′ =
ni
t∗nj

t′
n· ;

if eij
tt′ < 1 then ResV alid = false;

if eij
tt′ < 5 then inc(Nb5);

end

Xij =
∑

t,t′
(n

ij

tt′−e
ij

tt′)
2

e
ij

tt′
;

Prij = pr with χ2
(ci−1)(cj−1),pr = Xij ;

if Nb5 > 0.2cicj then ResV alid = false
end

Algorithm 2. UpdateRes(ResF ile) algorithm

UpdateRes(ResFile) function is described in Alg. 2. It updates the observation
contingency tables (the nij

tt′) in the while loop and computes the Chi-square value and
check the test validity criteria in the For loop. The program stopping criteria (ResV alid)
is the Chi-square validity criteria: each expected distribution value (eijtt′) has to be
greater than 1 and 80% have to be greater than 5 for every selected variable couple.
The Prij value is the minimum error margin to reject the hypothesis H0 (vi and vj are
independent). This value gives more information than a binary answer independent/not
independent since the user can compare the values between variables.

UpdateClasses() is used to merge or create new classes in case the user didn’t
define specific classes. Classes are added when an observed value is out of the low-
est/highest bounds, if the user did not choose infinite boundaries or force fixed classes.

Automated Multi-agent Simulation Generation and Validation 405

Both options allow the user to keep a fixed number of classes, without losing any obser-
vation (infinite boundaries) or by focusing on a specific range (fixed classes). A class
merging heuristic can also be used to increase the class definition efficiency (see sec-
tion 3.5). The reason why new uniform classes are not redefined at each loop is that it
would suppose to consider all the past results again (since the only information kept is
the contingency tables with the populations in each class).

ShowResults() finally presents the Prij (which can be interpreted as probability
of not being independent) for each couple of selected variable to the user. The user can
have the detail of observed/expected observations for every couple by selecting it (see
Fig. 2 and 3).

3.5 Heuristics

The total time required for one simulation run is usually low, but not negligible, and
for some models it can even be relatively high. Moreover, several thousand simulations
may be required to obtain statistically valid results. For these reasons, we propose two
heuristics to decrease the required number of simulations without losing the statistical
properties:

The class merging heuristics: During the UpdateClasses() step, one class is merged
with its smallest neighbor when its population is lower than minclass% the average
class size. This heuristic is here to prevent a class existing only because of an excep-
tional configuration/error to block the test and the program (if a class population is very
small, expected values will be lower than 1 and the process will never stop). The main
advantage of this heuristic is its efficiency (see results in section 5.4). Its downside is
that it can not be applied to not orderd/string variables (because it is impossible to know
which classes to merge) or when classes are fixed (when the user wants to analyze fixed
classes).

The biased values heuristic: During the GenerateRunSimulation() step, the idea is
to identify the most problematic variable and class (the one with the lowest number of
observations), the parameter which will increase its population with the highest proba-
bility (the one with a high proportion of observations in the selected class) and to bias
its values accordingly. Formally:

– Choose class t and variable i with ni
t = minj,t′ n

j
t′ .

– For each continuous parameter vj , give a score to each of its classes: sjt′=(
nij

tt′∑
t n

ij

tt′
)2.

– For the next simulations set generation, choose the biased parameter vj with the
highest total score sj =

∑
t′ s

j
t′ .

– For each random value of this parameter, choose the class t′ of vj with probability
sj
t′∑
t s

j
t

. The final value is selected uniformly in class t′.

The main advantage of this heuristic is that it can be applied to any variable. It can
however be applied to only one parameter for each simulation generation: To apply
it to several parameter at the same time may introduce artificial relations and would
invalidate the statistical validity of the test.

406 P. Caillou

3.6 Discussion

The main objective of our method is to test the independence of variables. However,
several more precise objectives can be achieved:

– The first intuitive objective is to present a global overview of the variable interac-
tions in the simulations. Simulations can use hundreds of parameters and variables
and a first overview of the important parameters for each variable is already very
useful and not trivial to obtain with current simulations framework. This is the
default objective, with all default parameter values and all variables selected (see
section 5.1 for an illustration).

– To change the parameters values may have a huge impact on the results. Specific
submodels can thus be analyzed, for example with a fixed parameter. More inter-
estingly, to limit the parameter range for all the parameters may give significantly
different results: some variables may be interdependent only for very specific and
unrealistic parameter values. With these constraints, it is possible to study the vari-
ables relations around a specific point (for example with +/- 10% variation only -
see section 5.2).

– Finally, it is possible to manually define some variable classes number/range to
alter the results. To choose more classes means a more precise test. But it may
be interesting to know what are the variables which have the highest influence on
a specific variable v1 by decreasing its number of classes. The effect will be that
only the variables which have an important impact on v1 will influence the observed
classes, and thus be considered as not independent by the test (see section 5.3).

4 Application Example: The French Academic Labor Market

Our application is a simulation of the French assistant professor academic labor market.
As it is just an illustration for our simulation tool, a precise understanding of the model
is not necessary (interested reader may refer to [5,6]) and we will just give a brief
overview here.

Let {u1, . . . , uU} and {c1, . . . cC} respectively denote the set of universities and
candidates, listed according to their quality. University ut is characterized from four
parameters. The first two parameters (in [0, 1]) govern his preference ordering: i) elitism
et stands for its bias toward the best candidate; ii) locality lt stands for its bias toward
local candidates. Lastly, a random perturbation modeled as (1−et)V with V uniformly
drawn in [0, 1], accounts for the “subjective” preferences of university ut. Overall, the
quality r(i, t) of candidate ci for university ut is:

r(i, t) = (rt ×
i

C
+ (1− et)V)(1 − lt.L(i, t))

where L(i, t) is 1 iff ci is local to ut and 0 otherwise.
University ut uses its risk-adversity parameter rt to decide which candidates will be

interviewed among those applying to ut. Its strategic ordering is defined as:

s(i, t) = rt × r(i, t) + (1− rt)×
|i− (t)|

C

Automated Multi-agent Simulation Generation and Validation 407

The candidates parameters, quality function r′(i, t) and strategic ordering s′(i, t) are
symmetrical.

Interaction Rules. Every candidate ci applies for positions after its preference order-
ing, and to his home university with probability hi. Every university ut produces a
shortlist of 5 candidates. Every candidate ci thereafter ranks the universities having
shortlisted him. Eventually, the candidate and university ranking are aggregated by a
variant of Stable Marriage algorithm [20], an optimal matching is derived, and the re-
cruitment decisions are made accordingly.

Agents parameters are defined as random uniform variables, the boundaries are the
parameters of the simulation. For example:

– Application number NbAppi ∼ U [MinApp,MaxApplication],
– Risk factor rt ∼ U [MinUnivRisk,MaxUnivRisk]

The two main observed variables are the number of positions fulfilled (NbHire) and
the number of positions fulfilled by local candidates (NbLocalHire). Two other vari-
ables evaluate the quality of the hiring process: the rank of the last hired candidate
(LastRelACand) and the rank of the first university with no hired candidate
(FirstRelNAJob).

5 Results

To illustrate our tool model, we used it on the simulation application with the three
possible objectives described in section 3.6. First, we get a global overview of the sim-
ulation, then we try a more precise test around the equilibrium and we test the influence
of class number on the results. Finally, we test the efficiency of the proposed heuristics3.

5.1 Global Overview

With all default parameters, all parameters and four observed variables selected for test,
we obtain a global view of the simulation (Fig. 2). On the top of the window is indicated
the number of simulations runs completed until all tests were valid (4182)4. Each line
and column corresponds to a variable, with the first four lines for the observed variables
(results of the simulation), and the next lines for the parameters. Each cell contains
the test results. The meaning of a positive test value (value higher than 0.95 on the
figure, signaled with a star) is that the two variables are not independent with 5% of
error margin. Interestingly, the test values for parameter/parameter couples (all values
except the first four lines) are not all low. The parameter values are all random variables
(using Java standard Random function - similar results were obtained with other random
number generators). Nevertheless, for several parameters, the hypothesis that they are
independent has to be rejected for a high enough error margin (15% for the couple
MaxLocalBonus/SendApplicationHome). The lesson here is that it is important to take
a very low error margin to be sure that the independence is rejected (5%, 1% or less).

3 For each test, we use nbrun = 102 runs for each step and cdefault = 10 classes by default
for each variable.

4 The whole analysis, with the 4182 simulations and 250 agents took approximately 6 minutes
with our test configuration.

408 P. Caillou

Fig. 2. Result window with default parameters: each cell value is the probability for the couple
of variables not to be independent. Stars indicate interdependent variables with an error margin
lower than 5%.

For the user, the figure gives a good insight on the simulation behavior: the parame-
ter MaxApplication has clearly the most influence on the observed variables. Interest-
ingly, this was one of the result of the initial analysis ([5]), but without statistical proof,
only with “clear evidence” on a plot. Here, it is possible to say that this is the only pa-
rameter for which the independence hypothesis can be rejected for all observed variable
with the lowest margin of error. Other analysis can be maid with statistical proof : for
example, the fact that the candidates are risk-taker or risk-adverse (MinCandRisk and
MaxCandRisk parameters) have very low influence on the result.

Fig. 3. Detailed view for the independence test of parameter MaxApplication and observed
variable NBHire: each cell contains the observed and expected observation count

Automated Multi-agent Simulation Generation and Validation 409

To have more details about the observed values and the test, the user can select any
cell to obtain the contingency table with both the degree of freedom (DL), X ij value
(Dif Sum), observed and expected values (in each cell). For example, Fig. 3 details the
observations for parameter MaxApplication (maximum number of applications sent
by a candidate) and NbHire (hiring rate). It is possible to see that the parameter has a
negative impact on the observed variable.

5.2 Parameters Influence

The previous analysis was global, every parameter explored its whole definition space.
To know which variables have an influence around a specific point, it is possible to limit
the parameter range. We have tried here to test all parameters and variables, but to limit
the parameter range to a 10% variation around a specific equilibrium (the empirically
observed equilibrium, see [5]). Results are presented Fig. 4. In this situation, some
variables (like the first one, SendApplicationHome) have disappeared because their
value is fixed.

In this situation, the variables influences are clearly different. The impact of
MaxApplication, for example, is very different because its range dropped from
[10,97] to [18,22]. Excessive values which conduct to a saturation of the hiring pro-
cess are eliminated. Interestingly, even without this saturation effect, this parameter has
still influence on some qualitative (FirstRelNAJob) and quantitative (NBHire) ob-
served variables. Moreover, with the elimination of excessive values, some influences
which were previously hidden because they were too small may appear: The influence
of MinCandRisk is low compared to the global influence of other variables (Fig. 2),
so low that the independence hypothesis can not be rejected. But around the equilibrium
this low influence becomes the strongest (Fig. 4).

Fig. 4. Result window for a limited parameter range around a specific point

5.3 Variables Classes Influence

Finally, it is possible to study more precisely some variables by manually choosing the
classes used for the analysis. Lowering the number of classes decreases the precision of
the test, but this “blurredness” can help to identify the variables which have the strongest
influence. For example, Fig. 5 details the observations for parameterRankWeight (the
importance of the quality of the university for the candidate) and the observed variable
NBLocalHire (number of hired local candidates) in two experiments: in experiment

410 P. Caillou

1 (corresponding to the experiment of section 5.1, top figure), the default number of
classes is 10. For experiment 2 (bottom figure), it is set to 3. Moreover, for each ex-
periment, some classes where automatically merged because their observed population
was too small. In the experiment 1, even if the variables are statistically not indepen-
dent (with a very low error margin, less than 0.1%), the influence doesn’t appear clearly
when looking directly at the observed and expected population values (Fig. 3 is an
opposite example of apparent interactions between the variables). The decrease of the
observation precision in experiment 2 confirms this observation: with few classes, the
independence hypothesis can not be rejected anymore.

Fig. 5. Detailed view for independence test of parameter RankWeight and observed variable
NBLocalHire. In experiment 1 (top window), the number of classes is 10 for RankWeight
and 6 for NBLocalHire. In experiment 2 (bottom window), it is respectively 3 and 2. Each cell
contains the observed and expected observation count.

5.4 Heuristic Efficiency

To evaluate the heuristics efficiency, we have applied our tool on the same configuration
with each heuristic enabled/disabled (10 times for each situation). The selected configu-
ration used 10 classes for each variable, some of these classes were rather rare and thus
difficult to obtain. The average number of required simulations and the variance are
given Table 3. The heuristic efficiency was statistically tested (with a Chi-Squared test,
of course) and every hypothesis “The heuristic HC/HB has no effect on the number of
required simulations” can be rejected with less than 1% of error probability.

Automated Multi-agent Simulation Generation and Validation 411

Table 3. Average number of simulation runs (and variance) with/without the Class-merging
heuristic (HC) and the biased-values heuristic (HB)

HC HC

HB 4760(1517) 16442(1943)
HB 6800(1819) 24112(579)

The HC (class merging) heuristic appears to be the most efficient and decreases
significantly the number of required simulations. When this heuristic can not be used
(for example with string variables), the HB heuristic may still be useful. Even if its
efficiency is lower, it does not require any specific configuration to be applied.

6 Conclusion

In this paper, we have presented a tool model to help the scientist using Multi-Agent
Based Simulation to explore its simulation and obtain statistically valid results. We
applied a corresponding tool on an Academic market simulation, and we have shown
that it successfully generates and runs new simulations until Chi-square independence
tests on selected variables are valid. It presents a global overview of the simulation
results with the most important variables and the main interactions. It can also be used to
obtain more precise results on the simulation behavior for specific parameter ranges, or
focus on a specific couple of parameters/variables. We proposed heuristics to decrease
the number of required simulations and tested their efficiency.

The first step to continue this work will be to generalize it to other statistical tests
and simulation frameworks. A complementary goal would be to integrate this tool in
the project of generic simulation explorer SimExplorer.

References

1. Axelrod, R.: Advancing the art of simulation in the social sciences. Advances in Complex
Systems 7(1), 77–92 (2004)

2. Tesfatsion, L.S.: A constructive approach to economic theory. In: Handbook of Computa-
tional Economics. Agent-Based Computational Economics of Handbooks in Economic Se-
ries, vol. 2. North-Holland (2006)

3. Heath, B., Hill, R., Ciarallo, F.: A survey of agent-based modeling practices (January 1998
to July 2008). Journal of Artificial Societies and Social Simulation 12(4), 9 (2009)

4. North, M.J., Collier, N.T., Vos, J.R.: Experiences creating three implementations of the repast
agent modeling toolkit. ACM Transactions on Modeling and Computer Simulation 16(1), 1–
25 (2006)

5. Caillou, P., Sebag, M.: Modelling a Centralized Academic Labour Market: Efficiency and
Fairness. In: ECCS 2008. Complex Systems Society, Jerusalem Israel (2008)

6. Caillou, P., Sebag, M.: Pride and Prejudice on a Centralized Academic Labor Market. In:
Artificial Economics 2009. LNEMS, pp. 29–40. Springer, Valladolid Espagne (2009)

7. Phan, D., Amblard, F.: Multi-agent Modelling and Simulation in the Social and Human Sci-
ences. Bardwell Press (2007), http://www.bardwell-press.co.uk/

8. Wilensky, U.: http://ccl.northwestern.edu/netlogo/

http://www.bardwell-press.co.uk/
http://ccl.northwestern.edu/netlogo/

412 P. Caillou

9. Phan, D.: From agent-based computational economics towards cognitive economics. In: Cog-
nitive Economics. Handbook of Computational Economics, pp. 371–398. Springer, Heidel-
berg (2004)

10. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: Review and
development recommendations. Simulation 82(9), 609–623 (2006)

11. Kubera, Y., Mathieu, P., Picault, S.: Interaction-oriented agent simulations: From theory to
implementation. In: Ghallab, M., Spyropoulos, C., Fakotakis, N., Avouris, N. (eds.) Proceed-
ings of the 18th European Conference on Artificial Intelligence (ECAI 2008), pp. 383–387.
IOS Press (2008)

12. Gaillard, F., Kubera, Y., Mathieu, P., Picault, S.: A Reverse Engineering form for Multi Agent
Systems. In: Artikis, A., Picard, G., Vercouter, L. (eds.) ESAW 2008. LNCS, vol. 5485, pp.
137–153. Springer, Heidelberg (2009)

13. Soldatova, L., Clare, A., Sparkes, A., King, R.D.: An ontology for a robot scientist. Bioin-
formatics 22, 464–471 (2006); ISMB 2006

14. Amblard, F., Hill, D.R.C., Bernard, S., Truffot, J., Deffuant, G.:
http://www.simexplorer.org/

15. Windrum, P., Fagiolo, G., Moneta, A.: Empirical validation of agent-based models: Alterna-
tives and prospects. Journal of Artificial Societies and Social Simulation 10 (2007)

16. Moss, S.: Alternative approaches to the empirical validation of agent-based models. Journal
of Artificial Societies and Social Simulation 11 (2007)

17. Wonnacott, T.H., Wonnacott, R.J.: Introductory statistics, 5th edn. Wiley, New York (1990)
18. Greenwood, P.E., Nikulin, M.S.: A Guide to Chi-Squared Testing. Wiley, New York (1996)
19. Cochran, W.G.: Some methods for strengthening the common chi-square tests. Biomet-

rics (10), 10–417 (1954)
20. Baiou, M., Balinski, M.: Student admissions and faculty recruitment. Theor. Comput.

Sci. 322(2), 245–265 (2004)

http://www.simexplorer.org/

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 413–427, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Inferring Equation-Based Models from Agent-Based
Models: A Case Study in Competition Dynamics

Ngoc Doanh Nguyen1,2, Patrick Taillandier1,2, Alexis Drogoul1,2, and Pierre Auger2,3

1 MSI, IFI, 42 Ta Quang Buu Street, Hai Ba Trung District, Hanoi, Vietnam
2 UMMISCO, UMI 209, IRD/UPMC, 32 Henri Varagnat,93143 Bondy Cedex, France

3 LMPD, University Cadi Ayyad, Marrakech, Morocco
{doanhbondy,patrick.taillandier,alexis.drogoul}@gmail.com,

pierre.auger@ird.fr

Abstract. Two types of model, equation-based models (EBMs) and agent-based
models (ABMs) are now widely used in modeling ecological complex systems
and seem not to be reconciled. While ABMs can help in exploring and explain-
ing the local causes of global phenomena, EBMs are useful for predicting their
long-term evolution without having to explore them through simulated experi-
ments. In this paper, we show that it is possible to use an ABM to infer an
EBM. Base on the case study, a dynamics of two competing species, we illu-
strate our methodology through the presentation of two models: an ABM and an
EBM. We also show that the two models give the same results on coexistence
of the two competing species.

Keywords: Agent-Based Models, Equation-Based Models, Population Dynam-
ics, Complex Systems.

1 Introduction

In modeling ecological complex systems, two widely accepted models coexist: agent-
based models (ABMs) and equation-based models (EBMs). Each of these two models
has its own strengths and weakness ([1], [2]) depending on the purpose of study.
EBMs, on one hand, play as compartment models and operate on global laws general-
ly, defined by the equations that apply to all members of the compartments. For ex-
ample, in early ecological models, the state variables (compartments) in the models of
population dynamics was often chosen as the total population densities and the model
was a set of nonlinear, coupled, ordinary differential equations or discrete equations
[3]. In such classical models, the agents (individuals) are assumed to be homogenous
and well mixed: they are all treated as identical. The benefit of these simple EBMs is
that they can be handled analytically. However, given this previous assumption, they
cannot be very realistic. In recent years, some “more realistic” EBMs have been de-
veloped, which are aimed at taking different categories of agents into account. These
EBMs involve a large number of variables and are in general difficult to handle ana-
lytically. However, in most cases, it is possible to consider different time scales: a fast
one for processes operating at the agent level; and a slow one at the levels of the pop-

414 N.D. Nguyen et al.

ulation and the community. It is then possible to use the “variable aggregation” me-
thod, deriving a reduced model which governs a few global variables at the slow time
scale while taking into account all the processes going on at the agent level [4]. One
can also find in [4] some interesting examples of EBMs in which different categories
of agents were considered, and for which aggregation methods were used successfully
to proceed analysis of the EBMs.

ABMs, on the other hand, are natural representations of real ecological systems
[5]. The obvious reason for using ABMs to model a real ecological system is that
agents are building blocks of ecological systems. The properties and behaviors of
agents determine the properties of the systems that the agents compose. In ecological
systems, agents are not identical and do not stay the same all their life: all that an
agent does-grow, develop, acquire resources, reproduce, interact - depends on its in-
ternal and external environments and it modifies both with its actions. ABMs are then
particularly adapted to represent and understand the emergence of global dynamics
among heterogeneous agents sharing common environmental constraints. In compari-
son to EBMs, ABMs are much more realistic with respect to the data available in the
field and thus are easier to test in scientific process. But being closer to reality usually
means having to define, calibrate and determine much more parameter values than in
EBMs and analysis problems then arise.

To summarize, both ABMs and EBMs address, with its own point of view, the
same problems in ecological complex systems. Each of these modeling approaches
answers different, yet complementary, questions. While ABMs can help in exploring
and explaining the local causes of global phenomena, EBMs are useful for predicting
their long-term evolution without having to explore them through simulated experi-
ments.

Therefore, it is primary to couple these two modeling approaches when studying
ecological complex systems. There are many alternative ways for coupling these two
approaches. For instance, the process can be completely top-down: by distributing
global parameters of a given EBM to obtain local parameters of a related ABM. We
refer to our previous contribution [2] for this way. It can also be bottom-up, by ex-
tracting local parameters of a given ABM to obtain global parameters of inferred
EBM. Several studies seem to be related to this way can be found in ([6], [7]). In
these contributions, the authors tried to abstract ABMs by introducing mathematical
formalism [6] as well as moment approximations of ABMs [7].

In this paper, the novel issue we explore is closed to the “bottom-up” way. Based
on the case study, a dynamics of two competing species, we represent how to infer an
EBM from a given ABM. Unlike in the previous studies ([6], [7]), we extract local
parameters to obtain global ones. For instance, we show that an EBM can be built
from a given ABM by considering ABM as a virtual laboratory to test and to see ef-
fects of parameters. Once we observe the effects of parameters, we choose parameters
to build EBMs. We also show that the two models give the same results on coexis-
tence of the two competing species.

 Inferring Equation-Based Models from Agent-Based Models 415

The paper is organized as follows. In section 2, we present the case study -the dy-
namics of two competing species. The ABM implemented for the case study is pre-
sented in section 3. In section 4, we present our methodological steps to reach to EBM
from a given ABM. We then present in section 5 how we extract global parameters in
order to build an EBM. We present the EBM and its result in section 6, we also com-
parison result of the inferred EBM and the ABM. Section 7 is dedicated for conclu-
sion and perspectives.

2 Case Study: Competition Dynamics

We consider a system of two species competing for a common resource. We are inter-
ested in pre-emptive competition, i.e., one of the two species will end up extinction if
it has smaller number of individuals at the beginning. There are a lot of such complex
systems in the reality where two species coexist. The aim is to figure out under which
conditions two species coexist in the pre-emption dynamics.

In the next sections, we shall present two models which can explain the coexis-
tence of two species in pre-emption dynamics. To do that, we first present an ABM
for dynamics of two competing species. We then test the ABM to figure out parame-
ters and conditions under which two species coexist. We based on these results to
build an EBM which has provable result on coexistence of two competing species.

3 Agent-Based Model

In this section, we propose a description following the ODD protocol [8] of our ABM.

3.1 Overview

Purpose. The purpose of the model is to study the dynamic of two species when these
ones are in competition and when the total quantity of food existing in the environ-
ment is stable.

State variables and scales. In our model, each individual of each species is
represented as an “agent” that is located in a continuous environment. The food
patches are also modeled as agents.

Environment. We chose to model the environment as a 2D plane of a specific size
(300 × 300). The agents can not go out this environment.

Food patch agent (FPA). Each food patch is represented by an agent (FPA). A FPA
has for geometry a circle of which the area depends of the quantity of food contained
in the food patch. The attributes of FPAs are described in Table 1.

416 N.D. Nguyen et al.

Species individual agent (SIA). Each species individual is represented by an agent
(SIA) that has a point for geometry. The attributes of these agents are described in
Table 2.

Table 1. Attributes of the food patch agents

Attribute name Brief description Value
Location X and Y coordinates of the food patch (its

center)
Random

Food production quantity of food produced at each simulation
step (in the food patch)

30

Food current quantity of food contained in the food
patch (when null, the agent dies)

-

Max food maximal quantity of food in a food patch 100

Food area coefficient coefficient that links the food quantity to the
food patch area

5

Area area of the food patch -

Process Overview and Scheduling. At each simulation step, the SIAs act, then the
FPAs evolve. The evolution of the FPAs is very simple (Fig. 1): if there is no more
food in the food patch, the agent dies, otherwise, the quantity of food evolves accord-
ing to the food production attribute. Then the new area of the food patch is computed.
When a FPA dies, a new one is created (at a random location). This mechanism al-
lows to keep a stable quantity of food in the environment.

Fig. 1. Food patch agent evolution (at each simulation step)

Concerning the SIAs, their general behavior consists in trying to survive (Fig. 2).
They have the capacity to move, to eat and to reproduce. They gain energy by eating
food (in a food patch) and lose it, when fighting on a patch with member of the other
species. When a SIA finds a food patch, it remains in this one as long as the propor-
tion of agents of the same species is high enough. The choice of a new food patch is
done randomly between the food patch perceived by the agent.

 Inferring Equation-Based Models from Agent-Based Models 417

Table 2. Attributes of the species individual agents

Attribute name Brief description Value
Location X and Y coordinates of the agent -
Displacement range maximal distance of displacement

per step
100

Energy quantity of energy (when null, the
agent dies)

-

Max energy maximum quantity of energy 30

Energy consumption quantity of energy consumed at
each simulation step

2

Extra competition coefficient coefficient of energy lost per
simulation step due to competi-
tion with individuals of the other
species

10

Energy reproduction energy lost during the reproduc-
tion (the energy of the offspring
will be equal to the energy repro-
duction / number of offspring)

10

Reproduction probability probability that an individual
reproduces at each simulation step

0.01

Reproduction Time minimal number of steps between
two reproductions

20

Max offspring maximal number of offspring that
an individual can have when re-
producing

3

Max consumption maximal quantity of food that an
individual agent can eat at each
simulation step

4

Tolerance for other species proportion of individual agents of
other species from which the agent
is going to leave a food patch.
Defined the strategy of the agent

0.3

3.2 Design Concept

Emergence. In this model, the emergent aspect concerns the population dynamics
resulting from the interaction between the two species of SIAs and the FPAs; in par-
ticular the creation of groups of individual of the same species in a same food patch. It
is influenced by different parameters: the extra competition coefficient, the tolerance
for others, the food production, etc.

Fitness. Each individual does not have an explicit fitness function to optimise. How-
ever, the implicit fitness of a species concerns its survival. Thus the more agents of
this species, the higher the fitness for this species will be.

Adaptation. The adaptive trait of the SIAs comes from their capacity to not tolerate a
high proportion of agent of other species. This property allows them to avoid food
patches with too much competition.

418 N.D. Nguyen et al.

Fig. 2. Species individual agent behavior (at each simulation step)

Interaction. There are two kinds of interaction between agents: the interaction be-
tween the SIAs and the FPAs (the SIAs eat food contains in FPA) and the interaction
between SIAs of different species (competition and non tolerance to agents of other
species).

Sensing. The SIAs know the number of agents (of the same species and of other spe-
cies) that share the same food patch as them. They can detect food patches which
geometry overlaps their seeing range (displacement range).

Stochasticity. The stochasticity is involved in the repartition of the food patches in
the environment. It is also involved in the initial food contained in the food patches.
At last, it is involved in the choice of a food patch by the SIA: these ones randomly
choose a food patch among the perceived ones.

Collectives. SIAs of the same species sharing a same food patch formed an implicit
group. Higher the number of agents in this group, the stronger will be its defense
against SIAs from other species, but more quickly the food contained in the food
patch will be consumed.

 Inferring Equation-Based Models from Agent-Based Models 419

Observation. Various observations are available in this model from an omniscient
perspective. However, as we study the population dynamics, a first observation is the
evolution of the number of agents of the two species. The repartition of the species in
the different food patches is as well an interesting observation.

3.3 Details

Initialisation. At the initialisation, the FPAs and the SIAs are randomly placed in the
environment. The quantity of food in each food patch is randomly drawn between [1,
max food]. In the way the quantity of energy of each SIA is randomly drawn between
[1, max energy]. The initial number of SIAs of each species is 50. The number of
FPAs (which is constant) is equals to 10.

Simulation implementation. Since few years, many simulation platforms dedicated
to the implementation of agent-based models have been developed. We can cite as
examples GAMA [9], Mason [10], Repast [11], NetLogo [12]. In this work, we chose
to develop our simulation with the GAMA platform. This platform provides a com-
plete modeling and simulation environment for building spatially explicit multi-agent
simulations. In particular, it integrates powerful spatial analysis tools coming from
Geographic Information Systems (GIS) allowing to give agents a geometry and spa-
tial analysis capacities.

Test the model. Fig. 3 shows examples of results concerning the distribution of indi-
viduals at several simulation steps. This figure shows that at step 1, the individuals are
randomly located in the food patches; then at step 3, groups of individuals of the same
species are beginning to form; at last, at step 20, these groups are uniform (only com-
posed of individuals of the same species). Fig. 4 gives the simulation results obtained
for the population evolution during the first 20 steps. In order to build this graphic, we
carried out 30 simulations and we computed the means. The goal was to limit the
stochastic bias of the model. First, one can observe that the two populations similarly
evolve. The population is stable during the first three steps, and then it decreases until
reaching an equilibrium point.

Remarks. We pay our attention on the key result concerning to the parameter "toler-
ance for other species". Actually, this parameter, which defines the strategy used by
the SIs to survive, has a deep impact on the generation of SIs aggressive/defensive
groups. When the value of this parameter is high enough we can observe the forma-
tion of groups composed of SIs of the same species.

These groups can allow to the IC to survive by combining their strength. The IC individ-
uals tend to form big groups that "invade" patches without SC individuals. The parameter
"tolerance for other species" of the IC individual equals to 0.3, IC individuals are likely to
distribute on food patches where there are few SC individuals.

420 N.D. Nguyen et al.

a)

b)

c)

Fig. 3. Distribution of individuals in several simulation steps. In red, Species A, in yellow Spe-
cies B. a) at step 1 b) at step 3, c) at step 20.

 Inferring Equation-Based Models from Agent-Based Models 421

Fig. 4. Evolution of the number of individuals of each species (mean of 30 simulations)

4 Methodology

EBMs are compartment models which operate on global laws generally, defined by
the equations that apply to all members of the compartments. In such models, the
individuals are assumed to be homogenous and well mixed: they are all treated as
identical. Moreover, EBMs do not have “real” environment which allows individuals
eat, move, reproduce and interact with others individuals. Therefore, our methodology
basically is to abstract/simplify local parameters and to translate them into equations
of compartments.

4.1 First Step: Simplification and Abstraction Environment and Translate It
into Equations

The first step of our methodology is to simplify the environment, i.e. to get rid of
many local properties of the environment such as its topology, its dynamics, its nature
and so on. Several questions are raised in this step:

- the homogeneity of the environment
- its discretization, i.e. patchy environment

- the perception it can offer to species (for instance, are there any refuge for spe-
cies?) and so on

4.2 Second Step: Analysis and Abstract Local Behaviors of Agents and
Translate Them into Equations

The second step is to analyze, one by one, the local behaviors of the agents. We then
abstract and translate them into global parameters in equations. Each of these

422 N.D. Nguyen et al.

“abstractions” is tested and validated with respect to the results obtained with the
simulations of the IBM.

Each step consists in:

- Building several models related to the global parameters we choose
- Exploring their dynamics and “validate” each of them with respect to the

IBM simulation results
- Choosing the most relevant value of the parameters

5 Instantiation on the Case Study

In this section, we show how global parameters can be extracted from the local para-
meters of the IBM. An EBM consists of compartments which are usually chosen as
population densities in ecology systems. We, therefore, consider compartments in our
EBM as population densities. Others factors and parameters have effects on these
parameters. These effects, of course, are represented by parameters in an evolution
function of the compartment-population densities. We now investigate, by using the
methodology presented above, how to represent these factors and parameters and such
an evolution function in our EBM.

5.1 Simplification and Abstraction Environment and Translate It into
Equations

The first factor is environment. The environment in the IBM is very complex. It,
however, should be simple in our EBM. According to the above remarks, we consider
the environment in our EBM as a simplest case of patchy environment, i.e. two
patches environment. This leads to the fact that there are four compartments of the
two species in two patches: species 1 (species 2, respectively) on patch 1, species 1
(species 2, respectively) on patch 2.

5.2 Analysis and Abstraction Local Behaviors of Individuals and Translate
Them into Equations

Reproduction probability. This factor represents the probability that an individual
reproduces after a certain number of simulation steps. It means that the population
densities increase when values of this factor increases. The corresponding global pa-
rameter is growth rate which has positive effect on evolution of population densities.

Competition parameters. In the IBM, there are two kinds of competition: the intra-
competition which represents the competition among individuals of the same species,
and the extra-competition which represents the competition among individuals of

 Inferring Equation-Based Models from Agent-Based Models 423

different species. To represent this factor in EBM, the classic Lotka-Volterra competi-
tion model \cite{M89} seems to be a good candidate. We note that, in the IBM,, indi-
viduals compete with others for food. The competition, therefore, takes place on the
patches.

Following this analysis, we propose therefore to use the classic Lotka-Volterra com-
petition model to represent the evolution of population densities on both patches.

Movement/migration. Another important factor is the movement of individuals. In
the IBM, SC individuals move randomly in the environment to search for food
patches. It is, therefore, assumed that SC always stay on some food patches. IC indi-
viduals have two kinds of movement: the first one is a random move and the second
one is a SC density dependent move, i.e. the IC individuals are more likely to move to
patches where there are few SC individuals. These tactics of movement, on the fast
time scale, lead to the distribution of IC on the patches ([2], [4]). Being in mind that
we do not have a real environment in our EBM. Therefore, we represent the number
of immigrations and emigrations on each patch by using a function of density, i.e. a
migration function. This function must increase when the other species population
density increase. To simplify, we choose a homogenous linear function of population
density, i.e. a straight line.

Time scales. The important point is that in the IBM, all the agent behaviors are not
triggered every simulation step. Indeed, while the agents move at each step, they re-
produce and interact only at specific simulation steps. Local dynamics (reproduction,
interaction), therefore, seems to act on slow time scale than movement process. We
represent the two time scale, in our EBM, by using small parameter ε which is the
ratio between two time scales.

In the next section, we use these global parameters to build our EBM. We also analy-
sis the EBM and compare its results with the results of the ABM.

6 Equation-Based Model

6.1 Complete Model

We consider two competing species in two patch environment. Based on the above
remarks, we further assume that two time scales are involved in the dynamics: a fast
one corresponds to dispersal between patches and a slow for local population dynam-
ics. According to these assumptions, the complete model reads as follows:

424 N.D. Nguyen et al.

() ()()

() ()()

() ()()

() ()()

11
1 21 11 2 22 12

11 21
11 11 121

11 11

12
1 21 11 2 22 12

12 22
12 12 122

12 12

21
1 11 21 2 12 22

21 11
21 21 211

21 21

22
1 11 21 2 12 22

1

1

1

dn
n n n n

d

n n
r n a

K K

dn
n n n n

d

n n
r n a

K K

dn
n n n n

d

n n
r n a

K K

dn
n n n n

d

α α
τ

ε

α α
τ

ε

β β
τ

ε

β β
τ

ε

= − +

+ − −

= −

+ − −

= − +

+ − −

= − +

+ 22 12
22 22 212

22 22

1
n n

r n a
K K

− −

 (1)

where 1 jn is the density of species A living on patch j , 2 jn is the density of species

B living on patch j 1,2.j = . 'r s and 'K s represent the growth rates and carrying
capacities of species. Parameters 12 ja and 21 ja represent the competition coefficients

showing the negative effect of species A on species B and species B on species A on
patch , 1, 2j j = , respectively. jα is the dispersal rate of the species A leaving patch

, 1,2j j = , and jβ is the dispersal rate of the species B leaving patch , 1,2j j = . ε is

the ratio between two time scales. The term with ε corresponds to the slow time
scale-birth death and competition processes; and the term without ε corresponds to
the fast time scale-migration process. In this model, individuals of a given species use
the other species density-dependent migration in the sense that if there are many indi-
viduals of a given species on a given patch then individuals of the other species are
more likely to leave that patch rapidly. We note that we are interested in pre-emptive
competition locally on each patch and the conditions ensure for this case are given by

12 2 1 21 1 2/ 1, / 1, 1, 2.j j j j j ja K K a K K j> > = (2)

We are going to use aggregation of variables methods in order to derive a reduced
model [4]. The first step is to look for the existence of a stable and fast equilibrium.

6.2 Fast Equilibrium

Fast equilibrium is the solution of the following system:

 Inferring Equation-Based Models from Agent-Based Models 425

()()1 11 21 2 1 11 2 21 ,n n n n n nα α= − − ()()1 11 21 2 1 11 2 21 ,n n n n n nβ β= − −

1 11 12 2 21 22,n n n n n n= + = +

(3)

It is easy to obtain that there are two stable and fast equilibria as follows:

6.3 Aggregated Model

Substitution of the fast equilibria into the complete model (1) leads to two reduced
models as follows:

Model 1 is the model which corresponds to the equilibrium
* * * *

11 1 12 21 22 2, 0; 0,n n n n n n= = = = .

1 1
11 1

11

2 2
22 2

22

1

1

dn n
r n

dt K

dn n
r n

dt K

= −

 = −

(5)

Model 2 is the model which corresponds to the equilibrium

* * * *
11 12 1 21 2 220, ; , 0n n n n n n= = = = .

1 1
12 1

12

2 2
21 2

21

1

1

dn n
r n

dt K

dn n
r n

dt K

= −

 = −

(6)

The two aggregated models are two logistic models for two species on two patches.
Model 1 corresponds to the case when all individuals of species A are located on
patch 1 while all individuals of species B are located on patch 2 and Model 2 corres-
ponds vice versa. This means that two species coexist globally in the patchy environ-
ment and each species has its own living patch. One can see that this result is exactly
the same as the result in the ABM. Fig. 5 shows the case of model 2 when all individ-
uals of species B are located on patch 1 while all individuals of species A are located
on patch 2.

* * * *
11 1 12 21 22 2, 0; 0,n n n n n n= = = =

and * * * *
11 12 1 21 2 220, ; , 0n n n n n n= = = = (4)

426 N.D. Nguyen et al.

Fig. 5. Two species coexist on two patches in model 2

7 Conclusion and Perspectives

In this paper, we proposed a methodology to infer an EBM from a given ABM. This
methodology was illustrated through a case study concerning the competition of two
species. Our idea is to consider as a virtual laboratory to test and to see effects of
parameters and then to choose parameters to build the EBM. We also showed that the
coexistence result of the obtained EBM is the same as that of the ABM. We conclude
that these two techniques do not compete with each other: they instead tend to be
ideally complementary with respect to the set of questions a modeler would want a
model to answer. In this paper, we consider a simple case study of only two compet-
ing species. It would be interesting to consider more complex case studies of more
than two competing species. It would be also interesting to couple these two types of
model in modeling others ecological complex systems such as prey-predator systems,
host-parasitoid systems and especially in epidemiology systems where it is impossible
for one to test in order to get empirical observations and thus it is useful to use ABMs
as a virtual laboratory. We would like to present these contributions in the near future.

References

1. Fahse, L., Wissel, C., Grimm, V.: Reconciling classical and individual-based aprroahes in
theoretical population ecology: a protocol for extracting population parameters from indi-
vidual-based models. American Naturalist 152, 838–852 (1998)

2. Nguyen, N.D., Drogoul, A., Auger, P.: Methodological Steps and Issues When Deriving
Individual Based-Models from Equation-Based Models: A Case Study in Population Dy-
namics. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357,
pp. 295–306. Springer, Heidelberg (2008)

 Inferring Equation-Based Models from Agent-Based Models 427

3. Murray, J.D.: Mathematical Biology. Springer, Heidelberg (1989)
4. Auger, P., Bravo de la Parra, R., Poggiale, J.C., Sánchez, E., Nguyen Huu, T.: Aggregation

of variables and applications to population dynamics. In: Magal, P., Ruan, S. (eds.) Struc-
tured Population Models in Biology and Epidemiology, Springer, Heidelberg (2008)

5. Grimm, V., Railsback, S.F.: Individual-based Modeling and Ecology. Princeton University
Press (2005)

6. Laubenbacher, R., Jarrah, A.S., Mortveit, H., Ravi, S.S.: A mathematical formalism for
agent-based modeling, arXiv:08.01.0249v1 [cs. MA] (2007); Fahse, L., Wissel, C.,
Grimm, V.: Reconciling classical and individual-based aprroahes in theoretical population
ecology: a protocol for extracting population parameters from individual-based models.
American Naturalist 152, 838–852 (1998)

7. Law, R., Dieckmann, U.: Moment approximations of individual-based models (1999),
http://www.iiasa.ac.at/Admin/PUB/Documents/IR-99-043.pdf

8. Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J.,
Grand, T., Heinz, S.K., Huse, G., Huth, A., Jepsen, J.U., Jørgensen, C., Mooij, W.M.,
Müller, B., Pe’er, G., Piou, C., Railsback, S.F., Robbins, A.M., Robbins, M.M., Rossma-
nith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R.A., Vabo, R., Visser, U., DeAngelis,
D.L.: A standard protocol for describing individual-based and agent-based models. Eco-
logical Modelling 198(1-2), 115–126 (2006)

9. Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: An Environment for Im-
plementing and Running Spatially Explicit Multi-Agent Simulations. In: Ghose, A., Go-
vernatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS, vol. 5044, pp. 359–371. Springer,
Heidelberg (2009)

10. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multiagent si-
mulation environment. Simulation 81, 517–527 (2005)

11. North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the
Repast Agent Modeling Toolkit. ACM Transactions on Modeling and Computer Simula-
tion 16(1), 1–25 (2006)

12. Tisue, S., Wilensky. U.: NetLogo: A Simple Environment for Modeling Complexity. In:
ICCS (2004)

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 428–442, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards a Methodology for the Participatory Design
of Agent-Based Models

Thanh-Quang Chu1,2, Alexis Drogoul1,2, Alain Boucher1, and Jean-Daniel Zucker1,2

1 IFI, Equipe MSI; IRD, UMI 209 UMMISCO
Institut de la Francophonie pour l'Informatique, 42 Ta Quang Buu, Hanoi, Vietnam

Vietnam National University, Hanoi, Vietnam
2 IRD, UMI 209 UMMISCO

Institut de Recherche pour le Developpement, 32, av Henri Varagnat,
93143, Bondy Cedex, France

{thanh.quang,alexis.drogoul,alainboucher12,jdzucker}@gmail.com

Abstract. Developing models that effectively model human behavior and
activities in social phenomena requires a tight collaboration between designers,
experts and end-users. This paper presents an approach based on participatory
design to find the most effective ways to succeed in this endeavor. Building up
from a case study in emergency management, we identify three key design
activities that have proven essential to be articulated so that users knowledge is
elicited with ease and efficiency. The first is the design of the user-interface, the
second the design of scenarios and the third the design of the experimental
protocol. These activities pave the way for a first step towards a complete
methodology.

Keywords: Participatory design, Agent-based simulation, Role-playing games,
Emergency management.

1 Introduction

The participatory design (known before as Cooperative Design) attempts to actively
involve all stakeholders (e.g. designers, developers, experts, end-users, etc.) in the
design process to help ensure that the product designed meets their needs and is
usable. The methodological solution, called Cooperative Prototyping, proposed by
Grønbæk [9,10,11,12], aims at involving users in design and evaluation of early
prototypes of information systems. This approach proposes solutions to two problems:
on one hand, how to motivate the users to “play the game” of being in a work
situation with a preliminary prototype of a future computer application; on the other
hand, the necessity to make users understand that the prototype they are playing with
is changeable and far from being a complete application, which means they can make
proposals [9].

By applying participatory design for social simulations, which aim at modeling and
understanding social phenomena or resolution of society for a given problem, we have
the participatory social simulations (PSSs). The stakeholders are involved in

 Towards a Methodology for the Participatory Design of Agent-Based Models 429

designing PSSs from the earliest stage [21] to validate and improve the modeled
behavior in order to these systems are more realistic in simulating the resolution of
society for that problem [2,3,7,8].

Fig. 1. The interactive diagram of the design process for PSSs: this process consists in
designing the simulation, conducting the experiments, organizing debriefing sessions and
analyzing the result [2]

Our research presents the participatory design process of a complete PSS. In fact,
the users are involved to play the role of agents in a simulation (based on a prototype
model) and help these agents in making decisions in given situations. The sequence of
work situations will allow the participants to navigate from one situation to another in
order that they participate actively in games. Because, the PSSs make participants
understand better the model and can take part in solving problem, so the modelers (i.e.
designers) can build more realistic model and improve the efficiency of model in
solving the problem base on the elicited individual/collective behavior of participants.

This paper mainly addresses the question of the necessary components for
effectively involving the users into agent-based simulations and eliciting their
knowledge. We claim that at least three tasks need to be carefully undertaken: (a)
The design of a flexible and ergonomic user-interface that would allow for real-time
interactions between the participants and agents in the simulator; (b) The design of
well-thought scenarios based on realistic conditions and corresponding to specific
tasks and objectives; and (c) The design of an experimental protocol composed of
sessions organized around a set of support scenarios, and ways to evaluate the quality
of the user’s participation.

430 T.-Q. Chu et al.

In fact, the use of an ergonomic user-interface (a), with simple scenarios (b), for
demonstration sessions (c) can help users to better understand the decision-making
process of agents as well as the objective of the agents in the scenarios. Thus, the
users can learn how to play the role of the agents and how to control them in games to
reach their objectives. Afterward, the design of an interactive user-interface (a) has
the duty to help users in easily controlling the agents and that of realistic scenarios (b)
to help them to be at ease when applying their own real-life experience into the
games. The training sessions (c) aim at improving the quality of the users’ decision-
making in playing games. Furthermore, the diversity, richness and interestingness of
challenges supported by various scenarios (b) are conditions to stimulate the curiosity,
motivate the problem solving and maintain the concentration of users during the
games. Consequently, the three components above (interface design, scenarios design
and experimental protocol) are necessary to make the users’ trace richer (because it is
collected in as many situations as possible), more reliable (because the players
understand the decision-making processes of agents and use their experience in
solving problems that appear similar to “real” problems and furthermore can maintain
their motivation and concentration when playing games), and ready to be analyzed in
the process of elicitation. To illustrate this claim, we apply and analyze these different
components in a specific context of emergency management, which is presented in
the following section.

2 Case-Study: A Model of Emergency Management

Urban emergency management is the organization of resources and responsibilities
for dealing with many aspects of emergencies occurring in cities (e.g. search and
rescue of injured persons, extinguish of fires, allow traffic through, etc). A large-scale
emergency (like after an earthquake) is usually divided into different decision levels
(e.g. city level, district level and ward level), in order to manage resources more
effectively. In the model we will be using in this paper [17], each decision level is
undertaken by a specific species of agents (i.e. a set of agents sharing the same
objectives and decision models).

The center takes care of all the aspects of emergency at the city level; his task is to
allocate the rescue agencies (e.g. police offices, hospitals and fire stations) to districts
known as damaged. In turn, each of these agents undertakes a specific responsibility
(e.g. hospitals take care of injured persons, police offices look after blocked road, fire
stations take care of fires) at the district level; the goal of these agents is to distribute
their rescue agents (e.g. ambulances, polices, firefighters) to smaller areas (i.e. wards)
in that district. And, finally, the rescue agents undertake their specific mission at this
level, by choosing an appropriate action or target at a given moment. To coordinate
all these types of agents, an important part of the model deals with the description of
their collective behavior: interaction and communication protocols between agents are
especially detailed, as they allow them to avoid conflicts or increase their efficiency
in achieving a common goal. This interaction is realized by the exchange of messages
via simulated communication channels.

 Towards a Methodology for the Participatory Design of Agent-Based Models 431

Our goal in using participatory design for this model has been to improve the
realism of the behaviors by allowing users (often experts of emergency management)
to play a role in the simulation, change the decision-making or communication of
agents, and designing the agents in such a way that they can “learn” from the user’s
decision and change their individual or collective behavior accordingly (in the
previous work [17], we addressed this issue by proposing an interactive learning
algorithm, which gradually refines the weights of criteria from user’s decision and
combines them into an additive utility function for agents). The following sections
will both report on our achievements so far and on the lessons we can draw from them
from only a methodological point of view.

3 Designing User-Interface

For facilitating the observation and control of players in games, the interface should
adapt, as much as possible, to the rhythm and needs of the users: providing them with
the possibility to change the speed of the simulation, to zoom in and out on the
situations, to change the colors and shapes of the information displayed, to focus on
specific entities, to hide or reveal any pieces of information, to come back in time, etc.
appears to be a cognitive (and not simply cosmetic) necessity for them to get
familiarized with the tools and to grab all the information needed to take appropriate
decisions. In the case of our application, responding to all the requirements above has
consisted in defining six main views:

Fig. 2. Different views in user-interface of emergency simulation

The parameter view allows users to try different scenarios by changing the value of
various input parameters.

432 T.-Q. Chu et al.

The chart view shows the result of the simulations and provides an evaluation of
the choices made by the users in terms of their “efficiency” (e.g. number of victims
dead, number of victims saved, total time to finish extinguishing all fires, etc.).

The display view visualizes the simulation, in a GIS environment, at any scale.
This view allows the users to zoom in to obtain detailed information, zoom out to
have a more general context, as well as focus on the context of the users’ agent by
highlighting its location on the map, coloring its current route, direction and target. In
this view, users are also able to control the agents.

Fig. 3. Display view allows user to observe and control agents

The dialog view allows the user to enter in a dialog with an agent, and to emit a
suggestion regarding these alternatives. This view displays the decision and reasoning
of the agent and allows the user to express and explain its decisions.

Fig. 4. View of dialog between an ambulance and user

The agent view shows the detail of the agents context such as the list of their
attributes, messages received from other agents, the alternatives available (in terms,
actions, targets and decisions), and the messages sent to other agents.

 Towards a Methodology for the Participatory Design of Agent-Based Models 433

Finally, the interaction view shows the coordination occurring between the agents,
and allows the users to add or modify the messages they are exchanging.

Fig. 5. Interaction view of emergency model

We can see that users have to input reasons for their intervention in dialog view (or
formulate the attributes of messages in interaction view). The reasons could be
simples or very complex, it depends on the situation. So, how users input their
reasons in order that agents can understand these arguments? We use the modeling
language of GAMA [20] (the agent-based modeling and simulation platform that we
use to build our emergency model), called GAML to train users before the
experiments. For example in figure 4, the string “min(self distance_to other_victims)”
is the representation of criteria “nearest distance from this victim to other victims”
that user want to enter for explaining his change. Although users are familiar with
GAML, they cannot express easily their arguments in many cases, thus, the interface
design must allow users an open way to describe these arguments in natural language
or ignore this work. The more information provided by users makes easier the
elicitation of user’s behavior. But, the users’ motivation will be loosen if they must do
usually hard works.

This interface design provides users with a good condition to play in a simulation,
and therefore, provides modelers with good conditions to realize experiments.
However, a well-designed interface is not enough to effectively involve users. As we
will see in the following section, on also has to pay attention to the design of the
experimental protocol, to the organization of the sessions, to the design of scenarios
and the evaluation of the users’ participation.

434 T.-Q. Chu et al.

4 Experimental Protocol

4.1 Organization Sessions

The experiments need to take place in real-time. Since we cannot, of course, ask a
user or expert to play his/her role during 12 or 24 hours (like in reality), the playing
sessions are cut into time-bounded, incremental episodes with their own goal and
tasks. Each of these “episode” is structured in the following way: the task to be
fulfilled by the agents and the timeframe within which they can accomplish its (for
instance, save a maximum of victims in the minimum of time, save the most critical
victims and communicate about the others, etc.) is communicated to the user and we
make sure it is perfectly understood. Some episodes will of course share the same
task.

For each task, a sequence of scenarios is then chosen, ranging from simple ones to
more complex ones. Each scenario serves as a support for an “episode” of the session,
and its results (in terms of agent’s behavior after elicitation) reused for the next
episode in the sequence. The behaviors susceptible to be learnt during an episode
depend on the complexity provided by the scenario. For instance, in basic scenarios,
agents may simply learn how to improve their moves with respect to the location of
victims, fires, etc., while, in more advanced ones, they might take communication
skills into account (for instance, improve their coordination with the others).

4.2 Designing Scenarios

There are many ways into which short-term focused scenarios could have been
designed. We needed a method that would allow for the playing sessions to act as
different “layers” of increasing complexity, each of them focusing on the learning of
its own set of behaviors and using the previous ones as starting points.

As the behaviors use criteria, which represent bits of information perceived,
collected or received by the agents, we chose to base the progression of the scenarios
on that of the “informational context” that the agents (and therefore, the user) are
facing. For instance, for a task like “locating and carrying a maximum of victims”, in
a situation where only one ambulance and one hospital are being simulated (see Fig.
6), the decision of the agent will be based on a subset of the criteria used in a situation
where several ambulances (or hospitals, or both) are present. And the criteria used in
the latter situation will be themselves a subset of those necessary to take into account
if all these agents are communicating or coordinating themselves.

Of course, the scenarios space can grow as needed to account for other agents
(firemen, civilians, victims themselves, etc.) or criteria (communication of orders,
change in priorities, etc.). But we have to keep in mind that (1) not all of them are
realistic; (2) no expert will be able to play them all.

The path they follow, in their session, from one episode to the other, is different
from one expert to the other, and decided after each run through an interview with the
modelers and an evaluation of their interactions with the agents.

 Towards a Methodology for the Participatory Design of Agent-Based Models 435

Fig. 6. The description of multiple scenarios as informational contexts of increasing
complexity: In the bottom-left corner, the context only implies one ambulance and one hospital;
in the top-right corner, n* indicates n agents able to communicate, which represents the most
complex situation agents can face if we only take hospitals and ambulances into account

4.3 Designing Questionnaires and Evaluation

The results of participatory design depend on both the quality of the interactions
between users and agents, and the effectiveness of the automated elicitation process.
A complete evaluation then requires that we firstly evaluate the methodology (which
produces what we can call “users’ traces”) and secondly the elicitation process (which
aims at extracting knowledge from these traces to improve the model).

The first evaluation is based on a formalized dialog between modelers and users.
Like in [1] and [16], modelers use the answer of participants to a predefined
questionnaire that is designed to validate the quality of the interface (e.g.
understandability, adaptation to context, etc.) as well as the quality of the scenario
design (e.g. understandability, link to reality, progression, etc.). The two
questionnaires we have used in our work are presented below:

1. Questionnaire to validate user-interface

• Do you understand the aim of the different views?
• Do you understand the game for the first time of playing?
• Do you understand the reasoning of the agents when they make a decision?
• Can you find easily the necessary information to understand the decision-

making of agent?
• Is the information organized in a logic way, and does it facilitate your

understanding?

436 T.-Q. Chu et al.

• Is the information updated in real-time?
• Do you find that it easy to control an agent and to change its decision?
• Is it easy to find the reason why an agent does not accept your change?
• Can you easily input your arguments or explanations in order for an agent

to accept your change?

2. Questionnaire to validate scenarios

• Have you understood the scenario before playing in the simulation (which
agent is controlled, its objective, the evaluation measure, the context, the
alternatives, the criteria, the messages)?

• Do you feel that the proposed problems are similar with the problems in
real-life?

• Are the concepts in rules and guideline of games familiar with your
experience?

• Do you think that the scenario proposed is similar to problems you might
encounter in your profession?

• Can you find something unrealistic, illogical and incoherent in the
scenario?

• Do you think that most of situations that you meet in the real-life are
already proposed in the games?

• Can you propose another scenario in order for the agents to use other
criteria to improve their behaviors?

• Do you understand the link between the scenarios in the sequence?
• Do you think that the sequence of scenarios is rich and diverse enough to

build a reliable behavior (and therefore, a reliable emergency model)?
• Do you think that the progression of scenarios is understandable and logic?

While this evaluation is mainly qualitative, the evaluation of the elicitation process

can be done quantitatively. We can in fact measure any improvement by comparing
the differences of the simulation outputs before and after the modification of a model.
These outputs represent the efficiency of the model in solving the emergency problem
(e.g. time to take all victims to the hospitals, time to extinguish all fires). If the latter
output is better than the previous one, then the emergency model is said to have
improved (i.e. the user’s is considered as positive); in the reverse case, the user’s
participation is viewed as negative.

Each modification of a model can improve its efficiency in some scenarios but
decrease it in others. A good modification is one that improves it in as many scenarios
as possible. To evaluate the participants, we use a measure called achievement, which
is the average of the improvements he/she has made possible in the different scenarios
he/she has played in. The achievement is a kind of “competition factor” between
users: a high achievement means that the user played many scenarios and improved
the model. To increase his achievement, a user has to concentrate and use all his
experience in the simulation, thus improving the confidence in the quality of the
behavior extracted from his participation.

 Towards a Methodology for the Participatory Design of Agent-Based Models 437

5 Experiments

The first experiment involved master students of the IFI, (promotion 15), who played
the role of non-expert users. The objective of this experiment was mainly to test the
interface, eliminate its bugs, verify if the scenarios were understandable and logic.
This experiment took a half-day in the classroom; each student had a laptop to run
separately the simulation. All the students followed the same progression of scenarios.
We conducted several experimental sessions (5 or 8 sessions in the half-day).
Between two consecutive sessions, the participants and the modelers held a general
discussion during 5 minutes on the interface and manipulation of the simulator.
Finally, a debriefing session of 30 minutes was done at the end of the half-day to
gather the feedbacks and ideas of the students.

The second experiment involved researchers and PhD students of the MSI research
team, more aware of simulations and emergency management, and then more keen to
play the role of “experts”. The objective of this experiment was not only to test the
user-interface and the realism of the scenarios but also to modify the model according
to the analysis of the “traces” and to measure the improvements provided by the users.
Each researcher used a separate computer to run the simulation but they all followed
the same progression in scenarios. Each of them was asked to do from 9 to 12
sessions. After each session, they were asked to answer to the questionnaires while
their trace was being analyzed and used to modify the model. Each time the model
was modified, the same simulation was run again to quantify the improvement
provided by the user.

In these two experiments, we only used a subset of scenarios in which the objective
of the users is to improve the individual behavior (i.e. the human rescue mission) of
ambulances in the simulation (see table 1). Thus, the “number of casualties” was the
main measure to evaluate the efficiency of ambulances (and therefore, the users).

Table 1. Parameters of experimented scenarios

Scenario
Parameters

Hospital
number

Ambulance
number

Victim
number

Ambulance
capacity

1 1 1 6 1
2 1 1 8 2
3 1 1 18 3
4 2 2 33 3

Because it can be difficult for a user to formulate a new criterion to use in the

decision-making of ambulances, we fixed a number of behaviors for the ambulance
agents (for instance, they automatically chose the type of their target -- hospital or
victim by a decision tree like in figure 7). For the set of criteria that ambulance must
take into account to make a choice between different potential targets of the same
type (for instance, different victims), we defined and explained in details to the users
a set of five criteria before the experiment (see table 2). The task of the users during

438 T.-Q. Chu et al.

an experiment consisted, then, in choosing a victim as a “good” target for an agent,
and in explaining his/her choice by picking up the criteria that seemed the most
appropriate to the context.

Fig. 7. Decision tree allows ambulances to choose automatically their target types (hospital or
victim)

Table 2. Criteria used by ambulances for choosing victims

Criteria Description
Distance Distance from the ambulance to this victim
Gravity Gravity of this victim
Distance to nearest victim Distance from this victim to the nearest other victims
Near victim number Number of other victims which are near this victim
Distance to nearest ambulance Distance from this victim to the nearest other ambulance

The improvement made by users in a rescue scenario was measured by the

reduction of the “number of casualties”. His/her achievement was the total of his
improvements in the four scenarios. Given that the scenarios are deterministic and
known in advance to the modeler, the table 3 presents the highest achievement that a
user could attain during the sessions.

 Towards a Methodology for the Participatory Design of Agent-Based Models 439

Table 3. Parameters of experimented scenarios

Scenario Original Model Modified Model Improvement

1
Criteria Distance Distance, Gravity Gravity
Dead 2 0 2

2
Criteria Distance, Gravity Distance, Gravity, Distance

to nearest victim
Distance to
nearest victim

Dead 2 1 1

3

Criteria Distance, Gravity,
Distance to nearest victim

Distance, Gravity, Distance
to nearest victim, Near
victim number

Near victim
number

Dead 7 4 3

4

Criteria Distance, Gravity,
Distance to nearest victim,
Near victim number

Distance, Gravity, Distance
to nearest victim, Near
victim number, Distance to
nearest ambulance

Distance to
nearest
ambulance

Dead 2 0 2
Total Improvement 8

6 Results

The two experiments involved 27 participants; 16 participants showed no
improvement at all, meaning that they did not understand or did not fully participate.
We call them “uninterested” participants. Among the remaining 11, all reached the
maximal improvement in the first scenario. But, no participant reached the optimal
result for all four scenarios (see Table 4).

Table 4. Improvement of 27 participants for 4 scenarios

Improvement Number of users
0 16/27
2 4/27
3 1/27
4 2/27
5 2/27
6 1/27
7 1/27
8 0/27

Of course, these quantitative-only results are not really significant when it comes

to evaluate the methodology. So we also conducted a qualitative analysis of the users’
answers to the questionnaires, and we found some arguments to explain these results.
In most cases, users did not find the display of information to be clear (e.g. the
choices of ambulances were neither highlighted nor grouped, the real-time update of
the agents states was not displayed in all views, the situation of agents was described

440 T.-Q. Chu et al.

as too complex to analyze when it had a lot of choices and each choice a lot of
variables), and so had difficulties to follow the reasoning of the agents; moreover, the
control of the agent was not smooth enough and required many steps from the user.
These reasons were all cited by the part (16/27) of participants who did not reach any
achievement, which probably means that, in participatory design, the design of a good
and ergonomic user experience is a necessary task.

The answers provided by the “concerned” participants, however, showed that the
scenarios are understandable and realistic, that the concepts used in scenarios are
familiar to almost all of them, and that the progression between scenarios was
perceived as logic and continuous. Most of them could understand the decision-
making of the agents and the goal of the scenarios without difficulty. But, the
scenarios themselves were far from the reality and not enough rich and diver (i.e. too
few and simple) to build a confident behavior of ambulance.

7 Conclusions and Perspectives

We have presented a methodology for participatory design of agent-based models,
which is based on tree main points: the user-interface design, the scenario design and
the experimental protocol. By analyzing the results obtained from experiments with
participants, we have shown the importance of these tree points: (1) if the user-
interface is not well designed, the participants are not interested in playing simulation.
So, the user-interface is necessarily enough ergonomic and interactive to make users
participate actively into simulation; (2) The scenarios must be understandable,
realistic, rich, diver and continuous in order users interest in playing games and do not
loose by following up the objective of scenarios; and (3) the experimental protocol
makes users be responsible in improving the simulation model by answering to the
questionnaires and increasing the efficiency of models. To continue towards a
complete methodology for participatory design of agent-based models, we give out
following propositions:

For involving more effectively users into participatory experiments, we have to
build up really a simulation like computer and video games. Because, the computer
and video games are fun, engaging to provoke the reactions and the concentration of
users in playing games thanks to: the high level of reality in simulating virtual world;
the high level of interaction between users and simulation; the interesting storyline in
accompanying players around challenges, which are organized in a logical way.

Therefore, the user-interface of simulation should be designed like computer and
video games to put users into situations and allow them doing as in real-life. Besides,
the sequence of scenarios should be enchained like a storyline of video games to
accompany users from easy challenges to complex ones. These things allow to users
maintaining their motivation in solving the missions in games, and makes users
overcome the difficulties with all their effort, competence and experience. So, the
decision of users in playing simulation becomes more confident.

Moreover, we should provide users with free feeling in participatory experiments
like playing video games by a flexible schedule to play simulation as well as flexible

 Towards a Methodology for the Participatory Design of Agent-Based Models 441

choice to answer the questionnaire (e.g. the users can save their results to continue in
other time). The questions of interview have to focus on the details such as a button of
interface, a specific agent of simulation, that will allow users answer easily and
quickly the questions. In addition, these questions could be yes/no or open discussion
but give to users the ideas less or more concrete in evaluating the simulator,
expressing easily their ideas and suggestions to improve as much as possible the
simulator.

