

Lecture Notes in Computer Science 7034
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marc van Kreveld Bettina Speckmann (Eds.)

Graph Drawing
19th International Symposium, GD 2011
Eindhoven, The Netherlands, September 21-23, 2011
Revised Selected Papers

13

Volume Editors

Marc van Kreveld
Utrecht University, Department of Information and Computing Sciences
P.O. Box 80 089, 3508 TB Utrecht, The Netherlands
E-mail: m.j.vankreveld@uu.nl

Bettina Speckmann
TU Eindhoven, Department of Mathematics and Computer Science
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E-mail: speckman@win.tue.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25877-0 e-ISBN 978-3-642-25878-7
DOI 10.1007/978-3-642-25878-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011944514

CR Subject Classification (1998): E.1, G.2.2, G.1.6, I.5.3, H.2.8

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 19th Symposium on Graph Drawing was held during September 21–23,
2011, in Eindhoven, The Netherlands, at the Technical University Eindhoven.

In response to the call for papers the Program Committee received 79 sub-
missions of which 13 were short-paper submissions. The Program Committee
reviewed these submissions carefully and selected 34 regular papers and 3 short
papers. Furthermore, 6 poster abstracts were selected from 9 submissions. The
revised versions of the accepted submissions can be found in the proceedings.
Furthermore, the proceedings contain the abstracts of two invited talks, given
by Jarke J. van Wijk and Günter Rote. To commemorate Kozo Sugiyama and
his pioneering research in graph drawing, the proceedings include an obituary.

A unique and fun part of the symposium is the Graph Drawing Contest,
which is part of the Graph Drawing Challenge. This year was the 18th edition.
The Graph Drawing Contest Committee together with Kevin Verbeek made sure
that it was a smoothly running and successful event. A report on the contest is
included at the end of the proceedings.

We express our thanks to all contributors of papers to the proceedings. We
also thank the Program Committee members for their substantial work, provid-
ing reviews of high quality. Furthermore, we thank the GD Contest Committee,
Anne Driemel, Marcel Roeloffzen and Wouter Meulemans who provided local
help, and especially Kevin Buchin and Dirk Gerrits, the other two members of
the local Organizing Committee.

We acknowledge the generous support of NWO (Netherlands Organisation
for Scientific Research), KNAW (Royal Netherlands Academy of Arts and Sci-
ences), Tom Sawyer Software (Gold sponsor), and Microsoft (Silver sponsor).
Furthermore, the TU Eindhoven provided lecture rooms and other spaces free
of charge, and de TUimelaar offered child daycare free of charge. These con-
tributions made it possible to keep the registration costs low, allowing more
researchers to attend and exchange ideas on graph drawing. We hope that the
graph drawing symposium can keep the tradition of low registration costs.

Next year the 20th International Symposium on Graph Drawing will take
place during September 19–21, 2012, and will be hosted by Microsoft Research
in Redmond, Washington, USA.

October 2011 Marc van Kreveld
Bettina Speckmann

Organization

Program Committee

Ulrik Brandes University of Konstanz, Germany
Kevin Buchin TU Eindhoven, The Netherlands
Sergio Cabello University of Ljubljana, Slovenia
Walter Didimo University of Perugia, Italy
Vida Dujmović Carleton University, Canada
Fabrizio Frati University of Rome III, Italy
Éric Fusy LIX Ecole Polytechnique, France
Michael Goodrich University of California, Irvine, USA
Carsten Gutwenger TU Dortmund, Germany
Marc van Kreveld (Co-chair) Utrecht University, The Netherlands
Takao Nishizeki Kwansei Gakuin University, Japan
Martin Nöllenburg Karlsruhe Institute of Technology, Germany
Bettina Speckmann (Co-chair) TU Eindhoven, The Netherlands
Roberto Tamassia Brown University, USA
Alexandru Telea University of Groningen, The Netherlands
Csaba D. Tóth University of Calgary, Canada
Dorothea Wagner Karlsruhe Institute of Technology, Germany

Organizing Committee

Kevin Buchin TU Eindhoven, The Netherlands
Dirk Gerrits TU Eindhoven, The Netherlands
Marc van Kreveld (Co-chair) Utrecht University, The Netherlands
Bettina Speckmann (Co-chair) TU Eindhoven, The Netherlands

Graph Drawing Contest Committee

Christian Duncan Louisiana Tech University, USA
Carsten Gutwenger (Chair) TU Dortmund, Germany
Lev Nachmanson Microsoft, Redmond, USA
Georg Sander IBM, Bad Homburg, Germany

Additional Reviewers

Eyal Ackerman
Marie Albenque
Patrizio Angelini

Reinhard Bauer
Laurent Beaudou
Carla Binucci

VIII Organization

Luca Castelli Aleardi
Markus Chimani
Emilio Di Giacomo
David Eppstein
Gasper Fijavz
Radoslav Fulek
Andreas Gemsa
Daniel Goncalves
Luca Grilli
Robert Görke
S. Mehdi Hahemi
Tanja Hartmann
Herman Haverkort
Petr Hlineny
Seok-Hee Hong
Clemens Huemer
Karsten Klein
Stephen Kobourov
Nils Kriege
Marcus Krug
Kazuyuki Miura
Bojan Mohar
Fabrizio Montecchiani
Pat Morin

Sonoko Moriyama
Petra Mutzel
Tomoki Nakamigawa
Yoshio Okamoto
Thomas Pajor
Maurizio Patrignani
Dominique Poulalhon
Md. Saidur Rahman
Vincenzo Roselli
Ignaz Rutter
Laura Sanità
André Schulz
Andrea Schumm
Rodrigo I. Silveira
Claudio Squarcella
Daniel Stefankovic
Andrew Suk
Yusuke Suzuki
Markus Völker
Hoi-Ming Wong
David Wood
Hsu-Chun Yen
Xiao Zhou

Financial Support and Sponsors

Gold Sponsor Silver Sponsor

Table of Contents

Obituary

Kozo Sugiyama 1945 - 2011 . 1
Peter Eades, Seok-Hee Hong, and Kazuo Misue

Papers

Confluent Hasse Diagrams . 2
David Eppstein and Joseph A. Simons

Planar Open Rectangle-of-Influence Drawings with Non-aligned
Frames . 14

Soroush Alamdari and Therese Biedl

Proportional Contact Representations of Planar Graphs 26
Muhammad Jawaherul Alam, Therese Biedl, Stefan Felsner,
Michael Kaufmann, and Stephen G. Kobourov

Embedding Plane 3-Trees in R
2 and R

3 . 39
Stephane Durocher, Debajyoti Mondal, Rahnuma Islam Nishat,
Md. Saidur Rahman, and Sue Whitesides

Orthogeodesic Point-Set Embedding of Trees . 52
Emilio Di Giacomo, Fabrizio Frati, Radoslav Fulek, Luca Grilli, and
Marcus Krug

On Point-Sets That Support Planar Graphs . 64
Vida Dujmovic, William Evans, Sylvain Lazard, William Lenhart,
Giuseppe Liotta, David Rappaport, and Stephen Wismath

Small Point Sets for Simply-Nested Planar Graphs 75
Patrizio Angelini, Giuseppe Di Battista, Michael Kaufmann,
Tamara Mchedlidze, Vincenzo Roselli, and Claudio Squarcella

Graph Visualization (Invited Talk) . 86
Jarke J. van Wijk

Advances in the Planarization Method: Effective Multiple Edge
Insertions . 87

Markus Chimani and Carsten Gutwenger

A Quantitative Comparison of Stress-Minimization Approaches for
Offline Dynamic Graph Drawing . 99

Ulrik Brandes and Martin Mader

XII Table of Contents

Accelerated Bend Minimization . 111
Sabine Cornelsen and Andreas Karrenbauer

TGI-EB: A New Framework for Edge Bundling Integrating Topology,
Geometry and Importance . 123

Quan Nguyen, Seok-Hee Hong, and Peter Eades

Edge Routing with Ordered Bundles . 136
Sergey Pupyrev, Lev Nachmanson, Sergey Bereg, and
Alexander E. Holroyd

Right Angle Crossing Graphs and 1-Planarity . 148
Peter Eades and Giuseppe Liotta

Pinning Balloons with Perfect Angles and Optimal Area 154
Immanuel Halupczok and André Schulz

Approximate Proximity Drawings . 166
William Evans, Emden R. Gansner, Michael Kaufmann,
Giuseppe Liotta, Henk Meijer, and Andreas Spillner

Generalizing Geometric Graphs . 179
Edith Brunel, Andreas Gemsa, Marcus Krug, Ignaz Rutter, and
Dorothea Wagner

How to Visualize the K-Root Name Server (Demo) 191
Giuseppe Di Battista, Claudio Squarcella, and Wolfgang Nagele

Optimizing a Radial Layout of Bipartite Graphs for a Tool Visualizing
Security Alerts . 203

Maxime Dumas, Michael J. McGuffin, Jean-Marc Robert, and
Marie-Claire Willig

Visual Community Detection: An Evaluation of 2D, 3D Perspective
and 3D Stereoscopic Displays . 215

Nicolas Greffard, Fabien Picarougne, and Pascale Kuntz

Evaluating Partially Drawn Links for Directed Graph Edges 226
Michael Burch, Corinna Vehlow, Natalia Konevtsova, and
Daniel Weiskopf

Realizing Planar Graphs as Convex Polytopes (Invited Talk) 238
Günter Rote

Overloaded Orthogonal Drawings . 242
Evgenios M. Kornaropoulos and Ioannis G. Tollis

Drawing Cubic Graphs with the Four Basic Slopes 254
Padmini Mukkamala and Dömötör Pálvölgyi

Table of Contents XIII

k-Quasi-Planar Graphs . 266
Andrew Suk

Monotone Crossing Number . 278
János Pach and Géza Tóth

Upper Bound Constructions for Untangling Planar Geometric
Graphs . 290

Javier Cano, Csaba D. Tóth, and Jorge Urrutia

Triangulations with Circular Arcs . 296
Oswin Aichholzer, Wolfgang Aigner, Franz Aurenhammer,
Kateřina Čech Dobiášová, Bert Jüttler, and Günter Rote

Planar and Poly-arc Lombardi Drawings . 308
Christian A. Duncan, David Eppstein, Michael T. Goodrich,
Stephen G. Kobourov, and Maarten Löffler

Force-Directed Lombardi-Style Graph Drawing . 320
Roman Chernobelskiy, Kathryn I. Cunningham,
Michael T. Goodrich, Stephen G. Kobourov, and
Lowell Trott

Every Graph Admits an Unambiguous Bold Drawing 332
János Pach

Adjacent Crossings Do Matter . 343
Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and
Daniel Štefankovič

Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane 355
Rik Sarkar

Hardness of Approximate Compaction for Nonplanar Orthogonal
Graph Drawings . 367

Michael J. Bannister and David Eppstein

Monotone Drawings of Graphs with Fixed Embedding 379
Patrizio Angelini, Walter Didimo, Stephen Kobourov,
Tamara Mchedlidze, Vincenzo Roselli, Antonios Symvonis, and
Stephen Wismath

On the Page Number of Upward Planar Directed Acyclic Graphs 391
Fabrizio Frati, Radoslav Fulek, and Andres J. Ruiz-Vargas

Upward Point Set Embeddability for Convex Point Sets Is in P 403
Michael Kaufmann, Tamara Mchedlidze, and Antonios Symvonis

Classification of Planar Upward Embedding . 415
Christopher Auer, Christian Bachmaier,
Franz Josef Brandenburg, and Andreas Gleißner

XIV Table of Contents

Upward Planarity Testing of Embedded Mixed Graphs 427
Carla Binucci and Walter Didimo

Posters

Combining Problems on RAC Drawings and Simultaneous Graph
Drawings . 433

Evmorfia N. Argyriou, Michael A. Bekos, Michael Kaufmann, and
Antonios Symvonis

The Open Graph Archive: A Community-Driven Effort 435
Christian Bachmaier, Franz Josef Brandenburg, Philip Effinger,
Carsten Gutwenger, Jyrki Katajainen, Karsten Klein,
Miro Spönemann, Matthias Stegmaier, and Michael Wybrow

Drawing Graphs with Vertices at Specified Positions and Crossings at
Large Angles . 441

Martin Fink, Jan-Henrik Haunert, Tamara Mchedlidze,
Joachim Spoerhase, and Alexander Wolff

Viewport for Component Diagrams . 443
Lukas Holy and Premek Brada

Shortest-Paths Preserving Metro Maps . 445
Tal Milea, Okke Schrijvers, Kevin Buchin, and Herman Haverkort

Challenger, a New Way to Visualize Data . 447
Remus Zelina, Sebastian Bota, Siebren Houtman,
Jaap Jan van Assen, and Bas Hattink

Graph Drawing Contest

Graph Drawing Contest Report . 449
Christian A. Duncan, Carsten Gutwenger, Lev Nachmanson, and
Georg Sander

Author Index . 457

Kozo Sugiyama 1945 - 2011

Kozo Sugiyama was born in Gifu Prefecture Japan on September 17, 1945. He received
his B.S., M.S., and Dr. Sci. at Nagoya University in 1969, 1971, 1974 respectively. For
23 years from 1974 he was a researcher at Fujitsu. During this time he spent a year at
the International Institute for Applied Systems Analysis in Laxenburg in Austria. In the
mid 1990s he served as the Director of the Information Processing Society of Japan. In
1997 he moved from Fujitsu to the newly-created Japan Advanced Institute of Science
and Technology. His first position there was Professor of the School of Knowledge
Science, but he soon became Director of the Center for Knowledge Science, and then
Dean of the School of Knowledge Science. His last few years at JAIST were spent as a
Vice President of the University.

Everyone in the Graph Drawing community knows the name Sugiyama for his fa-
mous paper “Methods for visual understanding of hierarchical system structures”. The
paper defines the layered method for drawing directed graphs; it is often simply called
“Sugiyama’s method”. The paper was published as a technical report from Fujitsu Labo-
ratories in the late 1970s, and appeared in a journal in 1981. It describes a very general
framework for drawing directed graphs. This is one of the most influential papers in
Graph Drawing; it has spawned many algorithms, many theorems, and many imple-
mentations; it forms the backbone of many commercial systems.

In 1992, Kozo wrote the first book on Graph Drawing, in Japanese. It was translated
into English in 2002.

Kozo is also known for a number of other ground-breaking papers in Graph Drawing:
on compound graph layout (predating clustered graphs), the magnetic spring model, and
on the mental map problem.

However, Kozo’s interests went far beyond Graph Drawing. He was passionate about
finding better ways to assist the human process of knowledge creation. Indeed, his mo-
tivation for doing graph drawing research was to support the KJ Method, which is a way
of creating and organizing ideas, commonly used in business in Japan. He developed a
number of thinking support systems. He published papers on creating puzzles, and on
technology to assist corporations in exchanging tacit knowledge. He wrote two books
on Knowledge Science, the more recent one in 2008. In all his work, Kozo showed the
courage and ability to address big problems.

Older members of the Graph Drawing community remember Kozo personally. He
attended the first Graph Drawing conference in Rome. Many of us visited his laboratory
either in Fujitsu or in JAIST, and he has visited our laboratories. He was an inspiration
for us.

Kozo passed away on June 10, 2011. We have lost a valuable colleague and a good
friend.

Peter Eades, Seok-Hee Hong, and Kazuo Misue,
on behalf of the Graph Drawing community,

September 2011

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, p. 1, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Confluent Hasse Diagrams

David Eppstein and Joseph A. Simons

Department of Computer Science, University of California, Irvine, USA

Abstract. We show that a transitively reduced digraph has a confluent
upward drawing if and only if its reachability relation has order dimen-
sion at most two. In this case, we construct a confluent upward drawing
with O(n2) features, in an O(n) × O(n) grid in O(n2) time. For the
digraphs representing series-parallel partial orders we show how to con-
struct a drawing with O(n) features in an O(n)×O(n) grid in O(n) time
from a series-parallel decomposition of the partial order. Our drawings
are optimal in the number of confluent junctions they use.

1 Introduction

One of the most important aspects of a graph drawing is that it should be
readable: it should convey the structure of the graph in a clear and concise way.
Ease of understanding is difficult to quantify, so various proxies for it have been
proposed, including the number of crossings and the total amount of ink required
by the drawing [1,18]. Thus given two different ways to present information, we
should choose the more succinct and crossing-free presentation.

Fig. 1. Conventional and confluent
drawings of K5,5

Confluent drawing [7,8,9,15,16] is a style
of graph drawing in which multiple edges
are combined into shared tracks, and two
vertices are considered to be adjacent if a
smooth path connects them in these tracks
(Figure 1). This style was introduced to re-
duce crossings, and in many cases it will also
improve the ink requirement by represent-
ing dense subgraphs concisely. However, it
has had a limited impact to date, as there are only a few specialized graph
classes for which we can either guarantee the existence of a confluent drawing
or test for confluence efficiently. A closely related graph drawing technique, edge
bundling [10], differs from confluence in emphasizing the visualization of high
level graph structure, but does not necessarily seek to reduce the number of edge
crossings.

Hasse diagrams are a type of upward drawing of transitively reduced directed
acyclic graphs (DAGs) that have been used since the late 19th century to visu-
alize partially ordered sets. To maximize the readability of Hasse diagrams, as
with other types of graph drawing, we would like to draw them without cross-
ings. Thus upward planar graphs (DAGs that can be drawn so that all edges
go upwards and no edges cross) have been an important thread of research in

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 2–13, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Confluent Hasse Diagrams 3

Fig. 2. A simple DAG P (left) that is not upward planar, although its underlying
graph is planar. Its Dedekind–MacNeille completion (middle) is upward planar, with
an added element (shaded). Replacing that element with a junction creates an upward
confluent drawing of P (right).

graph drawing. A DAG is upward planar if and only if it is a subgraph of a
planar st-graph, i.e. a planar DAG with one source and one sink, both on the
outer face [6]. Testing upward planarity is NP-complete [12] but for DAGs with
a single source or a single sink it may be tested efficiently [17,4]. However, many
DAGs (even planar DAGs such as the one in Figure 2) are not upward planar.

In this paper, we bring these threads together by finding efficient algorithms
for upward confluent drawing of transitively reduced DAGs. We show that a
graph has an upward confluent drawing if and only if it represents a partial order
P with order dimension at most two, and that these drawings correspond to two-
dimensional lattices containing P . We construct the smallest lattice containing P
(its Dedekind–MacNeille completion) in worst-case-optimal time, and draw it
confluently in area O(n2), using as few confluent junctions as possible. For series-
parallel partial orders, the time and number of junctions can be reduced to linear.

2 Preliminaries

2.1 Posets and Lattices

A partially ordered set (partial order, or poset) P = (V,≤) is a set V with a
reflexive, antisymmetric, and transitive binary relation ≤. We adopt the conven-
tion that n = |V | unless otherwise stated. We also use a < b to denote that a ≤ b
and a �= b. We say that a covers b in P if b < a and �x ∈ P such that b < x < a.
Elements a, b ∈ P are comparable if a ≤ b or b ≤ a; otherwise, we write a||b to
indicate that they are incomparable. A total order or linear order is a partial
order in which every pair of elements in P is comparable. If R is a set of linear
orders Ri, we can define a poset P as the intersection of R: that is, a ≤ b in P
if and only if a ≤ b in every linear order Ri. If P can be defined from R in this
way, then R is called a realizer of P . Every partial order P has a realizer; the
dimension dim(P) is the smallest number of linear orders in a realizer of P .

If X ⊆ P is any subset of P , then an element a ∈ P is called a lower bound
of X if it is less than or equal to every element of X . Similarly, an element b is
called an upper bound of X if it is greater than or equal to every element of X .

4 D. Eppstein and J.A. Simons

If X has a lower bound a that belongs to X itself, then a is the (unique) least
element in X , and similarly if X has an upper bound b that belongs to X then
b is the (unique) greatest element in X . If the set A of lower bounds of X has
a greatest element a, then a is the greatest lower bound or infimum of X , and
similarly if the set B of upper bounds of X has a lowest element b then b is the
least upper bound or supremum of X . If P itself has an infimum or a supremum,
these elements are typically denoted by 0 and 1 respectively. If P contains both
an infimum and a supremum, it is said to be bounded.

A poset L is a lattice if for every pair of elements x and y in L the set {x, y}
has both an infimum and a supremum. In this context, the supremum of {x, y}
is called the meet of x and y and denoted x ∧ y, and similarly the infimum is
called the join and denoted x∨y. A lattice L is complete if every subset of L has
an infimum and supremum in L. Every finite lattice is complete and bounded.

2.2 Hasse Diagrams and Upward Planarity

Every poset P = (V,≤) can be represented by a directed acyclic graph G which
has a vertex for each element in P and an edge uv for each pair (u, v) with u ≤ v
in P . However, when we draw a poset it is more common to draw a different
DAG, the transitive reduction G′ of G, in which there is an edge from u to v in
G′ if and only if v covers u in P . A Hasse diagram of P is an upward drawing
of G′, meaning that the y coordinate of the head of each edge is greater than
the y coordinate of the tail of each edge, so that the drawing “flows” upward
from smaller elements to larger elements. In a Hasse diagram, we do not need to
explicitly draw the edges as directed edges: the direction of an edge is represented
implicitly by the relative position of its endpoints. There is an upward path from
a to b in a Hasse diagram of P if and only if a ≤ b. A poset is planar if it has a
Hasse diagram that is upward planar, i.e. its transitive reduction has an upward
drawing in which none of the edges intersect except at a shared vertex.

A finite lattice is planar if and only if its transitive reduction is a planar st-
graph, a DAG which contains exactly one source s and one sink t both of which
belong to the outer face of an upward planar drawing [28]. More generally, any
DAG is upward planar if and only if it is a subgraph of a planar st-graph [6]. In
the other direction, every planar finite bounded poset must be a lattice [3,5,19].
This implies that a two-dimensional bounded poset that is not a lattice (such
as the one on the left of Figure 2) cannot have an upward planar drawing, and
that planarity (a crossing-free drawing) and two-dimensionality (realization by
a pair of linear orders) are distinct for non-lattice posets.

2.3 Lattice Completion of a Poset

The Dedekind–MacNeille completion of a poset P is the smallest complete lattice
containing P [22]. For any subset X of P , let X− and X+ denote the set of lower
bounds and upper bounds of X respectively. A cut of P is a pair A, B ⊆ P such
that A+ = B and A = B−; the completion of P has these cuts as its elements.
The completion is partially ordered by set containment: if (A, B) and (C, D) are

Confluent Hasse Diagrams 5

cuts, then (A, B) ≤ (C, D) if and only if A ⊆ C and B ⊇ D. The element of
the completion corresponding to an element x of P is the cut ({x}−, {x}+), and
the new elements added to P to make it into a lattice come from cuts (A, B) for
which A ∩B = ∅. The completion automatically has the same dimension as the
partial order from which it was constructed [27].

Ganter and Kuznetsov [11] give a stepwise algorithm for constructing the com-
pletion of P . Given a poset P and its completion L they show how to complete
a one-element extension of P in time O(|L| · |P | · ω(P)), where ω(P) denotes
the width of P . To compute the completion of a large poset, they begin with a
single-element poset (whose completion is trivial) and use this subroutine to add
elements one at a time; therefore, the total time is O(|L| · |P |2 · ω(P)). Nourine
and Raynaud [26] give an algorithm with running time O((|P | + |B|) · |B| · |L|)
where B is a basis of P (a set of subsets of P which generate L). As part of
our drawing algorithm, we improve these results in the case of two-dimensional
posets: we show for such sets how to construct the completion in time O(|P |2),
optimal in the worst case since (as we also show) there exist two-dimensional
posets whose completion has a quadratic number of elements.

2.4 Confluent Drawing

Confluent drawing is a technique for drawing non-planar diagrams without cross-
ings [7, 8, 9, 15, 16] by merging together groups of edges and drawing them as
tracks that, like train tracks, meet smoothly at junction points but do not cross.
A confluent drawing consists of a set of labeled points (vertices and junctions)
and curves (track segments) in the Euclidean plane, such that the two endpoints
of each track segment are vertices or junctions, such that no two track segments
intersect except at a shared endpoint, and such that all track segments that meet
at a junction share a common tangent line at that point. The graph represented
by a confluent drawing has as its vertices the vertices of the drawing; two vertices
u and v are adjacent if and only if there is a smooth curve in the plane from
u to v that is a union of track segments and that does not pass through any
other vertex. (Some papers on confluence require that this curve also be non-
self-intersecting but that requirement is irrelevant for upward drawings since
monotone curves cannot self-intersect.) An undirected graph G is confluent if
and only if there exists a confluent drawing that represents it.

We define a confluent diagram of a poset to be a drawing of its transitive
reduction in a way that is both confluent and upwards. In other words, if G
is a directed acyclic graph representing a poset P , then we define a confluent
diagram of P to be an upward confluent drawing of the transitive reduction of
G in which all tracks are oriented upwards (monotonic in the y direction), and
therefore all smooth curves passing through the tracks are similarly oriented.
For each pair of elements a, b ∈ P , the drawing should have a smooth track
from a upwards to b if and only if a is covered by b. For technical reasons we
also require that for each source there exists an unbounded y-monotone curve
downwards that does not cross the diagram – that is, that each source can be
seen from below – and symmetrically that each sink can be seen from above.

6 D. Eppstein and J.A. Simons

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

1

0

2

4

3

5

6

8

7

9

10

11

12

13

14

15

b

c

d

e

f

g

a b c d e f g

a

b

c

d

e

f

g

L1

L2

aa b

c d f

e g

b

c d

e

f

g

a

Fig. 3. Example of our algorithm. Left : Input poset P . Middle: Grid embedding with
added points and dominance pairs. Right : Completion points replaced by confluent
junctions and rotated 45◦.

In the application to visualization of partial orders, this is a natural restriction
as it makes the minimal and maximal elements easy to find in the drawing.

3 The Algorithm

Let G be a poset with dimension at most two. We now describe an O(n2) algo-
rithm to embed a confluent diagram of P in an O(n) × O(n) grid. That is, we
will generate an upward confluent drawing of the transitive reduction of a DAG
representing P such that each vertex in the drawing has integer coordinates.

Our algorithm has three phases. In the first phase, we embed the elements
of P in a (2n + 1) × (2n + 1) grid. Recall that since P has dimension two, it is
realized by two linear orders, which correspond to two different total orderings
of the same n elements in P . Thus, the first steps of our algorithm are:

1. (a) Find two linear orders L1 and L2 that realize P . This can be done in
O(n2) time from any graph whose transitive closure is P by Algorithm
1 of [21].

(b) For each element p of P , having position p1 in L1 and p2 in L2 with
1 ≤ pi, pj ≤ n, place a vertex representing p in the grid with coordinates
(2i, 2j).

After this step, the even rows and columns in the grid each contain exactly one
element of P , and the dominance relationship of these points corresponds to the
order of the elements in P . Recall that for two elements p and q in the plane, p
dominates q if and only if pi ≥ qi for each coordinate i and p �= q.

In the second phase, we insert additional points representing elements of the
completion of P ; these completion nodes correspond to confluent junctions in the
confluent diagram of P . We defer to a later section the proof that the dominance
order on the points generated in the first two phases gives the completion of P .

Confluent Hasse Diagrams 7

2. For each odd pair of indices (i, j), in [3, 2n− 1] insert a junction in the grid
with coordinates (i, j) if all of the following four conditions hold:
– The poset point with x-coordinate i−1 has y-coordinate less than j−1.
– The point with x-coordinate i + 1 has y-coordinate greater than j + 1.
– The point with y-coordinate j − 1 has x-coordinate less than i − 1.
– The point with y-coordinate j + 1 has x-coordinate greater than i + 1.

In addition if P does not already have a least or a greatest element, then
insert invisible points at (1, 1) and (2n + 1, 2n + 1) respectively.

In the third phase, we generate the segments of the confluent diagram. These
segments correspond to direct dominance pairs of points from the first two
phases. It is possible to find all dominance pairs in a set of N points in time
O(N log N + k) [13] where k is the number of dominance pairs, but in our case
this would only lead to an O(n2 log n) time bound. Instead, we leverage the fact
that the vertices are embedded in an O(n) × O(n) grid, and use the following
O(n2 + k) time method to generate dominance pairs using a stack-based algo-
rithm related to Graham scan within each row. We prove later that the diagram
is planar and therefore that the number of dominance pairs k = O(n2).

3. Initialize for each column c a value tc, the topmost element seen so far in
column c.
Then, for each row r from 1 to 2n + 1:
(a) Initialize an empty stack S.
(b) For each column c from 1 to 2n + 1:

i. If there is a vertex or junction p at (r, c), add an edge from every
element of S to p, add an edge from tc to p (if tc is non-empty), and
set tc to p.

ii. If tc is non-empty, pop all items from S whose row number is less
than or equal to the row number of tc, and push tc onto S.

Thus we have computed the coordinates of all elements, confluent junctions, and
edges in the confluent diagram. When we render the drawing, we rotate it 45◦

counterclockwise to make it upward confluent (Figure 3).
Examples of non-confluent and confluent drawings of the same 100-element set

are shown in Figure 4. Our Python implementation renders the confluent track
segments as cubic Bézier curves with control points at a small fixed distance
directly above and below each confluent junction. Two such curves cannot cross
each other: for pairs of edges that do not share an endpoint, this follows from the
fact that the convex hulls of the control points are disjoint and that the curves
lie within the convex hulls, while for pairs of curves that share an endpoint it
follows from the fact that the two curves are images of each other under an affine
transformation of the plane and that (for pairs of edges sharing an endpoint) the
direction that any point on the curve is translated by this affine transformation
is transverse to the tangent direction of the curve at that point.

If the input is provided as a realizer rather than as a graph, and its completion
has few elements, then it is possible to construct the diagram more efficiently.
To do so, construct for each odd-indexed row or column of the integer grid an

8 D. Eppstein and J.A. Simons

Fig. 4. A 100-element partially ordered set, the intersection of two random permuta-
tions, drawn as a conventional Hasse diagram with crossings (left), and as a confluent
Hasse diagram (right)

axis-parallel line segment that passes through a grid point if and only if that
point meets two of the four conditions for adding a junction in phase two of our
algorithm. The junctions can be recovered as the intersections of these line seg-
ments, and we may compute the edges of the diagram using an output-sensitive
algorithm for dominance pairs. By using integer searching data structures the
total time for this algorithm may be reduced to O((n + k) log log n), where k is
the number of confluent junctions; we omit the details.

4 Algorithm Correctness and Minimality

In this section we prove that the algorithm of Section 3 is correct and has optimal
running time. Our analysis also shows that a poset P has a confluent diagram
if and only if it has dimension at most two.

Lemma 1 (Baker, Fishburn and Roberts [3]). Let P be a bounded finite
planar poset. Then P is a lattice and has dimension at most 2.

Lemma 2. Let P be a finite poset with a confluent Hasse diagram D. Then
dim(P) ≤ 2, and there exists a two-dimensional lattice C containing P such
that the elements of C \ P (other than the top and bottom element, if they do
not belong to P) correspond one-for-one with the confluent junctions of D.

Proof: Replace the confluent junctions of D with vertices, and re-interpret the
confluent segments as edges between these vertices. If there is more than one
minimal vertex of P , add a vertex below all minimal vertices, connected to
the minimal vertices by upward edges, and similarly if there is more than one
maximal vertex of P , add a vertex above all maximal vertices connected to them
by edges. The modified drawing is st-planar and hence by Lemma 1 represents
a lattice, which clearly contains P . �

Confluent Hasse Diagrams 9

Lemma 3. Let P be a finite poset with order dimension at most two, let C be
the completion of P , and let S be the set of elements of C \P (other than the top
and bottom element, if P itself is not bounded). Then the elements of S coincide
with the junction points added in phase 2 of our algorithm, and the dominance
ordering on these points coincides with the lattice ordering in C.

Proof: In one direction, let p be a junction point added in phase 2 of our al-
gorithm, and p− and p+ be the sets of points from phase 1 that are dominated
by p and that dominate p respectively. Then it follows from the four conditions
according to which phase 2 adds a point that (p−, p+) forms a cut in P . The
equivalence of the dominance and lattice orderings on pairs consisting of a junc-
tion point and a point from P follows immediately, and the same equivalence for
pairs of junction points is also easy to verify.

In the other direction, we must show that we add a junction point for every
element of S, that is, every cut (L, U) where L has more than one maximal
element and U has more than one minimal element. Let i be one less than the
minimum x-coordinate of a point in U , and let j be one less than the minimum
y-coordinate; then (because the coordinates of points in P are their positions in
the two orderings of a realizer) the set L of points dominated by every point in U
equals the set of points below and to the left of (i, j). Two of the four conditions
of phase 2 are automatically met at (i, j): the points with x-coordinate i+1 and
with y-coordinate j + 1 are both in U and are distinct because U has more than
one minimal point. The other two conditions must also be met, for if they were
not then the point violating the condition would dominate L, contradicting the
fact that all points that dominate L belong to U . �

Theorem 1. A given partial order P has a confluent diagram if and only if
dim(P) ≤ 2. If P has a confluent diagram, the algorithm of Section 3 computes
a valid confluent diagram of P , and embeds that diagram in a O(n)×O(n) grid
in worst case optimal O(n2) time. The number of confluent junctions in the
drawing is the minimum possible for any confluent diagram of P .

Proof: If a poset P has dimension three or more, then so does any lattice
containing it, and by Lemma 1 and Lemma 2 there can be no confluent diagram
of P . Otherwise, we may assume that P has dimension at most two.

By Lemma 3, the dominance ordering on the points computed by our algo-
rithm coincides (except possibly for the removal of the top and bottom elements)
with the completion of P . In this set of points, there can be no crossing pairs
of dominance relations, for if the edges (L1, U1)–(L2, U2) and (L3, U3)–(L4, U4)
crossed (where (Li, Ui) is a cut either added in the completion or corresponding
to an original point of P) then (L1∪L3, U2∪U4) would also be a cut whose point
would lie between the other four points, contradicting the assumption that these
edges represent minimal dominance pairs. Therefore, the diagram constructed
by our algorithm is planar, and by Lemma 1 it must represent a lattice super-
set of P . The added elements belong to the completion, so the diagram must
represent a subset of the completion, and since the completion has no proper

10 D. Eppstein and J.A. Simons

Fig. 5. A poset P with O(n) elements and dimension 2 whose completion has size
Ω(n2). On the left is the normal Hasse diagram, and on the right is the confluent
version as drawn by our algorithm. The two permutations L1 and L2 generating P are
the identity and the permutation (3n, 3n − 2, . . . , n; 4n + 1, n − 1, 4n, n − 2, . . . , 3n +
2, 0; 3n + 1, 3n − 1, . . . , n + 1).

lattice subsets it must represent the completion itself. The completion gives the
minimum number of added elements (and therefore, by Lemma 2, the minimum
number of junctions) of any diagram for P .

Our algorithm spends O(n2) time in its first two phases as it iterates over
O(n2) grid cells spending constant time per cell. In the third phase, it uses
constant time per edge and by planarity there are O(n2) edges, so the time is
again O(n2). This time bound is optimal since (as shown in Figure 5) there exist
two-dimensional posets whose completion has Ω(n2) elements. �

Although our method produces drawings in a grid of linear dimensions, it may be
possible in some cases to compact our drawings into a smaller grid. An algorithm
of de la Higuera and Nourine [14] may be used to find the smallest grid into which
a drawing produced by our algorithm can be compacted.

5 Confluent Drawings of Series-Parallel Posets

Fig. 6. A series-parallel poset

A series-parallel partial order is a poset
that can be built up from single elements
by two simple composition operations:

– The series composition P ; Q of posets
P and Q is the order on the set P ∪ Q
in which p ≤ q for every p ∈ P and
q ∈ Q.

– The parallel composition P ||Q is the or-
der on P ∪ Q in which every pair of an
element from P and an element from Q
are incomparable.

Confluent Hasse Diagrams 11

A

B A

B

Parallel Composition Series Composition

A B

Grid Embeddings

Fig. 7. Series and parallel composition operations on two drawings A and B

Pairs of elements that are both from P or both from Q retain their ordering
in the larger set.

Series-parallel partial orders are attractive because many important computa-
tional problems can be solved more easily in them than in more general posets,
and because they have applications to a wide variety of problems including
scheduling [25], concurrency [20], data mining [23], networking [2], and more
(see [24]).

Series-parallel partial orders can be represented naturally by a binary tree,
known as a decomposition tree of the order. The leaves of the tree correspond
to single element sets and the internal nodes of the tree correspond to series or
parallel composition operations. As the following theorem shows, given a decom-
position tree T for a series-parallel partial order P , we can draw the confluent
diagram of P in linear time by traversing T , performing the corresponding com-
position operations, and inserting confluent junctions when necessary.

Theorem 2. Let P be a series-parallel partial order, given as its decomposition
tree. Then a confluent diagram of P with a linear number of junctions can be
drawn in an O(n) × O(n) grid in linear time.

A

B

Insert Junction

A

B

No Junction

A

B

No Junction

Fig. 8. Series composition
A;B has a confluent junc-
tion if and only if A has no
unique upper bound and B
has no unique lower bound

Proof: We traverse the decomposition tree in post-
order, recursively finding embeddings for each sub-
tree. For each tree node, we do the following:

1. If the node is a leaf, then we embed the corre-
sponding element in a single grid cell.

2. Otherwise, if the node is a series or parallel
node, then we translate the grid embeddings of
its two children so that their bounding boxes
meet corner to corner (Figure 7).

3. For a series composition A; B we also insert a
confluent junction at the shared corner of A and
B if and only if A has more than one maximal
element and B has more than one minimal ele-
ment (Figure 8).

By using a linked list of the maximal and minimal nodes for the current subtrees,
we can perform these operations in time proportional to the number of leaves in

12 D. Eppstein and J.A. Simons

the decomposition tree. Therefore the total time is linear. The size of the grid
will be proportional to the size of the decomposition tree, i.e., O(n)×O(n) �

6 Conclusions

We have designed, analyzed, and implemented an algorithm for drawing conflu-
ent Hasse diagrams using a minimum number of confluent junctions. It would
be of interest to test experimentally how many crossings it eliminates, and how
much ink it saves. Also, upward planarity may be tested even for non-st-planar
graphs that have only one source or one sink; can similar conditions be extended
to the case of upward confluent drawings? Can we efficiently find upward planar
drawings of graphs that are not transitively reduced? If a partially ordered set
must be drawn with crossings, can we use confluence in a principled way to keep
the number of crossings small? We leave these questions to future research.

Acknowledgements. This work was supported in part by NSF grant 0830403
and by the Office of Naval Research under grant N00014-08-1-1015.

References

1. Aeschlimann, A., Schmid, J.: Drawing orders using less ink. Order 9(1), 5–13 (1992)
2. Amer, P., Chassot, C., Connolly, T., Diaz, M., Conrad, P.: Partial-order trans-

port service for multimedia and other applications. IEEE/ACM Transactions on
Networking 2(5), 440–456 (1994)

3. Baker, K.A., Fishburn, P.C., Roberts, F.S.: Partial orders of dimension 2. Net-
works 2(1), 11–28 (1972)

4. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward pla-
narity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)

5. Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence (1967)
6. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic di-

graphs. Theoret. Comput. Sci. 61(2-3), 175–198 (1988)
7. Dickerson, M.T., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings:

visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1),
3–52 (2005), http://jgaa.info/accepted/2005/Dickerson+2005.9.1.pdf

8. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-Confluent Drawings. In: Healy, P.,
Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer, Heidelberg
(2006)

9. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorith-
mica 47(4), 439–452 (2007)

10. Gansner, E., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge
bundling for visualizing large graphs. In: IEEE Pacific Visualization Symposium
(PacificVis), pp. 187–194 (2011)

11. Ganter, B., Kuznetsov, S.O.: Stepwise Construction of the Dedekind-MacNeille
Completion. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI),
vol. 1453, pp. 295–302. Springer, Heidelberg (1998)

12. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601–625 (2002)

http://jgaa.info/accepted/2005/Dickerson+2005.9.1.pdf

Confluent Hasse Diagrams 13

13. Güting, R.H., Nurmi, O., Ottmann, T.: Fast algorithms for direct enclosures and
direct dominances. J. Algorithms 10(2), 170–186 (1989)

14. de la Higuera, C., Nourine, L.: Drawing and encoding two-dimensional posets.
Theoret. Comput. Sci. 175(2), 293–308 (1997)

15. Hirsch, M., Meijer, H., Rappaport, D.: Biclique Edge Cover Graphs and Confluent
Drawings. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp.
405–416. Springer, Heidelberg (2007)

16. Hui, P., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Train tracks and confluent
drawings. Algorithmica 47(4), 465–479 (2007)

17. Hutton, M.D., Lubiw, A.: Upward planar drawing of single source acyclic digraphs.
SIAM J. Comput. 25(2), 291–311 (1996)

18. Jourdan, G.V., Rival, I., Zaguia, N.: Upward Drawing on the Plane Grid Using Less
Ink. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 318–327.
Springer, Heidelberg (1995)

19. Kelly, D., Rival, I.: Planar lattices. Canad. J. Math. 27(3), 636–665 (1975)
20. Lodaya, K., Weil, P.: Series-Parallel Posets: Algebra, Automata and Languages.

In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 555–565.
Springer, Heidelberg (1998)

21. Ma, T.H., Spinrad, J.: Transitive closure for restricted classes of partial orders.
Order 8(2), 175–183 (1991)

22. MacNeille, H.M.: Partially ordered sets. Trans. Amer. Math. Soc. 42(3), 416–460
(1937)

23. Mannila, H., Meek, C.: Global partial orders from sequential data. In: Proceedings
of the sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2000, pp. 161–168. ACM, New York (2000)

24. Möhring, R.H.: Computationally tractable classes of ordered sets. In: Rival, I. (ed.)
Algorithms and Order, pp. 105–193. Kluwer Academic Publishers (1989)

25. Möhring, R.H., Schäffter, M.W.: Scheduling series-parallel orders subject to 0/1-
communication delays. Parallel Comput. 25(1), 23–40 (1999)

26. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inform. Process.
Lett. 71(5-6), 199–204 (1999)

27. Novák, V.: Über eine Eigenschaft der Dedekind-MacNeilleschen Hülle. Math.
Ann. 179, 337–342 (1969)

28. Platt, C.R.: Planar lattices and planar graphs. J. Combinatorial Theory, Ser.
B 21(1), 30–39 (1976)

Planar Open Rectangle-of-Influence Drawings

with Non-aligned Frames

Soroush Alamdari and Therese Biedl

David R. Cheriton School of Computer Science, University of Waterloo
{s26hosse,biedl}@uwaterloo.ca

Abstract. A straight-line drawing of a graph is an open weak rectangle-
of-influence (RI) drawing, if there is no vertex in the relative interior
of the axis-parallel rectangle induced by the end points of each edge.
No algorithm is known to test whether a graph has a planar open weak
RI-drawing, not even for inner triangulated graphs.

In this paper, we study RI-drawings that must have a non-aligned
frame, i.e., the graph obtained from removing the interior of every filled
triangle is drawn such that no two vertices have the same coordinate.
We give a polynomial algorithm to test whether an inner triangulated
graph has a planar open weak RI-drawing with non-aligned frame.

1 Background

The rectangle-of-influence (RI for short) drawability problem was introduced by
Liotta et al. [8]. In a strong RI drawing of a graph, there is an edge between
two vertices of the graph if and only if there is no other vertex in the axis-
parallel rectangle defined by the two ends of every edge. There are two variants
of RI-drawings: In a closed RI-drawing, the rectangle required to be empty is
closed, whereas in an open RI-drawing, only the relative interior of the rectangle
is required to be empty.

Biedl et al. [3] introduced the concept of weak RI drawings in which graphs
are drawn such that for any edge the rectangle is empty, but not for all empty
rectangles the edge is necessarily present. They proved that a plane graph has a
planar weak closed RI drawing if and only if it has no filled triangle (i.e., a triangle
that has vertices in its interior.) Furthermore, they presented an algorithm to
find such a drawing in an (n− 1)× (n− 1) grid in linear time. The grid size can
be improved to (n − 3) × (n − 3) [12].

For open RI drawings, better bounds are known. Miura and Nishizeki [11]
presented an algorithm to find a small weak open RI drawing of a given 4-
connected graph. Their grid size is W × H where W + H ≤ n. Zhang and
Vaidya [15] also provided small weak open RI drawings for inner triangulated
4-connected graphs with quadrangular outer face. They do this by proving that
the drawing presented by Fusy [4] is a weak open RI drawing.

However, as opposed to (weak planar) closed RI-drawings of planar graphs,
no necessary and sufficient conditions or testing algorithms are known for the

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 14–25, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Planar Open RI-Drawings with Non-aligned Frames 15

existence of (weak planar) open RI-drawings, even for inner triangulated graphs.
This study was initiated by Miura, Matsuno and Nishizeki [10]. They first gave
necessary and sufficient conditions for planar weak open RI-drawability of tri-
angulated planar graphs. Here all faces including the outer-face are triangles,
so the outer-face is a filled triangle, which severely restricts the placement of
interior vertices and facilitates testing the existence of a weak open RI-drawing.

Miura et al. [10] also aimed to develop necessary and sufficient condition for
all inner triangulated graphs, but did not succeed. It is clear that such a drawing
imposes conditions on how filled triangles are drawn; a natural first step is hence
to remove the interior of all filled triangles and try to draw the resulting frame
graph while satisfying these conditions. Miura et al. then changed their model a
bit and only considered what they called oblique drawings where no edges of the
frame graph are drawn horizontally or vertically. They gave one set of conditions
that are clearly necessary, and showed that adding one condition made them
sufficient. (See later for more details.)

In this paper, we use a slight variant of oblique drawings that we call drawings
with non-aligned frame, which means that no two vertices of the frame graph
have the same x-coordinate or the same y-coordinate. We give necessary and
sufficient conditions for a graph to have a planar weak open RI-drawing with non-
aligned frames. Our proof is algorithmic and yields a test whether a graph has
a planar weak open RI-drawing with non-aligned frame; it also constructs such
a drawing if one exists. Also, the algorithm works via a detour into rectangular
drawings and proves a correspondence between RI-drawings and rectangular
drawings that may be of independent interest.

Due to space limitations, some details have been omitted; a full version can
be found in [1].

2 Preliminaries

Let G = (V, E) be a graph with n vertices V and m edges E. The graph G is
called simple if it has no loops or multiple edge. It is called planar if it can be
drawn in the plane without crossing. A planar drawing of G can be specified
by giving for each vertex the cyclic order of edges around it. A planar drawing
divides the plane into regions called faces. The unbounded region is called the
outer face, all other faces are called inner faces. Any vertex not on the outer
face is called an inner vertex. A plane graph is a planar graph with a planar
embedding and the outer face specified. An inner triangulated graph is a plane
graph in which every inner face is a triangle; it is called triangulated if the outer
face is also a triangle. In this paper, all graphs are assumed to be simple, plane
and inner triangulated, and we occasionally omit these quantifiers.

In a plane graph, a triangle is called filled if there is at least one vertex inside
the triangle. Crucial for our study is the frame graph, which is the graph obtained
by removing the inside of every filled triangle (see Fig. 2). Also crucial is the
concept of angles of a plane graph. Each instance of a vertex appearing in a face
is called an angle. The angles on the outer face are outer angles and the angles
on the inner faces are called inner angles.

16 S. Alamdari and T. Biedl

Given a plane graph, the dual graph is obtained by creating a vertex vf for
every face f , and adding an edge (vf , vg) whenever faces f and g share an edge.
The angles in the dual graph are in natural 1-1 correspondence with the angles
of the original graph: The angle at vertex v in face f corresponds in the dual
graph to the angle at vertex vf in the face formed where v used to be.

A planar straight-line drawing of a planar graph is a drawing without crossing
where all edges are straight-line segments. Such a drawing is called a planar weak
open rectangle-of-influence (RI for short) drawing if for every edge (v, w), the
relative interior of the axis-parallel rectangle defined by the v and w contains
no other vertex. The drawing in Fig. 1(a) is a planar weak open RI drawing.
Since we do not consider any other type of RI-drawing, we omit the classifiers
“planar”, “weak” and “open” occasionally.

0 1

1
0

4

1

1 1

1

0

0

3

4

2
1

1

0

2
3

3

3

0

(a) (b)

33

33

3

3

3 3

1

1 1

1

11

1 1

1

1 1

1
11

1 1
1

1

1

1

1

1

2

2 2

2

2

2

2

1 1

2

3

1 1
1 1

2 1

2

2

2

2

2

1

2

1

1
22

3 3

3

2

222

2 2

2

1 1 1

11

1

1

1

Fig. 1. (a) An oblique RI-drawing with RI-labels. (b) A rectangular drawing with
corresponding RD-labels in the interior.

A straight-line drawing of a graph is oblique if no edge in the drawing is axis-
parallel. It is non-aligned if no axis-parallel line intersects two or more vertices
of the graph. Every non-aligned drawing is oblique, but not vice versa. An inner
triangulated graph has a non-aligned RI-drawing if and only if it has no filled
triangle, since a non-aligned RI-drawing has no vertices on the boundaries of
rectangles and hence is a closed RI-drawing.

An oblique drawing of a graph G naturally induces a labeling of the angles
with {0, 1, 2, 3, 4} by assigning to each angle the number of coordinate axes
contained in the angle. Since we use this concept only for RI-drawings, we call
it an RI-labeling. The following is known.

Lemma 1. [10] In an oblique RI-drawing of an inner triangulated graph, the
RI-labels of any inner face consists of two 1s and one 0.

An inner triangulated graph G is said to have a inner rectangular dual drawing
if G can be represented as the touching graph of a set of interior-disjoint axis-
aligned rectangles such that their union is simply connected (i.e., has no holes.)
Fig. 1(b) shows an inner rectangular dual drawing of the graph in Fig. 1(a) (ig-
nore the circles on the lines.) A rectangular dual drawing is an inner rectangular
dual drawing where the union of the rectangles is also a rectangle.

Planar Open RI-Drawings with Non-aligned Frames 17

A graph has an inner rectangular dual drawing if and only if it does not
have a filled triangle [14,7,6]. Recall that a graph has a non-aligned RI-drawing
if and only if it has no filled triangle, which suggests a relationship between
these two types of drawings. We prove this formally in this paper, arguing via a
third, closely related, type of drawing. A drawing of a plane graph is called an
inner rectangular drawing if every edge is drawn as a horizontal or vertical line
segment so that every inner face boundary is a rectangle. A rectangular drawing
is an inner rectangular drawing in which the outer face is a rectangle too. See
Fig. 1(b) and 5 for examples. Note that any (inner) rectangular dual drawing of
a graph G is an (inner) rectangular drawing of a graph that is the dual graph of
G except for some changes near the outer-face.

An inner rectangular drawing of a graph G induces a labeling of the (graph-
theoretic) angles that we call an RD-labeling: If the angle is drawn with (geomet-
ric) angle iπ/2, then assign it label i ∈ {1, 2, 3, 4}. Such a labeling can be used
to characterize graphs that have a rectangular drawing. Call an RD-labeling ad-
missable if (a) each inner angle is labeled 1 or 2, (b) each inner face has exactly
4 angles of label 1, (c) for each vertex, the labels of incident angles sum to 4,
and (d) the sum of the labels on the outer-face is 2k + 4, where k is the number
of angles on the outer-face.

Lemma 2. [9] A plane graph has an inner rectangular drawing if and only if it
has an admissible RD-labeling.

3 Results

Let G be an inner triangulated graph. Let F be the frame graph of G. In this
section we give a constructive algorithm to decide whether G admits an open RI
drawing such that F is non-aligned.

Overview: Like the result by Miura et al. [10], our algorithm is based on
testing whether the frame-graph F of G has an RI-labeling that satisfies certain
restrictions, and if so, compute an RI-drawing from it. We hence review their
approach first and explain the changes with our algorithm.

Miura et al. first test for every filled triangle T whether the graph inside T has
an RI-drawing. If this fails for any T then clearly G has no RI-drawing either.
So in the following we always assume that all interiors of all filled triangles of T
have an RI-drawing, at least under some restrictions on the drawing of T . Next,
Miura et al. compute the restrictions made by a filled triangle T .

Lemma 3. [10] If T = {a, b, c} is a triangle of the frame graph that is a filled
triangle in G, and if a is not adjacent to all vertices inside T , then in any open
RI-drawing of G with oblique frame, the induced oblique RI-drawing of the frame
has RI-label 1 at a.

So there is a set A of inner angles of the frame graph F that must be labeled 1
in any non-aligned (hence oblique) RI-drawing of F induced by an RI-drawing
of G. Moreover, if we can find a non-aligned RI-drawing of F that has these
RI-labels, then it can be expanded into an open RI-drawing of graph G.

18 S. Alamdari and T. Biedl

1

1

1

1

1 1

1

Fig. 2. Graph G (left) and its frame graph F with forced RI-labels (right)

Definition 1. (based on [10]) A labeling of the angles of the frame graph F with
{0, 1, 2, 3, 4} is a decent RI-labeling if (a) the labels at every vertex sum to 4,
and (b) every inner triangle has labels {0, 1, 1}, and every angle in A is labeled
1, where A is the set of restriction implied from the filled triangles.

A decent RI-labeling is called good if (c) the outer angles have labels {2, 3, 4}.
A decent RI-labeling is called admissable if (c’) the sequence of labels on the

outer angles does not contain 01∗0 as a subsequence.

Miura et al. showed that if G has an open RI-drawing with oblique frame, then
F has a decent RI-labeling. However, they also showed a graph where this is not
sufficient. Hence they added condition (c) which forces the outer-face to consist
of four chains that are monotone in x and y. This condition is not necessary, but
they show that adding it gives sufficient conditions: any graph that has a good
RI-labeling has an oblique RI-drawing.

We show here that using the restriction (c’) gives conditions that are both
necessary and sufficient, at least for the closely related concept of drawings with
non-aligned frame.

Theorem 1. An inner triangulated graph G has a planar weak open RI-drawing
with non-aligned frame if and only if the frame graph F has an admissible RI-
labeling.

To prove this theorem, first consider necessity. Miura et al. already showed that
conditions (a) and (b) of an admissable RI-labeling are necessary. We only sketch
the proof of the necessity of condition (c’). Assume in a (planar, oblique) RI-
drawing the sequence of RI-labels on the outer angles contain 00 as a subse-
quence, say at vertices v1 and v2 and edges e0, e1, e2. Edge e1 is not axis-aligned
so the axis-aligned rectangle defined by its endpoints is non-trivial and must not
contain the other endpoints of e0 and e2. But then the RI-labels of 0 force e0

and e2 to cross each other. Hence no (planar, oblique) RI-drawing can exist. The
proof for 01+0 as a subsequence is similar but more intricate; it is vital for this
proof that the RI-drawing is non-aligned. See [1] for details.

We do not prove sufficiency directly; instead we give an algorithm that tests
whether an inner triangulated G has a planar weak open RI-drawing with non-
aligned frame, and the steps of the algorithm imply sufficiency of an admissable
RI-labeling. We outline here our algorithm:

Planar Open RI-Drawings with Non-aligned Frames 19

(i) Compute the frame graph F (see Fig. 2).
(ii) For every triangle T of F that was filled in G, compute whether the interior

of T is realizable in an open RI-drawing [10]. If this fails for any triangle,
then G has no open RI-drawing. Else, let A be the set of inner angles of F
that must have RI-label 1 (Lemma 3.) See Fig. 2.

(iii) Construct D (see Fig. 3), which is roughly the dual graph of F after adding
one vertex in the outer-face.

(iv) Find an admissible RD-labeling of D that respects A in some sense. See
Fig. 5. If there is none, stop: F does not have a non-aligned RI-drawing
(as we will show in Lemma 4.) . Otherwise, convert the RD-labeling to an
inner rectangular drawing by Lemma 2.

(v) Expand the inner rectangular drawing ΓD into a rectangular drawing ΓD′

of a super-graph D′, by adding more rectangular faces in the outside. ΓD′

also respect A (see Fig. 5).
(vi) Construct the dual graph of D′ and then remove the outer face vertex. The

resulting graph F ′ is a super-graph of the frame-graph F (see Fig. 6).
(vii) From the RD-labeling of D′, extract an RI-labeling of F ′. This RI-labeling

is decent, but in fact, it is good. See Fig. 6.
(viii) Using this good RI-labeling, create a non-aligned RI-drawing of F ′ using

a variant of the algorithm presented in [10]. See Fig. 7.
(ix) Then insert the filled triangles (which is possible by choice of A) to obtain

an open RI-drawing with non-aligned frame of a super-graph G′ of G.
(x) Remove the vertices of VG′\VG from the drawing (see Fig. 7).

Steps (i), (ii), (ix) and (x) are either taken from [10] or are straightforward. We
give definitions and details for the other steps below.

Definition of D: We first clarify how graph D is defined. Let F be the frame-
graph, i.e., F is an inner triangulated graph without any filled triangle. Let F+

be the graph obtained from F by adding one vertex vo in its outer-face. For
every outer angle α at a vertex v, we add three edges from v to vo in F+ at the
place (in the cyclic order around v) where α was. Thus, a vertex that appears
on the outer-face of F twice would have 6 edges to vo, though not all of them
would be consecutive. Now let D be the dual graph of F+. See Fig. 3.

Recall that there is a 1-1-correspondence between angles in a planar graph
and its dual. So for every inner angle α of F there is a corresponding inner angle
β of D. For every outer angle αi of F , there are four corresponding inner angles
β1

i , β2
i , β3

i , β4
i of D at the duals of the three edges from the vertex at αi to the

added vertex vo in F+. See Fig. 3.

From Admissable RI-Labelings to Rectangular Drawings: Recall that
we assume the existence of a set A of inner labels of F that must be labeled 1 in
any decent RI-labeling. We use the same set A to restrict rectangular drawings
of D. More precisely, we say that a rectangular drawing ΓRD of D respects A if
for every angle α ∈ A (which is an inner angle of F), the corresponding angle in
ΓRD has RD-label 1.

In this part, we aim to show that step (iv) is correct: If D does not have a
rectangular drawing that respects A, then F does not have a non-aligned open

20 S. Alamdari and T. Biedl

vo

αi

β

α

β4

i

β3

i

β1

i
β2

i

Fig. 3. The graph F from Fig. 2 (dotted), the added vertex vo (dashed) and the graph
D (solid)

RI-drawing. We prove this by showing that any non-aligned open RI-drawing of
F can be converted to a rectangular drawing of D with corresponding angles.

Definition 2. We say that an RI-labeling �RI of F and an RD-labeling �RD of
D have the same inner structure if for any two corresponding inner angles α
and β of F and D, �RI(α) = 1 if and only angle �RD(β) = 1.

Lemma 4. For any admissible RI-labeling �RI of F , there exists an admissible
RD-labeling �RD of D that has the same inner structure.

Proof. Given �RI(.) we define �RD(.) as follows: If α is an inner angle of F with
corresponding inner angle β of D, then set �RD(β) = 2 − �RI(α). Since α has
label 0 or 1, hence β has label 1 or 2, and it has label 1 if and only if α has label
1, so the two sets of labels have the same inner structure.

If α is an outer angle of F , then assigning labels to its corresponding 4 angles
of D is more complicated (and in particular, not always a local operation.) Let
α0, . . . , αk−1 be the outer angles of F in clockwise order; addition in the following
is modulo k. For each αi, let β1

i , . . . , β4
i be the four corresponding inner angles

of D, in clockwise order around the face. Now for each i (see also Fig. 4):

– If �RI(αi) = 0, then assign labels 2, 2, 2, 2 to β1
i , β2

i , β3
i , β4

i .
– If �RI(αi) = 2, then assign labels 1, 2, 2, 1 to β1

i , β2
i , β3

i , β4
i .

– If �RI(αi) = 3, then assign labels 1, 1, 2, 1 to β1
i , β2

i , β3
i , β4

i .
– If �RI(αi) = 4, then assign labels 1, 1, 1, 1 to β1

i , β2
i , β3

i , β4
i .

– If �RI(αi) = 1, then we assign 1, 2, 2, 2 or 2, 2, 2, 1 to β1
i , β2

i , β3
i , β4

i , but the
choice between these depends on the neighborhood.
Explore from angle αi both clockwise and counter-clockwise along the outer-
face until we obtain a maximal subsequence where all RI-labels are 1. Say
this sequence is αj , . . . , αl. Since the RI-labeling is admissable, by condi-
tion (c’) the sequence αj−1, αj , . . . , αl, αl+1 does not have the form 01+0, so

Planar Open RI-Drawings with Non-aligned Frames 21

one of αj−1 and αl+1 has label ≥ 2. If �RI(αj−1) ≥ 2, then assign labels
1, 2, 2, 2 to β1

i , β2
i , β3

i , β4
i (and also to all other corresponding angles in that

subsequence), else assign labels 2, 2, 2, 1 to β1
i , β2

i , β3
i , β4

i .

Finally, for all outer angles of D, we set the RD-label such that the sum of labels
around the vertex is 4. We verify that the labeling is admissible:

4

2

0

1
1 1

2

2
2

2
2 2

2 2 2
2 2

2 2 2
1

1
1

1
1

1
1

3

11
1

12

2
2 2

2
2

1

2

22

3

22

1
2

Fig. 4. Conversion of RI-labels of F to RD-labels of D

– Each inner angle of D has RD-label 1 or 2 since RI-label of inner angles of
F are 0 or 1.

– Every inner face f of D has exactly 4 angles that have RD-label 1. For f
corresponds to some vertex vf of F , and the RI-labels at vf sum to 4. By
construction, an RI-label i at vertex vf gives rise to i angles with RD-label
1 at f (this holds even if vf is an outer vertex of F .)

– The RD-labels at every vertex v of D sum to 4. For if v is an inner vertex,
then it corresponds to a triangle T of F which had RI-labels {0, 1, 1}, which
correspond to RD-labels {2, 1, 1}. If v is an outer vertex, then by construction
of the RD-labels at outer angles of D the total is 4.

– We claim that every outer angle α of D has RD-label {1, 2, 3}. Recall that
�RD(α) is defined as 4 minus the sum of other labels at the vertex v that
supports α. Since there is at least one other label at v, and it is 1 or 2, hence
�RD(α) ≤ 3.
Assume for contradiction that �RD(α) ≤ 0. Since there are at most two
inner angles at v, hence there must be exactly two (say β4

i and β1
i+1) and

they must both have RD-label 2. From the construction, this can happen
only if �RI(αi) = 0 = �RI(αi+1). But an admissable RI-labeling does not
have consecutive labels 0 on the outer-face by (c’), so this cannot happen.

– Finally we must show that the number of labels on the outer face sum to
2k + 4, where k is the number of angles on the outer-face of D. This is a
simple (but lengthy) counting-argument, which we omit for brevity’s sake.

Hence the RD-labeling is admissible as desired. �
Remark 1. Note that Lemma 2 implies a correspondence between inner rect-
angular drawings and RI-drawings: Any non-aligned RI-drawing defines an ad-
missable RI-labeling, which implies an admissable RD-labeling, which implies
an inner rectangular drawing, and they all have the same inner structure. The
other direction also holds, and is proved implicitly with our algorithm.

22 S. Alamdari and T. Biedl

The contrapositive of Lemma 4 proves correctness of step (iv). If D does not have
an admissable RD-labeling that respects A, then F cannot have a non-aligned
RI-drawing with all angles in A having RI-label 1. Fig. 5 shows an admissable
RD-labeling for the restrictions of Fig. 3, and the corresponding inner rectangular
drawing.

1

1

1
1

1

1

1

f0

f5

f6

f8

f9
f4

f7

f3

f1

f2

f2

f3

f4

f5

f6

f8f9

f1

f7

f0

Fig. 5. Graph D with the restrictions on RD-labels (left), and an inner rectangular
drawing expanded to a rectangular drawing by adding shaded rectangles (right)

From Inner Rectangular Drawing to Non-aligned RI-Drawing

Lemma 5. Any inner rectangular drawing ΓD of D that respects A can be ex-
panded into a rectangular drawing ΓD′ of a graph D′ of size O(|D|) such that
inner angles of D are inner angles of D′, and ΓD′ respects A.

Proof. As part of his orthogonal-shape approach to orthogonal graph drawing,
Tamassia ([13], see also [2]) provided an algorithm to add a linear number of
vertices and edges to an orthogonal drawing to turn it into a rectangular drawing
without changing directions of edges. The algorithm does not create any vertex
of degree 4. Applying this algorithm to the inner rectangular drawing ΓD gives
a rectangular drawing ΓD′ of a graph D′ and only adds vertices and edges in
the outer-face, since all inner faces are rectangles already. Hence all inner angles
(and their RD-labels) are preserved. �
Lemma 6. If D′ has a rectangular drawing ΓD′ that respects A, then there is a
super graph F ′ of F that has a good RI-labeling.

Proof. We prove this by converting the RD-labeling of ΓD′ into an RI-labeling
of F ′, hence more or less the reverse of the proof of Lemma 4. Let F ′ be the dual
of D′ minus the outer face vertex. For every angle α of F ′, let i be the number of
angles in D′ that correspond to α and that have RD-label 1 (i.e., their geometric
angle is π/2.) Set �RI(α) = i. See Fig. 6.

Since every inner vertex of D′ has RD-labels {1, 1, 2} at its angles, every inner
triangle of F ′ receives RI-labels {1, 1, 0}. Since every face of the RD-drawing is
a rectangle, the RI-labels at any vertex of F ′ sum to 4. Also, any angle in A
obtains RI-label 1 since its corresponding label had RD-label 1, so the resulting
RI-labeling is decent. But in fact it is good: in a rectangular drawing (where the
outer-face is a rectangle), any rectangle adjacent to the outer-face has at least

Planar Open RI-Drawings with Non-aligned Frames 23

1

1 1

11
1

1

1
1

1
11

1 1

1
1

1

2

2

2 2 2

1 1
1

3

3

3

3

0

0

0

0

0

00

0

0 0

0

0

0

0

00

1

1 1
1

1

1
11

1 1

1

0

1 1

1

Fig. 6. The drawing ΓD′ (dotted edges) and the graph F ′ (left) and the corresponding
good RI-labeling of F ′ (right)

two angles of value π/2 on the outer-face, and so any outer angle of F ′ receives
RI-label 2, 3 or 4. �

Lemma 7. If F ′ has a good RI-labeling, then F ′ has a non-aligned RI-drawing
with this RI-labeling.

Proof. We can apply Miura et al.’s algorithm to construct an RI-drawing. How-
ever, their algorithm only promises an oblique drawing; it need not be non-
aligned. But we can modify their algorithm to make the drawing non-aligned.
Briefly, they can show that valid coordinates can be found by solving a system
of constraints. All constraints have the form of an acyclic digraph where edge-
weights express lower bounds on the differences of x-coordinates. Since there are
no upper bounds on relative x-coordinates, we can find a solution to this system
of constraints where all x-coordinates are distinct (e.g. by adding edges to turn
the digraph into a total order (a complete acyclic digraph) and enforcing a mini-
mum weight of 1 on all edges.) Similarly we can compute distinct y-coordinates.
Hence we obtained a non-aligned RI-drawing with the same RI-labels. �

Putting It All Together: If a graph G has an open RI-drawing with non-
aligned frame F , then it has an admissable RI-labeling, hence D has an ad-
missable RD-labeling (Lemma 4), hence D has an inner rectangular drawing
(Lemma 2). and it respects A. Expand the inner rectangular drawing to a rect-
angular drawing (Lemma 5), extract a good RI-labeling from it (Lemma 6), and
create a non-aligned RI-drawing from it (Lemma 7). See also Fig. 7. Insert the
filled triangles and delete the added vertices and edges then results in the de-
sired open RI-drawing with non-aligned frame of G. This proves correctness of
the algorithm.

Our proof was constructive and gives rise to an algorithm to test whether
G has an open RI-drawing with non-aligned frame. It remains to analyze the
run-time of this algorithm. Most steps are clearly doable in linear time. The
bottleneck is the time to test whether D has an RD-labeling that respects A.

We do this with a flow-approach inspired by Tamassia [13]. We only sketch
the details here. Tamassia created a flow network of a plane graph that encodes

24 S. Alamdari and T. Biedl

3

0

1

3

0
1

11

1

1

00
0

1

1

1

1
1

1

1

0

1
1 1

1

1

1

1

1

1

1

0

11

2

3

2

10

11

0
0

1
1 3

1

0

0

2

2

2

0

1

0
1

0

0
0 1

Fig. 7. The RI-drawing of G obtained by the algorithm

the shapes (i.e., abstract descriptions via bends and angles) of all possible plane
orthogonal drawings. It is easy to add upper and lower bounds that forbid bends
on the edges, forbids reflex angles at interior faces, and forces angles in A to have
geometric angle π/2. The feasible integral flows in this network then correspond
to the desired RD-labels. Tamassia’s result required finding a minimum-cost
flow, but since we forbid bends on edges, we only need to find a feasible flow,
which can be done in O(n1.5 log n) time [5].

Theorem 2. Let G be a plane inner triangulated graph. In O(n1.5 log n) time,
we can test whether G has a planar weak open RI-drawing with non-aligned
frame, and if so, construct it.

We briefly return to the suffiency for Theorem 1. If F has an admissable RI-
labeling, then as mentioned after Lemma 4, D has a rectangular drawing that
respects A. Steps (iv-x) of the algorithm then construct a planar weak open
RI-drawing of G with non-aligned frame, proving Theorem 1.

4 Conclusion

We presented an algorithm to find an open RI drawing with non-aligned frame
of a given inner triangulated graph G, if there exists such a drawing. We also
characterized existence of such drawings in terms of properties of RI-labelings.

Our results also imply a correspondence between non-aligned RI-drawings and
inner rectangular drawings. Lemma 4 shows that any non-aligned RI-drawing
can be converted to an inner rectangular drawing with the same inner structure.
Steps (iv)-(x) of our algorithm show that any inner rectangular drawing can be
converted to a non-aligned RI-drawing, that preserves the inner structure. So
apart from modifications near the outer-face (rectangles can “slide outward”),
there is a 1-1-correspondence between non-aligned RI-drawings and inner rect-
angular drawings.

The most pressing open problem is what happens when we want to drop “with
non-aligned frame”. Can we efficiently test whether a given inner triangulated

Planar Open RI-Drawings with Non-aligned Frames 25

graph has a weak open RI-drawing? We note here that the concept of RI-labeling
can be generalized quite easily to the case when the drawing is not necessarily
non-aligned, if we add labels in {0, 1} to each edge with an edge labeled 1 if it
is parallel to a coordinate axis. It is quite easy to find necessary conditions for
such a labeling, but are they sufficient? And if they are sufficient, how easy is it
to test whether a graph has a labeling that satisfies these conditions? Neither of
these questions appears straight-forward to answer.

Secondly, what is the situation for planar graph that are not inner trian-
gulated? How quickly can we test whether they have a weak open RI-drawing
(perhaps under some restrictions on the frame graph)?

References

1. Alamdari, S., Biedl, T.: Planar Open Rectangle-of-Influence Drawings with Non-
Aligned Frames. Technical Report CS-2011-17, David R. Cheriton School of Com-
puter Science, University of Waterloo (2011)

2. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall (1998)

3. Biedl, T.C., Bretscher, A., Meijer, H.: Rectangle of Influence Drawings of Graphs
without Filled 3-Cycles. In: Kratochv́ıl, J. (ed.) GD 1999. LNCS, vol. 1731, pp.
359–368. Springer, Heidelberg (1999)

4. Fusy, E.: Transversal structures on triangulations: A combinatorial study and
straight-line drawings. Discrete Mathematics 309(7), 1870–1894 (2009)

5. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45, 783–
797 (1998)

6. Kozminski, K., Kinnen, E.: Rectangular dual of planar graphs. Networks 5, 145–157
(1985)

7. Leinwand, S.M., Lai, Y.-T.: An algorithm for building rectangular floor-plans. In:
21st Design Automation Conference, pp. 663–664. IEEE Press (1984)

8. Liotta, G., Lubiw, A., Meijer, H., Whitesides, S.H.: The rectangle of influence
drawability problem. Computational Geometry 10(1), 1–22 (1998)

9. Miura, K., Haga, H., Nishizeki, T.: Inner rectangular drawings of plane graphs.
Int. J. Comput. Geometry Appl. 16(2-3), 249–270 (2006)

10. Miura, K., Matsuno, T., Nishizeki, T.: Open rectangle-of-influence drawings of
inner triangulated plane graphs. Discrete & Computational Geometry 41(4), 643–
670 (2009)

11. Miura, K., Nishizeki, T.: Rectangle-of-influence drawings of four-connected plane
graphs. In: Asia-Pacific Symposium on Information Visualization (APVIS). CR-
PIT, vol. 45, pp. 75–80 (2005)

12. Sadasivam, S., Zhang, H.: Closed rectangle-of-influence drawings for irreducible
triangulations. Comput. Geom. Theory Appl. 44, 9–19 (2011)

13. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16, 421–444 (1987)

14. Ungar, P.: On diagrams representing maps. J. London Mathematical Society 28(3),
336–342 (1953)

15. Zhang, H., Vaidya, M.: On open rectangle-of-influence and rectangular dual
drawings of plane graphs. Discrete Mathematics, Algorithms and Applications 1,
319–333 (2009)

Proportional Contact Representations of Planar Graphs

Muhammad Jawaherul Alam1,�, Therese Biedl2,��, Stefan Felsner3,
Michael Kaufmann4, and Stephen G. Kobourov1,�

1 Department of Computer Science, University of Arizona, Tucson, AZ, USA
2 David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

3 Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
4 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen, Germany

Abstract. We study contact representations for planar graphs, with vertices rep-
resented by simple polygons and adjacencies represented by point-contacts or
side-contacts between the corresponding polygons. Specifically, we consider pro-
portional contact representations, where pre-specified vertex weights must be
represented by the areas of the corresponding polygons. Several natural opti-
mization goals for such representations include minimizing the complexity of
the polygons, the cartographic error, and the unused area. We describe construc-
tive algorithms for proportional contact representations with optimal complexity
for general planar graphs and planar 2-segment graphs, which include maximal
outerplanar graphs and partial 2-trees.

1 Introduction
For both theoretical and practical reasons, there is a large body of work about represent-
ing planar graphs as contact graphs, where vertices are represented by geometrical ob-
jects with edges corresponding to two objects touching in some fashion. Typical classes
of objects might be curves, line segments, or polygons. An early result is Koebe’s the-
orem [15] that all planar graphs can be represented by touching disks.

In this paper we consider contact graphs, with vertices represented by simple poly-
gons with disjoint interiors, and adjacencies represented by point-contacts or side-
contacts between corresponding polygons; see Fig. 1. In the weighted version of the
problem, the input is not only a planar graph but also a weight function w : V (G) →
R+ that assigns a weight to each vertex of G = (V, E). A graph G admits a pro-
portional contact representation with the weight function w if there exists a contact
representation of G where the area of the polygon for each vertex v of G is proportional
to w(v). Such representations have practical applications in cartography, VLSI Layout,
and floor-planning.

Using adjacency of regions to represent edges in a graph can lead to a more com-
pelling visualization than drawing a line segment between two points [4]. In such repre-
sentations of planar graphs it is desirable, for aesthetic, practical and cognitive reasons,
to limit how complicated the polygons are. In practical areas like VLSI layout, it is
also desirable to minimize the unused area in the representation. With these consider-
ations in mind, we study the problem of constructing proportional point-contact and

� Research funded in part by NSF grants CCF-0545743 and CCF-1115971 and supported by
NSERC.

�� Research partially supported by EUROGIGA project GraDR and DFG Fe 340/7-2.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 26–38, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Proportional Contact Representations of Planar Graphs 27

Fig. 1. (a) A planar graph and its proportional point-contact representation with 4-sided non-
convex polygons; (b) A 2-tree and its proportional side-contact representation with trapezoids
and proportional point-contact representation with triangles; (c) A maximal outerplanar graph
and its hole-free proportional side-contact representation with 4-sided convex polygons

side-contact representations of planar graphs w.r.t. the following parameters, partially
taken from the cartography-oriented literature, e.g. [13,20] :

– complexity: maximum number of sides in a polygon representing a vertex;
– cartographic error: maxv∈V |A(v)−w(v)|, where A(v) is v’s area, w(v) its weight;
– holes: total unused area of the representation that is in the interior.

1.1 Related Work

Koebe’s theorem [15] is an early example of point-contact representation and shows
that a planar graph can be represented by touching circles. Any planar graph also has
a contact representation where all the vertices are represented by triangles [5] and with
cubes in 3D [8]. Badent et al. [3] show that partial planar 3-trees and some series-
parallel graphs also have contact representations with homothetic triangles. Recently,
Gonçalves et al. [11] proved that any 3-connected planar graph and its dual can be
simultaneously represented by touching triangles.

While the above results deal with point-contacts, the problem of constructing side-
contact representations is less studied. Gansner et al. [9] show that any planar graph
G has a side-contact representation with convex hexagons. Moreover, they show that
6 sides are necessary if convexity is required. For maximal planar graphs, the repre-
sentation obtained by the algorithm in [9] is hole-free. Buchsbaum et al. [4] give an
overview on the state of the art concerning rectangle contact graphs. The characteri-
zation of graphs admitting a hole-free side-contact representation with rectangles was
obtained by Kozḿiński and Kinnen [16] or in the dual setting by Ungar [19]. There is a
also a simple linear time algorithm for constructing triangle side-contact representations
for outerplanar graphs [10].

28 M.J. Alam et al.

Note that in all the contact representation results mentioned above, the areas of the
circles or polygons are not considered. That is, these results deal with the unweighted
version of the problem. Furthermore, previous works on side-contact representations
rarely focused on the presence or absence of holes, or the actual area taken by such
holes. In our work we take both the area of regions and the presence of holes into
account. For example, we show that representations by triangles or any convex shapes
are not possible for certain planar graphs with pre-specified weights.

Motivated by the application in VLSI layouts, contact representations of planar
graphs with rectilinear polygons and no holes have also been studied and it is known that
8 sides are sometimes necessary and always sufficient [21]. Very recently, we showed
that 8 sides are also sufficient for the weighted case [1].

1.2 Our Results

In this paper we study the problem of proportional contact representation of planar
graphs, with the goal to minimize the complexity of the polygons, the cartographic er-
ror, and the unused area. The four main results in our paper are optimal (with respect
to complexity) algorithms for proportional contact representations for general planar
graphs, outerplanar graphs, and partial 2-trees. We say k-sided polygons are sometimes
necessary and always sufficient for representations of a particular class of planar graphs
when there is an algorithm to construct a representation for any graph of this class with
k-sided polygons and there is at least one example of a graph in this class that requires
a (non-degenerate) k-sided polygons for any representation. Specifically, we show that:
(a) 4-sided polygons are sometimes necessary and always sufficient for a point-contact
proportional representation for any planar graph; (b) triangles are necessary and suffi-
cient for point-contact proportional representation of partial 2-trees; (c) trapezoids are
sometimes necessary and always sufficient for side-contact proportional representation
of partial 2-trees; (d) quadrilaterals (convex 4-sided polygons) are sometimes necessary
and always sufficient for hole-free side-contact proportional representation for maximal
outerplanar graphs. In Table 1, we summarize the main results.

Table 1. The entries in this table correspond to results that are proven this paper, except one
marked (∗), which is trivial to see since any polygon with area > 0 requires at least three sides,
and another marked (∗∗), which follows from [10]. All the upper bound results are obtained by
algorithm for representations that have no cartographic error. Note that some related results not
in this table do have cartographic error.

Class of Graphs Convexity Complexity
Lower Bound

Complexity
Upper Bound

Hole-Free Type of
Contact

Planar × 4 4 × point
Partial 2-Trees

√
3∗ 3 × point

Partial 2-Trees
√

4∗∗ 4 × side
Maximal outerplanar

√
4 4

√
side

Proportional Contact Representations of Planar Graphs 29

2 Preliminaries
In a point-contact representation of a planar graph G = (V, E), we construct a set P
of closed simple interior-disjoint polygons with an isomorphism P : V → P where for
any two vertices u, v ∈ V , the boundaries of P(u) and P(v) touch at a contact point if
and only if (u, v) is an edge. A side-contact representation of a planar graph is defined
analogously, where instead of a contact point, we have a contact side between P(u)
and P(v), which is a non-degenerate line segment in the boundary of both. Let Γ be
a contact (point-contact or side-contact) representation of G. Then each interior face
of G corresponds to a bounded hole (possibly empty) in Γ and the exterior face of G
corresponds to the unbounded hole in Γ .

In the weighted version of the problem, the input also includes a weight function
w : V (G) → R+ that assigns a positive weight to each vertex of G. We say that G
admits a proportional contact representation with the weight function w if there is a
contact representation of G where the area of the polygon for each vertex v of G is
proportional to its weight w(v). We define the complexity of a polygonal region as the
number of sides it has. In this paper, we also consider a polygon with less than k sides
to be a (degenerate) k-sided polygon for convenience.

A plane graph is a planar graph with a fixed embedding. A plane graph is fully
triangulated or maximally planar if all its faces including the outerface are triangles.
Both the concept of “canonical order” [6] and “Schnyder realizer” [18] are defined for
fully triangulated plane graphs in the context of straight-line drawings of planar graphs
on an integer grid. We briefly review the two concepts below:

Let G = (V, E) be a fully triangulated plane graph with outerface u, v, w in clock-
wise order. Then G has a canonical order of the vertices v1 = u, v2 = v, v3, . . .,
vn = w, |V | = n, which satisfies for every 4 ≤ i ≤ n:

– The subgraph Gi−1 ⊆ G induced by v1, v2, . . ., vi−1 is biconnected, and the
boundary of its outer face is a cycle Ci−1 containing the edge (u, v).

– The vertex vi is in the exterior face of Gi−1, and its neighbors in Gi−1 form an (at
least 2-element) subinterval of the path Ci−1 − (u, v).

A Schnyder realizer of a fully triangulated graph G is a partition of the interior edges
of G into three sets T1, T2 and T3 of directed edges such that for each interior vertex v,
the following conditions hold:

– v has out-degree exactly one in each of T1, T2 and T3,
– the counterclockwise order of the edges incident to v is: entering T1, leaving T2,

entering T3, leaving T1, entering T2, leaving T3.

The first condition implies that each Ti, i = 1, 2, 3 defines a tree rooted at exactly one
exterior vertex and containing all the interior vertices such that the edges are directed
towards the root. The following well-known lemma (for example, see [5]) shows a
profound connection between canonical orders and Schnyder realizers.

Lemma 1. Let G be a fully triangulated plane graph. Then a canonical order of the
vertices of G defines a Schnyder realizer of G, where the outgoing edges of a vertex v
are to its first and last predecessor (where “first” is w.r.t. the clockwise order around
v), and to its highest-numbered successor.

30 M.J. Alam et al.

3 Proportional Point-Contact Representations of Planar Graphs
In this section we show that 4-sided non-convex polygons are sometimes necessary
and always sufficient for a proportional contact representation of a planar graph. We
first describe an algorithm to obtain proportional point-contact representations of planar
graphs using 4-sided non-convex polygons. We then show that there exists a planar
graph with a given weight function that does not admit a proportional point-contact
representation with convex polygons, thus making our 4-sided construction optimal.

Theorem 1. Let G = (V, E) be a planar graph and let w : V → R+ be a weight
function. Then G admits a proportional point-contact representation with respect to w
in which each vertex of V is represented by a 4-sided polygon.

Proof. We prove this claim constructively, showing how to generate a proportional con-
tact representation of G with respect to w. We first take a planar embedding of G and
assume that it is fully triangulated, for if it is not, we can add dummy vertices to make
it so, and later remove those dummy vertices from the obtained proportional contact
representation.

3

3

3

3

2

2
3

1

1
2

1
21

1

3

3

1 2

j

n S(n)

S(1)

n

2
1

S(2)

(a) (b)

Fig. 2. (a) The canonical order and Ti (marked by labels); (b) the placement of 1,2,n

Assume after possible scaling that w(v) ≤ 1/n2 for all v ∈ V and fix an
arbitrary outer-face. We construct the drawing incrementally, following a canonical
ordering v1, . . . , vn. We prescribe what the polygon assigned to j looks like before
even placing it (here and in the rest of the paper we use j as a shorthand for vj). So
let T1, T2, T3 be the Schnyder realizer defined by the canonical ordering, where T1 is
rooted at 1, T2 is rooted at 2 and T3 is rooted at n; see Fig. 2(a). Let Φi(j) be the parent
of j in tree Ti.

It is easy to show that T−1
2 ∪T1 is an acyclic graph on the vertex set V −{n}, where

T−1
2 is the tree T2 with the direction of all its edges reversed. For every vertex j �= n,

let π(j) be the index of j in a topological order of this graph. Then n ≥ π(Φ1(j)) >
π(j) > π(Φ2(j)) ≥ 1. Now for every vertex j �= 1, 2, n, we define the spike S(j)
to be a 4-sided polygon with one reflex vertex. One segment (the base) is horizontal
with y-coordinate j. Its length will be determined later, but it will always be at least
2/n2 ≥ 2w(j). From the left endpoint of the base, the spike continues with the upward
segment, which has slope π(j) and up to its tip which has y-coordinate y = Φ3(j).
Next comes the downward segment until the reflex vertex, and from there to the right

Proportional Contact Representations of Planar Graphs 31

endpoint of the base; see Fig. 3(a). The placement of the reflex vertex is arbitrary, as
long as the resulting shape has area w(j) and the down-segment has positive slope.
Note that since the base has length ≥ 2w(j) and y-coordinate j, the reflex vertex will
have y-coordinate at most j + 1. We first place 1, 2, n, and then add 3, . . . , n − 1 (in
this order):

– Vertex 1 is represented by a triangle S(1) whose base has length 2w(1)/(n − 1),
placed arbitrarily with y-coordinate 1. The tip of S(1) has y-coordinate n.

– Vertex 2 is represented by a triangle S(2) whose base has length 2w(2)/(n − 2),
placed at y-coordinate 2 and with its left endpoint abutting S(1). The tip of S(2)
has y-coordinate n.

– Vertex n is represented by a triangle whose base is at y-coordinate n and long
enough to cover the tips of S(1) and S(2). We choose the height of S(n) such that
the area is correct.

Φ3(j)

j

j + 1

j

j + 1
sl

op
e
t

sl
op

e
≥

t
+

1

up
-s

eg
m

en
t:

sl
op

e
π
(
j
)

do
w

n-
se

gm
en

t:
sl

op
e
>

π
(
j
)

tip slo
pe
≤

t
−

1

base

base

s�

p�

sr

pr

S(j) S(Φ2(j))

S(Φ1(j))

p

j − 1

(a) (b)

Fig. 3. (a) Adding j; (b) computing the width of the base

We maintain the following invariant: For j ≥ 2, after vertex j has been placed, the
horizontal line with y-coordinate j + 1 intersects only the spikes of the vertices on the
outer-face of Gj , and in the order in which they occur on the outer-face.

To place j ≥ 3, we place the base of S(j) with y-coordinate j, and extend it from
the down-segment of Φ1(j) to the up-segment of Φ2(j). Recall that Φ2(j) and Φ1(j)
are exactly the first and last predecessor of j, and j = Φ3(i) for all other predecessors
i �= j. Hence S(j) touches S(Φ1(j)) and S(Φ2(j)) at the ends of the base, and all other
predecessors i of j have their tips at the base. So this creates a contact between j and
all its predecessors. The rest of S(j) is then as described above. It is easy to verify the
invariant, and therefore S(j) does not intersect any other spikes. To see that the base of
S(j) is long enough, let p� and pr be its left and right endpoints, and s� and sr be the
other segments containing them. Imagine that we extend s� and sr until they meet in a
point p. Since sr contains a point with y-coordinate ≤ j − 1 (at the base of S(Φ2(j))),
triangle Δ{p, p�, pr} has height h ≥ 1; see Fig. 3.

Let t = π(vj) be the slope of the up-segment of S(vj). Since π(Φ2(vj)) < π(vj) =
t, we have that sr has slope at most t − 1 and x(pr) ≥ x(p) + h

t−1 . On the other hand,

32 M.J. Alam et al.

the slope of s� is positive by construction, and must exceed the slope of the up-segment
of Φ1(vj), which has slope π(Φ1(vj)) > π(vj) = t. So s� has slope ≥ t + 1 and
x(p�) ≤ x(p) + h

t+1 . Therefore,

x(pr) − x(p�) ≥ h

t − 1
− h

t + 1
=

h(t + 1 − (t − 1))
t2 − 1

≥ 2h

t2
≥ 2

n2
≥ 2w(vj)

where the last inequality holds since weights are small enough. Therefore the base of
S(j) is wide enough, which ends the proof of the theorem. 	

Our construction used non-convex shapes. This is sometimes required.

Lemma 2. There exists a planar graph and a weight function such that the graph does
not admit a proportional point-contact representation with respect to the weight func-
tion with convex shapes for all vertices.

Sketch of proof: We aim to show that the graph in Figure 4 has no proportional rep-
resentation with convex polygons if the small vertices have weight δ and the larger ver-
tices have weight D > 3δ. Assume for contradiction that we had such a representation;
by symmetry we may assume that d is in the outer-face.

a0 a1

a2

b

d

c0

c2

c1

Fig. 4. Graph without propor-
tional convex contact representa-
tion

For i = 0, 1, 2, let pi be a point of contact between
P(ai) and P(ai+1) (where addition is modulo 3.) Fur-
ther, let qi be a point of contact between P(ai) and
P(b). Define T0 to be the triangle Δ{p0, p1, p2} and
T2 to be the triangle Δ{q0, q1, q2}. We will only con-
sider the case where T2 is circumscribed by T0 (i.e.,
q0, q1, q2 lie on three different sides of T0); the other
case is more intricate and requires defining and ana-
lyzing a third triangle T1 (details can be found in [2].)

By convexity, the three sides of T0 lie inside
P (a0), P (a1) and P (a2), respectively. In particular,
all of P (c0), P (c1), P (c2) are inside T0. On the other
hand, by convexity all side of T2 lies inside P (b), so all of P (c0), P (c1), P (c2) are out-
side T2. But the region between T0 and T2 consists of three triangles, and to maintain
the planar embedding each of P (c0), P (c1), P (c2) must be in one of these triangles. So
now we have a triangle T2 of area at most δ that is circumscribed by a triangle T0 such
that the three triangles of T0 − T2 each have area at least Δ > δ. This is impossible by
a very old result from geometry; see e.g. [7]. 	

Lemma 2 implies that 3-sided polygons are not always sufficient for proportional con-
tact representations of planar graphs. On the other hand, Theorem 1 implies that any
planar graph has a proportional contact representation with any given weight function
on the vertices so that each of the vertices is represented by a non-convex 4-sided poly-
gon. Summarizing these two results we have the following theorem.

Theorem 2. 4-sided non-convex polygons are always sufficient and sometimes neces-
sary for proportional point-contact representation of a planar graph with a given weight
function on the vertices.

Proportional Contact Representations of Planar Graphs 33

4 Subclasses of Planar Graphs with Convex-Shape Representations
In this section we address the problem of proportional contact representations for sub-
classes of planar graphs. The lower bound in Lemma 2 shows that for planar triangula-
tions, the complexity in any proportional contact representation must be at least 4 and
the polygons must be non-convex. We hence focus on planar graphs with fewer edges.
In the next subsection we deal with proportional contact representations using triangles
(or convex quadrilaterals for side-contacts.) Then we describe an algorithm for hole-free
representation of maximal outerplanar graphs.

4 6

2

3
0

5
7

1

5

7 3

2
6

4
0

1

T (u)

(a) (b) (c)

<
√

ε/2 <
√

ε/2

<
√

ε/2

Fig. 5. (a&b) A 2-segment graph and representation; (c) converting to trapezoids

4.1 2-Segment Graphs and Partial 2-Trees

Call a planar graph a 2-segment graph if it can be represented by assigning interior-
disjoint line segments to vertices such that line segments share a point if and only
if the corresponding vertices are adjacent, and no 3 line segments share a point. See
Fig. 5. 2-segment graphs include 2-trees, maximal outerplanar graphs, partial 2-trees,
and series-parallel graphs. We show that 4-sided convex polygons are always sufficient
and sometimes necessary for side-contact representations of these graphs. For point-
contact representations we show that 3 sides are sufficient (and, of course, necessary)
for proportional contact representations of 2-segment graphs.

Theorem 3. Let G = (V, E) be a planar 2-segment graph. Then for any weight func-
tion w : V → R+ and any ε > 0, G has a proportional side-contact representation
where each vertex v is represented by a trapezoid with area between w(v)−ε and w(v).

Proof. Let �(v) be the line segment that represents v. We assume that ε is small enough
such that “off-setting” any �(v) by distance

√
ε/2 preserves adjacencies and does not

create intersections. Here, off-setting �(v) means moving it in parallel while shorten-
ing/lengthening it so that it still touches the segments at its ends. We also assume (after
possible scaling) that ||�(v)|| ≥ 2w(v)/

√
ε +

√
ε for all vertices v.

For any vertex v, create two copies of �(v) that are off-set in parallel in both direc-
tions so that the trapezoid T (v) between the two off-set lines has area w(v). By the
assumption on ||�(v)||, this will require an off-set of les than

√
ε/2, hence adjacencies

are preserved. This yields a proportional side-contact representation, except that T (u)
and T (v) intersect for any edge (u, v).

To remove these unwanted intersections, let (u, v) be an edge, and assume that in
the 2-segment representation, �(u) ended at an interior point of �(v). We then “retract”

34 M.J. Alam et al.

T (u), i.e., we replace it by T (u)−T (v). It remains to show that this does not disturb the
area too much. Note that T (u) ∩ T (v) is a parallelogram, defined by �(v) and one off-
set line of �(v), as well as the two off-set lines of �(u), where the pairs of parallel lines
have distance less than

√
ε/2 and

√
ε, respectively. Therefore, the area of T (u) ∩ T (v)

is less than ε/2, and we remove such an area at each end of T (u). Thus, the area of the
retracted trapezoid is more than w(u) − ε, as desired. 	

It is natural to ask for a characterization of 2-segment graphs. Thomassen gave one
(Theorem 4) at Graph Drawing 1993 but never published his proof.

Theorem 4. A planar graph G = (V, E) is a 2-segment graph if and only if |E[W]| ≤
2|W | − 3 for every W ⊆ V , where E[W] is the set of edges with both ends in W .

We provide a new proof of Theorem 4 based on rigidity theory in [2]. The condition
stated in the theorem can efficiently be checked, for example Lee and Streinu [17]
provide a simple algorithm. (In contrast, Hliněný [14] showed that the recognition of
general contact graphs of segments is NP-complete.) So 2-segment graphs can be easily
recognized.

However, the representations we gave for 2-segment graphs have a small carto-
graphic order, which seems unavoidable if the incidences endpoints of segments to the
other segments are circular, as for example for vertices {5, 6, 7} in Fig. 5. This error
can be avoided if G is 2-shellable, which means that it is planar has a vertex order
v1, . . . , vn such that for i ≥ 3 vertex vi has at most two neighbors in v1, . . . , vi−1.
Such graphs have at most 2n − 3 edges, hence by Theorem 4 a 2-shellable graph is a
2-segment graph. Moreover, it is easy to see that we may assume that the endpoints of
segment �(v) are adjacent to the predecessors of v for all vertices v. We can then create
a proportional side-contact representation as above but without cartographic error by
creating trapezoids in this vertex order. For each vertex vi, first shorten �(vi) so that
it ends at the off-set lines of vi’s predecessors. Then off-set �(vi) so that the resulting
trapezoid has area w(vi). It is easy to verify that all off-sets are still at most

√
ε/2, and

thus the adjacencies are preserved.

Theorem 5. Let G = (V, E) be a 2-shellable graph and w : V → R+ be a weight
function. Then G admits a proportional side-contact representation where each vertex
of G is represented by a trapezoid with area w(v).

We derive two corollaries from Theorem 3 and 5. First, it is known that planar bipartite
graphs are 2-segment graphs (we can even restrict the segments to be horizontal or
vertical) [12]. Hence they have proportional side-contact representations with arbitrarily
small cartographic error with trapezoids (in fact, rectangles.)

Second, a 2-tree is either an edge or a graph G with a vertex v of degree two in G such
that G− v is a 2-tree and the neighbors of v are adjacent. A partial 2-tree is a subgraph
of a 2-tree; partial 2-trees are the same as series-parallel graphs. Every partial 2-tree is
planar. Directly from the definition we see that 2-trees (and hence partial 2-trees) are
also 2-shellable. Therefore they have a proportional side-contact representation with
trapezoids. We also show that 4 sides are sometimes required.

Proportional Contact Representations of Planar Graphs 35

Theorem 6. Four-sided convex polygons are always sufficient and sometimes neces-
sary for a proportional side-contact representation of a 2-shellable graph, in particular
of a partial 2-tree, with a given weight function.

Proof. Sufficiency follows from Theorem 5, since partial 2-trees are 2-shellable. To es-
tablish necessity, consider the 2-tree obtained from K2,4 by adding an edge between the
vertices of the partition of size two. These two vertices have four common neighbors,
but as was proved in [10], in any side-contact representation with triangles, any pair of
adjacent vertices has at most three common neighbors. Hence this graph has no side-
contact representation with triangles, let alone one that respects the weights. 	

Note that if we switch from side-contact representations to point-contact representa-
tions, we can reduce the complexity of the regions from four to three. Specifically, we
can replace line-segments by triangles so that only one endpoint of �(v) is moved (in
both directions). Using a similar approach as that in Theorem 3 we can prove:

Theorem 7. Let G = (V, E) be a 2-segment graph and w : V → R+ be a weight
function. Then for any ε > 0, G admits a proportional point-contact representation
where each vertex of G is represented by a triangle with area between w(v) − ε and
w(v). If G is a 2-shellable graph, then the area of the triangle of v is exactly w(v).

4.2 Maximal Outerplanar Graphs

In this section, we study maximal outerplanar graphs, i.e., planar graphs whose outer-
face is a cycle and all interior faces are triangles. These are 2-trees, so the results from
the previous subsection apply, but (using a different construction) we can construct a
side-contact representation using triangles that has no holes.

Let G be a maximal outerplanar graph. For any two vertices u, v denote by G(u, v)
the graph induced by the vertices that are between u to v (ends excluded) while walking
along the outer-face in counterclockwise order, and let w(G(u, v)) be the sum of the
weights of all these vertices.

Define an aligned triangle to be one with horizontal base and tip below the base.
This naturally defines a left and right side of the triangle. We will use the observation
that an outerplanar graph can be represented inside any aligned triangle of suitable area.

Lemma 3. Let G = (V, E) be a maximal outerplanar graph and (u, v) an edge on
the outer-face of G, with u before v in counterclockwise order. Let w : V → R+ be
a weight-function. Then for any aligned triangle T of area w(G(v, u)), there exists a
hole-free proportional side-contact representation of G(v, u) inside T such that the left
[right] side of T contains segments of the neighbors of u [v] and of no other vertices.

Proof. We proceed by induction on the number of vertices in G. In the base case, G is
a 3-cycle {u, v, x}. Use T itself to represent x; this satisfies all conditions.

In the inductive step, let x be the unique common neighbor of u and v. Divide T
with a segment s from the tip to the base such that the region T� left of s has area
w(G(x, u)) + 1

2w(x), and the region Tr right of � has area w(G(v, x)) + 1
2w(x). Cut

off triangles of area 1
2w(x) each from the tips of T� and Tr; the combination of these

two triangles forms a convex quadrilateral of area w(x) which we use for x; see Fig. 6.

36 M.J. Alam et al.

Recursively place G(x, u) and G(v, x) (if non-empty) in the remaining triangles of T ;
it is easy to verify that these have the correct area, which yields the desired side-contact
representation. 	

P(x)

s

G(v, x)

P(v)
P(u)

(a) (b)

G(x, u)

vu

(c)

T� Tr

Tx

Fig. 6. The construction for maximal outerplanar graphs: (a) the graph; (b) splitting triangle T
suitably; (c) adding u and v in the outer-most recursion

Apply this lemma for an arbitrary edge (u, v) on the outer-face and an arbitrary
triangle T with area w(G(v, u)). We can then add triangles for u and v to it to complete
the drawing into a contact representation of G; see Fig. 6(c). So we obtain:

Corollary 1. Let G = (V, E) be a maximal outerplanar graph and let w : V → R+ be
a weight function. Then G admits a hole-free proportional side-contact representation
where vertices are represented by triangles or convex quadrilaterals.

We now show that the representation obtained by this algorithm is also optimal for a
maximal outerplanar graph with respect to complexity. To do this we use the snowflake
graph S, which is the general name given to an infinite family of outerplanar graphs
obtained from a triangle by repeatedly walking around the outer-face and adding a ver-
tex of degree 2 at each edge; each complete walk around the boundary gives a new
snowflake graph; see Fig. 7(a).

Lemma 4. A snowflake graph S has no hole-free side-contact representation with tri-
angles that all have the same area.

Sketch of Proof (a detailed proof is given in [2].) Assume for contradiction that there
is such a representation Γ .

Fig. 7. (a) The snowflake graph S; (b) illustration for
the proof of Lemma 4

Let the i-th level vertices be those
added when we walk around the
outer-face for the i-th time. One can
observe that all the angles in the
outer-boundary of Γi are concave
but for at most four convex corners.
Then between any two consecutive
convex corners, the triangles corre-
sponding to the (i + 1)-th level ver-
tices are inserted in concave corners.

Proportional Contact Representations of Planar Graphs 37

Since the number of vertices doubles on each level, for sufficiently large i there must be
a triangle T on the i-th level and its adjacent triangles T ′ and T ′′ on (i+1)-th level such
that the base of T (the side that was exposed after adding T) has length greater than
both the bases of T ′ and T ′′. Since all triangles have equal area, a simple calculation
involving adjacent angles shows that this is a contradiction; see Fig. 7(b). 	

By Corollary 1 and Lemma 4, we have the following theorem.

Theorem 8. Convex quadrilaterals are always sufficient and sometimes necessary for
hole-free proportional side-contact representations of maximal outerplanar graphs.

5 Conclusion and Open Problems
We described several constructive algorithm for proportional point-contact and side-
contact representations of planar graphs, outerplanar graphs, and 2-trees. We focused
on the complexity of the polygons representing vertices, and provided bounds on this
complexity that are tight, for a variety of graph classes and drawing models.

However, many problems still remain open. What is the complexity of side-contact
proportional representations of maximal planar graphs? We can achieve 7-sided poly-
gons easily (essentially by cutting the convex corners of the 4-sided spikes), but can
we do better? Likewise, what is the complexity for hole-free proportional representa-
tions of maximal planar graphs? Here, a bound of 8 is known (and the polygons are
orthogonal) [1], but can we do better if polygons need not be orthogonal?

Acknowledgment. This work was initiated at the Dagstuhl Seminar 10461 on Schema-
tization. We thank Marcus Krug, Ignaz Rutter, Henk Meijer, Emilio Di Giacomo, and
Andreas Gerasch and several anonymous referees for useful discussions and remarks.

References
1. Alam, M.J., Biedl, T., Felsner, S., Gerasch, A., Kaufmann, M., Kobourov, S.G., Ueckert, T.:

Computing cartograms with optimal complexity (submitted, 2011)
2. Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S.G.: Proportional contact rep-

resentations of planar graphs. Technical Report CS-2011-11. University of Waterloo (2011)
3. Badent, M., Binucci, C., Giacomo, E.D., Didimo, W., Felsner, S., Giordano, F., Kratochvı́l,

J., Palladino, P., Patrignani, M., Trotta, F.: Homothetic triangle contact representations of
planar graphs. In: CCCG 2007, pp. 233–236 (2007)

4. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular
layouts and contact graphs. ACM Transactions on Algorithms 4(1) (2008)

5. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Combina-
torics, Probability and Computing 3, 233–246 (1994)

6. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinator-
ica 10(1), 41–51 (1990)

7. Debrunner, H.: Aufgabe 260. Elemente der Mathematik 12 (1957)
8. Felsner, S., Francis, M.C.: Contact representations of planar graphs with cubes. In: Proc.

ACM Symposium on Computational Geometry (2011)
9. Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G.: Optimal Polygonal Representation

of Planar Graphs. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 417–432.
Springer, Heidelberg (2010)

38 M.J. Alam et al.

10. Gansner, E.R., Hu, Y., Kobourov, S.G.: On Touching Triangle Graphs. In: Brandes, U.,
Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 250–261. Springer, Heidelberg (2011)

11. Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle Contact Representations and Duality. In:
Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 262–273. Springer, Hei-
delberg (2011)

12. Hartman, I., Newman, I., Ziv, R.: On grid intersection graphs. Discrete Mathematics 97, 41–
52 (1991)

13. Heilmann, R., Keim, D.A., Panse, C., Sips, M.: Recmap: Rectangular map approximations.
In: 10th IEEE Symp. on Information Visualization (InfoVis 2004), pp. 33–40 (2004)

14. Hliněný, P.: Contact graphs of line segments are NP-complete. Discr. Math. 235, 95–106
(2001)

15. Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der
Sächsischen Akademie der Wissenschaften zu Leipzig. Math.-Phys. Kl. 88, 141–164 (1936)

16. Koźmiński, K., Kinnen, E.: Rectangular duals of planar graphs. Networks 15, 145–157
(1985)

17. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discrete Mathematics 308(8),
1425–1437 (2008)

18. Schnyder, W.: Embedding planar graphs on the grid. In: SODA, pp. 138–148 (1990)
19. Ungar, P.: On diagrams representing graphs. J. London Math. Soc. 28, 336–342 (1953)
20. van Kreveld, M.J., Speckmann, B.: On rectangular cartograms. Computational Geome-

try 37(3), 175–187 (2007)
21. Yeap, K.-H., Sarrafzadeh, M.: Floor-planning by graph dualization: 2-concave rectilinear

modules. SIAM Journal on Computing 22, 500–526 (1993)

Embedding Plane 3-Trees in R2 and R3

Stephane Durocher1,�, Debajyoti Mondal1, Rahnuma Islam Nishat2,
Md. Saidur Rahman3, and Sue Whitesides2,��

1 Department of Computer Science, University of Manitoba
2 Department of Computer Science, University of Victoria

3 Graph Drawing and Information Visualization Laboratory,
Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology
{durocher,jyoti}@cs.umanitoba.ca, {rnishat,sue}@cs.uvic.ca,

saidurrahman@buet.ac.bd

Abstract. A point-set embedding of a planar graph G with n vertices
on a set P of n points in Rd, d ≥ 1, is a straight-line drawing of G, where
the vertices of G are mapped to distinct points of P . The problem of
computing a point-set embedding of G on P is NP-complete in R2, even
when G is 2-outerplanar and the points are in general position. On the
other hand, if the points of P are in general position in R3, then any
bijective mapping of the vertices of G to the points of P determines a
point-set embedding of G on P . In this paper, we give an O(n4/3+ε)-
expected time algorithm to decide whether a plane 3-tree with n vertices
admits a point-set embedding on a given set of n points in general posi-
tion in R2 and compute such an embedding if it exists, for any fixed ε>0.
We extend our algorithm to embed a subclass of 4-trees on a point set
in R3 in the form of nested tetrahedra. We also prove that given a plane
3-tree G with n vertices, a set P of n points in R3 that are not neces-
sarily in general position and a mapping of the three outer vertices of G
to three different points of P , it is NP-complete to decide if G admits a
point-set embedding on P respecting the given mapping.

1 Introduction

A plane graph is a planar graph with a fixed planar embedding. A straight-line
drawing of a plane graph G in Rd, d ≥ 1, is a planar drawing of G, where the
vertices of G are drawn as points in Rd and edges of G are drawn as noncrossing
straight line segments. Although two straight line segments meet at their com-
mon endpoints if their corresponding edges are adjacent, we do not consider such
a meeting point to be a crossing point. Given a plane graph G with n vertices
and a set P of n points in Rd, a point-set embedding of G on P is a straight-line
drawing of G, where each vertex of G is mapped to a distinct point of P . See
Figure 1 for an illustration of point-set embeddings in R2 and R3.
� Work of the author is supported in part by the Natural Sciences and Engineering

Research Council of Canada (NSERC).
�� Work of the author is supported by the Natural Sciences and Engineering Research

Council of Canada (NSERC) and the University of Victoria.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 39–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

40 S. Durocher et al.

Fig. 1. (a) A plane graph G, (b) a set P of points in R2, (c) a set P ′ of points in R3,
(d) a point-set embedding of G on P , and (e) a point-set embedding of G on P ′

The problem of embedding planar graphs on fixed vertex locations has been
studied for many years [1,4,8,9,12]. Every outerplanar graph with n vertices
admits a point-set embedding on any set of n points in R2, where the points
are in general position, i.e, no three points are collinear [4]. Bose et al. gave
efficient algorithms to compute point-set embeddings of trees and outerplanar
graphs in O(n log n)-time [2] and O(n log3 n)-time [1], respectively. Recently,
Nishat et al. [11] gave an O(n2 log n)-time algorithm that can decide if a plane
3-tree admits a point-set embedding on a given set of points in R2, even when
the points are not in general position, and computes such an embedding if it
exists. Although the point-set embeddability problem in R2 is polynomial-time
solvable for outerplanar graphs and plane 3-trees, Cabello [3] proved that this
problem is NP-complete for 2-outerplanar graphs, even when the given points
are in general position. On the other hand, given a graph G with n vertices and
a set P of n points in R3, where the points are in general position, i.e., no four
points are coplanar, G always admits a point-set embedding on P .

In this paper, we give an O(n4/3+ε)-expected time algorithm to compute a
point-set embedding of a plane 3-tree with n vertices on a set of n points in R2

if such an embedding exists, for any fixed ε > 0. We extend the algorithm to
embed a subclass of 4-trees on a point set in R3 in the form of nested tetrahedra.
We also prove that given a plane 3-tree G with n vertices, a set P of n points in
R3 not necessarily in general position and a mapping of the three outer vertices
of G to three points of P , it is NP-complete to decide whether G admits a point-
set embedding on P for the given mapping of the outer vertices. This negative
result is interesting since the problem is solvable in polynomial time in R2 [11].
Cabello [3] also asked: What is the complexity of the point-set embeddability
problem for 3-connected plane graphs in R2? Since a plane 3-tree is 3-connected,
our hardness result answers the analogous question for R3.

2 Preliminaries

In this section we give some definitions that will be used throughout the paper.

Embedding Plane 3-Trees in R2 and R3 41

A plane graph divides the plane into connected regions called faces. The un-
bounded region is the outer face and all other faces are inner faces. The vertices
on the outer face are outer vertices and all other vertices are inner vertices. A
triangular face contains only three vertices on its boundary. If all the faces of a
plane graph G are triangular, then G is a triangulated plane graph.

For a cycle C in G, G(C) denotes the subgraph of G induced by the vertices
inside and on the boundary of C. If a cycle contains only three vertices a, b, c on
its boundary then we denote the cycle by Cabc. A graph G with n ≥ 3 vertices
is a plane 3-tree if it satisfies the following properties. (a) G is a triangulated
plane graph. (b) If n > 3, then G has a vertex of degree three whose removal
gives a plane 3-tree with n − 1 vertices.

Any plane 3-tree G has exactly one inner vertex p, which is the common
neighbor of the outer vertices of G. We call p the representative vertex of G.
Plane 3-trees are also known as Apollonian networks and stacked polytopes [6].

Let P be a set of points. We denote by |P | the number of points in P . Let a, b
and c be three points that do not necessarily belong to P . By P (abc) we denote
the points of P , which are on the boundary and inside of triangle abc.

3 Point-Set Embeddings of Plane 3-Trees in R2

In this section we give an O(n4/3+ε)-expected time algorithm to embed a plane
3-tree with n vertices on a set of n points in general position in R2, where ε > 0
is fixed.

Nishat et al. [11] gave an O(n2)-time algorithm for computing a point-set
embedding of a plane 3-tree with n vertices on a set of n points in general
position. Recently, Moosa et al. [10] tried to give a faster algorithm for computing
point-set embeddings of plane 3-trees using a range search data structure of
Chazelle et al. [5]. Their algorithm takes O(n4/3+ε log n + n4/3+ε log(l/s)) time,
where ε > 0, l is the largest distance between any two points in the point-set
and s is the distance between the closest pair of points. Consequently, finding an
algorithm for computing point-set embeddings of plane 3-trees with improved
running time, where the time complexity is only a function of n, was open.

Like Moosa et al. we also use the range search data structure of Chazelle
et al. [5]. Using randomization, however, the expected running time of our al-
gorithm is bounded by a function of n alone for any set of n points in general
position in R2 and independent of the corresponding parameters l and s. Before
describing our algorithm we need the following lemma.

Lemma 1. Let abc be a triangle with a set P of n > 0 points in its proper
interior, where the points are in general position and preprocessed to answer
any triangular range counting query in f(n) time. Let k ≤ n be a positive inte-
ger. Then in O(f(n) log n) expected time we can find a point q on bc such that
|P (abq)| = k.

42 S. Durocher et al.

Proof. We first set x = b and y = c. We then execute the following steps.
Step 1. Randomly choose a point1 w ∈ P (axy). Let z denote the intersection
point of xy and the line passing through a and w.
Step 2. If |P (abz)| < k, then set x = z and go to Step 1. If |P (abz)| > k, then
set y = z and go to Step 1. Otherwise, set q = z.

It is straightforward to observe that Steps 1–2 correctly find the required point
q. We now analyze the running time. Consider some iteration i of Steps 1–2.
Let Pi be the points of P (axy) at the beginning of the i-th iteration. Let Xj

be the indicator random variable such that Xj = 1 if point pj ∈ Pi remains
inside triangle axy after the i-th iteration, and Xj = 0 otherwise. Since any
point pj is removed from further consideration with probability 1/2, therefore
E[Xj] = 1/2. Consequently, the expected number of points that remains in axy
after the i-th iteration is E[X] =

∑
∀pj∈Pi

E[Xj] = |Pi|/2. Since at each iteration
the number of points to consider is reduced by a factor of 1/2, the expected
number of iterations is O(log n). At each iteration, Steps 1–2 take O(f(n))-time.
Therefore, the total expected running time is O(f(n) log n). 	

Theorem 1. Let G be a plane 3-tree with n vertices and let P be a set of n
points in general position in R2. We can decide in O(n4/3+ε) expected time, for
any fixed ε > 0, whether G admits a point-set embedding on P and compute such
an embedding if it exists.

Proof. Let a, b and c be the three outer vertices of G and let p be the represen-
tative vertex of G. We use the following steps of Nishat et al. [11] to test and
compute point-set embedding of G on P .

Step 1. Let C be the convex hull of P . If the number of points on the boundary
of C is not exactly three, then G does not admit a point-set embedding on P .
Step 2. For the possible six different mappings of vertices a, b, c to the three
points x, y, z on C, execute Step 3.
Step 3. Let n1, n2 and n3 be the number of vertices of G(Cabp), G(Cbcp) and
G(Ccap), respectively. Without loss of generality assume that the current map-
ping of a, b and c is to x, y and z, respectively. Find the unique mapping of the
representative vertex p of G to a point w ∈ P such that the triangles xyw, yzw
and zxw properly contain exactly n1, n2 and n3 points, respectively. If no such
mapping of p exists, then G does not admit a point-set embedding on P for the

1 A simplex range searching data structure based on partition trees and cutting trees
(such as that of Chazelle et al. [5]) can be augmented to return a range selection query
in f(n) time without any asymptotic increase in space or preprocessing time. That
is, each of the t distinct range selection queries on triangle pqr, where t = |P (pqr)|,
returns a distinct element of P (pqr). The ordering of elements is determined by
the trees’ internal structures; the specific order is unimportant, so long as there
is a bijection between selection queries and elements returned for a given query
triangle. By choosing a value uniformly at random in {1, 2, . . . , t} and retrieving
the corresponding element using a range selection query, we can select a point w ∈
P (pqr) at random.

Embedding Plane 3-Trees in R2 and R3 43

current mapping of a, b, c to x, y, z; hence go to Step 2 for the next mapping.
Otherwise, recursively compute point-set embeddings of G(Cabp), G(Cbcp) and
G(Ccap) on P (xyw), P (yzw) and P (zxw), respectively.

The time complexity is dominated by the cost of Step 3 and the bottleneck
is the recursive computation of the mappings of the representative vertices. It
is straightforward to observe that the recurrence relation for the time taken in
Step 3 is T (n) = T (n1)+T (n2)+T (n3)+T , where T denotes the time required
to find the mapping of the representative vertex.

We speed up the mapping of the representative vertex as follows: We use a
data structure to preprocess the points of P in O(g(n)) time to answer any tri-
angular range reporting query in O(f(n)+k) time and triangular range counting
query in O(f(n)) time, where k is the number of points reported. Let the outer
vertices a, b, c be mapped to points x, y, z, respectively, and let n1, n2 and n3 be
the number of vertices of G(Cabp), G(Cbcp) and G(Ccap), respectively. We need
to find a mapping of p to a point w ∈ P such that triangles xyw, yzw and
zxw properly contain exactly n1, n2 and n3 points, respectively. Without loss of
generality assume that n2 ≤ min{n1, n3}.

By Lemma 1, we find two points u and v on yz such that P (xyu)=n1 + 3
and P (xzv)=n3 + 3 in O(f(n) log n) time. It is straightforward to show that if
dist(z, v) > dist(z, u), then p does not have the required mapping. Otherwise,
if p has the required mapping to a point w ∈ P , then w ∈ P (xuv). Since
|P (xuv)|=O(n2), we can enumerate all the points of P (xuv) in O(f(n) + n2)
time. For each point q ∈ P (xuv), we check if |P (xyq)|=n1 + 3, |P (yzq)|=n2 + 3
and |P (zxq)|=n3+3 in O(f(n)) time. Hence, T = O(f(n) log n)+O(f(n)+n2)+
O(n2 · f(n)) and T (n) = T (n1) + T (n2) + T (n3) + O(min{n1, n2, n3}f(n) log n).
This recurrence solves to T (n) = O(nf(n) log2 n).

For n points in Rd, the data structure of Chazelle et al. [5] takes g(n) =
O(m1+ε) preprocessing time and f(n) = O(n1+ε/m1/d) time for range counting
queries, where n < m < nd and ε > 0. Here d = 2 and for the best bound, we
choose m = n4/3. We thus get T (n) = (n4/3+ε log2 n) and g(n) = O(n4/3+4ε/3).
Therefore, we need O(n4/3+ε′ log2 n) time in total, where ε′ = 4ε/3 > 0.

Observe that for any ε′ > 0, n4/3+ε′ log2 n = O(n4/3+ε′′) for any ε′′ > ε′. 	

4 Tetrahedral Embeddings of Tetrahedral 4-Trees

In this section we introduce tetrahedral 4-trees and extend Theorem 1 to R3.
Let a, b, c and d be four points in general position in R3. By T (abcd) we denote

the tetrahedron defined by points a, b, c and d. A vertex insertion operation on
T (abcd) places a vertex p interior to T (abcd) and adds edges from p to a, b, c, d,
such that T (abcp), T (abdp), T (bcdp) and T (cadp) define four new tetrahedra. By
a tetrahedral embedding we denote a straight-line embedding formed by starting
with a tetrahedron and then applying vertex insertion operations recursively on
zero or more newly generated tetrahedra. A graph G with n ≥ 4 vertices is a
tetrahedral 4-tree if it admits a tetrahedral embedding. A tetrahedral point-set
embedding of G on a set P of n points is a tetrahedral embedding of G, where
the vertices of G are mapped to distinct points of P .

44 S. Durocher et al.

Let G be a tetrahedral 4-tree with n vertices. Then by definition, G satisfies
the following properties.
(a) G is a 4-tree.
(b) Let Γ be a tetrahedral embedding of G. Then the convex hull of the points
of Γ is a tetrahedron T (s1s2s3s4), where s1, s2, s3, s4 are the four points on the
convex hull. By the surface vertices of G we denote the vertices u1, u2, u3, u4 of
G that correspond respectively to the points s1, s2, s3, s4.
(c) If n>4, then there exists a point p in Γ which is adjacent to the points s1, s2,
s3, s4. By the core vertex of G we denote the vertex v that corresponds to p.
(d) Removal of v, u1, u2, u3, u4 splits G into four (possibly empty) components
C1, C2, C3 and C4, respectively. Then the vertices of Ci along with {v, u1, u2, u3,
u4}\{ui} induce a tetrahedral 4-tree, which is placed inside T (pabc) in Γ , where
{a, b, c} ⊆ {{s1, s2, s3, s4} \ {si}}.
If G admits a tetrahedral point-set embedding on a given set of points in R3,
then we can prove that the mapping of the core vertex is unique. Using the
range search data structure of Chazelle et al. [5] we can preprocess the points in
O(n(1+ε)9/4) time, where any triangular range counting query takes O(n1/4+ε)
time, ε > 0. Therefore, we can find the mapping of the core vertex in O(n ·
n1/4+ε) = O(n5/4+ε) time. Since we need to find O(n) such mappings in a
recursive fashion, the total time required is O(n9/4+ε). We thus have the following
theorem.

Theorem 2. Let G be a tetrahedral 4-tree with n vertices and let P be a set of n
points in general position in R3. We can decide in O(n9/4+ε) time, for any fixed
ε > 0, whether G admits a tetrahedral point-set embedding on P and compute
such an embedding if it exists.

5 Point-Set Embeddings of Plane 3-Trees in R3

Given a plane 3-tree G with n vertices, a set P of n points (not necessarily in
general position) in R2 and a mapping for the outer vertices of G to three points
in P , Nishat et al. [11] gave an O(n2 log n)-time algorithm for testing whether G
admits a point-set embedding on P for the given mapping of the outer vertices.
In this section we prove that the corresponding decision problem is NP-complete
when the points are in R3. A formal definition of the problem is as follows:
Problem: Three Dimensional Point-Set Embedding (3DPSE)

Instance: A plane 3-tree G with n vertices, a set P of n points (not necessarily
in general position) in R3 and a mapping of the three outer vertices of G to three
different points in P .
Question: Does G admit a point-set embedding on P that respects the given
mapping of the outer vertices?
We prove NP-hardness of 3DPSE by reduction from a strongly NP-complete
problem 3-Partition [7], which is defined as follows.

Embedding Plane 3-Trees in R2 and R3 45

Instance: A set of 3m nonzero positive integers S={a1, a2, . . . , a3m} and an
integer B > 0, where a1+a2+. . .+a3m = mB and B/4 < ai < B/2, 1 ≤ i ≤ 3m.
Question: Can S be partitioned into m subsets S1, S2, . . . , Sm such that |S1| =
|S2| = . . . = |Sm| = 3 and the sum of the integers in each subset is equal to B?

Here is an outline of our proof for NP-hardness. For a given instance I =
{S, m, B} of 3-Partition, we construct a point set P , a plane 3-tree G and
a mapping of the three outer vertices of G to the three points of P . We prove
that G admits a point-set embedding on P respecting the mapping of the outer
vertices if and only if I has an affirmative answer.

We first assume that I has an affirmative answer, and then show a construc-
tion of a point-set embedding of G on P respecting the mapping of the outer
vertices. The other direction of the claim is: if G admits the required embedding
on P , then I has an affirmative answer. We prove the contrapositive. We assume
that I has a negative answer, and then prove that G does not admit a point-set
embedding on P respecting the mapping of the outer vertices. To prove this,
we show that the mapping of the outer vertices of G restricts some vertices of
G to map onto some special points of P . This mapping leaves m groups of B
points unmapped, where the remaining vertices of G are to be mapped. These
remaining vertices of G correspond to the integers in S. If G admits the required
embedding on P , then those remaining vertices admit a mapping to the un-
mapped groups of points. Each group corresponds to a subset of the solution of
I. Since we assumed that I has a negative answer, this gives a contradiction.

We now describe the formal reduction. Let m and B be two nonzero positive
integers. We first define a set Pm,B of 2mB + 10m− 4 points as follows:

(a) Two points p and r at (0, 5, 4m) and (mB+2(m−1), 0, 5m), respectively.
(b) The set Pz of 4m collinear points on line x = y = 0, where Pz = {(0, 0, i)|0 ≤

i ≤ 4m − 1}. By q we denote the point at (0, 0, 0).
(c) The set Py of mB + 2(m − 1) points on line y − 1 = z = 0, where Py =

{(i, 1, 0)|1 ≤ i ≤ mB + 2(m − 1)}.
(d) Points Pu = {u1, u2, . . . , um−1}, where point ui, 1 ≤ i ≤ m−1, is the inter-

section point of the plane z=1 with the line joining p and the midpoint of the
line segment between (i(B+2)−1, 1, 0) and (i(B+2), 1, 0). See Figure 2(a).

(e) Points Pv = {v1, v2, . . . , vm−1}, where point vi, 1 ≤ i ≤ m−1, is the intersec-
tion point of the plane z=4m+1 with the line joining r and point ui ∈ Pu.

(f) Points Pw = {w1, w2, . . . , wmB+2(m−1)}, where point wi, 1 ≤ i ≤ mB +
2(m− 1), is the intersection point of the plane z = 4m with the line joining
r with point pi ∈ Py. See Figure 2(b).

Observe that |Pz|=4m, |Py|=mB+2(m−1), |Pu|=m−1, |Pv|=m−1 and |Pw| =
mB+2(m−1). Thus the number of points in Pm,B along with p, r is 2mB+10m−4.
We now have the following lemma.

Lemma 2. Let l1 be a line segment joining points a and b, where a ∈ Py and b ∈
Pz. Let l2 be another line segment joining points a′ and b′, where a′ ∈ Py, b′ ∈ Pz

and {a′, b′} �= {a, b}. Then l1 and l2 do not cross.

46 S. Durocher et al.

Fig. 2. Pm,B , where sets Pu, Pz and Py are shown in red, green and blue, respectively

Let x0, x1, · · · , xn be a path of n + 1 vertices. We add two vertices l, r to the
path by adding the edges (l, xi), (r, xi), where 0 ≤ i ≤ n. We call the resulting
graph a butterfly and denote it by Wn+1. We call l, r the wings of Wn+1 and
path x0, x1, . . . , xn the spine of Wn+1. We call x0 and xn the two ends of the
spine. Figure 3(a) depicts a butterfly W4. Let m and B be two nonzero positive
integers and let S = {a1, a2, . . . , a3m} be a set of 3m nonzero positive integers.
We now construct a plane graph Gm,B,S with 2mB +10m−4 vertices as follows:

1. Construct a butterfly W4m. Let a and c be its wings. Add an edge between a
and c. Any plane embedding Γ of W4m keeping a and c on the outer face will
have one end of the spine on the outer face, which we denote by b. Without
loss of generality assume b = x0. See Figure 3(b).

Fig. 3. (a) W4, (b) W4m, together with an edge (a, c) between the wings a and c, and
(c) illustration for G′, where the buds are shown by empty circles

Embedding Plane 3-Trees in R2 and R3 47

2. Let the spine vertices of W4m starting from b in Γ be b(=x0), x1, . . . , x3m+(m−1).
We now add a second butterfly WmB+2m−1 in the triangular face acx3m+(m−1),
where a, c are the wings of WmB+2m−1 and t0(=x3m+(m−1)), t1, . . . , tmB+2(m−1)

is the spine. Insert a vertex in each triangular face cti(B+2)−1ti(B+2), 1 ≤ i ≤
m − 1, and add three edges to connect the inserted point with c, ti(B+2)−1

and ti(B+2). Let G′ be the subgraph of Gm,B,S bounded by the triangular face
acx3m+(m−1). We call each of these inserted vertices a bud. See Figure 3(c).

3. For each triangular face ax3m+ix3m+i−1, 1 ≤ i ≤ m−1, in Γ , insert three ver-
tices li, mi, ni inside that face and add edges (li, mi), (mi, ni), (ni, li), (a, li),
(a, mi), (a, ni), (x3m+i, li), (x3m+i, ni), (x3m+i−1, ni) avoiding crossing.
See Figure 4(a). We call each of these inserted triples of vertices a trigon.

4. For each triangular face axixi−1, 1 ≤ i ≤ 3m, in Γ , create a butterfly Wai

inside that face with wings a and xi. Then add an edge between xi−1 and
one end of the spine of Wai avoiding crossing. See Figure 4(b). We denote all
Wai , 1 ≤ i ≤ 3m, by butterflies of Gm,B,S . The graph defined by the resulting
embedding is Gm,B,S . See Figure 4(c).

Note that Gm,B,S is an embedded plane graph (not necessarily a straight-line
embedding). We used Γ only to define the plane embedding of Gm,B,S .

Fig. 4. (a) Insertion of a trigon, (b) illustration for Wai , and (c) Gm,B,S , where vertices
of the trigons are shown by empty circles

Observe that x0, x1, . . . , x3m+(m−1) is a sequence of |Pz| vertices of Gm,B,S

and t1, t2, . . . , tmB+2(m−1) is a sequence of |Pw | vertices of Gm,B,S . The number
of buds in Gm,B,S is |Pv| and the number of vertices in the trigons and spines of
butterflies in Gm,B,S is |Py | + |Pu|. Therefore, the number of vertices in Gm,B,S

along with a, c is equal to the number of points in Pm,B, i.e., 2mB + 10m − 4.
We now have the following lemma.

48 S. Durocher et al.

Lemma 3. Gm,B,S is a plane 3-tree.

We now use Pm,B and Gm,B,S to prove the following theorem.

Theorem 3. 3DPSE is NP-complete.

Proof. Given a mapping of the vertices of a plane 3-tree G to the points of P ,
it is straightforward to check if the drawing determined by this mapping is a
straight-line drawing of G in polynomial time. Therefore, the problem is in NP.

We now create an instance of 3DPSE from an instance B, S={a1, a2, . . . , a3m},
of 3-Partition. We construct a point-set Pm,B and a plane 3-tree Gm,B,S . For
convenience we denote Pm,B and Gm,B,S by P and G, respectively. Since 3-
Partition is strongly NP-complete, i.e., it remains NP-complete even when B
is bounded by a polynomial in m. Therefore, G has a polynomial number of
vertices and P has a polynomial number of points. Furthermore, the coordinates
of p are bounded by polynomials. Consequently, we can construct P and G in
polynomial time. Recall the points p, q, r of P and vertices a, b, c of G. We now
ask whether G admits a point-set embedding on P , where the vertices a, b and
c are mapped respectively to the points p, q and r. In the following we prove
that such a point-set embedding is possible if and only if the given instance of
3-Partition has an affirmative answer.
Case 1: The given instance of 3-Partition has an affirmative answer.

We construct a point-set embedding of G on P , where the vertices a, b, c are
mapped respectively to the points p, q, r, as follows:

1. Map the buds of G′ to the points of Pv consecutively. Map the internal
vertices of G′ other than the buds of G′ to the points of Pw consecutively.
Since the points of Pv are visible from p and the points of Pv and Pw are
visible from r, no two internal edges of G′ cross. See Figure 5(a).

2. Map the vertices b(= x0), x1, x2, . . . , x3m+(m−1) to the points of Pz starting
from (0, 0, 0). The points of Pz are visible from points p and r since these
visibilities are not occluded by the edges of G′. Therefore, we can draw the
edges joining a and c to b(= x0), x1, x2, . . . , x3m+(m−1) without creating any
crossing.

3. Map each trigon li, mi, ni of G respectively to the points (i(B+2)−1, 1, 0), ui,
(i(B +2), 1, 0), where ui ∈ Pu and 1 ≤ i ≤ m−1. Observe that the points of
Py and Pu are still visible from p. See Figure 5(b). Moreover, by Lemma 2, the
edges joining points from Pz and Py do not create any crossing. Therefore, we
can draw the edges joining vertices x3m, x3m+1, . . . , x3m+(m−1) and vertex a
to the trigons without creating any crossing.

4. Observe that there are m groups of consecutive B points on Py. Denote these
groups by B1, B2, . . . , Bm. Let S1, S2, . . . , Sm be the solution of the given
instance of 3-Partition. Since each Si, 1 ≤ i ≤ m, contains three integers
aj , ak and al that sum to B, we can map the spines of the corresponding
three butterflies Waj , Wak

and Wal
to Bi. Observe that the points of Bi

are visible to p. See Figure 5(b). Moreover, by Lemma 2, the edges joining

Embedding Plane 3-Trees in R2 and R3 49

points from Pz and Py do not create any crossing. Therefore, we can draw
the edges joining vertices x0, x1, . . . , x3m and a to the spine vertices of the
butterflies without creating any edge crossing.

Case 2: The given instance of 3-Partition has a negative answer and hence the
set S cannot be partitioned into m subsets, where each subset contains exactly
three integers and the sum of the integers in each subset is equal to B.

In the following we prove that in this case G does not admit a point-set embed-
ding on P , where vertices a, b, c are mapped respectively to points p, q, r.

Fig. 5. Illustration for the proof of Theorem 3

1. Suppose for a contradiction that G admits a point-set embedding Γ on P ,
where the vertices a, b and c are mapped respectively to the points p, q and r.
We then claim that the trigons and spine vertices of the butterflies of G are
mapped to the points of Py and Pu in Γ . To justify the claim observe that c is
not adjacent to the trigons and butterflies and the degree of c is 7m+mB−2.
On the other hand, all the points of P other than the points of Py and Pu

are visible to r and there are 7m + mB − 2 such points. Since c is mapped
to r, the trigons and the spine vertices of the butterflies Wai , 1 ≤ i ≤ 3m, of
G must be mapped to the points of Py and Pu in Γ .

2. Recall that vertex a is mapped to point p, and the vertices of all trigons and
butterflies are adjacent to a. There are m−1 trigons in G and m−1 points
in Pu. Denote these trigons by T1, T2, . . . , Tm−1. Since the points of Py are
collinear, one vertex of each trigon Tj , 1 ≤ j ≤ m − 1, will be mapped to a
point of Pu. This mapping associates each trigon with a distinct point of Pu.

3. Let Tj be a trigon with three vertices lj , mj , nj and without loss of generality
assume that mj is mapped to ui ∈ Pu. We then claim that lj and nj must be
mapped to the points {(i(B + 2) − 1, 1, 0), (i(B + 2), 1, 0)} in Γ . Otherwise,
assume that lj or nj is mapped to a point x, where x ∈ Py and x �∈ {(i(B +
2) − 1, 1, 0), (i(B + 2), 1, 0)}. Then the edge xui must cross either the edge
determined by p, (i(B + 2) − 1, 1, 0), or the edge determined by p, (i(B +
2), 1, 0). Therefore, the trigons must divide the points of Py \ ⋃m−1

i=1 {(i(B +
2) − 1, 1, 0), (i(B + 2), 1, 0)} into m groups each containing consecutive B
points. See Figure 5(b). Let these groups be B1, B2, . . . , Bm. Consequently,
the spine vertices of the butterflies must be mapped to these m groups in Γ .

50 S. Durocher et al.

4. Observe that the number of spine vertices in each butterfly is greater than
B/4 and less than B/2. Therefore, four or more butterflies contain more
than B spine vertices cumulatively, and hence cannot be mapped to a single
Bi. Similarly, less than three butterflies contain less than B spine vertices
cumulatively, and hence cannot cover the points of a single Bi. Therefore,
each Bi must contain the spine vertices of exactly three butterflies in Γ
and the corresponding three integers must sum to B. Consequently, if we
form subsets Si, 1 ≤ i ≤ m, where each Si consists of three integers that
correspond to Bi, then we can find m subsets S1, S2, . . . , Sm, where the sum
of the integers in each subset is equal to B.

Observe that subsets S1, S2, . . . , Sm correspond to a solution to the given in-
stance of 3-Partition, which contradicts the assumption that the given in-
stance has a negative answer. 	

6 Conclusion

In this paper we have given an O(n4/3+ε)-expected time algorithm for computing
point-set embeddings of plane 3-trees in R2. Since a planar 3-tree G has only a
linear number of plane embeddings, we can check point-set embeddability for all
the embeddings of G and determine whether G has a plane embedding on the
given set of points in polynomial time. On the other hand, we have proved that
this embeddability problem is NP-complete in R3, when a mapping for the outer
vertices of the input graph is given and the given points are not necessarily in
general position. The best known lower bound on time for computing point-set
embeddings of plane 3-trees on the points in R2 is Ω(n log n) [11]. Therefore, it
would be interesting to find a faster algorithm as well as to improve the lower
bound on the time required to find point-set embeddings of plane 3-trees in R2.

References

1. Bose, P.: On embedding an outer-planar graph in a point set. Computational Ge-
ometry: Theory and Applications 23(3), 303–312 (2002)

2. Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a
point set. Journal of Graph Algorithms and Applications 1(2), 1–15 (1997)

3. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. Journal of Graph Algorithms and Applications 10(2), 353–363 (2006)

4. Castañeda, N., Urrutia, J.: Straight line embeddings of planar graphs on point sets.
In: Proc. of CCCG, pp. 312–318 (1996)

5. Chazelle, B., Sharir, M., Welzl, E.: Quasi-optimal upper bounds for simplex range
searching and new zone theorems. Algorithmica 8(5&6), 407–429 (1992)

6. Demaine, E.D., Schulz, A.: Embedding stacked polytopes on a polynomial-size grid.
In: Proc. of ACM-SIAM SODA, pp. 77–80 (2011)

7. Garey, M.R., Johnson, D.S.: Computers and intractability. Freeman, San Francisco
(1979)

Embedding Plane 3-Trees in R2 and R3 51

8. Giacomo, E.D., Didimo, W., Liotta, G., Meijer, H., Wismath, S.K.: Constrained
point-set embeddability of planar graphs. International Journal of Computational
Geometry and Applications 20(5), 577–600 (2010)

9. Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for
planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)

10. Moosa, T.M., Rahman, M.S.: Improved algorithms for the point-set
embeddability problem for plane 3-trees. CoRR abs/1012.0230 (2010),
http://arxiv.org/abs/1012.0230

11. Nishat, R.I., Mondal, D., Rahman, M. S.: Point-set embeddings of plane 3-trees. In:
Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 317–328. Springer,
Heidelberg (2011)

12. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs
and Combinatorics 17(4), 717–728 (2001)

http://arxiv.org/abs/1012.0230

Orthogeodesic Point-Set Embedding of Trees�

Emilio Di Giacomo1, Fabrizio Frati2,3,��, Radoslav Fulek2,��,
Luca Grilli1, and Marcus Krug4

1 Dip. di Ingegneria Elettronica e dell’Informazione, Universitá degli Studi di Perugia, Italy
{digiacomo,grilli}@diei.unipg.it

2 School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
{fabrizio.frati,radoslav.fulek}@epfl.ch

3 School of Information Technologies, University of Sydney
4 Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany

marcus.krug@kit.edu

Abstract. Let S be a set of N grid points in the plane, and let G a graph with n
vertices (n ≤ N). An orthogeodesic point-set embedding of G on S is a drawing
of G such that each vertex is drawn as a point of S and each edge is an orthogonal
chain with bends on grid points whose length is equal to the Manhattan distance.
We study the following problem. Given a family of trees F what is the minimum
value f(n) such that every n-vertex tree in F admits an orthogeodesic point-set
embedding on every grid-point set of size f(n)? We provide polynomial upper
bounds on f(n) for both planar and non-planar orthogeodesic point-set embed-
dings as well as for the case when edges are required to be L-shaped chains.

1 Introduction

Let S be a set of N points in the plane, and let G be an n-vertex graph such that n ≤ N .
A point-set embedding of G on S is a drawing of G such that each vertex is drawn as
a point of S. Point-set embeddings are a classical subject of investigation in graph
drawing from both an algorithmic and a combinatorial point of view. Different types of
point-set embeddings have been defined depending on the desired type of drawing.

Several algorithmic results are known on point-set embeddings in which edges are
required to be straight-line segments. Deciding whether a planar graph admits a straight-
line planar point-set embedding on a given point set is an NP-complete problem [5],
while straight-line planar point-set embeddings of trees [3] and outerplanar graphs [2]
can be computed efficiently. From the combinatorial perspective, Gritzmann et al. [12]
prove that an n-vertex planar graph admits a straight-line planar point-set embedding
on every set of n points in general position if and only if it is outerplanar. Kaufmann
and Wiese show that every n-vertex planar graph admits a polyline planar point-set
embedding on every set of n points with at most 2 bends per edge [14]. Colored ver-
sions of planar polyline point-set embeddings have also been investigated [1,7]. Special
research efforts have been devoted to study universal point sets for planar graphs. A
point set S is universal for a family F of graphs and for a type D of drawing if every

� Initiated during the “Bertinoro Workshop on Graph Drawing”, Bertinoro, Italy, March 2011.
�� Supported by the Swiss National Science Foundation Grant No.200021-125287/1.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 52–63, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Orthogeodesic Point-Set Embedding of Trees 53

Table 1. Upper bounds on the value f(n) obtained in this paper

Planar L-Shaped Non-Planar L-Shaped Planar Planar 2-spaced

Caterpillars Δ = 3 n [Th. 8] n [Th. 8] n [Th. 8] n [Th. 1]

Trees Δ = 3 n2−2n+2 [Th. 6] n [Th. 10]a n [Th. 3] n [Th. 1]

Caterpillars Δ = 4 3n−2 [Th. 7] n+1 [Th. 11] �1.5n� [Th. 4] n [Th. 1]

Trees Δ = 4 n2−2n+2 [Th. 6] 4n−3 [Th. 9] 4n [Th. 2] n [Th. 1]

a Fink et al. [10] have independently obtained this result.

graph in F admits a point-set embedding of type D on S. Every universal point set for
straight-line planar drawings of planar graphs has size at least 1.235 ·n [15] while there
exist universal point sets of size 8

9n2 [4]. Universal point sets of size n exist for polyline
drawings of planar graphs [9].

In this paper we study orthogeodesic point-set embeddings on the grid. Orthogeodesic
point-set embeddings were introduced by Katz et al. [13] and require edges to be rep-
resented by orthogeodesic chains, i.e. by orthogonal chains whose total length is equal
to the Manhattan distance between the endpoints. Since orthogeodesic chains corre-
spond to shortest orthogonal connections in the L1 metric, they can be considered as the
counter part of straight lines in the L2 metric. Katz et al. [13] considered orthogeodesic
point-set embeddings from the algorithmic side and proved that it is NP-complete to de-
cide whether an n-vertex planar graph with maximum degree 4 admits an orthogeodesic
point-set embedding on n points, while the problem can be solved efficiently for cycles.
Katz et al. [13] also show that, if the mapping between vertices and points is given and
the bends are required to be at grid points, then the problem is NP-complete even for
matchings, while the problem is polynomial-time solvable if bends need not be at grid
points. Bi-colored planar orthogeodesic point-set embeddings have been studied by Di
Giacomo et al. [6].

We consider orthogeodesic point-set embeddings on the grid from the combinatorial
point of view. Let P be a set of grid points in the plane, i.e., p = (i, j) with i, j ∈ Z
for all p ∈ P . We write x(p) := i and and y(p) := j. A set P of grid points with
x(p) �= x(q) and y(p) �= y(q) for all p, q ∈ P with p �= q is called general. For different
classes of trees F and different drawing styles D we study the value f(n) such that every
general pointset is universal for orthogeodesic point-set embeddings of all trees in F
usingD. The restriction to general point sets is necessary since there are arbitrarily large
point sets that are not universal for orthogeodesic point-set embeddings of trees, e.g., a
set of collinear points. We consider both planar and non-planar orthogeodesic point-set
embeddings as well as the case when edges can be arbitrary orthogeodesic chains or
when are edges required to be L-shaped chains. An L-shaped chain is an orthogonal
chain with only one bend, thus, it is an orthogeodesic chain with the minimum number
of bends for general point sets. Table 1 summarizes our results.

The rest of the paper is organized as follows. In Sects. 2, 3, and 4 we study pla-
nar, planar L-shaped, and non-planar L-shaped orthogeodesic point-set embeddings,
respectively. Sect. 5 concludes and lists some open problems.

54 E. Di Giacomo et al.

2 Planar Orthogeodesic Pointset Embeddings

In this section we consider planar orthogeodesic point-set embeddings of trees. First, we
show that every tree with maximum degree 4 can be embedded on every general point
set with n points with at most two bends per edge, if we require that the horizontal and
vertical distance of any two points is at least two. We call point sets with this property
2-spaced. This implies that we can embed every tree with n vertices on every general
point set P with n points whose points are not horizontally or vertically aligned, if
neither vertices nor bends are required to be grid points.

Theorem 1. Every tree with n vertices and with maximum degree 4 admits a planar
orthogeodesic point-set embedding on every general point set P with n points such that
min{|x(p) − x(q)|, |y(p) − y(q)|} ≥ 2 for all p, q ∈ P with p �= q.

Proof: Let T be any tree with n vertices and maximum degree 4. Root T at any node r of
degree at most 3. We prove that T admits a planar orthogeodesic point-set embedding on
every general point set P with n points in which: (i) each edge has two bends and (ii) no
edge intersects a half-line arbitrarily chosen among the two horizontal and two vertical
half-lines starting at r.

r

r3

r2

r1

Fig. 1. Planar ortho-
geodesic point-set em-
bedding of a tree on a
general 2-spaced point
set

The statement is trivially true for n = 1. We inductively
prove that T admits the required embedding for the case that
no edge may intersect the horizontal half-line starting at r and
directed rightward (the other constructions are analogous). Let
n1 ≥ 0, n2 ≥ 0, and n3 ≥ 0 denote the number of vertices
in the subtrees T1, T2, and T3 rooted at children r1, r2, and r3

of the root r of T , respectively. Refer to Fig. 1. Let P1 denote
the set of the n1 bottommost points of P . Let P2 denote the set
of the n2 leftmost points of P \ P1. Let p be the bottommost
point of P \ (P1 ∪ P2). Let P3 = P \ (P1 ∪ P2 ∪ {p}). Embed
r on p. Inductively embed Ti on Pi (i = 1, 2, 3) with no edge
intersecting the vertical half-line starting at r1 directed upward.
Connect r with r1 by an orthogeodesic edge vertically attached
to r and to r1and having an intermediate segment s on the hori-
zontal line one unit above the top side of the bounding box of P1. Connect r with r2 and
r3 analogously (see Fig. 1). It is easy to see that the constructed embedding is planar
and that no edge intersects the horizontal half-line starting at r and directed rightward.
Since min{|x(p)−x(q)|, |y(p)−y(q)|} ≥ 2 for all p, q ∈ P and since the intermediate
segment s occupies a grid line one unit above a point, this grid line does not contain
any point from P . �
As a consequence of Theorem 1 we obtain the following theorem for general point sets
without the restriction on the horizontal and vertical distance of the points.

Theorem 2. Every tree with n vertices and with maximum degree 4 admits a planar
orthogeodesic point-set embedding on every general point set with 4n points.

Proof: We prove that any set P of 4n points contains a subset of n points such that
no two points have a horizontal or vertical distance of less than two. The theorem then

Orthogeodesic Point-Set Embedding of Trees 55

r

p∗

(a)

p(s)

p∗

(b)

p(s)
s

p∗

(c)

p(s)

p∗

(d)

p(s)

p∗

s

PS1

PS2

(e)

p(s)

p∗

(f)

p(s)

p∗s
PS1

PS2

(g)

Fig. 2. Embedding a tree with maximum degree 3 on a set of n points. (a) Embedding r. (b)–
(c) Embedding s with exactly one child. (d)–(g) Embedding s with two children.

directly follows from Theorem 1. Let the points in P be p1, . . . , p4n sorted from left to
right. Let P2 consist of the points p2i (1 ≤ i ≤ 2n) and let P1 = P \ P2. Clearly, the
points in P1 and P2 have the desired horizontal spacing and one of the sets, say P1 must
contain at least 2n points. Repeating the argument for P1 vertically yields the claim. �
For trees with maximum degree 3, we can improve this result.

Theorem 3. Every tree with n vertices and with maximum degree 3 admits a planar
orthogeodesic point-set embedding on every general point set with n points.

Proof: Let T be any tree of degree 3 and let P be any general point set with n points.
Root T at any leaf r. Construct a point-set embedding of T on P as follows. First,
embed r on the topmost point pt of P and assign to the subtree T ′ = T \ {r} point set
P \ {pt} and an axis-parallel rectangle RT ′ whose opposite corners are the left-bottom
corner of the bounding-box of P and the point one unit below the right-top corner of
the bounding-box of P . Connect r with the top border of RT ′ by drawing a vertical
segment from pt to the point p∗ one unit below pt (see Fig. 2a).

Second, we traverse T top-down. At each step we suppose that a point set PS and an
axis-parallel rectangle RS have been assigned to a subtree S of T with root s so that the
following invariants are satisfied: (i) |S| = |PS |; (ii) PS lies inside RS ; (iii) the parent
p(s) of s lies outside RS and a horizontal or vertical segment p(s), p∗ has been drawn
connecting p(s) to a point p∗ on the border of RS ; (iv) let S and S′ be two subtrees of
T ; if S is contained in S′, then RS is contained inside RS′ , if S′ is contained in S, then
RS′ is contained inside RS , and if neither S is contained in S′ nor S′ is contained in S,
then RS ∩ RS′ = ∅. Suppose that p∗ is on the top side of RS ; the cases in which p∗ is
on the bottom, left, or right side of RS can be discussed analogously.

56 E. Di Giacomo et al.

If s has exactly one child s1, then denote by S1 the subtree of T rooted at s1. Refer
to Figs. 2b–2c. Embed s on the topmost point pt of PS , assign to S1 the point set
PS \ {pt} and the rectangle RS1

whose opposite corners are the left-bottom corner
of RS and the point one unit below the right-top corner of RS . Connect p(s) to s by
possibly extending p(s), p∗ until its endpoint different from p(s) lies in a point ph on
the horizontal line through pt and by drawing a segment pt, ph. Finally, draw a vertical
segment connecting s to the top side of RS1

. See Fig. 2c.
If s has two children s1 and s2 that are roots of subtrees S1 and S2, respectively, then

denote by PS1
(resp. by PS2

) the point set composed of the leftmost |S1| points of PS

(resp. the rightmost |S2| points of PS). Denote by p the only point of PS that is neither
in PS1

nor in PS2
. Assign to S1 the point set PS1

and the rectangle RS1
whose opposite

corners are the left-bottom corner of RS and the intersection point between the top side
of RS and the vertical line one unit to the left of p. Consider the horizontal segment h
which lies on the same horizontal line of the top side of PS and whose endpoints p1 and
p2 lie on the vertical lines through p and through p(s), respectively. We distinguish two
cases. (1) In the first case, h does not contain any point of PS in its interior. Refer to
Figs. 2d–2e. Embed s on p; assign to S2 the point set PS2

and the rectangle RS2
whose

opposite corners are the right-bottom corner of RS and the intersection point between
the top side of RS and the vertical line one unit to the right of p. Connect p(s) to s
with an edge composed of p(s), p∗, of a segment between p∗ and the intersection point
p′ between the top side of RS and the vertical line through p, and of segment p′, p.
Finally, draw a horizontal segment connecting s with the right side of RS1

and draw
a horizontal segment connecting s with the left side of RS2

. (2) In the second case, h
contains a point t(PS) in its interior. Refer to Figs. 2f–2g. Embed s on t(PS); assign
to S2 the point set PS2

\ {t(PS)} ∪ {p} and the rectangle RS2
whose opposite corners

are the right-bottom corner of RS and the intersection point between the horizontal line
one unit below the top side of RS and the vertical line through p. Connect p(s) to s
with an edge composed of p(s), p∗ and of segment p∗, t(PS). Finally, draw a horizontal
segment connecting s with the right side of RS1

and draw a vertical segment connecting
s with the top side of RS2

.
The only drawn edge (p(s), s) is an orthogeodesic edge. Hence, the resulting drawing

is an orthogeodesic point-set embedding of T on P . Moreover, it is easy to see that
the invariants are maintained at every subtree of T and that such invariants imply the
planarity of the point-set embedding. The statement of the theorem follows. �
A caterpillar is a tree such that by removing all leaves we are left with a path, called
spine. In Theorem 2 we show that every tree with maximum degree 4 has a planar ortho-
geodesic point-set embedding on every general point set with 4n points. For caterpillars
with maximum degree 4, however, this result is not tight.

Theorem 4. Every caterpillar with n vertices and with maximum degree 4 admits
a planar orthogeodesic point-set embedding on every general point set with �1.5n�
points.

Proof: Let C be any caterpillar with n vertices and degree 4 and let ni denote the
number of vertices of C with degree i = 1, . . . , 4. Let P ∗ be any point set with �1.5n�
points. From P ∗ we arbitrarily choose a point set P of size N = n + n3 + n4 points on

Orthogeodesic Point-Set Embedding of Trees 57

which we embed C. First, we show that N ≤ 1.5n, which implies N ≤ �1.5n� since N
is a natural number. Suppose for contradiction that n3 + n4 > n/2. Since each vertex
with degree at least 3 is incident to a leaf this yields n1 ≥ n3 + n4. Summing up we
have n ≥ n1 + n3 + n4 ≥ 2(n3 + n4) > n, a contradiction.

Next, we show how to embed C on P . Each vertex v ∈ V is mapped to a point
π(v) ∈ P . Let S = (u1, . . . , uk) be the spine of C. Remove from C all the leaves,
except for one leaf u0 incident to u1 and one leaf uk+1 incident to uk. Denote by S+ the
path (u0, u1, . . . , uk, uk+1). For i = 1, . . . , k, consider node ui. If ui has two adjacent
leaves not in S+, label one of them by “top” and one of them by “bottom”; if ui has
one adjacent leaf not in S+, arbitrarily label it by “top” or by “bottom”. Let B and T
be the sets of leaves of C that have been labeled by bottom and by top, respectively.

Let PT be the subset of the highest |T | points of P and let PB be the subset of
the lowest |B| points. Further, let Q = P \ (PT ∪ PB) be the remaining points. By
construction Q contains t = n2 +2(n3 +n4)+2 points. We embed C on P as follows:
(S1) The leaves in T will be embedded on PT , the leaves in B will be embedded on
PB and the vertices in S+ will be embedded on a subset PS+ ⊆ Q. (S2) The spine will
be embedded as an x-monotone chain such that ui is left of ui+1 for all 0 ≤ i ≤ k.
(S3) Edge {ui, ui+1} occupies the horizontal segment incident to ui on the right for all
0 ≤ i ≤ k. If, additionally, the degree of ui is at least 3, then edge {ui−1, ui} occupies
the horizontal segment incident to ui on the left for all 1 ≤ i ≤ k.

Let q1, . . . , qt be the points in Q sorted from left to right. First, we map u0 to the
leftmost point q1 in Q. Suppose, we have mapped u0, . . . , ui for some i < k + 1 and
let qj = π(ui). If ui+1 has degree 2, then we map ui+1 to qj+1 and we connect ui and
ui+1 by an L-shaped orthogeodesic chain composed of a horizontal segment incident
to ui and a vertical segment incident to ui+1. See Figs. 3a and 3b. If ui+1 has degree
at least 3, then we map ui+1 to qj+2 skipping the point qj+1 in Q and we connect
ui by an orthogeodesic chain consisting of two horizontal segments incident to ui and
ui+1, respectively, and a vertical segment in the column to the left of qj+2. See Figs. 3c
and 3d. By construction, uk+1 is mapped to a point qj such that j ≤ n2+2(n3+n4)+2
since we only skipped points for vertices with degree at least 3.

Now we describe how to embed the leaves in T on PT . The leaves in B are em-
bedded on PB analogously. Let w1, . . . , w|T | be the vertices in T sorted such that their
corresponding vertices on the spine are sorted from left to right and let Ti be the set
of vertices in T that are incident to vertices uj for j < i. For each i let P−

i be the
set of points in PT to the left of π(ui) and let P+

i be the set of points in PT to the
right of π(ui), respectively. Each leaf wi is mapped to a point π(wi) and is attached
to the spine by an L-shaped orthogeodesic chain. We maintain the following invariant:
(L1) If wi is incident to uj and |P−

j | > |Tj |, then wi is mapped to the lowest point

p ∈ P−
i \ ⋃i−1

l=1{π(wl)} by an L-shaped orthogeodesic chain consisting of the vertical
segment incident to π(uj) and the horizontal segment incident to p. Otherwise, wi is
mapped to the highest unused point in P+

i \ ⋃i−1
l=1{π(wl)}. See Figure 3e. The result-

ing point-set embedding is orthogeodesic by construction. Planarity follows from the
invariants as follows.

Due to invariants (S1) and (S2) the spine is mapped to an x-monotone chain such that
the angle at vertices with degree at least 3 is 180 degrees. This implies that the spine

58 E. Di Giacomo et al.

qj

qj+1

(a)

qj

qj+1

(b)

qj

qj+1

qj+2

(c)

qj

qj+1

qj+2

(d)

PT

PS+

u0

u1

u4

u2

u3

u5

u6

w1

w2

w4
w5

w3P−
3

P+
3

(e)

Fig. 3. Embedding a caterpillar on a set of �1.5n� points. (a)–(d) Embedding the spine S+.
(e) Embedding the leaves in T .

does not cross itself and that the vertical segments incident to the vertices with degree at
least 3 are unoccupied by the spine. Since by invariant (S1) we attached the leaves in T
above the spine and the leaves in B below the spine, there cannot be a crossing between
two edges incident to a leaf in T and a leaf in B, respectively. Suppose for contradiction
that there is a crossing between two edges ei and ej incident to two leaves wi and wj

in T , respectively. Without loss of generality we assume i < j. If π(wi) ∈ P−
i and

π(wj) ∈ P+
j there cannot be a crossing by construction. If π(wi) ∈ P−

i ⊆ P−
j and

π(wj) ∈ P−
j , then a crossing can only occur if π(wj) ∈ P−

i and π(wj) is below
π(wi), which contradicts invariant (L1). Analogously, if π(wi) ∈ P+

i and π(wj) ∈
P+

j ⊆ P+
i , then a crossing can only occur if π(wi) ∈ P+

j and π(wi) is below π(wj),
which contradicts invariant (L1). Finally, if π(wj) ∈ P−

i and π(wi) ∈ P+
j ⊆ P+

i ,
then this contradicts invariant (L1), since wi is only mapped to a point in P+

i if there
is no unused point in P−

i . Therefore, the embedding is crossing-free, which concludes
the proof. �

3 Planar L-Shaped Orthogeodesic Pointset Embeddings

Next, we consider planar L-shaped orthogeodesic point-set embeddings of trees. First,
we prove that every tree with n vertices and with maximum degree 4 admits a planar
L-shaped point-set embedding on every general point set with n2 − 2n + 2 points.
Every point set of this size contains a diagonal point set, which is universal for planar
L-shaped point-set embeddings of trees with maximum degree 4. Let P be a point set
and let p1, . . . , pn be the points in P ordered by increasing x-coordinates. Then P is
diagonal if y(pi+1) > y(pi) for every i = 1, . . . , n−1 (then P is a positive-diagonal
point set), or if y(pi+1) < y(pi) for every i = 1, . . . , n−1 (then P is a negative-
diagonal point set). We have the following:

Theorem 5. Every tree with n vertices and with maximum degree 4 admits a planar
L-shaped point-set embedding on every diagonal point set with n points.

Orthogeodesic Point-Set Embedding of Trees 59

Proof: We prove by induction a stronger statement. Let T be any tree with n vertices
and with maximum degree 4. Root T in a vertex r of degree at most 3. We prove that
T admits a planar L-shaped point-set embedding on every diagonal point set with n
points with the further property that there is no edge overlapping or crossing a half-line
arbitrarily chosen among the two horizontal half-lines and the two vertical half-lines
starting at r.

In the base case n = 1 and the statement is trivially true. In the inductive case, we
prove that T admits a planar L-shaped point-set embedding on every diagonal point set
P with n points with the further property that no edge overlaps or crosses the vertical
half-line starting at r and directed upward (the other constructions are analogous). We
also suppose that P is a positive-diagonal point set, the case in which it is a negative-
diagonal point set is analogous. Let n1 ≥ 0, n2 ≥ 0, and n3 ≥ 0 denote the number
of vertices in the subtrees T1, T2, and T3 rooted at the children r1, r2, and r3 of r,
respectively. Let P1, P2, and P3 be the point sets consisting of the bottommost n1

points of P , of the bottommost n2 points of P \ P1, and of the topmost n3 points of P ,
respectively. Let p be the only point of P not in P1, not in P2, and not in P3. Embed
r on p. Inductively construct a non-planar L-shaped point-set embedding of T1 on P1

(resp. of T2 on P2, resp. of T3 on P3) such that no edge overlaps or crosses the vertical
line through r1 directed upward (resp. the horizontal line through r2 directed rightward,
resp. the vertical line through r3 directed downward). Connect r with r1 (resp. with r2,
resp. with r3) by an L-shaped edge horizontally attached to r and vertically attached
to r1 (resp. vertically attached to r and horizontally attached to r2, resp. horizontally
attached to r and vertically attached to r3). Since the embeddings of T1 on P1, of T2 on
P2, and of T3 on P3 are L-shaped, all the edges of T1, all the edges of T2, and all the
edges of T3 lie inside the bounding boxes of P1, of P2, and of P3, respectively. Hence,
the vertical half-line through r directed upward has no overlapping or crossing edge,
completing the induction. �
According to the Erdős-Szekeres theorem [8], every general point set with n2 − 2n + 2
points contains either a positive-diagonal point set with n points or a negative-diagonal
point set with n points. Hence, from Theorem 5 we have the following theorem.

Theorem 6. Every tree with n vertices and with maximum degree 4 admits a planar
L-shaped point-set embedding on every general point set with n2 − 2n + 2 points.

For caterpillars with maximum degree 4 we can improve the bound of Theorem 6 as
follows:

Theorem 7. Every caterpillar with n vertices and with maximum degree 4 admits a
planar L-shaped point-set embedding on every general point set with 3n − 2 points.

Proof: We prove by induction a stronger statement. Let C be any caterpillar with n
vertices and with maximum degree 4. Let (u2, . . . , uk−1) be the spine of C. Let u1 and
uk be two leaves of C adjacent to u2 and to uk−1, respectively. For any i = 1, . . . , k−1
denote by Ci the subtree of C induced by nodes u1, . . . , ui and by their adjacent leaves
in C − uk and denote Ck := C. Observe that Ci is a caterpillar, for i = 1, . . . , k. We
will prove that, for i = 1, . . . , k, Ci admits a planar L-shaped point-set embedding on
every general point set with 3|Ci| − 2 points, so that the following invariant is satisfied:

60 E. Di Giacomo et al.

ui

ui−1
ai

bi

(a)

uiui−1

ai

bi

(b)

Fig. 4. Planar L-shaped point-set embedding of caterpillars on general point sets. (a) y(p1) <
y(p2) < y(p3). (b) y(p1) > y(p2) > y(p3).

The horizontal half-line starting at ui directed rightward does not intersect any edge of
the constructed drawing of Ci. We use the fact that (�) every general point set with 5
points contains a diagonal point set with 3 points, which can easily be verified.

We now prove the statement. In the base case, i = 1. Then |C1| = 1 and the statement
is trivially true. Suppose the statement is true for Ci−1. Consider any point set Pi with
3|Ci| − 2 points. Denote by Pi−1 the point set consisting of the leftmost 3|Ci−1| − 2
points of Pi. Construct, by induction, a planar L-shaped point-set embedding of Ci−1

on Pi−1 so that the horizontal half-line starting at ui−1 directed rightward does not
intersect any edge of the constructed drawing of Ci−1. We distinguish three cases.

In the first case ui has no adjacent leaf. Then, embed ui on the rightmost point of Pi

(such a point exists since |Pi \ Pi−1| = 3). Connect ui with ui−1 by an L-shaped edge
horizontally attached to ui−1 and vertically attached to ui.

In the second case ui has one adjacent leaf ai. Then, consider the three leftmost
points of Pi \ Pi−1 (such points exist since |Pi \ Pi−1| = 6). Then, either two of
such three points are above the horizontal line h(ui−1) through ui−1 or two are below.
Suppose two points p1 and p2 are above h(ui−1), the other case being analogous. Then,
embed ui on the rightmost of p1 and p2 and embed ai on the leftmost of p1 and p2.
Connect ui with ui−1 by an L-shaped edge horizontally attached to ui−1 and vertically
attached to ui and connect ui with ai by an L-shaped edge horizontally attached to ui

and vertically attached to ai.
In the third case ui has two adjacent leaves ai and bi. Then, consider the nine leftmost

points of Pi \ Pi−1 (such points exist since |Pi \ Pi−1| = 9). Then, either five of
such nine points are above the horizontal line h(ui−1) through ui−1 or five are below.
Suppose five points p1, . . . , p5 are above h(ui−1), the other case being analogous. Then,
by (�), three points, say without loss of generality p1, p2, and p3, form a diagonal
point set. Suppose, without loss of generality, that x(p1) < x(p2) < x(p3). Then, if
y(p1) < y(p2) < y(p3) (see Fig. 4a) embed ui on p2, embed ai on p1, and embed bi

on p3; otherwise, that is y(p1) > y(p2) > y(p3) (see Fig. 4b), embed ui on p3, embed
ai on p2, and embed bi on p1. In both cases, connect ui with ui−1 by an L-shaped edge
horizontally attached to ui−1 and vertically attached to ui, connect ui with ai by an
L-shaped edge horizontally attached to ui and vertically attached to ai, and connect ui

with bi by an L-shaped edge vertically attached to ui and horizontally attached to bi.
Since the planar L-shaped point-set embedding of Ci−1 on Pi−1 satisfies the invari-

ant, the resulting L-shaped point-set embedding of Ci on Pi is planar. Moreover, such
a point-set embedding clearly satisfies the invariant, thus completing the induction. �

Orthogeodesic Point-Set Embedding of Trees 61

Q1

Q2

Q3

Q4

(a)

v1

v2
v3

v4

v5

(b)

Fig. 5. Non-planar L-shaped point-set embedding of a tree with maximum degree 4

For caterpillars with maximum degree 3 we can improve this bound even further by
showing that every such a caterpillar can be embedded on every general point set with
n points using L-shaped edges. The proof of the following Theorem 8 is based on an
inductive argument showing that we can embed a sub-caterpillar Ci of C, where Ci is
defined according to the proof of Theorem 7, on the leftmost |Ci| points of P such that,
the horizontal half-line as well as one vertical half-line starting at the rightmost vertex
of the spine of Ci do not intersect the drawing of Ci. A proof can be found in [11].

Theorem 8. Every caterpillar with n vertices and with maximum degree 3 admits a
planar L-shaped point-set embedding on every general point set with n points.

4 Non-Planar L-Shaped Orthogeodesic Point-Set Embeddings

In this section we consider non-planar L-shaped orthogeodesic point-set embeddings.
We start by showing that every tree with n vertices as a non-planar L-shaped ortho-
geodesic point-set embedding on every general point set with 4n− 3 points.

Theorem 9. Every tree with n vertices and with maximum degree 4 admits a non-
planar L-shaped point-set embedding on every general point set with 4n − 3 points.

Proof: Let T = (V, E) be a tree with n vertices and let P be a point set with 4n − 3
points. Let T be rooted in a leaf r ∈ V and let the vertices of T be labeled r =
v1, . . . , vn according to a depth-first search in T . Let Qn = P . For n ≥ i ≥ 1, let Pi

consist of the points on the bounding box of Qi, and for n ≥ i ≥ 2 let Qi−1 = Qi \Pi.
By construction each Pi contains at least two and at most four vertices, except for P1,
which contains at least one vertex. See Figure 5a.

We embed T using L-shaped orthogeodesic chains such that vertex vi is mapped
to a point in Pi for all 1 ≤ i ≤ n. We start by mapping the root v1 to an arbitrary
point p∗ ∈ P1. Suppose we have embedded all vertices v1, . . . vi for some i ≥ 1 and
we would like to embed vi+1. Since the vertices are ordered according to a depth-first
search, we have already embedded the parent vj of vi+1. Without loss of generality we
may assume that the vertical segment above vj is unoccupied (otherwise we can rotate
the instance accordingly). By construction the points in Pi are on the bounding box
of Qi+1, which contains Qi in its interior. Hence, Pi contains a point pt above f(vj).
We map vi+1 to pt and connect it to vj by a vertical segment incident to vj and the
horizontal segment incident to pt. See Figure 5b. �

62 E. Di Giacomo et al.

We show that a point set of size n suffices for all trees with n vertices and maximum
degree 3.

Theorem 10. Every tree with n vertices and with maximum degree 3 admits a non-
planar L-shaped point-set embedding on every general point set with n points.

Proof: We prove by induction a stronger statement. Let T be any tree with n vertices
and with maximum degree 3. Let r be the root of T . We prove that T admits a non-
planar L-shaped point-set embedding on every general point set with n points with the
further property that there is no edge overlapping a line arbitrarily chosen among the
horizontal line and the vertical line through r.

rr1

r2

Fig. 6. Non-planar
L-shaped point-set
embedding of a
tree

In the base case n = 1 and the statement is trivially true. In
the inductive case, we prove that T admits a non-planar L-shaped
point-set embedding on every general point set P with n points with
the further property that no edge overlaps the vertical line through
r (the construction providing that no edge overlaps the horizontal
line through r is analogous). Refer to Fig 6. Let n1 ≥ 0 and n2 ≥ 0
denote the number of vertices in the subtrees T1 and T2 rooted at
the children r1 and r2 of r, respectively. Let P1 and P2 be the point
sets consisting of the leftmost n1 and the rightmost n2 points of P ,
respectively. Let p be the only point of P not in P1 and not in P2.
Embed r on p. Inductively construct a non-planar L-shaped point-
set embedding of T1 on P1 (resp. of T2 on P2) such that no edge
overlaps the vertical line through r1 (resp. through r2). Connect r with r1 (resp. with
r2) by an L-shaped edge horizontally attached to r and vertically attached to r1 (resp.
to r2). Since the embedding of T1 (resp. of T2) on P1 (resp. on P2) is L-shaped, all the
edges of T1 (resp. of T2) lie inside the bounding box of P1 (resp. of P2). Hence, the
vertical line through r has no overlapping edge, thus completing the induction. �

For caterpillars with maximum degree 4 we can improve this by showing that n + 1
points suffice for non-planar L-shaped orthogeodesic point-set embeddings. The proof
is based on an inductive argument showing that every caterpillar has a non-planar L-
shaped point-set embedding on every general point set such that the spine is embedded
as an x-monotone chain with the property that each vertex of the spine has a spine edge
incident to the right and such that all except possibly one point are used either by the
spine or one of its adjacent leaves. The case analysis for the induction can be found
in [11].

Theorem 11. Every caterpillar with n vertices and with maximum degree 4 admits a
non-planar L-shaped orthogeodesic point-set embedding on every general point set
with n + 1 points.

5 Conclusions

In this paper we studied orthogeodesic point-set embeddings of trees on the grid. For
various types of drawings D and various families of trees F we proved upper bounds

Orthogeodesic Point-Set Embedding of Trees 63

on the minimum value f(n) such that every n-vertex tree in F admits a point-set em-
bedding of type D on every point set of size f(n). Since n is a trivial lower bound for
f(n) in all considered variants of the problem and since the upper bounds we provided
are larger than n for some of the considered variants, it is an interesting topic for future
research to close the gap between n and f(n). The gap is especially large for planar
L-shaped point-set embeddings of trees for which we only proved a quadratic upper
bound. Hence it would be interesting to come up with a sub-quadratic upper bound
or a non-trivial lower bound. Further, we restricted our attention to trees, but we may
consider the same problem for different classes of graphs.

References

1. Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points. Theoret-
ical Computer Science 408(2-3), 129–142 (2008)

2. Bose, P.: On embedding an outer-planar graph on a point set. Computational Geometry:
Theory and Applications 23, 303–312 (2002)

3. Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a point set.
Journal of Graph Algorithms and Applications 2(1), 1–15 (1997)

4. Brandenburg, F.J.: Drawing planar graphs on 8
9
n2 area. Electronic Notes in Discrete Mathe-

matics 31, 37–40 (2008)
5. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard.

Journal of Graph Algorithms and Applications 10(2), 353–366 (2006)
6. Di Giacomo, E., Grilli, L., Krug, M., Liotta, G., Rutter, I.: Hamiltonian Orthogeodesic Al-

ternating Paths. In: Iliopoulos, C.S. (ed.) IWOCA 2011. LNCS, vol. 7056, pp. 170–181.
Springer, Heidelberg (2011)

7. Di Giacomo, E., Liotta, G., Trotta, F.: Drawing colored graphs with constrained vertex posi-
tions and few bends per edge. Algorithmica 57, 796–818 (2010)

8. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Mathematica 2,
463–470 (1935)

9. Everett, H., Lazard, S., Liotta, G., Wismath, S.: Universal sets of n points for one-bend
drawings of planar graphs with n vertices. Discrete and Computational Geometry 43, 272–
288 (2010)

10. Fink, M., Haunert, J.-H., Mchedlidze, T., Spoerhase, J., Wolff, A.: Drawing graphs with
vertices at specified positions and crossings at large angles. pre-print, arXiv:1107.4970v1
(July 2011)

11. Di Giacomo, E., Frati, F., Fulek, R., Grilli, L., Krug, M.: Orthogeodesic point-set embedding
of trees. Technical Report 2011-24, Kalrsruhe Institute of Technology, KIT (2011)

12. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with ver-
tices at specified points. Amer. Math. Monthly 98(2), 165–166 (1991)

13. Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-Geodesic Embedding of Planar Graphs.
In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 207–218. Springer,
Heidelberg (2010)

14. Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs.
Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)

15. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex
planar graphs. Information Processing Letters 92(2), 95–98 (2004)

On Point-Sets That Support Planar Graphs�

Vida Dujmovic1, William Evans2, Sylvain Lazard3, William Lenhart4,
Giuseppe Liotta5, David Rappaport6, and Stephen Wismath7

1 Carleton University, Canada
2 University of British Columbia, Canada

3 INRIA Nancy, LORIA, France
4 Williams University, U.S.A.

5 Universitá degli Studi di Perugua, Italy
6 Queen’s University, Canada

7 University of Lethbridge, Canada

Abstract. A universal point-set supports a crossing-free drawing of any
planar graph. For a planar graph with n vertices, if bends on edges of
the drawing are permitted, universal point-sets of size n are known, but
only if the bend-points are in arbitrary positions. If the locations of the
bend-points must also be specified as part of the point-set, we prove that
any planar graph with n vertices can be drawn on a universal set S of
O(n2/ log n) points with at most one bend per edge and with the vertices
and the bend points in S . If two bends per edge are allowed, we show that
O(n log n) points are sufficient, and if three bends per edge are allowed,
Θ(n) points are sufficient. When no bends on edges are permitted, no
universal point-set of size o(n2) is known for the class of planar graphs.
We show that a set of n points in balanced biconvex position supports
the class of maximum degree 3 series-parallel lattices.

1 Introduction

A set of points supports the drawing of a graph G if there is a one-to-one mapping
f of the vertices of G to the points so that for all pairs of edges (a, b), (c, d) in G
(where a, b, c, d are distinct), segments f(a)f(b) and f(c)f(d) do not intersect.
A set of points that supports the drawing of all n-vertex graphs in some class
is called universal for that class, or simply universal if the class is all planar
graphs. The size of any universal point-set for planar graphs requires at least
1.235n points as shown by Kurowski [10] (see also Chrobak and Karloff [3]). Early
graph drawing results, such as the canonical ordering technique of de Frasseix,
Pach, Pollack [4] and Schnyder’s embedding [11] demonstrate that an n×n grid
of points is a universal point-set. However, no universal point-set of size o(n2) is
known.

� This paper was initiated at the 2011 McGill/INRIA/UVictoria Bellairs workshop.
Discussion with other participants is gratefully acknowledged. Research supported
by NSERC, and by MIUR of Italy under project AlgoDEEP prot. 2008TFBWL4.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 64–74, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Point-Sets That Support Planar Graphs 65

Smaller universal point-sets for sub-classes of planar graphs are known. For
example, any outerplanar graph can be drawn on any set of n points in gen-
eral position [8]. Indeed, if the point-set is in convex position, then it supports
exactly the family of outerplanar graphs. Determining other families of planar
graphs for which universal point-sets of size n exist is an interesting problem. We
examine a particular type of point-set, of size n, in which points are arranged in
biconvex position, and show that it supports the drawing of all maximum degree
3 series-parallel lattices, a class of graphs that contains members that are not
outerplanar. These notions are precisely defined in Section 2.

The main contributions in this paper are stated in Theorems 1 and 2, and per-
tain to universal point-sets for straight-line drawings, and drawings with bends
respectively.

Theorem 1. For all n, there exist universal point-sets of cardinality n that
support the family of maximum degree 3 series-parallel lattices with n vertices.

Suppose we relax the definition of support to allow edges of the graph to map to
polylines composed of (at most) k + 1 line segments. In other words, we allow
edges that “bend” at most k times. In this case, universal point-sets of size n
exist for two bends [9] and even one bend [7]. However, these results assume
that the bend-points can be placed in arbitrary locations and these bend-points
are not included as part of the universal point-set. It is natural to ask if there
exists a point-set that supports all planar graphs where each vertex and each
bend-point occurs at a point in the set. As before, we require all pairs of edges
(a, b) and (c, d) (where a, b, c, d are distinct) to map to non-intersecting polylines.
Previous to this paper, no such point-set of cardinality o(n2) was known for any
value of k. Extending the results of [7] and [9] in a straightforward manner imply
point-sets of size O(n3). For k = 3, 2, 1, we present such universal point-sets of
cardinality O(n), O(n log n), and O(n2/ logn) respectively.

Theorem 2. For all n, there exist universal point-sets of cardinality O(n),
O(n log n), and O(n2/ logn) that support the drawing of all n-vertex planar
graphs with at most 3, 2, or 1 bend per edge, respectively.

Table 1. Summary of results – cardinality of universal point-sets for classes of graphs.
The first and last results are well-known. All other results are new.

Graphs Number of Points Number of Bends Reference

outerplanar n 0 [8]
3SP lattice n 0 Thm 1

planar O(n) 3 Thm 2
planar O(n log n) 2 Thm 2
planar O(n2/ log n) 1 Thm 2

sub-Hamiltonian O(n) 2 Lemma 3.1
sub-Hamiltonian O(n log n) 1 Lemma 3.2

planar O(n2) 0 [4],[11]

66 V. Dujmovic et al.

Table 1 summarizes our results in terms of which sets of planar graphs can be
supported on point-sets of a given cardinality with a specified number of bends.

2 Preliminaries

We adopt standard notation from the graph drawing literature and we henceforth
assume all graphs have n vertices. Many proofs are omitted for space reasons.

Two of our results rely on point-sets that have a specific form; see, for example,
Fig. 2. Two non-intersecting non-linear arcs of curves λ1 and λ2 are defined to
be biconvex if: each of these arcs is simple and convex, the convex hull of their
4 endpoints completely contains the two arcs, and the line segment joining any
point a of λ1 to any point b of λ2 does not intersect either arc of curve except
at a and b; for simplicity, we refer to such arcs of curves as curves. Without
loss of generality, we assume the existence of a horizontal line separating the two
curves with λ1 below λ2. A point-set all of whose points lie on two curves that are
biconvex is in biconvex position. We note that point-sets in such a configuration
have been used in other contexts under different names.

3 Universal Point-Sets for Drawing Planar Graphs with
Bends

In this section we establish Theorem 2 by constructing universal point-sets for
each of the three cases: 3, 2 or 1 bend per edge allowed. A fundamental tool
in our constructions for universal point-sets with bends is the following result
proving the existence of a book embedding of planar graphs in which the edges
are permitted to cross the spine [6]. A monotone topological book embedding of
a planar graph G is a planar drawing such that all vertices of G are represented
as distinct points on a spine (i.e. the x-axis), and each edge is either represented
as an arc in the bottom page (below the x-axis), or as an arc in the top page
(above the x-axis), or as the concatenation of two arcs: the first (leftmost) in the
bottom page and the second in the top page with their common crossing point
between spine points. See Fig. 1.

Theorem 3 ([6]). Every planar graph has a proper monotone topological book
embedding which can be computed in linear time.

w0 w1

w2
w3

w4

w5 w6

w7

w0 w7 w4 w5 w6 w2 w3 w1

Fig. 1. A graph and a monotone topological book embedding of it

On Point-Sets That Support Planar Graphs 67

3.1 A Set of Θ(n) Points for Drawing Planar Graphs with Three
Bends Per Edge

Lemma 1. There exists a universal set of 10n − 18 points that supports the
drawing of planar graphs with 3 bends per edge.

Proof. Before introducing the (fixed) universal point-set, we first outline how the
graph will be processed. Consider a proper monotone topological book embed-
ding of the input graph (see Fig. 1). For each edge that intersects the spine, intro-
duce a dummy vertex creating an augmented two page book embedding with the
vertices of the spine drawn on a horizontal line. There are at most n+m � 4n−6
vertices on the spine. Imagine a horizontal line slightly above the spine that in-
tersects all arcs in the top page – call these points of intersection from left to
right b1, . . . , b2a where a is the number of arcs. Note that a � 3n− 6.

w0 w7 w4 w5 w6 w2 w3 w1

Fig. 2. Example drawing of the graph of Fig. 1 on a biconvex point-set using three
bends per edge. The curvature is exaggerated and only the first 14 of the 36 upper
curve points and 11 of the 26 lower curve points in the universal point-set are shown.

Consider a point-set that lies on two curves in biconvex position and consists
of 6n− 12 points on the top curve and 4n− 6 points on the bottom curve. Any
such point-set is universal and supports the drawing of all planar graphs with at
most three bends per edge. Refer to Fig. 2 for an example of the construction.
For any specific graph, its augmented two page book embedding defines the
drawing and requires at most 10n− 18 points. The at most 4n− 6 vertices on
the spine (including dummy vertices) are assigned, in order, to the first points
on the bottom curve. The bend-points b1, . . . , b2a are assigned to the first 2a
points of the upper curve in left to right order and then each arc in the top
page is drawn using the associated bend-points. These polylines do not intersect
since the upper curve is convex and any segment joining the two curves does
not properly intersect these curves. The arcs in the bottom page can be drawn
with no bends – they are cords of the bottom curve. Each arc in the top page
uses two bend-points. Substituting a bend-point for each of the dummy vertices
results in a drawing with at most three bends per edge.

68 V. Dujmovic et al.

Note that a sub-Hamiltonian planar graph corresponds exactly to a graph that
has a two page (unaugmented) book embedding [6]. Since such graphs do not
require dummy vertices, they can be drawn with at most two bends per edge.

3.2 A Set of O(n log n) Points for Drawing Planar Graphs with 2
Bends Per Edge

The geometric idea underlying our construction is as follows. Similar to Sec-
tion 3.1, we draw the spine vertices of an augmented two page book embedding
on a set of points that lie on a slightly concave curve close to the x-axis. This
implies that all the arcs in the bottom page of the book embedding can be drawn
as straight line segments. For arcs in the top page, if the arc is from the ith to
the (i + j)th spine vertex, it is drawn to bend at a point at level j. We place ap-
proximately n/j bend-points approximately equally spaced in the x-dimension
at level j, since only n/j top arcs can have “length” j. The bend-point that lies
between the ith and (i + j)th spine vertices is used by this arc. Each level is
at a y-coordinate that is large enough that the drawing of an arc that uses a
bend-point at a lower level “nests” inside any drawing of an arc from the same
vertex using a higher level bend-point. Of course, for each j > n/2, there can be
only one arc of “length” j and it uses a single bend-point at level j. The total
number of bend-points placed is O(n log n).

Lemma 2. There exists a universal set of O(n log n) points that supports the
drawing of planar graphs with 2 bends per edge.

3.3 A Set of O(n2/ log n) Points for Drawing Planar Graphs with 1
Bend Per Edge

Lemma 3. There exists a universal set of O(n2/ log n) points that supports the
drawing of planar graphs with 1 bend per edge.

Proof. The construction is similar to that in [7]. We recall briefly this construc-
tion, referring to Figures 1 and 3.

p0
p1

p2

p3
bend-line at height 5

bend-line at height 2

to p6

p4
p5

Fig. 3. The one-bend drawing of the three top-page edges adjacent to v0 = w1 in the
graph of Fig. 1 following the construction of [7]. The points p6 and p7 are not shown
since the figure is to scale.

On Point-Sets That Support Planar Graphs 69

Given a planar graph G with n vertices, we embed the graph on vertices
pi = (−2i, i) for i = 0, . . . , n− 1 with at most one bend per edge, as follows. We
first compute a proper monotone topological book embedding, Γ of G. We relabel
the vertices of that book embedding from right to left, as v0, . . . , vn−1. We then
map these vertices to p0, . . . , pn−1, respectively. All the edges below the spine
are drawn as straight-line segments. The others are drawn with a bend point as
follows. Consider an edge whose rightmost vertex is vi and that intersects the
spine on the interval (vu, vu+1] (inclusive vu+1 for the case where the leftmost
endpoint of the edge is vu+1). Such an edge is drawn with a bend point at the
same height as vu, and in the vertical strip delimited by vi and vi+1. A universal
set of points for the bend location can easily be determined in this construction.
However, this construction requires a set of size Θ(n3) for the bend points since
there need to be n bend points on each of n bend lines, and in each of n − 1
vertical strips (delimited by vi and vi+1).

This construction can be modified to contain only a subquadratic universal set
of points for the bends, while preserving a linear size universal set of points for the
vertices. We consider as before a proper monotone topological book embedding,
Γ of our input graph G. We then add on the spine extra isolated dummy vertices
so that there is at most one edge crossing the spine between any two spine
vertices. Since the number of edges of a planar graph is at most 3n− 6, we add
at most that number of isolated vertices and the total number of vertices is less
than 4n. Let G′ be the resulting graph. Note that, if we use the construction of
[7] with this augmented graph G′, there is at most one bend point on each bend
line; this yields that, for every bend line, we need only consider one candidate
location for the bend points in each vertical strip, leading to a quadratic universal
set of points for the bends.

pk

Bend-line at height k

pui

pui+1

pui+1

quiqui+1

. . .

(2ui+1 − 2ui)(k − ui)

x

y

Fig. 4. Placement of bend points on the bend-line at height k. The figure is not to
scale.

70 V. Dujmovic et al.

To obtain a subquadratic size we first construct a set of 4n points p0, . . . , p4n−1

as in [7] that will support the vertices of any augmented graph G′. Now on the
bend line at height k, we place k/ log k candidate vertices for the bend points of
the edges that intersect the spine through the window pkpk+1. The points on the
bend-line at height k are defined as follows. See Fig. 4. The first (rightmost) point
q1 lies infinitesimally to the right of the line p0p1. Let pu1 be the rightmost point
of p0, . . . , p4n−1 that is to the left of q1. The second point q2 is infinitesimally to
the right of the line pu1pu1+1 (at height k), and so on.

The addition of dummy points on the spine ensured that there is at most
one edge that intersects the spine between two vertices on the spine. Hence, for
any given graph, there is at most one bend point used on any bend line. This
essentially implies that the construction of [7] works here.

How many bend points are there on a bend-line? It can be shown that there are
Θ(k/ log k) candidate bend points on the bend line at height k, and Θ(n2/ log n)
candidate bend points in total.

4 Biconvex Point-Sets and Series-Parallel Graphs

A two terminal series-parallel digraph (also called TTSP-digraph) is a planar
digraph recursively defined as follows [5,12]: A directed edge joining two vertices
forms a TTSP-digraph. Let G′ and G′′ be two TTSP-digraphs; the digraph
obtained by identifying the sink of G′ with the source of G′′ (Series Composition)
is also a TTSP-digraph. Let G′ and G′′ be two TTSP-digraphs; the digraph
obtained by identifying the source of G′ with the source of G′′ and the sink of
G′ with the sink of G′′ (Parallel Composition) is also a TTSP-digraph.

A TTSP-digraph has one source and one sink which are called its poles. Also,
a TTSP-digraph is always acyclic and admits a planar embedding with the poles
on the same face. A TTSP-digraph is a TTSP lattice if for every edge (u, v), there
is no directed path from u to v that does not contain (u, v). Note that a TTSP
lattice cannot have multiple edges.

The undirected underlying graph of a TTSP-digraph (resp. lattice) is called
a TTSP-graph (resp. TTSP-lattice). We further shorten these terms and refer to
them as series-parallel (SP).

Any point-set in general position supports the class of outerplanar graphs [8].
Indeed a point-set in convex position supports exactly the class of outerplanar
graphs, and no other planar graphs. Motivated by this insight we now consider
the class of planar graphs that are supported by a point-set in which n/2 points
are on one convex curve and the remainder are on another convex curve – in
biconvex position. Clearly outerplanar graphs can be supported by this point-set
and efficient algorithms such as that developed by Bose [1] exist. We show that
any (n/2, n/2) biconvex point-set is universal for a subclass of the series-parallel
graphs. Since our purpose is to exhibit universal point-sets for classes of planar
graphs, the balancing condition is critical and since the number of vertices could
be odd, the balancing must allow for one vertex to be placed arbitrarily.

On Point-Sets That Support Planar Graphs 71

A planar graph G is biconvex if there exists a crossing-free straight-line draw-
ing Γ of G with all vertices located on the curves λ1 and λ2. A planar graph G
is balanced biconvex if it is biconvex with a drawing Γ in which the numbers of
vertices on the two curves differ by at most one; more formally if:
for n even, n/2 vertices are on λ1 and n/2 vertices on λ2 (called uniform and
denoted as Γ=), and for n odd, either:

– n−1
2 vertices are on λ1 and n+1

2 vertices are on λ2 (called top-heavy and
denoted as Γ+) or

– n+1
2 vertices are on λ1 and n−1

2 vertices are on λ2 (called bottom-heavy and
denoted as Γ+)

Our construction is recursive and attempts to contain the drawing of the SP
lattice in a box spanning the biconvex curves with a balanced number of vertices
on each curve and with s and t forming a diagonal of the box. Unfortunately,
such a strong invariant cannot be maintained and slightly weaker conditions
must be carefully considered.

A series-parallel digraph with poles s and t is bottom-cornered if it is balanced
biconvex with a drawing Γ (n even) or Γ+ (n odd) such that:

1. there exists a box (i.e. a convex quadrilateral) B(s, t) with s on λ1 and t on
λ2, st forms one diagonal of B, and the other diagonal has one corner on λ1

and one on λ2, and
2. the entire drawing lies inside B.

Similarly, a series-parallel digraph with poles s and t is top-cornered if it is
balanced biconvex with a drawing Γ (n even), or Γ+ (n odd) such that conditions
1 and 2 hold. If a series-parallel graph is both top-cornered and bottom-cornered,
it is called double-cornered – i.e. if n is odd, there exist two drawings Γ+ and
Γ+ both of which satisfy conditions 1 and 2.

In some situations, only weaker conditions on the drawings can be maintained,
in which one of t or s is contained strictly inside a box rather than on the diagonal
forming the box:

1′. there exists a box B(s, x) with s on λ1 and x on λ2, sx forms one diagonal
of B(s, x), and the other diagonal has one corner on λ1 and one on λ2 and
t is on λ2 inside B(s, x).

1′′. there exists a box B(x, t) with x on λ1 and t on λ2, xt forms one diagonal
of B(x, t), and the other diagonal has one corner on λ1 and one on λ2 and s
is on λ1 inside B(x, t).

A series-parallel graph with source s and sink t is bottom half-cornered if it is
balanced biconvex and conditions 1’ and 2 hold; similarly, if conditions 1” and
2 hold, then the graph is top half-cornered.

In the lemmas that follow, we demonstrate only the existence of biconvex
drawings for the graphs that we consider. The following lemma indicates that
this is sufficient to claim a universal biconvex point-set of suitable size.

72 V. Dujmovic et al.

Lemma 4. If a graph G on n vertices has a balanced biconvex drawing, then
every balanced biconvex point-set of size n supports G.

A series-parallel graph in which every vertex is of maximum degree 3 is denoted
as 3SP. We distinguish between two critical cases. If both the source and sink of
a 3SP lattice have degree � 2 then the graph is called thin and otherwise (i.e.
if either pole has degree 3) it is called thick. It is the class of 3SP lattices that
we show to be balanced biconvex. There are several cases to consider depending
on whether the graph is biconnected or not, and whether the graph is thin or
thick. Our proof is recursive in nature – interior components are replaced by
appropriate balanced boxes. Lemmas 5 – 14 distinguish and organize these cases
and Fig. 5 provides a simple example of each case, the type of drawing obtained,
and the prerequisite lemmas used in the proof.

Lemma 5. A simple path consisting of n � 2 vertices from s to t is double-
cornered.

First we present the lemmas used for subcases that are thin: biconnected and
then not biconnected.

Lemma 6. Let G be a biconnected thin 3SP lattice. Then G is double-cornered.

Lemma 7. Let G be a thin 3SP lattice with source s and sink t. If either
deg(s) = deg(t) = 1 or deg(s) = deg(t) = 2 then G is double-cornered.

Lemma 8. Let G be a thin 3SP lattice with source s and sink t. If deg(s) = 1
and deg(t) = 2 then G is bottom-cornered.

Lemma 9. Let G be a thin 3SP lattice with source s and sink t. If deg(s) = 2
and deg(t) = 1 then G is top-cornered.

The next sequence of lemmas pertains to the cases when the global poles have
degree 3. The drawings obtained rely on the previous lemmas and are balanced
biconvex, but may not be double-cornered.

Lemma 10. Let G be a biconnected 3SP lattice with source s and sink t. If
deg(s) = deg(t) = 3 and G consists of 3 series components combined in parallel,
then G is balanced biconvex.

Lemma 11. Let G be a biconnected thick 3SP lattice with source s and sink t.
If deg(s) = deg(t) = 3 then G is balanced biconvex.

Lemma 12. Let G be a biconnected thick 3SP lattice with source s and sink t.
If deg(s) = 2 and deg(t) = 3 then G is bottom half-cornered.

Lemma 13. Let G be a biconnected thick 3SP lattice with source s and sink t.
If deg(s) = 3 and deg(t) = 2 then G is top half-cornered.

In the final case, G is not biconnected and at least one of the global poles has
degree 3.

On Point-Sets That Support Planar Graphs 73

s

t

s

t

s

t

s

t

t

s

Lemma 5
double-cornered

Lemma 6
double-cornered
uses: Lemma 5

Lemma 7
double-cornered
uses: Lemma 6

Lemma 8
bottom-cornered
uses: Lemmas 5, 7

s

t

s

t

s

t t

s s

t

Lemma 9
top-cornered
uses: Lemmas 5, 7

Lemma 10
balanced biconvex
uses: Lemmas 6, 8, 9

Lemma 11
balanced biconvex
uses: Lemmas 7, 8, 9

Lemma 12
bottom half-cornered
uses: Lemmas 7, 8, 9

t

s s

t

s

t t

s

Lemma 13
top half-cornered
uses: Lemmas 7, 8, 9

Lemma 14
balanced biconvex
uses: Lemmas 6, 7, 8, 9, 12, 13

Fig. 5. Roadmap of the various cases

Lemma 14. Let G be a thick 3SP lattice with source s and sink t. If deg(s) = 3
or deg(t) = 3 then G is balanced biconvex.

Biconvex point-sets are the only known point-sets of size n that universally
support some class of planar graphs other than the outerplanar graphs.

5 Conclusions and Open Problems

Our main contributions in this paper are stated in Theorems 1 and 2: that
any balanced biconvex point-set supports the straight-line drawing of any 3SP
lattice, and the specification of universal point-sets for drawings of any planar
graph with a small number of bends per edge.

Closing the gap between the upper and lower bounds of the cardinality of
a universal point-set for planar graphs with no bends allowed remains an open
problem. When k bends per edge are permitted, universal point-sets of smaller
asymptotic cardinality may be determined for k = 1, 2.

74 V. Dujmovic et al.

References

1. Bose, P.: On embedding an outer-planar graph on a point set. Computational
Geometry: Theory and Applications 23, 303–312 (2002)

2. Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov,
S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Com-
put. Geom. 36(2), 117–130 (2007)

3. Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar
graphs. SIGACT News 20(4), 83–86 (1989)

4. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10, 41–51 (1990)

5. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall,
NJ (1999)

6. Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained draw-
ings of planar graphs. Computational Geometry 30, 1–23 (2005)

7. Everett, H., Lazard, S., Liotta, G., Wismath, S.: Universal sets of n points for
one-bend drawings of planar graphs with n vertices. Discrete and Computational
Geometry 43(2), 272–288 (2010)

8. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation
with vertices at specified points. Amer. Math. Monthly 98(2), 165–166 (1991)

9. Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for
planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)

10. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all
n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)

11. Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st ACM-SIAM
Sympos. Discrete Algorithms (SODA 1990), pp. 138–148 (1990)

12. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series-parallel digraphs.
SIAM J. Comput. 11(2), 298–313 (1982)

Small Point Sets for Simply-Nested Planar Graphs�

Patrizio Angelini1, Giuseppe Di Battista1, Michael Kaufmann2,
Tamara Mchedlidze3, Vincenzo Roselli1, and Claudio Squarcella1

1 Dip. di Informatica e Automazione, Roma Tre University, Italy
2 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany

3 Dept. of Math. , National Technical University of Athens, Greece

Abstract. A point set P ⊆ R2 is universal for a class G if every graph of
G has a planar straight-line embedding into P . We prove that there exists a
O(n(log n

log log n
)2) size universal point set for the class of simply-nested n-vertex

planar graphs. This is a step towards a full answer for the well-known open prob-
lem on the size of the smallest universal point sets for planar graphs [1,5,9].

1 Introduction

A planar straight-line embedding of a graph G into a point set P is a mapping of each
vertex of G to a distinct point of P and of each edge of G to the straight-line segment
between the corresponding endpoints so that no two edges cross. Let G be a class of
n-vertex planar graphs and P be a point set of size m, with m ≥ n. Point set P is
universal for the class G if for every G ∈ G, G has a planar straight-line embedding
into P .

Asymptotically, the smallest universal point set for general planar graphs is known to
have size at least 1.235n [6,12], while the best known upper bound is O(n2) [7,10,13].
Characterizing the asymptotic size of the smallest universal point set is a well-known
open problem also referred in [1,5,9].

A subclass of planar graphs for which a “small” universal point set is known is the
class of outerplanar graphs, that is, the graphs that admit a straight-line planar embed-
ding with all vertices incident to the outer face. Gritzmann et al. [11] and Bose [4]
proved that any point set of size n is universal for outerplanar graphs. In [11] it is no-
ticed that outerplanar graphs are the largest class of graphs for which any arbitrary point
set is universal.

A generalization of outerplanar graphs are k-outerplanar graphs, k ≥ 2. A planar
embedding of a graph is k-outerplanar if removing the vertices of the outer face yields
a (k − 1)-outerplanar embedding, where 1-outerplanar is an outerplanar embedding.
Vertices removed at the i-th step are at level i. A graph is k-outerplanar if it admits a

� Research partially supported by the MIUR project AlgoDEEP prot. 2008TFBWL4, by the ESF
project 10-EuroGIGA-OP-003 GraDR “Graph Drawings and Representations”, and by the Eu-
ropean Union (European Social Fund - ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through
the European Social Fund.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 75–85, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

76 P. Angelini et al.

k-outerplanar embedding. Note that no (arbitrarily large) convex point set is universal
for k-outerplanar graphs, k ≥ 2.

The decision question of whether a given planar graph admits a planar straight-line
embedding into a given point set of the same size was proved to be NP-hard, even for
2-outerplanar graphs and 3-level point sets [5].

A k-outerplanar graph is simply-nested [8] if levels 1 to k − 1 are chordless cy-
cles and level k is either a cycle or a tree. A planar graph is simply-nested if it is
k-outerplanar simply-nested for some k ≤ n. Simply-nested graphs turned out to be
useful to derive some properties of planar graphs. Cimikowski [8] proved hamiltonicity
of simply-nested planar triangulations. Baker [3] used these graphs to derive approx-
imation algorithms for various NP-complete problems on planar graphs. A variant of
nested triangulations was explored by Yannakakis in his celebrated result on book em-
beddings of planar graphs [14].

In this paper we show a O(n(log n
log log n)2)-size universal point set for simply-nested

n-vertex graphs (Sect. 3). Such result is based on the construction of a 8n + 8-size
universal point set for simply-nested n-vertex graphs for which the number of vertices
on each of level is known in advance (Sect. 2).

Our results find applications to another class of graphs, quite popular in Graph Draw-
ing. In [2] Bachmaier et al. defined a graph to be (proper) k-radial planar if given a
partition of its vertices into k concentric circles, its edges can be drawn as monotonic
curves between (consecutive) circles without crossings and showed that radial planarity
is decidable in linear time. Our results give a small universal point set for proper k-
radial planar graphs, since they can be easily proved to be a subclass of simply-nested
planar graphs.

2 A Universal Point Set for Simply-Nested Planar Graphs with ni

Vertices on Level i

In this section we describe a universal point set P of size 8(
∑k

i=1 ni + k) = O(n)
for simply-nested planar graphs in which the number ni of vertices at each level i is
known in advance. Note that, when this strong assumption is not possible, the same
construction yields a point set with a quadratic number of points, namely 8(

∑k
i=1 n +

k) = O(n2), as k = O(n). However, constructing the point set under this assumption
is the basis of a construction, described in Sect. 3, that leads to subquadratic size in the
general case.

We aim at placing the vertices of level i on a circle with a number of available points
proportional to ni. Then, we would like to place the vertices of level i + 1 greedily
on a circle internal to the previous one. This is difficult for the following reason. If a
vertex of level i + 1 is connected to many vertices of level i, the angle spanned by its
connections gets close to 2π, and an arbitrary number of points of the internal circle
become “unusable”. See Fig. 1(a). Hence, we use a technique that places the vertices of
each level on two concentric circles.

Small Point Sets for Simply-Nested Planar Graphs 77

pS1

c

Cm
1

pN(Cm
1)

pE(Cm
1)

pS(Cm
1)

pW (Cm
1)

l′

l

Cm
1

Cb
1

p′b

pc

pb

pa

p′a

p′c

pN(Cm
1)

pE(Cm
1)

pS(Cm
1)

pW (Cm
1)

(a) (b) (c)

Fig. 1. (a) Problems in using one circle per level. (b) Construction of circle Cm
1 . (c) Construction

of circle Cb
1 .

2.1 Construction of the Point Set

The points of P are on 2k concentric circles Cm
1 , Cb

1, . . . , C
m
k , Cb

k. For each level
i = 1, . . . , k, circles Cm

i and Cb
i are the main circle and the back-up circle of level

i, respectively. Both have 4ni + 4 points. In the following we describe how to choose
the radius and the distribution of the points for each circle.

Let l and l′ be two orthogonal lines crossing at a point c, that is the center of circles
Cm

i and Cb
i (i = 1, . . . , k). The parts of the plane delimited by l and l′ are the quadrants.

For each circle C, denote by pN (C) and pS(C) the intersections between C and l,
and by pW (C) and pE(C) the intersections between C and l′. Points pN(C), pS(C),
pE(C), and pW (C) are the cardinal points of C.

Let Cm
1 be a circle centered at c with any radius rm

1 . Place a point of P on each of
pN (Cm

1), pS(Cm
1), pW (Cm

1), and pE(Cm
1). Then, place n1 points of P in each arc of

Cm
1 determined by lines l and l′, in such a way that for any two consecutive points pa

and pb that are internal to a quadrant there exists a point pc in the opposite quadrant,
that is, its unique non-adjacent quadrant, such that triangle (pa, pb, pc) contains c. Such
a placement of points is always realizable. Namely, consider two opposite quadrants Q
and Q′. Place a point pa on Cm

1 in Q and a point p′a on Cm
1 in Q′ such that the center

c is to the left of the oriented segment
−−−→
pap′a . Then place a point pb on Cm

1 in Q such

that c is to the left of the oriented segment
−−→
p′apb. Keeping on placing points in this way

yields a point set with the desired property. See Fig. 1(b).
Let Cb

1 be a circle centered at c with a radius rb
1 < rm

1 such that, for every triangle
(pa, pb, pc) composed of three points of Cm

1 , if (pa, pb, pc) contains c, then it also con-
tains Cb

1. Then, place 4n1 + 4 points on Cb
1 in such a way that, for each point p ∈ Cm

1

there exists a point p′ on the intersection between Cb
1 and the radius of Cm

1 to p. Note
that, this implies that for any two consecutive points p′a and p′b of Cb

1 that are internal
to a quadrant there exists a point p′c of Cb

1 in its opposite quadrant such that (p′a, p′b, p
′
c)

contains c. See Fig. 1(c).
Then, for each level i, with i = 2, . . . , k, construct the main circle Cm

i and the
back-up circle Cb

i as follows.

78 P. Angelini et al.

Circle Cm
i is centered at c, has radius rm

i < rb
i−1, and for any triangle composed

of two consecutive points p′a and p′b of Cb
i−1 and a point p′c in the opposite quadrant of

Cb
i−1, if (p′a, p′b, p

′
c) contains c, then it also contains Cm

i .
Place a point of P on each cardinal point of Cm

i . Then, place ni points in each arc of
Cm

i determined by l and l′ in such a way that: (a) for any two consecutive points pa and
pb of Cm

i that are internal to a quadrant there exists a point pc of Cm
i in the opposite

quadrant such that (pa, pb, pc) contains c; (b) for any two points p1, p2 of Cm
i−1 that

are in opposite quadrants, consider the quadrant Q that is completely contained in the
wedge delimited by the half-lines from c to p1 and from c to p2 whose angle is smaller
than π. Then, there exists a point p3 of Cm

i in Q such that triangle (p1, p2, p3) contains
no point of Cm

i (see Fig. 2(a)); (c) the quadrilateral composed of points pN(Cm
i−1),

pS(Cm
i−1), pW (Cm

i), and pE(Cm
i) contains all the points of Cm

i (see Fig. 2(b)); (d) the
quadrilateral composed of points pE(Cm

i−1), pW (Cm
i−1), pN (Cm

i), and pS(Cm
i) con-

tains all the points of Cm
i (see Fig. 2(b)). Note that a point set with these properties can

always be constructed. Namely, a point set satisfying property (a) can be constructed
analogously as for Cm

1 (see Fig. 1(b)), while properties (b)–(d) can be easily satisfied
by making the radius of Cm

i small enough.
Circle Cb

i is centered at c, has radius rb
i < rm

i , and is such that for every triangle
(pa, pb, pc) composed of three points placed on Cm

i , if (pa, pb, pc) contains c, then it
also contains Cb

i . Then, place 4ni + 4 points of P on Cb
i in such a way that, for each

point p ∈ Cm
i there exists a point p′ on the intersection between Cb

i and the radius of
Cm

i to p. Note that, this implies that for any two consecutive points p′a and p′b of Cb
i that

are internal to a quadrant there exists a point p′c of Cb
i in its opposite quadrant such that

triangle (p′a, p′b, p
′
c) contains c.

2.2 Embedding a Simply-Nested Planar Graph on Point Set P

Let G be any simply-nested planar graph. We assume that G has only triangular faces;
if it is not the case, we add dummy edges.

c

Cm
i−1

p2
Cb

i−1

Cm
i

pc

pa

pb

p1

p3

Cm
i−1

Cb
i−1

PW (Cm
i−1) PE(Cm

i−1)

PN(Cm
i−1)

PS(Cm
i−1)

Cm
i

PN(Cm
i)

PE(Cm
i)

PS(Cm
i)

PW (Cm
i)

(a) (b)

Fig. 2. Construction of circle Cm
i : (a) Triangle (p1, p2, p3) contains no point

of Cm
i ; (b) quadrilaterals (P N (Cm

i−1), P
E(Cm

i), P S(Cm
i−1), P

W (Cm
i)) and

(P N(Cm
i), P E(Cm

i−1), P
S(Cm

i), P W (Cm
i−1)) contain all the points of Cm

i .

Small Point Sets for Simply-Nested Planar Graphs 79

The drawing of G on P is constructed iteratively, starting by placing the vertices
of level 1 on any n1 points of circle Cm

1 in such a way that the polygon representing
the cycle composed of such vertices contains the center c. Note that, as any triangle
composed of three points of Cm

1 and containing c also contains Cb
1 , the constructed

polygon contains Cb
1 , as well.

In order to describe how to embed the vertices of level i = 2, . . . , k, we first give
a further definition. We say that the drawing of the vertices of level i is 2-radial if it
satisfies the following properties: (a) all the vertices of level i are on circle Cm

i , except
for at most two vertices v′∗ and v′′∗ , that are possibly drawn on two points of circle Cb

i−1.
(b) Given the two lines tangent to Cb

i through v′∗ (through v′′∗), the triangle composed
of their tangent points to Cb

i and v′∗ (v′′∗) does not contain any vertex of level i placed
on a point of Cm

i .
Then, for each level i = 2, . . . , k, we assume that a 2-radial drawing of level i− 1 is

given, and we greedily construct a 2-radial drawing of level i, as follows.
Consider the vertices v1, . . . , vh of level i that have more than one neighbor in level

i − 1. Observe that, the set of vertices that is the union of the neighbors of v1, . . . , vh

coincides with the set of vertices of level i − 1. As the vertices of level i − 1 are
already drawn, it is possible to determine, for each vertex vj (j = 1, . . . , h) of level i,
the angle αj of the smallest wedge Wj centered at c and containing all the neighbors

u1
j , . . . , u

m(j)
j of vj . The wedge Wj of a vertex vj is depicted as a shaded region in

Fig. 3(a). Note that,
∑

j αj = 2π, and hence at most one angle αj , with 1 ≤ j ≤ h, can
be greater than or equal to π.

First, we study the case (Case 1) when there exists one angle αj ≥ π. Note that, there
exists at least one quadrant Q such that Q is not completely contained into Wj , while
the opposite quadrant of Q is. Refer to Fig. 3(a). Then, by construction, there exist two
consecutive points p′a and p′b of Cb

i−1 in Q that are not in Wj (they might be on the
two delimiting half-lines of Wj) and a point p′c of Cb

i−1 in the opposite quadrant of Q
such that triangle (p′a, p′b, p

′
c) contains circle Cm

i . This implies that triangle (pa, pb, p
′
c)

contains Cm
i , as well, where pa and pb are the points of Cm

i−1 on the same radius as p′a
and p′b, respectively.

c

Cm
i−1

Cb
i−1

Cm
i

u1j

u
m(j)
j

pa Q

pb
p′b

p′a

p′c vj=

Cb
i−2

Cm
i−1

Cb
i−1

Cm
i

u1j

u
m(j)
j

pa

Q

pb
p′a

p′c

vj−1=

vj=

Cb
i−2

(a) (b)

Fig. 3. (a) Case 1. Placement of a vertex vj such that αj ≥ π. (b) Case 1.1.1. There exists one
angle αj ≥ π, vj−1 = vj+1, and v′ = vj−1.

80 P. Angelini et al.

Place vertex vj on point p′c and draw the edges between vj and its neighbors u1
j , . . . ,

u
m(j)
j . As (pa, pb, p

′
c) contains Cm

i , none of such edges crosses Cm
i .

Note that, vertex u1
j (vertex u

m(j)
j) has at least one neighbor v′ (one neighbor v′′) of

level i different from vj , possibly v′ = vj−1 (possibly v′′ = vj+1).
First (Case 1.1), suppose that vj−1 = vj+1. We distinguish three cases, based on

whether v′ = vj−1 (Case 1.1.1), v′′ = vj+1 (Case 1.1.2), or none of the two cases
holds (Case 1.1.3). Cases 1.1.1 and 1.1.2 are mutually exclusive.

If v′ = vj−1 (Case 1.1.1), place vj−1 on p′a. By construction, triangle (p′a, p′b, p
′
c)

contains Cm
i , which implies that edges (vj , vj−1), (um(j)

j , vj−1), and (u1
j , vj−1) do not

cross Cm
i . Also, all the vertices of level i that remain to be drawn are adjacent to u

m(j)
j .

As such vertex, which lies in a quadrant Q on circle either Cm
i−1 or Cb

i−1, has complete
visibility to all the ni points of circle Cm

i in the same quadrant Q, it is possible to
draw all its neighbors on such points so that the polygon composed of vertices of level
i contains Cm

i . See Fig. 3(b).
If v′′ = vj+1 (Case 1.1.2), then place vj+1 on p′b and place the other vertices analo-

gously to the previous case.
If none of the two cases holds (Case 1.1.3), we further distinguish three cases, based

on whether u1
j and u

m(j)
j lie in opposite quadrants, in adjacent quadrants, or in the same

quadrant. In the first case (see Fig. 4(a)), place vj+1 on either p′a or p′b and apply the
same drawing algorithm as in the previous cases. If they lie in adjacent quadrants Q
and Q′ (see Fig. 4(b)), place vj−1 on the cardinal point, say pE(Cm

i), that is between Q
and Q′. Note that, the wedge W centered at pE(Cm

i), delimited by the half-lines from

pE(Cm
i) to u1

j and from pE(Cm
i) to u

m(j)
j , and whose angle is smaller than π is external

to quadrilateral (pN (Cm
i−1),p

E(Cm
i), pS(Cm

i−1), pW (Cm
i)). As, by construction, such

a quadrilateral contains all the points of Cm
i , W does not contain any of these points.

Hence, both u1
j and u

m(j)
j have complete visibility to all the ni points of quadrants Q

and Q′ of circle Cm
i , respectively, and it is possible to draw all their neighbors on such

points. Finally, if u1
j and u

m(j)
j lie in the same quadrant (see Fig. 4(c)), they both have

Cm
i−1

Cb
i

Cm
i

u1j

u
m(j)
j

pa

pb
p′a

p′c

vj−1=

vj=

u1j

Cm
i−1

Cb
i−1

Cm
i

u1j

u
m(j)
j

pa

Q

pbpE(Cm
i)

p′c

vj−1
=

vj=

Q′ Cm
i−1

Cb
i−1

u1j

u
m(j)
j

pa

Q

pb

p′c

vj−1

vj=

(a) (b) (c)

Fig. 4. Case 1.1.3. There exists one angle αj ≥ π, vj−1 = vj+1, v′ 	= vj−1, and v′′ 	= vj+1.
Illustrations of the cases in which u1

j and u
m(j)
j lie (a) in opposite quadrants, (b) in adjacent

quadrants, and (c) in the same quadrant.

Small Point Sets for Simply-Nested Planar Graphs 81

visibility to all the points of Cm
i in such quadrant, and all their neighbors, including

vj+1, can be drawn on such points.
In each of the cases, all the vertices of level i are on the main circle Cm

i of level i,
except for vertex vj and, in one case, for vertex vj−1, which are on the back-up circle
Cb

i−1 of level i− 1. Also, no vertex is drawn on Cm
i in the same quadrant as the vertex

(vj or vj−1) that is on Cb
i−1. Hence, given the two lines through vj (through vj−1)

tangent to Cb
i , the triangle composed of vj (of vj−1) and of the two tangent points does

not contain any vertex of level i placed on a point of Cm
i . It follows that the constructed

drawings are 2-radial drawings.
Suppose (Case 1.2) that vj−1 �= vj+1. Let u1

j−1, . . . , u
m(j−1)
j−1 be the neighbors of

vj−1 of level i − 1. Note that u
m(j−1)
j−1 = u1

j . If u1
j−1 is in the same quadrant as u1

j

(Fig. 5(a)), place the first neighbor v1
j of u1

j on the first cardinal point of Cm
i en-

countered when rotating clockwise the radius to u1
j . If it is in the adjacent quadrant

(Fig. 5(b)), place vj−1 on the cardinal point of Cm
i between such two quadrants. Fi-

nally, if it is in the opposite quadrant (Fig. 5(c)), place vj−1 on a point p∗ of Cm
i in its

adjacent quadrant such that triangle (u1
j , u

1
j−1, p

∗) does not contain any point of Cm
i ,

which exists by construction. Then, place the first neighbor v1
j−1 of u1

j−1 different from
vj−1 on the first cardinal point encountered when rotating clockwise the radius to u1

j−1.

Cm
i−1

Cb
i−1

Cm
i

u1j

u
m(j)
jp′c vj=

v1j

u1j−1

vj−1

Cm
i−1

Cb
i−1

Cm
i

u1j

u
m(j)
jp′c vj=

u1j−1

vj−1

(a) (b)

Cm
i−1

Cb
i−1

u1j

u
m(j)
jp′c vj=
u1j−1

vj−1

v1j−1

Cm
i−1

Cb
i−1

u1j

u
m(j)
jp′c vj=
um(z)
z

vz

vm(z)
z

u1z

v1z

Q

(c) (d)

Fig. 5. Case 1.2. There exists an angle αj ≥ π, vj−1 	= vj+1 and v′ 	= vj−1. Illustrations of
the cases in which u1

j and u1
j−1 lie (a) in the same quadrant, (b) in adjacent quadrants, and (c)

in opposite quadrants. In (a), the placement of vj−1 is depicted, but it is not decided at this step.
(d) Placement of vertices vz such that u1

z and u
m(z)
z are in opposite quadrants. Note that the first

neighbor v1
z of u1

z coincides with vj−1, while v
m(z)
z does not coincide with vj+1.

82 P. Angelini et al.

Then, consider each vertex vz such that u1
z and u

m(z)
z are in different quadrants. If

such two quadrants are adjacent, place vz on the cardinal point of Cm
i between them. If

such two quadrants are opposite, then place vz on a point p∗ of Cm
i in the quadrant Q

between them such that triangle (u1
z, u

m(z)
z , p∗) does not contain any point of Cm

i , and

place the first neighbor v1
z of u1

z and the first neighbor v
m(z)
z of u

m(z)
z on the extremal

points of Q, if such two vertices do not coincide with vj−1 and vj+1, respectively. Note
that, if they coincide with either vj−1 or vj+1, the point where they had been placed in
the previous step of the algorithm still allows for a planar drawing (see Fig. 5(d)).

Observe that, in each of the described cases all the vertices of level i − 1 whose
neighbors of level i still remain to be placed have complete visibility to all the ni points
of a quadrant of circle Cm

i , and hence it is possible to draw all their neighbors on such
points. Further, no vertex is drawn on Cm

i in the same quadrant as vj . Hence, given
the two lines through vj (through vj−1) tangent to Cb

i , the triangle composed of vj (of
vj−1) and of the two tangent points does not contain any vertex of level i placed on a
point of Cm

i . It follows that the constructed drawings are 2-radial drawings.

u
m(z)
z

u1z

vz

vz′

vz′′

u
m(z′)
z′

u1z′

u
m(z′′)
z′′

u1z′′ vz′

vz′′
vz

u
m(1)
z = u

m(z′′)
z′′

u
m(z)
z
=

u
m(1)
z′

u
m(z′)
z′=
u
m(1)
z′′

(a) (b)

Fig. 6. Case 2. There exists no angle αj ≥ π. Illustration for the cases when (a) v1
z′′ 	= vz′ and

v
m(z′′)
z′′ 	= vz , and (b) v1

z′′ = vz′ and v
m(z′′)
z′′ = vz .

Suppose (Case 2) that there exists no angle αj ≥ π. For each vertex vz such that u1
z

and u
m(z)
z are in adjacent quadrants, place vz on the cardinal point between them (see

Fig. 6(a)). Then, for each vertex vj such that u1
j and u

m(j)
j are in opposite quadrants,

place vj on a point p∗ of the quadrant Q between them such that triangle (u1
j , u

m(j)
j , p∗)

does not contain any point of Cm
i , and place the first neighbors of u1

j and of u
m(j)
j on

the extremal points of Q, if such two vertices have not been already placed. Again, if
this is the case, the point where they had been placed still allows for a planar drawing
(see Fig. 6(a) and (b)).

Observe that, in each of the described cases all the vertices of level i − 1 whose
neighbors of level i still remain to be placed have complete visibility to all the ni points
of a quadrant of circle Cm

i , and hence it is possible to draw all their neighbors on such
points. The above discussion leads to the following.

Small Point Sets for Simply-Nested Planar Graphs 83

Theorem 1. Let G be the class of simply-nested planar graphs with k levels and such
that each level i has ni vertices. There exists a universal point set for G of size
8(

∑k
i=1 ni + k).

3 A Universal Point Set for Simply-Nested Planar Graphs

Let G be a simply-nested n-vertex planar graph. In Sect. 2 we described a universal
point set of linear size provided that the number of levels of G and the number of
vertices in each level is known. In this section we show how to limit the size even if
such information is not known in advance.

3.1 A Simple Point Set of Size O(n3/2)

We group the levels of the graph into dense levels and sparse levels, depending on
whether the level contains at least

√
n vertices or not. Clearly, G contains at most

√
n

dense levels and at most n sparse levels.
Point set P is composed of

√
n dense levels, each containing 8n + 8 points, and n

sparse levels, each containing 8
√

n + 8 points. As in the point set of Sect. 2, levels of
P are composed of a main and a backup circle. We start placing

√
n outermost sparse

levels. Then we place inside them a single dense level. Then again
√

n sparse levels,
followed by a dense level, and so on, until the total number of sparse levels reaches n
and the number of dense levels reaches

√
n. This gives a point set of n+

√
n levels and

a total size of O(n3/2) points.
Levels of G are assigned to levels of P as follows. Consider the levels of G starting

from level 1 and the levels of P starting from the outermost one, proceeding inwards.
Let i be the current level of G. If i is sparse, then assign it to the next available sparse
level of P . Otherwise (i is dense), assign it to the next available dense level of P .
Clearly, a dense level is skipped only if all the

√
n sparse levels before it were already

used. Hence, these previous sparse levels can account for the missing dense level. Sum-
marizing, after scanning all n sparse and

√
n dense levels of the graph, all its levels

are assigned to the levels of the point set according to their size. We conclude with the
following:

Lemma 1. There is a universal point set of size O(n3/2) for the class of simply-nested
n-vertex planar graphs.

3.2 Further Refinement

We refine now the classes of dense and sparse levels both of G and of P into m different
classes Ki, 1 ≤ i ≤ m. We say that level j of G, with nj vertices, belongs to class Ki,
with 1 ≤ i ≤ m, if n(i−1)/m ≤ nj < ni/m. Hence the number of levels in class Ki

is at most n(m−i+1)/m, as G has n vertices. As discussed in Sect. 2, if the j-th level of
the graph belongs to classKi, we can accommodate it in a level of P of size 8ni/m +8.
Hence, in what follows, a level of P containing 8ni/m +8 points is called a level of the
class Ki.

84 P. Angelini et al.

Km Km Km

Km−1

︷ ︸︸ ︷

Km−2

︷ ︸︸ ︷︷ ︸︸ ︷

.

Fig. 7. Constructing the order of the levels

Now we discuss the number of levels and the size of P . The levels of P are first
ordered and then placed on the plane one into the other according to the computed
order. In order to construct such an order, we first place contiguously the n1/m levels
of class Km (each having 8n + 8 points). Then, to the right of each level of class Km,
we insert n1/m levels of class Km−1 (each having 8nm−1/m + 8 points), in total n2/m

levels. We iterate this construction with increasing i ≤ m − 1: to the right of each of
the n(i+1)/m levels of classKm−i, we insert n1/m levels of classKm−i−1 (each having
8nm−i−1/m + 8 points), which gives in total n(i+1)/m levels. See Fig. 7. Finally, we
scan the constructed order from right to left and construct the circles as in Sect. 2.

Summarizing, the total number of points for class Ki is Θ(n(m+1)/m). Thus, the
overall number of points in P is Θ(mn(m+1)/m) = Θ(nmn1/m). Choosing m such
that mn1/m is minimal, we get m = Θ(log n

log log n). Thus the total size of the constructed

point set is O(n(log n
log log n)2).

Next we assign the levels of G of class Ki to the levels of P of class Ki, i =
1, . . . , m, by proceeding from the outside to the center. Intuitively we assign the next
graph level of class Ki to the next unused point set level of class Ki. To show the
correctness we give a more formal description.

Let Rm be the minimal sequence of consecutive levels of G, starting from the outer
level, that contains in total at least n(m−1)/m and at most n vertices. Note that sequence
Rm ends latest at the outermost level of class Km. For the point set P , we similarly
define a block of levels Bm to be the sequence of outer levels of P ending and including
the outermost level of the classKm. We will describe below how to map the graph levels
of Rm to the point set levels of Bm. Then, we shrink G by G \ Rm and P by P \ Bm

and iterate. Note that by the structure of the graph and the point set we do this at most
n1/m times.

If Rm contains a level of class Km, we map it to the single level of Bm of class
Km, which is also the last level of Bm, by construction. The other levels of Rm have
at most nm−1/m vertices. We repeat the above procedure: we identify a minimal initial
sequence Rm−1 of Rm that contains at least n(m−2)/m and at most n(m−1)/m vertices
in total. Note that if Rm = Rm \ Rm−1 then this can be done at most n1/m times,
as otherwise Rm would not be minimal. Concerning the point set, we set Bm−1 to be
the minimal sequence of outer levels of Bm that contains a single level of the class
Km−1. Putting Bm = Bm \ Bm−1 this procedure can be applied exactly n1/m times,
because of the structure of the point set. Finally, the graph levels Bm−1 are mapped to
the point-set levels Rm−1 recursively. Summarizing the above we have the following
theorem.

Small Point Sets for Simply-Nested Planar Graphs 85

Theorem 2. There is a universal point set of size O(n(log n
log log n)2) for the class of

simply-nested n-vertex planar graphs.

4 Concluding Remarks

In this paper we described a O(n(log n
log log n)2)-size universal point set for simply-nested

n-vertex planar graphs, doing a step towards answering the well-known open problem
on the size of the smallest universal point set for planar graphs.

Several problems remain open in this field: (a) We use points with real coordinates. Is
it possible to find a small point set for simply-nested planar graphs with points at integer
coordinates and with an overall polynomial area? (b) Simply-nested planar graphs do
not have chords between vertices of the same level. Is it possible to find a small point
set if such chords are allowed? (c) Is there a small point set for k-outerplanar graphs if
k is equal to 2 or 3?

References

1. Open problem garden, http://garden.irmacs.sfu.ca
2. Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and embedding

in linear time. Journal of Graph Algorithms and Applications 9 (2005)
3. Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs. J.

ACM 41, 153–180 (1994)
4. Bose, P.: On embedding an outer-planar graph in a point set. Computat. Geom. Th.

Appl. 23(3), 303–312 (2002)
5. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard.

J. Graph Alg. Appl. 10(2), 353–366 (2006)
6. Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar graphs 20,

83–86 (1989)
7. Chrobak, M., Nakano, S.: Minimum-width grid drawings of plane graphs. Computational

Geometry 11(1), 29–54 (1998)
8. Cimikowski, R.J.: Finding hamiltonian cycles in certain planar graphs. Information Process-

ing Letters 35(5), 249–254 (1990)
9. Demaine, E.D., Mitchell, J.S.B., O’Rourke, J.: The open problems project,

http://maven.smith.edu/˜orourke/TOPP/
10. Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10,

41–51 (1990)
11. Gritzmann, P., Pach, B.M.J., Pollack, R.: Embedding a planar triangulation with vertices at

specified positions. Amer. Math. Mont. 98, 165–166 (1991)
12. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex

planar graphs. Information Processing Letters 92(2), 95–98 (2004)
13. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 138–148 (1990)
14. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38, 36–67

(1989)

http://garden.irmacs.sfu.ca
http://maven.smith.edu/~orourke/TOPP/

Graph Visualization

Jarke J. van Wijk

Eindhoven University of Technology, Eindhoven, The Netherlands
vanwijk@win.tue.nl

http://www.win.tue.nl/~vanwijk

Black and white node link diagrams are the classic method to depict graphs, but
these often fall short to give insight in large graphs or when attributes of nodes
and edges play an important role. Graph visualization aims obtaining insight in
such graphs using interactive graphical representations. A variety of ingredients,
including color, shape, 3D, shading, and interaction can be used to this end.
In this invited talk an overview is given of work on graph visualization of the
visualization group of Eindhoven University of Technology, The Netherlands. A
wide variety of examples is shown and discussed using demos and animations.

One focus of the group has been software visualization, aiming towards the de-
velopment of technology that makes it easier to understand the structure of large
software artifacts. An early example were cushion treemaps, developed to visu-
alize hierarchical data, in particular file systems (SequoiaView), another more
frivolous example are our botanically inspired tree visualizations. State space
models lead to very large, but also often symmetrical graphs, which can be ex-
ploited to obtain clear and compact visualizations. Combinations of hierarchical
data and networks occur often in practice, a typical case is the visualization of
call-graphs of software systems. Such data can be shown using an interactive
incidence-matrix or using hierarchical edge bundles.

Besides the development of new methods and techniques, evaluation is an
important and often difficult aspect. Details of visualizations can be evaluated
using controlled user experiments, examples are the assessment of proper scales
for icons and different ways to show edge direction.

Finally, some other work related to graphs is shown. Myriahedral projections
are a new method to generate cartographic maps almost without distortion that
lean heavily on graphs. Platonic solids, such as the cube and dodecahedron, are
examples of so-called regular maps: highly symmetric graphs, embedded on a
surface. Examples of such regular maps for surfaces of genus 2 and higher are
presented.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, p. 86, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.win.tue.nl/~vanwijk

Advances in the Planarization Method:

Effective Multiple Edge Insertions

Markus Chimani1,� and Carsten Gutwenger2

1 Inst. of Computer Science, FSU Jena
markus.chimani@uni-jena.de

2 Dep. of Computer Science, TU Dortmund
carsten.gutwenger@tu-dortmund.de

Abstract. The planarization method is the strongest known method to
heuristically find good solutions to the general crossing number problem
in graphs: starting from a planar subgraph, one iteratively inserts edges,
representing crossings via dummy nodes. In the recent years, several im-
provements both from the practical and the theoretical point of view have
been made. We review these advances and conduct an extensive study
of the algorithms’ practical implications. Thereby, we present the first
implementation of an approximation algorithm for the crossing number
problem of general graphs, and compare the obtained results with known
exact crossing number solutions.

1 Introduction

Given a graph G = (V, E), the crossing number problem asks how to draw G
into the plane with the fewest possible number of edge-crossings. The planariza-
tion method is the probably best known and most successful heuristic to tackle
the crossing number problem in practice. In its simplest form it runs in two
phases: first, a (large) planar subgraph G′ = (V, E′) ⊆ G is computed. Then,
the temporarily removed edges F := E \ E′ are re-inserted one after another,
each time solving a single edge insertion problem. This problem can be stated
as follows: Let H be a planar graph, and e an edge not yet in H . We search for
a smallest planar graph H+ which represents a drawing of H + e where edge
crossings are replaced by dummy nodes of degree 4, and all these crossings oc-
cur on the edge e. Hence, when removing the image of e from H+, we obtain a
planar embedded H . Using this method, each edge of F is inserted in a planar
graph until we obtain a planarization G+, representing G in a planar way by
using dummy nodes for crossings.

In the first proposal [1] of this heuristic, the insertion problem was considered
w.r.t. a fixed embedding (cyclic order of the edges around their incident nodes) of
the planar graph H . (I.e., after obtaining the planar subgraph G′, one embedding
of G′ is fixed and retained throughout the whole insertion phase.) A simple linear-
time BFS-algorithm in the dual graph of H suffices to find an optimal solution.
� Markus Chimani was funded by a Carl-Zeiss-Foundation juniorprofessorship.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 87–98, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

88 M. Chimani and C. Gutwenger

Later, and rather surprisingly, it was shown in [14] that there exists a linear-time
algorithm, using the SPQR-tree datastructure, which finds the optimal insertion
path for e over all possible planar embeddings of H . In [13] it was shown that
this approach is in practice vastly superior to the former in terms of the overall
obtained number of crossings.

In recent years it was furthermore shown that there exists a (rather complex)
insertion algorithm to optimally insert a vertex with all its incident edges into
a planar graph [4] (vertex insertion), while it is NP-hard to insert an arbitrary
set of edges simultaneously [18] (multiple edge insertion).