References

1. Nguyen-Duc, M., Drogoul, A.: Using computational agents to design participatory social
simulations. Journal of Artificial Societies and Social Simulation 10(4), 5 (2007),
http://jasss.soc.surrey.ac.uk/10/4/5.html

2. Guyot, P., Honiden, S.: Agent-based participatory simulations: Merging multi-agent
systems and role-playing games. Journal of Artificial Societies and Social Simulation 9(4)
(2006), http://jasss.soc.surrey.ac.uk/9/4/8.html

3. Guyot, P., Drogoul, A., Lemaitre, C.: Using emergence in participatory simulations to
design multi-agent systems. In: Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-2005), New York, USA, pp.
199–203 (2005)

4. Ishida, T.: Society-Centered Design for Socially Embedded Multiagent Systems. In:
Klusch, M., Ossowski, S., Kashyap, V., Unland, R. (eds.) CIA 2004. LNCS (LNAI),
vol. 3191, pp. 16–29. Springer, Heidelberg (2004)

5. Ishida, T., Nakajima, Y., Murakami, Y., Nakanishi, H.: Augmented experiment:
Participatory design empowered by multiagent simulation. In: IJCAI-2007 (2007)

6. Murakami, Y., Ishida, T., Kawasoe, T., Hishiyama, R.: Scenario description for multi-
agent simulation. In: AAMAS-2003, Melbourne, Australia (2003)

7. Guyot, P., Drogoul, A.: Multi-Agent Based Participatory Simulations on Various Scales.
In: Ishida, T., Gasser, L., Nakashima, H. (eds.) MMAS 2005. LNCS (LNAI), vol. 3446,
pp. 149–160. Springer, Heidelberg (2005)

8. Guyot, P., Drogoul, A., Honiden, S.: Power and vegotiation: lessons from agent-based
participatory simulations. In: AAMAS-2006, pp. 27–33 (2006)

9. Bødker, S., Grønbæk, K.: Cooperative prototyping studies - users and designers envision a
dental case record system. In: Studies in Computer Supported Cooperative Work: Theory,
Practice and Design. Elsevier Science Publishers/North Holland, Amsterdam (1991)

10. Bødker, S., Grønbæk, K.: Cooperative prototyping: users and designers in mutual activity.
International Journal of Man-Machine Studies (1991)

11. Bødker, S., Grønbæk, K., Kying, M.: Cooperative design: techniques and experiences from
the scandinavian scene. In: Participatory Design: Principles and Practices. Lawrence
Erlbaum Associates, Hillsdale (1993)

12. Grønbæk, K.: Prototyping and active user involvement in system development: Towards a
cooperative prototyping approach. Ph.D. thesis, Aarhus University (1991)

13. Fiedrich, F.: An HLA-based multiagent system for optimized resource allocation after
strong earthquakes. In: Proceedings of the 2006 Winter Simulation Conference,
Washington, USA (2006)

14. Takahashi, T.: Agent-based disaster simulation evaluation and its probability model
interpretation. In: Proceedings of ISCRAM 2007, Delft, The Netherlands (2007)

442 T.-Q. Chu et al.

15. Nguyen, H.-P.: Decision support systems applied to earthquake and tsunami risk
assessment and loss mitigation. In: Proceedings of IHOCE 2005, Kuala Lumpur, Malaysia
(2005)

16. Sempé, F., Nguyen-Duc, M., Boissau, S., Boucher, A., Drogoul, A.: An Artificial Maieutic
Approach for Eliciting Experts’ Knowledge in Multi-Agent Simulations. In: Sichman, J.S.,
Antunes, L. (eds.) MABS 2005. LNCS (LNAI), vol. 3891, pp. 75–87. Springer,
Heidelberg (2006)

17. Chu, T.-Q., Boucher, A., Drogoul, A., Vo, D.-A., Nguyen, H.-P., Zucker, J.-D.: Interactive
Learning of Expert Criteria for Rescue Simulations. In: Bui, T.D., Ho, T.V., Ha, Q.T.
(eds.) PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 127–138. Springer, Heidelberg (2008)

18. Suárez, S., López, B., De La Rosa, L.-J.: Co-operation strategies for strengthening civil
agents’ lives in the RoboCup-Rescue simulator scenario. In: Proceedings of First
International Workshop on Synthetic Simulation and Robotics to Mitigate Earthquake
Disaster, Padova (2003)

19. Farinelli, A., Grisetti, G., Iocchi, L., Lo Cascio, S., Nardi, D.: Using the RoboCup-Rescue
Simulator in an Italian Earthquake Scenario. In: The Program Agenzia 2000 of the Italian
Consiglio Nazionale delle Ricerche (2000)

20. Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: An Environment for
Implementing and Running Spatially Explicit Multi-Agent Simulations. In: Ghose, A.,
Governatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS, vol. 5044, pp. 359–371.
Springer, Heidelberg (2009)

21. Gilbert, N., Maltby, S., Asakawa, T.: Participatory simulations for developing scenarios in
environmental resource management. In: Urban, C. (ed.) 3rd Workshop on Agent-Based
Simulation, pp. 67–72. SCS-Europe, Passau (2002)

A Framework for Validating Task Assignment
in Multiagent Systems Using Requirements Importance

Hiroyuki Nakagawa1, Nobukazu Yoshioka2, Akihiko Ohsuga1,
and Shinichi Honiden2,3

1 The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo, Japan
2 National Institute of Informatics, 2-1-2 Hitotsubashi,Chiyoda-ku, Tokyo, Japan

3 The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
{nakagawa,ohsuga}@is.uec.ac.jp,
{nobukazu,honiden}@nii.ac.jp

Abstract. Multi-agent systems (MASs) are one of the effective approaches for
dealing with the recent increase in software complexity and their autonomy. In the
MAS research community, there has recently been increasing interest in the adop-
tion of requirements engineering techniques to bridge the gap between the system
requirements and the system design. One of the most important tasks based on
the requirements description in the MAS design activity is the extraction of roles,
which are the fundamental components of multi-agent systems, from it. It is also
important to comprehend the relative degree of responsibility of the individual
roles. The comprehension helps the developer decide the system architecture and
discuss the performance and stability of the system. We introduce the concept of
importance as a quantitative metric and an evaluation framework for the extrac-
tion of a suitable role set for the system and the task assignment to these roles.
The importance is propagated from the requirements to the roles through their as-
signed tasks. We demonstrate the effectiveness of our framework through a case
study and show that our metric and evaluation framework help not only to identify
the importance of each role, but also to determine the system architecture.

1 Introduction

Agent technology offers a solution for producing complex software systems character-
ized by autonomous behavior, a high degree of distribution, and mobility support. A
considerable number of studies have been conducted on methodologies for multi-agent
system (MAS) development [1]. The MAS development process [2],[3] is structurally
similar to the standard development process: it contains the requirements analysis,
architectural design, detailed design, implementation, test, and maintenance phases.
However, since MAS consists of multiple agents, the MAS design process is more
complicated than that of generic software systems. In particular, the lack of evaluation
techniques for the architecture model makes it difficult to close the gap between the re-
quirements analysis phase and the architectural design phase of the MAS development.
As a result, it is still difficult to construct a design model for MAS.

We focused on the role extraction and the task assignment using the requirements
description in order to reduce the gap between these phases. By roles, we mean the

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 443–458, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

444 H. Nakagawa et al.

responsibilities to satisfy the requirements and that are assigned to the agents in MAS.
Since role extraction and task assignment not only has an impact on the design activities,
e.g., designing interactions and determining the system architecture, but also influenc-
ing the system performance, these are the most important activities in the architectural
design phase.

This paper introduces the concept of importance as a quantitative metric for vali-
dating the constructed architecture model. The requirements importance is propagated
from the requirements description to the architecture model and thus the MAS devel-
oper can validate a constructed architecture model based on the requirements engineer’s
intention. In particular, we use KAOS [4],[5] as a goal-oriented requirements descrip-
tion [6] to propagate the importance value. We have previously introduced a model
transformation technique from a KAOS description to a MAS architecture model [7].
This previous study, in particular, used KAOS as a requirements description language
for designing MAS, and the technique transforms it into a general MAS architecture
model. KAOS provides a number of model descriptors for connecting the requirements
description to the design model. Our approach builds upon the transformation tech-
niques.

The primary contributions of this paper are as follows:

1. The paper introduces a quantitative metric for validating the role extraction and
task assignment for MAS. The proposed framework calculates the metric by using
a constructed KAOS model with goal prioritization.

2. It gives guidelines for refining the MAS architecture model and requirements de-
scription on the basis of the metric.

3. It reports the results from the application of the importance measurement on an
implemented system and discusses the improvement in the architecture model using
real-world development data.

The rest of this paper is organized as follows: Section 2 gives the background on the
architectural design activity for multi-agent systems and identifies the requirements of
the metric for evaluating the architecture models. Section 3 introduces the “importance”
metric and how it is calculated in our evaluation framework. Section 4 reports on our
evaluation through a case study on the architectural design of a tracking system. Sec-
tion 5 discusses the possibility of automating our method and its limitations. Section
6 discusses the related work, and Section 7 concludes the paper with an outline of our
future work.

2 Background

2.1 MAS Architectural Design

MAS architecture usually consists of the following elements: roles, interactions, envi-
ronmental resources, and organizations [8]. The roles are responsible for accomplish-
ing the requirements and they are assigned to the agents in MAS. Once the set of roles
are determined with a suitable set of responsibilities for monitoring and controlling the
environmental resources in the architectural design phase, we can discuss the communi-
cation methods needed between the roles, which are interactions, and define the system

A Framework for Validating Task Assignment in Multiagent Systems 445

architecture, which is called the organization, on the basis of them. Therefore, the most
important and fundamental element of the MAS architecture model is the roles, and a
number of MAS methodologies have focused on the roles and their extraction [8], [9],
[10], [11], [12].

However, current methodologies lack the guidelines for assigning requirements to
roles, and therefore, role identification and the assignment of requirements to roles re-
quires us with knowledge of the domain properties and that have design experience.
It is also difficult to validate the results of the role identification because of the non-
existence of a metric for checking whether the identified role set satisfies the system
requirements.

Moreover, just like in human society, roles have a great impact on the organizations
in MAS. For example, if a great deal of communication is required between two im-
portant roles, introducing a mediating role between these two roles may advance the
system performance. It follows that we have to not only extract roles that satisfy the
system requirements but also discuss whether the information processing roles should
be introduced by taking into account the communications methods and the system ar-
chitecture. Therefore, in this paper, we define the following items for evaluating the
MAS architecture model:

1. Validity of role set: We can evaluate whether the extracted role set is suitable for
satisfying the system requirements.

2. Roles responsibility quantity: We can measure the quantity of the responsibility
of individual roles and evaluate the assigned loads of each role.

3. Adequacy of system architecture: We can evaluate the system architecture in
terms of the stability and the communication efficiency.

2.2 MAS Architecture Model Construction Based on KAOS

We have successfully applied a goal-oriented requirements description in the construc-
tion of the MAS architectural design [7]. In particular, we adopted KAOS [4], [5] as our
goal-oriented requirements description to generate a general MAS architecture model.

In KAOS, the system goals are refined (decomposed) into requirements and expec-
tations in the goal model. The requirements are the goals that the target system should
achieve, and the expectations are tasks of environmental actors. After refinement, the
requirements and expectations are assigned to the agents1 as their responsibilities in
the responsibility model, where the agents in KAOS represent the actors, which are the
target system and environmental actors, and then the operations that satisfy them are
derived. Finally, all the behaviors expressed in the operations and relevant events are
described. KAOS provides not only the requirements descriptors, e.g., goals, require-
ments, and agents, but also the system design descriptors, e.g., operations and events,
which can be used for model transformation into the design model for the systems. We
used the relationships between two such kinds of descriptors in the KAOS model for
model transformation.

1 Agents in KAOS represent the actors, which are the target system and environmental actors,
e.g., users, devices, and relevant systems.

446 H. Nakagawa et al.

Table 1. Mapping from KAOS into MAS architecture model

KAOS MAS
Agents – Roles

– Environmental actors (e.g., users, devices, and relevant systems)
Operations – Activities
Events – Messages constituting interactions

– External events
Entities – Environmental resources

Table 1 gives the mapping from the KAOS model into the MAS architecture model.
Our transformation method puts restrictions on the requirements description. In partic-
ular, the requirements on the KAOS model have to be sufficiently decomposed to assign
them to roles, and this allows role extraction from the requirements description. As for
the further transformation, the operations that satisfy the requirements in the KAOS
model are transformed into activities, which are the tasks that the roles can complete by
themselves, and the events between the agents representing roles are transformed into
messages that constitute interactions. The transformation technique maps these KAOS
descriptors into the generic MAS design descriptors in order to reduce the gap between
the requirements description and the MAS architecture model.

3 RE-IMPULSE

This section presents RE-IMPULSE, our evaluation framework for the MAS architec-
ture model. RE-IMPULSE calculates each role’s importance by using the importance of
the software requirements. The framework uses the KAOS description as a requirements
description for MAS and the framework calculates each role’s importance by propagat-
ing and aggregating the importance value assigned to the requirements described in the
KAOS model. We can not only validate an extracted role set, but can also evaluate the
system architecture by using the calculated value.

3.1 Importance Metrics and Evaluation Process

RE-IMPULSE focuses on the importance of the role activities and the structural com-
plexity of interactions. It represents these aspects as a metric, which is called the role
importance. This single metric reduces the cost for the assignment values and simplifies
the evaluation process.

As for the components of the evaluation, the role activities are the tasks that the
roles can complete by themselves. These activities should be evaluated in terms of the
importance of the provided functions, and therefore, importance should be assigned to
the functions described in the requirements description. On the other hand, the structural
complexity can be evaluated from the MAS architecture model that represents the flow
of interactions. Therefore, our framework propagates the importance values from the
requirements descriptors into the design descriptors, and then calculates these values
on the MAS architecture model.

The evaluation process based on our framework, which is shown in Figure 1, consists
of three activities.

A Framework for Validating Task Assignment in Multiagent Systems 447

KAOS analysis,
importance

assignment, and
model transformation

System
Requirements

Activity 1
MAS model
construction

based on KAOS

KAOS model
with importance

values

Activity 2
Importance
propagation

Sorted role
importance

list

Activity 3
Model

evaluation

Valid MAS
architecture

modelActivity input/output

Comment

Activity
Legend

Artifact

Evaluation of
responsibilities and

interaction structures

MAS
architecture

model

Automated
calculation

Fig. 1. Evaluation process based on RE-IMPULSE

1. KAOS model construction: Our framework begins by analyzing the requirements
for MAS, by using the KAOS modeling described in [7]. After describing the
KAOS model, requirements engineers put the importance values into the require-
ments in the model that can propagate to roles.

2. Importance propagation: After constructing the KAOS model, a calculation tool
automatically propagates the importance of the requirements to the extracted roles
through the KAOS elements. This tool outputs the total importance values for indi-
vidual roles in descending order.

3. Model refinement: The developers evaluate the responsibility of the roles using
the acquired importance value, and discuss whether the extracted role set and the
interaction structure that forms the system architecture is sufficient. The developers
review the role set or changes in the interaction structure, if needed, and reevaluate
the updated model using the updated importance values.

The following sections explain each activity of our evaluation framework.

3.2 MAS Model Construction Based on KAOS

RE-IMPULSE uses the KAOS model as a requirements description for MAS. The im-
portance propagation of RE-IMPULSE is based on the model transformation technique
of our previous work described in Section 2.2, and the framework calculates each role’s
importance by inheriting and aggregating the importance value assigned to the require-
ments described in the KAOS model. As described in Section 3.1, importance should
be evaluated for the functions in the requirements description. In RE-IMPULSE, the
requirements engineers assign importance values to the goals in the KAOS goal model.

3.3 Importance Propagation

Next, an importance calculation tool automatically propagates the importance values
assigned to the requirements through the KAOS model, assigning an aggregated

448 H. Nakagawa et al.

Goals, requirements,
and expectations

Operations
(Activities)

Events
(Interactions)

Agents
(Roles)
A

Fig. 2. Importance propagation in KAOS model

importance to each individual role. Figure 2 illustrates the flow of importance prop-
agation between the KAOS descriptors. First, the importance values assigned to the
goals are propagated to all of the nodes in the goal tree, i.e., all of the goals, require-
ments, and expectations. Next, the importance values assigned to the requirements and
expectations are inherited in the operations that satisfy them. The values assigned to the
operations are also propagated to the events, some of which are extracted as the interac-
tions, and finally the values assigned to the operations and interactions are aggregated
by each role and the role importance is then decided. This section explains the method
of propagation.

As described in Section 2.2, importance should be estimated for the system require-
ments that derive functions, that is the goals or requirements in the KAOS model. Our
framework allows for the assignment of their importance; any existing children inherit
these values. Figure 3 shows a propagation example in a goal model. In our framework,
the requirements engineer defines the importance by setting the ratio to the sub-goals
for representing a relative value among all of their sibling goal nodes. The reason why
we chose a ratio setting is that the determination of the relative importance using a com-
parison between the sibling goals is easier than that of the absolute importance values
of the goals. If the requirements engineer does not set the ratio to the subgoals, e.g.,
node N and O in Figure 3, these goals inherit the equally divided importance value.

Importancechild = Importanceparent · ratio (1)

Note that, in general, deeper goals are assigned small values. For example, if the re-
quirements engineer sets the importance of the root node 100 on the goal model in
Figure 3, the importance of the node D is 20, on the other hand, the importance of node
L is only 1.8 by using (1). In many cases, the depth of the leaf nodes differs from the
other parts of the same goal model. Moreover, a deeper and more intensive analysis
creates deeper goals. Therefore, the difference in importance caused by the difference
in depth should be reduced, and thus, we introduce the following bias ratio.

Importancechild = Importanceparent · bias ratio (2)

A Framework for Validating Task Assignment in Multiagent Systems 449

20% 40% 20% 20%

30% 40% 40%20% 40%

70%30%

A

B C D

F

E

G I J K

L M

30%

H

(50%)(50%)

N O

Fig. 3. Importance propagation in goal model. Values in parentheses were not explicitly set by a
requirements engineer.

We will now discuss the bias. First of all, the bias should diminish reductions in the
importance value. Therefore, the bias ratio should be greater than the ratio assigned to
each subgoal. However, the importance value of the subgoal should not exceed that of
parent goal. The bias also should reflect the order and values of the given ratio among
subgoals. Taking this into account, we introduce the following bias ratio.

biasratio : b(ri) =
ri

max(r1, ..., rm)
(1 ≤ i ≤ m) (3)

where m represents the number of subgoals, and ri represents the ratio of subgoal i.
Obviously, ri <

ri
max(r1,...,rm) ≤ 1 (0 < ri) is always satisfied; therefore, this function

provides greater value than ri, and calculated importance does not exceed the value of
parent node, which are suitable for use as the bias function. It also reflects the order and
values of the given ratio among subgoals. For example, in the previous example, the
importance of nodes D and L are 50 and 16.07, respectively – the difference between
two nodes shrinks from 11 times to approximately 3 times.

After propagating in the goal model, the importance value is inherited by the other
elements. First, for each requirement, the relevant operations inherit the corresponding
importance values. The importance value of an operation is the sum of the values of
the assigned requirements. In our framework, operations are the activities of the roles
and environmental actors, which are the tasks that they can complete by themselves.
Next, the importance values of the operations propagate to the events, some of which
are the interactions between roles. Interactions are a type of communication method for
the roles, which consist of messages among them. Our framework, on the basis of the
transformation process in [7], identifies the events that connect operations assigned to
roles as interactions. Figure 4 shows the flow for deciding the meeting time schedule
described in the KAOS model. Since roles that involve interactions send and receive
messages, we focus on individual message passing and assign the interaction impor-
tance to the role that sends the message. In particular, the framework calculates the
interaction importance by multiplying the importance value assigned to the operation
that sends the message by using the interaction weight wInt , as illustrated in Figure 4.

450 H. Nakagawa et al.

Answer
schedule

Decide meeting
schedule

20

20

15

Chairman Member

Interaction
direction

50 22.5

10

7.5

Plan
meeting

Legend

Operation (activity)

Event (message
constituting interaction)

Fig. 4. KAOS operation model for deciding meeting time schedule, where wInt = 0.5

Finally, the role importance is determined by aggregating the activity and interaction
importance of the role. The importance of role R1, expressed as IRR1, can be calculated
from the importance of activity IA and that of interaction II(= wInt · IA) in the
following way:

IRR1 = ΣR1IA+ΣR1II (4)

In Figure 4, as an example, the message from the chairman to the member is assigned
the importance values 10, where the importance of the “Plan meeting” operation is 20
and wInt = 0.5. By repeating the calculation for the other message and summing up
these importance values, we can acquire the role importance, IRchairman = 50 and
IRmember = 22.5.

We developed a tool to automatically calculate role importance from a KAOS model
as an Eclipse Plug-in. This tool recognizes the structure of the KAOS goal model and the
relationships between model descriptors, e.g. goals, operations, and events, by parsing
the corresponding XML file. We used Objectiver [13] as a KAOS modeling tool; it can
output KAOS models in XML.

3.4 Model Refinement

By taking the calculation process into consideration, our metric importance can repre-
sent the individual roles’ contributions to the system and the burden of their interactions.
MAS developers can evaluate the responsibilities of individual roles and the adequate-
ness of the system architecture by using this metric. As for the system performance and
stability, it is desirable to prevent the emergence of standout roles with extreme impor-
tance values. RE-IMPULSE provides the following sequential guidelines for reducing
the importance gap between roles.

1. Review system interface: RE-IMPULSE can evaluate not only the importance of
the roles but also that of the environmental actors by applying the same calculation
process. When comparing the importance values of the environmental actors with
those of the roles, the developers can consider whether a new interface to reduce
the environmental actors’ importance should be introduced.

A Framework for Validating Task Assignment in Multiagent Systems 451

2. Reassign requirements: If particular roles have high importance values, this may
show that these roles have more responsibilities. If the developers identify that the
assigned responsibilities exceed the roles’ capabilities, the developers should con-
sider whether some of requirements assigned to these roles should be shifted to
other roles or brand-new roles. When the importance values of particular require-
ments are especially high, the development process goes back to the requirements
analysis phase and these requirements should be divided into smaller parts.

3. Alter system organizational structure: If the roles with high importance values
are assigned a number of interactions, the developer reviews the interactions that
form the system architecture and introduces new communication roles if they are
required.

4. Discuss suitable implementation style: If roles with high importance values still
remain, the design and implementation of these roles need more attention paid to
them than the other roles. If the importance value for interactions is high, various
ways of reducing the communication burden, such as the expansion of the commu-
nication interval and simplifying the message data structures, are effective.

For example, the importance of the chairman role in Figure 4 is more than twice that of
the member role. In this case, if we identify that the responsibility of the chairman role
exceeds its capability, we can apply “3. Alter system organizational structure” and add
a new role department representative as illustrated in Figure 5, which can undertake the
responsibility for collecting the member’s schedules and extracting the candidate dates,
to reduce the importance of the chairman role.

Plan
meeting

Ask
schedule

Answer
schedule

Choose
candidates

Decide meeting
schedule

15

10

15

5

10

Chairman Department
representative Member

32.5 22.522.5

7.5

5

2.5

7.5

g 5

Interaction
direction

In
d

Fig. 5. Improvement by introducing intermediate role

4 Evaluation

To assess the accuracy of our metric and the effectiveness of our evaluation framework,
we applied RE-IMPULSE to a MAS development project. This experiment consisted

452 H. Nakagawa et al.

of three parts. First, we evaluated a suitable value for wInt by applying our framework
to a constructed MAS model with various wInt values (Exp1). wInt is the parameter
that determines the component ratio of the importance of the activities and interactions.

Next, to evaluate the adequacy of the importance as a metric, we applied our frame-
work to the MAS model and compared the role order acquired by the importance cal-
culation with the order that the requirements engineer had assumed (Exp2). We also
compared the difference between the importance values calculated in Exp2 and the val-
ues after removing some of the roles from the MAS model in order to evaluate our met-
ric with respect to the interaction structure that forms the system architecture (Exp3).
Throughout this experiment, we used a tracking system, which had been implemented
as a prototype system and whose KAOS model had been constructed and the architec-
ture model had been generated by our model transformation tool.

4.1 Tracking System

The tracking system chases targets using the sensing data and a reasoning mechanism.
This system consists of the six following agents derived from six roles.

– Sensor: This role detects the object entrance and exit on the sensing area. It also
has the responsibility of notifying these events to the zone manager of its respective
zone.

– Zone manager: This role aggregates events from the sensors and reports to the other
roles.

– User interface (UI): This role receives tracking requests from the users and requests
trackers to track the target objects. It is also responsible for displaying the tracking
results.

– Estimator: This role infers where a target is located by using the accumulated sens-
ing log data and its schedule data if it exists.

– Tracker: This role chases the target by moving to the zone managing server, which
is located in the zone where the target is or is expected to arrive.

– Monitor: This role manages the migration histories of individual target objects. It is
responsible for storing the migration logs of individual objects by using the sensing
data reported from the zone manager.

This tracking system had already been implemented by constructing a KAOS model
and generating an architecture model using our model transformation tool.

4.2 Exp1: Interaction Weight

First of all, in order to find the appropriate wInt value, we counted the number of
conducted test items with separating items for the activities and those for the interac-
tions and the number of activities and interactions (messages) in the constructed KAOS
model. Table 2 lists the numbers of them and the appropriate WInt values, calculated
by the ratio of test items per an activity or an interaction in the KAOS model. From
Table 2, we determined the approximate average of these values, 0.8, as wInt in our
subsequent experiments, Exp2 and Exp3.

A Framework for Validating Task Assignment in Multiagent Systems 453

Table 2. Determination of wInt from number of test items and described elements, where wInt =
(2)/(4)
(1)/(3)

Role # test items # elements wInt

Act (1) Int (2) Act (3) Int (4) (Int/Act)

Sensor 15 11 2 2 0.73
Tracker 19 16 4 4 0.84
Zone manager 25 26 4 5 0.83
UI 10 5 2 1 1
Estimator 12 8 2 2 0.66
Monitor 11 9 3 3 0.82

Im
po

rt
an

ce

2

1

5

3
4

6

Fig. 6. Role importance in tracking system, where “(R)” denotes roles, and “(E)” denotes envi-
ronmental actors. Numbers above the bars indicate the requirements engineer supplied ordering.

4.3 Exp2: Importance Analysis

Next, we evaluated the validity of the acquired role importance. The graph described
in Figure 6 shows the importance of all the roles in a tracking system, where wInt =
0.8. This graph shows the constituents of the role importance – activity importance
and interaction importance. In this experiment, we also interviewed the requirements
engineer of the tracking system concerning the order of the roles in the system in terms
of the contribution to the system, and we acquired the following order: tracker, sensor,
user interface, estimator, monitor, and zone manager.

When comparing the results shown in Figure 6, which illustrates the order, sensor,
tracker, zone manager, estimator, user interface (UI), monitor, the two orderings are
roughly close except for the zone manager. The considerable difference between the
requirements engineer estimated order and the calculated order is a consequence of
the interaction structure. The requirements engineer only paid attention to the explicit

454 H. Nakagawa et al.

activity of the zone manager, and concluded that the aggregation of the sensing data
was less important than the responsibilities of the other roles. On the other hand, our
metric also evaluates the system architecture based on the interaction loads aspect, and
as a result, the zone manager that communicated with multiple roles was ranked higher
than the UI, estimator, and monitor roles. Therefore, the result shows that the impor-
tance metric reflects the requirements engineer’s intention as well as the influence of
the system interaction structure.

4.4 Exp3: Role Identification

We also observed the changes in the importance value when changing the roles’ re-
sponsibilities. In this experiment, we took into account two situations where the zone
manager or the monitor were not extracted as roles, respectively, and the requirements
assigned to these roles were reassigned to other roles, and then, recalculated the role
importance values. Figures 7 and 8 show the recalculated importance values for these
two cases, respectively.

nc
e

m
po

rt
an

ce
Im

po
rt

an
ce

Im
po

rt
an

ce
Im

po
rt

an
ce

Im
po

rt
an

ce

Fig. 7. Role importance when exclud-
ing zone manager

Im
p o

rt
an

ce
Im

p o
rt

an
ce

Fig. 8. Role importance when excluding monitor

First, the exclusion of the zone manager illustrated in Figure 7 caused an increase
in the sensor role’s importance of 120 (about 19%). The sensor already had the high-
est importance in Exp2, and since the zone manager was excluded, it got further load
addition, and we could find that the zone manager had an essential role in the tracking
system.

On the other hand, when the monitor was excluded, which is illustrated in Figure
8, there was an increase in the importance of the zone manager and UI roles, but the
highest ranked role sensor did not acquire additional importance, and therefore, we
found that the monitor did not have an essential role in the tracking system.

5 Discussion

We will now evaluate our framework based on the experimental results in terms of the
evaluation items for the MAS architecture model described in Section 2.1, and then
discuss its limitations and scope of applicability.

A Framework for Validating Task Assignment in Multiagent Systems 455

Validity of role set: RE-IMPULSE allows developers to validate whether the ex-
tracted roles are adequate for constructing a system or not by excluding the particular
roles and recalculation of the role importance as shown in Exp3. Since the role im-
portance originates in the requirements importance, the developers can use them as
representing the requirements engineer’s intention to validate the role set. This means
that the activities of the requirements analysis and system design can be separated and
the requirements engineers and system developers experience a reduced communica-
tion burden. RE-IMPULSE also evaluates the roles that have the responsibilities for
aggregating information, such as the zone manager in our experiment.

Roles responsibility quantity: Exp2 shows that RE-IMPULSE acquired the impor-
tance order of the extracted roles close to the order that the requirements engineer had
expected. The role importance value is calculated from the assigned activities and in-
teractions; however, for the preparation of the calculation, RE-IMPULSE requires the
requirements engineers to put only the importance ratio in the goal node. This means
that RE-IMPULSE allows MAS developers to rank the roles by following the impor-
tance of the assigned responsibilities, even if the developers do not have any domain
knowledge, and to evaluate whether the constructed MAS model is adequate for the
system.

We have introduced the interaction weight wInt to determine the interaction im-
portance. In our experiment, we determined the value of wInt based on Exp1, which
calculated wInt from the number of test cases; however, the value of wInt should be
adjusted according to the interaction design of the system. If the interaction is consid-
ered as more important, e.g. the MAS requires frequent communications among roles,
messages are complex, or the size of messages is large, the value of wInt should be
adjusted upward; on the other hand, if considered as less important, the value should be
adjusted downward.

Adequacy of system architecture: Since the metric consists of not only the activ-
ity importance but also the interaction importance, the metric allows the developers to
evaluate the system architecture in terms of the responsibilities for forming the inter-
action structure. As shown in Exp3, excluding the zone manager role made the sensor
role overloaded. If the role has a considerable amount of responsibility for the commu-
nications between roles in the system, the role should be introduced as the composition
element of the system. Our evaluation framework provide a method for validating the
system architecture from the perspective of the validity of the interaction structure.

Applicable scope and limitations: Finally, we discuss the applicable scope and lim-
itations of our framework. As for the design process, the developers have to construct
the MAS architecture model from the KAOS model as an artifact of the requirements
analysis. The important MAS elements, which are the roles, interactions, and activ-
ities, must have clear relationships with the elements described in the requirements
description. We use the KAOS model as a requirements description for calculating the
importance value in this paper. One reason why we chose KAOS is that it provides the
goal structure for propagating the importance from among the goals and requirements.
The other reason is that it also provides the description elements necessary for the sys-
tem design, such as the operation and event, and the relationship between them. The
tool support for outputting a structured text data file, i.e., an XML file in this case, is

456 H. Nakagawa et al.

another reason we chose KAOS, which leads to an automatic calculation. We can use
other goal-oriented requirements descriptions in our framework if these descriptions
have such features.

We use the importance metric for the MAS design, although we are confident that
the metric can be used for designing the load balance between sub-systems in enter-
prise business applications. These systems have a considerable number of roles, such
as managing personnel information, accounting operations, business management, and
each sub-system provides each service sometimes independently and sometimes de-
pending on other sub-systems.

6 Related Work

In the area of requirements engineering, several metrics have been proposed for require-
ments analysis and its evaluation. Karlsson and Ryan [14], [15] provided a method-
ology for assigning priorities to requirements and developing strategies for selecting
an optimal set of requirements for implementation. They introduced two techniques, a
pair-wise comparison technique and a numeral assignment technique to gain accurate
software requirements prioritization in [14]. In [15], they also developed a methodol-
ogy that ranks candidate requirements in two dimensions: according to their value and
their estimated cost of implementation. Requirements prioritization is also used in the
Next Release Problem [16], in which a set of customers with varying requirements are
targeted for the next release of an existing software system. Several studies for its for-
mulation and optimization [17], [18], [19] have been conducted for these problems, and
Finkelstein [20] recently introduced a technique for analyzing the trade-offs between
different customers fairness.

Requirements prioritization is also used for the requirements tracing. Egyed and
Heindl et. al [21], [22], [23] considered the cost-quality aspects in the trace analysis.
A value-based perspective helps save the unnecessary effort of tracing. Our framework
does not trace the requirements in the design model; however, we can verify the in-
fluence of the requirements assignment changes in the design model by observing the
changes in importance values.

Feather [24] proposed an integrated approach for the risk management with a quan-
titative evaluation in the requirements engineering called DDP (Defect Detection and
Prevention). In DDP, the requirements engineers assess the severity of the consequences
and the effectiveness of the countermeasures quantitatively. After making matrices, the
requirements engineers explore the optimal combinations of countermeasures with re-
spect to the cost constraints. The techniques for selecting the optimal way of realizing
the requirements, such as on the risk management, often use two different metrics –
one for the criticality of the requirements and the other for the cost of the realization
countermeasures. Our current framework does not explicitly use a metric for the cost of
realization. This is because it is not for the selection of the best countermeasure; how-
ever, the framework can still consider the complexity of a system architecture consisting
of the role activities and interactions.

As for the MAS development, Giorgini [25] proposed an evaluation technique for a
MAS requirements model described in i* [26]. This technique defines criticality and

A Framework for Validating Task Assignment in Multiagent Systems 457

complexity as metrics. MAS developers add these two values for all the dependencies
between the goals to be achieved and the roles, and then these two values are indepen-
dently aggregated by the role. This technique can evaluate the goal assignment in terms
of the two aspects; however, the developers have to use two different values for all the
dependencies. This technique does not provide a mechanism for validating the system
architecture and guidelines for design improvement.

7 Conclusions

This paper presented a new evaluation framework called RE-IMPULSE, which was
designed to focus on measuring the task assignment using the requirements descrip-
tions. We defined importance as a metric, and RE-IMPULSE enables the measure of the
role importance, which expresses the quantity of the contribution for realizing the sys-
tem functions by their activities and interactions, from the goal importance assessed by
the requirements engineers and the relationships between the descriptors in the KAOS
model. We also evaluated the accuracy of the metric and the effectiveness of the frame-
work by applying RE-IMPULSE to a tracking system. We observed that RE-IMPULSE
measured the role importance close to the requirements engineers’ intention and it also
considered the loads of the interactions, which influenced the system architecture. RE-
IMPULSE provides developers with guidelines for validating the role extraction, task
assignment, and the system architecture.

In future work, we plan to extend our framework by developing an improvement
recommendation mechanism based on the acquired importance values. Our metric can
be used to detect issues in the architecture model, and the mechanism will look for and
recommend strategies that improve the model.

References

1. Wooldridge, M.: An Introduction to Multiagent Systems, 2nd edn. John Wiley & Sons (2009)
2. Luck, M., Ashri, R., D’Inverno, M.: Agent-Based Software Development. Artech House

(2004)
3. Bernon, C., Cossentino, M., Pavón, J.: Agent-oriented software engineering. The Knowledge

Engineering Review 20(2), 99–116 (2005)
4. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci-

ence of Computer Programming 20(1-2), 3–50 (1993)
5. Letier, E.: Reasoning about Agents in Goal-Oriented Requirements Engineering. PhD thesis,

Universite Catholique de Louvain (2001)
6. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Fifth IEEE

International Symposium on Requirements Engineering (RE 2001), Toronto, Canada, pp.
249–262 (2001)

7. Nakagawa, H., Karube, T., Honiden, S.: Analysis of multi-agent systems based on KAOS
modeling. In: Proc. of the 28th International Conference on Software Engineering (ICSE
2006), pp. 926–929. ACM, Shanghai (2006)

8. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The Gaia
methodology. ACM Transactions on Software Engineering and Methodology 12(3), 317–370
(2003)

458 H. Nakagawa et al.

9. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

10. Juan, T., Sterling, L.: The ROADMAP Meta-Model for Intelligent Adaptive Multi-Agent
Systems in Open Environments. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003.
LNCS, vol. 2935, pp. 53–68. Springer, Heidelberg (2004)

11. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent Agents.
In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 174–185.
Springer, Heidelberg (2003)

12. Cossentino, M., Gaglio, S., Sabatucci, L., Seidita, V.: The PASSI and Agile PASSI MAS
Meta-Models Compared with a Unifying Proposal. In: Pěchouček, M., Petta, P., Varga, L.Z.
(eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 183–192. Springer, Heidelberg (2005)

13. CEDITI: Objectiver, http://www.objectiver.com/
14. Karlsson, J.: Software requirements prioritizing. In: Proc. of the 2nd International Confer-

ence on Requirements Engineering (ICRE 1996), p. 110. IEEE CS (1996)
15. Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements. IEEE Soft-

ware 14(5), 67–74 (1997)
16. Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The next release problem. Information

and Software Technology 43(14), 883–890 (2001)
17. Zhang, Y., Harman, M., Mansouri, S.A.: The multi-objective next release problem. In: Proc.

of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO 2007),
pp. 1129–1137. ACM (2007)

18. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach. In-
formation and Software Technology 46(4), 243–253 (2004)

19. van den Akker, M., Brinkkemper, S., Diepen, G., Versendaal, J.: Software product release
planning through optimization and what-if analysis. Information and Software Technol-
ogy 50(1-2), 101–111 (2008)

20. Finkelstein, A., Harman, M., Mansouri, S.A., Ren, J., Zhang, Y.: A search based approach
to fairness analysis in requirement assignments to aid negotiation, mediation and decision
making, vol. 14, pp. 231–245. Springer, Heidelberg (2009)

21. Heindl, M., Biffl, S.: A case study on value-based requirements tracing. In: Proc. of
ESEC/FSE-13, pp. 60–69. ACM (2005)

22. Egyed, A., Biffl, S., Heindl, M., Grünbacher, P.: Determining the cost-quality trade-off for
automated software traceability. In: Proc. of the 20th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2005), pp. 360–363. ACM (2005)

23. Egyed, A., Biffl, S., Heindl, M., Grünbacher, P.: A value-based approach for understanding
cost-benefit trade-offs during automated software traceability. In: Proc. of the 3rd Interna-
tional Workshop on Traceability in Emerging forms of Software Engineering (TEFSE 2005),
pp. 2–7. ACM (2005)

24. Feather, M.S., Cornford, S.L.: Quantitative risk-based requirements reasoning. Requirements
Engineering 8(4), 248–265 (2003)

25. Bresciani, P., Giorgini, P., Mouratidis, H., Manson, G.: Multi-Agent Systems and Security
Requirements Analysis. In: Lucena, C., Garcia, A., Romanovsky, A., Castro, J., Alencar,
P.S.C. (eds.) SELMAS 2003. LNCS, vol. 2940, pp. 35–48. Springer, Heidelberg (2004)

26. Yu, E.S.K.: Modeling organizations for information systems requirements engineering. In:
Proc. of the First IEEE International Symposium on Requirements Engineering, pp. 34–41
(1993)

http://www.objectiver.com/

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 459–474, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Task Knowledge Patterns Reuse
in Multi-Agent Systems Development

WaiShiang Cheah1, Leon Sterling 2, and Kuldar Taveter 3

1 Faculty of Computer Science & IT, UNIMAS 94300 Kota Samarahan
Sarawak, Malaysia

c.waishiang@gmail.com
2 Faculty of ICT, Swinburne University of Technology, Australia

lsterling@swin.edu.au
3 Department of Informatics, Faculty of IT, Tallinn University of Technology

kuldar.taveter@ttu.ee

Abstract. Template-based knowledge models can be viewed as design patterns
for specifying a task [12]. The models can serve as reusable artifacts during the
development of a multi agent system using the MAS-CommonKADS metho-
dology. However, based on our observation of existing patterns, we note limita-
tions of reusing those patterns in agent development. This paper presents task
knowledge patterns that are described through our improved agent oriented
template structure. The improved template structure presented in this paper pro-
vides an alternative approach to defining task knowledge patterns by incorpo-
rating a two dimensional view of agent oriented models. The task knowledge
patterns introduced in this paper describe task knowledge in an agent context,
while explicitly providing a description designed to encourage use and reuse in
agent oriented software development. A demonstration of the reuse of task
knowledge patterns in agent oriented modelling is presented in this paper. Spe-
cifically we show how a particular task knowledge pattern, selection of relevant
source materials, can be used to rapidly prototype an adviser finder multi-agent
system.

Keywords: agent-oriented modeling, task knowledge patterns, advisor finder.

1 Introduction

Agent technology has been used in building various domain specific applications.
However, agent technology has not been widely adopted by the software community.
Factors in the lack of adoption is the lack of an agreed standard among the diversity
of agent oriented software engineering methodologies, and the lack of maturity in
some of the methodologies [5].

The agent methodologies have been proposed to aid the agent developer with the
introduction of techniques, terminology, notation and guidelines during the develop-
ment of the agent system. To date, about 30 agent oriented methodologies have been
designed [10]. It has been reported that some agent methodologies lack generality and
are focused on specific systems and agent architectures [21]. In addition, some of the
methodologies do not contain sufficient detail to be of real use.

460 W. Cheah, L. Sterling, and K. Taveter

Alternatively, one idea to help people start agent development pragmatically [3,8]
is through patterns. Patterns are a means for sharing development experience to allow
a developer to reuse development experience repeatedly. Patterns can allow novices
to adapt expert knowledge and help develop software in a systematic and structured
way. Patterns are targeted at shared recurring problems, and solution patterns can
prevent the developer from reinventing the wheel during application development.
The use of patterns in agent development can reduce development cost and time,
promote reuse and reduce complexity [11].

The notion of reuse has played an important role during the agent development
process in MAS-CommonKADS [2], Skwyrl [3] and PASSI [4]. In the MAS-
commonKADS methodology, knowledge patterns are used as a reusable artefact dur-
ing the development of a multi-agent system. The knowledge patterns contain prede-
fined knowledge that represent how experts solve a specific problem; an expert’s
problem solving capabilities [6]; and the knowledge people have of the task they per-
form [7].

Expertise models of CommonKADS or knowledge patterns are reused during the
analysis phase of MAS-CommonKADS. For example, the task of coordinating a
meeting has been described in a template task model [13]. Instead of working itera-
tively to detail the template task model, an assessment template knowledge model is
selected to further detail it. In other words, the assessment template knowledge model
is used to guide the task modelling.

Based on our observations, current knowledge patterns are found to be lacking in
terms of standardization, expressiveness and characterization capabilities. We can
summarize our observations as follows:

 The template knowledge model or task knowledge pattern does not feature the concept of
agent technology. It has been reported that since the patterns realize their potential in the
development of an agent system, it is required to develop the pattern that is tailored to the
development of agent system and use agent oriented concepts.

 Task knowledge patterns lack explicitness in expressing certain knowledge elements like
control structure.

 The issue of generalization and universality of the CommonKADS template knowledge
model. The template knowledge models have been used in MAS-CommonKADS for agent
oriented software development. However, it is difficult to enforce the use of a particular
term to mean the same thing in all domains and situations.

From the observations, we introduce several task knowledge patterns together with an
improved agent oriented template structure for describing task knowledge. It has been
clamed that explicitness and comprehensiveness of patterns are two of the important
design properties for agent oriented pattern templates [18]. The pattern template acts
as a communication medium among developers. If the pattern description is explicitly
described, it will improve the communication and comprehension of the patterns for
software practitioners [18]. Indirectly, this will improve the representation and deliv-
ery of the potential of patterns for agent development.

This paper introduces an improved template structure for task knowledge patterns.
The improved template structure that is presented in this paper provides an alternative
design for task knowledge patterns with the introduction a two dimensional view of
agent oriented models. The task knowledge patterns introduced in this paper describe
the task knowledge in an agent context and explicitly describe the useful description
for use and reuse in agent oriented software development. Furthermore, the task

 Task Knowledge Patterns Reuse in Multi-Agent Systems Development 461

knowledge patterns support the expressiveness of task knowledge among non-
technical people and support rapid prototyping in agent systems.

Section two presents the brief description of knowledge pattern that is used for
agent oriented software development. Section three presents an example of the task
knowledge patterns that we have described in our improved template structure. In this
section, the task knowledge pattern of ‘selection of relevant source materials’ is de-
scribed. Section four presents a case study to develop an adviser finder multi agent
system with patterns. Section five presents our observations based on feedback from
two masters students in adopting task knowledge patterns for reuse in multi agent
system development.

2 Knowledge Patterns for Agent Oriented Software
Development

“What is knowledge? How is knowledge represented?” The notion of knowledge is
defined and modelled in CommonKADS [12], a knowledge engineering methodolo-
gy. In CommonKADS, template knowledge models are introduced and are viewed as
design patterns or knowledge patterns for tasks [12]. The template knowledge model
is also known as an expertise model. It contains predefined knowledge that is
represented in the form of reusable model sets for developers. Several template know-
ledge models are included by CommonKADS. They are classification, assessment,
diagnosis, monitoring, prediction, configuration design, modelling, planning, schedul-
ing, and assignment. Each of the template knowledge models consists of the follow-
ing pattern elements:

 General characteristics: Description of the features of a task like goals, typical
examples, terminology (e.g., description of the object used for the task), input and
output.

 Default method: Description of the task knowledge by modelling the actions and
control structures for the task type through inference structure and task specifica-
tion, respectively.

 Method variation: Description of the variation of the default method when deal-
ing with a real application. For example, adding a new method or a new object
when using the method in a certain application domain.

 Typical domain schema: Description of domain entities that will be used for a
particular task type. For example, norm, decision and case are domain entities
that will be used for assessment task type.

The knowledge has been represented at the knowledge level which has been ab-
stracted away from the symbolic level [9]. The knowledge level was proposed by
Newell. Newell introduced another system level that led to a simple and satisfactory
view of knowledge and representation [9]. The representation at the knowledge level
has a simple structure that provides neither any notion of how the knowledge is
represented nor any specification of its processing mechanisms. CommonKADS has
utilized the notion of knowledge level to model the problem solving method.

In CommonKADS, the problem solving method is modelled from three different
viewpoints (task layer, inference layer, and domain layer) of expertise knowledge.

462 W. Cheah, L. Sterling, and K. Taveter

The task layer models the controlling of problem solving behaviour. Accordingly, it
consists of the realization of goals for a task type with control elements like sequential
control, conditional branching, iteration, recursion, and so on [6]. It deals with a dy-
namic view of knowledge. For example, the knowledge of ‘assessment’ consists of
the control flow to obtain an abstract case first. This will be followed by specifying
the criteria for selection, repeating the actions to take one element of the criteria and
comparing it with the abstract case until producing the final decision through match-
ing the evaluation results.

The inference layer presents the inference structure for inference actions. The infe-
rence structure represents the actions for a task type and the coupling of action with
knowledge roles. The coupling determines the domain information that is required for
an inference action. The domain layer represents specific terms that are needed to
perform an action. Also, it is known as static knowledge, like having the constraints
and preferences for the inference step of assignment [12]. Another example such as a
planning task requires domain information for planning such as planning activities,
physical resources available for the planning process, and planning constraints like
the possible states of the resources. The domain information consists of key elements
like concepts, properties of concepts, and relations between the concepts which are
represented as a Unified Modelling Language (UML) class diagram. The concepts
consist of domain information or terms and the relations indicate semantic relations
between terms. In the paper, the terminology of task knowledge pattern and know-
ledge pattern is used interchangeably.

3 Task Knowledge Pattern

Task knowledge patterns are reusable artifacts that are introduced for agent oriented
software development. Three desired properties are described by Oluyomi [18] in
designing an agent oriented template structure. The desired properties present the
overall requirements that need to be considered by a pattern designer when designing
an agent oriented template structure.

We describe two of the properties within the context of this research. They are
‘completeness’ and ‘eliminating ambiguity’. We adopt these desired properties and
elaborate them in designing the template structure for the task knowledge pattern in
the following description.
Completeness Our template structure for task knowledge is complete as it cap-

tures the levels of different ‘viewpoints’ of expertise knowledge. However, we intro-
duce the level of different ‘viewpoints’ that is related to the aspect dimension of the
behaviour category, interaction category and information category at the conceptual
domain modelling level. These viewpoints are taken from the text ‘The Art of Agent-
Oriented Modelling’ [1]. The knowledge that is modelled in our ‘viewpoints’ involves

 The goals that are required to be achieved for solving a problem;
 The arrangement of responsibilities in fulfilling the goals given, and
 The knowledge items that are used by goals and responsibilities.

 Task Knowledge Patterns Reuse in Multi-Agent Systems Development 463

The knowledge that is modelled at such categories and levels describes the knowledge
at a higher level of abstraction. It is sensible to claim that it corresponds to the know-
ledge level modelling of expertise knowledge as practiced in knowledge engineering
[9]. Modelling the knowledge at a high level of abstraction has advantages as follows:

 It serves to communicate knowledge to a non-technical person. Apart from the
agent designer and implementer, the task knowledge pattern will support a non-
technical person like a novice user. The task knowledge pattern has been shown
to be useful among non-agent practitioners as discussed in section 5.

 People are not restricted by details of design such as looping, attributes of terms,
detailed pre-condition and post-condition, detailed information flow or imple-
mentation constraints that will influence the generality of the task knowledge.

Eliminate Ambiguity The template structure must cater for explicit values and
unified representation to ease the ambiguity [20, 21] of the pattern description. Expli-
citness of the template structure through explicit values is a common practice for de-
signing agent patterns. The explicit value outlines a particular agent development life
cycle and agent development task will create a consistent viewpoint when people
intend to adopt the pattern for the task at hand [18]. It is important for having those
explicit values to allow communication of the pattern with terminology that seems
common in agent development.

Next, we provide the description of an example task knowledge pattern.

3.1 Example Description of Task Knowledge Patterns

The pattern elements for the task knowledge patterns are described below.
Pattern name: Represents the name of the task type or problem solving method. It indicates
the name of the pattern to be modelled. The name is normally related to the problem at hand.
Intent: The purpose(s) in having this pattern. It consists of the description to elaborate on the
motivation for having this pattern.
Use when/ Applicability: Descriptive of situations that lead to the usage of the pattern.
Problem: The problem that needs to be solved by this pattern.
Force: Requirement of the problem, solution properties in which the pattern is si-
tuated.
Solution: The knowledge level of the problem solving method in solving the problem
given. It contains the description that explicitly models the knowledge in solving the
task.
Dynamic: The dynamic element provides a typical scenario in describing the runtime
behaviour of the pattern. In other words, it details the arrangement of the solution
according to a particular situation.

An example of task knowledge pattern is as follows:
Pattern Name: Selection of Relevant Source Material

Intent:
The purpose of this pattern is to develop an agent that is able to perform a search and provide
relevant results based on particular criteria. In other words, the agent will locate certain infor-
mation that is supplied by the information provider from a set of keywords and then produce a
relevance result.
Also known as:
Melisa [14], Amathaea [15], Sourcer [16]

464 W. Cheah, L. Sterling, and K. Taveter

Context / Applicability:
Use this pattern when
 -you want to explore within a collection of information or repository regardless of the scale of

the repository.
 -you want to obtain relevant documents from your search.

Problem: Deals with the finding of a set of documents in response to a user request.

Forces: Describes the solution properties in which the pattern is situated or based in the context
of the problem.

 Goal: The user is able to provide his/her preferences from the solution provided. Meanwhile,
the returned documents may be arranged accordingly.

 Quality goal: Achieving user satisfaction is needed. The solution must be able to provide a
collection of relevant results which are closer to the user keyword. When performing a query,
the solution may be required to provide the returned information in an efficient manner. In
this case, time to search for relevant documents must be taken into consideration when de-
signing the solution.

 Role: Three roles are involved when conducting a search. They are the role played to manage
the finding like handling a query, conduct search, ranking or combined result, the role played
to keep the sources for finding purpose and the role played to send the search request.

 Resource: The domain entities of query, criteria, relevant content, information resource and
domain are basic entities that are required in conducting the task type of ‘selection of rele-
vant source materials’.

Solution:

< Goal Model>. Goal model for selection of relevant sources

• Organize result Ranking and/or combination of searched results. There is a mechanism to
send the user query to multiple search engines. Each search engine will be involved in

 Task Knowledge Patterns Reuse in Multi-Agent Systems Development 465

information finding and the returned documents will be combined into a final result pres-
entation.

• Accept user request as query The purpose of this goal is awaiting the user query.
• Collect results The goal of ‘organize result’ is the core activity in the information finding.

It involves activity to obtain references by checking the query against a page hyperlink de-
scription or meta-information; performs searched on the referenced entity (e.g. documents
like web page) and performs matching or evaluates on a searched item.

• Display result The purpose of this goal is to present the finding returned like downloaded
document references, name list and so on in an appropriate manner

<Role model>. Role model for selection of relevant sources

Role name Information finder
Description Manage information finding
Responsibilities Receive incoming query for information finding

Obtain relevant sources.
-obtaining relevant references or indexing.
-Traverse given documents.
-Search through the content by giving the references.
-Perform matching based on user request.
-Create relevant sources.
-Organize relevant sources
-Perform ranking and combination of searched results.
Display the relevant sources.

Constraints Query must first assign prior selection.
All the search may be provided with any return.

Role name ResourceManager
Description Manage information finding
Responsibilities Keeping the sources for finding purpose.
Constraints -interact with incoming request for finding the relevant.

-provide information spaces for search.

Role name User
Description Request for search
Responsibilities -send request for search.

-receive relevant sources material.
Constraints -

<Organizational model>. Organizational model for selection of relevant sources

Organization Structure. The members involved in dealing with information finding
task type are User, Finder and ResourceManager. The Finder realizes the request from

466 W. Cheah, L. Sterling, and K. Taveter

the User. The ResourceManager provides information spaces for the search by the
Finder.

The resources that will be consumed by this task are listed in the domain model. Accordingly,
further elaboration of the resources is described below.

• Query The domain entity that will be used in conducting a search. It is a form of user
request or query term.

• Relevant content The domain entity that represents the response from the search, which is
derived from a collection of information sources.

• Criteria The criteria consist of user preferences that are imposed by the user as searching
criteria. For example, search modifier, special filter like search through year from, year to,
abstract, maximum retrieval time per page, credit status, capability available.

• Domain The domain consists of a topic of discussion which describes the element of
criteria and is required as part of the query’s domain entity. It may contain a vector of
keyword for keyword search.

• User The domain entity of requester. The user (e.g. software agent or human agent) that
will impose a query for a finding.

• Information sources The domain entity that represents the sources of information like
documents, semi-structural data like web, images, video, medical catalog, text file, pdf file
and so on.

Consequences
The key consequence of the task knowledge pattern is to help to reduce the effort to search
within the information space and produce a relevant return to the user.

Related Pattern
The ‘assessment’ template knowledge model in the CommonKADS is related to
achieving the goal of ‘collect result’. On the other hand, the task knowledge pattern
of ‘relaxing the search term’ is related to this pattern to increase the accuracy of the
search. The pattern deals with the query expansion to produce a set of queries from
the user request. In other words, the early user request is expanded to enable the
search in a more precise manner.

We have presented an example of a task knowledge pattern. In summary, ten task
knowledge patterns are proposed [8]. In the following section, we present the use of

 Task Knowledge Patterns Reuse in Multi-Agent Systems Development 467

task knowledge pattern in developing an adviser finder multi agent system within the
ROADMAP and AOR methodologies.

4 Case Study

Task knowledge patterns introduced reusable models sets to prevent the developer
from reinventing the wheel in solving a problem at hand. In this section, we demon-
strate the reusability of the model sets (e.g. goal model, role model, organization
model and domain model) in the early development stages to rapidly prototyping an
adviser finder multi agent system.

The background problem of the adviser finder multi agent system is described as
follow. Students receive Government scholarships to study for a PhD overseas if they
are able to find an adviser within a reputable university. To find an adviser, a substan-
tial amount of knowledge is needed which includes an “advisor domain” like research
areas, research experience, professional activities and so on. These are usually de-
scribed differently among the academics at different institutions. To sustain the
search, it is always believed that a student will browse from one page to another, col-
lect information from several institutions, interpret and understand the information
collected and short list the candidates for potential supervisors. To facilitate the advis-
er finder, we propose an agent oriented adviser finder multi agent system to automate
the adviser finder application. The adviser finder multi agent system accepts the user
request, conducts search across semi-structured data such as academics’ web pages
and returns a list of potential advisers based on the user request.

4.1 Task Knowledge Patterns Reuse in Developing Adviser Finder MAS

As shown in Figure 1, a combined modelling process has been introduced by Sterling
and Taveter [1] to engineer a multi agent system in a more unified way to support the
rapidly prototype of agent oriented system [1]. We refine the combined modelling
process for ROADMAP and AOR that places the knowledge reuse within the model-
ling process, as shown in Figure 1.

Fig. 1. Agent oriented modelling processes

468 W. Cheah, L. Sterling, and K. Taveter

Figure 1 shows how to relate the task knowledge patterns for early agent develop-
ment in the combined modelling process of ROADMAP and AOR methodologies In
the following description, we describe how the task knowledge patterns can be inte-
grated in the modelling processes to rapidly prototype an adviser finder multi agent
system. We present the reuse of the model sets presented in the task knowledge pat-
terns of early stages of agent development. We demonstrate a task to manage adviser
finding (e.g. a task to match information) through pattern.

It is sensible to claim that the predefined knowledge that is presented in the task
knowledge patterns can provide the answer during the requirement elicitation phase for
an agent system. For example, for the adviser finding problem, we can hire a position like
adviserFinder to search the potential adviser which the job description can be derived
from the role model and knowledge for the position will be derived from the domain
model within the task knowledge pattern of ‘selection of relevant source materials’.
However, instead of showing how to reuse the task knowledge patterns during the re-
quirement elicitation, we present the reuse of models set that are presented in the task
knowledge patterns in modelling the goal model, role model, organization model, domain
model at the early stages of agent development as shown in Figure 1.

Fig. 2. Overview of goal model for the adviser finding problem

Stage I Model the goal: The early stage in agent modelling involves modelling goals
and decides roles. Figure 2 shows the overview goal model for the adviser finder mul-
ti agent system. The goals and roles that have been played are derived based on the
study on related kind of system [17]. We can model the requirements through an
overview goal model as shown in Figure 2, the goal of ‘find potential academic advis-
er’ consists of sub-goals like ‘manage adviser finding’, ‘manage adviser search cata-
logs’, ‘handle academic’s site extraction’. We can interpret that those goals rely upon
the people that played the role like adviserFinder, adviserCatalogManager, adviser-
WebExtractor, Student and manager for fulfilling the goals.

 Task Knowledge Patterns Reuse in Multi-Agent Systems Development 469

We can further detail the goal model of ‘manage adviser finding’ according to
practice below. Instead of working from scratch, we can adopt the model sets that
were introduced in the task knowledge patterns for solving our problem at hand. In
working into this process, we presented guideline1 to integrate the task knowledge
patterns in early development stages (e.g. Stage I, Stage II, Stage III and Stage IV).
Assume the developer has accepted all the forces from the pattern description. The
procedures of guideline1 are described below.

1. For each subgoal of a goal model, we can reuse task knowledge patterns for its
further elaboration. Each of the subgoals may be further elaborated with subgoals
from a goal model included by task knowledge patterns.

2. In deciding on roles, we can reuse the roles that are included by task knowledge
patterns. The details of a role model can also be derived from task knowledge
patterns. However, effort is needed to relate a derived role model to the applica-
tion context. The roles involved in an organization can be further refined when
creating the organization model.

3. We can reuse the organization model included by task knowledge patterns. The
organization model can be further elaborated thereafter. For example, we can add
a new role to control the processes involved or some roles can be combined or
can enter into association or aggregation relationships with the other role(s) de-
pending on the application context. The organization model provides a founda-
tion for modelling the interactions between the agents playing the roles of the or-
ganization.

4. When creating the domain model, we can reuse domain entities and relationships
between them from task knowledge patterns. A domain model thereafter needs to
be refined according to the application context.

Fig. 3. Goal model for selection of potential academia adviser

470 W. Cheah, L. Sterling, and K. Taveter

The task knowledge patterns of 'selection of relevant source material' record the
experience for solving the finding problem. As a result, we can reuse the goal model
that is described in the task knowledge pattern to further detail the goal of ‘manage
adviser finding’ as shown in Figure 3. We adopt the goal model that described in
Section 3.1 by relating it to our context. In other words, we relate the role of user with
student, the role of finder with adviserFinder, the goal of 'accept user request' with
'accept student query' and so on to further detail the goals as shown in Figure 2.

Stage II - Model the role model: We relate the role name, responsibilities and con-
straints of the role schema that are presented in the task knowledge pattern as de-
scribed in the Section 3.1 into our application context as shown in Table 1. For
example, we relate the role of ‘Information Finder’ with the role name of the ‘Advi-
serFinder’; the job description of the role (e.g. responsibilities) like query with student
query, traversing with academic profile and so on.

Table 1. Role model of AdviserFinder

Role name AdviserFinder
Description Manage potential adviser finding
Responsibilities Receive incoming student query for adviser finding

Obtain potential adviser listing
-obtaining academia urls or indexing.
-Traversing on academia profile.
-Searching through the academia profile by giving the url
-Perform matching based on student request.
-Create potential adviser list
-Organize potential adviser listing
-Perform ranking and combination of candidate adviser.
=Display the potential adviser listing

Constraints Student query must first assign prior selection.
All the search may be provided with any return.

Stage III- Model organization: The organization model models the arrangement of
the roles involved for task accomplishment. The organization model for the adviser
finding problem is modelled in Figure 4. The organization model is derived from the
selected task knowledge patterns together with the roles that have been modelled from
the overall goal model as shown in Figure 2. For example, within the task type of
‘selection of relevant source material’, the AdviserFinder relies on the request from
the user. The ResourceManager provides information spaces for search by the Advi-
serFinder.

 Task Knowledge Patterns Reuse in Multi-Agent Systems Development 471

Fig. 4. Organizational model for the adviser finding MAS

Fig. 5. Domain model for the adviser finding MAS

472 W. Cheah, L. Sterling, and K. Taveter

Stage IV- Model domain knowledge: Modelling the domain knowledge involves
identifying the domain entities and the relation among the domain entities for the
problem at hand. To model the domain model for the agent system, we can reuse the
domain models presented in the selected task knowledge patterns during this model-
ling process. Figure 5 presents the domain model for adviser finding problem. We can
adopt the domain models according to our application context. In this case, we can
describe the domain entity of Query as StudentQuery, Domain as AcademiaDomain,
Criteria as StudentPreference and AssessmentElement, RelevantContent as Pontentia-
lAdviserDescription, InformationSources as AcademiaWebPage. The domain model
that presents in Figure 5 is the integration among the domain models among the text
extraction pattern and categorization pattern.

We presented the modelling of goal models, role model, organization model and do-
main model at the early stages of multi agent system development (e.g. stage I to stage
IV). We introduce the reuse of the model sets that are provided in the selected task
knowledge patterns when modelling the goal models, role model, organization model
and domain model. It is interesting to show that the task knowledge patterns have shared
the recurring problem and solution and prevent us from reinventing the wheel for devel-
oping the adviser finder MAS. Consequently, we can put much effort to continue the
modelling process for the adviser finder multi agent system at Stage V: decide agent
types; Stage VI: model the knowledge of agents; Stage VII: model interactions between
agents and Stage VIII: model agent behaviours as described in [8].

The screenshot for the adviser finder multi agent system is shown in Figure 7. A
student posts the query through a normal search or advance search from the search by
‘..’ menu. Figure 7 presents the screenshot of a typical search. The student can key in
any search items (e.g. supervisor name, publication, research area and so on). Then
the system returns with a candidate adviser list.

5 Conclusion and Discussion

Task knowledge patterns are typically reusable at the early development stages of a
multiagent system and reusing them supports rapid prototyping of a multiagent sys-
tem. We have proposed an improved template structure in describing the task knowl-
edge and demonstrated how the pattern is reusable in rapidly prototype the adviser
finder multi agent system. In addition to the results reported in this paper, we have
conducted an evaluation of the usefulness of task knowledge patterns for agent devel-
opment. Several questionnaires were prepared for conducting the evaluation. The
questionnaires were designed to assess the pattern content and the learnability and
usefulness of the patterns. A survey was conducted with two Masters students at Tal-
linn University of Technology, Estonia, with novice experience in agent-oriented
software development. These students were respectively required to develop an agent-
oriented recommendation system and an agent-oriented interoperability system for
their Masters Thesis projects. At the beginning of their study, the students explored
the ROADMAP and AOR methodologies. After that, the students were presented with
task knowledge patterns for agent-oriented development. They were required to study

 Task Knowledge Patterns Reuse in Multi-Agent Systems Development 473

the patterns before they started to design an agent-based system. The students had
approximately two months for designing a multiagent system facilitated by task
knowledge patters. Upon completion of the project, the students were provided with
questionnaires to evaluate the task knowledge patterns adopted by them.

In general, novice users (e.g., students) seem to be satisfied with the usage of task
knowledge patterns that have been expressed by means agent-oriented models. Both
of the students surveyed agreed that the task knowledge patterns were useful when
developing multi-agent systems and were easy to learn. According to the surveys,
agent-oriented models were easily able to communicate ideas and concepts behind
task knowledge patterns and both students preferred to adopt the patterns also for
future multi-agent system development. In other words, task knowledge patterns faci-
litated solving the problem at hand for both students. On the other hand, the reviews
also addressed the problem that the content of some patterns lack sufficient informa-
tion. We have seriously considered this feedback and as a result have further refined
task knowledge patterns by introducing expected runtime behaviours into the patterns.
In addition, generality of patterns has been increased. For example, we removed the
goal ‘Content selection’ from the profiling pattern because the content selection really
belongs to the pattern of information finding. We also remark here that conducting a
survey with just two students is naturally not sufficient for obtaining a real picture but
has nevertheless provided us with useful insight and feedback about the application of
task knowledge patterns. In our future research work, we plan to conduct similar sur-
veys with more participants.