Most interestingly, the single edge insertion problem (over all possible embed-
dings of H) is known to approximate the crossing number of H+e within a factor
of Δ/2 (where Δ is the graph’s maximum degree) [15, 2], and also the vertex
insertion problem approximates the crossing number of the resulting graph [6].
In particular, the proof of the latter can be generalized to show that an optimal
multiple edge insertion solution—w.r.t. an edge set F—would approximate the
crossing number of G′ + F within a factor only dependent on Δ and |F | [6].

Hence, the question arose whether this multiple edge insertion problem can be
efficiently approximated. After a rather complicated approach in [8], a simpler
and at the same time approximation-wise stronger algorithm was presented only
recently [5]. The algorithm reuses concepts of the SPQR-tree based single edge
insertion and seems simple enough to be implemented and used in practice.
The latter paper also shows that the traditional iterative single edge insertion
algorithm cannot be an approximation strategy for the crossing number of G.

Contribution. In this paper we present recent advances of the planarization ap-
proach from a practical point of view. On the one hand, we show how to improve
on the traditional approach of iteratively inserting single edges, via the use of
strong postprocessing routines. On the other hand, we give the first practical im-
plementation of a simultaneous multiple edge insertion algorithm—hence, this is
also the first practical study of any crossing number approximation algorithm for
arbitrary graphs. By considering graph classes of known crossing numbers (either
from theory or from the application of the currently strongest branch-and-cut
based exact crossing minimization algorithm [7]) we can deduce a practically
very good performance of these heuristics, as they usually find optimum, or at
least very-close-to-optimum, solutions.

2 Planarization Approach

In order to present our algorithmic choices and modifications, we first have to
briefly introduce two central decomposition structures, used in all algorithms
dealing with the insertion problem over all possible embeddings of H . In the
above sketched planarization scheme, we can assume that the original graph G
is connected—otherwise the crossing number problem decomposes into multiple
independent problems. Furthermore the initial planar subgraph G′ can be as-
sumed to be maximal and hence also connected. For the single edge insertion
algorithms, we will usually consider any intermediate graph H ; for the multiple
edge insertion algorithm we set H := G′.

Advances in the Planarization Method 89

First, we use the well known BC-tree B = B(H) of H which is a tree with
two different node types B and C: For each cut vertex (maximal two-connected
subgraph or bridge, summarized under the term block) in H , B contains a unique
corresponding C-node (B-node, respectively). Two nodes in B are adjacent if and
only if they correspond to a block and a cut vertex, where the former contains
the latter. We can construct such a linear-sized BC-tree B in linear time.

Based thereon, we can further decompose non-trivial blocks (i.e., non-bridges)
via SPQR-trees [10]: While they are more complicated than BC-trees, they also
only require linear size and can be constructed in linear time [16,12]. This datas-
tructure is particularly interesting, as it directly encodes all (exponentially many)
planar embeddings of its underlying block. We use the definition from [3,5] which
does not use Q-nodes, and therefore call the decomposition tree T = T(H ′) of
a non-trivial block H ′ SPR-tree for conciseness. Chiefly summarizing, each tree
node corresponds to a skeleton, which is a “sketch” of H ′ where certain sub-
graphs are replaced by virtual edges. By repeatedly merging the skeletons of
adjacent nodes (at their virtual edges representing each other), we can obtain
the original graph, and each virtual edge hence represents a 2-cut (split pair) in
H ′. Most importantly, a skeleton can only be one of three types: The skeleton
of an S-node (“serial”) is a simple cycle; the skeleton of a P-node (“parallel”)
consists of two vertices and multiple edges between them; the skeleton of an
R-node is a simple triconnected graph. Note that a planar triconnected graph
has a unique embedding (up to mirroring).

In the algorithmic description of the multiple edge insertion approximation
algorithm [5], an amalgamated version of these trees, the so-called con-tree, is
considered: a BC-tree, directly storing SPR-trees at the non-trivial B-nodes.

Single Edge Insertion. We will briefly recapitulate the central ingredients of
the exact linear-time algorithm by Gutwenger et al. [14] to solve the single edge
insertion problem over all possible embeddings of H . Let v1, v2 be the vertices we
want to connect in H via a new edge. First consider a fixed embedding of H and
let HD be its dual. We define an insertion path to be a path in HD connecting a
face incident to v1 with a face incident to v2. The length of this path is then the
number of edge crossings necessary to insert the edge {v1, v2} into embedded H
along this path; each dual edge in the insertion path corresponds to an edge in
H that is to be crossed. We can directly compute the shortest insertion path via
standard breadth-first search (BFS).

Now consider H with variable embedding. Let L be the unique shortest path
in B(H) from a B-node containing v1 to a B-node containing v2. The optimal
insertion path for {v1, v2} in G can be obtained by concatenating the optimal
insertion paths within the (non-trivial) blocks on this path L; we can always nest
blocks at a common cut vertex into each other such that there arise no additional
crossings. For a block H ′ represented by a B-node on L, let vH′

i , i = 1, 2, denote
vi if vi ∈ V (H ′), or the cut vertex in H ′ closest to vi otherwise. It remains to,
for each non-trivial block H ′, find optimal insertion paths from any face incident
to vH′

1 to any face incident to vH′
2 .

90 M. Chimani and C. Gutwenger

Therefore, let QH′ be the unique shortest path in T(H ′) from a skeleton
containing vH′

1 to a skeleton containing vH′
2 . It was shown in [14] that only the

embeddings of the skeletons along QH′ matter. In a nutshell, the algorithm walks
along these skeletons and fixes suitable embeddings for the skeletons, one after
another. Finally, an optimal embedding is found and fixed, and one can use the
simple BFS algorithm on the dual graph to insert the edge {vH′

1 , vH′
2 } optimally.

In the following, we can consider a con-chain Q of the edge {v1, v2} as an
extended version of L, where the “subpaths” QH′ are stored at each non-trivial
block H ′ along L.

Multiple Edge Insertion. Let us briefly review the approximation algorithm
for the multiple edge insertion problem by Chimani and Hliněný [5]. Let H :=
G′ be the initial planar subgraph of G into which to insert the edges F =
{ei}1≤i≤|F |. Assume we could independently insert each edge ei ∈ F into H .
Using the above algorithm for single edge insertions, we would obtain a con-
chain Qi for each edge ei, and therefore a so-called embedding preference for
each node on Qi w.r.t. ei. Coarsely speaking, we obtain a common embedding
of H via a voting scheme on the (possibly conflicting) embedding preferences
per con-tree node, ensuring that at any node at least one preference is satisfied.
After realizing the so-chosen embedding, we can once again use the simple BFS
algorithm in the dual graph to insert the edges into this fixed embedding.

The prove-wise crucial part in the algorithm is that any two con-chains Qi, Qj

are either disjoint or they intersect in one sub-chain. Hence, two con-chains (think
of simple paths) “deviate” at at most two nodes in the con-tree (think of a regular
tree): once when the two paths come together and once when they part. Roughly
speaking, it is shown in [5] that the embedding preferences for the tree nodes can
differ only at these two “places” (called passes), whereby the exact definition of
pass is quite involved and might in fact span over up to three con-tree nodes. Yet,
overall we can bound the number of nodes where some con-chains disagree on the
embedding preference, as well as the additionally necessary number of crossings
to route an edge through a skeleton that is differently embedded than desired.
This gives an approximation factor for the optimal multiple edge insertion w.r.t.
G′ and F , and, subsequently, for the crossing number of G.

It remains to clarify what an embedding preference actually is: Observe that
S-nodes do not allow different embeddings of their skeletons. For an R-node (a
triconnected planar graph), we have only a unique planar embedding and its
mirror. For a P-node, each inserted edge may want two particular edges of the
skeleton to be cyclicly adjacent (in, say, clockwise direction). Finally, for a C-
node each inserted edge may want a particular incident face in an adjacent block
to be identified with a particular incident face in another adjacent block.

3 Engineering

Iterative Single Edge Insertion and Postprocessing. In the traditional
planarization heuristic, we will “simply” insert the temporarily removed edges

Advances in the Planarization Method 91

F one after another into the planar subgraph. After each insertion, we replace the
arising crossings by dummy nodes, and hence proceed with a planar graph. There
are various ways to fine-tune the obtained result via postprocessing, as already
discussed in [13]. The simplest—and in fact quite effective—variant is to start the
insertion process multiple times, each time with a different, randomized order of
F . Additionally, each such insertion run can be improved: After having inserted
all edges, we can again remove some original edge e from the planarization (i.e.,
we remove all the subedges and dummynodes that represent e), and re-insert
it, possibly requiring fewer crossings. For this operation, we can consider either
the inserted edges F (ins), all edges (all), or the x% of the edges with the most
crossings (most, for some constant x). In [13] it was shown, that these approaches
lead to greatly improved results.

Herein, we propose a further improvement on these methods. The incremental
(inc) strategy basically applies the all strategy after each single insertion step.
I.e., after the insertion of an edge e ∈ F , we try to remove and reinsert every
other edge already in the graph, in order to obtain a better crossing number,
before proceeding with the next edge from F . We will see, that this approach
again dominates the previously best strategy all, though at the cost of a vastly
increased running time.

Note that all these strategies—when applied in a fixed embedding setting—are
also applicable to the multi-edge insertion problem, after fixing an embedding
into which all edges F need to be inserted. Formally, the inc setting has to restrict
itself to only try to reinsert the edges F , in order to retain the approximation
guarantee. Interestingly, after having obtained a postprocessed solution in the
fixed embedding, we can run the all postprocessing where the graph’s embedding
may change, i.e., using the optimal edge insertion over all possible embeddings!
As the solution value never decreases, the algorithm retains its approximation
guarantee and improves the number of crossings in practice.

From the approximation point of view, we can observe that the first part of the
algorithm (fixing a suitable overall embedding) tries to minimize the number of
crossings between F and G′, while the postprocessing routines most importantly
try to reduce the number of crossings between edges of F—their quantity can
only be estimated as

(|F |
2

)
in the formal quality guarantee.

Implementing Multiple Edge Insertion. In [5], certain aspects of the mul-
tiple edge insertion algorithm are described to be suitable for a comparatively
smooth approximation proof. When implementing the algorithm, we take some
different, though completely equivalent, routes. A main point of deviation is the
consideration of dirty passes, i.e., con-tree node tuples where multiple insertion
paths disagree on their preferred embedding. We highlight the two main diver-
gent choices here. Overall, our viewpoint allows a quite simpler implementation
than would be easily deduced from the theoretical proofs of [5] alone.

Con-Tree. Originally, an amalgamated version of BC- and SPR-trees is pro-
posed, which allows to talk about a single chain (path) for each inserted edge. In
the implementation, we perform the algorithm differently: First, we compute a

92 M. Chimani and C. Gutwenger

suitable combinatorial embedding for each non-trivial block independently. Only
then, we consider the C-nodes at which the blocks are joined. From the formal
definition of dirty passes, we can easily deduce that C-nodes do not interact
with other nodes in terms of realized embedding preferences, and hence we can
independently choose which faces to embed into each other at cut vertices, after
fixing the embeddings of the incident blocks.

This modification allows us to consider only two-connected graphs and SPR-
trees in the following, vastly simplifying implementation details as most of the
infrastructure necessary for single edge insertions can be reused.

Merging the Embedding & Repairing Dirty Passes. In [5], the formal definition of
dirty passes needs to group nodes as tuples of 1–3 SPR-tree nodes and requires
a tie-breaking to prohibit invalid node tuple overlaps. Yet, from the proofs it
becomes clear that this is merely necessary to correctly estimate the number
of these passes. Within the algorithm, these passes are only detected in order
to identify possible flips to prohibit too many such situations. For this purpose
alone, a much simpler strategy suffices: Usually, we consider one insertion path
after another: We traverse its SPR-nodes and fix the embedding of each skeleton
along this path as preferred. When a visited node already has a fixed embedding,
we (coarsely speaking) try to flip the predecessor nodes of our current path in
order to avoid dirty passes. Instead of checking the full case distinction in the
dirty pass definition, it suffices to consider the case where the currently visited
nodes ν and its predecessor (disregarding S-nodes) μ are P- and/or R-nodes:

We say an embedding preference at a P-node agrees with a fixed embedding of
this node’s skeleton, if the specified two edges occur clockwise neighboringly. An
embedding preference of an R-node is simply a binary flag specifying whether to
use a “default” planar embedding of the node’s skeleton or the “mirror” (only
these two embeddings exist). Now, we only have to flip μ and its predecessors
along the insertion path iff μ and ν are switching, i.e., the new embedding pref-
erences agree with the already fixed embedding of one of these two nodes, and
agrees with the flipped embedding of the other node.

Doing this for all such pairs ν, μ then also repairs dirty passes on node triples, if
at all possible. In all other cases of dirty passes, no flip can improve the situation
anyway and hence is not necessary. It is understood that this procedure performs
the same flips as the more abstract merge routine described in [5], and hence
the implementation retains the approximation guarantee.

4 Experiments

Experimental Setup. We implemented all algorithms using the C++ library
OGDF1 and ran our experiments on a Linux system with an Intel Core i7
(2.67 GHz) processor and 12 GB RAM. For each instance, all edge insertion
algorithms were called with the same, pre-computed maximal planar subgraph,
computed via the PQ-tree based planar subgraph algorithm [17] (best of 250
1 Open Graph Drawing Framework, see http://www.ogdf.net

http://www.ogdf.net

Advances in the Planarization Method 93

(a) statistics (b) runtimes

Fig. 1. Rome graphs

random runs, i.e., random choices of the initial st-edge for the numbering) and
iteratively adding removed edges afterwards if they do not destroy planarity.

We consider four benchmark sets, the first two of which are the well-known
Rome library [9] and AT&T graphs (available at http://graphdrawing.org/
data.html). We first applied a reduction strategy that removes parallel edges,
self-loops, and planar biconnected components, and reduces paths in the graph
to single edges (unless this introduces parallel edges). We consider all remain-
ing non-planar connected components with at least 25 nodes and at least two
edges removed in the computed planar subgraph, which are 1843 graphs in the
Rome set (25–58 nodes) and 311 graphs in the AT&T set (25–312 nodes). The
ISCA graphs are hypergraphs taken from the ISCA’85 benchmark set of real
world electrical networks, transformed into traditional graphs by substituting
each hyperedge h by a new hypernode connected to all nodes contained in h,
connecting all inputs (outputs) to a new node sin (sout, resp.), and introducing
the edge (sin, sout). We used the same reduction and selection as described above
leading to 20 graphs (25–223 nodes). Finally, the KnownCR graphs [11] are a
collection of 1946 graphs with known crossing numbers (by proofs), consisting of
generalized Petersen graphs (P (m, 2), P (m, 3)) and products of cycles Cn, paths
Pn, and 5-vertex graphs Gi (Cm × Cn, Gi × Pn, Gi × Cn); these graphs have
between 9 and 250 nodes. Our whole benchmark set can be downloaded from
http://ls11-www.cs.uni-dortmund.de/people/gutweng/planexp.zip.

Rome Graphs. Fig. 1(a) gives an overview on the Rome benchmark set, displaying
the number of graphs and average number of edges per node count. Furthermore,
it shows the average number of edges deleted in the planar subgraphs and for how
many of the graphs we know the exact crossing number from the branch-and-cut
algorithm presented in [7, 3].

We first consider the effect of postprocessing; see Fig. 2. We compare the
results with the best known results (from our experiments and the branch-and-
cut algorithm [3]) and show the relative difference between heuristic and best
solution. Since we know the exact solutions for many of the graphs, this gives a
very good impression on the actual quality of the heuristics. We note that the

http://graphdrawing.org/data.html
http://graphdrawing.org/data.html
http://ls11-www.cs.uni-dortmund.de/people/gutweng/planexp.zip

94 M. Chimani and C. Gutwenger

Fig. 2. Number of crossings for Rome graphs, relative to BEST known solutions

exact algorithm is clearly slower than any of the considered heuristics by orders of
magnitudes, cf. [7,3]. As already observed in [13], postprocessing helps a lot, and
this also holds for multiple edge insertion (the values without postprocessing lie
between 60–70%). Our new incremental postprocessing achieves clearly better
results than the previously best all, for all edge insertion strategies. We also
observed that the advantage of multi over fix is large without postprocessing,
but becomes smaller and smaller the more postprocessing is applied, since the
postprocessing becomes the dominating factor and is the same for both.

Inspired by this observation, we experimented with an additional postprocess-
ing for the multi strategy, where we reused the postprocessing with variable em-
bedding; see Fig. 2. The variants multi-none-all and multi-inc-all perform multi
with no or incremental postprocessing plus postprocessing with variable embed-
ding afterwards; multi-incIns-all restricts the incremental postprocessing to the
inserted edges. Whereas multi-none-all and multi-incIns-all—which retain the
approximation guarantee—are about as good as var-all, multi-inc-all—which in
theory does not give those guarantees—comes close to var-inc (for larger graphs,
it lies between var-all and var-inc).

In practice, we want to obtain good solutions quickly, hence it is important to
look at the runtimes; see Fig. 1(b). We can see that the overhead of multi com-
pared to fix is small, and even becomes negligible if postprocessing is used. The
var variants are always clearly slower, as they require a new SPR-decomposition
after each edge insertion, whereas multi uses only a single such decomposition.
The inc variants take about 2–4 times longer than all, which is acceptable re-
garding the achieved improvements in quality. For our postprocessing variants

Advances in the Planarization Method 95

Fig. 3. Effect of permutations on number of crossings (Rome graphs)

for multi with additional var -postprocessing, we observe that more intensive
postprocessing with fixed embedding reduces the effort required with the time-
consuming var -postprocessing and results in smaller runtimes (i.e., multi-inc-all
is faster than multi-none-all). Since multi-inc requires a similar runtime as var-
none but is in quality even better than var-all (the previously quality-wise best
known heuristic variant), it is a very good choice in practice.

Fig. 3 finally studies the effect of randomly permuting the edges to be inserted
(we considered 100 permutations here). The diagram shows the relative reduc-
tion of the gap between single run and best solution (hence, 100% means that
100 permutations led to the best solution). The main message is that permu-
tations without postprocessing are not very effective, whereas the combination
of postprocessing and permutations always gets significant improvements. The
incremental postprocessing variant does not only lead to best results, but is also
the most effective one in combination with permutations.

KnownCR Graphs. This collection allows us to further compare the heuristic
results with actual crossing numbers. Fig. 4 summarizes our findings for some
selected heuristics, showing the average relative deviation from the crossing num-
ber for the different graph classes. The class P (m, 2) (all whose graphs have
crossing number 2 or 3) could be solved to optimality by all heuristics and we
omit it in the diagram. For the classes P (m, 3), Gi×Cn, and Gi×Pn, all heuris-
tics perform well, being only 2-13% away from the optimum, and their order with
respect to quality is as expected. The class Cn × Cm shows some unusual be-
havior: Without permutations, the insertion strategy seems to have only a very
small influence on the solution quality; surprisingly, with 100 permutations, fix

96 M. Chimani and C. Gutwenger

Fig. 4. Number of crossings for KnownCR graphs, relative to crossing number

is superior to both multi and var. Analyzing the data, we see that this happens
only for a few graphs: the distinct runs of fix usually find slightly worse solutions
than multi or var, but in some rare cases a much better solution is found. We as-
sume that this is caused by the fact that accepting worse intermediate solutions
while inserting the edges can lead to a better final solution.

AT&T Graphs. Whereas the Rome graphs are fairly homogeneous graphs with a
simple structure and KnownCR consists of artificial graphs, the AT&T graphs
are real-world graphs with quite diverse structures. For analyzing the results, we
group the graphs according to the best found solutions (the first group contains
graphs with 0,. . . ,24 crossings; the last group with 700,. . . ,799 crossings). Fig. 5
shows the relative difference between heuristic and best solution. We can con-
firm that incremental postprocessing clearly dominates all for all edge insertion
strategies, and var-inc is by far the best strategy both without and with (var-
inc-100) permutations. Multiple edge insertion is also slightly better than fix.

However, the domination of var comes at a price: Whereas fix and multi take
about the same runtime, var is more than 10 times slower. Hence, multi-inc is
again a good compromise, as it is even clearly faster (3–10 times) than var-all.

ISCA Graphs. We focus on the multi and var methods. Fig. 6 shows the relative
difference between heuristic and best solution, for each graph in the benchmark
set separately. The graphs are sorted by increasing number of edges deleted in
the planar subgraph. We observe the effectiveness of postprocessing, underlining
again that postprocessing is essential. We can also see that the multi variants
come quite close to the corresponding var variants. This is again accompanied
by a much better runtime of multi ; in this case multi-inc is about 15–30 times
faster than var-inc, and multi-all even about 100 times faster.

Advances in the Planarization Method 97

Fig. 5. Number of crossings for AT&T graphs, relative to best found solution

Fig. 6. Number of crossings for ISCA graphs, relative to best found solution

Conclusions. We presented inc, a new practically dominating postprocessing
strategy for the planarization heuristic, and report on multi, the first implemen-
tation of any crossing minimization approximation algorithm for general graphs.

98 M. Chimani and C. Gutwenger

Both algorithms outperform any previously known heuristic in terms of solution
quality, and if one cannot afford the relatively long running times for inserting all
edges iteratively into a variable embedding using inc, the multi variants give the
probably best balance between running time and solution quality: while being
much faster, its solutions tend to be only slightly weaker than inc’s.

References

1. Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship
diagrams. J. Syst. Software 4, 163–173 (1984)

2. Cabello, S., Mohar, B.: Crossing and Weighted Crossing Number of Near Planar
Graphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 38–49.
Springer, Heidelberg (2009)

3. Chimani, M.: Computing Crossing Numbers. PhD thesis, TU Dortmund, Germany
(2008)

4. Chimani, M., Gutwenger, C., Mutzel, P., Wolf, C.: Inserting a vertex into a planar
graph. In: Mathiru, C. (ed.) Proc. SODA 2009, pp. 375–383 (2009)

5. Chimani, M., Hliněný, P.: A tighter Insertion-Based Approximation of the Cross-
ing Number. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS,
vol. 6755, pp. 122–134. Springer, Heidelberg (2011)

6. Chimani, M., Hliněný, P., Mutzel, P.: Vertex insertion approximates the crossing
number for apex. Europ. J. Comb. (to appear, 2011)

7. Chimani, M., Mutzel, P., Bomze, I.: A New Approach to Exact Crossing Mini-
mization. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp.
284–296. Springer, Heidelberg (2008)

8. Chuzhoy, J., Makarychev, Y., Sidiropoulos, A.: On graph crossing number and edge
planarization. In: Proc. SODA 2011, pp. 1050–1069. ACM Press (2011)

9. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An
experimental comparison of four graph drawing algorithms. Computational Geom-
etry 7(5-6), 303–326 (1997)

10. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM Journal on Com-
puting 25, 956–997 (1996)

11. Gutwenger, C.: Application of SPQR-Trees in the Planarization Approach for
Drawing Graphs. PhD thesis, TU Dortmund, Germany (2010)

12. Gutwenger, C., Mutzel, P.: A Linear Time Implementation of SPQR Trees. In:
Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

13. Gutwenger, C., Mutzel, P.: An Experimental Study of Crossing Minimization
Heuristics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer,
Heidelberg (2004)

14. Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph.
Algorithmica 41(4), 289–308 (2005)

15. Hliněný, P., Salazar, G.: On the Crossing Number of Almost Planar Graphs.
In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 162–173.
Springer, Heidelberg (2007)

16. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM
Journal on Computing 2(3), 135–158 (1973)

17. Jünger, M., Leipert, S., Mutzel, P.: A note on computing a maximal planar sub-
graph using PQ-trees. IEEE Trans. Comp.-Aided Design 17(7), 609–612 (1998)

18. Ziegler, T.: Crossing Minimization in Automatic Graph Drawing. PhD thesis,
Saarland University, Germany (2001)

A Quantitative Comparison

of Stress-Minimization Approaches
for Offline Dynamic Graph Drawing�

Ulrik Brandes and Martin Mader

Department of Computer & Information Science, University of Konstanz
{Ulrik.Brandes,Martin.Mader}@uni-konstanz.de

Abstract. In dynamic graph drawing, the input is a sequence of graphs
for which a sequence of layouts is to be generated such that the quality
of individual layouts is balanced with layout stability over time. Qual-
itatively different extensions of drawing algorithms for static graphs to
the dynamic case have been proposed, but little is known about their
relative utility. We report on a quantitative study comparing the three
prototypical extensions via their adaptation for the stress-minimization
framework. While some findings are more subtle, the linking approach
connecting consecutive instances of the same vertex is found to be the
overall method of choice.

1 Introduction

A dynamic graph is a sequence of (static) graphs, often representing an evolving
structure at discrete times of observation. Dynamic graph drawing refers to the
problem of generating a sequence of layouts to be used either in a small multiples
representation or as frames in an animation. In the offline scenario the entire
input sequence is known in advance, whereas in the online scenario the sequence
is given one graph at a time.

Approaches to dynamic graph drawing most often augment a layout algorithm
designed for static graphs in such a way that the resulting sequence of layouts
is more stable than if each graph was drawn from scratch [5]. The motivation
for this approach is generally said to be the preservation of a viewer’s mental
map [15], but it may also be interpreted as conveying the degree and location of
structural change more accurately by aligning it with layout change.

A common objective for drawing general undirected graphs is stress minimiza-
tion [10,13], a special case of multidimensional scaling applied to graph-theoretic
distances. It has been found to outperform other spring embedder variants [3]
and will be the basis in this study.

The simplest (and most common) approach to add stability to an iterative
layout algorithm for static graphs is to initialize the computation for each graph

� This work was partially supported by DFG Research Training Group GK-1042 Ex-
plorative Analysis and Visualization of Large Information Spaces.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 99–110, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

100 U. Brandes and M. Mader

in the sequence with the preceding layout [12,16]. The implicit assumption is
that consecutive graphs are similar in general, and thus, the initial layout is not
too far from a locally optimal one. The method is therefore easy to implement,
more efficient than computing a layout from scratch, and applicable in both on-
and offline scenarios.

However, stability is not addressed in a controlled way, hence this approach
may result in excessive and unnecessary movement of vertices, and layout quality
tends to degrade over the course of the sequence. Among the first to address
stability directly were [1], and [17] provides a generic problem statement. The
trade-off between readability and stability is formalized in [4] and a similar
principle for offline scenarios is proposed in [7].

More sophisticated attempts to increase stability are typically based on one of
three approaches. Maximum stability is achieved in aggregation approaches (e.g.,
[2,16]) where fixed vertex positions are obtained from the layout of an aggregate
of all graphs in the sequence. Alternatives are based on anchoring vertices to
reference positions (e.g., [4]), or linking vertices to instances of themselves that
are close in the sequence (e.g., [8,9]).

Do these methods work well? Which one to implement for a given application?
While the natural response to these questions appears to be a user study [18],
their design may be challenging. Controlled experiments require a thorough un-
derstanding of the way in which model parameters affect outcomes. By purely
algorithmic experimentation, we therefore want to provide quantitative evidence
for the differential behavior of variant approaches, and thus prepare the ground
for further user studies.

Our study compares aggregation, anchoring, and linking variants of stress
minimization for offline dynamic graph drawing scenarios. The latter are of in-
creasing relevance especially in longitudinal social network analysis [16], from
which we hence draw some of our test cases. Our most important conclusion is
that linking compares favorably with the other approaches.

After reviewing layout methods in Sect. 2, we formulate hypotheses in Sect. 3
that are based on common, though often implicit, assumptions about these meth-
ods and serve as a guideline for the experiments in Sect. 4. The experimental
results are discussed in Sect. 4.3, and we conclude in Sect. 5.

2 Offline Dynamic Layout Approaches

Let G = (V, E) be an undirected graph defined by a set V of n vertices, and a
set E of m edges. An arbitrary pair of vertices is called dyad. Given a matrix
D of vertex dissimilarities δij , i, j ∈ V , the purpose of stress minimization is
to determine positions pi = 〈xi, yi〉 ∈ R2 for every vertex i ∈ V such that the
Euclidean distances in the plane resemble the given dissimilarities as closely as
possible, i.e., δij ≈ ‖pi − pj‖, where ‖ · ‖ denotes the Euclidean norm. For any
given layout P = (p1, . . . , pn) this is quantified using a parameterized stress
function stress(P),

A Quantitative Comparison of Stress-Minimization Approaches 101

stress(P) =
∑

i<j

ωij (δij − ‖pi − pj‖)2 , (1)

where W = (ωij)i,j∈V is a weight matrix whose entries determine the contribu-
tion of each dyad. For graph drawing, lengths of shortest paths are a plausible
choice for dissimilarities [10,13], and the objective is to find a layout of mini-
mum stress. Because these distances are clearly not realizable for any non-trivial
graph, weights ωij = δ−2

ij discount representation errors for distant pairs, thus
emphasizing local accuracy.

Similar to other energy-based methods a solution can only be obtained by
iterative stress reduction that yields a local minimum which may be far from
an optimal layout. However, low-stress layouts can be routinely and efficiently
computed using a two-step process [3]: In the first step, an initial layout is
determined using classical scaling. In the second step, the representation of small
distances is improved by iteratively and monotonically reducing stress using
majorization [10].

2.1 Aggregation

Maximum stability is obtained when a vertex maintains its position throughout
the entire sequence of diagrams. That is, given a sequence G(1) = (V, E(1)), . . . ,
G(T) = (V, E(T)) of T graphs with corresponding shortest-path distances D(t),
1 ≤ t ≤ T , we are looking for one layout P̄ for the vertices in V and let P (t) = P̄
at all times t = 1, . . . , T .

We aggregate all shortest-path information by adapting input dissimilarities
and weights in Eq. 1. We use D̄ =

(
δ̄ij

)
i,j∈V

, δ̄ij := 1
T

∑T
t=1 δ

(t)
ij , i.e., the mean

shortest-path distances, as dissimilarities, and weights W̄ = (ω̄ij)i,j∈V with

ω̄ij =
1
δ̄2
ij

· 1
1 + var(δij)

,

where var(δij) := 1
T

∑T
t=1

(
δ
(t)
ij − δ̄ij

)2

is the variance of distances within a
dyad across all observations. Thus, representation accuracy of dyads that are
connected via short paths most of the time is emphasized. By additionally scal-
ing with the variance, priority is given to structures that are relatively stable
throughout the sequence. To obtain a layout we use the same algorithms as in
the static case: Layout computation is initialized by classical scaling of mean
distances; subsequently, stress

(
P̄
)

is reduced via majorization. Note that, in an
offline scenario, infinite distances in a dyad that might occur due to tempo-
rary disconnectedness can be handled by interpolating between the two finite
distances observed previously and next for this dyad, and by adding a small
constant, say 1.

102 U. Brandes and M. Mader

2.2 Anchoring

The main idea of the anchoring approach [4] is an explicit modeling of the
trade-off between layout quality as measured by an objective function, and lay-
out stability with respect to a reference drawing as measured by a difference
metric [6]. A stress function quantifying the compromise between quality of each
individual graph in the sequence and deviation from reference positions is

stressA
α

(
P (t)
)

= (1 − α) · stress
(
P (t)
)

︸ ︷︷ ︸
quality

+ α ·
∑

i∈V

φ
(t)
i

∥
∥
∥p

(t)
i − pi

∥
∥
∥

2

︸ ︷︷ ︸
stability

, (2)

where P = (pi)i∈V denotes the reference layout and weights φ
(t)
i allow for inter-

vertex variation in deviation tolerance.
The stability term thus corresponds to a point-wise penalty for deviations

from the reference layout, and the parameter 0 ≤ α ≤ 1 provides explicit control
of the trade-off between quality (original stress) and stability. Note that min-
imizing stressA

α for α = 0 corresponds to regular stress minimization without
control for stability, and α = 1 yields the reference layout, since no deviation is
tolerated.

For now, we use constant stability weights φ
(t)
i := 1 for all i and t. More so-

phisticated choices, however, may be useful to compensate for cases with highly
varying degrees or localized structural change. Before minimization of stressA

α ,
we perform a Procrustes rotation [20] – an affine transformation that minimizes
the sum of squared deviations from reference positions without changing rela-
tive distances – of the initial layout to the reference. After each layout of the
sequence is obtained, we again apply Procrustes rotation subsequently to the
whole sequence.

Depending on initialization and the type of reference, we obtain four anchor-
ing methods. The first two are purely online, whereas the second two incorpo-
rate offline information by means of using the aggregate layout (Sect. 2.1) as
reference:

APP initialize with previous layout (classical MDS for the first network), and
also anchor to previous layout (no anchoring for the first network).

ACP initialize with classical scaling, anchor to previous layout (no anchoring
for the first network).

APA initialize with previous layout (aggregate layout for the first network),
anchor to aggregate layout.

ACA initialize with classical scaling, anchor to aggregate layout.

2.3 Linking

The main idea of the linking approach is to implicitly make use of all information
about the networks of a sequence in an offline scenario. Instances of the same
vertex are linked with each other, so as to stabilize their positions throughout

A Quantitative Comparison of Stress-Minimization Approaches 103

the sequence. In contrast to the anchoring approach, layout calculation is not
performed one after each other, but the whole system is computed simultane-
ously.

A general formulation of a corresponding stress function is

stressL
α

(
P (1), . . . , P (T)

)
=

(1− α) ·
T∑

t=1

stress
(
P (t)
)

︸ ︷︷ ︸
quality

+ α ·
∑

i∈V

T∑

t′=1,t′ �=t

φ
(t)
i ζ(t, t′)

∥
∥
∥p

(t)
i − p

(t′)
i

∥
∥
∥

2

︸ ︷︷ ︸
stability

, (3)

where ζ(t, t′) is a function controlling the influence of the position at a cer-
tain time t for vertices at other time points t′. Concretely, we implemented two
versions w.r.t. ζ(t, t′) similar to the two alternatives stated in [8]: ζG(t, t′) =
e−

1
2 (t′−t)2 , a Gaussian function with mean value t and variance 1 without nor-

malization, i.e., ζG(t, t) = 1; and ζW (t, t′) = 1 for |t − t′| = 1, and ζW (t, t′) = 0
otherwise, i.e., a vertex is only linked within a time-window of size 1. Again,
we use φ

(t)
i = 1, and align all layouts in the sequence by Procrustes rotation af-

ter initialization, and after stress minimization. Depending on initialization and
ζ(t, t′), we obtain four linking methods:

LCG initialization by classical scaling, use ζG.
LAG initialization by aggregate layout as described in Sect. 2.1, use ζG.
LCW initialization by classical scaling, use ζW .
LAW initialization by aggregate layout, use ζW .

3 Hypotheses

Explicitly addressing stability by use of the above methods instead of simply
initializing with the preceding layout implies that a better compromise between
quality and stability is expected. Assessment of this claim is broken down into
constituent components to structure the discussion of detailed quantitative re-
sults in Sect. 4.3.

Our first hypothesis to test is thus that the methods actually display the
assumed effects at all.

H 1. Aggregation, anchoring, and linking increase dynamic stability, but reduce
individual quality.

Likewise, the explicit trade-off between quality and stability should be control-
lable via control parameter α.

H 2. In anchoring and linking, higher values of α result in more stability and
less quality.

104 U. Brandes and M. Mader

Being an iterative method, stress minimization is known to be susceptible to poor
local minima and thus to depend on good initialization [3]. As a consequence,
the same caveat should be in place where the outcome is not governed by the
attempt to maintain stability.

H 3. For decreasing values of control parameter α, anchoring and linking are
increasingly sensitive to initialization.

And finally, the principal adaptation to the offline scenario is by either anchoring
to a reference position determined from the entire sequence of graphs, or by
linking with future instances. These should pay off in case there is a persistent
global structure.

H 4. For dynamic graphs with persistent structure, anchoring to an aggregate
layout and linking outperform online approaches.

The experiments conducted in the next section are designed to provide evidence
for assessing these rather qualitative associations in detail.

4 Experiments

Instead of illustrating the approaches on selected examples, we here perform
algorithmic experiments to obtain more detailed and generalizable insight into
the behavior of dynamic graph drawing approaches. It is thus particularly im-
portant to use realistic input graph sequences, but we also address the issue of
quantifying the output in a novel way.

4.1 Data

As mentioned above, our focal application area are longitudinal social networks.
Instead of using a (necessarily small) collection of benchmark networks, though,
we generate random graphs that are believed to be realistic for the application
scenario, because they are obtained from the two most prevalent models in this
domain.

These are exponential-family random graph models (ERGM, [19], modeling
the characteristics of single networks) to create the initial graph of each sequence,
and stochastic actor-oriented models (SAOM, [21], modeling the evolution be-
tween two networks) to obtain the actual sequence.1 Both models are based on
network-specific characteristics, called effects – such as density of the network,
reciprocity of edges for directed networks, or number of triangles – and associ-
ated model parameters determining whether an effect increases or decreases the
probability of a network (ERGM), or of particular network changes (SAOM).
Both allow for model estimation, given networks and the desired set of effects,
and for simulation of networks, given a starting network and a specified model.
1 Available for the open source statistical system R (packages ergm and RSiena).

A Quantitative Comparison of Stress-Minimization Approaches 105

A sequence of T graphs is created in the following way: Two actual observa-
tions G1 and G2 of a longitudinal network serve as the basis for the creation
process. Using G1, we estimate an ERGM using basic effects,2 from which an
artificial first observation Gsim

1 is simulated. Next, a SAOM is estimated using
the real observations G1 and G2.3 The thus estimated SAOM is used for the
following two simulations.4 The artificial second observation Gsim

T is obtained
by running a simulation using Gsim

1 and G2 as input. Then, a simulation using
Gsim

1 and Gsim
T as input is performed to obtain a reliable sequence of changes

leading from Gsim
1 to Gsim

T , which is partitioned into T − 1 parts. Applying the
corresponding changes to the initial observation Gsim

1 yields a sequence of T
networks.

As real input data, we use two data sets that are well studied in the social
sciences.5 The s50 data set [14] comprises a sequence of three friendship networks
of 50 female teenage pupils. We use the first and third observation as input for
network sequence generation. The second real data set used is the van de Bunt
data set [22], again, an evolving friendship network among 32 university freshmen
comprising seven observations. We obtain input for network sequence generation
by only considering edges with rating best friendship and friendship from the
second and the seventh observation. Note also, that we removed vertex 18, since
it is isolated at all time points.

In addition to the network generation process described above, we employ
generation of unstructured artificial data by means of the G(n, p) random graph
model [11]. An initial observation is created with n = 50 and p = log(n)/n,
which produces connected graphs with high probability. Repeatedly, k/2 edges
are formed uniformly at random and, likewise, k/2 edges deleted, where we do not
allow deletion of edges just formed, and the resulting graph is made connected.
In our experiments, we use k = 2

√
n and k = n.

4.2 Measurements

To assess the quality and stability of layouts of a dynamic graph, we use the
measures that constitute our approaches, that are, stress and sum of squared
positional difference. Although it may be doubted whether these measures re-
ally capture either quality or stability, no other measures have been shown to
better represent these concepts; it is therefore only reasonable to use the intrin-
sic measures of the approaches. Another problem is that both measures are not
directly comparable across graphs of different sizes or structure. We solve this by
relating both measures to the ones obtained from a common baseline method B,
that is, we compute static layouts for each graph in the sequence as suggested

2 We use effects edges, mutual, gwodegree and gwesp.
3 We use effects for the the number of changes (rate parameter), outdegree, reci-

procity, and transitivity (transitive triplets).
4 The first RSiena simulation uses the unconditional method of moments, the second

uses the maximum likelihood method.
5 Publicly available at http://www.stats.ox.ac.uk/~snijders/siena/

http://www.stats.ox.ac.uk/~snijders/siena/

106 U. Brandes and M. Mader

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

qu
al

ity
δ σ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α
st

ab
ili

ty
δ ϕ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

stability δϕ

qu
al

ity
δ σ

Fig. 1. Five-point summary for measurements of δAPA
σ and δAPA

ϕ subject to trade-off
parameter α for 50 network sequences generated from the s50 data set

in the beginning of Sect. 2, and align the sequence by Procrustes rotation after
layout calculation.

Let PM be the layout for a graph obtained by method M . We measure quality
δM
σ as the fraction of stress(PB) and stress(PM), i.e.,

δM
σ =

stress(PB)
stress(PM)

.

Since we assume that the baseline layout is of relatively high quality, and that
quality degrades when mechanisms to increase stability are employed, the range
of δM

σ should be [0, 1), with δM
σ decreasing for higher values a.

Let ϕ(P t−1, P t) =
∑

i∈V

∥
∥pt

i − pt−1
i

∥
∥2 be the sum of squared positional dif-

ference between two subsequent layouts P t−1 and P t, where these have been
aligned by Procrustes rotation, i.e., ϕ(P t−1, P t) is minimal w.r.t. translation
and rotation of P t−1 and P t. Stability is measured as the relative decrease of
positional difference w.r.t. the baseline layout, i.e.,

δM
ϕ = 1− ϕ(P t−1

M , P t
M)

ϕ(P t−1
B , P t

B)
.

The assumption is that the baseline layout exhibits a high positional difference,
that will decrease whenever mechanisms to increase stability are employed. Note
that all methods presented yield the same layout for all graphs in the sequence
for α = 1, therefore δM

ϕ must be 1 for all methods in this case. Thus the range
is expected to be [0, 1], with δM

ϕ increasing for higher values α.
For each network sequence generator, we created 50 network sequences com-

prising 10 graphs each. We measured δσ and δϕ corresponding to trade-off pa-
rameter α ∈ {0, 0.01, 0.02, . . . , 1}. Thus, per generator, method, and value of α,
we obtain 500 measurements of δσ (450 for APP and ACP, since for the first
observation of each sequence in these cases δσ = 1 for all α), and 450 measure-
ments of δϕ (not applicable to each first observation). Figure 1 shows a five point
summary, i.e., minimum, first quartile, median, third quartile, and maximum,

A Quantitative Comparison of Stress-Minimization Approaches 107

Table 1. Median values for δσ and δϕ at certain selected values of α for measurements
on sequences generated from the s50 data set. Note that only measurements belonging
to either the anchoring or linking approaches can be compared directly. Sequences from
other generators reveal similar tendencies.

α : 0.1 0.2 0.3 0.7 0.8 0.9 0.1 0.2 0.3 0.7 0.8 0.9

APP 0.94 0.86 0.78 0.48 0.40 0.31 0.49 0.63 0.72 0.93 0.95 0.98
ACP 0.97 0.90 0.80 0.48 0.40 0.31 0.29 0.54 0.70 0.93 0.95 0.98
APA 0.94 0.86 0.77 0.54 0.47 0.37 0.46 0.64 0.76 0.95 0.97 0.99
ACA 0.96 0.87 0.79 0.53 0.47 0.38 0.22 0.52 0.72 0.95 0.97 0.99

LAG 0.96 0.91 0.86 0.68 0.62 0.54 0.51 0.69 0.78 0.95 0.97 0.99
LCG 0.98 0.93 0.89 0.69 0.63 0.54 0.35 0.59 0.72 0.94 0.97 0.99
LAW 0.95 0.90 0.85 0.68 0.62 0.55 0.57 0.73 0.81 0.95 0.97 0.99
LCW 0.97 0.92 0.87 0.68 0.63 0.55 0.43 0.64 0.75 0.94 0.97 0.99

δ̂σ δ̂ϕ

of the measurements obtained for the 50 network sequences generated from the
s50 data set when applying the APA method. The gray horizontal lines indicate
thresholds used in our experiments, that are, 5% and 20% more stress w.r.t.
the baseline for quality measurements, and 80% and 95% reduction in positional
difference w.r.t. to the baseline for stability measurements. Note that, for both
δσ and δϕ, there are outliers that contradict the intuitive assumptions regarding
the range of the measures. We can only explain these by the heuristic nature of
stress minimization. Still, most of the measured values are within a reasonable
range around the median values, as can be observed by the inter-quartile range.
Thus, we will argue about the approaches by means of the median measure-
ments, denoted by δ̂σ and δ̂ϕ, respectively. Table 1 shows values of δ̂σ and δ̂ϕ at
selected levels of α for network sequences generated from the s50 data set, and
Fig. 2 summarizes measurements for all methods and data sets.

4.3 Results

Figure 2 (upper row, right endpoints) shows that already a slight compromise in
quality (5% additional stress compared to static baseline layouts) yields a large
increase in positional stability (ranging from 24% to 82% reduction of total
movement). If we allow a 20% increase of stress (left-hand side of each upper
graph), all methods reduce movement by more than 50%. Across all experiments,
reduction in positional difference increases very rapidly at lower ranges of α as
exemplified in Fig. 1. This provides evidence that the methods are largely having
the desired effects (H 1). Moreover, the actual values corroborate earlier findings
that low stability mechanisms appear to be most effective [18].

The monotone behavior of median values of δσ and δϕ in Table 1 support
the expected dependencies on α (H 2). Also, sensitivity to initialization (H 3)
is confirmed: Although small, there are noticeable differences in quality at the
lower range (α ≤ 0.3) in favor of initialization with classical scaling. There are,
however, large differences in stability in favor of initialization with the previous

108 U. Brandes and M. Mader

0.
2

0.
4

0.
6

0.
8

1.
0

δ ϕ

δσ

●

●

●

●

1/1.2 1/1.05

●

●

●

●

1/1.2 1/1.05

●

●

●

●

1/1.2 1/1.05

●

●

●

●

1/1.2 1/1.05

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

δ σ

δϕ

●

●

●

●

0.8 0.95

●

●

●

●

0.8 0.95

●

●

●

●

0.8 0.95

●

●

●

●

0.8 0.95

●

●

LAW
LCW
LAG
LCG
APA
ACA
APP
ACP

s50 van de Bunt G(n, p), k = 2 n G(n, p), k = n

Fig. 2. Overview of median values for δϕ at selected median values of δσ (upper part)
and vice versa (lower part) for all measurements

layout for anchoring approaches, or the aggregate layout for linking approaches,
as expected. At higher range, we observe very similar results for each pair of
anchoring approaches belonging together w.r.t. the choice of reference, and gen-
erally similar results for the linking approaches, which is also visible in the lower
graphs of Fig. 2. This indicates diminishing influence of initialization at higher
stability requirements.

Regarding H 4, we first posit that data generated from ERGMs and SAOM
learned from real data contains more persistent structures, since change in these
networks is actually based on structural processes unlike the random changes in
the G(n, p) generator. Rather surprisingly, though, we cannot observe a general
trend in Fig. 2 that A?A approaches perform better than A?P approaches at
very low stability levels (stress increase of 5%). Indeed method ACA consis-
tently performs worse, which indicates that initialization with classical scaling
is in conflict with anchoring to the aggregate. However, the more stability is
sought, the more is the difference in increase of stress between the A?A and

A Quantitative Comparison of Stress-Minimization Approaches 109

the A?P approaches, in favor of the former, and regardless of the data set. The
linking approaches perform better than the anchoring approaches throughout.
Thus, our evaluation of H 4 is inconclusive, since no statement can be made
for very low stability, and methods incorporating offline information apparently
perform better regardless of structure for moderate, and especially, high stability
requirements. To our surprise, the choice between the two functions ζG and ζW

does not seem to considerably influence the results.

5 Conclusion

We compared dynamic variants of the stress-minimization approach for general
undirected graphs in which vertices are at the same position throughout the
sequence of layouts (aggregation), attracted by a reference position (anchoring),
or attracted by positions of their copies in neighboring time slices (linking).

The comparison was based on a novel form of measurement of the trade-off
between quality (in terms of stress) and stability (in terms of vertex movement):
Measures were related to a baseline, determined from Procrustes aligned static
layouts, to normalize over graphs of different sizes and structure.

A second novel aspect is our use of more sophisticated graph generators that
eliminate reliance on small benchmark data sets and still produce application-
typical data. Here, ERGMs were used for boundary observations and SAOMs
for the evolution.

Our results suggest that linking is a generally preferable approach. Since it
is computationally demanding, a faster alternative is anchoring to an aggregate
layout initialized with the previous one in the sequence.

The present study is an attempt to move towards more precise measurement of
those aspects of the performance of graph drawing algorithms that are not easily
characterized analytically, but we are left with more new questions than answers
to old ones. The focus on stress-minimization approaches and two particular
criteria for quality and stability allowed for better comparison and more detailed
insights, but different quantities may turn out important as well. Other avenues
for future research include refined data generation procedures (e.g., including
behavioral effects), in-depth discussion of outliers and other observations, and
dependencies on specific graph structures and change sequences.

References

1. Böhringer, K.F., Paulisch, F.N.: Using constraints to achieve stability in automatic
graph layout algorithms. In: Proc. of the SIGCHI Conference on Human Factors
in Computing Systems (CHI 1990), pp. 43–51. ACM (1990)

2. Brandes, U., Corman, S.R.: Visual unrolling of network evolution and the analysis
of dynamic discourse. Information Visualization 2(1), 40–50 (2003)

3. Brandes, U., Pich, C.: An Experimental Study on Distance-Based Graph Drawing.
In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218–229.
Springer, Heidelberg (2009)

110 U. Brandes and M. Mader

4. Brandes, U., Wagner, D.: A Bayesian Paradigm for Dynamic Graph Layout. In:
DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 236–247. Springer, Heidelberg
(1997)

5. Branke, J.: Dynamic Graph Drawing. In: Kaufmann, M., Wagner, D. (eds.) Draw-
ing Graphs. LNCS, vol. 2025, pp. 228–246. Springer, Heidelberg (2001)

6. Bridgeman, S.S., Tamassia, R.: Difference metrics for interactive orthogonal graph
drawing algorithms. Journal of Graph Algorithms and Applications 4(3), 47–74
(2000)

7. Diehl, S., Görg, C.: Graphs, they are Changing. In: Goodrich, M.T., Kobourov,
S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 23–30. Springer, Heidelberg (2002)

8. Erten, C., Harding, P., Kobourov, S., Wampler, K., Yee, G.: Graphael: Graph
Animations with Evolving Layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912,
pp. 98–110. Springer, Heidelberg (2004)

9. Erten, C., Kobourov, S., Le, V., Navabi, A.: Simultaneous graph drawing: Layout
algorithms and visualization schemes. Journal of Graph Algorithms and Applica-
tions 9(1), 165–182 (2005)

10. Gansner, E., Koren, Y., North, S.: Graph Drawing by Stress Majorization. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)

11. Gilbert, E.N.: Random graphs. The Annals of Mathematical Statistics 30(4), 1141–
1144 (1959)

12. Huang, M.L., Eades, P., Wang, J.: On-line animated visualization of huge graphs
using a modified spring algorithm. Journal of Visual Languages and Comput-
ing 9(6), 623–645 (1998)

13. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. In-
formation Processing Letters 31, 7–15 (1989)

14. Michell, L., Amos, A.: Girls, pecking order and smoking. Social Science &
Medicine 44(12), 1861–1869 (1997)

15. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental
map. Journal on Visual Languages and Computing 6(2), 183–210 (1995)

16. Moody, J., McFarland, D.A., Bender-deMoll, S.: Dynamic Network Visualization.
American Journal of Sociology 110(4), 1206–1241 (2005)

17. North, S.C.: Incremental Layout with DynaDag. In: Brandenburg, F.J. (ed.) GD
1995. LNCS, vol. 1027, pp. 409–418. Springer, Heidelberg (1996)

18. Purchase, H.C., Samra, A.: Extremes are Better: Investigating Mental Map Preser-
vation in Dynamic Graphs. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams
2008. LNCS (LNAI), vol. 5223, pp. 60–73. Springer, Heidelberg (2008)

19. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential
random graph (p*) models for social networks. social networks 29(2), 173–191
(2007)

20. Sibson, R.: Studies in the robustness of multidimensional scaling: Procrustes statis-
tics. Journal of the Royal Statistical Society. Series B (Methodological) 40(2), 234–
238 (1978)

21. Snijders, T.A.B.: The statistical evaluation of social network dynamics. Sociological
Methodology 31, 361–395 (2001)

22. Van De Bunt, G.G., Van Duijn, M.A., Snijders, T.A.: Friendship networks through
time: An actor-oriented dynamic statistical network model. Computational &
Mathematical Organization Theory 5, 167–192 (1999)

Accelerated Bend Minimization

Sabine Cornelsen and Andreas Karrenbauer

Department of Computer & Information Science, University of Konstanz
firstname.lastname@uni-konstanz.de

Abstract. We present an O(n3/2) algorithm for minimizing the number
of bends in an orthogonal drawing of a plane graph. It has been posed
as a long standing open problem at Graph Drawing 2003, whether the
bound of O(n7/4

√
log n) shown by Garg and Tamassia in 1996 could be

improved. To answer this question, we show how to solve the uncapaci-
tated min-cost flow problem on a planar bidirected graph with bounded
costs and face sizes in O(n3/2) time.

1 Introduction

A drawing of a planar graph is called orthogonal if all edges are non-crossing
axis-parallel polylines, i.e. sequences of finitely many horizontal and vertical line
segments. The intersection point of a vertical and a horizontal line segment of
an edge is a bend.

If a graph has an orthogonal drawing such that the vertices are drawn as
points then the degree of any vertex is at most four. Biedl and Kant [1] gave a
linear-time algorithm for constructing an orthogonal drawing with at most two
bends per edge of a graph with degree at most four (except for the octahedron).
The problem of minimizing the number of bends in an orthogonal drawing of a
planar graph with maximum degree four is NP-complete [2] if the embedding of
the graph, i.e. the cyclic ordering of the incident edges around each vertex, is
not fixed.

Tamassia [3] considered the bend-minimization problem on plane graphs, i.e.,
on planar graphs with a fixed embedding and a fixed outer face. He showed
that the problem of minimizing the total number of bends in an orthogonal
drawing of a plane graph with degree at most four can be modeled by a min-
cost flow problem. There are also variations of the flow-based bend minimization
approach which include a restricted number of bends, vertices of degree higher
than four [4,5,6,7], drawing clustered graphs [8,9], or interactive and dynamic
graph drawing [10,11].

Network flows are an important topic in combinatorial optimization and we
refer the interested reader to [12] and [13] for a general overview. Instead, we
concentrate on the special case of planar networks in this paper. To the best
of the authors knowledge, there have not been many direct contributions to
compute planar min-cost flows in the past decades. One exception is a dedicated
analysis of an interior point method [14] restricted to linear programs arising
from min cost flow problems on planar graphs by Imai and Iwano [15]. In 1990,

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 111–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

112 S. Cornelsen and A. Karrenbauer

they proved a running time bound of O(n1.594
√

log n log(nγ)), at which γ is an
upper bound on the absolute values of costs and capacities. Much more progress
has been made on important special cases such as the shortest path problem
and the max flow problem, which may be used in general flow algorithms as
subroutines to obtain a better running time when the input is restricted to planar
graphs. This includes the famous linear-time algorithm for planar shortest path
with non-negative lengths [16], near linear-time algorithms for shortest path with
real lengths [17,18,19], and for max s-t-flow [20,21]. The latter problem can be
solved in linear time when s and t are on the same face because of its equivalence
to a shortest path problem with non-negative lengths in the dual graph shown
by Hassin [22]. This result has been extended to multiple sources and sinks on
the same face by Miller and Naor [23].

Garg and Tamassia [24] proved that a min-cost flow problem on a flow network
with n nodes, m arcs, and the minimum cost χ of a flow can be solved in
O(χ3/4m

√
log n) time and concluded that the bend minimization problem of an

embedded planar graph with degree at most four can be solved in O(n7/4
√

log n)
time. It was posed as an important open problem in graph drawing, whether this
run time could be improved [25, Problem 14].1

Our Contribution

In this paper, we especially exploit the fact that the flow network is planar and
show how to solve the problem in O(n3/2) time. Our algorithm splits the flow
network using a cycle separator. To this end, the edges on the cycle are con-
tracted, which maintains planarity. The separator thereby shrinks to a cut node
that joins two biconnected components on which the min-cost flow problem can
be solved independently. The recursive solutions of the two parts are combined
by expanding the separator edge by edge and adjusting the flow between the
endpoints of the corresponding edge in each step.

In particular, we show that the uncapacitated min-cost flow problem on a
planar bidirected graph with bounded costs and face sizes can be solved in
O(n3/2) time. This result only relies on linear-time algorithms for finding cycle
separators [26], and for computing max s-t-flows in (s, t)-planar graphs ([22]
combined with [16]). Note that our approach combined with a result on multiple-
source multiple-sink max-flow in planar graphs [27] solves the bend-minimization
problem in O(n3/2 log n) time if we additionally wish to constrain the number
of bends on some edges and it yields an O(

√
χn log3 n) algorithm for computing

a flow of minimum-cost χ on a planar flow network with n nodes and O(n) arcs.
The paper is organized as follows. In Section 2, we define the min-cost flow

problem and briefly describe the flow model of Tamassia for bend-minimization.
In Section 3, we describe the primal-dual algorithm that generally solves the min-
cost flow problem. Our main result, based on the divide and conquer approach,
that yields the O(n3/2) time algorithm is described in Section 4.
1 The result of [15] provides a better bound, but the algorithm is not combinatorial

and its correctness is hard to verify since not all details have been presented in the
extended abstract. In any case, we improve w.r.t. both.

Accelerated Bend Minimization 113

2 Bend Minimization and Flow Networks

Throughout this paper let G = (V, E) be a simple undirected connected plane
graph with n vertices of degree at most four and let F be the set of faces of a
planar embedding. We consider the vertex-face-incidence multi-graph with node
set WG = V ∪ F and arcs whenever the geometric intersection of two elements
of WG is non-empty in the planar embedding. Let DG = (WG, AG) denote the
bidirected version of this graph. Let DF be the subgraph of DG that is induced
by the face nodes only.

A min-cost flow network N consists of a directed (multi-)graph D = (W, A),
capacities u : A → �≥0 ∪ {∞}, node demands b : W → �, and arc costs
c : A → �≥0. A map f : A → �≥0 is a pseudo-flow on N if f(a) ≤ u(a) for
a ∈ A. A pseudo-flow f is a flow if the deficiency

bf (v) = b(v) +
∑

(w,v)∈A

f(w, v) −
∑

(v,w)∈A

f(v, w)

of each node v ∈ W is zero. The cost of a flow is c(f) =
∑

a∈A c(a)f(a). We
say that a flow problem is uncapacitated and with unit costs, respectively, if
u(a) =∞ and c(a) = 1, respectively, for all arcs a ∈ A.

The bend-minimization problem can be modeled by a min-cost flow network
NG = (DG, u, b, c) [3] with the following properties.

1. DF is planar, bidirected with infinite capacity and unit cost.
2. The degree of a face of DF is at most 4.
3. A cycle separator of DF is a cycle separator of DG.
4. DG is planar and triangulated.
5. The minimum cost of a flow in NG is at most 2n + 4 [1].

Readers to whom these properties sound familiar may safely skip the next sub-
section, which contains a brief presentation of Tamassia’s approach [3].

Bend Minimization as Min Cost Flow

In this section, we briefly describe the approach of Tamassia [3] for constructing
an orthogonal drawing of a plane graph with the minimum total number of
bends. The approach consists of two phases. In the first phase an orthogonal
representation is computed, which fixes the angle at each vertex between two
consecutive adjacent edges on one hand and the number of right and left turns
on an edge on the other hand. In a second step an area efficient orthogonal grid
drawing is constructed from a feasible orthogonal representation. The second
step can be done in linear time using topological sorting [28, page 155].

The orthogonal representation associates four labels with each edge {v, w} ∈
E, two for each direction. The label 1 ≤ α(v, w) ≤ 4 is such that α(v, w) · π/2
denotes the angle at vertex v between {v, w} and the next incident edge of v
in counter-clockwise direction. The label τ(v, w) ≥ 0 denotes the number of
left-turns on {v, w} traversed from v to w. See Fig. 1(b), for an illustration.

114 S. Cornelsen and A. Karrenbauer

Let the degree deg f of a face f be the number of its incident edges where
bridges count twice. Elementary geometry implies that there is an orthogonal
drawing that corresponds to some given labels α and τ if and only if they imply
that the sum of angles around a vertex is 2π and that the sum of angles around
an inner/outer face f is π · (deg(f) + number of bends ∓ 2). The latter can be
reformulated as

∑

(v,w)∈E(f)

(α(v, w) + τ(w, v) − τ(v, w)) = 2 deg(f)∓ 4

where E(f) denotes the arcs incident to the face f directed in counter-clockwise
direction. This yields a min-cost flow formulation for finding a feasible orthogonal
representation with the minimum number of bends.

v1
v2

v3

v4
τ(v4, v3) = 2

τ(v3, v4) = 1

α(v3, v4) = 3

α(v4, v3) = 1

(a) orthogonal representation

v1(2) v2(1) v3(2)

v4(1)

fo(−8)

h1(0)

h2(1)

e

f(v3, fo)e = 2

f(h2, fo)e = 1

f(fo, h2)e = 2

f(v4, h2)e = 0

v5(2)

(b) min-cost flow network

Fig. 1. Illustration of the approach of Tamassia [3] for solving the bend-minimization
problem. In b) the directed arcs indicate the flow network. All arcs have infinite ca-
pacity, the bidirected blue arcs have cost one and the unidirected red arcs have costs
zero. The node demands are indicated in brackets.

The bend minimization problem on G can be solved by the following min-cost
flow network NG. The node set of the directed graph DG is WG = V ∪ F with
b(v) = 4 − deg(v), v ∈ V , b(h) = 4 − deg(h) if h ∈ F is an inner face and
b(fo) = −4 − deg(fo) for the outer face fo. For each edge e = {v, w} ∈ E with
(v, w) ∈ E(h) and (w, v) ∈ E(g) the arc set AG contains the arcs (v, h)e, (w, g)e

with costs zero and (h, g)e, (g, h)e with costs one. All arcs have infinite capacities.
Note that the index e is only used to distinguish possible multiple arcs. See
Fig. 1(b), for an illustration.

Now a min-cost flow f on NG corresponds to an orthogonal representation
with the minimum number of bends as follows. For each edge e = {v, w} ∈ E with
(v, w) ∈ E(h) and (w, v) ∈ E(g) set α(v, w) = f(v, h)e+1 and τ(v, w) = f(h, g)e.

3 The Primal Dual Algorithm

In this section, we briefly describe the primal-dual algorithm [29] for solving the
min-cost flow problem.

Accelerated Bend Minimization 115

Let N = (D = (W, A), u, b, c) be a min-cost flow network. An arc a ∈ A
is saturated by a pseudo-flow f if f(a) = u(a). A node potential is a function
π : W → �. The residual network Nf,π = (Df = (W, Af), uf , bf , cπ) of the
min-cost flow network N , a pseudo-flow f : A → �≥0, and a node potential
π : W → � is defined as follows. For each arc a ∈ A with tail v and head w the
arc set Af contains a with cπ(a) := c(a)+π(v)−π(w) if uf(a) := u(a)−f(a) > 0.
Further, if f(a) > 0 then Af contains a reversed copy −a from w to v with
cπ(−a) = −(c(a) + π(v) − π(w)) and uf(−a) := f(a). The costs cπ are called
the reduced costs and uf are the residual capacities. The node potential is valid
if cπ(a) ≥ 0 for all a ∈ Af . The primal-dual algorithm solves a min-cost flow
problem utilizing the reduced cost optimality condition.

Lemma 1 ([12, Theorem 9.3]). A flow has minimum cost if and only if it
admits a valid node potential.

The primal-dual algorithm works as follows on a min-cost flow network N =
(D = (W, A), u, b, c). First, the equivalent min-cost max-flow network N st =
(Dst = (W ∪ {s, t}, Ast), u, c, s, t) is constructed, i.e. a super source s and a
super sink t is added to W . Note that in general this construction does not
preserve planarity. However, this is not relevant for the following lemmas. For
each node v ∈ W with b(v) > 0 an arc (s, v) with u(s, v) = b(v) and cost zero
is added to A. Further, for each node v ∈ W with b(v) < 0 an arc (v, t) with
u(v, t) = −b(v) and zero costs is added to A. The value of a flow in N st is the
sum of all flow values on the arcs incident to s. Note that N has a feasible flow if
and only if a maximum s-t-flow of N st saturates all arcs incident to s. Further,
let f be a maximum flow with minimum costs on N st. Restricting f to A yields
a min-cost flow on N .

The primal-dual algorithm now basically augments as much flow as possible
on shortest s-t-paths in the residual network. More precisely, the algorithm starts
with the node potential π = 0 and the pseudo flow f = 0. As long as not all
arcs incident to s are saturated, the algorithm adds the shortest-path distances
distf,π(s, v) in (Df , cπ) to π(v). Then it considers the admissible network Do

f =
(W ∪{s, t}, Ao) with Ao = {a ∈ Ast

f ; cπ(a) = 0} and augments f by a maximum
s-t-flow in (Do, uf). See Algorithm 1 for a pseudocode.

To analyze the number of iterations, let fi and πi, respectively, be the flow
and potential, respectively, after the ith iteration of the primal-dual algorithm.
Further, let f0 = 0, π0 = 0 be the initial flow and potential. Recall that we
consider integer costs and capacities.

Lemma 2. We have the following properties.

1. πi(v) = distfi−1,π0(s, v), v ∈W, i ≥ 1.
2. πi(t) < πi+1(t), i ≥ 1.
3. πi(t) ≥ i− 1.
4. i ≤ distfi,π0(s, t).

Proof. 1. Let v ∈ W . If there is no s− v-path in Dfi−1 , then distfi−1,π0(s, v) =
distfi−1,πi−1(s, v) =∞, and, hence, πi(v) = πi−1(v)+distfi−1,πi−1(s, v) =∞.

116 S. Cornelsen and A. Karrenbauer

Algorithm 1. Primal-Dual Algorithm

Input : min-cost flow network N = (D = (W,A), u, b, c).
Output : min-cost max-flow f of N st with valid node potential π,

both initialized to 0
Primal-Dual(D, u, b, c)

while there is an s-t-path in Dst
f do

dist(s, .) ← Single-Source-Shortest-Path(Dst
f , cπ, s);

for v ∈ W ∪ {t} do
π(v) ← π(v) + dist(s, v);

fo ← Max-Flow(Do
f , uf , s, t);

f ← f + fo;

return (f, π);

Let now s = v0, . . . , v� = v be the nodes on a shortest s − v-path in
(Dfi−1 , cπi). Then we have that 0 = distfi−1,πi(s, v) =

∑�
k=1 cπi(vk−1, vk) =

∑�
k=1 c(vk−1, vk) + πi(s)− πi(v) = distfi−1,π0(s, v)− πi(v), where the latter

equality holds since πi(s) = 0.
2. By definition, πi+1(t) = πi(t) + distfi,πi(s, t). After augmenting a maximum

s-t-flow on the arcs with zero reduced costs there is an s-t-cut on which
all arcs with zero reduced costs are saturated. Hence, the residual network
contains no s-t-path with zero reduced costs. Hence, distfi,πi(s, t) > 0.

3. πi(t) ≥ i− 1 follows immediately from π1(t) ≥ 0 and the previous item.
4. If there is no i + 1st iteration then i < ∞ = distfi,π0(s, t). Otherwise, com-

bining the previous items, we obtain i ≤ πi(t) + 1 ≤ πi+1(t) = distfi,π0(s, t).
��

Lemma 3. Let there be a feasible flow on N , let χ be the minimum cost of a
flow on N , and let i ≥ 1. Then the primal-dual algorithm terminates after at
most i + χ/i iterations.

Moreover, a min-cost flow can be computed by performing at most i max-flow
computations and at most i + χ/i shortest path computations.

Proof. Let i ≥ 1. The statement is trivially true if the algorithm performs at
most i iterations. So assume that the algorithm performs more than i iterations.
Let r := bfi(s) be the sum of the residual capacities of the arcs leaving s after
iteration i. Since in each of the following iterations at least one unit of flow is
sent to t it follows that the primal-dual algorithm will finish within at most i+ r
iterations even if in the last r iterations only one unit of flow is sent from s to
t along a shortest path in the residual network and thus without the need to
compute any further maximum flow.

On the other hand, since there is a feasible flow on N , all arcs incident to
s have to be saturated at the end. Augmenting one unit of flow augments the
total cost of a flow by at least the original cost of a shortest s-t-path in the
residual network. Since distfi,π0(s, t) = πi+1(t) < πi+2(t) = distfi+1,π0(s, t) it
follows that the length of a shortest s-t-path increases with every step. Hence,

Accelerated Bend Minimization 117

χ ≥ r · distfi,π0(s, t) ≥ r · i. Thus, at most r ≤ χ/i shortest-path computations
have to be performed after the ith iteration. ��
Corollary 1. Let there be a feasible flow on N and let χ be the minimum cost of
a flow on N . Then the primal-dual algorithm terminates after at most 2 ·√χ+1
iterations.

Proof. If χ = 0 then the algorithm terminates after at most 1 iteration. Other-
wise, let i be such that i − 1 <

√
χ ≤ i. Then the total number of iterations is

bounded by i + χ/i <
√

χ + 1 + χ/
√

χ = 2
√

χ + 1 iterations. ��
In a network with n vertices and O(n) arcs the shortest-path problem can be
solved in O(n log n) time using the algorithm of Dijkstra [30], while the max-flow
problem can be solved in O(n log3 n) time if the network is planar [27].

Remark 1. Hence, the primal-dual algorithm computes a flow with minimum
cost χ on a planar min-cost flow network with n nodes and with O(n) arcs in
O(
√

χn log3 n) time.

Since the number of bends in an orthogonal drawing and, hence, the cost of the
flow in the corresponding min-cost flow network is in O(n) [1], it follows that
the bend-minimization problem can be solved in O(n3/2 log3 n) time, even if the
number of bends on some edges is restricted. In the next section, we give a divide
and conquer approach that directly solves the uncapacitated bend minimization
problem utilizing only less recent results.

4 A Recursive Approach

In this section, we show how to utilize a planar separator theorem to recursively
solve the min-cost flow problem.

Let an assignment of non-negative weights to the vertices, faces, and edges of
a plane graph G be given that sum to one. A simple cycle C of G is a weighted
cycle separator of G if both, the weight of the interior of C and the weight of
the exterior of C do not exceed 2/3.

Miller [26] showed that every biconnected planar graph with n vertices and
face degree at most d has a simple cycle separator with at most 2

√
d · n vertices

unless there is a face with weight higher than 2/3. Moreover, such a cycle sep-
arator can be constructed in linear time. Note that the min-cost flow problem
decomposes into independent subproblems for each biconnected component.

This yields the following recursive algorithm for constructing a min-cost flow
on a flow-network N = (D = (W, A), u, b, c) where D is a plane digraph with
O(n) nodes and arcs.

First, we find a small cycle separator C : v1, . . . , v� of D. Let W1 be the set
of nodes in the interior of C and let W2 be the set of nodes in the exterior of
C. Let Ai be the set of arcs of A that are incident to at least one node of Wi.
See Fig. 2(a) for an illustration. Let Di = (Wi ∪ {Ĉ}, Ai), i = 1, 2 be obtained
from the subgraph of D induced by Wi ∪ C by shrinking C to a single node Ĉ

118 S. Cornelsen and A. Karrenbauer

C

W1

W2

A1

A2

(a) Cycle Separator

W1 A1

Ĉ

D1

D/C8

(b) Recursive Solution: b(Ĉ) = −b(W1)

Ĉ

D/C

(c) Merging: b(Ĉ) = b(C) = −b(W1)−b(W2)

Ĉ5

W1

W2

v6

D/C5

(d) Expanding: b(Ĉ5) =

5∑

i=1

b(vi)

Fig. 2. Illustration of Algorithm 2

maintaining all arcs between Wi and C with their respective costs and capacities.
See Fig. 2(b) for an illustration. For a subset W ′ ⊂W let b(W ′) =

∑
v∈W ′ b(v).

We now recursively solve the two min-cost flow problems

Ni = (Di, u|Ai , {b|Wi , b(Ĉ) = −b(Wi)}, c|Ai), i = 1, 2

obtaining a flow f |Ai with a valid node potential πi.
Note that Ni, i = 1, 2 has a feasible flow if N has a feasible flow: Let f be a

feasible flow on N . Clearly, f induces a flow on the graph D/C obtained from D
by shrinking C to a single node Ĉ with demand b(C). Note that D1 is obtained
from D/C by deleting W2 and all its incident arcs. Let f(C, W2) be the amount
of flow on the arcs from C to W2 minus the amount of flow from W2 to C. Then
f(C, W2) = b(W1) + b(C). So if we set b(Ĉ) = b(C) − f(C, W2) = −b(W1) then
f induces a flow on D1.

To merge the two solutions, we first set π(Ĉ) = max{π1(Ĉ), π2(Ĉ)} adjusting
the potential in the respective components. Now we have a feasible flow with a
valid node potential on D/C. See Fig. 2(c) for an illustration. We now expand C
edge by edge assigning the nodes on C the current potential of Ĉ. More precisely,

Accelerated Bend Minimization 119

Algorithm 2. Recursive Min-Cost Flow

Input : min-cost flow network N = (D = (W,A), u, b, c) admitting a flow.
Output : min-cost flow f on N and valid node potential π, both init. to 0.

Min-Cost-Flow(D, u, b, c)
(W1, C, W2) ← CycleSeparator(D);
(f |Ai , πi) ← Min-Cost-Flow((Wi ∪ {Ĉ}, Ai), u|Ai , {b|Wi ,−b(Wi)}, c|Ai);
π(Ĉ) ← max{π1(Ĉ), π2(Ĉ)};
for v ∈ Wi, i = 1, 2 do

π(v) ← πi(v) − πi(Ĉ) + π(Ĉ);

Let C : v1, . . . , v�;
for i = �, . . . , 2 do

Expand vi setting π(vi) ← π(Ĉ);
(f, π) ← (f, π) + Primal-Dual((D/{v1, . . . , vi−1})f , uf , bf , cπ);

return (f, π);

for 2 < i ≤ � let D/Ci be obtained from D by shrinking Ci = {v1, . . . , vi} to
a single node Ĉi with demand b(Ci). Assume that we have computed a flow f
with a valid node potential π of D/Ci. Expanding vi means extending f and
π to D/Ci−1 by setting the flow on the arcs between vi and Ci−1 to be zero
and π(vi) = π(Ĉi−1) = π(Ĉi). See Fig. 2(d) for an illustration. This yields
a pseudo-flow with a valid node potential, however, the deficiencies on vi and
Ĉi−1 might be different from zero. To adjust the deficiencies, we run the primal-
dual algorithm on the residual network. This yields a flow on N with a valid
node potential and, hence, a min-cost flow on D. The algorithm is summarized
in Algorithm 2.

Note that the max-flow within the primal-dual algorithm does only have to be
performed between vi and Ĉi−1. Hence, there is no need for neither super source
nor super sink and thus planarity is preserved. Moreover, vi and Ĉi−1 lie on the
same face. Such a max flow computation can be done in linear time [22,16]. The
same holds for the shortest path computation [16] because we maintain a valid
node potential, i.e. non-negative reduced cost.

Theorem 1. The recursive min-cost flow algorithm indicated in Algorithm 2
computes a min-cost flow on a planar bidirected uncapacitated min-cost flow
network with n nodes, O(n) arcs, arc costs at most cmax, and face degrees at
most d in O(cmax

√
dn3/2) time.

Proof. Let m be the number of arcs in the flow network. We may assume that
the network is connected and, hence, that m ∈ Θ(n). If the network is not
biconnected, we first use the cut nodes as separators in the recursive algorithm.
Since there is no expansion step, the combination of the recursive solutions of
the biconnected components takes only constant time.

So assume now that the network is biconnected. Let all arcs have weight 1/m
and let all faces and arcs have weight zero. Then the algorithm of Miller [26]
constructs in linear time a cycle separator C with O(

√
d · n) nodes such that

both, the interior and the exterior of C contain at most 2/3 ·m arcs. Let cmax

120 S. Cornelsen and A. Karrenbauer

be the maximum cost of an arc. Note that when expanding vi then the only
sources and sinks are vi and Ĉi−1 and there is an arc between the two of them in
both directions with infinite capacity. Hence, the equivalent min-cost max-flow
network remains planar and in all residual networks the length of a shortest
path with respect to the original costs is at most cmax. Hence, the primal-dual
algorithm has to perform at most cmax max-flow operations (Lemma 2) before
pushing the remaining deficiency directly over the arc incident to vi and Ĉi−1. It
follows that O(cmax

√
d · n) max-flow computations between two adjacent nodes

of a planar graph have to be performed. Hence, each recursive step can be per-
formed in O(cmax

√
dn3/2) = O(cmax

√
dm3/2). Hence, the run time T (m) fulfills

the recursion

T (m) ≤ T (m1)+T (m2)+ c · cmax

√
dm3/2, with m1 +m2 ≤ m, m1, m2 ≤ 2/3 ·n

Thus, the total running time is in O(cmax

√
dm3/2) = O(cmax

√
dn3/2). ��

Note Theorem 1 remains true if the arc costs are not bounded in general and
Algorithm 2 chooses separators that are not necessarily cycles but induce con-
nected subgraphs with arc costs at most cmax.

Corollary 2. The bend-minimization problem on a plane graph with degree at
most four and n vertices can be solved in O(n3/2) time.

Proof. Let G = (V, E) be a plane graph with n vertices and with degree at most
four and let NG = (DG = (V ∪ F , AG), u, b, c) be the min-cost flow network
for the bend-minimization problem. Let m = |AG|. Note that m ∈ Θ(n). For
Computing the cycle separator in the recursive min-cost flow algorithm, we only
consider the subgraph DF induced by the face nodes. We assign each arc of
DF the weight 1/m and each face h of DF the weight deg f/m while the nodes
obtain zero weight. Now the cycle separator of DF constructed by the algorithm
of Miller [26] is a cycle separator C of the whole graph with O(

√
n) nodes

such that both, the interior and the exterior of C contain at most 2/3 ·m arcs.
Moreover the arcs on C are bidirected uncapacitated and have unit cost. Hence,
each call of the primal-dual algorithm within Algorithm 2 performs one max-flow
operation on two adjacent nodes and pushes the remaining deficiency over the
corresponding cycle arc. Hence, each recursive step and thus, the whole algorithm
can be performed in O(n3/2) time. ��
If we wish to constrain the number of bends on an edge artificially, we may
sacrifice a log-factor and use the result in [27] to obtain the following.

Remark 2. The bend-minimization problem on a plane graph with degree at
most four and n vertices can be solved in O(n3/2 log n) time even if the number
of bends per edge is bounded by some upper bounds u : A→ �≥0, provided that
the bounds still admit an orthogonal drawing with a linear number of bends.

Proof. Instead of expanding the cycle separator node after node, we expand it
at once. Now the nodes with deficiency other than zero are all on a path. Hence,

Accelerated Bend Minimization 121

the max-flow problem within the primal-dual algorithm is solvable in O(n log2 n)
time [27]. Assume now that we perform

√
n/ logn times an ordinary iteration

of the primal dual algorithm. Then, by Lemma 3, at most O(n/(
√

n/ logn))
additional shortest path computations have to be performed, each of which can
be done in linear time [31]. Hence, one recursive step and thus the whole algo-
rithm can be performed in O(

√
n/ logn · n log2 n +

√
n log n · n) = O(n3/2 log n)

time. ��

Acknowledgments. We are grateful to Ulrik Brandes for bringing our atten-
tion to this problem and for fruitful discussions.

References

1. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Compu-
tational Geometry 9(3), 159–180 (1998)

2. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM Journal on Computing 31(2), 601–625 (2001)

3. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM Journal on Computing 16, 421–444 (1987)

4. Fößmeier, U., Kaufmann, M.: Drawing High Degree Graphs with Low Bend Num-
bers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer,
Heidelberg (1996)

5. Klau, G.W., Mutzel, P.: Quasi orthogonal drawing of planar graphs. Technical Re-
port MPI-I-98-1-013, Max-Planck-Institut für Informatik, Saarbrücken, Germany
(1998), http://data.mpi-sb.mpg.de/internet/reports.nsf

6. Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability
of diagrams. IEEE Transactions on Systems, Man and Cybernetics 18(1), 61–79
(1988)

7. Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with
the minimum number of bends. IEEE Transactions on Computers 49(8), 826–840
(2000)

8. Brandes, U., Cornelsen, S., Fieß, C., Wagner, D.: How to draw the minimum cuts of
a planar graph. Computational Geometry: Theory and Applications 29(2), 117–133
(2004)

9. Lütke-Hüttmann, D.: Knickminimales Zeichnen 4-planarer Clustergraphen. Mas-
ter’s thesis, Universität des Saarlandes (1999) (Diplomarbeit)

10. Brandes, U., Wagner, D.: Dynamic Grid Embedding with Few Bends and Changes.
In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 89–98.
Springer, Heidelberg (1998)

11. Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D.: Sketch-Driven Orthog-
onal Graph Drawing. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS,
vol. 2528, pp. 1–11. Springer, Heidelberg (2002)

12. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall (1993)

13. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Heidelberg (2003)

14. Karmarkar, N.: A new polynomial-time algorithm for linear programming.
Combinatorica 4(4), 373–395 (1984)

http://data.mpi-sb.mpg.de/internet/reports.nsf

122 S. Cornelsen and A. Karrenbauer

15. Imai, H., Iwano, K.: Efficient Sequential and Parallel Algorithms for Planar
Minimum Cost Flow. In: Asano, T., Imai, H., Ibaraki, T., Nishizeki, T. (eds.)
SIGAL 1990. LNCS, vol. 450, pp. 21–30. Springer, Heidelberg (1990)

16. Henzinger, M.R., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path al-
gorithms for planar graphs. Journal of Computer and System Sciences 55, 3–23
(1997); Special Issue on Selected Papers from STOC 1994

17. Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths,
and near linear time. J. Comput. Syst. Sci. 72, 868–889 (2006)

18. Klein, P., Mozes, S., Weimann, O.: Shortest paths in directed planar graphs with
negative lengths: a linear-space O(n log2 n)-time algorithm. In: Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009,
pp. 236–245. SIAM, Philadelphia (2009)

19. Mozes, S., Wulff-Nilsen, C.: Shortest Paths in Planar Graphs with Real Lengths
in O(n log2 n/ log log n) Time. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS,
vol. 6347, pp. 206–217. Springer, Heidelberg (2010)

20. Weihe, K.: Maximum (s,t)-flows in planar networks in O(V log V) time. J. Comput.
Syst. Sci. 55, 454–475 (1997)

21. Borradaile, G., Klein, P.: An O(n log n) algorithm for maximum st-flow in a directed
planar graph. J. ACM 56, 9:1–9:30 (2009)

22. Hassin, R.: Maximum flow in (s, t) planar networks. Information Processing Let-
ters 13(3), 107 (1981)

23. Miller, G.L., Naor, J.: Flow in planar graphs with multiple sources and sinks. SIAM
J. Comput. 24, 1002–1017 (1995)

24. Garg, A., Tamassia, R.: A New Minimum Cost Flow Algorithm with Applications
to Graph Drawing. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 201–213.
Springer, Heidelberg (1997)

25. Brandenburg, F.J., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Liotta, G.,
Mutzel, P.: Selected Open Problems in Graph Drawing. In: Liotta, G. (ed.)
GD 2003. LNCS, vol. 2912, pp. 515–539. Springer, Heidelberg (2004)

26. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs.
Journal of Computer and System Sciences 32(4), 265–279 (1986)

27. Borradaile, G., Klein, P., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-
source multiple-sink maximum flow in directed planar graphs in near-linear time.
In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2011 (to appear, 2011)

28. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall (1999)

29. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press (1962)
30. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische

Mathematik 1, 269–271 (1959)
31. Tazari, S., Müller-Hannemann, M.: Shortest paths in linear time on minor-closed

graph classes, with an application to steiner tree approximation. Discrete Applied
Mathematics 157(4), 673–684 (2009)

TGI-EB: A New Framework for Edge Bundling

Integrating Topology, Geometry and Importance

Quan Nguyen, Seok-Hee Hong, and Peter Eades

School of Information Technologies, University of Sydney, Australia
Capital Markets CRC, Sydney, Australia
{qnguyen,shhong,peter}@it.usyd.edu.au

Abstract. Edge bundling methods became popular for visualising large
dense networks; however, most of previous work mainly relies on geom-
etry to define compatibility between the edges.

In this paper, we present a new framework for edge bundling, which
tightly integrates topology, geometry and importance. In particular, we
introduce new edge compatibility measures, namely importance compat-
ibility and topology compatibility. More specifically, we present four vari-
ations of force directed edge bundling method based on the framework:
Centrality-based bundling, Radial bundling, Topology-based bundling,
and Orthogonal bundling.

Our experimental results with social networks, biological networks, ge-
ographic networks and clustered graphs indicate that our new framework
can be very useful to highlight the most important topological skeletal
structures of the input networks.

1 Introduction

Overviews of large and complex networks are useful for conveying information
and commonly used for extracting global patterns, such as clusters and outliers in
a data set. However, visualising large and complex networks is very challenging,
especially, for large dense graphs due to visual clutters which hinder human
understanding and analytic tasks.

Recently, edge bundling methods became popular for visualising large dense
networks, and have received much attention by the Graph Drawing community
and Information Visualisation community [8, 11, 13–15]. Most of the methods
are based on geometry, i.e., a given drawing of graphs, to define geometry com-
patibility between the edges (i.e., edges are typically polylines or splines that are
bundled together if they are compatible). While those edge bundling methods
reduce visual clutters and show some high level edge patterns, they may not
necessarily highlight the important skeletal structure of the network.

In this paper, we present a new framework for edge bundling, which tightly
integrates topology, geometry and importance. In particular, we introduce new
measures of edge compatibility based on network analysis and topology, namely
importance compatibility and topology compatibility, which are independent from
the geometry of the given input drawing.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 123–135, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

124 Q. Nguyen, S.-H. Hong, and P. Eades

As an example to define importance compatibility, we use social network anal-
ysis methods [20]. For example, centrality analysis determines the relative im-
portance of vertices and edges in a network. The k-core decomposition can be
used to identify cohesive groups of actors within a network. As an example to
define topology compatibility, we use clustered graph model.

More specifically, we present four variations of force directed edge bundling
method, based on the framework:

- CenEB (Centrality-based edge bundling): tightly integrates edge centrality
analysis with edge bundling.

- TopoEB (Topology-based edge bundling): tightly integrates clustered graph
topology with edge bundling.

- RadEB (Radial edge bundling): tightly integrates k-core analysis with edge
bundling.

- OrthoEB (Orthogonal edge bundling): uses orthogonal-like edge representa-
tion to produce orthogonal-like crossings.

We implemented our new framework and conducted experiments with social
networks, biological networks, geographic networks and clustered graphs. Our
experimental results show that our new framework can be useful to highlight
the most important topological skeletal structures of the input network, and
significantly improve visual analysis.

The new approach has proved very useful for the analysis on the integrated
NF-κB protein-protein interaction and signalling transduction networks, clearly
showing a number of significant functional groups. In fact, our visualisation
guided biologists to derive new biological hypothesis, and currently laboratory
experiments are being conducted.

2 Related Work

The use of attractions on control points for curved edges was first introduced
by Brandes and Wagner [6] and later Finkel et al. [9], though the term “edge
bundling” was coined several years later by others.

Holten [13] presented Hierarchical Edge Bundling method for hierarchical
graphs using B-splines. Balzer et al. [4] proposed a multi-level compound vi-
sualisation using transparent surfaces and edge bundling for a hierarchical 3D
visualisation.

Zhou et al. [21] presented a hierarchical edge clustering using Delaunay tri-
angulation, where control points are hierarchically clustered by energy-based
optimisation. Geometry Based Edge Bundling by Cui et al. [8] uses a control
mesh for edge clustering, where edge bundles share the same control points on
the mesh. Lambert et al. [15] generalised a control mesh to route graph edges
using a shortest path algorithm and mesh edge weights are updated to encourage
graph edges to share mesh edges.

Gansner et al. [11] improved circular layouts by merging splines of edges to
minimise the total amount of ink needed to draw the edges. Cornelissen et al. [7]

TGI-EB: A New Framework 125

presented a circular bundle view of the hierarchical graphs to study in software
engineering, such as, the program execution traces.

Holten and van Wijk introduced a Force-Directed Edge Bundling (FDEB)
algorithm [14], which models edges intuitively as flexible springs that can attract
each other. The attractive force depends on the distance of the springs and the
compatibility of the edges. The method achieves smoother bundles that are easy
to read, although it incurs high computational complexity.

Telea et al. [19] proposed an Image-Based Edge Bundles that aims for coarse-
grained edge shapes of bundled edges to further simplify visual representation
of the network structure. Nachmanson et al. [16] consider edge bundling in lay-
ered drawings in which edges already routed as polylines or splines; the method
preserves the topology of the original drawing and disambiguates edges.

Recently, Gansner et al. [10] introduced a multi-level method which approxi-
mates k-neighbor edge proximity graphs using kd-tree as input for their agglom-
erative bundling algorithm. They reported experiments on the approach up to
one million edges in a few minutes.

This previous work on edge bundling reduces visual clutter and displays some
high-level patterns. Yet the “bundles” are mainly based on geometry in disre-
gard of the importance and the topology of the network. This motivates our
new framework for edge bundling which integrates topology, geometry and im-
portance, to highlight important skeletal structures of the networks.

3 Integrated Framework for Edge Bundling

This section presents our new generic framework for edge bundling which tightly
integrates topology, geometry and importance. Our framework is flexible: one can
use other measures for importance, geometry, and topology.

For our specific framework, we first use a force-directed edge bundling method
as a basis, and then integrate geometry with importance, defined by centrality
and k-core analysis. Finally, we further integrate topology into the model, defined
by a clustered graph model.

3.1 New Edge Compatibility Measures

Existing edge bundling methods mainly use geometry to define geometry com-
patibility G(e, e′). For instance, several metrics are proposed in FDEB (force-
directed edge bundling) method [14] to define geometry compatibility (in their
paper C(e, e′) is used). “Angle” metric is designed to avoid bundling edges that
are almost perpendicular. “Scale” metric ensures edges that differ considerably in
length should not be bundled together. “Position” metric aims to avoid bundling
edges that are very far apart. “Visibility” metric avoids bundling edges that are
parallel and equal in length.

Importance Compatibility. Here, we introduce a new measure “importance
compatibility” to integrate importance into geometry for edge bundling. Impor-
tance compatibility is conceptually to guide the bundling with respect to impor-
tant edges and thus is independent from geometry, i.e., the given input drawing

126 Q. Nguyen, S.-H. Hong, and P. Eades

of a graph. Importance can be defined from application domain or specific anal-
ysis in analytic task.

Topology Compatibility. We now introduce another new notion of compat-
ibility, called “topology compatibility”. The topology compatibility can be de-
fined from topological structure or combinatorial structure of given graph model.
The topology compatibility, like importance compatibility, is independent from
geometry.

3.2 The Framework

As an example of the integrated framework, we integrate our new edge compat-
ibility measures into FDEB [14].

More specifically, the FDEB algorithm first inserts control points in each edge,
and then uses a force-directed method to compute the position of the control
points. Their forces depend on the “geometry compatibility” G(e, e′).

For a subdivision point ei on edge e, the total force Fei exerted on ei is a sum
of the two spring forces exerted by two neighbors ei−1 and ei+1, and the total
of electrostatic forces Fs:

Fei = ke(|pei−1 − pei |+ |pei − pei+1 |) + Fs, (1)

where ke is the stiffness of edge e, and p(x) is the location of x.
In FDEB, electrostatic force model is

Fs =
∑

e′∈E
G(e, e′) ∗ |pei − pe′

i
|−d, (2)

TGI-EB, our new general framework for edge bundling integrating topology,
geometry and importance, can be described as follows. In its most general form,
our electrostatic force model is

Fs =
∑

e′∈E
G(e, e′) ∗ I(e, e′) ∗ T (e, e′) ∗ g(|pei − pe′

i
|), (3)

where E is the set of compatible edges of e; G(e, e′), I(e, e′) and T (e, e′) are
geometry compatibility, importance compatibility, and topology compatibility
measures for a pair of edges e and e′; and g is a function of |pei − pe′

i
|, e.g.,

g=|pei − pe′
i
|−d where d is a numeric constant.

Note that our new framework TGI-EB is very general and flexible. For exam-
ple, one can derive various models by controlling the weight parameters between
G(e, e′), I(e, e′) and T (e, e′). Furthermore, one can define different metric to define
geometry compatibility, importance compatibility and topology compatibility.

3.3 Centrality Based Edge Bundling (CenEB)

As an example to define importance compatibility, we use edge centrality. Cen-
trality is the most well-known network analysis method, which determines the
relative prominence of vertices and edges in a network [5, 20]. For instance, edge

TGI-EB: A New Framework 127

centrality analysis, which finds the important edges, has been used for mesh
coarsening, analyzing biological networks and community detection.

CenEB is a special case of the general model TGI-EB described in Equa-
tion 3, which integrates importance compatibility and geometry compatibility,
and T (e, e′) is absent. We use the edge centrality metric to highlight important
edges and bundle high centrality edges together.

The most general form of our electrostatic force model for CenEB is

Fs =
∑

e′∈E
G(e, e′) ∗ I(e, e′) ∗ g(|pei − pe′

i
|), (4)

where E is the set of compatible edges of e, I(e, e′) is calculated based on the
centrality values of the edges e and e′. For example, g=|pei − pe′

i
|−d, where d is

a numeric constant, and I(e, e′) is defined from centrality values of e and e′.

3.4 Topology Based Edge Bundling (TopoEB)

As an example of topology compatibility, here we use a clustered graph model.
A clustered graph G=(V ,E) consists of a number of clusters Gi=(Vi,Ei). An edge
that connects two nodes in the same cluster is called an intra-cluster edge, while
an edge connecting two nodes from different clusters is called an inter-cluster
edge.

Using the topology of the clustered graphs, we can define topology compati-
bility as follows:
- Two intra-cluster edges are not topology-compatible unless they belong to the

same cluster;
- All inter-cluster edges are topology-compatible; in fact, they all belong to the

root cluster G;
- A pair of an intra-cluster edge and an inter-cluster edge is not topology-

compatible.
In fact, the benefits of topology compatibility in clustered graph model are two-
fold.
- First, by using topology compatibility, the number of compatible edges E of an

edge e can be significantly reduced, which results in faster bundling iterations.
- Second, for better flexibility, one can define a topology compatibility metric

T (e, e′), which may allow bundling intra- and inter-cluster edges together.
The metric is defined in three cases depending on whether the edges e and
e′ are intra-cluster edges in the same cluster (intra-intra), inter-cluster edges
(inter-inter), or one inter-cluster edge and one intra-cluster edge (inter-intra).

As an example of integration for TopoEB, we now integrate topology compat-
bility, with the model defined above for CenEB, which combines importance
compatibility and geometry compatibility. TopoEB is the special case of the
general model TGI-EB in Equation 3, and can be described as follows:

Fs =
∑

e′∈E
G(e, e′) ∗ I(e, e′) ∗ T (e, e′) ∗ g(|pei − pe′

i
|), (5)

128 Q. Nguyen, S.-H. Hong, and P. Eades

where I(e, e′) is defined based on the centrality values of e and e′, and T (e, e′)
is defined from the clustered graph model. Note that, inter-cluster edges often
have higher edge centralities than intra-cluster edges.

For example, the metric T (e, e′) can be simply defined as :
- cintra: if e and e′ are intra-cluster edges in the same cluster
- cinter : if e and e′ are inter-cluster edges
- cmix: if e and e′ is a pair of an intra-cluster edge and an inter-cluster edge;

where the contants cintra, cinter and cmix are chosen from 0 to 1. It is worth-
noting that when these constants are chosen equal, the value T (e, e′) is the same
for every pair of edges and thus the method is said topology-insensitive. When
cmix is zero, there is no bundling between intra-cluster edge and inter-cluster
edge. Generally, one may choose a value close to 1 for cintra and cinter and a
small value for cmix.

3.5 Radial Bundling (RadEB)

We now present another variation of edge bundling, called Radial bundling
(RadEB), which uses a radial layout consisting of concentric circles for the input
of edge bundling. The radial layout can be used to display hierarchy or k-core
analysis of graphs. As a specific example in this paper, we used k-core analysis
to define a radial layout.

An important group-level network analysis is to identify cohesive subgroups
of actors with strong ties [5, 20]. A well-known example is the k-cores of a graph,
each of which is a maximal-connected subgraph whose nodes have the induced
degree at least k [5]. The k-core analysis has been used in social networks such
as collaboration networks, and biological networks for analyzing PPI networks.

For a radial layout, we use forces to constrain the vertices u in each k-core to
a circle of radius ru=f(k). The forces place vertices from the same k-core along
the same circle.

We integrate the standard force-directed layout method with a new radial
force for each vertex u: Frad = crad(|pu − po| − ru), where o is the center of the
circles. Typically, f is a linear function, although we have also used logarithmic
functions.

Clustering Constraints. We further extended RadEB to handle clustering
constraints. We introduce a similarity clustering force, which attracts vertices of
close similarity indices together. Thus, a new attraction force fa(u, v) is applied
between every pair of vertices u and v:

Fclus =
∑

(u,v)∈E

fa(u, v) ∗ exp(−|iu − iv|), (6)

where iu and iv is clustering indices of u and v, respectively. The clustering
index can defined based on the application: for example, functional-similarity
for biological networks, and group membership for social networks.

TGI-EB: A New Framework 129

Note that our radial layout is different from the k-core visualisation by Alvarez
et al. [3], which produces a radial layout using the polar coordinates. In fact, our
model is more flexible, since we can further combine clustering constraints.

After producing the radial layout for visualising k-core analysis, we apply our
CenEB to the resulting layout for radial bundling.

3.6 Orthogonal Edge Bundling (OrthEB)

We also present a new variation of edge representation for edge bundling, called
OrthEB, which produces orthogonal-like edge bundles. Orthogonal edge bundling
can be effective to produce a bundles with right angle crossings.

More specifically, we adapt forces in CenEB using magnetic field forces [18], to
produce orthogonal-like bundled edges. Figure 1a and Figure 1b show example
of forces in CenEB and OrthoEB in each iteration.

(a) Two interacting edges e and e′. The
spring and electrostatic forces on a control
point e2

(b) Orthogonal forces on edge e

Fig. 1. Examples of forces in CenEB and OrthEB

The orthogonal forces are applied on the control points of each edge. The
orthogonal force on point ei is based on the tangent of the subsegment ei−1ei

of the edge, and ei is sequentially moved towards the axis (either x-axis or y-
axis) that forms smaller angle. Consequently, sub-segments are placed almost
horizontally or vertically. In the final drawing, splines are used to connect the
control points in each edge to achieve aesthetically pleasing bundling effects.

3.7 Time Complexity and Implementation

Like force-directed edge bundling (FDEB), our TGI-EB traverses every pair of
edges to determine compatible edges, thus it takes O(|E|2) time for an iteration.
Our force-directed radial layout with clustering constraints takes O(|V |2) time.
Yet our experimental results show that our methods are quite fast for graphs
with up to a few hundred nodes and two thousand edges. It took a few seconds
to produce a nicely bundled layouts.

We have implemented our new edge bundling methods using our own im-
plementation in Java for k-core radial layout, a prototype implementation of
FDEB from the jFlowMap project [1], and various clustered graph layouts [12]
implemented in GEOMI [2].

130 Q. Nguyen, S.-H. Hong, and P. Eades

4 Experimental Results

4.1 Social Networks

As an example of a social network, we use the 2010 Graph Drawing competition
data set consisting of research collaborations in Graph Drawing research papers
from 2004-2010. The data set is a graph with 362 nodes and 942 edges. Our case

(a) Using CenEB

(b) Using OrthEB (c) Using RadEB and CenEB

Fig. 2. Collaboration network using CenEB, OrthEB and RadEB

TGI-EB: A New Framework 131

study on collaboration networks aims to identify important researchers, research
groups and collaboration patterns.

Figure 2a and Figure 2b show visualisations using CenEB and OrthEB, re-
spectively, with edge betweenness centrality. The figures enable the following
visual analyses.

First, one can easily identify the major research groups and research collabo-
rations between the groups. The largest group is a 13-core (red) of Spanish and
German researchers; the second largest group is an 11-core (blue) of an Aus-
tralian clique. Second, the drawing clearly highlights researchers with high be-
tweenness centrality: Brandes, Brandenburg, Kaumann, Kobourov, Kratochvil,
Liotta, Mutzel and Wolff. Third, one can also identify several important edges
with high centrality values; for example, the collaborations between Kaufmann
and Kobourov; between Kauffman, Wolff and Symvonis; between Kratochvil and
Wolff; between Brandes and Dwyer; between Brandes and Symvonis; between
Kobourov and Sander. Finally, one can find a clique of four people with high
betweenness centrality values: Brandenburg, Kobourov, Liotta and Mutzel.

Figure 2c shows a drawing of the collaboration network produced by the inte-
gration of RadEB and OrthoEB. It shows a clearer structure of the groups within
different k-core circles. The inner most circle contains the 13-core group of re-
searchers. The next circle contains the 11-core group of researchers. The draw-
ing also highlights the important collaboration paths between researchers. Strong
collaboration paths are more visible from the orthogonal-like bundled edges.

4.2 Clustered Graphs

We have experimented with randomly generated clustered graphs with different
inter-cluster edge densities: sparse and dense. We use clustered graph layouts of
Ho and Hong [12] implemented in GEOMI [2]. This case study uses two clustered

(a) 20 cluster clustered graph (b) 8 cluster clustered graph

Fig. 3. Dense clustered graphs in Circular-Circular layouts using TopoEB

132 Q. Nguyen, S.-H. Hong, and P. Eades

graph layouts: circular-circular layouts and circular-force directed layouts, which
draw each cluster on a circle and each cluster is, respectively, drawn using a
circular layout or a spring algorithm.

We found that clustered graphs with sparse inter-cluster edges have less edge
bundling effects, compared to the dense inter-cluster edge instances. Thus, we
present two examples with dense inter-cluster edges. Two instances were selected
from randomly generated clustered graphs: one has 20 clusters consisting of 191
nodes and 2165 edges; and the other has 8 clusters consisting of 272 nodes and
2407 edges.

Figure 3a and Figure 3b show our TopoEB results on the two clustered graphs
using circular-circular layout. The figures clearly show important inter-cluster
and important intra-cluster edges, and the clusters from intra-cluster edge bun-
dles. Inter-cluster edge bundling has been shown to be effective for dense clus-
tered graphs.

4.3 Biological Networks

This case study aims to identify new important regulatory elements and struc-
tures in a protein-protein interaction (PPI) network. We use a NF-κB PPI net-
work consisting of 778 nodes and 1868 edges, and 14 levels of coreness.

Fig. 4. NF-κB network using our RadEB and CenEB

Figure 4 shows a visualisation produced by RadEB and CenEB. It clearly
shows six significant paths indicating different cell functionality. The drawing
also clearly depicts several protein groups with specific functionality.

The edge centralities reflect the importance of elements. One can identify the
important proteins that directly influence the translocation of the NF-κB tran-
scription factor. Proteins that act in similar biological processes are grouped
together and form network structures and motifs. In fact, our new visualisation

TGI-EB: A New Framework 133

has inspired biologists to generate a new hypothesis, based on the newly iden-
tified six important paths and important proteins around the paths. Some lab
experiments are being conducted to verify the hypothesis.

4.4 Geographic Networks

For geographic networks, critical analysis include tasks, such as flight scheduling
and facility allocation. We extend our case study on airlines networks to identify
important airports and flights. We use the US airlines network, which contains
235 nodes and 2101 directed edges (1297 undirected edges).

Figure 5a and Figure 5b show the airlines network using CenEB and OrthEB,
respectively. Airport nodes are colored with k-core values. One can identify sev-
eral important flights: between SEA and DTW, between BIL and MSP, between
LAX and SEA, and between BIL and ATL.

The airlines network using RadEB is shown in Figure 5c. The figure shows the
most highly connected group consists of 23 airports of the 13-core around the
inner most circle, including important airports, e.g., SEA, DTW, MSP, ATL,
MEM and TAH. One can also identify all the important flights connecting the

(a) Using CenEB

(b) Using OrthEB (c) Using RadEB

Fig. 5. The US Airline network using CenEB, OrthEB and RadEB

134 Q. Nguyen, S.-H. Hong, and P. Eades

13-core airports. Interestingly, an outlier was identified as depicted in the figure:
BIL airport in a low core has several “important” flights (those connected to
MEM, ATL, MSP and SEA airports). This is possibly because BIL is geograph-
ically located in the middle between MEM, ATL, MSP airports (the east) and
SEA airport (the west), as shown in Figure 5a and Figure 5b.

5 Future Work

Our future work is to improve the running time to address the scalability problem
for huge network instances; for example, adapting the agglomative edge bundling
algorithm of Gansner et al. [10].

We also plan to design new criteria or metric to evaluate the performance of
edge bundling methods. We plan to generalise the magnetic field in our orthog-
onal edge bundling method to handle any arbitrary angles rather than just 90
degree, similar to gradient computation in Strzodka et al. [17].

Acknowledgements. Thanks to S. J. Janowski, J. Stoye and C. Kaltschmidt
from Faculty of Technology, University of Bielefeld, Germany for the PPI net-
works, and valuable discussions on the biological hypotheses and lab
experiments.

References

1. jFlowMap (2010), http://code.google.com/p/jflowmap/
2. Ahmed, A., Dwyer, T., Forster, M., Fu, X., Ho, J., Hong, S.-H., Koschützki, D.,

Murray, C., Nikolov, N.S., Taib, R., Tarassov, A., Xu, K.: GEOMI: Geometry for
Maximum Insight. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843,
pp. 468–479. Springer, Heidelberg (2006),
http://dblp.uni-trier.de/db/conf/gd/gd2005.html#AhmedDFFHHKMNTTX05

3. Alvarez, H.J.I., Dall, A.L., Barrat, A., Vespignani, A.: Large scale networks finger-
printing and visualization using the k-core decomposition. In: Advances in Neural
Information Processing Systems, vol. 18, p. 41 (2006)

4. Balzer, M., Deussen, O.: Level-of-detail visualization of clustered graph layouts.
In: APVIS, pp. 133–140 (2007)

5. Brandes, U., Erlebach, T.: Network analysis: methodological foundations. Springer,
Heidelberg (2005)

6. Brandes, U., Wagner, D.: Using Graph Layout to Visualize Train Interconnection
Data. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 44–56. Springer,
Heidelberg (1999)

7. Cornelissen, B., Zaidman, A., Holten, D., Moonen, L., van Deursen, A., van Wijk,
J.J.: Execution trace analysis through massive sequence and circular bundle views.
Journal of Systems and Software 81(12), 2252–2268 (2008)

8. Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for
graph visualization. IEEE Transactions on Visualization and Computer Graphics,
1277–1284 (2008)

9. Finkel, B., Tamassia, R.: Curvilinear Graph Drawing using the Force-Directed
Method. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer,
Heidelberg (2005)

http://code.google.com/p/jflowmap/
http://dblp.uni-trier.de/db/conf/gd/gd2005.html#AhmedDFFHHKMNTTX05

TGI-EB: A New Framework 135

10. Gansner, E., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge
bundling for visualizing large graphs. In: IEEE PacificVis, pp. 187–194 (2011)

11. Gansner, E., Koren, Y.: Improved Circular Layouts. In: Kaufmann, M., Wagner,
D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007)

12. Ho, J., Hong, S.-H.: Drawing Clustered Graphs in Three Dimensions. In: Healy, P.,
Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 492–502. Springer, Heidelberg
(2006)

13. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hier-
archical data. IEEE Transactions on Visualization and Computer Graphics, 741–
748 (2006)

14. Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization.
Computer Graphics Forum 28(3), 983–990 (2009)

15. Lambert, A., Bourqui, R., Auber, D.: Winding roads: Routing edges into bundles.
Computer Graphics Forum 29, 853–862 (2010)

16. Pupyrev, S., Nachmanson, L., Kaufmann, M.: Improving Layered Graph Lay-
outs with Edge Bundling. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 329–340. Springer, Heidelberg (2011)

17. Strzodka, R., Telea, A.: Generalized distance transforms and skeletons in graphics
hardware. In: VisSym, pp. 221–230 (2004)

18. Sugiyama, K., Misue, K.: Graph drawing by the magnetic spring model. Journal
of Visual Languages and Computing 6(3), 217–231 (1995)

19. Telea, A., Ersoy, O.: Image-Based Edge Bundles: Simplified Visualization of Large
Graphs. Computer Graphics Forum 29, 843–852 (2010)

20. Wasserman, S., Faust, K.: Social network analysis: Methods and applications, 1st
edn. Cambridge University Press (1994)

21. Zhou, H., Yuan, X., Cui, W., Qu, H., Chen, B.: Energy-based hierarchical edge
clustering of graphs. In: IEEE PacificVis, pp. 55–61 (2008)

Edge Routing with Ordered Bundles

Sergey Pupyrev1, Lev Nachmanson2, Sergey Bereg3, and Alexander E. Holroyd4

1 Ural State University, Russia
spupyrev@gmail.com
2 Microsoft Research, USA

levnach@microsoft.com
3 University of Texas at Dallas, USA

besp@utdallas.edu
4 Microsoft Research, USA

holroyd@microsoft.com

Abstract. We propose a new approach to edge bundling. At the first stage we
route the edge paths so as to minimize a weighted sum of the total length of
the paths together with their ink. As this problem is NP-hard, we provide an
efficient heuristic that finds an approximate solution. The second stage then sep-
arates edges belonging to the same bundle. To achieve this, we provide a new
and efficient algorithm that solves a variant of the metro-line crossing minimiza-
tion problem. The method creates aesthetically pleasing edge routes that give an
overview of the global graph structure, while still drawing each edge separately,
without intersecting graph nodes, and with few crossings.

1 Introduction

The core components of most graph drawing algorithms are computation of positions
of the nodes, and edge routing. In this paper we concentrate on the latter problem.

For many real-world graphs with substantial numbers of edges, traditional algorithms
produce visually cluttered layouts. The relations between the nodes are difficult to an-
alyze by looking at such layouts. Recently, edge bundling techniques have been devel-
oped, in which some edge segments running close are collapsed into bundles to reduce
the clutter. While these methods create an overview drawing, they typically allow the
edges within a bundle to cross and overlap each other arbitrarily, making individual
edges hard to follow. In addition, previous approaches allowed edges to overlap nodes,
thus obscuring their text or graphics.

We present a novel edge routing algorithm for undirected graphs, which we call
ordered bundles. This algorithm produces a drawing in a “metro-line” style (see Fig. 1).
The graphs for which our algorithm is best applicable are of medium size with a large
number of edges, although it can process larger graphs efficiently too.

The input for our algorithm is an undirected graph with given node positions. These
positions can be generated by a graph layout algorithm, or, in some applications (for in-
stance, geographical ones) they are fixed in advance. During the algorithm the node
positions are not changed. The main steps of our algorithm are similar to existing
approaches, but with several innovations, which we indicate with italic text in the
following description.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 136–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Edge Routing with Ordered Bundles 137

(a) (b)

Fig. 1. Edge bundling example (jazz graph)

Edge Routing. In this step the edges are routed along paths, and the overlapping parts
are organized into bundles. One approach here has been to minimize the total “ink” of
the bundles. However, this often produces excessively long paths. For this reason we
introduce a novel cost function for edge routing, a weighted sum of the ink and total
path length. Minimizing this function forces the paths to share routes, creating bundles,
but at the same time it keeps the paths relatively short. We furthermore show how to
route the bundles outside of the nodes.
Edge Nudging. In this step the paths belonging to the same bundle are “nudged” away
from each other. The effect of this action is that individual edges become visible, and
the bundles obtain their thickness. Contrary to previous approaches, we try to draw
the edges of a bundle as parallel as possible with a given gap. However, such a rout-
ing might not always exist because of the limited space between the node shapes. We
provide a heuristic that finds a drawing with bundles of suitable thickness.
Edge Ordering. To route individual edges, an order of the edge segments inside of the
bundle needs to be computed. This order minimizes the number of crossings between
edges of the same bundle. The problem of finding such an order is related to a variant
of the metro-line crossing minimization problem called MLCM-PA [12]. We provide a
new efficient algorithm that solves this problem exactly.

The next section summarizes related work. In Section 3 we give a detailed expla-
nation of our algorithm. Results of experiments are presented in Section 4. Finally we
discuss some additional aspects and future work in Section 5.

2 Related Work

We believe that the first use of bundled edges in the graph drawing literature is given
in [5]. The authors improve circular layouts by routing edges either on the outer or on
the inner face of a circle. Edges in that paper are bundled with an algorithm that tries to
minimize the total ink of the drawing. Here we follow a similar strategy, but in addition
we try to keep the edges themselves short.

138 S. Pupyrev et al.

Fig. 2. Algorithm pipeline

In the hierarchical approach of [8], edges are bundled together based on an additional
tree structure. Unfortunately, not every graph comes with a suitable underlying tree, and
it is not clear how to extend the method to general layouts. In [13] edge bundles were
computed for layered graphs. In contrast, our method applies to general graphs.

Edge bundling methods for general graphs are given in [2,4,9,10]. In the force-
directed heuristic [9], edges can attract each other to organize themselves into bundles.
The method is not efficient, and while it produces visually appealing drawings, they are
often ambiguous in a sense that it is hard to follow an edge. The approaches [2,10] have
a common feature: they both create a grid graph for edge routing. Our method also uses
a special graph for edge routing, but our approach is different because we modify this
graph to obtain better edge bundles. Unlike [2,4,9] we avoid edge-node overlaps.

The paper [12] inspired us to apply the technique of metro-line routing to minimize
edge crossings inside bundles. Related work has been done in the VLSI community [1].

3 Algorithm

Let us establish some terminology. An undirected graph G is a pair (V, E), where V
is the set of nodes and E is the set of edges, i.e. unordered pairs of nodes. A drawing
of G is a representation of G in the plane in which each node v ∈ V is drawn as a
convex polygon pv, and each edge uv ∈ E is drawn as a simple curve connecting pu

and pv. We will call the node polygons obstacles (since our focus is edge routing), and
we assume that they are pairwise disjoint.

In overview, our algorithm takes the following steps (Fig. 2). We generate a routing
graph G̃ with straight-line edges that avoid the obstacles. We route the edges of G
through G̃. We will refer to an edge of G as a path in G̃. Following [5,13], we define
the ink I of a set of paths on G̃ as the sum of the lengths of the edges of G̃ used in these
paths; if an edge is used by several paths its length is still counted only once.

A set of paths sharing the same edge of G̃ is called a bundle. After the initial routing,
the paths of the same bundle overlap on its edge. We estimate the space required to
draw the paths separately, and we modify the positions of G̃’s nodes, thus changing the
paths’ geometry. Then we order each bundle, and draw the paths individually with gaps,
according to this order. To complete the drawing, we smooth the paths by fitting Bezier
segments into the path corners. Next we give a detailed description of the steps.

3.1 Edge Routing

As we mentioned before, minimizing ink only often leads to extremely long paths that
are difficult to follow. Therefore, we try to minimize a novel cost function of path routes,

Edge Routing with Ordered Bundles 139

(a) (b) (c)

Fig. 3. (a) The obstacles. (b) A visibility graph. (c) A refinement of the Delaunay triangulation.

which takes both ink and path lengths into account: routing cost = αI +β
∑

uv∈E �uv.
Here �uv is the length of path uv in the routing. The non-negative real constants α and
β determine the contribution of the terms to the function. In our default settings α = 1
and β = 500.

Problem 1 (Edge Routing). Given the graph G with fixed node positions, route the
edges of E in the plane so that routing cost is minimized.

Problem 1 is NP-hard, because its instance with α = 1, β = 0, and G being a complete
graph is equivalent to the Geometric Steiner Tree problem, which is known to be NP-
hard [6]. Therefore, we use an approximate solution, which starts with the construction
of a routing graph G̃.