References

1. Sterling, L., Taveter, K.: The Art of Agent Oriented Modelling. MIT Press, Cambridge
(2009)

2. Do, T.T., Kolp, M., Pirotte, A.: Social patterns for designing multi-agent systems. In: Pro-
ceedings of the 15th International Conference on Software Engineering and Knowledge
Engineering. Citeseer (2003)

3. Cossentino, M., Sabatucci, L., Chella, A.: Patterns Reuse in the PASSI Methodology. In:
Omicini, A., Petta, P., Pitt, J. (eds.) ESAW 2003. LNCS (LNAI), vol. 3071, pp. 294–310.
Springer, Heidelberg (2004)

4. Luck, M., McBurney, P., et al.: Agent technology: Enabling next generation computing.
In: Agent Link Community, pp. 74–75 (2003)

5. Chandrasekaran, B., Josephson, J.R., et al.: The ontology of tasks and methods. In: Pro-
ceedings of the Eleventh Workshop on Knowledge Acquisition, Modelling and Manage-
ment (KAW 1998), pp. 18–23 (1997)

6. Annamalai, M.: Modelling knowledge for scientific collaboration on the semantic web,
The Melbourne University. PhD (2006)

7. WaiShiang, C.: Patterns for Agent oriented software development, The Melbourne Univer-
sity. PhD (2010)

8. Newell, A.: The knowledge level. In: AI Magazine, Department of Computer Science,
Carnegie-Mellon University (1981)

9. Koutsabasis, P., Darzentas, J.: Methodologies for agent systems development: underlying
assumptions and implications for design. AI & Society 23(3), 379–407 (2009)

474 W. Cheah, L. Sterling, and K. Taveter

10. Lima, E.F.A., Machado, P.D.L., et al.: An approach to modelling and applying mobile
agent design patterns. ACM SIGSOFT Software Engineering Notes 29(3), 1–8 (2004)

11. Schreiber, G.: Knowledge engineering and management: the Common KADS methodolo-
gy. MIT Press (2000)

12. Henderson-Sellers, B., Giorgini, P.: Agent-oriented methodologies. Idea Group Pub.
(2005)

13. Abasolo, J.M., Gómez, M.: MELISA: An ontology-based agent for information retrieval in
medicine. In: Proceedings of the First International Workshop on the Semantic Web,
vol. 3, pp. 73–82 (2000)

14. Tang, C., Xu, L.D., Feng, S.: An agent-based geographical information system. Know-
ledge-Based Systems 14, 233–242 (2001)

15. Loewus-Deitch, D., Herdrick, B.: The Sourcerer: An Expert Human Resource Agent;
Nick, A., Koenemann, J., et al.: ELFI: information brokering for the domain of research
funding. Computer Networks and ISDN Systems 30(16-18), 1491–1500 (1998)

16. Oluyomi, A., Karunasekera, S., et al.: Description templates for agent-oriented patterns.
The Journal of Systems & Software 81(1), 20–36 (2008)

17. Yoshioka, N., Washizaki, H., et al.: A survey on security patterns. Progress in Informat-
ics 5, 35–47 (2008)

18. Zdun, U., Avgeriou, P.: A catalog of architectural primitives for modeling architectural
patterns. Information and Software Technology 50, 1003–1034 (2007)

19. Zambonelli, F., Jennings, N.R., et al.: Organisational rules as an abstraction for the analy-
sis and design of multi-agent systems. International Journal of Software Engineering and
Knowledge Engineering 11(3), 303–328 (2001)

Energy-Aware Agents for Detecting

Nonessential Appliances�

Shih-chiang Lee, Gu-yuan Lin, Wan-rong Jih, Chi-Chia Huang,
and Jane Yung-jen Hsu

Department of Computer Science and Information Engineering
National Taiwan University Taipei, Taiwan

{r97026,r97131,wrjih,r95046,yjhsu}@csie.ntu.edu.tw

Abstract. In the past decades, the amount of electricity used by ap-
pliances has grown dramatically. As we are demanding more electricity,
we should lower the damage to our environment by using energy effi-
ciently. Conservation of energy by looking at one’s habits and notifying
them to turn off unnecessary appliances can help out a lot. This research
develop a framework, which is able to recognize the operating state of
every electrical appliance in a house and figure current user activity. By
analyzing the behavior of using appliances, the correlation between ac-
tivity and appliance can help to detect the nonessential appliance, which
is the appliance does not participate in any user activity. The real user
experimental results show 96.43% in recognizing the operating state of
appliances and 72.66% in detecting nonessential appliances.

Keywords: activity recognition, appliance monitoring, energy
conservation.

1 Introduction

With the progress of the times, life is more convenient than ever before. How-
ever, since electricity is the main energy source of most common equipments
in daily life, every country around the world is now facing the same problem:
the increasing demand of electricity1. From 2005 U.S. Residential Energy Con-
sumption Survey2, the American families consumed 41% of national electricity
ouput3. Energy problem is closely related to every one. In addition, according

� This work was partially supported by grants from the National Science Council,
Taiwan (NSC 96-2628-E-002-173-MY3, NSC 99-2221-E-002-139-MY3, and NSC 099-
2811-E-002-020).

1 Global Energy Issues, World Energy Council, 2006:
http://www.worldenergy.org/documents/p001022.doc

2 Residential Energy Consumption Survey (RECS):
http://www.eia.doe.gov/emeu/recs/

3 Energy Use in Homes:
http://www.eia.doe.gov/energyexplained/index.cfm?page=us_energy_homes

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 475–486, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

 http://www.worldenergy.org/documents/p001022.doc
http://www.eia.doe.gov/emeu/recs/
http://www.eia.doe.gov/energyexplained/index.cfm?page=us_energy_homes

476 S.-c. Lee et al.

to the statistics of Energy Information Administration4, total consumption of
electricity in 2010 is estimated to increase 5% over last year. People have to pay
more attention to energy related issue to avoid energy shortage. The first and
easiest way is “Do not waste electricity”.

Darby’s research [2] raised a conclusion that the more aware of the detailed
energy consumption can provide more incentives to improve energy efficiency.
There are 5-15% energy saving was reached in their experiments. Traditional
electric meter measures power consumption of subscribers. It provides data about
current, impedance, power factor, watt, apparent power, etc. Most people read
this kind of data senselessly, and pay the electricity bill. Our idea is to use a
scientific method to analyze the raw data from a center power meter, and then
determine whether users are wasting energy. It then shows the suggestions to
users in an easily understanding way. For example, to suggest a user to turn off
the light in the kitchen when the user is watching TV in the living room.

The first step is to acquire the state of every electrical appliance in the envi-
ronment. In general, people always plug in and run multiple appliances on the
same circuit, which makes the detection of appliance states a great challenge.
Furthermore, user’s activity is inferred from the acquired appliance states. How-
ever, the individual use varies from house to house and the appliance usage may
vary according to living habits, this also make the problem more complicated.
Finally, with appliance states and user activity, the system filters out the appli-
ances which are wasting energy.

This paper proposes an agent-based framework to detect energy-wasting ap-
pliances. An appliance is wasting energy if it is not necessary in user’s current
activity. We named such appliances Nonessential Appliances. The framework
collect electrical power signal from electric distribution boards to monitor op-
erating states of appliances in real time. The operating states is used to recog-
nize user’s activities. In addition, we propose an activity-appliance model. This
model builds the connection between activities and appliance usages from com-
monsense knowledge. With this model and previous results, the framework filters
out nonessential appliances. As the result, this framework urges people to reduce
power consumption by reminding them to turn off nonessential appliances.

2 Related Work

The most intuitive approach to recognize an appliance in an environment is to
mount sensors on every appliance [5]. With this manner, the unique characteristic
of each appliance is captured. Ito et al. [3] and Saitoh et al. [8] extract features in
power waveform, which includes average power consumption, peak power usage,
crest factor, form factor, etc. Kato et al. [4] apply Linear Discriminant Analysis
(LDA) to extract features. Researchers then analyze the features of appliances
to predict their operating states. Serra et al. [9] utilized clustering techniques
to detect operating states of appliances. Kato et al. [4] applied Support Vector

4 U.S. Total Electricity Consumption Chart, Short-term Energy Outlook, October
2010: http://www.eia.doe.gov/steo/gifs/Fig22.gif

http://www.eia.doe.gov/steo/gifs/Fig22.gif

Energy-Aware Agents for Detecting Nonessential Appliances 477

Machine (SVM) to classify appliances. However, it costs too much to mount a
sensor on every appliance. Furthermore, the deployment and maintenance are
troublesome. These make the approach impractical in real life.

The distribution board is the electricity gateway of an electricity subscriber. It
usually divides an electrical power feed into subsidiary circuits. A non-intrusive
approach to recognize appliance’s operating state is to identify the power usage
from the distribution board. When an appliance is switched between operating
states, it usually generates some electrical noise. Patel et al. [7] took advantage
of these noises to recognize the change of operating states of appliances. Their
approach is impressive, but it disregards energy consumption, which contains
essential information for energy management.

Appliance recognition is getting mature, but its application in energy saving is
just started. MicroSoft Hohm5 provides a Web-based service that can estimate
household energy usage and deliver energy saving recommendations to users.
Google PowerMeter6 provides a simple analysis of the electrical consumption and
users can access information from the iGoogle page. Both Hohm and PowerMeter
provide home energy consumption data that helps users to make better energy
efficient decisions. However, these two services only provide an overview of energy
consumption, and they cannot provide more detailed information like “how many
appliances are running in a house?” Therefore, we present this work to make this
research field more active and bring more possibility.

3 Nonessential Appliance Detection

The Nonessential Appliance Detection problem is to find out electrical devices
that are currently turned on but are not involved in any user’s activity. These de-
vices are wasting electric power; hence, identifying them can help people reduce
their energy consumption. In addition, we call this kind of devices Nonessential
Appliances.

3.1 Problem Formulation

Let A = {a1, a2, . . . , am} be a set of m activities that performed by users in the
house, and P = {p1, p2, . . . , pn} be a set of n electrical appliances. A function
fuse(ai, pj) denotes the relationship between activity ai ∈ A and appliance pj ∈
P , such that

fuse(ai, pj) =

{
true if the activity ai uses the appliance pj
flase otherwise

(1)

Given an activity ai ∈ A, let Pai ⊆ P be the set of required appliances to accom-
plish activity ai. We named Pai as the essential appliance set of the activity ai.
Formal definition of Pai is

Pai = {pj : fuse(ai, pj) = true}
5 MicroSoft Hohm Center (http://www.microsoft-hohm.com/Home/Default.aspx)
6 Google PowerMeter (http://www.google.com/powermeter/about/)

http://www.microsoft-hohm.com/Home/Default.aspx
http://www.google.com/powermeter/about/

478 S.-c. Lee et al.

where ai ∈ A and pj ∈ P .
Suppose that Ac ⊆ A is a set of the user’s current active activities. The

essential appliances of the active activities Ac is formulated as

PAc =
⋃

ai∈Ac

Pai . (2)

Therefore, given a set of currently running appliances Pc ⊆ P , the nonessential
appliance set P̃c ⊆ Pc is defined to be

P̃c = Pc \ PAc , (3)

which is the difference set of Pc and PAc . Our goal is to find all the nonessential

appliance pj ∈ P̃c.

4 Activity-Appliance Model

The most intuitive approach of detecting nonessential appliances P̃c is aware of
the user’s behaviors when they are using electrical appliances. However, most
technologies of activities recognition are intrusive, disruptive, and violated on the
privacy of users. We need a non-intrusive approach to detect the nonessential
appliances. Therefore, we collecting the electrical power signal from distribution
boards and predicting the operating state of appliances. By giving these currently
running appliances, we have to detect the active activities. As people usually
perform a series of activities and use electrical appliances to facilitate their tasks,
we propose the Activity-Appliance Model to make connections of activities and
appliances.

4.1 Model Formulation

Ideally, according to the Boolean function fuse(ai, pj) in Equation (1), the
Activity-Appliance Model constructs relationships between activity ai and ap-
pliance pj , where ai ∈ A and pj ∈ P . We recall the notations of Section 3.1, the
P and A respectively represent the set of appliances and activities. However, in
real life, different users have different appliance usage habits. For example, in
the meal preparation, some people prefer stove to microwave, but almost any-
one can find some use for a microwave. Therefore, in order to define a general
relationship between activities and appliances, we have to relax the definition of
function fuse(ai, pj) and change its return value from the Boolean to a value of
score weighting.

For the purpose of defining a general function fuse(ai, pj), we have to measure
what are the people’s common understandings in activities and appliances. We
utilized the human computation technique to collect the knowledge of daily ac-
tivities and electrical appliances, especially the relationships between them [6].
This human computation game asked players questions, such as “what electri-
cal appliances would be used for cooking?” and “What kind of activity does a

Energy-Aware Agents for Detecting Nonessential Appliances 479

microwave use for?”, etc. Players answer these fill-in-the-blank questions and
contribute their understandings to the activity-appliance model. We also de-
signed yes-no questions for players to validate the others’ answers. Accordingly,
a function fcount(ai, pj) returns how many players agree with the activity ai will
use the appliance pj to accomplish its task. Detailed definition shows as follows:

fcount(ai, pj) =

⎧⎪⎪⎨⎪⎪⎩
l there are l people answer that when they are doing the

activity ai, they use the appliance pj

0 otherwise; no one agree to that doing the activity ai
will use the appliance pj .

For example, if eleven people answer that “people use microwave for cook-
ing”, the function fcount(cooking,microwave) returns 11, where the activity
cooking ∈ A and the appliance microwave ∈ P .

However, for the large combinations of activities and appliances, the resulting
number of occurrence cannot provide much information due to the huge data.
Accordingly, it is essential to rank these combinations and find the proper match
of activities and appliances. To do this, for giving an activity ai and an appliance
pj , we need a function returns the score of the relationship between the activity ai
and the appliance pj. A relaxed function f ′

use(ai, pj) of the function fuse(ai, pj)
can be defined as

f ′
use(ai, pj) = Ψtf (ai, pj)× Ψidf (pj)

where ai ∈ A and pj ∈ P . The Ψtf (ai, pj) and Ψidf (pj) are inspired by the
TF-IDF weight of information retrieval, such that

Ψtf (ai, pj) =
fcount(ai, pj)∑

ak∈A

fcount(ak, pj)

Ψidf (pj) = log
|A|

|{ar : fcount(ar, pj) > 0, ar ∈ A}| .

Function Ψtf (ai, pj) denotes the frequency of that people use the appliance pj
to perform the activity ai. The Ψidf (pj) plays the role of measuring the general
importance of the appliance pj. The |A| in Ψidf (pj) is the cardinality of activity
set A; recall the definition in Section 3.1, |A| is equal to m. For each activ-
ity ar in the set {ar : fcount(ar, pj) > 0, ar ∈ A}, has the connection with the
appliance pj ; that is, the value of function fcount(ar, pj) must greater than zero.

4.2 Active Activity Scoring

Given the currently running appliances Pc ⊆ P , let
−→
Pc be the corresponding

vector of Pc, such that

−→
Pc = [fon(p1), fon(p2), · · · , fon(pn)].

480 S.-c. Lee et al.

The function fon(pj) denotes the operation state of the appliance pj ∈ P and
defines as follows:

fon(pj) =

⎧⎪⎨⎪⎩
1 if pj ∈ Pc; the appliance pj is running currently

0 otherwise, i.e. pj /∈ Pc; the appliance pj is suspended
or power off.

Recall the essential appliances set of activity Pai ∈ P in Section 3.1, we relax
the definition of the essential appliance vector as

−→
Pai = [f ′

use(ai, p1), f
′
use(ai, p2), · · · , f ′

use(ai, pn)], (4)

where p1, p2, · · · , and pn ∈ P .

The Euclidean inner product of
−→
Pc and

−→
Pai is used for predicting the active

activities Ac. For each activity ai ∈ A, we compute the score of the activity ai
to be

fscore(ai) =
−→
Pc •

−→
Pai

=
∑

pj∈P

fon(pj)× f ′
use(ai, pj).

(5)

Consequently, the active activity set Ac ⊆ A contains the element ai ∈ A that
has higher score and the formulation is

Ac = {ai : fscore(ai) ≥ θ}, (6)

where θ is the threshold of the score value. As a result, given the currently run-
ning appliances Pc, the activity-appliance model can predict the active
activities Ac.

4.3 Goal Finding

In this paper, finding nonessential appliances P̃c ⊆ Pc is our goal. Thus far, we
have the currently running appliance Pc and the active activities Ac, whereas
we need to compute the difference set of Pc and PAc . Fortunately, we can use
the Equation (2) to construct the essential appliances PAc , and then achieve the

goal P̃c from the Equation (3).

5 Energy-Aware Agents

Fig. 1 depicts our deployment of an agent-based framework to detect nonessential
appliances P̃c. The input of this framework is the electrical power signal collected
from distribution boards. Equation (3) provides the solution to find out the

nonessential appliances P̃c. In other words, by solving the currently running
appliances Pc and active activities Ac, we can obtain nonessential appliances P̃c.

Accordingly, the Appliance Monitoring Agent monitors electrical power
from power distribution boards, and identifies the currently running appliances Pc

Energy-Aware Agents for Detecting Nonessential Appliances 481

Fig. 1. Energy-aware agents

that are currently consuming electrical energy. In the Nonessential Appliance
Detection Agent, we utilize the relationships between activities and appliances
to build an Activity-Appliance Model, so that we can infer the user’s active
activities Ac, and then compute the essential appliances PAc . As a result, we can

obtain the nonessential appliances P̃c, and the Energy-aware Service Agent
will deliver energy conservation tips to the user.

5.1 Appliance Monitoring Agent

We use a non-intrusive power meter that mounted on each of the power circuit
for measuring the electrical consumption. The Appliance Monitoring Agent col-
lects the raw sensing data as its belief and predicts the corresponding appliance
operating states as its desire. The reason that we predict the operating state of
appliances is to find out which appliance is currently running. However, people
usually plug in and run multiple appliances on the same circuit. It is hard to
detect the operating state of every appliance from a circuit.

According to the waveforms of real power and reactive power, we extract
18 features from the input power signal, including the mean, variance, root
mean square, maximum, minimum, difference, crest factor, form factor, and the
value of maximum divided by the mean. These features are also the belief of
the Appliance Monitoring Agent that uses to predict the operating state of
appliances.

The Appliance Monitoring Agent uses Factorial Conditional Random Fields
(FCRFs) [10] to detect and learn from using appliances. For recognizing ap-
pliances, the features of input power represent the observed variables, whereas
the operating states of appliances represent the hidden variables. We use the
L-BFGS7 as the algorithm of learning process. The Loopy Belief Propagation
(LBP) algorithm [11] is used to perform the message passing. A maximum a pri-
ori (MAP) estimation technique is applied to both of the inference and decoding
processes. In the inference process, MAP simply propagates the maximum possi-
bility value of the operating state to update hidden variables. As a result, MAP
uses the most possible sequences of hidden variables to decode the appliance’s

7 L-BFGS is an algorithm for quasi-Newton optimization. The term L-BFGS stands
for “limited memory BFGS (Broyden-Fletcher-Goldfarb-Shanno)”.

482 S.-c. Lee et al.

operating state. An iteration limit Γ is assigned to guarantee the LBP termi-
nation and convergence [12]. After the LBP max-product algorithm converges
and the MAP probability of each hidden variable is estimated, we can label
every hidden variable by choosing the most likely value according to the MAP
probability. Consequently, output of the Appliance Monitoring Agent is a set of
currently running appliances Pc.

5.2 Nonessential Appliance Detection Agent

From the Appliance Monitoring Agent, the Nonessential Appliance Detection
Agent receives the currently running appliance Pc as its belief. In addition, we
utilize human-based computation to construct the Activity-Appliance Model,
which is also the belief of this agent. Desires of this agent are to predict the
active activities Ac and detect the nonessential appliances P̃c.

The intention of the Nonessential Appliance Detection Agent follows the de-
scription of Section 4. Accordingly, this agent performs a sequence of actions:
building the activity-appliance model, scoring every activity ai, finding the active
activities Ac, and predicting the goal P̃c.

5.3 Energy-Aware Service Agent

The beliefs of the Energy-aware Service Agent include the nonessential appli-
ances P̃c, active activities Ac, and currently running appliance Pc. In order to
send the energy conservation tips to the user, the knowledge base of these tips
is also the belief of this agent. Without doubt the desire is to deliver the energy-
conservation tips to the user.

Currently, our Energy-aware Service Agent simply reminds the user to turn
off the nonessential appliances P̃c and shows the conservation tips to the user.
When contain of active activities Ac or the currently running appliance Pc is
changed, the corresponding notification shows on a LCD display.

6 Experimental Results

In this experiment, a smart power meter is mounted on a distribution board of a
single dormitory room. The distribution board divides electrical power feed into
five circuits. Three circuits are separately allocated to an electric water heater,
an air conditioner, and three ceiling lights. As regards the other two circuits,
one is for the electric oven and a dehumidifier; the other is for small appliances,
such as the hair dryer, battery charger, laptop, lamp, and electric fan.

Our experimental participant is living in this en-suite room. The smart power
meter continuously records electricity usage of the user for two weeks. During the
experimental period, the user can perform any activity without restriction, that
is, this experiment will not disturb the user’s normal daily life. The following
experimental results are use this data set to evaluate performances of appliance
monitoring and nonessential appliance detection.

Energy-Aware Agents for Detecting Nonessential Appliances 483

6.1 Appliance Monitoring

In this experiment, there are 4,671 valid data with 24 different activities. We
deploy several machine learning methods to predict the operating state of ap-
pliances. Each method is run 5-fold cross-validation on the same experimental
data with 64-second half-overlapped sliding window. The evaluation criteria for
the Appliance Monitoring agent include accuracy, precision, recall, and F-score.

A comparison of appliance monitoring methods shows in Table 1, which
presents the average prediction results of the appliance. In addition to the Facto-

Table 1. A comparison of appliance monitoring

Result(%) Accuracy Precision Recall F-score

SVMhmm 88.81 51.62 43.36 46.22
HMM 94.69 78.55 84.13 80.58
PCRFs 96.14 92.70 76.74 83.45
FCRFs 96.43 93.01 79.32 85.06

rial Conditional Random Fields (FCRFs), we implement three other methods for
the comparison, including Parallel Conditional Random Fields (PCRFs), Hid-
den Markov Model (HMM), and Hidden Markov Support Vector Machine8[1]
(SVMhmm). Results show that PCRFs and FCRFs significantly outperform the
other two methods in the comparison of accuracy, precision, and F-score. Both
FCRFs and PCRFs are CRF-like methods, except that the PCRFs only consider
the target appliance’s operating states without refer to the others’ states.

6.2 Nonessential Appliance Detection

In this experiment, we choose six activities, including taking a shower, going
to the toilet, sleeping, using a computer, reading, and blow drying. These six
activities involve ten appliances that we have monitored, they are electric wa-
ter heater, air conditioner, dehumidifier, electric fan, ceiling lights, hair dryer,
battery charger, laptop, and desk lamp. The activity-appliance model calculates
the relationship between these six activities and ten appliances. There are 256
data in our experiments. For the active activities prediction, according to Equa-
tion (6), the activity have the highest score will be picked as the active activity.

In order to verify the Equation (5) can obtain better results, we modified
the scoring function of Equation (5) and replace the function f ′

use(ai, pj) by
Ψtf (ai, pj), that is, the modified score will be∑

pj∈P

fon(pj)× Ψtf (ai, pj),

where activity ai ∈ A and appliance pj ∈ P .

8 SVMhmm: Sequence Tagging with Structural Support Vector Machines,
http://www.cs.cornell.edu/People/tj/svm%5Flight/svm_hmm.html

http://www.cs.cornell.edu/People/tj/svm%5Flight/svm_hmm.html

484 S.-c. Lee et al.

Table 2. Confusion matrix of predicting active activities – Ψtf

Actual activity recall
A1 A2 A3 A4 A5 A6 (%)

Predicted
activity

A1: Sleeping 13 0 3 0 0 0 81.25
A2: Reading 0 0 0 0 0 0 N/A
A3: Using a computer 0 1 36 0 7 0 81.82
A4: Taking a shower 0 0 0 0 0 0 N/A
A5: Going to the toilet 0 5 113 60 3 3 1.63
A6: Blow drying 0 0 0 0 0 12 100.00

Precision(%) 100.00 0.00 23.68 0.00 30.00 80.00

Average precision(%): 38.95
Average recall(%): 66.17
F-score(%): 49.03
Accuracy(%): 25.00

Table 2 presents the results that calculates the score of activity ai by using
the modified score. Each row of Table 2 represents the number of count in a
predicted activity, while each column represents the count of actual activity. Ac-
cordingly, the diagonal element is the number of correct prediction. The symbol
A1 represents the sleeping activity, A2 is for the reading, and so on. For exam-
ple, the value 13 in the row A1 and column A1, means the score function can
correctly predict the sleeping activity for 13 times. In this experiments, there
are 13 test cases for sleeping activity, therefore, the precision of predicting the
sleeping activity is 100%. In addition, the row A1 and column A3 shows that
3 cases have been mispredicted as sleeping activity, but they belong to activity
A3 (using a computer).

We observe that some activities are improperly predicted as going to toilet,
because of these activities will use ceiling lights and Ψtf (going to the toilet,
ceiling lights) has highest value than the others. For example, when we are
reading we always turn on ceiling lights and desk lamp. This is the reason that
the Equation (6) does not use the frequency of an appliance to predict activity.

Results using Equation (5) is shown in Table 3. In this experiment, we only
collect six samples of reading activity, and the precision of predicting reading
activity is 83.33%. It shows that even for the small sample size, the activity-
appliance model can obtain good quality results.

We find that the ceiling lights still affect the results of activity prediction.
There are two activities, using a computer and taking a shower, are still improp-
erly predicted as going to the toilet. Compare Table 3 with Table 2, the accuracy
of predicting the toileting activity is dropped 20%, because of ceiling lights is the
only one electrical device that will be used while the user is going to the toilet.
In addition, for the taking a shower and going to the toilet activities, these two
activities take place in the same room and they use ceiling lights. This is the
reason that some of the bathing activities have been mispredicted as toileting.

In Table 3, most of the activities have higher precision than that of Table 2,
except the going to the toilet and blow drying. These two activities are short term

Energy-Aware Agents for Detecting Nonessential Appliances 485

Table 3. Confusion matrix of predicting active activities – f ′
use

Actual activity recall
A1 A2 A3 A4 A5 A6 (%)

Predicted
activity

A1: Sleeping 13 0 16 0 0 0 44.83
A2: Reading 0 5 7 0 0 0 41.67
A3: Using a computer 0 1 127 0 9 14 84.11
A4: Taking a shower 0 0 0 39 0 0 100.00
A5: Going to the toilet 0 0 2 21 1 0 4.17
A6: Blow drying 0 0 0 0 0 1 100.00

Precision(%) 100.00 83.33 83.55 65.00 10.00 6.67

Average precision(%): 58.09
Average recall(%): 62.46
F-score(%): 60.20
Accuracy(%): 72.66

activities and may concurrently perform with other activities. That is, simply
picks highest score may cause incorrect prediction due to concurrent activities.

7 Conclusion

This paper proposes a multi-agent framework that integrated technologies of
machine learning, information retrieval, and human-based computation to detect
the energy-wasting appliances. We apply a statistic model, the FCRF, to predict
the appliance operating state, such that can detect the running appliances. In
order to build a connection between activities and appliances, a human-based
computational game is developed for gathering the relationships from the huge
Internet users. After people contribute their common knowledge of activities and
appliances, we use the TF-IDF weight technique to build an activity-appliance
model. For giving the operating state of appliances and utilizing the activity-
appliance model, we can easily detect the nonessential appliances.

Experiments show that the CRF-like approaches can obtain 96.43% accuracy.
Results of detecting active activities are 72.66% in average. It is necessary for us
to improve the results of active activities in order to precisely detect nonessential
appliances. In the future, we will try to predict more active activities rather than
just taking the most significant one. The TF-IDF weighting can be adjusted to
satisfy the needs of our problem. In addition, we will continue gathering the
activities and appliances data for generalizing the activity-appliance model.

References

1. Altun, Y., Tsochantaridis, I., Hofmann, T.: Hidden markov support vector ma-
chines. In: Proceedings of the Twentieth International Conference on Machine
Learning (ICML 2003), pp. 3–10. AAAI Press, Washington, DC (2003)

2. Darby, S.: The effectiveness of feedback on energy consumption. A Review for
DEFRA of the Literature on Metering, Billing and direct Displays (2006)

486 S.-c. Lee et al.

3. Ito, M., Uda, R., Ichimura, S., Tago, K., Hoshi, T., Matsushita, Y.: A method of
appliance detection based on features of power waveform. In: Proceedings of 2004
International Symposium on Applications and the Internet, pp. 291–294 (2004)

4. Kato, T., Cho, H., Lee, D., Toyomura, T., Yamazaki, T.: Appliance Recognition
from Electric Current Signals for Information-Energy Integrated Network in Home
Environments. In: Mokhtari, M., Khalil, I., Bauchet, J., Zhang, D., Nugent, C.
(eds.) ICOST 2009. LNCS, vol. 5597, pp. 150–157. Springer, Heidelberg (2009)

5. Kim, Y., Schmid, T., Charbiwala, Z., Srivastava, M.: ViridiScope: design and im-
plementation of a fine grained power monitoring system for homes. In: Proceedings
of the 11th International Conference on Ubiquitous Computing, pp. 245–254. ACM
(2009)

6. Kuo, Y.L., Chiang, K.Y., Chan, C.W., Lee, J.C., Wang, R., Shen, E., Hsu, J.Y.J.:
Community-based game design: Experiments on social games for commonsense
data collection. In: KDD 2009 Workshop on Human Computation (HCOMP 2009),
Paris, France (June 2009)

7. Patel, S.N., Robertson, T., Kientz, J.A., Reynolds, M.S., Abowd, G.D.: At the
Flick of a Switch: Detecting and Classifying Unique Electrical Events on the Resi-
dential Power Line. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.)
UbiComp 2007. LNCS, vol. 4717, pp. 271–288. Springer, Heidelberg (2007)

8. Saitoh, T., Aota, Y., Osaki, T., Konishi, R., Sugahara, K.: Current Sensor based
Non-intrusive Appliance Recognition for Intelligent Outlet. In: ITC-CSCC 2008
(2008)

9. Serra, H., Correia, J., Gano, A., de Campos, A., Teixeira, I.: Domestic power
consumption measurement and automatic home appliance detection. In: 2007 IEEE
International Workshop on Intelligent Signal Processing, pp. 128–132 (2005)

10. Sutton, C., McCallum, A., Rohanimanesh, K.: Dynamic conditional random fields:
Factorized probabilistic models for labeling and segmenting sequence data. Journal
of Machine Learning Research 8 (2007)

11. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its
generalizations. In: Exploring Artificial Intelligence in the New Millennium, ch. 8,
pp. 239–269. Morgan Kaufmann (2002)

12. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free-energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Information
Theory 51(7), 2282–2312 (2005)

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 487–498, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Medical Equipment Maintenance Support
with Service-Oriented Multi-agent Services

Beatriz Lopez1, Albert Pla1, David Daroca2, Luis Collantes3, Sara Lozano3,
and Joaquim Meléndez1

1 eXiT Research Grup, University of Girona, Spain
{beatriz.lopez,albert.pla,joaquim.melendez}@udg.edu

2 Telefónica I+D, Spain
ddaroca@full-on-net.com

3 INDRA, Spain
{lcollantes,slozano}@indra.es

Abstract. Service oriented architectures (SOA) have emerged as an approach to
handle the complexity of enterprise interoperability. Recently, multi-agent sys-
tems have been promoted as a technique to deal with cooperation issues in-
volved in SOA. This cooperation is particularly important in several application
domains, in which different companies are involved in a concrete service dep-
loyment. Agents, among other issues, offer the possibility to decide, if more
than one option is available, providing flexibility and robustness. In this paper,
we describe the agent-based cooperation process we have followed to enable
partner’s cooperation in an equipment maintenance workflow. The use of on-
tologies and relationships with standards is highlighted. The approach is illu-
strated in an hospital scenario considered in the AIMES project.

Keywords: Service oriented architectures, multi-agent systems, ontologies, da-
ta mining.

1 Introduction

Medical equipment maintenance has been a matter of concern to hospital managers,
because they dramatically impact on the patient treatment and waiting lists, particular-
ly when equipment on maintenance is large (as magnetic resonance imaging (MRI)
equipment). To support the daily activity in medical equipment maintenance, some
manufacturers have provided devices with diagnosis capabilities to facilitate mainten-
ance. Thus, a vital signal monitoring is able to provide reports on its status when turn-
ing it on, or upon a user request. Some devices can provide diagnosis as well as
predictive information (prognosis) on the equipment status. In addition, large equip-
ment manufacturers are offering remote maintenance due to several privacy con-
straints, so that they are bypassing the hospital maintenance information systems and
connecting their particular devices to their costumer support department. Thus, infor-
mation from medical equipment is generated in the device level and gathered by
either users, technicians or remote systems. Finally, the maintenance department of

488 B. Lopez et al.

the hospital receives information by means of phone calls or similar personal commu-
nications, about the status or intervention on large, complex equipment.

Nowadays, IT offers a lot of possibilities to improve this way of working. Particu-
larly, the recent convergence of service oriented architectures (SOA) with semantic
web in what is known as semantic web services (WS) enables enterprise interopera-
bility, achieving enterprises collaboration and maintaining the internal process of each
company in privacy. What is more important is that web services facilitates the mod-
eling of the complete process involved in a maintenance equipment intervention.
Thus, services can be composed in different ways thanks to management tools as
BPEL4WS [1].

Recently, agent technology has enhanced service oriented architectures by incorpo-
rating flexibility and versatility [1,2]. Agents, among other issues, offer the possibility
to decide, when and how to deploy a service, and they are able to adapt their behavior
to changing circumstances. Thus, service coordination among distributed enterprises
is achieved by means of agent negotiation. On the other hand, agents also offer a way
of brokering services, as proposed in [3,4]. In this line, service composition at the
inter and intra enterprise levels can also be enhanced. In this context, ontologies play
a crucial role to guarantee interoperability.

Our work is concerned with the incorporation of agent technology in SOA at these
two levels: inter and intra enterprise. On the one hand, inter enterprise collaboration
requires from an ontology – speak the same language, unify the interface with all possi-
ble manufacturers. On the other hand, intra enterprise concerns workflow monitoring at
the business level, as all the medical equipment maintenance operations being carried
out so that it is guaranteed they finish at their due date. We explain along this paper how
is our approach to this kind of integration of agents, ontologies and SOA.

Our work is being developed inside the AIMES project [10], “Advanced Infra-
structures for Medical Equipment and Services”, as an attempt to provide an IT infra-
structure to hospitals so that they can optimize the service workflow in a care domain
by reducing equipment downtimes. This document reviews and extends the work
presented in [2].

This paper is organized as follows. First we provide in Section 2 the description of
the proposed system architecture in order to enable the monitoring of the maintenance
operations. Next, we analyze three case studies on Section 3. We discuss some related
work in Section 4 and we end the paper in Section 5 with some conclusions.

2 Architecture for Medical Equipment Maintenance

Our aim is to develop an infrastructure that can help hospital maintenance managers
in their daily duties. For this purpose, we propose a service oriented architecture that
models the medical equipment maintenance process and then helps the user to moni-
tor the current activities: which of them are in due date, which of them are delayed,
what resources to re-assign in case of maintenance overload, etc. Observe then, than
our novelty in the medical domains relies on providing a tool for workflow monitor-
ing (actions at the business level), and we differentiate our contribution from pure
equipment monitoring (see [11] for a comparison). Monitoring the status of a medical
equipment should be something already provided by large equipment (self diagnosis).

 Medical Equipment Maintenance Support 489

Thus, first of all we analyze the different functionalities needed for supporting
medical equipment maintenance, and we define the corresponding services required to
achieve them. Since the process is complex, we propose the use of agents to make
service coordination more flexible. Thus, agents are used for two purposes: monitor-
ing and negotiating. On one hand, for each maintenance process being active, there is
a workflow monitoring agent as explained below. On the other hand, negotiation
agents allow the synchronization of the activities of the in house technicians with the
external manufacturers when required. Finally, for interoperability purposes, we pro-
pose to use an ontology based on medical standards.

2.1 Services

Up to thirteen services have been identified in a first approach to support medical
equipment maintenance (see Table 1). They are conceptually depicted in Figure 1
together with the different interfaces required among them. All of the services can be
classified and described according to their role in the architecture. Thus, we have
services related to information sources, historical data services, equipment services,
maintenance management services, and external services.

Firstly, there are four services related with information: the facility management
service (FMS), the healthcare organization management service (HOMS), the hospital
information service (HIS) and the equipment localization service (ELS). The FMS is
in charge of dealing with static information about devices (adding a service, removing
an old one, spare parts replaced, technical handbook, troubleshooting documents,
etc.). The HOMS provides information about the available technical staff for doing
maintenance interventions, including their expertise and training on the medical
equipment. The HIS provides information about the availability of medical equipment
for maintenance purposes (i.e. when they are not scheduled for patient care). Finally,
the ELS is related to dynamic information of devices so that they can be localized
when required. For this purpose, RFID technologies is integrated in this service.

Table 1. Summary of services

Information sources FMS Facility management service
HOMS Healthcare organization management service
HIS Hospital information service
ELS Equipment localization service

Historical data IDS Infrastructure data service
EPS Equipment predictive service
SS Statistics service

Equipment CMS Condition monitoring service
MMS Maintenance management service
MSM Medical service management
TTS Trouble ticketing service

Maintenance management SCS Service centre service
MES Medical equipment service

490 B. Lopez et al.

Fig. 1. Conceptual design of the different services involved in medical equipment maintenance
workflow monitoring

Secondly, there are several services related to the management and treatment of
historical data. They are the infrastructure data service (IDS), the equipment predic-
tive service (EPS) and the statistics service (SS). The IDS is in charge of storing all
the historical information regarding maintenance operations. The EPS uses the infor-
mation kept by the IDS in order to apply different data mining tools so that different
patterns can be extracted about equipment and maintenance workflow and predictions
can be generated. Finally, the SS provide different statistics in order to know, for
example, the real cost of an equipment in its life cycle. The statistics can help the
hospital responsible when dealing with new equipment investment decisions.

Thirdly, there are a set of services related to maintenance workflows: the condition
monitoring service (CMS), the maintenance management service (MMS), the medical
service manager (MSM) and the trouble ticketing service (TTS). The CMS deals with
the status information of medical equipment in order to determine maintenance inter-
ventions. The MMS is responsible of setting up the appropriate maintenance opera-
tions, according to the evaluations performed by the CMS, and tracing them. The
MSM coordinates the equipment maintenance activities with patient scheduling,
among others. The TTS generates a trouble ticket for every maintenance workflow
instantiation and keeps the information about them up to date.

Fourthly, there are the external services. They represent collaborations with other
enterprises or equipment. They are the service centre service (SCS) and the medical
equipment service (MES). The SCS communicates with remote service providers.
These services are especially helpful with large equipment, since their manufacturers
provide external maintenance. On the other hand, the MES is responsible for dealing
with the data acquisition of the remaining equipment of the hospital.

 Medical Equipment Maintenance Support 491

Fig. 2. Services and workflows

Services are combined into workflows which model business activities (see Figure
2), in a typical Service Oriented approach. When a business activity should be dep-
loyed, a workflow instance is created; thus, different workflow instances can run con-
currently (see Figure 3).

2.2 Introducing Agents

There are two services that require special decision making features that make them
suitable to be designed by using the agent paradigm. They are the MMS and the SCS.

On one hand, the MMS trace all the maintenance workflows instances being ex-
ecuted at a given moment inside a company (intra-company communication). To
coordinate the different maintenance inventions, we can model each workflow in-
stance as a workflow monitoring agent (WM), so that it introduces flexibility to the
architecture when doing this coordination.

WM agents can be organized in a multi-agent architecture according to several cri-
teria, as the in-house technician responsible of the maintenances and the kind of med-
ical equipment, among other. An additional agent should also assume the role of
coordinator, dealing with possible preventive and predictive issues (see Figure 4).

In principle, we prefer the agent organization based on the kind of equipment:
small, medium and large, since different technicians can be assigned to the same
maintenance intervention. Moreover, the experience of each technician is related also
to the kind of equipment. In this sense, we distinguish different types of equipment
according to their diagnosis capabilities, as follows:

- Small: devices without diagnosis capabilities and non repairable equipment.
- Medium: devices with the ability for auto-diagnosis.
- Large: devices without prerequisites for auto-diagnosis.

Thus, WM agents can be organized accordingly.

492 B. Lopez et al.

Fig. 3. Workflow instances

On the other hand, the SCS, responsible of third party interactions in maintenance,
can also be implemented by means of agents. This situation is especially important in
large equipment, were external technicians intervention is usually performed. That is,
large equipment cannot be diagnosed by in-house technicians due to some manufac-
turers’ constraints. Instead, medical equipment manufacturers, as Siemens or Dräguer
provide remote access services that connect their equipment with the technical manu-
facturers own staff (outside the hospital). As a consequence, the final communication
between in-house and external technicians is usually performed by informal means, as
phone calls or personal communications, incurring in some maintenance delays due to
some kind of lack of understanding. The SOA offers in this sense, by means of the
SCS service, the possibility of connecting both business models: the hospital main-
tenance and the manufacturer’s maintenance (inter-company communication). There
should be a SCS agent per each remote provider, and they should be provided with
negotiation capabilities. The simplest ones could be only aware of the maintenance
contract and to assure that it is satisfied. However, the possibility of dealing with the
different parts involved in the maintenance process, as arrival of spare parts, in-house
download of equipment information, filling up repairing questionnaires, etc., should
be also considered.

2.3 Using Ontologies

The proposed architecture highlights the heterogeneity of devices and maintenance
teams commonly present in hospitals’ infrastructure (different manufacturers working
with different proprietary formats, different data communication levels…). In this
setting, it is necessary to provide an environment where various devices, maintenance
systems and technicians can easily connect and communicate to the system, in a “plug
and play” way, effectively overcoming problems that arise from the heterogeneity of
such devices.

A solution to reconcile different data formats and models is to build a unified do-
main model. Two main issues need to be studied in order to build this unified view of
the domain: is there any standard that can serve to this purpose?, how can this stan-
dard be introduced in the proposed architecture? We following address these ques-
tions, by suggesting the use of ontologies as a possible solution.

 Medical Equipment Maintenance Support 493

Fig. 4. Two possible workflow monitoring (WM) organizations with agents. Top: each
workflow instance is monitored by a WM-Agent. Bottom: WM-Agents are grouped according
to different maintenance workflow typologies.

There are some standards in the health domain that could be applied to the archi-
tecture presented in this paper. Standards like ISO 9001:2008 or ISO 13485:2004
cover part of the infrastructure needs like medical devices quality management. The
choice of the ISO11073 is not arbitrary and is well founded in major vendors (Sie-
mens Medical, Dräger, GE of Philips), health authorities (NHS National Programme
for Information Technology (UK), Federal Drug Administration Center for Devices
and Radiological Health (US)) and user interests support it.

In order to use the ISO11073 standard in the system, it is necessary to ensure the
correct adaptation of devices’ connection and communication to the standard, in the
heterogeneous domain the architecture is targeted to. Different modeling techniques
can be analyzed in order to conclude which of them provides more benefits for the
system as a whole (in terms of integration, communication or usability). But the ob-
jective is not only to build the model that covers the standard but also to provide an
added value (supplementary knowledge about devices) which supports to future in-
corporation of predictive maintenance tools (as explained in [12], for example). In
this direction, one important aspect that should be taken into account in the election of
the technique to use, would be the possibility to establish semantic relations between
devices present in the hospital infrastructure in order to extract new knowledge for
building predictions about devices behavior and failures (e.g. common heat sensible
component in different devices and conditioning air failure in the room, the situation
drives to a potential failure of these devices).

A possible solution is to use taxonomies, as a hierarchical relationship based sys-
tem, represented by standardized keywords applied to the specific domain and

494 B. Lopez et al.

fulfilled the ISO11073 standard. In this case a unified modeling is provided, and the
hierarchical relationships between devices are provided. But the impossibility of ex-
tracting any other relation between devices apart from hierarchical (no possible to
answer what are the devices that have the heat sensible components and are in the air
failure room) highlights the limitation of extract conclusions with enough quality to
improve system results.

Ontological modeling goes one step further than taxonomies. The use of the Web
Ontology Language (OWL), for example, allows defining relations between several
different concepts giving a complete description of the domain. The hierarchy of
terms in the modeled universe is flexible and new instances can be easily added using
the concepts defined in the basic reference pattern. Using ontologies it is possible to
model the exterior appearance of the devices, the data types generated, the medical
data provided, communication features such as protocols or addresses, the location of
the device in the assistance facilities, etc. All this information can be considered as a
whole in order to infer more knowledge e.g. from relations between concepts. Addi-
tionally, ontologies provide information consistence, an important aspect to detect
failures in the devices’ work. Finally, a more complete taxonomy can be (dynamical-
ly) obtained attending to multiple, heterogeneous attributes of the device.

Some open functionality enabled by ontologies could be:

- Grouping and classification of medical equipment by their use (patient devices
against medical staff devices…).

- Grouping and classification by components (same PSU, monitor…) .
- Grouping by location: plan maintenance activities (devices in the same stage,

same kind of devices, call a 3rd part maintenance service to examine all the
devices of a particular brand…)

- Workflows of use (after use device1, always is used device2)
- Maintenance calendar: last revision, last repair, next scheduled maintenance

activity…
- Communication errors: communication protocol A, period of time X between

messages, last NACK message, last message X+n seconds then network failure
(inference), device shut down…

- Device failure: last medical device measure, medical value threshold, sensor
tolerance, then sensor failure (inference).

3 Use of the Architecture

In this section we describe three different case studies of the use of the architecture
corresponding to three different maintenance interventions: starting up a workflow
instance (i.e. starting a preventive maintenance operation), reactive and predictive
interventions on workflow instances.

 Medical Equipment Maintenance Support 495

Fig. 5. Preventive maintenance intervention

Fig. 6. Reactive maintenance intervention

3.1 Starting Up a Workflow Instance Monitoring

Preventive maintenance is a schedule of planned maintenance actions aimed at the
prevention of breakdowns and failures. The primary goal of preventive maintenance
is to prevent the failure of equipment before it actually occurs, according to periodi-
cally planned revisions following manufacturers’ recommendation.

Long-term benefits of preventive maintenance include improved system reliability,
decreased cost of replacement, decreased system downtime, and better inventory
management. Long-term effects and cost comparisons usually favour preventive
maintenance over performing maintenance actions only when the system fails. Final-
ly, the final object of preventive maintenance is to improve the lifecycle of a system.

Preventive maintenance interventions are decided in the CMS and handled by a
WM agent under the MMS (as shown in Figure 5). The MMS has access to the actual
medical equipment schedule (by means of the MSM) in order to weight the priorities
of actions to take. Otherwise, to manage the maintenance actions, they have a
'priority' number, according to their importance. Other services involved are the TTS,
that keeps track of all the maintenance activities performed and their due dates, the
SCS that intervenes in case of large devices, and the HOMS that informs about the
available in-house technicians and scalability information, among other rules. The

496 B. Lopez et al.

fixed time intervals for preventive maintenance are determined by rules of operation
but with the evolvement of reliable prediction these rules can be changed.

In this scenario, WM agents in MMS help on deciding about the allocation of re-
sources. Even if a maintenance operation takes longer than usual, it could send a
warning message. Moreover, and in case that the maintenance operation involves
dealing with a third-party service, agents should negotiate thanks to the ontology.

3.2 Reactive Intervention

Reactive maintenance is a response action to workflow deviation aimed to correct the
problem. The main task in a reactive maintenance is to identify the subjects involved,
understanding the business process, understanding the information and communica-
tion technology used in the process and identification of problems within the process.
In our architecture, reactive maintenance operations are handled by the TTS: when a
maintenance activity arrives to its due date without being complete, the TTS generates
an alarm and starts a reactive intervention on the workflow instance, as shown in Fig-
ure 6. The main steps involved are similar that the ones of the preventive intervention,
because a revision and escalation of the activities of the maintenance workflow
should be considered/revised.

In this scenario, MMS as agents help on re-scheduling the maintenance operations
if, the reactive, urgent one, cannot be started because there are no resources available
(e.g, because an overload on maintenance activities).

3.3 Predictive Workflow Maintenance

A predictive maintenance has as target to anticipate potential problems could appear
in a maintenance action or process and to ensure the QoS, the availability and the
continuity which are needed in the equipment present in a hospital. The predictions
are built using the historical experience (data) in order to extract patterns and conclu-
sions and to prepare corrective plans to improve future maintenance actions. For a
high quality predictive system, it is imperative to have a wide information source in
order to extract the better knowledge about the infrastructure. In our architecture,
there are different services involved with information sources: equipment status and
location, technical/medical profile and availability, and patient scheduling among
others, and such data are used to build the system knowledge by using mainly two
techniques: data mining techniques and equipment ontological modeling.

The IDS compiles the information of the overall system, and manages and stores it
in historical databases. It has an interface with the other services in charge to save and
work with current information the system receives at the moment. The EPS applies
data mining techniques to the historical databases and builds the knowledge database
which, together with knowledge inferred from equipment model based on ontologies,
is used by the predictions engine. Such engine defines predictions of potential prob-
lems that are use to define new or improved maintenance plans attending to potential
failures in the equipment, future availability of technical staff by profile or patient
scheduling requirements.

 Medical Equipment Maintenance Support 497

In this scenario, MMS as agents help on deciding about the opportunity of starting
the predictive operation, if there are no resources available (as for example, because
an overload on other, more urgent, maintenance activities). And then, the agent could
postpone (if there is enough margin before the equipment predicted failure) the main-
tenance operation for a while.

4 Related Work

There are several previous projects related to equipment maintenance, as PROTEUS [5] or
DYNAMITE [6]. The former project focus on medical equipment also, but mainly related
to operations. Our work is more related to workflow improvements. On the other hand,
DYNAMITE is mainly concerned with prediction issues, while in the present work all
kind of action issues when tracking a maintenance workflow are considered: failures,
preventions and predictions.

Another interesting work is [7], in which the authors propose a methodology for
dynamically changing workflows in a controlled way. This work is complementary to
our in the sense that the authors are explicitly dealing with what happens when
workflow instances have to be changed due to escalation issues, for example.

Finally, the use of agents for workflow management in business has been a matter
of study recently. For example, Wu et al.[8],use agents to control the authorization
operations in a given framework. In [9] a mechanism based on agents is proposed to
monitor workflows in order to tackle uncertainty in the business processes.

5 Conclusions

Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing distri-
buted capabilities that may be under the control of different ownership domains. Re-
cently, the use of agents in SOA improves the coordination of the different services of
a SOA at different levels (inter and intra enterprise). In this paper we propose a SOA
based on multi-agent systems to deal with workflow monitoring in a medical equip-
ment maintenance scenario.

We have described our architecture at the conceptual level. Then, we have shown
how agents can be used to handle the tracing of the different maintenance workflow
instances being executed, as well as to negotiate with different external technicians
involved in the process. In this scenario, where interoperability plays a crucial role,
the use of standards for dealing with equipment information, as the ISO 11073, can
provide some advantages for future prediction tasks. All this information should be
gathered in an ontological model to boost interoperability and offer a tool to infer
complementary knowledge about the domain.

The architecture is the result of a work inside the AIMES consortium. It is a first
approach to deal with the monitoring issues on maintenance operations, with the final
goal of providing a global infrastructure for medical equipment maintenance man-
agement. The SOA and all the services proposed come after the study of maintenance

498 B. Lopez et al.

management of twelve German hospitals of different size [11]. Currently there is a
prototype demonstrator being tested and evaluated by the staff of a German hospital.

Acknowledgments. Thanks to the representatives of the contributing enterprises, who
belong to the EU-Project “AIMES – Advanced Infrastructure for Medical Equipment
and Services”, for the constructive subject-specific collaboration. This project t is
encouraged by the German BMBF (support code 01ISO8001E) and Spanish Avanza
I+D programme (support code TSI-020400-2008-47) within the EU-programme
ITEA2.

References

1. Anane, R., Li, Y., Tsai, C.-F., Chao, K.-M., Younas, M.: An Agent-Based Compositional
Framework. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds.) APWeb 2005.
LNCS, vol. 3399, pp. 579–584. Springer, Heidelberg (2005)

2. Lopez, B., Martín, A., Daroca, D., Meléndez, J., Lozano, S.: Medical equipment mainten-
ance workflow monitoring with service-oriented multi-agent services. Presented at 7th In-
ternational Conference on Service Oriented Computing (ICSOC 2009) (Industry Track),
Stockholm, Sweden, November 24-27 (2009)

3. Zarour, N., Boufaida, M., Seinturier, L., Estraillier, P.: Supporting virtual enterprise sys-
tems using agent coordination. Knowledge and Information Systems 8, 330–349 (2005)

4. Huang, C.J., Trappey, A.J.C., Yao, Y.-H.: Developing an agent-based workflow manage-
ment system for collaborative product design. Industrial Management & Data Sys-
tems 106(5), 680–699 (2006)

5. Bangemann, T., Rebeuf, X., Reboul, D., Schulze, A., Szymanski, J., Thomesse, J.P.,
Thron, M., Zerhouni, N.: PROTEUS: Creating distributed maintenance systems through an
integration platform. Computers in Industry 57, 539–551 (2006)

6. Holmberg, K., Helle, A., Halme, J.: Prognostics for Industrial Machinery Availability. In:
POHTO 2005 Int. Seminar on Maintenance, Condition Monitoring & Diagnostics, Oulu,
Finland (2005)

7. Reichert, M., Dadam, P.: ADEPTflex—Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Information Systems 10, 93–129 (1998)

8. Wu, S., Sheth, A., Miller, J., Luo, Z.: Authorization and Access Control of Application
Data in Workflow Systems. Journal of Intelligent Information Systems 18(1), 71–94
(2002)

9. Wang, M., Wang, H.: Intelligent Agent Supported Flexible Workflow Monitoring System.
In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS,
vol. 2348, pp. 787–791. Springer, Heidelberg (2002)

10. AIMES project, http://www.aimes-project.eu/
11. López, B., Meléndez, J., Wissel, H., Haase, H., Laatz, K., Grosser, O.S.: Towards Medical

Device Maintenance Workflow Monitoring. World Academy of Science, Engineering and
Technology 54, 103–109 (2009)

12. Meléndez, J., López, B., Millán-Ruiz, D.: Probabilistic models to assist maintenance of
multiple instruments. In: 14th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), Palma de Mallorca, Spain, September 22-26 (2009); CD
Proceedings. Ref. 004774. Copyright: 978-1-4244-2728-4/09/$25.00 ©2009 IEEE

An Agent-Oriented Approach to Service

Analysis and Design

Hoa Khanh Dam and Aditya Ghose

School of Computer Science and Software Engineering
University of Wollongong

Northfields Av, Wollongong, NSW 2522, Australia
hoa@uow.edu.au, aditya@uow.edu.au

Abstract. The agent paradigm, with its new way of thinking about soft-
ware systems as a collection of autonomous, flexible and robust agents,
offers a promising solution for modelling and implementing distributed
complex systems. Intelligent agents and services share a substantial num-
ber of key concepts such as autonomy, reactivity, loose coupling and
strong encapsulation. There has been, however, little work on leverag-
ing such a deep connection between agents and services. In this paper,
we argue that agent-oriented software engineering (AOSE) provides an
important basis for service analysis and design at the business service
level. In particular, we show how concepts and techniques in AOSE can
be used to analyse and model business services in the context of service
ecosystems.

1 Introduction

We now live in a growing services-based economy in which every product to-
day has virtually a service component to it [1]. In this context, many services
interact with one another in different ways in order to meet growing customer
demands. Business domains involving large and complex collections of loosely
coupled services provided by autonomous enterprises are becoming increasingly
prevalent. For example, there are multiple services on offer at an international
airport. Some rely on others for execution. There is a passenger transport service
(taking a person from one airport to another), which relies on the baggage han-
dling service, a security screening service, a business class lounge service and so
on. Each of those services can be offered in other business contexts. For instance,
the baggage handling service can be independently used for cargo air-freighting,
or the security screening service can be independently offered in other high secu-
rity venues. Such interactions among and between independent and autonomous
services are what define a service ecosystem [2]. The emergence of such an ecosys-
tem can be seen in various places such as in the form of Shared Service Centres
providing central, standardised services from different agencies or departments
in the public sector [3] or a Web service ecosystem on the Internet where Web
services providers are interconnecting in their offerings in unforseen ways [4].

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 499–510, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

500 H.K. Dam and A. Ghose

Therefore, there is an increasing demand to design and build high quality
service ecosystems. However, developing such an ecosystem of services is a chal-
lenging task due to their loosely coupled nature and openness, and the autonomy
of their participants. In fact, each service within an ecosystem are autonomous
in which they should operate independently and make decisions without direct
intervention of other business partners. Individual services should have their
own thread of control and have their own objectives. In order for services within
an ecosystem to fulfil both their individual and overall objectives, they need to
interact with one another. However, establishing loosely coupled collaboration
between autonomous services is still a critical challenge in developing a service
ecosystem [5]. In this context, a key question is how to analyse, design and model
services, their capabilities and their related business processes in such a way that
services have autonomy over their choice of action and have ability to initiate
(and respond to) interactions in a flexible manner.

Since the 1990s, intelligent agent technology has evolved rapidly along with
a growing number of agent languages, architectures, and theories proposed in
the literature. The emerging agent-oriented paradigm, with its potential to sig-
nificantly improve the development of high-quality and complex systems, has
attracted an increasing amount of interest from the research and business com-
munities. Indeed, there have been numerous agent-based applications in a wide
variety of domains such as weather alerting [6], business process management
[7], holonic manufacturing [8], e-commerce, and information management [9]. A
software agent is a piece of software which is situated in an environment, acts on
its own and interacts with other similar entities to achieve some design goals [10].
An agent also works pro-actively to pursue certain goals while, at the same time,
it responds in a timely fashion to changes that occur in its environment. Agents
can interact with other agents and humans with the aim of accomplishing their
goals. This agent view provides a well suited level of abstraction for modelling,
an effective way of decomposing, and an appropriate method for dealing with
the dependencies and interactions in complex software systems [11].

There are strong connections between between agents and services, and are to
some degree recognized and addressed in the literature (e.g. [12,13]). Similarly
to agents, services can be can be viewed as autonomous, reactive components in
a loosely-coupled architecture. Principles such as strong encapsulation, loosely
coupling are well-supported in agent-oriented methodologies. This paper will
argue that agent-oriented software engineering provides an important basis for
analysis and modeling of service ecosystems. We will show that decomposing the
problem space of a service ecosystem in an agent-oriented way is very effective.
We will also explain why it is appropriate to apply an agent-oriented philosophy
to the modelling and managing relationships and interactions within service
ecosystems in such a way that the dependencies and interactions in those complex
ecosystems are effectively dealt with.

The paper is structured as follows. In the next section, we provide a brief
overview of agent-oriented software engineering and highlight some of its key
advantages. We then describe how AOSE can be adapted to service analysis and

An Agent-Oriented Approach to Service Analysis and Design 501

design in section 3. Finally, we conclude and outline some future directions for
this research in section 4.

2 Agent-Oriented Software Engineering

Agent Oriented Software Engineering (AOSE) is a promising new approach to
software engineering that uses the notion of agents as the primary method for
analysing, designing and implementing software systems [11]. The effectiveness
of AOSE resides in its ability to translate the distinctive features of agents
into useful properties of (complex) software systems and to provide an intuitive
metaphor that operates at a higher level of abstraction compared to the object
oriented model.

The technical embodiment of agency can lead to reduced coupling, result-
ing in software systems that are more modular, decentralized and changeable.
Indeed, the autonomous property of agents can be viewed as encapsulating invo-
cation. Any publicly accessible method of an object can be invoked externally,
and once the method is invoked the object performs the corresponding actions.
On the other hand, when receiving a message, an agent has control over how it
deals with the message. This ability to encapsulate behaviour activation (action
choice) is very useful in open environments in which the system consists of organ-
isations that have different goals [11]. Additionally, the robustness, reactiveness
and pro-activeness also results in reduced coupling [14]. Once an agent acquires
a goal, it commits to achieve the goal by possibly trying different alternatives in
responding to changes in the environment. This means that there is no need for
continuous supervision and checking since the agent solely takes responsibility
for accomplishing its adopted goals. As a result, it leads to less communication
and thus reduced coupling.

Loose coupling and strong encapsulation brought by agents are important,
especially because they facilitate the process of evolving software by localising
changes to an agent or a group of agents. For instance, the BDI architecture (dis-
cussed in the previous section) can be used to model and implement goal-directed
process selection [15]. Traditionally, the calling process contains the names of the
called processes (and possibly other information such as the locations, the data
needs, or even the implementation), and the conditions specifying which (pro-
cess) to call in which circumstance. The major disadvantage of this conventional
approach is that the calling process is dependent on the called processes, and
thus they are not able to be developed independently of one another. A goal-
directed approach can separate the conditions of use from the calling processes
and place them in the called processes. As a result, processes become loosely
coupled and process selection is made dynamically at run time based on the
usage context. In addition, if any chosen process fails, the call is made again (i.e.
reposted) and a new matching process is invoked. This offers a better and more
automatic handling of exceptions or failures. Furthermore, called processes can
be created or changed without affecting the existing ones and the calling process.
These benefits multiply each time the called process is reused in other calling
processes.

502 H.K. Dam and A. Ghose

In addition, agents can lead to the expansion of functionalities, complexities
and quality of the real world applications [16]. For example, multi-agent systems
with a number of autonomous agents suits the highly distributed environment
where such agents are able to act and work independently to each other. In
addition, the inherently robust and flexible properties of multiagent systems
allow them to work in a more dynamic and/or open environment with error-
prone information sources. These properties significantly increase the reliability
and failure-tolerance of the system in terms of autonomously recovering from
failure and adapting to changes in the environment. Therefore, issues such as
improving the unforeseen reuse of software components, developing self-managed
software systems can be better addressed using the ideas of multi-agents.

It has also been argued that AOSE, equipped with the rich representation
capabilities of agents, is suitable (and reliable) for modelling complex organisa-
tional processes [17,9,16]. Jenning and Wooldridge in [18,11] have shown that
agent-orientation facilitates complexity management in three aspects: decompo-
sition, abstraction, and organisation. Firstly, they argue that decomposing the
problem space of a complex system in an agent-oriented way is very effective. Sec-
ondly, they are able to demonstrate the ability of agents in representing high-level
abstractions of active entities in a software system, and consequently reducing
the gap between business users and system architects. Finally, they explain why
it is appropriate to apply an agent-oriented philosophy to the modelling and
managing of organisational relationships in such a way that the dependencies
and interactions in those complex organisations are effectively dealt with.

As agents have been increasingly recognised as possibly the next prominent
paradigm of developing software, there has been a growth of interest in agent-
oriented software engineering. A significant amount of AOSE work has focussed
on developing new methodologies and tools for software development using the
agent concepts. In fact, as far as we are aware of, there have been nearly fifty
agent-oriented methodologies proposed to date [19]. Those methodologies (e.g.
Tropos [20], Gaia [21], Tropos [20], Prometheus [14], O-MaSE [22], PASSI [23]
etc.), Prometheus [14]) offer notations and models, methods and techniques, pro-
cesses and (for some methodologies) tool support that a software developer can
use to develop an agent-based application. Recent studies (e.g. [24]) have shown
that AOSE methodologies provide reasonable support for basic agent-oriented
concepts such as autonomy, mental attitudes, pro-activeness, and reactiveness.
In the next section, we will show how several ideas and techniques proposed in
AOSE methodologies can be adapted to be used in the context of service analysis
and design.

3 The Case for AOSE to Service Analysis and Design

3.1 Service Identification

A crucial task of service analysis and design is identifying service candidates.
The importance of service identification is amplified when the target system
is a service ecosystem which consists of a large number of services. Existing

An Agent-Oriented Approach to Service Analysis and Design 503

work (e.g. [25,26,27]) tend to focus on proposing techniques for describing and
decomposing business services and fail to address the important issue of how such
services can be identified at the first place. Since services are the fundamental
entities in service-based systems, we believe that a critical requirement for an
service analysis and design methodology is to assist the developers identify the
services constituting the system.

A service ecosystem can be considered as an organisation of services. This view
matches with AOSE methodologies. In fact, a large number of AOSE methodolo-
gies adopt an organisational view of the world and encourage a designer to think of
building agent-based systems as a process of organizational design. The software
system organisation is similar to a real world organisation. It has a certain num-
ber of entities playing different roles. For instance, a university organisation has
several key roles such as administration, teaching, research, students, etc. These
roles are played by different people in the university such as managers, lecturers,
students, etc. Different roles in an organisation interact with each other to achieve
their own goals and also to contribute towards the overall goals of the organisation.

Based on that motivation, a common technique used in most of AOSE method-
ologies to deal with agent identification is to start from identifying roles. Agents
are then formed by grouping these roles into “chunks”. There are different tech-
niques and models provided by AOSE methodologies to help the designers group
or map these roles into agents. For instance, Prometheus [14] provides clear
techniques to deal with agent identification in terms of group functionalities
into agents. This is based on considerations of both cohesion and coupling - one
wants to reduce coupling and increase cohesion. Putting agents that write or
read the same data together seems to reduce coupling between agents. In other
words, functionalities that use and/or produce the same data tend to belong to
the same agent.

Such techniques are also particulary useful in identifying services. In fact, a
service ecosystem can also be viewed as a society or organisation. Hence, in or-
der to identifying the constituting services, a natural way is to identify roles,
their goals and their relationships. Roles allow for a combination of both top-
down and bottom-up design. They are identified by a top-down process of goal
development. At the same time, they provide a bottom-up mechanism for deter-
mining service types and their responsibility. Let us take the example of a pizza
restaurant. A natural first step is to identify business goals of the pizza restau-
rant. Examples of such goals include making pizza, delivering pizza, managing
inventory, ordering pizza and so on. The next step is to identify various roles
participating in the operation of a pizza restaurant by grouping related goals.
For example, there is a role responsible for making pizza, a role for managing
the inventory, a role for handling delivery and so on. Figure 1 shows how differ-
ent roles in a pizza restaurant are identified and represented using Prometheus,
a prominent agent-oriented methodology [14]. Such roles provide a foundation
for service identification in which services play multiple roles (e.g. pizza order
service, pizza transportation service, and pizza cooking service). Roles can also
serve as an indication for defining the capabilities which a service offer.

504 H.K. Dam and A. Ghose

Fig. 1. Roles for the pizza restaurant

3.2 Service Interactions

The current standard approach for designing service interactions is message-
centric. Specifically, the design process is driven by messages exchanged during
the interaction and tends to focus on data and control flows. In addition, inter-
actions are also defined by interaction protocols which specify the allowable se-
quence of messages exchanged between service providers and service consumers
(e.g. the Unified Service Description Language1). Such a message-centric ap-
proach however poses several limitations in designing interactions for service
ecosystems. Firstly, as we have earlier argued, in a service ecosystem, services
should be flexible and robust in terms of pursuing their goals by attempting
alternatives in spite of failures. Interaction protocols however restricts the flexi-
bility and robustness of services. Alternative means to achieving the interaction’s
objectives is limited to the options the designer have defined. Although it is pos-
sible to add an unlimited number of alternatives, a large number of alternatives
described using message-centric notations leads to protocols that are difficult to
understand and manage. Therefore, in practice message-centric modelling results
in brittle service interactions that are neither flexible or robust. Secondly, since
the message-centric approaches are based on low-level abstractions, they tend to
fail to conceptually capture the business intent of the interactions between ser-
vices. Existing service interaction protocols tend to over-constraint the business
behaviour of participant business services.