Generation of the Routing Graph. We consider two approaches to the routing graph
construction. The first one follows [3], which builds a sparse visibility graph (Fig. 3(b)).
The second approach is a refinement of the Delaunay triangulation, in which for each
two sides of a triangle that are not node polygon sides, we add the segment connecting
their midpoints (Fig. 3(c)). This creates routes in the middle of the “channels” between
the nodes. Both methods work in O(n log n) time, and create G̃ with O(n) edges, where
n is the number of node polygon corners. In both cases the edges do not intersect the
node interiors. For each node v ∈ V , we add edges connecting the center of polygon pv

to its corners. We denote the set of nodes of G̃ by W , and the set of edges of G̃ by U .
We write |W | = n, and assume that G̃ contains O(n) edges. We will discuss the effect
of the routing graph choice to the final routing later. Next we route the paths on G̃.

Path Routing. We try to route the paths on G̃ with the minimal routing cost. The problem
can be formulated as follows.

Problem 2 (Path Routing). Given the graph G̃ and a set of pairs of nodes (ai, bi) ∈ W 2,
find paths between ai and bi for all i so that routing cost is minimized.

Here ai and bi correspond to the centers of obstacles connected by the edges of E. We
stress that Problem 2 is different from Problem 1 in that the paths are now constrained to
be routed through the edges of G̃. The Problem 2 is again NP-hard, because its instance
with β = 0 is a Steiner Forest Problem [6]. Therefore we solve an easier task, where
some paths are already known, and we need to route the next path. We will route it
by minimizing an additional cost, which is the increment of the routing cost associated
with this path. For a path uv we define additional cost = α ΔI +β �uv. Here ΔI is the
increment in the ink, which equals the sum of edge lengths of uv that were not part of
any previous path.

140 S. Pupyrev et al.

Problem 3 (Single Path Routing). Given the graph G̃ and a set of already routed paths,
find a path from a to b so that additional cost is minimized.

Let us assign the following weights to edges of G̃: the weight of edge e is equal to
α δe + β �e, where δe is �e if e is not taken by a previous path, and 0 otherwise. It
can be seen that the minimum additional cost is achieved by a shortest path from a to
b according to these weights. We can thus apply the Dijkstra algorithm to find a path
solving the Problem 3.

To solve Problem 2 approximately, we organize the edges of E in a sequence (a1, b1),
. . . , (am, bm), and iteratively solve Problem 3 for already routed paths (ai, bi), i < k,
and a = ak, b = bk for k = 1, . . . , m. The routing of a single path takes O(n log n)
time with the Dijkstra algorithm in our settings, because the number of edges in G̃ is
O(n). All steps take O(|E|n log n) time.

Can we do better in this iterative approach than routing one path at a time? It turns
out that we can route optimally a set of paths with a common end, which will be an
improvement in some settings. We define an additional cost of a set of paths by analogy
with the additional cost of a path.

Problem 4 (Multiple Path Routing). Given the graph G̃ with some paths already routed,
find paths for (a∗, b1), . . . , (a∗, bk) so that additional cost is minimized.

We can solve this problem by a dynamic programming approach. We first fix a set of
pre-existing paths in G̃; additional cost will always be with respect to these paths. Let
us call a state a pair (v, P), where v is a node of G̃, and P is a subset of {b1, . . . , bk}.
We need to solve our problem for the state (a∗, {b1, . . . , bk}). We reduce the problem
to solving it for “smaller” states, that are the states with fewer elements in P . For a
state (v, P) we define its cost f(v, P) as the minimal additional cost of a set of paths
{(v, b), b ∈ P}. A set of paths giving the minimal f(v, P) is called an optimal set for
state (v, P). Let us clarify the structure of an optimal set of paths.

By the subgraph generated by a set of paths in G̃ we mean the subgraph of G̃ com-
prising all edges and nodes in the paths.

Lemma 1. For each state there exists an optimal set of paths that generates a tree.

Proof. Let Π be any optimal set of paths for state (v, P), and G′ be the graph generated
by Π , and note that it is connected. Let T be a shortest path tree of G′, rooted at v, with
respect to ordinary edge lengths. Let Π ′ be the set of paths connecting v to the points
of P in T . The additional cost of Π ′ is at most that of Π . Indeed, the increment in I is
no greater because T is a subgraph of G′. Each path of Π ′ is shortest in G′ and thus no
longer than the corresponding path of Π . Hence, Π ′ is an optimal set for (v, P). ��
Lemma 1 leads us to the following formula.

f(v, P) = min

{
f(u, P) + α δuv + |P | β �uv, for u ∈ W adjacent to v,

f(v, P ′) + f(v, P − P ′), for P ′ with ∅ ⊂ P ′ ⊂ P

The minimum is taken over both expressions on the right as u and P ′ vary. To verify
this, we consider some optimal set of paths for (v, P) that form a tree, and split into
two cases. The first line corresponds to the case where u is the only neighbor of v in the

Edge Routing with Ordered Bundles 141

tree. The second line is the case where v has at least two neighbors, thus the paths can
be partitioned into two proper subsets with no common edges.

Now we describe how to compute f(v, P). Let us assume, that f is known for all
states (u, P ′), where P ′ is a proper subset of P . To compute f(v, P), a new graph H is
constructed with G̃ as a subgraph. An edge e of G̃ has weight α δe + |P | β �e in H . We
add a new node h to H and connect it with all nodes of G̃. For every new edge hu we
assign weight minP ′ f(u, P ′) + f(u, P − P ′), where P ′ varies over proper non-empty
subsets of P . One can see that the required value f(v, P) is the length of a shortest path
from v to h in graph H . We can compute it with the Dijkstra algorithm.

To solve Problem 4 we work bottom-up. We compute all f(v, P) with |P | = 1 and v

is a node of G̃, by the algorithm for Problem 3, where we find a path with the minimal
additional cost. Then we compute the values f(v, P) for each v and |P | = 2, . . . , k by
creating the corresponding graphs H . The answer for the problem is f(a∗, {b1, . . . , bk}).

Running time. The main steps of the algorithm are the construction of graph H and
finding a shortest path on it with the Dijkstra algorithm for each state (v, P). Luckily,
graph H depends only on the P component of a state. The construction of graph H for
a fixed set P takes O(2|P |n) time. We execute the Dijkstra algorithm only once per P
starting from h to compute f(v, P) for all v ∈ W . Thus, finding f(v, P) for a known
H and for all v ∈W takes O(n log n) time. Summing over all possible sets P produces

O
(∑

P (2|P |n + n log n)
)

= O(3kn + 2kn log n).
To utilize the method solving Problem 4, we organize the paths into a sequence of
subsets of paths having a common end. We route the paths of the first element of the
sequence with the minimal additional cost, solving Problem 4. Then, using this routing
we solve Problem 4 for the second subset, using an updated additional cost function,
and so on. To avoid a long running time we need to keep the path subsets small. We
experimented with k = 5, 10, and the results are shown in Section 4.

In practice, we set routing cost = αI + β
∑

uv∈E
�uv

duv
, where duv is the Euclidean

distance between the nodes u and v. This way we penalize the relative growth of path
lengths to avoid long paths for short edges.

3.2 Local Adjustments and Spline Routing

To save space we omit some details in this section. Routing the paths through G̃ defines
the bundles. In the final drawing we would like to draw the paths of a bundle in a
particular order, as will be explained in Section 3.3, while keeping them at a predefined
distance from each other, and outside the obstacles. For this we need to have some
free space around the edges of G̃. To provide the free space, we surround each node of
G̃ by a circle, called a hub, with the center at the node position, and each edge by a
rectangle, that are disjoint from the obstacles (Fig. 4(b)). In the final drawing every path
is represented as a sequence of line segments and cubic Bezier segments, where each
line segment is contained in a rectangle, and each cubic Bezier segment is contained in
a hub (Fig. 4(c)). Such a path does not intersect the obstacles. To draw a Bezier segment
inside of a hub, we place each control point of the segment inside of the hub; since a
circle is convex, and a Bezier segment is contained in the convex hull of its control
points, this keeps the segment inside the hub.

142 S. Pupyrev et al.

(a) (b) (c)

Fig. 4. (a) Desired radius (b) Allowed radius (c) Paths intersecting at a node

Hub Radii Calculation. The radius of a hub is defined as the minimum of two radii: a
desired one, and an allowed one. The calculation of the desired radius can be explained
with Fig. 4(a). We would like a hub to be large enough to accommodate an incoming
bundle by keeping angle φ at most π/4. We also would like to keep two bundles sep-
arated before entering a hub by having distance q at least the given edge separation.
The allowed radius is explained with a help of Fig. 4(b). To keep two connected hubs
separated, we require (a) that r1 + r2 ≤ γd, for some 0 < γ < 1, and (b) that each hub
does not intersect the obstacles.

Local Optimization. To be able to route thick bundles without overlapping the obstacles,
we first apply a heuristic preprocessing step before the local optimizations, in which
each node of G̃ participating in a path and belonging to an obstacle is moved away from
the obstacles. The routing cost usually becomes larger after this step, but we obtain the
necessary space around the paths. In order to minimize routing cost locally, we next
iteratively adjust the position of each node of G̃ by moving it in a random direction and
trying to diminish routing cost. We also try to glue some of the nodes of G̃ together, if it
is beneficial. During these transformations, we do not modify the positions of the nodes
corresponding to the corners and polygon centers and we pay attention to preserve
conditions (a) and (b) mentioned above. Let m be the number of the obstacles, and c
be the time required to find out if a circle or a rectangle intersects an obstacle. Using
an R-tree [7] on the obstacles, one can find out if a circle or a rectangle intersects the
obstacles in O(c log m) time. The number of edges in G̃ is O(n), therefore, a pass
locally optimizing the position of every node of G̃ can be done in O(cn log m) time.
This is the most expensive stage of the algorithm, since we proceed iterating as long as
we diminish routing cost, and we do not have a good upper bound for this step.

3.3 Ordering Paths

At this point the routing is completed and the bundles have been defined. We draw the
paths of a given bundle parallel to the corresponding edge, therefore two paths may
need to cross at a node as shown in Fig. 4(c). The order of paths in bundles affects
crossings of paths. Let P be the set of paths in G̃ computed by path routing. We address
the following problem.

Problem 5. Given the graph G̃ and a set of paths P , find an ordering of paths for each
edge of G̃ that minimizes the number of crossings.

In our setting, the paths terminate at the nodes of G̃ corresponding to the centers of the
obstacles, and these nodes cannot be intermediate points of paths. Thus we have:

Edge Routing with Ordered Bundles 143

Path Terminal Property. No node is both an endpoint of some path and an intermediate
point of some path.

We call nodes that are endpoints of paths terminal nodes. In this section we will
need to assume the following additional property of P .

Path Intersection Property. The common nodes and edges of any two paths form a path
(which may be empty, or a single node).

The paths produced by our algorithm in Section 3.1 do not necessarily have the path
intersection property. However, any set of paths may be modified so as to satisfy the
property via the following algorithm. Let H be the graph formed by the union of the
original paths, and assign each edge a label. The labels may be independent uniformly
random real numbers in [0, 1], or distinct integers. Now for each path, re-route it along
the shortest path in H between its endpoints according to the original edge lengths,
but breaking ties between paths of equal length via the sums of the real labels, or via
lexicographic ordering of the sets of integer labels on the two paths.

a

b

c d

e
f

Fig. 5. Paths ac and de do not
cross, while paths ad and ce cross
once

Ideally, every two paths either do not cross or cross
one time if needed (Fig. 5). An ordering of paths is
consistent if any two paths cross at most once at a
node. Clearly, if two paths cross once in some order-
ing, they must cross in every ordering. Hence consis-
tent orderings have the minimum number of crossings.
However, consistent orders are clearly not necessarily
unique, and the choice of a particular one may greatly
influence the quality of final drawing. The following
property might appear desirable. A consistent order of
paths is nice if, for any two paths, their order along all
their common edges is the same (i.e. they may cross
only at an endpoint of their common subpath). Unfor-
tunately, we found an example of (G̃, P) having no
nice consistent order. On the other hand, we prove that
a consistent ordering always exists, and we provide an efficient algorithm to construct
one. We consider the following problem.

Problem 6 (Path Ordering). Given the graph G̃ and a set of simple paths P satisfying
the path terminal and intersection properties, compute a consistent ordering of paths for
all edges of G̃.

Algorithm. A basic step of our algorithm is the deletion of a node of G̃ (Fig. 6). For
every non-terminal node v do the following. Let Pv be the set of paths passing through
v. Number the edges incident to v as e1, e2, . . . , et in clockwise order, and let v1, . . . , vt

be the corresponding nodes adjacent to v. For every path π ∈ Pv using edges ea and eb,
represent it by pair (a, b). For each pair (a, b), add a new edge (va, vb). Assign the paths
labeled by (a, b) to this edge. The new edges incident to va should be inserted into v′as
clockwise order in the position previously occupied by ea, in the order determined by
the positions of vb. Delete node v from the graph and the paths.

After all non-terminal nodes have been deleted, we reverse the process and undo the
deletions, adding orders to the edges. Consider the deletion of v. The new order along
edge ea is obtained by concatenating the orders along the edges {(va, vb) : b �= a}.

144 S. Pupyrev et al.

{1, 2, 3}

{5, 6, 7}
{2, 3}

{4, 6}

{1, 4, 5, 7}
v

va

vb

vc

vd

ve

va

vb

vc

vd

ve

{1}
{6} {4}

{5, 7} {2, 3}

va

vb

vc

vd

ve

1
6 4

5
7

2
3

3
2
1

6
7
5 2

3

5
7
1
4

6 4

v
va

vb

vc

vd

ve

Fig. 6. Removal of node v; intervening steps; re-insertion of v. Paths of Pv are numbered 1, . . . , 7,
and are shown in braces when unordered, and then with placement indicating their orders.

Implementation. First, create a new graph H . Initially, H is the subgraph of G̃ gener-
ated by all the paths of P . Every path in P is stored as a list of nodes in H . For every
edge e, Le is a list of paths containing e. We assume that, for every node v of H , the
list of edges incident to v in clockwise order is given. Note that these lists are dynamic
since H undergoes deletions of nodes. We keep track of the deletions in a forest F .
Initially, F contains isolated nodes corresponding to the edges of H . When a node is
deleted and an edge e is replaced by new edges, we add them in F as children of the
node corresponding to e. For instance, Ld,v contains paths 1,4,5, and 7 in Fig. 6. When
node v is processed, list Ld,v is split into new sublists Ld,e, Ld,a, and Ld,b. The (clock-
wise) order of sublists is important. Then we replace edge dv by edges de, da, and db in
graph H and in order of edges around d. The first phase finishes, when all non-terminals
are deleted from H . In the second phase, we process each tree in F in bottom-up order.
The list of a node is simply the concatenation of the lists of its children. The leaves of
F correspond (one-to-one) to the paths of P .

Theorem 1. Given the graph G̃ = (W, U), a set of simple paths P in G̃ satisfying the
path terminal and intersection properties, and a clockwise order of the edges around
each node, an ordering of paths along edges of G̃ minimizing the number of crossings
can be computed in O(|W |+ |U |+ L) time, where L is the total length of paths in P .

Proof. Correctness. We need to show that the edge (va, vb) added in Phase 1 is new.
Indeed, if edge (va, vb) already existed, there would be a path passing from va to vb and
a path passing va, v, vb, which contradicts the path intersection property.

The ordering of paths is consistent since the split of paths Pv makes only necessary
crossings. Two paths π1 and π2 will produce a crossing only when the last node of
their common subpath is deleted and the clockwise order of the nodes around v is
· · · va · · · vb · · · va′ · · · vb′ · · · , where π1 = · · · vavva′ · · · and π2 = · · · vbvvb′ · · · .
Running time. The time for processing node v (the deletion of v) is O(1 + dv,H + sv),
where dv,H is the degree of v in H at the current step and sv is the number of paths
passing through v. The theorem follows since dv,H ≤ dv,G̃ + sv. ��

Edge Routing with Ordered Bundles 145

Table 1. The percentage of routing cost improvement, 1 − (routing cost of bundled graph)/
(routing cost of straight edges). For the cells with “–” running time exceeds 10 hours.

Graph
Visibility graph Delaunay triangulation

|W | |U| k = 1 k = 5 k = 10 |W | |U| k = 1 k = 5 k = 10

tail 105 348 8.4 16.9 18.8 257 638 13.3 16.0 18.5

airlines 1175 5297 61.3 62.4 63.3 2825 7076 61.3 62.1 62.7

jazz 955 4478 32.2 33.2 33.6 2297 5798 32.2 34.3 36.0

protein 7290 32585 16.2 16.2 17.3 17501 43676 15.5 16.6 17.1

power grid 24705 109779 1.0 1.5 – 59297 148280 0.1 0.1 –

Java 7690 32712 32.0 34.9 – 18461 46350 30.0 34.1 –

migrations 8575 41451 74.5 75.3 – 20585 51510 74.4 75.9 –

Overall, the complexity of the Ordering step is O(|E|n + n logD), where |E| is the
number of edges of the original graph G (the number of paths), n is the number of
nodes in G̃, and D is the maximum degree of G̃.

4 Experimental Results

We implemented our algorithm in MSAGL tool [11]. Edge bundling was applied for
synthetic graph collections and several real-world graphs (see [13] for a detailed de-
scription of our dataset). Unless node coordinates are available, we used the tool to
position the nodes. All our experiments were run on a 3.1 GHz quad-core machine with
4 GB of RAM. Tables 1 and 2 give measurements of the method on some test cases.

The quality analysis of ink minimization heuristics is given in Table 1. We compare
the routing cost gain of our algorithm with different settings. An iterative approach with
routing paths one by one corresponds to a k = 1 case. The results of routing multiple
paths at a time are shown for groups of size 5 and 10.

The variant of the algorithm that routes multiple paths with the same endpoint pro-
duces routings with smaller routing cost, while its running time is much longer (e.g.
4 seconds with k = 1, 2 minutes with k = 5, and 1.5 hours with k = 10 for
airlines graph). The approaches with different routing graphs are quite similar in
both routing cost minimization and running time. Moreover, we could not identify sig-
nificant differences in the quality of final drawings. We believe it is a result of Local
Optimization step of our algorithm in which edge routes are shortened and smoothed.
Overall, we chose k = 1 with sparse visibility graph as a default settings for our routing.

Table 2 shows the CPU times of algorithm steps. As can be seen, ordered bundles
can be constructed for graphs with several thousand of nodes and edges in less than a
minute. The most expensive steps are Local Optimization and Edge Routing.

We now demonstrate the algorithm on real-world examples. A migration graph
used for comparison of edge bundling algorithms is shown in Fig. 7. In our opinion,
on a global scale ordered edge bundles are aesthetically as pleasant as other drawings
of the graph (see e.g. [2,4,9,10]). On a local scale, our result outperforms previous
approaches by arranging edge intersections. Another advantage of our routing scheme
is shown in Fig. 8. Multiple edges are visualized separately making them easier to
discover (compare the edge between nodes Editor and Application on both drawings).

146 S. Pupyrev et al.

Table 2. Performance of the algorithm (in seconds). The results are given for k = 1 with sparse
visibility graph.

Graph |V | |E| source Visibility Routing Radii Optimizations Ordering Overall

tail 21 68 [13] 0.11 0.02 0.04 0.13 0.01 0.34

airlines 235 1297 [2] 0.16 0.31 0.17 2.50 0.15 3.32

jazz 191 2732 [14] 0.14 0.42 0.23 3.02 0.18 4.04

protein 1458 1948 [14] 0.57 0.88 0.48 11.45 0.10 13.52

power grid 4941 6594 [14] 1.86 6.11 1.15 16.85 0.18 26.31

Java 1538 7817 GD’06 Contest 0.59 3.49 1.37 28.80 0.96 35.35

migrations 1715 6529 [2] 0.50 3.39 1.38 29.19 1.16 35.75

Fig. 7. Migration graph. (a) Overview. (b) Detail.

5 Conclusions and Future Work

We have presented a new edge routing algorithm based on ordered bundles that im-
proves the quality of single edge routes when compared to existing methods. Our tech-
nique differs from classical edge bundling, in that the edges are not allowed to actually
overlap, but are run in parallel channels. The algorithm ensures that the nodes do not
overlap with the bundles and that the resulting edge paths are relatively short.

In our opinion, the novel cost function can be considered as a quality measure for
different bundling heuristics. In a future, it would be interesting to verify if layouts with
smaller routing cost correspond to subjectively better images. We are also exploring a
possible extensions of the function to control the curvature of the resulting edges.

An important contribution of the paper is an efficient algorithm that finds an order of
edges inside of bundles with minimal number of crossings. As mentioned above, this
order is not unique. We left the question of choosing the best order as future research.

Our method splits the overlapped edge segments. The main limitation of our tech-
nique is that the routing and nudging steps are performed independently. A minimal
routing cost might correspond to a routing, where edges can not be drawn with ideal
thickness. In contrast, the nudging step moves bundles, thus, increasing ink and edge
lengths. We plan next to combine these two steps.

Edge Routing with Ordered Bundles 147

(a) (b)

Fig. 8. Tail graph. (a) Original. (b) Bundled.

References

1. Chen, H.-F.S., Lee, D.T.: On crossing minimization problem. IEEE Transactions on
Computer-aided Design of Integrated Circuits and Systems 17, 406–418 (1998)

2. Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for graph vi-
sualization. IEEE Trans. on Visualization and Computer Graphics 14(6), 1277–1284 (2008)

3. Dwyer, T., Nachmanson, L.: Fast Edge-Routing for Large Graphs. In: Eppstein, D., Gansner,
E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 147–158. Springer, Heidelberg (2010)

4. Gansner, E., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge bundling for
visualizing large graphs. In: Proc. IEEE Pacific Visualization Symposium (to appear, 2011)

5. Gansner, E.R., Koren, Y.: Improved Circular Layouts. In: Kaufmann, M., Wagner, D. (eds.)
GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York (1979)

7. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. Int. Conf. on
Management of Data, pp. 47–57 (1984)

8. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical
data. IEEE Transactions on Visualization and Computer Graphics 12(5), 741–748 (2006)

9. Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Computer
Graphics Forum 28(3), 983–990 (2009)

10. Lambert, A., Bourqui, R., Auber, D.: Winding Roads: Routing edges into bundles. Computer
Graphics Forum 29(3), 853–862 (2010)

11. Nachmanson, L., Robertson, G., Lee, B.: Drawing Graphs with GLEE. In: Hong, S.-H.,
Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 389–394. Springer, Heidelberg
(2008)

12. Nöllenburg, M.: An Improved Algorithm for the Metro-Line Crossing Minimization Prob-
lem. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 381–392.
Springer, Heidelberg (2010)

13. Pupyrev, S., Nachmanson, L., Kaufmann, M.: Improving Layered Graph Layouts with Edge
Bundling. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 329–340.
Springer, Heidelberg (2011)

14. Gephi dataset, http://wiki.gephi.org/index.php?title=Datasets

http://wiki.gephi.org/index.php?title=Datasets

Right Angle Crossing Graphs and 1-Planarity�

Peter Eades1 and Giuseppe Liotta2

1 School of Information Technologies, University of Sydney
peter@it.usyd.edu.au

2 Università degli Studi di Perugia, Italy
liotta@diei.unipg.it

Abstract. A Right Angle Crossing Graph (also called RAC graph for short) is a
graph that has a straight-line drawing where any two crossing edges are orthog-
onal to each other. A 1-planar graph is a graph that has a drawing where every
edge is crossed at most once. We study the relationship between RAC graphs and
1-planar graphs in the extremal case that the RAC graphs have as many edges
as possible. It is known that a maximally dense RAC graph with n > 3 vertices
has 4n− 10 edges. We show that every maximally dense RAC graph is 1-planar.
Also, we show that for every integer i such that i ≥ 0, there exists a 1-planar
graph with n = 8 + 4i vertices and 4n − 10 edges that is not a RAC graph.

1 Introduction

A drawing of a graph G maps each vertex u of G to a distinct point pu in the plane, each
edge (u, v) of G to a Jordan arc connecting pu and pv and not passing through any other
vertex, and is such that any two edges have at most one point in common. A 1-planar
drawing is a drawing of a graph where every edge can be crossed by at most one other
edge. A 1-planar graph is a graph that has a 1-planar drawing. A straight-line drawing
is a drawing of a graph such that every edge is a straight-line segment. A Right Angle
Crossing drawing (or RAC drawing, for short) is a straight-line drawing where any two
crossing edges form right angles at their intersection point. A Right Angle Crossing
graph (or RAC graph, for short) is a graph that has a RAC drawing.

Pach and Tóth prove that 1-planar graphs with n vertices have at most 4n− 8 edges,
which is a tight upper bound [9]. Korzhik and Mohar prove that recognizing 1-planar
graphs is NP-hard [8]. Suzuki studies the combinatorial properties of the so-called op-
timal 1-planar graphs, i.e. those n-vertex 1-planar graph having 4n− 8 edges [10]. A
limited list of additional papers on 1-planar graphs includes [4,7]. Didimo et al. show
that a RAC graph with n > 3 vertices has at most 4n− 10 edges and that this bound is
tight [5]. Argyriou at al. prove that recognizing RAC graphs is NP-hard [2]. For recent
references about RAC graphs and their variants see also [1,3,6,11].

This paper studies the relationship between RAC graphs and 1-planar graphs in the
extremal case that the RAC graphs are as dense as possible. A RAC graph is maximally
dense if it has n > 3 vertices and 4n − 10 edges. While, at a first glance, one might
think that, in order to maximize the number of edges in a RAC graph, a good strategy
is that each edge should be crossed many times, we prove the following.
� Work supported in part by MIUR of Italy under project AlgoDEEP prot. 2008TFBWL4 and

by an IVFR Grant of the Australian Government.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 148–153, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Right Angle Crossing Graphs and 1-Planarity 149

Theorem 1. Every maximally dense RAC graph is 1-planar. Also, for every integer i
such that i ≥ 0, there exists a 1-planar graph with n = 8 + 4i vertices and 4n − 10
edges that is not a RAC graph.

We observe that the first part of Theorem 1 is trivially true if the maximally dense RAC
graph has exactly 4 vertices. Namely, the maximally dense RAC graph with 4 vertices
is K4 which is planar and hence 1-planar. We prove that a maximally dense RAC graph
with at least 5 vertices is also 1-planar by showing that all RAC drawings with 4n− 10
edges are such that no edge is crossed twice. For reasons of space, some proofs are
omitted or sketched in this abstract.

2 Red-Blue-Green Coloring of Maximally Dense RAC Graphs

Let G be a maximally dense RAC graph and let D be any RAC drawing of G. Let E be
the set of the edges of D. In [5] the following 3-coloring of the edges of D (and hence
of G) is described. Every edge of D is either a red edge or a blue edge, or a green edge.
An edge is red if and only if it is not crossed by any other edge; a blue edge is only
crossed by green edges, and a green edge is only crossed by blue edges. We call this
3-coloring of the edges of D a red-blue-green coloring of D and denote it as Πrbg . Let
Drb = (V, Er ∪ Eb) be the sub-drawing of D consisting of the red and blue edges and
let Grb be the corresponding subgraph of G. We call Grb the red-blue subgraph of G
induced by Πrbg and we call Drb the red-blue sub-drawing of D induced by Πrbg. Note
that, by construction, Drb has no crossing edges and thus Grb is a planar graph. We will
always consider Grb as a planar embedded graph, where the planar embedding is given
by Drb. Analogously, we define the red-green subgraph of G induced by Πrbg denoted
as Grg , and the red-green sub-drawing of D induced by Πrbg denoted as Drg. Also
Grg has the planar embedding of Drg, and thus Grg and Grb have the same external
face.

The next lemmas will particularly focus on the size and the coloring of some specific
faces of the red-blue graph Grb. We will consider its external face, denoted as fext, and
its fence faces, defined as those internal faces that share at least one edge with fext. In
the proofs that follow, we denote with mr the number of red edges, with mb the number
of blue edges, and with mg the number of green edges. Without loss of generality, we
will assume from now on that our red-blue-green coloring is such that mb ≥ mg. Also,
we denote with frb the number of faces of Grb and with n the number of its vertices.

Lemma 1. [5] Every internal face of Grb has at least two red edges. Also, all edges of
fext are red.

All remaining lemmas of this section assume that the maximally dense RAC graph G
has at least 5 vertices.

Lemma 2. Face fext is a 3-cycle.

Sketch of Proof: By Lemma 1, every internal face of Grb has at least two red edges and
all edges of fext are red. Hence, denoting with |fext| the number of edges of fext, we
have mr ≥ (frb− 1)+ |fext|

2 . Since Grb is a planar graph, Euler’s formula implies that

150 P. Eades and G. Liotta

mr+mb ≤ n+frb−2. It follows mb ≤ n−1− |fext|
2 . Since also the red-green subgraph

of G is planar and it has the same external face of Grb, by Euler’s formula we also have
that mr + mg ≤ 3n− 3 − |fext|. It follows that mr + mb + mg ≤ 4n− 4 − 3|fext|

2 .
Observe that |fext| ≥ 5 would imply mr + mb + mg < 4n− 10, which is impossible
because G is a maximally dense RAC graph. We now show that the external face of
Grb cannot be a 4-cycle either. By contradiction, assume that |fext| = 4. Consider first
the case that some fence face of Grb has more than 3 edges: Since |fext| = 4 and a
fence face has size at least 4, we have mr + mb ≤ 3n − 8. By the inequalities above,
we also have mr ≥ frb + 1 and mb ≤ n − 3. Since G is maximally dense, we have
mr + mb + mg = 4n− 10. It follows that mr + mg ≥ 3n− 7 > mr + mb, which is
however impossible because we are assuming mb ≥ mg . Lastly, consider the case that
|fext| = 4 and all fence faces are 3-cycles. Note that there must be four fence faces:
If there were only three fence faces there would be a vertex of degree at most three in
G, which is impossible in a maximally dense graph with at least 5 vertices. Since in
every RAC drawing of G each fence face is drawn as a triangle, for at least one of these
four triangles the angle opposite to the edge that belongs to fext must be larger than or
equal to π

2 . This observation, together with Lemma 1, implies that at least one of the
fence faces consists of all red edges in any red-blue-green coloring. We therefore have
the following: mr ≥ (frb − 2) + |fext|

2 + 3
2 = frb + 3

2 . Since mr is an integer, we
have mr ≥ frb + 2. By mr + mb ≤ n + frb − 2 we obtain mb ≤ n − 4, and by
mr + mb + mg = 4n− 10 we obtain mr + mg ≥ 3n − 6. However, Grg is a planar
graph and it has the same external face as Grb, that has size 4; so, Grg cannot be a
maximal planar graph, a contradiction. It follows that fext must be a 3-cycle. ��

Lemma 3. Graph Grb is biconnected.

Lemma 4. Graph Grb has three fence faces. Also, each fence face of Grb is a 3-cycle.

Lemma 5. Grb and Grg are both maximal planar graphs.

Sketch of Proof: By Lemmas 2 and 4, fext is a 3-cycle consisting of red edges and
the three fence faces are all 3-cycles. By simple geometric arguments it follows that
in any red-blue-green coloring of a RAC drawing of G, at least two of the triangles
representing these fence faces consist of red edges. We therefore have: mr ≥ (frb −
3) + |fext|

2 + 3
2 + 3

2 , which implies mr ≥ frb + 2. By mr + mb ≤ n + frb − 2, we
obtain mb ≤ n− 4. By mr + mb + mg = 4n− 10 we have mr + mg ≥ 3n− 6. Since
Grg is a planar graph, it has exactly 3n− 6 edges and so does Grb because mb ≥ mg .
It follows that Grb and Grg are are both maximal planar graphs. ��

3 Proof of Theorem 1

The following lemma is the key for proving the first part of Theorem 1.

Lemma 6. Every RAC drawing of a maximally dense RAC graph is also a 1-planar
drawing.

Right Angle Crossing Graphs and 1-Planarity 151

Proof. The proof is immediate if the maximally dense RAC graph has 4 vertices. Let
G be a maximally dense RAC graph with at least 5 vertices, let D be a RAC drawing of
G and consider any red-blue-green coloring of the edges of D. Let e be a blue edge of
D. By Lemma 5, every blue edge e = (u, v) of Grb is shared by two internal triangular
faces, that we denote as f and f ′. Let u, v, w be the vertices of f and u, v, w′ be the
vertices of f ′. Since by Lemma 1 every face of Grb has two red edges, we have that
edges (u, w) and (w, v) are not crossed by any other edge; similarly, edges (u, w′) and
(w′, v) of f ′ are both red. Since every blue edge is crossed by some green edges, we
have that there can be only one green edge crossing e, namely edge (w, w′). It follows
that the RAC drawing D is also a 1-planar drawing. ��
To show the second part of Theorem 1, we describe an infinite family of 1-planar graphs
that have the same edge density as the maximally dense RAC graphs but are not max-
imally dense RAC graphs. Consider first the graph G0 of of Figure 1 (a). Clearly it is
1-planar; also, it has n = 8 vertices and 4n− 10 = 22 edges.

(b)

G0

(a)

Gi

Gi−1

Fig. 1. (a) Graph G0; (b) Constructing graph Gi from Gi−1

Lemma 7. Graph G0 is not a RAC graph.

Proof. Observe that G0 has the following properties: (1) Every vertex of G0 has degree
at least five and at most six; (2) For every 3-cycle of G0 with vertices u, v, w, there
exists a fourth vertex z such that the subgraph induced by u, v, w, z is the complete
graph K4; (3) There is a 4-cycle through the remaining four vertices of G0, i.e. the
vertices that do not form this K4.

Suppose, for a contradiction, that G0 had a RAC drawing D0. By Lemma 2, the
external face of D0 is a triangle; let u, v, w be the vertices of this external face. Let z
be the vertex such that the sub-drawing of D induced by vertices u, v, w, z is a planar
representation of K4. Let f0, f1, and f2 be the three internal faces of this sub-drawing.
Let v0, v1, v2, v3 be the remaining four vertices of G0. They can be either all inside the
same face, or they can be in two faces, or they can be in three faces. The three cases are
illustrated in Figure 2.

Assume that v0, v1, v2, v3 are all in a same face, say f0. Refer to Figure 2 (a). By
Lemma 4, D0 has three fence faces and these faces are triangles. As discussed in the
proof of Lemma 5, in any red-blue-green coloring of D the edges of at least two of

152 P. Eades and G. Liotta

these three triangles are red. Since f1 and f2 are both fence faces, either (w, z) is a
red edge or (u, z) is a red edge. Assume, w.l.o.g. that (w, z) is red. Since vertex v has
degree at least five and (w, z) is red, there must be at least two edges that connect v to
one of the vertices inside f0; both such edges must cross (u, z) (see the dotted edges in
Figure 2 (a)). However, by Lemma 6, D0 is also a 1-planar drawing and (u, z) cannot
be crossed twice; a contradiction.

Assume that v0, v1, v2 are in f0 and v3 is in f2. Refer to Figure 2 (b). Since there is
a cycle with vertices v0, v1, v2, v3, there are at least two edges incident to v3 that cross
the boundary of f2. If both these edges cross edge (u, z), then the same argument as in
the previous case applies. If one of these edges crosses (v, z), it must also cross (w, z)
to reach any one of v0, v1, v2 (see for example the dotted edge (v2, v3) in Figure 2 (b)).
But this would violate Lemma 6, a contradiction.

v0

v2
v3

v1

v3

v0

v1

v1

v2

v0

w

z

f2

f0 f1 f1

f2 v3

z

f0
v2

z

f2

f0 f1

w

u v u u vv

w

(a) (b) (c)

Fig. 2. The three cases in the proof of Lemma 7. (a) v0, v1, v2, v3 are all in f0, (w, z) is a red
edge, and two dotted edges cross (u, z); (b) v3 is in f2 and edge (v2, v3) violates the 1-planarity
condition; (c) v3 is in f2, v2 in f1 and z has degree seven.

Finally, assume that v0, v1 are in f0, v2 is in f1 and v3 is in f2, as depicted in Fig-
ure 2 (c). Since there is a 4-cycle with vertices v0, v1, v2, v3, there is an edge of this
cycle crossing (u, z), one crossing (v, z), and one crossing (w, z). Again by Lemma 6,
neither (u, z), nor (v, z), nor (w, z) can be crossed by any other edge. In order to guar-
antee that every vertex of G0 has degree at least five, we must have that v0 and v1 are
adjacent to all vertices of f0, v2 is adjacent to all vertices of f1, and v3 is adjacent to
all vertices of f3 (see the dotted edge v2, v3) in Figure 2 (c)). This implies that z has
degree seven, which is however impossible because every vertex of G0 has degree at
most six. The statement of the lemma follows. ��
Lemma 8. For every integer i such that i ≥ 0, there exists a 1-planar graph with
n = 8 + 4i vertices and 4n− 10 edges that is not a RAC graph.

Proof. Let G be a family of graphs defined as follows. G0 is a graph of G. Graph Gi

of G is obtained from Gi−1 by adding four vertices to the external face of Gi−1 and
16 edges as described in Figure 1 (b). Observe that every graph in G is 1-planar and it
has n = 8 + 4i vertices and 4n − 10 edges. Suppose that Gi had a RAC drawing Di.
Since any sub-drawing of a RAC drawing is RAC drawing too, the sub-drawing of Di

representing graph G0 should also be a RAC drawing of G0, contradicting Lemma 7. It
follows that no graph of G is a RAC graph, which proves the lemma. ��

Right Angle Crossing Graphs and 1-Planarity 153

Lemma 6 and Lemma 8 prove Theorem 1. Note that Theorem 1 does not hold if we
drop the requirement of maximal density. Consider, for example, the graph G formed
from K5 by adding 11 paths of length 3 between every pair of vertices. It can be proved
that G is a RAC graph, but it is not 1-planar.

4 Open Problems

1. Establish whether recognizing maximally dense RAC graphs is computationally as
difficult as recognizing RAC graphs in the general case [2].

2. Characterize 1-planar graphs that admit a RAC drawing.

References

1. Ackerman, E., Fulek, R., Tóth, C.D.: On the Size of Graphs that Admit Polyline Drawings
with Few Bends and Crossing Angles. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 1–12. Springer, Heidelberg (2011)

2. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The Straight-Line RAC Drawing Problem is
NP-Hard. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M.,
Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 74–85. Springer, Heidelberg (2011)

3. Arikushi, K., Fulek, R., Keszegh, B., Morić, F., Tóth, C.D.: Graphs that Admit Right An-
gle Crossing Drawings. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 135–146.
Springer, Heidelberg (2010)

4. Borodin, O.V., Kostochka, A.V., Raspaud, A., Sopena, E.: Acyclic colouring of 1-planar
graphs. Discrete Applied Mathematics 114(1-3), 29–41 (2001)

5. Didimo, W., Eades, P., Liotta, G.: Drawing Graphs with Right Angle Crossings. In: Dehne,
F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 206–217.
Springer, Heidelberg (2009)

6. Didimo, W., Eades, P., Liotta, G.: A characterization of complete bipartite rac graphs. Inf.
Process. Lett. 110(16), 687–691 (2010)

7. Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Mathematics 307(7-8),
854–865 (2007)

8. Korzhik, V.P., Mohar, B.: Minimal Obstructions for 1-Immersions and Hardness of 1-
Planarity testing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 302–
312. Springer, Heidelberg (2009)

9. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439
(1997)

10. Suzuki, Y.: Optimal 1-planar graphs which triangulate other surfaces. Discrete Mathemat-
ics 310(1), 6–11 (2010)

11. van Kreveld, M.: The Quality Ratio of RAC Drawings and Planar Drawings of Planar Graphs.
In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 371–376. Springer,
Heidelberg (2011)

Pinning Balloons with Perfect Angles

and Optimal Area

Immanuel Halupczok and André Schulz

Institut für Mathematische Logik und Grundlagenforschung,
Universität Münster, Germany

{ihalu 01,andre.schulz}@uni-muenster.de

Abstract. We study the problem of arranging a set of n disks with pre-
scribed radii on n rays emanating from the origin such that two neigh-
boring rays are separated by an angle of 2π/n. The center of the disks
have to lie on the rays, and no two disk centers are allowed to lie on
the same ray. We require that the disks have disjoint interiors, and that
for every ray the segment between the origin and the boundary of its
associated disk avoids the interior of the disks. Let r̃ be the sum of the
disk radii. We introduce a greedy strategy that constructs such a disk
arrangement that can be covered with a disk centered at the origin whose
radius is at most 2r̃, which is best possible. The greedy strategy needs
O(n) arithmetic operations.

As an application of our result we present an algorithm for embedding
unordered trees with straight lines and perfect angular resolution such
that it can be covered with a disk of radius n3.0367, while having no edge
of length smaller than 1. The tree drawing algorithm is an enhancement
of a recent result by Duncan et al. [Symp. of Graph Drawing, 2010]
that exploits the heavy-edge tree decomposition technique to construct
a drawing of the tree that can be covered with a disk of radius 2n4.

1 Introduction

When a graph is drawn in the plane, the vertices are usually represented as
small dots. From a theoretical point of view a vertex is realized as a point, hence
as an object without volume. In many applications, however, it makes sense to
draw the vertices as disks with volume. The radii of the vertices can enhance
the drawing by visualizing associated vertex weights [2,5]. This idea finds also
applications in so-called bubble drawings [8], and balloon drawings [9,10].

Two important quality measures for aesthetically pleasant drawings are the
area of a drawing and its angular resolution. The area of a drawing denotes the
area of the smallest disk that covers the drawing with no edge lengths smaller
than 1. The angular resolution denotes the minimum angle between two neigh-
boring edges emanating at a vertex. Unfortunately, drawings of planar graphs
with bounded angular resolution require exponential area [11]. On the other
hand, by a recent result of Duncan et al. [6], it is possible to draw any unordered
tree as plane straight-line graph with perfect angular resolution, that is the edges

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 154–165, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Pinning Balloons with Perfect Angles and Optimal Area 155

incident to a vertex v are separated by an angle of at least 2π/degree(v), and
polynomial area. In the same paper it was observed that an ordered tree drawn
with perfect angular resolution requires exponential area. Surprisingly, even or-
dered trees can be drawn in polynomial area with perfect angular resolution
when the edges are drawn as circular arcs [6].

The following sub-problem appears naturally in tree drawing algorithms. Sup-
pose we have drawings of all subtrees of the children of the root. How can we
group the subtrees around the root, such that the final drawing is densely packed?
Often one assumes that every subtree lies exclusively in some region, say a disk.
Hence, at its core, a tree drawing algorithm has to arrange disjoint disks “nicely”
around a new vertex. Furthermore this task is also a fundamental base case for
bubble drawing algorithms or for algorithms that realize vertices as large disks.
In the paper we show how to layout the balloons with perfect angular resolution
and optimal area.

More formally, let B = {B1, B2, . . . , Bn} be a set of n disks. To distinguish the
disks Bi from other disks we call them balloons. The balloon Bi has radius ri,
and the balloons are sorted in increasing order of their radii. We are interested
in layouts, in which the balloons of B have disjoint interiors and are evenly
angularly spaced. In particular, we draw for every balloon a spoke, that is a
line segment from the origin to the balloon center. The spokes have to avoid
the interior of the other balloons and two neighboring spokes are separated by
an angle of 2π/n. Furthermore the drawing should require only small area. We
measure the area of the balloon layout by the radius of the smallest disk that is
centered at the origin and covers all balloons.

Results. We show how to locate the balloons with perfect angular resolution
such that the drawing can be covered with a disk of radius 2r̃, for r̃ being the
sum of the radii. This is clearly the best possible result in the worst case, since
when |B| = 1, the area of the best balloon layout is clearly 2r1. We also study
a modified version of the balloon layout problem that finds application in a
tree drawing algorithm. Here, one and two spokes may remain without balloon,
but the angle between the two unused spokes has to be at least 2π/3. In this
setting we obtain a balloon drawing that can be covered with a disk of radius

(1+
√

2− 2/
√

5)r̃ ≈ 2.0514r̃. The induced algorithm draws unordered trees with
perfect angular resolution and with area smaller than n3.0367.

Related work. Without explicitly stated, Duncan et al. [6] studied the balloon
layout problem (with one or two unused spokes) as part of their drawing al-
gorithm for unordered trees and obtained a bound of 4r̃ for the area. The in-
duced tree drawing algorithm produces drawings with area smaller than 2n4.
For the special case of orthogonal straight-line drawings of ternary trees (they
automatically guarantee perfect angular resolution) Frati [7] provided an al-
gorithm whose drawings require O(n1.6131) area; the drawing of the complete
ternary tree requires O(n1.262) area. Bachmaier et al. obtained a drawing of the
complete 6-regular tree with perfect angular resolution with area O(n1.37) [1].

156 I. Halupczok and A. Schulz

In contrast to our setting the so-called balloon drawings [9,10] place all bal-
loons at the same distance. Also related are the (non-planar) ringed circular lay-
outs [13]. Without the perfect angular resolution constraint trees can be drawn
with area O(n log n) [4].

Conventions. We normalize the radii of the balloons such that they sum up to
1. In intermediate stages of the drawing algorithm a spoke may be without a
balloon. In this case we consider the spoke as a ray emanating from the origin
that fulfills the angular resolution constraint. When we say that “we place bal-
loon B on s at distance x” we mean that the balloon B is placed on a spoke s
(that had no associated balloon yet) such that its center lies on s at Euclidean
distance x from the origin. In the remainder of the paper all disks covering the
balloons are considered as centered at the origin.

2 The Greedy Strategy

In the following section we introduce the greedy strategy for placing B with
perfect angles. To keep things simple we assume for now that the number of
balloons n is a power of two. The general case is discussed later.

We place the balloons in increasing order of their radii. Thus we start with the
smallest balloon and end with the largest balloon. The placement of the balloons
is carried out in rounds. In every round we locate half of the balloons that have
not been placed yet. Thus, we “consume” a certain number of spokes in each
round. Let S be the list of spokes that are available in the beginning of a round
in cyclic order. In every round we select every other spoke as a spoke on which
a balloon is placed in the current round. This ensures that consecutive spokes
that receive a balloon in round i are separated by an angle of αi := 2i+1π/n.
For every round we define the safe disk SDi centered at the origin with radius
safei. The safe disk is the smallest disk covering all balloons that were placed in
previous rounds. In round i we place all balloons such that they avoid the interior
of the safe disk SDi. Thus, the best we can hope for is to place the balloons such
that they touch SDi. Whenever this is possible we speak of a contact situation,
depicted in Figure 1(a). The safe disks ensure that balloons placed in the current
round will not intersect the interior of the balloons that were placed in previous
rounds. However, we have to guarantee that balloons placed in the same round
will also not interfere with the remaining spokes. Suppose that Bj is assigned to
the spoke sk. We enforce Bj to lie inside a wedge with opening angle αi centered
at sk. This wedge is named Wk. Since the spokes that are used in round i are
separated by αi, the wedges of round i have disjoint interiors. Whenever a balloon
touches the boundary of its associated wedge we speak of a wedge situation, as
shown in Figure 1(b).

The greedy strategy tries first to place Bj at its spoke sk, such that it touches
SDi. If this would imply that Bj is not contained inside Wk, we move the center
of Bj on sk away from the origin, until Bj touches the boundary of Wk. In case
a wedge situation occurs, we can compute the location of the center of Bj with
help of the following lemma, whose proof can be found in Duncan et al. [6].

Pinning Balloons with Perfect Angles and Optimal Area 157

sk

Bj

SDi
αi

sk

SDi

Bj

αi

Wk

(a) (b)

Fig. 1. In a contact situation (a) we place Bi such that it touches SDi. In contrast, in
a wedge situation (b), we place Bi such that it touches the boundary of Wk (when it
is placed on sk).

Lemma 1. Let W be a wedge with opening angle ϕ centered at a spoke s. Further
let B be a balloon with radius r that is placed such that (1) its center lies on s,
and (2) it touches the boundary of W . Then B is contained inside a disk centered
at the origin with radius

(1 + sin (ϕ/2))/(sin (ϕ/2)) · r.
In the remainder of the paper we use as notation

α(ϕ) := (1 + sin (ϕ/2))/(sin (ϕ/2)). (1)

Notice that when a wedge situation occurs in round i, then in particular a
wedge situation has to occur for the last balloon that is added in round i, since
the balloons are sorted by increasing radii. All balloons placed in round i are
sandwiched between SDi and SDi+1. We call the region SDi+1\SDi the i-th layer
Li.1 The width of layer Li is defined as safei+1 − safei. When a wedge situation
occurs in round i, the layer Li is called a wedge layer, otherwise a contact layer.
An example of a wedge layer is shown in Figure 2.

2.1 Splitting the Set of Spokes

We come now back to the case where n is not necessarily a power of two. In
this setting there might be an odd number of spokes in some round. In such a
round we place only �k/2� balloons, such that no two of them are assigned to
consecutive spokes. This however has two drawbacks: First, the angles might not
split evenly, and second, the layers will be filled with less balloons.

We can always pick �k/2� spokes such that in the remaining set of spokes
at most two separating angles are smaller than the others, which are all equal.
1 By convention SD1 = ∅, and for i being the last round, SDi+1 =

smallest disk covering all balloons.

158 I. Halupczok and A. Schulz

Fig. 2. A wedge layer (shaded) that had been filled with balloons by the greedy
strategy

Moreover, the two smaller angles are each at least half as big as the remaining
angles. We call every set of spokes for which this property holds well-separated.
Furthermore we assume that a well-separated set of spokes is ordered such that
the two smaller angles are realized between the first and second, and between
the second and third spoke. Algorithm 1 describes a strategy that picks �k/2�
of the spokes and ensures that the remaining set of spokes is still well-separated
if the original set was well-separated.

Algorithm 1. SplitSpokes(S)
Input : S set of spokes
Output: (T, T ′), such that T ′ are the spokes that will be used in the current

round, T = S \ T ′.
1 T ′ ← every spoke of S with even index
2 T ← S \ T ′

3 reorder T by putting the last spoke in front
4 return (T, T ′)

Lemma 2. Let S be a well-separated set of at least three spokes and let ϕ denote
the size of the big angles in S. Let (T, T ′) be the return value of Algorithm 1.

(1) If |T | > 2, then T is well-separated.
(2) If |T | = 2, then the smaller angle between the two spokes is at least 2π/3.
(3) The wedge with angle ϕ centered at the first spoke in T ′ contains no spoke

of S in its interior.
(4) A wedge with angle 2ϕ centered at a spoke in T ′ that is not the first spoke

contains no spoke of S in its interior.

Proof. Let the angle between the first and second spoke in S be γ1, and let the
angle between the second and third spoke in S be γ2. Since S is well-separated,
we have ϕ/2 ≤ γ1, γ2 ≤ ϕ. Hence the wedge centered at the second spoke of S
with angle ϕ does not contain any other spoke of S in its interior, which proves
(3). Property (4) is due to the fact that every spoke in S with even index larger
than 2 is separated from its neighboring spokes by an angle of ϕ.

Pinning Balloons with Perfect Angles and Optimal Area 159

≥ ϕ/2

≥ ϕ/2

ϕ

ϕ

ϕ
ϕ

≥ ϕ2ϕ

2ϕ

1

2

3

4

5

6

1

2

3

≥ ϕ/2

≥ ϕ/2

ϕϕ

ϕ

2ϕ

1

2

3

4

5

ϕ

1

2

3

≥ ϕ

(a) (b)

Fig. 3. Merging the angles as implied by Algorithm 1. In case we have an even number
of spokes (a), and in case we have an odd number of spokes (b). The spoke numbers
are shown as small numbers.

After line 2 of Algorithm 1, the angle between the first and second spoke of T
equals γ1 +γ2 ≥ ϕ. In case S has an even number of spokes the remaining angles
of size ϕ are grouped pairwise and therefore the corresponding angles in T are all
2ϕ, which proves property (1) for this case. If the set S contains an odd number
of spokes, the additional angle between the last spoke in T and the first spoke in
T is also ϕ. Hence after reordering, the new set T is again well-separated, and
(1) follows. Figure 3 illustrates the outcome of Algorithm 1.

To see that (2) is true, notice the following. T contains two spokes, if
S contains three or four spokes. In case S contains 4 spokes, the sum of the
two small angles is at least 2π/3. In case S contains three spokes, the sum of
the two small angles between the spokes is at least π. The large angle between
the spokes in S is at least 2π/3. This angle appears also between the spokes
in T . �

To ensure that the balloons of each layer cannot interfere with each other and with
the remaining spokes, we place them inside the wedges defined by Lemma 2(3–
4). All wedges have the same opening angle, say ϕ, except the first wedge, whose
opening angle is at least ϕ/2. The balloon with the smallest radius in each round
is placed inside the wedge with the (possible) smaller opening angle.

2.2 The Final Layer

It is important to analyze the situation where the greedy strategy has to stop.
In every round we reduce the number of spokes from k to �k/2�. If we subdivide
the spokes in this fashion we will come to a point where exactly two spokes
are left. The final two balloons are placed in the last round as follows: (1) The
balloon Bn will be placed such that it touches the safe disk. (2) The balloon
Bn−1 will be placed such that it is contained inside a wedge with opening angle
π/3, centered at its spoke, while avoiding the interior of the current safe disk.

Lemma 3. When the balloons are placed as discussed in the previous paragraph,
then one of the following is true:

1. The width of the last layer is 2rn.
2. All balloons can be covered with a disk of radius two.

160 I. Halupczok and A. Schulz

Proof. Let ϕ be the smaller of the two angles between the spokes in the final
round i. Due to Lemma 2, ϕ is at least 2π/3. The tangent of Bn at its intersection
with SDi separates Bn from the spoke of Bn−1. Since the angle between this
tangent and the spoke of Bn−1 is at least ϕ− π/2 ≥ π/6 it is safe to place Bn−1

inside a wedge centered at its spoke with opening angle π/3. Thus, either Bn−1

touches SDi, or it is contained inside a disk of radius α(π/3)rn−1 = 3rn−1. In
the former case the width of the layer is 2rn, in latter case the radius of the
covering disk is at most max{2rn, 3/2} (recall that rn−1 ≤ 1/2). �

Due to Lemma 3 we can assume that the width of the last layer equals 2rn.
Thus even if Bn−1 defines a wedge situation we consider the last layer as contact
layer. We summarize the discussion in Algorithm 2.

Algorithm 2. GreedyBalloon(S)
Input : S : spokes in cyclic order.

1 k ← 0 // number of balloons placed so far

2 safe ← 0 // radius of the current safe disk

3 while |S| > 2 do
4 (T, T ′) ← Splitspokes(S)
5 width ← 0 // width of the current layer so far

6 for i ← k + 1 to k + |T ′| do
7 s ← (i − k)-th spoke of T ′

8 ϕ ← 2(minimal angle between s and one of its neighboring spokes in S)
9 c ← max {α(ϕ)ri − ri, safe + ri} // center of Bi

10 place Bi on s at distance c
11 width ← max{width, c + ri − safe}
12 end
13 safe ← safe + width
14 k ← k + |T ′|
15 S ← T

16 end
17 let s1, s2 be the spokes in S
18 place Bn on s1 at distance safe + rn

19 place Bn−1 on s2 at distance max{2rn−1, safe + rn−1}

2.3 Quality of the Greedy Strategy

We denote by R the radius of the smallest disk that covers all balloons. In order
to determine R we have to consider only certain radii.
Lemma 4. The radius of the smallest disk R that covers all balloons drawn with
Algorithm 2 can be determined with the knowledge of
1. the number of spokes,
2. the radius of the largest and smallest balloon in the outermost wedge layer,
3. the radii of the largest balloons in each of the contact layers following the

outermost wedge layer.

Pinning Balloons with Perfect Angles and Optimal Area 161

Proof. Suppose the last wedge situation occurs in round i. Then the radius of
SDi+1 is determined by a balloon that touches its wedge. All wedges have the
same opening angle, except maybe the first wedge. Since the smallest balloon is
placed inside the first wedge, the wedge situation that defines the radius of SDi+1

depends on the possible wedge situation of the largest and smallest balloon only.
The following layers are all contact layers. Their width is determined by the
diameter of the largest balloons in each layer. The radius R equals therefore
the radius of SDi+1 with the addition of the widths of the following contact
layers. �

Since we are interested in a worst case bound for R we make the following
assumptions to simplify the analysis of the algorithm.

Lemma 5. Let rw be the radius of the balloon, whose wedge situation determined
the width of the last wedge layer Lk. The radius R of the smallest covering disk
is maximized when

rw = rw+1 = rw+2 = · · · = rn−1, and
r1 = r2 = r3 = · · · = rw−1 = 0.

Proof. We consider the radii as resources that we want to spend to make R as
large as possible. Since no radius of a balloon with smaller index than w matters
for R, we set these radii to zero to save resources. If Bw is the smallest balloon
in its layer, all radii of balloons in Lk have the same radius in the worst case.
Otherwise we could shrink some of these balloons without changing the width
of Lk and spent the resources to increase rn and therefore R.

Only the balloon added last in each contact layer determines the width of
its layer. We select the radii of the other balloons in contact layers as small as
possible, i.e., as large as the radius of the largest balloon in the previous layer.
If any of these radii would be larger we could make such a radius smaller and
increase rn instead, which would increase R.

Assume we have at least two contact layers following Lk. Let Bc be the largest
balloon in the contact layer Lk+1, that is the balloon last added in Lk+1. Due to
the discussion in the previous paragraph we can assume that the balloon Bc+1 in
the next layer has radius rc. If rc > rw , we could lower the radius by rc− rw for
Bc and Bc+1 each. By this we can increase rn by 2(rc − rw). As a consequence
the radius R increases by rc − rw . Therefore in the worst case all radii in layer
Lk+1 equal rw. By an inductive argument the radii in the last contact layers are
all rw. The only exception is the largest balloon Bn. �

Theorem 1. Algorithm 2 constructs a drawing of balloons with disjoint interi-
ors and spokes that intersect only the interior of their associated balloon that can
be covered with a disk of radius two, which is best possible.

Proof. We define as L̄i the i-th last layer such that L̄1 is the last layer. Sup-
pose there were � spokes left, before the last wedge layer was filled. We denote the

162 I. Halupczok and A. Schulz

number of contact layers that follow the last wedge layer by k. By Algorithm 1
the number k is given by a function k = f(�), which is defined as follows

f(�) :=

⎧
⎪⎨

⎪⎩

1 if 3 ≤ � ≤ 4,
1 + f

(
�
2

)
if � > 4, even,

1 + f
(

�+1
2

)
if � > 4, odd.

(2)

By induction, f(�) ≤ log(� − 1). The radius of the covering disk R equals the
radius of L̄k’s safe disk plus the width of the last k contact layers. Let Bw be
the balloon that determined safek. By Lemma 5 we can assume that all balloons
following Bw have radius rw, except Bn. All other radii are zero.

As previously discussed, the balloon Bw is either the first or the last balloon
in the last wedge layer. We discuss the two possibilities by case distinction. Let
us first assume that Bw is the last balloon of layer L̄k+1. By construction the
last balloon is placed inside the wedge with largest opening angle (in this round).
Therefore its opening angle ϕ is minimized, when the angles between all pairs
of neighboring spokes are equal. We have � spokes in L̄k+1, and therefore two
spokes are separated by 2π/� and ϕ = 4π/�. Furthermore, we have k − 1 layers
of width 2rw, and one layer of width 2rn following L̄k+1. In layer L̄k+1 we place
no more than �/2 balloons and therefore in the last k layers we have at least �/2
balloons in total. Since there is one balloon in L̄k+1 with radius rw and only one
balloon in the last k layers with radius different from rw, we get rn ≤ 1− rw�/2.
This leads to

R ≤ α(ϕ)rw + 2(k − 1)rw + 2rn ≤ 2 + [α(4π/�) + 2 log(�− 1)− �− 2] rw.

The last wedge layer must contain at least three spokes. Since α(4π/�)+2 log(�−
1)− �− 2 is decreasing2 for � ≥ 4 and negative for � = 3, 4, we get R ≤ 2.

We assume now that Bw was placed first in L̄k+1. Again, let ϕ be the angle
of the wedge that contains Bw centered at its spoke. Due to Lemma 2 the angles
between two neighboring spokes are all of size ψ except two angles, which are
at least ψ/2 (the small angles). The angle ϕ is twice the minimum of the two
small angles, and hence minimized when one of the small angles has size ψ and
the other has size ψ/2. In this case we have �− 1 angles of size ψ and one angle
of size ψ/2. Since all angles sum up to 2π, we have ψ = 2π/(� − 1/2), which
is a lower bound for ϕ. Notice that all balloons in L̄k+1 have now radius rw ,
hence we have �− 1 balloons of radius rw, and therefore rn ≤ 1− (�− 1)rw. We
conclude with

R ≤ α(ϕ)rw + 2(k − 1)rw + 2rn ≤ 2 + [α(2π/(�− 1/2)) + 2 log(�− 1)− 2�] rw.

For � ≥ 2 the expression α(2π/(� − 1/2)) + 2 log(� − 1) − 2� is negative and
decreasing and the theorem follows. �

2 The estimation of this expression and of similar following expressions was obtained
by computer algebra software.

Pinning Balloons with Perfect Angles and Optimal Area 163

3 Drawing Unordered Trees with Perfect Angles

The greedy strategy can be used to construct drawings of unordered trees with
perfect angular resolution and small area. In fact, the balloon layout problem
studied in Section 2 is a subproblem of the drawing algorithm of Duncan et al. [6],
where it is used to draw depth-1 trees. With the help of the so called heavy edge
tree-decomposition (see Tarjan [12]) these trees are combined to the original
tree. Since our proposed strategy uses significantly smaller area, it implies an
improvement for the area of the tree drawing.

We start with a brief review of the heavy edge tree-decomposition. Let u be
a non-leaf of the rooted tree T . We denote by Tu the subtree of T rooted at u.
Let v be the child of u such that Tv has the largest number of nodes (compared
to the subtrees of the other children of u), breaking ties arbitrarily. We call the
edge (u, v) a heavy edge, and the edges to the other children of u light edges.
The heavy edges induce a decomposition of T into paths, called heavy paths, and
light edges; see Figure 4 on the left.

Fig. 4. An example of a heavy-edge tree-decomposition

In order to draw a tree with perfect angular resolution we have to modify the
greedy strategy such that (1) one or two spokes can remain without balloon,
and (2) the separating angle between the two unused spokes is at least 2π/3.
This however, comes at a cost, we have to make the disk that covers the drawing
slightly larger. Thus instead of a disk with radius 2 we might need a disk of

radius κ, where κ = (1+
√

2− 2/
√

5) ≈ 2.0514. Notice that we use an additional
construction, which can be found in the full paper, to make the balloon packing
slightly denser.

By construction, every non-leaf tree node lies on exactly one heavy path. Let
C be the union of the heavy path that is incident to the root with its incident
light edges. By deleting C the original tree splits into subtress. Assume that we
have constructed the drawings for these subtrees by recursion. We are left with
drawing C such that the leaves of C are drawn as disjoint disks. The disk radii
are chosen such that each drawing of a subtree fits inside its associated disk.
For every node on the heavy path we apply the greedy strategy to draw the
associated disks as balloons while leaving the heavy edges as free spokes with-
out a disk. These drawings of depth-1 trees can be combined by the strategy of

164 I. Halupczok and A. Schulz

Fig. 5. Drawing of the root-heavy path with incident light edges and safe regions for
the missing subtrees

Fig. 6. Three balloons with radius ε, ε, 1−2ε and 5 spokes. Separating the unused spokes
by an angle ≥ 2π/3 yields a covering disk with radius α(2π/5) = κ. when ε → 0.

Duncan et al.[6, full version, Lemma 2.3]. Figure 5 illustrates this construction.
Notice that for every layer of the recursion we have to scale the intermediate
drawing by a factor of 2κ. However, since by construction every root-leaf path
in the original tree visits at most log n light edges, the recursion depth is loga-
rithmic. A more detailed analysis, which can be found in the full version of the
paper, proves the following theorem.

Theorem 2. Using Algorithm 2 in the framework of Duncan et al. produces a
drawing of an unordered tree with n nodes that has perfect angular resolution
and that can be covered with a disk of radius n2 · nlog κ < n3.0367, while having
no edge with length smaller 1.

4 Concluding Remarks

The algorithm presented in this paper runs in linear time. Notice that even
when the set B is not ordered by radii we can obtain a running time of O(n).
In fact, Algorithm 2 works correctly when B is weakly ordered by radii, that is,
(1) the median and the smallest element are in the “right” position, (2) every
radii between median and smallest element is not larger than the median, and
(3) the sequence of elements larger than the median are weakly ordered. Since
the median and the smallest radius can be found in O(n) time [3], the recursive
definition implies that B can be weakly ordered in O(n) time.

Pinning Balloons with Perfect Angles and Optimal Area 165

The only case, where we obtain strict inequalities in the proof of Theorem 1,
is when |B| = 1. By placing all balloons slightly inside the wedges, resp., slightly
outside the safe disks we can therefore modify all constructions such that no
balloons touch.

As a final remark we point out that Theorem 1 can be generalized such that
it holds for one or two unused spokes, while guaranteeing that the whole balloon
drawing can be covered with a disk of radius 2. However, as depicted in Figure 6,
the slightly worse bound of κ cannot be avoided if one has to guarantee that the
smaller angle between the two unused spokes is at least 2π/3.

References

1. Bachmaier, C., Brandenburg, F.-J., Brunner, W., Hofmeier, A., Matzeder, M.,
Unfried, T.: Tree Drawings on the Hexagonal Grid. In: Tollis, I.G., Patrignani, M.
(eds.) GD 2008. LNCS, vol. 5417, pp. 372–383. Springer, Heidelberg (2009)

2. Barequet, G., Goodrich, M.T., Riley, C.: Drawing Graphs with Large Vertices and
Thick Edges. In: Dehne, F.K.H.A., Sack, J.-R., Smid, M.H.M. (eds.) WADS 2003.
LNCS, vol. 2748, pp. 281–293. Springer, Heidelberg (2003)

3. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

4. Crescenzi, P., Battista, G.D., Piperno, A.: A note on optimal area algorithms for
upward drawings of binary trees. Computational Geometry: Theory & Application
Geom. 2, 187–200 (1992)

5. Duncan, C.A., Efrat, A., Kobourov, S.G., Wenk, C.: Drawing with fat edges. Int.
J. Found. Comput. Sci. 17(5), 1143–1164 (2006)

6. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg,
M.: Drawing Trees with Perfect Angular Resolution and Polynomial Area. In:
Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 183–194. Springer,
Heidelberg (2011), http://arxiv.org/pdf/1009.0581v1

7. Frati, F.: Straight-Line Orthogonal Drawings of Binary and Ternary Trees. In:
Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 76–87.
Springer, Heidelberg (2008)

8. Grivet, S., Auber, D., Domenger, J.P., Melancon, G.: Bubble tree drawing algo-
rithm. In: International Conference on Computer Vision and Graphics, pp. 633–
641. Springer, Heidelberg (2004)

9. Lin, C.-C., Yen, H.-C.: On balloon drawings of rooted trees. Journal of Graph
Algorithms and Applications 11(2), 431–452 (2007)

10. Lin, C.-C., Yen, H.-C., Poon, S.-H., Fan, J.-H.: Complexity analysis of balloon
drawing for rooted trees. Theor. Comput. Sci. 412(4-5), 430–447 (2011)

11. Malitz, S.M., Papakostas, A.: On the angular resolution of planar graphs. SIAM
J. Discrete Math. 7(2), 172–183 (1994)

12. Tarjan, R.E.: Linking and cutting trees. In: Data Structures and Network Algo-
rithms, ch. 5, pp. 59–70. SIAM (1983)

13. Teoh, S.T., Ma, K.-L.: RINGS: A Technique for Visualizing Large Hierarchies. In:
Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 268–275.
Springer, Heidelberg (2002)

http://arxiv.org/pdf/1009.0581v1

Approximate Proximity Drawings

William Evans1, Emden R. Gansner2, Michael Kaufmann3, Giuseppe Liotta4,
Henk Meijer5, and Andreas Spillner6

1 University of British Columbia, Canada
will@cs.ubc.ca

2 AT&T Research Labs, US
erg@research.att.com

3 Universität Tübingen, Germany
mk@informatik.uni-tuebingen.de

4 Università degli Studi di Perugia, Italy
liotta@diei.unipg.it

5 Roosevelt Academy, The Netherlands
h.meijer@roac.nl

6 Universität Greifswald, Germany
andreas.spillner@uni-greifswald.de

Abstract. We introduce and study a generalization of the well-known region
of influence proximity drawings, called (ε1, ε2)-proximity drawings. Intuitively,
given a definition of proximity and two real numbers ε1 ≥ 0 and ε2 ≥ 0, an
(ε1, ε2)-proximity drawing of a graph is a planar straight-line drawing Γ such
that: (i) for every pair of adjacent vertices u, v, their proximity region “shrunk”
by the multiplicative factor 1

1+ε1
does not contain any vertices of Γ ; (ii) for every

pair of non-adjacent vertices u, v, their proximity region “blown-up” by the factor
(1 + ε2) contains some vertices of Γ other than u and v. We show that by using
this generalization, we can significantly enlarge the family of the representable
planar graphs for relevant definitions of proximity drawings, including Gabriel
drawings, Delaunay drawings, and β-drawings, even for arbitrarily small values
of ε1 and ε2. We also study the extremal case of (0, ε2)-proximity drawings,
which generalizes the well-known weak proximity drawing model.

1 Introduction and Overview

Proximity drawings are straight-line drawings of graphs where any two adjacent ver-
tices are deemed to be close according to some proximity measure, while any two non-
adjacent vertices are far from one another with respect to the same measure. Different
definitions of proximity give rise to different types of proximity drawings. In the region
of influence based proximity drawings two vertices u and v are adjacent if and only if
some regions of the plane, defined by using the coordinates of u and v, are empty, i.e.
they do not contain any vertices of the drawing other than, possibly, u and v. Through-
out this paper we shall always assume that the proximity regions are closed sets; hence
if a vertex is on the boundary of the proximity region of u and v, the region is not empty.

For example, the Gabriel disk of two points u and v in the plane is the disk having u
and v as their antipodal points and a Gabriel drawing (also called a Gabriel graph) is a

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 166–178, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Approximate Proximity Drawings 167

planar straight-line drawing such that any two vertices are connected by an edge if and
only if their Gabriel disk is empty A generalization of the Gabriel disk is the so-called
β-region of influence: For a given value of β such that 1 ≤ β ≤ ∞, the β-region of
influence of two vertices u and v having Euclidean distance d(u, v) is the intersection
of the two disks of radius βd(u,v)

2 , centered on the line through u and v, one containing
u and touching v, the other containing v and touching u (hence the β-region for β = 1
is the Gabriel disk). Given a value of β, a straight-line drawing is a β-drawing (also
called a β-skeleton) if and only if for any edge (u, v) the β-region of influence of u
and v is empty. Delaunay drawings use a definition of proximity that extends the one
used for Gabriel drawings. Namely, the Delaunay disks of two vertices u and v are the
disks having uv as a chord (the Gabriel disk is therefore a particular Delaunay disk). In
a Delaunay drawing (also called a Delaunay graph) an edge (u, v) exists if and only if
at least one of the Delaunay disks of u and v is empty.

As is not hard to imagine, by changing the definition of region of influence, the
combinatorial properties of those graphs that admit a certain type of proximity drawing
can change significantly. For example, it is known that not all trees having vertices
of degree four admit a Gabriel drawing [4] while they have a β-drawing for 1 < β ≤
2 [12]. Unfortunately, the adoption of region of influence based proximity rules seems to
dramatically restrict the family of representable graphs. Also, despite the many papers
published on the topic, full combinatorial characterization of proximity drawable graphs
remains an elusive goal for most types of regions of influence. The interested reader is
also referred to [6,11,14] for references and results on these topics.

1.1 Problem and Results

In this paper, we want to compute planar straight-line drawings of graphs where adja-
cent vertices are relatively close to each other while non-adjacent vertices are relatively
far apart. In order to overcome the restrictions on the families of representable graphs
imposed by region of influence based proximity drawings, we study graph visualiza-
tions that are “good approximations” of these proximity drawings. The idea is to use
slightly smaller regions of influence to justify the existence of an edge and slightly
larger regions of influence to justify non-adjacent vertices.

More formally, let D be a disk with center c and radius r, and let ε1 and ε2 be two
non-negative real numbers. The ε1-shrunk disk of D is the disk centered at c and having
radius r

1+ε1
; the ε2-expanded disk of D is the disk centered at c and having radius (1 +

ε2)r. An (ε1, ε2)-proximity drawing is a planar straight-line proximity drawing where
the region of influence of two adjacent vertices is defined by using ε1-shrunk disks,
while the region of influence of two non-adjacent vertices uses ε2-expanded disks. In
the next sections we study (ε1, ε2)-Gabriel drawings, (ε1, ε2)-Delaunay drawings, and
(ε1, ε2)-β-drawings.

It is immediate to observe that all planar graphs with at least one edge or at least
three vertices have an (ε1, ε2)-proximity drawing for sufficiently large values of ε1, ε2.
For example, every planar straight-line drawing Γ with at least one edge is a (∞,∞)-
Gabriel drawing since an ∞-shrunk Gabriel disk reduces to a point (and thus the ∞-
shrunk disk of every edge in Γ is empty) and an∞-expanded Gabriel disk is the whole
plane (and thus the∞-expanded disk of every pair of non-adjacent vertices of Γ is never

168 W. Evans et al.

empty). At the other extreme, a (0, 0)-Gabriel drawing is a Gabriel drawing, since a 0-
shrunk Gabriel disk is a Gabriel disk and so is a 0-expanded Gabriel disk. Hence, not
all planar graphs admit a (0, 0)-Gabriel drawing [4].

Based on this observation, our main target is to establish values of ε1 and of ε2 that
make it possible to compute (ε1, ε2)-proximity drawings for meaningful families of
planar graphs. Our results are as follows:

– We prove that every embedded planar graph admits, for any ε1 > 0 and any ε2 >
0, an (ε1, ε2)-Gabriel drawing, an (ε1, ε2)-Delaunay drawing, and an (ε1, ε2)-β-
drawing (for all 1 ≤ β ≤ ∞) that preserve the given embedding. (See Theorems 1,
4, and 5.)

– We show that the above results are, in a sense, tight by exhibiting embedded planar
graphs that do not have an embedding preserving (ε1, ε2)-proximity drawing with
either ε1 = 0 or ε2 = 0. (See again Theorems 1, 4, and 5.)

– We study (0, ε2)-proximity drawings which, as explained in the next section, make
it possible to express different proximity conventions in a unified framework. In
particular, we study (0, ε2)-Gabriel drawings of outerplanar graphs, extending pre-
vious results of [7,12]. (See Theorems 2 and 3.)

We emphasize that the main contribution of this paper is in introducing the concept of
(ε1, ε2)-proximity drawing and in proving the existence of (ε1, ε2)-proximity drawings
for relevant families of graphs. Hence, we shall not spend words on the time complex-
ities of our algorithms; it is not hard to see, however, that our drawing techniques all
require polynomial time when adopting the real RAM model of computation. For rea-
sons of space, some proofs are sketched or omitted.

1.2 Related Work

Several generalizations, variants, and relaxations of proximity drawings have been de-
fined in the literature such as, for example, k-localized Delaunay triangulations, approx-
imate minimum spanning trees, and witness proximity drawings. The interested reader
can, for example, use [2,10,13] as starting points to study these topics.

Although each proximity drawing mentioned above would deserve some special
attention, in this introduction we can just spend a few words on weak proximity draw-
ings [7] that are more closely related with (ε1, ε2)-proximity drawings. In a weak prox-
imity drawing, the region of influence of any pair of adjacent vertices must be empty,
while no condition is given for the non-adjacent pairs. Hence, weak proximity drawings
guarantee visual closeness of groups of edge-related vertices but do not ensure that un-
related vertices are far apart. In contrast, (ε1, ε2)-proximity drawings guarantee some
relative closeness of the adjacent pairs of vertices and some relative separation of the
non-adjacent pairs for any finite values of ε1 and ε2.

Note that a weak proximity drawing is a (0,∞)-proximity drawing and that a
proximity drawing in the traditional sense is a (0, 0)-proximity drawing. Therefore,
(0, ε2)-proximity drawings make it possible to study proximity drawability in a unified
framework: as the value of ε2 increases, (0, ε2)-proximity drawings approach weak
proximity drawings. Several questions can be asked within this unifying framework.

Approximate Proximity Drawings 169

For example, not all trees have a Gabriel drawing, while all trees have a weak Gabriel
drawing. What is the minimum threshold value such that if ε2 is larger than this thresh-
old all trees are drawable? Theorem 2 answers this question.

2 Approximate Gabriel Drawings

Let Γ be a planar straight-line drawing of a graph and let ε1, ε2 be two non-negative
numbers. Let u, v be any two vertices of Γ and let D(u, v) be the Gabriel disk of u, v
(that is, the disk having u and v as the end-points of its diameter). We say that Γ is an
(ε1, ε2)-Gabriel drawing if: (i) for every edge (u, v) of Γ the ε1-shrunk disk of D(u, v)
is empty (i.e. it does not contain any vertex of Γ other than, possibly, u and v); and (ii)
for every pair of non-adjacent vertices u, v of Γ , the ε2-expanded disk of D(u, v) is not
empty (i.e. it contains some vertex w of Γ other than u and v). Note that a Gabriel graph
is a special case of an (ε1, ε2)-Gabriel drawing, namely the one in which ε1 = ε2 = 0.

Fig. 1 is an example of an (ε1, ε2)-Gabriel drawing for ε1 = 0 and ε2 = 0.7. The
drawing is not a Gabriel drawing; for example, the dotted disk in the figure is a Gabriel
disk, while the solid one is its 0.7-expanded version. Note that no Gabriel drawing exists
for the tree in Fig. 1 [4].

In order to establish values of ε1, ε2 that allow an

Fig. 1. A (0,0.7)-Gabriel draw-
ing of a tree that does not have
a (0, 0)-Gabriel drawing

(ε1, ε2)-Gabriel drawing of every planar graph, we start
by considering the extremal cases that either ε1 = 0
and ε2 > 0 or ε1 > 0 and ε2 = 0. An embedded planar
graph is a planar graph together with a planar topolog-
ical embedding. A planar straight-line drawing Γ of an
embedded planar graph G maintains (or preserves) the
embedding of G if Γ and G have the same set of faces
and for every vertex v the circular order of the edges
around v is the same in G and in Γ ; in this case we shall
also sometimes say that Γ is an embedding preserving
drawing of G.

The next two lemmas study the relationship between embedding preserving (ε1, ε2)-
Gabriel drawings with either ε1 = 0 or ε2 = 0 and Gabriel graphs. We say that an
embedded planar graph is Gabriel drawable if there exists a Gabriel graph Γ such that
Γ is an embedding preserving drawing of G.

Lemma 1. Let G be an embedded maximal planar graph, that is, a triangulation, and
let ε2 be any given real number such that ε2 ≥ 0. G has an embedding preserving
(0, ε2)-Gabriel drawing if and only if G has an embedding preserving Gabriel drawing.

Proof. If G has an embedding preserving Gabriel drawing Γ , then Γ is also a (0, 0)-
Gabriel drawing of G and therefore a (0, ε2)-Gabriel drawing for any ε2 > 0. If G
has an embedding preserving (0, ε2)-Gabriel drawing Γ , let V be the vertex set of Γ .
Let GG(V) be the Gabriel graph having V as its vertex set. Since Γ is a (0, ε2)-Gabriel
drawing, for every pair u, v of adjacent vertices in Γ the disk having u and v as antipodal
points does not contain any other element of V . Hence, every edge of Γ is also an edge
in GG(V). Since the Gabriel graph of a point set is a planar geometric graph [11] and
G is a triangulation, it follows that GG(V) coincides with Γ . ��

170 W. Evans et al.

It is immediate to verify that every embedded planar triangulation with a separating
three-cycle does not have a Gabriel drawing. Therefore, Lemma 1 implies the following.

Corollary 1. There exist embedded planar graphs that do not have an embedding pre-
serving (0, ε2)-Gabriel drawing, for any ε2 ≥ 0.

The proof of the next lemma is omitted. It can be established using a similar argument
to the one in the proof of Lemma 1, but focusing on pairs of non-adjacent vertices. The
key observation is that, for any embedding preserving (ε1, 0)-Gabriel drawing Γ of an
embedded tree T , any edge of the Gabriel graph GG(V) of the points in the vertex set
V of Γ must also be an edge of Γ . But this implies, since GG(V) is connected [11],
that GG(V) coincides with Γ .

Lemma 2. Let T be an embedded tree and let ε1 be any given real number such that
ε1 ≥ 0. T has an embedding preserving (ε1, 0)-Gabriel drawing if and only if T has
an embedding preserving Gabriel drawing.

Lemma 2 and the characterization of which trees admit a Gabriel drawing in [4] imme-
diately imply the following.

Corollary 2. There exist embedded planar graphs that do not have an embedding pre-
serving (ε1, 0)-Gabriel drawing, for any ε1 ≥ 0.

Motivated by Corollaries 1 and 2, we move our attention to (ε1, ε2)-Gabriel drawings
where both ε1 > 0 and ε2 > 0. We prove that one can compute a drawing that approx-
imates a Gabriel drawing for (almost) every planar graph, provided that the Gabriel
region is scaled down for the edges and is scaled up for the non-adjacent pairs of ver-
tices by any arbitrarily small chosen amount. Note, however, that for small values of ε2

any (ε1, ε2)-Gabriel drawing must contain at least one edge, namely between a pair of
vertices with minimum distance.

Lemma 3. Let ε1, ε2 be any two real numbers such that ε1 > 0 and ε2 > 0. Every
embedded planar graph with at least one edge has an embedding preserving (ε1, ε2)-
Gabriel drawing.

Proof. Let G be a planar graph with a given planar embedding. Consider some max-
imal planar supergraph G′ of G together with a planar embedding of G′ that respects
the given embedding of G. We choose G′ in such a way that there is a canonical or-
dering v1, . . . , vn of the vertices of G′ so that (v1, v2) is an edge of G. Let Gi be the
subgraph of G induced by Vi = {v1, v2, . . . , vi}. We show how to construct a draw-
ing Γi of Gi by induction so that, for all i ≥ 2, (a) Γi is an embedding preserving
(ε1, ε2)-Gabriel drawing of Gi; (b) all vertices in Vi that lie on the outer face of Γi are
horizontally visible from the right; and (c) vertices v2, v3, . . . , vi have y-coordinates
n, n− 1, . . . , n− i + 2. Clearly we can satisfy these properties for i = 2, since (v1, v2)
is an edge of G, by drawing v1 and v2 at points (0, 1) and (0, n), respectively.

Next, assuming we have Γi for some i ≥ 2, we show how to construct Γi+1. We will
place vertex vi+1 at y-coordinate n − i + 1 far enough to the right so that for every
vj , vk ∈ Vi, (i) an edge from vi+1 to vj is permitted by the ε1-shrunk Gabriel disk

Approximate Proximity Drawings 171

D(vi+1, vj) (i.e., the shrunken disk is empty); (ii) if (vi+1, vj) is not an edge in G then
the ε2-expanded Gabriel disk D(vi+1, vj) prevents the edge (i.e., the expanded disk
contains a vertex); and (iii) vi+1 does not lie in the ε1-shrunk Gabriel disk D(vj , vk).

Let D be the smallest disk centered on y-coordinate n− i + 1 that encloses Γi. Let
c be the center of D and r be the radius of D. Let �r be the (still to be determined)
distance of vi+1 from the rightmost point of D. We choose � so that for every p ∈ D,
if C is the disk with diameter pvi+1 (in fact, C can be any disk with chord pvi+1), (I)
the ε1-shrunk C does not intersect D (implying Property (i)), and (II) the ε2-expanded
C contains D (implying Property (ii)). Let b be the center of C. Since b is on the
perpendicular bisector of pvi+1, d(b, p) ≥ (�/2)r. Refer to Fig. 2.
Property (I) is equivalent to d(b,p)

d(b,c)−r < 1 + ε1.

�r2r

v2

v1

c

vi vi+1

p b

C

shrunk C

expanded C

D

Fig. 2. Proof of Lemma 3

By the triangle inequality, d(b, p) ≤ d(b, c) +
d(c, p) ≤ d(b, c)+r. Thus, d(b,p)

d(b,c)−r ≤ d(b,p)
d(b,p)−2r

= 1 + 2r
d(b,p)−2r ≤ 1 + 2r

(�/2)r−2r = 1 + 4
�−4 .

Property (II) is equivalent to d(b,c)+r
d(b,p) < 1 + ε2.

By the triangle inequality, d(b, c) ≤ d(b, p) +
d(p, c) ≤ d(b, p)+r. Thus, d(b,c)+r

d(b,p) ≤ d(b,p)+2r
d(b,p)

= 1 + 2r
d(b,p) ≤ 1 + 4/�. If we choose � large

enough so that 4/(� − 4) < ε1 and 4/� < ε2

then we satisfy both Properties (i) and (ii). Prop-
erty (iii) is immediate since the ε1-shrunk disks
D(vj , vk) for edges (vj , vk) with vj , vk ∈ Vi are
contained in D and vi+1 lies outside D. In addition, we choose � large enough so that
no edge from vi+1 to vj , j ≤ i, crosses any (already drawn) edge in Γi. Thus, we ensure
that Γi+1 respects the given embedding and is a (ε1, ε2)-Gabriel drawing of Gi+1. ��
The results in this section can be summarized as follows.

Theorem 1. Let G be an embedded planar graph with at least one edge. For any given
values of ε1, ε2 such that ε1 > 0 and ε2 > 0, G admits an embedding preserving
(ε1, ε2)-Gabriel. Also, there exist embedded planar graphs that do not have an embed-
ding preserving (0, ε2)-Gabriel drawing and embedded planar graphs that do not have
an embedding preserving (ε1, 0)-Gabriel drawing.

Theorem 1 naturally gives rise to two research directions. One is about extending the set
of proximity regions that make it possible to compute (ε1, ε2)-proximity drawings for
all planar graphs and for any arbitrarily small positive values of ε1 and ε2. The second
is about studying subfamilies of planar graphs that admit an (ε1, ε2)-Gabriel drawing
in the extremal cases that either ε1 = 0 or ε2 = 0. The next two sections study these
questions; as for the extremal case, we shall focus on (0, ε2)-Gabriel drawings because,
as explained in the introduction, they generalize the notion of weak Gabriel drawings.

172 W. Evans et al.

3 (0, ε2)-Gabriel Drawings

This section studies (0, ε2)-Gabriel drawings. Observe that this family of approxi-
mate proximity drawings generalizes weak Gabriel drawings, which are equivalent to
(0,∞)-Gabriel drawings. Di Battista et al. [7] proved that all biconnected outerplanar
graphs and all trees have a (0,∞)-Gabriel drawing, while Bose et al. [4] proved that not
all trees have a (0, 0)-Gabriel drawing. The next two lemmas and Theorem 2 establish
a tight threshold value for ε2 for the (0, ε2)-Gabriel drawability of embedded trees.

Lemma 4. For any real number ε2 < 2, there exists a tree that does not admit a (0, ε2)-
Gabriel drawing.

Proof. Let 0 ≤ ε2 < 2 be a real number. Consider the star tree Sd with central vertex v
of degree d. We show that if d is sufficiently large then Sd has no (0, ε2)-Gabriel draw-
ing. To this end, consider an arbitrary drawing Γ of Sd and assume for a contradiction
that Γ is a (0, ε2)-Gabriel drawing. Select two distinct leaves u and w of Sd such that
in Γ the angle α between uv and vw is minimal. Note that, for d sufficiently large, we
have α < π/4.

We assume without loss of gener-

v

u

w

c

α
α

α

α
2α

α
R2

R1

Fig. 3. Proof of Lemma 4

ality that d(v, w) ≤ d(u, v) = 1 holds.
Let c denote the midpoint of uw. The
situation is depicted in Fig. 3. Note
that, since D(u, v) does not contain
any vertices other than u and v, we
have d(v, w) ≥ cosα. This implies
sin α ≤ d(u, w) ≤ 2 sin α

2 .
Since α is minimal, the shaded area

in Fig. 3, that is, the wedges with apex
v and aperture angle α adjacent to the
wedge defined by u, v and w, cannot contain any vertex in their interior. Hence, to ob-
tain a lower bound on the minimum value by which D(u, w) must be expanded to con-
tain a vertex other than u and w, it suffices to consider the minimum of 2d(c,v)

d(u,w) ,
2d1

d(u,w) ,

and 2d2
d(u,w) , where d1 and d2 denote the distance of c from the rays R1 and R2, respec-

tively (see Fig. 3).
Now, we have 2d(c,v)

d(u,w) ≥ cos α
sin(α/2) which tends to +∞ as d tends to +∞ and, thus, α

tends to 0. It also follows, using simple geometric arguments, that

2d1

d(u, w)
≥
(

cosα

2
+

1
4 cosα

)
sin(2α)
sin(α/2)

and

2d2

d(u, w)
≥
(

cosα

2
+

1
4 cosα

+
cos(2α)
4 cosα

+
sin(2α)
4 sinα

)
sin α

sin(α/2)

hold. It is routine to check that the right hand sight in both inequalities above tends to 3
as d tends to +∞. But this implies that, for sufficiently large d, the ε2-expanded disk
D(u, w) does not contain any vertices other than u and w, a contradiction. ��

Approximate Proximity Drawings 173

Lemma 5. Let T be an embedded tree. Then T admits an embedding preserving (0, ε2)
-Gabriel drawing for any real number ε2 ≥ 2.

Proof. (Sketch) Root T at an arbitrary vertex t. First, draw t at an arbitrary point. In
general, let W and E(W) denote the set of vertices and edges, respectively, already
drawn. In a single step of our algorithm we consider an arbitrary v ∈ W such that the
set U of its children are all undrawn. If no such v exists, we will have drawn T .

Let r be the minimum of 1
2 min{d(v, w) : w ∈W\{v}} and 1

2 min{d(v, D(w, w′)) :
(w, w′) ∈ E(W) and w, w′ �= v}, where d(v, D) is the distance from v to disk D (if
v is t then set r = 1). Draw the vertices in U equally spaced on the semicircle of ra-
dius r centered at v whose base side is perpendicular to the line segment between v
and v’s parent, so that the given embedding of T is maintained (cf. Fig. 4(a) where the
semicircle is drawn shaded).

Note that, for all u ∈ U , (a) the disk D(v, u) is

(b)

α
α

vu

u′

u′′

(a)

v v’s parent

Fig. 4. Proof of Lemma 5

empty, (b) the ε2-expanded disk of D(u, w) contains v
for all w ∈ W \ {v}, (c) the edge (v, u) does not cross
any edge in E(W), and (d) for every edge (w, w′) ∈
E(W), D(w, w′) does not contain u.

It remains to show that, for every pair u, u′ ∈ U , u �=
u′, the ε2-expanded disk of D(u, u′), denoted in the fol-
lowing by D′, contains a vertex in W ∪ U \ {u, u′}.
If u and u′ are not consecutive on the semicircle then
a vertex in U between them lies in D′. Otherwise, let
α = ∠uvu′. If α ≥ π/4 then v is in D′. If α ≤ π/5
then the vertex u′′ ∈ U that follows u′ is in D (see
Fig. 4(b)). ��

Lemmas 4 and 5 can be summarized as follows.

Theorem 2. Every embedded tree has an embedding preserving (0, ε2)-Gabriel draw-
ing for any given value of ε2 such that ε2 ≥ 2. Also, for each value of ε2 such that
0 ≤ ε2 < 2, there exists a tree T such that T does not have a (0, ε2)-Gabriel drawing.

We now consider outerplanar graphs with cycles. Lenhart and Liotta [12] proved that
all biconnected outerplanar graphs with a given outerplanar embedding have a (0, 0)-
Gabriel drawing that maintains the embedding, while a connected outerplanar graph
where a cut vertex is shared by more that four biconnected components is not (0, 0)-
Gabriel drawable. The next theorem shows that this upper bound on the number of
components sharing a cutvertex can be removed in (0, ε2)-Gabriel drawings, provided
that the input graph does not have any degree-one vertices. In the statement, by embed-
ded outerplanar graph we mean an outerplanar graph with a planar embedding where
all vertices are on the external face. The proof is omitted.

Theorem 3. Let G be an embedded outerplanar graph that does not have vertices of
degree one or zero. G has a (0, ε2)-Gabriel drawing that maintains the embedding for
any given value of ε2 such that ε2 > 0.

174 W. Evans et al.

4 Approximate β-Drawings and Delaunay Drawings

In this section we extend Theorem 1 to other families of (ε1, ε2)-proximity drawings.
Subsection 4.1 studies an infinite family of (ε1, ε2)-proximity drawings that includes
the (ε1, ε2)-Gabriel drawings as a special case. Subsection 4.2 introduces and studies
approximations of the Delaunay drawings.

4.1 (ε1, ε2)-β-Drawings

Let ε1, ε2 be any two non-negative numbers and let β be any real number such that
β ≥ 1. Let Γ be a planar straight-line drawing of a graph and let u, v be any two vertices
of Γ . The β-region of influence of u and v, denoted as β(u, v), is the intersection of
two disks Du and Dv such that: (i) both Du and Dv have the center along the line
through u, v; (ii) both Du and Dv have radius βd(u,v)

2 , where d(u, v) is the Euclidean
distance between u and v; Du contains v and Dv contains u; and (iii) the circumference
of Du contains u and the circumference of Dv contains v. The ε1-shrunk β-region of
influence of u and v is defined as the intersection of the ε1-shrunk disk of Du with the
ε1-shrunk disk of Dv. Similarly, the ε2-expanded β-region of influence of u and v is the
intersection of the ε2-expanded disks of Du and Dv.

We say that Γ is an (ε1, ε2)-β-drawing if: (i) for every edge (u, v) of Γ the ε1-shrunk
β-region of influence of u and v is empty; and (ii) for every pair of non-adjacent vertices
u, v of Γ , the ε2-expanded β-region of influence of u and v is not empty.

Not all embedded planar graphs have a (0, 0)-β-drawing [4]. Also, by definition, an
(ε1, ε2)-β-drawing with β = 1 is a (ε1, ε2)-Gabriel drawing. Hence, by Corollaries 1
and 2, it follows that not all embedded planar graphs admit an (ε1, ε2)-β-drawing that
respects the given embedding, when either ε1 or ε2 is set to 0. On the other hand, we
can extend Lemma 3 to all values of β > 1. The proof technique is similar to the one in
Lemma 3. Therefore, the proof is omitted.

Lemma 6. Let ε1, ε2 be any two real numbers such that ε1 > 0 and ε2 > 0 and let β
be any real number such that β ≥ 1. Every embedded planar graph with at least one
edge has a (ε1, ε2)-β-drawing that maintains the given embedding.

We can summarize the discussion of this section as follows.

Theorem 4. Let G be an embedded planar graph with at least one edge. For any given
values of ε1, ε2 such that ε1 > 0 and ε2 > 0 and for any value of β such that β ≥ 1,
G admits an embedded (ε1, ε2)-β-drawing. Also, there exist embedded planar graphs
that do not have a (0, ε2)-β-drawing and planar graphs that do not have a (ε1, 0)-β-
drawing that maintain the given embedding.

4.2 (ε1, ε2)-Delaunay drawings

Let Γ be a planar straight-line drawing of a graph and let ε1, ε2 be any two non-negative
numbers. Let u, v be any two vertices of Γ and let D(u, v) be the set of all disks in
the plane that have uv as a chord. Let Dε1(u, v) be the set of the ε1-shrunk disks of

Approximate Proximity Drawings 175

D(u, v) and let Dε2(u, v) be the set of the ε2-expanded disks of D(u, v). The drawing
Γ is an (ε1, ε2)-Delaunay drawing if: (i) for any two adjacent vertices u, v of Γ , there
exists at least one empty disk in Dε1(u, v); and (ii) for any two non-adjacent vertices
u, v of Γ , all disks of Dε2(u, v) contain some vertex of Γ other than u and v. Note
that a Delaunay drawing is a special case of (ε1, ε2)-Delaunay drawings, namely the
one in which ε1 = ε2 = 0. Fig. 5 is an example of an (ε1, ε2)-Delaunay drawing for
ε1 = 0.25 and ε2 = 0.2. In this figure, two Delaunay disks are described (dotted) and
their corresponding ε1-shrunk and ε2-expanded counterparts (solid) are depicted. The
graph with the planar embedding of Fig. 5 does not admit an embedding preserving
Delaunay drawing [8].

Recall that, in the context of Delaunay

Fig. 5. An (ε1, ε2)-Delaunay drawing for
ε1 = 0.25 and ε2 = 0.2 of a planar embed-
ded graph that does not have an embedding
preserving Delaunay drawing

drawings, a point set P is degenerate if ei-
ther four or more co-circular points in P
define a circle that does not contain another
point in P in its interior, or there are three or
more collinear points in P on the boundary
of the convex hull of P (see, e.g. [9]). Note
that, for any (0, 0)-Delaunay drawing Γ , if
the point set P representing the vertices in
Γ is non-degenerate, Γ coincides with the
well-known non-degenerate Delaunay tri-
angulation of P . We say that an embedded
maximal planar graph G is Delaunay draw-
able if the exists a set of points such that the
Delaunay graph of this point set is an embedding preserving drawing of G. Since De-
launay triangulations are among the most studied graphs in computational geometry,
we start by investigating the relationship between (ε1, ε2)-Delaunay drawability and
Delaunay drawability of maximal planar graphs. The proof of the next lemma is again
omitted.

Lemma 7. There exist embedded maximal planar graphs that do not admit an embed-
ding preserving (ε1, 0)-Delaunay drawing, for any value ε1 ≥ 0.

While Lemma 7 considers (ε1, 0)-Delaunay drawings of maximal planar triangulations,
one can wonder what happens with the other extreme, that is, with (0, ε2)-Delaunay
drawings. With arguments similar to those in the proof of Lemma 1 and the results
in [9], the following lemma and corollary can be proved.

Lemma 8. Let G be an embedded maximal planar triangulation and let ε2 be any
given real number such that ε2 ≥ 0. G has an embedding preserving (0, ε2)-Delaunay
drawing if and only if G is Delaunay drawable.

Corollary 3. There exist embedded planar graphs that do not have an embedding pre-
serving (0, ε2)-Delaunay drawing, for any ε2 ≥ 0.

By using again similar arguments as those in the proof of Lemma 3 we can prove the
following.

176 W. Evans et al.

Lemma 9. Let ε1, ε2 be any two real numbers such that ε1 > 0 and ε2 > 0. Every
planar graph with at least one edge has a (ε1, ε2)-Delaunay drawing.

The discussion of this section is summarized in the following theorem, which estab-
lishes that one can compute a drawing that approximates a Delaunay drawing for every
planar graph, provided that the Delaunay disks are scaled down for the edges and are
scaled up for the non-adjacent pairs of vertices by any arbitrarily small chosen amount.

Theorem 5. Let G be an embedded planar graph. For any given values of ε1, ε2 such
that ε1 > 0 and ε2 > 0, G admits an embedding preserving (ε1, ε2)-Delaunay drawing.
Also, there exist embedded planar graphs that do not have an embedding preserving
(0, ε2)-Delaunay drawing and embedded planar graphs that do not have an embedding
preserving (ε1, 0)-Delaunay drawing.

5 Conclusions and Open Problems

In this paper we have introduced an approximate version of the well-studied proxim-
ity drawings. In comparison with the standard definition of region of influence based
proximity drawing, our drawings consider a slightly smaller region of influence for the
adjacent pairs of vertices and a slightly larger region for the non-adjacent pairs. The
amount by which the region of influence can be scaled up or down depends on two
non-negative real numbers ε1 and ε2; the resulting straight-line drawing is called an
(ε1, ε2)-proximity drawing. Intuitively, the smaller these parameters are the closer an
(ε1, ε2)-proximity drawing is to the standard proximity drawing.

The paper has investigated the approximation of three well-known proximity draw-
ings, namely Gabriel drawings, Delaunay drawings, and β-drawings. For each of these
types of proximity drawings, we showed that every planar graph has a planar straight-
line drawing that can be made arbitrarily close to satisfy the usual proximity rule. This
contrasts with well-known results that only restricted subfamilies of planar graphs have
a (standard) Gabriel drawing, or a Delaunay drawing, or a β-drawing. Also extremal
cases which generalize and extend the notion of weak proximity have been investigated.
A first natural direction for future research is therefore the following.

Question 1. Extend the study of approximate proximity to other classical or emerg-
ing families of proximity drawings, such as the rectangle of influence drawings and/or
the witness Delaunay drawings. A good starting point for this question may be, for
example [3].

We remark that the major contribution of this paper is in analyzing to what extent the
class of representable graphs can vary if the standard definition of proximity is approxi-
mate in the manner described above. Based on the presented results, we believe that the
proposed definition of approximate proximity may be effectively adopted in practice to
represent planar graphs where proximity constraints need to be maintained. However, in
order to do so, relevant questions about the area and the bit complexity of the computed
drawings must be addressed.

Approximate Proximity Drawings 177

As an example, we recall a recent paper by Angelini et al. [1] proving that drawing
a tree of maximum degree five as a Euclidean minimum spanning tree may require ex-
ponential area. Since the family of β-drawable trees for β = 2 is the family of trees
having maximum degree five and since a 2-drawing of a tree is also a Euclidean mini-
mum spanning tree, it follows that (0, 0)-2 drawings may require exponential area. On
the other hand, every straight-line planar drawing is an (ε1, ε2)-proximity drawing for
a sufficiently small value of ε1 and a sufficiently large value of ε2. In fact, every planar
graph has a (0,∞)-proximity drawing with integer coordinates and in polynomial area
(see, e.g., [5]). This discussion leads to the following research direction.

Question 2. Study polynomial area approximation schemes, that is, for any fixed ε1,
ε2, the size of the computed drawing is bounded by a polynomial in the number of
vertices of the given graph. Similar studies have been described in [10] in the context
of drawing a tree as a minimum spanning tree approximation.

Acknowledgments. This research was initiated during the Bici BWGD 2011: Bertinoro
Workshop on Graph Drawing. The authors are thankful to the workshoppers for useful
discussions and also to the anonymous referees for their helpful comments. Research
supported in part by MIUR of Italy under project AlgoDEEP prot. 2008TFBWL4 and
NSERC of Canada, as well as by EUROGIGA project GraDR 10-EUROGIGA-OP-003.

References

1. Angelini, P., Bruckdorfer, T., Chiesa, M., Frati, F., Kaufmann, M., Squarcella, C.: On the
Area Requirements of Euclidean Minimum Spanning Trees. In: Dehne, F., Iacono, J., Sack,
J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 25–36. Springer, Heidelberg (2011)

2. Aronov, B., Dulieu, M., Hurtado, F.: Witness (Delaunay) graphs. Comput. Geom. 44(6-7),
329–344 (2011)

3. Aronov, B., Dulieu, M., Hurtado, F.: Witness Rectangle Graphs. In: Dehne, F., Iacono, J.,
Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 73–85. Springer, Heidelberg (2011)

4. Bose, P., Lenhart, W., Liotta, G.: Characterizing proximity trees. Algorithmica 16(1), 83–110
(1996)

5. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinator-
ica 10(1), 41–51 (1990)

6. Di Battista, G., Lenhart, W., Liotta, G.: Proximity Drawability: a Survey. In: Tamassia, R.,
Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 328–339. Springer, Heidelberg (1995)

7. Di Battista, G., Liotta, G., Whitesides, S.: The strength of weak proximity. J. Discrete Algo-
rithms 4(3), 384–400 (2006)

8. Dillencourt, M.B.: Realizability of Delaunay triangulations. Inf. Process. Lett. 33(6), 283–
287 (1990)

9. Dillencourt, M.B., Smith, W.D.: A Simple Method for Resolving Degeneracies in Delaunay
Triangulations. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700,
pp. 177–188. Springer, Heidelberg (1993)

10. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Drawing a Tree as a Minimum Spanning
Tree Approximation. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II.
LNCS, vol. 6507, pp. 61–72. Springer, Heidelberg (2010)

178 W. Evans et al.

11. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proc.
IEEE 80(9), 1502–1517 (1992)

12. Lenhart, W., Liotta, G.: Proximity Drawings of Outerplanar Graphs. In: North, S.C. (ed.)
GD 1996. LNCS, vol. 1190, pp. 286–302. Springer, Heidelberg (1997)

13. Li, X.: Applications of computational geometry in wireless networks. In: Cheng, X., Huang,
X., Du, D.-Z. (eds.) Ad Hoc Wireless Networking, pp. 197–264. Kluwer Academic Publish-
ers (2004)

14. Liotta, G.: Proximity drawings. In: Tamassia, R. (ed.) Handbook of Graph Drawing and
Visualization. CRC Press (to appear)

Generalizing Geometric Graphs�

Edith Brunel, Andreas Gemsa, Marcus Krug, Ignaz Rutter, and Dorothea Wagner

Faculty of Informatics, Karlsruhe Institute of Technology (KIT), Germany
firstname.lastname@kit.edu

Abstract. Network visualization is essential for understanding the data obtained
from huge real-world networks such as flight-networks, the AS-network or social
networks. Although we can compute layouts for these networks reasonably fast,
even the most recent display media are not capable of displaying these layouts
in an adequate way. Moreover, the human viewer may be overwhelmed by the
displayed level of detail. The increasing amount of data therefore requires tech-
niques aiming at a sensible reduction of the visual complexity of huge layouts.

We consider the problem of computing a generalization of a given layout re-
ducing the complexity of the drawing to an amount that can be displayed without
clutter and handled by a human viewer. We take a first step at formulating graph
generalization within a mathematical model and we consider the resulting prob-
lems from an algorithmic point of view. Although these problems are NP-hard
in general, we provide efficient approximation algorithms as well as efficient and
effective heuristics. At the end of the paper we showcase some sample general-
izations.

1 Introduction

As a natural consequence of the increasing amount of available data we are facing large
and even huge networks such as road and flight networks, the AS-network and social
networks with millions of vertices. Visualization of these networks is a key to assessing
the inherent graph-based information. There are several methods for computing layouts
of huge graphs with millions of vertices within a few minutes [21,23,19].

But, how do we display such layouts? Modern HD displays feature roughly 2 Mio
pixels and a standard A4 page allows roughly 8.7 Mio dots at a resolution of 300 pixels
per inch. Even if we require only a minimal distance of 10 pixels or dots between the
vertices of the graph, then we can display only several thousand vertices, and not too
many edges. If we additionally seek to display graph structure and keep visual clutter
low, the number of vertices we can display degrades even further.

Even worse, the human perception is not capable of extracting detailed information
from huge layouts with millions of vertices. Since, by a simple counting argument,
there are incompressible adjacency matrices, a graph with only 1 Mio vertices may
encode incompressible information of up to 125 Gigabytes. This exceeds by a factor of
3.6 the average daily information consumption of an American, estimated at 34 (highly
compressible) Gigabytes [4]. It is thus apparent that even an æsthetically pleasing layout
of a huge graph may not be suited for displaying information to a human viewer.

� Research was partially supported by EUROGIGA project GraDR 10-EuroGIGA-OP-003.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 179–190, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

180 E. Brunel et al.

Related Work. Known approaches to coping with the huge amount of data by allowing
for some kind of abstraction can be categorized into structural and geometric methods.
While structural methods create a new layout for the data typically using a clustering
of the graph, geometric methods are applied to a given layout maintaining the user’s
mental map [26].

Eades and Feng [13] describe a multilevel visualization method for clustered graphs.
A force-directed layout algorithm based on a hierarchical decomposition of the graph
is given by Quigley and Eades [28]. This method allows for visualizing the graph at
different levels of abstraction. Abello el al. [2] discuss graph sketches for very large
graphs based on mapping clusters of the graph to certain regions of the screen.

Fisheye visualizations [15,30], on the other hand, apply a distortion to a given lay-
out to emphasize the layout in the area of interest. The resolution of the drawing de-
teriorates towards the boundary of the drawing and parts of the drawing in this area
are usually densely cluttered. Abello et al. [1] study the visualization of large graphs
with compound-fisheye views and treemaps, employing hierarchical clustering and a
treemap representation of this clustering. Edge Bundling techniques [31,22] aim at re-
ducing the complexity of layouts by bundling similar edges.

Generalization has received considerable attention in cartography [25]. Mackaness
and Bear [24] highlight the potential of graph theory for map generalization. Saalfeld
states the map generalization problem as a straight-line graph drawing problem [29]
and formulates a number of challenges resulting from this perspective. Among others,
he asks for a rigorous mathematical model for graph-based generalizations and provable
guarantees. We are not aware of any work aiming at assessing this problem in general.

Our Contribution. We take a first step towards establishing a mathematical model for
the problem of generalizing geometric graphs. Our model is based on the fact that ver-
tices have a fixed size and edges have a fixed width on the screen. Visual clutter refers
to an agglomeration of overlapping visual features in a limited area resulting in indistin-
guishable features. Our goal is to either avoid or reduce visual clutter. We identify three
types of clutter. Vertex-Clutter occurs when two or more vertices are too close to each
other. It may render the drawing unusable due to hidden edge information; see Fig. 1.
Edge-Clutter occurs when too many edges cross a limited area. Even if vertices are far
enough apart, edge clutter may lead to indistinguishable edge information; see Fig. 2.
Vertex-Edge-Clutter occurs when a vertex is too close to an edge. In this case, we are
unable to tell, whether the vertex is incident to the edge or not; see Fig. 3.

We devise a framework that allows for assessing all types of clutter in an incremental
way by modeling the elimination or reduction of each type of clutter as an optimization
problem, which we analyze in terms of complexity. We show that these problems are
NP-hard in general and we provide approximation algorithms as well as effective and
efficient heuristics that can be applied to huge graphs within reasonable time.

Preliminaries. A geometric graph is a pair G = (P,E) such that P⊆R2 is a finite set of
n points in the plane and E is a set of m straight-line segments with endpoints in P. If not
otherwise stated, graph refers to a geometric graph throughout this paper. For p∈ P and
a non-negative number r ∈R+

0 , we denote by B(p,r) the disk with center p and radius r.
We model the finite resolution of a screen by assuming that each point p occupies the

Generalizing Geometric Graphs 181

Fig. 1. Vertex-Clutter Fig. 2. Edge-Clutter Fig. 3. Vertex-Edge-Clutter

locus of points whose distance to p is bounded by s ∈ R+
0 and, similarly, each edge e

occupies the locus of points whose distance to e is bounded by w ∈ R+
0 .

A generalization of G is a pair (H,ϕ) where H = (Q,F) is a geometric graph with
Q ⊆ P such that ϕ : P→ Q maps vertices of G to vertices of H and F is a subset of
edges resulting from a contraction of G according to ϕ . Since the subgraph induced by
ϕ−1(q) is contracted into a single vertex, we call this subgraph the cluster of q, denoted
by Cq. Given Q⊆ P, we denote by ν : P→Q the Voronoi mapping which maps p∈ P to
its closest neighbor in Q with respect to the Euclidean metric. We call the corresponding
clusters Voronoi clusters. Throughout the paper distance refers to the Euclidean metric.

Organization of the Paper. In Section 2 we consider the problem of eliminating vertex-
clutter. We discuss our model for the generalization of the vertex set and show NP-
hardness of the corresponding optimization problem. We further show that the size
of the generalized pointset can be approximated and we devise an efficient heuristic
for further optimization. In Section 3 we study the reduction of edge-clutter. We show
that it is in general NP-hard to find a sparse or short subset of the edges maintaining
monotone tendencies. When the original graph is complete, however, or if we are not
restricted to use edges of the original graph, we can efficiently compute a sparse graph
approximately representing monotone tendencies of the edges. In Section 4 we model
the problem of reducing vertex-edge clutter and we show how to compute a drawing
that allows for unambiguously deciding whether an edge is incident to a vertex or not,
thus effectively eliminating vertex-edge clutter. We showcase some sample generaliza-
tions and conclude with a short discussion as well as open problems in Section 5. We
omit some details due to space constraints; for full proofs and additional sample gener-
alizations we refer the reader to the long version of this paper [6].

2 Generalizing the Vertex Set without Vertex-Clutter

In this section we consider the problem of computing a generalization (H,ϕ) without
vertex clutter for a geometric graph G = (V,E), where H = (Q,F). We focus on the case
that ϕ is the Voronoi-mapping assigning each vertex in P to its nearest neighbor in Q. In
order to avoid vertex-clutter we require a minimal distance r ∈R+

0 between the vertices
of a generalized geometric graph. Hence for each vertex p ∈Q in the generalized graph
the disk B(p,ρ(p)) with ρ : P→ R+

0 and ρ(p) ≥ r may not contain any other point
from Q. We call a pointset Q with this property a ρ-set of P. This prerequisite, however,

182 E. Brunel et al.

must be balanced with additional quality measures such as the size of the ρ-set, the
clustering induced by ϕ and the distribution of the points in Q in order to avoid trivial
solutions such as a single vertex.

Choosing ρ ≡ r uniformly for all points p ∈ P may have a severe effect on the dis-
tribution of the points when maximizing the size of a ρ-set, since the distances to the
nearest neighbors in an inclusion-maximal ρ-set tend to be uniformly distributed re-
gardless of the original distribution. However, it may be more appropriate to approxi-
mate the distribution of the original pointset. In order to approximate this distribution by
an inclusion-maximal ρ-set we can choose ρ as follows. Let p0 be the point that maxi-
mizes the number of points in B(p,r)∩P over all p∈P and let k = |B(p0,r)∩P|−1. For
each p ∈ P let dk(p)≥ r denote p’s distance to its k-nearest neighbor in P. By choosing
ρ(p) = dk(p) ≥ r any inclusion-maximal pointset will have approximately the same
distribution as the original pointset since for each point in the generalized pointset we
discarded the same amount of points from the original graph.

Since, in general, it is not clear which behavior is more appropriate, we introduce a
parameter α ∈ [0,1] and let the user decide by setting ρ(p) := max{r,αdk(p)}. That
is, the user can choose between retaining as many points in areas with low clutter as
possible (α = 0) and approximating the distribution of the pointset (α = 1) as well as
interpolations between the two extremes.

We consider two measures to assess the quality of a ρ-set Q. While the size of Q is
a measure of the amount of data that is retained, the quality of the clustering induced
by ϕ is a measure for the amount of data that is lost due to the contraction of the
vertices. There are several established ways of assessing the quality of clusterings, such
as coverage, performance, conductance [16], and modularity [5]. We consider a measure
similar to coverage, which we adapt to our purpose as follows. For each cluster Cq let nq

denote the number of vertices and mq denote the number of edges in Cq, respectively.
We define the local coverage of a cluster Cq by lcov(Cq) = 2mq/(nq(nq− 1)) , i.e., as
the amount of intra-cluster coherence that is explained by the intra-cluster edges. The
local coverage of the generalization is defined as lcov(H,ϕ) = minq∈Q lcov(ϕ−1(q)) .

We consider the following multi-objective optimization problem. Given a geometric
graph G = (P,E), a non-negative radius r ∈ R+

0 and α ∈ [0,1] the LOCAL COVERAGE

CLUSTER PACKING (LCCP) problem is to compute a ρ-set Q ⊆ P and a mapping
ϕ : P→Q that maximizes both |Q| and lcov(H,ϕ).

2.1 Complexity

The problem of computing a ρ-set of maximum size for α = 0 can be reduced to the
problem of computing a maximum independent set in the intersection graph of the disks
with radius r/2 centered at the points in P. Clark et al. [9] prove that this problem is
NP-hard in unit-disk graphs, even if the disk representation of the graph is given.

Corollary 1. Maximizing the size of a ρ-set is NP-hard for α = 0.

Next, we show that it is also NP-hard to maximize the local coverage in the induced
clusters of a ρ-set as well as the total size of the generalization obtained by choosing a
ρ-set if the clustering is obtained by the Voronoi mapping induced by the points in Q.

Generalizing Geometric Graphs 183

Theorem 1. Maximizing lcov(H,ν) of a generalization (H,ν) is NP-hard for α = 0.