1 http://www.internet-of-services.com

http://www.internet-of-services.com

An Agent-Oriented Approach to Service Analysis and Design 505

The above issues have been recognised in the agent community and recent
work in AOSE have proposed a number of alternative approaches design the
interactions which are not driven by messages. These approaches shift the fo-
cus onto a higher level of abstraction which are more suitable to support com-
plex, dynamic, interactions. In particular, a number of approaches (e.g. [28,29])
proposes to design agent interactions using social commitments, in which agent
participants progress through interactions by making and fulfilling commitments
to each other. Other approaches proposes to design interactions on the basis of
agent plans and goals. For instance, the Hermes methodology [30] proposes to
model interactions in terms of interaction goals, available actions and constraints.
Based on the constraints defined by the designer, the agents then work out the
allowable message sequences to use during the interactions. In addition, this ap-
proach allows the designer to model failure recovery: if a given interaction goal
fails then they may specify that accomplishing a previous interaction goal may
allow the interaction to continue. For example, if booking a hotel for particular
dates cannot be achieved, then rolling back and finding alternative travel dates
may solve the problem.

In those alternative approaches, the designer does not need to define legal
message sequences explicitly but instead they emerge from the interaction due
to the agents’ need to fulfil their commitments or achieve their interaction goals.
This increases the flexibility and robustness of interactions in terms of providing
more valid message sequences than what a designer could have explicitly defined.
In addition, those approaches are able to capture the business intent (in forms
of goals and commitments) of the interactions.

In our view, those AOSE methodologies can be adapted to design flexible and
robust interactions in service ecosystems. Such interaction modelling facilities in
AOSE can be useful for service touchpoint modelling which is a critical issue for
services modelling. In fact, service interactions take place at service touchpoints
[31]. Through touchpoints the service is experienced and perceived with all the
senses. In a service ecosystem, a provider can deliver services across multiple
touchpoints such as the Internet, self-service technologies or face-to-face com-
munication. As an example, many pizza restaurants (e.g. Pizza Hut) now allow
their customers to order over the phone, the Internet, or the traditional in-store
service desks (refer to figure 1). Touchpoints modeling is critical for services
since touchpoints have always been considered as the crucial moment where the
consumer judges service quality and the service value revealed. In this context,
flexibility and robustness are key to the success of a touchpoint. In addition, it is
the consistency across the many touchpoints that will affect quality perception.
In order to create such consistency, the design of service interactions should be
driven by interaction goals or commitments to capture the business intents at
a higher abstraction level than the traditional message-centric approaches. For
example, the passenger can check-in at different touchpoints, i.e. using different
check-in facilities, each of which is different in terms of how the actual interac-
tion takes place. However, they all share the same goals, e.g. successful check-in
a passenger, and should be the basis for design interactions.

506 H.K. Dam and A. Ghose

3.3 Business Process Modelling

One of main challenges facing the service oriented computing community is to
develop dynamic and adaptive processes for service composition and orchestra-
tion [32]. This requires that a business process should be able to pro-actively
adapt itself quickly to respond to environmental demands and changes. We be-
lieve that such a requirement should be addressed at the modelling level. With
this respect, the Belief-Desire-Intention (BDI) model [33], one of the most well-
established and widely-used agent models, can offer a solution to model dynamic
and adaptive processes. The key concepts in the BDI model are: beliefs, i.e. rep-
resenting information about the environment, the agent itself, or other agents;
desires, i.e. representing the objectives to be accomplished, i.e. goals; and inten-
tions, i.e. representing the currently chosen courses of action to pursue a certain
desire that the agent has committed to pursuing, i.e. plans. More specifically,
BDI agents have a collection of pre-defined plan recipes (or types), usually re-
ferred to as a plan library [34]. Each plan consists of: (a) an invocation condition
which defines the event that triggers this plan (i.e. the event that the plan is
relevant for); (b) a context condition (usually referring to the agent’s beliefs)
which defines the situation in which the plan is applicable, i.e. it is sensible to
use the plan in a particular situation; and a plan body containing a sequence
of primitive actions and subgoals that are performed for plan execution to be
successful. It should be noted that subgoals can trigger further plans.

A typical execution cycle that implements the decision-making of an agent can
be viewed as consisting of the following steps. First, an event is received from
the environment, or is generated internally by belief changes or plan execution.
The agent responds to this event by selecting from its plan library a set of plans
that are relevant (i.e. match the invocation condition) for handling the event
(by looking at the plans’ definition). The agent then determines the subset of
the relevant plans that is applicable in terms of handling the particular event.
The determination of a plan’s applicability involves checking whether the plan’s
context condition holds in the current situation. The agent selects one of the
applicable plans and executes it by performing its actions and sub-goals. A plan
can be successfully executed, in which case the (sub-)goal is regarded to have
been accomplished. Execution of a plan, however, can fail in some situations,
e.g. a sub-goal may have no applicable plans, or an action can fail, or a test can
be false. In these cases, if the agent is attempting to achieve a goal, a mechanism
that handles failure is used. Typically, the agent tries an alternative applicable
plan for responding to the triggering event of the failed plan. It is also noted
that failures propagate upwards through the event-plan tree: if a plan fails its
parent event is re-posted; if this fails then the parent of the event fails and so
on.

BDI agents offer two important qualities: robustness and flexibility. BDI agents
are robust since they are able to pursue persistent goals over time (i.e. pro-
activeness). In other words, agents will keep on trying to achieve a goal despite
previously failed attempts. In order to be able to recover from such failures,
agents have multiple ways of dealing with a given goal and such alternatives

An Agent-Oriented Approach to Service Analysis and Design 507

can be used in case any of them fail. This gives agents flexibility in terms of
exercising choice over their actions. Flexibility and robustness are considered as
useful qualities that a software system should possess, especially if it operates in
complex, dynamic, open and failure-prone environments.

Those properties of the BDI model also offer a suitable solution for the busi-
ness process modelling within service design. More specifically, the BDI archi-
tecture can be used to model and implement goal-directed process selection [15].
Traditionally, the calling process contains the names of the called processes (and
possibly other information such as the locations, the data needs, or even the
implementation), and the conditions specifying which (process) to call in which
circumstance. The major disadvantage of this conventional approach is that the
calling process is dependent on the called processes, and thus they are not able
to be developed independently of one another. A goal-directed approach can
separate the conditions of use from the calling processes and place them in the
called processes. Such conditions form different possible contexts of the process.
As a result, processes become loosely coupled and process selection is made dy-
namically at run time based on the usage context. In addition, if any chosen
process fails, the call is made again (i.e. reposted) and a new matching process
is invoked. This offers a better and more automatic handling of exceptions or
failures. Furthermore, called processes can be created or changed without affect-
ing the existing ones and the calling process. These benefits multiply each time
the called process is reused in other calling processes.

3.4 Value Modelling

A key component of services modelling is value modelling. It is important that
we should understand how a service delivers value to its stakeholders. Ideally,
value models should be stakeholder-specific - in other words, we need to be able
to account for the fact that a service delivers different kinds of value to distinct
stakeholders, and in different ways. A value model is critical in service design
- it provides a guiding framework that ensures that a service design maximizes
the value it delivers to its key stakeholders. Value models, when correlated to
service design components, also support service re-design. When a service must
be modified to account for changes in the operating context, for instance, a value
model can help decide which components of a service design may be discarded
(when there are options, we pick those components that deliver lower value) and
which components might be modified. Value models can represent value on a
variety of scales, both quantitative and qualitative, or via preference orderings
over design elements.

A key insight that is often ignored in the literature on services science is
the fact that a value model is fundamentally a requirements model. A service
delivers value by providing certain functionalities, under certain non-functional
or quality-of-service constraints. Goal models, which are central to most AOSE
frameworks, provide an appropriate basis for modelling the functional aspects
of service value. Softgoal models, also common in AOSE frameworks (e.g. [20]),
enable us to model the non-functional aspects of service value.

508 H.K. Dam and A. Ghose

4 Conclusions and Future Work

Together with the grow of services across different sectors in the society, service
ecosystems emerge as a complex collection of services in which they interact with
one another to meet customer demands. In these ecosystems, participant ser-
vices are highly independent, autonomous, flexible and reactive to environment
changes. Due to those complexities, designing high quality service ecosystems is
a very challenging task.

However, such challenges have previously been addressed to a certain extend
by the agent paradigm, another important technology which has emerged since
the past decade. In this paper we have argued that agent-oriented software en-
gineering (AOSE) methodologies provide a number of techniques that can be
adopted to the analysis and design of services. More specifically, we have shown
that the organisational view of a system which AOSE methodologies take is
also suitable to service ecosystems. In addition, we have described a number of
emerging approaches in AOSE which shift the focus of interaction design from
messages to goals and commitments. Such approaches are suitable for design-
ing service interactions in service ecosystems since they allow the designer to
work at a higher level abstraction and to define flexible and robust interactions.
We have also briefly described the BDI model, which is widely used by AOSE
methodologies to model agent plans, and have shown that this model is suitable
to model the business processes of services.

Those key ideas proposed in this paper can to a number of directions for
further research. In particularly, we plan to develop a methodology for service
analysis and design which systematically adopts AOSE techniques that are suit-
able for services as discussed in this paper. This methodology would specifically
support for modelling service ecosystems in several key areas including service
identification, service interactions, business processes, and value modelling. Fu-
ture work is also needed to investigate how ideas and techniques proposed by
AOSE methodologies to support the design of negotiation, cooperation, and
teamwork can be used for modelling service ecosystems.

References

1. Paulson, L.D.: Services science: A new field for today’s economy. Computer 39(8),
18–21 (2006)

2. Sawatani, Y.: Research in service ecosystems. In: Proceedings of Management
of Engineering and Technology (PICMET 2007), Portland, USA, pp. 2763–2768
(2007)

3. Janssen, M., Wagenaar, R.: An analysis of a shared services centre in e-government.
In: HICSS 2004: Proceedings of the 37th Annual Hawaii International Conference
on System Sciences (HICSS 2004) - Track 5, p. 50124.2. IEEE Computer Society,
Washington, DC (2004)

4. Barros, A.P., Dumas, M.: The rise of web service ecosystems. IT Professional 8(5),
31–37 (2006)

An Agent-Oriented Approach to Service Analysis and Design 509

5. Ruokolainen, T., Kutvonen, L.: Managing interoperability knowledge in open ser-
vice ecosystems. In: Proceedings of the 13th Enterprise Distributed Object Com-
puting Conference Workshops, EDOCW, Auckland, New Zealand, pp. 203–211.
IEEE (September 2009)

6. Mathieson, I., Dance, S., Padgham, L., Gorman, M., Winikoff, M.: An open me-
teorological alerting system: Issues and solutions. In: Estivill-Castro, V. (ed.) Pro-
ceedings of the 27th Australasian Computer Science Conference, Dunedin, New
Zealand, pp. 351–358 (2004)

7. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: BDI-Agents for agile goal-
oriented business processes. In: Padgham, Parkes, Müller, Parsons (eds.) Proceed-
ings of the 7th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), Estoril, Portugal, pp. 37–44 (May 2008)

8. Monostori, L., Váncza, J., Kumara, S.: Agent based systems for manufacturing.
CIRP Annals-Manufacturing Technology 55(2), 697–720 (2006)

9. Munroe, S., Miller, T., Belecheanu, R.A., Pěchouček, M., McBurney, P., Luck,
M.: Crossing the agent technology chasm: Lessons, experiences and challenges in
commercial applications of agents. Knowledge Engineering Review 21(4), 345–392
(2006)

10. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10(2), 115–152 (1995)

11. Jennings, N.R.: An agent-based approach for building complex software systems.
Communications of the ACM 44(4), 35–41 (2001)

12. Ghose, A.: Industry traction for MAS technology: would a rose by any other name
smell as sweet. Int. J. Agent-Oriented Softw. Eng. 3(4), 397–401 (2009)

13. Cabri, G., Leonardi, L., Puviani, M.: Service-oriented agent methodologies. In:
WETICE 2007: Proceedings of the 16th IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprises, pp. 24–29. IEEE
Computer Society, Washington, DC (2007)

14. Padgham, L., Winikoff, M.: Developing intelligent agent systems: A practical guide.
John Wiley & Sons, Chichester (2004) ISBN 0-470-86120-7

15. Georgeff, M.: Service orchestration: The next big challenge. DM Direct Special
Report (June 2006)

16. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing). AgentLink (2005)

17. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and
development. Journal of Autonomous Agents and Multi-Agent Systems 1(1), 7–38
(1998)

18. Jennings, N.R., Wooldridge, M.: Agent-Oriented Software Engineering. In: Gar-
ijo, F.J., Boman, M. (eds.) MAAMAW 1999. LNCS, vol. 1647, pp. 1–7. Springer,
Heidelberg (1999)

19. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-Oriented Methodologies. Idea
Group Publishing (2005)

20. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

21. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology 12(3), 317–370 (2003)

22. DeLoach, S.A.: Engineering Organization-Based Multiagent Systems. In: Garcia,
A.F., Choren, R., de Lucena, C.J.P., Giorgini, P., Holvoet, T., Romanovsky, A.B.
(eds.) SELMAS 2005. LNCS, vol. 3914, pp. 109–125. Springer, Heidelberg (2006)

510 H.K. Dam and A. Ghose

23. Cossentino, M.: From requirements to code with the PASSI methodology. In:
Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp. 79–
106. Idea Group Inc. (2005)

24. Dam, K.H., Winikoff, M.: Comparing Agent-Oriented Methodologies. In: Giorgini,
P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2003. LNCS (LNAI), vol. 3030,
pp. 78–93. Springer, Heidelberg (2004)

25. Scheithauer, G., Augustin, S., Wirtz, G.: Describing services for service ecosystems,
pp. 242–255 (2009)

26. Dhanesha, K.A., Hartman, A., Jain, A.N.: A model for designing generic services.
In: SCC 2009: Proceedings of the 2009 IEEE International Conference on Services
Computing, pp. 435–442. IEEE Computer Society, Washington, DC (2009)

27. Lê, L.-S., Ghose, A., Morrison, E.: Definition of a Description Language for Busi-
ness Service Decomposition. In: Morin, J.-H., Ralyté, J., Snene, M. (eds.) IESS
2010. LNBIP, vol. 53, pp. 96–110. Springer, Heidelberg (2010)

28. Winikoff, M.: Designing commitment-based agent interactions. In: IAT 2006: Pro-
ceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, pp. 363–370. IEEE Computer Society, Washington, DC (2006)

29. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying
event calculus planning using commitments. In: AAMAS 2002: Proceedings of the
first International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 527–534. ACM, New York (2002)

30. Cheong, C., Winikoff, M.: Hermes: a methodology for goal oriented agent interac-
tions. In: AAMAS 2005: Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 1121–1122. ACM, New York
(2005)

31. Bitner, M.: Evaluating service encounters: the effects of physical surroundings and
employee responses. Journal of Marketing 54(2), 69–82 (1990)

32. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: State of the art and research challenges. Computer 40(11), 38–45 (2007)

33. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987)

34. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of
the First Intl. Conference on Multiagent Systems, San Francisco (1995)

Agent-Based Modelling for Risk Assessment
of Routine Clinical Processes

Wayne Wobcke1 and Adam Dunn2

1 School of Computer Science and Engineering University of New South Wales
Sydney NSW 2052, Australia

wobcke@cse.unsw.edu.au
2 Centre for Health Informatics University of New South Wales

Sydney NSW 2052, Australia
a.dunn@unsw.edu.au

Abstract. Prospective risk analysis is difficult in complex sociotechnical sys-
tems where humans interact with one other and with information systems. Tra-
ditional prospective risk analysis methods typically capture one risk at a time
and rely on the specification of a chronological sequence of errors occurring in
combination. The aim here is to introduce agent-based risk assessment (ABRA),
which addresses these issues by simulating multiple concurrent and sequential in-
teractions amongst autonomous agents that act according to their own goals. The
methodology underlying the construction, simulation and validation of ABRA
models is detailed along with practical considerations associated with implemen-
tation, for which the Brahms agent-based simulation framework is used. The chal-
lenges of implementing agent-based risk assessment models include the need
for well-defined work processes and reliable observational data, and difficul-
ties associated with behavioural validation. As an example illustrating the tech-
nique, a simple race condition hazard is implemented using an ABRA model. The
work process involves a human operator and a machine interface that interact to
sometimes produce the erroneous transfer of information. The correctness of the
model is confirmed by comparing the simulated results against the well-defined
theoretical baseline.

1 Introduction

Risk analysis is essential in any complex organization to improve the quality of ser-
vice through minimizing errors and adverse consequences. Healthcare, in particular, is
one area in which hazards are many, costs are high, and resource pressures are such
that errors occur more frequently than desirable. Managing the risk of adverse events
is therefore an important part of the management of healthcare systems. This paper in-
troduces the use of agent-based models for the analysis and assessment of risk arising
from routine clinical processes, processes which have a relatively well-defined work-
flow but which are also the source of potential adverse events. The aim of this paper
is to describe, in a general way, the application of agent-based modelling as an aid to
decision making in support of risk management in complex workflows. Healthcare is a
particularly interesting domain of application due to its inherent complexity. The main
advantage of agent-based modelling in comparison to alternative existing approaches is
that the models enable the study of combinations of conditions and events that together

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 511–522, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

512 W. Wobcke and A. Dunn

contribute to risk to be identified and compared to one another, enabling different po-
tential interventions that aim to reduce risk to be assessed on the basis of their overall
effect on the system.

Our particular work has been applied to a study of patient transfers between wards
in a hospital, which is the source of adverse events such as misidentification (getting
the “wrong patient”) and infection control (insufficient precautions being taken to pre-
vent the spread of infection), Dunn et al. [9]. Hospitals, like many large organizations,
are complex sociotechnical systems, by which we mean that they can be considered a
complex system involving interactions between human agents and information systems
(use of the term “complex system” is not meant to imply any mathematical property).
Hospitals involve a large number of people with shared objectives and overlapping in-
formation systems designed to support communication. Hospital work processes often
span different locations and times, involve one or more information systems, multiple
individuals, and involve activities that happen in parallel and in sequence. This com-
plexity means that even the role of “human error” in relation to “system errors” in gen-
erating adverse events is not straightforward, as emphasized by Rasumussen et al. [19],
Reason [20] and West [25]. Further complicating the analysis of error is that adverse
events are often the result of a chain of events, Woolf et al. [28].

Hospitals, moreover, can be differentiated from other large organizations in a number
of ways that make risk analysis more difficult and critical. First, hospitals are often
dealing with life-and-death situations, so the adverse consequences of any mistakes can
be more serious than in other organizations. Second, with a greater focus on human-
human interactions than compared, for example, to manufacturing plants, the variety of
ways of carrying out tasks is much greater, giving more scope for errors and violations
of work practices to occur, and hence create the risk of adverse events. For the same
reasons, analysis of the risks, how multiple events combine to both add to or ameliorate
risk, is more difficult in such an environment, underlining the need for analytical tools.

Let us begin by clarifying what we mean by “risk analysis” in healthcare, following
the attempt to standardize vocabulary in Runciman, Merry and Walton [22]. The basic
objective of healthcare is safety, which can be defined as freedom from hazard, where
it is assumed that the “hazards” involved are understood. Safety is inversely related to
risk, where risk is defined as the probability of an adverse event; as in the financial sec-
tor, risk is influenced by exposure to the circumstances generating the adverse event (for
example, the more one drives, the greater one’s exposure to the risk of a car accident).
An adverse event is defined as an incident that causes some harm, where “harm” is also
understood. An adverse event is associated with a severity, allowing the consequences
of different adverse events to be compared. Risk management can be considered a com-
bination of risk analysis (identification of adverse events and their likelihoods), risk
assessment (evaluation of various risks) and risk mitigation (reduction of these risks).
Risk management typically focuses on reducing the exposure to the risk via controllable
conditions, since these are conditions can be manipulated by modifications to existing
work practices, in contrast to external factors. The point of view adopted here is that
since work practices in sociotechnical systems are complex and intricate, risk can never
be eliminated, only mitigated. Hence methods for assessing the degree of risk associated
with work practices are needed to allow adequate assessment of risk.

Agent-Based Modelling for Risk Assessment 513

Risk analysis and assessment is made difficult because hospitals are systems that are
dynamic (subject to changing conditions, staff and work practices) and “non-linear”
(which here simply means that the workflows are not linear sequences of tasks). That
is, hospital workflows are characterized by a diverse range of activities and operations,
with many convergent and divergent pathways. Thus there is a need to model combina-
tions of events that together may contribute to, or ameliorate, risk. Since hospitals are
sociotechnical systems consisting of humans and information systems, there is also a
need to model the “human factors” associated with any work practice. As a particular
instance where this makes a difference to the analysis is in the addition of redundancy to
a process. Typically in any engineering process, added redundancy reduces risk. How-
ever, redundancy in a sociotechnical system does not necessarily reduce risk: instead,
if multiple people are required to carry out the same (redundant) task, this can lead to
a “diffusion of responsibility,” West [25], where everyone assumes that someone else
performs the task, leading to the potential result that no-one takes responsibility for the
task and hence (on some occasions) no-one performs the task at all.

There is clearly a tradeoff between safety and efficiency in healthcare, in that there
are pressures to “deliver” more healthcare (treat larger numbers of patients with fewer
resources), that are at odds with the aim of providing a safe and high quality service. Let
us briefly define the types of events in healthcare work practices that contribute to the
increased risk of an adverse event. We distinguish errors, violations and workarounds.
An error is a knowledge, rule or skill-based mistake (i.e. the practitioner was lacking
some vital information, or did not know how to perform a procedure, resulting in an
“incorrect” outcome), or merely a slip (an operation was performed inaccurately) [22].
By analogy to tennis, some errors are “unforced” and some are “forced” (inevitable
given the circumstances, such as the state of the patient or the number of patients in the
emergency department). Some errors arise particularly because outcomes are often sub-
ject to chance, in that some operations are not guaranteed to yield a favourable outcome
even if performed “correctly” and according to best practice. A violation, on the other
hand, is an action or procedure contrary to prescribed policy, such as omitting an ac-
tion in the workflow or performing the process in a different way. Some violations may
have the positive effect of optimizing work practices or improving outcomes. An ex-
ample violation with such a positive effect is where a patient is admitted to emergency
surgery without the proper documentation, which may save the patient’s life. Finally, a
workaround, though more difficult to define, can be regarded as a modification to stan-
dard work practice done with the aim of continuing or optimizing the process when the
normal task cannot be performed or is inefficient, for example, scanning the bar code
on a patient’s chart instead of the wristband when the patient is inaccessible (see Kop-
pel et al. [15]). Perhaps some workarounds originate as violations (done deliberately by
someone knows why the violation occurs) but become entrenched as a standard practice
(done unconsciously by someone who does not know why the violation occurs). Spear
and Schmidhofer [24] discuss how workarounds contribute to adverse events in hospi-
tals. The important point is that errors, violations and workarounds all occur regularly
within complex work practices, and so must be taken into account in any analysis of the
associated risk. An analysis of risk based purely on prescribed “correct” work practices
will be inaccurate in relation to how that work is actually performed.

514 W. Wobcke and A. Dunn

In the remainder of this paper, we provide a brief summary of existing approaches
to risk management in healthcare, introduce the use of agent-based modelling for risk
assessment, and give a simple example illustrating the technique. We conclude with a
discussion of the advantages and limitations of agent-based risk assessment.

2 Approaches to Risk Analysis in Healthcare

Risk management techniques have been imported into healthcare from a variety of
sources, having been successfully applied in the food, manufacturing, aviation and nu-
clear industries, amongst others. However, as discussed above, sociotechnical systems
such as healthcare present new challenges when adapting existing methodologies. In
this section, we summarize several approaches to risk analysis that have been applied
in healthcare; as an initial general comment, we find it remarkable that, despite the im-
portance of risk management in large organizations, there are so few published studies
in the healthcare domain.

Existing methods for performing risk analysis can be divided into retrospective and
prospective methods. Retrospective analysis methods aim to analyse the cause of a par-
ticular adverse event after the event has occurred. The main objectives are to understand
why an event occurred, to assign blame or responsibility, and to improve work practices
so that the event does not occur again. The typical approach is root cause analysis,
Rasmussen et al. [19], applied in the complex setting of healthcare systems, Iedema et
al. [13]. The basic approach is to identify a causal chain of events leading to the adverse
event, identifying distinguished events (or sequences of events) leading to the outcome.
A major limitation of root cause analysis is that by focusing on a single adverse event,
there is no obvious way to generalize the analysis to other scenarios, in particular to
quantify the risk of the event’s recurrence. The main advantage of the approach is that
causes that may be omitted in other models can be discovered.

Methods for prospective risk analysis tend to be more useful in risk assessment.
Methods include hazard analysis and critical control points (HACCP) [1,12,4], failure
mode and effects analysis (FMEA) [8,6,5,10,21,7], and probabilistic risk assessment
methods such as event tree analysis (ETA) and fault tree analysis (FTA) [17,29]. To give
an idea of the methods, hazard analysis and critical control points is a staged method-
ology that consists of identifying hazards and their risks and severities, determining
critical control points in a process, specifying criteria to ensure control, monitoring
control points, taking corrective action and verifying the system is working as planned.
This may be used to prevent incidences of food contamination; typical applications in
healthcare are to equipment decontamination [12], drug preparation [4] and reducing
the risk of infection in surgery [1].

Failure mode and effects analysis is a similar methodology but where multiple pro-
cess failures are analysed. The analysis also includes a method to compare different
types of failures by assigning numbers to their frequency, severity and detectability,
which are multiplied together to give a risk priority number. The approach has been
applied in healthcare to reducing risk in blood transfusion [6], improving safety in the
production of chemical solutions [5] and the safe application of chemotherapy [21],
amongst other applications.

Agent-Based Modelling for Risk Assessment 515

Probabilistic risk assessment methods provide an improved method for estimating
the probabilities associated with adverse events, through the construction of an event
tree or fault tree [17,29]. An event tree is a forward-branching structure defining the
range of possible outcomes in a given scenario, while a fault tree is an AND/OR tree
whose root is an adverse event and whose structure gives the causal conditions leading
to the event, along with probabilities assigned to basic events that are combined using
product and sum, and which are assumed independent. However, as with root cause
analysis, the focus is on single events, not complex combinations of events.

Methods for prospective risk analysis rely heavily on subjective factors, which is
useful where data is limited or data collection is especially difficult or time-consuming.
However, the subjective nature of the techniques means that it is difficult to compare
different risk mitigation strategies, and the techniques do not provide enough quantita-
tive information to examine which combinations of specific actions or events contribute
most often to adverse events. However, an important aspect of these techniques is that
team members are required to discuss and agree on the steps to be taken, which has the
valuable side-effect that team members better understand one another’s work.

In summary, there are several weaknesses of existing approaches to risk assessment,
especially as applied to healthcare. A basic deficiency of methods for retrospective anal-
ysis is that they do not show how to reduce risk, they can be used only to identify causes
of adverse events after they occur – any estimate of the associated risk requires further
(prospective) analysis. Concerning methods for prospective analysis, in a domain such
as healthcare, it is hard to quantify the degree of risk of adverse events in such a way
that reliable estimates of costs and benefits can be obtained. This makes it difficult to
compare different risk mitigation strategies. Particular models are based on limited data
or subjective factors, and there is a difficulty in handling unobserved or rare events,
which may cause the greatest harm though having a low probability of occurrence, and
so cannot be ignored.

3 Agent-Based Risk Assessment

Agent-based risk assessment (ABRA) builds on existing risk analysis methods to ad-
dress the weaknesses of existing approaches mentioned above. ABRA is designed to
capture ways in which real work practices deviate from prescribed work practices to
determine how these deviations combine to create or pass along the risk of adverse
events. In ABRA, the work process is simulated to produce trajectories that vary de-
pending on the choices and interactions of the agents in the model. The method is used
to examine risk by counting the trajectories in which the opportunity for an adverse
event is present, and is therefore also able to examine how often individual actions lead
to risky trajectories and explicitly model the effects of risk mitigation strategies.

The basic idea is illustrated in Figure 1. Each trajectory is one simulation of the
process representing the work practice. The diagram shows how trajectories can both
diverge and converge as complex workflows are implemented in a variety of ways,
including actions some of which create risk (by introducing a deviation), some of which
propagate risk (by compounding errors), and some of which reduce risk (by recovering
from earlier errors). The risk is defined as the likelihood of a trajectory ending up in

516 W. Wobcke and A. Dunn

a “region of risk”, and is estimated by repeated simulation of the process. Thus agent-
based risk assessment models are similar to both event trees and fault trees, in that
there is a forward-branching structure representing multiple failures (plus the potential
to recover from those failures).

Fig. 1. Processes are represented as a series of trajectories, where each opportunity for deviation
is indicated by a fork. A proportion of trajectories are indicated to diverge far enough away from
the prescribed work practice to create the risk of an adverse event.

In more detail, agent-based risk assessment involves the following steps: (i) formal
specification of prescribed work practices using information policies and guidelines,
(these represent the activities agents perform to achieve their goals); (ii) from a formal
specification of “what is supposed to happen”, an agent model is derived, including
probabilistic functions to represent the likelihood of each deviation from the prescribed
work practice; (iii) given this model, results are produced as maps of trajectory likeli-
hoods, generated by aggregating over repeated simulation, and validated by comparing
against empirical data. We briefly discuss issues arising in the creation and validation
of an agent-based risk assessment model. In the next section, this method is illustrated
for a race condition hazard.

For step (i), work processes tend to be provided in qualitative formats such as policy
or guideline documents, and detailed constraints and activities may require consultation
with experts or detailed ethnography. Preparing a formal specification therefore requires
a mapping from qualitative information about “what is supposed to happen” into a for-
mal specification of work plans in the form of activities and choices undertaken by
individuals in their respective roles.

For step (ii), we have chosen to define and implement agents using the Brahms sim-
ulation environment [23], though other frameworks could also be used. The notion of
“agent” is conventional: each agent is an autonomous entity that exhibits goal-oriented
behaviour, Wooldridge and Jennings [27]. Agents act in the world, but not all the
agent’s behaviour is the result of rational decision making. That is, there is an element

Agent-Based Modelling for Risk Assessment 517

of “situated” behaviour, which is what makes Brahms suitable as a modelling frame-
work (though we do not believe that all cognition and action is situated). To model
complex workflow processes, each agent is defined by a set of activities which repre-
sents their individual knowledge of the work process (a set of pre-defined plans). In
such workflows, agents are autonomous (act independently), proactive (initiate new ac-
tivities to achieve their goals) and interact (communicate with other agents), and hold a
set of beliefs about the world (based on their limited perception of the environment).

For step (iii), to apply the model to assessment of risk in a given scenario, repeated
simulations of the scenario with identical initial conditions are performed in order to
“map” the potential for risk. Since the agents make decisions based on probability,
repeated simulation may result in many different trajectories. The aggregation of tra-
jectories using simple statistics forms a map of the possible pathways through which
the scenario may evolve. The proportion of pathways associated with risk indicates the
reliability of the process. Further, the map provides a way to understand which combi-
nations of activities and violations create risk, and how often.

The number of simulations required for replicative validation of an ABRA model
depends on the rarity of individual trajectories. To determine the number of simulations
required to observe a rare trajectory, it is possible to use a binomial distribution where
the success is defined by the presence of a specific trajectory. The less common the
trajectory, the greater the number of simulations required to be confident (a likelihood
greater than or equal to 95%) of observing that trajectory (at P=0.05, n=93; at P=0.01,
n=473; at P=0.005, n=947). This also implies that it is difficult to obtain an accurate
estimate of how often a rare trajectory is likely to occur given limited empirical data.
More simply, there is a tradeoff between the ability of ABRA to explicitly model rare
events and the ability to rigorously validate behaviour against the real world.

A major question with any type of model is validation. A relatively strict valida-
tion of an agent-based model tests the structure of the model and its ability to replicate
observed behaviour as well as predict the behaviour of the system in unseen configu-
rations, Barlas [2]. However, there are unresolved difficulties associated with empirical
validation of agent-based models [26,14]. For example, when the purpose of construct-
ing an agent-based model is to examine situations that are costly or impossible to ob-
serve in the real world, Epstein [11], the requirements of the validation are at odds with
the purpose of the model. For this reason, computational models of healthcare organi-
zations and their processes rarely conform to the requirements of validation, Bharathy
and Silverman [3]. In cases where validation is performed, modellers tend to focus on
structural and replicative validation.

We have previously implemented agent-based risk assessment for a case study that
examines two scenarios involved in transfer of patients from one ward to another: the
patient misidentification scenario, and the inadequate infection control scenario, Dunn
et al. [9]. The model was calibrated the using data from 101 patient transfers observed in
a hospital, Ong and Coiera [18], and the results were validated for the infection control
scenario (it was not possible to validate the model for the misidentification scenario
since there were no occurrences of misidentification in the data). Repeated simulations
using the calibrated model were undertaken to create a distribution of possible process
outcomes. The likelihood of end-of-chain risk is the main outcome measure, reported

518 W. Wobcke and A. Dunn

for each of the two scenarios. The simulations demonstrate end-of-chain risk of 8% and
24% for the misidentification and infection control scenarios, respectively. Interestingly,
over 95% of the simulations in both scenarios were unique, indicating that the in-patient
transfer process diverges from prescribed work practices in a variety of ways.

4 Example

As a demonstration of agent-based risk assessment in routine workflow processes, a
simple artificial example is presented, inspired by the Therac-25 accidents described in
Leveson and Turner [16]. The example is based on a critical race condition between
two communicating agents, where two parallel processes compete to change the state
of the system and the ordering determines the final state. In this case, a human opera-
tor enters information into an interface, realizes a mistake and attempts to modify the
information already entered. The machine interface begins to interpret the information
on-screen without locking the state of the information on-screen. Since the timing is
non-deterministic, the operator may interrupt the machine interface before it has acted
on the information (in which case the machine acts on the new information), or may
modify what is displayed on-screen after that information has already been acted upon.
The operator receives no feedback on which of these two cases have emerged. This
process is represented in Figure 2.

Fig. 2. An example process involving a human operator and an interface to a machine is described
by a series of activities performed in sequence (left to right) by the human operator (top) and the
interface to a machine (bottom). The two agents interact along vertical channels and diamonds
represent choices available to the agents (see text).

The formal specification of the agents follows directly from Figure 2. The human
agent is represented by four activities: the initialization of the process, the entering of
information, the checking of information and a final idle state. The machine interface
agent is represented by three activities: receiving information, processing information
and passing information. The human agent includes one violation, the choice of check-
ing the entered information, which is assigned a probability of 55%. The machine inter-
face is reactive but will reprocess newly-entered information only if it has not already

Agent-Based Modelling for Risk Assessment 519

passed along the existing information. It is this step that defines the race condition and
the associated hazard – that is, the likelihood that the interface will have passed along
incorrect information and the operator believes that the information has been corrected.

Since the example process is a simple one involving a single hazard, it is possible to
derive the exact likelihood of the hazard given the distribution of the times associated
with the agents’ activities (this will not be possible with more complex workflows). As
an example, we specify the distribution of possible times as a uniform random distribu-
tion. As illustrated in Figure 3, the human operator will always take between 10 and 60
seconds to check the information (which is done 55% of the time), while the machine
interface will always take between 30 and 90 seconds to process the information (which
is done in 100% of the cases). The figure shows that the operator may potentially take
longer than the interface when re-entering information in 55% of 40% of the instances
of the process, of which half may be expected to produce an error (11%).

Fig. 3. Expected likelihoods (by second) for the race condition hazard, including the time taken by
the human agent for error-checking (left blue rectangle), the time taken by the machine interface
to process the original information (right red rectangle), and the region in which the human enters
new information but the machine interface may pass along the original information without being
interrupted (overlapping area in purple)

We performed 500 simulations of the process in Brahms and examined the results to
count the number of simulations in which the operator chooses to check the informa-
tion, and the number of times the race condition fails. The race condition fails when the
machine interface passes along the information before the human finishes re-entering
new information. Of those 500 simulations, the operator checks the information in 275.
Of those 275, the machine fails to reprocess the new information in 69. This proportion
(13.8%) defines the risk of the hazard of the race condition scenario given the specific
timing chosen. Since the agent-based simulation also provides details about which ac-
tivities were performed and how long they took, it is also possible to illustrate a set

520 W. Wobcke and A. Dunn

of trajectories for the process (Figure 4). In this diagram, the two possible trajectories
taken by the operator are represented by a single “fork”, and the reaction of the machine
interface depends on the operator and the timing of the two agents working in parallel.

Fig. 4. The aggregated results of 500 simulation instances for the race condition hazard example.
The boxes, arrows and channels are given as in Figure 3. The upper red regions represent the
percentage of trajectories following each path for the human agent, and the lower purple regions
represent the percentage of trajectories following each path for the subset of instances where the
human has attempted to re-enter new information (55%).

5 Conclusion

Agent-based risk assessment (ABRA) uses the specific advantages of the agent-based
modelling paradigm in the domain of prospective risk analysis, including the explicit
modelling of individual behaviour, partial knowledge based on perception, and choice
of execution based on that partial knowledge. The ABRA approach is a useful com-
plement to existing prospective risk analysis techniques that is appropriate for complex
sociotechnical environments.

The principal advantages of ABRA over existing methods of prospective risk anal-
ysis are that it allows for greater precision, the same model can account for multiple
scenarios and it simulates unobserved rare events that are otherwise difficult to anal-
yse. The approach applies to any routine clinical process, captures combinations of
events, captures the timing of events and decision making of agents, and can handle the
many distinct and unique trajectories that are characteristic of workflows in complex
sociotechnical systems.

The limitations of the method include the greater requirements for well-defined
workflows and reliable observations, and that the model can be time-consuming to con-
struct and difficult to validate, especially for rare trajectories. As with any prospective
risk assessment method, it is difficult to identify new causes that are not included in the
initial model. In this respect, the analysis and assessment of risk can only ever be as
good as the model of the original work practice.

Agent-Based Modelling for Risk Assessment 521

Acknowledgements. This work was funded by an Australian Research Council Link-
age Grant (LP0775532) and a National Health and Medical Research Council Program
Grant (568612). Thanks to our collaborators, both academic and clinical, especially
Mei-Sing Ong, for discussions on the in-patient transfer scenario, and to colleagues at
the Decision Systems Laboratory of the University of Wollongong for comments on a
seminar on this work.

References

1. Baird, D.R., Henry, M., Liddell, K.G., Mitchell, C.M., Sneddon, J.G.: Post-Operative En-
dophthalmitis: The Application of Hazard Analysis Critical Control Points (HACCP) to an
Infection Control Problem. Journal of Hospital Infection 49, 14–22 (2001)

2. Barlas, Y.: Formal Aspects of Model Validity and Validation in System Dynamics. System
Dynamics Review 12, 183–210 (1996)

3. Bharathy, G., Silverman, B.: Validating Agent Based Social Systems Models. In: Proceedings
of the 2010 Winter Simulation Conference, pp. 441–453 (2010)

4. Bonan, B., Martelli, N., Berhoune, M., Maestroni, M.-L., Havard, L., Prognon, P.: The Appli-
cation of Hazard Analysis and Critical Control Points and Risk Management in the Prepara-
tion of Anti-Cancer Drugs. International Journal for Quality in Health Care 21, 44–50 (2009)

5. Bonnabry, P., Cingria, L., Sadeghipour, F., Ing, H., Fonzo-Christe, C., Pfister, R.E.: Use of
a Systematic Risk Analysis Method to Improve Safety in the Production of Paediatric Par-
enteral Nutrition Solutions. Quality and Safety in Health Care 14, 93–98 (2005)

6. Burgmeier, J.: Failure Mode and Effect Analysis: An Application in Reducing Risk in Blood
Transfusion. Joint Commission Journal on Quality Improvement 28, 331–339 (2002)

7. Chiozza, M.L., Ponzetti, C.: FMEA: A Model for Reducing Medical Errors. Clinica Chimica
Acta 404, 75–78 (2009)

8. Cohen, M.R., Senders, J., Davis, N.M.: Failure Mode and Effects Analysis: A Novel Ap-
proach to Avoiding Dangerous Medication Errors and Accidents. Hospital Pharmacy 29,
319–330 (1994)

9. Dunn, A.G., Ong, M.-S., Westbrook, J.I., Magrabi, F., Coiera, E., Wobcke, W.R.: A Simula-
tion Framework for Mapping Risks in Clinical Processes: The Case of In-Patient Transfers.
Journal of the American Medical Informatics Association (to appear, 2011)

10. Duwe, B., Fuchs, B.D., Hansen-Flaschen, J.: Failure Mode and Effects Analysis Application
to Critical Care Medicine. Critical Care Clinics 21, 21–30 (2005)

11. Epstein, J.M.: Why Model? Journal of Artificial Societies and Social Simulation 11(4), 12
(2008)

12. Griffith, C., Obee, P., Cooper, R.: The Clinical Application of Hazard Analysis Critical Con-
trol Points (HACCP). American Journal of Infection Control 33, e39 (2005)

13. Iedema, R.A.M., Jorm, C., Long, D., Braithwaite, J., Travaglia, J., Westbrook, M.: Turning
the Medical Gaze in Upon Itself: Root Cause Analysis and the Investigation of Clinical Error.
Social Science & Medicine 62, 1605–1615 (2006)

14. Klügl, F.: A Validation Methodology for Agent-Based Simulations. In: Proceedings of the
2008 ACM Symposium on Applied Computing, pp. 39–43 (2008)

15. Koppel, R., Wetterneck, T., Telles, J.L., Karsh, B.-T.: Workarounds to Barcode Medication
Administration Systems: Their Occurences, Causes, and Threats to Patient Safety. Journal of
the American Medical Informatics Association 15, 408–423 (2008)

16. Leveson, N., Turner, C.S.: An Investigation of the Therac-25 Accidents. IEEE Com-
puter 26(7), 18–41 (1993)

522 W. Wobcke and A. Dunn

17. Marx, D.A., Slonim, A.D.: Assessing Patient Safety Risk Before the Injury Occurs: An In-
troduction to Sociotechnical Probabilistic Risk Modelling in Health Care. Quality and Safety
in Health Care 12, ii33–ii38 (2003)

18. Ong, M.-S., Coiera, E.: Safety Through Redundancy: A Case Study of In-Hospital Patient
Transfers. Quality and Safety in Health Care (2010) (to appear)

19. Rasmussen, J., Nixon, P., Warner, F.: Human Error and the Problem of Causality in Analysis
of Accidents [and Discussion]. Philosophical Transactions of the Royal Society of London,
Series B, Biological Sciences 327, 449–462 (1990)

20. Reason, J.: Human Error: Models and Management. British Medical Journal 320, 768–770
(2000)

21. Robinson, D.L., Heigham, M., Clark, J.: Using Failure Mode and Effects Analysis for Safe
Administration of Chemotherapy to Hospitalized Children with Cancer. Joint Commission
Journal on Quality and Patient Safety 32, 161–166 (2006)

22. Runciman, B., Merry, A., Walton, M.: Safety and Ethics in Healthcare, Ashgate, Aldershot
(2007)

23. Sierhuis, M., Clancey, W.J., van Hoof, R.J.J.: Brahms: A Multi-Agent Modelling Environ-
ment for Simulating Work Processes and Practices. International Journal of Simulation and
Process Modelling 3, 134–152 (2007)

24. Spear, S.J., Schmidhofer, M.: Ambiguity and Workarounds as Contributors to Medical Error.
Annals of Internal Medicine 142, 627–630 (2005)

25. West, E.: Organisational Sources of Safety and Danger: Sociological Contributions to the
Study of Adverse Events. Quality and Safety in Health Care 9, 120–126 (2000)

26. Windrum, P., Fagiolo, G., Moneta, A.: Empirical Validation of Agent-Based Models: Alter-
natives and Prospects. Journal of Artificial Societies and Social Simulation 10(2), 8 (2007)

27. Wooldridge, M., Jennings, N.R.: Intelligent Agents: Theory and Practice. The Knowledge
Engineering Review 10, 115–152 (1995)

28. Woolf, S.H., Kuzel, A.J., Dovey, S.M., Phillips Jr., R.L.: A String of Mistakes: The Impor-
tance of Cascade Analysis in Describing, Counting, and Preventing Medical Errors. Annals
of Family Medicine 2, 317–326 (2004)

29. Wreathall, J., Nemeth, C.: Assessing Risk: The Role of Probabilistic Risk Assessment (PRA)
in Patient Safety Improvement. Quality and Safety in Health Care 13, 206–212 (2004)

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 523–534, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Healthgrids, the SHARE Project, Medical Data
and Agents: Retrospect and Prospect

Tony Solomonides1,2

1 HealthGrid, 36, rue Charles-de-Montesquieu, F-63430 Pont-du-Château, France
2 University of Exeter, School of Biosciences, The Queen's Drive, Exeter,

Devon, EX4 4QJ, United Kingdom
tony.solomonides@gmail.com

Abstract. The application of grid computing to biomedical research domains in
the early years of the century has opened up promising prospects for the
extension of this philosophy to translational medicine and hence to personalized
healthcare. As the business side of the healthcare ‘enterprise’ also moves to take
advantage of the related technology of cloud computing, the management of
personal healthcare data on one hand, and of medical knowledge on the other,
come to the fore as the principal challenges for successful adoption. We
conclude by exploring the potential role of agents to address this and related
challenges.

Keywords: Healthgrids, cloud computing, electronic patient records, data
protection, medical knowledge, agents.

1 Introduction

The last decade has seen the start, if not yet the full fruition, of major developments in
the fields of medical and healthcare informatics. A parallel maturing of genomic
sciences has led many to predict an era of ‘personalized medicine’ – an era when
predictive analysis based on the genome would identify not only potential threats for
the well person but also optimal treatment for a patient; and an era when laboratory
results would be translated into treatments through more extensive and deeper use of
informatics to prepare clinical trials, identify suitable ‘subjects’ and reduce lab time
through simulation. This inevitably brings researchers’ access to electronic patient
records into focus and thus leads to the ‘ELSE’ – ethical, legal, social and economic –
issues that present at least as great a challenge as the technical problems inherent in
this vision.

The current climate of austerity following the international credit fiasco also
disguises and accentuates at the same time another development which impacts on our
proposed programme. As life prospects have improved and people live much longer,
healthcare systems have struggled to keep up with the changes in the age-structure of
populations. This may be more obvious in developed economies, but there is evidence
that certain conditions – obesity, diabetes, cardiovascular disease – associated with a

524 T. Solomonides

wealthier ageing population are also affecting developing countries, such as India,
whose economy is rapidly growing. As healthcare services struggle to cope, it is
inevitable that governments would choose to promote a philosophy of responsibility
and self-care. In any case, those with access to the internet have already demonstrated
an enormous appetite for information about medical conditions, diagnoses, treatments
and fellow-sufferer experiences. The increasing – and deeper – use of information
technologies thus appears overdetermined.

This paper describes these developments as seen from a particular point of view,
through the lens of particular projects and debates that have been of interest to the
author. From a first experience of healthgrid computing in the MammoGrid project –
a project that helped name the field of “healthgrids” – via other exemplars, notably
Health-e-Child, the author had the good fortune to work with some of the pioneers in
the field to develop the SHARE road map for healthgrids. This led him to identify
specific “ELSE” challenges to address and hence to the experience reported here.

2 MammoGrid and Other First-Generation Projects

MammoGrid was among the first few projects to be funded through the European
Commission’s e-Health Unit, then under the direction of the visionary Jean-Claude
Healy. Its implicit aim, along with other projects, was to provide a concrete example
of the use of a novel computational technology in healthcare; its clearly articulated
aim was to establish a platform for the collaboration of two breast-cancer units, at
Addenbrookes, Cambridge, UK, and the Istituto di Radiologia, Udine, Italy. A team
from CERN and UWE in Geneva provided grid infrastructure and management. A
team at the University Oxford, UK, and its spin-off company, Mirada Solutions,
conducted image quality analysis while the Universities of Pisa and Sassari in Italy
provided image annotation services. The medical collaboration envisaged in the
project aimed at, first, second opinion in diagnosis, and second, epidemiology. Both
of these were accomplished, the latter rather more conspicuously than the former [1],
[2]. What concerns us here more than the medical success of the project was its means
of handling medical data. Although the data involved in the project was off-line and
anonymized, the potential implications of disclosure were considered and
considerable attention was paid to ‘provenance’, a full metadata record of the source
and subsequent processing of any data that was incorporated in the project. We give a
full description of the underlying query process, not least because it illustrates the
ethical and legal dimensions involved and motivate some of our later work.

In the MammoGrid scheme, data is shared by being made available over the grid
“virtual private network” – i.e. a highly secure grid layer – through a virtual database.
Physically, the data is stored at its home location and can be queried by a suitably
authorized and authenticated user from one of the partner locations through a highly
orchestrated query service. The project in fact used more than one grid infrastructure
in its duration, beginning with the ad hoc grid AliEn originally devised for the CERN
experiment Alice (then under planning for the Large Hadron Collider). When it
migrated to the more “designed” EGEE [3] infrastructure gLite, the conceptual
architecture of the project had the clinically clean structure shown below in Figure 1.

 Healthgrids, the SHARE Project, Medical Data and Agents 525

Fig. 1. The conceptual architecture of the MammoGrid database. Note the clean separation of
concerns between services provided by MammoGrid, services provided by the grid
infrastructure locally and those provided “centrally”. (Reproduced from [4] with permission).

Clinical queries are accepted, parsed and executed as shown below in Figure 2. A
metadata service supports translation of users’ queries (using their own domain
language) to a formal query corresponding to the structure of the database; the formal
query may then be factored into a local query and a set of remote queries. The latter
are distributed across the grid by a “remote query handler” which also has the
responsibility of assembling the responses, so that they can be joined to the local
results to obtain the complete query response.

Fig. 2. Clinical query handling in MammoGrid. (Reproduced from [4] with permission).

526 T. Solomonides

The sensitivity of these data movements in a “real world” setting is clear. Among
the considerations that cannot be ignored is the fact that the mammograms by them-
selves do not provide complete information either for diagnosis or for epidemiology.
There is now a large literature on how much can be discovered about an individual if
information from their personal health record is fused with other, often public,
sources of information (e.g. the electoral register or social networks) so the naïve
notion that a record has been pseudonymized, therefore it is secure, has been entirely
undermined.

We have focused on MammoGrid because it is intimately familiar and provides an
illustration for our later work, but it would be a mistake to give the impression that it
was in any sense an isolated example. Leading up to the funding of the earliest
healthgrid projects, the EU had published the results of the project Bioinfomed in the
form of a white paper, Synergy between Medical Informatics and Bioinformatics:
Facilitating Genomic Medicine for Future Healthcare [5] which painted a now-
familiar picture of the field through its characterization of different levels of bio-
social organization (molecule-cell-tissue-organ-organism-community) and their
evident correspondence with academic and clinical disciplines and informatics
practices. Its central argument was that if these were appropriately coordinated, they
would begin to pave the road to an integrated discipline of “biomedicine” with deep
implications for healthcare.

Molecular &
Image-based
diagnosis

Population

Disease

Patient

Tissue, organ

Molecular, genetic

Genomic
Epidemiology

Pharmaco-
genetics

Bioinformatics

Medical
Imaging

Medical
Informatics

Public Health
InformaticsI

N
F
O
R
M
A
T
I
C
S

P
A
T
H
O
L
O
G
I
E
S

Fig. 3. Levels of bio-social organization, informatics specialisms, medical sub-disciplines and
corresponding pathologies. (Adapted from a presentation by Fernando Martin-Sanchez with
permission).

At about the same time, a significant number of projects had sprung up across
Europe, both EU- and national government-funded, variously tackling a range of
diseases and biomedical problems. One deserving special mention was Grid-Enabled

 Healthgrids, the SHARE Project, Medical Data and Agents 527

Medical Simulation Services (GEMSS) [6] which covered a wide range of conditions
(from vascular surgery to maxillofacial reconstruction) which require sophisticated
simulation; notably, GEMSS also devoted considerable effort to issues of privacy,
confidentiality and data protection. Concurrently, two very large “cyberinfrastructure”
projects, the Bio-Informatics Research Network (BIRN) [7] and the Cancer
Biomedical Informatics Grid (caBIG) [8] had been launched in the United States.

All these projects identified, in different but congruent ways, similar sets of
problems: technical problems of scalability, interoperability and usability; a glut of
standards and terminologies that could scarcely be reconciled; economic problems of
investment (once the generous government funding had ceased) and social organ-
izational ones of acceptance and trust. Many had had bruising encounters with Ethics
Committees and Institutional Review Boards, but remained defiantly optimistic. It
was time to take stock and see how to harness all the goodwill and energy behind this
novel approach to biomedical and healthcare computing if it were ever to become the
infrastructure of choice in Europe.

3 SHARE: From Vision to Road Map

Along with the projects that had had a clear medical focus, such as those discussed
above, there had also been considerable interest in grid computing from projects
whose challenge was derived from related fields, such as pharmaceutical design or
physiological simulation. The highly distributed nature of grids also lent itself to bio-
surveillance and studies of the interaction between climate and health, as well as the
mapping of economically catastrophic diseases, for example in animals.

The WISDOM project set itself the initial goal of identifying suitable ligands for
attacking malaria (hence its name – Wide In-Silico Docking On Malaria) but has in
fact since broadened its scope to other docking simulation challenges, most notably
H5N1, the avian influenza virus. [9] The Virtual Physiological Human “Network of
Excellence” [10], an umbrella programme, promotes simulation of the human body
with the goal of integrating simulations at different levels of the bio-social scale, so
that, perhaps, a model of molecular mutation could be linked to a model of tumour
growth at the cellular level or a model of disease development in an individual could
be coupled to an epidemiological model of the disease in the community.

The SHARE project set itself the goal of establishing healthgrids as “the infra-
structure of choice for biomedical research and healthcare in Europe” within the next
decade or so. Its vision was of an environment, created through the sharing of
resources and services, in which heterogeneous and dispersed health data at different
levels, as well as knowledge and applications, can be accessed by all users as a
tailored information system according to their level of authorization and without loss
of quality of information or service. As envisaged in Bioinfomed, the data would
potentially range across the entire bio-social spectrum: molecular data (e.g. genomics,
proteomics); cellular data (e.g. pathways); tissue data (e.g. cancer types, wound
healing); personal data (e.g. EHR); and population data (e.g. epidemiology).

Grid infrastructures for biomedical informatics and health care implies, among
other things, the availability of grid services, most notably for data and knowledge

528 T. Solomonides

management; the deployment of these services on infrastructures involving healthcare
centres (e.g. hospitals), medical research laboratories and public health
administrations; and the definition and adoption of international standards and
interoperability mechanisms for medical information stored on the grid. In order to
achieve this, the project had to set targets, assess the status quo, identify key gaps,
barriers and opportunities, short term objectives, key developments and actors to
achieve the vision. Thus, the road map had to answer the questions: What needs to be
done? How is it to be done? Who should do it?

The then-current classification of grids (into data- and computational grids) had to
be elaborated in the face of reality in the biomedical and healthcare domains. Never-
theless, it proved a useful hook on which to hang exemplars for the purpose of
understanding their basic requirements.

• Computational Grids
- Conceived as inexpensive parallel computation.
- Use case examined: drug discovery.

• Data Grids
- Conceived as a means of massive, rapid, intelligent storage.
- Use cases: epidemiology, an avian flu surveillance network.

• Collaboration Grids
- A collaborative infrastructure offering computational, data, workflow, and

other services to support distributed teams.
- Use cases: VPH, breast cancer, paediatrics.

• Knowledge Grids
- Scaling up from data to information and then to knowledge; aspects of AI.
- Use case: use of grids in general healthcare, COPD.

The challenges identified by SHARE inevitably were of a socio-technical nature.
While some had a strong technical flavour, none was entirely free of social
considerations. At the one end of the spectrum, technical challenges in the
development of healthgrids would have to address issues of security, performance,
and usability, if ever the ideal of distributed data integration and workflow would be
realised. In order to provide solid exemplars for adoption, standards would be needed
in at least three different senses: reference services and implementations, with
reference sites for reassurance, some compromise in standards between healthcare and
grid, and common ontologies. Broad use, i.e. grid deployment in medical research
centres, would require attention to ease of installation and maintenance, adaptation of
user interfaces to medical use, compromises and agreements on IT policies and the
interfacing of clinical facilities to a grid.

This brings us naturally to the “ELSE” questions – ethical, legal, social and
economic issues – that, as technologists, we might have hoped, or at least imagined,
that, for good or ill, someone else would have addressed. Among the ‘soft’ issues
which present challenges to the deployment of healthgrids in healthcare are
community questions – of ownership of data (doctors, hospitals or patients?) and the
relative openness of grids vs. the highly restrictive regulation of hospital data.
Questions also of sufficient experience to develop and disseminate good practices in
relation to (e.g.) matching healthgrids to existing IT processes in research centres and
healthcare institutions, sharing data within the usual ethical, legal and regulatory

 Healthgrids, the SHARE Project, Medical Data and Agents 529

constraints, governance – who should govern a European healthgrid? – and creating
demand for healthgrids through awareness of success and a clear business case.

As we prepared the final road map of SHARE [11], some of us had formed the
clear view that the ELSE issues, especially those of ethics and law, were the greater
stumbling block and moreover, they would only be addressed if technologists chose to
meet policy makers halfway. Unless those amongst us who understood the potential
of the technology took it upon themselves to address ethical and legal issues, policy
makers and ethicists would have no investment in changing policy (e.g. to favour
research) or moving the goalposts (e.g. to recognize that the choice of technical
architecture may impact on the security of the data and our ability to protect it from
misuse). Far from waging a campaign against regulation, which appeared to be the
route some scientists were taking, this was a move to acknowledge the legitimate
concerns of both sides of the argument and to make the first conciliatory move to
bring researchers and regulators together in a common cause – ultimately, to allow
patients to benefit from the knowledge implicit in their own medical records.

4 Regulation and Automation of Compliance

When the motor car was introduced in the UK, it was a legal requirement that a man
(usually) walk ahead of the car with a red flag to warn pedestrians and to ensure that
the car did not exceed 5 mph. This was not a capricious piece of legislation, but an
irrelevant one. Motorized machinery up to this time had meant large unwieldy
agricultural vehicles whose ‘driver’ could not see sufficiently well all round to ensure
the safety of pedestrians; and the ‘travel’ undertaken in these vehicles simply meant
transfer from one farm to another. This is a good analogue for what may be happening
in the world of ethical and legal data protection as the underlying information
technology becomes ever more sophisticated. The next programme of research was
devoted to avoiding a restriction of this (irrelevant) nature on healthgrids. The very
idea behind the concept was to make sharing and exchange of data and workflows as
smooth and uninterrupted as possible. We set out to show that technology could at
least meet law and ethics halfway.

At this point, it is necessary to say a few words about regulatory frameworks in
Europe. On some issues, often controversial, there is a European directive. (E.g.
there is something called the European Working Time Directive which is said to
restrict working hours to 48 per week.) European directives are not legislation: they
have to be ‘transposed’ as national legislation separately by each member state.
Consequently, there is no guarantee of consistency. It is as if all federal legislation
had to be translated into state legislation, state by state, before it could have any
effect. In our case, the relevant directive is “95/46/EC Data Protection Directive”.
The definitions of relevant terms (e.g. “personal data”) and restrictions on data
disclosure vary from country to country, even though all legislation is supposed to
correspond to 95/46/EC. In any case, regulatory frameworks are diverse and complex,
and it is known that at the national level implementation of 95/46/EC has been
various and that diversity in Europe is driven by cultural, as well as by ethical and
legal dimensions.

530 T. Solomonides

Text law is too complex to be interpreted by non legal expert users, such as
biomedical researchers, clinicians and technologists. Enforcement of privacy
obligations at process level depends on legal guidance from an expert or on fixed
guidelines that can be looked up by a non-expert. In the next step in this project, we
accepted that we would have to rely on guidelines rather than on text law. This may
be considered a limitation, but in practice, it is precisely what happens in hospitals
every day. Another assumption we make is that the participants are trustworthy, that
they do have the autonomy to break the rules, but that this would also be recorded and
therefore they will be answerable for the breach.

In her PhD at the University of the West of England, Bristol, Hanene Rahmouni
analysed the problem of privacy compliance in healthgrids and concluded that it can
be subdivided in some respects and it can be factored in others, in a way that makes it
amenable to treatment by means of knowledge representation and reasoning
technologies. A subdivision of the problem is portrayed in Figure 4 below.

Fig. 4. An analysis of the problem of data sharing in a healthgrid collaboration. The left hand
pathway is normative/permissive, while the one on the right hand is prescriptive/coercive.
(Adapted from Hanene Rahmouni [12] with permission).

 Healthgrids, the SHARE Project, Medical Data and Agents 531

Whether one wishes to treat the advisory route on the left hand of Figure 4 or the
operationally deterministic one on the right, an analysis of the problem reveals that
there are two stages to a sharing operation: the first involves the analysis of the
context (of the data, of the requester and of the purpose of the request) which leads to
a view in principle whether the data is sharable or not. The second provides the
obligations that must be imposed on the recipient (i.e. the requester) of the data. Thus
we may think of these as pre- and post-conditions for the sharing of medical data. In
the context of a healthgrid, the two stages may be identified with, first, uploading the
data (i.e. information about its existence and structure, say) into the virtual database
and second, someone accessing those data from the grid database. Not only will the
system determine whether the requester is authorized and authenticated for such
access, it will ensure that the obligations to which the recipient must be subject are
inseparably attached to the data. This does not preclude abuse, of course, without
additional technology, such as self-deleting data. However, all such measures are
potentially subverted by a malicious or clever enough abuser of the system.

A schematic representation of the solution adopted by Rahmouni is shown below
in Figure 5. The information about the context is represented in a Web Ontology
Language (OWL) ontology and is captured in the antecedent of the rule. The rule
itself, which is expressed in the Semantic Web Rule Language (SWRL), determines
whether the specific sharing of the data can be allowed, and if so, with what
obligations on the recipient.

Fig. 5. Two stages in the problem of data sharing in a healthgrid collaboration. The antecedent
determines the context and thus the preconditions of sharing the data and the consequent
reveals the action and the post-condition obligations to be imposed on sharing the data.
(Adapted from Hanene Rahmouni [12] with permission).

532 T. Solomonides

The OWL/SWRL knowledge base is translated into an Extensible Access Control
Language (XACML) rule and then it can be said to be ready to be applied at the
operational level. In a diagrammatic representation conforming to the standard
XACML schema, the process is sequenced as shown below in Figure 6. The Policy
Decision Point (PDP) and Policy Enforcement Point (PEP) are key. The Policy
Information Point here has been implemented as the Semantic Web Knowledge Base
and the Context Handler. The Policy Administration Point is simply shown as a store.
The data flow then is: (1) User requests some data; (2) the PEP requests a decision
from the PDP, which (3) seeks the relevant attributes from the Context Handler; (4)
the Context Handler requests attributes values from the Knowledge Base, which (5)
duly supplies them. (6) These are returned to the PDP, (7) which issues a decision to
the PEP; finally, (8) the decision is enforced and (9) a response is sent to the user.

Fig. 6. The XACML machinery for data sharing in a healthgrid collaboration. (Adapted from
Hanene Rahmouni [12] with permission).

It has thus been shown that we can model contexts of medical data sharing by
means of ontology, reason about which privacy requirements should be assigned to
them, extend the ontology to allow the specification of adequate attribute-based
access control policies, and map the semantic web policies to XACML to prove
enforceability. In her thesis, Rahmouni shows that the approach can be extended to
determine documentation requirements for compliance audit, testing and assurance.

 Healthgrids, the SHARE Project, Medical Data and Agents 533

5 Management of Medical Records and Agents

It is our contention that the approach outlined above can be extended to manage the
full richness of medical data, by which we understand “data+metadata” as an
indivisible whole. A diagnosis of “manic psychosis” made by a House Officer in the
Accident & Emergency clinic on a Saturday night, perhaps in the midst of other
troublesome patients and their friends, is very different from the diagnosis of “manic
psychosis” by a Consultant Psychiatrist in the privacy and calm of her consulting
room. However, they may look exactly the same to the clerical coder in a basement
room who is required to encode patient encounters for purposes of reimbursement.

However, it is inconceivable that data of such complexity and richness can be
tackled without support from something like agent-based artificial intelligence. Data
must be extracted and managed; consent for them to be shared – or not – must be
maintained; implications for the patient in terms of visits to clinics and management
of appointments; implications for the patient in terms of predictive and preventive
interventions to maintain wellness; all these can be more easily conceptualized if an
object in the programming framework is an agent with a particular point of view –
whether this is the patient’s privacy or the promptness of his treatment.

An agent-based consent framework may serve to illustrate and reinforce this point.
Patients are said to be reluctant to provide consent for their data to be used for research
because they do not know how it will be handled, they worry about loss of privacy, they
have little idea of what benefit may be derived from research using their data, and so on.
If we have a framework within which we can reason about the context of our data, and
we can begin to think in terms of an automatic service that would validate consent
requests (i.e. determine whether an action is compatible or not with the permissions the
patient has given), would maintain a record of accesses to the data, would be able to link
accesses to the data with specific research or publications, and inform the patient about
these. With these actions performed by agents, it is possible to imagine negotiation
about secondary use so as to permit maximal use of data within the constraints of
consent, patient preferences as to what forms of information to receive back, feedback
summarized in an appropriate form and only about matters that the patient cares about.
A temporal element may be introduced and managed by agents, requesting consent
renewal or informing the patient that consent has lapsed.

The introduction of agent-based medical data management would not be without
its challenges. However, examples such as the management of privacy compliance as
described in this paper, or a robust, agent-managed consent maintenance service,
would give patients, carers, researchers, clinicians and managers reason to place some
trust in a system that does work and allow progress to be made from there to more
demanding areas where the solution is still subject to further research.

Acknowledgments. The work reported here was done in the context of a succession
of EU-funded projects (MammoGrid, SHARE, Health-e-Child, EuroPGDcode,
neuGRID) and in collaboration with the partners in these projects. The author is
grateful to his former colleagues and students at UWE, Bristol, to HealthGrid and to
the many partners whose ideas have been incorporated in this paper.