The proof is by reduction from the NP-hard problem PLANAR MONOTONE 3-SAT [11].
Given an instance of this problem we construct a geometric graph G composed of gad-
gets acting as variables, literals and clauses, respectively, such that for constant ρ G
contains a ρ-set with local coverage 1 if and only if the corresponding planar monotone
3-sat-formula is satisfiable. A full proof can be found in [6].

2.2 Approximating the Maximum Size of a Generalization

Although it is unlikely that we can efficiently compute a ρ-set with maximum size, we
show that we can approximate the size of a maximum ρ-set.

Theorem 2. Let G be a geometric graph and let r ∈ R+
0 and α ∈ [0,1] be given. In

O(kn+n log5 n(loglogn)2) time we can compute a generalization H of G that approx-
imates the maximum number of vertices of a generalization by a factor of (7k + 2)/3,
where k = maxp∈P |B(p,ρ(p))∩P|−1 .

In order to prove Theorem 2 we use the following auxiliary lemma, whose proof can be
found in [6].

Lemma 1. Let p0 be a point in the plane and let k ∈ N. Then there are at most 6k
points Q such that p0 is among the k closest points for each of the points q ∈ Q.

Proof (Proof of Theorem 2). Let H be the graph on the set of points such that pq is
a (directed) edge if and only if q ∈ B(p,ρ(p)). The graph H contains an independent
set of size s if and only if G contains a ρ-set of this size. Each independent set in H
corresponds to a ρ-set in G since each point in H is connected to all points that are closer
than ρ(p) and it is connected to all points q such that p is in the ρ(q) disk around q. On
the other hand, each ρ-set in G induces an independent set due to this construction.

By choice of ρ , each vertex has out-degree bounded by k = maxp∈P |B(p,r)∩P|−1
for any value of α . There is an ingoing edge from q into p if and only if p is among the k
closest neighbors of q. By Lemma 1 there are at most 6k points such that p is among the
closest k points for each of these points. Hence, the in-degree of each vertex is bounded
by 6k. In total, each vertex has degree at most 7k. Hence, by a result due to Halldórsson
and Radhakrishnan [20] we can approximate the maximum size of an independent set
by a factor of (7k + 2)/3. The algorithm greedily chooses the minimum degree vertex
in each step and can be implemented to run in time O(kn), given the graph H.

In order to compute H we locate the points in a closed disk by a circular range query
in O(logn + k) time using O(n log5 n(loglogn)2) preprocessing time [7]. Hence, the
total running time is O(kn + n log5 n(loglogn)2). ��
Based on this approximation, we heuristically compute a ρ-set Q balancing both the
size of Q and the local coverage of the Voronoi clustering induced by Q. For p ∈ P
let m̃(p) be the number of edges whose endpoints are both contained in B(p,ρ(p)/2)
and let ñ(p) be the number of points in B(p,ρ(p)). We show the following.

Lemma 2. Let Q be an inclusion-maximal ρ-set and let α = 0. Further, let H = (Q,F)
be the generalization obtained from G = (P,E) by the Voronoi-mapping ν . Then the
value minq∈Q 2m̃(q)/(ñ(q)(ñ(q)−1)) is a lower bound for lcov(H,ν).

184 E. Brunel et al.

Proof. For α = 0 we have ρ ≡ r. Whenever p is chosen as a cluster center in Q, the
points in B(p,r/2) are closer to p than to any other point in Q, since the closest point to
p in Q has distance to p at least r. Hence, the edges in B(p,r/2) are intra-cluster edges
of Cp. On the other hand, the number of points in each of the clusters is bounded by
ñ(p) whenever α = 0 and Q is an inclusion-maximal ρ-set. To see this, consider any
vertex q that is not contained in B(p,r), but closer to p than to any other cluster center.
Then q is contained in none of the disks centered in the cluster centers and, thus, q must
be a cluster center itself, since Q is inclusion-maximal. Hence, the claim holds. ��
Based on Lemma 2 we propose a heuristic, called GREEDY WEIGHT HEURISTIC, that
operates as follows. First we compute an estimate of 2m̃(q)/(ñ(q)(ñ(q)−1)) for each
p ∈ P. Subsequently we sort the points according to these estimates in O(n logn) time
and iteratively consider the points in this order. If the current vertex is not covered by a
previous vertex, then it is chosen for the ρ-set, otherwise it is discarded.

Instead of computing m̃(p) and ñ(p) exactly, we estimate these numbers by counting
the number of vertices and edges in the bounding boxes of the disks B(p,ρ(p)/2).
To count the number of edges we use a 4-dimensional range searching query on a
data structure containing tuples of points corresponding to edges in E with query time
O(log3 m) [8]. We use the 2-dimensional counterpart to locate points. Further, we use a
data structure for dynamic nearest neighbor queries with O(log2 n) query time [3], into
which we insert the selected points to decide whether the current point is covered by a
previously selected point. The total running time is O((n + m) log3 m+ n log2 n).

3 Minimizing Edge-Clutter

In order to reduce the clutter resulting from an excess of edges in certain areas we must
filter out some of the edges without destroying the visual appearance of the graph. The
total length of the edges seems to be a good measure for the clutteredness of the graph
since it is proportional to the ink used for the drawing. While a minimum spanning tree
will minimize this quantity, it is unlikely to preserve the visual appearance of the graph.
We therefore require that monotone tendencies of the edges are preserved in order to
best maintain the mental map of the adjacencies between vertices of the graph.

Let � be a line in the plane and let S = (p1, . . . , pk) be a sequence of points. We say
that S is �-monotone if the order of the orthogonal projections of p1, . . . , pk onto � is the
same as the order of the points in S. Let G = (P,E) be a geometric graph and let (H,ϕ)
be a generalization of G such that H = (P,F), i.e., F ⊆ E . We say that H is a monotone
generalization of G if for every edge e∈ E with endpoints p and q there is a p-q-path πe

in H such that πe is �e-monotone, where �e is the line defined by the endpoints of e.
Given G = (P,E) the SHORTEST GEODESIC SUBGRAPH (SGS) problem asks for a
monotone generalization H of G minimizing the total length of H.

Theorem 3. SHORTEST GEODESIC SUBGRAPH is NP-hard.

Proof. We reduce from monotone 3-SAT, an NP-complete variant of 3-SAT where each
clause contains either only positive or only negative literals [17]. Let ϕ be an instance
of monotone 3-SAT with variables x1, . . . ,xn and clauses C1, . . . ,Cm. We construct the

Generalizing Geometric Graphs 185

f

� r

t

80◦

80◦ 80◦
120◦

(a) R+

L+

L−

R−

(b)

Fig. 4. Overview of the reduction from 3-SAT to SHORTEST GEODESIC SUBGRAPH. A kite with
foot point f , top point t and left and right points r and � (a), and the arrangement of the kites in
the reduction with the corresponding regions for clause vertices (b).

following instance Gϕ of SHORTEST GEODESIC SUBGRAPH. For each variable x we
create a kite as shown in Figure 4. Note that the angles at f , � and r are strictly less
than 90◦, and the angle at t is strictly greater than 90◦. The two edges incident to the
top vertex t are the top edges, the edges f � and f r are the left and right side edges,
respectively. We place the kites so that their foot points f lie evenly spaced on the x-
axis and the kites are disjoint. The region R+ (resp. L+) is the region below the x-axis
(resp. above the horizontal line defined by the top points of the kites) and to the right
(resp. left) of the line through the bottom point of the rightmost (resp. leftmost) kite that
is perpendicular to the right sides of the kites. We define R− and L− analogously, but
with lines orthogonal to the left sides of the kites.

It follows immediately from the construction that a path that is monotone in the
direction from a point in R+ to a point in L+ may not contain any right edge of a
kite as this would mean a turn of more than 90◦, which is not monotone. Analogously,
monotone paths from L− to R− may not contain left edges of kites. In our reduction the
kites will act as variables, and edges from R+ to L+ (from L− to R−) will act as clauses
with only positive (only negative) literals.

For each clause Ci consisting of only positive literals, we add a clause vertex c1
i

into R+ and a clause vertex c2
i in L+. We add connector edges that connect c1

i to the foot
points of all kites that correspond to variables that occur in Ci and that connect c2

i to all
the left points of kites that correspond to variables that occur in Ci. Finally, we add the
clause edge c1

i c2
i . We treat the clauses consisting of only negative literals analogously,

except that we place the new vertices in L− and R−, respectively, and we connect the
new vertices in R− to the right kite points instead to the left.

This completes our construction, and we claim that an optimal solution of this in-
stance allows us to decide whether the initial formula ϕ was satisfiable. We will make
this more precise in the following. A subset of edges of Gϕ is called tight if it contains
both top edges of each kite, all connector edges, and exactly one of the two side edges
of each kite. The proof relies on two claims; full proofs are in [6].

Claim. Any feasible solution contains a tight edge set.
Claim. There exists a tight set that is feasible if and only if ϕ is satisfiable.

Note that the total length L is the same for all tight edge sets. The first claim shows that
any geodesic subgraph has length at least L. And thus, the second claim implies that ϕ

186 E. Brunel et al.

is satisfiable if and only if Gϕ admits a geodesic subgraph of length at most L. Since the
construction can easily be performed in polynomial time this concludes the proof. ��
As we have seen, the restriction to edges from the input graph makes it difficult to con-
struct short monotone subgraphs. One possibility is thus to drop this constraint and to
allow arbitrary edges. Additionally, we would like to control the distance of the mono-
tone path πe and the edge it is approximating in terms of monotonicity. This is motivated
by the observation that the shortest monotone generalization of a clique whose vertices
are arranged equidistantly on a circle is the convex hull of the pointset. Given a line
segment s with length �s and a point p with distance dp from s we call the ratio dp/�s

the drift of p from s. The drift of a path πe with endpoints pq is defined as the maximum
drift of any point on πe from the segment pq. Given a geometric graph G = (P,E) and a
non-negative real number δ ∈ R+

0 the SPARSE GEODESIC NETWORK (SGN) problem
asks for a geometric graph H = (P,F) with minimum total length such that for each
edge e in E there is an �e-monotone path πe with drift at most δ , where �e denotes the
line defined by the endpoints of e. We show the following.

Lemma 3. Given a (complete) geometric graph G = (P,E), the Delaunay graph D(P)
contains for each edge e ∈ E an �e-monotone path πe with drift at most 1/2.

Proof. Let P be a set of points and let p,q ∈ P. Without loss of generality we assume
that p and q are on the x-axis such that x(p) < x(q). According to Dobkin et al. [12]
we can construct an x-monotone path in the Delaunay graph D(P) of P as follows.
Let V (P) denote the Voronoi diagram of P and let p1, . . . , pk be the ordered points
corresponding to the Voronoi cells that are traversed when following the line from p to
q. Then the path p, p1, . . . , pk,q is an x-monotone path in the Delaunay graph. Further,
all points pi are contained within the disk with radius d(p,q)/2 centered in the midpoint
of the segment pq. Hence, the drift is at most 1/2. ��
Although the Delaunay graph seems to be well suited to represent monotone tenden-
cies, this result also shows the limitations of allowing arbitrary edges. In the following
we therefore focus on subgraphs of the original graph and describe a greedy heuristic
for computing a monotone generalization with bounded drift δ and short total length,
which we call MONOTONE DRIFT HEURISTIC. Given a geometric graph G = (P,E)
and a maximal drift δ we sort the edges of G with respect to increasing length in
O(m logm) time. Then we consider the edges e1, . . . ,em in this order and iteratively
construct a sequence of graphs H0, . . . ,Hm, where H0 = (P, /0). We insert the edge ei

into Hi−1 whenever there is no �ei-monotone path with drift at most δ in Hi−1. This can
be tested by performing a modified depth-first search exploring only monotone subpaths
in O(n + m) time. Hence, the total running time of this approach is O(nm+ m2).

4 Vertex-Edge-Clutter

Vertex-edge-clutter is the most complicated type of clutter since it involves both ver-
tices and edges and the selection of these features cannot be handled independently
as in the previous sections. On the other hand, this type of clutter may be considered

Generalizing Geometric Graphs 187

Fig. 5. Line per-
ception

as the least annoying type of clutter. While vertex-edge clutter is
caused by edges that are close to a vertex resulting in the difficulty
to determine correct incidences,the human perception is rather good
at determining whether a line passes a disk through the center or
not. For instance, it is easy to see that the leftmost line in Fig. 5 is
not incident to the vertex although it crosses the vertex. Addition-
ally, the human perception is also good at determining whether a
line has a bend or not, which is illustrated in Fig. 5.

Hence, as long as there is neither vertex-clutter nor edge-clutter and as long as no
pair of edges incident to a common vertex form a 180◦-angle, we will be able to unam-
biguously tell whether an edge is incident to a vertex or not. In order to attack vertex-
edge clutter we therefore propose the following optimization problem. For a pair of
edges incident to a common vertex p we define the angular straight-line deviation as
the smaller of the two angles that is enclosed by the lines defined by the two edges,
respectively. The angular straight-line deviation of p is then defined as the minimum
angular straight-line deviation over all pairs of edges incident to p and the angular
straight-line deviation of a geometric graph G is the minimum angular straight-line de-
viation over all vertices of G. Note, that the angular straight-line deviation is maximized
if all angles are close to a right angle. Given a geometric graph G = (P,E) and a non-
negative value r ∈ R+, the OPTIMAL ANGLE ADJUSTMENT problem is to find a new
position for each vertex p inside B(p,r) minimizing the angular straight-line deviation
of the resulting geometric graph.

We tackle this problem by maximizing the vertices’ distances from the lines defined
by the edges incident to their neighbors. Let G = (P,E) be a geometric graph and let
v ∈ P be a vertex. Let N(v) denote its neighbors in G. Further, let E(v) denote the edges
incident to v and let F(v) denote the set of edges incident to the vertices in N(v) but
not to v. By moving v we change the angles formed by pairs of edges in E(v) as well
as the angles formed by pairs of edges (e, f) such that e ∈ E and f ∈ F , respectively.
Let LF(v) be the set of lines defined by the edges in F(v) and let LE(v) be the set of
lines defined by all pairs of vertices in N(v). Note, that there will be an angle of 180
degrees involving an edge incident to v if and only if v is placed on one of the lines
in LE(v)∪LF (v). Given p ∈ R2 we denote by μv(p) the minimum distance of p to the
lines in LE(v)∪LF(v). We prove the following.

Theorem 4. Given a graph G = (P,E), a vertex v ∈ P and a positive radius r ∈ R+

we can compute a new position p∗ for v in B(v,r) such that μv(p∗) > 0 and such that
p∗ maximizes μv(p) over all p ∈ B(v,r) in O(t3α(t)) time where t = min{Δ 2,m}, Δ
denotes the maximum degree of G and α(·) denotes the inverse Ackermann function.

Proof. First, we compute the set of edges LF(v)′ incident to v’s neighbors, but not to v,
that intersect B(v,r) as well as the set of lines LE(v)′ defined by all pairs of v’s neighbors
intersecting B(v,r). Let L = LE(v)′ ∪LF(v)′. We compute the arrangement of lines in
L in O(|L|2) time. Over each of the resulting faces C we compute the lower envelope
of the hyperplanes defining the distance to the boundaries of the faces and project the
graph GC defined by the resulting 3-dimensional polytope onto the plane.

The lower envelope of a set of n hyperplanes can be computed in O(n2α(n))
time where α(·) denotes the inverse of the Ackermann function [14]. Hence the lower

188 E. Brunel et al.

envelopes can be computed in time O(|L|2α(|L|)) for each face, resulting in a total com-
plexity of O(|L|3α(|L|)). For each face C we inspect the vertices of GC in B(v,r) as well
as its intersection with B(v,c) and thus compute the point p∗ maximizing μv in B(v,r).
Since L is bounded by max{Δ 2,m} we obtain the claimed time complexity. Further,
since r > 0 and therefore B(v,r) is non-degenerate, there must be a non-degenerate face
in the arrangement containing a point p∗ in its interior such that μ(p∗) > 0. ��

Using Theorem 4 we can incrementally compute a new position for each vertex v such
that none of the edges incident to v encloses an angle of 180 degrees with any other
edge. Since the angles between pairs of edges that are not incident to v are not affected
by this operation, we can iteratively apply Theorem 4 to the vertices one after another
to obtain a drawing with strictly positive angular straight-line deviation. At the same
time this approach heuristically maximizes this deviation.

Note that we may assume that we apply the angle adjustment to a generalized graph
whose complexity tends to be significantly lower than the complexity of the original
graph, i.e., both m and Δ should be considerably smaller.

(a) original (n=106675, m=248390) (b) generalization (n=5649, m=17273)

(c) original (n=17233, m=74436) (d) generalization (n=397, m=2134)

(e) original (n=16558, m=149658) (f) generalization (n=910, m=3520)

Fig. 6. Sample Generalizations computed by implementations of GREEDY WEIGHT HEURISTIC

and MONOTONE DRIFT HEURISTIC: (a)–(b) OSM Streetmap Data of Berlin [27], (c)–(d) Lu-
narVis Layout of the AS-Graph [18], (d)–(f) Netlib PDS10 problem graph from the University of
Florida sparse matrix collection [10].

Generalizing Geometric Graphs 189

5 Conclusion and Open Problems

We have undertaken a first step at studying the problem of generalizing geometric
graphs within a rigorous mathematical model. We formalized the problem by con-
sidering an incremental framework modeling the elimination or reduction of different
types of clutter as optimization problems, which we analyzed in terms of complexity.
Since these problems turned out to be NP-hard in general, we also devised efficient
approximation algorithms as well as efficient heuristics. We showed how to heuristi-
cally eliminate vertex-clutter in O((n + m) log3 m + n log2 n) time and how to reduce
edge clutter in O(nm+ m2) time considering geometric features such as point distribu-
tions and geodesic tendencies. After the elimination of vertex-clutter and edge-clutter
we can expect the graph to be much smaller than the original graph. Hence, even larger
complexities may scale accordingly. Thus, even the relatively high complexity of our
heuristic for reducing vertex-edge clutter may be practical.

Even without this step, however, the resulting generalizations exhibit considerably
less clutter and are easier to analyze. We showcase some generalizations produced by
our heuristics in Figure 6 as well as in [6]. We conclude by listing some open problems.

– Is it possible to approximate both the local coverage and the size of a ρ-set in the
vertex generalization step?

– What is the complexity of the LOCAL COVERAGE CLUSTER PACKING problem
for different type of mappings?

– Is it possible to approximate the size of a shortest geodesic subgraph, possibly in
the presence of a limited drift?

– What is the complexity of the optimal angle adjustment problem?
– How can the generalization problem be adapted to a dynamic scenario, where con-

sistency issues play an additional role.

Acknowledgments. We thank Robert Görke for the helpful discussion and for
providing the LunarVis layout.

References

1. Abello, J., Kobourov, S.G., Yusufov, R.: Visualizing Large Graphs with Compound-Fisheye
Views and Treemaps. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 431–441. Springer,
Heidelberg (2005)

2. Abello, J., Korn, J., Finocchi, I.: Graph sketches. In: Proceedings of the IEEE Symposium
on Information Visualization 2001 (INFOVIS 2001), p. 67. IEEE Computer Society (2001)

3. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I. static-to-dynamic transforma-
tion. Journal of Algorithms 1(4), 301–358 (1980)

4. Bohn, R.E., Short, J.E.: How much information? 2009 Report on American consumers.
Global Information Industry Center, University of California, San Diego (2009)

5. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On
modularity clustering. IEEE Trans. Knowledge and Data Engineering 20, 172–188 (2008)

6. Brunel, E., Gemsa, A., Krug, M., Rutter, I., Wagner, D.: Generalizing Geometric Graphs.
Technical Report 27, Karlsruhe Institute of Technology (2011)

190 E. Brunel et al.

7. Chazelle, B., Cole, R., Preparata, F.P., Yap, C.: New upper bounds for neighbor searching.
Information and Control 68(1-3), 105–124 (1986)

8. Chazelle, B.: Functional approach to data structures and its use in multidimensional search-
ing. SIAM J. Comput. 17, 427–462 (1988)

9. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathematics 86(1-3),
165–177 (1990)

10. Davis, T.A.: University of florida sparse matrix collection. NA Digest 92 (1994)
11. de Berg, M., Khosravi, A.: Optimal Binary Space Partitions in the Plane. In: Thai, M.T.,

Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 216–225. Springer, Heidelberg (2010)
12. Dobkin, D., Friedman, S., Supowit, K.: Delaunay graphs are almost as good as complete

graphs. Discrete & Computational Geometry 5, 399–407 (1990)
13. Eades, P., Feng, Q.-W.: Multilevel Visualization of Clustered Graphs. In: North, S.C. (ed.)

GD 1996. LNCS, vol. 1190, pp. 101–112. Springer, Heidelberg (1997)
14. Edelsbrunner, H., Guibas, L., Sharir, M.: The upper envelope of piecewise linear functions:

Algorithms and applications. Discr. & Comp. Geometry 4, 311–336 (1989)
15. Furnas, G.W.: Generalized fisheye views. SIGCHI Bull. 17, 16–23 (1986)
16. Gaertler, M.: Clustering. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS,

vol. 3418, pp. 178–215. Springer, Heidelberg (2005)
17. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-

Completeness. W. H. Freeman and Company (1979)
18. Görke, R., Gaertler, M., Wagner, D.: Lunarvis - Analytic Visualizations of Large Graphs.

In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 352–364.
Springer, Heidelberg (2008)

19. Hachul, S., Jünger, M.: Drawing Large Graphs with a Potential-Field-Based Multilevel Al-
gorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg
(2005)

20. Halldórsson, M., Radhakrishnan, J.: Greed is good: Approximating independent sets in
sparse and bounded-degree graphs. Algorithmica 18, 145–163 (1997)

21. Harel, D., Koren, Y.: Graph Drawing by High-Dimensional Embedding. In: Goodrich, M.T.,
Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 207–219. Springer, Heidelberg (2002)

22. Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. In: Proc. of
the 11th Eurographics/IEEE-VGTC Symp. on Vis, pp. 983–990 (2009)

23. Koren, Y., Carmel, L., Harel, D.: Drawing huge graphs by algebraic multigrid optimization.
Multiscale Modeling and Simulation 1, 645–673 (2003)

24. Mackaness, W.A., Beard, K.M.: Use of graph theory to support map generalization. Cartog-
raphy and Geographic Information Science 20, 210–221 (1993)

25. Mackaness, W.A., Ruas, A., Sarjakoski, L.T. (eds.): Generalisation of Geographic Informa-
tion. Cartographic Modelling and Applications. Elsevier B.V. (2007)

26. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. Journal
of Visual Languages & Computing 6(2), 183–210 (1995)

27. Openstreetmap database (2011), http://www.openstreetmap.de/
28. Quigley, A., Eades, P.: Fade: Graph Drawing, Clustering, and Visual Abstraction. In: Marks,

J. (ed.) GD 2000. LNCS, vol. 1984, pp. 197–210. Springer, Heidelberg (2001)
29. Saalfeld, A.: Map Generalization as a Graph Drawing Problem. In: Tamassia, R., Tollis, I.G.

(eds.) GD 1994. LNCS, vol. 894, pp. 444–451. Springer, Heidelberg (1995)
30. Sarkar, M., Brown, M.H.: Graphical fisheye views of graphs. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI 1992, pp. 83–91. ACM, New
York (1992)

31. Telea, A., Ersoy, O.: Image-based edge bundles: Simplified visualization of large graphs.
Computer Graphics Forum 29(3), 843–852 (2010)

http://www.openstreetmap.de/

How to Visualize the K-Root Name Server (Demo)�

Giuseppe Di Battista1, Claudio Squarcella1, and Wolfgang Nagele2

1 Dipartimento di Informatica e Automazione, Università Roma Tre, Italy
{gdb,squarcel}@dia.uniroma3.it
2 RIPE NCC, Amsterdam, The Netherlands

wnagele@ripe.net

Abstract. We present a system that visualizes the evolution of the service pro-
vided by one of the most popular root name servers, called K-root, operated by
the RIPE Network Coordination Centre (RIPE NCC) and distributed in several
locations (instances) worldwide. The system can be used either to monitor what
happened during a prescribed time interval or to observe the status of the ser-
vice in near real-time. The system visualizes how and when the clients of K-root
migrate from one instance to another, how the number of clients associated with
each instance changes over time, and what are the instances that contribute to
offer the service to a selected Internet Service Provider. In addition, the visual-
ization aims at distinguishing usual from unusual operational patterns. This helps
not only to improve the quality of the service but also to spot security-related
issues and to investigate unexpected routing changes.

1 Introduction

A computer that needs to know the IP address which corresponds to a domain name
sends a query to a name server. Hence, all Internet Server Providers (ISPs) make one
or more name servers available to their customers in order to answer their requests.

A name server that receives a query executes a resolution process. The resolution
computes an answer to the query by iteratively querying other name servers and quite
often requires to send a query to special name servers called root name servers or simply
root servers. For this reason root servers are a critical part of the Internet. They receive
hundreds of thousands of queries per second and must answer immediately. Currently,
there are 13 root servers, identified by a letter from A to M and operated by different
organizations, e.g. A by VeriSign, B by USC, and C by Cogent. A name server selects
its favorite root servers according to its query optimization policies.

For resiliency and efficiency reasons, each root server is implemented with comput-
ers spread across several locations distributed worldwide. Each location is an instance.
Currently each root server has from 1 to 70 instances, e.g., A has 6 instances, F has 49,
and K has 18. While a name server can freely select a root server for each of its queries,
it cannot select the specific instance that will answer it. The instance is selected by a
widely adopted mechanism called anycast, which leaves the responsibility of choosing
the topologically nearest instance to the current status of the Internet routing. Hence, a

� Partially supported by the ESF project 10-EuroGIGA-OP-003 GraDR ”Graph Drawings and
Representations” and by the MIUR of Italy, under project AlgoDEEP, prot. 2008TFBWL4.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 191–202, 2012.
© Springer-Verlag Berlin Heidelberg 2012

192 G. Di Battista, C. Squarcella, and W. Nagele

name server of a certain provider that sends a sequence of queries to a root server, say
K-root, can have that each of the queries is answered by a different instance, according
to the current status of the routing. This has consequences both from the point of view
of the name server and from the point of view of the root server. The first can experi-
ence fluctuations of the elapsed service time, while the latter can suffer changes in the
distribution of the workload among the instances.

The purpose of this work is to visualize the evolution of the service provided by one
of the most popular root servers, called K-root. It is operated by the RIPE Network Co-
ordination Centre (RIPE NCC) that is one of five Regional Internet Registries providing
Internet resource allocations, registration services and coordination activities that sup-
port the operation of the Internet globally. The visualization can be activated either to
monitor what happened during a prescribed time interval or to check the status of the
service in near real-time. We visualize how and when name servers (that are the clients
of the root server) migrate from one instance to another, how the number of clients as-
sociated with each instance changes over time, and which is the status of the service
offered to a certain ISP. In addition, the visualization aims at distinguishing usual from
unusual operational patterns. This helps not only to improve the quality of the service
but also to spot security-related issues and to investigate unexpected routing changes.

The paper is organized as follows. In Section 2 we discuss the adopted visualization
metaphor. In Section 3 we present the layout algorithm used in our system. In Section 4
we give technical details and briefly address user feedbacks. In Section 5 we compare
our system with the existing literature. Concluding remarks are in Section 6.

2 Selecting a Metaphor

The choice of the visualization metaphor and of the interaction features of our system
comes from an intensive discussion with the RIPE NCC, aimed at collecting the most
important visualization requirements for the K-root service. It comes out that the crucial
need is to visualize how and when clients migrate from one instance to another. The
concept of migration can be defined as follows. Let u, v be a pair of instances. We say
that a client migrates from u to v during interval t′, t′′ (t′ < t′′) if its last request of
service before time t′ is asked to u and its last request of service before time t′′ is asked
to v. To give an idea of the migration phenomenon, in 24 hours of normal operation
about 50, 000 clients issue a service request to more than one instance.

Further, migrations are not all the same. There are pairs u, v of instances such that
migrating from u to v or vice versa is considered usual by the operators. For example,
u and v are placed in network locations that have high connectivity between them, or
the Internet routing frequently oscillates moving clients form u to v or vice versa. There
are other migrations that are considered unusual, like for example those involving pairs
of instances in places with very poor connectivity between them. Unusual migrations
can put in evidence suspicious activities, misconfigurations, or large-scale faults. Given
a pair of instances u, v, deciding if u, v is subject to usual or unusual migration is
knowledge that comes from the RIPE NCC experts and is subject to change over time,
with a frequency that is much lower than the one of the migrations.

An example of chart currently used by RIPE NCC to visualize the distribution of
queries to the instances of the K-root service is in Fig. 1.a. Note that it does not provide

How to Visualize the K-Root Name Server (Demo) 193

any migration information, while the operators need to perceive unusual migration pat-
terns keeping in the background usual migration behaviors. For this reason we define a
migration graph. Its vertices are the instances and there is an edge (u, v) if migrating
from u to v or vice versa is considered usual. Hence, given a pair u, v of instances sub-
ject to a migration, if (u, v) is an edge, then the migration is considered usual, otherwise
it is considered unusual.

A second requirement is to visualize the relative weight of instances, giving an im-
mediate perception of the number of clients they serve. Also, it is required to visualize
how this weight is related to the migrations. More generally, there is the need to visu-
alize the evolution of the service over time, both within a prescribed time interval, for
ex-post analysis, and in near real-time. This requirement is extremely challenging, not
only from the visualization perspective, but also because of the very high volumes of
involved data: K-root receives about 20, 000 queries per second.

Finally, there is the need of understanding what happens to the queries issued by a
specific Internet Service Provider (ISP). As an example, consider the main name servers
that provide the name resolution service to the customers of an ISP. It is interesting to
observe which K-root instances answer their queries and how this evolves over time.

Motivated by the above requirements we adopt a geographic map metaphor, which is
quite appropriate for describing migrations. The service offered by K-root is represented
as a map. Each instance is a country and its size is roughly proportional to the current
number of its clients. Two countries are adjacent if the corresponding instances are
usually exchanging clients, i.e. are adjacent in the migration graph. The map changes
over time as follows: 1. countries change their size according to the fluctuations in the
number of their clients, 2. usual migration flows are pictured as bubbles traversing the
boundaries of adjacent countries, and 3. unusual migration flows are highlighted with
impact graphics as bridges across the countries.

One might object that a few migration graphs can be represented with our metaphor.
In fact, if: 1. vertices are represented as planar regions with disjoint interiors, 2. vertices
are adjacent in the graph iff they share a point in the map, and 3. no four regions meet at
a point, then only planar graphs can be represented. However, following [6], we remove
from our metaphor the emphasized condition. Hence, we can represent a much wider
class of graphs as migration graphs. Such graphs are called planar map graphs in [6],
and they can contain up to 27n maximal cliques in a graph with n vertices.

Fig. 1 shows the system in action. Fig. 1.b shows the map at a certain instant. The
green, light blue, orange, red, and yellow countries (corresponding to the main in-
stances) share a point, and hence they are a clique. The other figures show several
snapshots of an animation: Fig. 1.c shows how countries have different sizes in differ-
ent instants. Fig. 1.d shows how we represent usual migration flows. Fig. 1.e shows the
bridges that appear to emphasize unusual migration flows. Fig. 1.f shows how the name
servers of a well known ISP are distributed among the instances. Each circle represents
a group of name servers of that ISP with size proportional to their number.

Of course, the selected metaphor is not the only possible choice. Alternatives have
been investigated and screened out for different reasons. As a first example, we could
visualize the service on a real geographical map, since the actual coordinates of each
instance are known. We discard this choice for several reasons: 1. Even if instances have

194 G. Di Battista, C. Squarcella, and W. Nagele

a geographical location, the choice done by the clients is largely independent on the
geography, 2. The (usual and unusual) migration patterns are also largely independent
on the geography, and 3. Combining the geographical data with the (usual and unusual)
migration patterns leads to information cluttering. Alternatively, we could visualize the

(a) (b)

(c) (d)

(e) (f)

Fig. 1. (a) Distribution of the queries among the K-root instances. (b) The map at a certain instant.
The animation: (c) Countries have different sizes in different instants. (d) Usual migration flows.
(e) Unusual migration flows. (f) The name servers of a well known ISP.

How to Visualize the K-Root Name Server (Demo) 195

migration graph with vertices and edges. Although it would be easy to give to each
vertex an area that is proportional to its importance (see a historical example in [5]), it
would be difficult to give different emphasis to usual and unusual migrations. Further,
the reason behind edges having different lengths would result obscure and misleading
for the user.

3 The Algorithm

The algorithm that supports our visualization framework takes as input a migration
graph G and a sequence of time instants t1, . . . , tk, where t1, tk is the time interval of
interest and t2, . . . , tk−1 depend on the adopted sampling unit. We assume that G is
connected. If not, each connected component is considered separately. The algorithm
constructs an animation describing the behavior of the clients in the sequence of time
instants t1, . . . , tk. We denote by ct(v) the number of clients whose last request of
service before time t is asked to instance v. Given a time interval t′, t′′, the number of
migrants associated with u, v at t′, t′′, denoted mt′,t′′(u, v), is the number of distinct
clients that migrate from u to v during t′, t′′. We denote the flow between u and v as
ft′,t′′(u, v) = max(0, mt′,t′′(u, v)−mt′,t′′(v, u)).

The algorithm is composed by two phases: the Preprocessing and the Animation,
that is repeated for each ti. The Preprocessing is composed of three steps:

1. Check if G is a map graph. If yes, then construct its backbone, i.e. a planar graph
obtained from G by substituting some of its cliques with stars. If not, edges are
removed until G is a map graph. Compute a planar topology for the backbone.

2. Find a straight-line drawing of the backbone preserving its planar topology, such
that each vertex v has a surrounding “free area” that is roughly proportional to the
average of ct(v) in t1, . . . , tk.

3. Construct a constrained Delaunay triangulation, called skeleton, of the drawing
found in the previous step. The skeleton will be used as the underlying graph during
the entire animation.

The animation is performed for each interval ti, ti+1 and is composed of two steps:

4. Draw the skeleton: i.e. construct a planar straight-line drawing of the skeleton pre-
serving its topology, such that for each vertex v its incident faces can be split to
determine an area surrounding v roughly proportional to cti+1(v).

5. Draw the map: Construct a drawing of the map at time ti+1 and compute the ani-
mation from ti to ti+1.

In Step 1 we check if G(V, E) is a map graph. If yes, then we construct a planar embed-
ded backbone. The backbone is obtained from G by removing the edges of a suitable
set of cliques and substituting the edges of each of such cliques with a star connecting
a new vertex to the vertices of the clique. More formally, let v1, . . . , vk be the vertices
of a clique whose edges are removed. Such edges are replaced with a new vertex c and
by edges (v1, c), . . . , (vk, c). An example where the map graph is the one of Fig. 1.b
is presented in Fig. 2.a and Fig. 2.b. In [25] it is shown that testing if a graph is a map

196 G. Di Battista, C. Squarcella, and W. Nagele

nap

ams-ix

tokyo

denic

linx

apnic

delhi

mix

emix

qtel

grnet

isnic

cern

nskix

tix
ficix

bix

poznan

nap

ams-ix

tokyo

denic

linx

apnic

delhi

mix

emix

qtel

grnet

isnic

cern

nskix

tix
ficix

bix

poznan

(a) (b)

Fig. 2. (a) Migration graph for K-root. A clique of size 5 is highlighted with thick edges. (b)
Backbone obtained substituting the clique with a star, centered at the grey vertex.

graph can be done in polynomial time. However, in [7] it is argued that the exponent
of the polynomial bounding its running time from above is about 120. This makes it
impractical to use the algorithm in [25]. Hence, we use a simple heuristic that works as
follows. We first check if G is planar. If yes, we are done. Otherwise, we look in G for a
maximal clique with the algorithm in [4], that is known to be efficient in practice. Then,
we replace the clique with a star and perform again the planarity testing. This is repeated
until either the obtained graph is planar or until no clique is found. If we are not able
to find a backbone for G, then we remove the edge (u, v) with the smallest number of
migrations in the given time interval, i.e. such that

∑k−1
i=1 fti,ti+1(u, v) + fti,ti+1(v, u)

is minimized, and repeat the process. The removed edges correspond to migration pat-
terns that we can consider less interesting. It is also possible to involve RIPE NCC ex-
perts in this process, identifying and discarding less interesting migration patterns with
their help.

Step 2 is devoted to find a straight-line drawing of the backbone, such that each
vertex has a surrounding free area that is roughly proportional to the average area it
will have during the animation. To perform this step we use a spring embedder [26] that
preserves the given planar topology (see, e.g., [11]). Each vertex v has a positive charge

w(v) equal to
∑k

i=1 cti
(v)

k and each edge (u, v) is a spring with preferred length equal

to
√

w(u)+
√

w(v)√
π

, that is the sum of the radii of two circles of area w(u) and w(v).
Step 3 adds an additional set of edges E′ to the drawing of the backbone, transform-

ing it into a maximally triangulated planar drawing. Such edges are needed to easily
morph the geographical map in Step 5. All edges in the subset A = E′ \ E are marked
as additional. For this purpose we use a constrained Delaunay triangulation, in order

How to Visualize the K-Root Name Server (Demo) 197

v

z

u

ezu

evz

euv

puvz

u v

z

euv

evz

euv'

evz'

o

s

r

u

v

dv
du

(a) (b) (c)

Fig. 3. (a) Costruction of the country border for a vertex that is not on the convex hull. Big white
circles represent vertices of the skeleton. For each edge (u, v), a small grey circle represents
the point euv . For each triangle Δ(u, v, z), a small black circle represents the point puvz. (b)
Costruction of the country border for a vertex on the convex hull. (c) Three possible cases of
construction of the country border with additional edges. For each additional edge (u, v), two
small white circles represent the points du and dv .

to maximize the angles between adjacent edges in the resulting graph. This is useful to
give more degrees of freedom to the spring embedder used in Step 4.

In Step 4 the layout of the skeleton is modified to make it suitable for the con-
struction of the map at any instant t of t1, . . . , tk. To achieve this, a spring embed-
der is used where charges and preferred spring lengths change over time (see, e.g.,
[12]). Its initial setting is similar to the one explained for Step 2: each vertex v has
a positive charge w(v) that is equal to ct(v), while each edge (u, v) is a spring with

preferred length equal to
√

w(u)+
√

w(v)√
π

. The layout evolves with an additional con-
straint: consider the angle ûvz that is spanned in the external face by each triplet of
vertices u, v, z that are consecutive on the convex hull. The condition ûvz > π is en-
sured. Moreover, positive charges (vertices) and springs (edges) are constantly updated
to increase the precision of the map. Each triangle Δ(v1, v2, v3) with area denoted by
A(Δ(v1, v2, v3)) is split such that each of its vertices vi is assigned an area denoted by
A(Δ(v1, v2, v3), vi) = A(Δ(v1, v2, v3))

ct(vi)
ct(v1)+ct(v2)+ct(v3)

. Hence, given the set of
triangles Fv with a common vertex v, the positive charge of v is regularly updated with

w(v)′ = α
2π

ct(v)2∑
i∈Fv

A(i,v) , where α is the angle spanned by Fv (which is different from

2π only for the vertices of the external face). Spring lengths are updated accordingly

with
√

w(u)′+
√

w(v)′√
π

.

In Step 5 the map is computed, based on the skeleton. Each edge (u, v) is split at
a point euv such that ueuv/ct(u) = euvv/ct(v). Then, for each triangle Δ(u, v, z) a
point puvz is found such that the polygons (u, euv, puvz, ezu), (v, evz , puvz, euv) and
(z, ezu, puvz , evz) have areas respectively proportional to ct(u), ct(v) and ct(z). It is
easy to prove that puvz always lies inside triangle Δ(euv, evz , ezu).

For each vertex v that is not on the convex hull, consider the related set of triangles
Fv = Δ(u1, v, u2), Δ(u2, v, u3), . . . , Δ(ulast, v, u1) surrounding v in clockwise order.

198 G. Di Battista, C. Squarcella, and W. Nagele

The country border for v is the closed polygon (eu1v, pu1vu2 , eu2v, pu2vu3 , . . . , eulastv,
pulastvu1). See Fig. 3.a for details.

Vertices on the convex hull are handled in a different way. Note that, for graphs with
at least three vertices, each of such vertices v has two neighbors u and z on the con-
vex hull. We call Fv = Δ(z, v, u1), Δ(u1, v, u2), . . . , Δ(ulast, v, u) the set of triangles
surrounding v. The angle ûvz that is spanned in the external face is always greater than
π, as explained in Step 4. As a consequence, v can get an area on the external face that
is only bounded by the line s orthogonal to (u, v) passing through euv and the line r or-
thogonal to (v, z) passing through evz . Given the area value R = ct(v)−∑i∈Fv

A(i, v),
we build the polygon (v, euv, e′uv, o, e

′
vz, evz) whose area is R, where e′uv lies on line

s, e′vz lies on line r and o lies on the external face. Hence, the country border for v
is the closed polygon (evz , pzvu1 , eu1v, pu1vu2 , . . . , eulastv, pulastvu, euv, e

′
uv, o, e

′
vz).

See Fig. 3.b for an illustration. Finally, connected graphs with less than 3 vertices are
easily converted into maps assigning circle-like country borders to each vertex.

Once all the country borders have been computed, the animation is performed. The
geographical map evolves from its previous state with a linear morphing preserving
adjacencies at any time. Usual migrations between countries are represented as bubbles
traversing the border at randomly chosen points. Unusual migrations are represented
as bridges connecting two countries, with bubbles traversing them. The size of bubbles
and bridges reflects the amount of clients flowing from one country to another.

Apart from the main algorithm described above, a number of expedients are imple-
mented to obtain a map that looks better and fully represents the underlying data. First,
country borders are represented with Bézier curves where possible. This helps to give
a natural look to the map. Second, at the end of Step 3, each vertex v in the skeleton
that represents an instance and has degree δ(v) greater than a threshold Tδ is replaced
with a path of m = � δ(v)

Tδ
� consecutive vertices. Each of them is assigned ct(v)

m clients
and retains a fraction of the original adjacencies, with degree lower than Tδ. This helps
finding better layouts for the skeleton graph in Step 4. The country border for such a
path of vertices is computed as the symmetric difference between their borders. Finally,
edges added in Step 3 and marked as additional are later handled in a different way.
In particular, the spring embedder used in Step 4 assigns a fixed additional length D to
springs representing additional edges. During the construction of the map (Step 5), two
points du and dv are found on each additional edge (u, v) together with euv, such that
udu/ct(u) = dvv/ct(v) and udu + dvv +D = uv. Then the construction of the border
is slightly different with respect to the one explained in Step 5. For each edge (u, v)
marked as additional, the two vertices u and v respectively choose du and dv as bound-
ary points, instead of euv. In this way countries that are not adjacent in the graph do not
share boundary points in the map. Note that for each triangle Δ(u, v, z) the point puvz

is still shared by country borders for vertices u, v and z. This inconsistency is removed
in practice using Bézier curves. See Fig. 3.c for an illustration.

4 Technical Aspects and User Feedback

Our visualization framework has been implemented as a Web application, composed of
a Javascript front-end and a server written in Java. It relies on Google Web Toolkit,

How to Visualize the K-Root Name Server (Demo) 199

a framework for the creation of Web applications. It makes use of a cross-browser
Javascript library for vector graphics called Raphaël, based on the Scalable Vector
Graphics format. This implies that images and snapshots can be zoomed and exported
without loss of quality (see Fig. 1 for an example). A demo of the application is avail-
able online at http://dia.uniroma3.it/~squarcel/visual-k/.

An associative map is kept in memory to store the current state of each client, in-
cluding the instance that answered its last query. At regular time intervals all the new
queries received by K-root are analyzed to detect usual and unusual migrations. These
are translated into an animation step and are later used to update the associative map.

We performed a stress test using a full trace of queries received by all the K-root
instances during a 48-hour time window. Even focusing on the minimal amount of
information needed, in the form of a triplet (timestamp, client id, instance id), the
volume of data is impressive (around 200 Gigabytes) and poses a challenge for the
creation of a scalable system. We ran the stress test on a laptop with a 2.4 GHz Intel
Core 2 Duo processor and 4 GB of RAM. The results show that our framework can
handle an update rate between 10 and 15 seconds, including both the analysis of query
data and the generation of the corresponding geographical map. The result is of course
expected to improve on more powerful hardware. Hence, although such an approach is
not strictly real-time, it represents an approximation that satisfies the operational needs.

The system has two types of potential users: (1) the RIPE NCC DNS Services staff
and (2) the vast audience of ISPs that could benefit of knowing what instances serve
their clients. The system has been designed cooperating with the users of type (1). Their
participation to the design process allowed to precisely focus on the requirements. As an
example, during the interactions the users gave a negative evaluation of a first version of
the migration graph where both usual and unusual migration patterns were represented
using country adjacencies. This allowed to devise the current version of the graph. It
is particularly interesting to use the system together with BGPlay [8]: once an unusual
migration is spotted, BGPlay can be used to check if there is a correlation with some
routing change. About users of type (2), the possibility of putting the system at their
disposal depends on the future policies of the RIPE NCC. In fact, the logs of queries
are strictly confidential and an anonymization policy is currently being discussed.

5 State of the Art

The problem of using geographical maps to visualize non-geographical information has
been extensively studied. In this section we provide a brief overview of the literature,
focusing on similarities and differences with our approach.

A methodological reference is provided by the cognitive study in [13]. It identi-
fies four semantic primitives to be used when representing information entities with
a geographical metaphor. Boundaries: discontinuities in the information space can be
represented with borders. Aggregate: homogeneous zones preferably represent homo-
geneous entity types. We use aggregate and boundaries to group clients using the same
instance and to separate such groups, respectively. Loci: information items preferably
have a meaningful location in the information space. We put side-by-side instances that
are expected to share clients. Trajectories: semantic relationships between information

200 G. Di Battista, C. Squarcella, and W. Nagele

entities at different locations can be shown with paths or routes. We exploit different
types of trajectories to represent migrations.

There are at least two systems whose features are similar to ours: GMap and BGPlay
Island. GMap [19] visualizes clustered graphs with geographical maps. After deter-
mining the layout of the graph with a force directed approach, clusters of nodes are
detected according to their relative distance. A cluster is represented with one or more
geographical regions. GMap produces maps that look very similar to our maps. How-
ever, its target is quite different from ours: 1. if two vertices are connected by an edge
it is not guaranteed that they have a common boundary, 2. if two vertices have a com-
mon boundary is not guaranteed that they are connected by an edge, and 3. GMap is
not meant to visualize maps whose borders evolve over time. Using the terminology
of [13] we can say that in [19] the aggregate primitive prevails over the others. BGPlay
Island [9] extends the widely used BGPlay routing visualization system [8] and uses a
topographic metaphor to show hierarchies of Internet Service Providers (ISPs). How-
ever, BGPlay Island uses the metaphor of a terrain map rather than the one of a political
map and the most stressed primitive of [13] is the locus one.

Other related literature is the one on cartograms. Area cartograms are drawings de-
rived from standard geographical maps, where each country is deformed so that its area
is proportional to a variable specific of that country, e.g. its population. The deforma-
tion process should preserve the original shape as much as possible. The idea behind
cartograms is very close to our map metaphor, which in fact can be seen as an area
cartogram derived from an imaginary world. Many algorithms for computing area car-
tograms are available in the literature (see, for example, [15,17,21]). However, their
attempt to preserve the original shape is irrelevant in our setting, since our countries
do not have a prescribed shape. Also, they have high computational time, which makes
them unsuited for a real-time monitoring tool. In [21] the latter issue is tackled with an
algorithm that can be parallelized, but, unfortunately, results are exposed to inaccuracy
(e.g. overlap between countries). Recent approaches [27,10,18,22,1,3,2] for the compu-
tation of area cartograms tend to keep the countries in their original locations but give
them a regular shape, like a rectangle or a “T” or and “L”. However, the more regular the
shapes are, the less graphs can be represented. Further, none of the above results takes
into account scenarios that include planar map graphs. Finally, the computed layouts
are sometimes hard to read and therefore not suitable for an intuitive visualization.

Voronoi diagrams represent an option for partitioning information spaces into sep-
arate regions. In [23] the authors introduce an adaptive version of the multiplicatively
weighted Voronoi diagram [20], where each vertex in a graph is assigned a closed region
with prescribed area. Similarly to Voronoi diagrams, however, adjacencies between re-
gions depend on geometric proximity. Hence the solution is not compatible with the
notion of adjacency graph.

In a recent work [14] it is shown that planar graphs can be represented with adjacent
convex hexagons. Such shapes could be a valid alternative for our scope. We think that
it is possible to modify the proposed algorithm to represent also planar map graphs,
using polygons with more sides and loosing the convexity. However, the problem of
assigning prescribed areas to the shapes seems difficult to be addressed.

How to Visualize the K-Root Name Server (Demo) 201

A previous attempt at visualizing the activity of Internet services, including K-root,
is in [16]. Sets of clients sending requests to the same instance are located on a real
geographical map and a coordinate centroid is computed. Then a circle is displayed,
centered at the centroid and composed of wedges that represent the amount, distribution
and latency of clients. Such a tool differs from our approach, in that it is meant to
visualize static snapshots of the service, not focusing on the migrations of clients.

6 Conclusions and Future Work

We have presented a system for the visualization of the behaviour of the K-root DNS
name server. It relies on a map metaphor that uses an animation to show the migration
of clients among the instances that compose the server.

While in [24] it is argued that animations are not generally suitable to convey in-
formation on trends in data visualization, it is also argued that they are quite useful to
create a visualization that is appealing to the user. At the same time, a real-time moni-
toring tool necessarily deals with the evolution of the underlying data. In our framework
we find a reasonable balance between the two needs, using graphical elements that are
independent on the animation. A static snapshot of each step of the animation contains
all the information we want to visualize, as Fig. 1 clearly shows. The animation is only
needed to gracefully link two consecutive steps, helping the user to focus on the context.

There are several future research directions that can be undertaken. One would be
to deploy our system to other root servers. Such a step is technically easy, but it has
drawbacks from the organizational point of view, since logs of queries are strictly con-
fidential and dealing with them requires an adequate agreement. Another interesting
possibility would be to apply the same techniques to other Internet services based on
anycast. One possible example, mostly interesting nowadays, is the IPv6 6to4 Relay
Routing Service, devised to facilitate the transition between IPv4 and IPv6.

References

1. Akbari Jokar, M., Shoja Sangchooli, A.: Constructing a block layout by face area. The Inter-
national Journal of Advanced Manufacturing Technology 54, 801–809 (2011)

2. Biedl, T., Ruiz Velázquez, L.: Orthogonal Cartograms with Few Corners Perface. In: Dehne,
F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 98–109. Springer, Hei-
delberg (2011)

3. Biedl, T., Velázquez, L.E.R.: Drawing planar 3-trees with given face-areas (2010)
4. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun.

ACM 16, 575–577 (1973)
5. Carpano, M.-J.: Automatic display of hierarchized graphs for computer-aided decision anal-

ysis. IEEE Transactions on Systems, Man and Cybernetics 10(11), 705–715 (1980)
6. Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Planar map graphs. In: Proceedings of the

Thirtieth Annual ACM Symposium on Theory of Computing, STOC 1998. ACM (1998)
7. Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Recognizing hole-free 4-map graphs in cubic

time. Algorithmica 45(2), 227–262 (2006)
8. Colitti, L., Di Battista, G., Mariani, F., Patrignani, M., Pizzonia, M.: Visualizing interdomain

routing with BGPlay. Journal of Graph Algorithms and Applications, Special Issue on the
2003 Symposium on Graph Drawing, GD 2003 9(1), 117–148 (2005)

202 G. Di Battista, C. Squarcella, and W. Nagele

9. Cortese, P.F., Di Battista, G., Moneta, A., Patrignani, M., Pizzonia, M.: Topographic visual-
ization of prefix propagation in the internet. IEEE Transactions on Visualization and Com-
puter Graphics 12(5), 725–732 (2006)

10. de Berg, M., Mumford, E., Speckmann, B.: Optimal BSPs and rectilinear cartograms. In:
Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic
Information Systems, GIS 2006, pp. 19–26. ACM, New York (2006)

11. Didimo, W., Liotta, G., Romeo, S.A.: Topology-Driven Force-Directed Algorithms. In:
Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 165–176. Springer,
Heidelberg (2011)

12. Erten, C., Harding, P., Kobourov, S., Wampler, K., Yee, G.: GraphAEL: Graph Animations
with Evolving Layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer,
Heidelberg (2004)

13. Fabrikant, S.I., Skupin, A.: Cognitively plausible information visualization. Exploring Geo-
visualization, 667–690 (November 2005)

14. Gansner, E., Hu, Y., Kaufmann, M., Kobourov, S.: Optimal Polygonal Representation of Pla-
nar Graphs. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 417–432. Springer,
Heidelberg (2010)

15. Gastner, M.T., Newman, M.E.J.: Diffusion-based method for producing density-equalizing
maps. Proceedings of the National Academy of Sciences of the United States of Amer-
ica 101(20), 7499–7504 (2004)

16. Huffaker, B., Fomenkov, M. Claffy, K.: Influence maps - a novel 2-d visualization of massive
geographically distributed data sets. Internet Protocol Forum (October 2008)

17. Inoue, R., Shimizu, E.: A new algorithm for continuous area cartogram construction with
triangulation of regions and restriction on bearing changes of edges. Cartography and Geo-
graphic Information Science 33(2), 115–125 (2006)

18. Kawaguchi, A., Nagamochi, H.: Orthogonal Drawings for Plane Graphs with Specified Face
Areas. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 584–
594. Springer, Heidelberg (2007)

19. Mashima, D., Kobourov, S., Hu, Y.: Visualizing Dynamic Data with Maps. In: Proc. 4th IEEE
Pacific Visualization Symposium (March 2011)

20. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: Concepts and applica-
tions of Voronoi diagrams, 2nd edn. Probability and Statistics. Wiley, NYC (2000)

21. Ouyang, M., Revesz, P.Z.: Algorithms for cartogram animation. In: Proceedings of the 2000
International Symposium on Database Engineering & Applications, IDEAS 2000, pp. 231–
235. IEEE Computer Society, Washington, DC, USA (2000)

22. Rahman, M. S., Miura, K., Nishizeki, T.: Octagonal drawings of plane graphs with prescribed
face areas. Comput. Geom. Theory Appl. 42, 214–230 (2009)

23. Reitsma, R., Trubin, S.: Information space partitioning using adaptive voronoi diagrams.
Information Visualization 6, 123–138 (2007)

24. Robertson, G., Fernandez, R., Fisher, D., Lee, B., Stasko, J.: Effectiveness of animation in
trend visualization. IEEE Transactions on Visualization and Computer Graphics 14, 1325–
1332 (2008)

25. Thorup, M.: Map graphs in polynomial time. In: Proceedings of the 39th Annual Symposium
on Foundations of Computer Science, FOCS 1998 (1998)

26. Tollis, I.G., Di Battista, G., Eades, P., Tamassia, R.: Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice Hall (1998)

27. van Kreveld, M., Speckmann, B.: On rectangular cartograms. Comput. Geom. Theory
Appl. 37, 175–187 (2007)

Optimizing a Radial Layout of Bipartite Graphs

for a Tool Visualizing Security Alerts

Maxime Dumas1, Michael J. McGuffin1, Jean-Marc Robert1,
and Marie-Claire Willig2

1 ETS
Montréal, Canada

{michael.mcguffin,jean-marc.robert}@etsmtl.ca
2 EESTIN, UHP Nancy 1

Vandoeuvre Lès Nancy, France

Abstract. Effective tools are crucial for visualizing large quantities of
information. While developing these tools, numerous graph drawing prob-
lems emerge. We present solutions for reducing clutter in a radial visual-
ization of a bipartite graph representing the alerts generated by an IDS
protecting a computer network. Our solutions rely essentially on (i) un-
ambiguous edge bundling to reduce the number of edges to display and
(ii) the minimization of the total sum of the edge lengths.

Keywords: IDS alerts, bipartite graph layout, edge bundling.

1 Introduction

Intrusion Detection Systems (IDSs) are important tools for protecting enterprise
networks. Unfortunately, they generate large quantities of information that are
challenging to analyze. Few visualization tools have been proposed to ease the
effort of network defence analysts [1,5]. These tools either do not use any graph
layouts or do not focus on optimizing graph layouts.

Recently, the authors developed a new tool for IDS visualization named Alert-
Wheel [4] that employs a radial overview visualization with a novel form of edge
bundling, and incorporates features for filtering and drilling down on IDS alerts.
IDSs such as SNORT [7] generate alerts when abnormal traffic flows are de-
tected. The information in each alert identifies the category of the malicious
behaviour (e.g., network-scan, web-application-attack, etc.) and the origin of the
flow (the source IP address of the packets, from which an Autonomous System
(AS) Number can be computed). Hence, these alerts can be visualized as the
edges of a bipartite graph, where each node is either the AS node of the source,
or the alert category. (The use of AS rather than IP addresses greatly reduces
the number of source nodes in the bipartite graph.)

AlertWheel relies on a new way of drawing bipartite graphs that is visually
clearer than the status quo (see Fig. 1). The inner circle corresponds to a limited
number (up to 32) of alert categories, and the outer circle corresponds to AS
nodes (see Fig. 5 and 7). In the development of this tool, multiple graph drawing

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 203–214, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

204 M. Dumas et al.

Fig. 1. The same bipartite graph shown in different ways. (a) Status-quo approach.
(b) An improved way of drawing edges: each edge starting on an outer node leads to
a circular bundle, and each circular bundle leads to a single inner node. (c) A further
improvement that groups together nodes having the same neighbors.

problems were encountered. The aim of this paper is to present these abstract
problems and the heuristics used to solve them. The companion paper [4] focuses
on the overall tool and its interactive features.

2 Problem Statement

AlertWheel displays a radial visualization of a bipartite graph composed of an in-
ner circle on which there are n interior points i1, · · · , in (representing categories)
and an outer circle on which there are m exterior points o1, · · · , om (representing
AS source nodes). Each edge between an interior and exterior point represents an
observed alert. The positions of the interior points are determined by a central
pie chart (Fig. 5 and 7). The interior points are sorted such that i1 is connected
to the minimum number of exterior points and in is connected to the maximum.

Our objective is to layout the numerous edges connecting the points as effi-
ciently as possible, to ease reading and interpretation. This is done by

– Grouping edges into bundles [6,8];
– Reducing the sum of the edge lengths.

The edge bundling is illustrated in Fig. 1 and 2. Edges are layered on concentric
circles where each concentric circle corresponds to one interior point. Edges can
share either radial or circular segments with other edges, without introducing any
ambiguity. Grouping together nodes with the same neighbors (Fig. 1c) further
reduces clutter, and is very useful for visualizing security alerts. During outbreaks
of very virulent malware, many infected computers may knock at the door of a
given network and generate alerts of the same categories.

In the development of AlertWheel, the following graph drawing problems had
to be addressed:

Problem I. Choose an assignment of concentric circles to interior points.
Problem II. Choose the position of a single exterior point minimizing the

sum of lengths of edges to its neighbors.

Optimizing the Layout of Bipartite Graphs 205

o1

o2

o3

o7

o8

o9

o10

o11

o12

o6

o5

i1 i2
i3

i4
i6

i7

i8

i5

o4

(a)

o1

o2

o3

o7

o8

o9

o10

o11

o12

o6

o5

i1 i2
i3

i4
i6

i7

i8

i5

o4

(b)

c

l

Fig. 2. Edge bundling. (a) Connecting multiple exterior points to one interior point
– e.g., computers from five AS nodes generating alerts of the same category. (b) Con-
necting multiple interior points to one exterior point – e.g., a single AS node generating
alerts of four categories.

Problem III. Choose the positions of all exterior points minimizing the total
sum of the edge lengths.

In the next sections, solutions to these problems are presented. Exact solutions
are only given for the first two problems, and heuristics are given for the last
one. These heuristics are compared with each other and with the non-achievable
lower bound derived from the second problem. Problem III is the core layout
problem in AlertWheel. Efficient solutions to this problem are thus crucial.

3 Related Work

Network defence analysts continuously monitor their computer networks to de-
tect any malicious activities. They have to analyze the data buried in numerous
log files. Without appropriate tools, they cannot manage all this information.

The ultimate goal for security visualization tools is to present the data as
simply as possible. To achieve this ambitious objective, numerous graph drawing
problems have to be addressed [10]. These generally involve optimizing some
aesthetic properties of the graph layout such as the number of edge crossings,
the number of edge bends, etc.

Purchase [9] asserts that minimizing the number of edge crossings in a graph
layout is the most important issue to deal with. Unfortunately, numerous variants
of this problem have been shown to be NP-complete [11,2]. Edge bundling can be
used to mitigate the effects of edge crossings. By merging edges into bundles [6,8],
the number of edge crossings is significantly reduced. In such a case, reducing the
length of the bundled edges remains an important goal. The rest of this paper
addresses this goal.

206 M. Dumas et al.

4 Assignment of Concentric Circles to Interior Points

Concentric circles are used to layout the edges of the bipartite graph. These are
particularly useful to bundle the edges connected to a given interior point (as
in Fig. 2a). Assume that some set of radii rk, k = 1, . . . , n of concentric circles
has been chosen, for example with equal spacing. The first problem is to find an
optimal assignment of each radius to a unique interior point, i.e., an assignment
minimizing the sum of the edge lengths. Unfortunately, the total length of edges
depends on the assignment of points on the outer circle. Thus, in this section,
we simplify the problem and seek an assignment of radii to interior points that
minimizes the total length of the radial components of the edges.

Let Ek be the subset of exterior points connected to an interior point ik using
the concentric circle with radius rk (as in Fig. 2a) and let ek be its cardinality.
The sum of the radial edge lengths lRk is given by ek(rn+1− rk)+(rk− r0) where
r0 and rn+1 are the radii of the inner and outer circles, respectively.

The following lemma shows that the optimal assignment depends only on the
number of edges using each circle. It can be proved easily by contradiction.

Lemma 1. Suppose that the numbers of edges ek are such that e1 ≤ · · · ≤ en.
If the radii are such that r1 ≤ · · · ≤ rn, then SR =

∑n
k=1 lRk is minimum.

5 Optimally Connecting an Exterior Point to Interior
Ones

The next problem is to find the optimal position of an exterior point to minimize
the sum of its edge lengths. We assume that the assignment of radii is fixed and
given by Lemma 1. This leaves only the circular components to be minimized.
(Note that this heuristic does not guarantee that the total length of edges is
minimized.) Then, the objective can be restated as finding the optimal position
of an exterior point minimizing the total length of the circular components of
its edges, given the assumed assignment of radii to interior points.

Consider an exterior point o connected to k interior points i1, i2, · · · , ik (as
in Fig. 2b). Let l be the line passing through the center c of the circles and the
exterior point o. This line partitions the interior points into three sets: the points
lying above l (A), the points lying below l (B) and the points lying on l (O).

Let Θj be the angle in radians defined by the points o, c and ij , defined s.t.
0 ≤ Θj ≤ π. The sum of the circular edge components is

SC =
∑

ij∈A
Θj · rj +

∑

ij∈B
Θj · rj +

∑

ij∈O
Θj · rj (1)

The following lemma characterizes the optimal solutions minimizing the sum of
the circular edge components for a given exterior point o.

Lemma 2. There is an optimal position for the exterior point o minimizing the
sum of the circular edge components s.t. the line l defined by c and o passes
through an interior point ij between c and o.

Optimizing the Layout of Bipartite Graphs 207

i1

i2

i4

i5

i6

i3

o

c

(a)

l

i1

i4

i6

i3

c

o

l′′

l′

l

(b)

Fig. 3. Optimally positioning an exterior point connected to interior points

Proof. Suppose there is an optimal position for o which does not satisfy the
criteria as in Fig. 3a. (Note that, in this case, there could still be a point in O,
located on the “other side” of o (Fig. 3a).) Let SC be the corresponding sum of
the lengths as given by Eq. 1. W.l.o.g. suppose that

∑
ij∈A rj >

∑
ij∈B rj as in

Fig. 3a. By rotating l counter-clockwise by a small angle ε > 0, the point in O
(if it exists) would be located above l. The sum of lengths would then be

S′ =
∑

ij∈A
(Θj − ε) · rj +

∑

ij∈B
(Θj + ε) · rj +

∑

ij∈O
(Θj − ε) · rj

= SC − ε

⎡

⎣
∑

ij∈A∪O
rj −

∑

ij∈B
rj

⎤

⎦ < SC .

This contradicts the optimality hypothesis of SC .
In the special case

∑
ij∈A rj =

∑
ij∈B rj and O = ∅, the line l can still be

rotated onto either of two interior points (yielding l′ and l′′) without worsening
the sum of lengths (Fig. 3b). ��
This lemma gives a straightforward linear time algorithm to find an optimal so-
lution once the interior points have been fixed and assigned radii. The algorithm
simply has to sweep through the finite number of candidate solutions.

As the point o moves around the circle, the sum of the circular edge lengths
can reach numerous local minima (Fig. 4). Hence, binary search algorithms based
solely on local decisions could lead to non-optimal solutions.

6 Connecting Multiple Exterior Points to Multiple
Interior Points

The last problem to consider is choosing the positions of exterior points mini-
mizing the total sum of the circular edge lengths. This is the core layout problem

208 M. Dumas et al.

i1

i9

i5
o

local minimum

1900

2000

2100

2200

2300

2400

Exterior point position (0 to 2π)
S

um
 o

f t
he

 c
irc

ul
ar

 e
dg

e
le

ng
th

s

Fig. 4. Multi-modality of the function giving the sum of lengths. (Left) The construc-

tion of an example with 9 points – the radius rk is given by r0+δ+(k−1)× rn+1−r0−2δ

n−1
.

(Right) The corresponding sum of the circular edge lengths.

of the AlertWheel visualization tool. Due to the nature of the problem, the po-
sitions of the interior points are fixed. Hence, changing the positions of exterior
points is the only way to optimize the layout.

Two heuristics are presented to solve this optimization problem. These heuris-
tics are compared with the naive solution of ordering the points on a first-come,
first-served basis. A lower bound can be derived from the algorithm presented
in the previous section. However, this solution may not be achievable since it
allows many exterior points to coincide.

Let us first introduce some notation. Let Ik ⊆ {i1, · · · , in} be the subset of
the interior points connected to the exterior point ok. These points represent the
hyperedge associated with ok. Also, let I = {Ik|1 ≤ k ≤ m} be the set of the
hyperedges to be laid out.

6.1 Heuristic I: The Minimum Perfect Matching

The first heuristic is an algorithm distributing the exterior points evenly on
the outer circle. The eases point labeling in the visualization tool but does not
guarantee that the obtained optimal solution is globally optimal.

The algorithm is based on the minimum perfect matching problem [3]. It
constructs a complete bipartite graph Km,m representing the cost of associating
each hyperedge Ik to each potential layout position. A minimum-weight perfect
matching would give a one-to-one correspondence between the set of hyperedges
and the set of layout positions which minimizes the total sum of the hyperedge
lengths.

A more formal description of this heuristic is presented in Algorithm 1. The
running time of this algorithm is O(m2n + m3) = O(m3), assuming n < m.

Optimizing the Layout of Bipartite Graphs 209

Let I = {Ik|1 ≤ k ≤ m} be the hyperedges associated to the m exterior1

points.
Let P = {pk|1 ≤ k ≤ m} be a set of evenly distributed positions on the outer2

circle.
for i ← 1 to m do3

for j ← 1 to m do4

Compute the length wi,j of the hyperedge Ii at the position pj .5

Compute the minimum perfect matching of the complete bipartite graph6

defined by the sets I, P and W = {wi,j |1 ≤ i, j ≤ m}

Algorithm 1. Minimum perfect matching heuristic

In Fig. 5, the performance of this algorithm is compared with the naive al-
gorithm ordering the points on a first-come, first-served basis. As expected, the
heuristic yields a better result on this example than the naive algorithm. A more
thorough comparison is presented in Section 6.3.

Fig. 5. AlertWheel tool: Comparing the naive algorithm (left) and the perfect matching
heuristic (right). In the former case, the sum of the circular edge lengths is 22036 units.
In the latter case, the sum is 17158, or 22% less.

6.2 Heuristic II: The Anchor Algorithm

The second heuristic is based on the idea of finding the optimal position of each
exterior point and placing it as close as possible to this position, which we call an
anchor. Lemma 2 determines the anchors for the exterior points. Based on the
computed anchors, the exterior points are partitioned into sets containing points
competing for the same optimal anchors. Then, the optimal local positioning of
the exterior points around each anchor is determined.

210 M. Dumas et al.

Unfortunately, this algorithm does not guarantee an optimal solution. If an
exterior point is placed too far from its optimal anchor, it could be better off at
another anchor. Nevertheless, this heuristic yields good results, as we will see.

Let us introduce some notation. Let Cp ⊆ {o1, · · · , om} be the points compet-
ing for the anchor p. To simplify the notation, assume that Cp = {o1, · · · , ot}.
The anchor p and center c determine a line l that divides the interior points into
the points lying above l (A), the points lying below l (B) and the points lying
on l. To simply the argument, we assume that only the anchor point lies on l.
For any exterior point oi ∈ Cp connected to the hyperedge Ii, we define

ai =
∑

ij∈Ii

ij∈A

rj and bi =
∑

ij∈Ii

ij∈B

rj .

Finally, let r∗ be the radius associated with the interior point defining the anchor
p. By Lem. 2, this interior point must be in Ii.

Let A = {oi ∈ Cp|ai ≥ bi} and let B = {oi ∈ Cp|ai < bi}. Now, suppose
that oi ∈ A. As the exterior point oi moves away from the anchor p by an angle
Θ > 0, the total sum of the circular edge lengths increased by

(ai + r∗ − bi)Θ > 0 if oi is moving away clockwise
(bi + r∗ − ai)Θ > 0 if oi is moving away counter− clockwise.

Both expressions must be positive. Otherwise, the point p would not represent
an optimal anchor for oi. This follows from Lem. 2.

The following lemma characterizes the optimal layouts of the exterior points
in A. Intuitively, these points should be moved away from the anchor counter-
clockwise to reduce the impact on the sum of the circular edge lengths.

Lemma 3. Let 0 ≤ i ≤ |A|. There are only two optimal layouts of the exterior
points in A around the anchor p s.t. i points of A move away clockwise.

bi − ai < 0ai − bi > 0

−8−7−643

5

p

Fig. 6. Ordered layout of the exterior points in A for i = 2. The values represent the
values of ai − bi > 0 (on the left of p) and the values of bi − ai < 0 (on the right of p).
The shaded boxes represent the positions of the points in B.

Optimizing the Layout of Bipartite Graphs 211

Proof. W.l.o.g., suppose that A = {o1, · · · , or} is such that the values of ai − bi

are sorted in increasing order. In order to minimize the total sum of the circular
edge lengths, the points must be laid out as follows:

– o1, · · · , oi clockwise w.r.t. the anchor and oi+1, · · · , or counter-clockwise w.r.t.
the anchor – and according to the sorted order;

– o1, · · · , oi clockwise w.r.t. the anchor, oi+1 on the anchor and oi+2, · · · , or

counter-clockwise w.r.t. the anchor – and according to the sorted order.

Let us consider only the simpler alternative since the same argument applies to
both. First, let us prove the optimality of the layout of the points which have
been moved counter-clockwise (i.e., at the right of p in Fig. 6). Suppose there
is an optimal layout which does not respect the increasing order. Let S∗ be
the sum of the circular edge lengths of this optimal solution. Suppose there are
two consecutive points oi∗ and oj∗ counter-clockwise w.r.t. the anchor point s.t.
ai∗ − bi∗ > aj∗ − bj∗ > 0. Thus, oi∗ and oj∗ have been moved counter-clockwise
by an angle of inc × Θ and (inc + 1) × Θ, respectively. The value inc is the
incremental angular difference between adjacent exterior points. The weight of
the these two consecutive points in S∗ is

(bi∗ + r∗ − ai∗)× inc×Θ + (bj∗ + r∗ − aj∗)× (inc + 1)×Θ.

By permuting the two points, a smaller weight can be obtained. This contradicts
the optimality of the solution.

Finally, suppose there is a point oi∗ ∈ B which has been also moved counter-
clockwise (a shaded box in Fig. 6). Since (bi∗ − ai∗) > 0, this point must be
closer to the anchor than any other point in A in any optimal layout. Otherwise,
by permuting these points, a smaller sum of the circular edge lengths would be
obtained. Similar arguments can be used to prove the optimality of the layout
of the points which have been moved clockwise (i.e. at the left of p in Fig. 6).

��
Based on this characterization of the optimal layouts, a more formal description
of this heuristic is presented in Algorithm 2. The running time of this algorithm
is in O(mn + m2).

Figure 7 presents one example showing that the anchor heuristic out performs
the naive algorithm, as expected. A better comparison is presented in Sect. 6.3.

6.3 Empirical Comparison

To perform a more thorough comparison of the proposed heuristics, the differ-
ent algorithms were applied to the same random bipartite graphs, generated as
follows. There are ten points which have been fixed on the inner circle. There
are n points which have to be laid out on the outer circle. These points have to
be connected to the inner points as follow:

– 10% of the exterior nodes have 5 edges.
– 20% of the exterior nodes have 4 edges.

212 M. Dumas et al.

Find the n anchors p1, · · · , pn determined by the interior points (by Lem. 2).1

for each exterior point oi do2

Find the optimal anchor pji .3

Add oi to the anchor list Cji .4

for each anchor list Cji do5

Find the optimal position of the |Cji | points around pji .6

Let A and B be the set of points as defined in Lem. 37

for i ← 0 to |A| do8

for j ← 0 to |B| do9

Find the optimal solutions with i points of A and j points of B10

which have been moved clockwise (by Lem. 3).
Find the optimal solutions among all the solutions in the previous step.11

Algorithm 2. Anchor heuristic

Fig. 7. AlertWheel tool: Comparing the naive algorithm (left) and the anchor heuristic
(right). In the former case, the sum of the circular edge lengths is 22036 units. In the
latter case, the sum is 17184, or 22% less.

– 30% of the exterior nodes have 3 edges.
– 20% of the exterior nodes have 2 edges.
– 20% of the exterior nodes have only one edge.

For each of these exterior points, their connected neighbors are randomly selected
among the ten interior points.

The results of the experiment are presented in Fig. 8. For each number of
nodes, 20 bipartite graphs have been generated. The figure shows the average of
the total sum of circular edge lengths for each algorithm.

The performance of the algorithms can be compared with a theoretical lower
bound. The lower bound is found by finding the optimal position of each exterior

Optimizing the Layout of Bipartite Graphs 213

point (as given by Lem. 2) and allowing exterior points to coincide. Thus, this
lower bound is unachievable in practice. As expected, the anchor heuristic gives
very good results. If the number of competing exterior points for a given anchor
is small, each point should be very close to its optimal solution. This should
yield a solution that is close to the globally optimal solution.

To conclude, it should be mentioned that the anchor heuristic has a disadvan-
tage for the AlertWheel visualization tool. Because the exterior points are non
uniformly distributed on the outer circle, a radial labelling of the nodes has to
be used instead of a circular labelling (as in Fig. 5 and 7).

10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

8
x 10

4

Number of nodes

A
ve

ra
ge

 o
f t

he
 to

ta
l s

um
 o

f t
he

 c
irc

ul
ar

 e
dg

e
le

ng
th

s

Naive
Perfect Matching
Anchor
Lower

Fig. 8. Comparing the performance of the different algorithms on random bipartite
graphs with n = 10, 20, 10, 40 and 50 nodes

7 Conclusions

In addition to the user interaction problems that had to be solved during the
development of AlertWheel, multiple bipartite graph drawing problems also had
to be addressed. In all cases, the naive approaches to laying out the graph with-
out any optimization give poor results. The large quantities of information to
deal with have necessitated finding good heuristics to reduce the clutter in the
drawing of the radial representation of the bipartite graph representing the ob-
served security alerts of an IDS. One of these heuristics gives very good results
which are close the globally optimal solution.

214 M. Dumas et al.

References

1. Abdullah, K., Lee, C., Conti, G., Copeland, J.A., Stasko, J.: IDS RainStorm: vi-
sualizing IDS alarms. In: IEEE Workshop on Visualization for Computer Security,
pp. 1–10 (2005)

2. Bachmaier, C.: A radial adaptation of the Sugiyama framework for visualizing hi-
erarchical information. IEEE Transactions on Visualization and Computer Graph-
ics 13, 583–594 (2007)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

4. Dumas, M., Robert, J.M., McGuffin, M.J., Willig, M.C.: AlertWheel: Radial bi-
partite graph visualization applied to intrusion detection system alerts (submitted
for publication)

5. Foresti, S., Agutter, J., Livnat, Y., Moon, S., Erbacher, R.: Visual correlation of
network alerts. IEEE Comput. Graph. Appl. 26, 48–59 (2006)

6. Gansner, E., Koren, Y.: Improved Circular Layouts. In: Kaufmann, M., Wagner,
D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007)

7. Northcutt, S., Novak, J.: Network Intrusion Detection, 3rd edn. New Riders, Indi-
anapolis (2002)

8. Pupyrev, S., Nachmanson, L., Kaufmann, M.: Improving Layered Graph Lay-
outs with Edge Bundling. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 329–340. Springer, Heidelberg (2011)

9. Purchase, H.C.: Which Aesthetic has the Greatest Effect on Human Understand-
ing? In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer,
Heidelberg (1997)

10. Tamassia, R., Palazzi, B., Papamanthou, C.: Graph Drawing for Security Visual-
ization. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 2–13.
Springer, Heidelberg (2009)

11. Zheng, L., Song, L., Eades, P.: Crossing minimization problems of drawing bipartite
graphs in two clusters. In: Asia-Pacific Symposium on Information Visualisation,
pp. 33–37 (2005)

Visual Community Detection: An Evaluation

of 2D, 3D Perspective and 3D Stereoscopic
Displays

Nicolas Greffard, Fabien Picarougne, and Pascale Kuntz

KoD Research Team - LINA - Polytech’Nantes, rue Christian Pauc
BP50609 France 44306 Nantes Cedex 3

{Nicolas.Greffard,Fabien.Picarougne,Pascale.Kuntz}@univ-nantes.fr

Abstract. 3D drawing problems of the 90s were essentially restricted
on representations in 3D perspective. However, recent technologies offer
3D stereoscopic representations of high quality which allow the introduc-
tion of binocular disparities, which is one of the main depth perception
cues, not provided by the 3D perspective. This paper explores the rele-
vance of stereoscopy for the visual identification of communities, which
is a task of great importance in the analysis of social networks. A user
study conducted on 35 participants with graphs of various complexity
shows that stereoscopy outperforms 3D perspective in the vast majority
of the cases. When comparing stereoscopy with 2D layouts, the response
time is significantly lower for 2D but the quality of the results closely de-
pend on the graph complexity: for a large number of clusters and a high
probability of cluster overlapping stereoscopy outperforms 2D whereas
for simple structures 2D layouts are more efficient.

1 Introduction

Long after the pionnering work of Kolmogorov [1], 3D drawings knew a phase
of great interest in the mid-90’s in the graph drawing community. Besides the
beauty of the theoretical questions, this interest was mostly motivated both by
the availability of new 3D display hardware, and by the exploration of new appli-
cations which emerged in particular in VLSI design (e.g. [2]). The most studied
models included orthogonal grid drawings, convex and straight line drawings
(e.g. [3], [4], [5]). And, the most common aesthetic criteria were the bound-
ing area volume, the minimization of edge length and bends. NP-completeness
proofs were deduced from 2D for the different criteria, and several theoretical
bounds were highlighted in different cases. And, different algorithms and tools
(e.g. GIOTTO3D, GEM-3D, 3D CUBE) were developed.

However, despite all these efforts, the 3D phase rapidely declined and it is
sometimes considered as a prejudicial epiphenomenon in the graph drawing com-
munity (see Eades’s invited talk at GD’101). The main criticsm concerns the lack
of layout lisibility often illustrated by the paradigmatic 3D drawing of K7. Some
1 http://www.graphdrawing.org/gd2010/invited.html

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 215–225, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.graphdrawing.org/gd2010/invited.html

216 N. Greffard, F. Picarougne, and P. Kuntz

encouraging results for the multilayer layouts have nevertheless continued to
punctually draw the attention. But as said by Eades they “use 3D with a 2D
attitude”; the third dimension is added for representing a parameter (e.g. time).

Nevertheless, we believe that the 3D “trial” is essentially due to a non proper
definition of 3D, and consequently to an inappropriate choice of the aesthetics. In
the works previously quoted, 3D drawings are 2D representations of a perspective
view, and the aesthetics are directly re-used from 2D without specific analysis
of their adequation in 3D.

Recent cheap technologies offer 3D stereoscopic representations of high
quality which allow the introduction of binocular disparities, which is one of
the main depth perception cues, not provided by the 3D perspective. Stere-
oscopy may also be combined with virtual reality (e.g. [6]) but this approach is
far beyond the scope of this paper. Although the general question of the bene-
fits offered by stereoscopy over 2D still remains open, investigations on the 3D
expressiveness are attracting a growing community of computer scientists (e.g.
for an overview, [7]).

In graph drawing, recent works have shown the interest of stereoscopic 3D
representations of node-link layouts of graphs for local analysis : in particular,
[8] have experimentally confirmed the power of 3D, previously hightlighted by
[9], to trace out short paths between close (distance 2 or 3) vertices in limited
size graphs (with less than 150 nodes).

In this paper, we explore the relevance of stereoscopy for a higher level task:
the identification of communities (i.e. vertex subsets strongly connected to each
other) . This task is of great importance in the analysis of social networks where
visualization knows an increasing interest. Most often, communities are first
identified with a clustering approach for which various algorithms have been
proposed (see [10] for a recent state-of-the art), and visual representations of
clustered graphs are then used. But, the community detection suffers from a
major problem: in many real life situations, communities do not form a non am-
biguous partition of the graph and several overlappings are present. In order to
tackle this difficulty, alternative strategies have been developed: e.g. give a par-
ticular place to some pre-defined vertices (“central actors”) which are members
of different communities ([11]), or duplicate vertices which belong to different
communities (e.g. [12]). Other representations than node-link diagrams have also
been proposed but we here restrict ourselves to the latter which is by far the
most popular visual representation of social networks, and the only one to have
been investigated in 3D.

Here, we do not propose an n + 1th strategy, but we analyse the resort to
stereoscopy for detecting communities in a “crude” representation of the whole
graph - obtained with the Fruchterman-Reingold algorithm. Roughly speaking,
the question we are asking in our experiments is “How different is stereoscopic
representation from 2D, and 3D perspective views for identifying communities
in medium size graphs with different complexities ?” Beyond its popularity, the
choice of the algorithm, which has been shown to be outperformed in 2D by
other approaches, is here justified by two reasons: it directly computes a layout

Visual Community Detection 217

which highlights communities without pre- or post- processings, and it is directly
applicable to both 2D, 3D perspective and stereoscopy which consequently limits
bias in the comparisons. For pseudo-random graphs associated with different
parameters such as the cluster size and the density of intra and inter cluster links,
we conducted a user study: we asked participants the number of communities
they could detect and we measured the time required to answer.

The rest of this paper is organized as follows. Section 2 briefly recalls some
psycho-visual generalities on human 3D perception which guide our research.
Section 3 details the experimental procedure for the comparisons. Finally, the
results are analyzed in Section 4.

2 Stereoscopic Perception

We live in a 3D space and a long period of evolution has endowed us with organs
that allow us to perceive a three dimensional space from visual information. A
huge amount of research in cognitive sciences has been dedicated to the mech-
anisms implied in the perception of 3D environment (e.g. [13]). In addition to
those associated with the shape and object detection, the biological mechanisms,
which govern the perception of a distance in the optical axis -the depth-, play
a crucial role. Depth perception is certainly a combination of several perceptive
mechanisms, and various studies have been carried out in the last decades to try
to measure the relative performance of different functions and visual cues used
by the human brain to perceive depth (e.g. [14], [15], [16]). Roughly speaking,
it seems that partial occlusion (an object partially in front of another one) is
one of the most important factors whatever the distance between the person and
the object. For limited distances (less than 40m), binocular disparities associ-
ated with stereoscopic vision and perspective motions also have an important
effect, whereas for larger distances -not considered in this paper- other factors
like aerial perspective come into play ([17], [18]).

The comparison of the relative effects of stereoscopy and motion cues is still
widely discussed. They seem to be equivalent or complementary in various tasks
(e.g. [19], [20]). More precisely, motion itself associated with a 3D perspective
may give a faithful depth reproduction: object rotations jointly act with the
spatial memory to form a 3D mental representation of the observed object ([15]).
But motion is also useful both in perspective and in stereoscopy to detect objects
hidden in a particular vision axis. Consequently, measuring the interdependence
between these two cues is a very difficult task. This paper restricts itself to the
comparison of stereoscopy and 3D perspective both combined with basic motion
possibilities at a macroscopic level. However the analysis of the specific effects
of motion are in our short term plans.

3 Experimental Design

Three viewing methods were employed during the experiment:

218 N. Greffard, F. Picarougne, and P. Kuntz

– 2D: a 2D graph layout was computed with the Fruchterman-Reingold algo-
rithm and displayed on a 2D surface. The users were allowed to zoom in/out
on the graph using the mousewheel and to apply a z-axis rotation on the
layout by moving the mouse.

– 3D Perspective (3D persp): a 3D graph layout was computed with the
Fruchterman-Reingold algorithm and displayed on a 2D surface with a per-
spective projection. Along with the zoom in/out and the z-axis rotation, the
user was allowed to spin the viewpoint around the graph (x/y-axis rotation).

– 3D Stereoscopy (3D stereo): the same 3D layout with perspective projection
as case 2 was used but with two viewpoints -computed in real time- to
introduce the binocular disparity: one viewpoint for each eye, with a slight
shift on the horizontal viewing axis to mimic the actual separation between
the human eyes. The same interactions than in case 2 were allowed.

3.1 Apparatus

The visualization system ran on an Intel Core 2 Duo (3.00 Ghz) E8400 pro-
cessor, with 4 GB of RAM and an NVidia Quadro FX 3800 GPU. All graphs
were displayed in shades of white on a black background, using Gouraud shad-
ing (without projective shadows) and an anti aliasing algorithm to improve the
quality of the display. The visualization was displayed on a white painted wall
by an ACER H5360 3D projector (2, 30 × 1, 30 m2 screen) with a resolution
of 1280 × 720 pixels (view angle of 0.05 degrees for a pixel in the center of
the screen). Our system uses active stereoscopy with Nvidia 3D Vision Shutter
glasses. By using these glasses we decrease the perceived luminosity. To avoid any
bias and ensure the same level of luminosity for each viewing method, partici-
pants had to wear the glasses through all the experiment. Participants could also

Graph viewing space

Detailed user interface

User workspace

Fig. 1. Photograph of the experimental setup, along with a snapshot of the user
interface of the tablet pc

Visual Community Detection 219

interact with the system through a wireless mouse. The answers were entered
using a touch screen tablet PC: different numbers were proposed (between 1 and
15, plus “don’t know”) and participants just had to touch the corresponding
number. The experimental set up can be seen on Fig. 1.

3.2 Graph Database

In order to analyse the stereoscopic viewing for different topologies we have
generated graphs with a classical pseudo-random model (e.g. [21]). The generic
model G

(
k, nv, pint

pext

)
depends on four parameters: the number k of a priori clus-

ters, the number of vertex per cluster nv, the probability pint (resp. pext) of edge
between two vertices belonging to the same cluster (resp. different clusters). We
have generated 480 graphs with parameters ranges specified as k ∈ {4, 5, ..., 11},
nv ∈ {10, 20, 30, 40}, pext

pint
∈ {0.02

0.8 , 0.02
0.7 , 0.03

0.8 , 0.03
0.7 , 0.03

0.6 , 0.04
0.7 , 0.03

0.5 , 0.05
0.8 , 0.05

0.7 , 0.05
0.6 ,

0.065
0.6 , 0.07

0.6 , 0.1
0.8 , 0.08

0.6 , 0.1
0.7

}
. The parameters pint and pext were empirically deter-

mined during a previous study by two confirmed users. Furtheremore, the largest
graphs were discarded to avoid any performance issue. A few examples of such
graphs are shown on Fig. 2.

3.3 Participants

35 participants (25 males, 10 females) carried out the experiment. Aged from
20 to 50, 30 of them were computer science students or researchers. Three of
the subjects were left-handed with a right-handed use of the mouse. Only two
subjects had never visualized any stereoscopic material, and eleven out of the
35 participants were not familiar with 3D software such as video games.

3.4 Experimental Procedure

To limit the experimentation duration, 15 layouts per viewing method were
successively presented to each participant. To avoid any potential bias, the 3
viewing methods appeared in a random order (no interleaving). The 3 × 15
layouts were randomly picked from the database -without duplication within
the same viewing method. This process aims at avoiding any learning bias in the
community detection task. The maximal task completion time was 28 minutes
(15 minutes on average).

Before the experiment, a few questions were asked to the participants to gather
their experience with graph theory, graph visualization, stereoscopic displays
and 3D software. A description sheet was handed out to briefly explain the
experimental process, and a quick demo presented the three viewing methods
with an easily readable graph (3 clusters, 20 nodes per cluster and a high pint

and small pext). Then, the participants had to go through a training session
to get familiar with the system; the training session consisted in 3 layouts of
increasing complexity for each viewing method.

Participants were asked to estimate the number of communities displayed as
fast as possible, and told that the experimenter couldn’t help them. If a par-
ticipant felt unable to detect communities, he/she was told to skip the layout

220 N. Greffard, F. Picarougne, and P. Kuntz

Fig. 2. Snapshots of the drawings of graphs of increasing complexity. G1 = G(k =
4, nv = 20, pext=0.05

pint=0.8
); G2 = G(k = 6, nv = 30, pext=0.05

pint=0.7
); G3 = G(k = 8, nv =

30, pext=0.07
pint=0.8

).

Visual Community Detection 221

by pressing a button labelled ”I don’t know”. Once all the layouts of a viewing
method had been presented, the following method started with a notice of the
experimenter (“you have finished the xth series, we move on to the next series”).
At the end of the experiment, the participants were asked to state their visual-
ization preferences (easiest and hardest cases), and their estimation (cases with
the best and the worst performance).

4 Results

4.1 Quality of Community Detection

Let X be the set of answers given by all participants and I a subset of such
that all the instances i of I share the same ratio range pext/pint. Let Ii

ans be
the number of communities proposed by a participant for an instance i, and
Ii
act the a priori number of communities in the model (section 3.2). For each

viewing method vm, vm = {2D; 3Dpersp; 3Dstereo}, the error is measured by
the average of the differences :

Errorvm(I) =
1

card(I)

∑

i∈I

(∣
∣Ii

ans − Ii
act

∣
∣
)

Note that the answer “I don’t know” was counted as an error (i.e. the detection
of only 1 community), and that for high values of pext and low values of pint

the term “error” is not perfect since the detection may be very ambiguous. But
in these cases, the quality measurement of the community detection remains an
open difficult question (see Fortunato, 2010).

The results depend on the complexity of the graph structuration here mea-
sured by the ratio pext/pint: for small values, the communities are easy to identify,
whereas for high values important overlappings and small community densities
may make the detection difficult. Table 1 shows that 2D is significantly better for
a small complexity (two way ANOVA: p = 0.01): communities are well-separated
on the layout and are easily detected on a plane. For larger complexities, stere-
oscopy is slightly better (two way ANOVA: p = 0.1) in particular for large k

Table 1. Error for community detection. For each viewing method vm and for each
interval of structure complexity (pext/pint) I , mean error Errorvm(I), along with the
cardinality of each interval.

Complexity Cardinality 2D 3D persp 3D stereo
(pext/pint)

[0.02; 0.04] 369 0.10 0.37 0.27
]0.04; 0.06] 406 1.62 1.64 1.40
]0.06; 0.11] 405 3.27 3.22 2.78
]0.11; 0.15] 260 3.47 3.71 2.99

222 N. Greffard, F. Picarougne, and P. Kuntz

Table 2. Error for community detection. For each viewing method vm and for I , mean
error Errorvm(I) depending on k.

Complexity viewing method k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
(pext/pint)

[0.02; 0.04]
2D 0.0 0.0 0.1 0.05 0.06 0.16 0.13 0.67

3D persp 0.0 0.0 0.13 0.08 0.25 0.35 0.37 1.56
3D stereo 0.0 0.0 0.0 0.07 0.16 0.11 0.42 1.67

]0.04; 0.06]
2D 0.0 0.14 0.0 0.19 1.27 2.65 3.35 6.94

3D persp 0.0 0.0 0.08 0.58 1.45 1.92 4.13 5.93
3D stereo 0.0 0.0 0.13 0.9 0.63 0.69 3.81 5.5

]0.06; 0.11]
2D 0.0 0.0 0.5 1.35 2.24 3.95 6.15 7.9

3D persp 0.0 0.13 0.32 1.07 1.63 4.44 6.12 7.61
3D stereo 0.0 0.0 0.21 1.6 1.9 3.42 5 6.88

]0.11; 0.15]
2D 0.28 0.88 2 4.69 6.14 7.13 9 10

3D persp 0.73 1.23 2.3 5.81 5.44 6 8.75 8.75
3D stereo 0.93 1.35 2.06 4.75 5.25 8 6.6 6

Table 3. Standard deviation of the error for community detection for each viewing
method and for a threshold of structure complexity (pext/pint)

Complexity 2D 3D persp 3D stereo
(pext/pint)

< 0.06 1.28 1.16 1.67
≥ 0.06 3.63 3.69 3.38

values. Table 2 shows that for k > 7 stereoscopy is significantly better than 2D
for a complexity greater than 0.06 (two way ANOVA: p = 0.02). The additional
perceptive dimension combined with the motion seems to help to distinguish the
aggregates even in presence of “noise” (overlappings). The situation is different
for 3D perspective for which occlusions partly explain the debased results. Nev-
ertheless, let us note that, whatever the viewing method, the error variation is
important as soon as the complexity increases (Table 3). We have observed that
this variation is similar for any value of k. Moreover, in our experimental sample
group, it can not be explained by the non-familiarity with the 3D software but
complementary experiments are required to reject this hypothesis.

4.2 Response Time

For each viewing method vm, the response time is the average time of response
T imevm(I) of participants.

Table 4 shows that the response time for 2D is significantly smaller than for
3D whatever the graph complexity. And, the response times of 3D perspective
and sterescopy are very similar. However, as discussed in the conclusion, a more
precise analysis of the participant behavior (mouse motion) seems to establish
that the time exploitation is different in the two cases.

Visual Community Detection 223

Table 4. Response time for community detection. For each viewing method vm and
for each interval of structure complexity (pext/pint), mean time T imevm(I) in seconds.

Complexity 2D 3D persp 3D stereo
(pext/pint)

[0.02; 0.04] 7.3 14.2 12.3
]0.04; 0.06] 11.1 17.9 17.7
]0.06; 0.11] 12.4 22.5 24.7
]0.11; 0.15] 13.1 21.9 21.1

4.3 Participant Perception

Table 5 underlines participant preferences for the stereoscopy, and difficulties
felt with both 2D and 3D perspective. We are aware that a bias could exist: the
experimentation by itself shows our interest in 3D to the participants who may be
unconsciously inclined to share the researcher’s enthusiasm. Nevertheless, part of
the subjectivity is corroborated by the experimentations: among the participants
who estimated that their best results were obtained with stereoscopy, 54% had
their intuition confirmed by the results (whereas only 15.5% of them obtained
their best results with the 3D perspective). Consequently, the “reject” of 3D
perspective recalled in the introduction is verified. But, the comparisons show
that this subjective perception is significantly different from stereoscopy.

Table 5. Subjective perception of the participants. For each viewing method vm, per-
centage of participants who answered that the case vm is the easiest (resp. the hardest)
and the one for which they believe to obtain the best (resp. worst) performances. (NA:
don’t know)

Answer 2D 3D persp 3D stereo NA

easiest 14.2 0 68.6 17.2
hardest 37.1 43 5.7 14.2

best performances 11.3 0 74.3 14.4
worst performances 43 34.3 5.7 17

5 Conclusion

As far as we know, this paper presents a pionnering research in the use of stere-
oscopy for a visualization problem which has known an increasing interest in
the last decade: the detection of communities in large graphs. Our first exper-
iments highlight an important difference between stereoscopy and classical 3D
perspective which has been widely critized by the graph drawing community.
Moreover, even if the debate remains widely open, experimental results seem to
show the interest of stereoscopy against 2D for complex structures with numer-
ous clusters of variable density and many overlappings. Obviously, additional

224 N. Greffard, F. Picarougne, and P. Kuntz

experiments are needed to confirm these results on larger populations and real
life databases; and to better understand the observed differences.

In the near future, our objective is to go beyond the measurement of errors by
apprehending more precisely the role played by motion in 3D environment. To
that aim, during the experiments we stored the mouse movements for each par-
ticipant. A first superficial analysis highlights important use differences between
3D perspective and stereoscopy. This research could lead to investigating new op-
timization criteria in the graph drawing community which take into account not
only the aesthetics of the layouts but also the handling for their interpretation
and use.

References

[1] Kolmogorov, A., Barzdin, Y.: Abour realization of sets in 3-dimensional space,
problems cybernet (1967)

[2] Rosenberg, A.L.: Three-dimensional vlsi: a case study. J. ACM 30, 397–416 (1983)
[3] Di Battista, G., Patrignani, M., Vargiu, F.: A Split&Push Approach to 3D Orthog-

onal Drawing. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 87–101.
Springer, Heidelberg (1999)

[4] Eades, P., Symvonis, A., Whitesides, S.: Three-dimensional orthogonal graph
drawing algorithms. Discrete Applied Mathematics 103(1-3), 55–87 (2000)

[5] Wood, D.R.: Optimal three-dimensional orthogonal graph drawing in the general
position model. Theor. Comput. Sci. 299, 151–178 (2003)

[6] Halpin, H., Zielinski, D., Brady, R., Kelly, G.: Exploring Semantic Social Networks
using Virtual Reality. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 599–614.
Springer, Heidelberg (2008)

[7] Teyseyre, A., Campo, M.: An overview of 3D software visualization. IEEE Trans.
on Visualization and Computer Graphics 15(1), 114–135 (2009)

[8] Ware, C., Mitchell, P.: Visualizing graphs in three dimensions. ACM Transactions
on Applied Perception 5, 2–15 (2008)

[9] Belcher, D., Billinghurst, M., Hayes, S., Stiles, R.: Using augmented reality for
visualizing complex graphs in three dimensions. In: ISMAR, pp. 84–92 (2003)

[10] Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174
(2010)

[11] Auber, D., Chiricota, Y., Jourdan, F., Melancon, G.: Multiscale visualization of
small world networks. In: INFOVIS 2003: Proceedings of the IEEE Symposium
on Information Visualization (INFOVIS 2003), pp. 75–81 (2003)

[12] Henry, N., Bezerianos, A., Fekete, J.D.: Improving the readability of clustered
social networks using node duplications (2008)

[13] Landy, M.S., Maloney, L.T., Young, M.J.: Psychophysical estimation of the human
depth combination rule. vol. 1383, pp. 247–254. SPIE (1991)

[14] Hubona, G.S., Wheeler, P.N., Shirah, G.W., Brandt, M.: The relative contribu-
tions of stereo, lighting, and background scenes in promoting 3D depth visualiza-
tion. ACM Trans. Comput.-Hum. Interact. 6, 214–242 (1999)

[15] van Schooten, B.W., van Dijk, E.M.A.G., Zudilova-Seinstra, E., Suinesiaputra, A.,
Reiber, J.H.C.: The effect of stereoscopy and motion cues on 3D interpretation
task performance. In: Proceedings of the International Conference on Advanced
Visual Interfaces, AVI 2010, pp. 167–170. ACM, New York (2010)

Visual Community Detection 225

[16] Ware, C., Mitchell, P.: Reevaluating stereo and motion cues for visualizing graphs
in three dimensions. In: Proceedings of the 2nd Symposium on Applied Perception
in Graphics and Visualization, APGV 2005, vol. 95. ACM (2005)

[17] Cutting, J.: How the eye measures reality and virtual reality. Behavior Research
Methods, Instrumentation, and Computers 29, 29–36 (1997)

[18] Saracini, C., Franke, R., Blümel, E., Belardinelli, M.: Comparing distance percep-
tion in different virtual environments. Cognitive Processing 10, 294–296 (2009)

[19] Ware, C., Franck, G.: Evaluating stereo and motion cues for visualizing informa-
tion nets in three dimensions. ACM Transactions on Graphics 15, 121–139 (1996)

[20] Domini, F., Caudek, C., Tassinari, H.: Stereo and motion information are not
independently processed by the visual system. Vision Res. 46, 1707–1723 (2006)

[21] Garbers, J., Promel, H.J., Steger, A.: Finding clusters in vlsi circuits. In:
Proceedings of ICCAD 1990, pp. 520–523 (1990)

Evaluating Partially Drawn Links

for Directed Graph Edges

Michael Burch, Corinna Vehlow, Natalia Konevtsova, and Daniel Weiskopf

VISUS, University of Stuttgart
Allmandring 19, 70569 Stuttgart, Germany

Abstract. We investigate the readability of node-link diagrams for di-
rected graphs when using partially drawn links instead of showing each
link explicitly in its full length. Providing the complete link information
between related nodes in a graph can lead to visual clutter caused by
many edge crossings. To reduce visual clutter, we draw only partial links.
Then, the question arises if such diagrams are still readable, understand-
able, and interpretable. As a step toward answering this question, we
conducted a controlled user experiment with 42 participants to uncover
differences in accuracy and completion time for three different tasks:
identifying the existence of a direct link, the existence of an indirect
connection with one intermediate node, and the node with the largest
number of outgoing edges. Furthermore, we compared tapered and tradi-
tional edge representations, three different graph sizes, and six different
link lengths. In all configurations, the nodes of the graph were placed ac-
cording to the force-directed layout by Fruchterman and Reingold. One
result of this study is that the characteristics of completion times and
error rates depend on the type of task. A general observation is that
partially drawn links can lead to shorter task completion times, which
occurs for nearly all graph sizes, tasks, and both tapered and traditional
edge representations. In contrast, there is a tendency toward higher error
rates for shorter links, which in fact is task-dependent.

1 Introduction

Visualizing graph data as node-link diagrams can lead to visual clutter [17].
This problem is most pronounced for dense graphs causing a huge number of
edge crossings. Therefore, typical graph layout algorithms for node-link diagrams
follow certain aesthetic criteria for graph drawing where the reduction of edge
crossings is ranked very high. Other important aesthetic criteria include the
minimization of edge lengths, the maximization of angles at link intersections,
and the preservation of symmetries.

In our work, we ask the question if node-link graph visualizations are still
useful, readable, and interpretable when reducing visual clutter by drawing links
partially instead of showing each link explicitly in its full length and applying
some sophisticated layout algorithm. To visually encode directed edges, we draw
partial links beginning at the start vertex and pointing to the target vertex

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 226–237, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Evaluating Partially Drawn Links for Directed Graph Edges 227

instead of ending exactly there. By doing this, many explicit link intersections
are avoided, a fact that definitely reduces visual clutter but increases ambiguities.
We speculate that this may lead to more graph misinterpretations but we are
unsure how error rates and completion times behave when solving graph-related
tasks. We also speculate that there is an optimal range of link lengths that
balances the goals of reducing visual clutter on the one hand and minimizing
error rates and completion times on the other hand.

We conducted a controlled user experiment with 42 participants to find out if
the partial link visualization strategy for directed graphs has any benefits over
the traditional complete link representations and, if so, what the best-suited
link lengths would be. For the experiments, we used artificial data sets with con-
stant characteristics: randomly generated graph data that follows the Barabási-
Albert [1] model for scale-free networks where the degrees form a power-law
distribution. The graphs were laid out with the force-directed algorithm by
Fruchterman and Reingold [5], which meets relevant aesthetic criteria for graph
drawing.

We used the following relevant independent variables in our study: edge style
(tapered straight links according to Holten and Van Wijk [8] and straight links as
used in traditional approaches [3]), varying number of vertices to reflect different
sizes of graphs, and varying length of links to test for partially drawn links. We
employed three different tasks in our study: (1) identifying the existence of a
direct link between two highlighted nodes, (2) identifying the existence of an
indirect connection with one intermediate node between two highlighted nodes,
and (3) the detection of the node with the highest number of outgoing edges. The
user study collected accuracies and completion times for those tasks to identify
performance for the different settings of the independent variables.

2 Related Work

Graph visualization techniques aim at producing graph layouts that are read-
able, interpretable, and look aesthetically pleasing to the viewer; see Di Battista
et al. [3] for an overview of graph visualization. We focus on the issue of vi-
sual clutter in graph layouts, which is getting more and more prominent with
increasing data set size.

One approach to reducing clutter relies on partially drawn links. Early work
in this direction is due to Becker et al. [2], who visualized graphs with half-
links (called half-lines in their paper), i.e., a directed link is connected with
its start vertex and points to its target vertex but cut at halfway. With line-
shortening, they even used links with further reduced length. This visualization
strategy reduces visual clutter by reducing the number of explicit link crossings;
however, Becker et al. did not provide any user study to evaluate the effectiveness
of their visualization approach. In recent work, Rusu et al. [18] investigated
another variant of partially drawn links in diagrams of undirected graphs. They
introduced short breaks in full links (instead of one piece of a short link in our
case), relying on the Gestalt principle of closure to perceive the whole link; see

228 M. Burch et al.

Koffka [12] for background information on Gestalt psychology. They provided a
preliminary user-based evaluation; they conducted a subjective study, whereas
we focus on a task-based evaluation with accuracies and completion times.

Graph drawing aesthetics also aim at reducing visual clutter for good read-
ability. Rosenholtz et al. [17] developed a measurement technique for (generic)
display clutter, based on color and luminance contrast features. They demon-
strated that their measure can be used in an automated way to make design
suggestions for drawing properties such as the location of an item. In general, the
graph layout strongly affects the extent of clutter. There are many correspond-
ing node-link graph layout algorithms; many of them employ a force-directed
node placement, e.g., Eades’ spring-embedder model [4], the Kamada-Kawai
model [11], or the Fruchterman-Reingold model [5]. We base the graph layouts
in our study on the Fruchterman-Reingold model because it aims at meeting
several aesthetic criteria for graph drawing.

Purchase et al. [14,15,16] conducted several empirical studies on the aesthetics
of graph layouts and discovered that the layout significantly affects user prefer-
ences and task performances. In their first study [16], they investigated effects
of three common aesthetics criteria on the readability of graphs: symmetry, link
crossings, and bends. They reported that minimization of bends and link crossing
improves task performance, where the latter was identified as most important
factor on graph reading performance [14].

Ware et al. [19] found out that not only edge crossing but also continuity
is an important factor for aesthetic considerations. They indicated that clutter
rather depends on the number of edges that cross a path itself, than the total
number of edge crossings in the diagram. They reported that the angle between
crossings affects readability. Their results were also supported by eye-tracking
studies of Huang et al. [9,10] that showed that small angles cause slow eye move-
ments. Holten et al. [7,8] performed several studies to evaluate the performance
and preference of different directed edge representations. Their results showed
a significant performance advantage for tapered and non-compressed animation
representations compared to standard arrowheads. However, their study did not
include the half-links of Becker et al. [2]. To close this gap, we focus our study
on partially drawn straight links and less on the style of edge representation.

To evaluate the performance of graph layouts or edge representations, it is
critical to choose adequate tasks. Lee et al. [13] suggested a list of low-level
tasks and complex tasks to allow the generalization of experimental results.
We picked three relevant tasks from their category of topology-based tasks for
our study.

Finally, matrix visualization is another approach to graph visualization, sub-
stantially different from node-link diagrams. We restrict ourselves to evaluating
node-link diagrams. For a user study on comparing matrix and node-link dia-
grams, we refer to Ghoniem et al. [6]. Amongst other results, they reported that
tasks connected to finding paths were supported more effectively and efficiently
in node-link diagrams than in matrix visualizations.

Evaluating Partially Drawn Links for Directed Graph Edges 229

3 Graph Generation and Layout

We base our directed graph data used throughout the study on the Barabási-
Albert graph model [1]. The graphs are laid out by the Fruchterman-Reingold
algorithm [5]. We compare tapered [8] and traditional edge representations; and
we vary the link lengths as well as the graph sizes.

3.1 Graph Model

Graphs are randomly generated by using the Barabási-Albert model [1], which
produces scale-free networks following a power-law distribution for node fan-in
and fan-out. By doing this, we guarantee that all graphs have similar statisti-
cal properties throughout the study. Based on this graph generation model, we
implemented a Java program that generates directed graph data on demand.

3.2 Graph Layout

The graph data is then represented by applying the Fruchterman-Reingold algo-
rithm [5], implemented in our Java-based study software. Figure 1 shows visu-
alizations of example graphs generated by the Barabási-Albert model for three
different graph sizes. Here, links are represented in tapered style that was also
used by Holten et al. [7]. Please note that they restricted their study to links of
full length.

(a) (b) (c)

Fig. 1. Directed graph data produced by applying the Barabási-Albert model [1], laid
out by the Fruchterman-Reingold algorithm [5], and displayed using tapered links of
full length. Three different graph sizes are shown: (a) small graph with 20 nodes,
(b) medium sized graph with 40 nodes, (c) large graph with 60 nodes.

3.3 Edge Representation

We use two different styles for representing directed graph edges:

– Tapered Straight Links. A needle-like shape that originates with its
thicker end from the start vertex and points with its thinner end to the
target vertex.

– Traditional Straight Links. An equally thick line that originates from the
start vertex and heads to the target vertex.

230 M. Burch et al.

Figure 2 compares tapered style and traditional style.

(a) (b)

Fig. 2. Different edge styles: (a) traditional link, (b) tapered link. Both links are partial
links with 75 percent of full link length.

3.4 Link Length

We vary the link lengths for both tapered and traditional edge representation
styles. We use 100, 90, 75, 50, 25, and 12.5 percent of the length the link would
have when drawn completely. For the traditional representation, we omit the
100% link length because otherwise the direction of a link could not be recog-
nized by the viewer. Figures 3 (a)–(f) show examples of a graph consisting of
5 nodes and 10 links in tapered style; all 6 variations of link lengths are used.
Figures 3 (g)–(k) show the same graph in the same layout, but with the tradi-
tional edge representation style; all variations of link lengths are used, except
for the 100% link length.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 3. Different link lengths are used in the study for both tapered and traditional edge
styles: (a) tapered with 100% link length, (b) tapered 90%, (c) tapered 75%, (d) tapered
50%, (e) tapered 25%, (f) tapered 12.5%, (g) traditional 90%, (h) traditional 75%,
(i) traditional 50%, (j) traditional 25%, and (k) traditional 12.5%.

3.5 Graph Size

Another variable that we vary is graph size, i.e., the number of vertices a graph
contains. We choose 20 (small), 40 (medium), and 60 vertices (large) to test if
there is any impact of graph size on accuracy and completion time. Figure 1
compares the three graph sizes for the example of full-length tapered edge rep-
resentations. The graph density depends on the edges produced by the Barabási-
Albert model.

Evaluating Partially Drawn Links for Directed Graph Edges 231

4 User Experiment

We conducted a controlled user experiment with 42 participants to address the
following research questions.

4.1 Research Questions

Since partially drawn links reduce visual clutter on the one hand, but increase
the degree of ambiguity on the other hand, we considered the following research
questions as relevant:

– Research Question 1. Can the tasks be answered more quickly with de-
creasing link length? In contrast, does the error rate increase due to more
and more ambiguities for the target vertices?

– Research Question 2. Are the effects of Research Question 1 (i.e., de-
creasing completion time and increasing error rate) more pronounced for
large graphs due to higher levels of overall visual clutter?

– Research Question 3. Are there any differences between tapered and tra-
ditional edge representations? Tapered links need more pixels to be drawn on
screen. Hence, visual clutter is reduced more than in the traditional edge rep-
resentation the shorter visible links are. Therefore, completion times should
decrease more in the tapered style than in the traditional style. The error
rates should stay similar since ambiguities occur equally in both styles.

4.2 Design

A repeated-measures design was used with three relevant independent within-
subjects variables:

– Edge Style. Two possible edge representations: tapered straight links [8]
and traditional straight links.

– Number of Vertices. Three graph sizes: 20 (small), 40 (medium), and 60
(large) vertices per graph.

– Length of Links. Six (five) different lengths of links, as percentage relative
to the corresponding complete link: 100 (only for tapered), 90, 75, 50, 25,
and 12.5 percent of the complete link.

We checked each of the three tasks in a separate block to reduce cognitive load
from task switching. The three blocks were permuted to compensate learning and
fatigue effects. Inside each task block, we randomized and balanced the graph
sizes and link lengths, alternating between the two edge representation styles.
This led to 3 [for graph sizes] × 3 [for tasks] × (5 [link length for traditional] +
6 [length for tapered]) = 99 configurations. Each of the 42 subjects performed
each configuration twice (i.e., two repetitions), leading to 198 trials per subject
and 8,316 trials in total.

We used a continue-on-demand study design, i.e., participants could decide
when the next graph was represented by pressing a “Next” button. Participants
were encouraged to take a longer break between the two repetition blocks.

232 M. Burch et al.

4.3 Participants

We had 42 participants, 16 of whom were female and 26 male. The average age
was 24.0 years; the youngest participant was at the age of 20 and the oldest
at the age of 30 years. The participants were students of our university, except
for one participant that had recently graduated. 16 of the participants were
students of computer science or software engineering. All participants had nor-
mal or corrected-to-normal color vision, as confirmed by an Ishihara test and a
Snellen chart; 15 of them wore glasses and 7 of them contact lenses. 7 partic-
ipants claimed that they were familiar with graphs, 35 reported that were not
(before the study). However, even the latter group was able to read node-link
diagrams after a short introduction, as checked by asking graph-specific ques-
tions before the main test runs. Participants were compensated with EUR 10.
Each experiment took between 44 to 100 minutes, depending on the speed of
the participant. The average experiment time was 66 minutes.

4.4 Study Procedure

Participants were first asked to fill out a questionnaire about age, field of study,
and prior knowledge in graph visualization techniques. Next, they read a short
manual on the different graph diagrams, followed by test questions to check if
they were able to read the node-link diagrams and solve the given tasks. Serving
as a practice run-through, the initial test phase was conducted with a different set
of stimuli data than the real experiment. Then, the actual experiment consisted
of two larger blocks of trials (two repetitions as described in Section 4.2). During
the experiment, subjects were sitting in front of a TFT screen with a resolution
of 1920 × 1200 pixels at a distance of approximately 60 centimeters.

There was a “Give Up” option clearly present throughout the study; however,
it was not used by the participants. There was no time limitation for the tasks.
The participants were instructed to answer as accurately and as fast as possible.
Once they found the solution, they had to confirm it by a mouse click to the
correct position on screen (for Task 3, see Section 4.5) or by pressing a green-
colored “YES” button or a red-colored “NO” button (for Tasks 1 and 2, see
Section 4.5). The next stimulus was shown after the “NEXT” button had been
pressed. Figure 4 shows a typical screenshot of the Java software employed for
the user study.

4.5 Tasks

We tested three types of tasks in our study:

– Task 1. Is it possible to go from the node highlighted in green to the node
highlighted in red by taking exactly one step, i.e., is there a directed edge
starting at the green-colored node and pointing to the red-colored node?

– Task 2. Is it possible to go from the node highlighted in green to the node
highlighted in red by taking exactly two steps, i.e., is there a path of length
two starting at the green-colored node and ending at the red-colored node?

Evaluating Partially Drawn Links for Directed Graph Edges 233

Fig. 4. Example screenshot from the user study. Here, a graph with 40 nodes and
tapered links of 50% length is shown. The participant is asked for a path of length two
starting at the green-colored node and ending at the red-colored node. (The figure is
best viewed in the electronic color version of this paper.)

– Task 3. Which node has the highest number of outgoing edges?

Tasks 1 and 2 had to be answered by clicking on a button labeled with “YES”
if the viewer agreed or “NO” if they disagreed. Task 3 had to be answered by
clicking on the corresponding node on screen. We picked these tasks from the
category of topology-based tasks for graphs according to Lee et al. [13]. Tasks 1
and 3 belong to the subcategory of adjacency-related tasks (direct connection
between nodes); Task 2 is an accessibility-related task (here with an indirect
connection).

5 Results

To evaluate the results, we first averaged the completion times and error rates
over the 42 participants and 2 repetitions. This led to aggregated numbers for
each of the 99 configurations. The scatterplot in Figure 5 and the line charts in
Figure 6 show these averaged numbers.

In the scatterplot, the independent variables edge style, number of vertices,
and length of links, as well as the task type are mapped to different visual
attributes of glyphs: shape, border width, size, and color (shades of gray in
black-and-white print). The scatterplot shows clusters for the different tasks:
Task 1 (the direct edge search) has lowest completion times and error rates,
with completion times ranging from 4.72 s (seconds) to 8.56 s, and error rates
below 14%. The clusters for Task 2 and Task 3 spread more widely, but compared
to Task 1, they show a clear tendency toward longer completion times and higher
error rates with increasing number of vertices because thick-bordered glyphs lie
right of and/or above thin-bordered glyphs.

For further analysis of the data, we turn to the line charts of Figure 6, which
show completion times and error rates for all three tasks. Let us first focus on
completion times (left column of Figure 6). Concerning the length of the links,

234 M. Burch et al.

Fig. 5. Scatterplot of average error rates and completion times for all 99 configurations.
The shape of the glyph denotes edge style, its size indicates length of the link, and its
border width depends on the number of vertices. Different colors are used for the three
different task types. (The figure is best viewed in the electronic color version of this
paper; different colors correspond to shades of gray in black-and-white print.)

Tasks 1 and 2 show an interesting “dip” in the plots around 75% link length.
This suggests that partially drawn links of 75% length provide the optimal bal-
ance between clutter reduction (supported by shorter links) and perception of
node connections (supported by longer links) for these study parameters. Task 3
exhibits a different behavior: completion times become smaller and smaller with
decreasing link length. This is reasonable because participants only had to find
the “star” with the most jags to find the node with the highest number of out-
going edges. Therefore, we have indication that Research Question 1 (on link
length) might be partially answered positively; however, there is a strong effect
of type of task and, often, there might be an optimal length of medium size.
Regarding edge style, the only visible difference appears for Task 3, where com-
pletion times are generally higher for traditional links. In contrast, Tasks 1 and
2 slightly tend toward lower completion times for traditional links. Therefore,
the data to answer Research Question 3 (on edge style) is inconclusive; however,
there might be an effect related to task type.

In general, completion times tend to increase with increasing number of ver-
tices, independent of the type of task. The impact of graph size is most pro-
nounced for Task 3, less so for Task 2, and even smaller for Task 1. Completion
times are lowest for Task 1 (4.7 s – 8.5 s), medium for Task 2 (7.7 s – 15.5 s), and

Evaluating Partially Drawn Links for Directed Graph Edges 235

Error rate (%)Completion time (sec)
Ta

sk
 1

Ta
sk

 2
Ta

sk
 3

Link length Link length

Fig. 6. The line charts plot the average completion times (left) and error rates (right)
for all 99 configurations. Numbers were aggregated over 42 participants and 2 repeti-
tions. The dotted line shows the average within the respective diagram. Link lengths
are given as portions of the respective full length. Note that both completion times
and error rates are in different scale for the three tasks.

longest for Task 3 (5.9 s – 23.3 s). We interpret this data as follows: Task 2 is
more complex than Task 1, leading to longer completion times and larger spread
thereof. This result is expected because Task 1 checks direct connections, whereas
Task 2 indirect connections. Task 3 is even more complex, especially for large
graphs, and thus leads to longer completion times and larger spread. However,
overall we were not able to extract any structural impact of the number of ver-
tices on how tasks were answered with different link length. Therefore, the data
to answer Research Question 2 (on graph size) is inconclusive.

Let us now turn to error rates depicted in the right column of Figure 6. Error
rates increase with decreasing link length for Tasks 1 and 2, whereas they improve
for Task 3. Therefore, for Task 3, the error rates suggest a negative answer to
Research Question 1. However, accuracy for Tasks 1 and 2 suggests a positive

236 M. Burch et al.

answer to Research Question 1. For Tasks 1 and 2, there is no clear difference in
error rate for the two edge styles. In contrast, for Task 3, the traditional links
lead to higher error rate for link lengths between 100% and 50%, but lower error
rate for link lengths below 50%. Therefore, there is no clear answer to Research
Question 3 in this case. Finally, the error rate depends on the size of the graph,
as larger graphs lead to lower accuracy. Comparing the three tasks, the error
rates are lowest for Task 1 (1% – 14%) and much higher for Task 2 (3% – 35%)
and Task 3 (0% – 43%), which is consistent with the task-specific completion
times. However, the error-rate data does not lead to a clear answer to Research
Question 2.

6 Conclusion and Future Work

We have conducted a user study with 42 participants to test whether node-link
diagrams are still readable and interpretable when drawing links only partially.
One result of the study is that the influence of the link length on completion
time and error rate clearly depends on the type of task. The study suggests that
partially drawn links can lead to shorter completion times. Depending on the
task, the optimal link length varies between still rather long links of 75% length
(in Tasks 1 and 2) and much shorter links (as low as 12.5% length for Task 3). In
general, however, accuracy tends to suffer when links are drawn only partially—
except for Task 3, for which error rate improves for shorter links. We have also
tested tapered and traditional edge styles, but found no relevant general effect
of those. In conclusion, the main message is that there is potential usefulness of
partially drawn links, especially when completion time is more important than
accuracy; however, there are substantial task-dependent effects.

Therefore, we plan to include other tasks, especially more complicated tasks
that may focus on cliques or clusters. Also, statistical hypothesis testing should
complement our current qualitative discussion of results to come up with sta-
tistically significant evidence. Other venues of future work could include further
variation of independent variables. For example, a larger range of graph sizes
could be considered, models apart from the Barabási-Albert model of scale-free
graphs could be used, or the graph density could be varied. Finally, graph layouts
different from the Fruchterman-Reingold layout could be employed, e.g., a circu-
lar layout may be of interest because the graph vertices would be equidistantly
placed on a circle circumference and, hence, target vertex ambiguities could
be reduced.

Acknowledgements. The project was in part funded by the German Research
Foundation (DFG) grant DFG WE 2836/4-1.

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

2. Becker, R.A., Eick, S.G., Wilks, A.R.: Visualizing network data. IEEE Transactions
on Visualization and Computer Graphics 1(1), 16–28 (1995)

Evaluating Partially Drawn Links for Directed Graph Edges 237

3. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, Upper Saddle River (1999)

4. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160
(1984)

5. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Software: Practice and Experience 21(11), 1129–1164 (1991)

6. Ghoniem, M., Fekete, J.D., Castagliola, P.: A comparison of the readability of
graphs using node-link and matrix-based representations. In: Proc. IEEE Sympo-
sium on Information Visualization, pp. 17–24 (2004)

7. Holten, D., Isenberg, P., van Wijk, J.J., Fekete, J.D.: An extended evaluation of
the readability of tapered, animated, and textured directed-edge representations
in node-link graphs. In: Proc. IEEE Pacific Visualization Symposium, pp. 195–202
(2011)

8. Holten, D., van Wijk, J.J.: A user study on visualizing directed edges in graphs.
In: Proc. SIGCHI Conference on Human Factors in Computing Systems, pp. 2299–
2308 (2009)

9. Huang, W., Eades, P.: How people read graphs. In: Proc. Asia-Pacific Symposium
on Information Visualisation, pp. 51–58 (2005)

10. Huang, W., Hong, S.-H., Eades, P.: Layout Effects on Sociogram Perception. In:
Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 262–273. Springer,
Heidelberg (2006)

11. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. In-
formation Processing Letters 31(1), 7–15 (1989)

12. Koffka, K.: Principles of Gestalt Psychology. Harcourt, Brace (1935)
13. Lee, B., Plaisant, C., Parr, C.S., Fekete, J.-D., Henry, N.: Task taxonomy for graph

visualization. In: Proc. AVI Workshop on BEyond time and errors: novel evaLua-
tion methods for Information Visualization, BELIV 2006 (2006)

14. Purchase, H.C.: Which Aesthetic Has the Greatest Effect on Human Understand-
ing? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer,
Heidelberg (1997)

15. Purchase, H.C., Carrington, D., Allder, J.-A.: Empirical evaluation of aesthetics-
based graph layout. Empirical Software Engineering 7(3), 233–255 (2002)

16. Purchase, H.C., Cohen, R.F., James, M.: Validating Graph Drawing Aesthetics.
In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 435–446. Springer, Heidelberg
(1997)

17. Rosenholtz, R., Li, Y., Mansfield, J., Jin, Z.: Feature congestion: a measure of
display clutter. In: Proc. SIGCHI Conference on Human Factors in Computing
Systems, pp. 761–770 (2005)

18. Rusu, A., Fabian, A.J., Jianu, R., Rusu, A.: Using the Gestalt principle of closure
to alleviate the edge crossing problem in graph drawings. In: Proc. International
Conference on Information Visualisation (IV 2011), pp. 488–493 (2011)

19. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph
aesthetics. Information Visualization 1(2), 103–110 (2002)

Realizing Planar Graphs as Convex Polytopes

Günter Rote

Institut für Informatik, Freie Universität Berlin,
Takustraße 9, 14195 Berlin, Germany

rote@inf.fu-berlin.de

Abstract. This is a survey on methods to construct a three-dimensional
convex polytope with a given combinatorial structure, that is, with the
edges forming a given 3-connected planar graph, focusing on efforts to
achieve small integer coordinates.

Keywords: Convex polytope, spiderweb embedding.

1 Introduction

The graphs formed by the edges of three-dimensional polytopes are characterized
by Steinitz’ seminal theorem from 1916 [13]: they are exactly the planar 3-
connected graphs. For such a graph G with n vertices, I will discuss different
methods of actually constructing a polytope with this structure.

2 Inductive Methods

The original proof of Steinitz transforms G into simpler and simpler graphs
by sequence of elementary operations, until eventually K4, the graph of the
tetrahedron, is obtained. By following this transformation in the reverse
order, one can gradually turn the tetrahedron into a realization of G. The
operations can be carried out with rational coordinates, and after clearing
common denominators, one obtains integer coordinates. However, the required
number of bits of accuracy for each vertex coordinate is exponential. In other
words, the n vertices lie on an integer grid whose size is doubly exponential
in n [9].

A triangulated (or simplicial) polytope, in which every face is a triangle, is
easier to realize on the grid than a general polytope, since each vertex can be
perturbed within some small neighborhood while maintaining the combinatorial
structure of the polytope.

Das and Goodrich [5] showed that triangulated polytopes can be embedded
with coordinates of size O(2poly(n)), by performing O(log n) stages of many in-
dependent Steinitz operations in parallel. (An explicit bound on the coordinates
has not been worked out for this method.)

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 238–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

rote@inf.fu-berlin.de

Realizing Planar Graphs as Convex Polytopes 239

3 Tutte Embeddings

The Schlegel diagram of a polytope P is obtained by a central projection from a
point O that is outside P but sufficiently close to a face F of P such that F is the
only face that F sees. In the Schlegel diagram, F will appear as the outer face,
and the remaining faces will tile F without overlap. Thus, the Schlegel diagram
is a plane drawing of the graph G with convex faces (including the outer face).

There are a number of methods that first construct such a plane drawing of G
and then lift it to three dimensions. Convex faces are by no means sufficient to
guarantee that a drawing is a Schlegel diagram. A characterization of Schlegel di-
agrams is provided by the so-called Maxwell–Cremona correspondence, observed
by Maxwell in 1864 [8], which is described below. By a projective transformation,
we can assume that the graph G is drawn in the xy-plane, and the projection
center O is at infinity at the positive z-axis. In other words, the projection is
vertical and consists in projecting away the z-coordinate.

An equilibrium stress assigns a force to every edge such that in every vertex,
the forces cancel. The forces on an edge pull (“positive stress”) or push (“negative
stress”) on both endpoints with the same magnitude, in the direction parallel to
the edge.

Theorem 1 (Maxwell, Whiteley [18]). Let G be a planar 3-connected graph
drawn in the plane without crossings. The following are equivalent:

– G is the vertical projection of a convex polytope.
– There is an equilibrium stress on G which is positive on the interior edges

and negative on the boundary edges.

This theorem is constructive, in the sense that the lifting can be computed in a
straightforward way from the equilibrium stress, and vice versa.

To construct a plane embedding that has an equilibrium stress, one can use
the spider-web approach suggested by Tutte [15,16]: after fixing the positions
of the vertices of the outer face in the shape of a convex polygon, we stipulate
that the forces on the interior edges should be not just parallel to, but equal
to the edge vectors. The equilibrium condition amounts now to requiring that
every interior vertex should lie at the barycenter of its neighbors. This leads to
a linear system of equations for the positions of the vertices. After solving this
system, there is equilibrium at the interior vertices. However, equilibrium at the
boundary vertices is only guaranteed when the outer face is a triangle. If this is
not the case, one can realize the polar polytope P ∗, whose graph G∗ is the dual
of G, instead: either G or G∗ must contain a triangle. The calculations for the
polarization operation increase the size of the coordinates, leading to bounds of
O(constn2

) [11]. A linear exponent of O(188n) has finally been achieved by Rote,
Ribó and Schulz [10]: if the outer face is a quadrilateral or a pentagon, one can
choose its shape in an appropriate way, in order to ensure that equilibrium also
holds on the boundary, and polarization is not needed. This last paper establishes
a connection between the size of the coordinates and the number of spanning
trees of G. Due to improved upper bounds on the number of spanning trees of a
planar graph [4], the best bound on the coordinates is currently O(147.71n).

240 G. Rote

3.1 Stacked Polytopes

A stacked polytope is obtained by starting with a tetrahedron and repeatedly
gluing a new tetrahedron onto some face. Its graph is a 3-tree: It is obtained from
K4 by repeatedly drawing a new vertex into a triangular face and connecting it
to the three triangle vertices.

In a recent first breakthrough on the way towards providing polynomial grid
embeddings for polytopes, Demaine and Schulz [6] (after some more specialized
cases treated by Zickfeld [19]) showed that every stacked polytope with n vertices
can be realized on a polynomial grid of size O(n4)×O(n4)×O(n18).

Stacked polytopes are a special class of triangulated polytopes, and, due to
their hierarchical structure, they are somewhat easier to handle. Sill, they are
sufficiently varied so that one might hope to extend the techniques to, say, all
triangulated polytopes.

4 Nonlinear Methods

For completeness, I will mention some other construction methods for polytopes,
which, however, don’t lend themselves to achieving integer realizations.

Midscribed Polytopes. An alternative proof of Steinitz’ theorem applies the
Koebe-Andreyev-Thurston Circle Packing Theorem (see for example [12]). This
theorem can be used to produce a polytope whose edges are tangent to a sphere,
that is, they are mid-scribed around the sphere (instead of circumscribed or
inscribed). One can define a converging process that yields such a polytope.
However, the exact mid-scribed realization (which is unique up to Möbius trans-
formations) necessarily boils down to a nonlinear system of equations, and there
are polytopes for which such a realization must have irrational coordinates. It
is conceivable that an “approximately mid-scribed” polytope might be good
enough, at least for triangulated graphs, but this has not been investigated.

The Colin de Verdière number. Lovász [7] showed that an n×n matrix of rank 3
that arises in the definition of the Colin de Verdière parameter μ(G) of a graph G
(which equals 3 for graphs of polytopes), can be used to construct coordinates
for a polytope realization. However, it is not easy to find this matrix.

5 Lower Bounds

The known lower bounds on a grid embedding of a 3-polytope as disappointingly
weak. A convex n-gon with integral vertices needs an area of Ω(n3) in the plane
[1,2,14,17]. Therefore, realizing a 3-polytope with an (n− 1)-gonal face requires
at least one dimension of size Ω(n3/2). Given that only an exponential upper
bound is known, this is very weak. If one is just interested in strictly convex
faces, then a drawing on an O(n2)× O(n2) grid is possible [3]. The true bound
is not known, but in this case the gap to the lower bound Ω(n3/2)×Ω(n3/2) is
not so big.

Realizing Planar Graphs as Convex Polytopes 241

References

1. Acketa, D.M., Žunić, J.D.: On the maximal number of edges of convex digital
polygons included into an m × m-grid. J. Comb. Theory Ser. A 69(2), 358–368
(1995)

2. Andrews, G.E.: A lower bound for the volume of strictly convex bodies with many
boundary lattice points. Trans. Amer. Math. Soc. 99, 272–277 (1961)

3. Bárány, I., Rote, G.: Strictly convex drawings of planar graphs. Documenta
Math. 11, 369–391 (2006)

4. Buchin, K., Schulz, A.: On the Number of Spanning Trees a Planar Graph can
have. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 110–121.
Springer, Heidelberg (2010)

5. Das, G., Goodrich, M.T.: On the complexity of optimization problems for
3-dimensional convex polyhedra and decision trees. Comput. Geom. Theory
Appl. 8(3), 123–137 (1997)

6. Demaine, E.D., Schulz, A.: Embedding stacked polytopes on a polynomial-size
grid. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), San Francisco, pp. 1177–1187 (2011)

7. Lovász, L.: Steinitz representations of polyhedra and the Colin de Verdière number.
J. Comb. Theory, Ser. B 82, 223–236 (2000)

8. Maxwell, J.C.: On reciprocal figures and diagrams of forces. Phil. Mag. Ser. 27,
250–261 (1864)

9. Onn, S., Sturmfels, B.: A quantitative Steinitz’ theorem. In: Beiträge zur Algebra
und Geometrie, vol. 35, pp. 125–129 (1994)

10. Ribó Mor, A., Rote, G., Schulz, A.: Small grid embeddings of 3-polytopes. Discrete
and Computational Geometry 45, 65–87 (2011),
http://page.mi.fuberlin.de/rote/Papers/pdf/Small+grid+embeddings+of+3-

polytopes.pdf

11. Richter-Gebert, J.: Realization Spaces of Polytopes. Lecture Notes in Mathematics,
vol. 1643. Springer, Heidelberg (1996)

12. Schramm, O.: Existence and uniqueness of packings with specified combinatorics.
Israel J. Math. 73, 321–341 (1991)

13. Steinitz, E.: Polyeder und Raumeinteilungen. In: Encyclopädie der mathematischen
Wissenschaften, vol. III.1.2 (Geometrie), chap. IIIAB12, pp. 1–139. B. G. Teubner,
Leipzig (1922)

14. Thiele, T.: Extremalprobleme für Punktmengen. Master’s thesis, Freie Universität
Berlin (1991)

15. Tutte, W.T.: Convex representations of graphs. Proceedings London Mathematical
Society 10(38), 304–320 (1960)

16. Tutte, W.T.: How to draw a graph. Proceedings London Mathematical Soci-
ety 13(52), 743–768 (1963)

17. Voss, K., Klette, R.: On the maximal number of edges of convex digital polygons
included into a square. Poč́ıtače a umelá inteligencia 1(6), 549–558 (1982) (in Rus-
sian)

18. Whiteley, W.: Motion and stresses of projected polyhedra. Structural Topology 7,
13–38 (1982)

19. Zickfeld, F.: Geometric and Combinatorial Structures on Graphs. Ph.D. thesis,
Technical University Berlin (December 2007)

http://page.mi.fuberlin.de/rote/Papers/pdf/Small+grid+embeddings+of+3-polytopes.pdf
http://page.mi.fuberlin.de/rote/Papers/pdf/Small+grid+embeddings+of+3-polytopes.pdf

Overloaded Orthogonal Drawings

Evgenios M. Kornaropoulos1,2 and Ioannis G. Tollis1,2

1 Department of Computer Science, University of Crete, Heraklion, Crete, Greece
2 Institute of Computer Science, Foundation for Research and Technology-Hellas,

Vassilika Vouton, P.O. Box 1385, Heraklion, GR-71110 Greece
{kornarop,tollis}@ics.forth.gr

Abstract. Orthogonal drawings are widely used for graph visualiza-
tion due to their high clarity of representation. In this paper we present
a technique called Overloaded Orthogonal Drawing. We first place the
vertices on grid points following a relaxed version of dominance drawing,
called weak dominance condition. Edge routing is implied automatically
by the vertex coordinates. In order to simplify these drawings we use
an overloading technique. All algorithms are simple and easy to imple-
ment and can be applied to directed acyclic graphs, planar, non-planar
and also undirected graphs. We also present bounds on the number of
bends and the area. Overloaded Orthogonal drawings present several in-
teresting properties such as efficient visual edge confirmation as well as
simplicity and clarity of the drawing.

1 Introduction

An orthogonal drawing maps each edge into a chain of horizontal and vertical line
segments. An orthogonal grid drawing is an orthogonal drawing such that vertices
and bends along the edges have integer coordinates. Drawings in this style are
useful in many applications due to the high clarity of the model. The problem of
constructing an orthogonal drawing while minimizing several aesthetic criteria
such as area, bends, maximum edge length and total edge length is an NP-hard
problem [4]. Therefore most algorithms employ heuristics that try to layout the
graph in a manner which is good for some set of aesthetics.

Various algorithms have been introduced to produce orthogonal drawings of
planar graphs [18,2,20,19,4]. A necessary and sufficient condition for a plane
graph with maximum degree three to have an orthogonal drawing without bends
was presented in [17]. Another interesting result is that an outerplanar graph
G with maximum degree at most three has an orthogonal drawing with no
bends if and only if G contains no triangles [12]. Bertolazzi et al. presented [1] a
branch and bound algorithm that computes an orthogonal representation with
the minimum number of bends of a biconnected planar graph. For drawings
of non-planar graphs [9,3,13], the required area can be as little as 0.76n2 [14],
the total number of bends is no more than 2n + 2 [2,14], and each edge has
at most two bends. Experimental studies have been conducted where various
proposed algorithms were tested on their performance on area, bends, crossings,

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 242–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Overloaded Orthogonal Drawings 243

edge length, and time [21]. Dominance drawings are a widely used technique
for visualizing planar st-graphs. These drawings have numerous useful features
such as, small number of bends, small area, linear time complexity, detection
and display of symmetries [4,5].

In this paper we introduce the overloaded orthogonal model which combines
dominance and row/column reuse. We use a concept of relaxed dominance for
vertex coordinate assignment, and orthogonal grid layout with overloaded use of
rows/columns for edge routing. This type of routing has been used extensively
in VLSI layout [11]. The concept of merging together groups of edges has been
also used in the confluent drawing framework [6,7] to facilitate readability of the
graph. This model can be applied to both planar and non-planar graphs. Also
it can be efficiently applied to graphs with maximum degree four, and to graphs
with degree higher than four. The presented algorithms produce drawings with
at most n − 1 bends, O(n2) area, they run in linear time O(n + m), and are
easy to implement. Although a direct comparison with the bounds of traditional
orthogonal drawings is a bit unfair (due to the reuse of rows and columns) our
bounds on the number of bends and area are promising. Furthermore, every
overloaded orthogonal drawing simplifies tremendously the visual confirmation
of the existence of an edge and/or path between any two vertices.

This paper is organized as follows: in Section 2 we present an algorithm for
constructing overloaded orthogonal drawings. In Section 3 we discuss some prop-
erties of the proposed model. In Section 4 we present properties and bounds of
the overloaded orthogonal model in directed acyclic graphs. Section 5 gives an
application of the proposed model to other graphs and finally Section 6 gives
conclusions and open problems.

2 Overloaded Orthogonal Framework

In this framework, we propose to place the vertices in the grid so that edges
flow from left-to-right and from bottom-to-top. Each vertex u is placed on a
point in the grid with coordinates X(u) and Y (u). Dominance drawings achieve
this vertex placement for st-planar graphs. A dominance drawing Γ of a graph
G = (V, E) has the following property: for any two vertices u, v ∈ V there is a
directed path from u to v in G, if and only if X(u) ≤ X(v) and Y (u) ≤ Y (v)
in Γ . But, not every directed acyclic graph has a dominance drawing. Therefore
we propose a relaxed condition, called weak dominance condition, that can be
applied to any directed acyclic graph (dag):

Weak Dominance Condition: Let G = (V, E) be a directed acyclic graph.
For any two vertices u, v ∈ V if there is a directed path from u to v in G, then
X(u) ≤ X(v) and Y (u) ≤ Y (v).

Thus if v is in the upper-right quadrant of u, then v is not necessarily reach-
able from u. A path that is implied by the vertex coordinates but does not exist

244 E.M. Kornaropoulos and I.G. Tollis

in G is called a falsely implied path (or fip). The problem of minimizing the
number of falsely implied paths was introduced in [10], where it is shown that
the corresponding decision problem is NP-complete.

Following the footsteps of the algorithm for dominance drawing for (reduced)
planar st-graphs presented in [5], we formulate an algorithm for vertex place-
ment that respects the weak dominance condition and is applicable to any dag.
The main algorithm for planar st-graphs described in [5] consists of three phases.
In the first phase, called ’Preprocessing Phase’, a linked data structure is con-
structed in order to efficiently calculate coordinates. During the second phase
called ’Preliminary Layout’ distinct X, Y coordinates are given to each vertex.
In the third and final phase, a compaction procedure is applied to reduce the
area of the drawing.

We will construct a similar data structure as in ’Preprocessing step’, but for
general directed acyclic graphs. Let W be a representation of a dag G such that
the incoming edges for each vertex u appear consecutively around u. Represen-
tation W will be called a representation in consecutive form. The representation
in consecutive form is a method to force a left-to-right order in the incoming as
well as outgoing edges of every vertex of G. Without loss of generality we assume
that there is only one source, s. If not then we insert an artificial super-source
s and connect it to all sources of G. The algorithm performs two topological
sortings on the vertices of G. Successors of each vertex are scanned in clockwise
order for the X coordinate assignment, and in counterclockwise order for the Y
coordinate assignment. The order is imposed according to the representation in
consecutive form that is given as an input. We will present the algorithm for
clockwise scan, that computes the X-coordinate assignment.

Algorithm. TOPOLOGICAL-SORTING(Adj(G))

1. for each vertex v ∈ V
2. X[v]← ∞
3. X[s]← 0
4. time←1
5. VISIT-CLCK(s)
6. return X

Algorithm. VISIT-CLCK(u)

1. for each vertex v ∈ Adj(u) such that (u, v)
is the leftmost outgoing edge of u do

2. if in-degree(v)=1
3. X[v]← time
4. time←time+1
5. remove edge e=(u, v)
6. VISIT-CLCK (v)
7. else
8. remove edge e=(u, v)

Overloaded Orthogonal Drawings 245

Algorithm TOPOLOGICAL-SORTING scans the outgoing edges of a vertex u
in clockwise order (leftmost outgoing edge) and visits a direct successor v only if
v has in-degree one. Otherwise, it removes edge (u, v) from the list. Analogously,
we formulate an algorithm for the Y -coordinate assignment that performs a
counterclockwise scan, by replacing VISIT-CLCK with VISIT-COCLCK. The
difference between the two VISIT algorithms is Line 1, where instead of leftmost
outgoing edge we now have rightmost outgoing edge. The two topological sortings
are used by WDP algorithm for assigning X and Y coordinates to the vertices
of G.

Algorithm. (WDP)WEAK DOMINANCE PLACEMENT (W)
1. X coordinates ← TOPOLOGICAL SORTING(W) using VISIT-CLCK
2. Y coordinates ← TOPOLOGICAL SORTING(W) using VISIT-COCLCK

We denote the number of vertices in G by n, and the number of edges in G
by m. Since both topological sorting algorithms run in linear time O(n + m),
algorithm WDP also runs in linear time O(n + m).

In the rest of this section we will see how the Algorithm WDP creates a
natural separation between pq-components. A pq-component Gpq = (V ′, E′) of
G is a maximally induced subgraph of G with a single source p and a single
sink q that contains at least two edges and that is connected with the rest of
G only through vertex p and vertex q. Thus, vertex p is a dominator of every
vertex v ∈ V ′ and q is a post-dominator of every vertex v ∈ V ′. Due to space
limitations, the proofs of the following results are omitted.

Lemma 1. If dag G=(V, E) includes a pq-component Gpq = (V ′, E′), then
X(q) = X(p) + |V ′| − 1 and Y (q) = Y (p) + |V ′| − 1.

Corollary 1. If dag G=(V,E) includes a pq-component G′ = (V ′, E′) , then for
every vertex u ∈ G′, X(p)≤X(u)≤X(p)+|V ′|−1 and Y (p)≤Y (u)≤Y (p)+|V ′|−1.

Let X() and Y () be the coordinates constructed by WDP algorithm. Also let
G′ = (V ′, E′) be a component where V ′ ⊆ V and E′ ⊆ E. A component G′ is
said to be separated, if the following property holds for X() and Y ():

∀u ∈ V ′, v ∈ V−V ′ ⇒ (X(u)≤X(v)∧Y (u)≤Y (v)) ∨ (X(u)≥X(v)∧Y (u)≥Y (v))

This property is a guarantee that every vertex v ∈ V −V ′ that is not a member
of a component G′ will not appear between the vertices of G′. We refer to this
as the separation property.

Theorem 1. Vertex placement X() and Y () constructed by algorithm WEAK
DOMINANCE PLACEMENT respects the separation property for every pq-
component.

Proof. (Sketch) Let G′ = (V ′, E′)⊆G be a pq-component. Then algorithm TOPO-
LOGICAL - SORTING for G, returns a numbering of vertices of G′ from X(p)
to X(p) + |V ′|. Also holds for Y -coordinates, i.e., numbers vertices of G′ from
Y (p) to Y (p) + |V ′|. Thus, no vertex from V − V ′ can be drawn inside a pq-
component. ��

246 E.M. Kornaropoulos and I.G. Tollis

Lemma 2. Let u and v be a pair of vertices of G such that X(v) = X(u) + 1.
Then Y (u) < Y (v) if and only if G has an edge (u,v).

Lemma 3. Let u and v be a pair of vertices of G such that Y (v) = Y (u) + 1.
Then X(u) < X(v) if and only if G has an edge (u,v).

Our proposed framework contains the term ’overloaded’ because all outgoing
edges of a vertex use the same column in order to reach their corresponding
destination vertex. We will first discuss how a single edge is routed, and then we
will focus on unambiguously visualizing the edges of the drawing.

Edge routing is automatically implied by the coordinates of the vertices. Each
edge (u, v) consists of a vertical edge segment from (X(u),Y (u)) to (X(u),Y (v))
and a horizontal segment from (X(u),Y (v)) to (X(v),Y (v)). Because various
edges reuse segments of rows and columns we introduce e-points to resolve am-
biguities, see Figure 1. Given an edge (u, v) an e-point is defined as an unlabeled
point that is placed on point (X(u), Y (v)) to indicate a direct connection from u
to v. A bend will appear in the final drawing instead of an e-point if: (a) vertex
u does not have a successor w such that Y (w) ≥ Y (v) and (b) vertex v does not
have a predecessor z such that X(z) ≤ X(v).

Fig. 1. (a) the vertical segment of (u, v) is overloaded by the vertical segment of (u, w).
To visualize the edge from u to w, an e-point is placed at (X(u), Y (w)). (b) the hori-
zontal segment of (v, w) is overloaded by the horizontal segment of (u, w). To visualize
the edge from u to w, an e-point is placed at (X(u), Y (w)). If there is no e-point then
(w, v)/∈ E (c), whereas if there is an e-point in (X(w),Y (v)) then (w, v)∈ E (d).

We will describe an algorithm that receives the vertex coordinates as an input,
and outputs an overloaded orthogonal drawing. It routes the edges according to
the given coordinates and places e-points where needed.

In order to construct an overloaded orthogonal drawing a linked data structure
for G will be constructed. Each vertex u ∈ V of G, points to the list of its direct
successors sorted in decreasing order according to their Y -coordinate. This single
linked list of u, can be traversed by means of pointer next(u). It can also be
accessed by pointer getFirst(u), that is u’s direct successor with the highest
Y -coordinate (hence first in the list). In case of a tie, we can arbitrarily order
vertices with the same coordinate without affecting the overall result.

Overloaded Orthogonal Drawings 247

Algorithm. (OOD) OVERLOADED ORTH. DRAWING(Adj(G) , X() ,Y())
1. for each vertex u ∈ V
2. visited[u]← 0
3. for each vertex u ∈ V in increasing order of X-coordinate
4. v ← next(u)
5. while v �= nil
6. Draw edge segment from (X(u),Y(u)) to (X(u),Y(v))
7. Draw edge segment from (X(u),Y(v)) to (X(v),Y(v))
8. if getFirst(u)�=v OR visited[v]�=0
9. New e-point ← (X(u),Y(v))
10. visited[v] ← 1
11. v ← next(v)
12. end

Fig. 2. Two different drawings of a regular degree four graph with 13 vertices and 26
edges. In the left picture an orthogonal grid drawing is depicted, the graph and the
drawing are taken from [4]. While, in the right picture there is an overloaded orthogonal
drawing of the same graph. No compaction was performed to the overloaded orthogonal
drawing.

Theorem 2. Algorithm OOD produces an overloaded orthogonal drawing Γ of
G with vertex coordinates computed by algorithm WDP. Γ has at most n − 1
bends, O(n2) area and is constructed in O(n + m) time.

2.1 Compaction

Compaction is applied as a post-processing step in an overloaded orthogonal
drawing in order to reduce the X- and Y -coordinates. Our compaction follows

248 E.M. Kornaropoulos and I.G. Tollis

the steps of the Algorithm in [4,5]. However since our graphs are not planar,
and therefore we do not have planar embeddings, we need to be extra careful in
order to produce a valid drawing. In this step we allow equality between vertex
coordinates under the following conditions: (a) The compaction is performed
between vertices u, v ∈ V such that there is an edge (u, v)∈ E. (b) Two distinct
vertices cannot coincide in the same point. (c) Compaction on the X- or Y -
coordinates will not be performed if an edge is forced to pass over u or any other
vertex.

3 Clarity and Readability of the Model

In this section we outline some advantages of the overloaded orthogonal model.

•Meaningful relation between vertex coordinates : The weak dominance condition
implies that: if there is a path from u to v then vertex v will appear in the upper
right quadrant of vertex u.

•Works for any pair of topological sortings as X,Y coordinates: Since every pair
of topological sortings respects the weak dominance condition, we can take any
pair of topological sorting as X, Y coordinates.

• Universality of the model : The overloaded orthogonal model does not discrimi-
nate between graphs with maximum degree four, and graphs with higher degree.
Furthermore, it can be efficiently applied to planar and to non-planar graphs.
The overloaded orthogonal model can also be applied to undirected graphs,
given that an st-numbering with various properties can be computed for any
undirected graph [15,16] . An interesting example is presented in Section 5.

• Efficient Visual Confirmation of an Edge: We can visually confirm the exis-
tence of an edge (u, v) by checking if there is an e-point or a bend on point
(X(u), Y (v)). If a compaction is performed u or v could replace the e-point
at the location (X(u), Y (v)). In contrast, in the regular orthogonal model we
would visually follow every outgoing edge of u successively, until we reach v.
Consequently, the size of a graph does not affect the readability of an over-
loaded orthogonal drawing, as we can check if any two vertices are connected by
inspecting only a single point i.e., in O(1) time.

• Efficient Visual Confirmation of Reachability: An interesting extension of this
graph drawing technique occurs when we use the transitive closure of a graph as
input. In that case every possible path along the original directed acyclic graph
G = (V, E) will be represented by an edge in the transitive closure G∗ = (V, E∗).
By applying the overloaded orthogonal model we can check if a vertex v is
reachable from a vertex u by examining point (X(u), Y (v)) in the drawing. As
shown in Figure 3, e-points of the corresponding transitive edges are colored
grey. Notice that there is no e-point at (X(4), Y (9)), despite the fact that the
coordinates of vertex 9 dominate the coordinates of vertex 4. In this context,
crossings indicate the existence of falsely implied paths.

Overloaded Orthogonal Drawings 249

Fig. 3. An overloaded orthogonal drawing of the transitive closure. Reachability of any
pair of vertices u-v can be confirmed by looking at point (X(u), Y (v)). By the the color
of the e-point we can determine if there is an edge or a path between the vertices.

4 Directed Acyclic Graphs

In this section we present several properties and bounds of overloaded orthogonal
drawings for directed acyclic graphs. If X(u) �= X(v) and Y (u) �= Y (v) for every
pair of vertices u, v ∈ V , then every edge has a ’step’-like form and consequently
produces either a bend or an e-point. Therefore we have:

Lemma 4. Let Γ be an overloaded orthogonal drawing of dag G, where each
vertex is placed in a distinct X, Y coordinate. Then bends(Γ)+ePoints(Γ) = m.

If a compaction is performed on drawing Γ , then the sum bends(Γ)+ePoints(Γ)
would be less than the number of edges. Additionally, every vertex can have at
most one bend on its row. That bend is produced from its direct predecessor
with the lowest X-coordinate. Taking into consideration that sources do not have
incoming edges, we have the following lemma:

Lemma 5. Let Γ be any overloaded orthogonal drawing of a dag G. Let also ns

be the number of sources of G. Then bends(Γ) ≤ n− ns.

The upper bound of the above lemma is tight as shown by the following theorem.

Theorem 3. There exists a family of planar n-vertex graphs Gn, for n ≥ 3,
such that any overloaded orthogonal drawing Γ of Gn requires at least n − 2
bends, and (n− 2)×(n− 2) area.

Proof. (Sketch) Consider the graph Gn shown in Figure 4. Each vertex ui has two
outgoing edges, (ui, ui+2) and (ui, ui+1). The transitive closure of this family of

250 E.M. Kornaropoulos and I.G. Tollis

Fig. 4. An explanatory construction of Theorem 3

graphs is a complete directed acyclic graph, therefore the topological sorting for
this graph is unique. Their drawings admit a single compaction in Y -coordinate
between vertex u1 and vertex u2, and a single compaction in X-coordinate be-
tween vertex un−1 and vertex un. Therefore an overloaded orthogonal drawing
of this family of graphs has optimal area (n− 2)×(n− 2), and has at least n− 2
bends. ��
The dominance drawing technique was applied to reduced planar st-graphs in [5].
If we apply the edge routing technique using the vertex coordinates produced by
the dominance drawing algorithm presented in [5], the drawing has zero bends.

Fig. 5. Proof of Theorem 4. The left picture illustrates the difference between (z1)-case
and (z2)-case. In the right picture there is a drawing of a K3,3 that exists in (z2)-case.

Theorem 4. Given a reduced planar st-graph G = (V, E), an overloaded or-
thogonal drawing Γ with zero bends can be constructed in linear time, O(n).

Proof. (Sketch) Consider a reduced planar st-graph G with vertex coordinates
obtained by the dominance drawing algorithm in [5]. Let an edge (u, w)∈ E such
that it forms a bend that cannot be removed by a compaction. We construct
such a scenario and prove that this edge cannot exist without contradicting the

Overloaded Orthogonal Drawings 251

basic assumptions. Vertex u and vertex v cannot be consecutive in X-coordinate.
Thus there must be a vertex v such that X(u) < X(v) ≤ X(w). Let also a vertex
z such that Y (u) < Y (z) < Y (w). Vertex z cannot be between u and w in X-
coordinate due to the fact that G is reduced. Thus, we have two different cases:
(z1) where X(s) < X(z) < X(u) and (z2) where X(w) < X(z) < X(t). Case
(z1) will conclude that edge (u, w) is transitive. Case (z2) will conclude that
there is a graph homeomorphic to K3,3 and consequently G is not planar, a
contradiction in both cases. ��

Fig. 6. In the left figure we have the straight-line dominance drawing of a reduced
planar st-graph as described in [4]. In the right figure there is a compacted overloaded
orthogonal drawing of the same graph with zero bends.

5 Other Graphs

In this section the overloaded orthogonal model is going to be extended to draw
undirected graphs and directed graphs with cycles. Let G be an undirected graph
and s, t be two distinct vertices of G. If the graph is planar we first construct a
planar embedding and proceed, otherwise we ignore that step. An st-numbering
for G is a numbering v1, v2, . . . , vn of the vertices of G such that s = v1, t = vn,
and every vertex vj , other than s and t, is adjacent to at least two vertices vi

and vk with i < j < k. Such a numbering can be constructed in linear time [8].
Given an st-numbering we orient the edges of E from the low-numbered vertex
to the high numbered one. We name the resulting digraph D. The algorithm
for st-orientation proposed in [15,16], parametrically controls the length of the
longest path of the final st-oriented graph. As it was expected, different values of
parameter p yield overloaded orthogonal drawings with different characteristics.
We can apply the vertex placement algorithm to D, and then route the edges
as described in Algorithm OOD. A compaction step can also be performed.
As shown in Figure 7, the st-orientation with p = 0 results in an overloaded
orthogonal drawing with area 19×19, while the st-orientation with p = 1 results
in an overloaded orthogonal drawing with optimal area 2×19. We are conducting

252 E.M. Kornaropoulos and I.G. Tollis

an experimental study in order to investigate the influence of an st-numbering
of G, on the area of its overloaded orthogonal drawing Γ .

If G is a directed graph with cycles one could find a minimal feedback arc
set F [4] and obtain an uncompacted overloaded orthogonal drawing of G− F .
Complete the drawing by routing each edge (u, v) ∈ F as follows: vertical seg-
ment from (X(u), Y (u)) to (X(u), Y (v)), horizontal segment from (X(u), Y (v))
to (X(v), Y (v)), placing e-points where necessary. Notice that rows and columns
used for routing these edges, have not been used to route the edges of G− F .

Fig. 7. Two overloaded orthogonal drawings of an originally undirected planar graph
are shown. Left: the st-orientation was produced by algorithm [15] with parameter
p = 0, right: same algorithm with parameter p = 1.

6 Conclusion and Open Problems

We presented algorithms that produce overloaded orthogonal drawings with at
most n − 1 bends, O(n2) area, they run in linear time O(n + m), and are easy
to implement. An interesting open problem is to find algorithms for weak dom-
inance placement that provide upper bounds on the number of crossings in an
overloaded orthogonal drawing of the transitive closure.

References

1. Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with
the minimum number of bends. IEEE Transactions on Computers 49(8), 826–840
(2000)

Overloaded Orthogonal Drawings 253

2. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Computa-
tional Geometry: Theory and Applications 9(3), 159–180 (1998)

3. Biedl, T.C., Madden, B.P., Tollis, I.G.: The Three-Phase Method: A Unified Ap-
proach to Orthogonal Graph Drawing. Int. J. Comput. Geometry Appl. 10(6),
553–580 (2000)

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of graphs. Prentice - Hall, New Jersey (1998)

5. Di Battista, G., Tamassia, R., Tollis, I.G.: Area Requirement and Symmetry Dis-
play of Planar Upward Drawings. Discrete and Comput. Geom. 7(4), 381–401
(1992)

6. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent Drawings:
Vizualizing Non-planar Diagrams in a Planar Way. Journal of Graph Algorithms
and Applications 9(1), 31–52 (2005)

7. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent Layered Drawings. Algorith-
mica 47(4), 439–452 (2007)

8. Even, S., Tarjan, R.: Computing an st-numbering. Theoretical Computer Sci-
ence 2(3), 339–344 (1976)

9. Fößmeier, U., Kaufmann, M.: Algorithms and Area Bounds for Nonplanar Orthog-
onal Drawings. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 134–145.
Springer, Heidelberg (1997)

10. Kornaropoulos, E.M., Tollis, I.G.: Weak Dominance Drawings and Linear Exten-
sion Diameter, arXiv:1108.1439 (2011)

11. Lengauer, T.: Combinatorial algorithms for integrated circuit layout. John Wiley
& Sons, Inc., New York (1990)

12. Nomura, K., Tayu, S., Ueno, S.: On the Orthogonal Drawing of Outerplanar
Graphs. Journal IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences E88-A(6), 1583–1588 (2005)

13. Papakostas, A., Tollis, I.G.: Efficient Orthogonal Drawings of High Degree Graphs.
Algorithmica 26(1), 100–125 (2000)

14. Papakostas, A., Tollis, I.G.: Algorithms for Area-Efficient Orthogonal Drawings.
Computational Geometry Theory and Applications 9(1-2), 83–110 (1998)

15. Papamanthou, C., Tollis, I.G.: Algorithms for computing a parameterized st-
orientation. Theoretical Computer Science 408(2-3), 224–240 (2008)

16. Papamanthou, C., Tollis, I.G.: Applications of Parameterized st-Orientations. Jour-
nal of Graph Algorithms and Applications 14(2), 337–365 (2010)

17. Rahman, S., Nishizeki, T., Naznin, M.: Orthogonal Drawings of Plane Graphs
Without Bends. Journal of Graph Algorithms and Applications 7(4), 335–362
(2003)

18. Storer, J.: On minimal node-cost planar embeddings. Networks 14(2), 181–212
(1984)

19. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Computing 16(3), 421–444 (1987)

20. Tamassia, R., Tollis, I.G.: Planar Grid Embeddings in Linear Time. IEEE Trans-
actions on Circuits and Systems 36(9), 1230–1234 (1989)

21. Vismara, L., Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Vargiu, F.:
Experimental studies on graph drawing algorithms. Software: Practice and
Experience 30(11), 1235–1284 (2000)

Drawing Cubic Graphs

with the Four Basic Slopes

Padmini Mukkamala and Dömötör Pálvölgyi�

McDaniel College, Budapest and Eötvös University, Budapest

Abstract. We show that every cubic graph can be drawn in the plane
with straight-line edges using only the four basic slopes, {0, π/4, π/2, 3π/4}.
We also prove that four slopes have this property if and only if we can
draw K4 with them.

1 Introduction

A straight-line drawing of a graph represents the vertices by distinct points in the
plane and represents the edges by the line-segments between the corresponding
pairs of points, such that no edge passes through a vertex. If it leads to no confu-
sion, in notation and terminology we make no distinction between a vertex and
the corresponding point, and between an edge and the corresponding segment.
The slope of an edge in a straight-line drawing is the slope of the corresponding
segment. Wade and Chu [29] defined the slope number, sl(G), of a graph G as
the smallest number s with the property that G has a straight-line drawing with
edges of at most s distinct slopes.

Obviously, if G has a vertex of degree d, then its slope number is at least
�d/2�. Dujmović et al. [12] asked if the slope number of a graph with bounded
maximum degree d could be arbitrarily large. Pach and Pálvölgyi [28] and Barát,
Matoušek, Wood [7] (independently) showed with a counting argument that the
answer is yes for d ≥ 5.

In [21], it was shown that cubic (3-regular) graphs could be drawn with
five slopes. The major result from which this was concluded was that subcubic
graphs1 can be drawn with the four basic slopes, the slopes {0, π/4, π/2, 3π/4},
corresponding to the vertical, horizontal and the two diagonal directions.

This was improved in [26] to show that connected cubic graphs can be drawn
with four slopes2 while disconnected cubic graphs required five slopes.
� The second author was supported by the European Union and co-financed by the

European Social Fund (grant agreement no. TAMOP 4.2.1/B-09/1/KMR-2010-0003)
and EUROGIGA project GraDR 10-EuroGIGA-OP-003 (OTKA NN 102029). Part
of this work was done in Lausanne and the authors gratefully acknowledge support
from the Bernoulli Center at EPFL and from the Swiss National Science Foundation,
Grant No. 200021-125287/1.

1 A graph is subcubic if it is a proper subgraph of a cubic graph, i.e. the degree of
every vertex is at most three and it is not cubic (not 3-regular).

2 But not the four basic slopes.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 254–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Drawing Cubic Graphs with the Four Basic Slopes 255

It was shown by Max Engelstein [15] that 3-connected cubic graphs with a
Hamiltonian cycle can be drawn with the four basic slopes.

We improve all these results by the following

Theorem 1. Every cubic graph has a straight-line drawing with only the four
basic slopes.

(a) Petersen graph (b) K3,3

Fig. 1. The Petersen graph and K3,3 with the four basic slopes

This is the first result about cubic graphs that uses a nice, fixed set of slopes
instead of an unpredictable set, possibly containing slopes that are not rational
multiples of π. Also, since K4 requires at least 4 slopes, this settles the question
of determining the minimum number of slopes required for cubic graphs. In the
last section we also prove

Theorem 2. Call a set of slopes good if every cubic graph has a straight-line
drawing with them. Then the following statements are equivalent for a set S of
four slopes.

1. S is good.
2. S is an affine image of the four basic slopes.
3. We can draw K4 with S.

The problem whether the slope number of graphs with maximum degree four is
unbounded or not remains an interesting open problem.

There are many other related graph parameters. The thickness of a graph G
is defined as the smallest number of planar subgraphs it can be decomposed into
[27]. It is one of the several widely known graph parameters that measures how
far G is from being planar. The geometric thickness of G, defined as the smallest
number of crossing-free subgraphs of a straight-line drawing of G whose union is
G, is another similar notion [19]. It follows directly from the definitions that the
thickness of any graph is at most as large as its geometric thickness, which, in
turn, cannot exceed its slope number. For many interesting results about these
parameters, consult [10], [12], [13], [14], [16], [17].

A variation of the problem arises if (a) two vertices in a drawing have an edge
between them if and only if the slope between them belongs to a certain set S

256 P. Mukkamala and D. Pálvölgyi

and, (b) vertices may lie in the interior of a non-adjacent edge. This violates the
condition stated before that an edge cannot pass through vertices other than its
end points. For instance, Kn can be drawn with one slope. The smallest number
of slopes that can be used to represent a graph in such a way is called the slope
parameter of the graph. Under these set of conditions, Ambrus et al. [4] prove
that the slope parameter of subcubic outerplanar graphs is at most 3. It was
shown in Keszegh et al. [22] that the slope parameter of every cubic graph is
at most seven. If only the four basic slopes are used, then the graphs drawn
with the above conditions are called queens graphs and Ambrus and Barát [3]
characterize certain graphs as queens graphs. Graph theoretic properties of some
specific queens graphs can be found in Bell and Stevens [8].

Another variation for planar graphs is to demand a planar drawing. The planar
slope number of a planar graph is the smallest number of distinct slopes with
the property that the graph has a straight-line drawing with non-crossing edges
using only these slopes. Dujmović, Eppstein, Suderman and Wood [11] raised
the question whether there exists a function f with the property that the planar
slope number of every planar graph with maximum degree d can be bounded
from above by f(d). Jelinek et al. [18] have shown that the answer is yes for
outerplanar graphs, that is, for planar graphs that can be drawn so that all of
their vertices lie on the outer face. Eventually the question was answered in [20]
where it was proved that any bounded degree planar graph has a bounded planar
slope number.

Finally we would mention a slightly related problem. Didimo et al. [9] studied
drawings of graphs where edges can only cross each other in a right angle. Such a
drawing is called an RAC (right angle crossing) drawing. They showed that every
graph has an RAC drawing if every edge is a polygonal line with at most three
bends (i.e. it consists of at most four segments). They also gave upper bounds
for the maximum number of edges if less bends are allowed. Later Arikushi et
al. [6] showed that such graphs can have at most O(n) edges. Angelini et al. [5]
proved that every cubic graph admits an RAC drawing with at most one bend.
It remained an open problem whether every cubic graph has an RAC drawing
with straight-line segments. If besides orthogonal crossings, we also allow two
edges to cross at 45◦, then it is a straightforward corollary of Theorem 1 that
every cubic graph admits such a drawing with straight-line segments.

In Section 2 we give the proof of the Theorem 1, while in Section 3 we prove
Theorem 2 and discuss open problems.

2 Proof of Theorem 1

We start with some definitions we will use throughout the section. Then we prove
in Corollary 1 that every cubic graph with many vertices contains a special cut.
Finally in Lemma 4 we show how to use this and Theorem 3 to obtain a drawing
with the four basic slopes.

Drawing Cubic Graphs with the Four Basic Slopes 257

2.1 Definitions and Subcubic Theorem

Throughout the paper log always denotes log2, the logarithm in base 2. We recall
that the girth of a graph is the length of its shortest cycle.

Fig. 2. The Heawood graph drawn with the four basic slopes

Definition 1. Define a supercycle as a connected graph where every degree is
at least two and not all are two. Note that a minimal supercycle will look like a
“θ” or like a “dumbbell”.

We recall that a cut is a partition of the vertices into two sets. We say that an
edge is in the cut if its ends are in different subsets of the partition. We also call
the edges in the cut the cut-edges. The size of a cut is the number of cut-edges
in it.

Definition 2. We say that a cut is an M -cut if the cut-edges form a matching,
in other words, if their ends are pairwise different vertices. We also say that an
M -cut is suitable if after deleting the cut-edges, the graph has two components,
both of which are supercycles.

For any two points p1 = (x1, y1) and p2 = (x2, y2), we say that p2 is to the North
of p1 if x2 = x1 and y2 > y1 . Analogously, we say that p2 is to the Northwest of
p1 if x2 + y2 = x1 + y1 and y2 > y1.

We will give the exact statement of the theorem of [21] about subcubic graphs
here since it will be used in this proof.

Theorem 3 ([21]). Let G be a connected graph that is not a cycle and whose
every vertex has degree at most three. Suppose that G has at least one vertex of
degree at most two and denote by v1, . . . , vm the vertices of degree at most two
(m ≥ 1).

Then, for any sequence x1, . . . , xm of real numbers, linearly independent over
the rationals, G has a straight-line drawing with the following properties:

258 P. Mukkamala and D. Pálvölgyi

(1) Vertex vi is mapped into a point with x-coordinate x(vi) = xi (1 ≤ i ≤ m)
(2) The slope of every edge is 0, π/2, π/4, or −π/4
(3) No vertex is to the North of any vertex of degree two.
(4) No vertex is to the North or to the Northwest of any vertex of degree one.

The proof of the theorem about subcubic graphs in [21] was incorrect. It used
induction but during the proof the statement was also used for disconnected
graphs. This can be a problem, since when drawing two components, it might
happen that a degree three vertex of one component has to be above a degree
two vertex of the other component. However, the proof can be easily fixed to hold
for disconnected graphs as well and the theorem is true. For this, one can make
the statement stronger, by saying that also for every graph one can select any
sequence xm+1, . . . , xn of real numbers that satisfy that x1, . . . , xm, xm+1, . . . , xn

are linearly independent over the rationals, such that the x-coordinates of all the
vertices are a linear combination with rational coefficients of x1, . . . , xn. This
way we can ensure that different components do not interfere. For details see
the soon-to-appear errata or [24].

Note that Theorem 3 proves the result of Theorem 1 for subcubic graphs.
Another minor observation is that we may assume that the graph is connected.
Since we use the basic four slopes, if we can draw the components of a discon-
nected graph, then we just place them far apart in the plane so that no two
drawings intersect. So we will assume for the rest of the section that the graph
is cubic and connected.

2.2 Preliminaries

The results in this subsection are also interesting independent of the current
problem we deal with. First we bound from above the girth of a cubic graph
with its number of vertices. Our bound easily follows from the Moore bound, but
as that bounds the inverse of our function, here we include a short proof for
completeness.

Lemma 1. Every connected cubic graph on n vertices contains a cycle of length
at most 2�log(n

3 + 1)�.

v

Fig. 3. Finding a cycle in the BFS tree using that the left child of v already occurred

Drawing Cubic Graphs with the Four Basic Slopes 259

Proof. Start at any vertex of G and conduct a breadth first search (BFS) of G
until a vertex repeats in the BFS tree. We note here that by iterations we will
(for the rest of the subsection) mean the number of levels of the BFS tree. Since
G is cubic, after k iterations, the number of vertices visited will be 1 + 3 + 6 +
12 + . . . + 3 · 2k−2 = 1 + 3(2k−1 − 1). And since G has n vertices, some vertex
must repeat after k = �log(n

3 + 1)� + 1 iterations. Tracing back along the two
paths obtained for the vertex that reoccurs, we find a cycle of length at most
2�log(n

3 + 1)�. ��
Lemma 2. Every connected cubic graph on n vertices with girth g contains a
supercycle with at most 2�log(n+1

g)�+ g − 1 vertices.

Proof. Contract the vertices of a length g cycle, obtaining a multigraph G′ with
n−g+1 vertices, that is almost 3-regular, except for one vertex of degree g, from
which we start a BFS. It is easy to see that the number of vertices visited after k
iterations is at most 1+g+2g+4g+ . . .+g ·2k−2 = g(2k−1−1)+1. And since G′

has n− g+1 vertices, some vertex must repeat after k = �log(n−g+1
g +1)�+1 =

�log(n+1
g)� + 1 iterations. Tracing back along the two paths obtained for the

vertex that reoccurs, we find a cycle (or two vertices connected by two edges) of
length at most 2�log(n+1

g)� in G′. This implies that in G we have a supercycle
with at most 2�log(n+1

g)�+ g − 1 vertices. ��
Lemma 3. Every connected cubic graph on n > 2s−2 vertices with a supercycle
with s vertices contains a suitable M -cut of size at most s− 2.

Proof. The supercycle with s vertices, A, has at least two vertices of degree 3.
The size of the (A, G − A) cut is thus at most s − 2. This cut need not be an
M -cut because the edges may have a common neighbor in G−A. To repair this,
we will now add, iteratively, the common neighbors of edges in the cut to A,
until no edges have a common neighbor in G − A. Note that in any iteration,
if a vertex, v, adjacent to exactly two cut-edges was chosen, then the size of A
increases by 1 and the size of the cut decreases by 1 (since, these two cut-edges
will get added to A along with v, but since the graph is cubic, the third edge
from v will become a part of the cut-edges). If a vertex adjacent to three cut-
edges was chosen, then the size of A increases by 1 while the number of cut-edges
decreases by 3. From this we can see that the maximum number of vertices that
could have been added to A during this process is s − 3. Now there are three
conditions to check.

The first condition is that this process returns a non-empty second component.
This cannot occur if

(n− s)− (s− 3) > 0

or,
n > 2s− 3.

The second condition is that the second component should not be a collection
of disjoint cycles. For this we note that it is enough to check that at every stage,

260 P. Mukkamala and D. Pálvölgyi

the number of cut-edges is strictly smaller than the number of vertices in G−A.
But since in the above iterations, the number of cut-edges decreases by a number
greater than or equal to the decrease in the size of G−A, it is enough to check
that before the iterations, the number of cut-edges is strictly smaller than the
number of vertices in G−A. This is the condition

n− s > s− 2

or,
n > 2s− 2.

Note that if this inequality holds then the non-emptiness condition will also hold.
Finally, we need to check that both components are connected. A is always

connected but G − A need not be. Pick a component in G − A that has more
vertices than the number of cut-edges adjacent to it. Since the number of cut-
edges is strictly smaller than number of vertices in G − A, there must be one
such component, say B, in G−A. We add every other component of G−A to A.
Note that the size of the cut only decreases with this step. Since B is connected
and has more vertices than the number of cut-edges, B cannot be a cycle. ��
Corollary 1. Every connected cubic graph on n ≥ 18 vertices contains a suit-
able M -cut.

Proof. Using the first two lemmas, we have a supercycle with s ≤ 2�log(n+1
g)�+

g− 1 vertices where 3 ≤ g ≤ 2�log(n
3 + 1)�. Then using the last lemma, we have

an M -cut with both partitions being a supercycle if n > 2s− 2. So all we need
to check is that n is indeed big enough. Note that

s ≤ 2 log(
n + 1

g
) + g + 1 = 2 log(n + 1) + g − 2 log g + 1 ≤

≤ 2 log(n + 1) + 2 log(
n

3
+ 1)− 2 log(2 log(

n

3
+ 1)) + 1

where the last inequality follows from the fact that x − 2 logx is increasing
for x ≥ 2/ loge 2 ≈ 2.88. So we can bound the right hand side from above by
4 log(n + 1) + 1. Now we need that

n > 2(4 log(n + 1) + 1)− 2 = 8 log(n + 1)

which holds if n ≥ 44.
The statement can be checked for 18 ≤ n ≤ 42 with code that can be found

in the Appendix of the full version [25]. It outputs for a given value of n, the g
for which 2s− 2 is maximum and this maximum value. Based on the output we
can see that for n ≥ 18, this value is smaller. ��

Drawing Cubic Graphs with the Four Basic Slopes 261

x1

x2

x3

xm−1

xm−xm

−xm−1

−x3

−x2

−x1

Rotated and translated

Fig. 4. The x-coordinates of the degree 2 vertices is suitably chosen and one component
is rotated and translated to make the M -cut vertical

2.3 Proof

Lemma 4. Let G be a connected cubic graph with a suitable M -cut. Then, G
can be drawn with the four basic slopes.

Proof. The proof follows rather straightforwardly from Theorem 3. Note that
the two components are subcubic graphs and we can choose the x-coordinates
of the vertices of the M -cut (since they are the vertices with degree two in the
components). If we picked coordinates x1, x2, . . . , xm in one component, then for
the neighbors of these vertices in the other component we pick the x-coordinates
−x1,−x2, . . . ,−xm. We now rotate the second component by π and place it very
high above the other component so that the drawings of the components do not
intersect and align them so that the edges of the M -cut will be vertical (slope
π/2). Also, since Theorem 3 guarantees that degree two vertices have no other
vertices on the vertical line above them, hence the drawing we obtain above is a
valid representation of G with the basic slopes. ��

By combining Lemma 1 and Lemma 4, we can see that Theorem 1 is true for
all cubic graphs with n ≥ 18. For smaller graphs, we give below some lemmas
which help reduce the number of graphs we have to check. The lemmas below
also occur in different papers and we give references where required.

Lemma 5. A connected cubic graph with a cut vertex can be drawn with the
four basic slopes.

Proof. We observe that if the cubic graph has a cut vertex then it must also
have a bridge. This bridge would be the suitable M -cut for using the previous
Lemma 4, since neither of the components can be disconnected or cycles. ��

262 P. Mukkamala and D. Pálvölgyi

Lemma 6. A connected cubic graph with a 2-vertex disconnecting set can be
drawn with the four basic slopes.

Proof. If a cubic graph has a 2-vertex disconnecting set, then it must have a cut
of size two with non-adjacent edges. Again the two components we obtain must
be connected (or the graph has a bridge) and cannot be cycles. Thus we can
apply Lemma 4 again to get the required drawing. ��
The following theorem was proved by Engelstein [15].

Lemma 7. Every 3-connected cubic graph with a Hamiltonian cycle can be
drawn in the plane with the four basic slopes.

Note that combining the last three lemmas, we even get

Corollary 2. Every cubic graph with a Hamiltonian cycle can be drawn in the
plane with the four basic slopes.

The graphs which now need to be checked satisfy the following conditions:

1. the number of vertices is at most 16
2. the graph is 3-connected
3. the graph does not have a Hamiltonian cycle.

Fig. 5. The Tietze’s graph drawn with the four basic slopes

Note that if the number of vertices is at most 16, then it follows from Lemma
1 that the girth is at most 6. Luckily there are several lists available of cubic
graphs with a given number of vertices, n and a given girth, g.

If g = 6, then there are only two graphs with at most 16 vertices (see [1],
[23]), both containing a Hamiltonian cycle.

If g = 5 and n = 16, then Lemma 2 gives a supercycle with at most 8 vertices,
so using Lemma 3 we are done.

If g = 5 and n = 14, then there are only nine graphs (see [1], [23]), all
containing a Hamiltonian cycle.

If g ≤ 4 and n = 16, then Lemma 2 gives a supercycle with at most 8 vertices,
so using Lemma 3 we are done.

Drawing Cubic Graphs with the Four Basic Slopes 263

If g ≤ 4 and n = 14, then Lemma 2 gives a supercycle with at most 7 vertices,
so using Lemma 3 we are done.

Finally, all graphs with at most 12 vertices are either not 3-connected or
contain a Hamiltonian cycle, except for the Petersen graph and Tietze’s Graph
(see [2]). For the drawing of these two graphs, see the respective Figures.

3 Which Four Slopes? and Other Concluding Questions

After establishing Theorem 1 the question arises whether we could have used
any other four slopes. Call a set of slopes good if every cubic graph has a straight-
line drawing with them. In this section we prove Theorem 2 that claims that the
following statements are equivalent for a set S of four slopes.

1. S is good.
2. S is an affine image of the four basic slopes.
3. We can draw K4 with S.

Proof. Since affine transformation keeps incidences, any set that is the affine
image of the four basic slopes is good.

On the other hand, if a set S = {s1, s2, s3, s4} is good, then K4 has a straight-
line drawing with S. Since we do not allow a vertex to be in the interior of an
edge, the four vertices must be in general position. This implies that two incident
edges cannot have the same slope. Therefore there are two slopes, without loss
of generality s1 and s2, such that we have two edges of each slope. These four
edges must form a cycle of length four, which means that the vertices are the
vertices of a parallelogram. But in this case there is an affine transformation
that takes the parallelogram to a square. This transformation also takes S into
the four basic slopes. ��
Note that a similar reasoning shows that no matter how many slopes we take,
their set need not be good, because we cannot even draw K4 with them unless
they satisfy some correlation. The above proofs use the four basic slopes only in
a few places (for rotation invariance and to start induction). Thus we make the
following conjecture.

Conjecture 1. There is a (not necessarily connected, finite) graph such that a
set of slopes is good if and only if this graph has a straight-line drawing with
them.

This finite graph would be the disjoint union of K4, maybe the Petersen graph
and other small graphs. We could not even rule out the possibility that K4 (or
maybe another, connected graph) is alone sufficient. Note that we can define a
partial order on the graphs this way. Let G < H if any set of slopes that can be
used to draw H can also be used to draw G. This way of course G ⊂ H ⇒ G < H
but what else can we say about this poset?

Is it possible to use this new method to prove that the slope parameter of
cubic graphs is also four?

The main question remains to prove or disprove whether the slope number of
graphs with maximum degree four is unbounded.

264 P. Mukkamala and D. Pálvölgyi

Acknowledgment. We would like to thank the anonymous referees their sev-
eral useful remarks.

References

1. http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html

2. http://en.wikipedia.org/wiki/Tableofsimplecubicgraphs

3. Ambrus, G., Barát, J.: A contribution to queens graphs: A substitution method.
Discrete Mathematics 306(12), 1105–1114 (2006)

4. Ambrus, G., Barát, J., Hajnal, P.: The slope parameter of graphs. Acta Sci. Math
(Szeged) 72, 875–889 (2006)

5. Angelini, P., Cittadini, L., Di Battista, G., Didimo, W., Frati, F., Kaufmann, M.,
Symvonis, A.: On the Perspectives Opened By Right Angle Crossing Drawings. In:
Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 21–32. Springer,
Heidelberg (2010)

6. Arikushi, K., Fulek, R., Keszegh, B., Morić, F., Tóth, C.D.: Graphs that Ad-
mit Right Angle Crossing Drawings. In: Thilikos, D.M. (ed.) WG 2010. LNCS,
vol. 6410, pp. 135–146. Springer, Heidelberg (2010)

7. Barát, J., Matousek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large
geometric thickness. Electr. J. Comb. 13(1) (2006)

8. Bell, J., Stevens, B.: A survey of known results and research areas for n-queens.
Discrete Mathematics 309, 1–31 (2009)

9. Didimo, W., Eades, P., Liotta, G.: Drawing Graphs With Right Angle Crossings.
In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS,
vol. 5664, pp. 206–217. Springer, Heidelberg (2009)

10. Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete
graphs. J. Graph Algorithms Appl. 4(3), 5–17 (2000)

11. Dujmovic, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007)

12. Dujmović, V., Suderman, M., Wood, D.R.: Really Straight Graph Drawings. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 122–132. Springer, Heidelberg (2005)

13. Dujmovic, V., Wood, D.R.: Graph treewidth and geometric thickness parameters.
Discrete & Computational Geometry 37(4), 641–670 (2007)

14. Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree
graphs. In: Snoeyink, J., Boissonnat, J.-D. (eds.) Symposium on Computational
Geometry, pp. 340–346. ACM (2004)

15. Engelstein, M.: Drawing graphs with few slopes. Intel Competition for high school
students (2005)

16. Eppstein, D.: Separating Thickness From Geometric Thickness. In: Goodrich,
M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 150–161. Springer,
Heidelberg (2002)

17. Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness-
two graphs. Comput. Geom. 13(3), 161–171 (1999)

18. Jeĺınek, V., Jeĺınková, E., Kratochv́ıl, J., Lidický, B., Tesař, M., Vyskočil, T.:
The Planar Slope Number Of Planar Partial 3-Trees Of Bounded Degree. In:
Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 304–315.
Springer, Heidelberg (2010)

19. Kainen, P.C.: Thickness and coarseness of graphs. Abh. Math. Sem. Univ.
Hamburg 39, 88–95 (1973)

http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
http://en.wikipedia.org/wiki/Tableofsimplecubicgraphs

Drawing Cubic Graphs with the Four Basic Slopes 265

20. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing Planar Graphs of Bounded Degree
With Few Slopes. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502,
pp. 293–304. Springer, Heidelberg (2011)

21. Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most
five slopes. Comput. Geom. 40(2), 138–147 (2008)

22. Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Cubic graphs have bounded slope
parameter. J. Graph Algorithms Appl. 14(1), 5–17 (2010)

23. Meringer, M.: Fast generation of regular graphs and construction of cages. J. Graph
Theory 30, 137–146 (1999)

24. Mukkamala, P.: Obstacles, Slopes and Tic-Tac-Toe: An excursion in discrete ge-
omety and combinatorial game theory. PhD thesis, Rutgers, The State University
of New Jersey (2011), http://arxiv.org/abs/1106.1973

25. Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes.
CoRR, abs/1106.1973 (2011)

26. Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with four
directions. Comput. Geom. 42(9), 842–851 (2009)

27. Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: A survey.
Graphs Combin. 14, 59–73 (1998)

28. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope
numbers. Electr. J. Comb. 13(1) (2006)

29. Wade, G.A., Chu, J.-H.: Drawability of complete graphs using a minimal slope set.
Comput. J. 37(2), 139–142 (1994)

http://arxiv.org/abs/1106.1973

k-Quasi-Planar Graphs

Andrew Suk�

School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
suk@cims.nyu.edu

Abstract. A topological graph is k-quasi-planar if it does not contain k pairwise
crossing edges. A topological graph is simple if every pair of its edges intersect
at most once (either at a vertex or at their intersection). In 1996, Pach, Shahrokhi,
and Szegedy [16] showed that every n-vertex simple k-quasi-planar graph con-
tains at most O

(
n(log n)2k−4

)
edges. This upper bound was recently improved

(for large k) by Fox and Pach [8] to n(log n)O(log k). In this note, we show that
all such graphs contain at most (n log2 n)2αck (n) edges, where α(n) denotes the
inverse Ackermann function and ck is a constant that depends only on k.

1 Introduction

A topological graph is a graph drawn in the plane such that its vertices are represented
by points and its edges are represented by non-self-intersecting arcs connecting the cor-
responding points. The arcs are allowed to intersect, but they may not pass through
vertices except for their endpoints. Furthermore, the edges are not allowed to have tan-
gencies, i.e., if two edges share an interior point, then they must properly cross at that
point in common. We only consider graphs without parallel edges or loops. A topo-
logical graph is simple if every pair of its edges intersect at most once. If the edges are
drawn as straight-line segments, then the graph is geometric. Two edges of a topological
graph cross if their interiors share a point.

Finding the maximum number of edges in a topological graph with a forbidden
crossing pattern has been a classic problem in extremal topological graph theory (see
[2,3,4,6,8,10,15,19,21]). It follows from Euler’s Polyhedral Formula that every topolog-
ical graph on n vertices and no crossing edges has at most 3n− 6 edges. A topological
graph is k-quasi-planar, if it does not contain k pairwise crossing edges. Hence 2-quasi-
planar graphs are planar. An old conjecture (see Problem 1 in section 9.6 of [5]) states
that for any fixed k > 0, every k-quasi-planar graph on n vertices has at most ckn
edges, where ck is a constant that depends only on k. Agarwal et al. [4] were the first
to prove this conjecture for simple 3-quasi-planar graphs. Later, Pach, Radoičić, and
Tóth [14] generalized the result for all (not simple) 3-quasi-planar graphs. Ackerman
[1] proved the conjecture for k = 4.

For k ≥ 5, Pach, Shahrokhi, and Szegedy [16] showed that every simple k-quasi-
planar graph on n vertices has at most ckn(log n)2k−4 edges. This bound can be
improved to ckn(log n)2k−8 by using a result of Ackerman [1]. Valtr [20] proved

� The author gratefully acknowledges the support from the Swiss National Science Foundation
Grant No. 200021-125287/1.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 266–277, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

k-Quasi-Planar Graphs 267

that every n-vertex k-quasi-planar geometric graph contains at most O(n log n) edges.
Later, he extended this result to simple topological graphs with edges drawn as x-
monotone curves [21]. Pach, Radoičić, and Tóth showed that every n-vertex (not sim-
ple) k-quasi-planar graph has at most ckn(log n)4k−12 edges, which can also be im-
proved to

ckn(log n)4k−16

by a result of Ackerman [1].
Recently, Fox and Pach [8] improved (for large k) the exponent in the polylogarith-

mic factor for simple topological graphs. They showed that every simple k-quasi-planar
graph on n vertices has at most

n(c log n/ log k)c log k

edges, where c is an absolute constant. Our main result is the following.

Theorem 1. Let G = (V, E) be an n-vertex simple k-quasi-planar graph. Then

|E(G)| ≤ (n log2 n)2αck (n),

where α(n) denotes the inverse Ackermann function and ck is a constant that depends
only on k.

In the proof of Theorem 1, we apply results on generalized Davenport-Schinzel se-
quences. This method was used by Valtr [21], who showed that every n-vertex simple
k-quasi-planar graph with edges drawn as x-monotone curves has at most 22ck

n log n
edges, where c is an absolute constant. Our next theorem extends his result to (not sim-
ple) topological graphs with edges drawn with x-monotone curves, and moreover we
obtain a slightly better upper bound.

Theorem 2. Let G = (V, E) be an n-vertex (not simple) k-quasi-planar graph with
edges drawn as x-monotone curves. Then |E(G)| ≤ 2ck3

n log n, where c is an absolute
constant.

2 Generalized Davenport-Schinzel Sequences

The sequence u = a1, a2, ..., am is called l-regular if any l consecutive terms are pair-
wise different. For integers l, t ≥ 2, the sequence

S = s1, s2, ..., slt

of length l · t is said to be of type up(l, t) if the first l terms are pairwise different and
for i = 1, 2, ..., l

si = si+l = si+2l = · · · = si+(t−1)l.

For example,

a, b, c, a, b, c, a, b, c, a, b, c,

would be an up(3, 4) sequence. By applying a theorem of Klazar on generalized
Davenport-Schinzel sequences, we have the following.

268 A. Suk

Theorem 3 ([11]). For l ≥ 2 and t ≥ 3, the length of any l-regular sequence over an
n-element alphabet that does not contain a subsequence of type up(l, t) has length at
most

n · l2(lt−3) · (10l)10αlt(n).

For l ≥ 2, the sequence

S = s1, s2, ..., s3l−2

of length 3l − 2 is said to be of type up-down-up(l), if the first l terms are pairwise
different, and for i = 1, 2, ..., l,

si = s2l−i = s(2l−2)+i.

For example,

a, b, c, d, c, b, a, b, c, d,

would be an up-down-up(4) sequence. Valtr and Klazar [12] showed that any l-regular
sequence over an n-element alphabet containing no subsequence of type up-down-up(l)
has length at most 2lcn for some constant c. Recently, Pettie made the following im-
provement.

Lemma 1 ([18]). For l ≥ 2, the length of any l-regular sequence over an n-element
alphabet containing no subsequence of type up-down-up(l) has length at most 2O(l2)n.

For more results on generalized Davenport-Schinzel sequences, see [13,18,17].

3 Simple Topological Graphs

In this section, we will prove Theorem 1. For any partition of V (G) into two disjoint
parts, V1 and V2, let E(V1, V2) denote the set of edges with one endpoint in V1 and the
other endpoint in V2. The bisection width of a graph G, denoted by b(G), is the smallest
nonnegative integer such that there is a partition of the vertex set V = V1 ∪̇ V2 with
1
3 · |V | ≤ |Vi| ≤ 2

3 · |V | for i = 1, 2, and |E(V1, V2)| = b(G). We will use the following
result by Pach et al.

Lemma 2 ([16]). If G is a graph with n vertices of degrees d1, ..., dn, then

b(G) ≤ 7cr(G)1/2 + 2

√
√
√
√

n∑

i=1

d2
i ,

where cr(G) denotes the crossing number of G.

Since
∑n

i=1 d2
i ≤ 2n|E(G)| holds for every graph, we have

b(G) ≤ 7cr(G)1/2 + 3
√
|E(G)|n. (1)

k-Quasi-Planar Graphs 269

Proof of Theorem 1. Let k ≥ 5 and fk(n) denote the maximum number of edges in a
simple k-quasi-planar graph on n vertices. We will prove that

fk(n) ≤ (n log2 n)2αck (n)

where ck = 105 · 2k2+2k. For sake of clarity, we do not make any attempts to optimize
the value of ck. We proceed by induction on n. The base case n < 7 is trivial. For the
inductive step n ≥ 7, let G = (V, E) be a simple k-quasi-planar graph with n vertices
and m = fk(n) edges, such that the vertices of G are labeled 1 to n. The proof splits
into two cases.

Case 1. Suppose that cr(G) ≤ m2/(104 log2 n). By (1), there is a partition V (G) =
V1 ∪ V2 with |V1|, |V2| ≤ 2n/3 and the number of edges with one vertex in V1 and one
vertex in V2 is at most

b(G) ≤ 7cr(G)1/2 + 3
√

mn ≤ 7
m

100 logn
+ 3
√

mn.

Let n1 = |V1| and n2 = |V2|. Now if 7m/(100 logn) ≤ 3
√

mn, then we have

m ≤ 43n log2 n

and we are done since α(n) ≥ 2 and k ≥ 5. Therefore, we can assume 7m/(100 logn) >
3
√

mn, which implies

b(G) ≤ m

7 log n
. (2)

By the induction hypothesis and equation (2), we have

m ≤ fk(n1) + fk(n2) + b(G)

≤ (n1 log2(2n/3)
)
2αck (n) +

(
n2 log2(2n/3)

)
2αck (n) + b(G)

≤ (n log2(2n/3)
)
2αck (n) + m

7 log n

≤ (n log2 n)2αck (n) − 2n2αck(n) log n log(3/2) + n2αck (n) log2(3/2) + m
7 log n

which implies

m

(

1− 1
7 log n

)

≤ (n log2 n)2αck (n)

(

1− 2 log(3/2)
log n

+
log2(3/2)

log2 n

)

.

Hence

m ≤ (n log2 n)2αck (n) 1− 2 log(3/2) log−1 n + log2(3/2) log−2 n

1− 1/(7 logn)

≤ (n log2 n)2αck (n).

270 A. Suk

Case 2. Now suppose that cr(G) ≥ m2/(104 log2 n). By a simple averaging argument,
there exists an edge e = uv such that at least 2m/(104 log2 n) other edges cross e. Fix
such an edge e = uv, and let E′ denote the set of edges that cross e.

We order the edges in E′ = {e1, e2, ..., e|E′|}, in the order that they cross e from u
to v. Now we create two sequences S1 = p1, p2, ..., p|E′| and S2 = q1, q2, ..., q|E′| as
follows. For each ei ∈ E′, as we move along edge e from u to v and arrive at edge ei,
we turn left and move along edge ei until we reach its endpoint ui. Then we set pi = ui.
Likewise, as we move along edge e from u to v and arrive at edge ei, we turn right and
move along edge ei until we reach its other endpoint vi. Then set qi = vi. Thus S1 and
S2 are sequences of length |E′| over the alphabet {1, 2, ..., n}. See Figure 1 for a small
example.

��

�
�
�
�

��

����
��
��
��
��

����

�
�
�
�

v4
v3

v2

v5v1

v

u

Fig. 1. In this example, S1 = v1, v3, v4, v3, v2 and S2 = v2, v2, v1, v5, v5

Now we need the following two lemmas. The first one is due to Valtr.

Lemma 3 ([21]). For l ≥ 1, at least one of the sequences S1, S2 defined above contains
an l-regular subsequence of length at least |E′|/(4l).

Since each edge in E′ crosses e exactly one, the proof of Lemma 3 can be copied almost
verbatim from the proof of Lemma 4 in [21].

Lemma 4. Neither of the sequences S1 and S2 contains a subsequence of type
up(2k2+k, 2k).

Proof. By symmetry, it suffices to show that S1 does not contain a subsequence of type
up(2k2+k, 2k). The argument is by contradiction. We will prove by induction on k, that
such a sequence will produce k pairwise crossing edges in G. The base cases k = 1, 2
are trivial. Now assume the statement holds up to k − 1. Let

S = s1, s2, ..., s2k2+2k

k-Quasi-Planar Graphs 271

be our up(2k2+k, 2k) sequence of length 2k2+2k such that the first 2k2+k terms are
pairwise different, and for i = 1, 2, ..., 2k2+k

si = si+2k2+k = si+2·2k2+k = si+3·2k2+k = · · · = si+(2k−1)2k2+k .

For each i = 1, 2, ..., 2k2+k, let vi ∈ V1 denote the label (vertex) of si. Moreover, let
ai,j be the arc emanating from vertex vi to the edge e corresponding to si+j2k2+k for

j = 0, 1, 2, ..., 2k−1. We will think of si+j2k2+k as a point on ai,j very close but not on
edge e. For simplicity, we will let s2k2+2k+t = st for all t ∈ N and ai,j = ai,j mod 2k

for all j ∈ Z. Hence there are 2k2+k distinct vertices v1, ..., v2k2+k , each vertex of
which has 2k arcs emanating from it to the edge e.

Consider the drawing of the 2k arcs emanating from v1 and the edge e. Since G is
simple, this drawing partitions the plane into 2k regions. By the Pigeonhole principle,
there is a subset V ′ ⊂ {v1, ..., v2k2+k} of size

2k2+k − 1
2k

,

such that all of the vertices of V ′ lie in the same region. Let j0 ∈ {0, 1, 2, ..., 2k − 1}
be an integer such that V ′ lies in the region bounded by a1,j0 , a1,j0+1, e. See Figure 2.
In the case j0 = 2k − 1, V ′ lies in the unbounded region.

����

�
�
�
�

��

����

��
��
��
�� ��

��
��
��

�
�
�
�

�
�
�
�

����

��
��
��
��

v1

s1

0
k1+(j +1) 2

1, j0a

v

u

s
s

1+j 2
0

1, j +1a
0

k

V

2

2

+k
+k

’

Fig. 2. Vertices of V ′ lie in the region enclosed by a1,j0 , a1,j0+1, e.

Let vi ∈ V ′ and ai,j0+j1 be an arc emanating out of vi for j1 ≥ 1. Notice that
ai,j0+j1 cannot cross both a1,j0 and a1,j0+1 since G is simple. Suppose that ai,j0+j1

crosses a1,j0+1. Then the set of arcs (emanating out of vi)

A = {ai,j0+1, ai,j0+2, ..., ai,j0+j1−1}
must also cross a1,j0+1. Indeed, let γ be the simple closed curve created by the arrange-
ment

ai,j0+j1 ∪ a1,j0+1 ∪ e.

272 A. Suk

Since ai,j0+j1 , a1,j0+1, e pairwise intersect at precisely one point, γ is well defined. We
define points x = ai,j0+j1 ∩ a1,j0+1 and y = a1,j0+1 ∩ e, and orient γ in the direction
from x to y along γ.

Since ai,j0+j1 intersects a1,j0+1, vi must lie to the right of γ. Moreover since the arc
from x to y along a1,j0+1 is a subset of γ, the points corresponding to the subsequence

S′ = {st ∈ S | 2 + (j0 + 1)2k2+k ≤ t ≤ (i− 1) + (j0 + j1)2k2+k}
lie to the left of γ. Hence γ separates vertex vi and the points of S′. Therefore each
arc from A must cross a1,j0+1 since G is simple (these arcs cannot cross ai,j0+j1). See
Figure 3.

��
��
��
�� ��

��
��
��v1

1, j0a

v

u

s
s

a
0 1i, j +j

01+(j +1) 2

0

a1, j +10

1+j 2 +kk
2

v
S’

i

k
2
+k

x

y

(a) The case when j0+j1 mod 2k ≤ 2k−1.

��
��
��
�� ��

��
��
��v1

1, j0a

v

u

s
s

a
0 1i, j +j

01+(j +1) 2

0

γ

a1, j +10

1+j 2 +kk
2

v
S’

i

k
2
+k

x

y

(b) γ defined from Figure 3(a).

�
�
�
�

����
��

�
�
�
�

v1

1, j0a

0 1i, j +ja

S’

S’

k2
+ks1+j 2

0

k2+ks
01+(j +1) 2

v

u

1, j +1a
0

vi

x

y

(c) The case when j0 + j1 mod 2k < j0. Re-
call ai,j0+j1 = ai,j0+j1 mod 2k .

����

����
����

��
��
��
��

v1

1, j0a

0 1i, j +ja

S’

S’

k2+ks
01+(j +1) 2s1+j 2

0
k2

+k

v

u

1, j +1a
0

vi

γ

x

y

(d) γ defined from Figure 3(c).

Fig. 3. Defining γ and its orientation

By the same argument, if the arc ai,j0−j1 crosses a1,j0 for j1 ≥ 1, then the arcs
(emanating out of vi)

ai,j0−1, ai,j0−2, ..., ai,j0−j1+1

must also cross a1,j0 . Since ai,j0+2k/2 = ai,j0−2k/2, we have the following observation.

k-Quasi-Planar Graphs 273

Observation 4. For half of the vertices vi ∈ V ′, the arcs emanating out of vi satisfy

1. ai,j0+1, ai,j0+2, ..., ai,j0+2k/2 all cross a1,j0+1, or
2. ai,j0−1, ai,j0−2, ..., ai,j0−2k/2 all cross a1,j0 .

�
Since

|V ′|
2
≥ 2k2+k − 1

2 · 2k
≥ 2(k−1)2+(k−1),

by Observation 4 we have a (2(k−1)2+(k−1), 2k−1)up sequence, whose corresponding
arcs all cross either a1,j0 or a1,j0+1. By the induction hypothesis, we have k pairwise
crossing edges.

�
Now we are ready to complete the proof of Theorem 1. By Lemma 3 we know that, say,
S1 contains a 2k2+k-regular subsequence of length |E′|/(4 ·2k2+k). By Theorem 3 and
Lemma 4, this subsequence has length at most

n2k2+k22k2+2k−3
(
10 · 2k2+k

)10α2k2+2k
(n)

.

Therefore

2m

104 · 4 · 2k2+k log2 n
≤ |E′|

4 · 2k2+k
≤ n2k2+k22k2+2k−3

(
10 · 2k2+k

)10α2k2+2k
(n)

which implies

m ≤ 4 · 104 · 22k2+2k22k2+2k−3n
(
10 · 2k2+k

)10α2k2+2k
(n)

log2 n.

Since ck = 105 · 2k2+2k, α(n) ≥ 2 and k ≥ 5, we have

m ≤ (n log2 n)2αck (n).

�
4 x-Monotone

In this section we will prove Theorem 2.

Proof of Theorem 2. For k ≥ 2, let gk(n) be the maximum number of edges in a (not
simple) k-quasi-planar graph whose edges are drawn as x-monotone curves. We will
prove by induction on n that

gk(n) ≤ 2ck6
n logn

where c is a sufficiently large absolute constant. The base case is trivial. For the induc-
tive step, let G = (V, E) be a k-quasi-planar topological graph whose edges are drawn

274 A. Suk

as x-monotone curves, and let the vertices be labeled 1, 2, ..., n. Then let L be the ver-
tical line that partitions the vertices into two parts, V1 and V2, such that |V1| = �n/2�
vertices lie to the left of L, and |V2| = �n/2� vertices lie to the right of L. Furthermore,
let E1 denote the set of edges induced by V1, E2 be the set of edges induced by V2, and
E′ be the set of edges that intersect L. Clearly, we have

|E1| ≤ gk(�n/2�) and |E2| ≤ gk(�n/2�).
Hence it suffices that show that

|E′| ≤ 2ck6/2n, (3)

since this would imply

gk(n) ≤ gk(�n/2�) + gk(�n/2�) + 2ck6/2n ≤ 2ck6
n log n.

For the rest of the proof, we will only consider the edges from E′. Now for each vertex
vi ∈ V1, consider the graph Gi whose vertices are the edges with vi as a left endpoint,
and two vertices in Gi are adjacent if the corresponding edges cross at some point to
the left of L. Since Gi is an incomparability graph (see [7], [9]) and does not contain
a clique of size k, Gi contains an independent set of size |E(Gi)|/(k − 1). We keep
all edges that correspond to the elements of this independent set, and discard all other
edges incident to vi. After repeating this process on all vertices in V1, we are left with
at least |E′|/(k − 1) edges.

Now we continue this process on the other side. For each vertex vj ∈ V2, consider
the graph Gj whose vertices are the edges with vj as a right endpoint, and two vertices
in Gj are adjacent if the corresponding edges cross at some point to the right of L. Since
Gj is an incomparability graph and does not contain a clique of size k, Gj contains an
independent set of size |E(Gj)|/(k − 1). We keep all edges that corresponds to this
independent set, and discard all other edges incident to vj . After repeating this process
on all vertices in V2, we are left with at least |E′|/(k − 1)2 edges.

We order the remaining edges e1, e2, ..., em in the order in which they intersect L
from bottom to top. We define two sequences S1 = p1, p2, ..., pm and S2 = q1, q2, ..., qm

such that pi denotes the left endpoint of edge ei and qi denotes the right endpoint of ei.
Now we need the following lemma.

Lemma 5. Neither of the sequences S1 and S2 contains a subsequence of type up-
down-up(k3 + 2).

Proof. By symmetry, it suffices to show that S1 does not contain a subsequence of type
up-down-up(k3 + 2). For the sake of contradiction, suppose S1 did contain a subse-
quence of type up-down-up(k3 + 2). Then there is a sequence

S = s1, s2, ..., s3(k3+2)−2

such that the integers s1, ..., sk3+2 are pairwise different and for i = 1, 2, ..., k3 + 2 we
have

si = s2(k3+2)−i = s2(k3+2)−2+i.

k-Quasi-Planar Graphs 275

For each i = 1, 2, ..., k3 + 2, let vi ∈ V1 denote the label (vertex) of si and let
xi denote the x-coordinate of vertex vi. Moreover, let ai be the arc emanating from
vertex vi to the point on L that corresponds to s2(k3+2)−i. Note that the set of arcs
A = {a2, a3, ..., ak3+1} are ordered downwards as they intersect L, and corresponds
to the “middle" part of the up-down-up sequence. We define two partial orders on A as
follows.

ai ≺1 aj if i < j, xi < xj and the arcs ai, aj do not intersect,

ai ≺2 aj if i < j, xi > xj and the arcs ai, aj do not intersect.

Clearly,≺1 and≺2 are partial orders. If two arcs are not comparable by either≺1 or≺2,
then they must cross. Since G does not contain k pairwise crossing edges, by Dilworth’s
Theorem, there exist k arcs {ai1 , ai2 , ..., aik

} such that they are pairwise comparable
by either≺1 or ≺2. Now the proof falls into two cases.

Case 1. Suppose that ai1 ≺1 ai2 ≺1 · · · ≺1 aik
. Then the arcs emanating from

vi1 , vi2 , ..., vik
to the points corresponding to

s2(k3+2)−2+i1 , s2(k3+2)−2+i2 , ..., s2(k3+2)−2+ik

are pairwise crossing. See Figure 4.

�
�
�
�

�
�
�
�

��
��
��
��

��

i1
v

i2
v

i3
v

i k
v

i1a

i3
a

ik
a

i2
a

��

�
�
�
�

����

��
��
��
��

1iv
i2

v

i3
v

ik
v

i2
a

i1a

i3
a

ik
a

s
s

s

3

3

3

3

2(k +2)−2+i

2(k +2)−2+i

2(k +2)−2+i

2(k +2)−2+i

s

k

3

2

1

Fig. 4. Case 1

Case 2. Suppose that ai1 ≺2 ai2 ≺2 · · · ≺2 aik
. Then the arcs emanating from

vi1 , vi2 , ..., vik
to the points corresponding to si1 , si2 , ..., sik

are pairwise crossing. See
Figure 5.

�
We are now ready to complete the proof of Theorem 2. By Lemma 3, we know that,
say, S1 contains a (k3 + 2)-regular subsequence of length

|E′|
4(k3 + 2)(k − 1)2

.

276 A. Suk

��

����

��

��
��
��
��

i k
v

i1
v

i2
v

i3
v

i3
a

ik
a

i2
a

i1a

��
��
��
��

��

����

����

i k
v

i1
v

i2
v

i3
v

i k
s

i3
s

i2
s

i1s

i3
a

ik
a

i1a

i2
a

Fig. 5. Case 2

By lemma 1 and 5, this subsequence has length at most 2c′k6
n, where c′ is an absolute

constant. Hence

|E′|
4(k3 + 2)(k − 1)2

≤ 2c′k6
n

implies

|E′| ≤ 4k52c′k6
n ≤ 2ck6/2n

for a sufficiently large absolute constant c.
�

References

1. Ackerman, E.: On the Maximum Number of Edges in Topological Graphs with No Four Pair-
wise Crossing Edges. In: Proceedings of the Twenty-Second Annual Symposium on Com-
putational Geometry, SCG 2006, pp. 259–263. ACM, New York (2006)

2. Ackerman, E., Fox, J., Pach, J., Suk, A.: On Grids in Topological Graphs. In: Proceedings of
the 25th Annual Symposium on Computational Geometry, SCG 2009, pp. 403–412. ACM,
New York (2009)

3. Ackerman, E., Tardos, G.: Note: On the Maximum Number of Edges in Quasi-Planar Graphs.
J. Comb. Theory Ser. A 114(3), 563–571 (2007)

4. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-Planar Graphs Have a
Linear Number of Edges. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 1–7.
Springer, Heidelberg (1995)

5. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, Berlin
(2005)

6. Capoyleas, V., Pach, J.: A Turán-Type Theorem on Chords of a Convex Polygon. J.
Combinatorial Theory, Series B 56, 9–15 (1992)

k-Quasi-Planar Graphs 277

7. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Math 51,
161–166 (1950)

8. Fox, J., Pach, J.: Coloring Kk-Free Intersection Graphs of Geometric Objects in the Plane.
In: Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry,
SCG 2008, pp. 346–354. ACM, New York (2008)

9. Fox, J., Pach, J., Tóth, C.: Intersection Patterns of Curves. Journal of the London Mathemat-
ical Society 83, 389–406 (2011)

10. Fulek, R., Suk, A.: Disjoint Crossing Families. In: EuroComb 2011 (2011, to appear)
11. Klazar, M.: A General Upper Bound in Extremal Theory of Sequences. Commentationes

Mathematicae Universitatis Carolinae 33(4), 737–746 (1992)
12. Klazar, M., Valtr, P.: Generalized Davenport-Schinzel Sequences. Combinatorica 14,

463–476 (1994)
13. Nivasch, G.: Improved Bounds and New Techniques for Davenport–Schinzel Sequences and

Their Generalizations. J. ACM 57(3), 3, Article 17 (2010)
14. Pach, J., Radoičić, R., Tóth, G.: Relaxing Planarity for Topological Graphs. In: Akiyama, J.,

Kano, M. (eds.) JCDCG 2002. LNCS, vol. 2866, pp. 221–232. Springer, Heidelberg (2003)
15. Pach, J., Pinchasi, R., Sharir, M., Tóth, G.: Topological Graphs with No Large Grids. Graph.

Comb. 21(3), 355–364 (2005)
16. Pach, J., Shahrokhi, F., Szegedy, M.: Applications of the Crossing Number. J. Graph The-

ory 22, 239–243 (1996)
17. Pettie, S.: Generalized Davenport-Schinzel Sequences and Their 0-1 Matrix Counterparts. J.

Comb. Theory Ser. A 118(6), 1863–1895 (2011)
18. Pettie, S.: On the Structure and Composition of Forbidden Sequences, with Geometric Appli-

cations. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry,
SCG 2011, pp. 370–379. ACM, New York (2011)

19. Tardos, G., Tóth, G.: Crossing Stars in Topological Graphs. SIAM J. Discret. Math. 21(3),
737–749 (2007)

20. Valtr, P.: On Geometric Graphs with No k Pairwise Parallel Edges. Discrete Comput.
Geom. 19(3), 461–469 (1997)

21. Valtr, P.: Graph Drawings with No k Pairwise Crossing Edges. In: Di Battista, G. (ed.)
GD 1997. LNCS, vol. 1353, pp. 205–218. Springer, Heidelberg (1997)

Monotone Crossing Number

János Pach� and Géza Tóth

Rényi Institute, Budapest

Abstract. The monotone crossing number of G is defined as the small-
est number of crossing points in a drawing of G in the plane, where every
edge is represented by an x-monotone curve, that is, by a connected con-
tinuous arc with the property that every vertical line intersects it in at
most one point. It is shown that this parameter can be strictly larger
than the classical crossing number cr(G), but it is bounded from above
by 2cr

2(G). This is in sharp contrast with the behavior of the rectilinear
crossing number, which cannot be bounded from above by any function
of cr(G).

Keywords: crossing number, monotone drawing.

1 Introduction

Let G = (V (G), E(G)) be a graph with no loops and multiple edges, and let V (G)
and E(G) denote its vertex set and edge set. A drawing of G is an embedding of
G in the plane, where each vertex v ∈ V (G) is mapped to a point and each edge
uv ∈ E(G) is mapped into a simple continuous arc connecting the images of its
endpoints, but not passing through the image of any other vertex of G. The arcs
representing the edges of G are allowed to cross, but we assume for simplicity
that any two arcs have finitely many points in common and no three arcs pass
through the same point. A common interior point p of two arcs is said to be a
crossing if in a small neighborhood of p one arc passes through one side of the
other arc to the other side. If it leads to no confusion, the vertices and their
images, as well as the edges and the arcs representing them, will be denoted by
the same symbols.

In the special case where G is a complete bipartite graph, the problem of
minimizing the number of crossings in a drawing of G was first studied by Turán
[17]. The question became known as the brick factory problem. It was generalized
to all graphs by Erdős and Guy [3]. In two previous papers [10], [11], the authors
of the present note pointed out some inconsistencies between various definitions
of crossing numbers implicitly used in early publications on the subject. To
distinguish between these notions, they introduced some new terminology and

� J. Pach is supported by NSF Grant CCF-08-32072, OTKA, Swiss National Sci-
ence Foundation Grant 200021-125287/1, and EUROGIGA project GraDR 10-
EuroGIGA-OP-003. G. Tóth is supported by OTKA-K-60427, OTKA-K-75016,
Bernoulli Center at EPFL, and EUROGIGA project GraDR 10-EuroGIGA-OP-003.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 278–289, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Monotone Crossing Number 279

notation. The crossing number of G, denoted by cr(G), is the smallest num-
ber of crossings in a drawing of G in the plane. The pairwise crossing number,
pair-cr(G), is the smallest number of crossing pairs of edges in a drawing of G.
If two edges cross several times, they still count as a single crossing pair, so that
we have pair-cr(G) ≤ cr(G) for every graph G. It is one of the most tantalizing
open problems in this area to decide whether these two parameters coincide or at
least cr(G) = O(pair-cr(G)) holds for all graphs G. It was shown in [10] that
cr(G) = O(pair-cr

2(G)), which was successively improved in [19], [15], and
[16] to cr(G) = O(pair-cr

7/4(G)/ log3/2
pair-cr(G)). It is not easy to make

any conjecture in this respect or even to experiment with concrete graphs. The
computation of cr(G) and pair-cr(G) are both NP-hard problems [7], [6], [10].

On the other hand, there is another natural parameter that can be much larger
than the above two crossing numbers. lin-cr(G), the rectilinear crossing number
of G, is the smallest number of crossings in a rectilinear drawing of G, that is, in
a drawing where every edge is represented by a straight-line segment. We have
cr(G) ≤ lin-cr(G). Bienstock and Dean [1] constructed a series of graphs with
crossing number 4, whose rectilinear crossing numbers are arbitrarily large.

An x-monotone curve is a connected, continuous arc with the property that
every straight-line parallel to the y-axis intersects it in at most one point. A
drawing of G is called x-monotone (or monotone, for short) if every edge of G
is represented by an x-monotone curve. We define mon-cr(G), the monotone
crossing number of G, as the smallest number of crossings in a monotone drawing
of G. Obviously, every rectilinear drawing of G, in which no two vertices share
the same x-coordinate, is a monotone drawing. Therefore, we have

cr(G) ≤ mon-cr(G) ≤ lin-cr(G),

for every graph G.
Monotone drawings and rectilinear drawings share many interesting proper-

ties. In particular, it was shown in [12] that every crossing-free monotone drawing
of a (planar) graph G can be “stretched” without changing the x-coordinates of
the vertices. In other words, there is a crossing-free rectilinear drawing of G, iso-
morphic to the original one, in which the vertices have the same x-coordinates.
Another example, for drawings with many crossings, is related to Conway’s fa-
mous thrackle conjecture [20], which says that if a graph can be drawn in the
plane such that any two edges have exactly one common points (either a common
endpoint, or a crossing) then the number of edges cannot exceed the number of
vertices. (The conjecture has been verified for monotone drawings [9].) In sharp
contrast to these analogies, there are no graphs with bounded crossing numbers
that have arbitrarily large monotone crossing numbers. In the present note, we
answer a question of Fulek, Pelsmajer, Schaefer, and Štefankovič [5] by estab-
lishing the following results.

Theorem 1. Every graph G satisfies the inequality

mon-cr(G) < 2cr
2(G).

280 J. Pach and G. Tóth

Theorem 2. There are infinitely many graphs G with arbitrarily large crossing
numbers such that

mon-cr(G) ≥ 7
6
cr(G) − 6.

The proof of Theorem 1 is algorithmic. It is based on a recursive procedure to
redraw a plane graph without changing its combinatorial structure so that in
the resulting drawing any pair of vertices of the same cell can be connected by
an x-monotone curve. See Theorem 2.2. One of the key ideas of the construc-
tion proving Theorem 2, the use of “weighted” edges or repeated paths, goes
back to the paper of Bienstock and Dean [1] mentioned above. This idea was
further developed and applied to related problems by Pelsmajer, Schaefer, and
Štefankovič [13] and by Tóth [15].

2 Proof of Theorem 1

Two crossing-free (plane) drawings of a planar graph are said to be isomorphic
if there is a homeomorphism of the plane which maps one to the other. In
particular, it takes the unbounded cell of the first drawing to the unbounded cell
of the second.

Definition 2.1. Let D be a crossing-free drawing of a planar graph G, and let
v ∈ V (G). We say that D is v-spinal if

1. D is a monotone drawing;
2. v is the leftmost vertex;
3. any two vertices belonging to the same (bounded or unbounded) cell C can

be connected by an x-monotone curve that lies in the interior of C (with the
exception of its endpoints);

4. every vertical ray starting at a boundary vertex of the unbounded cell C0

and pointing downwards lies in the interior of C0 (with the exception of its
endpoint).

Theorem 1 is an easy corollary of the following result.

Theorem 2.2. For any crossing-free drawing D of a planar graph and for any
vertex v of the unbounded cell, there is a v-spinal drawing isomorphic to D.

It follows from the result of [12] mentioned in the introduction that every v-
spinal drawing can be “stretched” without changing the x-coordinates of the
vertices. That is, we can assume without loss of generality that the drawing
whose existence is guaranteed by Theorem 2.2 is rectilinear. However, in the
recursive argument proving Theorem 2.2, we will not need this fact. It will be
sufficient to assume that the edges are represented by x-monotone polygonal
paths, so that in a small neighborhood of their endpoints it will make sense to
talk about the slopes of these paths.

Monotone Crossing Number 281

v

v

Fig. 1. A plane drawing and a v-spinal drawing

Before turning to the proof of Theorem 2.2, we show how Theorem 2.2 implies
Theorem 1.

Proof of Theorem 1 (using Theorem 2.2). Let G be any graph, and let D be a
drawing of G with cr(G) crossings. Let G′ ⊆ G denote the subgraph consisting
of all vertices of G and all edges not crossed by any other edge in this drawing.
Clearly, G′ is a planar graph. Let D′ stand for the corresponding crossing-free
subdrawing of D.

Let v be a vertex of the unbounded cell. By Theorem 2.2, there is a v-spinal
drawing D′′ of G′, isomorphic to D′. Consider now an edge v1v2 ∈ E(G) \
E(G′). In D, this edge was represented by a curve that, with the exception
of its endpoints, lied in the interior of a single cell C′ in the subdrawing D′.
Let C′′ denote the cell in D′′, which corresponds to C′. In view of condition 3
in Definition 2.1, the points representing v1 and v2 can be connected by an x-
monotone curve within the cell C′′. Let us choose such an x-monotone connecting
curve for each edge in E(G) \ E(G′), so that the total number of crossings
between them is as small as possible. Observe that any two such curves can
cross at most once, otherwise by swapping their sections between two consecutive
crossing points and slightly separating them, we could reduce the total number
of crossings by 2. During this transformation, both curves remain x-monotone.

Therefore, in the resulting x-monotone drawing of G, the total number of
crossings is at most

(|E(G)|−|E(G′)|
2

)
. This yields that

mon-cr(G) ≤
(|E(G)| − |E(G′)|

2

)

.

On the other hand, taking into account that every edge in E(G) \E(G′) partic-
ipates in at least one crossing in D, we have

|E(G)| − |E(G′)| ≤ 2cr(G).

Comparing the last two inequalities, the theorem follows. �

Proof of Theorem 2.2. We proceed by induction on the number of vertices of
D. The theorem is obviously true for graphs with one or two vertices. Suppose
now that D has n vertices and that the theorem has already been proved for all
drawings of graphs with fewer than n vertices. Let v be a vertex of the unbounded
cell in D.

282 J. Pach and G. Tóth

Case 1: D is not connected. Suppose for simplicity that it has two connected
components, D1 and D2; the other cases can be treated analogously. Assume
without loss of generality that v ∈ D1.

Subcase 1.1: D2 has a vertex v′ that belongs to the unbounded cell in D. Take
a v-spinal drawing isomorphic to D1, and place a v′-spinal drawing isomorphic
D2 completely to the right of it, so that every vertex of the latter has a larger
x-coordinate than any vertex of the former. The resulting drawing meets the
requirements.

Subcase 1.2: D2 does not have a vertex that belongs to the boundary of the
unbounded cell in D. Let C denote the cell in D1 that contains D2, and fix
a vertex w of C. Let v′ be a vertex of the unbounded cell in D2. Take a v-
spinal drawing isomorphic to D1, and place a very small copy of a v′-spinal
drawing isomorphic to D2 in the cell C′ of D1 that corresponds to C, in a small
neighborhood of the vertex that corresponds to w.

The resulting drawing D obviously satisfies conditions 1, 2, and 4 in Definition
2.1. As for condition 3, we have to verify only that any two vertices, v1 and v2,
that belong to the union of the boundary of C′ and the outer boundary of the
small v′-spinal drawing isomorphic to D2 can be connected by an x-monotone
curve that does not cross D. This readily follows by the induction hypothesis,
unless v1 belongs to the boundary of C′ and v2 belongs to the outer boundary of
the small drawing isomorphic to D2. In the latter case, move slightly downward
from v2 and then closely follow the x-monotone curve connecting w to v1.

Case 2: D has a cut vertex v′. Suppose that D = D1∪D2, where the only point
that D1 and D2 have in common is v′. Assume without loss of generality that v
is a vertex of D1. Note that v and v′ may be identical.

Let C denote the cell in D1 that contains D2. In particular, v′ is a vertex of
C. In D2, the vertex v′ belongs to the unbounded cell.

Take a v-spinal drawing isomorphic to D1, and fix a very short non-vertical
segment s, which is incident to the point p(v′) representing v′ and which lies
in the cell C′ that corresponds to C. In the special case where v′ = v and C′

is the unbounded cell, make sure that the x-coordinates of the points of s are
larger than the x-coordinate of p(v′). In addition, take a very small v′-spinal
drawing isomorphic to D2 such that the point representing v′ coincides with
p(v′). Applying a suitable orientation preserving linear transformation to this
second drawing, it can be achieved that it becomes very “flat” and small, and
lies in a very small neighborhood of the segment s, within C′. Putting these two
drawings together, the resulting drawing meets the requirements.

Note that, if the x-coordinates of the points of s are smaller than the x-
coordinate of p(v′), then the above linear transformation reverses the order of
the x-coordinates in the v′-spinal drawing isomorphic to D2. In order to preserve
the combinatorial structure of the cell decomposition, we have to make sure that
we use a linear transformation that preserves the orientation of the plane.

Monotone Crossing Number 283

v=v’
1

2

1

2

v v’

D

D

D

D

Fig. 2. Case 2. D has a cut vertex v′

Case 3: D is 2-connected. We need the following well known result.

Lemma 2.3. ([2], Proposition 3.1.2) For every 2-connected graph other than
a cycle, there exists a path whose internal vertices have degree two, such that
removing all edges and all internal vertices of this path, the remaining graph is
still 2-connected.

Let D be a drawing of a cycle with vertices v = v1, v2, . . . , vn, in counterclockwise
order. Then the rectilinear drawing induced by the points p(vi) = (i, i2) is v-
spinal and isomorphic to D.

If D is not a cycle, then, according to the lemma, it can be obtained from a
2-connected drawing D0, by adding a path P between two vertices, u and w, of
D0), which, with the exception of its endpoints, lies in the interior of a cell C.
We distinguish two subcases.

Subcase 3.1: v is a vertex of D0. Take a v-spinal drawing isomorphic to D0. Let
C′ denote the cell that corresponds to C in this drawing. The vertices u and w
belong to the boundary of this cell. Therefore, by condition 3 in Definition 2.1,
u and w can be connected by an x-monotone curve within C′. Put all internal
vertices of P along this curve, very close to u. The resulting drawing meets the
requirements.

Subcase 3.2: v is an internal vertex of P . Since v is a vertex of the unbounded
cell in D, the cell C in D0 that contains P , must be the unbounded cell.

Let P = uu1 · · ·umvw1w2 · · ·wkw. Assume without loss of generality that in
D the unbounded cell lies on the left-hand side of P , as we traverse it from u to
w. Take a u-spinal drawing D1 isomorphic to D0. Place v to the left and w1 to
the right of all vertices of D0.

Connect u and v by an x-monotone curve in D1, and place the vertices u1, . . . , um

on this curve, in this order. Then connect v to w1 by an x-monotone curve
running above all previously drawn vertices and edges. Finally, connect w1 to
w by an x-monotone curve which does not cross any previously drawn edges,
and place the vertices w2, . . . , wk on this curve, in this order, very close to w1.
Adding these three curves that represent P to D1, we obtain a v-spinal drawing
isomorphic to D, as required. �

284 J. Pach and G. Tóth

v

u

w
v u

w

1D D
0

Fig. 3. Case 3. D is two-connected

3 Proof of Theorem 2

Throughout this section, let k be a fixed positive integer. We construct a graph
Gk with cr(Gk) = 6k + 6 and mon-cr(G) = 7k + 6, as follows.

First, we define an auxiliary graph on the vertex set V (H) = {u, w, v1, . . . , v9}
such that each of its edges is red, blue, or black. Let w be connected to every
element of v1, . . . , v9 by a red edge. Let v1, . . . , v9 form a red cycle, in this order.
Finally, let H have three blue edges, uv2, uv5, and uv8, and three black edges,
v1v6, v7v3, v4v9. See Figure 4. Let H ′ be a colored graph isomorphic to H with
V (H ′) = {u′, w′, v′1, . . . , v

′
9} and V (H ′) ∩ V (H) = ∅.

wu

red

blue

black

v

v

v
v

v

v

v
v

v

1

9

8

7

6
5

4

3

2

Fig. 4. Graph H

Let Hk denote the graph obtained from H by substituting each of its red
edges by 10k paths of length two and each of its blue edges by k paths of length
two such that the middle vertices of these paths are disjoint from one another
and from all previously listed vertices. We will refer to these paths as red paths
and blue paths, respectively. Let H ′

k denote the graph with V (H ′
k) ∩ V (Hk) = ∅

which can be obtained from H ′ in exactly the same way as Hk was constructed
from H .

Finally, connect u to u′ by a red edge, and replace this edge by 10k vertex
disjoint red paths of length two, as above. Denote the resulting graph by Gk.

Monotone Crossing Number 285

We start with the following simple observation.

Claim 3.1. cr(Gk) ≤ 6k + 6 and mon-cr(Gk) ≤ 7k + 6.

Proof. A drawing of Gk with 6k + 6 crossings and a monotone drawing with
7k + 6 crossings are depicted on Figure 5, and Figure 6, respectively. The thick
edges and the dotted edges represent bundles consisting of 10k red paths and
k blue paths, respectively. The paths representing the same colored edge run
very close to one another and do not cross. The only difference between the two
drawings is that in the first one v4v9 crosses uv2, while in the second it crosses
uv5 and uv8. �

v’

wv

v

v
v

v

v

v
v

v

1

9

8

7

6
5

4

3

2
v’

u’ u

7

5
v’

3v’

2

v’1

9

v’8

v’

v’6

4v’

w’

Fig. 5. A cr-optimal drawing of G

3v’

v’2
v’

1

v’
9

v’
8

7v’

v’
6v’

5

v’4

w’

u’

w

u

v2vv8vvvv4v

H

H’

v76 9 153

H

Fig. 6. Left: a mon-cr-optimal drawing of G. Right: the drawing of H , from the left.

A drawing of a graph G is called cr-optimal if the number of crossings in
it is cr(G). Analogously, a mon-cr-optimal drawing is a monotone drawing in
which the number of crossings is mon-cr(G).

286 J. Pach and G. Tóth

Claim 3.2. Each of the graphs Gk, Hk, and H ′
k has a cr-optimal drawing and

a mon-cr-optimal drawing satisfying the the following conditions. (i) The red
paths substituting the same red edge run very close to one another and do not
cross any edge. (ii) The blue paths substituting the same blue edge run very close
to one another, do not cross one another, and cross exactly the same edges.

Proof. Let G stand for one of the graphs Gk, Hk, or H ′
k. Let P1, . . . , Pm (m =

10k or k) denote the paths substituting the same red or blue edge. Consider a cr-
optimal or a mon-cr-optimal drawing of G. Suppose without loss of generality
that among all Pis the path P1 participates in the smallest number of crossings.
Redraw P2, . . . , Pm so that they run “parallel” to P1 and very close to it. Clearly,
this transformation does not increase the total number of crossings, so that the
resulting drawing remains optimal.

Suppose that P1, . . . , Pm (m = 10k) are red paths that substitute the same
red edge and run parallel to one another. If any of them crosses an edge, then all
of them do. This alone creates a total of at least 10k crossings, which contradicts
the assumption the drawing was optimal. �

Claim 3.3. cr(Hk) = mon-cr(Hk) = 3k +3. Consequently, we have cr(Gk) =
6k + 6.

Proof. The right part of Figure 6 shows a monotone drawing of H . From this one
can easily construct a monotone drawing of H ′

k with 3k+3 crossings. Therefore,
we have cr(Hk) ≤ mon-cr(Hk) = mon-cr(H ′

k) ≤ 3k + 3. As before, the thick
and the dotted edges represent bundles of 10k parallel red paths and bundles of
k parallel blue paths.

Consider a cr-optimal drawing of Hk which satisfies the conditions in Claim
3.2. Replace now the red paths substituting the same red edge by a single red
edge running along any one of those paths. The red cycle C = v1v2 · · · v9 divides
the rest of the plane into a bounded and an unbounded region. All points that
belong to the bounded (unbounded) region are said to be inside (outside) of C.
Assume without loss of generality that the vertex w lies inside of C. Since no
red edge is allowed to cross any other edge, the edges v3v7, v1v6, and v4v9, as
well as the vertex u with all edges incident to it, must lie outside of C. Thus,
the edges v3v7, v1v6, and v4v9 are pairwise crossing. Moreover, the path v2uv5

must cross the edges v3v7 and v4v9, and the path v2uv8 must cross the edge
v1v6. This already guarantees the existence of 3k + 3 crossings, so that we have
cr(Hk) = mon-cr(Hk) = 3k + 3. �

To complete the proof of Theorem 2, it remains to verify the following.