534 T. Solomonides

References

1. Warren, R., Solomonides, T., et al.: A Prototype Distributed Mammographic Database for
Europe. Clinical Radiology 62(11), 1044–1051 (2007)

2. Warren, R., Thompson, D., et al.: A Comparison of Some Anthropometric Parameters
between an Italian and a UK Population: “proof of principle” of a European project using
MammoGrid. Clinical Radiology 62(11), 1052–1060 (2007)

3. EGEE – Enabling Grids for E-Science, http://www.eu-egee.org/
4. del Frate, C., Galvez, J., et al.: Final Results and Exploitation Plans for MammoGrid. In:

Hernandez, V., Blanquer, I., et al. (eds.) Challenges and Opportunities of Healthgrids -
Proceedings of HealthGrid 2006. Studies in Health Technology and Informatics, vol. 120,
pp. 305–315 (2006)

5. Martin-Sanchez, F., Iakovidis, I., et al.: Synergy between medical informatics and
bioinformatics: facilitating genomic medicine for future health care. J. Biomed.
Inform. 37(1), 30–42 (2004), http://bioinfomed.isciii.es/

6. GEMSS – Grid Enabled Medical Simulation Services; information flier,
ftp://ftp.cordis.europa.eu/pub/ist/docs/
grids/gemms_achievement.pdf

7. Biomedical Informatics Research Network (BIRN), http://birncommunity.org/
8. Cancer Biomedical Informatics Grid (caBIG), https://cabig.nci.nih.gov/
9. WISDOM Initiative for grid-enabled drug discovery against neglected and emergent

diseases, http://wisdom.eu-egee.fr/
10. VPH The Virtual Physiological Human Network of Excellence,

http://www.vph-noe.eu/
11. SHARE Road Map (full and abbreviated editions),

http://roadmap.healthgrid.org/
12. Boussi Rahmouni, H.: Ontology-Based Privacy Compliance for Health Data Disclosure in

Europe, PhD thesis, University of the West of England, Bristol, UK (2011)

An Intelligent Approach to Surgery Scheduling

Sankalp Khanna1,2, Abdul Sattar2, Justin Boyle1,
David Hansen1, and Bela Stantic2

1 The Australian e-Health Research Centre, 71/918,RBWH, Herston,
QLD 4029, Australia

{Sankalp.Khanna,Justin.Boyle,David.Hansen}@csiro.au
2 Institute for Integrated and Intelligent Systems, Griffith University,

QLD 4111, Australia
{A.Sattar,B.Stantic}@griffith.edu.au

Abstract. The Multiagent Systems paradigm offers expressively rich
and natural fit mechanisms for modeling and negotiation for solving dis-
tributed problems. Solving complex and distributed real world problems
in dynamic domains however presents a significant challenge and requires
the integration of technology innovation and domain expertise to cre-
ate intelligent solutions. Scheduling of patients, staff, and resources for
elective surgery in an under-resourced and overburdened public health
system presents an excellent example of this class of problems. In this
paper, we discuss the research challenges presented by the problem and
outline our efforts of applying distributed constraint optimization, intelli-
gent decision support, and prediction based theater allocation to address
these challenges. We also discuss how these technologies can be used to
drive better planning and change management in the context of surgery
scheduling.

Keywords: Multiagent Systems, Distributed Constraint Optimization.

1 Introduction

Scheduling has been a well studied area in Computer Science research. Incor-
porating knowledge from areas of Operations Research, Artificial Intelligence
and Multiagent Systems (MAS), several previous efforts have focused on find-
ing practical ways of solving scheduling problems in real world domains. The
problem is made particularly difficult when scheduling needs to occur in a dis-
tributed manner across several departments. While each department is working
at optimizing its own resources, optimal utilization requires several departmental
schedules to be optimized horizontally. Faced with the challenge of an encum-
bered public health system, the Elective Surgery Scheduling Problem (ESSP)
presents an excellent real-world example of this class of problems.

Despite being a relatively young research area, the Distributed Constraint
Reasoning formalism has evolved rapidly to offer efficient and sophisticated al-
gorithms to model and solve a variety of naturally distributed multiagent prob-
lems. Several notable Distributed Constraint Optimization Problem (DCOP)

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 535–550, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

536 S. Khanna et al.

approaches employing techniques from search (e.g. ADOPT and its several vari-
ants), dynamic programming (e.g. DPOP [23] and its several variants) and
cooperative mediation (e.g. APO [19]) have emerged and are being success-
fully used to model and solve problems in many fields, including sensor net-
works [17][21][28], meeting scheduling [18] and coordination of unmanned aerial
vehicles [29].

Current complete DCOP algorithms, however, largely fail to scale well enough
to solve large complex problems, typically the class of problems we seek to ad-
dress. Further, while DCOP algorithms can theoretically utilize decomposition
or compilation to deal with complex sub-problems, this generally results in blow-
ing the distributed problem size out of proportion. Local search algorithms, that
trade off completeness for practical efficiency, have been proposed for dealing
with DCOPs, but are generally synchronous and thus unsuitable for addressing
the class of problems that interest our study. Also, while DCOP offers an excel-
lent mapping for representing many real world problems, the general design of
DCOP algorithms is static, and uses tree structures that need to be continually
rebuilt in dynamic environments. In addition, given the nature of the real world
domains relevant to our research, partial centralization based strategies would
not be a good fit here because of obvious departmental privacy and decision
control concerns.

We have proposed a multiagent architecture for modeling and solving dy-
namic complex distributed optimization problems, like the ESSP. In our model,
intelligent agents, armed with the constraints, preferences, and priorities of the
administrators, optimize schedules for their respective departments. They then
negotiate in a privacy-preserving manner (i.e. without sharing more information
than is essential) to resolve inter-agent constraints. The architecture of each
agent incorporates an interface module to handle internal and external commu-
nication, an intelligence module to handle decision making and learning, and a
DCOP engine to drive the optimization. This marriage of rational agency and
distributed constraint optimization, wherein the optimization algorithm forms
the core of the agent negotiation protocol and guides interaction between agents
working on related but departmentally autonomous problems, is novel and ne-
cessitated by the problem domain.

In order to overcome the shortcomings of traditional DCOP algorithms, the
DCOP engine employs a novel asynchronous DCOP algorithm, the Dynamic
Complex Distributed Constraint Optimization Problem Algorithm (DCDCOP).
DCDCOP preserves the decentralized decision control mechanisms of the prob-
lem at hand and offers a robust, flexible, and efficient mechanism for modeling
and solving dynamic complex problems.

We have also developed a proof of concept implementation, the Automated
Scheduler of Elective Surgery (ASES) system, that is designed to reflect and
complement existing manual methods of elective surgery scheduling, while offer-
ing efficient mechanisms for negotiation and optimization. The use of predictive
technologies to better manage sharing of theaters between elective and emer-
gency surgery has also been explored.

An Intelligent Approach to Surgery Scheduling 537

Fig. 1. Median Waiting Time for Elective Surgery

The rest of this paper is organized as follows. In Section 2, we present a
case study describing the processes involved in scheduling elective surgery at a
large public hospital in Queensland. This is followed by a brief introduction to
multiagent systems and distributed constraint optimization, and a discussion of
the state-of-the-art solutions to the scheduling in health. In Section 3, we propose
our multiagent methodology for modeling and solving the ESSP. We discuss the
agent architecture and various functional components, and justify our choice of
DCDCOP to drive the DCOP engine. We then discuss the ASES implementation
and the effect of fluctuation in resource levels on theater utilization. This is
followed by an evaluation of the efficacy of prediction-driven theater allocation
in Section 3.4. We conclude with a description of ongoing and future work,
mapping key challenges in the journey towards deployment.

2 Background

2.1 Elective Surgery Scheduling - A Case Study

Elective surgery is a planned, non-emergency surgical procedure, which can be
scheduled at the patient’s and surgeon’s convenience. The escalating demand
for elective surgery is however compounded by a shortage of trained surgeons,
anaesthetists and nurses. Recent statistics [1] show that despite repeated gov-
ernment intervention, elective surgery wait times continue to grow in Australia
(Fig. 1). Though slightly better, Queensland statistics follow similar trends. Our
research into public elective surgery wait times in Queensland,Australia, found
that a significant number of patients were subjected to longer than desirable
wait times. This was despite recent initiatives including increased budget alloca-
tion, treatment of long-wait patients in private hospitals, and increased clinical
staffing. As of 1 April 2010, 33,620 patients were waiting for elective surgery, of

538 S. Khanna et al.

Fig. 2. Current Model for Scheduling Elective Surgery at the Princess Alexandra
Hospital

whom almost 18% had waited longer than a clinically desirable time [26]. Any
improvement in scheduling processes would not only result in improved staff
and resource utilization, but also lead to reduced patient in-waiting and in-care
times, increased patient and staff satisfaction, and increased hospital revenue.

We discuss scheduling processes at a leading public hospital in Queensland to
help establish a better understanding of the intricacies involved.

21 operating theaters are available. The theater schedule is divided into 3.5
hour slots. Two slots are allocated per day, one in the morning and one in the
afternoon. Elective procedures are generally rescheduled in case of emergency.

Each department connected (i.e. allocating staff or other resources) to the
surgery carries out their individual scheduling activity. The bookings department
assigns patients to slots in consultation with the relevant surgical teams. The
bookings are recorded into the Operating Room Management Information System
(ORMIS). The different departments can access this information by looking into
ORMIS or by accessing the latest Bookings Schedule on the shared drive, where
it is updated everyday at 3PM.

Every Thursday the managers of the different departments meet and review
bookings for the week ahead (Fig. 2). Each session is discussed and existing
schedule conflicts are resolved. However, events like unexpected emergencies,
variation in patients’ health state, and sudden perturbations in staffing, of-
ten lead to schedule changes. All changes made subsequent to the meeting
are conducted on a case-by-case basis by individual departments. Coordinat-
ing these changes requires ad-hoc conventional communication. In keeping with
the dynamics of the domain, the schedule needs to be updated quickly and
efficiently. This is often not possible because of delays in inter-departmental

An Intelligent Approach to Surgery Scheduling 539

communication. Changes made under such circumstances can often result in in-
efficient or compromised schedules. For example, if a procedure is canceled at
the last minute, the bookings department may want to offer the slot to another
patient. However, due to the reliance on ad-hoc inter-departmental coordination,
the involved parties may be unreachable. As a consequence, the slot would then
go unused.

2.2 MAS and DCOP to the Rescue

Multiagent Systems [30] are a popular paradigm for modeling distributed sys-
tems. Intelligent autonomous agents incorporate powerful capabilities such as
reactivity, proactiveness, cooperation, learning and intention management. Hos-
pitals exhibit a high level of departmental autonomy and thus multiagent tech-
nology offers expressively rich tools for modeling the hospital scheduling en-
vironment. Further, multiagent systems also offer the Distributed Constraint
Optimization Problem (DCOP) formalism for modeling and solving naturally
distributed optimization problems efficiently.

Formally, we can define a DCOP as consisting of:

1. A finite ordered set of Agents A = {A1, A2, ..., Ak|k ∈ N∗}, where, for each
Agent A there exists :
(a) A finite ordered set of variables V = {V1, V2, ..., Vn|n ∈ N∗},
(b) A domain set D = {D1, D2, ..., Dn}, containing a finite and discrete

domain Di for each Vi,
(c) A constraint set C={C1, C2, ..., Cm |m ∈ N∗}, where each Cj , ∀j ∈ [1,m],

is defined as a cost function (f) on a pair of variables (i, i′). i.e. Cj =
fii′ : Di ×Di′ → N, ∀Vi, Vi′ ∈ V , and

(d) An ordered solution set S = {v1, v2, ..., vn|vi ∈ Di, ∀i ∈ [1, n]} where
each vi is an instantiation of the variable Vi and the aggregate cost of
the assignment F (S) =

∑
(xi,xi′∈V) fii′ (di, di′), xi ← di, xi′ ← di′ ∈ S.

2. The solution set of the DCOP S� is defined as the set of the solution sets of
each agent.

Employing techniques from search, dynamic programming, and cooperative me-
diation, DCOP offers efficient and sophisticated algorithms like ADOPT [20],
DPOP [23], and NCBB [5], to model and solve a variety of naturally distributed
problems. Recent research efforts [16][4][10] have however identified shortcomings
in DCOP algorithms when applied to dynamic and complex environments.

2.3 Current State of the Art

Over the last two decades, several research efforts have been directed at solv-
ing the scheduling problem, though most have been directed at the classical
“job shop scheduling problem” [32][25][8]. Further, research in the Operations
Research domain has also looked at the problem of scheduling for Operating
Theaters and proposed efficient solvers [7][15][24][14] to handle the task, but
most such solvers approach the problem as a centralized one.

540 S. Khanna et al.

A review and analysis of health-related scheduling systems proposed by re-
cent research revealed that most were based on simplistic case studies and did
not map the complexities of the domain they were modeling. While several sys-
tems, including DISA [6], MedPage[22], and Policy Agents [12], used multiagent
systems to model their domains, distributed schedule optimization was largely
overlooked or proposed as one of the future aims. We also found that since tran-
sient elective surgery scheduling data is not captured in any current mechanisms,
there is a lack of benchmark problems in this domain.

The evaluation of state-of-the-art commercial surgery scheduling softwares like
ORMIS1, OPERA2, and MEDITECH Operating Room Management solution3,
also found that while these provide sophisticated interfaces for users to enter
scheduling decisions, and handy tools to detect conflicts and manage schedules,
decision making and optimization are largely left to the operators of the system.
This results in several staff hours being spent each week on cumbersomely opti-
mizing and aligning schedules. Krempels and Panchenko [13] reveal that in the
Operation Theater Scheduling domain they study, it takes one person 3-5 full
working days to create a Nurse Roster. Several discussions and interviews with
hospital administrators and schedulers also revealed that the most popular tools
for departmental scheduling were still paper templates, excel spreadsheets and
whiteboards, with software systems being used to record manually optimized
schedules.

Given the need for maintaining the departmental decision control nature of the
problem domain, we focus our research on distributed problem solving, specifi-
cally multiagent representations of the problem.

3 The Solution

We believe that, while all of the methods addressed in section 2.3 help to improve
the state-of-the-art, what is missing is an intelligent flexible methodology that
can adapt itself to the complexity of the problem, without modifying or scaling
it down. Optimally solving local problems and handling changes caused by the
dynamic nature of the environment in a timely manner is also a non-trivial
challenge. We argue thus that incorporating optimization internally for each
agent, and as an integral element of the inter-agent negotiation process, is critical
to the success of any proposed system.

We have proposed an agent-oriented methodology where each department in-
volved in the scheduling of its resources, be they patients, staff or equipment,
is represented by an intelligent agent [11]. These agents are customized to the
constraints, preference and priorities of the party they represent. It is the re-
sponsibility of the agents to react to messages from other agents and optimize
their local schedule accordingly. As necessary, the agents then negotiate in a
privacy-preserving manner to resolve inter-agent constraints (Fig. 3).
1 http://isoftsanidad.es/text/products/2593.asp
2 http://www.chca.ca/opera.php?lang=en
3 http://www.meditech.com/ProductBriefs/pages/productpageorm.htm

http://isoftsanidad.es/text/products/2593.asp
http://www.chca.ca/opera.php?lang=en
http://www.meditech.com/ProductBriefs/pages/productpageorm.htm

An Intelligent Approach to Surgery Scheduling 541

Fig. 3. Proposed Model for Scheduling Elective Surgery at the Princess Alexandra
Hospital

Fig. 4. Agent Architecture

542 S. Khanna et al.

Fig. 5. Intelligent Decision Support

3.1 Proposed Architecture

The architecture of individual agents within our methodology (Fig. 4) consists
of a number of modules. An interface module handles communication with other
agents and users. Decision support and learning is handled by the intelligence
module. Negotiation and optimization is driven by the DCOP engine.

To better understand the architecture, we consider a negotiation as it would
be handled by the Intelligence module. In many scenarios, the system needs
user-input to make a decision about a negotiation request received. For exam-
ple, if a slot opening permits a procedure to be brought forward, the Bookings
department may request such a change. However, the Nurse Unit Manager may
accommodate the change at short notice only at her discretion, or after explicit
discussion with the staff involved. In situations such as this, there is no alter-
native but to defer the decision to the user. In this instance, the Intelligence
module would refer the decision to the user based on the the system suggested
by Khanna et al. [11]. It is designed to mimic the behavior of the domain expert
in these scenarios and to build a knowledge bank by learning from decisions
taken by the domain expert. The decision flow of this module is presented in
Fig. 5.

The agents thus have a number of capabilities. They can learn user preferences
and domain knowledge. The environment is monitored for changes necessitating

An Intelligent Approach to Surgery Scheduling 543

Algorithm 1. The DCDCOP Algorithm

Calculate static measures
Solve local problem
Calculate dynamic measures
Send message (DU,CurrContext) to all neighbours
Receive messages
when received (messageDU,msgContext) do

if msgContext and CurrContext are consistent then
add msgContext to CurrContext
if DU > msgDU then

Solve local problem
end
else if DU = msgDU and higher order then

Solve local problem
end
Calculate dynamic measures
Send message (DU,CurrContext) to all neighbours

end

end

Procedure: Solve local problem
Branch and Bound to solve local problem

updates to the schedule. They use logical reasoning to identify the need for and
to guide negotiation. An advanced DCOP algorithm is used to optimize local
schedules while ensuring efficient alignment of the global schedule.

3.2 DCDCOP : Driving the DCOP Engine

The DCOP algorithm we utilize in our solution needs to be robust in a num-
ber of ways. It must be scalable to the variety and complexity of the involved
agents’ sub-problems. Negotiation resolution must be timely with respect to the
environment under which the negotiation is taking place. The ability to separate
the communication protocol from the details of the local solver is also essential,
as this facilitates the customization of the local solver to each agent’s unique
problem while maintaining communication compatibility.

We have previously proposed DCDCOP [10] (see Algorithm 1), where agents
solve their local sub-problem using a local solver of their choice and then em-
ploy a novel metric called Degree of Unsatisfaction (DU) to guide inter-agent
negotiation and solve inter-agent constraints. DCDCOP has been shown [9] to
outperform ADOPT, DPOP, and NCBB, by more than an order of magnitude.
Comparison with a DSA[31]-like variant, CostDCOP, also proves the effective-
ness of the DU metric in guiding the algorithm towards an optimal solution [9].

544 S. Khanna et al.

Fig. 6. Bookings Agent

Fig. 7. Resources Agent

An Intelligent Approach to Surgery Scheduling 545

Given its ability to preserve the distributed sub-problem structure, and its
computational superiority over ADOPT, DPOP, and NCBB, we have chosen
DCDCOP to drive the DCOP engine in our proposed solution.

3.3 ASES - An Automated Scheduler for Elective Surgery

In this section, we discuss ASES, a Multiagent System implementation [9] devel-
oped as a proof-of-concept demonstration of ideas discussed in previous sections.
ASES has been implemented using Jason [2]. Jason is a Java implementation of
Agentspeak(L) [27]. In addition to providing extended Agentspeak(L) syntax
and semantics for the development of individual agents, Jason provides facilities
for the specification of multiagent systems. Crucial in so doing is the provision
for speech-act-based communication. This speech-act-based communication un-
derlies our DCOP communication implementation.

ASES models the scheduling activity of 4 agents: Bookings, Nursing, Anaes-
thesiology, and Theater Resources. The Bookings and Resource agents are briefly
discussed to present a better understanding of their activities.

The Bookings agent (Fig. 6) receives randomly generated requests to add or
modify bookings. Each request includes the patient and procedure information.
When a slot is allocated, the Bookings agent sends this information out to all
agents concerned. If an agent is unable to provide resources, a message is returned
to the Bookings agent, resulting in the allocation being cancelled and another
message being sent out to all agents concerned.

The Resource agent (Fig. 7) calculates the equipment required for the proce-
dure to schedule. If the required resources are unavailable, the Resource agent
requests that the Bookings agent reschedule the procedure. Thus, equipment is
allocated on a first-come first-served basis. This models the hospital’s current
resource allocation strategy. However, work is underway to enhance this process
to utilize procedure/patient priorities required.

Simulations carried out using the ASES system allow for ASES to be used as a
tool to test system bottlenecks. For example, reducing available resources by 10%
(simulating equipment breakdown) significantly increases resource contention
and allows the system to achieve only unto 93% theater utilization. Unlike the
Resource agent, the resources available to the Nursing agent are not fixed. The
Nurse Unit Manager is able to hire casual/temporary nurses when necessary.
However, their use is to be minimized. This is modeled by assigning a higher
cost to casual/temporary nursing staff.

3.4 Prediction Based Theater Allocation

In Queensland, as in many acute care hospitals around the world, operating
theaters are shared between elective and emergency services as per a static al-
location strategy, This involves blocking off one or more theaters for emergency
surgery and/or handling trauma cases. However, there is a lot of fluctuation
in demand for emergency services. When emergency demand increases, elective
surgery procedures are generally put on hold and rescheduled to a later time.

546 S. Khanna et al.

Fig. 8. Elective Surgery : Actual Vs Predicted Episodes

Quick rescheduling measures are thus required to allow departments to confirm
availability of staff and resources at the earliest to ensure this process does not
inconvenience patients too much and to minimize the impact of this reschedul-
ing on the rest of the elective surgery schedule. Further, reduced demand for
emergency services provides an opportunity for opening up these available beds
for elective surgery if efficient scheduling mechanisms are available. Recently
introduced tools like the Patient Admissions Prediction Tool (PAPT) [3] allow
accurate prediction of patient load for the next hour, the rest of the day, into
next week, or even on holidays.

We looked at the daily and monthly variance exhibited by these services,
and evaluated the value of using predictions based on historic data to guide a
dynamic resource sharing model. For this analysis, PAPT was used to predict
the number of monthly episodes of elective and emergency surgery at a 750-bed
urban hospital in Queensland, Australia for one year, from June 2009 to May
2010. Predictions were in the form of a monthly estimate and 95% prediction
interval, and were validated using real hospital data for the same period. Figures
8 and 9 represent the variance in actual and predicted episodes for Elective and
Emergency Surgery respectively.

The standard deviation of daily Elective and Emergency surgery cases across
the year was 6.6 and 1.8 patients/day respectively. Monthly standard deviation
for Elective and Emergency cases was 32.9 and 10.3 patients/month respectively.
The Mean Absolute Percentage Error (MAPE) for monthly surgery predictions
was 11.7% for Elective Surgery and 9.4% for Emergency Surgery. The observed
number of Elective surgery cases were within the 95% prediction interval more
often than Emergency surgery observations, likely due to the higher sample sizes.
The analysis provides evidence to support our argument that prediction-guided
dynamic resource sharing would work better than a static allocation model for
sharing theaters between elective and emergency surgery.

An Intelligent Approach to Surgery Scheduling 547

Fig. 9. Emergency Surgery : Actual Vs Predicted Episodes

4 Conclusion and Future Work

Motivated by the challenge of better managing the task of scheduling elective
surgery in public hospitals, we have proposed a methodology where intelligent
agents, trained with the constraints, preferences, and priorities of the adminis-
trators, optimize schedules for their respective departments and then negotiate
in a privacy-preserving manner to resolve inter-agent constraints.

The architecture of each agent incorporates an interface module to handle
internal and external communication, an intelligence module to handle decision
making and learning, and a DCOP engine to drive the optimization. Using this
methodology, the system can translate from the current practice of resolving
conflicts during weekly meetings to one where ongoing negotiation ensures that
the departmental schedules are largely conflict free at all times, thus making the
weekly meetings redundant. The use of agents also significantly reduces delays
in inter-departmental information flow and negotiation. Though delays resulting
from waiting for user interaction are unavoidable, the need for such interac-
tion will also decrease as the system learns and builds its knowledge bank for
automated decision support.

The underlying DCOP engine in our approach is driven by a novel asyn-
chronous DCOP algorithm, the Dynamic Complex Distributed Constraint
Optimization Problem Algorithm (DCDCOP), that preserves the decentralized
decision control mechanisms of the problem at hand and offers a robust, flexible,
and efficient mechanism for modeling and solving dynamic complex problems.
We have experimentally evaluated our DCDCOP algorithm against the state-of-
the-art asynchronous DCOP algorithms.

We have also developed a prototype proof-of-concept application, ASES, that
demonstrates the efficacy of our approach. Further, we have also investigated the
efficacy of Prediction driven dynamic resource sharing for as an alternative to a
static policy for sharing of theaters between elective and emergency surgery.

548 S. Khanna et al.

We are currently working on further development of the ASES prototype,
specifically on incorporating intelligent decision support within the agents. We
are also working on developing the DCOP engine to incorporate complex inter-
agent constraints and input from the intelligence module into the DCDCOP
algorithm. Implementing DCDCOP and other DCOP algorithms within ASES
to evaluate them on benchmark scheduling problems is also proposed. Mah-
eswaran el al. [18] have shown that the performance of ADOPT in solving real
world problems is significantly worse than in solving similar-sized map coloring
problems. Benchmarking the algorithms within ASES would thus provide better
insight on their relative performances. Incorporating domain expert interaction
and override functionality are also future aims for the ASES system.

We are also working towards employing various local solver algorithms within
DCDCOP to produce a family of algorithms that can adapt themselves to the
nature of the problem at hand. For example, agents with larger sub-problems
could employ local search to perform faster, though incomplete, search within
the node, while agents with smaller sub problems could benefit with using faster
complete search within the node. Investigating the interaction between agents
using different local solvers and the efficacy of the DU metric in this scenario is
also to be investigated.

Translating domain rules to constraints, quantifying cost functions to repre-
sent these constraints, incorporating multi-criteria optimization, and quantifying
confidence scores for intelligent decision support are also key research challenges
that must be addressed before our research can actually be fully deployed in a
real hospital environment. Lastly, gaining acceptance from the end-users of the
system is a challenge for all new systems but we expect the time already spent
working closely with these practitioners, and studying their requirements, will
help bridge this gap.

Acknowledgments. The authors wish to thank Dr. Peter Moran and his col-
leagues at the Princess Alexandra Hospital for their ongoing support, for allowing
us into their world of surgery, and for sharing their invaluable expertise.

References

1. Australian Medical Association. Public Hospital Report Card 2009 (October 2009),
http://ama.com.au/node/5030

2. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

3. Boyle, J., Jessup, M., Crilly, J., Green, D., Lind, J., Wallis, M., Miller, P., Fitzger-
ald, G.: Predicting emergency department admissions. Emergency Medicine Jour-
nal (June 2011)

4. Burke, D.A.: Exploiting Problem Structure in Distributed Constraint Optimisa-
tion with Complex Local Problems. PhD thesis, Department of Computer Science,
University College Cork, Ireland (2008)

5. Chechetka, A., Sycara, K.: An any-space algorithm for distributed constraint op-
timization. In: Proceedings of AAAI Spring Symposium on Distributed Plan and
Schedule Management (March 2006)

http://ama.com.au/node/5030

An Intelligent Approach to Surgery Scheduling 549

6. Friha, L.: DISA: Distributed Interactive Scheduler using Abstractions. PhD thesis,
University of Geneva, Geneva (July 1998)

7. Jebali, A., Hadj Alouane, A.B., Ladet, P.: Operating rooms scheduling. Interna-
tional Journal of Production Economics 99(1-2), 52–62 (2006)

8. Jones, A., Rabelo, J.: Survey of job shop scheduling techniques (1998)
9. Khanna, S.: Distributed Constraint Optimization and Scheduling in Dynamic En-

vironments. PhD Thesis, Institute for Integrated and Intelligent Systems, Griffith
University, Australia (2010)

10. Khanna, S., Sattar, A., Hansen, D., Stantic, B.: An Efficient Algorithm for Solv-
ing Dynamic Complex DCOP Problems. In: WI-IAT 2009: Proceedings of the
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelli-
gent Agent Technology, pp. 339–346 (2009)

11. Khanna, S., Sattar, A., Maeder, A., Stantic, B.: Intelligent Scheduling in Complex
Dynamic Distributed Environments. In: Medinfo 2007: Proceedings of the 12th
World Congress on Health (Medical) Informatics; Building Sustainable Health Sys-
tems, Brisbane, Australia, pp. 1665–1666 (2007)

12. Krempels, K., Panchenko, A.: An Approach for Automated Surgery Schedul-
ing. In: 6th International Conference on the Practice and Theory of Automated
Timetabling, pp. 209–233 (2006)

13. Krempels, K.-H., Panchenko, A.: Dialog-based intelligent operation theatre sched-
uler. In: Burke, H.R.E.K. (ed.) 6th International Conference on the Practice and
Theory of Automated Timetabling, pp. 524–527. Masaryk University, Brno (2006)

14. Lamiri, M., Grimaud, F., Xie, X.: Optimization methods for a stochastic surgery
planning problem. International Journal of Production Economics 120(2), 400–410
(2009); Special Issue on Introduction to Design and Analysis of Production Systems

15. Lamiri, M., Xie, X., Dolgui, A., Grimaud, F.: A stochastic model for operating
room planning with elective and emergency demand for surgery. European Journal
of Operational Research 185(3), 1026–1037 (2008)

16. Lass, R.N., Sultanik, E.A., Regli, W.C.: Dynamic distributed constraint reasoning.
In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
Chicago, pp. 1466–1469 (2008)

17. Lesser, V., Ortiz, C., Tambe, M. (eds.): Distributed Sensor Networks: A Multiagent
Perspective (Edited book), vol. 9. Kluwer Academic Publishers (May 2003)

18. Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking
DCOP to the real world: Efficient complete solutions for distributed Multi-Event
scheduling. In: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems, New York, vol. 1, pp. 310–317 (2004)

19. Mailler, R., Lesser, V.: Solving Distributed Constraint Optimization Problems Us-
ing Cooperative Mediation. In: Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems, New York, vol. 1, pp.
438–445 (2004)

20. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: An asynchronous complete method
for distributed constraint optimization. In: Proceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent Systems, Melbourne, pp.
161–168 (2003)

21. Modi, P.J., Shen, W.-M., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence 161(1-2),
149–180 (2005)

550 S. Khanna et al.

22. Paulussen, T., Zöller, A., Rothlauf, F., Heinzl, A., Braubach, L., Pokahr, A.,
Lamersdorf, W.: Agent-based Patient Scheduling in Hospitals. In: Multiagent Engi-
neering - Theory and Applications in Enterprises, pp. 255–275. Springer, Heidelberg
(2006)

23. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization.
In: Proceedings of the Nineteenth International Joint Conference on Artificial In-
telligence, Edinburgh, Scotland, pp. 266–271 (August 2005)

24. Pham, D.-N., Klinkert, A.: Surgical case scheduling as a generalized job shop
scheduling problem. European Journal of Operational Research 185(3), 1011–1025
(2008)

25. Prosser, P., Buchanan, I.: Intelligent scheduling: Past, present and future. Intelli-
gent Systems Engineering 3(2), 67–78 (1994)

26. Queensland Health. Quarterly Public Hospitals Performance Report March Quar-
ter (2010), http://www.health.qld.gov.au/surgical_access

27. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

28. Scerri, P., Modi, J., Shen, W.-M., Tambe, M.: Are multiagent algorithms relevant
for real hardware?: a case study of distributed constraint algorithms. In: SAC 2003:
Proceedings of the 2003 ACM Symposium on Applied Computing, pp. 38–44. ACM,
New York (2003)

29. Schurr, N., Okamoto, S., Maheswaran, R.T., Scerri, P., Tambe, M.: Evolution of
a teamwork model. In: Cognition and Multi-Agent Interaction: From Cognitive
Modeling to Social Simulation, pp. 307–327 (2005)

30. Woolridge, M.: Introduction to Multiagent Systems, 2nd edn. John Wiley & Sons,
Inc. (2009)

31. Zhang, W., Xing, Z., Wang, G., Wittenburg, L.: An analysis and application of
distributed constraint satisfaction and optimization algorithms in sensor networks.
In: AAMAS 2003: Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 185–192. ACM, New York (2003)

32. Zweben, M., Fox, M.: Intelligent scheduling. Morgan Kaufmann Publishers Inc.,
San Francisco (1994)

http://www.health.qld.gov.au/surgical_access

Using Distributed Agents for Patient Scheduling

Graham Billiau1, Chee Fon Chang1, Aditya Ghose1, and Alexis Andrew Miller2

1 Decision Systems lab, Center for Oncology Informatics,
Illawarra Medical & Health Research Institute
University of Wollongong, NSW, Australia

{gdb339,c03,aditya}@uow.edu.au
2 Illawarra Cancer Care Centre

Wollongong Hospital, Wollongong, NSW, Australia
amiller@uow.edu.au

Abstract. Ensuring optimum use of scarce resources is one of the largest
challenges facing health providers today. However it is not easy to gener-
ate an optimised schedule, as the health system is unusually and highly
dynamic. Scheduling systems must be extremely flexible while still pro-
ducing an efficient, acceptable schedule. Furthermore the scheduling sys-
tem should be able to cross health boundaries inside and outside hospitals
to perform load sharing.

To solve this problem we propose an encoding of the patient schedul-
ing problem as a dynamic distributed constraint optimisation problem
and show how it can be solved using Support Based Distributed Opti-
misation. The resulting system will be able to generate good schedules
and update them in real time. It is also able to maintain privacy across
hospital boundaries to enable load balancing.

1 Introduction

There are many sources of inefficiency in the health system, including staff forced
to use several different software systems that are not properly integrated. Dupli-
cating work on multiple systems often with laborious hand copying wastes time
[1].

Inefficiencies due to a poor schedule have been identified as problematic. A
good schedule will not only reduce the amount of time wasted on waiting for
patients to arrive and travelling, but will also improve patient satisfaction by
providing care at times that suit them with reasonable waiting times [2].

Research has focused on optimising the utilisation of operating rooms, and
shown that reducing organisational barriers and applying sophisticated optimi-
sation techniques can improve the utilisation of operating rooms in an already
efficient hospital by 4.5% [3]. This shows that significant gains in efficiency can
be made within the health system. In fact, the QE Foundation estimates “that
100 billion dollars over ten years can be saved in Medicare, Medicaid and VA
spending alone by using [their] methodologies.” [4].

Constraint Optimisation Problems (COP) are a proven method of modelling
and solving scheduling and optimisation problems, and so are an ideal tool to

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 551–560, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

552 G. Billiau et al.

solve patient scheduling problems. A COP consists of a set of variables, each
of which has an associated domain, a set of constraints and a set of objectives.
The variables typically represent the state of an object, but can also represent
decisions, preferences and many other concepts. The domain of each variable
is the values that the variable is allowed to take on. This normally must be a
finite set. Constraints are used to represent the interactions between variables,
e.g. patients cannot be treated while the equipment used is broken. Finally the
objectives can define the solution type you prefer, e.g. maximise patient satis-
faction or maximise efficiency [5]. A COP solver takes a problem modelled as a
COP and attempts to find a legal value for all the variables in the problem while
doing its best to satisfy the objectives. There are two general classes of solving
algorithms. Local search algorithms only consider a small part of the problem
at a time, so are able to find a solution quickly, but it is rarely the best solution.
Complete algorithms consider the entire search space, so take a long time, but
will always find the best solution [5].

Distributed Constraint Optimisation Problems (DCOPs) are the same as
COPs except that the problem is distributed across many agents. In this model,
each agent has its own local COP which is considered to be a variable in the
larger DCOP. In addition the concept of privacy is introduced, since any variable
in the local COPs that is referenced by a constraint or an objective in the DCOP
must be public, while all other variables are private [6].

A Dynamic Distributed Constraint Optimisation Problem (DynDCOP) ex-
tends the DCOP with explicit modelling of how the problem changes over time.
This change can take the form of adding or removing any of the aspects of the
problem, whether a variable, a constraint or even an entire agent. By doing so
it becomes much easier to cope with the changes. In the previous versions of
COPs, if the problem changes the solver has to be terminated. The problem is
then updated to reflect the change and the solver is restarted. All previous work
done by the solver is lost at this point, and in extreme cases can prevent it ever
finding a solution. DynDCOP solvers are able to cope with such changes. They
only throw out the previous work that is now invalid, so they are able to find
and maintain a solution even when the problem changes quickly [7].

Local search solvers are ideally suited for DynDCOPs as they keep less of an
internal state. As less of their work is invalidated when the problem changes,
they can recover faster. Complete solvers have more work to redo before they
can find a new solution. Recently, some algorithms, such as R-DPOP [8], Dy-
namic Constraint Optimisation Ant Algorithm (DynCOAA) [9] and Support
Based Distributed Optimisation (SBDO) [10,11] have been developed to solve
DynDCOPs.

R-DPOP is a complete algorithm and an extension of the DPOP algorithm,
which is built on the dynamic programming paradigm. A Depth First Search
(DFS) tree construction algorithm constantly runs in the background to create
and maintain the hierarchy between agents. Meanwhile each agent calculates the
optimal assignment to itself for each possible value of its parents and pseudo-
parents, taking into account the utility of its children and communicates that to

Using Distributed Agents for Patient Scheduling 553

its parent. These utility hypercubes must constantly be repaired as the problem
changes. This algorithm is capable of finding the optimal solution if the problem
remains static for long enough. It also requires very few messages, but they
can be large messages, which in turn means that each agent has high memory
requirements to store the messages.

DynCOAA is built using ant colony optimisation technology, and therefore is
a local search algorithm. New ants can be spawned anywhere within the agent
network and visit (assign a value to) every variable within one agent before
moving onto the next agent. Global communication between agents is required
to update the pheromone trails as well as to communicate the best solution
found. This does allow the algorithm to ensure that the global solution quality
is monotonically non-decreasing. When the problem changes all of the ants that
are currently travelling become invalid and so further communication is required
to destroy those ants and spawn new ones.

Neither of those algorithms take into consideration the possibility of agents
failing for any reason, such as hardware failure or malicious attack. It is particu-
larly important to be able to continue solving even when agents fail in dynamic
solvers, as they are often expected to run continuously for a long duration. SBDO
uses a unique communication strategy based on argumentation which allows it
to overcome this problem. The argumentation strategy means that any agent
can send a message to any of its neighbours at any time, and makes it a local
search algorithm allowing the algorithm to react very quickly to changes in the
problem and then propagating modifications to the solution only as far as is re-
quired. As there is no global communication, not even indirectly, the algorithm
can scale to very large numbers of agents. To compute a solution each agent
chooses one of its neighbours as its support. It then takes the assignments it
received from that agent as the premises for its own assignment, then sends that
to all its neighbours as an argument.

2 Encoding

Each of the actors in the scheduling system for a Radiation Oncology department
are represented by agents. Only the core actors, patients, Linear Accelerators
(linacs) and simulators are considered in this paper. Other actors such as nurses,
consultation rooms and oncologists will be added to the final system to be able
to find the best solution. There is one agent in the DynDCOP for each actor
that must participate in the scheduling process. This agent has all the relevant
knowledge of the actor and is responsible for getting the best outcome for its
actor. The agents in the system can be loosely grouped into two categories,
person agents and resource agents.

Informally a person agent has as part of its private knowledge a set of prefer-
ences (“I would like treatment between 8am and 8:45am”), a set of constraints
(“I’m not available on Thursday”) and other private knowledge (treatment ur-
gency, treatment details, pay rate, etc.) The agent’s public knowledge consists
of a set of variables which represent the patients current schedule, a set of con-
straints (“Each subsequent fraction of radiotherapy must be delivered at least

554 G. Billiau et al.

6 hours after the previous fraction”) and a set of objectives (“Once committed,
an appointment should not move by more than 15 minutes”).

Person agents only communicate with resource agents. This is to reduce the
links between agents and so minimise the exchange of messages as well as to have
tighter control over the information flow. The typical messages sent between
person agents and resource agents are “I would gain X utility from this time
slot” and ”you can’t have this time slot”. Only person agents know the specific
services that a person must take part in and the order in which they occur, and
the person agent is solely responsible for ensuring their schedule is correct. The
schedule will be defined by private constraints.

Similarly resource agents also have public and private knowledge. The agents’
public knowledge consists of the time slots are currently occupied. The occupant
of any given time slot is technically public information but it can be concealed.
It also contains the times when the resource is unavailable, as well as constraints
such as “only one patient can occupy a given time slot”. In its private knowledge,
there are other constraints such as “a nurse must also be present”.

Resource agents communicate with both person agents and other resource
agents. The resource agents will normally be another resource that this one
depends on. In general, resource agents do not communicate across hospital
boundaries, preventing the information flow that may violate hospital privacy.
The Resource agents have no knowledge of the rest of the schedule of each person
agent, or even other resource agents. They are solely responsible for ensuring that
the resource they represent is optimally utilised.

Formally the COP representing a person agent is:

COPp = 〈Xp,Dp, Cp,Rp,Kp〉

– Xp is all the variables this agent has. Xp = {T0, . . . , Tn}
• T is a single time slot, typically an entry in a calendar. T = 〈s, e, d, r, c〉

∗ s is the start time for this time slot.
∗ e is the end time for this time slot.
∗ d is the date of this time slot.
∗ r is the resource that is used/supported during this time slot.
∗ c is whether this time slot has been confirmed.

– Dp is the domain for each of the variables. Dp = {Dpm, Dps, Dpe, Dpd, Dpc}
• Dpr is the set of all resources.
• Dps = Dpe are the set of all minutes in a day, 0000 – 2359.
• Dpd is the set of dates in the Gregorian calender.
• Dpc = {True,False}

– Cp is the set of all constraints that are local to this agent. This is almost
entirely dependant on what person this agent represents.
• No pair of appointments can overlap.

– Rp is the set of objective functions local to this agent. This is also entirely
dependant on what person this agent represents.

– Kp is the agents knowledge. This is all private information that is defined
by what person this agent represents.

Using Distributed Agents for Patient Scheduling 555

The extra elements required for a patient agent are:

– Cp is the set of all constraints that are local to this agent. Covered formally
later.
• Each fraction must be at least 6 hours after the previous fraction.
• The first fraction must be on or after the patients ready for care date.
• The patient must receive 9 or 10 fractions per fortnight.
• The end time must be exactly duration minutes after the start time.
• The radiotherapy schedule must be synchronised with their chemother-
apy schedule.

• Two fractions can’t have the same number.
• All fractions must be delivered by the same linac.
• The scheduling appointment must be before all the treatment appoint-
ments.

– Rp is the set of objective functions local to this agent. Covered formally
later.
• Once committed an appointment should not move by more than 15 min-
utes.

• Minimise the date of the last fraction.
• Respect the patients preferences.

– Kp is the agents knowledge. Kp = 〈r, d, n, p, c〉
• r is the patients ready for care date.
• d is the number of minutes required to deliver one fraction.
• n is the number of fractions required.
• p is the patients preferences.

The COP for representing a resource agent is:

– Xp is all the variables this agent has. Xp = {T0, . . . , Tn}
• T is a single time slot, typically an entry in a calendar. T = 〈s, e, d, r, c〉

∗ s is the start time for this time slot.
∗ e is the end time for this time slot.
∗ d is the date of this time slot.
∗ R is the set of resources that are used/supported during this time
slot.

∗ P is the set of people that are required to operate this resource.
∗ c is whether this time slot has been confirmed.

– Dp is the domain for each of the variables. Dp = {Dpm, Dps, Dpe, Dpd, Dpc}
• Drr is the power set of all resources.
• Drp is the power set of all people.
• Drs = Dpe are the set of all minutes in a day, 0000 – 2359.
• Drd is the set of dates in the Gregorian calender.
• Dpc = {True,False}

– Cp is the set of all constraints that are local to this agent. This is almost
entirely dependant on what resource this agent represents.

• No pair of appointments can overlap.

556 G. Billiau et al.

– Rp is the set of objective functions local to this agent. This is also entirely
dependant on what resource this agent represents.

– Kp is the agents knowledge. This is both public and private information and
is largely dependant on what resource this agent represents.
• l is the resources physical location.
• c is the cost of operating this resource.

The extra elements required for a linac agent are:

– Cp is the set of all constraints that are local to this agent. Covered formally
later.
• A nurse, a patient and two physicists are required to operate the linac.
• No appointments between 0000 and 0800.
• No appointments between 1800 and 2359.
• No appointments on weekends.
• No appointments between 1200 and 2359 when day of week is Friday
and week of year is even.

– Rp is the set of objective functions local to this agent.
• minimise the amount of time each day when this resource is free.

The extra elements required for a simulator agent are:

– Cp is the set of all constraints that are local to this agent. Covered formally
later.
• A patient and a physicist and an oncologist are required to operate the
simulator.

• No appointments between 0000 and 0800.
• No appointments between 1800 and 2359.
• No appointments on weekends.

– Rp is the set of objective functions local to this agent.
• minimise the amount of time each day when this resource is free.

This encoding intentionally does not include the concept of hospital boundaries.
The intention is to allow easy communication between hospitals, and explicitly
encoding them would restrict that. However they do still exist and must be taken
into account, both for privacy and to identify nearby resources. It is flexible
enough that the basic types of agents can be extended to model most things in
the health system. There are some resources, such as waiting rooms, that can
not be easily modelled using the classes of agents presented here. However it is
easy enough to create a new class of agent to represent them.

We shall illustrate how the agents interact using a simple example. Consider
a radiotherapy treatment centre with 2 simulators, 2 Linear Accelerators (linac)
and 20 patients, where each patient must undergo a simulation in a simulator
before being treated on a linac. Each patient will be assigned to one of the
two simulators and one of the two linacs, resulting in a neighbour graph that is
similar to the one in figure 2 Initially they will be assigned randomly, so that
each patient is then a neighbour of exactly one linac and one simulator. They will
then start negotiating for their preferred time slot. Those who think they can get

Using Distributed Agents for Patient Scheduling 557

a better time slot on the other resource will change their resource assignment.
Removing the first linac or simulator from their list of neighbours and adding the
other one. In this way the patients will rearrange themselves, both on resources
and time slots to get a solution that optimises the objectives.

L L

S S

Fig. 1. The connections between agents in this model

3 Solving

The Support Based Distributed Optimisation algorithm was designed to solve
problems of the sort where there are large numbers of distributed agents that
must communicate to improve some optimisation objectives [10,11].

To achieve this, a novel augmentation strategy is used as the basis for inter-
agent communication. Each agent chooses one agent (possibly itself) to be its
support, and only what the agent’s support claims in its latest argument is what
the agent believes to be true about the world. Only this ’true’ information is
used by the agent when assigning values to its own variables.

When choosing which agent to use as its support, the agent always chooses the
strongest argument. This is decided (in decreasing order) by the utility claimed in
the argument, the number of agents contributing to the argument and randomly.

558 G. Billiau et al.

By doing so the assignments that lead to the highest utility are adopted by more
agents and so are more likely to appear in the final solution.

The arguments from other agents are not completely ignored. They must be
checked to see if they are consistent with the hard constraints. Each time a
new argument is received it must be checked against all the constraints that
the agent knows. Though the agent still does not consider other arguments,
it only considers the assignments within this argument. If the combination of
assignments is inconsistent then the agent must send a rebuttal. In this way it
guarantees that all the constraints will be satisfied.

This problem formulation leads to a star shaped communication network,
with resource agents as the hubs and person agents as the leaves. There will be
significantly higher density of links within the bounds of each hospital than there
is going between hospitals. The links between hospitals correspond to patients
that are using resources from both hospitals or resources in one hospital that
requires the support of another hospital. The structure of the communication
network shows that there is only a small amount of data transferred between
hospitals, Which minimises the potential for violating privacy.

Unfortunately SBDO is not well suited to solving problems with this structure.
This is because the algorithm relies on agents forming coalitions in order to
influence the value of more powerful agents. However in star shaped networks the
weak (person) agents can not communicate with each other to form a coalition
and influence the powerful (resource) agents. Because of this the resource agent
will only take notice of one of the (potentially hundreds of) neighbouring person
agents. In order to overcome this the way that resource agents operate must be
modified.

Because of this, resource agents must be SBDO wrappers around a centralised
optimisation algorithm. The centralised algorithm uses the partial knowledge of
each person agents preferences to attempt to schedule treatments. When there
is a conflict between two agents, A and B, it must elicit more preferences from
the agents. To do so it constructs an argument using A as support to send to
B, and an argument using B as support to send to A. If more than two agents
conflict, the algorithm chooses to support the set of assignments that leads to
the best utility. The agents response (or lack thereof) indicates their preferences.
While the resource agent retains the person agent as a neighbour it caches the
latest utilities received from the person agent.

In the standard SBDO algorithm when an agent is removed from the set of
neighbours, all the knowledge related to that agent is also removed, which poses
problems in this setting. Because when a patient agent changes the resource it
plans to use, it adds the new resource agent to its neighbours and removes the
old one. However it must remember the utility gained from using the previous
resource, both to ensure that the change leads to a better solution, and to ensure
that it doesn’t change back if the new solution is also sub-optimal. These saved
utility values do not have to be kept up to date, they simply serve to inform the
agent’s later choices. Only person agents need to retain this information.

Using Distributed Agents for Patient Scheduling 559

For every resource agent that a person agent contacts, the person agent must
record the most recent local utility gain from the schedule offered by that agent.
That is, the value of the objective functions that depend, either directly or
indirectly, on a variable controlled by that agent. The agent can then periodically
compare the estimated utility gain from other resource agents, either a best
guess or the stored value, to decide if it is worthwhile changing. To influence
how often person agents change between resources, objective functions can be
defined that emulate stability constraints in other algorithms. These serve to
provide an estimate of both the cost associated with changing to a different
resource, and the probable utility gain.

4 Example

A patient begins to interact with the oncology system in a hospital as soon as
they are referred with a diagnosis of cancer. One of the practical constraints
within a radiotherapy department is that a patient should receive all their treat-
ment on the same linac, thereby limiting the opportunities for load balancing.
As a result, load balancing must occur when the patient is first given a referral.

When a patient is diagnosed with cancer, they firstly need to meet their doc-
tor for a consultation to discuss their options for treatment. At this point an
agent containing all of the patient’s current relevant information/preferences
is created by the referring doctor to represent the patient. The patient agent
will then consider all of the possible places that the patient could receive treat-
ment, and eventually determine the ”optimal” place for the patient to receive
treatment. The ”optimal” place is determined by the minimum time for daily se-
quential radiotherapy treatments to commence on the linac, having been seen by
the oncologist and having undergone simulation and planning. On determining
this optimal solution, the agent will reserve a consultation appointment with the
oncologist, reserve a time for simulation and reserve treatment slots on the linac.
A summary of this solution, the consultation date and treatment start date, will
be presented to the real patient for approval. If accepted the reserved consul-
tation, simulation and first treatment appointments are confirmed. Subsequent
treatment appointments cannot be confirmed as they are determined by the on-
cologist at consultation or, less commonly, at simulation. The referring doctor
can then provide the referral to the oncologist and confirm the appointment time
with the patient.

During the consultation with the oncologist, the details of the patient’s treat-
ment are agreed and the simulation time is confirmed. The agent can now confirm
the provisional treatment times. The resource agent representing the linac can
confirm individual treatment times some time before they are scheduled.

5 Conclusion

Significant gains in the efficiency of the public health systems can be achieved
by good scheduling. Support Based Distributed Optimisation is ideally suited

560 G. Billiau et al.

to this task as it is dynamic, distributed, fault tolerant and guarantees that the
constraints will be satisfied.

We have shown how radiotherapy treatments can be modelled as a dynamic
distributed constraint optimisation problem. In demonstrating the weaknesses
of support based distributed optimisation, we have provided a process that can
solve this problem efficiently. Finally we have described the interactions between
the actors and the scheduling system for a typical scenario.

References

1. Cohen, S.: The pursuit of efficiency: Automation in health care. Hospital and
Healthcare Management

2. Cascardo, D.C.: Smart scheduling: The key to practice efficiency. Medscape Today
(2000)

3. Van Houdenhoven, M., van Oostrum, J.M., Hans, E.W., Wullink, G., Kazemier,
G.: Improving operating room efficiency by applying bin-packing and portfolio
techniques to surgical case scheduling. In: Anesthesia & Analgesia (2007)

4. Foundation, Q., http://www.qefoundation.org (accessed August 20, 2010)
5. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard

and easy problems. In: Proceedings of the 15th International Joint Conference on
Artificial Intelligence, Montreal, Canada (1995)

6. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint sat-
isfaction problem - formalization and algorithms. IEEE Transactions on Knowledge
and Data Engineering 10(5), 673–685 (1998)

7. Verfaillie, G., Jussien, N.: Constraint solving in uncertain and dynamic environ-
ments: A survey. Constraints 10(3), 253–281 (2005)

8. Petcu, A., Faltings, B.: R-dpop: Optimal solution stability in continuous-time op-
timization. In: IAT 2007 (November 2007)

9. Mertens, K.: An Ant-Based Approach for Solving Dynamic Constraint Optimiza-
tion Problems. PhD thesis, Katholieke Universiteit Leuven (December 2006)

10. Billiau, G., Ghose, A.: Sbdo: A new robust approach to dynamic distributed con-
straint optimisation. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.)
PRIMA 2009. LNCS, vol. 5925, pp. 641–648. Springer, Heidelberg (2009)

11. Billiau, G., Chang, C.F., Ghose, A.: Sbdo: A New Robust Approach to Dynamic
Distributed Constraint Optimisation. In: Desai, N., Liu, A., Winikoff, M. (eds.)
PRIMA 2010. LNCS(LNAI), vol. 7057, pp. 11–26. Springer, Heidelberg (2011)

http://www.qefoundation.org

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 561–574, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Software Agents in Clinical Workflow,
Clinical Guidelines and Clinical Trial Medicine

Alexis Andrew Miller1,2 and Fiona Hegi-Johnson3

1 Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong NSW 2500 Australia
2 Centre for Oncology Informatics, Illawarra Health & Medical Research Institute,

University of Wollongong, Gwynneville NSW 2500 Australia
3 Department of Radiation Oncology, Royal North Shore Hospital,

St Leonards NSW 2056 Australia

Abstract. Software agents can be used to assist with or even automate many
parts of a business process or workflow. In this paper we describe what needs to
be done to use software agents to assist the oncology trial workflow.

The most pressing problem is simply getting the existing data in a machine
readable format. To this end we propose the Clinical Knowledge Markup
Language for representing all this information.

Agents can then be used for a multitude of tasks such as identifying patients
that are eligible for a given trial, suggesting treatment based on past trials and
automating data collection.

1 Introduction

Software agents are a pervasive informatics technology, with usefulness in processes
of information and workflow management. A software agent can be designed to
embody and fulfil almost any process with rules and requirements.

Medical practice can be viewed as having components in common with a business
process. However there are substantial differences between a business processes such
as manufacturing an automobile and achieving a cure in a patient with cancer.

For most of its history, oncology has been driven by data. Initially data was largely
anecdotal, then larger cumulative reports of practices that showed promise, and
subsequently into the modern era where the usefulness of a treatment is determined by
clinical trial rather than expert opinion or populism. Pragmatically, if something is
thought to work, it can be shown to work irrespective known mechanism. As a result,
modern oncological practice heavily reflects what has been discovered in clinical
trials – as it should. These reports of what works are reflected in published Clinical
Guidelines, of which there are now a plethora. But before Clinical Guidelines are
produced, clinical trials will have already penetrated into routine clinical practise. The
trials will also have lead to new and more specific trial questions.

It should be stressed that the clinical work which is undertaken within a trial and
the clinical work which is undertaken outside a clinical trial do not differ in type. Like
the Clinical Guideline specification, the clinical trial work is, in fact, normal clinical
activity.

562 A.A. Miller and F. Hegi-Johnson

From a business perspective, both the clinical guideline and the oncology trial are
processes of workflow and information flow that have a rigid form of manual process
management imposed. Being within a specific domain, these guideline and trial
processes could be negotiated by a series of software agents.

2 Structure of a Clinical Trial

Within the clinical trial there are several people and many temporal events that occur
before a patient can be entered into a trial and then finally be said to have successfully
negotiated the trial process.

The initial process of protocol development and site accreditation is not dealt with
here.

The trial infrastructure imposes two organisational facets on to the normal clinical
workflow:

There is the organisational structure which selects the eligible patient and excludes
the ineligible patient, thereby constraining the heterogeneity introduced in
indiscriminate patient selection.

There is the organisational structure of specific and restrictive business rules
defining the nature of the clinical workflow, thereby constraining it to match the
workflow described in the protocol.

This constrained clinical workflow mandates the collection of specified data
(Clinical Report Forms – CRF) from parts of the clinical workflow which are then
submitted to the trial apparatus as the recorded data. In all cases the primary data
resides within the clinical workflow. Quality assurance of the trial consists of
verifying that data collection is complete and that data collected and presented to the
trial agency is indeed identical to the data in the clinical record. Several well
publicised cases have made trial organisations highly particular about the veracity of
trial data [1][2]. Given that billions of dollars of trade hinge on successful,
unimpeachable trials, commercial groups pay large sums of money to ensure veracity
of trial results, even though the incremental costs are modest [3].

The trial process in medicine is well established with costs associated with data
collection, quality assurance and storage. The current paradigm for trial conduct
involves the employment of trial staff who spend their time chasing clinicians to
complete data forms and to sign documents. Each new trial process requires a trial
coordinator to shepherd the normal clinical workflow to meet the trial specifications.
Each new trial coordinator has to be housed and paid. The data collected must then be
checked by external auditors.

While the clinical trial business model has been refined and now has high levels of
governance, the nature of the clinical trial business has not changed since the
inception of the randomised clinical trial. The steps of the clinical trial can be divided
into clinical and non-clinical components. (Figure 1)

 Software Agents in Clinical Workflow, Clinical Guidelines 563

Fig. 1. Clinical workflow V Trial workflow

The non-clinical component consists of three components. The first occurs before
the clinical phase of the trial begins and includes protocol development leading to
protocol documentation, establishment of quality assurance procedures, data
collection protocols and forms, and training of interested staff. Within local
institutions, this phase includes seeking local Ethics Committee approval for the
experimental protocol and the employment and training of Trial Coordinators.

The second phase begins when the protocol is open to patients who enter the trial
through the clinical phase. This phase includes the screening of patients to find

564 A.A. Miller and F. Hegi-Johnson

suitable candidates who must meet inclusion and not meet exclusion criteria (Figure
2). Once a patient has the required profile, has been offered inclusion on the trial and
consents to be involved, the process of randomisation to a specific treatment is
undertaken. That specific treatment is then delivered to the patient over a treatment
course, following which the patient enters a follow up period. This trial phase is
characterised by the production, recording, storage and transfer of data relating to the
patient's treatment and response to treatment. Typically these data are recorded in
standardised nomenclature which is increasingly becoming internationally
standardised [4].

The final stage notionally commences after the clinical phase has ended, but is
increasing seen during the clinical phase as the requirements for data governance are
increased. Data from a patient who has completed therapy is submitted and reviewed
for quality. Where complex idiosyncratically variable treatments, such as surgery or
radiotherapy, are used, data relating to the quality of the therapy might be required
before the patient can proceed on the protocol. The outcomes of treatment are
recorded in the clinical notes and also reported according to trial protocol.

Fig. 2. Inclusion and Exclusion criteria for the RTOG 94-13 trial

Clinical and trial data are not identical. A portion of the clinical data is included in
the trial data, but there is additional data submitted to the trial organisation which is
not part of the clinical record. The trial data is more stringent in requiring a positive or
negative response to certain questions which might be obtained in the normal clinical
setting but not recorded, or not required because of questionable clinical relevance.
Trial data is increasingly wide reaching in an attempt to get more standardised data on
the chance that it might prove to be relevant [5] or prove useful in establishing a
rationale for use in the event of primary end points being negative. Formal Quality of
Life (QOL) estimates during clinical trials of treatment efficacy are such an extension
- if an intervention shows no improvement in cure but has a better QOL, the new
intervention can be justified. In both cases, the increasing data requirements impose a

 Software Agents in Clinical Workflow, Clinical Guidelines 565

hefty workload increase which results in substantial costs [5]. Patient-derived
assessments might be more truthful and easier to obtain than physician-derived
assessments.

So while the business processes of the clinical trial are well established, there has
been little abstraction of the process so that all trials can be mapped to a single
relevant model. Given that trial data and clinical data overlap, and that trial data is
extracted during the clinical workflow, and that trial treatment is delivered as if it
were clinical treatment, the business model for trials can be expected to substantially
overlap with the business model for routine clinical workflow.

This overlap can clearly be seen in treatment recommendations for patients outside
of trial protocols and eligible for trial protocols. Routine clinical workflow is not a
random assignment of therapy to any patient, there are clinical recommendations
based on previous trial results that determine what will be offered to the next patient.
In fact, after a trial has produced a finding of a significant benefit, future patients
eligibility for this treatment is determined by matching the same inclusion and
exclusion criteria as were used in recruiting patients onto the trial that resulted in a
positive outcome. This is the nature of the advancement of medicine in the modern
scientific era which is based on experimentation. These changes have seen the
promotion of the notion of ‘personalised medicine’ – treatment fitted more closely to
your profile, whether a demographic or a DNA profile. However, the nirvana of
‘personalised medicine’ cannot be achieved unless the clinical record includes all of
the patient’s data points before making a decision. As current trial data includes non-
clinical information (such as DNA profiles), this data will need to become part of the
clinical record to achieve personalised treatment. Such changes have happened in the
past as seen with Estrogen Receptor levels in breast cancer and PSA levels in prostate
cancer.

The nature of the business process described however argues that any software
built to service the clinical portion of a trial must, ipso facto, be able to be used for
routine clinical management. Sadly this is not the case. Business process models for
normal clinical workflow or information flow do not exist except as single
departmental instances (Ford, Johns Hopkins). Trial software is tailored towards the
data requirements of trial organisations and clinical software is rarely capable of
being used to support trials (although there are exceptions - Miller HIMJ 2006).
Unfortunately, business process model and clinical trial development occur in
different professional groups who know little about the others’ requirements, a pattern
also existing between business people and requirement engineers. (Armanas 2007)
Finding a language that can specify a software model as well as a clinical business
rule would assist in bridging this divide.

These semantic questions about the use and re-use of clinical data whether derived
from a patient to inform treatment choice, or from a clinical trial protocol to inform
eligibility, or from a clinical trial result to direct therapy offered, are not new (Miller).

566 A.A. Miller and F. Hegi-Johnson

3 The Clinical Guideline

The clinical guideline is based on the results of the clinical trial and seeks to curtail
variability in the management of similar and standard patients. The guideline does not
mandate adherence, rather it advises what the current ‘gold standard’ is.

Like the clinical trial, it is applicable to a specific subset of patients who meet
certain diagnosis, stage and eligibility criteria.

4 Software Agents in Trial Medicine

The major obstacles for trials are the identification of eligible patients [6], and the
organisation of data collection. These obstacles increase the duration time of trials and
also increase the costs of trials as people are used to ensure that the data collection is
timely and successful. Agents have a role in both of these processes.

Agents can be designed to identify patients eligible for a particular trial by real
time assessment of data entered into Oncology Information Systems (OIS). The
rational use of the OIS with respect to timely identification of data deficits and
analysis has already been described [7].

The second requirement in trials is a mechanism for coordinating all of the events,
assessments and data submissions required by the trial. Agents are also adept at
managing recurring events based upon schedules, and instituting QA routines to
ensure that data is provided and consistent. Agents can automate the booking of
patients for assessment by oncologists and present the required assessments to the
clinician without prompting the required data collection.

5 Software agents in Clinical Medicine

Where patient accrual into a trial has been managed by a software agent, the same
agent can be used to also recognise similar patients if the trial eventually proves to
establish a new standard of treatment. The use of these agents in clinical practice can
standardise the management of cancer according to published data. It is said that we
could improve cancer cure and care just by applying what we already know [8].

The use of software agents capable of scheduled contact with patients through
email or SMS will permit the accumulation of a vast quantity of patient derived
assessments that do not require any input from clinical staff.

6 Obstacles to the Use of Software Agents in Trial and Clinical
Medicine

There are several obstacles to the implementation of agents into trial and clinical
medicine which relate to software, users and markup language.

 Software Agents in Clinical Workflow, Clinical Guidelines 567

6.1 Problems with Software

Clinical departments predominantly utilise proprietary software for their needs. This
software is designed for clinical workflow management. While this proprietary
software may be capable of managing trial patients, developing these capabilities has
a low priority in software development. In fact, the requirement of trials for a
proscribed workflow including mandatory assessments is almost the antithesis of the
proprietary software development paradigm which is constantly adding
“functionality” to increase choice in the way that clinical work is undertaken.
Generally non-trial departments do not take kindly to having their clinical workflow
constrained.

This approach is short-sighted. While all patients are not the same, they are also
not infinitely variable. If patients were infinitely variable, trials would not be possible.
The variation that does occur is catered for within the eligibility criteria of the trial
process. If a trial affects clinical practice, then the same eligibility criteria apply in
routine management. However, in clinical practice the repeated description of routine
treatment by clinicians is not supported by the commercial software.

6.2 Problems with Software Use

The use of software agents requires a software system populated with data, on which
to watch and act. A less recognised requirement is that the data be entered into the
software system at a time when the software agents have the desired impact.

Software agents cannot act on paper. Software agents cannot act on a software
system lacking data. Software agents cannot efficiently inform about eligibility for
trials when the data is entered at the end of the patient’s treatment.

In short, the rational, efficient use of software agents requires that a software
system already be in place, that it is in routine use, and that the nature of its use serves
the purpose of the agent [9]. Thus an agent designed to find patients for trial inclusion
as they present to a clinical department must have the patient’s data entered into the
information system before or when they arrive in the department [10]. Developing
this system of operation is a major undertaking [11].

While there is trial-based software, it is not used in the clinical scenario to manage
patients and so cannot be used to identify eligible patients within normal work flow.

6.3 Lack of a Communication Protocol between the Clinical and Trial
Scenarios

If the previous assertions are correct, a protocol for the specification of a clinical trial
will also include the specification of routine clinical workflow, and a specification for
the reporting of clinical trials that makes abstracts obsolete. Such a protocol would
reflect the underlying knowledge structure, knowledge acquisition and clinical work
flow, in short the ontology of the expert domain. This ontology would aid the design
and implementation of software agents. Any agent designed to match a patient’s
characteristics with eligibility criteria (inclusion and exclusion) in a trial would utilise
this function.

568 A.A. Miller and F. Hegi-Johnson

7 Clinical Knowledge Markup Language

The development of a clinical knowledge markup language could come from several
sources, but must include the domain expert who is being assisted by the technology,
and the published literature on which patient treatment is based. Unfortunately
automated methods are error prone and immature.

I shall use a single trial as an example of the clinical trial and published literature
interaction. The Radiation Therapy Oncology Group of the USA undertook a 2x2
randomised phase III trial in 1994 investigating radiotherapy fields (prostate V
prostate + pelvic lymph nodes) and hormone therapy (neoadjuvant and concurrent for
4 months V adjuvant for 4 months). Known a “RTOG 94-13”, the trial was specified
in a protocol [12], reported in the literature [13]and is used within clinical guidelines
[14], and in clinical practice [15].

The protocol includes a specification of the treatment arms and the treatment to be
applied in each arm, the eligibility criteria, and outcomes to be measured.

The literature report includes a specification of the treatment arms and the
treatment applied in each arm, truncated eligibility criteria, and outcomes achieved
highlighting which arm is superior.