Claim 3.4. mon-cr(Gk) ≥ 7k + 6.

Proof. Fix a mon-cr-optimal drawing of Gk, satisfying the conditions in Claim
3.2. As in the proof of Claim 3.3, replace every bundle of red paths substituting
the same red edge by a single red edge. Let C and C′ denote the red cycles
induced by the vertices v1, v2, . . . , v9 and v′1, v

′
2, . . . , v

′
9. Both of them divide the

plane into a bounded and an unbounded region, so that it makes sense to say
that a point is inside or outside of C or C′.

Monotone Crossing Number 287

By Claim 3.2, in the original drawing of Gk, the red edges cannot cross any
other edge. Suppose that a blue edge belonging to Hk ⊂ Gk crosses an edge be-
longing to H ′

k ⊂ Gk. Then the number of crossings is at least k+mon-cr(Hk)+
mon-cr(H ′

k) = 7k +6, and we are done. Thus, we can assume that in the draw-
ing of Gk, the blue edges of Hk do not cross any edge of H ′

k, and analogously,
the blue edges of H ′

k do not cross any edge of Hk.
Let v be the vertex of Gk with the smallest x-coordinate, and suppose without

loss of generality that v ∈ V (H ′
k). Consider now separately the drawing of Hk

and the induced cell decomposition. By definition, v lies in the unbounded cell.
Observe, that if we remove edges v′1v

′
6, v′7v

′
3, v′4v

′
9 from H ′

k, that is, if we keep
only the red and blue edges, we still have a connected graph. The red and blue
edges of H ′

k cannot cross any edge of Hk. Hence, all vertices of H ′
k must lie in

the unbounded cell of the cell decomposition induced by Hk.
The vertices u and u′ are connected by a red edge in Gk. Hence, u must lie

on the boundary of the unbounded cell of the cell decomposition induced by Hk.
In particular, u is outside of the cycle C. Since w is connected to each edge of
C by a red edge, u and w lie on different sides of C. Thus, w must be inside of
C. Therefore, the edges v3v7, v1v6, v4v9, as well as the vertex u together with
all edges incident to it, must lie outside of C. Consequently, the edges v3v7,
v1v6, v4v9 must be pairwise crossing. The edges v3v7, v1v6, v4v9 together with C
divide the plane into eight cells, one of which is unbounded, and u must belong
to this cell Γ .

Let vi be the vertex of C with the smallest x-coordinate. Since v3v7, v1v6,
v4v9 are represented by monotone curves, vi has to lie on the boundary of the
unbounded cell Γ . We can assume without loss of generality that 1 ≤ i ≤ 3. (If
this is not the case, we can add 3 or 6 to all indices modulo 9.) So, vi is on the
boundary of the unbounded cell, and u is in the unbounded cell. Using the fact
that the edges v1v2 and v2v3 do not cross any other edge, we can conclude that
v1, v2, and v3 all lie on the boundary of the unbounded cell Γ . See Figure 6. Since
we started with a mon-cr-optimal drawing, the edge uv2 does not cross v4v9.
The path v2uv5 crosses v4v9, so that uv5 must cross v4v9. Analogously, v2uv8

crosses v4v9, so that uv8 crosses v4v9. Moreover, the path v2uv5 crosses v3v7, and
v2uv8 crosses v1v6. Recall from the previous paragraph that the edges v3v7, v1v6,
and v4v9 are pairwise crossing. Summarizing, there are at least 4k + 3 crossings
between edges of Hk. By Claim 3.3, mon-cr(H ′

k) ≥ 3k + 3, so that altogether
mon-cr(Gk) ≥ (4k + 3) + (3k + 3) ≥ 7k + 6, as required. �

4 Concluding Remarks

1. Another important parameter of a graph, the odd-crossing number, was intro-
duced implicitly by Tutte [18]. It is defined as the minimum number odd-cr(G)
of all pairs of edges that cross an odd number of times, over all drawings of
G. Clearly, for any graph G, we have odd-cr(G) ≤ pair-cr(G) ≤ cr(G) ≤
mon-cr(G) ≤ lin-cr(G). Theorem 1 can be strengthened as follows.

288 J. Pach and G. Tóth

Corollary 4.1. Every graph G satisfies the inequality

mon-cr(G) < 2odd-cr
2(G).

Proof. Let D be a drawing of G, in which the number of pairs of edges that
cross an odd number of times is odd-cr(G). Let G′ ⊆ G denote the subgraph
consisting of all vertices of G and all edges that do not cross any other edge an
odd number of times. It was shown in [10] that G has another drawing, D′, in
which the edges belonging to G′ do not participate in any crossing, and hence
they form a plane graph. Every edge in E(G) \ E(G′) is represented by a curve
that lies entirely in a cell of this plane graph. According to our Theorem 2.2,
this plane graph admits a v-spinal (monotone) drawing for some v ∈ V (G). By
definition, we can add to this drawing all edges in E(G) \ E(G′), so that all of
them are represented by monotone curves, and they do not cross any edge of G′.
Among all such monotone drawings of G, consider one that minimizes the total
number of crossings. In this drawing, any two edges cross at most once. Thus,
we have

mon-cr(G) ≤
(|E(G)| − |E(G′)|

2

)

.

On the other hand, taking into account that every edge in E(G) \E(G′) partic-
ipates in at least one pair of edges in D which cross an odd number of times, we
obtain that

|E(G)| − |E(G′)| ≤ 2odd-cr(G).

Comparing the last two inequalities, the corollary follows. �

In [11], we introduced the following variant of the odd-crossing number. Two
edges of a graph G are called independent if they do not share a vertex. Let
odd-cr−(G) denote the smallest number of pairs of independent edges that
cross an odd number of times, over all drawings of G. That is, we do not count
those pairs of edges that are incident to the same vertex, even if they cross
an odd number of times. Pelsmajer, Schaefer, and Štefankovič [14] managed to
strengthen the result of [10], used in the proof of Corollary 4.1. They established
the following result. Consider a drawing of G in the plane. An edge e ∈ E(G) is
called independently even if it crosses every other edge of G which is indepen-
dent of e an even number of times. Then G has another drawing in which no
independently even edge crosses any edge. Plugging this result into the above
proof, we obtain the following strengthening of Corollary 4.1.

Corollary 4.1’. Every graph G satisfies the inequality

mon-cr(G) ≤ 2odd-cr
2
−(G).

2. As mentioned in the Introduction, Tóth [16] proved that every graph G sat-
isfies the inequality

cr(G) = O(pair-cr
7/4(G)/ log3/2

pair-cr(G)).

Monotone Crossing Number 289

Restricting the notion of pair-crossing number to monotone drawings, we obtain
another closely related graph parameter. The monotone pair-crossing number
of G, mon-pair-cr(G), is defined as the smallest number of crossing pairs of
edges over all monotone drawings of G. Obviously, we have that odd-cr(G) ≤
pair-cr(G) ≤ mon-pair-cr(G), for any graph G. Valtr [19] proved that every
graph G satisfies the inequality mon-cr(G) = O(mon-pair-cr

4/3(G)).

References

1. Bienstock, D., Dean, N.: Bounds for rectilinear crossing numbers. J. Graph The-
ory 17, 333–348 (1993)

2. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173.
Springer, Berlin (2005)

3. Erdős, P., Guy, R.K.: Crossing number problems, Amer. Math. Monthly 80, 52–58
(1973)

4. Fáry, I.: On straight line representation of planar graphs. Acta Univ. Szeged. Sect.
Sci. Math. 11, 229–233 (1948)

5. Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone
drawings, and level-planarity (to appear)

6. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete, SIAM J. Alg. Disc.
Meth. 4, 312–316 (1983)

7. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph
problems. Theoretical Computer Science 1, 237–267 (1976)

8. Guy, R.K.: The decline and fall of Zarankiewicz’s theorem. In: Guy, R.K. (ed.)
Proof Techniques in Graph Theory, pp. 63–69. Academic Press, New York (1969)

9. Pach, J., Sterling, E.: Conways conjecture for monotone thrackles. Amer. Math.
Monthly 118, 544–548 (2011)

10. Pach, J., Tóth, G.: Which crossing number is it, anyway? J. Combin. Theory Ser.
B 80, 225–246 (2000)

11. Pach, J., Tóth, G.: Thirteen problems on crossing numbers. Geombinatorics 9,
194–207 (2000)

12. Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46,
39–47 (2004)

13. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Odd crossing number and crossing
number are not the same. Discrete Comput. Geom. 39, 442–454 (2008)

14. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removin independently even cross-
ings. SIAM J. Discrete Math. 24, 379–393 (2010)

15. Tóth, G.: Note on the pair-crossing number and the odd-crossing number. Discrete
Comput. Geom. 39, 791–799 (2008)

16. Tóth, G.: A better bound for the pair-crossing number (manuscript)
17. Turán, P.: A note of welcome. J. Graph Theory 1, 7–9 (1977)
18. Tutte, W.T.: Toward a theory of crossing numbers. J. Combinatorial Theory 8,

45–53 (1970)
19. Valtr, P.: On the pair-crossing number. In: Combinatorial and Computational Ge-

ometry. Math. Sci. Res. Inst. Publ., vol. 52, pp. 569–575. Cambridge Univ. Press,
Cambridge (2005)

20. Woodall, D.R.: Thrackles and deadlock. In: Welsh, D.J.A. (ed.) Combinatorial
Mathematics and Its Applications, pp. 335–348. Academic Press (1969)

Upper Bound Constructions

for Untangling Planar Geometric Graphs

Javier Cano1, Csaba D. Tóth2, and Jorge Urrutia3

1 Posgrado en Ciencia e Ingenieŕıa de la Computación,
Universidad Nacional Autónoma de México, D.F. México

j cano@uxmcc2.iimas.unam.mx
2 Department of Math., University of Calgary, Canada

cdtoth@ucalgary.ca
3 Instituto de Matemáticas,

Universidad Nacional Autónoma de México, D.F. México
urrutia@matem.unam.mx

Abstract. For every n ∈ N, there is a straight-line drawing Dn of a
planar graph on n vertices such that in any crossing-free straight-line
drawing of the graph, at most O(n.4982) vertices lie at the same position
as in Dn. This improves on an earlier bound of O(

√
n) by Goaoc et al. [6].

1 Introduction

A straight-line drawing of a graph G is a representation of G in the plane where
the vertices are mapped to distinct points in the plane, and each edge is repre-
sented by a line segment joining pairs of points representing adjacent vertices.
A drawing is crossing-free if no two edges intersect, except perhaps at a com-
mon endpoint. A geometric graph is a graph given with a straight-line drawing.
Every planar graph has a crossing-free straight-line drawing by Fary’s Theo-
rem [5], however, not all straight-line drawings are crossing-free. Suppose that
we are given a planar geometric graph G. Since G is planar, it can be redrawn
(by relocating some of its vertices) such that no two edges cross anymore. The
process of redrawing G to obtain a crossing-free straight-line drawing, is called
an untangling of G.

In this paper we study the following problem: For an integer n ∈ N, what
is the maximum number f(n) such that every planar geometric graph with n
vertices can be untangled such that at least f(n) vertices remain in their original
position.

The first question on untangling planar geometric graphs was posed by
Mamoru Watanabe in 1998: Is it true that every polygon P with n vertices
can be untangled in at most εn steps, for some absolute constant ε < 1, where
in each step, we move a vertex of G to a new location. Watanabe’s question was
proved to be false by Pach and Tardos [9]: they showed that every n-gon can be
untangled in at most n −√n moves, but there are n-gons where no more than
O((n log n)2/3) vertices can be fixed. Recently, Cibulka [3] proved that every
n-gon can be untangled while keeping Ω(n2/3) vertices fixed.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 290–295, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Upper Bound Constructions for Untangling Planar Geometric Graphs 291

The problem of untangling planar geometric graphs was studied by Goaoc et
al. [6]. They constructed planar geometric graphs showing that f(n) ≤ √n + 2.
Kang et al. [8] explored several families of graphs in which no more than O(

√
n)

of n vertices can be fixed. Bose et al. [2] devised an untangling algorithm that
fixes at least (n/3)1/4 of n vertices, which proves f(n) ≥ (n/3)1/4.

In this note, we improve the upper bound for f(n) to O(n1/(3−log38 37)) ⊂
O(n.4982). We construct planar geometric graphs such that any untangling of
them fixes O(n1/(3−log38 37)) of n vertices. The framework of our construction
leads to new problems in graph drawing, which we discuss in Section 5. Any
improvement in these problems would immediately improve the upper bound
for f(n).

2 Preliminaries

Monotone Subsequences. Erdős and Szekeres showed that every permutation
of [n] = {0, 1, . . . , n− 1} contains a monotonically increasing or degreasing sub-
sequence of length at least �√n�, and this bound is the best possible. The lower
bound is attained on many different permutations. The best known construction
consists of �√n� monotonically increasing subsequences of consecutive elements,
where the minimum element of each subsequence is larger than the maximum
element of the next. We will use permutations in which monotone subsequences
“spread out” more evenly. In a permutation (σ1, σ2, . . . , σn), we define the spread
of a subsequence (σj1 , σj2 , . . . , σjk

), 1 ≤ j1 < j2 < < jk ≤ n, to be jk − j1.

Lemma 1. For every m ∈ N, there is a permutation πn of [n] = [4m] such that

– the length of every monotone subsequence is at most 2m =
√

n; and
– the spread of every monotone subsequence of length k ≥ 2 is at least k2+2

6 .

Proof. We construct the permutation πn by induction on m. For m = 1, let
π4 = (2, 3, 0, 1) and observe that it has the desired properties. Assume that πn =
(σ1, . . . , σn) is a permutation of [n] with the desired properties. We construct a
permutation π4n of [4n] by replacing each σi with the 4-tuple

(4σi + 2, 4σi + 3, 4σi + 0, 4σi + 1).

Let L be a monotone subsequence of length k in π4n. Note that L has at most
two elements from each 4-tuple. The sequence of these 4-tuples corresponds to a
monotone subsequence of πn, which we denote by L′. The length of L′ is at least
k/2, with equality iff L contains exactly two elements from each of the 4-tuples
involved. By induction, the length of L′ is k/2 ≤ 2m. Hence, we have k ≤ 2m+1,
as required. If the length of L′ is exactly k/2, then its spread is at least (k/2)2+2

6

in πn, and so the spread of L is at least 4((k/2)2+2
6)− 1 = k2+2

6 . If the length of

L′ is more than k/2, then its spread is at least (k/2+1)2+2
6 , and the spread of L

is at least 4((k/2+1)2+2
6)− 1 ≥ k2+2

6 , as required. ��

292 J. Cano, C.D. Tóth, and J. Urrutia

A Recursive Construction. We say that a planar straight-line graph T is an
(a, b, c)-triangulation for integers a ≥ b > c > 0 if T is a 3-connected triangu-
lation such that it has a total of a faces, b of which are marked, and any line
intersects at most c marked faces in any plane straight-line drawing of T .

Note that, by Steiniz’s theorem, a 3-connected triangulation is the 1-skeleton
of a combinatorially unique 3-dimensional polytope. Hence an (a, b, c)-triangu-
lation has a unique embedding in the plane up to homeomorphisms and the
choice of the outer face. In the following lemma, we recursively construct a
larger triangulation from an (a, b, c)-triangulation.

Lemma 2. If there exists an (a, b, c)-triangulation for constants a ≥ b > c > 0,
then for every n ∈ N, there is an (a′, b′, c′)-triangulation with a′ = Θ(n), b′ =
Θ(n), and c′ = Θ(nlogb c).

Proof. Let Ta,b,c be an (a, b, c)-triangulation. Plug in Ta,b,c in all marked faces of
Ta,b,c recursively k times, where k is specified shortly. We obtain a 3-connected
triangulation T k

a,b,c (that is, Ta,b,c = T 0
a,b,c), which has b′ = bk+1 marked faces, a

line intersects at most c′ = ck+1 marked faces in any plane straight-line drawing,
and the total number of faces is a′ = bk+1 + (a − b)(bk+2 − 1)/(b − 1). If we
denote by v the number of vertices of T k

a,b,c, then it has 2v − 4 faces, Θ(v) of
which are marked, and a line intersects at most Θ(vlogb c) marked faces in any
plane straight-line drawing of T k

a,b,c. Choose k such that a′ = Θ(v). ��

3 Upper Bound Constructions

Theorem 1. If there exists an (a, b, c)-triangulation for constants a ≥ b > c >
0, then f(n) ∈ O(nκ) for κ = 1/(3− logb c).

Note that b > c, and so we have 0 < logb c < 1 and 0 < κ < 1/2. That is, the
existence of any (a, b, c)-triangulation implies an upper bound f(n) ∈ O(n

1
2−ε)

for some ε > 0. We discuss (a, b, c)-triangulations in Section 4.

Proof. For every n ∈ N, we construct a drawing of a planar graph Gn with Θ(n)
vertices such that in any untangling of Gn, at most O(nκ) vertices remain fixed.

Fig. 1. Triangulation S = P2 ∗ P5.

Construction. We first construct the planar graph Gn. By Lemma 2, there is
a 3-connected triangulation T with Θ(nκ) vertices and Θ(nκ) marked faces such
that any line intersects at most Θ(nκ logb c) marked faces in any plane straight-
line drawing of T . Let S be the join P2 ∗ Ps+1 of two paths with 2 and s + 1

Upper Bound Constructions for Untangling Planar Geometric Graphs 293

vertices, respectively, where s = Θ(n1−κ) and s is a power of 4 (see Fig. 1).
Note that S has exactly s interior vertices, which have a natural order along an
interior path. We construct Gn by plugging in a copy of S into each marked face
of T . Denote the copies of S by Si, for i = 1, 2, . . . , Θ(nκ). The total number of
vertices of Gn is Θ(nκ + nκ · n1−κ) = Θ(n).

Next, we describe a straight-line drawing of Gn. Embed the vertices of the
triangulation T arbitrarily in general position above the x-axis. Embed the in-
terior vertices of S1 into integer points {0, 1, . . . , s− 1}× {0} on the x-axis such
that their natural order is permuted by πs from Lemma 1. The interior vertices
of Si, for each i > 1, are embedded into a translated copy of this permutation,
translated along the x-axis by δi for some small 0 < δ $ n−κ.

Bounding the Number of Fixed Vertices. Consider a crossing-free straight-
line drawing of Gn. The Θ(nκ) vertices of T may be fixed. It is sufficient to
consider the interior vertices of Si, i = 1, 2, . . . , Θ(nκ). Suppose that �i interior
vertices of Si are fixed, for i = 1, 2, . . . , Θ(nκ). Since the x-axis intersects at
most O(nκ logb c) triangles of T , all but at most O(nκ logb c) values of �i are zero.

Consider now a triangulation Si where �i > 0. Note that Si contains a sequence
of s+1 nested triangles that share a common edge (the horizontal edge in Fig. 1).
In any straight-line drawing of Si (independent of the choice of the outer face),
at least (s + 1)/2 of these triangles form a nested sequence. Hence, at least �i/2
fixed interior vertices of Si are vertices in a sequence of nested triangles in the
crossing-free straight-line drawing of Gn. The intersection of the x-axis with a
sequence of nested triangles is a line segment. It can be partitioned into two
directed segments, with opposite directions, such that each of them is directed
towards the deepest point in the arrangement of nested triangles. At least �i/4
fixed points of Si lie on the same directed segment, and these points must form a
monotone sequence along the x-axis. Furthermore, the elements of this monotone
subsequence are all contained in the largest triangle from the nested sequence of
triangles in Si, therefore, their convex hull is disjoint from the convex hulls of
similar sequences in any other Sj , j �= i.

By Lemma 1, the spread of the monotone subsequence of length at least
�i/4 is at least (�2

i + 32)/96. Hence these fixed points “occupy” an interval of
length (�2

i +32)/96 on the x-axis. As noted above, the convex hulls of monotone
sequences from distinct copies of S are disjoint, and so we have

Θ(nκ)∑

i=1

�2
i + 32
96

≤ 2s. (1)

Recall that at most O(nκ logb c) values of �i are nonzero. By Jensen’s inequality,
the sum

∑Θ(nκ)
i=1 �i is maximized if all nonzero values of �i are equal. Suppose,

by relabeling the copies of S if necessary, that �i = � for i = 1, 2, . . . , Θ(nκ logb c);

294 J. Cano, C.D. Tóth, and J. Urrutia

and �i = 0 for all other i. In this case, Inequality (1) becomes Θ(nκ logb c) · �2 ≤
Θ(n1−κ), or � ∈ O(n(1−κ(1+logb c))/2). Therefore, the number of fixed vertices is
at most

Θ(nκ)∑

i=1

�i ≤ Θ(nκ logb c) · � = Θ(n(1+κ(logb c−1))/2) = Θ(nκ),

as required. ��

4 (a, b, c)-Triangulations

Non-hamiltonian Triangulations. By Steinitz’s theorem, every 3-connected
cubic planar graph G is the 1-skeleton of a convex polytope. The dual graph
G∗, corresponding to the dual polytope, is a 3-connected triangulation. Tait [10]
conjectured in 1884 that every 3-connected cubic planar graph is Hamiltonian.
Tutte [11] found a counterexample with 44 vertices in 1946. The smallest known
counterexample, due to Bernette, Bosák, and Lenderberg, has 38 vertices, and
it is known that there is no counterexample with 36 or fewer vertices [7].

A Hamiltonian cycle of G corresponds to a simple closed curve visiting every
face exactly once in any plane drawing of G∗. In a straight-line drawing, every
face of a triangulation is convex and thus it is visited by a line at most once.
Therefore, if G is not Hamiltonian, then G∗ has no plane straight-line drawing in
which a line visits every face (including the outer face). The smallest known coun-
terexample to Tait’s conjecture implies that there is a (38, 38, 37)-triangulation.
Combined with Theorem 1, we obtain a new upper bound for f(n).

Corollary 1. f(n) ∈ O(n1/(3−log38 37)) ⊂ O(n.4982).

5 Conclusion

Our upper bounds for f(n) depend on the value logb c of an (a, b, c)-triangulation.
The (a, b, c)-triangulations we considered are all derived from counterexamples
for Tait’s conjecture. Since these are counterexamples for Hamiltonicity, they all
have a = b > c > 0. It is conceivable, though, that there are better constructions
for (a, b, c)-triangulations in which a > b.

The best possible upper bound for f(n) achievable with our framework would
come from the minimum value of logb c, leading to the following problems.

Problem 1. What is the minimum value of logb c over all (a, b, c)-triangulations?

Problem 2. What is the minimum value of logb c over all 3-connected cubic pla-
nar graphs G, where G has b has marked vertices and any simple cycle visits at
most c marked vertices?

Upper Bound Constructions for Untangling Planar Geometric Graphs 295

The latter problem is purely graph theoretical. But the two problems are, in
fact, equivalent. The dual of Problem 2 asks for the minimum value of logb c
over all 3-connected plane triangulations T with a faces, b of which are marked,
such that any closed Jordan curve γ that visits every face at most once can
visit at most c marked faces. One can show that every such Jordan curve γ is
“stretchable.” That is, T has a plane straight-line drawing T ′ in which a line
L visits the exact same faces as γ visited in T (in the same cyclic order). See
Fig. 2. Details are omitted, and will be given in the full version of this paper.

γ

1

2

3
4

5

6

7

8

9

L

1 2
3

4

5

6
7

8

9

Fig. 2. Left: a plane 3-connected triangulation T , where curve γ visits every face exactly
once. Right: a plane straight-line drawing T ′ of T , where line L stabs every face.

References

1. Arkin, E.M., Held, M., Mitchell, J.S.B., Skiena, S.: Hamiltonian triangulations for
fast rendering. The Visual Computer 12(9), 429–444 (1996)

2. Bose, P., Dujmovic, V., Hurtado, F., Langerman, S., Morin, P., Wood, D.R.:
A polynomial bound for untangling geometric planar graphs. Discrete Comput.
Geom. 42(4), 570–585 (2009)

3. Cibulka, J.: Untangling polygons and graphs. Discrete Comput. Geom. 43, 402–411
(2010)

4. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math-
ematica 2, 463–470 (1935)

5. Fáry, I.: On straight line representation of planar graphs. Acta Univ. Szeged, Acta
Sci. Math. 11, 229–233 (1948)

6. Goaoc, X., Kratochv́ıl, J., Okamoto, Y., Shin, C.S., Spillner, A., Wolff, A.: Untan-
gling a planar graph. Discrete Comput. Geom. 42(4), 542–569 (2009)

7. Holton, D.A., McKay, B.D.: The smallest non-Hamiltonian 3-connected cubic pla-
nar graphs have 38 vertices. J. Combin. Theory Ser. B 45(3), 305–319 (1988)

8. Kang, M., Pikhurko, O., Ravsky, A., Schacht, M., Verbitsky, O.: Untangling planar
graphs from a specified vertex position—Hard cases. Discrete Appl. Math. 159(8),
789–799 (2011)

9. Pach, J., Tardos, G.: Untangling a polygon. Discrete Comput. Geom. 28(4),
585–592 (2002)

10. Tait, P.G.: Listing’s Topologie. Philosophical Magazine 17, 30–46 (1884)
11. Tutte, W.T.: On Hamiltonian circuits. J. LMS 21(2), 98–101 (1946)

Triangulations with Circular Arcs�

Oswin Aichholzer1, Wolfgang Aigner2, Franz Aurenhammer2,
Kateřina Čech Dobiášová3, Bert Jüttler3, and Günter Rote4

1 Institute for Software Technology, Graz University of Technology, Austria
2 Institute for Theoretical Computer Science, Graz University of Technology, Austria

3 Institute of Applied Geometry, Johannes Kepler University Linz, Austria
4 Institut für Informatik, Freie Universität Berlin, Germany

Abstract. An important objective in the choice of a triangulation is
that the smallest angle becomes as large as possible. In the straight-line
case, it is known that the Delaunay triangulation is optimal in this re-
spect. We propose and study the concept of a circular arc triangulation—
a simple and effective alternative that offers flexibility for additionally
enlarging small angles—and discuss its applications in graph drawing.

1 Introduction

Geometric graphs and especially triangular meshes (often called triangulations)
are an ubiquitous tool in geometric data processing [4,17,26]. The quality of a
given triangular mesh naturally depends on the size and shape of its composing
triangles. In particular, the angles arising in the mesh are among the critical issues
in main application areas like modeling, drawing, and finite element methods [26].

For practical purposes, quite often the Delaunay triangulation (see, e.g., [17])
is the mesh of choice, because it maximizes the smallest angle over all possible
triangulations of a given finite set of points in the plane. Still, the occurrence of
badly shaped triangles cannot be avoided sometimes, especially near the bound-
ary of the input domain, or due to the presence of mesh vertices of high degree.

The situation becomes different (and interesting again) if the requirement
that triangulation edges be straight is dropped. Indeed, certain applications are
not confined to straight-line triangular meshes, or even are not really suited for
it. In applications from graph drawing, for example, staying with straight edges
might mean a hindrance to the readability of the drawing. Moreover, in finite
element methods, the respective bivariate functions may be defined, in a natural
way and with certain advantages, over ‘triangles’ with nonlinear boundaries. In
these and other applications, the calculational and aesthetical benefits of a graph
that potentially grants nice angles can be exploited fully only if curved edges are
permitted.

In this paper, we want to encourage the use of so-called arc triangulations,
which simply are triangulations whose edges are circular arcs. Maximizing the
smallest angle in a combinatorially fixed arc triangulation of a point set can be
� Supported by FWF NRN ‘Industrial Geometry’ S92. A preliminary version of this

work appeared as [1].

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 296–307, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Triangulations with Circular Arcs 297

formulated as a linear program (Section 2), which for most settings can even be
transformed to a simple graph-theoretic problem (Section 3). This guarantees a
fast solution of this (and of related) optimization problems for arc triangulations
in practice and in theory. Moreover, the linear program will tell us whether a
given domain admits an arc triangulation of a pre-specified combinatorial type,
by checking whether its feasible region is nonempty. In particular, flips for arcs
can be defined (Section 4), by optimizing the triangulation that is obtained after
applying the flip combinatorially. Preliminary inspection shows that small angles
tend to enlarge significantly under such heuristics.

We believe that arc triangulations constitute a useful tool especially in two
important application areas—graph drawing and finite element methods. In par-
ticular, so-called π-triangulations (Section 5) can be used with advantage, based
on the fact that arc triangles whose angles sum to π are images of straight
triangles under a Möbius transformation. In view of graph drawing applica-
tions [10,15,23], it is desirable to extend our approach to optimizing angles in
general plane graphs (Section 6). This cannot be done dirctly, but by completing
the graph to a suitable triangulation (for example, its constrained Delaunay tri-
angulation [9]), and treating the sums of triangulation angles between the graph
arcs as single entities to be maximized. A simple and efficient method for opti-
mally redrawing a straight-line graph with circular arcs is obtained. Applications
to finite element methods will be discussed in the full version of this paper.

2 Angle Optimization

Consider a straight-line triangulation, T , in a given domain D of the plane.
No restrictions on D are required but, for the ease of presentation, let D be
simply connected and have a piecewise circular (or linear) boundary. In general,
T will use vertices. in the interior of D. Throughout the paper, we assume
general position of the vertex set. We are interested in the following optimization
problem: Replace each interior (i.e., non-boundary) edge of T by some circular
arc, in a way such that the smallest angle in the resulting arc triangulation is
maximized.

To see that this problem is well defined, notice that the optimal solution, call
it T ∗, cannot contain negative angles: The smallest angle between arcs has to
be at least as large as the smallest angle that arises in T . As a consequence,
for each vertex in S, the order of its incident arcs in T ∗ coincides with the
order of its incident edges in the input triangulation T . In other words, each arc
triangle in T ∗ is well-oriented, i.e., it has the same orientation as its straight-
line equivalent. Therefore, no overlap of arcs or arc triangles in T ∗ can occur.
Interestingly, this is a specialty of triangulations; the last conclusion remains no
longer true if faces with more than three arcs are present. An arc quadrangle,
for instance, may have self-overlaps in spite of being well-oriented, whereas this
is not possible for an arc triangle; see Figures 1 and 2. We postulate for the rest
of this paper that arc triangles be well-oriented.

We now formulate the angle optimization problem as a linear program. For
each straight-line edge e = pq in the triangulation T , we introduce two variables

298 O. Aichholzer et al.

Fig. 1. Well-oriented arc triangle and
quadrangle

Fig. 2. These arc triangles are not well-
oriented

φpq and φqp. The variable φpq describes the (signed) angle at which the circular
arc

pq deviates to the left from the straight connection, when seen from p, and

φqp describes this deviation angle, when seen from q. We have

φpq = −φqp (1)

for all edges pq. For each edge e′ of T on the input boundary ∂D, we fix the two
deviation variables to the values de′ and −de′ given by ∂D. Thus, for a boundary
edge e′ = pq, we have

φpq = −φqp = de′ . (2)

We have de′ = 0 if e′ is supposed to stay a line segment. Alternatively, and
preferably in certain applications, we could keep φpq = −φqp variable and bound
it by some threshold. The inequalities for the linear program now stem from the
angles αqpr arising in T . The two edges pq and pr that define αqpr are adjacent
around p in the drawing, such that pr is the next edge counterclockwise from
pq. We are interested in the angle between the corresponding two circular arcs,
which is βqpr = −φpq + αqpr + φpr, and we put

δ ≤ βqpr . (3)

The linear objective function L, which is to be maximized, is just L = δ.
Clearly, maximizing δ will maximize the smallest angle βmin in the arc trian-

gulation. Note that we may have βmin > π
3 in T ∗ because, due to its piecewise

circular shape, the sum of inner angles for ∂D may be larger than π(h− 2), for
h being the number of vertices on ∂D. There are O(n) (in)equalities and O(n)
variables, if n is the total number of vertices.

Sometimes the objective is to optimize not only the smallest angle, but rather
to maximize lexicographically the sorted list of all arising angles, as is guaranteed
by the Delaunay triangulation in the straight-line case. This can be achieved by
repeatedly solving the linear program above, keeping angles that have been op-
timized already as constants. Care has to be taken however, because, depending
on the solver, minimum angles do typically occur at several places, and the op-
timal ones among them have to be singled out. This type of problems has been
called lexicographic bottleneck optimization in [6], in the context of combinato-
rial optimization problems. In [22] a general solution procedure in the context of

Triangulations with Circular Arcs 299

linear optimization is given, which amounts to repeatedly solving some slightly
modified linear programs.

Angles larger than π may arise in the optimal triangulation. If this is unde-
sirable in a particular application, constraints like

−φpq + αqpr + φpr ≤ γ

for γ < π may be added. In particular, choosing γ = π − δ will simultaneously
decrease large angles, and thus will lead to arc triangles ‘as equilateral as pos-
sible’. However, the demand of maximizing the smallest angle over the space of
all possible arc triangulations (with the same combinatorics as T) is then lost.
Various other linear restrictions on angles can be added to the linear program,
like fixing the angle sum in each arc triangle to π, or keeping each arc triangle
inside the circumcircle of its three vertices. The relevance of these and other
conditions will be substantiated in Sections 5 and 6. We consider the flexibility
of our simple approach as an important feature in practice.

3 Graph-Theoretic Approach

The special setting of our linear program allows us to apply a purely graph-
theoretic approach for its resolution.

Theorem 1. The linear-programming problem of maximizing δ under restric-
tions (1–3) can be solved by a combinatorial (graph-theoretic) algorithm in O(n2)
time.

The remainder of this section gives a proof of Theorem 1. We have two variables
φpq and φqp for each edge pq in the given straight-line triangulation, and the
variable δ. Since a triangulation is a planar graph, there are O(n) variables,
O(n) inequalities of type (3) induced by the angles between adjacent edges, and
O(n) equations of types (1) and (2).

First we consider a fixed value of δ and ask whether the system (1–3) is
feasible. By using a method in [27] (see also [13,25]), we can transform the system
into an equivalent system, in which every constraint has one of the following
forms

X ≤ Y + c, (4)
X ≤ 0 + c, (5)
0 ≤ Y + c, (6)

where X and Y are two variables and c is a constant.
By substituting βqpr we can easily rewrite (3) in this form, namely

φpq ≤ φpr + (αqpr − δ). (7)

If we have bounds on the variables, a ≤ X ≤ b, we can also bring them into the
desired form, and hence each equation (2) can be also handled, by first converting
it into two inequalities.

300 O. Aichholzer et al.

We still have to deal with the equations (1) between ‘opposite’ variables. To
this end, let us consider a system of inequalities of the form (4–6) in 2m variables
V = {x1, . . . , xm, x′

1, . . . , x
′
m} that come in ‘opposite pairs’

xi = −x′
i, for i = 1, . . . , m. (8)

For a variable X , we will denote by X̄ its opposite partner, x̄i = x′
i, x̄′

i = xi,
¯̄X =

X. The system we have at hands is of this form, with φ̄pq = φqp. Now, for each
inequality of the form (4–6), we can form an equivalent opposite inequality, in
which each variable is replaced by the opposite variable on the other side. For
example,

X ≤ Y + c (4)

is turned into Ȳ ≤ X̄ + c. In view of (8), the opposite inequality is equivalent
to the original one. Thus, when we add all opposite inequalities, we will create
some redundancy but we will not change the solution. It is easy to prove the
following:

Lemma 1. Consider a system of the equations (8) together with inequalities of
the form (4–6), that also contains with each inequality its opposite inequality.
Then this system has a solution if and only if the system without the equa-
tions (8) has a solution.

This means that we can ignore the equations (1), at the expense of doubling the
number of inequalities. All inequalities have the form (4–6). By introducing a
new variable Z0 representing zero, the inequalities (5–6) that contain only one
variable can also be brought into the standard form (4). This new system is
equivalent to the original one: Since all inequalities now have the form (4), one
can add an arbitrary constant to all variables without invalidating the inequali-
ties, and thus one can assume, without loss of generality, that Z0 = 0.

It is well known that a system of inequalities of the form (4) can be tested
by checking whether an associated graph G has a negative cycle [7,27], and a
solution can be found by a shortest path calculation. The graph G has a node
for each variable, and for each inequality of the form (4) it contains an arc of
weight c from X to Y . Moreover, consider an augmented graph G+, that has an
additional start node S and an edge of weight 0 from S to every node of G.

Lemma 2. A system of inequalities of the form (4) has a solution iff the asso-
ciated graph G (or equivalently, G+) has no negative cycle. If a solution exists,
it can be found by computing shortest distances from S to all nodes in G+.

The running time of this test, with the Bellman–Ford algorithm, is given by the
number of nodes or variables (2m = O(n) in our case), times the number of
arcs or inequalities (O(n) as well). Thus, finding a solution of the angle drawing
problem for a given value of δ takes O(n2) time.

Now we will consider δ as a variable and come back to the problem of maxi-
mizing δ. This amounts to checking for a negative cycle in a graph whose weights
are of the form c− δ, for constants c and a parameter δ. This problem is known

Triangulations with Circular Arcs 301

as the minimum cycle mean problem: For a cycle with k edges the weight has
the form w − kδ, where w is the sum of all positive edge constants c along the
cycle. The weight is negative for δ > w/k. So w/k, the mean weight of the cycle,
is the largest value for δ which does not result in a negative cycle. For the entire
graph, this means that the largest possible value of δ for which the graph is
free of negative cycles is determined by the minimum cycle mean. The minimum
cycle mean problem has been solved in [19], and the algorithm takes the same
running time as the Bellman–Ford algorithm, that is, O(n2) time, but it takes
O(n2) space.

4 Flipping in Arc Triangles

The fact that every simple polygon can be triangulated with straight line seg-
ments is folklore. However, a domain D with piecewise circular boundary need
not admit any triangulation, even if circular arcs may be used. It is known that
a linear number of Steiner points is required in the worst case to ensure an arc
triangulation [3].

One of the arising questions is: Given the domain D and a (combinatorial)
triangulation Tc in D, possibly with (fixed) interior points, can Tc be realized
by circular arcs? Clearly, if only straight-line edges are to be used, then this is
merely a segment intersection problem. For deciding the general case, we can now
utilize the linear program formulated in Section 2. A realizing arc triangulation
exists if and only if the feasible region of the linear program is nonempty.1

As a particularly nice feature, this enables us to define flip operations in arc
triangulations, as is described below.

Consider some arc triangulation A in the domain D. Each interior arc

pq of A

lies on the boundary of two arc triangles. Let r and s be the two vertices of these
arc triangles different from p and q. Flipping

pq by definition means removing

pq from A, establishing an arc between r and s combinatorially, and optimizing
over the resulting triangulation. Note that ‘well-oriented’ in this case has to refer
to the combinatorial order of the edges around a vertex of a triangulation.

For the linear program that describes this optimization problem, we have to
know the angles α of the corresponding straight-line embedding; see Section 2.
Note that after a flip, the straight-line realization of the graph is not necessarily
a valid geometric triangulation. In such a case, the combinatorial order around
a vertex is different from the geometric one. As a consequence, some angles α
have to take negative values to obtain a valid setting for the linear program that
optimizes δ. See Figure 4 for an example with the combinatorial order being 1
to 5, while the geometrical order is 1, 4, 2, 3, 5.

Unlike for the original setting in Section 2, here a positive solution for δ is not
guaranteed. In fact, the sign of the optimized value δ indicates whether or not
the combinatorial triangulation (after a flip) is realizable as an arc triangulation.
1 Note that the following related problem is NP-complete [20]: Given a point

set S and some set E of straight-line edges on S, decide whether E contains
a triangulation of S.

302 O. Aichholzer et al.

Fig. 3. A double edge connecting
bottom vertices

p

1

2

3

4

5

α1p2

α2p3

−α4p3

α4p5

Fig. 4. Combinatorial order at p

If δ > 0 after the optimization, then the new arc triangulation exists and contains
a circular arc between r and s that satisfies the criterion of being geometrically
well-oriented. In case of nonexistence (if δ ≤ 0), the combinatorial triangulation
is not realizable as an arc triangulation, and we declare the arc

pq as non-

flippable. Observe that an arc flip may change various circular arcs geometrically,
as we optimize over their curvature afterwards.

Sometimes we may not want to perform an arc flip even if it exists. For
example, flipping an arc a can lead to an inner vertex of degree 2, a property of
arc triangulations which is possibly unwanted in the application. Arc a can easily
be declared as not flippable, by putting the restriction that angles in triangles be
less than π. Note that this does not necessarily prevent the occurrence of double-
edges between two vertices of an arc triangulation. For example, see Figure 3,
where all angles are smaller than π. However, a check if an edge already exists can
be done before the optimization step, and thus does not have to be incorporated
into the linear program.

Optimizing angles with arc flips is a powerful (though maybe costly) tool. We
demonstrate the positive effect of sequences of such flips with Figures 5 and 6.
A significant improvement over the Delaunay triangulation becomes possible (in
fact, the smallest angle is doubled in this example) by reducing the degree of a
particular vertex, v. Note that this configuration is quite ‘robust’ in the sense
that v retains its high degree in the Delaunay triangulation even if the placement
of the other vertices is changed moderately. Repeated appearance of patterns as
in Figure 5 may lead to an overall poor quality of a given triangular mesh.

In general, we observe that small angles in a straight-line triangulation stem
from one of two reasons: (1) The geometry of the underlying domain D (plus its
vertex set) forces slim triangles in the vicinity of ∂D. These ‘boundary effects’
can usually be mildened by mere geometric optimization of the corresponding
arc triangulation. (2) Vertices of degree k naturally impose an upper bound of 2π

k
on the smallest arising angle. This situation can be remedied only with combina-
torial changes, and in contrast to the straight edge case, this is indeed possible
for arc triangulations. For straight edges, the combinatorics of the Delaunay
triangulation is already optimal.

Triangulations with Circular Arcs 303

v

Fig. 5. Delaunay triangulation

v

Fig. 6. Optimized arc triangulation

A challenging open question is whether repeated application of angle-
improving arc flips always leads to the global optimum, that is, to the com-
binatorial type of arc triangulation which admits the largest possible minimum
angle for the given domain. A more basic question is whether the set of combi-
natorial triangulations that are realizable as arc triangulations is connected by
flips. We leave these problems as a subject for future research.

5 Special Arc Triangles

Before discussing the relevance of arc triangulations to the area of graph draw-
ing, we have a look at special types of arc triangles. Recall from Section 2 the
convention that arc triangles are geometrically well-oriented.

An arc triangle ∇ is termed a π-triangle if the sum of its interior angles is π.
These triangles are interesting because they are images of a straight-line triangle
under a unique Möbius transformation [24]. Moreover, any π-triangle is contained
in the circumcircle of its vertices, a possibly useful regularity condition. We study
arc triangulations that are composed of π-triangles. Such π-triangulations will
not always exist, but they do, of course, if the domain D is a simple polygon,
because every straight-line triangulation is a π-triangulation. If ∂D is composed
of circular arcs, a necessary (though not sufficient) existence condition is that
the sum of interior angles at the h boundary vertices of D is π(h− 2).

For the remainder of this section, let D be a simple polygon, and T be some
straight-line triangulation in D. The geometry of any arc triangulation A in D
that is combinatorially equivalent to T is determined by the vector Φ(A) of
deviation angles φpq, for the interior arcs

pq of A. (The opposite value, φqp, is

fixed by φpq; see Section 2). Interpreting Φ(A) as a point in high dimensions, we
can talk of the space of arc triangulations for T . The next lemma is important
in view of optimizing a given π-triangulation. Let us assume that there exists an
arc triangulation for D where all interior angles are positive.

Lemma 3. Let T have n vertices, h of which lie on the boundary of D. The
dimension of the space of π-triangulations for T is n− h.

The proof is omitted due to space constraints. Lemma 3 remains true if T is
replaced by any π-triangulation of D. For applications, the input is most likely a

304 O. Aichholzer et al.

Table 1. Angle improvement in arc triangulations

angle sum smallest angle improvement over Delaunay

Delaunay (180◦) 18.03◦ 0

180◦ 22.52◦ 25%
179◦–181◦ 22.92◦ 26%
175◦–185◦ 24.88◦ 38%
170◦–190◦ 27.53◦ 50%
160◦–200◦ 31.77◦ 72%

straight-line triangulation, which is to be optimized into a π-triangulation with
maximum smallest angle. The boundary of D might be given as a spline curve,
approximated smoothly by circular arcs. The inner angle sum for D is π · h in
this case (rather than π(h−2)), such that a π-triangulation does not exist. Still,
the approximating circular arcs will be close to line segments for most practical
data, such that an ‘almost straight’ π-triangulation is likely to exist. Also, one
could start with some combinatorial triangulation suitable for D, to be able to
treat a larger class of domains.

Table 1 shows experimental data for Delaunay meshes optimized into (almost)
π-triangulations, for 500 random points, postprocessed to keep a certain inter-
point distance as in realistic meshes. The gain is quite significant, especially if
the condition on the angle sum is relaxed from π to a small interval around that
value. For several applications, there is sometimes a certain threshold (typically
around 25◦) beyond which a mesh is considered as poor-quality [5].

Note that, by Lemma 3, optimization is only possible in subdomains of D
where interior points are present. Thus, the diagonals of D defined by T (if
any) separate optimizable subdomains from each other. Again, such diagonals
are unlikely to appear in the dense meshes used in practical applications. In any
case, extraneous points can be inserted into the π-triangulation while keeping all
angle sums in arc triangles to π. In particular, we can put such points on arcs,
in order to split obstructive diagonals of D.

6 Graph Drawing

Literature on drawing graphs nicely in the plane is large; see e.g. [10,23,28].
Most algorithms take as input an abstract graph G and produce a layout of
the vertices of G such that the resulting straight-line (or orthogonal) drawing
is aesthetically pleasing, and preferably is even optimal with respect to certain
application criteria. On the theoretical side, bounds on the achievable angular
resolution are known for various classes of graphs [16,21]. A characterization of
all planar drawings of a triangular graph through a system of equations and
inequalities relating its angles is given in [11].

Results for curvilinear drawings of graphs are comparatively sparse. See, for
example, [8,18] and references therein, who give lower bounds and algorithms
for drawing graphs on a grid with curved edges (including circular multiarcs),
and [15] where a method based on physical simulation is proposed. In [14],

Triangulations with Circular Arcs 305

crossing-free drawings of graphs with circular arcs as edges are considered from
an algorithmic viewpoint. The vertices are fixed and each edge has to be cho-
sen from a given number of arcs. Recently, circular arc graphs with equiangular
edges around each vertex have been studied in [12].

Paris

LondonNew York
San Francisco

Atlanta

Chicago
Montreal

Phoenix

Fig. 7. IP backbone graph

Paris

LondonNew York
San Francisco

Atlanta

Chicago
Montreal

Phoenix

Fig. 8. Backbone optimally redrawn

Here we actually consider a simpler setting, namely, for a given planar straight-
line embedding of a graph G, the problem of redrawing G with curved edges in
an optimal way. In a redrawing, the positions of the vertices are kept fixed. This
may be a natural demand, for instance, in certain geographical applications.
Recently it has been shown [2] that redrawings of G with tangent-continuous
biarcs or quadratic Bézier curves (parabolic arcs) always exist such that every
vertex is pointed, i.e., has an incident angle of at least π. Potential applications
concern labeling the graph vertices with high readability. Redrawing a plane
graph G with circular arcs in a pointed way is not always possible.

Let us describe how maximizing the smallest angle in a circular arc redrawing
of G can be achieved. It is tempting to apply the linear optimization method
from Section 2 to G directly. This, however, bears the risk of arc overlaps getting
out of control. (Recall that overlap-free optimization is guaranteed only for full
triangulations. This is possibly the reason why this simple approach has not been
used in practice yet.) One way out is to embed G in some triangulation T first,
and treat respective sums of angles as single entities to be optimized. That is,
for each angle � in G, given by the concatenation of angles α1, . . . , αk in T , we
use the constraint δ ≤ β1, . . . , βk, with each βi expressed by the corresponding
straight-line triangulation angle αi and its two assigned deviation variables βi =
−φ1 + αi + φ2 as in Section 2.

The quality of optimization depends on the chosen triangulation, which will
be subject of future research; cf. Section 4. Note that, however, even if we try
out all possible triangulations, this may not lead to the optimal solution, as
there are arc polygons that cannot be triangulated without additional vertices.
If the optimal drawing contains such a face, then no triangulation will yield the
optimum drawing.

If we wish to optimize the entire angle vector �1, . . . , �m for G, this can be
achieved too, in an iterative way as before. Additional restrictions may be posed,
like �j < π or �j < π

2 , in order to preserve obtuse or sharp angles in G.
The adjacency graph in Figures 7 and 8, and the layer graph in Figures 9

and 10 exemplify the effect of our circular arc redrawing method. The results

306 O. Aichholzer et al.

Fig. 9. A 3-layer graph Fig. 10. Arc redrawing

seem satisfactory, in spite of the fact that vertices are required not to move.
For geographic structures as in Figure 7, or certain graph structures arising
in physics, this is quite often a desired property. Our results compare well to,
e.g. [15], who use for optimization the additional freedom of placing vertices,
though at a price of high computation cost. For our method, the number of
vertices of the input graph is no limitation, as far as applications from graph
drawing are concerned.

7 Open Questions

For non-triangulated regions in the input graph (compare the quadrangle in Fig-
ure 1), the requirement that arcs do not intersect induces a nonlinear constraint
between the corresponding angles. It would be interesting to know if this con-
straint has some structure (for example, convexity), which would allow it to be
accommodated in the optimization process. Further open questions raised here
are the convergence of the angle-increasing arc flipping process in Section 4, and
an extension of the presented results to three dimensions.

References

1. Aichholzer, O., Aigner, W., Aurenhammer, F., Čech Dobiášová, K., Jüttler, B.:
Arc triangulations. In: Proc. 26th European Workshop Comput. Geometry, pp.
17–20 (2010)

2. Aichholzer, O., Rote, G., Schulz, A., Vogtenhuber, B.: Pointed drawings of pla-
nar graphs. In: Proc. 19th Ann. Canadian Conf. Comput. Geometry, pp. 237–240
(2007)

3. Aichholzer, O., Aurenhammer, F., Hackl, T., Juettler, B., Oberneder, M., Sir, Z.:
Computational and structural advantages of circular boundary representation. Int’l
J. Computational Geometry & Applications 21, 47–69 (2011)

4. Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. Computing in
Euclidean Geometry. LN Series on Computing, vol. 4, pp. 47–123. World Scientific
(1995)

5. Boivin, C., Ollivier-Gooch, C.: Guaranteed-quality triangular mesh generation for
domains with curved boundaries. International Journal for Numerical Methods in
Engineering 55, 1185–1213 (2002)

6. Burkard, R.E., Rendl, F.: Lexicographic bottleneck problems. Operations Research
Letters 10, 303–308 (1991)

7. Carré, B.: Graphs and networks. Oxford University Press (1979)

Triangulations with Circular Arcs 307

8. Cheng, C.C., Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Drawing Planar
Graphs With Circular Arcs. In: Kratochv́ıl, J. (ed.) GD 1999. LNCS, vol. 1731,
pp. 117–126. Springer, Heidelberg (1999)

9. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108 (1989)
10. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing—Algorithms

for the Visualization of Graphs. Prentice-Hall (1999)
11. Di Battista, G.D., Vismara, L.: Angles of planar triangular graphs. SIAM J. Dis-

crete Mathematics 9, 349–359 (1996)
12. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.:

Lombardi Drawings of Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010.
LNCS, vol. 6502, pp. 195–207. Springer, Heidelberg (2011)

13. Edelsbrunner, H., Rote, G., Welzl, E.: Testing the necklace condition for shortest
tours and optimal factors in the plane. Theor. Comput. Sci. 66, 157–180 (1989)

14. Efrat, A., Erten, C., Kobourov, S.G.: Fixed-Location Circular-Arc Drawing of Pla-
nar Graphs. Journal of Graph Algorithms and Applications 11, 145–164 (2007)

15. Finkel, B., Tamassia, R.: Curvilinar Graph Drawing Using The Force-Directed
Method. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer,
Heidelberg (2005)

16. Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F.T.,
Symvonis, A., Welzl, E., Wöginger, G.: Drawing graphs in the plane with high
resolution. SIAM J. Computing 22, 1035–1052 (1993)

17. Fortune, S.: Voronoi diagrams and Delaunay triangulations. Computing in Eu-
clidean Geometry. LN Series on Computing, vol. 4, pp. 225–265. World Scientific
(1995)

18. Goodrich, M.I., Wagner, C.G.: A framework for drawing planar graphs with curves
and polylines. J. Algorithms 37, 399–421 (2000)

19. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics 23, 309–311 (1978)

20. Lloyd, E.L.: On triangulations of a set of points in the plane. In: Proc. 18th IEEE
Symp. on Foundations of Computer Science, pp. 228–240 (1977)

21. Malitz, S., Papakostas, A.: On the angular resolution of planar graphs. In: Proc.
24th Ann., pp. 527–538 (1992)

22. Marchi, E., Oviedo, J.A.: Lexicographic optimality in the multiple objective lin-
ear programming: The nucleolar solution. European Journal of Operational Re-
search 57, 355–359 (1992)

23. Nishizeki, T., Rahman, M.S.: Planar graph drawing. World Scientific (2004)
24. Pedoe, D.: A course of geometry for colleges and universities. Cambridge University

Press (1970)
25. Rote, G.: Two solvable cases of the traveling salesman problem. PhD Thesis, TU

Graz, Institute for Mathematics (1988)
26. Shewchuk, J.: What is a good linear element? Interpolation, conditioning, and

quality measures. In: Proc. 11th International Meshing Roundtable, pp. 115–126
(2002)

27. Shostak, R.: Deciding linear inequalities by computing loop residues. Journal of
the ACM 28, 769–779 (1981)

28. Sugiyama, K.: Graph Drawing and Applications for Software and Knowledge
Engineers. World Scientific (2002)

Planar and Poly-arc Lombardi Drawings

Christian A. Duncan1, David Eppstein2, Michael T. Goodrich2,
Stephen G. Kobourov3, and Maarten Löffler2

1 Department of Computer Science, Louisiana Tech Univ., Ruston, Louisiana, USA
2 Department of Computer Science, University of California, Irvine, California, USA

3 Department of Computer Science, University of Arizona, Tucson, Arizona, USA

Abstract. In Lombardi drawings of graphs, edges are represented as circular
arcs, and the edges incident on vertices have perfect angular resolution. However,
not every graph has a Lombardi drawing, and not every planar graph has a planar
Lombardi drawing. We introduce k-Lombardi drawings, in which each edge may
be drawn with k circular arcs, noting that every graph has a smooth 2-Lombardi
drawing. We show that every planar graph has a smooth planar 3-Lombardi draw-
ing and further investigate topics connecting planarity and Lombardi drawings.

1 Introduction

Motivated by the work of the American abstract artist Mark Lombardi [21], who spe-
cialized in drawings that illustrate financial and political networks, Duncan et al. [9,10]
proposed a graph visualization called Lombardi drawings. These types of drawings at-
tempt to capture some of the visual aesthetics used by Mark Lombardi, including his
use of circular-arc edges and well-distributed edges around each vertex.

A vertex with circular arc edges extending from it has perfect angular resolution if
the angles between consecutive edges, as measured by the tangents to the circular arcs
at the vertex, all have the same degree. A Lombardi drawing of a graph G = (V,E) is
a drawing of a graph where every vertex is represented as a point, the edges incident
on each vertex have perfect angular resolution, and every edge is represented as a line
segment or circular arc between the points associated with adjacent vertices.

One drawback of previous work on Lombardi drawings is that (as we prove here)
not every graph has a Lombardi drawing. In this paper we attempt to remedy this by
considering drawings in which edges are represented by multiple circular arcs. This
added generality allows us to draw any graph.

k-Lombardi Drawings. We define a k-Lombardi drawing to be a drawing with at most
k circular arcs per edge, with a 1-Lombardi drawing being equivalent to the earlier
definition of a Lombardi drawing. We say that a k-Lombardi drawing is smooth if every
edge is continuously differentiable, i.e., no edge in the drawing has a sharp bend. If a
k-Lombardi drawing is not smooth, we say it is pointed. Fortunately, we do not need
large values of k to be able to draw all graphs: as we show, every graph has a smooth
2-Lombardi drawing. Interestingly, this result is hinted at in the work of Lombardi
himself—Figure 1 shows a portion of a drawing by Lombardi that uses smooth edges
consisting of two near-circular arcs.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 308–319, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Planar and Poly-arc Lombardi Drawings 309

Fig. 1. A portion of Mark Lombardi, Chicago Outfit and Satellite Regimes, ca. 1931–83, 1998,
48.125×96.6225 inches (cat. no. 11) [21]. Note the highlighted smooth two-arc edge.

Fig. 2. Mark Lombardi, Hans Kopp, Trans K-B and Shakarchi Trading AG of Zurich, ca. 1981–89
(3rd Version), 1999, 20.25×30.75 inches (cat. no. 22) [21]

Planar Lombardi Drawings. Drawing planar graphs without crossings is a natural goal
for graph drawing algorithms and is easily achieved when angular resolution is ignored.
Lombardi himself avoided crossings in many of his drawings, as shown in Fig. 2. In pre-
vious work on Lombardi drawings, Duncan et al. [10] showed that there exist embedded
planar graphs that have Lombardi drawings but do not have planar Lombardi drawings.
Here we continue this investigation of planar Lombardi drawings and extend it to planar
k-Lombardi drawings.

New Results. In this paper we provide the following results: (1) We find examples
of graphs that do not have a Lombardi drawing, regardless of the ordering of edges
around each vertex, thus strengthening an example from [10] of graphs for which a
specific edge ordering cannot be drawn. (2) We find examples of planar 3-trees with no
planar Lombardi drawing, strengthening an example from [10] of a planar graph with
treewidth greater than three that is not planar Lombardi. (3) We show how to construct
a smooth 2-Lombardi drawing for any graph, a smooth planar 2-Lombardi drawing of

310 C.A. Duncan et al.

planar graph with maximum degree three, and a pointed planar 2-Lombardi drawing or
a smooth planar 3-Lombardi drawing of any planar graph.

Other Related Work. In addition to the earlier work on Lombardi drawings, there is
considerable prior work on graph drawing with circular-arc or curvilinear edges for the
sake of achieving good, but not necessarily perfect, angular resolution [4,16]. There
is also significant work on confluent drawings [7,11,12,18,19], which use curvilinear
edges not to separate edges but rather to bundle similar edges together and avoid edge
crossings. Brandes and Wagner [3] provide a force-directed algorithm for visualizing
train schedules using Bézier curves for edges and fixed positions for vertices. Finkel and
Tamassia [14] extend this work by giving a force-directed method for drawing graphs
with curvilinear edges where vertex positions are not fixed. Aichholzer et al. [1] show,
for a given embedded planar triangulation with fixed vertex positions, it is possible to
find a circular-arc drawing that maximizes the minimum angular resolution by solving
a linear program. In addition, Matsakis [23] describes a force-directed approach to pro-
ducing Lombardi drawings, but without an implementation. Chernobelskiy et al. [5],
on the other hand, describe two functional Lombardi force-directed schemes that are
based on the use of either dummy vertices or tangent forces but may not always achieve
perfect angular resolution. Thus, to the best of our knowledge, none of this other re-
lated work correctly results in drawings of graphs having perfect angular resolution and
curvilinear edges.

Alternatively, some previous work achieves good angular resolution using straight-
line drawings [6,15,22] or piecewise-linear poly-arc drawings [13,17,20]. Di Battista
and Vismara [6] characterize straight-line drawings of planar graphs with a prescribed
assignment of angles between consecutive edges incident on the same vertex.

2 k-Lombardi Drawings

2.1 Non-Lombardi Graphs

Before investigating k-Lombardi drawings, we first establish the need for using poly-arc
edges to be able to draw any graph. Although Duncan et al. [10] show a graph, Fig. 3(a),
for which no Lombardi drawing is possible while preserving the given ordering of edges
around each vertex, as Fig. 3(b) shows, if the ordering is not fixed, it is possible to create
a valid Lombardi drawing for the graph. In this section, we provide a graph that has no
Lombardi drawing irrespective of the edge ordering.

There are some complications in proofs of non-Lombardi counterexamples that dif-
fer from counterexamples in straight-line planar drawings. For example, if graph G is
non-Lombardi, this does not imply that all graphs H ⊃G are non-Lombardi because the
addition of edges changes the angular resolution and can therefore dramatically change
the subsequent placement of vertices. In addition, since the edge ordering is not fixed
by the input, we must argue that any ordering forces a conflict.

Additional complications concern the density and symmetry of any possible coun-
terexample. A k-degenerate graph is a graph that can be reduced to the empty graph by
iteratively removing vertices of degree at most k. The graph in Fig. 3 is 3-degenerate,

Planar and Poly-arc Lombardi Drawings 311

v0

v3, v4

v6

v5

v5v6

v5

v6

v2

v1

(a)

v1

v0v2

v4

v3v5
v6

(b)

Fig. 3. A 7-vertex 3-degenerate graph that has no Lombardi drawing with the given edge ordering.
(a) A Möbius transformation makes triangle v0v1v2 equilateral, forcing both vertices v3 and v4 to
be placed at the centroid and vertices v5 and v6 at the point at infinity; (b) A different ordering
that does provide a Lombardi drawing.

and 3-degenerate graphs can be drawn Lombardi-style if we are willing to ignore vertex-
vertex and vertex-edge overlaps.1 Consequently, if a 3-degenerate graph is to be a coun-
terexample, we must show that all vertex orderings force two vertices to overlap. Intu-
itively, 4-degenerate graphs should be more restrictive, but the simplest 4-degenerate
graph, K5, nevertheless has a circular Lombardi drawing. One reason is the fact that K5

is extremely symmetrical. Therefore, we shall modify this graph to break its symmetry.
We define our counterexample graph G8 to be K5 with the addition of three degree-one
vertices causing one of the vertices of the original K5 to have degree 5 and another to
have degree 6, while the other three remain with degree 4; see Fig. 4(a).

Before we can establish our main theorem, we need to present a few geometric prop-
erties related to Lombardi drawings.

Property 1 ([10]). Let A be a circular arc or line segment connecting two points p and
q that both lie on circle O. Then A makes the same angle to O at p that it makes at q.
Moreover, for any p and q on O and any angle 0≤ θ ≤ π , there exist either two arcs or
a line segment and pair of collinear rays connecting p and q, making angle θ with O,
one lying inside and one outside of O.

We defer the proof of the next property, partially established in [10], to the full ver-
sion of this paper [8].

Property 2. Suppose we are given two points p = (px, py) and q = (qx,qy) and as-
sociated angles θph and θqh and an angle θpq. Consider all pairs of circular arcs that
leave p and q with angles θph and θqh respectively (measured with respect to the pos-
itive horizontal axis) and meet at an angle θpq. The locus of meeting points for these
pairs of arcs is a circle. Moreover, the circle has radius rc = dpq cscα/2 and center
(px + rc sin(α +β), py− rc cos(α +β)), where α = (θph−θqh−θpq)/2, β is the angle
formed by the ray from p through q with respect to the positive horizontal axis, and dpq

is the distance between the points p and q.

1 Note that a drawing with vertex-vertex overlaps still must obey the perfect angular resolution
constraints on the (possibly zero-length) edges, assuming such edge lengths are even allowed.

312 C.A. Duncan et al.

v0 v1

v2

v3
v4v5

v6

v7

(a)

v0 v1

v2

xa

b

c c

d

e

efa

(b)

Fig. 4. (a) G8 with the K5 subgraph drawn Lombardi-style and additional edges shown. (b) Com-
puting the twist for the three vertices 0, 1, and 2. The twist for vertex 0 is x.

Theorem 1. The graph G8 is non-Lombardi.

Proof. Let v0,v1,v2 be the three vertices of G8 with degree four. Let v3 and v4 be the
vertices with degree five and six respectively. We do not care about the final placement
of the degree-one vertices, whose main purpose is to alter the angular resolution of v3

and v4. Using a Möbius transformation we can assume that the first three vertices v0, v1,
and v2 are placed on the corners of a unit equilateral triangle such that v0 and v1 have
positions (0,0) and (1,0) respectively. We shall show that for every edge ordering,
the two vertices v3 and v4 cannot both be placed to maintain correctly their angular
resolution and be connected to each other. We do this by establishing the algebraic
equations for their positions based on the edge orderings of all vertices. We then show
that such a set of equations has no solution for any valid assignment of orderings.

We first establish a notation for representing a specific edge ordering. For every
vertex vi with neighbor v j, let ki j represent the counterclockwise cyclic ordering of
edge (vi,v j) about vi with k01 = 0 and ki0 = 0 for i > 0. For example, in Fig. 4(a),
the edge ordering around v4 has k41 = 2, k42 = 4, k43 = 5, k46 = 1, and k47 = 3. The
twist ti of a vertex vi is the angle made by the arc extending from vi to the neighbor
v j with ki j = 0. From the initial placement of v0, v1, and v2 on an equilateral triangle
and their respective edge orderings, we can uniquely determine the twists for each of
these vertices; see Fig. 4(b). Since the three vertices lie on an equilateral triangle, the
tangents to the circle defined by the three points also form an equilateral triangle. From
Property 1, the angles formed by the arcs connecting each pair of vertices to the tangents
at the circle yield matching (but undetermined) angles, labeled a, c, and e. The angles
b, d, and f are determined uniquely by the edge orderings as follows:

b = 2π− k02π/2, d = k12π/2, f = 2π− k21π/2 (1)

Noting that certain triplets of angles yield a value of π , we have the following three
equations on three unknowns: a+b+c= π +2i0π , c+d +e = π +2i1π , and e+ f +a =
π + 2i2π . Solving for a yields: 2a = π − f − b + d + 2(i0− i1 + i2)π . For the twist for
v0, we wish to know the value of x, the angle for the arc from v0 to v1. Noting that
x = a + b + 2π/3− 2i0π and substituting in (1) yields t0 = x = 7π/6 + π(k12 + k21−

Planar and Poly-arc Lombardi Drawings 313

k02)/4 + (i2− i0− i1)π . Noting that t0 + c + π/3 = 2π yields t1 = π − t0. Similarly,
t2 = π−a = 5π/3− t0− k02π/2 + 2π(1− i0).

The positions and orienting twists of the first three vertices also yield a unique posi-
tion and twist for vertices v3 and v4. After determining these values, we shall show that
in all orderings it is not possible to connect v3 to v4 with a single circular arc while still
maintaining the proper angular resolution.

From Property 2, v3 must lie on a circle C01 defined by the neighbors v0 and v1

and their corresponding arc tangents. Similarly, it must lie on circles C02 and C12. The
intersection of these three circles determines the position and orientation of v3. Let
us proceed to determine C01. Letting p = v0 and q = v1, we have θph = t0 + πk03/4
and θqh = t1 + πk13/4 and θpq = π(k31− k30)/5 = πk31/5. From Property 2 and the
fact that dpq = 1, we can determine that C01 has radius r01 = cscα01/2 and center
c01 = (r01 sin α01,−r01 cosα01) = (1/2,−cotα01/2) with α01 = (θph−θqh−θpq)/2 =
t0−π/2+π(5k03−5k13−4k31)/40. Similarly, C02 has radius r02 = cscα02/2 and cen-
ter c02 = (r02 sin(α02 + π/3),−r02 cos(α02 + π/3)) with α02 = t0− 5π/6+ π(5k03 +
10k02−5k23−4k32)/40 +(i0−1)π .

Given the circles and the position of v0 at the origin, it is easy to determine the
intersection of the two circles, one of which is v0 and the other, if it even exists, must
be v3. Since v0 must lie on the intersection, the line from v0 to v3 is perpendicular to the
line, �, through the two centers. Moreover, v3 is the reflection of p about �. Thus, letting

v = (vx,vy) = c02− c01, c = v0− c01 =−c01, and v⊥ = (−vy,vx) yields v3 = −2c·v⊥
v·v v⊥.

To establish the twist t3 at v3 we observe from Property 1 that the angle α formed by the
line �03 from v0 to v3 and the tangent of the curve from v0 to v3 is the same as the tangent
of the curve from v3 to v0 and the line �03. Moreover, θ03 = t0 + k03π/4 = α + β03 and
t3 = θ30 = π−α + β03 where β03 = arctan(v3(y)/v3(x)) is the slope of �03. From this,
we can deduce that t3 = π − t0− k03π/4 + 2β03. The exact same calculations can be
used to compute v4 and t4.

As with the twists for t3 and t4, we can use Property 1 to determine the angles formed
by the arc from v3 to v4 given their positions and twists. We know that the angles of the
tangents to the arc at v3 and v4 are θ34 = t3 +k34π/5 and θ43 = t4 +k43π/6 respectively.
Letting β34 = arctan((v4(y)− v3(y))/(v4(x)− v3(x))) be the slope of the line from v3

to v4, we have that θ34−β34 = α and π−α = θ43−β34. Consequently, we have

θ34 + θ43 = π + 2β34. (2)

Each specific edge ordering therefore yields a unique set of positions and twists for v3

and v4 as outlined above. To show that no Lombardi drawing is possible one must sim-
ply show that (2) does not hold for any edge ordering. Though there are a finite number
of possible orderings and though symmetries could be used to reduce that number, the
individual case analysis for such a proof appears to be quite unwieldy. Instead, we sim-
ply iterate over every possible edge ordering, applying these equations to a numerical
algorithm that searches for a valid non-contradictory assignment. The full version of
this paper [8] contains the Python code for this program. By running this program, one
can see that no valid assignments are possible, concluding our proof. ��

314 C.A. Duncan et al.

v0

v1 v2

v5v3

v6
v4

v7

(a)

a b c d

(b)

Fig. 5. (a) An example 2-Lombardi drawing of G8. The bend points (not all of which are neces-
sary) are shown with crossed marks. (b) An example 2-Lombardi drawing of K4 with the vertices
placed on a line and tangents oriented to force numerous inflection points.

Observing that we can take any Lombardi graph, subdivide an edge, and split the
resulting new vertex into two degree-one vertices to produce a new Lombardi graph,
we can get the following corollary, whose complete proof is provided in [8].

Corollary 1. There are an infinite amount of connected non-Lombardi graphs.

2.2 Smooth 2-Lombardi Drawings

If we want to draw Lombardi-style drawings for any given graph we have to relax one
of the two requirements that specify Lombardi drawings. Here, we would like to avoid
relaxing the requirement that edges have perfect angular resolution. Fortunately, we can
achieve a Lombardi methodology for drawing any graph if we allow two circular arcs
per edge; for example, see Fig. 5(a).

Since every 2-degenerate graph has a Lombardi drawing [10, Thm. 3] and since
subdividing every edge in a graph results in a 2-degenerate graph, we readily obtain the
following corollary, whose complete proof is found in the full version of the paper [8].

Corollary 2. Every graph has a smooth 2-Lombardi drawing. Furthermore, the ver-
tices can be chosen to be in any fixed position.

As Fig. 5(b) illustrates, although we can place the vertices in any position with any
initial orientation, an arc’s smooth bend point might be an inflection point.

3 Planar k-Lombardi Drawings

3.1 A Planar 3-Tree with No Planar Lombardi Drawing

It is known that planar graphs do not necessarily have planar (non-crossing) Lombardi
drawings. For example, Duncan et al. [10] show that the nested triangles graph must
have edge crossings whenever there are 4 or more levels of nesting. While this graph

Planar and Poly-arc Lombardi Drawings 315

a b
c

d
a b

d

c

Fig. 6. Left: A planar 3-tree that has no planar Lombardi drawing. Right: For the K4 subgraph
defined by the four vertices a, b, c, and d, a drawing with the correct angles at each vertex will
necessarily have crossings.

is 4-degenerate, even more constrained classes of planar graphs have no planar Lom-
bardi drawings. Specifically, we can show that there exists a planar 3-tree that has no
planar Lombardi realization. The planar 3-trees, also known as Apollonian networks,
are the planar graphs that can be formed, starting from a triangle, by repeatedly adding
a vertex within a triangular face, connected to the three triangle vertices, subdividing
the face into three smaller triangles. These graphs have attracted much attention within
the physics research community both as models of porous media with heterogeneous
particle sizes and as models of social networks [2]. In addition, 3-trees are relevant
for Lombardi drawings because they are examples of 3-degenerate graphs, which have
nonplanar Lombardi drawings if vertex-vertex and vertex-edge overlaps are allowed.

Theorem 2. There exists a planar 3-tree that has no planar Lombardi drawing.

Proof. An example of a planar 3-tree that has no planar Lombardi drawing is given
in Fig. 6; in the figure, sixteen small white vertices are shown, but our construction re-
quires a sufficient number (which we do not specify precisely) in order to force the angle
between arcs ad and ab to be arbitrarily close to π . The numbers of white vertices on
the top and bottom of the figure should be equal. Because of this equality, the three arcs
ab, bc, and ca split the graph into two isomorphic subgraphs, and due to this symmetry
they must each meet at angle π , necessarily forming a circle in any Lombardi drawing.
By performing a Möbius transformation on the drawing, we may assume without loss
of generality that these three points form the vertices of an equilateral triangle inscribed
within the circle, as shown in the right of the figure. Then, according to our previous
analysis of 3-degenerate Lombardi graph drawing, there is a unique point in the plane
at which vertex d may be located so that the arcs ad, bd, and cd form the correct angle
of 2π/3 to each other and the correct angles to the three previous arcs ab, bc, and ca.
However, as shown on the right of the figure, that unique point lies outside circle abc
and causes multiple edge crossings in the drawing. ��

316 C.A. Duncan et al.

(a) (b) (c)

Fig. 7. (a) A planar graph of maximum degree 3. (b) A representation of the graph as tangent
circles according to the Koebe–Andreev–Thurston theorem, together with arcs connecting each
vertex perpendicularly to the disk tangency points. Layout generated using Ken Stephenson’s
CirclePack software. (c) The final smooth 2-Lombardi drawing.

3.2 Smooth Planar 2-Lombardi Drawings of Planar Max-Degree-3 Graphs

Lemma 1. Given a circle C and three points a, b, and c on it, there exists a point p
inside C such that we can draw three edges from p to a, b, and c as circular arcs that
are all perpendicular to C and meet inside p at angle 2π/3.

Proof. We can find a Möbius transform τ that maps the circle to itself, mapping a, b,
and c to three points a′, b′ and c′ that are 2π/3 radians apart on the circle. For these
three points, the three edges can be drawn as radii of the circle meeting at the center
point p′. The inverse transformation to τ maps p′ to p and maps these three radii to
circular arcs with the desired property. ��
Theorem 3. Every planar graph G of maximum degree 3 has a smooth planar 2-
Lombardi drawing.

Proof. We apply the Koebe–Andreev–Thurston theorem to create a representation of G
as the intersection graph of tangent circles; see Fig. 7(b). Each circle has three contact
points that will be the bend points of its incident edges. Applying Lemma 1 to the circles
yields a vertex and half-edge drawing inside each disk. At each contact point two half-
edges meet at angle π , resulting in a smooth planar 2-Lombardi drawing of G. ��

3.3 Pointed Planar 2-Lombardi Drawings of Planar Graphs

We now show that every planar graph allows a planar 2-Lombardi drawing with pointed
joints. The approach is similar to the previous section, but the drawing method inside
the disks is different. We need the following lemmas, which are illustrated in Fig. 8. We
defer the proof of the first lemma to the full version of the paper [8].

Lemma 2. Let C be a circle and P be a set of n points on C. Additionally suppose
that the four integers n1,n2,n3,n4 sum up to n and satisfy the inequalities �n/4� ≤

http://www.math.utk.edu/~kens/CirclePack/

Planar and Poly-arc Lombardi Drawings 317

(a) (b) (c)

Fig. 8. (a) A disk with a set of connection points on its boundary. (b) A placement for the vertex
in the disk that divides the connection points into four quadrants. (c) The actual connections are
not fixed and guaranteed not to intersect.

ni ≤ �n/4� and �n/2� ≤ ni + n(i+1) mod 4 ≤ �n/2�. Then there exist two circles A and B
disjoint from P such that A, B, and C are pairwise perpendicular and such that A and B
subdivide P into four sets of cardinalities n1, n2, n3 and n4.

Lemma 3. Given a circle C and a set P of n points on C, there exists a point p in C such
that we can draw n edges from p to the points in P as circular arcs that lie completely
inside C, do not cross each other, and meet in p at angle 2π/n.

Proof. Draw n ports around a point with equal angles, and draw two perpendicular
lines through the point (not coinciding with any ports), and count the number of points
in each quadrant. Let these numbers be n1, . . . ,n4 and find two circles A and B as in
Lemma 2. Then we place p at their intersection point inside C. Now orient the ports at
p such that each quadrant has the correct number of ports.

Within any quadrant, there is a circular arc tangent to C at the point where it is crossed
by B and tangent to A at point p; this can be seen by using a Möbius transformation to
transform A and B into a pair of perpendicular lines, after which the desired arc has half
the radius of C. By the intermediate value theorem, there are two circular arcs from p to
any point q on the boundary arc of the quadrant that remain entirely within the quadrant
and are tangent to A and B respectively. By a second application of the intermediate
value theorem, there is a unique circular arc that connects p to each connection point
on the boundary of C such that the outgoing direction at p matches the port and such
that the arc remains entirely within its quadrant.

Any two arcs lying in the same quadrant belong to two circles that cross at p and at
one more point. Whether that second crossing point is inside or outside of the quadrant
can be determined by the relative ordering of the two arcs at p and on the boundary of
the quadrant. However, since the ordering of the ports and of the connection points is
the same, none of the crossings of these circles are within C, so no two arcs cross. ��
Theorem 4. Every planar graph has a pointed planar 2-Lombardi drawing.

Proof. As before, we first obtain a touching-circles representation of graph G using
the Koebe–Andreev–Thurston theorem. Each vertex v in G is represented by a circle C;
place v together with arcs connecting it to the set of contact points on C using Lemma 3.
The arcs meet up at the contact points to form (non-smooth) 2-Lombardi edges. ��

318 C.A. Duncan et al.

3.4 Smooth Planar 3-Lombardi Drawings of Planar Graphs

Although the 2-Lombardi planar realization above has non-smooth bends in each edge,
as we now show, every planar graph also has a smooth planar 3-Lombardi drawing. It
seems likely that one can obtain a smooth planar 3-Lombardi drawing from a planar
graph G by perturbing each edge of a straight-line drawing of G into a curve formed by
two very small circular arcs near each endpoint of the edge, connected to each other by
a straight segment. However, the details of this construction are messy. An alternative
construction is much simpler, once Theorem 4 is available.

Theorem 5. Every planar graph has a smooth planar 3-Lombardi drawing.

Proof. Find a pointed planar 2-Lombardi drawing by Theorem 4. For each pointed bend
of the drawing formed by two circular arcs a1 and a2, replace the bend by a third circular
arc tangent to both a1 and a2, with the two points of tangency close enough to the bend
to avoid crossing any other edge. ��

4 Conclusions

We have proven several new results about the planarity of Lombardi drawings and about
the classes of graphs that can be drawn as k-Lombardi drawings rather than as Lombardi
drawings. However, several problems remain open, including the following:

1. Characterize the subclasses of planar graphs having Lombardi planar realizations
and those having smooth 2-Lombardi planar realizations.

2. Bound the (change in) curvature of edge segments in k-Lombardi drawings.
3. Address area and resolution requirements for Lombardi drawings of graphs.

Acknowledgments. This research was supported in part by the National Science Foun-
dation under grants CCF-0830403, CCF-0545743, and CCF-1115971, by the Office of
Naval Research under MURI grant N00014-08-1-1015, and by the Louisiana Board of
Regents through PKSFI Grant LEQSF (2007-12)-ENH-PKSFI-PRS-03.

References

1. Aichholzer, O., Aigner, W., Aurenhammer, F., Dobiášová, K.Č., Jüttler, B.: Arc triangula-
tions. In: Proc. 26th Eur. Worksh. Comp. Geometry (EuroCG 2010), Dortmund, Germany,
pp. 17–20 (2010)

2. Andrade Jr., J.S., Herrmann, H.J., Andrade, R.F.S., da Silva, L.R.: Apollonian networks:
Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs.
Physics Review Letters 94, 018702 (2005); arXiv:cond-mat/0406295

3. Brandes, U., Wagner, D.: Using graph layout to visualize train interconnection data. J. Graph
Algorithms Appl. 4(3), 135–155 (2000),
http://jgaa.info/accepted/00/BrandesWagner00.4.3.pdf

4. Cheng, C.C., Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Drawing planar graphs with
circular arcs. Discrete Comput. Geom. 25(3), 405 (2001), doi:10.1007/s004540010080

http://jgaa.info/accepted/00/BrandesWagner00.4.3.pdf

Planar and Poly-arc Lombardi Drawings 319

5. Chernobelskiy, R., Cunningham, K., Goodrich, M.T., Kobourov, S.G., Trott, L.: Force-
directed Lombardi-style graph drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011.
LNCS, vol. 7034, pp. 320–331. Springer, Heidelberg (2011)

6. Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete Math. 9(3),
349–359 (1996), doi:10.1137/S0895480194264010

7. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: Visualiz-
ing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1), 31–52 (2005),
http://jgaa.info/accepted/2005/Dickerson+2005.9.1.pdf

8. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Löffler, M.: Planar and poly-
arc Lombardi drawings. ArXiv e-prints abs/1109.0345, arXiv:1109.0345 (September 2011)

9. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Draw-
ing Trees With Perfect Angular Resolution and Polynomial Area. In: Brandes, U., Cor-
nelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 183–194. Springer, Heidelberg (2011),
doi:10.1007/978-3-642-18469-7 17; arXiv:1009.0581

10. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lom-
bardi Drawings of Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 195–207. Springer, Heidelberg (2011), doi:10.1007/978-3-642-18469-7 18;
arXiv:1009.0579

11. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-Confluent Drawings. In: Healy, P., Nikolov,
N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer, Heidelberg (2006),
doi:10.1007/11618058 16; arXiv:cs/0510024v1

12. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorithmica 47(4),
439–452 (2007), doi:10.1007/s00453-006-0159-8

13. Eppstein, D., Löffler, M., Mumford, E., Nöllenburg, M.: Optimal 3D Angular Resolu-
tion for Low-Degree Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 208–219. Springer, Heidelberg (2011), doi:10.1007/978-3-642-18469-7 19;
arXiv:1009.0045

14. Finkel, B., Tamassia, R.: Curvilinear Graph Drawing Using the Force-Directed Method.
In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer, Heidelberg (2005),
doi:10.1007/978-3-540-31843-9 46

15. Garg, A., Tamassia, R.: Planar Drawings and Angular Resolution: Algorithms and Bounds.
In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 12–23. Springer, Heidelberg (1994),
doi:10.1007/BFb0049393

16. Goodrich, M.T., Wagner, C.G.: A framework for drawing planar graphs with curves and
polylines. Journal of Algorithms 37(2), 399–421 (2000), doi:10.1006/jagm.2000.1115

17. Gutwenger, C., Mutzel, P.: Planar Polyline Drawings With Good Angular Resolution. In:
Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg
(1999), doi:10.1007/3-540-37623-2 13

18. Hirsch, M., Meijer, H., Rappaport, D.: Biclique Edge Cover Graphs and Confluent Drawings.
In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 405–416. Springer,
Heidelberg (2007), doi:10.1007/978-3-540-70904-6 39

19. Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Computer
Graphics Forum 28, 983–990 (2009), doi:10.1111/j.1467-8659.2009.01450.x

20. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996),
doi:10.1007/BF02086606

21. Lombardi, M., Hobbs, R.: Mark Lombardi: Global Networks. Independent Curators (2003)
22. Malitz, S., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. Discrete

Math. 7(2), 172–183 (1994), doi:10.1137/S0895480193242931
23. Matsakis, N.: Transforming a random graph drawing into a Lombardi drawing. ArXiv ePrints

abs/1012.2202, arXiv:1012.2202 (December 2010)

http://jgaa.info/accepted/2005/Dickerson+2005.9.1.pdf

Force-Directed Lombardi-Style Graph Drawing�

Roman Chernobelskiy1, Kathryn I. Cunningham1, Michael T. Goodrich2,
Stephen G. Kobourov1, and Lowell Trott2

1 Department of Computer Science, University of Arizona, Tucson, AZ, USA
2 Department of Computer Science, University of California, Irvine, CA, USA

Abstract. A Lombardi drawing of a graph is one in which vertices are repre-
sented as points, edges are represented as circular arcs between their endpoints,
and every vertex has perfect angular resolution (equal angles between consecu-
tive edges, as measured by the tangents to the circular arcs at the vertex). We
describe two algorithms that create “Lombardi-style” drawings (which we also
call near-Lombardi drawings), in which all edges are still circular arcs, but some
vertices may not have perfect angular resolution. Both of these algorithms take
a force-directed, spring-embedding approach, with one using forces at edge tan-
gents to produce curved edges and the other using dummy vertices on edges for
this purpose. As we show, these approaches produce near-Lombardi drawings,
with one being slightly better at achieving near-perfect angular resolution and the
other being slightly better at balancing edge placements.

1 Introduction
The American artist, Mark Lombardi, was known for his drawings of social networks of
conspiracy theories, which use circular arcs for edges and have a nice aesthetic place-
ment for both vertices and edges (e.g., see Figure 1).

Fig. 1. Mark Lombardi’s WFC 1970-84 [24]

� Research funded in part by NSF grants CCF-0545743 and CCF-1115971.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 320–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Force-Directed Lombardi-Style Graph Drawing 321

Inspired by Lombardi’s work, Duncan et al. [11, 12] introduce the concept of a Lom-
bardi drawing, which is a drawing that uses circular arcs for edges and achieves the
maximum (i.e., perfect) amount of angular resolution possible at each vertex. Their
methods are deterministic and not force-directed, but, as they show, there exist graphs
that do not have perfect Lombardi drawings. These negative results motivate a re-
laxation of the requirement that drawings achieve perfect angular resolution at every
vertex.

At the same time, experimental studies have shown that angular resolution has a
significant impact on the readability of a graph [27, 28]. Thus, our goal in this paper
is to study the degree to which one can achieve good angular resolution at vertices by
using the Lombardi-inspired approach of embedding edges as circular arcs.

Force-directed layout algorithms, also known as “spring embedders,” are well-known
for the “organic” type of drawings they produce, in terms of vertex and edge placement,
using straight-line edges (e.g., see [7, 16–18]). Still, straight-line segments rarely occur
in nature; hence, it is not clear that humans prefer straight-line segments for the sake
of graph readability. With this in mind, we consider force-directed graph-drawing al-
gorithms that allow for circular-arc edges and include forces that tend to spread those
edges more evenly around vertices. We feel this approach can result in drawings that
appear more “alive” than can be achieved using straight-line edges; see Fig. 2.

Fig. 2. Examples of standard straight-line and Lombardi-style drawings

322 R. Chernobelskiy et al.

1.1 Related Work

There are several graph drawing methods that use circular-arc edges or curvilinear poly-
edges. For example, Goodrich and Wagner [20] give algorithms for drawing planar
graphs using Bézier splines for edges, and Cheng et al. [6] describe a scheme for draw-
ing graphs using circular arc poly-edges. Confluent drawings [9, 14, 22], bundle edges
together in smooth curves so as to reduce crossings.

There is also a great deal of prior work on force-directed graph drawing and we refer
the reader to some excellent surveys (e.g., see [1, 2, 7]). Holten and van Wijk [23] give
a force-directed method for producing an edge-bundled drawing that is similar to a con-
fluent drawing. Brandes and Wagner [5] describe a force-directed method for drawing
train connections, where the vertex positions are fixed but transitive edges are drawn
as Bézier curves (see also [3]). Finkel and Tamassia [15], on the other hand, describe
a force-directed method for drawing graphs using curvilinear edges where vertex po-
sitions are free to move. Their method is based on adding dummy vertices, as one of
our methods does, but their dummy vertices serve as control points for Bézier curves,
rather than circular arcs, and their drawings do not achieve locally-optimal edge reso-
lution at the vertices. Matsakis [26] describes a force-directed approach to producing a
Lombardi-style drawing, which is based on iteratively visiting each vertex v and making
adjustments locally with respect to v. Unfortunately, he does not evaluate his method
experimentally and it is not clear that it always converges.

Angular resolution in the straight-line setting is also a well-studied problem [8, 19,
25]. Polyline edges have also been considered in the context of drawing planar graphs
with good angular resolution [20, 21]. Finally, rotating optimal angular resolution tem-
plates for each vertex in the fixed position setting has been studied as well [4].

1.2 Our Results

In this paper, we describe two force-directed algorithms for Lombardi-style (or near-
Lombardi) drawings of graphs, where edges are drawn using circular arcs with the goal
of maximizing the angular resolution at each vertex. Our first approach calculates lat-
eral and rotational forces based on the two tangents defining a circular arc between two
vertices. In contrast, the second approach uses dummy vertices on each edge with re-
pulsive forces to “push out” the circular arcs representing edges, so as to provide an
aesthetic “balance.” Another distinction between the two approaches is that the first one
lays out the vertex positions along with the circular edges, while the second one works
on graphs that are already laid out, only modifying the edges.

We have implemented both algorithms and tested them on a subset of the Rome
graph library. We provide experimental evidence that our approaches yield drawings
that have both a visual appeal and an increased angular resolution. We give explicit
demonstrations for well-known symmetric graphs, random graphs, and even a graph
drawn by Lombardi himself. We also provide a comparative analysis of the two ap-
proaches, which suggests that the tangent-based method is in general better at achieving
the highest angular resolution possible, while the dummy-vertex approach is better in
general at balancing the placement of edges.

Force-Directed Lombardi-Style Graph Drawing 323

(a) (b) (c) (d)

Fig. 3. Lombardi forces move and rotate vertices so that all corresponding tangents have match-
ing angles, allowing for feasible circular arcs. (a) An illustration of pre-assigned tangents for a
given degree-3 vertex. The angles between the tangents are equal and remain fixed, while the
vertex itself can be rotated by changing its orientation with respect to the origin (currently 35◦ as
indicated by the green line); (b) If the angles differ, then there cannot be a circular arc tangential
to both tangents; (c) If the angles are equal, there is a unique circular arc; (d) The tangential force
for vertex 2 with respect to vertex 1 moves vertex 2 to make the tangent angles equal.

2 A Tangent-Based Lombardi Spring Embedder Formulation

Force-directed algorithms treat a given graph as a physical system, where the vertices
represent points in an N-body mechanics problem. In the system set up by Eades [13],
vertices are treated as steel rings and the edges are springs that obey Hooke’s Law.
Fruchterman and Reingold describe a model in which a strong nuclear force attracts
two protons within the atomic nucleus at close range, while an electrical force repels
them at farther range [16]. Although inspired by physics, most force-directed algorithms
do not attempt to mimic physical laws precisely.

Similar to most force-directed layout algorithms, our tangent-based Lombardi spring
embedder assigns a force to each vertex and aims to minimize the overall energy of the
system. There are three forces which affect vertex position, and one force which affects
the radius of the circular arcs between a pair of vertices connected by an edge.

The attractive force, Fa, pulls vertices connected by edges closer together. It is ap-
plied to every pair of vertices connected by an edge as follows:Fa = (d− k)/d, where
d is the current distance between the two vertices and k is a constant representing the
ideal distance between them. The repulsive force, Fr , pushes vertices apart. It is applied
to every pair of vertices using the following formula: Fr = k2/d3.

The tangential and rotational forces make it possible for circular arcs to be drawn
between vertices, while maintaining a perfect (or near-perfect) angular resolution. To
help compute the two forces, we augment each vertex with an orientation and fixed
tangents, which dictate how to draw the arcs. The angles between the tangents are equal
and remain fixed, while the vertex itself can be rotated by changing its orientation with
respect to the origin. Note that the angle of a tangent at one vertex must equal the angle
of a tangent at the other vertex for an arc to be possible between them. Here, angles are
measured with respect to the segment connecting two vertices; see Fig. 3.

The tangential force, Ft, attempts to move vertices so as to make a circular arc pos-
sible between any pair of vertices connected by an edge. To compute this force we need
to find the optimal position of a vertex with respect to its neighbor. The magnitude of

324 R. Chernobelskiy et al.

Fig. 4. Perfect Lombardi drawings of C5, K3,3 and K5, with shown tangents

the force is proportional to the distance between this optimal position and the current
position, and the direction is straight towards the optimal position. It is applied to every
pair of vertices that share an edge as follows: Ft = A × d, where d is the distance
between current and optimal positions, and A is the tangential force constant.

The rotational force, Fρ, does not attempt to move a vertex, but to rotate a vertex
and its tangent template so as to make the tangent angles match, thereby making the
arc between two vertices possible. To compute the rotational force we find the optimal
angle of a tangent and subtract the current angle as follows:Fρ = B ×Δangle, where
Δangle is the rotation required and B is a small constant. For each vertex v, the three
appropriately scaled movement forces are added together to the rotational force in order
to determine the overall force acting on the vertex: F (v) = Fa + Fr + Ft + Fρ.

The following cooling function is used to determine the magnitude of the force in
terms of the number of iterations: T (i) = (T0 ∗ (M − i))/M , where i is the iteration
number and M is the maximum number of iterations (adapted from graphviz). T0 is
calculated as follows: T0 = K ∗ √n/5, where K is the ideal spring length and n is
the number of vertices. Experimentally determined values for the constants we use are
K = 0.3, M = 600, A = 0.9, B = 0.5. For many small graphs the algorithm succeeds
in computing perfect Lombardi drawings; see Fig. 4.

Note that as described, the algorithm operates on a fixed ordering of the tangents
around each vertex. This strict order hinders our algorithm as it attempts to find a Lom-
bardi drawing. To give our algorithm more flexibility, we add a ”shuffling” method that
can modify the relative order of tangents around a vertex. This rearrangement occurs at
the beginning of each iteration, and tangents are reordered only if a lower energy state
is found within a reasonable number of calculations. In this case, the energy we seek to
minimize is the total amount of rotation generated by all tangents to match the angle of
their counterpart across their edges. This is the sum of the absolute value of the rotation
generated by each tangent, rather than the net sum of the rotations, as we calculated
when finding the rotational force. If the degree of a vertex is small, we calculate the
total amount of rotation for every permutation of tangent orderings to find the one with
the least energy. If the number of tangents is large, we test a subset of tangent orderings
created by all possible pairwise swaps.

2.1 A Tangent-Based Near-Lombardi Spring Embedder

As not all graphs are Lombardi graphs [10], and our algorithm cannot guarantee that it
will find a Lombardi drawing even if one does exist, when needed we relax the perfect

Force-Directed Lombardi-Style Graph Drawing 325

Lombardiness = 76 Lombardiness = 83 Lombardiness = 70 Lombardiness = 70

Lombardiness = 99 Lombardiness = 98 Lombardiness = 94 Lombardiness = 93

Fig. 5. Standard force-directed drawings (above) and near-Lombardi drawings (below)

angular resolution constraint. If the above tangent-based Lombardi Spring Embedder
has failed to find optimal positions for every vertex, we modify the tangents of vertices
which have infeasible edge constraints.

For tangents of adjacent vertices that have unequal angles, we move each tangent
to the average of both tangents’ positions. Now we can draw circular arcs between all
connected vertices with minimal loss of angular resolution. As this change in tangent
angles may drastically affect the angular resolution, we improve the resolution with
another round of force-directed simulation. Rather than rotate or change the position
of vertices as before, here we only modify angles between adjacent tangents (which
were fixed before). This new force is based on the observation that, ideally, a tangent
should bisect the angle formed by the two tangents immediately clockwise and counter-
clockwise from itself. We find this midpoint and compute the force proportional to the
required rotation to move the tangent to this location: FNL = C × Δangle, where
Δangle is the difference between the current angle of the tangent and the angle that
bisects the neighboring tangents, and C is a constant. In order to maintain equal tangent
angles for both tangents across an edge, which is necessary to draw a perfectly circular
arc, we compute this force for both of the tangents incident to the edge, average it, and
then apply it equally to both.

2.2 Lombardi Metric

For near-Lombardi drawings we need a measure of quality. As edges produced by the
algorithm are always perfect circular arcs, the only violations of the Lombardi criteria
are at vertices where perfect angular resolution could not be achieved. With this in mind,
we define the Lombardiness of a drawing to be a number in the range 0 to 100, based
on the average deviation from perfect angular resolution across all inter-tangent angles.
This deviation is the difference between the actual angle measure and the measure of

326 R. Chernobelskiy et al.

the angle if its vertex had perfect angular resolution: |a − 2π
d |, where a is the actual

angle measure and d is the degree of a’s vertex. To find the Lombardiness of a given
graph, we compute this value for all inter-tangent angles, and then find the average. We
scale this average to the 0-100 range by dividing by π (as the maximum value of the
deviation is π). We then subtract this value from 100 to get the final score:

Lombardiness = 100− 1
π × 2|E|

∑

a∈A

|a− 2π

d
|.

Note that this measure of Lombardiness can be applied to all drawings we compute, as
well as to straight-line drawings computed by a standard force-directed method (after
all, straight-line segments are circular arcs with radius infinity). Fig. 5 shows several
pairs of graphs drawn with a standard force directed embedder and with our tangent-
based Lombardi spring embedder, along with their Lombardiness scores. For 80% of
the 5451 graphs in the Rome library with 50 vertices or less, we obtain Lombardiness
scores of 98 or higher, while very few have scores in the low 90s.

A web-enabled demo, as well as complete python source code, image libraries,
and several movies illustrating this tangent-based algorithm at work can be found at
http://lombardi.cs.arizona.edu.

3 A Dummy-Vertex Approach to Lombardi-Style Drawings

Brandenburg et al. have experimentally shown [1] that different force-directed methods
can produce results with various trade-offs for aesthetic criteria. Thus, to allow for
freedom with respect to these criteria, we built a second Lombardi-style force-directed
method that allows for choice in the underlying force-directed algorithm. This method
relies on a simple two-step process so as to allow an augmentation that can be applied
to existing force-directed approaches. The first step involves using an existing straight-
line force-directed method to place vertices and fix the order of edges around them, and
the second step applies a force-directed approach based on the use of dummy vertices
to maximize angular resolution at the vertices through the use of circular-arc edges.

Once the nodes have been placed with a user-selected force-directed method we
begin our second phase. First, we assign to each edge an additional “dummy” vertex
that is placed at the midpoint of that edge. Note that once the endpoints of an edge
have been placed, only one more point is required to uniquely determine a circular arc

(a)

u
u′

(b)

Fig. 6. (a) Points along the perpendicular bisector will determine an arc. (b) The update vector u′

used will be the projection of the sum force vector u.

http://lombardi.cs.arizona.edu

Force-Directed Lombardi-Style Graph Drawing 327

Fig. 7. Lombardi’s Hans Kopp, Trans K-B and Shakarchi Trading [24], shown as rendered by
Lombardi and as rendered by our dummy-vertex force-directed method

between these points. Thus, we can describe all possible arcs between nodes by the set
of points along the perpendicular bisector of their straight-line connection; see Fig. 6(a).

The responsibility for moving an edge will be given to the additional node we have
added to that edge. We then proceed to use the force-directed method to place these
edge-nodes. Each (dummy) edge-node will consider the nodes that it connects as neigh-
bors, and the partial edges as springs with a fractional resting length. Moreover, each
edge node will repulse from all other nodes, both the original graph nodes and other
edge-nodes. The sum force vector is calculated as before, but will be used to move the
node in a modified way. If u is the sum force update vector we consider only its motion
along the perpendicular bisector. This projection will determine a new update vector
u′ that we will use to move the edge node; see Fig. 6(b). Using u′ we can determine
the movement of the edge-node, while maintaining a circular arc edge. The edge-node
positions are updated iteratively until an equilibrium is reached.

In Figure 7, we provide a scan of a drawing of Lombardi and the result of our method
applied to the same graph. In Figure 8, we show the evolution of our algorithm through
various substeps of the two phases.

Fig. 8. A 5-node graph with center node initially displaced. Selected stages of the force-directed
placement are shown. The top row shows phase 1 and the bottom phase 2.

328 R. Chernobelskiy et al.

Fig. 9. A scatter plot of the Lombardiness of a collection of 250 graphs with straight-line, tangent-
based, and dummy-vertex embeddings (with many data points overlapping)

4 A Comparative Analysis

In this section, we provide a small comparative analysis of our two methods. From the
visual examples of drawings generated by the two methods it can already be seen that
although both use circular arcs and aim to provide near-perfect angular resolution, the
drawings seem to optimize different aesthetic qualities; see Fig. 10. For instance, in
the tangent-based approach, the tangents of a node’s edges have direct control over the
angular resolution of that node, and this method does not take node positions as fixed.
Thus, the tangent-based approach is able to achieve near-perfect angular resolution on
all nodes. The dummy-vertex approach, on the other hand, starts from node positions
determined by a straight-line force-directed method and moves edges into open space
using dummy vertices. Since it does not directly consider the angle of other outgoing
edges incident on the same vertex, it is not as successful in approaching perfect angular
resolution. Nevertheless, it does improve angular resolution over straight-line drawings.
To verify these observations, we performed an experimental analysis involving 250
graphs in the Rome library, and visualized their Lombardiness scores against their size;
see Fig. 9. The data confirms this, showing a near-perfect separation between the three
approaches (the third one given by the straight-line drawing).

The primary difficulty in drawing comparisons between these two methods is that
they are inherently different, as evidenced by a visual comparison; see Fig. 10. While
the tangent-based method arranges both vertices and edges, the dummy-vertex method
focuses on edges alone. And since the underlying force-based layout algorithm used

Force-Directed Lombardi-Style Graph Drawing 329

Lombardiness = 87 Lombardiness = 98 Lombardiness = 88 Lombardiness = 99

Lombardiness = 81 Lombardiness = 96 Lombardiness = 91 Lombardiness = 99

Lombardiness = 89 Lombardiness = 98 Lombardiness = 86 Lombardiness = 95

Lombardiness = 83 Lombardiness = 99 Lombardiness = 87 Lombardiness = 99

Lombardiness = 87 Lombardiness = 98 Lombardiness = 93 Lombardiness = 99

Fig. 10. Some example Lombardi-style drawings using the two force-directed approaches. For
each pair, the drawing on the left was done using the dummy-vertex approach and the drawing on
the right was done using the tangent-based approach. The Lombardiness score for each is given
below.

330 R. Chernobelskiy et al.

for the dummy-vertex approach has such a significant influence on the end result, it
is difficult to find metrics that compare the two approaches and ignore the underlying
layout algorithm used.

An interesting advantage of the dummy-vertex approach is the increase in the dis-
tances between vertices and non-incident edges over both the straight-line drawings and
results of the tangent-based approach. The reason for this is intuitive: each dummy ver-
tex is repulsed by other edges and graph vertices, and so edges resist getting too close
to other edges or non-incident vertices. This helps alleviate a distraction when edges
pass too close to non-incident vertices, which a reader can mistake for an adjacency.

One additional observation we can make concerns edge crossings. While neither
algorithm directly attempts to prevent crossings in the final drawings, both algorithms
have a tendency to spread vertices, which might reduce crossings. In some cases, the
tangent-based method will create crossings in its pursuit of better angular resolution,
while in other cases, the dummy-vertex method allows edge crossings to occur because
it takes the vertex positions as given from a straight-line force-directed method.

5 Conclusion and Future Work

We demonstrated two extensions of the spring-embedder paradigm for creating Lom-
bardi and near-Lombardi drawings. A feature that can often be seen in Mark Lombardi’s
art is that many edges follow common trajectories. This feature is not included in the
definition of a Lombardi drawing [12], but does occur frequently in drawings obtained
by our spring embedders. While previous work on using cubic Bézier curves for good
angular resolution is similar in spirit, the resulting drawings do not have vertices fol-
lowing common trajectories.

There are several natural directions to explore in future work, including alternative
formulations of spring forces, a multi-level version that would scale to larger graphs, as
well as possible use of this approach along with confluent drawing and edge bundling.
A very informal user feedback indicates some aesthetic appeal of the drawings pro-
duced by the Lombardi spring embedder. Some keywords and phrases associated with
these types of drawings were “more natural, ” “like balloon animals,” “blobby,” “cute
and cuddly,” in contrast with the traditional straight-line realizations which were more
“jagged” and “angular.”

Acknowledgments. We would like to thank Ulrik Brandes and Alexander Wolff for
useful discussions and suggestions.

References
1. Brandenburg, F., Himsolt, M., Rohrer, C.: An Experimental Comparison of Force-Directed

And Randomized Graph Drawing Algorithms. In: North, S.C. (ed.) GD 1996. LNCS,
vol. 1190, pp. 76–87. Springer, Heidelberg (1997)

2. Brandes, U.: Drawing on Physical Analogies. In: Kaufmann, M., Wagner, D. (eds.) Drawing
Graphs. LNCS, vol. 2025, pp. 71–86. Springer, Heidelberg (2001)

3. Brandes, U., Schlieper, B.: Angle and Distance Constraints On Tree Drawings. In: Kauf-
mann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 54–65. Springer, Heidelberg
(2007)

4. Brandes, U., Shubina, G., Tamassia, R.: Improving angular resolution in visualizations of
geographic networks. In: 2nd TCVG Symp. Visualization, pp. 23–32 (2000)

Force-Directed Lombardi-Style Graph Drawing 331

5. Brandes, U., Wagner, D.: Using Graph Layout to Visualize Train Interconnection Data. J.
Graph Algorithms Appl. 4(3), 135–155 (2000)

6. Cheng, C.C., Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Drawing planar graphs with
circular arcs. Discrete Comput. Geom. 25(3), 405–418 (2001)

7. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice Hall PTR, Upper Saddle River (1998)

8. Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete Math. 9(3),
349–359 (1996)

9. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: Visualizing
non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1), 31–52 (2005)

10. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Löffler, M.: Planar and Poly-
Arc Lombardi Drawings. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS,
vol. 7034, pp. 308–319. Springer, Heidelberg (2011)

11. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Drawing
Trees with Perfect Angular Resolution and Polynomial Area. In: Brandes, U., Cornelsen,
S. (eds.) GD 2010. LNCS, vol. 6502, pp. 183–194. Springer, Heidelberg (2011)

12. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi
Drawings of Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502,
pp. 195–207. Springer, Heidelberg (2011)

13. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)
14. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorithmica 47(4),

439–452 (2007)
15. Finkel, B., Tamassia, R.: Curvilinear Graph Drawing Using the Force-Directed Method. In:

Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer, Heidelberg (2005)
16. Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. Softw. – Pract.

Exp. 21(11), 1129–1164 (1991)
17. Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed

layouts of large graphs. Comp. Geometry: Theory and Applications 29(1), 3–18 (2004)
18. Gajer, P., Kobourov, S.G.: GRIP: Graph dRawing with Intelligent Placement. Journal of

Graph Algorithms and Applications 6(3), 203–224 (2002)
19. Garg, A., Tamassia, R.: Planar drawings and angular resolution: algorithms and bounds. In:

2nd European Symposium on Algorithms, London, UK, pp. 12–23 (1994)
20. Goodrich, M.T., Wagner, C.G.: A framework for drawing planar graphs with curves and

polylines. J. Algorithms 37(2), 399–421 (2000)
21. Gutwenger, C., Mutzel, P.: Planar Polyline Drawings With Good Angular Resolution. In:

Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999)
22. Hirsch, M., Meijer, H., Rappaport, D.: Biclique Edge Cover Graphs and Confluent Drawings.

In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 405–416. Springer,
Heidelberg (2007)

23. Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Computer
Graphics Forum 28, 983–990 (2009)

24. Lombardi, M., Hobbs, R.: Mark Lombardi: Global Networks. Independent Curators (2003)
25. Malitz, S., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. Discrete

Math. 7(2), 172–183 (1994)
26. Matsakis, N.: Transforming a random graph drawing into a Lombardi drawing. arXiv ePrints,

abs/1012.2202 (2010)
27. Purchase, H.: Which Aesthetic Has The Greatest Effect On Human Understanding? In: Di-

Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)
28. Purchase, H.C., Cohen, R.F., James, M.: Validating Graph Drawing Aesthetics. In: North,

S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 435–446. Springer, Heidelberg (1997)

Every Graph Admits

an Unambiguous Bold Drawing

János Pach�

EPFL, Lausanne and Rényi Institute, Budapest
pach@cims.nyu.edu

Abstract. Let r and w be a fixed positive numbers, w < r. In a bold
drawing of a graph, every vertex is represented by a disk of radius r,
and every edge by a narrow rectangle of width w. We solve a problem of
van Kreveld [K09] by showing that every graph admits a bold drawing
in which the region occupied by the union of the disks and rectangles
representing the vertices and edges does not contain any disk of radius
r other than the ones representing the vertices.

1 Introduction

In this note, we adopt a “realistic” view of graph drawing, proposed by Marc
van Kreveld [K09]. Let G be a graph with vertices v1, . . . , vn, represented by
points in the plane, and let the edges be drawn as possibly crossing straight-
line segments. Now fix two positive numbers r and w, w < 2r, and replace each
vertex by a disk of radius r centered at vi, and each edge vivj by a rectangle such
that its midsegment is vivj and its width, the length of its side perpendicular
to vivj , is w. We call the union D of these disks and rectangles a bold drawing
of G. A bold drawing is said to be unambiguous if it satisfies the following two
conditions.

1. No two disks representing vertices of G intersect.
2. The set D contains no disk of radius r other than the disks representing its

vertices.

The first condition is equivalent to saying that 2r is smaller than the minimum
distance between two points vi and vj . It follows from the second condition that
a bold drawing of a graph which has at least one edge can be unambiguous only
if w < 2r. It was shown in [K09] that if w > r, then the maximum degree of
the vertices of all graphs that admit an unambiguous bold drawing is bounded
from above by a constant depending only on w and r. On the other hand, van
Kreveld proved that for w < r, any star consisting of a central vertex connected
to an arbitrary number of other vertices admits an unambiguous bold drawing.

� Supported by NSF Grant CCF-08-30272, by NSA, by OTKA under EUROGIGA
project GraDR 10-EuroGIGA-OP-003, and by Swiss National Science Foundation
Grant 200021-125287/1.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 332–342, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Every Graph Admits an Unambiguous Bold Drawing 333

He also raised the question whether there exists a fixed pair of values w, r with
w < r such that with these parameters every finite graph admits an unambiguous
bold drawing. The aim of this note is to answer this question in the affirmative
in the following strong sense.

Theorem 1. Let w and r be any positive constants with w < r. Then, for
every positive integer n, the complete graph Kn admits an unambiguous bold
drawing, in which the vertices are represented by disks of radius r and the edges
by rectangles of width w.

In the next statement, we describe our construction in full detail.

0 1

v4

v3

δ3

v2

δ2

v1

δ

Fig. 1. Construction for Theorem 2

Theorem 2. Let w and r be any positive constants with w < r. Let C be a circle
of radius 1 around the origin, and let vi (1 ≤ i ≤ n) denote the intersection point
of C and the ray obtained from the positive x-axis by a counterclockwise rotation
through angle δi, where δ = min(1

2 , 1− w
r).

For every n, there exists a sufficiently small ε = ε(n) > 0 such that replacing
each vi by a disk of radius εr centered at vi and each edge vivj by a rectangle of
width εw with midsegment vivj, the union of these disks and rectangles contains
no disk of radius εr other than the ones representing the vertices.

Theorem 2 immediately implies Theorem 1. Indeed, if we choose ε(n) > 0 so
small that in addition to the property in Theorem 2, it satisfies the inequality
2εr < min1≤i<j≤n |vivj | = |vn−1vn|, and we blow up the drawing described in
Theorem 2 by a factor of 1/ε, then we obtain a bold drawing of Kn that meets
both requirements for unambiguity stated above.

In [K09], van Kreveld listed seven properties that a “good” bold drawing of a
graph G must satisfy. These include the two conditions for unambiguous draw-
ings stated above, so that every good bold drawing of G is also unambiguous. It
is easy to see that if we choose the constant ε(n) small enough, then our drawing
of Kn will also meet the five additional properties formulated in [K09].

Before turning to the proof, we would like to argue that in some sense we are
“forced” to consider constructions of the type described in Theorem 2. We say

334 J. Pach

that a set of points in the plane is in general position if no three of them are
collinear. According to the Erdős-Szekeres theorem [ES35], for any integer K,
every sufficiently large set of points in general position in the plane contains K
elements that form the vertex set of a convex K-gon. This readily implies, that
for any K there exists N(K) such that any set of N(K) points in general position
has K elements that lie on a convex curve whose total turning angle is small. By
rotating the coordinate axes if necessary, the coordinates of these points can be
written as (xi, f(xi)), where x1 < x2 < . . . < xK and f(x) is a smooth convex
function whose derivative is bounded by a small constant. Let γ =

√
5+1
2 ≈ 1.618,

the golden ratio. Color the triples (i, j, k), 1 ≤ i < j < k ≤ K, with red, blue, or
green, according to whether xk−xj

xj−xi
is at most γ−1, belongs to the interval (γ−1, γ),

or is at least γ, respectively. According to Ramsey’s theorem [R30, GRS90],
for every n ≥ 4 we can choose K = K(n) so large that there is a sequence
1 ≤ i1 < i2 < . . . < in ≤ K with the property that all triples determined by its
members are of the same color. It is easy to check that there exists no sequence
of length 4 such that all of its triples are blue. Therefore, we can assume that all
triples determined by the sequence 1 ≤ i1 < i2 < . . . < in ≤ K are red or all of
them are green. In the first case the distances xi+1 − xi decrease, in the second
one increase at least exponentially fast, as i grows (1 ≤ i ≤ n). Summarizing:
for every n ≥ 4, there is an integer N with the property that from any set of N
points in general position in the plane we can select a sequence of length n which
lies on an arc of a convex curve with small total turning angle and the distances
between its consecutive elements decrease at least exponentially. (We can reverse
the numbering of the elements, if necessary.) Suppose now that KN admits an
unambiguous bold drawing. Applying the last statement to the centers of the
disks representing the vertices, we obtain an unambiguous bold subdrawing of
a complete graph Kn such that the centers of the disks representing its vertices
lie on a convex curve and the distances between them are fast decreasing. Our
construction in Theorem 2 is motivated by this observation.

The proof of Theorem 2 is somewhat subtle. In Sect. 2, we introduce some
definitions that simplify the presentation and we state two easy but useful lem-
mas that can be proved by direct computation. The heart of the proof lies in
Lemma 5, stated and established in Sect. 3. After this preparation, the proof of
Theorem 2 presented in Sect. 4 is rather straightforward.

Several graph drawing programs for straight-line drawing offer the option to
draw the vertices and the edges bold (see, for example, NEATO [N04]). Some
algorithmic aspects of bold drawing were addressed in [K09]. In particular, given
a drawing of a graph G with possibly crossing straight-line edges, van Kreveld
applied a line segment intersection algorithm [CE92], [CS89], [M88] to find the
smallest w for which, if we draw the edges as closed rectangles of width w,
we find three edges, not all incident to the same vertex, such that the corre-
sponding rectangles have a point in common. Duncan, Efrat, Kobourov, and
Wenk [DEKW06] presented an efficient algorithm to determine the largest w,

Every Graph Admits an Unambiguous Bold Drawing 335

for a given planar embedding of a graph G, such that G admits an equivalent
drawing in which the edges are represented by nonoverlapping, not necessarily
straight bold curves of width w.

2 Terminology and Two Preliminary Lemmas

In the rest of this note, w and r are fixed positive numbers with w < r. Through-
out the next two sections, we also fix the parameter ε > 0, which will be varied
only in Sect. 4, in the proof of Theorem 2.