The clinical guideline includes a specification of the selected superior treatment
arm and eligibility criteria.

In clinical practice, a patient receives treatment which may or may not be that of
the superior treatment arm. This may be due to patient or physician preference.

The relationship between the trial protocol and literature report is demonstrated
below where excerpts of the relevant documents are displayed. Each portion has been
coded into a handcrafted XML format. It is plain from this coding that there is a
consistent structure but this has not been specified in a formal ontology to date.

Table 1. RTOG 00394-13 trial publications

Summary of the Trial Protocol

Summary of the Literature Report.

 Software Agents in Clinical Workflow, Clinical Guidelines 569

Guideline advice for similar patients to those included in RTOG 94-13

570 A.A. Miller and F. Hegi-Johnson

Table 2. XML example

Trial
Protocol

<Protocol>
 <Intent>Curative</Intent>
 <Arm>
 <Arm_Title>1. P&WP + NCHT </Arm_Title>
 <Modality>
 <Radiotherapy>
 <Phase1>
 <Target>
 <Anatomy>Prostate</Anatomy>
 <Anatomy>Pelviclymph nodes<Anatomy>
 </Target>
 <Dose>50.4Gy</Dose>
 <Fractions>28</Fractions>
 <FractionsperWeek>5</FractionsperWeek>
 </Phase1>
 <Phase2>
 <Target><Anatomy>Prostate</Anatomy></Target>
 <Dose>19.8Gy</Dose>
 <Fractions>11</Fractions>
 <FractionsperWeek>5</FractionsperWeek>
 </Phase2>
 </Radiotherapy>
 <HormoneTherapy>
 <Duration>4 months</Duration>
 <StartDate>2 months before start of radiotherapy</StartDate>
 <Drug>
 <DrugName>Flutamide</DrugName>
 <Dose>250mg</Dose>
 <Frequency>three times a day</Frequency>
 <Route>oral</Route>
 </Drug>
 <Drug>
 <DrugClass>GnRH</DrugClass>
 <Option1>
 <DrugName>Zoladex (goserelin acetate)</DrugName>
 <Dose>3.6mg</Dose>
 <Frequency>monthly</Frequency>
 <Route>subcutaneous</Route>
 </Option1>
 <Option2>
 <DrugName>Lucrin (leuprorelin acetate)</DrugName>
 <Dose>7.5mg</Dose>
 <Frequency>monthly</Frequency>
 <Route>intramuscular</Route>
 </Option2>
 </Drug>
 </HormoneTherapy>
 </Arm>
 <Arm>
 <Arm_Title>2. P + NCHT </Arm_Title>
 <Modality>
 <Radiotherapy>
 <Phase1>
 <Target><Anatomy>Prostate</Anatomy></Target>

 Software Agents in Clinical Workflow, Clinical Guidelines 571

 <Dose>50.4Gy</Dose>
 <Fractions>28</Fractions>
 <FractionsperWeek>5</FractionsperWeek>
 </Phase1>
 <Phase2>
 <Target><Anatomy>Prostate</Anatomy></Target>
 <Dose>19.8Gy</Dose>
 <Fractions>11</Fractions>
 <FractionsperWeek>5</FractionsperWeek>
 </Phase2>
 <Phase3>
 <Target><Anatomy>Prostate</Anatomy></Target>
 <Dose>70.2Gy</Dose>
 <Fractions>39</Fractions>
 <FractionsperWeek>5</FractionsperWeek>
 </Phase3>
 </Radiotherapy>
 <HormoneTherapy>
 <Duration>4 months</Duration>
 <StartDate>2 months before start of radiotherapy</StartDate>
 <StartDate>end of radiotherapy</StartDate>
 <Drug>
 <DrugName>Flutamide</DrugName>
 <Dose>250mg</Dose>
 <Frequency>three times a day</Frequency>
 <Route>oral</Route>
 </Drug>
 <Drug>
 <DrugClass>GnRH</DrugClass>
 <Option1>
 <DrugName>Zoladex (goserelin acetate)</DrugName>
 <Dose>3.6mg</Dose>
 <Frequency>monthly</Frequency>
 <Route>subcutaneous</Route>
 </Option1>
 <Option2>
 <DrugName>Lucrin (leuprorelin acetate)</DrugName>
 <Dose>7.5mg</Dose>
 <Frequency>monthly</Frequency>
 <Route>intramuscular</Route>
 </Option2>
 </Drug>
 </HormoneTherapy>
 </Modality>
 </Arm>
 <Arm>
 …
 </Arm>
 <Arm>
 …
 </Arm>
</Protocol>

Literature
Report

<CKML>

 <date_start> April 1, 1995</date_start>

 <date_end> June 1, 1999</date_end>

572 A.A. Miller and F. Hegi-Johnson

 <patients_accrued>1323 </patients_accrued>

 <inclusion_criteria>

 <ICD10topography>prostate</ICD10topography>

 <stage>

 <StageGrouping_Classification>TNM

 <StageGrouping>I</StageGrouping>

 <StageGrouping>II</StageGrouping>

 <StageGrouping>III</StageGrouping>

 </StageGrouping_Classification>

 <PSA>=<100 ng/mL</PSA>

 <LN_risk_estimate>=>15%</ LN_risk_estimate>

 </stage>

 </inclusion_criteria>

 <Protocol_Randomized>yes</Protocol_Randomized>

 <intent>curative</intent>

 <median_followup>59.5 months</median_followup>

 <Arm>

 <arm_name>WP + NCHT</arm_name>

 <modality>

 <Radiotherapy>

 <Radiotherapy_Timing>primary</Chemotherapy_Timing>

 <Target><Anatomy>prostate + whole pelvis</Anatomy></Target>

 </Radiotherapy>

 <Hormonetherapy>
 <Hormonetherapy_Timing>
 neoadjuvant & concurrent
 </Hormonetherapy_Timing>

 </Hormonetherapy >

 </modality>

 <outcome>

 <progression_free_survival>60%</progression_free_survival>

 <significance>P =.008</significance>

 </outcome>

 </arm>

 <arm>

 <arm_name> PO + NCHT</arm_name>

 <modality>

 <Radiotherapy>

 <Radiotherapy_Timing>primary</Chemotherapy_Timing>

 <Target><Anatomy>prostate</Anatomy></Target>

 </Radiotherapy>

 <Hormonetherapy>
 <Hormonetherapy_Timing>
 neoadjuvant & concurrent
 </Hormonetherapy_Timing>

 </Hormonetherapy >

 Software Agents in Clinical Workflow, Clinical Guidelines 573

 </modality>

 <outcome>

 <progression_free_survival>44%</progression_free_survival>

 <significance>P =.008</significance>

 </outcome>

 </arm>

 <arm>

 …

 </arm>

 <arm>

 …

 </arm>

 <Outcome_definition>

 <local_recurrence>yes</local_recurrence >

 <regional_ recurrence >yes</regional_recurrence>

 <distant_ recurrence >yes<distant_recurrence >

 <PSA_failure>yes</PSA_failure>

 <death>yes</death>

 </Outcome_definition>

 </Protocol_randomised>

</CKML>

8 Conclusion

Software agents permit standardisation of business process, even in the practice of
medicine. However these agents must be employed in clinical scenarios that relate to
a particular patient’s particular predicaments. As such software agents must negotiate
according to the knowledge of the expert domain.

Guidelines, trial protocols, literature reports and clinical work flow are
interconnected forms of knowledge representation. The trial protocol with discovered
clinical knowledge is published in a literature report that influences clinical workflow.
When that influence is pervasive, the knowledge is expressed within a clinical
guideline.

The knowledge representation of guidelines cannot be undertaken in isolation from
the other related forms of representation. Software agents that deal with selection of
patients for clinical trials will be re-used for selection of patients for routine clinical
work flow and for the application of guidelines.

References

[1] Bezwoda, W., Seymour, L., Dansey, R.: High-dose chemotherapy with hematopoietic
rescue as primary treatment for metastatic breast cancer: a randomized trial. Journal of
Clinical Oncology 13, 2483 (1995)

574 A.A. Miller and F. Hegi-Johnson

[2] NCI Issues Information on Falsified Data in NSABP Trials. JNCI Journal of the National
Cancer Institute 86, 487–489 (1994)

[3] Goldman, D.P., Berry, S.H., McCabe, M.S., Kilgore, M.L., Potosky, A.L., Schoenbaum,
M.L., Schonlau, M., Weeks, J.C., Kaplan, R., Escarce, J.J.: Incremental treatment costs in
national cancer institute-sponsored clinical trials. JAMA: The Journal of the American
Medical Association 289, 2970–2977 (2003)

[4] CDISC (2010), http://www.cdisc.org/
[5] Scott, J., Hinder, V.: Quality or Quantity? Data Collection in Clinical Trials. Cancer

Trials New Zealand, University of Auckland
[6] Lara, P.N., Higdon, R., Lim, N., Kwan, K., Tanaka, M., Lau, D.H., Wun, T., Welborn, J.,

Meyers, F.J., Christensen, S., O’Donnell, R., Richman, C., Scudder, S.A., Tuscano, J.,
Gandara, D.R., Lam, K.S.: Prospective evaluation of cancer clinical trial accrual patterns:
identifying potential barriers to enrollment. Journal of Clinical Oncology: Official Journal
of the American Society of Clinical Oncology 19, 1728–1733 (2001)

[7] Miller, A.A.: New informatics-based work flow paradigms in radiation oncology: the
potential impact on epidemiological cancer research. Health Information Management
Journal 34, 84–87 (2006)

[8] Peters, L.J., O’Sullivan, B., Giralt, J., Fitzgerald, T.J., Trotti, A., Bernier, J., Bourhis, J.,
Yuen, K., Fisher, R., Rischin, D.: Critical impact of radiotherapy protocol compliance
and quality in the treatment of advanced head and neck cancer: results from TROG 02.02.
Journal of Clinical Oncology 28, 2996–3001 (2010)

[9] Miller, A.A.: New informatics-based work flow paradigms in radiation oncology: the
potential impact on epidemiological cancer research. Health Information Management
Journal 34, 84–87 (2006)

[10] Miller, A.A., Phillips, A.K.: A contemporary case study illustrating the integration of
health information technologies into the organisation and clinical practice of radiation
oncology. Health Information Management Journal 34, 136–145 (2006)

[11] Yu, P., Gandhidasan, S., Miller, A.A.: Different usage of the same oncology information
system in two hospitals in Sydney–lessons go beyond the initial introduction.
International Journal of Medical Informatics 79, 422–429 (2010)

[12] Roach III, M., Lawton, C.A., Donnelly, B., Grignon, D.: RTOG 94-13: A Phase III Trial
Comparing Definitive Whole Pelvic Irradiation Followed by a Conedown Boost to Boost
Irradiation Only and Comparing Neoadjuvant to Adjuvant Total Androgen Suppression
(TAS), Fairmont, VA (1994)

[13] Roach, M., DeSilvio, M., Lawton, C., Uhl, V., Machtay, M., Seider, M.J., Rotman, M.,
Jones, C., Asbell, S.O., Valicenti, R.K., Han, S., Thomas, C.R., Shipley, W.S.: Phase III
trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus
adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413.
Journal of Clinical Oncology: Official Journal of the American Society of Clinical
Oncology 21, 1904–1911 (2003)

[14] National Comprehensive Cancer Network, NCCN Clinical Practice Guidelines in
Oncology (NCCN GuidelinesTM) - Prostate Cancer (2010)

[15] Zelefsky, M.J., Moughan, J., Owen, J., Zietman, A.L., Roach, M., Hanks, G.E.: Changing
trends in national practice for external beam radiotherapy for clinically localized prostate
cancer: 1999 Patterns of Care survey for prostate cancer. International Journal of
Radiation Oncology, Biology, Physics 59, 1053–1061 (2004)

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 575–587, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Using Belief Theory to Formalize the Agent Behavior:
Application to the Simulation of Avian Flu Propagation

Patrick Taillandier1,2, Edouard Amouroux1,2, Duc An Vo1,2,
and Ana-Maria Olteanu-Raimond3

1 IRD, UMI UMMISCO 209,
32 avenue Henri Varagnat, 93143 Bondy, France

2 IFI, MSI, UMI 209,
ngo 42 Ta Quang Buu, Hanoi, Vietnam
3 France Telecom, SENSE Laboratory

38-40, rue du Général Leclerc, 92794 Issy les Moulineaux, France
patrick.taillandier@gmail.com, edouard.amouroux@ird.fr,

voducanvn@yahoo.com, anamaria.raimond@yahoo.fr

Abstract. Multi-agent simulations are powerful tools to study complex systems.
However, a major difficulty raised by these simulations concerns the design of
the agent behavior. Indeed, when the agent behavior is lead by many conflicting
criteria (needs and desires), its definition is very complex. In order to address
this issue, we propose to use the belief theory to formalize the agent behavior.
This formal theory allows to manage the criteria incompleteness, uncertainty
and imprecision. The formalism proposed divides the decision making process
in three steps: the first one consists in computing the basic belief masses of each
criterion; the second one in merging these belief masses; and the last one in
making a decision from the merged belief masses. An application of the ap-
proach is proposed in the context of a model dedicated to the study of the avian
flu propagation.

Keywords: multi-agent simulation, agent behavior formalization, belief theory,
avian flu propagation.

1 Introduction

Agent-based simulations are now widely used to study complex systems. However,
the problem of the agent design is still an open issue. Indeed, designing realistic
agents is a complex task, in particular when their behavior is lead by many conflicting
needs and desires. A reason of this complexity comes from the lack of practicable
formalisms to define the agent decision-making process. In consequence, most of
modern models still use ad hoc formalisms to represent the agent behaviors.

In this paper, we propose a new approach to formalize the behavior of agents: this
one is based on the belief theory. This theory allows to formalize the reasoning. It can
be used to make a decision between several alternatives according to a set of criteria.
An advantage of this theory is that it allows to make decision even with incomplete-
ness, uncertainly and imprecision, which is particularly interesting in the simulation
context.

576 P. Taillandier et al.

The paper is organized as follows. In Section 2, the general context of our work is
introduced, in particular the problem of the agent behavior formalization. Section 3 is
devoted to the presentation of the belief theory and its application for agent behavior
design. Section 4 describes an application of our formalism to define the behavior of
poultry flocks in the context of a study of the avian flu propagation. Finally, Section 5
concludes and presents the perspectives of this work.

2 Context

2.1 Formalisms to Represent the Agent Behavior

In this paper, we are interested in the formalisms used to represent the agent behavior.
If many formalisms were defined in the multi-agent community (final state machine,
BDI [1], motivational [2], etc.), these ones are not of much use for agent-based simu-
lations. A reason is their inadequacy to the simulation context: a formalism, to be
used in simulation, has to allow thousands of agents to make a decision from many
criteria in a short amount of time. Thus, the formalisms, such as BDI, that are de-
signed for cognitive agents, rather than reactive ones, are usually not usable for multi-
agent simulation. Formalisms such as final state machine can be used for simple
agents, but its representation capability is fairly limited.

2.2 Agent Behavior as a Multi-criteria Decision Making Problem

We propose to formulate the behavior of the agents as a multi-criteria decision mak-
ing problem: at each step of the simulation, the agent has to make a decision: which
action to apply? The action choice will be guided by the needs and desires of the
agent. We propose to formulate these needs and desires as a set of criteria. Thus, the
agent behavior consists in choosing, according to a set of criteria, the most pertinent
action.

In the literature, several approaches were proposed to solve this type of multi-
criteria decision-making problems.

A first family of approaches, called partial aggregation approaches, consists in
comparing the different possible decisions per pair by the mean of outranking rela-
tions [3, 4].

Another family of approaches, called complete aggregation approaches, consists in
aggregating all criteria in a single criterion (utility function), which is then used to
make the decision [5, 6].

A last family of approaches, which is highly interactive, consists in devising a pre-
liminary solution and comparing it with other possible solutions to determine the best
one [7, 8].

 Using Belief Theory to Formalize the Agent Behavior 577

Partial aggregation approaches allow to address the problem of criterion incom-
patibility but lack of clarity compare to complete aggregation approaches [9].

The approach we are interested in belongs to the complete aggregation approaches.
It inherits from the signal detection theory [10] and is built on the belief theory. In the
next section, we describe this approach and its application for the agent behavior
design.

3 Use of the Belief Theory to Design the Agent Behavior

3.1 Multi-criteria Decision Making Using the Belief Theory

Generality
The belief theory, also called Dempster-Shafer theory, was proposed by Shafer in
1976 [11]. It is based on the Theory of Evidence introduced by Dempster [12], which
concerns the lower and upper probability distributions. It allows to manage incom-
pleteness, uncertainty and imprecision of data. It has been used with success for many
applications (e.g. [13, 14, 15]).

The belief theory first defines a frame of discernment, noted Θ. It is composed of a
finite set of hypotheses corresponding to the potential solutions of the considered
problem.

Θ={H1, H2,…, HN}

From this frame of discernment, let us define the set of all possible assumptions,
noted 2Θ:

2Θ = {∅, {H1}, {H2}, ..., {H1, H2}, ...,Θ}

Each set {Hi, ..., Hj} represents the proposition that the solution of the problem is one
of the hypotheses of this set.

The belief theory is based on the basic belief assignment, i.e. a function that as-
signs to a proposition P, with P∈2Θ, a value named the basic belief mass (bbm), noted
mj(P). It represents how much a criterion j -called source of information- supports the
proposition P. The bbm is ranged between 0 and 1 and is defined as follows:

1Pm
2P

j =
∈ Θ

)(

Decision Making Approach
In our agent behavior context, each hypothesis represents the fact that an action of the
set of actions A is the best one. For example: “{H1}: the best action of A is a1”, “{H2}:
the best action of A is a2”, “{H1, H2}: the best action of A can be either a1 or a2”, etc.

The decision making approach is composed of four steps.

578 P. Taillandier et al.

Step 1
This first step consists in initializing the basic belief masses. For this step, we propose
to use the works of Appriou [16]. He proposed to “specialize” the criteria for one
hypothesis of the discernment frame. Thus, the criteria give one’s opinion only in
favor of a hypothesis, in disfavor of it or do not give their opinion. For each hypothe-
sis Hi of Θ, a subset Si of 2Θ is defined:

Si = {{Hi}, {¬Hi}, Θ}

• {Hi}: this proposition means that the hypothesis Hi is true.
• {¬Hi}

 = Θ - {Hi}: this proposition means that the hypothesis Hi is false.
• Θ: this proposition means the ignorance (i.e. every hypotheses can be true).

Thus, the initialization of the basic belief masses consists in computing, for each crite-
rion j and for each hypothesis Hi of Θ, the basic belief masses { }()i

H
j Hm i ,

{ }()i
H
j Hm i ¬ and ()ΘiH

jm .

To compute all the bbm, belief functions have to be defined. A belief function is a
function that returns a float value between 0 and 1 according to the value of a consid-
ered criterion for a given hypothesis. Let bf be a belief functions, j a criterion and Hi a

decision of Θ. We note iH
jV the value of the criterion j for the hypothesis Hi.

[]1,0:)(→ℜiH
jVbf

Examples of belief functions are given Sections 4.2.

Step 2
This step consists in combining criteria with each other. We propose to use the con-
junctive operator introduced in [17] to provide a combined bbm synthesizing the
knowledge from the different criteria. Let us consider two criteria C1 and C2. The
conjunctive operator is defined as follows:

{ } { }{ })"()'()(,,,,
2121

"'

PmPmPmHHPH iii H
C

PPP

H
C

H
CCiii ×=Θ¬∈∀Θ∈∀

=∩

The fusion of criteria can introduce a conflict, e.g. when one criterion assigns a bbm
not null for the proposition {Hi} and another criterion assigns a bbm not null for the
proposition {¬Hi} (i.e. when P’∩P”=φ). This conflict will be taken into account in
the decision.

For example, let {C1,C2} be a set of criteria, and H1 an hypothesis of Θ. Let the
bbm be defined as follows:

{ }() 5.01
1

1
=dmH

C
, { }() 3.01

1

1
=¬dmH

C
, () 2.01

1
=ΘH

Cm

{ }() 8.01
1

2
=dmH

C
, { }() 01

1

2
=¬dmH

C
, () 2.01

2
=ΘH

Cm

 Using Belief Theory to Formalize the Agent Behavior 579

The belief masses resulting after the fusion of C1 and C2 are equal to:

{ }() { }() { }() { }() () () { }() 66.011111
1

2

1

1

1

2

1

1

1

2

1

1

1

21
=×Θ+Θ×+×= HmmmHmHmHmHm H

C
H
C

H
C

H
C

H
C

H
C

H
CC

{ }() { }() { }() { }() () () { }() 06.011111
1

2

1

1

1

2

1

1

1

2

1

1

1

21
=¬×Θ+Θ×¬+¬×¬=¬ HmmmHmHmHmHm H

C
H
C

H
C

H
C

H
C

H
C

H
CC

() () () 04.01

2

1

1

1

21
=Θ×Θ=Θ H

C
H
C

H
CC mmm

() { }() { }() { }() { }() 24.01111
1

2

1

1

1

2

1

1

1

21
=×¬+¬×= HmHmHmHmm H

C
H
C

H
C

H
C

H
CC φ

This conjunctive operator is commutative and associative. Thus, it is possible to com-
bine the result of a previous fusion with the belief masses of another criterion.

Let C be the criterion set. At the end of this step, for each decision Hi of Θ, we ob-
tain the combined belief masses { }()i

H
C Hm i , { }()i

H
C Hm i ¬ , ()ΘiH

Cm and ()φiH
Cm .

Step 3
This step consists in combining hypotheses with each other. This combination is in-
teresting because it allows to take into account in the final ranking, the fact that some
criteria reject some hypothesis (¬Hi).

We propose to use the Dempster operator [12] to compute the belief masses result-
ing from the combination of two hypotheses Hi and Hj:

()
)"()'(

1

1
)(,2 ,

"'

,

,

, PmPm
m

PmP jiji

ji

ji HH
C

PPP

HH
CHH

C

HH
C ×

−
=∈∀

=∩

Θ

φ

The coefficient
()φji HH

Cm
,1

1

−
 is used to normalize the belief masses obtained. In the

case of a total conflict (() 1, =φji HH

Cm), no decision can be made.

For example, let Θ be composed of two hypotheses, H1 and H2 (Θ = {H1, H2},
{¬H1}={H2}, {¬H2}={H1}). Let the belief masses be defined as follows:

{ }() 66.01
1 =HmH

C
, { }() 06.01

1 =¬Hm H
C

, () 04.01 =ΘH
Cm , () 24.01 =φH

Cm

{ }() 02
2 =HmH

C
, { }() 5.02

2 =¬Hm H
C

, () 5.02 =ΘH
Cm , () 02 =φH

Cm

The belief masses resulting from the fusion of C1 and C2 are equal to:
() { }() { }() { }() { }() { }() { }()

{ }() { }() () { }() { }() { }()
{ }() { }() { }() { }() { }() { }() 27.0

212121

212121

212121

2

21

21121

=×+Θ×+¬×+

×+×Θ+×¬+

¬×¬+×+×=Θ

φφφφ
φφφ

φφ

H
C

H
C

H
C

H
C

H
C

H
C

H
C

H
C

H
C

H
C

H
C

H
C

H
C

H
C

H
C

H
C

H
C

H
CC

mmmmHmm

HmmmmmHm

HmHmmHmHmHmm

{ }() () { }() { }() { }() ()

() { }() 93.0]

[
1

1

2

1211

21

2121

=¬×Θ+

Θ×+¬××
−

=
Θ

Θ

Hmm

mHmHmHm
m

Hm

H
C

H
C

H
C

H
C

H
C

H
C

C

C φ

{ }() () { }() { }() { }() ()

() { }() 04.0]

[
1

1

2

1212

21

2121

=×Θ+

Θ×¬+×¬×
−

=
Θ

Θ

Hmm

mHmHmHm
m

Hm

H
C

H
C

H
C

H
C

H
C

H
C

C

C φ

() () () () 03.0][
1

1
21 =Θ×Θ×

−
=Θ

Θ
Θ H

C
H
C

C

C mm
m

m
φ

580 P. Taillandier et al.

At the end of this step, a belief mass for each proposition { }()1HmC
Θ , { }()2HmC

Θ , ...,

{ }()21 , HHmC
Θ , ... , ()ΘmC

Θ is obtained.

Step 4
The last step consists in making the decision. We are only interested in the proposi-
tions that concern a unique hypothesis (one action) and not a set of hypotheses. Thus,
to evaluate each proposition we propose to use the pignistic probability [18].

The pignistic probability of a proposition A is computed by the following formulae:

⊆

=
BA B

A
BmAP)()(

More a proposition maximizes this probability, more the corresponding hypothesis is
true. Thus, the decision making will be based on this probability.

For example, let Θ be composed of two hypotheses, H1 and H2 and the belief
masses of all the propositions be defined as follows:

{ }() 93.01 =Θ HmC
, { }() 04.02 =Θ HmC

, () 03.0=ΘΘ
Cm

The resulting pignistic probabilities are:

{ }() { }() () 945.0
2

1

1

1
11 =×Θ+×= ΘΘ

CC mHmHP { }() { }() () 055.0
2

1

1

1
22 =×Θ+×= ΘΘ

CC mHmHP

Thus, H1 has more chance to be true than H2.

3.2 Application of the Belief Theory to Define the Agent Behavior

As presented in the previous section, the belief theory allows to make a decision from
a set of possible actions according to a set of criteria.

In order to use the belief theory to formalize the behavior of an agent, the modeler
has to define several elements:

• A set of criteria that allow to evaluate the different possible actions.
• For each criterion: a belief function for the hypotheses “this action is the best one”,

“this action is not the best one”, “ignorance”.

Remark that it is possible to decrease the complexity of the decision making computa-
tion by filtering the possible actions: only actions that are pareto-optimal are kept .

For some agents, it will also be possible (and mandatory) to divide the decision
making process into several sub-processes. This division can be use to decrease the
complexity of the decision process or to use different sets of criteria that will corre-
spond to different steps of reasoning. Indeed, for example, it is possible to divide the
decision making process into two steps: the first one consisting of choosing a general
objective for the agent (e.g. eating, drinking) and a second consisting in choosing the
best place to carry out this objective. Another example is given in Section 4.2.

 Using Belief Theory to Formalize the Agent Behavior 581

4 Application: Model Dedicated to the Avian Flu Propagation

In order to illustrate our agent behavior formalism, we present an application of it for
a real model about the H5N1 endemic in North Vietnam. After a brief presentation of
a context, we focus on the agent behavior design. A description of the complete mod-
el is available in [19].

4.1 Application Context

H5N1 is still a major threat for both economy and health. It has spread over Asia,
Europe and some parts of Africa. Nowadays, the endemic appears to be circumscribed
to South East Asia mainly. Nevertheless, the eradication of the virus is far from being
achieved. In the North Vietnam context, epidemiologists need to study the mecha-
nisms of its local spread and persistence in the context of semi-industrialized and
traditional poultry sectors, in order to limit the impact of the virus. To do so agent-
based modeling has been selected for its capabilities of detailed representation, espe-
cially concerning the environment, and its flexibility.

Consequently, the purpose of the proposed models is to investigate and evaluate
the importance of various factors, including poultry production, environments (espe-
cially aquatic ones), topography, etc, on the persistence and spread of H5N1 within a
village or a commune in the Red River delta. Specifically, the model is about investi-
gating the relationships between environments (as virus reservoirs) and the traditional
or semi-commercial poultry production systems.

Fig. 1. Model implemented with the GAMA platform [20, 21]

The real system modeled here is the H5N1 endemics in the traditional and semi-
industrial poultry production sector in the Red River Delta (North Vietnam). We limit

582 P. Taillandier et al.

the represented system to a village (several prototypes were determined using princi-
ple component analysis). Within this system, we focus on farms and poultry flocks.
Here, poultry flocks can be duck or chicken. These flocks have various behaviors
depending on the types of production. As implied by this description several natural
environments are represented: building, inner-village ground, road, rice-field (flooded
or dry) and pond. Figure 1 shows a snapshot of the model implemented with the
GAMA platform [20, 21].

In the next section, we focus on the design of the Flock agent behavior. In particu-
lar, we illustrate how the formalism presented in Section 3 is used to design this be-
havior.

4.2 Flock Behavior Design

In this model, we chose to divide the agent behavior in two steps: first, the agent ana-
lyses the best places to eat, to drink and to rest, second, the agent chooses an objec-
tive. This one can be to “eat”, to “drink”, to “go home”, “to rest” or “no objective”. If
no objective is defined, the agent wanders.

The division of the behavior in two steps allows to use different sets of criteria for
each step. Moreover, it decreases the computational resources required to make the
decision. Indeed, as we are in the context of multi-agent based simulation, the compu-
tation complexity of the process is an important factor. The choice to compute first
the best places for each activity is mandatory as it impacts the choice of the objective.
This allows us to represent the opportunist behavior of a flock, for example: a flock
seeing a good place to eat (very close, with a lot of foods and no other flock in the
neighborhood) can be tempted to eat at this place even if it is not hungry.

4.2.1 Place Selection
We defined several criteria to assess the quality of each type of places (eating places,
drinking places and resting places), each type of places has the same pool types of
criterions. Here the list of criterion along its “belief functions”:

• Distance to the place: this criterion allows to assess the distance between the
flock and the candidate places. The belief functions of this criterion are il-
lustrated in Figure 2.

• Quantity of resources: this criterion allows to assess the quantity of food
contains in the candidate places. Remark that this criterion is not use in
the context of the resting place selection. The belief functions of this crite-
rion are presented in Figure 3.

• Quality of the place regarding an objective (i.e. for eating objective, the
quality of the place will be the quality of food). This criterion depends on
the nature of places: water (W), rice-field (RF), dry-culture (DC) or
ground (G). For instance, a flock usually prefers to eat in a rice-field, but
it can also eat in a dry-culture field, or at worse directly on the ground or
in water. Figures 4, 5 and 6 respectively present the belief functions for
the eating, drinking and resting objective.

 Using Belief Theory to Formalize the Agent Behavior 583

Fig. 2. Belief functions for the distance criterion

Fig. 3. Belief functions for the quantity of resources criterion

Fig. 4. Belief functions for the quality of the place for eating criterion

Fig. 5. Belief functions for the quality of the place for drinking criterion

584 P. Taillandier et al.

Fig. 6. Belief functions for the quality of the place for resting criterion

• “Agoraphobia”: usually, flocks try to avoid to go to place too near of other
flocks. Thus, this criterion allows to assess this “agoraphobia”. The belief
functions of this criterion are illustrated in Figure 7. These functions take
as input the number flocks located at distance inferior to 200m to the con-
sidered flock.

Fig. 7. Belief functions for the agoraphobia criterion

Once the value of each criterion has been computed, the agent filters the possible
candidates in order to keep only the ones belonging to the Pareto-optimal front. Then,
the decision making process presented in Section 3 is used to select the most relevant
ones (one for each objective: eating, drinking and resting).

4.2.2 Objective Selection
The second step consists in computing the best objective among the five defined:
“eating”, “drinking”, “resting”, “go home” and “no objective”. The evaluation of
these objectives is based on the internal state of the agents and the time of the day (the
environment influence is taken into account during the places selection). The internal
state variables related to the objective selection are hunger, thirst, tiredness and
“homesickness” levels. They are continuously updated according to the agent’s ac-
tion, for example: if a flock is resting, it will decrease its tiredness and slowly increase
the hunger and thirsts levels.

The objective choice is based on several criteria that are described hereafter:

• Time of the day: this criterion allows to specify time intervals for each objec-
tive. Indeed, some activities are more likely to be done at specific hours

 Using Belief Theory to Formalize the Agent Behavior 585

(e.g. going back home at sunset). Figure 9 presents the belief functions of
this criterion. These functions take as input the difference between the cur-
rent time of the day and the time intervals defined for each objective.

o Eating objective: [7am-9am] ∪ [2pm-4pm]
o Drinking objective: [8am-9am] ∪ [2pm-5pm]
o Resting objective: [9am-2pm]
o Going home objective: [5pm-7pm]

Fig. 8. Belief functions for the time criterion

• Adequacy to the flock needs: this criterion assesses the adequacy between the
agent need (internal state) and the different objectives. Figure 9 presents
the belief functions of this criterion. These functions take as input:

o Eating objective: Hunger = max_food_level – current_ food_level
o Drinking objective: Thirst =max_water_level – current_ water_level
o Resting objective: Tiredness = time_since_last_rest
o Going home: “Home-sickness” = time_since_last_going_home

Fig. 9. Belief functions for the need criterion

• Quality of the best selected place: this criterion assesses the quality of the
best selected places (the ones selected in Section 4.2.1). The belief func-
tions of this criterion are presented in Figure 10. These functions take as
input the value computed at the end of the first step. Concerning the “going
home” objective, the value is constant. Indeed, only one place can be cho-
sen for this objective (the flock farm),

586 P. Taillandier et al.

Fig. 10. Belief functions for the place quality criterion

Once the value of each criterion has been computed, the agent uses the decision
making process presented in Section 3 to select the most relevant objective (among
“eating”, “drinking”, “resting” and “going home”). If the pignistic probability com-
puted for this objective is lower than a predefined threshold (defined by thematician
through interaction with the simulation), no objective is selected and the agent wan-
ders; otherwise, the agent carried out its selected objective.

5 Conclusion

In this paper, we proposed to use the belief theory to formalize the agent behavior.
We present an application of this formalism for a model dedicated to study H5N1
propagation in North Vietnam. It allowed us to have a precise and realistic representa-
tion of flock’s behavior while being tunable by field specialist.

In terms of perspective, we want to apply our approach to other models, in particu-
lar social model integrating numerous decision criteria. We think that it would be of
even more interest to represent more elaborated behavior such has human ones.

A key issue in the use of our formalism concerns the definition of the belief func-
tions. In this context, we propose to develop methods to learn directly through a partici-
patory approach. This approach could be based on the one that we proposed in [22, 23].

References

1. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI-Architecture. In: Pro-
ceedings of the Second International Conference on Principles of Knowledge Representa-
tion and Reasoning, pp. 473–484 (1991)

2. Robert, G., Guillot, A.: A motivational architecture of action selection for non-player char-
acters in dynamic environments. International Journal of Intelligent Games & Simula-
tion 4, 1–12 (2005)

3. Figueira, J., Mousseau, V., Roy, B.: ELECTRE Methods. In: Figueira, J., Greco, S., Ehr-
gott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 133–162.
Springer, New York (2005)

4. Behzadian, M., Kazemzadeh, R., Albadvi, A., Aghdasi, M.: PROMETHEE: A comprehen-
sive literature review on methodologies and applications. European Journal of Operational
Research (2009)

 Using Belief Theory to Formalize the Agent Behavior 587

5. Geoffrion, A., Dyer, J., Feinberg, A.: An interactive approach for multicriterion optimisa-
tion with an application to the operation of an academic department. Manage. Sci. 19(4),
357–368 (1972)

6. Jacquet-Lagreze, E., Siskos, J.: Assessing a set of additive utility functions for multicriteria
decision making, the UTA method. European Journal of Operational Research 10(2),
151–164 (1982)

7. Benayoun, R., Laritchev, O., de Mongolfier, J., Tegny, J.: Linear programming with mul-
tiple objective functions: Step method (stem). Math. Program. 1(3), 366–375 (1971)

8. Ignizio, J.: A review of goal programming: a tool for multi objective analysis. J. Oper. Res.
Soc. 29(11), 1109–1119 (1978)

9. Ben Mena, S.: Introduction aux méthodes multicritères d’aide à la décision. Biotechnol.
Agro. Soc. Environ. 4(2), 83–93 (2000)

10. Marcum, J.: A statistical theory of target detection by pulsed radar. IEEE Trans. Info.
Thry. (1960)

11. Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)
12. Dempster, A.: Upper and lower probabilities induced by multivalued mapping. Annals of

Mathematical Statistics 38, 325–339 (1967)
13. Omrani, H., Ion-Boussier, L., Trigano, P.: A new approach for impacts assessment of ur-

ban mobility. WSEAS Transaction on Information Science and Applications 4(3), 439–444
(2007)

14. Olteanu-Raimond, A.M., Mustière, S.: Data matching - a matter of belief. In: 13th Interna-
tional Symposium on Spatial Data Handling (SDH 2008), Montpellier, France (2008)

15. Taillandier, P., Duchêne, C., Drogoul, A.: Using Belief Theory to Diagnose Control
Knowledge Quality. Application to cartographic generalization. In: IEEE-RIVF, Danang
City, Vietnam (2009)

16. Appriou, A.: Probabilité et incertitude en fusion de données multi-senseurs. Revue Scienti-
fique et Technique de la Défense 1, 27–40 (1991)

17. Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66(2), 191–234
(1994)

18. Smets, P.: Constructing the pignistic probability function in a context of uncertainty. Un-
certainty in Artificial Intelligence 5, 29–39 (1990)

19. Amouroux, E., Gaudou, B., Desvaux, S., Drogoul, A.: O.D.D.: a Promising but Incomplete
Formalism For Individual-Based Model Specification. Paper to appear in ’IEEE Interna-
tional Conference on Computing and Telecommunication Technologies’ (2010)

20. Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: An Environment for Im-
plementing and Running Spatially Explicit Multi-Agent Simulations. In: Ghose, A., Gov-
ernatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS, vol. 5044, pp. 359–371. Springer,
Heidelberg (2007)

21. Taillandier, P., Drogoul, A., Vo, D.A., Amouroux, A.: GAMA: A Simulation Platform that
Integrates Geographical Information Data, Agent-Based Modeling and Multi-Scale Con-
trol. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS(LNAI), vol. 7057, pp.
244–260. Springer, Heidelberg (2011)

22. Taillandier, P., Buard, E.: Designing Agent Behaviour in Agent-Based Simulation through
Participatory Method. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA
2009. LNCS, vol. 5925, pp. 571–578. Springer, Heidelberg (2009)

23. Taillandier, P., Chu, T.Q.: Using Participatory Paradigm to Learn Human Behaviour. In:
International Conference on Knowledge and Systems Engineering, Hanoi, Vietnam,
pp. 55–60 (2009)

� �������	
���� ������ ��� ����������

����������� ����������� �����������

��������� �������

��������� 	��
�� ��1 ������ ������2 ������� �����1 ������ ������3
��� �������� �������3

1 ��� ��� ������	
 ����� �� �� ������������ ���� ������������� �����

 ����
 !�����

�����������	��	�
��	
������ ��
	���	�	��	������
2 ��" �#"� $$�$
 ����� �� "�������� �� ����������� �� %�������
 ���&����'

(��� ��)���� %������� *
 ������
��������	������������������

3 +�)������� +�,�(
 ���&����' ������ -������ +.�� /
 ������
�
	��	���	�����	���	������������������

��������� �� � �����)��� �������0�� ���������� ��������1 �.���
����1��). � �2��� �� �1���
 2���� ���� ��� �������� �����)��
 ��
���������� �� �� �.��� ��������� ��� ����������)�2��� �����)��
������� �� � �������1�3 %��� ����� ��4��� �� ���)��� �� 5����1 �� ��6
5���� ��������� � ������ �� ��������� �� �� �.��� ��� � �����0�
�.��� �����������3 %�� ���� �����)���� �� ��� ����� ������� �� 2�
��7�� ����8 ��� ��� �����	
���� ������� �� ������ ��� ��������� ���
��� ��
������� �� ��� ������ ���� ����� �����
�� ������� �� ������ ��	
���� ��������
���� �� ������ 9� ������� 2� ��:���� ��1���0����� ��
����� � ����1� ���� ������ ��� ���2 ��2 ��. ��� ������8 � ������
��� �� 2���� ���� �1�� �������� � %����� � ������ ��� �� �����;
� ������� ��� �� 2���� �����)�� ������� ��� 1������ �� �� <�� ��� .��=
��2��4 � �����&� ����������)�2��� ������&��3

� �������	�
��

��� �������� ��� � ��!�� �" � �#��� �" !���������
 ��"������� ��$��� ��$���
���� ��%� �� �����$�����%��
 ��! � &��� �'����� $
 �������(��$��� ��� �������
��"�������� "��� ��� ������ ��� � ������ ����� ���� #��� ����� ������()���
��!���� ��� ������������� ��� ��!!���� ����� �������(*�� �
���� ����� $�
��!�������� �� � ������������ �
���� +,��- �� #���� ���� ����� +��!���������
� ��$��- ���� �� �$������� ��� ���� !������ ��!����������� �" ��� ��%��������
$
 ���������� ��"�������� �������
 +���� %�� �������- ��� ���������
 +���� %�� ����
���������� #��� ����� ������-(�������� ���� ���� ������ ������$ ��� �
����
$
 ������������ "���� �� ���������� ��"�������� �$��� ��� ��%�������� $������
�" ����� .�#�� !����!���� ����� ����� ������� ��� �#�
 �� ���!�����%�- #� ����

#�
� �� ��!��%� ��� ��������� �" ��� �
���� +���� ��� ���/������ $��#��� ���
������0 ��%�������� ��!����������� ��� ��� ���� ��%��������- ��� ��� ��$�������

�� ������ 	�
��� �� �� ������� ������ ����	 �����
�	� ����� ��� � !"�#� �����
$© %�&��'�&()�&*�' +�&*�� ,���*-�&' ����

> ������6-���� >������� $?�

+���� ��� ������0 ��!�$����
 �� ���!� ���������� ����#��� �� �������� ���� ������
���� ���!��� ��� ������$�� ������������� �
����- 1234(*� ����� ��� ��.�����
�" �������$�� ������ #� ������ �� ��%� ������ ��� ��!����
 �� �
��������
 $����
� �#� ��
��� ���"�������&�����5

+�- � ������ ������&�����5 ���� ����� $����� � !������� ���� ��������� ������
0*�������0 �� #���� �� ���!���� ��� �#� ����� �%�������� ��#��� ����� ������ ��
��� �
����(*�� *������� �� �����
 ���!���� �" � *�������!� ��� � *����*�$��(
���� ���������� ��� �!����� $
 ����� ������ ��� �������� ������������ $��#���
������(6���� ����������� ��� ����� �" �����#��������� �� ��7��� ��� ���� ��
�!!������� ��� �����$����
 �" ����� ������ �� ����� �� ��8��� ��������$�� ������
��������(*���� �� ���� ���� �� �%������ ��� �����$����
 �" �������� ��"��������(

+��- � �!����� ������&�����5 �� � ������ ���! ������ ���� ��� �!������
 �����
��� �������&�� �� �����$�� ������&� �������%�� ���� !�
����� �������� +���� ��
��� ���#��9�-(*��� ������&����� ����#� � $����� ������������ $��#��� ������(
:!����&����� �" ��� �
���� !��"������� +�� ����� �" � !�������� ���� �����

��%���- �� �����%�� $
 �%������ ���������� ���� �� ��� �%����!!��� �" � !��������
����� +���� �����!�� ������ � !������ ��� ���� ������- ��� $
 ��������� ����
���������� � ������� $��#��� ������ $�������� �� ��� �������(

*�� ���������� �" ��� ����! ������������� $���� �� ��� �����!� �" �������
�!!���� �� $� � !�������� #�
 ��� �� $���7�� �� $����� �� ��� �
����5

� � $����� ���!������� $��#��� ������5 � ������� ��� ��!��%� ��� ��%��� ������
��
 �" ������ $
 ������� ���9� �� ���!���� ����� #��9 "�����(

� � ������&����� �" ���� ������������ ������� $
 ������ �����$������� �������
�" ���!�����(

� ; ������� ��"�������� ��%�� /���9�
 ��� �������
 �� � ���$�� ������� #����
!�����$����� �� �������(

�"��� ��� ������������ ���� !�!�� �� ������&�� �� "����#�5 ������� 3 !�������
$��� �!����� ��� ������ ������&������(*�� ������ �" ������� �� ���������� ��
������� < $�"��� � ������� ��� �
������(*�� ����������� $��#��� ��� �!�����
������&����� ��� ��� ������ ������&����� ���������� �� =������� *�������!�> ��
����
&�� �� ������� ?(������� @ ����� #��� �
������ �� ������� ��!����
 $�"���
!��������� ������� !��!������ �" �������� �� ������� A(������
 ������� B !�������
��� ���������� ��� "����� ��������(

� ��	
� � ���
� ����
��
�� � ���
	� � ����
	� ����

�� !�������� �$�%� ��� ���� ������$����� �" ���� ������� �� �� !��!��� � ������
���� "�� ������ �� $���� ���������� 1<?4 ���� #� ���� =���	
��	>(� ������� ��� $�
%��#�� �� � 9��� �" �������� �� ��� ���#��9 #���� ����� ������ �� 8��� ��������
�� ��� $���� �" ��'����� ��������(���������� ��7��� ��$��� �� ��� ���#��9 �� ���
$��� ����!� �" #������� ����� #���� ���!�����%��
 "��� � ���#��9 ����!������
�" ��
 7 �� ��"����������� �� ��������&�� �������������� 1@A4(������ ��� "���
�� ��%� �������
 ��� �� ������&� �������%�� ��$�������
(*�� ���#��9 ��!����

��
 ������ ��!���
 ��� ��!�������$�
 1B4(

$�� @36>3 #1�.�� !� � ��3

6� ��� �����"��� ���������� �� ��� /������� �" ��� ���"�������&����� +#������
����� �����%������- �" ������ �� � 9��� �" ���������� ��������� ������ #���� ���

��� �������� ��������%��
 �� ������ ��� � ������� �" � �����$�� �������������
������� $��#��� ��� ���$��� ���������� ��� �������(:�� ���� �� �� $���� ���
��!����
 �" � ������$���� ��"�������� ���������� �
���� �� �#� ��'����� ��
���
�� ����� �� $����� ������ ������������� ������ ����!� �" ������5

� ��� ������� ����� > $���� "��� ��� ������ ������&����� #���� �� ���$������ "���
��� ���!������� $
 ���� ����� �" � *������� $���� �� ������������� #���
����� ������

� ��� ����	���� ����� > $���� "��� ��� �!����� ������&����� #���� �� �����������
$
 ����!� �" �����$����� ������ �������� �������%�� ��� =��������> �� #����
��� ��������%��
 ���� $� ���������� �� �� �� �� ��� ���#��9(

C� ��� ��/��� #� ��� ��� "����#��� ���������5 V ������� ��� ��� �" ��� ������
E(V) =

{
XY | X,Y ∈ V, X �= Y

}
��� ��� �" ��� ���9� $��#��� ��� ������ �" V

��� E′(V) =
{−−→
XY | X,Y ∈ V, X �= Y

}
��� ��� �" ��� �������� ���9� $��#���

������ �" V (

��� ����	
 ��	���	����

�� "�� �� ������ ������&����� �� ��������� ���� ����� $����� � ���� ���������
������ *������� �� #���� �� ��� ���!��� ��� �#� ����� �%�������� ��#��� �����
������ �� ��� �
����(�
 ����������� � �����$����
 �� ��"�������� ��� � ����� ��
���$��� �" ��� ��������
 ���� ����� ��!��%�� ��� !����!���� �" ��� #����(��
��� *������� �� !�������� �� ������� �� 134 #� !������ ���� ���
 ��� ���� ����
���������� ���!����� ��5 ��� *�������!� ��� ��� *����*�$��(*�� !�$��� !���
��� *�������!� �� � �������� %����� ���!� #���� �������� $��� ������ �����
%����� ��� �������� ����� %�����(*�� !��%��� !��� ��� *����*�$�� �� � ���!��
��$�� �� #���� ��� ����� ������ ��� ��������� ����� %�����5 ����� %����� ���� ��
��� �����0� �����������9��� !������ ���� ��� ���!���� "��� ������ ��� ��������
����� %����� $
 ����� !��������� ���������� ���� ��� ��'�� "��� ��� ����� ��
������� ���(

��������� �� ���������	
�� � ���	
����� �	 � �����
�� ������� ������
��
������ ��
� �� ������ �� A ∈ V �	
�� ����� �
�� �������� ��
 TGA =
(VA, E

′
A, wA)
�� ���	
����� �
�� ����
 � ����� VA ⊆ V �	 � 	�
 � ����

���	� E′
A � 	�
 � �����
�� ����	 E′

A ⊆ E′(VA) ��� wA : E′
A → [0, 1] � �����

����
���

� *�������!� �� � �������� ���!� #������ ���!� +���� !���� 8������ � ���� ��
�����"- ���������� �� �� ����� A ��!��������� ��� ��� �" ������ ��������� �� A
+������ ������ �� ��� ��� �� ������ �� ��� ����� �$��� #��� �������������-(
6��� �#� %���� �� ��� ��������� $
 �� ���� �� ����� ���� ��� ������ ��!���
������ $
 ��� %���� �� ��%� ��� ���� �����(��� �������� �" B ����� C ���

���� ����� A �#� �������� ����� ��� ����� �� ��� *�������!� �" ����� A5
−−→
AB

���
−−→
BC(,����%�� ����� ����
 ��"�������� �$��� ������0 ����� ����������(*��

> ������6-���� >������� $�/

*�������!� �� $���� ����9� �� ��������� �� ����������� ��"��������(C� #��� $�
������������ �� ����� ������ �� ���� �������(

��������� �� ������ ������� ��� �������� ����� wA(
−−→
AX) �	 �		�����

�� ���� �����
���
�� ����� A
 � ��� X �� TGA �����	��
	
�� �����

��	

DTAX � A �� ����
 X �

D����� *���� �� ���!���� $
 ���!����� ��"�������� ��������� $
 ��� ����� �����"
#��� ��"�������� ��������� $
 ��� ����� �� �����(

��������� �� �������� ������(��� �������� ����� wA(
−−→
XY) �	 �		�����

 �� ���� �����
��� � ��� X �� ����
 ��!
�� �����
 � ��� Y (Y �= X)
�� TGA �����	��
	
�� �������

��	
 ITXY � ����
 X �� ����
 Y �

C������� *���� �� ���!���� "��� ����� %����� �$������ %�� �������������(

��������� �� �������� ������� ��� ��
���	��
��	
 TAX �����	��
	
��
��	

�� ����� ����
 A �!��
�	 �"�
 ���
��� ����
 X
�#��� ��
 �����
 �
	 ��
DTAX ��� ���
��
��	
	 ����
�� �����	 ��
�	 ���#��� A
 X �� TGA�

$��!��� %� C� 134 #� !��!���� ��� "����#��� "������ �� ���!��� ��� ���������
����� �" A �� ��
 ����� X �" ��� *�������!�5

TAX =
TAA ∗DTAX +

∑
Y ∈VA

(TAY ∗ IT YX)

TAA +
∑

Y ∈VA
TAY

*�� ���!������� �" ��� ��������� ����� �" A �� X ������������ ��� !��!����
���� �" ������ ����� � !��� ��� ��� ���$������� �" ������ "��� ��'����� !����(
6� ���� ���� TAX = DTAX #��� ���
 ��� ���� �������� A �� X ��� TAA ��
��� �� 2 +��� ����� �" ��� ������ ����� �� �����" �� ��������&�� �� 1 �" #� ��������
���� �� ��� �� ������ �� ��%� ���$�� �$��� ��� �#� �����$����
-(

��������� �� ������������� ��� 	�
 � ��
���	��
��	
	 � ����
 A ���
��
"� {TAX | X ∈ VA} �	 	
��� �� �
�"�� ������ ���	
��"�� ���
�� "� TTA�

*�� *����*�$�� �� ���!���� ����9� �� ���������� ���� ��� $� �!���7� �� �
!��������� ����� ��� �� #��� ��� $� ������������ �� ����� ������(*�� ���������
������ ���� $� ������������ �"��� ��� �!���� �" ������ �� ��� *�������!� �" ���
�" ��� $���� �������� ��� ������� �� �" � ��# ������� ������ ���� ��� �����������(

��������� �� ����������(&�
 TSA = (TGA, TTA) "�
�� ���	
'�
 � ����

A ����� �	 � ���� � � ��"��� ���
�
�� ���	
������ ��� � �����
� ���
�
��
���	
��"���

;��� ����� ������ ��� �#� *�������(6��� �� ����� X #���� �� ���!����� #���
������� ����� Y $���� �� ��� *������� X ��� �������� ����� ��#��� Y �������

�� ���������
(C��������� ������� ��� ��"�� �� 134 "�� � �������� ��!����������� �"
��� *������� ��� �" ��� ���������� $���� �� �!���� ��� *�������!� ��� ���
�����$�� #���� ������ �%�� ���� ��� �� ���!��� ��"�������� �����$����
(

$�� @36>3 #1�.�� !� � ��3

A B CABDT BCIT

XBIT

AAT ABT ACT

	
�� �� ,A����� �� %�����

$��!��� (� �� � ��!�� �" *������� $���� $
 A �� !��!���� �� ������ 25 �� ���

������ � *�������!� "������
 ��!�������� $
 TGA = ({A,B,C}, {−−→AB,
−−→
BC}, wA)

#��� wA(
−−→
AB) = DTAB ��� wA(

−−→
BC) = ITBC ��� � *����*�$�� ��!�������� $

TTA = {TAA, TAB, TAC}(DTAB �� ��� ������ ����� �" A �� B ITBC ��� ����� �"
B �� C ������������ �� A $
 B(TAA �� ��� ��������� ����� �" A �� �����" TAB

��� ��������� ����� �" A �� B +���������� "��� ��� ������ ����� DTAB ��� "���
��� ��� !����$�� �������� ������ ITXB ���������� �� ����� ������� �� B-(

*�� *������� �� ������ �� � ����������&�� #�
 �� ���� �����(*��� ������ �������
��%���� ��%�������(C� �%���� ��� "������ �" � ������ !���� �� � ��������&�� �
��
���5 ��� �
���� ��� ��� �������
 �������� ����� ��� "������� �� ���� ������ �"
��� �
����(C� ��� ���� ��%� ���#��9 ��������� ���� �� !�#�� $���#���� ���
���!������� !�#�� �� � ��$��� #������� ��%��������(
)�*�+ ,� ����"���
��� !�

��
��
�!� �
�
��	
 	�!�����
�� �����		��	�

$��� ����
 #���	 �
	 ���	
'�
 ��
 ��
� �
 ���� 	
�� �
�� 	�!���
��� '
��
���	
'�
 �����	 ��� �!��
�� �
 ���� !!��

 ��!
��
��	
 �����	 ������"��
�

��	 	�!� !!��
�

��� ��	��	
 ��	���	����

D�� �� ��� ��$����
 �" ��� ������ �� ��� ������$���� ��"�������� ���������� �
����
#� ����
 ��� ��!����
 �" ��� !
����� ���#��9 ���!���� $
 ��� ������ ��� � ����
��7���� ��!��� �� ��� ������������� �
����(�� 7��� �������� $��#��� ������
#��� ������ � !��������� ������ ������&����� $��#��� ������ ���������� �� *�����
����(:��� #������������ ���� ������ ������&����� #��� ������ � !��������� 9���
�" �!����� ������&����� ���� #� ���� =�������>5 ������ ���� "���
 ����� ���� �����
#��� ���
 ��������� �� ����� �� �����$����� ���� �E������
(�"��� ��� "�������� �
������� ��� $� �������� �� �� �� ��� ��9� ���#��9 ���� ������������
 =�������>
"��� ��� ������ ������&�����(6��� ����� ����$������ �� � ��������� �" ������� ����
����� ��� ����������� ��������� ������ #��� $� ������������
 � ������ "���
��������(

��� δ(X,Y) ������ ��� �!����� �������� $��#��� �#� ������ X ��� Y (
��� V N = {X |X ∈ V, ∃Y ∈ V, X �= Y, δ(X,Y) ≤ r} $� ��� ��� �" ��� �!������

�����$����� ������ #���� r ������� ��� ������ ������������� �����(
��� EN(V) F {XY | X,Y ∈ V N ��� δ(X,Y) ≤ r} $� ��� ��� �" ��� ���9�

$��#��� �!������
 �����$����� ������(

��������� �� ����
��� �������� �� V �
� ����
	 A ��� B ��� 	��� ������
"�	 � (A,B) ∈ V N, A,B ∈ V �

> ������6-���� >������� $�*

��������� �� ���������� � ���	
�� � � 	�
 � ����
	 V � ���
�� "� Cl =
(VCl, ECl)� �	 � ����� ����� 	�
�	��	 �
 �� !!��
 t
�� ��	
����
	 "���+

+2- VCl �= ∅
+3- ECl �= ∅
+<- VCl⊆V N
+?- ECl⊆EN(V)
+@- ∀XY ∈ ECl� X ∈ VCl� Y ∈ VCl� TXY ≥ Upp ��� TYX ≥ Upp� ����� Upp

�Upp∈ [0, 1]� �	
��
��	
 ����� �"�� ����� �� ����
 �	 ��	������ �	 �����"���

������� �� (VCl, ECl) ⊆ (V,E(V))

-��� �	 VCl ⊆ V N, ECl ⊆ EN(V) ��� V N ⊆ V, EN(V) ⊆ E(V) 	
(VCl, ECl) ⊆ (V,E(V))�

� C� ��� ��/��� ClX #��� X ∈ V #��� ������ ��� ������� �� #���� X �� ��
������� +���� X ∈ VClX -(6� ��� ���# ����9� �� ��� ���������� +?- ���� ��
��� ���� #���� ����� �� ��� ����� �� ��� ������� ����� �� ��#�
� �� ����� ���
����� ����� Y �� ���� �������5 ∃Y ∈ VClX | XY ∈ EClX (

� ��� ��
 ����! �" ������ T ⊂ V ClT #��� ������ ��� ������� �� #���� VClT =
T (

� ClXY #��� X,Y ∈ V #��� ��!������ ��� ������� ���!���� $
 ��� �#� ������
X ��� Y (VClXY = {X,Y } EClXY =

{
XY

}
(

� ������� ����
	�

��� ���	���� �� ��� �
 !���

C� ���� ������� #� ����
 ��# �� ����� ��� $���� � ������� #��� ������� �����(
� ������� �� ��������&�� $
 �#� ������ #�� �����"
 �#� ����������5 ���
 ����� ����
����� ��� ���
 ��� �����$���(

*�� ���������� �� ��� !�
����� ��
�� #��� ��!!�� ���� ������ ����� ���� �����
�� ���� !������ #��� ��9� ���� $������ ����� %����� ������ �%�� ���� "��� ��
������� %���� ��� �� 0.5(*�� �����
�! % !������� ��# �#� �����$��� ���� �����
���� ����� $���� � �������(

	��� ���� �� ClXY = ClYX $
 ��7������ �" � �������(*�� ����� �" ������ ���
��� �����7����5 ��� ���� ������� �� !������� �" �� �� ������� $
 X �� $
 Y (

��� "���� �
 !���!

�"��� � ������� ���� ��������
 "�� ������ �� ��� � ���� �%�������� �" ����� ��
����� ������ ������ $���� �� ������ �������� ��������� �� �����
�! %(*��� ���
������� ��� $� ���� �� ����� #���� ������ �� ��� $����� �� ��
 �������(��#�%��
#��� �� ����� ��� �" $��� ������ $������ �� � ������� ���
 ���� �!!�
 �������
��������� !�������� �� �����
�! ((*��� ��������� ������$�� ��# � ������ �����
�� ���������� ���� � ������� ��� ��# �#� �������� ��� �����(

$�B @36>3 #1�.�� !� � ��3

#
������ �� �������� ������� #��� �#� �����$���

���� 8 %2� ���1�)�� �1��� X ��� Y 2�� �� ��)����1 � ��. ������3
������ 8 > ��2 ������ ClXY 2�� 2� �1��� �� ������ �� ���� �� �������3 C� �����1
����2���3

���
�

� TXY ≥ Upp ����

>� ������� X ����� � ������ �������� ������ � �� �1�� Y

� T Y X ≥ Upp ����

Y ����� �� ��������� � X
X ������ � ��2 ������ ClXY ��� ������� Y �� �� ������� �� �� ������

���

���

���

��������� $� �������������� �������� �� ����
 Y �	 	���
 "� ��
��
���
�� ��
 ���	
�� ClX �� ��� ��� �� �� ����� ����
 Z ∈ ClX �
���� ���	
	 �

��	
 ����� TZY ≥ Upp(

��������� �%� ��������� �������� � ���	
�� ClX �	 	���
 "� ��
����
��
��
 ���	
�� ClY �� ��� ��� �� �� ��� ����
 X,Y ∈ ClX ∪ ClY �
���� ���	
	 �

��	
 ����� TXY ≥ Upp(

��������� ��� ������� �	������ ⊕�� &�
 ClX = (VClX , EClX) ��� ClY =
(VClY , EClY)
� �� ����
 ���	
��	� ,� ����� ClZ = ClX ⊕ ClY �	 ClZ=
(VClZ , EClZ) ��
� VClZ = VClX ∪ VClY ��� EClZ = EClX ∪ EClY ∪

{
XY

}
�

������� �� �� ����
 X "����	
 "
� ClX � Cl′X
��� ClX = Cl′X �

-��� C" ∃ClX | X ∈ ClX ��� ∃Cl′X | X ∈ Cl′X ���� $
 �!!�
��� ��� �������
�!������� �� $��� �������� #� ���5 ClX = ClX ⊕ Cl′X Cl′X = ClX ⊕ Cl′X ��
ClX = Cl′X (

��� &'�
 !��� �� 	� &
����� ���� 	 �
 !���

��������� ��� �������������� ���������� �� ����
 Y !�	
 "� ��������
��! � ���	
�� ClX �� ��� ��� ��
���� ���	
	 Y ∈ ClX
��

��	
 ����� TYX

"��!�	 ��		
��� Upp�

��������� ��� � ������� �	������ #�� &�
 ClX = (VClX , EClX) "� �
���	
�� ��� Y ∈ VClX �� ����
� ,� ����� ClZ = ClX#Y �	 ClZ= (VClZ , EClZ)
��
� VClZ = VClX�{Y } ��� EClZ = EClX�{KY | ∀K ∈ VClX} ∪ {Y L |
∀L ∈VClX}.

> ������6-���� >������� $�$

#
������ �� ,������ ��������

���� 8 %2� ���1�)�� �1��� X,Y 2�� �1�� X)����1��1 � ClX
������ 8 %�� ������ ClX ������3

���
�

� TZY ≥ Upp | ∀Z ∈ ClX ����

� TY X ≥ Upp ����

� �ClY , Y ∈ ClY ����

ClX = ClX ⊕
(
Y,

{
XY

})

X ����� ������ �������� ������ � �� ���1�)�� �1�� Y
���

� ∃ClY , Y ∈ ClY ��� TXY ≥ Upp | ∀X,Y ∈ ClX ∪ ClY ����

ClX = ClX ⊕ClY
X ����� ������ �������� ������ � �� ���1�)�� �1�� Y
���

���

���

���

� ������� ����� ���

�"��� ��� !��%���� ������ ������!���� �" *�������!� �� ������ ������&����� #�
������� �� ���� ������� ��� ����� �" ���9� $��#��� *�������!�� #���� ��� ������
�� ���� ����� �� � ������ ������&����� ��� ���� ��%�� �������� �������� �� � �!�����
������&����� ���� ��# *�������!�� �" � ������� ������ ��� � ������� ��� ��#
���
 ��� $� ������ ��������(

6� ��� �� $���� � ������ *�������!� #���� �� ������ �� ���� ����%����� ���
��� $� ������ #��� ������ �� � ������� +���� ��� ������ �� � ������� ����� ��%� ���
���� *�������!�-(*��� #�
 �����$�� ��"�������� �� � ������� ������
 �������
����%����� ������������ �� ����� �� �%��� ���
 ���#$��9� ���� �� ������ !����
"������ ��/�������� �" ��"����������� !��$��� �" !��"������� $��������9 ���(

*�� ������ *�������!� �" � ������� ���� $� �������� �� � ������$���� #�

������ �� � ����! �
������ ���� ���� "��/���� ��!����
 ��� ���$�����! �������(
�� ���� ������������� #��� �� ����� Y ��� ����� X #��� �%�������
 ������
������ �� Y ��� ���� +��"�������� ����� ��������� �������
 $
 ��� �����- $�� ����
���� �" ��� �������� +��� ��"�������� �$��� �����-(C� !��������� �� #��� �����
��� *�������!� #���� �������� ��� !�$��� �������� $�� #��� ��� ����� ��� *�����
*�$�� $������ �� �� $���� $
 � !������� ���!������� ��� ���� �������� !��%���
��"��������(�"��� �����%��� � *�������!� �� ����� ���������� �� �� ��� �#� ���(
*��� �� ���� ��� �$������ *�������!� �� �!���� ��� *����*�$��(*�� *�������!�
�" ����� X �� �!����� #��� �� �����%�� ��� *�������!� �" ����� Y "����#��� <
������� �� "����#�5

� �������� ������� ��� ����� � D�E ��� �� ������� ��1�� �� ������ <���1��1 %���6
F�����=3

$�G @36>3 #1�.�� !� � ��3

� X ���������� ��� ����� TXY �� Y �� �!����� ��� � ������ %���� $
 ���!�����
��� �#� ���� #��� �����%�� ����(C� ���� �" � ��# ������� ClXY �� �������

� ������ ����� ���9
−−→
XY �� ��� *�������!� �� ��!����� $
 � $������������ ���9←→

XY (
� X �������� ��� *�������!� �" Y �� ��� �#� *�������!�G
� X �������� ��� ��������������� �� ��� ������ !����(

*�� *�������!� ���� $
 �� ����� ���� ������� ��� $������� ��"�������� +���� ���
�" ������ #���� *�������� ��� ������ ��� ���� �" �������� ���(-(
(��� 	���! ���� ��) ����*��! +�� #��� � ��# ����� ������ ��� �����

���- ���
 #��� � ������ ��� �!���� ����� *�������!�� ����� ��� ,������ *�����
���!�� ����������(
(��� 	� 	��� ����! �
+ ����*��! �"��� ����9��� ��� *�������!�

$������� ��"�������� �� ����� ������� �� ��� �� �!���� ��� �#� *�������!�
+���� #��� ��� ����� ������� ���� ��� �" ��� $���� ���!������ �" ��� *�������!�
��� ������� �� #��� �!���� ��� *�������!�-(

���� ��� ������ *�������!� �� ����� A ��� ���!��� ��� !��%��� *����*�$��
�� �������� ��� ����� %���� ��������� $
 ��� ������� �� ������� ����� Y +Y ����

��� $����� �� A0� �������- ����� ��� "������5 TCl
Y =

∑
X∈VCl

TA
XY

Card(VCl)
 #���� TCl

Y

������� ��� ����� �" ��� ������� Cl �� ��� ����� Y ��� TA
XY ��� ��������� �����

�" ����� X +X ∈ VCl- �� ����� Y �� ��� *����*�$�� �" A(

! ���
�� "
�� ��� ����
	�
� ������� ��������

*��� ������� ������$�� ����� ��'����� ��!������� �" ��� ���� ������� ������!����
��� �� ��%��� $���� �� !�������� ��������5 �!����� ������&����� ������ ������&�����
��� ��������� ����� ������&�����(*#� �" ����� ��!������� ��� %������ +������ ���
��������� �����- ��� �� ����(*��
 ��.����� ���� ����� ���� ��
 ������ �� ���
��������� ����� ��%�� #��� !������ ��������� ������� �� ������ ��� �!����� �������
&������(

��� ��	��	
 ��	���	���� ,�
 !��� ��	��	
 ��	���	����-.

:� ��� �!����� ������&����� ��� ��� ��� ���
 !�
����� ������&����� ���� ���
$����
 ������� � �
������ �� ������� ��!����
(*��� �
������ ��!���� �� ���
��%����� �" ���� ����� �� ��� ������� ��� �� ��� ��������
 ������� �����7���
������� +������� $
 ��� %������ ������� ��� � ������� �!��������-(*�� ������
��!����
 "�� �������� !��
� � �����7���� ���� �� ��� ������������� �������
 $��
�#��� ������ ��� �����"��� �� ��� �
���� !��"�������(��� �������� � �����
��!����
 #��� ������ ���� � !�������� ������� �%����!!��� ��� �� ���� ����
�����$����
 $�� !��� ���� !��"������� #���� � �!���� ��!����
 #��� $� %������$��
�� ���9 "������� ��� ���#��9 !�����������(

������� ��� �$8����%� �" ��� �!����� ������&����� %��#�� �� � ���� ����� ��
�� �!���� ��� �� ����� �� !����$�� �� ��� ������ �� ������� �� ���
 ��# ����
�� !����$��(:� ��� ����� ���� ��� ������ ��%��%�� �� ���� �!����� ������&�����

> ������6-���� >������� $�H

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

1
2

3

4 5

6

78

X Robot

Communication Link

X Robot of Cluster

	
�� �� ������ ������ ��1���0����

���� 9��! �� ����� #��� ���� ����� �� ������ � �����$�� ������������� �������
���������� ��� �������(

6� #��� ��"�� �� �� � ������ ��������� "�� ����������� ��������%��
 $��#���
������ $�������� �� ��� ���� ������� �� ������� A(2(

�� � ��!�� �" � .��	
�� 	��
��� �����/�
�� �� ����������� �� ��� ������ 3
#���� ��!������� �� �+������+ �	�� Gspa = (Vspa, Espa) #���� Vspa =
{1, 2, 3, 4, 5} �� ��� ��� �" ��$��� �� ��� ������� ��� Espa =

{
12, 23, 34, 45

}
����

�������� $��#��� ����(*�� ������������ �� � ������� �" ������ �� �� "��� �
������� ��� ����� ��!������ ������� �� ��� ��!����
(��� �������� �" ��$�� 3 ��
� ������ "��� ��� ������� ��$�� 2 ��� ��$�� 4 #���� ��� �� ���� ������ �� ����
��� ��������%��
 $��#��� ��� ������� ������ �� ����������(

��� ����	
 ��	���	���� ,�
 !��� �� !�/�	��-.

������ ������&����� �� ������� �� $��� ������ �� ������� ��� ������ �� #����
������ �" ��� ������� ��%� ���!���� � �����(6� ��� ��������� �� ���� %������
������&����� � =.��	
�� ���	
�����> #���� �������� $��� ��
�	*
� �� !�
��0!
���������&��� ����������� $��#��� ������ ������ ��� ������� ��� ���!�� ����� ���9�
���������&��� ����������� $��#��� ������ �� #���� �� ����� ��� �" ���� ���� ���
$����� �� ��� �������(� ������� *�������!� ��'��� "��� �� ����� *�������!�
�� ���� �� ��� �� ���
 ������� �� ��� ������� ��� ���$���(�� ����� *�������!�
��� ���
 ��� ������ ��� ����� �����"(� ������� *�������!� ��� $� ���� �� ���
��������%� ������� �" ��� *�������!�� �" ��� ���$���(

��������� ��� �!������ ����� "�#�� � ��"�� ���#
(−−→
AB,

←−−
AB

)
∈ E′(V)2

���
�� "�
←→
AB �	 ������ � �����"��
��	
 ���# �� ��� ��� �� TAB ≥ Upp ���

TBA ≥ Upp�

������ < ����������� ��� �" ��� .��	
�� ���	
�����	 #���� ��� $� ����������
�� ��� .��	
�� 	��
��� �����/�
�� $���� �� ������ 3(*�� .��	
�� ���	
�����
�� ��!�������� $
 � �	�� Gsoc = (Vsoc, Esoc) #���� Vsoc = {1, 2, 3, 4, 5, 6, 7, 8}
��� Esoc =

{←→
12 ,

←→
23 ,

←→
34 ,

←→
45,

−→
38,

−→
36,

−→
63,

−→
56,

−→
67
}
(C� Esoc #� 7�� �����$�� ����� ���9�

��� ���!�� ����� ���9�(
←→
12 �� � �����$�� ���9 #���� ����� ���� ��$�� 1 ��� ��$��

2 ��%� �������
 � ������ ����� �� ���� ����� T12 ≥ Upp ��� T21 ≥ Upp(
−→
36,

−→
63

$�? @36>3 #1�.�� !� � ��3

1

2 3

4

5

6 7

8

Reliable trust Link

X Robot

Simple trust Link

X Robot of Cluster

	
�� �� ������ %���F����

�� � ���� � $������������ ����� ���9 $�� �� ����� ��� ��$�� 3 �� ��� ��$�� 6 ��� �
����� �� ��� !������ ���� ���� Upp(:����#��� ��� ��$�� 6 #���� $� �������� ��
��� �������(

��� 1�����!�� �� !� 2�3�
 ,�
 !��� 1�����!�� �� !�/�	��-.

*��� ������ %������ ��%�� ��9�� "�� $���� ��� ��������� ����� %����� ���� �����
���!���� �� ����� ������(�� ����� ���� $� � �����$�� ���9 $��#��� ��� ���
�����$�� ����� �" ��� �������� C� ����� ���� ��
 ������� ����� ��� �� ���������
�����≥ Upp �� ��� ������ �� ��� �������(C� �� ��� ��������� "�� #���� ���� �����
��� $��� ����!��� �� ��� ������� ��� ������� �� ��� �������(C" ��� �" ����� ���9�
�� �� ���� �����$�� ��� �" ��� ������ ���� ���%� ��� �������(

���0� ���� ���� ����� ���9� ��� ��� !�
����� ���9�(*��� ��!����������� ���!�

������$�� ��� /�����
 �" ��� ����� ���9� ����������� ��� ���$��� �" ��� �������(
C� ���� �������� ��� ��������� ���!�� ����������� �� ������ ������� ��� �������(
*��� ��%�� �� ������ ������� �� ��� ������ *����*�$��� "��� #���� ��� �����!� �"
������� �� ����%��(

�� � ��!�� �" .��	
�� ��
���	�� ���	
����� �� ���#� �� ������ ?(*�� �������
�� ��!�������� $
 � *�+������+ ����
��� �	�� GiTG = (ViTG, EiTG) #����

ViTG = {1, 2, 3, 4, 5} ��� EiTG =
{←→
XY | X,Y ∈ ViTG;X �= Y

}
(

������� ����� �������
��

C� ���� ������� #� ������� ��� !��$��� �" ����������� ��� ��������%��
 $��
�#��� ������� ������ #��� �� ��� ���� ���� ��� ��������
 �� !��%��� � �����$��
������������� �
���� ��� � �����$���� ���!�������(� #����������&�� �������
#��� $���� ���
 $���7�� �" !��"������� �� ��� �
���� ���� �� � $����� ������

> ������6-���� >������� $��

1

2

3

4

5 6 7

8

X Robot

X Robot of Cluster

Reliable trust Link

Simple trust Link

	
�� �� ������ �������� %���F����

���!������� � ������&����� �" ���� ������������ ��� �� ��!��%����� �� ���
/�����
 �" � ������� ��"��������(

��� "	���	���� ��������3��4

:�� �" ��� ���� !��!������ �" �������� �� ��� ��!����
 �" ����������� �������
��%��
 $��#��� ��� �������� �� ������ � ������������� ������� $��#��� �����$��
������(*�� !��$��� �" ��������%��
 ����������� �� �� ������ ��� � ������� �"
� �����$�� ������������� ������� ���������� ��� �������(*�� ��E����
 �� ���
������ � ��!�� �" ��!!��� ��$��� ��$��� �� ���� ��
 ��$�� ��� !���������

$���9 ��#� ��� ����� ��� ���8������� �" ��
 ��$�� "��� ��� ���� �" ��� ����(
����� ��� �����$�� ������������� ������� #� ��� !�������� #��� $� $��9�� ���
#� ������ !����!!��� ��� �%����$����
 �" ������� ������������� ��"�����������
#���� #��� $� �!��������� ��� ���!���$�� #��� ��� ������(C� ��� ����� � #�
��� �� � ������ ��������� �� �������� ��������%��
 $��#��� ������� ������ �����
��� ���������� �" �������%��
 !��!���� $
 �� �
 ��� 1H4 �� #���� �� ����������
��� =	��	�
���
� �����
���
�> � �� �������� �����!� �� ,�	;*� � �� $���� � ����
���$���� ��!����������� ��� ����� ��������%��
(

*� �������� ��� ���#��9 ��������%��
 "�� �������� �� ��� ���#��9 #� ��� �
=��������� �"
> �� ��� � �� �" ��� �������(��������
 ��� ��$�� #��� ��� ��������
���$�� �" ����� ���� #��� ������� ��$��� �� ������(6���� ��%��� �� !��"��� ���
���9 ���� ��$�� ���� ������ �� ������� #��� �� ����� ��� �����$����� ��$�� "���
#���� � ������� �" ������������� #��� ��� ��"������ ��$�� ��� $� ����$������(
C" ��� ��$��� �������� ���� �������
 ���� ��� ��������%��
 �" ��� #���� �
����
#��� $� �������(� ��������%��
��#������� "�� � ��%�� ��$�� �� ���������&�� $

� ��������%��
 ��$�� ���������� � ��� �" ������ !���� #���� ��!������ � !������
%��# �" ��� ���#��9 ��������%��
�(

� �������� ������� ��� ����� � D?E ��� ������� �����)��� ��1����� �� ��������
��)��� ��)�� ��� � ����6��)� �.��� �2��� �� ��2��4 �������&�.3 %�� ������
���� ���&�� �� ���� �������� ���)� ���� � ����4)��������&�. ���� �I�����.3

G�� @36>3 #1�.�� !� � ��3

��� 5�
�	*
� ���� ���	����

C� � ������$���� ��"�������� ��������� �
���� ��$��� ���� �� ����������� ��
���!����� �'����%��
(,��
 ������� ��%� ��������� ���� �%�� ��� � ������ �" �
����� ������ �" ��"�������� ��!��%�� ,�� !��"������� "�� ���� ���9� 1I2J4(
*� �����%� � ���� ������ �" .� �$����
 ��� �������
 ������������� $��#���
��$��� ������ $� $���� �� #������� ������������� ������������(C� �������� ���
���� ������������� ���������
 ���� ����# ��$��� �� ���"�������&� �� $� �!���
������� #������ ��
 ��������&�� �������������� ��� ���� $� �$�� �� ���!� ��
��� ��$����
 �" ��$��� ������ ����� �������(� ���#��9 #��� ���� ���������������
�� 9��#� �� � ��$��� �� ��� ���#��95 � ,�	;*(*���� ��������������� ��9�
,�	;*� %��
 .� �$�� ��� ���
 �� ��!��
(��� ���� ������ ��� ��� �" ,�	;*�
"�� ������������� $��#��� ��$��� $�������� �� ��� ���� ������� �� !����� #����
#� ������ �������$�
 ��!!��� ��� � ������� �" � ��$��� ������������� ��"����
�������� �� � ������
 ���/����(

� ��$�� $�������� �� � ������� �� ��� ���
 �� =�������
> ���#��9�� ���� $��
���� � ������ ���� ����
� �������� "�� ��� �����$���(������������� $��#���
��$��� #���� ��� ��� �����$��� ��� ���� ��9� !���� ������� ���������%� ������
������� ����
��� �����(������������� �� �������� ��� $� �����!����� �� "����#�
�� ����� �" �� ��� ���#��9�5 #��� �����$����� ��� �����$�� ��$��� ��%� �������
����� � ������� ���
 ��� ���������� �� �� �� ��� �
!� ���#��9(*��� ���
 ���
����������� ��� ���
 �� ,�	;* ������� !������� "�� ������� ������������ ��
���� �� � 7���� !����� �" ���� � ������� ���� $
 � ��$�� �� �����%�� ��������
 $

��� ��� �������� �" ��� �������(�� ���� ����� ��!������� �� ��� ��"�������� ������
������� +��� ������ �" ��� �������- �� ��!!���� �����$�� ��� �����%�� ��"��������
��� $� ����!��� $
 ��� ������ #������ ��7����(

��� 5�
�67	!�+ ������	����

,����%�� #� ��� �� ������ � �����$���� ���!������� "�� ������� ������(6� ��7��
� ���� �� � ������
 ������7�� $���%��� ������!����(��%���� ����� ��� ��������

��/����� �� !��"��� � ��%�� ���9(6� !��!��� �� ��� ����� �� ������$� ��������
������ �� !��"��� ��� %������ ���9� ��������
 �� ����
 �' � ��%�� �������(

*�� $���� ���� �" ��� �!!����� �� �� �������� ���� ������� �� � ����!(*��
������ �" ��� ������� +���� ��� =��"������ �����>- !��
� ��� ���� �" � ����! ����
����(*�� ������ ���! �� �� $���� � ������!���� �" ��� �
���� ��� �� !��%���
�� �� ��� ������� ������ �� ���� ���
 ��� ��9� �� ���� ������� �� ����� ���������
��9��� !������(*��� ������ ����!�������
 ������ ��� ����� #���� ���
 ����9
���� �!!��!����� "�� �������%��(*�� ��"������ ����� ��� ���! ������� ������ ��
���� �" ���.��� $��#��� ������ +���� ���
 ������ #��� �� � ����� ��� ���� ���9
�� ��� ���� ����-(*� �����%� ���.���� � !������� �" ����� ���������� $���� ��
������� �� ������
 ����(�� 7��� ���� ����� ����� �� ��� ��"������ ����� ��� �'��
�$��� ��� !���� �� ��9� �� 7���� ��� ���9 +!���� ��9�� ��� "��� �� ��� �!!��������
�" �� �����
 ��%�� � ���� !�����(((-(*��� ��� ��"������ ����� ������� ��� �����
!��!����� ��� ��#��� ���9 !����(*�� ������ �" ��� ��"������ ���� ��!���� �� ���
���� �" ��� �!!�������� ��� ����� ��%��%� �����!�� �������� ���� �� �����
 ��%��

> ������6-���� >������� G�/

���$�� �" �����$��� ����#��� ��/��������� ���(C� �����0� ��'�� ���� "��� �
�������� 	�� !�������(

C� ���� �!!����� #� ��7�� � ���� �� ��� ������!���� �" � #������7��� $���%���(
��%���� ����� ��� ��������
 ��/����� �� !��"��� � ��%�� ���9(6� !��!��� �� ���
����� �� ������$� ����!� ��������
 �� �����%� ��� !����$�� ���9� �� � ��%�� �������(
*�� ���9 ������� $��#��� ��$��� �� � ����! #��� ���! �� ��!��%� ��� ���� �� 7����
��� ������� ��� ���������� ��� �
���� ���%������� +���� !��"������� �" �
����-(

*�� !������� �" ����� ���������� #� ���� "�� � ������� ���� ����# �
�������
������� �� ��� �%����� ������&�����(�� ��� !������� #� ��� �� ���!���� $
 ���
��������� D,�� +D�����$���� ��� ,�$����
����!��%� ����������- !��!���� $

������� 1224 �� !�������� � ��$��� �� ��� ���#��9 +,�	;*- �� ��������(

C� ��� !��8��� �" ��!!��� ��$��� ��$��� 1234 #� ��%� "�� �������� �������
������� �#� �����(*�� 7��� ��� �� � =�����"���
� ���> #��� ��� �$8����%� �" �����
������� ��� !�
����� ������
 �" ��� ������� #���� ��!������� � �����$�� =������	>
�" ������(*�� ������ ��� �� �� =������
�� ���> #��� ��� �$8����%� �" ��������
��� � �� ���� �" ���� "�� ��� $���7�� �" ��� �������(*��� ������ ����� "���
��� ���� ���� ��� ���������� �� ������ !�
������
 ��������� �� � ������� ��� $�
%��#�� �� � ����� �� ��� � !�������� ��!�$������� �" ��� ��� �" ��� ������(�� ����
������ +��� ���$�� �� ���9�� �� ��� ���� ������� ��&�- ������ �� ��� ������� �"
��� ������� ��� ��� ����� ���� ��� ���%� ��� ������� ������� �� =� !������> ����
�!!��������� #��� ��� ������� !����� ��� ������ �� ����� �����
(6��� ���

���� $��9 �� ��� ������� ��� � !������ ����� ����� 9��#����� #��� ��� �������
+��� ���
 ��# �����$�� ��������� ���� "��� ��� ������ $�� ���� ��# ��������
�$��� ��$��� ��9��#� "��� ��� �������- ��� �� ��!��%� ��� � !�������� 7��� �"
��� �������(

$ ���	���
�� �� %����� &��'�

C� ���� !�!�� #� ��%� !��!���� � ��������� �� ��!��%� ���!������� $��#���
�����$�� ������ �� � ������$�� �!������&�� ���� ��������� �
���� #���� ��"���
������ ���������� ��� ������������ ��� $� ������� $
 �������$�� ������(C� ���
�!!����� ���� ����� ���!���� � ����� %���� �������� �� ����� ������ �� �����
�� $���� +"��� ����� �� ���$��- � ������� ��%�� ��������� �������� �� � �������
�� #���� #� ��� �!!�
 ��!��%������ �� ������������� ���� ��������� ���
������������ ����%�� "��� �� ��� ���#��9� ����������(�������� ���� $� ���� ��
�������� �� ��� ���#��9� #��� � �!����� �
������ $���� �� � ������ %���� ���� ��
�����(*��� #� ���#�� ��# ������ ��� �!����� +%������ ��� ����- ������&������ ���
$� ���9�� �� ����� �� �����%� ����������� �������� ������������ �" ������ ��������
�� ����� ��� �$8����%� ��� �� ��� �
���� �� $����� #�
�(6� ����������&�� ��� ���9
$��#��� ��� ������� ��� ��� !�
����� ��%��� $
 � ������� *�������!� $���� "���
��� ����� *�������!��(*��� ���!� #���� �� ��� � �����%� ������ �" ��� ������ ���
!�
����� �������� ������&����� �����!��
 �� ������ �� ���� ����� �" ��� �������(
*� ��� � $����� %��# �" ��� ���������� ������������ #� ���������� ����� ��'�����

G�� @36>3 #1�.�� !� � ��3

��!������� �" ��� ���� ������� ������!������ �� ��� "����#��� ����� ��%���5 �!�����
������&����� ������ ������&����� ��� ��������� ����� ��%�� ������&�����(������

���� ����������� #��� ��%�� �$��� ��� ���� ��������������� �" � ������� ��� ��#
#� ��� ��� ���� �� ��!��%� ��� !��"������� �" ��� �
����(

*�� ��%������ �" ��� �!!����� �� ���� ���� ������� ����� ���!������ $�����
#��� ��� ��� ������ �" ��� ������� $
 ������&��� ��� ���� ���������
 ������ $

�%����!!��� ������ ��� $
 �������� ��� ��"�������� ������
 ������ ��� �������(
���� � ���!������� ������� �� ��� ���� ���� $����� ��������� ��� $����� ���
$������� �" ��� �
����(������ �� 8����"
 ��� !��!�������� ��� ��%�������� ���
$���7�� �" �������� �� ����� �" !��"������� � �����%� ���������� ������� �����
��,� !���"��� 12<4 ��� ��������
 $���� ������� ���(

*�� "����� #��9 #��� "���� �� ��� ��������
 ���"�������&����� �$��� ������
�������� ���������� �� ��� ����������� �" ��$ ����������� ��������� �� �����
�����$����
 ��� �� ��� ������ �" !�����$����� � ������$�� �
���� ��� ��!!��� $

����� � ���!�� �
���� �!!����� 12?4(

(�)����	��

/3 #1�.�� !�
 @3>3
 F�����
 -3
 �����
 "3
 �����
 �3
 >����
 �38 ���'1�� ��
������������ ���� �� �.�'�� �� ������� ������������ J)��� ���1��� �����6
)'�3 ��8 K����'�� ������������ ��� �.�'��� ����6>1��� �K���>�
 ������
 ��3
��HL�/H ������

�3 #1�.�� !�
 @3>3
 F�����
 -3
 �����
 "3
 �����
 �3
 >����
 �38 %������ 6
����1 ��� � ���� �������� �1��� �� � �����)��� ���������� ��������1 �.���3
��8 ��/� �,,,6"�!� ����������� ���������� �� �������1 ��� ������������
%�������1��� ���/��

*3 �����1
 -3
 +�����
 !38 > ���&�. �� ����6�1�� ��1���0������ ������1��3 %��
M��2���1� ,�1�������1 "�&��2 /��B�
 �?/L*/G ����B�

B3 (��4��
 +3,3
 "������
 �3�3
 ���A�
 3
 -�����
 �38 ����1 ������� 7������� ���
��&����������.6�������� ���������� ��� ����1���� �� �1��.6������� ����6
������ �� �����1������ ��)� ����3 ��8 ��"> ����8 (��������1� �� ��
 �,,,
����������� ���������� �� "�)���� ��� >�������
 ��3 �?H�L�?H�3 �,,, (����

(�����2�. ������

$3 C����
 M3
 M��������
 3
 %�))���
 #38 !����� �.����� �����1. ��� �����1 ��
��)��� �� ��� ��2��4�3 ��8 (��������1� �� �� ����������� ���������� �� +��
>�&����� �� #�2��4� ��+># ���G
 ������
 ��3 /��L/*B ����G�

G3 (��4���
 �3,38 >� �� #�2��4��13 >������69����. (����������� ����?�
H3 �����
 �3
 M��������
 38 > ���&�. �� 1����)���� ���&��� �����&��. ����������
��� �� ��� ��2��4�3 ����������� %���������� �� �.���� ������� ��� >������6
���� ����H�

?3 +�
 !3%3
 -��������
 #3
 ����42���
 �3
 ������
 !3
 C�����
 >38 ��4��1 ��2��4��
��)�� �������&�.6�2���3 ��8 ��"> ����8 (��������1� �� �� ���� �,,, ����6
������� ���������� �� "�)���� ��� >�������
 ��3 /?*$L/?B�3 �,,, (����

(�����2�. ������

�3 ���������
 -38 �.����� �����1.8 >� �������� � �� ���. �� ������������

��3 G*/LG$?3 >������69����. �/��/�

/�3 -����
 %3
 "�����
 >�4��
 �38 ������������ �� �����&� �����1�� ��)��� �.�6
���3 >�������� "�)�� /
 �HL$� �/��B�

> ������6-���� >������� G�*

//3 -���1��
 �38 C����)��� ��������1 ��� �� ��� ��2��4�3 ��8 ��(># /���8 (������6
��1� �� �� /��� ����������� �.������� �� (������� >����������
 >�1������
��� #�2��4�
 �3 */�3 �,,, ������� �����.
 9�����1��
 C�
 ��> �/����

/�3 #1�.�� !�
 @3>3
 F�����
 -3
 �����
 "3
 �����
 �3
 >����
 �3
 ����42���
 �38
����1 ��� ��� ������ ��1�������� � �����&� ��)� �2��� ������13 ��8 "	��#
��/�8 9��4���� �� "�)�� ��� ������� ���1����� �� ����� "����� �#��������
�.��� ���/�� �� �������

/*3 >������A
 ,3
 @���1
 �3
 -������
 >3
 C��1���
 >38 F>�>8 �� ,�&������� ���
����������1 ��� "�����1 �������. ,A����� ����6>1�� ����������3 ��8 F����

>3
 F�&�������
 F3
 ���������
 "3 ����3� ("��> ���H3 +#��
 &��3 $�BB
 ��3
*$�L*H/3 �����1��
 �����)��1 ����H�

/B3 �����
 �38 �.�N��� ������A�� O)��� �� ����6�1��� ���N�3 ���&����N ������
-������6+.�� /
 �N����� ����)������� O ����1�� ��� ���������� ����*�

Simulation of the Emotion Dynamics in a Group

of Agents in an Evacuation Situation

Le Van Minh1,2, Carole Adam3, Richard Canal1,4, Benoit Gaudou5,6,
Ho Tuong Vinh1,4, and Patrick Taillandier6

1 Institut de la Francophonie pour l’Informatique (IFI), Hanoi, Vietnam
2 Danang University (UDN), Danang, Vietnam

3 RMIT University, Melbourne, Australia
4 UMI 209 UMMISCO, Institut de Recherche pour le Développement (IRD),

Bondy, France
5 Université de Toulouse, Toulouse, France

6 Institut de Recherche en Informatique de Toulouse (IRIT), UMR CNRS 5505,
Toulouse, France

{minh.levan246,carole.adam.rmit,benoit.gaudou,ho.tuong.vinh,
patrick.taillandier}@gmail.com, richard.canal@auf.org

Abstract. Nowadays, more and more emergency evacuation simulations
are used to evaluate the safety level of a building during an emergency
evacuation after an accident. The heart of this kind of simulations is
the simulation of human behavior because simulation results depend for
a big part on how this behavior is simulated. However, human behav-
iors in a real emergency situation are determined by a lot of cognitive
mechanisms. In order to make the simulation more realistic, plenty of fac-
tors (e.g. innate characteristics, perception of the environment, internal
rules, personality and even emotions) that affect human behaviors must
be taken into account. This paper focuses on the influence of emotions,
and more precisely on the influence of their dynamics and propagation
from an agent to another. The main contribution of this work is the de-
velopment of a model of emotions taking into account their dynamics and
their propagation and its integration in an evacuation simulation. The
first results of the simulation show the benefits of considering emotion
propagation.

Keywords: emotion, emotional agent, emotion propagation, emergency
evacuation.

1 Introduction

Nowadays, the computing power available on any personal computer allows one
to create simulations including thousands of agents, as for example in simula-
tions of the traffic in a city, or simulations of the emergency evacuation from a
building... In order to make the simulation as realistic as possible, each agent
in the simulation is designed to operate autonomously (which means that the

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 604–619, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Simulation of the Emotion Dynamics 605

agent is not controlled by any central agent and he makes his decisions using his
own cognitive resources) and to interact with other agents.

Many researches show that adding emotions (e.g. joy, fear, anger, hope...)
into these agents provides huge benefits because emotions improve the quality
of agents’ behaviors and then the quality of the whole simulation [13]. Indeed
emotions play a very important role in human beings’ life by influencing their
decision-making and reasoning processes and their interactions with others [6,8].
Therefore, we should not ignore emotions when creating a virtual human simu-
lation.

The recent studies in the domain of artificial agents allow one to give each
agent ways to express pertinent emotions [7] and to reason about not only his own
emotions but also about others agents’ ones [1]. Critical issues remain concerning
the “transmission” of emotions among agents in the simulation, the emergence
of a common emotion in a group of agents and the effect of this emotion on each
individual.

We thus propose in this paper a model of emotions taking into account both
the emotion dynamics (when emotions appear and how their intensity level
evolves over time) and the emotion propagation (how they are “sent” and “re-
ceived” and how a received emotion influences the receiver). In this paper we
focus on fear (with various intensity levels) and test our model by implement-
ing it into agents used in a simulation of emergency evacuation in a burning
shopping center.

This paper is organized as follows. Section 2 presents a brief state of the art
on emotions. In Section 3, we present our model of emotions, emotion dynamics
and propagation. Furthermore, in Section 4, we present the implementation of
our model and discuss in Section 5 the first results of our simulation.

2 State of the Art

2.1 Simulation of Pedestrian Evacuation

Plenty of simulations of emergency evacuation have been developed [18,20,19].
Most of them concentrate on human behaviors, and more particularly on their
movement, in an emergency situation. The typical model of this kind of simu-
lations is the pedestrian evacuation model developed by Crooks on the RepastJ
platform [14]1. In this simulation, agents representing human beings leave their
office when the fire appears. This simulation is focused on the human movement
and on the role of obstacles on the passage to the door: e.g. the wall of the room,
the table...

Since the human behaviors in the real world are much more complex than
those of the agents in the simulation (e.g. planned tasks of a person are of-
ten updated in case of a stressful situation), many researchers have proposed
to introduce additional factors to make the agents’ behavior more human-like.

1 Interested readers can download the model on the website
http://www.casa.ucl.ac.uk/andrew/repastmodels/fire/fire.zip .

http://www.casa.ucl.ac.uk/andrew/repastmodels/fire/fire.zip

606 L. Van Minh et al.

In particular, Musse and Thalmann described a hierarchical model of virtual
crowds for real-time simulations [12]. In their simulation, the human behaviors
executed by simulated agents are classified in three types: innate or scripted
behaviors, behaviors defined by rules and behaviors controlled by external fac-
tors. Furthermore, Hollmann et al. [9] improved the human behaviors model in
urgent situations by adding the two following attributes: available time and
estimated required time. When these two variables reach a particular threshold,
the agent changes his behavior (e.g. he accelerates in order to get to the goal
location, changes the goal location or even ignores some of the planned tasks to
concentrate on the ultimate goal).

As mentioned previously, emotions play an important role in human behav-
iors in particular in emergency situations. We choose to integrate emotions in
evacuation simulations. Therefore the first question is how to define and describe
emotions.

2.2 Theories of Emotions

In the 19th century, James and Lange proposed a physiological theory of emotion
[10]. Their theory indicates that the human autonomous nervous system creates
physiological events like heart rate and respiration in response to various human
experiences. The emotions are the sentiments that appear as results of this phys-
iological change. According to this theory, humans can express their emotions
via their physiological states and can guess the emotions of others based on this
kind of expression.

While this physiological theory advocates that emotions result from physio-
logical factors, many scientists defend the idea that cognitive factors are very
important in the process of emotion triggering. They propose various so called
cognitive theories. In the domain of cognitive theories of emotions, Arnold [3]
and Lazarus [11] argue that human beings always evaluate what they perceive
and the emotion triggered by this perception is thus the result of an appraisal
process. They proposed the cognitive appraisal theory. Following these purely
psychological researches, Ortony, Clore and Collins [15] define a typology of emo-
tions (known as the OCC typology) depending on the type of stimulus appraised
and various appraisal variables. They distinguish three kinds of stimuli: events,
actions of agents, aspects of objects. The 20 emotions defined are deeply related
to mental attitudes, this eases their integration into artificial agents.

In [5], Cabanac proposed a four-dimension model of consciousness. In this
model, every state of consciousness is described in 4 dimensions: the qualita-
tive dimension, the intensive dimension, the hedonic dimension and the time
dimension. He then proposed a definition of emotions based on his model of
consciousness: “Emotion is any mental experience with high intensity and high
hedonicity” [5].

In [4], Bosse et al. proposed a model of emotion contagion. In their model, the
propagation of emotions depends on six factors: the current level of the sender’s
emotion, the current level of the receiver’s emotion, the extent to which the
sender expresses the emotion, the receiver’s openness or sensitivity for emotions,

Simulation of the Emotion Dynamics 607

the strength of the channel from the sender to the receiver and the tendency to
adapt emotions upward or downward [4].

2.3 Existing Models of Emotional Agent

In [16], Parunak et al. propose a model of emotions for situated agents called
DETT. “DETT (Disposition, Emotion, Trigger, Tendency) is an environmentally
mediated model of emotion that captures the essential features of the widely-
used OCC (Ortony, Clore, Collins) model of emotion” [16]. Contrarily to most
agents architectures using the OCC typology, in DETT emotions are triggered
by the perception module (rather than being the result of an internal reasoning).

In [22], Zoumpoulaki et al. propose a multi-agent framework for emergency
evacuation. The multi-agent model presented in the paper is a combination of
the BDI (Belief, Desire and Intention) architecture [17] for the agent’s reasoning
process, the OCEAN (Openness, Conscientiousness, Extraversion, Agreeableness
and Neuroticism) for the model of personality and the OCC model for emotions.
This kind of framework can be used to simulate emotions in controllable situ-
ations, but in the case of an extremely serious emergency, when the situation
becomes truly chaotic, we argue that people do not have enough time to make
reasoned decisions but rather make decisions based on simple heuristics such as
emotions. In the sequel we consider situations of extreme emergency; that is why
we have only simple agents feeling extreme emotions (like fear). Their behavior
is mainly directed by the emotion they are feeling and the emotions received
from other agents.

3 Proposed Model of Emotional Agent

3.1 A Two-Dimensional Model of Emotion for Emergency
Evacuation Simulations

As described in the previous section, we consider an emotion as a particular
mental state which is triggered by the individual appraisal of various stimuli.
Stimuli in our case will be either events of the environment or behaviors of other
agents, both being perceived by the agent. The subject appraises these stimuli
according to his knowledge and his current emotions.

From the psychological four-dimensional model proposed by Cabanac [5] and
the multi-agent framework integrating personality and emotion proposed by
Zoumpoulaki et al. [22], it appears that the more emotions are simulated, the
more realistic the simulation becomes but the more complicated relevant results
will be extracted from the simulation, which leads to difficulties in the evalua-
tion phase when we evaluate the role of emotions and of their propagation in
emergency situations. In order to emphasize the effect of emotions and of their
transmission, we propose a simple model of emotion – a two-dimension model
of emotions – which allows us to have simulation results that remain simple to
analyze. Our model is the reduction of Cabanac’s four-dimensional model [5] by

608 L. Van Minh et al.

Fig. 1. Decay of the emotion

ignoring the qualitative dimension (Axis x) and the hedonic dimension (Axis z).
We consider that the emotion triggered in every emergency evacuation is the
fear. We concentrate on this emotion and the two remaining dimensions repre-
sent its intensity and the duration of the emotion. Thus, the emotional model
proposed is a two-dimensional model with 2 axes: the emotion intensity (Axis
y) and the emotion duration (Axis t).

“Axis y” represents the intensity of the emotion. In our proposition, the value
of y(t) is continuous and always positive. If y(t) < ε (a very small threshold), the
emotion disappears. The initial value of y(t) (i.e. when the emotion is triggered)
is calculated by the appraising process. We suppose that an agent has the capabil-
ity to calm down over time and thus reduce the intensity of his emotion. Then the
value of y(t) decreases gradually following the formula y(t) = y(t−1)/α, (α > 1)
(1) (with α is the decay coefficient).

“Axis t” represents the duration of the emotion. Due to the decay equation
(1), the intensity of the emotion will follow the evolution presented in Figure 1,
in the ideal case where there is no other stimulus.

3.2 Architecture of the Emotional Agent

We present in Figure 2 the architecture of our emotional agent.

Simplifications. In the sequel, we consider the three following simplifications.
They allow us to simplify conceptually and computationally our model and thus
improve the simulation performance and make the simulation more effective.

Simplification 1. The current emotion of the agent does not have any influence
on the process of perception. The current emotion is taken into account only in
the process of evaluation of the perception outputs (emotional appraisal) that
triggers emotion.

Simplification 2. There is only one emotion in the agent at one moment. This
also means that only one emotion can be taken into account in the appraisal
process and that this process can create only one emotion.

Simulation of the Emotion Dynamics 609

Fig. 2. Model of the emotional agent

Simplification 3. The agent acts immediately once the emotion appears. The
agent does not update his knowledge base before performing an action.

Description of the architecture. We describe here the main process of the
agent architecture.

1. Perception of the stimuli (Perception component in the Figure 2): first,
the agent perceives the stimulus (coming from Arrow 1). In this work, the type
of emotion simulated is the fear. Therefore, only the stimuli which contribute
to fear are perceived, the rest is ignored. According to the source of the stimuli,
the agent classifies the stimulus into 1 of 2 possible types.

a. Indirect stimulus: This type of stimulus is caused by the environment. They
do not trigger directly an emotion. They can only affect the intensity of existing
emotions. For example: a child who is alone in the middle of the graveyard, under
the heavy rain; if this child is scared, any additional noise will increase the level
of his fear.

b. Direct stimulus: This type of stimulus is caused by events of the environ-
ment or by the behavior of other agents. Each stimulus provokes one type of
emotion with a specific intensity.

2.Appraisal of the stimuli (Evaluation component in Figure 2): The results
of the perception (Arrow 2) are appraised according to the knowledge of the agent
(Arrow 3) and his current emotion (Arrow 4). There are 2 types of stimulus so
there are also 2 types of evaluation. In the end of this process, the agent creates
an emotion.

a. Evaluation of indirect stimuli: the agent searches in his knowledge base for
rules relating to the indirect stimuli perceived. If some rules are found, the agent
acquires the global variable (γi). As the stimulus can have either a positive effect
or a negative effect on the agent, this global variable (γi) can have a positive
value or a negative value. With one stimulus, γi can be different from an agent to

610 L. Van Minh et al.

Fig. 3. Algorithm to calculate the intensity of the fear

another one according to his knowledge base: an agent can give a positive value
to γi, whereas another agent can give it a negative value. For example, consider
a child in a dark room; the darkness is the indirect stimulus; if this child can
normally see, this stimulus is negative; if this child is blind, darkness does not
scare him; so this stimulus will not be perceived or will have a neutral value.
After having evaluated all the indirect stimuli, the agent has a set of γi that he
aggregates with: γ =

∑
i>0 γi.

b. Evaluation of direct stimuli: the agent finds in his knowledge base the rules
matching with the direct stimuli perceived. According to rules found, the agent
acquires an additional intensity value (Δy).

c. Computation of the intensity: the intensity of the temporary emotion is
computed by the algorithm presented in the Figure 3.

In the algorithm, “y” represents the intensity of the fear. When “y” reaches
a determined threshold, the agent will change his behavior. The maximal value
of “y” is “ymax” which is defined as an input parameter of the simulation that
limits an overgrowing emotion intensity. In our model, we consider that agents
perceive other agents’ emotions depending on their sensitivity factor α. This
sensitivity coefficient is a positive constant and varies from an agent to another
one. According to this coefficient, an agent can perceive emotion more easily
than others.

3. Computation of behaviors (Behaviors component in Figure 2): once
the new emotion has been created, the agent reacts immediately to the stimulus
from the environment. Initially, the agent finds in his knowledge base the rules
related to the emotion and then executes the corresponding behavior. The agent
executes two kinds of action in one step: he reduces the intensity according to the
formula (1) and reacts to the stimulus. When the agent reacts to the stimulus,
his behavior affects not only the environment but also the other agents. The
other agents perceive thus these behaviors and interpret them as stimuli.

3.3 Model of Emotion Propagation

According to the agent model proposed, an agent appraises the stimuli caused
by the actions of other agents in the process of evaluation. When an agent reacts

Simulation of the Emotion Dynamics 611

Fig. 4. Emotional propagation model

Fig. 5. Overview of the simulation

to the environment, he expresses his emotion via his behavior. Then, an agent
can recognize the emotion of the other ones according to the behaviors that he
perceives. The emotion of an agent can thus spread over a group of agents. Figure
4 describes the way an agent gives his emotion to others via his behaviors.

4 Implementation of the Emotional Agent

In this section we present the situation that we want to simulate, the details of
the agents involved in this simulation and how we can improve their behavior by
introducing emotions. The model is implemented on the GAMA platform [2,21].

612 L. Van Minh et al.

4.1 Description of the Application Case: Pedestrian Evacuation in
a Burning Shopping Center

The simulation aims at representing the scenario described below. In a shopping
center, while people are shopping, the fire appears. Figure 5 presents the overview
of the simulation. The people who see the fire may be scared. They may scream
or change their movement speed. Other agents who perceive these actions may
feel their fear. With this simulation we aim at highlighting the important role of
emotions (in this case, the fear) in an emergency evacuation, and in particular
the fact that the casualty rate can highly be increased, in the case of a panicked
crowd.

4.2 Description of the Agents

In our simulation, we use two kinds of agent: agents representing human beings
and agents representing fire. In the sequel we describe in details the implemen-
tation of both kinds of agent.

Human Agent

Attributes Methods

Size: agent size Wander(speed:float):
Perception range: radius within the agent moves randomly
which an agent can perceive a stimulus GoToTarget(speed:float):
Propagation range: radius within the agent goes to his target
which an agent can propagate AvoidObstacle():
information to others The agent avoids the obstacles
Emotion type: type of emotion (in and the other agents
this model, emotion type is ”fear”) PerceiveStimuli():
Emotion intensity: intensity of the agent perceives stimuli within
the emotion his range of perception
Sensitivity ability (α): the sensitivity PropagateInformation():
of an agent. The greater this attribute the agent propagates information
is, the more sensible the agent is within his range of propagation
Decay ability: the capability to reduce Reflex(): the agent evaluates the
the intensity of emotion. The greater stimulus in order to choose his
this coefficient is, the faster the behavior
emotion disappears ChangeColor(color:Color):
Global variable: the global effect of the agent changes his color
environment on each agent. This
coefficient is set randomly at the
beginning of the simulation

Simulation of the Emotion Dynamics 613

Fig. 6. Levels of the fear

Fig. 7. List of behaviors

Fire agent

Attributes Methods

Size: size of one piece of fire Propagate(): the agent propagates
Duration: duration of the fire himself within the range of propagation
Propagation range: range within
which the fire can spread at each step

4.3 Description of the Emotion (The Fear)

As mentioned above, the emotion that influences the most the behavior of agents
in an emergency situation is the fear. We choose thus to limit the emotions
involved in the simulation to the fear. In our simulation, we distinguish four
levels of fear (depending on the intensity level of the emotion): normal, stress,
fear and panic. Figure 6 presents these levels.

At each level of fear, the agent may execute different behaviors or a behavior
with different manners (e.g. wander with a normal speed when the agent is in
the state normal or wander with a high speed when he is panicked). In our model
we proposed seven behaviors described in Figure 7.

1. Display in color: the agent uses this behavior to show graphically his
current fear level. At each level of fear the agent uses the method Change-
Color(color:Color) to show a particular color (white, light blue, blue, dark blue).

614 L. Van Minh et al.

2. Avoid obstacle: this is a fundamental behavior. At every step an agent
moves, he invokes the method AvoidObstacle() to avoid collisions with obstacles
(wall, other agents...)

3. Perceive the stimuli: this is also a fundamental behavior: this method is
invoked at each step. The agent can perceive the fire or get emotional information
from the behavior of other agents.

4. Wander with normal speed: this behavior shows that the agent is in a non-
stressful state. The agent wanders with a normal speed if he is not scared. In
this case, the agent invokes the method Wander(speed : float) with the normal
value of speed.

5. Quit the shopping center with normal speed: this behavior shows that the
agent is aware of a fire. The agent who is scared with the average intensity keeps
his reasoning capabilities: he can thus find a way to escape. The agent invokes
the method GoToTarget(speed : float) with the normal value of speed.

6. Quit the shopping center with great speed: this behavior is similar to the
behavior 5 but in this case, the agent is truly afraid: the value of the speed is
thus higher.

7. Wander with great speed: similar to the behavior 4 but in this case the speed
is higher. This behavior illustrates the case when the fear is so intense that the
agent becomes panicked, loses awareness and thus cannot control himself.

8. Propagate the information: As soon as the agent feels any kind of fear
(stress, fear or panic), he invokes the method PropagateInformation() to spread
this emotional information to other agents.

5 Experimentation

In this section, we present the tests led on the emergency evacuation model. In
order to evaluate the role of the emotional factor in the emergency evacuation, we
propose two measures that we use to monitor our model: Emotional Rate (ER)
is the percentage of people who are in a fear state in a unit of time; Survivor
Rate (SR) is the percentage of people who succeed to escape the building. Our
experimentation is separated into three models: a model without emotion, a
model with emotion but without propagation and a model with emotion and
propagation. In each test case, the parameters of the emotional factors are set
with the average value so that the simulation is closer to actual situations.

5.1 Model without Emotion

In this test case, we set the values of the propagation range and of the per-
ception range to zero, which means that the human agent cannot perceive the
emotion of other agents. In this case, the human agents are not aware of the
danger. And when the fire propagates in a wide area, these agents do not change
their behavior to survive. In consequence, the survivor rate (SR) is very low.

Simulation of the Emotion Dynamics 615

Fig. 8. Evolution of the emotion rate and of the number of survivors

5.2 Model with Emotions but without Propagation

In this test case, the value of the propagation range is zero and the percep-
tion range is set randomly in its definition interval. In this case, the human
agents can themselves perceive the fire which can trigger fear but cannot prop-
agate their emotion to others. Only the people who see the fire may become
afraid and then flee the danger to save their life. The others who do not see the
fire are not scared. This is why the emotional rate (ER) is higher than in the
first test case but still low. With the people who are not aware of the danger, it
may be too late to survive because the fire spreads quickly and blocks the exit.
Thus, in this test case, the survivor rate (SR) is still low. The chart in Figure 8
shows the progress of the two indicators during the simulation.

5.3 Model with Emotions and Propagation

In this test case, the value of the propagation range and of the perception range
are set randomly in their definition interval, which means that the people can
feel the fear by perceiving the stimuli from the environment and can inform the
others about their fear. They can perceive not only the fire but also the behaviors
of others. In the chart in the Figure 9, at step 40, the emotional propagation
happens, the emotional rate (ER) jumps thus significantly and then the survivor
rate (SR) increases quickly. That is why the survivor rate is higher.

5.4 Discussion

After having executed the simulation 100 times and making statistics on the data
obtained, we find that the benefits of the emotional factors in the simulation of

616 L. Van Minh et al.

Fig. 9. Evolutions of the emotion rate and the number of survivors

the emergency evacuation is very important. In the chart of the Figure 10, in
the case of emotions with propagation, the percentage of survivors is the highest
(45.03 %).

We can summarize our model by responding to following questions.

How an emotion appears? The agent perceives stimuli; he evaluates them ac-
cording to his knowledge and his current emotion; then, a new emotion appears.

Which may influence the appraisal process of the stimuli? The stimuli, the empa-
thy of the agent and effects of the environment influence the evaluation of emo-
tion. The intensity of emotion of each agent is different to each other, although
they perceive the same stimuli at the same time. When the agents perceive the
fire, some may be scared, others may not. This is all because of the empathy.

How can an agent show his emotion? Through his behaviors, an agent shows
his current emotion. In our simulation, these behaviors are: appearance change
(like the human facial expression), the movement speed or other ways to inform
other agents (scream, cry...).

How can the propagation of emotions happen? An agent perceives the others’
behaviors, evaluates them like any environmental stimuli. Then, an emotion
appears. Thus, the emotion spreads over agents.

In our research, we found that there is an amplification of the emotional inten-
sity in the mob. We name it the emotional circle effect. It means that, when the

Simulation of the Emotion Dynamics 617

Fig. 10. Evolutions of the emotion rate and the number of survivors

first agent perceives the fire, he is scared and executes a behavior revealing his fear;
the other agents perceive these behaviors; they are scared in turn and react to this
emotion; the first agentmentioned perceives these behaviors and then the intensity
of his own fear is increased. This type of process is repeated and the intensity of the
fear in the mod jumps significantly. In a real situation, this kind of phenomenon
happens frequently and is not limited to the fear inducing panic but also for ex-
ample to the joy: the joy of the spectators in the stadium is much more intensive
than that of the man who watches the match on his television at home.

6 Conclusion

Theoretically we proposed a model of emotion based on cognitive theories of
emotion and then a architecture of emotional agent. According to the theory
proposed, we can improve the emergency evacuation by adding emotional factors.

Practically we described the model of the simulation of the emergency evacu-
ation in a burning shopping center. In addition, according to our simulation, we
succeeded to prove the important role of emotions in the emergency evacuation.

In our research, we simulate only one emotion. The behaviors of agent are
also affected by only one emotion. Simulating a multi-emotion model is thus the
principal perspective of our research. In the multi-emotion model, each stimulus
can trigger more than one emotion and, because many current emotions influence
not only the appraisal process but also the behaviors; the simulation will thus
become more and more complex.

618 L. Van Minh et al.

Acknowledgment. This work was funded by the project EPIS, a French IRD
SPIRALES research program that is developed by research teamwork MSI-IRD
UMMISCO.

References

1. Adam, C., Gaudou, B., Login, D., Lorini, E.: Logical modeling of emotions for
ambient intelligence. In: Mastrogiovanni, F., Chong, N.Y. (eds.) Handbook of Re-
search on Ambient Intelligence: Trends and Perspectives. IGI Global Publisher
(2009) (to appear in 2010)

2. Amouroux, E., Chu, T., Boucher, A., Drogoul, A.: Gama: an environment for
implementing and running spatially explicit multi-agent simulations. In: Pacific
Rim International Workshop on Multi-Agents, Bangkoku, Thailand, pp. 359–371
(2007)

3. Arnold, M.B.: Emotion and personality. Columbia University Press, New York
(1960)

4. Bosse, T., Duell, R., Memon, Z.A., Treur, J., van der Wal, C.N.: A Multi-Agent
Model for Emotion Contagion Spirals Integrated Within a Supporting Ambient
Agent Model. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA
2009. LNCS (LNAI), vol. 5925, pp. 48–67. Springer, Heidelberg (2009)

5. Cabanac, M.: What is emotion? Behavioural Processes 60, 69–83 (2002)
6. Damasio, A.R.: Descartes’ Error: Emotion, Reason, and the Human Brain. Putnam

Pub. Group (1994)
7. De Rosis, F., Pelachaud, C., Poggi, I., Carofiglio, V., De Carolis, B.: From greta’s

mind to her face: Modelling the dynamics of affective states in a conversational
embodied agent. International Journal of Human-Computer Studies 59, 81–118
(2003)

8. Forgas, J.: Mood and judgment: The affect infusion model (aim). Psychological
Bulletin 117, 39–66 (1995)

9. Hollmann, C., Lawrence, P.J., Galea, E.R.: Introducing emotion modelling to
agent-based pedestrian circulation simulation. In: PED 2010. NIST, Maryland
(2010)

10. Lange, C., James, W.: The emotions. Hafner, New York (1967)
11. Lazarus, R.S.: Emotion and Adaptation. Oxford University Press (1991)
12. Musse, S.R., Thalmann, D.: Hierarchical model for real time simulation of virtual

human crowds. IEEE Transactions on Visualization and Computer Graphics 7(2),
152–164 (2001)

13. Nair, R., Tambe, M., Marsella, S.: The role of emotions in multiagent team work.
In: Fellous, J.M., Arbib, M. (eds.) Who Needs Emotions: the Brain Meets the
Robot. Oxford University Press (2005)

14. North, M., Collier, N., Vos, J.: Experiences creating three implementations of the
repast agent modeling toolkit. ACM Transactions on Modeling and Computer Sim-
ulation 16(1), 1–25 (2006)

15. Ortony, A., Clore, G., Collins, A.: The cognitive structure of emotions. Cambridge
University Press, United Kingdom (1988)

16. Parunak, H.V.D., Bisson, R., Brueckner, S., Matthews, R., Sauter, J.: A model of
emotions for situated agents. In: Proceedings of the Fifth International Joint Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS 2006, Hakodate,
Hokkaido, Japan, pp. 993–995 (2006)

Simulation of the Emotion Dynamics 619

17. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a bdi-architecture. In:
Allen, J.A., Fikes, R., Sandewall, E. (eds.) Proc. Second Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR 1991), pp. 473–484. Morgan
Kaufmann Publishers (1991)

18. Ren, A., Chen, C., Luo, Y.: Simulation of Emergency Evacuation in Virtual Reality.
Tsinghua Science Technology 13(5), 674–680 (2008)

19. Shendarkar, A., Vasudevan, K., Lee, S., Son, Y.J.: Crowd simulation for emergency
response using BDI agents based on immersive virtual reality. Simulation Modelling
Practice and Theory 16(9), 1415–1429 (2008)

20. Stroehle, J.: How do pedestrian crowds react when they are in an emergency situ-
ation - models and software Pedestrian behavior (2008)

21. Taillandier, P., Drogoul, A., Vo, D., Amouroux, E.: Gama: A Simulation Plat-
form That Integrates Geographical Information Data, Agent-Based Modeling and
Multi-Scale Control. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010.
LNCS(LNAI), vol. 7057, pp. 244–260. Springer, Heidelberg (2011)

22. Zoumpoulaki, A., Avradinis, N., Vosinakis, S.: A Multi-Agent Simulation Frame
Work for Emergency Evacuations Incorporating Personality and Emotions. In:
Konstantopoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros,
G. (eds.) SETN 2010. LNCS (LNAI), vol. 6040, pp. 423–428. Springer, Heidelberg
(2010)

From Biological to Urban Cells: Lessons

from Three Multilevel Agent-Based Models

Javier Gil-Quijano1, Thomas Louail2,3, and Guillaume Hutzler2

1 CEA, LIST, LIMA, 91191 Gif-sur-Yvette CEDEX, France
2 IBISC Laboratory, Evry-Val d’Essonne University, Evry, France

3 Geographie-Cités Laboratory, CNRS, Paris 1-Paris 7 Universities, Paris, France

Abstract. Modeling complex systems often implies to consider entities
at several levels of organization and levels of scales. Taking into account
these levels, their mutual interactions, and the organizational dynam-
ics at the interface between levels, is a difficult problem, for which the
proposed solutions are often related to a specific disciplinary field or a
particular case study. In order to develop a broader methodology for
designing multilevel models, we propose an analytical framework of ex-
isting approaches, drawn in particular from the study of three examples
in biology and geography.

1 Introduction

Natural and social complex systems are often characterized by many different
entities, heterogeneous in nature and dimensions, at various levels of organi-
zation. The interaction between these entities are intricated, and act at very
different time and spatial scales. Addressing questions about these systems re-
quires to consider simultaneously multiple levels of organization. Paradoxically,
in this context, most of the “multiscale” or “multilevel” models implement a so-
lution where the description of the thematic knowledge occur at one level only.
The choice of this level of description determines the selection of the entities of
the real system that are reified as agents in the model. The simulated system
can then be analyzed at two organizational levels: at the agents’ level on the
one hand, through the analysis of their trajectories; at the system’s level on
the other hand, through a set of measures used to characterize the structures
produced during the simulation. It should be noted that such systems can also
be measured at intermediary levels that appear to be relevant to the modeler.
These levels can for example correspond to groups of agents that share common
characteristics. In practice, however, this refinement is rarely implemented.

In that case, it seems problematic to talk about truly multilevel modeling
since only the “lower” level is present in the model and specified as such by
the modeler. The “higher” levels are in this case the ones that can be observed
by the experimenter who “looks at” and analyzes the simulations, but these
levels are not reified in the model. This emergentist approach, which is single-
level regarding the design of the model, and bi-level regarding the analysis of

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 620–635, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

From Biological to Urban Cells 621

results, is by far the most commonly used in agent-based simulation. However,
this approach can not always be satisfactorily applied when modeling real sys-
tems. Indeed, a number of complex systems dynamics can not be understood
without integrating multiple levels of organization, and multiple processes that
can not be reduced to a purely emergentist approach. In particular, social sys-
tems inherently include a structuring role of higher levels on lower levels. Thus,
the corresponding domain theories are rarely single-level, either because there
is a lack of knowledge at a given level or because the domain’s ontologies mix
entities and actors of different levels of organization. It is for example difficult to
imagine modeling the evolution of a whole city over several years, on the basis
of the sole specification of the behavior of its inhabitants. Moreover, it would be
too expensive from a computational point of view to simulate a large system as
a whole at the most detailed level. For example, simulating a cell consisting in
more than 4.1013 molecules (e.g. a cell of a rat’s liver) at the atomic level, or
even at the molecular level, is indeed completely unrealistic.

In the end, the question that is addressed by the model requires considering
entities at different levels (for example the molecular and cellular levels, or the
individual, neighborhood and city levels) which, as Servat et al. recall in [16],
is part of the scientist’s “intellectual gymnastics”: to make different points of
views and different descriptions of the same system co-exist, and to coherently
articulate them. And indeed, we perceive the world at several scale levels. They
also underline two additional reasons that justify the integration of multiple
levels. The first reason is computational, the collective behavior of many dis-
tributed systems changing remarkably when the number of their components
reaches a critically large value. It is thus important to enable the simulation
of such large numbers of components, which makes it impossible to model sys-
tems at the smallest possible scale. To circumvent this difficulty, we can imagine
dynamically replacing some groups of agents by “super-agents”. These would
embed behavioral rules that would be equivalent to the measured result of the
accumulated actions of the individual agents. That would allow to enhance the
performance, and the modeler could then take advantage of the saved computa-
tional power to “zoom in” other parts of the system that he/she would like to
model in more details. The second reason is “thematical”. If an agent is able to
realize that it belongs to (or is categorized as belonging to) a group of higher or-
ganizational level, like a social class, it might conscientiously affect his behavior
in order to reinforce (or oppositely to diverge) his belonging to this group. In a
general manner, integrating entities and rules of multiple levels of organization
is an important issue. It should allow to tackle original questions, as compared
to the possibilities offered by classical bi-level, micro-macro modeling.

Additionally, rather than representing all components and their relations, the
key point should be to consider simultaneously the level of the system’s com-
ponents and the level of their emergent properties, as Lesne expressed in [9].
It implies that our efforts should worth be made in accurately describing how
the different levels articulate and influence each other, rather than solely jux-
taposing many levels in a single model. Articulating levels implies to explicitly

622 J. Gil-Quijano, T. Louail, and G. Hutzler

represent each of them into the model, and explicitly define how they are cou-
pled. In agent-based modeling, this means that the model should incorporate
some rules that specify how the agents associated to a given level would impact
and modify agents at other levels. This is presently a central question in the
agent-based modeling community and several projects focus on developing sim-
ulation platforms that allow to take into account simultaneously several levels
within a single model (as for example the 3Worlds project [6] in ecology, or
more generally in the GAMA platform [17]).

Before illustrating these different aspects by the presentation of three recent
applications of multilevel simulation in section 3, we start in section 2 by a
work of definition necessary to clarify the manipulated concepts. In the examples
section, we concentrate on isolating the different organizational levels represented
in each model and the mechanisms that support their coupling. In section 4, we
generalize their underlying multi-agent organizations and we throw light upon
their similarities and differences. From that discussion we propose a classification
of multilevel agent-based architectures, based upon the criteria identified in this
comparison. Finally, we conclude by discussing the research perspectives opened
by this comparative study.

2 Multiscale or Multilevel ?

Scale or level, multiscale or multilevel ? The concepts of scale and level are fre-
quently used to model complex systems and to characterize the manipulated
abstractions, their granularity and their position in a hierarchy that structures
and organizes the system. These two terms are often used interchangeably, more-
over they are used in diverse manners depending on the disciplines, which is
potentially very confusing.

The concept of scale is frequently characterized by an adjective that relates it
to space or time: spatial scale, temporal scale. The term level is often associated
with terms such as micro, macro or meso that situate the described system or
phenomenon in respect to its size, its characteristic evolution time or an inclusion
relation with other systems or subsystems. At first sight, we consider that the
concept of scale refers to a dimension of analysis on which the phenomenon
of interest can be measured. This dimension can be spatial or temporal, but
also quantitative. The spatial and temporal dimensions refer respectively to the
size of the entities involved in the phenomenon (typically from nanometers to
thousands of miles throughout all the intermediate sizes), and the characteristic
time associated with the behaviors of these entities and their interactions (from
nanoseconds to centuries). The quantitative dimension refers to the number of
entities involved in the phenomenon (typically from 2 to some billions).

Compared to that definition of scale, the concept of level is used to situate the
studied phenomenon and/or the entities that compose it, along the considered
dimension of analysis. A level usually corresponds to all the entities whose size
and/or characteristic evolution time have the same or comparable orders of mag-
nitude. If one sticks to this use of the scale and level concepts and being strict,

From Biological to Urban Cells 623

one should not use the “multiscale ” term to describe models. Indeed, most of
the times “multiscale” means that the model considers entities at different levels
along the spatial scale. Later in this article we will not use the multiscale adjec-
tive anymore to characterize models, prefering the use of the multilevel adjective
instead.

It should be immediately noted that the concept of level is both relative and
bounded to a modeling choice. With relative, we mean that an entity, which is
considered in a given phenomenon, can not be totally described as belonging to
a given level. For example, from the perspective of molecular biology, molecules
are related to the micro level while the cell is associated to the macro level;
from the standpoint of physiology, the cells are associated to the micro level and
the macro level corresponds to the tissue. Moreover, the association of an entity
with a given level is not exclusively related to the entity’s characteristics along a
given scale but it is the result of the analysis and modeling choices. Indeed, the
decision of combining diverse entities within a given level often involves the fact
that the entities belong to a structure or a relevant organization in terms of the
system’s description. It is indeed common to speak of “level of organization” or
“level of abstraction”.

Let us finally present two additional concepts that are useful in our analysis:
hierarchy and structure. The concept of hierarchy, because systems are often de-
scribed as a hierarchical interlocking of levels (molecules, cells, tissues, organs,
individuals, group, society). The concept of structure, as it is often the recogni-
tion of a structuring set of entities at one level that allows the definition of entities
at a higher level. In [5] the concept of hierarchy is defined as “A conceptually
or causally linked system of grouping objects or processes along an analytical
scale”, and three types of hierarchies are distinguished: exclusive, inclusive and
constitutive. An exclusive hierarchy is a hierarchy in which there is no inclusion
relationship between entities in a level and higher level entities. For example,
this is the case of military ranking systems or food chains in which individuals
of a certain trophic level feed on lower-level individuals. Conversely, in inclusive
or constitutive hierarchies the entities of a given level are included in a top-level
entity. The objects in an inclusive hierarchies exhibit a categorical relationship
similar to that present in hierarchies of classes in a object-oriented programming
language or in taxonomical hierarchies (domain, kingdom, phylum, class, order,
family, genus, species). In the case of constitutive hierarchies, entities of one level
are grouped into new entities of the next level, the latter being characterized by
new organizations, functions and emergent properties (molecules, cells, tissues,
organs, individuals). To determine the levels where entities must be placed, more
than their sizes, the important point is to consider the group they form, that is,
how the entities organize within their group.

3 The Models

Now that the context has been clarified, we will focus on three proposed agent-
based simulation models in which multilevel modeling issues have been addressed

624 J. Gil-Quijano, T. Louail, and G. Hutzler

explicitly. The first example deals with the growth of a cancerous tumor, ad-
dressed at the molecular and cellular levels. The second deals with housing
choices of households in Bogota, treated individually at the level of households
and housings but also at the level of groups of housings and households. Finally,
the third presents a model of urban morphogenesis, considered at inter- and
intra-urban levels.

The objective is not to make an in-depth presentation either of the models
or of their results, but rather to focus on how they implement the concept of
multilevel modeling. To do this, and to facilitate the comparison between these
different models, we will answer the following questions:

1. Specification of the levels : what are the different identified levels, what are the
types of objects and/or agents defined at these levels, and how are these types
defined (are they specified beforehand or are they dynamically discovered)?

2. Instanciation of the objects : how is the instanciation of the objects and/or
agents done (is it done statically by explicitly defining the agents of the
model or are they created dynamically in the simulation depending on the
context)?

3. Coupling between the levels : how are the different levels coupled with one
another (what is the nature of the interactions between agents of different
levels)?

3.1 Cancer Cells Migration

Context and objective. When speaking about cancer, one of the major factors
of bad prognosis is associated with the appearance of secondary tumors, called
metastases. These secondary tumors can develop when a cell of the primary
tumor switches from a proliferating to a migrating state, thus escaping towards
other organs elsewhere in the body. When the micro-environmental conditions
permit, the cell stops its migration and returns to a proliferating state, which
leads to the development of a secondary tumor. We are interested in the micro-
environmental conditions around the tumor which could lead to the metastatic
escape of a cell. We study more precisely the role of a protein, which is suspected
to have a role both in triggering the morphologic transformations of the cells and
in providing loose adhesion contacts that enable the escape [11].

The model. We developed a first agent-based model in which both cells and
proteins are modeled as individual entities. The growth of the tumor is mod-
eled by implementing a cellular division behavior, which depends mainly, for the
cell, on its capacity to feed itself from surrounding nutrients. This proliferat-
ing behavior is coupled to an inter-cellular repulsion behavior. The model also
takes into account the dynamics of production and internalization of proteins
by the cells. The differential access to nutrients leads to three distinct states
for the cells inside the tumor: a cell that has a satisfactory access to nutrients
(external layer) is active and has both the proliferating and the protein produc-
tion/internalization behaviors; a cell that receives too few nutrients dies (core);

From Biological to Urban Cells 625

cells in-between receive enough nutrients to produce and internalize the proteins
but too few to proliferate, thus becoming quiescent (intermediate region).

The main trouble is that when tumors reach a size of several thousands of cells,
the number of proteins reaches several hundreds of thousands. We get therefore
quickly limited by the size of the tumors that can reasonably be simulated. The
proposed solution consists in abstracting some details of the model in regions
where they are not necessary, thus allowing to simulate bigger tumors or to add
details in the most interesting regions. Given that the main interesting area is
at the interface between the external layer of the tumor and the environment,
we proposed to replace the internal region of the tumor by an aggregated model,
abstracting the set of cells and proteins in the core region as a global model
of ingoing and outgoing flows. From a spatial point of view, this model is de-
limited by the entire set of necrosed and quiescent cells, and all the proteins in
the so-defined area. Since these cells are static, or have a very limited mobility,
this permits to neglect the repulsive movements of the cells (mainly due to the
cellular-division behavior of the cells in the external proliferating layer). It is
then a matter of calculating the interactions between the aggregated model and
the external cells or proteins. It is straightforward to determine the cells or pro-
teins that have to be integrated in the aggregated model: these are the quiescent
cells, and the proteins in the corresponding area or the ones that, during their
random diffusion movement, collide with the aggregated model. Symmetrically,
in order to determine how many proteins will be released by this model, it is
necessary to evaluate the relative proportion of necrosed and quiescent cells, so
as to evaluate the number of cells that produce and internalize these proteins
(the quiescent ones). It is then possible to update the concentration of proteins
inside the aggregated model. By assimilating the proteins diffusing inside the
model to a perfect gas, we can then calculate the “pressure” inside the model,
thus determining the statistical quantity of proteins that leave the aggregated
model. These proteins are finally stochastically distributed around the aggre-
gated model, at the immediate vicinity of the frontier.

Agents and levels. In this model, objects of very different sizes (cells and
proteins) coexist. The levels correspond to two types of objects both types being
defined beforehand. The instantiation is done by creating an initial cell, which
itself creates other cells by successive division steps. The cellular and molecular
levels are coupled thanks to the activity of the cells: the latter produce and
internalize proteins. By simulating these agents together, a cluster of cells is
produced. That cluster is observed and identified as the tumor. Up to this point,
there is no scale crossing, but only the interaction, in a common environment, of
objects of different levels in the spatial scale. The tumor’s level is only observed
and does not perform any active role in simulation.

On the contrary, when the aggregated model is introduced (see figure 1),
we identify at run time an intermediate level (between the cellular and tumor
levels) entity, which is reified during the simulation. This corresponds to the
introduction of the additional modeling level of a multicellular tissue at the
heart of the tumor. This kind of object is specified beforehand: we know for

626 J. Gil-Quijano, T. Louail, and G. Hutzler

Fig. 1. Introduction of an aggregated model to account for the core of the tumour

sure that the simulation will lead to the development of a tumor and we can
therefore anticipate the appearance of this object. However, its instantiation will
depend on the time at which such an object is observed in the simulation. The
coupling of this structure with the other objects (cells and proteins) depends on
if they are inside or outside the aggregated model. The coupling with the internal
objects is implemented thanks to a set of very simple differential equations, which
describe the evolution of the relative quantities of necrosed and quiescent cells,
the evolution of the concentration of proteins inside the model and the amount of
externalized proteins. The coupling with the external objects is implemented by
describing both the conditions that lead the external objects to be integrated into
the aggregated model and the rules defining the externalization of proteins. The
dynamics of the aggregated object can then be seen as the numerical integration
of very simple differential equations.

The multilevel character of this model can be seen in two complementary
ways. The first one consists in noticing that the model, which is composed of
both cells and proteins, integrates objects of very different sizes. The second one
consists in proposing that objects corresponding to abstractions of higher levels
of organization be introduced dynamically in the simulation.

3.2 SimulBogota : Households and Housings in Bogota City

Context and objective. The objective of the SimulBogota model [7] is
to reproduce the evolution of the spatial distribution of the population of the
city of Bogota throughout several decades. This evolution depends on both the
internal and external migrations as well as on the evolution of the population
and of the housing-stock. The evolution of the population of households is the
result of individual events (marriage, divorce, emancipation, death, etc.) that
produce socio-economical changes as well as the creation and destruction of
households. The evolution of the housing-stock depends mainly on both the
housing-renewal and the aging-of-buildings processes. In the case of Bogota,
these processes are the result of very complex dynamics that not only involve
the construction controlled by planning policies, but also informal mechanisms
such as self-construction and illegal occupation of housing estates.

From Biological to Urban Cells 627

The model. To implement our model, the only available data were the socio-
economical descriptions of households and housings as well as their spatial dis-
tribution for the years 1973 and 1993. In the absence of sufficient data, a model
centered on the explicit representation of the decision and evolution mechanisms
at the individual’s level is inadequate or even impossible. Under these conditions,
we proposed to consider groups of households and groups of housings as main
modeling entities. This reduces the complexity of simulations by taking an ag-
gregate level into account, in which the decision process that leads households to
move is placed. However, it is necessary to consider the populations of households
and housings in order to model the evolution of groups.

In this model we explicitly consider two levels of modeling, the microscopic
level that contains data that describe the populations of households and housings
and the mesoscopic level that contains the groups of households and the groups
of housings. The model is mainly composed of three mechanisms executed in
sequence at each step of simulation:

1. Formation of groups: this allows to go from the microscopic level (households
and housings) to the mesoscopic level (groups of households and groups of
housings). It is an automated clustering mechanism [7] performed on the
data that represent households and housings.

2. Interaction between groups: this allows to rehouse the households in the city.
It is an auction-based mechanism that is used to exchange housing-units be-
tween groups of households. These interactions are governed both by a set of
lists of housing-preferences, which are built dynamically1 and a static matrix
of costs of moving between urban areas. In this mechanism, we assume that
households seek to move closer to households of their social group and to oc-
cupy the same group of housings. It is therefore a self-reinforced mechanism
of spatial segregation.

3. Evolution of the population: this is a mechanism based on the execution
of global rules of evolution of the populations of households and housings.
These rules allow the creation or deletion of entities at the microscopic level
(households or housings). Each rule associates an entity profile with a num-
ber of entities to be treated. These rules do not represent individual events
(which are very difficult to be considered and very data-consuming) but
global trends of evolution.

In order to trace the evolution of groups, a last mechanism is implemented, which
allows to relate the groups found in two successive steps of simulation.

Agents and levels. In this model, in order to reduce the complexity of simula-
tions and the amount of data required to represent the dynamics of intra-urban
migrations, we introduced an intermediate level composed of “artificial” struc-
tures: groups composed of similar microscopic entities. These structures have no
“physical” equivalent and they are the result of the analysis of households data

1 Preferences evolve according to the changes in the spatial distribution of the groups.

628 J. Gil-Quijano, T. Louail, and G. Hutzler

Fig. 2. Diagram of interactions between levels in the simulation of the evolution of the
spatial distribution of population in SimulBogota

and housings data (microscopic level). Thus, physical objects, at the microscopic
level, coexist with artificial objects, at the mesoscopic level, that are dynami-
cally reified by clustering the objects of the microscopic level into homogeneous
groups (see figure 2). Compared to models of physical phenomena, an additional
question arises: it is necessary to define the number of groups to be considered,
knowing that a small number can produce an oversimplification of the model,
while a high number may get groups extremely closer to the microscopic level
and cause a loss of the model’s synthesis ability. Even if the level of groups has
been specified beforehand, the number of considered groups is determined at run
time and the groups are dynamically instantiated from the results of clustering
the data of households and housings at every simulation’s step.

From the evolution’s perspective, general rules were constructed from descrip-
tive data of households and housings. The core of the evolution mechanism is
therefore located at the microscopic level and its effects are propagated to the
level of groups by the clustering mechanism (bottom-up coupling). However,
there is no direct interaction between microscopic entities. The microscopic level
is used as an anchor with reality while the level of groups provides a synthetic
vision of reality, which facilitates the formulation and the assessment of hypothe-
ses about the behavior of the system, thus leading to a better understanding of
the modeled phenomenon.

The “artificiality” of groups conditions the design of both the inter-groups
interaction mechanisms and the interlevel interaction mechanisms. When simu-
lating groups of micro-entities, one has to deal with abstract entities, that have
no “physical” counterpart. Since the modeler can not rely on well established
rules (or that can be easily deduced) that describe the behavior of the groups,
he is therefore free in defining the interaction mechanisms. Since we know very
little about the functioning of groups, the mechanism chosen to represent the in-
teraction between groups is as artificial as the groups themselves. The proposed
mechanism, based on auctions of housings, has no physical ground, it is simply
an artifact that allows the dynamic multi-criteria matching between groups of
households and groups of housings. The design of this mechanism has therefore

From Biological to Urban Cells 629

more to do with modelers’ intuition than with inspiration from “real” mech-
anisms. This mechanism, which is used to rehouse households, establishes the
top-down coupling between the level of groups and the microscopic level.

3.3 Simpop3 : Exploring Urban Dynamics at Three Geographical
Scales Simultaneously

Context and objective. The Simpop models are agent-based models dedi-
cated to the understanding and reproduction of urban growth over periods of
several centuries. Those models are used to study the different geographical pa-
rameters that lead to the differences that exist at different geographical levels
(city, region, nation, continent) between the systems of cities in Europe and
in United States. The first of these models, Simpop1 [2] has been one of the
very first applications of MAS systems in geography. In this section, we briefly
present two independent models, Simpop2 and SimpopNano. We then discuss
their coupling, which results in a new multilevel model, Simpop3. The latter
allows to tackle new geographical questions, regarding the multilevel processes
that take part in the growth of urban systems.

The Simpop2 model is based on the urban evolutionary theory [14] and focus
on the modeling of systems of cities considered as self-organized complex systems.
In that model, some generic and universal properties of the systems of cities are
identified and separated from specific processes related to the history of each
system. Thanks to that dissociation, Simpop2 allows to reproduce the differences
that exist between global properties (for example hierarchical distribution of
cities’ sizes) of different systems of cities. simpopNano [10] is an attempt to
reproduce the emergence of typical patterns of organization inside the city and
their long-time evolution (200 years), under the dependence of both the topology
of the street networks, and the performance of the transports networks. The
objective is twofold: to compare the morphogenesis of cities in Europe and United
States and to isolate the minimal set of factors that allow to reproduce the
observed differences between the cities of the two continents in terms of densities,
prices and activities repartitions [1].

The Simpop2 model. Cities are the model’s main agents. They interact
through the exchange of goods associated to the urban functions that they own.
An urban function characterizes a role played by the city that owns that func-
tion (heavy industry, car industry, regional capital, etc.) in the system of cities.
Each function has a specific period during which it is active. The spatial inter-
actions between cities are of several types. They depend on the urban function
that mediates the “communication”: spatial proximity, administrative frontier or
specialized large scale network. In parallel to these exchanges, cities compete for
the acquisition of new innovations, which are represented by the dynamic arrival
of new urban functions in the system during the simulation. At run time, the
interaction network generate progressive specialization of the cities and differen-
tiation between them. At the global level, the consequence is the emergence of a
system of cities, whose properties can be determined by measuring key indicators
as the total population, primacy indexes, etc.

630 J. Gil-Quijano, T. Louail, and G. Hutzler

The SimpopNano model. In this model, agents are of two types: neighbor-
hood agents, which represent autonomous portions of the city space, and urban
functions agents (the same as in Simpop2), which represent the main families
of socio-economical activities owned by the city. Functions have employees to
localize. They also have a budget to do so. Neighborhoods are linked to a dynam-
ical network and differ by their accessibility and their functional composition.
The combination of these two indicators make them more or less attractive for
functions, and equally more or less expensive. Functions differentiate by their
economic power and by their localization strategies. At each time step the model
simulates the competition for space of these urban functions inside the neigh-
borhoods. As a consequence of that competition one can observe at run time
the structuration of the emerging city. Several measures are used to characterize
the structures dynamically produced: densities and prices gradients, activities
repartition maps, or functional specialization indexes of the neighborhood, etc.

The Simpop3 model. Simpop3 includes agents at two levels: at the micro
level, the urban functions and neighborhoods agents of simpopNano are con-
sidered. At the intermediate (meso) level, the urban functions and the cities
agents of Simpop2 are considered. The link between levels is performed by the
exchange of urban functions.

Simpop3’s execution relies on the alternate execution of a Simpop2 iteration
followed by a SimpopNano iteration:

– at each time step Simpop2 computes the cities spatial interactions and the
next state of each of them, i.e. the new functions they acquire, and the
number of employees and budget of each of their functions;

– the Simpop2’s outputs are used as input data of SimpopNano, which ven-
tilates these functions staff among the city’s neighborhood. Urban functions
pay their implantations with the money they have generated at the city level
by the sell of goods produced by the function to other cities. SimpopNano

outputs an indicator of the spatial “performance” of the functions, which
qualify the quality of the functions’ repartition inside the city.

– This indicator is considered by the newly arriving urban functions agents to
decide in which cities of the system of cities they will implant.

Agents and levels. In Simpop2, the spatial specification level, i.e. the level at
which the thematic knowledge on the system is formalized as agents and inter-
action rules, is the level of cities. The cities are primary (micro level) entities,
these are the agents of the model. The system of cities is then the emergent level
(macro level). SimpopNano “works” at a more nested level: the spatial specifi-
cation level is the level of neighborhoods, in which the urban functions (the same
that are acquired by the city in Simpop2) must localize their employees. In this
case, the city level is the emergent level. The “city” emerging from SimpopNano

is not the same as the one that is specified as an agent in Simpop2. The city of
SimpopNano is an entity that only exists at runtime, through a combination of

From Biological to Urban Cells 631

Fig. 3. Simpop3: a multilevel MAS to test urban theories at the crossing of scales

measures that let the geographer decide whether the spatial structure emerging
of the model “looks like” a real city or not. For Simpop3, we have faced the need
to build a bridge between these two representations of the same city: the agent
specified in Simpop2, and the structure emerging from SimpopNano. This is
summarized by figure 3.

To implement this articulation between the two models, we have choosen to
identify an entity that would be common to the two levels. This entity should
represent the mutual influence between an individual city and the system of
cities. The concept of urban function has been instantiated in the model as
a somewhat “multilevel” agent. Urban function is an abstract concept defined
by geographers to qualify the role played by a city in the system of cities it
belongs to. This concept is relevant at the inter-urban scale. To implement the
coupling, the concept has been generalized, and we have made the hypothesis
that this concept could be used to qualify the various kinds of socio-economical
activities that interact inside the city, and whose behavior shapes its spatial
organization. In fact, this is the transfer of this inter-urban concept to the intra-
urban level that allowed us to design a bridge that links these three spatial levels
all together. The urban function agent is like a buffer: it encapsulates variables
that are affected by the dynamics at each level.

4 Towards Multilevel Multi-agent Organizations

Elaborating from the three preceding examples, and from other models taken
from the literature, one can try to categorize multilevel models around three
aspects:

1. Multimodels : we consider here models originally independent, placed at dif-
ferent levels, interacting with each other. The outputs of the upper level
models are used to define global parameters of the lower level models; the
outputs of the lower level models are considered as ingoing flows in upper
level models. We can distinguish between two sub-categories:

632 J. Gil-Quijano, T. Louail, and G. Hutzler

(a) the different models are executed alternatively (it is the case for example
in Simpop3). In that case, the coupling between the models is generally
weak but difficulties may appear if the different models share objects that
each of them may modify (the “urban function” entity in Simpop3).

(b) a multi-agent model is encapsulated inside a higher-level agent. In the
model of tumor growth, this would correspond to the fact that we model
the internal dynamics of cells, rather than considering a fixed rate pro-
duction of proteins. This would allow to take into account the genetic
regulation networks controlling the production of these proteins. One
has to be careful, in that case, to the scheduling of the agents of the
different levels, which doesn’t necessarily occur at the same time scale.

2. Models with multilevel specification: we consider here models where there
exist interactions between entities placed at different levels along the spatial,
temporal or quantitative scales. One can achieve this through two distinct
approaches:
(a) through the static specification of the simulated entities (e.g. cells in-

teracting with proteins in the tumor growth model; Simpop3). Again,
problems arise with the scheduling of agents. In the specific case of cells
and proteins, the characteristic timescales are indeed very different. This
imposes to focus on discrete-events simulation approaches, or to handle
several schedulers in parallel for the different types of simulated objects.

(b) through the dynamic specification of the simulated entities: implemen-
tation of mechanisms such as a “dynamic magnifier” that allow to focus
on critical areas by raising the spatial resolution and the level of details
(e.g. the fractal model of the environment proposed by [12]). The main
difficulty in that case lies in the continuous adaptation that is required
to retain the higher possible level of details on the areas of interest, for
example the ones where agents are situated.

3. Multilevel models with dynamic reification: we deal here with models that
produce higher-level agents by automatic “observation” of the simulation,
characterization of higher-level structures and reification of the structures
as objects. We can again distinguish between two distinct cases:

(a) the agents of the two levels do not directly interact with one another (e.g.
simulBogota) because the entities of the two levels are not in the same
modeling space. In some way, this case reminds the (1a) case, because
we also have an alternating execution of models of the micro and macro
levels: indeed, the simulator repeatedly computes the evolution of the
model at the micro level, then dynamically reifies the macro level, and
computes the evolution of the model at this macro level.

(b) the agents of the two levels can interact with one another and with the
agents of the other level: the entities of the two levels are in the same
modeling space (e.g. tumor growth model with the aggregated model,
RIVAGE [16], or [4] that develops hierarchical holonic approaches). This
approach however induces a greater complexity since it requires to be
able to detect the emergence of a structure and to characterize its dy-
namics and its interactions with the other agents, so as to be able to reify

From Biological to Urban Cells 633

it. Moreover, it is necessary to control that the conditions required for
the structure to be maintained hold, and if it is not the case, to dissolve
the structure as such and to transform it back into individual agents.

In the examples that we have presented, only constitutive hierarchies are mod-
eled. In these cases, levels can be either pre-specified beforehand or automatically
discovered. When modeling exclusive hierarchies however, the entities and lev-
els are usually specified beforehand. The modeling of exclusive hierarchies can
be addressed by the methodologies dealing with the design of organizations. In
that case, the modeling process focuses on the specification of roles, norms, func-
tions that define the agents’ behaviors and their interactions. Several method-
ologies have been developed to address organizations modeling, among which
are MOISE [8] or AGR [3]. As the effort is done on specification of the entities
and their interactions, we consider that these types of models can be included
into the second category.

With respect to the modeling of constitutive hierarchies, in our knowledge
no general methodology exists. However there exists methodologies that can be
used to tackle the design of models of some of the described categories. The cat-
egories 1 and 2 can be addressed by multimodeling methodologies. Some of these
methodologies are based on the DEVS approach [18]. The Virtual Laboratory
Environment (VLE) proposed by [15] implements that approach. VLE provides
modules for developing Petri nets, differential equations and spatialized agent
based models among others. It also provides the capability to integrate existing
models. The modular (every model is considered as an atomic and independent
module) approach of VLE and the light coupling between models (based on the
input/output events triggering) gives to VLE the flexibility needed to adapt to a
large number of multilevel problems where levels can be specified beforehand as
independent models. The design of constitutive hierarchies has also been tack-
led by simulation platforms such as SWARM

2 that proposes the possibility of
designing hierarchies as recursive groups of agents.

Nevertheless, these approaches are not well fitted to the case of automatic dis-
covery and analysis of levels (category 3). A significant effort in that direction is
currently being done in the development of the GAMA platform (related to the
3Worlds project [6]), which includes the use of statistical tools for the auto-
matic discovering and tracking of emergent structures in simulations of ecological
systems.

5 Conclusion

We have presented three agent-based models that can all, one way or another, be
qualified as “multilevel”. These models are but very different with one another,
by their application domains, the scales of the modeled entities, or the approaches
implemented to handle the complexity associated to the coexistence of different
levels of organization. We proposed an analytical framework, which still needs to

2 http://www.swarm.org

http://www.swarm.org

634 J. Gil-Quijano, T. Louail, and G. Hutzler

be completed and refined by integrating other works from the community, but
which already enables the classification of multilevel models, and against which
we positioned our models.

By so doing, we do not pretend proposing a step-by-step methodology for the
design of new multilevel models. Instead, our aim is on the one hand to show
that different modeling problematics can lead to very different solutions, and on
the other hand to help the modeler identify the difficulties peculiar to each of
the approaches. The identification of these difficulties also leads us to propose
some directions for the implementation of agent-based inter-level coupling. We
illustrated the pertinence of such couplings on the three presented examples, as
well as on other examples drawn from the literature.

When existing models have demonstrated their “quality”, it is both useful and
important to reuse them, which implies to be able to couple models at different
scales or based on heterogeneous formalisms (discrete/continuous for example).
To this end, on the one hand microscopic models can be encapsulated as higher-
level agents, on the other hand continuous models (e.g. differential equations)
can be used in the definition of global variables and dynamics that can feed
lower-level models.

Because lots of complex systems have a dynamical structure, it is also impor-
tant that the reification of entities of the system as agents could itself evolve
dynamically. To achieve this, it is necessary to enable the automatic detection
[13] and reification of emergent properties. Reciprocally, it is necessary to enable
the splitting of agents into underlying organizations, interactively. By adapting
the levels of description upon the system, the aim is not so much to gain in terms
of computational efficiency, as to gain in terms of expressiveness and intelligibil-
ity. By selecting the most pertinent levels of organization and description, the
aim is indeed to gain the deeper possible understanding of the mechanisms at
work in the modeled system.

References

1. Bertaud, A.: The spatial organization of cities: deliberate outcome or unforeseen
consequence (2004),
http://alain-bertaud.com/images/

AB The spatial organization of cities Version 3.pdf
2. Bura, S., Guerin-Pace, F., Mathian, H., Pumain, D., Sanders, L.: Multi-agents

system and the dynamics of a settlement system. Geog. Anal. 28(2), 161–178 (1996)
3. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: an Organi-

zational View of Multiagent Systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

4. Gaud, N., Galland, S., Gechter, F., Hilaire, V., Koukam, A.: Holonic multilevel
simulation of complex systems: Application to real-time pedestrians simulation in
virtual urban environment. Sim. Model. Pract. and Th. 16(10), 1659–1676 (2008)

5. Gibson, C.C., Ostrom, E., Ahn, T.K.: The concept of scale and the human dimen-
sions of global change: a survey. Ecological Economics 32(2), 217–239 (2000)

6. Gignoux, J., Davies, I., Hill, D.: 3worlds: a new platform for simulating ecological
systems. In: 1st Open Inter. Conf. on Modelling and Simulation, Clermont-Ferrand,
pp. 49–64 (2005)

http://alain-bertaud.com/images/AB_The_spatial_organization_of_cities_Version_3.pdf
http://alain-bertaud.com/images/AB_The_spatial_organization_of_cities_Version_3.pdf

From Biological to Urban Cells 635

7. Gil-Quijano, J., Piron, M., Drogoul, A.: Mechanisms of automated formation and
evolution of social-groups: A multi-agent system to model the intra-urban mo-
bilities of Bogotá city. In: Social Simulation: Technologies, Advances and New
Discoveries, ch. 12, pp. 151–168. Idea Group Inc. (2007)

8. Hubner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent sys-
tems using the moise model: programming issues at the system and agent levels.
International Journal of Agent-Oriented Software Engineering 1(3), 370–395 (2007)

9. Lesne, A.: Multi-scale approaches. Encyc. of Math. Phys. 3, 465–482 (2006)
10. Louail, T.: Can geometry explain socio-economical differences between US and

european cities. In: AB2S Workshop, Paris, ISC-PIF (November 2008)
11. Maquerlot, F., Galiacy, S., Malo, M., Guignabert, C., Lawrence, D.A., d’Ortho,

M.-P., Barlovatz-Meimon, G.: Dual role for plasminogen activator inhibitor type 1
as soluble and as matricellular regulator of epithelial alveolar cell wound healing.
Am. J. Pathol. 169, 1624–1632 (2006)

12. Marilleau, N., Cambier, C., Drogoul, A., Perrier, E., Chotte, J.L., Blanchart, E.:
Multiscale mas modelling to simulate the soil environment: Application to soil
ecology. Simulation Modelling Practice and Theory 16, 736–745 (2008)

13. Moncion, T., Hutzler, G., Amar, P.: Detection of emergent phenomena in multi-
agent systems. In: Proceedings of the Evry Spring School on Modelling Complex
Biological Systems in the Context of Genomics, pp. 45–49. EDP Sciences (2007)

14. Pumain, D.: Pour une théorie évolutive des villes. L’Espace Géographique 2, 119–
134 (1997)

15. Quesnel, G., Duboz, R., Ramat, E.: The Virtual Laboratory Environment An op-
erational framework for multi-modelling, simulation and analysis of complex dy-
namical systems. Sim. Model. Pract. and Th. 17(4), 641–653 (2009)

16. Servat, D., Perrier, E., Treuil, J.-P., Drogoul, A.: When Agents Emerge From
Agents: Introducing Multi-Scale Viewpoints In Multi-agent simulations. In: Sich-
man, J.S., Conte, R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp.
183–198. Springer, Heidelberg (1998)

17. Vo, D.-A., Drogoul, A., Zucker, J.-D.: A Modelling Language to Represent and
Specify Emerging Structures in Agent-Based Model. In: Desai, N., Liu, A.,
Winikoff, M. (eds.) PRIMA 2010. LNCS(LNAI), vol. 7057, pp. 212–227. Springer,
Heidelberg (2012)

18. Zeigler, B.P., Kim, T.G., Praehofer, H.: Theory of Modeling and Simulation: In-
tegrating Discrete Event and Continuous Complex Dynamic Systems, vol. 1. Aca-
demic Press (2000)

Multi-agent Based Simulation

of Traffic in Vietnam

The Duy Bui, Duc Hai Ngo, and Cong Tran

College of Technology
Vietnam National University, Hanoi

{duybt}@vnu.edu.vn

Abstract. There is always need for a good simulation for traffic in Viet-
nam in order to help transportation planners to improve the current
traffic system. Over recent days, there has been severe traffic congestion
in many streets of big cities in Vietnam such as Hanoi and HoChiMinh
city. There is an urgent need for measures to deal with increasing conges-
tions. The simulation of traffic in Vietnam is a hard problem due to two
main reasons including: (1) the traffic participants in Vietnam do not
give way according to the rule; (2) the participants do not consider that
when waiting for the vehicles in front, stopping in the intersection is ob-
structing the traffic flow. In this paper, we propose a multi-agent based
simulation system for traffic in Vietnam to help transportation planners
to find treatments to the problem of congestion of the traffic system in
Vietnam as well as to test new designs before committing resources to
actually building the transportation infrastructure. By allowing a user to
design different road systems as well as to create different simulation sce-
narios with different agent profiles, our system can simulate the dynamic
of traffic in Vietnam in different situations.

Keywords: Traffic simulation, Multi-agent based simulation.

1 Introduction

For all countries, transportation is one major part of infrastructure, which has a
direct impact on the economic and social development of the country. However,
building a good transportation system is always a difficult problem for every
country in the world. In developed countries, the development of transportation
system always requires huge expenses. In addition, transportation planners al-
ways have to have a strategic vision, which can identify a clear plan to develop
the transport system.

In Vietnam, transport infrastructure does not keep up with the social and
economic development, thus obstructing the modernisation and industrialisation
of the country. Currently in Vietnam, traffic is a sore issue for policy makers.
In cities such as Hanoi, the transport system is chaotic, due to narrow road,
increasing number of vehicles, and lack of consciousness to follow the traffic
rules from participants. The result is an increase in congestion, accidents and

N. Desai, A. Liu, and M. Winikoff (Eds.): PRIMA 2010, LNAI 7057, pp. 636–648, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multi-agent Based Simulation of Traffic in Vietnam 637

environmental pollution. So the search for solutions to develop transport systems
in Vietnam is still a challenging question.

In many countries, the traffic simulation system on a computer has long been
studied for finding and evaluating solutions to develop transport systems [1, 2,
4,7,8,9,10,11]. Before blocking a road, opening a new route or timing the green
light and red light in the real world, the developers can test the system in the
simulation system. Either for the purpose of modeling short-term traffic dynamic
on a single road section or for transportation planning describing behavioral
pattern in a network on a larger time scale, existing simulation systems often
assume that the behaviour of drivers involves accelerating, braking, and changing
lanes. This results in a range of methods from mathematical models, macroscopic
models to nanoscopic models [5].

The traffic in Vietnam, however, is difficult to model due to the more compli-
cated behaviour of drivers. As the drivers do not follow the lanes, the traffic sim-
ulation becomes closer to the crowd simulation. Therefore, mathematical models
or macroscopic models are difficult to obtain in this case. Instead, microscopic
models are more suitable. In this paper, we propose a microscopic approach of
using multi-agent based simulation for the traffic in Vietnam. The driving be-
haviour of an agent in our system is characterized by different parameters such
as planning time, maximum speed, and acceleration rate. By allowing a user to
design different road systems as well as to create different simulation scenarios
with different agent profiles, our system can simulate the dynamic of traffic in
Vietnam in different situations. The system can be used to find treatments to
the problem of congestion of the traffic system in Vietnam as well as to test
new designs before committing resources to actually build the transportation
infrastructure.

The rest of the paper is organized as follows. We provide background on traffic
simulation in Section 2. Section 3 describes the traffic in Vietnam and explains
why the simulation of traffic in Vietnam is a difficult problem. In Section 4, we
describe our simulation system for the traffic in Vietnam. Some experiments and
results are presented in Section 5.

2 Traffic Simulation

Traffic simulation can be used to: find treatments for a problem of a traffic
system; test new designs of transportation facilities before the commitment of
resources to construction; analyze safety of a system; or train traffic management
personnel [6].

A traffic simulation system takes a “scenario”, e.g. a road system or a highway
network configuration, and produces the simulation results in two formats: sta-
tistical and graphical. Quantitative descriptions of what is likely to happen can
be provided by the statistical results while the graphical and animated results
can provide the user with insights to understand why the system is behaving
this way.

Time is a basic independent variable in almost all traffic simulation models.
Continuous simulation models describe how the elements of a system change

638 T.D. Bui, D.H. Ngo, and C. Tran

state continuously over time in response to continuous stimuli. Discrete simula-
tion models represent real-world systems by asserting that their states change
abruptly at points in time. There are generally two types of discrete models: dis-
crete time (e.g. [9, 1]) and discrete event (e.g. [8]). With discrete time models,
activities which change the states of the system elements are computed within
each time interval. The discrete event models only perform the calculation based
on the happening of events.

Simulation models of traffic can also be categorized by level of detail: macro-
scopic [4, 8], microscopic [1, 9, 10, 11], mesoscopic [2, 7], and nanoscopic [3]. A
macroscopic model describes entities and their activities and interactions at a
low level of detail. For example, the traffic stream may be represented in some
aggregate manner such as a statistical histogram or by scalar values of flow rate,
density and speed. A microscopic model describes both the system entities and
their interactions at a high level of detail. A mesoscopic model generally rep-
resents most entities at a high level of detail but describes their activities and
interactions at a much lower level of detail than would a microscopic model.
With nanoscopic models, nanosimulation attempts to model drivers’ steering
behaviour and more detailed components of perception-reaction time in order to
depict the the human performance.

As a powerful tool of microscopic simulation, multi-agent based simulation
has been used for traffic domain, e.g. [10, 11]. Giving each vehicle three subsys-
tems, including Controller, Sensors and Driver model, Sukthankar et al. [10] have
simulated every detailed movement of vehicles. By calculating the movement of
each agent based on finite state machine, Wan and Tang [11] have simulated a
traffic flow which comprises of autonomous agents/vehicles. Both systems use
3D graphics to display the simulation.

3 The Traffic in Vietnam

There is always need for a good simulation for traffic in Vietnam in order to help
transportation planners to improve the current traffic system. Nevertheless, the
simulation of traffic in Vietnam is a hard problem. There are several reasons for
this. The first reason, and we think the major one, is that in general, the traffic
participants in Vietnam do not give way according to the rule. For example, the
rule is that when entering the roundabout, a vehicle must give way to all vehicles
coming from its left side (in Vietnam, they drive on the right). Another rule is
that when a vehicle steers to the left or to the right, it must check and give way
for all the vehicles coming straight. However, almost no one would follow this
rule. This results in very dynamic behavior of each traffic participant. Dependent
on each situation, the driver can make different decisions such as reduce speed,
stop, increase speed, steer to the left, or steer to the right.

The second reason is that the participants do not consider that when waiting
for the vehicles in front, stopping in the intersection is obstructing the traffic
flow. Therefore, the traffic participants will always try to fill in any space in
front of them, or even to the left or the right if there is obstruction in front. This
also makes the behavior of each traffic participant more dynamic.

Multi-agent Based Simulation of Traffic in Vietnam 639

The third reason is that the behaviour of traffic participants varies very much
from person to person. Depending on whether the participant is young, middle-
aged, or old, and whether it is a male or a female, the reaction to a certain
traffic situation will be very much different. For example, when there is another
vehicle in front, an old person may slow down or even stop his/her vehicle while
a male young person might steer his vehicle to the left or to the right for another
itinerary.

For those reasons, the simulation of traffic in Vietnam becomes a problem
with many different parameters. Therefore, finding a mathematic model for this
problem is very difficult. In this case, agent based simulation seems to be a better
solution.

4 Simulation of Traffic in Vietnam

In this section, we describe our agent based simulation system for the traffic in
Vietnam. The system comprises of two main components:

- the road system and permitted travel directions in the road system,
- the agents representing the drivers of motorbikes and cars together with their
vehicles in the road system.

Probably, the most important part of the system is how agents create and execute
their plan to travel in the system. This will be discussed in details together with
how different profiles of agents will affect how a plan is created.

4.1 The Road System

The road system is built up from multiple road areas.

Area
Roads systems are built from the arrangement of basic components, which are
called Area. Each Area has entries and exits which are called Gates. Each Gate
is simply described by two points. There is a road line between an entry and an
exit. This road line may be a road segment (Road) or a sequence of road seg-
ments. Figure 1 describes the structure of an area. In each Area, a road segment
contains information about pavements, and permitted travel directions, which
an agent will use to calculate its plan.

Connecting areas together to build a road system
Multiple areas can be connected together to form a road system. Two areas can
be connected together if there is one entry of an area which fits (in position and
size) an exit of the other. Figure 2 shows the connection of such two areas. In
this figure, the exit of Area1 is connected to the entry of Area2. Area1 has one
entry and one exit, Area2 has one entry and two exits. Thus, there are total one
entry, two exits and two road lines in this road system.

With the structure of road areas, we can create various kinds of road systems
with arbitrary shape. Moreover, dividing a road system into areas also helps to
increase the performance of the calculation for the plan of agents.

640 T.D. Bui, D.H. Ngo, and C. Tran

Entry

Exit

Road

Area

Fig. 1. Road Area

Entry

Area1

Area2

Exit

Exit

Fig. 2. Connection road areas

4.2 Agents Representing Traffic Participants

In a simulation system using an agent-based model, one of the important com-
ponents needing to identify is agents. In our system, the traffic vehicles contain
car and motorbikes, so each agent represents a car driver or a motorbike driver.

An agent’s behaviour
Each agent representing a traffic participant needs to perform some actions to
control his/her vehicle’s movement. The actions of the agent must be both pro-
active and reactive, which means the actions will bring the agent to the target
while trying to avoid obstructions (e.g. other agents and pavements). In our
simulation system, we consider two types of actions:

Multi-agent Based Simulation of Traffic in Vietnam 641

- speed adjustment (including accelerating and braking),
- steering, which involves not only changing lanes but moving to any adjacent
available space .

Agent profile
Each agent makes a decision for a certain move upon the current situation.
However, different agents may make different decisions in a similar situation. In
our simulation system, the behaviour of agent is affected by several attributes,
which are:

- Maximum speed,
- Safe speed,
- Acceleration rate,
- Plan time,
- Maximum steering angle.

These attributes are used to calculate the plan for agents upon a certain traffic
situation, which will be described later.

We group agents into several groups which we assume that the attributes of
agents in the same group are similar. The groups are formed based on age and
render. For each group, a group profile contains the values of attributes for that
group.

4.3 Agent’s Planning

In this section, we will describe an agent’s planning algorithm to find travelling
route in a certain traffic situation. We also describe how an agent’s attributes
affect the way the agent moves from a position to the target in a road system.

The control cycle for agents in our system is as follows:

while the agent has not reached the target
calculating a plan for a given amount of time ahead
while the plan is still feasible and the plan is not over

perform the next action in the plan.

The calculation of a plan for an agent contains three steps:

(1) Determining optimal route,
(2) Detecting possible collisions on optimal route,
(3) If there are collisions, determining alternative route to avoid collisions.

Determining the optimal route
Optimal route is the route that the agent should follow to reach the target in as
fast as possible providing that there is not any obstruction on the route. In our
simulation system, a route is sampled by a sequence of points. From a certain
position, the optimal route of the agent to reach its target is determined by a
greedy algorithm as follows.

642 T.D. Bui, D.H. Ngo, and C. Tran

Fig. 3. Determining optimal route

Denoting Δl the distance between two sampling continuous points, v the cur-
rent speed of an agent. The duration that the agent move from one sampling
point to the next sampling point is:

Δt = Δl ÷ v

Because an agent can only plan for a certain amount of time ahead, the
number of sampling points on the planned ideal route is:

n = plan time÷Δt
= plan time ∗Δl ÷ v

From the starting point, supposing that the agent has three choices: go ahead,
steer to the left and steer to the right, which results in three points to select
for the optimal route (see Figure 3). The point to be selected is the one that is
nearest to the target.

Detecting possible collisions on the optimal route
After determining the optimal route, the agent needs to check whether there
might be collisions when following the optimal route. Supposing that the agent
can observe and get information about position, moving direction and current
speed of all other agents within a certain range, this information can be used to
calculate if there might be collisions on the optimal route. Figure 4 illustrates
this collision detecting process. In this figure, an agent A can find that at the
first and the second position on optimal route, there will not be any collision
happening. However, at the fourth position, agent A will be too close to agent B
and it is considered that a collision will happen at this position. In this situation,
agent A has two choices: to reduce speed or to steer to avoid collision. If agent A’s

Multi-agent Based Simulation of Traffic in Vietnam 643

B

A

t = 4t !

B

A

t = 2t t = t

B

A

Fig. 4. Detecting possible collisions

B

A

t = 5t

B

A

t = 3t

B

A

t = t

Fig. 5. Determining alternative route to avoid collisions

current speed is higher than its safe speed limit, it will reduce speed. Otherwise,
it will decide to steer.

Determining alternative route to avoid collisions
When there might be collisions in the planned route, an alternative route is
calculated so that the alternative route is in parallel with the optimal route.
Figure 5 illustrates an example of determining an alternative route. In this fig-
ure, if agent A uses the optimal route, it might collide with agent B at the fifth
sampling point. Alternatively, a route to avoid the collision while being close to
the optimal as much as possible is the one that the agent steers left on the first
sampling point.

5 Experiments and Result

We have built our own agent based simulation system from the design mentioned
above (see Figure 6). The system runs in two modes: design mode and simulation
mode. In design mode, the user may design various road systems from some road
templates as well as setup experiments by varying attributes of different agent
profiles and number of agents for each agent profile. In the simulation mode, the
system provides both visual and statistical information for a simulation scenario.

We have performed two experiments to illustrate our simulation system. In
the first experiment, the road system is set up similarly with a real roundabout

644 T.D. Bui, D.H. Ngo, and C. Tran

Fig. 6. A look at our simulation system

Table 1. A sample of the value of different attributes of different group profiles

Young Middle-aged Old

Male

Maximum speed 50 km/h 45 km/h 40 km/h

Safe speed 35 km/h 31 km/h 25 km/h

Acceleration 18 km/h/s 16km/h/s 13 km/h/s

Plan time 650 ms 800 ms 800 ms

Female

Maximum speed 45 km/h 43 km/h 37 km/h

Safe speed 32 km/h 28 km/h 22 km/h

Acceleration 15 km/h/s 13 km/h/s 10 km/h/s

Plan time 650 ms 800 ms 800 ms

in Hanoi (the roundabout among Tran Duy Hung and, Pham Hung, Khuat Duy
Tien, and Lang-Hoa Lac road), which can be seen in Figure 7. We have six
different agent profiles (Young male, Young female, Middle-aged male, Middle-
aged female, Old male, Old female) in this experiment with the value of attributes
for each profile described in Table 1. With the number of motorbikes of 180 and
number of cars of 30 equally divided to six profiles, the simulation shows that all
vehicles can go through the roundabout quick and conveniently (see Figure 8).
The average time to pass the roundabout is about 19 seconds, which is quite
similar to what we observed from real situation. If we modify so that there are
more young people than old people, the average time to pass the roundabout
is shorter, which is reasonable. When we increase the number of motorbikes
to 300 and the number of cars to 120, congestion happens after some time,
which is shown in Figure 9. This is what happens everyday in Vietnam. Without
policemen, the congestion might last for several hours.

Multi-agent Based Simulation of Traffic in Vietnam 645

Fig. 7. A road system setup for experiment

Fig. 8. A situation where vehicles can go through the roundabout quick and
conveniently

646 T.D. Bui, D.H. Ngo, and C. Tran

Fig. 9. A situation where traffic congestion happens

Fig. 10. With the same intersection, experiments show that the solutions of blocking
one direction to make detour (the right figure) is effective in solving traffic congestion
in Vietnam

Multi-agent Based Simulation of Traffic in Vietnam 647

We have also performed an experiment to check how effective the solution of
blocking one direction to make detour for intersection in Vietnam is. Figure 10
shows the original intersection on the left, and the modified one on the right.
With the original one, congestion might happen already when the number of
motorbikes is 60 and the number of cars is 30. With the modified one, with 120
motorbikes and 60 cars, vehicles can still go through the intersection although
a little bit slow. This shows that blocking one direction in intersection, which
they have done recently in Vietnam, is an effective solution.

6 Conclusion

A traffic simulation system can help transportation planners to find treatments
to many traffic problems such as congestions as well as to save money to test new
designs before actually build the transportation infrastructure. The multi-agent
based simulation system we proposed in this paper is dedicated to the chaotic
traffic in Vietnam which has many different characteristics to the traffic in other
countries. Our system can simulate the dynamic of traffic in Vietnam in different
situations. With our system, the user can carry out different experiments with
different self-designed road systems as well as with different numbers of agents
of different profiles. Nevertheless, like other simulation systems, the simulation
cannot capture all the dynamic characteristics of the real traffic system, espe-
cially the traffic system in Vietnam. In the future, we intend to perform intensive
real data collection in order to verify and validate our simulation model.

References

1. Barcelo, J., Ferrer, J.L.: A simulation study for an area of dublin using the aim-
sun2 traffic simulator. Technical report, Department of Statistics and Operation
Research, Universitat Politecnica de Catalunya, Spain (1995)

2. de Palma, A., Marchal, F., Nesterov, Y.: Metropolis: A modular system for dynamic
traffic simulation (1996), http://www.ceic.com/metro/

3. Gettman, D., Head, L.: Surrogate safety measures from traffic simulation models.
In: The 82nd TRB Annual Meeting, TRB, National Research Council, Washington
(2003)

4. Haj-Salem, H., Elloumi, N., Mammar, S., Chrisoulakis, M.P.J., Middelham, F.:
Metacor: A macroscopic modelling tool for urban corridor. In: Proceedings of
the First World Congress on Applications of Transport Telematics and Intelligent
Transportation Systems (1994)

5. Kesting, A., Treiber, M., Helbing, D.: Agents for traffic simulation. In: Uhrmacher,
A., Weyns, D. (eds.) Multi-Agent Systems: Simulation and Applications. CRC
(2009)

6. Lieberman, E., Rathi, A.K.: Traffic simulation. In: Gartner, H., Messer, C.J., Rathi,
A.K. (eds.) Revised Monograph on Traffic Flow Theory: A State-of-the-Art Report.
Turner-Fairbank Highway Research Center, Federal Highway Administration, U.S.
Dept. of Transportation (2005)

http://www.ceic.com/metro/

648 T.D. Bui, D.H. Ngo, and C. Tran

7. Mahmassani, H.S., Peeta, S.: Network performace under system optimal and user
equilibrium dynamic assignments: Implications for advances traffic information sys-
tems. Transportation Research Record 1408, 93 (1995)

8. Payne, H.J.: Freflo: A macroscopic simulation model of freeway traffic: Version 1 -
user’s guide. Technical report, ESSOR Report (1978)

9. Sibley, S.W.: Netsim for microcomputers - simulates microscopic traffic flow on
urban streets. Public Roads 49 (1985)

10. Sukthankar, R., Pomerleau, D., Thorpe, C.: Shiva: Simulated highways for intelli-
gent vehicle algorithms. In: Proceedings of Intelligent Vehicles 1995 (1995)

11. Wan, T., Tang, W.: An intelligent vehicle model for 3d visual traffic simulation.
In: International Conference on Visual Information Engineering, VIE 2003 (2003)

Author Index

Abawajy, Jemal 137
Adam, Carole 604
Aldewereld, Huib 371
Al-Jaljouli, Raja 137
Amouroux, Edouard 242, 575
Armetta, Frédéric 588
Auger, Pierre 413

Balsdon, Quintin J. 340
Billiau, Graham 11, 551
Boucher, Alain 428
Boyle, Justin 535
Bui, The Duy 636

Caillou, Philippe 398
Canal, Richard 588, 604
Chang, Chee Fon 11, 551
Cheah, WaiShiang 459
Chu, Thanh-Quang 428
Cleaver, Timothy 74
Collantes, Luis 487

Dam, Hoa Khanh 387, 499
Daroca, David 487
Desai, Nirmit 1
Dignum, Frank 1, 371
Doherty, Patrick 42, 288
Drogoul, Alexis 212, 242, 413, 428
Dunn, Adam 511

Ehlers, Elize M. 340
El Fallah Seghrouchni, Amal 259

Fukuda, Kensuke 90
Furuhata, Masabumi 320

Gaudou, Benoit 588, 604
Ghose, Aditya 1, 11, 387, 499, 551
Gil-Quijano, Javier 620
Godfrey, W. Wilfred 336
Graves, Jacob 27
Grove, Frank 152, 394

Hansen, David 74, 535
Hassas, Salima 588

Hattori, Hiromitsu 228
Hegi-Johnson, Fiona 561
Heintz, Fredrik 42, 288
Hiel, Marcel 371
Hindriks, Koen V. 181, 196
Hirotsu, Toshio 90
Ho, Tuong-Vinh 212, 604
Honiden, Shinichi 443
Hsu, Jane Yung-jen 475
Huang, Chi-Chia 475
Hutzler, Guillaume 620

Iwasaki, Atsushi 166

Jih, Wan-rong 475
Jonker, Catholijn M. 181, 196

Khanna, Sankalp 74, 535
Koch, Fernando 371
Kurihara, Satoshi 90

Landén, David 42, 288
Le, Thao P. 121
Le, Van Minh 604
Lee, Shih-chiang 475
Lin, Gu-yuan 475
Lopez, Beatriz 487
Louail, Thomas 620
Lozano, Sara 487

Mailler, Roger 27, 58
Meléndez, Joaquim 487
Meyer, John-Jules 304
Miller, Alexis Andrew 551, 561
Mistry, Oly 152, 270

Nair, Shivashankar B. 336
Nakagawa, Hiroyuki 443
Nakajima, Yuu 228
Ngo, Duc Hai 636
Nguyen, Nga Thi Thuy 259
Nguyen, Ngoc Doanh 413
Nguyen Vu, Quang-Anh 588
Norman, Timothy J. 121

Ohsuga, Akihiko 443
Okimoto, Tenda 166

650 Author Index

Olaru, Andrei 259
Olteanu-Raimond, Ana-Maria 575

Padmanabhuni, Srinivas 1
Pla, Albert 487
Purvis, Martin 105
Purvis, Maryam 105

Salomone, Diego 259
Sattar, Abdul 74, 535
Savarimuthu, Bastin Tony Roy 105
Savarimuthu, Sharmila 105
Sen, Onkur 355
Sen, Sandip 58, 152, 270, 355, 394
Sindlar, Michal 304
Smith, Melanie 58
Solomonides, Tony 523
Srivastava, Biplav 1
Stantic, Bela 74, 535

Sterling, Leon 459
Sugawara, Toshiharu 90

Taillandier, Patrick 242, 413, 575, 604
Taveter, Kuldar 459
Tran, Cong 636

van Riemsdijk, M. Birna 196
Vasconcelos, Wamberto 121
Visser, Wietske 181
Vo, Duc-An 212, 242, 575

Wobcke, Wayne 1, 511

Yamane, Shohei 228
Yokoo, Makoto 166
Yoshioka, Nobukazu 443

Zucker, Jean-Daniel 212, 428

	Title page
	Preface
	Organization
	Table of Contents
	Panel Discussion
	What Can Agent-Based Computing Offer Service-Oriented Architectures, and Vice Versa?
	Introduction: Wayne Wobcke (University of New South Wales)
	Frank Dignum (Utrecht University)
	ALIVE: The Role of Agents in Adaptive Service-Oriented Architectures

	Biplav Srivastava (IBM Research – India)
	The Problem Context
	The Case for Service-Oriented Architecture and Issues Learnt in the Field
	The Case for Agent-Oriented Computing in SOA

	Srinivas Padmanabhuni (Infosys Technologies)
	Agent Orientation: Complementing Process and Service Orientation for Ultimate Flexibility

	Nirmit Desai (IBM Research – India)
	Services Industry is the Application Area ``Agents'' Have Been Waiting For!

	Aditya Ghose (University of Wollongong)
	An Agent-Based Response to the Climate Change Challenge

	References

	Conference Papers
	Agent Communication
	SBDO: A New Robust Approach to Dynamic Distributed Constraint Optimisation
	Introduction
	Related Work

	Support Based Distributed Optimisation
	Communication
	Dynamic Problems
	Fault Tolerance
	Algorithm
	Example

	Results
	Dynamic Problems
	Fault Tolerance
	Static Problems
	Scalability

	Conclusion
	References

	Solving Distributed CSPs Using Dynamic, Partial Centralization without Explicit Constraint Passing
	Introduction
	Distributed Constraint Satisfaction
	The Protocols
	Asynchronous Weak Commitment (AWC)
	Asynchronous Partial Overlay (APO)
	Nogood-APO
	Example Execution
	Soundness and Completeness

	Empirical Evaluation
	Experimental Setup
	Results

	Conclusions and Future Work
	References

	A Distributed Task Specification Language for Mixed-Initiative Delegation
	Introduction
	Semantic Perspective
	Pragmatic Perspective
	An Agent-Based UAS Architecture

	Task Specification Trees
	TST Syntax
	TST Semantics
	Example

	Related Work
	Conclusions
	References

	Adaptive and Non-adaptive Distribution Functions for DSA
	Introduction
	Distributed Constraint Satisfaction
	Related Work
	Distributed Stochastic Algorithm
	Distributed Breakout Algorithm
	Distributed Probabilistic Protocol

	Non-adaptive DSA
	Distribution Functions
	Example

	Adaptive DSA
	Algorithm
	Update Methods

	Evaluation
	Total Messages Received
	Total Conflicts
	Further Analysis and Experimentation

	Conclusion
	References

	Agent Cooperation and Negotiation
	Multiagent Based Scheduling of Elective Surgery
	Introduction
	Background
	Elective Surgery Scheduling - A Case Study
	Current State-of-the-Art
	Multiagent Systems and Distributed Optimization

	ASES - an Automated Scheduler for Elective Surgery
	Domain Mapping
	Proposed Architecture
	The DCOP Engine
	Implementation

	Evaluation
	Conclusion and Future Work
	References

	Effect of Alternative Distributed Task Allocation Strategy Based on Local Observations in Contract Net Protocol
	Introduction
	Problem Description
	Model of Agents and Tasks
	Task Allocations for LSMAS
	Performance Measures
	Simulation Environment

	Usage of Probability in the Award Phase
	Effect of Probabilistic Award
	`Flexible' Probabilistic Award

	Adaptive Strategy Based on Bid Statistics
	Adaptively Probabilistic Awardee Selection
	Performance for Different Task Structures and Phantom Task
	Analysis of Dropped and Wasting Tasks
	Effect of Maximum Queue Length

	Discussion
	Related Works
	Conclusion
	References

	Gossip-Based Self-organising Open Agent Societies
	Introduction
	Modeling Social Dilemma between Sharing and Non-sharing
	Gossip
	Ostracism

	Experimental Setup
	Agent Attributes
	Experimental Parameters
	Publishing Gossip
	Using Gossip
	Leaving a Group
	Choosing a New Group to Join
	Joining Another Group
	Groups Splitting and Dismantling

	Results
	Experiment 1 – Self-organization in an Open Society
	Experiment 2 – Arrival Rate Greater Than Departure Rate
	Experiment 3 – Arrival Rate Equal to Departure Rate
	Experiment 4 – Varying Life Spans of Agents

	Related Work and Comparison
	Conclusion
	References

	Adaptive Negotiation in Managing Wireless Sensor Networks
	Introduction
	Sensor-Task Allocation Problem
	Agent-Based Sensor-Task Allocation
	Negotiation for (Re-)Allocation of Resources
	Evaluation
	Discussion and Related Work
	Conclusion
	References

	Negotiation Strategy for Mobile Agent-Based e-Negotiation
	Introduction
	Background
	Problem Overview
	Related Work

	System Architecture
	Negotiation Strategy
	Analysis of Strategy
	Conclusion
	References

	Adaptive Choice of Behavior and Protocol Parameters
	Introduction
	Related Work
	DomainandInteractionModel
	Domain Assumptions
	Trust Considerations in Protocol Selection
	Trust-Based Protocol Selection Framework

	Strategizing over Trust
	Agents
	Experimental Results
	One-on-One Interaction Results
	Group Interaction
	Homogeneous Populations

	Conclusion
	References

	Agent Reasoning
	Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks
	Introduction
	Distributed Constraint Satisfaction Problem
	Scale-Free Network
	Influence of Variable-Ordering Heuristics in Scale-Free Networks
	A Variable-Ordering Heuristic for Scale-Free Networks
	Heuristic
	Evaluations

	Discussion
	Conclusions
	References

	Multi-attribute Preference Logic
	Introduction
	Multi-attribute Preference Logic
	Syntax and Semantics
	Clusters

	Preference Orderings
	MPL Defines Ranked Knowledge Bases
	Conclusion
	References

	An Empirical Study of Patterns in Agent Programs
	Introduction
	The Agent Programming Language GOAL
	Experimental Setup
	Identification of Patterns
	Knowledge and Belief Base
	Goal Base
	Rules
	Program Section
	Modules
	Actions Specification
	Communication
	Coordination and MAS Organization
	Human Factors and Software Engineering

	Discussion
	Conclusion
	References

	Agent-Based Simulation
	A Modelling Language to Represent and Specify Emerging Structures in Agent-Based Model
	Introduction
	Emerging Structures in Some Toy Agent-Based Models
	“Schelling” Model of Segregation
	“Boids” Model
	“Collective Sort” Model
	“Ants” Model

	Representing Emerging Structures
	Representing Emergent Agents in GAMA
	Experimentations
	Conclusion and Future Work
	References

	Multi-model Based Simulation Platform for Urban Traffic Simulation
	Introduction
	Architecture
	Implementation
	Simulator for Global Traffic
	Simulator for Local Traffic
	Simulation Controller
	Shared Environment

	Performance Analyses
	Effect of the Number of Agents
	Settings
	Execution
	Results

	Conclusion
	References

	GAMA: A Simulation Platform That Integrates Geographical Information Data, Agent-Based Modeling and Multi-scale Control
	Introduction
	Integrating Geographical Vector Data in Simulation
	Why Using Geographical Vector Data in Models?
	Use of Geographical Data in Models
	Geographical Vector Data in Existing Simulation Platforms
	Geographical Vector Data in GAMA

	Multi-scale Modeling
	Context
	Multi-scale Modeling in GAMA

	Coupling Geographical Vector Data and Multi-scale Modeling
	Discussion
	Conclusion
	References

	Mobile and Semantic Agents
	Ao Dai: Agent Oriented Design for Ambient Intelligence
	Mobile Multi-Agent Systems
	Context-Awareness
	Ao Dai Project
	Ao Dai Project Scenario
	Implementation
	Programming in CLAIM
	Ao Dai Agents
	Context Representation in Ao Dai
	Interaction Protocol

	Conclusion
	References

	Probabilistic Approaches to Tag Recommendation in a Social Bookmarking Network
	Introduction
	Related Work
	Tag Recommendation Approaches
	Del.ici.ous Dataset
	Hypothesis: Correlating Tag and Document Similarity
	Content-Based Recommendation
	Collaborative Recommendation
	Evaluation Metrics

	Experimental Results
	Content-Based Recommendation
	Collaborative Recommendation
	Comparison of Proposed Recommendation Approaches

	Conclusion
	References

	Early Innovation Papers
	Agent Cooperation and Negotiation
	Complex Task Allocation in Mixed-Initiative Delegation: A UAV Case Study
	Introduction
	The Delegation Framework
	Task Specification Trees

	Allocating TST Specified Tasks
	Multi-Robot Task Allocation
	Classifying Multi-Robot Task Allocation
	Classifying Allocating TST Specified Tasks

	An Algorithm for Allocating Complex Tasks Specified by TST's
	Node Auctions
	Distributed Backjumping

	A Collaborative UAV Case Study
	Empirical Evaluation

	Related Work
	Conclusions
	References

	Affordance-Based Intension Recognition in Virtual Spatial Environments
	Introduction
	Environment Model
	Agents and Objects
	Regions
	Weighted Affordance

	Position-Based Prediction
	Perception Radius
	Distance and Affordance
	Example
	Reflection

	Motion-Based Prediction
	Modeling Dynamics
	Displacement: Change of Position
	Incorporating Motion
	Example
	Reflection

	Intention Recognition
	Simplifying Plans
	Key Sequences
	Explaining and Predicting Actions
	Example
	Evaluation and Reflection

	Related Work
	Conclusion
	References

	A Robust Multi-unit Ascending-Price Auction with Complementarities against Strategic Manipulation
	Introduction
	The Model
	Problem Specification
	Demand Reduction and Uniform-Price Auction
	Over Declaration and Ausubel Auction
	Acending-Price Option Allocation Protocol

	Simultaneous Ascending-Price Auction with Option Proposal
	Overview of SAA-OP
	Announcement of Opening Round
	Submission of Purchase Plans and Calculation of Residual Supplies
	Exact Fulfillments
	Additional Winners
	Proposal of Options
	Exercise of Option
	Procedures for the Successive Round
	The Output of the Auction

	Theoretical Results
	Numerical Analysis
	Simulation
	Conclusions and Future Work
	References

	Mobile Agent Cloning for Servicing Networked Robots
	Introduction
	Mobile Agent Based Multi-robot System
	Cloning of Agents
	Clonal Model

	Conclusion
	References

	Agent Reasoning
	Towards Distributing Agent Intelligence: Using Decentralized Software Services for the Creation of Complex Problem Modelling
	Introduction
	Model
	Distributed Intelligence Components
	The Component Pool

	Implementation
	Creating Generic Behaviours
	The Component Pool: DIC Hosting
	Agent-Pool Interaction

	Challenges
	Conclusion
	References

	Averting the Tragedy of the Commons by Adapting Aspiration Levels
	Introduction
	Related Work
	Social Dilemmas
	Tragedy of the Commons
	Computational Approaches

	Problem Formulation
	Adjusting Aspiration Levels and Loads
	Eager Agents
	Prudent Agents

	Convergence Model
	Experimental Framework
	Performance Metrics
	Base Case Scenario
	Parameters for Other Scenarios
	Asynchronous Decisions

	Results and Discussion
	Eager Agents
	Prudent Agents

	Conclusions and Future Work
	References

	Agent Technologies for Service Computing
	The Role of Agents in Adaptive Service Oriented Architectures
	Introduction
	Motivation
	Problem Analysis
	Solution Analysis

	The Role of Agents
	Design and Implementation
	Use Case

	Conclusion
	References

	Agent-Based Development for Business Processes
	Introduction
	BPMN to Prometheus Mapping
	Discussion
	Conclusions and Future Work
	References

	TwitAg: A Multi-agent Feature Selection and Recommendation Framework for Twitter
	Introduction
	Related Work
	Data Gathering
	Unique Feature Selection
	Classification Experiment
	Conclusion and Future Work
	References

	Agent-Based Simulation
	Automated Multi-agent Simulation Generation and Validation
	Introduction
	Related Work
	Model
	Presentation
	Notation
	Chi-Square Test
	Model
	Heuristics
	Discussion

	Application Example: The French Academic Labor Market
	Results
	Global Overview
	Parameters Influence
	Variables Classes Influence
	Heuristic Efficiency

	Conclusion
	References

	Inferring Equation-Based Models from Agent-Based Models: A Case Study in Competition Dynamics
	Introduction
	Case Study: Competition Dynamics
	Agent-Based Model
	Overview
	Design Concept
	Details

	Methodology
	First Step: Simplification and Abstraction Environment and Translate It into Equations
	Second Step: Analysis and Abstract Local Behaviors of Agents and Translate Them into Equations

	Instantiation on the Case Study
	Simplification and Abstraction Environment and Translate It into Equations
	Analysis and Abstraction Local Behaviors of Individuals and Translate Them into Equations

	Equation-Based Model
	Complete Model
	Fast Equilibrium
	Aggregated Model

	Conclusion and Perspectives
	References

	Towards a Methodology for the Participatory Design of Agent-Based Models
	Introduction
	Case-Study: A Model of Emergency Management
	Designing User-Interface
	Experimental Protocol
	Organization Sessions
	Designing Scenarios
	Designing Questionnaires and Evaluation

	Experiments
	Results
	Conclusions and Perspectives
	References

	Agent-Based System Development
	A Framework for Validating Task Assignment in Multiagent Systems Using Requirements Importance
	Introduction
	Background
	MAS Architectural Design
	MAS Architecture Model Construction Based on KAOS

	RE-IMPULSE
	Importance Metrics and Evaluation Process
	MAS Model Construction Based on KAOS
	Importance Propagation
	Model Refinement

	Evaluation
	Tracking System
	Exp1: Interaction Weight
	Exp2: Importance Analysis
	Exp3: Role Identification

	Discussion
	Related Work
	Conclusions
	References

	Task Knowledge Patterns Reuse in Multi-Agent Systems Development
	Introduction
	Knowledge Patterns for Agent Oriented Software Development
	Task Knowledge Pattern
	Example Description of Task Knowledge Patterns

	Case Study
	Task Knowledge Patterns Reuse in Developing Adviser Finder MAS

	Conclusion and Discussion
	References

	ServAgents Workshop
	Energy-Aware Agents for Detecting Nonessential Appliances
	Introduction
	Related Work
	Nonessential Appliance Detection
	Problem Formulation

	Activity-Appliance Model
	Model Formulation
	Active Activity Scoring
	Goal Finding

	Energy-Aware Agents
	Appliance Monitoring Agent
	Nonessential Appliance Detection Agent
	Energy-Aware Service Agent

	Experimental Results
	Appliance Monitoring
	Nonessential Appliance Detection

	Conclusion
	References

	Medical Equipment Maintenance Support with Service-Oriented Multi-agent Services
	Introduction
	Architecture for Medical Equipment Maintenance
	Services
	Introducing Agents
	Using Ontologies

	Use of the Architecture
	Starting Up a Workflow Instance Monitoring
	Reactive Intervention
	Predictive Workflow Maintenance

	Related Work
	Conclusions
	References

	An Agent-Oriented Approach to Service Analysis and Design
	Introduction
	Agent-Oriented Software Engineering
	The Case for AOSE to Service Analysis and Design
	Service Identification
	Service Interactions
	Business Process Modelling
	Value Modelling

	Conclusions and Future Work
	References

	IAHC Workshop
	Agent-Based Modelling for Risk Assessment of Routine Clinical Processes
	Introduction
	Approaches to Risk Analysis in Healthcare
	Agent-Based Risk Assessment
	Example
	Conclusion
	References

	Healthgrids, the SHARE Project, Medical Data and Agents: Retrospect and Prospect
	Introduction
	MammoGrid and Other First-Generation Projects
	SHARE: From Vision to Road Map
	Regulation and Automation of Compliance
	Management of Medical Records and Agents
	References

	An Intelligent Approach to Surgery Scheduling
	Introduction
	Background
	Elective Surgery Scheduling - A Case Study
	MAS and DCOP to the Rescue
	Current State of the Art

	The Solution
	Proposed Architecture
	DCDCOP : Driving the DCOP Engine
	ASES - An Automated Scheduler for Elective Surgery
	Prediction Based Theater Allocation

	Conclusion and Future Work
	References

	Using Distributed Agents for Patient Scheduling
	Introduction
	Encoding
	Solving
	Example
	Conclusion
	References

	Software Agents in Clinical Workflow, Clinical Guidelines and Clinical Trial Medicine
	Introduction
	Structure of a Clinical Trial
	The Clinical Guideline
	Software Agents in Trial Medicine
	Software agents in Clinical Medicine
	Obstacles to the Use of Software Agents in Trial and Clinical Medicine
	Problems with Software
	Problems with Software Use
	Lack of a Communication Protocol between the Clinical and Trial Scenarios

	Clinical Knowledge Markup Language
	Conclusion
	References

	PRACSYS Workshop
	Using Belief Theory to Formalize the Agent Behavior: Application to the Simulation of Avian Flu Propagation
	Introduction
	Context
	Formalisms to Represent the Agent Behavior
	Agent Behavior as a Multi-criteria Decision Making Problem

	Use of the Belief Theory to Design the Agent Behavior
	Multi-criteria Decision Making Using the Belief Theory
	Application of the Belief Theory to Define the Agent Behavior

	Application: Model Dedicated to the Avian Flu Propagation
	Application Context
	Flock Behavior Design

	Conclusion
	References

	A Cluster-Based Approach for Disturbed, Spatialized, Distributed Information Gathering Systems
	Introduction
	Social / Spatial organization - Logical / Physical layer
	Social Organization
	Spatial Organization

	Cluster Dynamics
	Creation of the Cluster
	Merging Clusters
	Exclusion of an Element from a Cluster

	Cluster TrustGraph
	Dealing with the Dynamics in Cluster Topology
	Spatial Organization (Cluster Spatial Organization):
	Social Organization (Cluster TrustGraph):
	Intrinsic Trust Level (Cluster Intrinsic TrustGraph):

	Cluster General Properties
	Maintaining Connectivity
	Reliable Communication
	Role-Based Cooperation

	Conclusion and Future Works
	References

	Simulation of the Emotion Dynamics in a Group of Agents in an Evacuation Situation
	Introduction
	State of the Art
	Simulation of Pedestrian Evacuation
	Theories of Emotions
	Existing Models of Emotional Agent

	Proposed Model of Emotional Agent
	A Two-Dimensional Model of Emotion for Emergency Evacuation Simulations
	Architecture of the Emotional Agent
	Model of Emotion Propagation

	Implementation of the Emotional Agent
	Description of the Application Case: Pedestrian Evacuation in a Burning Shopping Center
	Description of the Agents
	Description of the Emotion (The Fear)

	Experimentation
	Model without Emotion
	Model with Emotions but without Propagation
	Model with Emotions and Propagation
	Discussion

	Conclusion
	References

	From Biological to Urban Cells: Lessons from Three Multilevel Agent-Based Models
	Introduction
	Multiscale or Multilevel ?
	The Models
	Cancer Cells Migration
	SimulBogota : Households and Housings in Bogota City
	Simpop3 : Exploring Urban Dynamics at Three Geographical Scales Simultaneously

	Towards Multilevel Multi-agent Organizations
	Conclusion
	References

	Multi-agent Based Simulation of Traffic in Vietnam
	Introduction
	Traffic Simulation
	The Traffic in Vietnam
	Simulation of Traffic in Vietnam
	The Road System
	Agents Representing Traffic Participants
	Agent's Planning

	Experiments and Result
	Conclusion

	Author Index