First, we introduce some notation and terminology. Let v be a point of the
plane, and let R1, . . . , Rs be a set of infinite rays (half-lines) emanating from v,
listed in clockwise order. Assume that all rays Ri point into the same half-plane
bounded by a line passing through v. Replace v by a closed disk of radius εr
centered at v, and replace each Ri by a closed one-way infinite half-strip of width
εw with Ri as its mid-ray. The union of the disk and these half-strips is called
a palm and is denoted by P = P (v, R1, . . . , Rs). The point v is said to be the
apex of the palm, the half-strips are said to be its fingers, and the largest angle
between the rays defining two (not necessarily consecutive) fingers is the angle
of the palm.

If we go far enough from v, the fingers start to bifurcate. For any two consecu-
tive fingers corresponding to the rays Ri and Ri+1, we define the distance from v
at which they bifurcate, as the maximum radius of a disk centered at v with the
property that its intersection with the complement of the union of the fingers
(half-strips) is connected. Analogously, for any two (two-way infinite) strips S
and S′ such that their midlines cross at a point v, we define the distance from v
at which they bifurcate as the maximum radius of a disk centered at v with the
property that its intersection with the complement of S ∪ S′ has at most two
connected components.

The following two simple statements can be established by straightforward
trigonometric calculations.

v

α/2

εw

εw

α/2
εw

εw

εw

2 sin
α

2

Fig. 2. For Lemma 3

336 J. Pach

Lemma 3. Let S and S′ be two strips of width εw such that their midlines cross
at a point v and the angle between them is α ≤ π

2 . Then

1. S ∪ S′ contains no disk of radius εw;
2. S and S′ bifurcate at distance εw

2 sin α
2

from v;
3. any two consecutive fingers of a palm such that the angle between the rays

defining them is α ≤ π/2 bifurcate at distance εw
2 sin α

2
from the apex.

Lemma 4. Let P = P (v, R1, . . . , Rs) be a palm as above, and assume that its
angle is smaller than 2 arcsin 1

4 < π
6 . Let P ⊃ P denote the union of the disk

of radius εr centered at v and the convex hull of the union of the first and last
fingers, corresponding to R1 and Rs.

Then P contains no disk of radius εr that intersects the disk of radius εr
centered at its apex v. Hence, the same is true for P .

εw
2

εr − εw
2

α/2

sin
α

2
=

εr − εw

2
2εr

≥ 1

4

(w < r)

εw

2

εr εr

Fig. 3. For Lemma 4

3 The Main Lemma

As in the previous section, w, r, and ε are fixed positive constants, w < r.
The main component of the proof of Theorem 2 is the following lemma, which
guarantees that if the angles between the consecutive fingers of a palm P decrease
sufficiently fast, then P cannot contain a disk of radius εr. The proof of this fact
requires some detailed calculations, but heuristically it is clear that in this case
only the first two fingers play an important role, and the situation is similar to
the setting of Lemma 3, part 1.

Lemma 5. Let δ = min(1
2 , 1 − w

r), and let P = P (v, R1, . . . , Rs) be a palm of
angle α < δ1/2. Let αi denote the angle between Ri and Ri+1, and assume that
for every i (1 ≤ i < s) we have αi+1

αi
≤ δ .

Then P contains no disk of radius εr.

Every Graph Admits an Unambiguous Bold Drawing 337

v

v0

εw
2

εw

εw

p1

α/2
α/2

q′

r′

(a)

vεw

εw

εwp1

p′

α1
2

α1
2

q′

r′

α1
2

· (δ + δ2 + . . . + δs−2) < α1
2

(b)

Fig. 4. For Lemma 5

Proof. If the fingers corresponding to Ri and Ri+1 bifurcate at distance di from
v, then they share a boundary point pi with |vpi| = di (1 ≤ i < s). These points
are called points of bifurcation. It follows from the condition in Lemma 5 about
the ratios αi+1/αi that d1 < d2 < d3 < . . . is a fast increasing sequence. If P
has at most 2 fingers, then Lemma 5 is true by Lemma 3, part 1. Therefore, we
can assume that s, the number of fingers, is at least 3 and that we have already
proved the lemma for all palms with fewer than s fingers.

Suppose that |vp1| = d1 = min1≤i<s di ≤ εr. Then P is the union of two
palms P (v, R1) and P (v, R2, . . . , Rs), each having fewer than s fingers, so that
any disk of radius εr other than the one centered at v must belong to one of
them. Thus, in this case we are done, by induction. From now on assume that
p1 and hence all other points pi lie outside of the disk of radius εr centered at
v. Note that the part of the ray vpi beyond the point pi does not belong to P .

338 J. Pach

In fact, it lies in an infinite open cone Ci, symmetric about vpi, which belongs
to the complement of P . By rotating the coordinate system if necessary, we can
assume without loss of generality that Rs is parallel to the positive x-axis, so
that all other rays R1, . . . , Rs−1 point into the positive quadrant x, y ≥ 0. Then
it makes sense to talk about the lower and the upper boundary of a finger. The
cone Ci is bounded by two half-lines: one belongs to the lower boundary of the
finger corresponding to Ri and the other to the upper boundary of the finger
corresponding to Ri+1.

Suppose for contradiction that P contains a disk D of radius at least εr, other
than the disk of radius εr centered at v. It follows from Lemma 4 that D cannot
intersect the disk of radius εr centered at v. We also know that D must have a
point that belongs only to the first finger, but not to the second one, otherwise
we can remove the first finger and obtain a contradiction using the induction
hypothesis.

Let P be the same as in Lemma 4, and let P ′ ⊃ P denote the region obtained
from P by deleting all points that belong to the infinite cone C1 with apex p1.
Let D′ be a disk of maximum radius in P ′ with the property that it has a point
that belongs to the first finger of P , but not to the interior of the second one.
Let q′ and r′ denote the center and the radius of D′. By our assumption, we
have that r′ ≥ εr, and it follows from Lemma 4 that D′ does not intersect the
disk of radius εr centered at v.

It is easy to verify that

1. p1 lies on the boundary of D′;
2. D′ is tangent to the lower (horizontal) boundary half-line of P ;
3. D′ is tangent either to the upper boundary half-line of the second finger or

to the upper boundary half-line of P .

Indeed, it follows from the maximality of D′ that D′ is “fixed” by the boundary
of P ′. One point cannot fix a disk. The same is true for two points, one lying
on the lower, one on the upper boundary half-line of P . In other words, if D′ is
tangent to the lower and to the upper boundary half-lines of P , by maximality,
it must also touch the boundary of the cone Ci. Suppose first that D′ is tangent
to the upper boundary half-line of P and to the upper boundary half-line of C1.
If condition 1 is not satisfied, that is, D′ touches a point of the upper boundary
half-line of C1 other than p1, then D′ must lie entirely in the first finger, and
its radius cannot exceed εw/2 < εr, which is impossible. Therefore, condition 1
is satisfied and, unless D′ also satisfies condition 2, D′ can be enlarged without
violating the requirements.

Suppose next that D′ is not tangent to the upper boundary half-line of P .
Then D′ must be tangent to the lower boundary half-line of P and to the lower
boundary half-line of C1. Moreover, the point at which D′ touches the lower
boundary half-line of C1 must be p1, otherwise D′ cannot have a point that
belongs to the first finger of P , but not to the interior of the second one. If D′

has such a point strictly above the upper boundary of the second finger then it
could be slightly enlarged without violating the conditions. Indeed, q′ belongs to
the locus of all points equidistant from p1 and the (horizontal) supporting line

Every Graph Admits an Unambiguous Bold Drawing 339

of the lower boundary half-line of P , which is a parabola Π with a vertical axis
of symmetry. If q′ is on the left side of this parabola, then we can enlarge the
radius of D′ by moving q′ along Π slightly to the left, if it is on the right side
of Π , then by moving it slightly to the right. Therefore, we can conclude that
D′ must be tangent to the upper boundary of the second finger at point p1, and
condition 3 holds.

Now we can easily complete the proof of Lemma 5.
If conditions 1, 2, and the first option in condition 3 hold, then consider the

triangle vp1q
′. Using that δ ≤ 1/2, we obtain

∠vp1q
′ =

π

2
− α1

2
≤ π

2
− δα1

2(1− δ)

<
π

2
− α1

2
(δ + δ2 + . . . + δs−2)

≤ π

2
− α2 + α3 + . . . + αs−1

2
= ∠vq′p1 .

This yields that |vq′| < |vp1|. As was used above, the angle α1 between R1 and
R2 is larger than α2 + . . . + αs−1, the angle between R2 and Rs. Therefore, the
fingers corresponding to R2 and Rs bifurcate at a point p′ which is farther away
from v than p1 is. This implies that |vq′| < |vp1| < |vp′|. The points v, q′, and p′

are collinear, so that it follows from the last inequality that q′ lies in the interior
of the second finger. Since r′ = |q′p1| is equal to the distance of q′ from the upper
boundary half-line of the second finger, we obtain that r′ < εw < εr, which is a
contradiction.

In the other case, when conditions 1, 2, and the second option in condition 3
hold, just like in the first case, we have |vq′| < |vp1|. (In fact, it is easy to argue
that the part of the parabola Π which lies below the line vp1 and to the left of
the line through p1 perpendicular to Rs is entirely contained in the interior of
the circle through p1 centered at v. The point q′ belongs to this arc.)

Let v0 denote the intersection point of the supporting lines of the upper bound-
ary ray of the first finger (that corresponds to R1) and the lower boundary ray
of the last finger (that corresponds to Rs). The points v0, v, and q′ are collinear.
Using the notation α = α1 + . . . + αs−1, we have

r′ = |v0q
′| sin α

2
= (|v0v|+ |vq′|) sin

α

2
< (|v0v|+ |vp1|) sin

α

2

≤
(

εw

2 sin α
2

+
εw

2 sin α1
2

)

sin
α

2
=

εw

2

(

1 +
sin α

2

sin α1
2

)

.

Here we used Lemma 3, part 2 to estimate |vp1|.
In view of the assumption on the angles between consecutive fingers, we have

that

α = α1 + α2 + . . . + αs−1 = α1(1 + δ + . . . + δs−2) <
α1

1− δ
.

340 J. Pach

Hence, the above upper bound on r′ can be rewritten as

r′ <
εw

2

(

1 +
sin α1

2(1−δ)

sin α1
2

)

<
εw

2

(

1 +
α1

2(1−δ)

sin α1
2

)

.

Using the Taylor series of the sinx function, it is easy to verify that, given any
δ, 0 < δ < 1, the inequality sin α1

2 > α1
2(1+δ) holds for all α1 ≤ δ1/2. By the

assumptions in the lemma, this condition is satisfied, so that we have

r′ <
εw

2

(

1 +
1 + δ

1− δ

)

=
εw

1− δ
.

By our choice of δ, we have δ ≤ 1− w
r . That is,

r′ <
εw

1− δ
≤ εr ,

the desired contradiction. �

4 The Proof of Theorem 2

In the previous two sections, apart from n, w, and r, we also fixed the constant
ε > 0. In the proof of Theorem 2 presented in this section, we keep n, w, and r
fixed, but we will vary ε.

Let S(ε) denote the union of the disks of radius εr representing the vertices
vi (1 ≤ i ≤ n) and the rectangles of width εw representing the edges vivj (1 ≤
i < j ≤ n).

For a given vi, consider the rectangles representing the edges incident to vi

and extend them to one-way infinite half-strips pointing away from vi. More
precisely, for any j �= i, let Ri,j denote the ray −−→vivj emanating from vi and
pointing to the direction of vj . Let Fi,j(ε) be the half-strip of width εw, the
mid-ray of which is Ri,j . The union of the disk of radius εr centered at vi and
the sets Fi,j(ε) for all j �= i is denoted by Pi(ε). Any two distinct half-strips
Fi,j(ε) and Fi,j′ (ε) bifurcate at a certain distance from vi. Let �i(ε) denote the
maximum of these

(
n−1

2

)
distances plus εr.

Let us fix a small ε > 0 such that the following three conditions are satisfied.

1. No three rectangles representing distinct edges, not all of which are incident
to the same vertex, have a point in common.

2. Any rectangle representing an edge vjvk is disjoint from any disk of radius
�i(ε) centered at vi, for all i �= j, k.

3. For every pair i �= j, the disk of radius �i(ε) centered at vi is disjoint from
the disk of radius �j(ε) centered at vj .

It follows from the second condition that no rectangle representing an edge vjvk

can intersect any disk representing a vertex vi with i �= j, k. The last condition
implies that the disk of radius �i(ε) centered at vi cannot contain any disk of

Every Graph Admits an Unambiguous Bold Drawing 341

0 1

vk

δk

vj

δj

vi

δi

Ri,j

Ri,k

Fig. 5. For Proof of Theorem 2

radius εr representing a vertex vj with j �= i. If three edges share an interior
point, then the first condition cannot be satisfied. However, it is easy to argue
that in our case this cannot occur.

From now on ε will be fixed, so that in notation we can drop the parameter
ε. In particular, instead of S(ε), �i(ε), and Pi(ε), we will write S, �i, and Pi.

Suppose for contradiction that the set S contains a disk D of radius εr which
is not one of the disks representing the vertices. Where can such a disk D lie? The
only possibility is that for some i (1 ≤ i ≤ n), it lies in the part of S contained in
the disk of radius �i centered at vi. Otherwise, by the conditions listed above, D
would be contained in the union of two strips of width w, contradicting part 1 of
Lemma 3. Observe that the part of S contained in the disk of radius �i centered
at vi is exactly the same as the part of Pi contained in the disk of radius �i

centered at vi. Therefore, to finish the proof of Theorem 2, it is sufficient to
show that no set Pi contains a disk of radius εr (1 ≤ i ≤ n).

To see this, notice that for every i 1 ≤ i ≤ n, the set Pi can be written as the
union of at most two palms of angle smaller than δ (see the beginning of Sect. 2).
We have P1 = P (v1, R1,2, R1,3, . . . , R1,n), Pn = P (vn, Rn,1, Rn,2, . . . , Rn,n−1),
and

Pi = P (vi, Ri,1, Ri,2, . . . , Ri,i−1) ∪ P (vi, Ri,i+1, Ri,i+2, . . . , Ri,n) ,

for every i, 1 < i < j,. If i �= 1, n, then the smallest angle between a finger
of P (vi, Ri,1, Ri,2, . . . , Ri,i−1) and a finger of P (vi, Ri,i+1, Ri,i+2, . . . , Ri,n) is the
angle between Ri,1 and Ri,n, which is equal to π− δ−δn

2 > π− δ
2 . It follows from

here that the fingers corresponding to Ri,1 and Ri,n bifurcate within the disk of
radius εr centered at vi. This, in turn, implies that any disk D of radius εr which
lies in Pi and is different from the disk representing vi is entirely contained in
one of the two palms comprising Pi. Applying Lemma 5 to this palm, we obtain
the desired contradiction. The only thing that remains to be checked is that the
conditions of the lemma about the angles α and αi are satisfied.

342 J. Pach

The maximum angle of the palms of the form P (vi, Ri,i+1, Ri,i+2, . . . , Ri,n)
and P (vi, Ri,1, Ri,2, . . . , Ri,i−1), for 1 ≤ i ≤ n, is the angle of
P (vn, Rn,1, Rn,2, . . . , Rn,n−1), which is equal to

∠v1vnvn−1 =
∠v10vn−1

2
=

δ − δn−1

2
<

δ

2
,

so that the condition on the angle of the palm is satisfied. (Here 0 denotes the
origin, the center of the circle containing all points vi.) As for the condition on
the angles αi, we have that the angle between two consecutive rays Ri,t and
Ri,t+1 is equal to

∠vt0vt+1

2
=

δt − δt+1

2
=

1− δ

2
δt .

Analogously, the angle between Ri,t+1 and Ri,t+2 is equal to 1−δ
2 δt+1. Hence, all

ratios αs

αs+1
are equal to δ, and the conditions of Lemma 5 are satisfied.

This completes the proof of Theorem 2. �

Acknowledgement. The author is grateful to Mark van Kreveld for calling
his attention to the problem addressed in this paper, and to Radoslav Fulek,
Fabrizio Frati, and Deniz Sarıöz for valuable discussions, and Deniz Sarıöz also
for coding the figures in TikZ.

References

[BGR04] Barequet, G., Goodrich, M.T., Riley, C.: Drawing planar graphs with large
vertices and thick edges. J. Graph Algorithms Appl. 8, 3–20 (2004)

[CE92] Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line
segments in the plane. J. ACM 39, 1–54 (1992)

[CS89] Clarkson, K.L., Shor, P.W.: Application of random sampling in computa-
tional geometry, II. Discrete & Computational Geometry 4, 387–421 (1989)

[DEKW06] Duncan, C.A., Efrat, A., Kobourov, S.G., Wenk, C.: Drawing with fat
edges. Int. J. Found. Comput. Sci. 17, 1143–1164 (2006)

[ES35] Erdös, P., Szekeres, G.: A combinatorial problem in geometry. Compositio
Mathematica 2, 463–470 (1935)

[GRS90] Graham, R., Rothschild, B., Spencer, J.H.: Ramsey Theory. John Wiley
and Sons, New York (1990)

[K09] van Kreveld, M.: Bold graph drawings. In: Proc. Canadian Conference on
Computational Geometry, CCCG 2009 (2009),
http://cccg.ca/proceedings/2009/cccg09_31.pdf ; Also Computa-
tional Geometry: Theory & Applications (to appear)

[M88] Mulmuley, K.: A fast planar partition algorithm, I. In: Proc. 29th FOCS,
pp. 580–589 (1988)

[N04] North, S.C.: Drawing Graphs with Neato (2004),
http://www.graphviz.org/Documentation/neatoguide.pdf

[R30] Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc.
Series 30(2), 264–286 (1930)

http://cccg.ca/proceedings/2009/cccg09_31.pdf
 http://www.graphviz.org/Documentation/neatoguide.pdf

Adjacent Crossings Do Matter

Radoslav Fulek1,�, Michael J. Pelsmajer2,��,
Marcus Schaefer3, and Daniel Štefankovič4

1 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
radoslav.fulek@epfl.ch

2 Illinois Institute of Technology, Chicago, IL 60616, USA
pelsmajer@iit.edu

3 DePaul University, Chicago, IL 60604, USA
mschaefer@cs.depaul.edu

4 University of Rochester, Rochester, NY 14627, USA
stefanko@cs.rochester.edu

Abstract. In a drawing of a graph, two edges form an odd pair if they
cross each other an odd number of times. A pair of edges is independent if
they share no endpoint. For a graph G, let ocr(G) be the smallest number
of odd pairs in a drawing of G and let iocr(G) be the smallest number of
independent odd pairs in a drawing of G. We construct a graph G with
iocr(G) < ocr(G), answering a question by Székely, and—for the first
time—giving evidence that crossings of adjacent edges may not always
be trivial to eliminate.

The graph G is based on a separation of iocr and ocr for monotone
drawings of ordered graphs. A drawing of a graph is x-monotone if every
edge intersects every vertical line at most once and every vertical line
contains at most one vertex. A graph is ordered if each of its vertices
is assigned a distinct x-coordinate. We construct a family of ordered
graphs such that for x-monotone drawings, the monotone variants of ocr
and iocr satisfy mon-iocr(G) < O(mon-ocr(G)1/2).

1 Introduction

When drawing a graph some assumptions are natural: there are only finitely
many crossings, no more than two edges cross in a point, edges do not pass
through vertices, and edges do not touch.1 Sometimes these assumptions are
relaxed (degenerate drawings allow more than two edges to cross in a point),
and sometimes more restrictions are added, for example adjacent edges may not
be allowed to cross.

The crossing number cr(G) of a graph G is the smallest number of crossings
in a drawing of G. It is easy to see that in an optimal drawing, adjacent edges
� The first author gratefully acknowledges support from the Swiss National Science

Foundation Grant No. 200021-125287/1.
�� The second author gratefully acknowledges the support from NSA Grant H98230-

08-1-0043 and the Swiss National Science Foundation Grant No. 200021-125287/1.
1 For a detailed discussion see [14].

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 343–354, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

344 R. Fulek et al.

of G do not cross (such crossings can always be removed). This may have led
researchers on crossing numbers to think that adjacent crossings are irrelevant
or even to prohibit them in drawings.2 Another source for ignoring adjacent
crossings may be the fact that graph drawings are often straight-line drawings
in which adjacent edges naturally cannot cross.

Pach and Tóth point out in “Which Crossing Number is It Anyway?” that
there have been many different ideas on how to define a notion of crossing num-
ber, including the following (see [6,14]):

pair crossing number: pcr(G), the smallest number of pairs of edges crossing
in a drawing of G,

odd crossing number: ocr(G), the smallest number of pairs of edges crossing
oddly (odd pairs) in a drawing of G.

Tutte introduced another type of crossing number by orienting edges arbitrarily,
then letting λ(e, f) be the difference in the number of crossings where e is pointed
to the left of f and the number of crossings where e is pointed to the right of f .
Changing the orientation of e or f will only change the sign of λ(e, f), so one
can define:

algebraic crossing number: acr(G), the minimum of
∑ |λ(e, f)| in a drawing

of G, where the sum is taken over pairs of edges e, f .

By definition we have ocr(G) ≤ pcr(G) ≤ cr(G) and ocr(G) ≤ acr(G) ≤ cr(G).
For each of these notions, one can ask whether adjacent crossings matter.

In [5], Pach and Tóth suggest a systematic study of this issue (see also [1, Sec-
tion 9.4]) by introducing two rules: “Rule +” restricts the drawings to drawings
in which adjacent edges are not allowed to cross. “Rule −” allows crossings of
adjacent edges, but does not count them towards the crossing number. Each pa-
rameter ocr, pcr, acr, and cr can be modified by either rule, but since cr+ = cr
(implied by the discussion at the beginning of the section), this yields up to
eleven possible distinct variants.

The tables below are based on a figure from [1]. The notion of ocr− was
introduced as the independent odd crossing number, iocr, by Székeley [14].3

Rule + ocr+ pcr+ cr
ocr pcr

Rule − iocr = ocr− pcr− cr−

ocr+ acr+ cr
ocr acr

iocr = ocr− acr− cr−

It immediately follows from the definitions that the values in each table in-
crease monotonically as one moves from the left to the right and from the bottom
to the top. Not much more is known about the relationships between these cross-
ing number variants. In [5], Pach and Tóth write, “We cannot prove anything
2 Székely discusses this issue in [14].
3 Székeley credits Tutte [18] with the (implicit) definition of iocr, but Tutte is re-

ally concerned with the algebraic crossing numbers only, acr and acr−; he does not
consider parity.

Adjacent Crossings Do Matter 345

else about iocr(G), pcr−(G), and cr−(G). We conjecture that these values are
very close to cr(G), if not the same. That is, we believe that by letting pairs of
incident edges cross an arbitrary number of times, we cannot effectively reduce
the total number of crossings between independent pairs of edges.”4 Tutte [18]
seems to have had a similar opinion, when he explained his choice to study acr−,
writing, “We are taking the view that crossings of adjacent edges are trivial, and
easily got rid of.” Székely [14] later commented “We interpret this sentence as
a philosophical view and not a mathematical claim.” West [20] and Székely [15]
mention the specific question of whether there are graphs with iocr(G) < ocr(G).

There are situations when the entire system of crossing numbers collapses.
The classic Hanani-Tutte theorem states that if a graph can be drawn in the
plane so that no pair of independent edges crosses an odd number of times, then
it is planar [3,18]. In other words, iocr(G) = 0 implies that cr(G) = 0 and, thus,
that all of the eleven variants are equal (to zero). This was extended to show that
all eleven variants are equal as long as iocr(G) ≤ 2 [12]. Székely gave an explicit
criterion for when all variants are equal [16]. It is also known that all eleven
variants are within a square of each other, since cr(G) ≤ (2 iocr(G)

2

)
[12]. For

drawings of G on the projective plane N1, we know that iocrN1(G) = 0 implies
that crN1(G) = 0, so again all variants are equal (to zero) in this case [8].

Setting aside the Rule − variants, there are some strong results for the re-
maining seven variants, ocr, ocr+, acr, acr+, pcr, pcr+ and cr. If ocr(G) ≤ 3
then all these seven variants are equal [9]. For drawings on any surface S, if
ocrS(G) = 0 then all seven variants are equal (to zero) [11]. Valtr [19] showed
that cr(G) = O(pcr2(G)/ log pcr(G)), which Tóth [17] improved to cr(G) =
O(pcr2(G)/ log2 pcr(G)).

On the other hand, we know that ocr and pcr differ: there is an infinite family
of graphs with ocr(G) < 0.867·pcr(G) [10]. Tóth improved this by giving a family
of graphs with acr(G) < 0.855 · pcr(G) [17] (so ocr(G) < 0.855 · pcr(G) as well).
For such G it immediately follows that ocr(G) < cr(G) and acr−(G) < cr(G),
answering questions of Pach and Tóth [6] and Tutte [18]; additional consequences
can be deduced from the tables above. However, none of these results address
the intuitions expressed by Tutte and by Pach and Tóth about how Rule − may
or may not affect cr, pcr, ocr, or acr.

We can finally give a result of this nature.

Theorem 1. For every n, there is a graph G with iocr(G) < ocr(G)− n.

In short, adjacent crossings matter.5

To prove Theorem 1, we will first prove a separation for monotone drawings
of ordered graphs. An ordered graph is a graph with a total ordering of its ver-
tices. For our purposes, we will assume that the vertex set of an ordered graph
is a subset of the integers, and we will only consider drawings where each vertex
4 Some authors write incident edges to mean two edges that share an endpoint, but we

will only use adjacent edges. Non-adjacent edges are also called independent edges.
5 Among other things, Theorem 1 justifies the rather baroque NP-completeness proof

for iocr in [13]. NP-completeness of ocr is simpler in comparison [7].

346 R. Fulek et al.

n has x-coordinate equal to n. A drawing of a graph is x-monotone if every
edge intersects every vertical line at most once and every vertical line contains at
most one vertex. We can generalize each crossing number variant to x-monotone
drawings of ordered graphs G, which we denote mon-cr(G), mon-ocr(G),
mon-iocr(G), etc.

Pach and Tóth proved that mon-ocr(G) = 0 implies mon-cr(G) = 0 [7]. We
strengthened this by showing that mon-iocr(G) = 0 implies mon-cr(G) = 0 [2],
which had been left as an open problem in [7]. On the other hand, in the same
paper we showed that for every n there is a graph G such that mon-cr(G) ≥ n
and mon-ocr(G) = 1. In this paper, we will show that there can also be an
arbitrary gap between mon-ocr and mon-iocr.

Theorem 2. For every n ≥ 3 there is an ordered graph G with mon-iocr(G) =
3n < n2 + n = mon-ocr(G).

Note that for such G, we have mon-iocr(G) = O(mon-ocr(G)1/2). We will use
Theorem 2 to prove Theorem 1.

2 Separating Monotone Crossing Numbers

We generalize the crossing number definitions for graphs with weighted edges.
Suppose that G is a graph and each edge e has weight w(e). A crossing between
edges e and f is assigned crossing weight equal to the product w(e)w(f). Let D
be an arbitrary drawing of G, and define

cr(D) = the sum of crossing weights, taken over all crossing in D,
ocr(D) = the sum of w(e)w(f), taken over all odd pairs e, f in D,
iocr(D) = the sum of w(e)w(f), taken over all independent odd pairs e, f in D.

Let cr(G) = minD cr(D), ocr(G) = minD ocr(D), and iocr(G) = minD iocr(D),
with each minimum taken over all drawings D of G. If we assign every edge
weight equal to 1, then these definitions revert back to their original, unweighted
versions.

Consider an ordered graph G = ([7], {13, 16, 23, 24, 25, 27, 35, 37, 46, 47, 56})
with edge weights w(16) = w(23) = w(25) = w(27) = w(46) = w(47) = 2x2,
w(24) = w(37) = x, w(13) = w(35) = w(56) = 1 (see the left of Figure 1 for a
drawing of G).

Theorem 3. For the weighted ordered graph G in Figure 1 with x ≥ 3, we have

mon-iocr(G) = 3x < x2 + x = mon-ocr(G). (1)

Proof. In the drawing on the left side of Figure 1, the only independent pairs of
edges that cross oddly are (13, 24), (24, 35), (56, 37), showing

mon-iocr(G) ≤ 3x. (2)

Adjacent Crossings Do Matter 347

1 76
5

4

32 1 76
54

32

Fig. 1. Two drawings of a weighted ordered graph G with mon-iocr(G) < mon-ocr(G);
thick solid edges have weight 2x2, the thick dashed edges have weight x, and the thin
solid edges have weight 1. The left drawing shows that mon-iocr(G) ≤ 3x; the right
drawing that mon-ocr(G) ≤ x2 + x.

The drawing also shows mon-ocr(G) ≤ 4x+2x3, since for mon-ocr the odd pairs
(24, 25) and (35, 37) count. If we reroute edge 24 to go above 25, it crosses 37
(instead of 13, 35, and 25). Close to 3, we can twist 35 and 37 so they cross
evenly. This yields the drawing on the right in Figure 1. It shows that

mon-ocr(G) ≤ x2 + x. (3)

Suppose that we have a drawing D of G with mon-iocr(D) < x2 + x. Since
x2 + x < 2x2 for x ≥ 3, no thick edge (that is an edge of weight 2x2) is crossed
oddly by an independent edge. We claim that this forces most of the drawing
to be as depicted in Figure 1: Without loss of generality assume that 46 passes
above 5. Then 35 must pass below 4 (to avoid crossing 46 oddly) and 47 must
pass above 5 and 6 (to avoid crossing 35 and 56 oddly). Now 16 has to pass
below 4 (to avoid 47) and hence below 2, 3, 5 (to avoid 24, 23, 35). Since 16 goes
below 2 we have that 27 is above 6 (to avoid 16) and also above 3, 4, 5 (to avoid
56, 35, 46). Then 13 has to be below 2 (to avoid 27) and 25 has to be above 3 (to
avoid 13) and below 4 (to avoid 46). The edge 37 has to go below 5 (to avoid 25)
above 6 (to avoid 16) and hence above 4 (to avoid crossing 46 oddly). Note that
we have determined the above-below relationship for all relevant edge-vertex
pairs (when the vertex lies between the endpoints of the edge) except for those
with the edge 24, using only the fact that thick edges cannot be crossed oddly
by independent edges. Note that thus far, (37, 56) is the only independent odd
pair of edges.

Consider how the edge 24 can be drawn. If we draw it above 3 then it will
cross 37 oddly bringing the total number of odd crossings between independent
pairs of edges to x2 + x. Thus 24 has to go below 3. To summarize: we have
shown that any drawing D of G with mon-iocr(D) < x2 +x must have the same
(or mirrored) above-below relationships as in the drawing on Figure 1. Note that

348 R. Fulek et al.

24 crosses 13 and 35 oddly, bringing the total number of odd crossings between
independent pairs of edges to 3x. This proves the left equality in (1).

We next prove the right equality in (1). For this we need only show
mon-ocr(G) ≥ x2 + x, due to (3). Suppose that we have a drawing D of G
such that mon-ocr(D) < x2 + x. This implies mon-iocr(D) < x2 + x so by the
earlier argument we may assume that every relevant edge-vertex pair has the
same above-below relationship in D as in the drawing of Figure 1.

If 24 leaves 2 above 23 then 23 and 24 cross oddly (since 24 goes below 3)
showing mon-ocr(D) ≥ 2x3 + 3x, a contradiction. Thus 24 leaves 2 below 23. If
24 leaves 2 below 25 then 24 and 25 cross oddly (since 25 goes below 4) showing
mon-ocr(D) ≥ 2x3 + 3x, a contradiction. Thus 24 leaves 2 above 25. Now, using
transitivity, 23 leaves 2 above 25 but that means that 23 and 25 cross oddly
(since 25 goes above 3) showing mon-ocr(D) ≥ 2x2 + 3x, a contradiction. Hence
there is no drawing D of G with mon-ocr(D) < x2 +x, finishing the proof of (1).

2.1 From Weighted Edges to Unweighted Edges

Suppose that G is a graph or ordered graph with edges of positive integer weight.
Let G′ be the graph obtained by replacing each edge of weight w with w edges
of weight 1, equivalently, with w unweighted edges. Choose any of the eleven
crossing variants mentioned in Section 1, and consider a drawing of G′ (which
is x-monotone if G is an ordered graph) that optimizes that crossing variant.
Suppose that e1 and e2 are copies of the same edge e of G. Without loss of
generality, we may assume that e1 contributes less than or equal to what e2

contributes to the chosen crossing parameter. We can redraw e2 along the side
of e1 so that they do not cross; then e2 will contribute the same to the crossing
parameter as e1, so the new drawing is still optimal. Hence, we may assume
that in an optimal drawing of G′, multiple edges are drawn in a bundle, all with
essentially the same behavior.6 It follows that all crossing parameters are the
same for G and G′.

Lemma 1. Subdividing an edge of a graph does not change ocr or iocr. Subdi-
viding an edge of an ordered graph near one of its endpoints does not change
mon-ocr or mon-iocr. These results hold for graphs with multiple edges as well.

Proof. Let G be a graph or ordered graph, possibly with multiple edges. If G is
an ordered graph, we will restrict all drawings to be x-monotone drawings.

Fix an ocr-optimal (iocr-optimal) drawing of G, and choose any edge uv.
Subdivide uv with a vertex z, which is added to the drawing of uv near the
endpoint u. Then for each edge e �= uv, e will cross zv oddly if and only if e
crossed uv oddly, and e does not cross uz at all. Hence ocr is unchanged; iocr
is also unchanged unless e shares an endpoint with uv but not with zv, which
means that e is incident to u but not v. In this case, we can deform a small
section of e until it passes over z (while maintaining its monotonicity, if G is
6 This argument was probably first made in Kainen [4] for the standard crossing

number.

Adjacent Crossings Do Matter 349

ordered); do this for all such e. This yields a drawing with iocr no bigger than
in the initial drawing.

Now consider any drawing of the new graph. We can erase z from that drawing
to obtain a drawing of the original, unsubdivided graph. If G is ordered, then we
erase z from an x-monotone drawing where z lies strictly between u and v, so
we obtain an x-monotone drawing of G. Erasing z moves all odd pairs of edges
with uz or zv to become odd pairs with uv (and if an edge crosses both uz and
zv oddly, then these cancel and it crosses uv evenly). Hence the number of odd
pairs and independent odd pairs does not increase. ��
Consider any integer x ≥ 3. Replace the weighted edges of the graph in Fig-
ure 1 by multiple edges, and then apply Lemma 1 to every edge. We obtain an
unweighted ordered graph H with mon-iocr(H) = 3x < x2 + x = mon-ocr(H).
Thus, Theorem 2 is proved.

Before moving on, note that for any drawing of a graph G, we can remove
self-intersections of edges without adding any crossing or odd pair, by redrawing
locally near the crossing as shown in Figure 2 (originally from [10]).

⇒

Fig. 2. Removing a self-intersection

3 Adjacent Crossings Are Not Trivial

Given an ordered graph G = (V, E) with V = {v1 < v2 · · · < vn} let G′ be
obtained from G by adding the following framework: start with a cycle C2n+2

formed from two paths s, u1, . . . , un, t and s, w1, . . . , wn, t; call this the outer
framework. Add paths Qi = uiviwi for 1 ≤ i ≤ n; call this the inner framework.
Assign a weight of wI = n4 +1 to the edges in the inner framework and a weight
of wO = n4 + n3wI + 1 to the edges in the outer framework. Edges originally in
G remain at weight 1 (unweighted). From the weighted graph G′ we will obtain
the unweighted graph G′′ by replacing each edge of weight w > 1 in G′ by w
copies of P3.

Lemma 2. With G′ as defined above we have ψ(G′′) = mon-ψ(G) + c for any
connected graph G, where ψ is one of the crossing numbers {iocr, ocr, cr} and
c = wI

∑
vivj∈E(G),i<j(j − i− 1).

Lemma 2 and Theorem 2 immediately yield Theorem 1. In [2] we showed that for
every n there is an ordered graph G such that mon-cr(G) ≥ n and mon-ocr(G) =
1. Together with Lemma 2, this yields a new graph G′ with ocr(G′) < cr(G′),

350 R. Fulek et al.

joining the earlier examples from [10] and [17]. In the journal version of this
paper, we show that Lemma 2 can be made to work for other crossing numbers
as well, so that it has the potential to lead to further separations.

For the proof of Lemma 2, we need the following lemma. An even edge is
an edge that crosses every other edge an even number of times (possibly zero
times).

Lemma 3 (Pelsmajer, Schaefer, and Štefankovič [9]). If D is a drawing
of G in the plane and E is the set of even edges in D, then G has a redrawing
in which all edges in E are crossing-free, there are no new pairs of edges that
cross an odd number of times, and the cyclic order of edges at each vertex does
not change.

Proof (of Lemma 2). First note that ψ(G′′) ≤ mon-ψ(G) + c is immediate: take
a monotone drawing realizing mon-ψ(G) and overlay it with a planar drawing
of the framework, call the resulting drawing D′ (see Figure 3 for an example).
Then ψ(D′) = mon-ψ(G)+c since the only crossings are single crossings between
pairs of non-adjacent edges that count the same whatever ψ is. From D′ we can
obtain a drawing D′′ of G′′ by replacing the weighted edges in the drawing by
parallel P3s; then ψ(D′′) = ψ(D′) (since the framework edges are not involved
in any adjacent crossings), so ψ(G′′) ≤ ψ(D′′) = mon-ψ(G) + c.

1 76
5

4

32

Fig. 3. Overlay of G from Figure 1 with framework (note that in the construction, G
will be an unweighted graph)

It remains to prove ψ(G′′) ≥ mon-ψ(G) + c for ψ ∈ {cr, ocr, iocr}. It is easy
to see that ψ(G′′) ≥ ψ(G′): fix an ψ-optimal drawing of G′′. Consider w parallel
paths P3 that were used to replace an edge of weight w in G′. Pick one of
these paths P that contributes the smallest amount to ψ(G′′). Now redraw the
remaining w − 1 paths to run very close to P and without crossing each other.
This redrawing cannot increase the value of ψ of the drawing. But now we can

Adjacent Crossings Do Matter 351

bundle the parallel paths into a single weighted edge to obtain a drawing D′ of
G′ with ψ(D′) ≤ ψ(G′′). So ψ(G′) ≤ ψ(G′′).

Hence, to establish the lemma it is sufficient to show that ψ(G′) ≥ mon-ψ(G)+
c. We proceed in three steps; we first show that there is a ψ-minimal drawing
of G′ in which the edges of the outer framework are crossing-free. In the second
step we show that we can assume that the edges of the inner framework do not
cross each other. In the third step we show that from such a drawing of G′, we
can construct a monotone drawing of G with at most ψ(G′) − c crossings. It
follows that mon-ψ(G) ≤ ψ(G′)− c.

For the first step, fix an ψ-minimal drawing of G′. For ψ = cr the claim
is immediate: any edge crossing an edge of the outer framework contributes
at least wO to ψ(G′). However, we already proved that ψ(G′) ≤ mon-ψ(G) +
c ≤ n4 + n3wI < wO, so all edges of the outer framework must be crossing-
free. If ψ = ocr then edges of the outer framework cannot be involved in any
odd pairs, since any such odd pair would contribute wO to ocr and, as above,
ψ(G′) ≤ mon-ψ(G) + c ≤ n4 + n3wI < wO. So all the edges in the outer
framework are even. We can then apply Lemma 3 to make all edges in the outer
framework crossing-free without introducing any new pair of edges crossing oddly
(in particular, ψ does not increase). This leaves the case ψ = iocr. The argument
here is similar to ocr. In any iocr-minimal drawing, edges of the outer framework
cannot be involved in any independent odd pairs, so all odd pairs involving these
edges must have adjacent edges. However, all vertices in the outer framework
have degree 2 or 3, so we can modify the drawing near each of these vertices
to ensure that all the edges in the outer framework are actually even. We then
proceed as in the case of ocr.

This completes the first step: we know that we can assume that the outer
framework is entirely free of crossings. Since we assumed that G is a connected
graph, all vertices of G must lie in the same face of C2n+2, without loss of
generality, the inner face. Since every edge not in the outer framework is incident
to a vertex of G this also implies that all edges lie in the inner face and the outer
face is therefore empty.

In the second step we show that we can assume that edges of the inner frame-
work do not cross each other. Recall that Qi = uiviwi is the inner framework
path passing through vi with endpoints ui and wi on C2n+2, for 1 ≤ i ≤ n.

For ψ = cr the claim is immediate again, since any such crossing would
contribute w2

I = wI(n4 + 1) = n4wI + wI > n3wI + n4 + 1 = wO to ψ(G′),
but we already know that ψ(G′) ≤ wO.

For ψ = ocr, we can similarly conclude that any two edges of the inner frame-
work cross evenly, and for ψ = iocr, we know that any independent pair of edges
in the inner framework crosses evenly. Suppose that ψ = iocr and two adjacent
edges of the inner framework, uivi and viwi, cross oddly. In that case, we per-
form a (uivi, vi)-move (that is, we deform a small section of uivi, bring it close
to vi and then make it pass over vi); this does not affect iocr and ensures that
uivi and viwi cross evenly. We conclude that for ψ ∈ {ocr, iocr} any two edges

352 R. Fulek et al.

of the inner framework cross an even number of times. We next show how to
remove crossings between edges of the inner framework.

To this end, let us consider Q1 = u1v1w1. Let e be an edge of the inner
framework that crosses u1v1 (we allow the case e = v1w1). Deform e near each
such crossing so that it follows along u1v1 toward v1 and then over v1. Since
e must have crossed u1v1 an even number of times, this procedure will not
change the value of ψ for the drawing. Performing this for all such edges e of the
inner framework leaves u1v1 free of crossings with edges of the inner framework.
This redrawing process may have introduced self-crossings of v1w1 which can
be removed without affecting ψ, as described at the end of Section 2. So u1v1

crosses no edge of the inner framework and v1w1 crosses every other edge of the
inner framework evenly. Without loss of generality, we can assume that t is in
the exterior of su1v1w1s. Then the interior of su1v1w1s does not contain any
vertices: every vertex (other than t) has a path consisting of edges of weight at
least wI to t, contributing at least w2

I to ψ, which we know to be impossible. Now
cut each edge e of the inner framework where it crosses v1w1. We can partition
the crossings of e and v1w1 into pairs since they cross evenly, and then for each
pair we add curves that run along each side of v1w1 that connect the severed ends
of e. Thus, e is replaced by a curve that may have more than one component, all
but one of which are closed curves with no vertex, and none of the components
intersect v1w1. Because of the way the connecting curves are added in pairs, the
value of ψ is unchanged. The components lying within su1v1w1s are all closed
curves without vertices. Moreover, since there is no vertex within that region,
they can be deleted without affecting ψ. Any two of the curves on the other side
of Q1 can be merged by erasing a tiny bit of each curve and adding two parallel
curves within the region that join the erased bits of opposite curves, giving a
wide berth to all vertices, which ensures that ψ is unchanged. Repeating this
process merges all curve components in that region into a single curve, and after
removing self-intersections we obtain a valid drawing of e within that region.
We can now repeat this argument with Q2 and su1u2v2w2w1s, and so on, to
establish that none of the Qi, 1 ≤ i ≤ n have crossings with any edges of the
inner framework. This completes the second step.

Hence, for the third step, we can assume that every crossing is between two
edges of G or between an edge of G and an edge of the inner framework.

At this point, let us deform the whole drawing so that C2n+2∪{Q1, Qn}−{s, t}
is a rectangle and all the Qi are parallel straight-line segments orthogonal to the
outer framework.

For ψ = cr we are nearly done: a G-edge e connecting vi to vj must cross
all Qk with i < k < j, forcing at least c crossings. This leaves ψ(G′) − c ≤
mon-ψ(G) ≤ n4 < wI crossings counting towards ψ(G′). Since a crossing with
an edge of the inner framework contributes at least wI to ψ(G′) this accounts
for all crossings with edges of the inner framework. So an edge e = vivj crosses
all Qk with i < k < j and no other Qks. The actual behavior of e between
two neighboring Qks is irrelevant and within each such region we can replace
e by a straight-line segment connecting its crossings between neighboring Qks.

Adjacent Crossings Do Matter 353

This does not affect ψ and results in a monotone drawing of G with ψ(G′) − c
crossings, proving that mon-ψ(G) ≤ ψ(G′)− c which is what we had to prove.

For ψ ∈ {ocr, iocr} we need to do a bit more work. A G-edge e connecting vi

to vj must cross all Qk with i < k < j oddly. So the crossings of G-edges with
the inner framework contribute at least c to the value of ψ. This leaves at most
ψ(G′) − c ≤ mon-ψ(G) < wI in ψ(G′) unaccounted for. So there are no non-
adjacent odd pairs with edges of the inner framework except those absolutely
necessary to connect the endpoints of every edge in G. The only case in which
odd pairs with inner framework edges can still occur is in the iocr case (where
such crossings do not count) if an edge vivj , i < j crosses an adjacent inner
framework edge (uivi, viwi, ujvj , or vjwj) oddly. In this case we redraw vivj

near each endpoint (if necessary) so that the ends of vivj at vi and vj lie between
Qi and Qj ; this does not affect iocr and results in vivj crossing both Qi and Qj

an even number of times. It is possible at this point that vivj crosses both ukvk

and vkwk oddly, where k ∈ {i, j}. In that case we perform a (vivj , vk)-move; this
does not affect iocr and ensures that vivj crosses both ukvk and vkwk evenly.

Thus for ψ ∈ {ocr, iocr} we can now assume that if an edge e = vivj crosses
ukvk or vkwk with k ≤ i or k ≥ j it must do so evenly. As we did above for
the inner framework edges, we push all crossings of e with ukvk along ukvk and
over vk to vkwk so that ukvk does not cross e at all; pushing e off ukvk does
not affect ψ, since e crossed ukvk evenly. For all k ≤ i and k ≥ j cut e at vkwk;
pair up crossings of e with vkwk and reconnect severed ends of e on both side
of vkwk for all k ≤ i, k ≥ j. Closed components of e between Qi and Qj can be
reconnected to the arc-component of e without affecting ψ. Every other closed
component of e is entirely contained in a region which does not contain a vertex,
so all such components are even and can be dropped without affecting ψ. In the
end, all of e lies in the region formed by C2n+2 and Qi and Qj .

Now for any i < k < j we have either ocr(e, ukvk) = 0 and ocr(e, vkwk) = wI

or ocr(e, ukvk) = wI and ocr(e, vkwk) = 0 (since we have already accounted for
all crossings with edges of weight at least wI). For every k push all crossings of
e with Qk from the edge with ocr = 0 to the other edge (not affecting the value
of ψ); that is, e avoids one of the edges of Qk for every i < k < j. Let e′ be any
other curve in the region in C2n+2 bounded by Qi, Qj that shares ends with e
(here, an end is an endpoint together with a small, crossing-free part of the edge
incident to the endpoint); furthermore, suppose that e′ avoids the same edge in
each Qk as does e. Then ocr(e, g) = ocr(e′, g) for every edge g (other than e),
since e can be continuously deformed to e′ without passing over any vertex. In
particular, we can replace e with a monotone polygonal arc without changing
the value of ψ. Repeating this for all edges of G gives us a monotone drawing of
G with mon-ψ crossings. This completes the argument for ψ ∈ {ocr, iocr}. ��

References

1. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer,
New York (2005)

2. Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone
drawings, and level-planarity. Accepted for WG (2011)

354 R. Fulek et al.

3. Chojnacki, C., Hanani, H.: Über wesentlich unplättbare Kurven im drei-
dimensionalen Raume. Fundamenta Mathematicae 23, 135–142 (1934)

4. Kainen, P.C.: A lower bound for crossing numbers of graphs with applications to
Kn, Kp, q , and Q(d). J. Combinatorial Theory Ser. B 12, 287–298 (1972)

5. Pach, J., Tóth, G.: Thirteen problems on crossing numbers. Geombinatorics 9(4),
194–207 (2000)

6. Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser.
B 80(2), 225–246 (2000)

7. Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1),
39–47 (2004)

8. Pelsmajer, M.J., Schaefer, M., Stasi, D.: Strong Hanani–Tutte on the projective
plane. SIAM Journal on Discrete Mathematics 23(3), 1317–1323 (2009)

9. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings. J. Com-
bin. Theory Ser. B 97(4), 489–500 (2007)

10. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Odd crossing number and crossing
number are not the same. Discrete Comput. Geom. 39(1), 442–454 (2008)

11. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings on sur-
faces. European Journal of Combinatorics 30(7), 1704–1717 (2009)

12. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing independently even cross-
ings. SIAM Journal on Discrete Mathematics 24(2), 379–393 (2010)

13. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Crossing numbers of graphs with
rotation systems. Algorithmica 60, 679–702 (2011), doi:10.1007/s00453-009-9343-y

14. Székely, L.A.: A successful concept for measuring non-planarity of graphs: the
crossing number. Discrete Math. 276(1-3), 331–352 (2004)

15. Székely, L.A.: Progress on Crossing Number Problems. In: Vojtáš, P., Bieliková, M.,
Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 53–61.
Springer, Heidelberg (2005)

16. Székely, L.A.: An optimality criterion for the crossing number. Ars Math. Con-
temp. 1(1), 32–37 (2008)

17. Tóth, G.: Note on the pair-crossing number and the odd-crossing number. Discrete
Comput. Geom. 39(4), 791–799 (2008)

18. Tutte, W.T.: Toward a theory of crossing numbers. J. Combinatorial Theory 8,
45–53 (1970)

19. Valtr, P.: On the pair-crossing number. In: Combinatorial and Computational Ge-
ometry. Math. Sci. Res. Inst. Publ., vol. 52, pp. 569–575. Cambridge University
Press, Cambridge (2005)

20. West, D.: Open problems - graph theory and combinatorics,
http://www.math.uiuc.edu/~west/openp/ (accessed April 7, 2005)

 http://www.math.uiuc.edu/~west/openp/

Low Distortion Delaunay Embedding

of Trees in Hyperbolic Plane

Rik Sarkar

Institut Für Informatik,
Freie Universität Berlin, Germany

sarkar@inf.fu-berlin.de

Abstract. This paper considers the problem of embedding trees into
the hyperbolic plane. We show that any tree can be realized as the De-
launay graph of its embedded vertices. Particularly, a weighted tree can
be embedded such that the weight on each edge is realized as the hy-
perbolic distance between its embedded vertices. Thus the embedding
preserves the metric information of the tree along with its topology. The
distance distortion between non adjacent vertices can be made arbitrar-
ily small – less than a (1 + ε) factor for any given ε. Existing results
on low distortion of embedding discrete metrics into trees carry over to
hyperbolic metric through this result. The Delaunay character implies
useful properties such as guaranteed greedy routing and realization as
minimum spanning trees.

1 Introduction

Embedding given data into a standard space lets us use properties of the target
space as additional structure in the original dataset, and brings to front infor-
mation that is hard to detect in the raw input. If the target space is Euclidean,
that allows us to visualize and treat the data geometrically. In general, if it is a
metric space, the properties of the metric can aid in understanding the original
data and answering queries. This approach has been found relevant to a variety
of subjects such as data visualization, network analysis, routing, localization,
machine learning, statistics, biology and many others.

Trees are an important class of data structures. They occur commonly in
natural scenarios, therefore associating trees with geometric spaces can be of
benefit in many domains. Realizing trees as Delaunay graphs lets us combine
the structural properties of trees with those of Delaunay graphs as well as those
of the ambient space.

In this paper, we show that this can always be achieved in the hyperbolic
spaces. In particular, we tackle the question for weighted trees and show that
any given edge weights can be realized exactly (upto a choice of unit) in the
delaunay embedding, while keeping the overall distortion arbitrarily low.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 355–366, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

356 R. Sarkar

1.1 Related Work

Trees in Euclidean Plane. Monma and Suri [11] address embedding minimum
spanning trees in the Euclidean space. They analyze questions of perturbations
to the embedding and their effect on the topology of the MST. Relevant to us,
they consider the problem of which trees can be realized as minimum spanning
tree in the Euclidean plane, and show that any tree with maximum vertex degree
of 5 or less admits an embedding as a minimum spanning tree. The topic of
distortion of a tree embedded in euclidean metric is analyzed in [10].

Low Distortion Metric Embeddings. This is an extensively studied subject
that we do not have the space to discuss. We just note that metrics can have
nice probabilistic embeddings into trees. N -point metrics have distributions over
embeddings in trees, and weighted graphs have distributions over spanning trees
with small expected distortions. See [6,3,4].

The hyperbolic metric behaves like a tree in many respects. One way to model
this is the concept of δ−hyperbolic metric[8]. Chepoi and co-authors[1] show that
a graph that has an n-node δ−hyperbolic graph admits an approximating tree
of additive error O(δ log n).

Hyperbolic Embeddings Embedding graphs into hyperbolic spaces can pro-
vide advantages that we do not get in Euclidean spaces or trees. Kleinberg [9]
considers the problem of greedy routing in wireless networks. This is the method,
where a node routes a message by forwarding it to the neighbor that is nearest
to the destination. The idea in [9] is to embed a spanning tree of the network
into the hyperbolic plane such that this routing always works successfully on
the tree, and thereby on the original network. Eppstein and Goodrich [5] show a
related method that uses small sized coordinates. Cvetkovski et al. [2] extend [9]
to incorporate dynamic insertion of edges. Papadopoulos et al. [12] show that
hyperbolic embedding can naturally give rise to scale free networks and as be-
fore, can support greedy routing. Zeng et al. [15] embed the universal covering
space of a network into the hyperbolic plane as a Riemann surface and show that
this can be used to easily find paths of different homotopy types in the network.

1.2 Our Contributions

The choice of the target space determines the properties we can expect to obtain
from the embedding. In this paper, we use the hyperbolic plane as the standard
target space and show that this works remarkably well for all kinds of trees –
weighted as well as unweighted, and induces many desirable features. We present
the important ideas and theorems in the main body of the paper. Details of proofs
can be found in the full version of the paper online [13].

Delaunay Embedding. Delaunay graphs are known to have many useful prop-
erties. If a graph can be treated as the Delaunay graph in some space, we can
expect to leverage some of these properties for our purposes. With this motiva-
tion, we take up the question of realizing trees as Delaunay graphs, and show

Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane 357

that the vertices of any tree can be embedded in the hyperbolic plane such that
their Delaunay graph is the original tree. This leads to two immediate conse-
quences: Realization of any tree as the minimum spanning tree of its vertices and
guaranteed delivery by greedy routing. The first overcomes the constant degree
bound of Euclidean case, the second implies the result of [9]. The embedding
in [9] is a specific Delaunay embedding based on tiling of H by ideal regular
d-gons, where d is the max degree. We generalize this to not depend on a tiling,
which gives greater flexibility needed to create the low distortion embeddings in
sections 4 and 5.

Weighted Trees. Suppose the given tree has weights or lengths defined for
its edges. This induces a metric and we refer to the input as a metric tree. We
show that the vertices of any such metric tree has a Delaunay embedding in the
hyperbolic plane, such that each Delaunay edge has a length that is the multiple
of the edge’s prescribed length by a constant. As before, the properties implied
by Delaunay embedding (MST and greedy routing) are retained.

Thus, the embedding not only preserves the topology of the tree, it also pre-
serves the geometry – the metric information from the tree. The effect of the
constant is negligible: since it is same globally, once it has been computed we
can scale our unit of length to eliminate the factor. Our definition of distortion
is oblivious to such global scaling.

Distortion of Metric Trees. While we preserve edge lengths precisely, the
overall metric may not be preserved. The hyperbolic distance between vi and
vj will be less than or equal to the path length between the two vertices in the
tree. We show that this distortion can be kept arbitrarily low. Given any ε, we
show it is possible to do the Delaunay embedding such that the distortion is less
than 1 + ε. Thus the tree can be seen as a hyperbolic spanner of the embedded
vertices.

This implies distortion bounds for embedding of metrics in general. The results
in [6,3,4] show low distortion bounds (probabilistic and average) for embedding
arbitrary n point metrics into trees. It is therefore possible to embed arbitrary
metrics into hyperbolic metric with the same bounds, using the tree embedding
as an intermediate step.

2 Basics and Notations

This section introduces some basic facts and notations about the geometry of
hyperbolic plane that will be used later. We denote the hyperbolic plane by H.
For a more detailed exposition of these ideas, see [7]. We present the ideas in
terms of the plane H, but they generalize directly to higher dimensions. We use
|.|H to denote distances in hyperbolic metric. Correspondingly, we use |.|T to
denote distances in the metric of the input tree.

In hyperbolic geometry, the axioms of euclidean geometry are all true, except
the parallel axiom, which is replaced by the Hyperbolic Axiom: There is a line
l and point P not on l, such that there are at least 2 different lines through P
parallel to l.

358 R. Sarkar

This leads to the general property that given a line, there are an infinite
number of different lines parallel to it through an outside point. Parallel lines
can be of different types. A pair of parallel lines are said to be limiting parallel if
they approach each-other asymptotically without intersecting. Such a pair does
not admit a common line perpendicular to both, and the distance between the
two does not have a minimum. A pair of parallel lines are called divergent parallel
if they move away from each-other in both directions. They have a common
segment perpendicular to both. This segment achieves the minimum distance
between the two lines.

P

α = Π(PQ)

m+α

m−α

α

l

m

Q

Fig. 1. Line m ⊥ l and rays m−α and m+α are limiting parallel to l. The angle α
depends on the length of the segment PQ. Hyperbolic straight lines m−α and m+α

look curved because our figure is in euclidean space.

Given a line l and a point P outside, there is always a point Q on l such
that PQ ⊥ l. Through P , there are always rays m+α and m−α that are limiting
parallel to l in the two directions. The angle between PQ and m+α (or symmet-
rically, the angle between PQ and m−α) is called the angle of parallelism and
represented by Π(PQ). The Bolyai and Lobachevsky formula gives its value in
terms of the length |PQ|H:

tan
Π(PQ)

2
= e−|PQ|H/k, (1)

where k is a constant for the hyperbolic plane in consideration. Note that Π(PQ)
is always less than π/2 radians, since PQ cannot be perpendicular to a ray that
is limiting parallel to l. Given l and P , the limiting parallel rays and the angle
Π(PQ) are unique. A ray that creates a larger angle with PQ will be divergent
parallel, while a ray with smaller angle will intersect l.

The region bounded by rays m−α and m+α and containing the ray m =
−−→
PQ

will be important to our discussion. Let us refer to it as a closed cone C̄(
−−→
PQ, α).

We are particularly interested in the set C̄(
−−→
PQ, α) \ {P}, we call it a cone of

angle α at P (or rooted at P) and denote it by C(
−−→
PQ, α).

The usual Euclidean axioms of betweenness, incidence and angles hold in the
hyperbolic case. Therefore two cones C(m, α) and C(n, β) at P do not intersect
if and only if the angle between m and n is greater than α + β. We say such
pairs of cones are disjoint.

Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane 359

Observation 1. Given any finite integer d we can always construct d mutually
disjoint cones at P by taking d different rays and cones of suitably small angles
around them.

Our goal is to compute an embedding function Φ : V → H, where V = v0, v1, v2, . . .
is the set of vertices of the tree. To abbreviate notations, we write ϕi = Φ(vi). We
sometimes abbreviate our notations for cones as Cα

ij = C(−−→ϕiϕj , α).
We consider distortion over some set W of pairs of distinct vertices in question.

For example, W can be the set of edges in the tree, or it can be the set of all
pairs of vertices.

Distortion. We define the contraction factor over W as δc = max(i,j)∈W
|vivj |T
|ϕiϕj |H ,

and similarly the expansion factor as δe = max(i,j)∈W
|ϕiϕj|H
|vivj |T . The distortion is

defined as δ = δc · δe.
Observe that if the embedding globally scales all distances for pairs in W by

the same factor, then δ = 1.
We consider Voronoi diagrams in H. Given a finite set of vertices v0, v1, · · · ⊂

H, the Voronoi cell of vi, denoted V(vi) is the set of points whose distance to
vi is not larger than the distance to vj for any j �= i. The Delaunay Graph is
its dual: given a set of vertices in H their Delaunay graph is one where a pair of
vertices are neighbors if their Voronoi cells intersect. As with the euclidean case,
this delaunay graph contains the MST.

Delaunay Embedding of Graphs: Given a graph G, its Delaunay embedding
in H is an embedding of the vertices such that their Delaunay graph is G.

3 Delaunay Embedding of Trees

In this section, we describe the basic construct of embedding a tree as a Delau-
nay graph. The Delaunay graph automatically has the minimum spanning tree
embedding and greedy embedding property. The basic idea is not new, and has
been used in [9,2,14]. But we wish to make it more general and write in terms of
cones rooted at the embedded vertices. This makes it easier to handle weighted
trees and low distortion embedding in following sections.

Reorganizing equation 1, we have that given rays m+α and m−α through P ,
the distance |PQ|H to a point Q on m so that the line l ⊥ PQ at Q is limiting
parallel to m−α and m+α is given by:

|PQ|H = −k ln
(
tan

α

2

)
. (2)

Since α is always less than π/2 radians, we have tan α
2 < 1. Therefore |PQ|H is

positive and monotone decreasing in α. This means in particular, that if |PQ|H
is larger, then l is limiting parallel to the bounding lines of a smaller cone, and
therefore divergent parallel to m−α and m+α, and fully contained in C(m, α).

We construct a function Φ that embeds the vertices of a tree T into H. Function
Φ is designed such that T is the Delaunay graph of the embdded vertices.

360 R. Sarkar

Lemma 1. Given two cones C(
−→
PR, α) and C(

−→
RP, β), and γ = min(α, β), if

|PR|H ≥ −2k ln
(
tan γ

2

)
the perpendicular bisector of the segment PR lies in

the intersection C(
−→
PR, γ) ∩ C(

−→
RP , γ) which is contained in the intersection

C(
−→
PR, α) ∩ C(

−→
RP, β).

Proof. Suppose without loss of generality that γ = α. Let us say that the per-
pendicular bisector l intersects PR at its midpoint Q.

Then |PQ|H ≥ −k ln
(
tan α

2

)
and therefore l ⊂ C(

−→
PR, α). Symmetrically,

|RQ|H ≥ −k ln
(
tan α

2

)
=⇒ l ⊂ C(

−→
RP, α). Since α ≤ β, we have C(

−→
RP, α) ⊆

C(
−→
RP, β). Therefore l ⊂ C(

−→
PR, α)∩C(

−→
RP , α) and l ⊂ C(

−→
PR, α)∩C(

−→
RP , β). ��

This means in general we can consider the smaller of the two angles and consider
the two cones to be of this same angle. See Figure 2. We say a segment PR is
Delaunay for angle γ if it satisfies the conditions of the lemma for γ = α = β.

Now we describe embedding an edge into a given cone. The goal is to embed in
a way such that the Voronoi cell of one embedded vertex is completely contained
inside a cone at the other vertex, and the edge is realized as the Delaunay edge
between the embedded vertices, and the two cones can have the same angle.
Again, see Figure 2.

Edge embedding function Φ. Given an edge vivj and an angle α, we select
a cone C(m, α) at point P , and embed as follows. Vertex vi is embedded at
ϕi = P . We select a point R on the ray m such that |PR|H ≥ −2k ln

(
tan α

2

)
,

and embed vj as ϕj = R. We call this a Delaunay embedding of the edge for
angle α.

This construction satisfies the conditions of lemma 1 with γ = α = β, and
therefore cones of angle α at ϕi and ϕj contain the perpendicular bisector of
ϕiϕj .

Now we extend the embedding to the entire tree. The idea is to embed such
that each edge is Delaunay for a suitable angle, and the corresponding cones
rooted at a vertex are disjoint.

Definition 1. Tree Embedding Function Φ. The vertices of a tree are embedded
in a way that allows an assignment of an angle θ(e) to each edge e such that:

1. Cones determined by θ over all edges incident on any vertex are disjoint.
2. For any edge vivj , its embedding ϕiϕj is Delaunay for angle θ(vivj).

The following algorithm describes the construction of such a Φ. Without loss of
generality, we treat the input as a rooted tree.

Algorithm: Construction of Φ for T . Embed the root v0 to an arbitrary
point ϕ0. If v0 has d children, they are Delaunay embedded individually into d
disjoint cones at ϕ0. We embed all other vertices inductively as follows. Suppose

Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane 361

P = ϕ0

R = ϕ1

Q

α = Π(PQ)α

αα

m+α
m−α

lQ

m

α = Π(PQ)

m+α m−α

α

α α

P = ϕ0

R = ϕ1

(a) (b)

Fig. 2. Embedding an edge v0v1. (a) Shows the symmetry in the embedding – it is the
same from the point of view of both end points. The Voronoi edge is the dashed line.
(b) shows a different view, which is more akin to the view from point P . This view
gives the intuition that we can embed any number of cones of small enough angles at
P , and by symmetry, same is true at point R.

vj is a child of vi, and has been embedded in a cone of angle α at ϕi. The children
of vj are Delaunay embedded in mutually disjoint cones that are also disjoint
from the cone C(−−→ϕjϕi, α).

By construction, this algorithm produces an embedding that satisfies definition 1.
The construction works for infinite trees as well.

Lemma 2. If vi is the parent of vi+1, and Φ embeds the edge vivi+1 in the cone
C(−−−−−→ϕi, ϕi+1, α) then

1. The Voronoi cells of all nodes in the subtree rooted at ϕi+1 are contained in
C(−−−−−→ϕi, ϕi+1, α).

2. The Voronoi cell of any node not in the subtree rooted at ϕi+1 are contained
in the cone C(−−−−−→ϕi+1, ϕi, α).

The hyperbolic plane contains many mutually parallel lines. Voronoi edges can
be aligned to such lines, therefore, the Voronoi diagram consists of disjoint lines,
carving out many disjoint half planes. The consequence is that Voronoi cells of
nodes from different subtrees do not intersect. The only pairs of Voronoi cells
that can intersect correspond to pairs of nodes that form edges of the tree.
Therefore:

Theorem 2. The function Φ embeds T as a Delaunay graph in H.

This directly implies that T is embedded as the minimum spanning tree of its
vertices, since the Delaunay graph contains the MST.

Greedy Embedding. Greedy routing is a well studied problem in wireless
networks. Delaunay graphs are significant to this problem as well:

362 R. Sarkar

1

2

6

7

8

3

4

5

Fig. 3. Embedding a tree, by using cones of the type shown in Fig. 2 for each edge.
1, 2, 3 . . . are the vertices of the tree. The rays form the cones. The thick edges are the
edges of the tree.

Theorem 3. A Delaunay embedding guarantees delivery by greedy routing.

This implies the result of [9]. In fact the embedding of [9] is a specific instance
of Delaunay embedding.

Edge Insertion. It is easy to adapt the algorithm to allow dynamic insertion
into trees. At every vertex, we select the cones such that there is always enough
angle left over to create more cones. This can always be done, since we can make
the new cone small enough to not cover the entire available space. A new edge
can be inserted into a new cone created in this space. This implies the edge
insertion result of [2].

4 Delaunay Embedding of Metric Trees

Now we show a stronger embedding. Suppose T = (V, E, w) is a weighted tree,
where w : E → R is the weight or length function on the edges. The goal is to
realize the weight w(vivj) on each edge vivj as the length |ϕiϕj |H of the edge
in the Delaunay embedding of the tree. For now, we are interested only in the
distortion of individual edges of the tree, and show that in that sense there is
an embedding with no distortion. The general distortion case is handled in the
next section.

In the previous section we saw that each edge has to be embedded to a mini-
mum length depending on the cone in which it is embedded. Based on this idea,
we proceed as follows.

For each edge e, we compute a minimum length L(e) needed to embed it as a
Delaunay edge along with its neighboring edges. This gives a minimum scaling
factor η(e) = L(e)/w(e) for each edge. Next we compute ηmax = max

e∈E
η(e) as

the worst scaling needed at any edge. Then the tree is embedded such that each
edge has length ηmax · w(e), that is, each edge is scaled by the same amount.
Therefore, for unit length ηmax the Delaunay graph realizes the metric tree.

Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane 363

Algorithm: Computation of ηmax. Let us write d(v) for the degree of a vertex
v. The algorithm executes 5 passes over the tree:

1. Select for each vertex a maximum cone angle μ(vi) < 2π/d(vi).
2. Select for each edge vivj the maximum cone angle as αij = min(μ(vi), μ(vj)).
3. Compute for each edge the minimum required length L(vivj)=−2k ln

(
tan αij

2

)
.

4. Compute for each edge the minimum scaling factor η(vivj) = L(vivj)/w(vivj).
5. Compute the max value of η over all edges : ηmax = max

vivj∈E
η(vivj).

Algorithm: Embedding function Φw of metric tree T . The function is
a special case of Φ, and proceeds the same way. The cone construction and
embedding steps are made more specific as follows:

1. At vertex ϕi with parent ϕh, we create d(vi)−1 disjoint cones of angle μ(vi),
disjoint from cone C(−−−→ϕiϕh, μ(vi)).

2. A child vj of vi is embdded in the cone C(−−→ϕiϕj , μ(vi)) such that |ϕiϕj |H =
ηmax · w(vivj).

For any edge vivj in E, the function Φw embeds it in cones C(−−→ϕiϕj , μ(vi)) and
C(−−→ϕjϕi, μ(vj)) respectively.

The need to compute ηmax implies that algorithm works only on finite trees.
But if constant bounds are known for the maximum vertex degree and the min-
imum edge length, then ηmax can be computed beforehand and the algorithm
can be applied to infinite trees.

Lemma 3. |ϕiϕj |H ≥ −2k ln
(
tan αij

2

)
.

Therefore, the embedding satisfies definition 1 and:

Theorem 4. The embedding Φw is a Delaunay embedding of a metric tree with
distortion 1 over the set of edges of the tree.

5 Delaunay Embedding with (1 + ε) Distortion:
Hyperbolic Spanner

In this section, we address the question of reducing the overall distortion to arbi-
trarily close to 1. Thus, in such an embedding, the tree acts as hyperbolic spanner
of the embedded points. This embedding also implies that known results that
show existence of (tree, embedding) pairs translate to existence of embeddings
in the hyperbolic plane.

Definition 2. β separated cones. Suppose cones C(−−→ϕjϕi, α) and C(−−−→ϕjϕx, γ)
are adjacent with the same root ϕj . Then the cones are β separated if the two
cones are an angle 2β apart. That is, for arbitrary points p ∈ C(−−→ϕjϕi, α) and
q ∈ C(−−−→ϕjϕx, γ), the angle ∠pϕjq > 2β.

An embedding is globally β separated if every pair of adjacent cones used for
embedding are β separated.

364 R. Sarkar

Lemma 4. If cones C(−−→ϕjϕi, α) and C(−−−→ϕjϕx, γ) are β separated and ϕr ∈
C(−−→ϕjϕi, α) and ϕs ∈ C(−−−→ϕjϕx, γ) then there is a constant ν depending only on β
such that |ϕrϕj |H + |ϕsϕj |H > |ϕrϕs|H > |ϕrϕj |H + |ϕsϕj |H − ν.

Proof. Suppose l is the line limiting parallel to both the rays −−−→ϕjϕr and −−−→ϕjϕs.
Let us refer to the point ϕj as P , and the perpendicular on l as PQ. Then we

know that |PQ|H ≤ −k ln
(
tan β

2

)
.

Now, ϕj , ϕr, ϕs are on the same side of l. Therefore, ϕrϕs intersects PQ, say at
W . This implies that PW < PQ.

By triangle inequalities : |ϕrϕj |H + |ϕsϕj |H > |ϕrϕs|H > |ϕrϕj |H + |ϕsϕj |H −
2|PW |H > |ϕrϕj |H+|ϕsϕj |H−2|PQ|H. Substitutingν =2|PQ|H ≤ −2k ln

(
tan β

2

)
,

we get the result. ��

If we can embed a tree such that neighboring edges, that is, edges incident on
the same vertex, are always Delaunay in β separated cones for some suitably
small beta, then for such embeddings, we have the following theorem:

Theorem 5. If all edges of T are scaled by a constant factor τ ≥ ηmax such that
each edge is longer than ν (1+ε)

ε and the Delaunay embedding of T is β separated,
then the distortion over all vertex pairs is bounded by 1 + ε.

Proof. Let vi, vi+1, vi+2, . . . , vi+p be the path in the tree between the two end
points. For any vertex vi+j on the path, observe that ϕi is contained in a cone
C(−−−−−−−−→ϕi+jϕi+j−1, α) – a consequence of lemma 2. This cone, by construction, is β
separated from cone C(−−−−−−−−→ϕi+jϕi+j+1, γ) containing ϕi+j+1.

Thus we have : |ϕiϕi+2|H ≥ |ϕiϕi+1|H + |ϕi+1ϕi+2|H − ν ≥ |ϕiϕi+1|H +
|ϕi+1ϕi+2|H − ε

1+ε |ϕi+1ϕi+2|H, since each edge is longer than ν 1+ε
ε . Repeating,

we have

|ϕiϕi+2|H ≥ |ϕiϕi+1|H + |ϕi+1ϕi+2|H − ε

1 + ε
· |ϕi+1ϕi+2|H

|ϕiϕi+3|H ≥ |ϕiϕi+2|H + |ϕi+2ϕi+3|H − ε

1 + ε
· |ϕi+2ϕi+3|H

|ϕiϕi+4|H ≥ |ϕiϕi+3|H + |ϕi+3ϕi+4|H − ε

1 + ε
· |ϕi+3ϕi+4|H

. . .

|ϕiϕi+p|H ≥ |ϕiϕi+p−1|H + |ϕi+p−1ϕi+p|H − ε

1 + ε
· |ϕi+p−1ϕi+p|H

Adding:

|ϕiϕi+p|H ≥
i+p−1∑

x=i

|ϕxϕx+1|H −
i+p−1∑

x=i

ε

1 + ε
|ϕxϕx+1|H

Therefore, |ϕiϕi+p|H ≥ 1
1 + ε

·
i+p−1∑

x=i

|ϕxϕx+1|H.

Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane 365

Since τ is fixed for all edges, |ϕiϕi+p|H ≥ 1
1+ε · τ |vivi+p|T .

All edges are assumed to be scaled by a factor τ ≥ ηmax such that they
are longer than ν (1+ε)

ε . We can therefore assume without loss of generality that
τ > 1. Now, for vertices vi and vj , |vivj |H ≤ τ |vivj |T . That is, hyperbolic distance
is at most τ times the tree distance.

Thus the expansion factor δe is dominated by the edges of the tree satisfying
equality, and δe = τ . The contraction factor is dominated by the pair with
maximum distortion: δc ≤ (1 + ε)/τ . Therefore, distortion δ = δc · δe ≤ (1 + ε).

��
Based on the theorem, the algorithm for 1 + ε distortion embedding becomes
simple:

Algorithm: (1+ε) Distortion embedding. Suppose d is the maximum degree
of any node. Then a low distortion embedding algorithm follows in these steps:

1. Compute a cone separation angle β < π/d, and an angle for cones α =

2π/d− 2β. Set ν = −2k ln (tan
β

2
).

2. Compute ηmax as in the previous section.
3. Select τ > ηmax such that all edges are longer than ν 1+ε

ε .
4. Embed edges as before, but into β separated cones, and edges scaled by a

factor τ .

The bounds of embedding arbitrary metrics into trees with low distortion extend
to the hyperbolic plane via this result. From [6] we have that for any metric, there
is a distribution over embeddings in the hyperbolic plane with expected distor-
tion O(log n). Similarly [4] implies that for every graph there is an embedding
into hyperbolic plane such that the average distortion of edges is bounded by
O(log2 n log log n). As before, the algorithm applies to infinite trees with known
degree and length bounds.

6 Conclusion

We presented a method to embed trees into hyperbolic plane that simultaneously
has several desirable properties. It is a Delaunay realization of the tree, preserves
edge lengths exactly, and distance between non-neighbors is distorted by at most
1 + ε. This suggests hyperbolic plane as a useful general target to investigate
embedding questions. It remains to be seen what additional properties can be
obtained in H, for the more general embedding questions.

Acknowledgement. Thanks to Jie Gao and the anonymous reviewers for many
helpful comments on the original draft of the article. This work is funded by
the German Research Foundation (DFG) through the research training group
Methods for Discrete Structures (GRK 1408).

366 R. Sarkar

References

1. Chepoi, V., Dragan, F., Estellon, B., Habib, M., Vaxès, Y., Xiang, Y.: Additive
spanners and distance and routing labeling schemes for hyperbolic graphs. Algo-
rithmica, 1–20 (2010), doi:10.1007/s00453-010-9478-x

2. Cvetkovski, A., Crovella, M.: Hyperbolic embedding and routing for dynamic
graphs. In: Proceedings of Infocom 2009 (April 2009)

3. Dhamdhere, K., Gupta, A., Räcke, H.: Improved embeddings of graph metrics into
random trees. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithm, SODA 2006, pp. 61–69 (2006)

4. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.-H.: Lower-stretch spanning trees.
In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of
Computing, STOC 2005, pp. 494–503 (2005)

5. Eppstein, D., Goodrich, M.T.: Succinct Greedy Graph Drawing in the Hyperbolic
Plane. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 14–25.
Springer, Heidelberg (2009)

6. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbi-
trary metrics by tree metrics. In: Proceedings of the Thirty-fifth Annual ACM
Symposium on Theory of Computing, pp. 448–455 (2003)

7. Greenberg, M.J.: Euclidean and Non-Euclidean Geometries. W.H. Freeman (1993)
8. Gromov, M.: Hyperbolic groups. In: Essays In Group Theory, pp. 75–263. Springer,

New York (1987)
9. Kleinberg, R.: Geographic routing using hyperbolic space. In: Proceedings of

the 26th Conference of the IEEE Communications Society (INFOCOM 2007),
pp. 1902–1909 (2007)

10. Lee, J., Naor, A., Peres, Y.: Trees and markov convexity. Geometric and Functional
Analysis 18, 1609–1659 (2009), doi:10.1007/s00039-008-0689-0

11. Monma, C., Suri, S.: Transitions in geometric minimum spanning trees (extended
abstract). In: Proceedings of the Seventh Annual Symposium on Computational
Geometry, pp. 239–249 (1991)

12. Papadopoulos, F., Krioukov, D., Boguñá, M., Vahdat, A.: Greedy forwarding in
dynamic scale-free networks embedded in hyperbolic metric spaces. In: Proceed-
ings of the 29th Conference on Information Communications, INFOCOM 2010,
pp. 2973–2981 (2010)

13. Sarkar, R.: Low distortion delaunay embedding of trees in hyperbolic plane,
http://page.inf.fu-berlin.de/sarkar/papers/HyperbolicDelaunayFull.pdf

14. Tanuma, T., Imai, H., Moriyama, S.: Revisiting hyperbolic voronoi diagrams from
theoretical, applied and generalized viewpoints. In: International Symposium on
Voronoi Diagrams in Science and Engineering, pp. 23–32 (2010)

15. Zeng, W., Sarkar, R., Luo, F., Gu, X.D., Gao, J.: Resilient routing for sensor
networks using hyperbolic embedding of universal covering space. In: Proc. of the
29th Annual IEEE Conference on Computer Communications (INFOCOM 2010)
(April 2010)

http://page.inf.fu-berlin.de/sarkar/papers/HyperbolicDelaunayFull.pdf

Hardness of Approximate Compaction

for Nonplanar Orthogonal Graph Drawings

Michael J. Bannister and David Eppstein

Computer Science Department, University of California, Irvine

Abstract. We show that several problems of compacting orthogonal
graph drawings to use the minimum number of rows or the minimum
possible area cannot be approximated to within better than a poly-
nomial factor in polynomial time unless P = NP. However, there is a
fixed-parameter-tractable algorithm for testing whether a drawing can
be compacted to a given number of rows.

1 Introduction

Orthogonal graph drawing is a widely used graph drawing style for low-degree
graphs, in which each vertex is represented as a point or a rectangle in an integer
grid, and each edge is represented as a polyline composed out of axis-parallel
line segments [4]. When used for nonplanar graphs, orthogonal drawing has
several desirable properties including polynomial area, high angular resolution,
and right-angled edge crossings; the last property, in particular, has been shown
to aid in legibility of graph drawings [6].

Typical orthogonal graph drawing systems employ a multiphase approach [1,4]
in which the input graph is planarized by replacing its crossings with vertices, a
topological embedding of the graph (specifying the ordering of the edges around
each vertex, but not the vertex and edge locations) is found, a flow algorithm is
used to orient the edges in a way that minimizes the number of bends [10], and
vertex coordinates are assigned. If vertices of degree greater than four exist, they
may be expanded to rectangles as another phase of this process [1]. Finally, the
drawing is improved by compaction, a step in which the vertices and bends of
the graph are moved to new locations in order to reduce the area of the drawing
while preserving its edge orientations and other features.

Some positive algorithmic results are known for the final compaction step; for
instance, Bridgeman et al. [2] showed that planar orthogonal drawings in which
the shapes of the faces in the drawing are restricted (so-called turn-regular draw-
ings) may be compacted into optimal area in polynomial time. However, when
drawing nonplanar graphs, it may not be necessary or desirable for the com-
paction phase to preserve a fixed planarization of the graph. If one is compact-
ing one dimension of a drawing at a time, then for planar compaction it is only
possible to map the rows of the drawing monotonically to a smaller set of rows,
while for nonplanar graphs it may also be useful to permute the rows with re-
spect to each other. This greater freedom to choose how to compact the drawing

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 367–378, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

368 M.J. Bannister and D. Eppstein

Fig. 1. Left: input and output drawings for row-by-row compaction. Right: input and
output drawings for vertex-by-vertex compaction.

may lead to much greater savings in drawing area, but it also leads to greater
difficulty in finding a good compaction.

As Patrignani [9] showed, even for arbitrary planar orthogonal graph draw-
ings, compacting the drawing in a way that minimizes its area, total edge length,
or maximum edge length is NP-hard. Although these results do not directly ex-
tend to the nonplanar case, NP-hardness in that case also follows from results of
Eades et al. on rectilinear (bendless) drawing [3], and Maňuch et al. where certain
restricted cases of rectilinear drawing are considered [8]. But since compaction
is performed primarily for aesthetic reasons (a smaller area drawing allows the
drawing to be viewed at a larger scale, making its features more legible), exact
optimization may not be important as long as a layout with small area can be
achieved. Thus, we are led to the problem of how closely it is possible to ap-
proximate the minimum area layout. The problem of approximate compaction
for nonplanar orthogonal drawings was explicitly listed as open by Eiglsperger
et al. [4], and there appears to have been little progress on it since then.

In this paper we show that nonplanar compaction is hard even to approximate:
there exists a real number c > 0 such that, unless P = NP, no polynomial time
algorithm can find a compaction of a drawing with n features that is within
a factor of nc of optimal. The main idea is to find approximation-preserving
reductions from graph coloring, a problem known to be hard to approximate.
We also find fixed-parameter tractable algorithms for finding compactions that
use very small numbers of grid rows, for drawings for which such a compaction
is possible.

1.1 Variations of the Compaction Problem

In the compaction problems we study, the task is to move vertices and bends
while preserving the axis-parallel orientation (although not necessarily the di-
rection) of each edge, to minimize the number of rows or area of the drawing.
Our results apply either to orthogonal drawings (drawings in which edges may
be polylines with bends, possible for any graph of maximum degree four) or
rectilinear drawings (bendless drawings, only possible for some graphs) [3,5]: the
distinction between bends and vertices is unimportant for our results.

We distinguish between three variants of the compaction problem, depend-
ing on what vertex motions are allowed. In row-by-row compaction (Figure 1,
left), the compacted layout maps each row of the input layout to a row of the
output; all vertices that belong to the same row must move in tandem. In vertex-

Approximate Compaction for Nonplanar Drawings 369

by-vertex vertical compaction (Figure 1, right), each vertex or bend may move
independently, but only its y-coordinate may change; it must retain its horizon-
tal position. In vertex-by-vertex free compaction, vertices or bends may move
arbitrarily in both coordinate directions. In all three of these problems, edges or
edge segments must stay vertical or horizontal according to their orientation in
the original layout. The compaction is not allowed to cause any new intersection
between a vertex and a feature it was not already incident with, nor is it allowed
to cause any two edges or edge segments to overlap for nonzero length; however,
it may introduce new crossings that were not previously present.

1.2 New Results

We show the following results.

– In the row-by-row compaction problem, it is difficult to compact even a
drawing of a path graph (or a drawing of the two-vertex graph with many
bends): if the drawing has n vertices or bends, then unless P = NP there
is no polynomial time algorithm that can find a compacted drawing whose
number of rows is within O(n1/2−ε) of optimal, or whose area is within
O(n1/2−ε) of optimal, for any ε > 0. Moreover, even finding drawings with a
fixed number of rows is hard: it is NP-complete to determine whether there
exists a compaction with only three rows.

– In vertex-by-vertex vertical compaction, there exist orthogonal graph draw-
ings of maximum degree three such that, unless P = NP, there is no poly-
nomial time algorithm that can find a compacted drawing whose number of
rows is within O(n1/4−ε) of optimal, or whose area is within O(n1/4−ε) of
optimal, where n is the number of features in the drawing, for any ε > 0. The
same result also applies in the vertex-by-vertex free compaction problem.

– For vertex-by-vertex vertical or free compaction of three-dimensional or-
thogonal drawings, it is not possible (unless P = NP) to approximate the
minimum number of layers in any one dimension to within O(n1/2−ε) of op-
timal in polynomial time, for any ε > 0, nor is it possible in polynomial time
to determine whether a three-layer drawing exists.

– In row-by-row and vertex-by-vertex vertical compaction in either two or
three dimensions, there is an approximation algorithm with approximation
ratio O(

√
n), showing that some of our inapproximability bounds are tight.

– In vertex-by-vertex vertical compaction, there is an algorithm for testing
whether an orthogonal graph drawing can be compacted into k rows, whose
running time is O(k!n). Thus, the problem is fixed-parameter tractable.

2 Preliminaries

2.1 Orthogonal Drawing

We define an orthogonal drawing of a graph to be a drawing in which each
vertex is represented as a point in the Euclidean plane (although most of our

370 M.J. Bannister and D. Eppstein

results apply as well to drawings in which the vertices are rectangles), and each
edge is represented as a polyline (a polygonal chain of line segments), with each
line segment parallel to one of the coordinate axes. If each edge is itself a line
segment, the drawing is rectilinear ; otherwise, the segments of a polyline meet
at bends. Each vertex or bend must only intersect the edges that it belongs to,
and no two vertices or bends may coincide. Edges may cross each other, but only
at right angles, at points that are neither vertices nor bends.

It is natural, in orthogonal drawing, to restrict the coordinates of the vertices
and bends to be integers. In this case, the width of a two-dimensional drawing is
the maximum difference between the x-coordinates of any two of its vertices or
bends, the height is the maximum difference between y-coordinates of any two
vertices or bends, and the area is the product of the width and height.

A compaction of a drawing D is another drawing D′ of the same graph, in
which the vertices and bends of D′ correspond one-for-one with the vertices
and bends of D, and in which corresponding segments of the two drawings are
parallel to each other. Typically, D′ will have smaller height or area than D. We
distinguish between three types of compaction:

– In row-by-row compaction, the x-coordinate of each vertex or bend remains
unchanged, and two vertices or bends that have the same y-coordinate in D
must continue to have the same y-coordinate in D′ (Figure 1, left).

– In vertex-by-vertex vertical compaction, the x-coordinate of each vertex or
bend remains unchanged, but the y-coordinates may vary independently of
each other subject to the condition that the result remains a valid drawing
with edge segments parallel to the original drawing (Figure 1, right).

– In vertex-by-vertex free compaction, the x- and y- coordinates of each vertex
or bend are free to vary independently of other vertices or bends.

As can be seen in Figure 1, we allow compaction to introduce new edge cross-
ings and to reverse the directions of edge segments. These concepts generalize
straightforwardly to three dimensions.

2.2 Graph Coloring and Inapproximability

In the graph coloring problem, we are given as input a graph and seek to color
the vertices of the graph with as few colors as possible, in such a way that the
endpoints of each edge are assigned different colors. Our results on the difficulty
of compaction are based on known inapproximability results for graph coloring,
one of the triumphs of the theory of probabilistically checkable proofs.

Lemma 1 (Zuckerman [11]). Let ε > 0 be any fixed constant. Then, unless
P = NP, there is no polynomial time algorithm that can color a given n-vertex
graph using a number of colors within a factor of n1−ε of the optimal number.

Our proofs use approximation-preserving reductions from coloring to compaction:
given a graph G to be colored, we will construct a different graph G′ and a draw-
ing D of G′ such that the layers in a compaction D′ of D necessarily correspond

Approximate Compaction for Nonplanar Drawings 371

to the colors in a coloring of G. With a reduction of this type, the approxima-
tion ratio for compacting D cannot be better than the approximation ratio for
coloring G. However, D will in general have many more vertices and bends than
the number of vertices in G: the size of D will be at least proportional to the
number of edges in G, which is quadratic in its number of vertices. Therefore,
although the approximation ratio will remain unchanged as a number by our
reduction it will be expressed as a different function of the input size.

2.3 Notation

We write nG, nD, or (where unambiguous) n for the number of vertices in a
graph G or drawing D and mG, mD, or m for its number of edges. Additionally,
bD stands for the number of bends in drawing D, λ(D) is the number of rows
in a vertex-by-vertex compaction of D, and λ̄(D) is the number of rows in a
row-by-row compaction. χ(G) represents the chromatic number of graph G.

3 Hardness of Row-by-Row Compaction

As a warm-up, we start with a simplified path compaction problem in which
every pair of objects on the same row of the drawing must move in tandem. Our
proof constructs a drawing of a path graph such that the valid row assignments
for our drawing are the same as the valid colorings of a given graph G.

Lemma 2. Given a graph G we can construct in polynomial time a rectilinear
drawing D of a path graph with O(mG) vertices, such that λ̄(D) = χ(G).

Proof. Find a Chinese postman walk for G; that is, a walk that starts at an
arbitrary vertex and visits each edge at least once, allowing vertices to be visited
multiple times. Such a walk may be found, for instance, by doubling each edge
of G and constructing an Euler tour of the doubled graph. Let uivi be the ith
edge in the walk, where vi = ui+1, and let k ≤ 2mG be the number of edges in
the walk. Additionally, choose arbitrary distinct integer numbers for the vertices
of G with �(v) being the number for the vertex v.

To construct the drawing D, for i from 0 to k, place vertices in the plane
at the points (i, �(ui)) and (i + 1, �(ui)), connected by a unit-length horizontal
edge. Additionally, for i from 0 to k − 1 draw a vertical edge from (i + 1, �(ui))
to (i + 1, �(vi)). See Figure 2 for an example of such a construction.

Two rows in the drawing conflict if and only if the corresponding vertices in
G are adjacent. For every coloring of G, we may compact D by using one row
for the vertices of each color, and conversely for every row-by-row compaction
of D we may color G by using one color class for each row of the compaction
(Figure 3). Therefore, λ̄(D) = χ(G). Also, nD = 2k + 2 = O(mG). ��

The same drawing D can equivalently be viewed as an orthogonal drawing of the
two-vertex graph K2 with O(mG) bends. In the restricted model of compaction
used in this section, horizontal compaction is disallowed, so optimizing the area
of a compaction of D is the same as optimizing its number of rows.

372 M.J. Bannister and D. Eppstein

12

3

4

5

6

1

2

3

4

5

6

Fig. 2. Path constructed from a graph G using the walk 1, 5, 3, 2, 5, 4, 3, 5, 6

12

3

4

5

6

Fig. 3. The rows of a compacted drawing correspond to the colors in a coloring of G

Theorem 1. Let ε > 0 be any positive fixed constant, and suppose that P �= NP.
Then there does not exist a polynomial time algorithm that approximates the
number of layers or the area in an optimal row-by-row compaction of a given
orthogonal or rectilinear drawing D to within a factor of (nD + bD)1/2−ε.

Proof. Suppose for a contradiction that algorithm A can solve the row-by-row
compaction problem to within a factor ρ ≤ (nD +bD)1/2−ε of optimal. Let A′ be
an algorithm for coloring an input graph G by performing the following steps:

1. Use Lemma 2 to construct a path drawing D from the given graph G.
2. Use algorithm A to compact D.
3. Color G using one color for each row of the compacted drawing.

Then the approximation ratio of algorithm A′ for coloring is the same number
ρ as the approximation ratio of algorithm A for compaction, whether measured
by area or by number of rows. However,

ρ ≤ (nD + bD)1/2−ε = O(m1/2−ε
G) = O(n1−2ε

G),

an approximation ratio that contradicts Lemma 1. ��
The same reduction, together with the NP-completeness of graph 3-colorability,
shows that it is NP-complete to determine whether a given drawing D has a
row-by-row compaction that uses at most three rows; we omit the details.

4 Hardness of Vertex-by-Vertex Compaction

Our hardness result for vertex-by-vertex vertical compaction follows roughly
the same outline as Theorem 1: translate graph vertices into drawing features
such that two features can be compacted onto the same row if and only if the
corresponding graph vertices can be assigned the same color. However, direct
overlaps between pairs of features would only let us represent interval graphs,
which are easily colored, so instead we use an edge gadget depicted in Figure 4

Approximate Compaction for Nonplanar Drawings 373

A

B

Fig. 4. Edge gadget

to represent an edge between two vertices of the input
graph. This gadget has six vertices and six line segments;
the two vertices A and B of the gadget may be placed on two
line segments representing vertices of the input graph. This
connection forces the two line segments containing A and
B to be placed on different rows of any compacted draw-
ing, even if these two line segments have no vertical overlap with each other:
one of the two line segments must be above the central rectangle of the gadget,
and the other must be below the central rectangle, although either of these two
orientations is possible.

The use of these edge gadgets leads to a second difficulty in our reduction:
the number of rows in the compacted drawing will depend both on the features
coming from input graph vertices and the rows needed by the edge gadgets
themselves. In order to make the first of these two terms dominate the total, we
represent an input graph vertex by a bundle of θ parallel line segments, for some
integer θ > 0. The edge gadgets may be modified to enforce that all segments in
one bundle be in different rows from all segments of a second bundle, as shown
in Figure 5, while only using a constant number of rows for the gadget itself.

Figure 6 shows the complete reduction, for a graph G with five vertices and
six edges, and for θ = 1. Each vertex of G is represented as a horizontal black line
segment (or bundle of segments, for θ > 1), and each edge of G is represented
by an edge gadget. The vertices of G are numbered arbitrarily from 1 to nG,
and these numbers are used to assign vertical positions to the corresponding
bundles of segments in the drawing. The edge gadgets are given x-coordinates
that allow them to attach to the two vertex bundles they should be attached to,
and y-coordinates that place them between these two vertex bundles.

Lemma 3. Given a graph G and a parameter θ we can construct in polyno-
mial time an orthogonal drawing D such that the vertices of D have maximum
degree 3, nD = O(n2

Gθ), and

χ(G)θ ≤ λ(D) ≤ χ(G) + O(nG)2.

Ai

Bi

Fig. 5. The full edge gadget for θ = 5.

374 M.J. Bannister and D. Eppstein

1

2 3

4

5

Fig. 6. Example of the complete reduction for θ = 1

Proof. The construction of D is as described above. It is straightforward to
verify the bounds on nD and on the degree. If G has a coloring with χ colors, it
is possible to assign the vertex bundles of D to χ sets of θ rows each, according
to those colors, with an additional O(nG) rows between any two such sets to
allow room for the edge gadgets to be placed without interference with each
other. Therefore, λ(D) ≤ χ(G) + O(nG)2.

If D′ is a compacted drawing of D, acyclically orient the edges of G from
the vertex whose bundle is below the edge gadget to the vertex whose bundle
is above the edge gadget, and assign each vertex v in G a color indexed by the
length of the longest path from a source to v in this acyclic orientation. Then
the number of colors needed equals the number of vertices in the longest path,
and the number of rows in D′ needed just for the vertices in this path is θ times
the number of vertices of G in the path. Therefore, χ(G)θ ≤ λ(D). ��

Theorem 2. If P �= NP, then no polynomial time algorithm approximates the
number of layers or the area in an optimal vertex-by-vertex vertical compaction
of a given orthogonal graph drawing to within a factor of (nD + nB)1/4−ε.

Proof. If an algorithm could achieve this approximation ratio for compaction,
we could get an O(n1−4ε) ratio for coloring by applying Lemma 3 with θ = n2

G,
compacting the resulting drawing, and using the coloring derived from the com-
paction in the proof of Lemma 3. But this would contradict Lemma 1. ��

5 Hardness of Vertex-by-Vertex Free Compaction

In the reduction from the previous section, allowing the vertices to move hori-
zontally as well as vertically does not make any difference in how much verti-
cal compaction is possible. However, if we want to prove inapproximability for
minimal-area compaction, we also need to worry about horizontal compaction.
By making the width incompressible we may make the vertical compaction factor
the same as the area compaction factor.

Lemma 4. From a drawing D a drawing D′ can be constructed by adding at
most O(nD) vertices, such that λ(D′) = λ(D) + 1 and D′ is incompressible in
the horizontal direction. If D has maximum degree three, then so does D′.

Approximate Compaction for Nonplanar Drawings 375

Fig. 7. Adding a row to D pre-
vents horizontal compaction

Proof. Place a line of vertices on a new row be-
low D; for each set of vertices with a given x-
coordinate in D, add a vertex on the new row at
the same x-coordinate. Connect the added vertices
with horizontal edges, and add a vertical edge to
connect these vertices to D at the point of D that
is rightmost on its bottom row, as shown in Fig-
ure 7. This added layer conflicts with all existing
horizontal layers, and forces D′ to be incompress-
ible in the horizontal direction. ��

Theorem 3. Unless P = NP, it is impossible to find vertex-by-vertex free com-
pactions with area within a factor of n

1/4−ε
D of optimal in polynomial time.

6 Hardness of Three-Dimensional Compaction

Our hardness result for three-dimensional compaction follows from the construc-
tion of a drawing whose valid two-dimensional layer assignments are the same
as the valid colorings of a graph G. We assign to each vertex in G a horizontal
layer containing an L-shaped pair of line segments, such that when projected
vertically onto a plane every two of these L shapes cross each other. For each
edge in G we place a vertical edge in the drawing connecting the L shapes that
correspond to the endpoints of the edge. Figure 8 shows an example.

Lemma 5. Given a graph G we can construct in polynomial time a 3D orthogo-
nal drawing D with maximum degree three such that nD = 3nG +2mG = O(n2

G),
and such that the number of layers in an optimal y-compaction is χ(G).

Theorem 4. If P �= NP, then there does not exist a polynomial time algorithm
that approximates the number of layers in an optimal layer compaction of a given
three dimensional orthogonal drawing to within a factor of n

1/2−ε
D .

We omit the proofs, which follow the same lines as the previous results.

1

2 3

4

1

2

3

4

Fig. 8. Reduction from coloring to three-dimensional compaction where y is the vertical
direction

376 M.J. Bannister and D. Eppstein

7 Approximation Algorithm

In this section we show that several versions of compaction can be approximated
to within a ratio of O(

√
n) of optimal in polynomial time. Our intent in present-

ing this is not so much to describe a useful compaction algorithm but rather to
show that our Ω(n1/2−ε) inapproximability bounds are nearly tight.

Our approximation method applies to both row-by-row and vertex-by-vertex
vertical compaction, in two or three dimensions, with the optimization criterion
being minimizing the number of rows or layers. In each case, we may form an
incompatibility graph, where the vertices of the incompatibility graph represent
sets of drawing features that must move in tandem: rows or layers, in row-by-row
compaction, or connected components of the subgraph of the drawing formed
by horizontal edges, in vertex-by-vertex vertical compaction. Two vertices of the
incompatibility graph are connected by an edge when the drawing features they
represent cannot be compacted to the same layer of the drawing, that is, when
they contain parts of the drawing that are directly above one another.

Our approximation algorithm is, essentially, a standard greedy graph color-
ing algorithm applied to the incompatibility graph. Specifically, it performs the
following steps.

1. Construct the incompatibility graph G from the given drawing D.
2. Find a degeneracy ordering of G by initializing an empty list L, and then

repeatedly finding and adding to the end of L the vertex v minimizing the
number of neighbors of v that do not already belong to L.

3. Process the vertices of G in the reverse of the ordering given by L. For each
vertex, in this order, assign it the smallest positive integer that is distinct
from the integers assigned to its already-processed neighbors.

4. Use the numbers assigned to the vertices in G as the coordinates of the
corresponding features in a compaction of D.

To analyze this algorithm, we consider the degeneracy δ of G [7]. If we orient
G from earlier vertices to later vertices in the degeneracy ordering described
above, δ is the maximum outdegree of a vertex in the orientation. Alternatively,
δ is the smallest number with the property that every set S of vertices in G
includes a vertex that has at most δ neighbors in S. Let κ denote the largest
number of features of D that can be pierced by a vertical line through a vertex
or bend. As we now show, δ ≤ √2(nD + bD)κ. For, if |S| ≤ √(nD + bD)κ,
then clearly all vertices have at most

√
2(nD + bD)κ neighbors in S. And, if

|S| ≥ √2(nD + bD)κ, then there are at most (nD + bD)k edges in G (each
vertex or bend of D contributes at most k incompatibilities) so by an averaging
argument there is a vertex in S with degree at most 2(nD + bD)k/|S| ≤ δ.

Theorem 5. For 2d or 3d row-by-row or vertex-by-vertex vertical compaction,
the algorithm described above computes a valid compaction whose number of rows
or layers is within an O(

√
nD + bD) factor of optimal.

Proof. No two features can overlap in the compacted drawing: for, if two features
do not overlap vertically in D, they cannot overlap no matter how they are

Approximate Compaction for Nonplanar Drawings 377

compacted, and if two features do overlap vertically then the corresponding
nodes in G will be adjacent and will be assigned distinct coordinate values.
Therefore, the result of the algorithm is a valid compaction.

Any valid compaction must have at least κ layers. But as we have seen, each
vertex in G has O(

√
(nD + bD)κ) earlier neighbors in the order and each of

these neighbors can only eliminate one choice from the set of possible coordinate
values, so its coordinate value in the compaction is O(

√
(nD + bD)κ). Therefore,

the approximation ratio is O((
√

(nD + bD)κ)/κ) = O(
√

nD + bD). ��

8 Fixed-Parameter Tractability of Vertex-by-Vertex
Vertical Compaction

Lemma 6. Given an orthogonal drawing D we can compact D into k layers in
O(k!(b + n)) time, if such a compaction is possible.

Proof. We construct local assignments of the features into k rows via a left-
to-right plane sweep. The drawing may be assumed to be in a n × n grid, so
the features can be sorted in linear time. While sweeping the plane we maintain
a set of those features intersecting the sweep line along with a record of valid
assignments of these features into the k rows.

When a feature first intersects the sweep line we try to place it into the
collection of valid assignments. If there are � features intersecting the sweep line
prior to the insertion, we have at most �!

(
k
l

)
valid assignments to consider. In

each of these valid assignments there are k − � free rows. Altogether at most k!
configurations will be considered for each feature insertion. When the sweep line
moves past a feature its row is freed for future use.

If at any point we cannot find any valid assignment for a new feature, we
conclude that a compaction into k rows is not possible. On the other hand if
the last feature can be placed into a valid assignment, then a compaction into
k layers is possible. To recover the global assignment of horizontal features into
rows, we may backtrack through the sets of local assignments. ��

Theorem 6. An optimal vertex-by-vertex vertical compaction of an orthogonal
drawing D can be found in O(λ!(b + n)) time where λ = λ(D).

Proof. Apply Lemma 6 for k = 1, 2, 3, . . . until finding a value of k for which a
valid layering exists. ��

9 Conclusions

Our investigations have determined upper and lower bounds for several different
approximation and fixed-parameter versions of the compaction problem. In some
cases, our bounds are tight: we have upper and lower bounds on the approxi-
mation ratio with the same exponent. In some other cases, there remain gaps,

378 M.J. Bannister and D. Eppstein

the most important of which is in the problem with the greatest relevance for
practical graph drawing: vertex-by-vertex free compaction of two-dimensional
orthogonal drawings to minimize area. For this problem, we have an Ω(n1/4−ε)
lower bound on the approximation ratio, and no upper bound. Can our O(

√
n)

approximation algorithms be extended to cover this case? Can the exponent in
the lower bound be improved? We leave these questions open for future research.

Acknowledgements. This work was supported in part by NSF grant 0830403
and by the Office of Naval Research under grant N00014-08-1-1015.

References

1. Biedl, T.C., Madden, B.P., Tollis, I.G.: The three-phase method: a unified approach
to orthogonal graph drawing. Int. J. Comput. Geom. Appl. 10(6), 553–580 (2000),
doi:10.1142/S0218195900000310

2. Bridgeman, S.S., Di Battista, G., Didimo, W., Liotta, G., Tamassia, R., Vis-
mara, L.: Turn-regularity and optimal area drawings of orthogonal representa-
tions. Computational Geometry: Theory and Applications 16(1), 53–93 (2000),
doi:10.1016/S0925-7721(99)00054-1

3. Eades, P., Hong, S.-H., Poon, S.-H.: On Rectilinear Drawing of Graphs. In: Epp-
stein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 232–243. Springer,
Heidelberg (2010), doi:10.1007/978-3-642-11805-0 23

4. Eiglsperger, M., Fekete, S.P., Klau, G.W.: Orthogonal Graph Drawing. In: Kauf-
mann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 121–171.
Springer, Heidelberg (2001), doi:10.1007/3-540-44969-8 6

5. Eppstein, D.: The Topology of Bendless Three-Dimensional Orthogonal Graph
Drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417,
pp. 78–89. Springer, Heidelberg (2009),doi:10.1007/978-3-642-00219-9 9

6. Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: IEEE
Pacific Visualization Symposium (PacificVIS 2008), pp. 41–46 (2008),
doi:10.1109/PACIFICVIS.2008.4475457

7. Lick, D.R., White, A.T.: k-degenerate graphs. Canadian Journal of Mathemat-
ics 22, 1082–1096 (1970), doi:10.4153/CJM-1970-125-1

8. Maňuch, J., Patterson, M., Poon, S.-H., Thachuk, C.: Complexity of Find-
ing Non-Planar Rectilinear Drawings of Graphs. In: Brandes, U., Cornelsen, S.
(eds.) GD 2010. LNCS, vol. 6502, pp. 305–316. Springer, Heidelberg (2011),
doi:10.1007/978-3-642-18469-7 28

9. Patrignani, M.: On the complexity of orthogonal compaction. Computational Ge-
ometry 19(1), 47–67 (2001), doi:10.1016/S0925-7721(01)00010-4

10. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987), doi:10.1137/0216030

11. Zuckerman, D.: Linear degree extractors and the inapproximability of max
clique and chromatic number. Theory of Computing 3(1), 103–128 (2007),
doi:10.4086/toc.2007.v003a006

http://dx.doi.org/10.1142/S0218195900000310
http://dx.doi.org/10.1016/S0925-7721(99)00054-1
http://dx.doi.org/10.1007/978-3-642-11805-0_23
http://dx.doi.org/10.1007/3-540-44969-8_6
http://dx.doi.org/10.1007/978-3-642-00219-9_9
http://dx.doi.org/10.1109/PACIFICVIS.2008.4475457
http://dx.doi.org/10.4153/CJM-1970-125-1
http://dx.doi.org/10.1007/978-3-642-18469-7_28
http://dx.doi.org/DOI:%2010.1016/S0925-7721(01)00010-4
http://dx.doi.org/10.1137/0216030
http://dx.doi.org/10.4086/toc.2007.v003a006

Monotone Drawings of Graphs with Fixed Embedding �

Patrizio Angelini1, Walter Didimo2, Stephen Kobourov3, Tamara Mchedlidze4,
Vincenzo Roselli1, Antonios Symvonis4, and Stephen Wismath5

1 Università Roma Tre, Italy
2 Università degli Studi di Perugia, Italy

3 University of Arizona, USA
4 National Technical University of Athens, Greece

5 University of Lethbridge, Canada

Abstract. A drawing of a graph is a monotone drawing if for every pair of ver-
tices u and v, there is a path drawn from u to v that is monotone in some direction.
In this paper we investigate planar monotone drawings in the fixed embedding
setting, i.e., a planar embedding of the graph is given as part of the input that
must be preserved by the drawing algorithm. In this setting we prove that every
planar graph on n vertices admits a planar monotone drawing with at most two
bends per edge and with at most 4n − 10 bends in total; such a drawing can
be computed in linear time and requires polynomial area. We also show that two
bends per edge are sometimes necessary on a linear number of edges of the graph.
Furthermore, we investigate subclasses of planar graphs that can be realized as
embedding-preserving monotone drawings with straight-line edges, and we show
that biconnected embedded planar graphs and outerplane graphs always admit
such drawings, which can be computed in linear time.

1 Introduction

A drawing of a graph is a monotone drawing if for every pair of vertices u and v, there is
a path drawn from u to v that is monotone in some direction. In other words, a drawing
is monotone if, for any given direction d (e.g., from left to right) and for each pair of
vertices u and v, there exists a suitable rotation of the drawing for which a path from u
to v becomes monotone in the direction d.

Monotone drawings have been recently introduced [1] as a new visualization para-
digm, which is well motivated by human subject experiments by Huang and Eades [8]
who showed that the “geodesic tendency” (paths follow a given direction) is important
in comprehending the underlying graph. Monotone drawings are related to well-studied
drawing conventions, such as upward drawings [5,7], greedy drawings [2,9,10], and the

� Research partially supported by the MIUR project AlgoDEEP prot. 2008TFBWL4, by the ESF
project 10-EuroGIGA-OP-003 GraDR “Graph Drawings and Representations”, by NSERC,
and by the European Union (European Social Fund - ESF) and Greek national funds through
the Operational Program “Education and Lifelong Learning” of the National Strategic Refer-
ence Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge
society through the European Social Fund. Work on these results began at the 6th Bertinoro
Workshop on Graph drawing. Discussion with other participants is gratefully acknowledged.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 379–390, 2012.
© Springer-Verlag Berlin Heidelberg 2012

380 P. Angelini et al.

geometric problem of finding monotone trajectories between two given points in the
plane avoiding convex obstacles [3].

Planar monotone drawings with straight-line edges form a natural setting and it is
known that biconnected planar graphs and trees always admit such drawings, for some
combinatorial embedding of the graph [1]. However, the question whether a simply
connected planar graph always admits a planar monotone drawing or not is still open.

On the other hand, in the fixed embedding setting (i.e., the planar embedding of the
graph is given as part of the input and the drawing algorithm is not allowed to alter it)
it is known [1] that there exist simply connected planar embedded graphs that admit no
straight-line monotone drawings.

In this paper we study planar monotone drawings of graphs in the fixed embed-
ding setting, answering the natural question whether monotone drawings with a given
constant number of bends per edge can always be computed, and identifying some sub-
classes of planar graphs that always admit planar monotone drawings with straight-line
edges. Our contributions are summarized below:

– We prove that every n-vertex planar embedded graph has an embedding-preserving
monotone drawing with curve complexity 2, that is, the maximum number of bends
along an edge is 2, and with at most 4n− 10 bends in total. Such a drawing can be
computed in linear time and has polynomial area.

– We show that our bound on the curve complexity is tight, by describing an infinite
family of embedded planar graphs that require two bends on a linear number of
edges in any embedding-preserving monotone drawing.

– We investigate what subfamilies of embedded planar graphs can be realized as
embedding-preserving monotone drawings with straight-line edges. We prove that
biconnected embedded planar graphs and outerplane graphs always admit such a
drawing, which can be computed in linear time.

The paper is structured as follows. Basic definitions and results are given in Section 2.
An algorithm for computing embedding-preserving monotone drawings of general em-
bedded planar graphs with at most two bends per edge is described in Section 3. Al-
gorithms for computing straight-line monotone drawings of meaningful subfamilies of
embedded planar graphs are given in Section 4. Concluding remarks and open questions
are presented in Section 5. For space reasons some proofs are sketched or omitted.

2 Preliminaries

We assume familiarity with basic concepts of graph drawing (see, e.g., [5]). Let G be
a planar graph and let φ be a planar embedding of G. The embedding φ defines the
set of internal faces and the outer face of G. For every vertex v of G, the embedding
φ also defines the circular clockwise order of the edges incident to v. Graph G along
with an embedding φ is called an embedded planar graph, and is denoted by Gφ. Any
subgraph of Gφ obtained by removing some edges from Gφ is a subgraph that preserves
the planar embedding φ. A drawing of Gφ is a planar drawing of G with embedding φ.

A subdivision of a graph G is obtained by replacing each edge of G with a path. A
k-subdivision of G is such that any path replacing an edge of G has at most k inter-
nal vertices. A graph G is connected if every pair of vertices is connected by a path

Monotone Drawings of Graphs with Fixed Embedding 381

and is biconnected (resp. triconnected) if removing any vertex (resp. any two vertices)
leaves G connected. In order to handle the decomposition of a biconnected graph into
its triconnected components, we use the well-known SPQR-tree data structure [6].

A monotone drawing Γ of a planar graph G (of an embedded planar graph Gφ) is
a drawing of G (of Gφ) such that for every pair of vertices u and v there exists a path
from u to v in Γ that is monotone in some direction.

A monotone drawing of any tree T can be constructed in polynomial area by using
Algorithm DFS-based [1], which relies on the concept of the Stern-Brocot tree [11,4]
SB, an infinite tree whose nodes are in bijective mapping with the irreducible posi-
tive rational numbers. Algorithm DFS-based assigns to the edges of the tree T slopes
1
1 , 2

1 , . . . , n−1
1 (which are the first n−1 elements of the rightmost path of SB) according

to a DFS-visit of T . Polynomial area is ensured by the following property of SB.

Property 1. [4,11] The sum of the numerators of the elements of the i-th level of SB
is 3i−1 and the sum of the denominators of the elements of the i-th level of SB is 3i−1.

The following property is also satisfied by any monotone drawing Γ of a tree T .

Property 2. [1] Any drawing Γ ′ of T such that the slopes of each edge e ∈ T in Γ ′ is
the same as the slope of e in Γ is monotone. Also, the slopes of any two leaf-edges e′

and e′′ of T in Γ are such that e′ and e′′ diverge, that is, the elongations of e′ and e′′ do
not cross each other.

3 Monotone Drawings with Bends of Embedded Planar Graphs

In this section we study monotone drawings of embedded planar graphs. We remark
that it is still unknown whether every planar graph admits a straight-line monotone
drawing in the variable embedding setting, while it is known that straight-line monotone
drawings do not always exist if the embedding of the graph is fixed [1]. We therefore
investigate monotone drawings with bends along some edges, and we show that two
bends per edge are always sufficient and sometimes necessary for the existence of a
monotone drawing in the fixed embedding setting.

We need some preliminary definitions. An upright spanning tree T of an embedded
planar graph Gφ is a rooted ordered spanning tree of Gφ such that: (i) T preserves the
planar embedding of Gφ; (ii) the root of T is a vertex r of the outer face of Gφ; (iii)
there exists a planar drawing of Gφ that contains an upward drawing of T such that no
edge goes below r. Fig. 1(b) and (c) show two different ordered spanning trees of the
embedded planar graph of Fig. 1(a): The first one is an upright spanning tree, while the
second is not. Given an embedded planar graph Gφ, an upright spanning tree T of Gφ

can be computed as follows. Construct any planar straight-line drawing Γ of Gφ. Orient
the edges of Gφ in Γ according to the upward direction. Let r be a vertex on the outer
face of Gφ with the smallest y-coordinate in Γ . Then, compute any spanning tree T of
Gφ rooted at r such that the left-to-right order of the children of r in T is consistent
with the left-to-right order of the neighbors of r in Γ and the left-to-right order of the
children of each vertex w in T is consistent with the clockwise order of the neighbors
of w in Gφ, computed starting from the edge connecting w to its parent in T .

382 P. Angelini et al.

1

2

3

4

5

6

7

1

2

3

4

5 6

7

1

2
3

4

5 6

7

(a) (b) (c)

Fig. 1. (a) A drawing Γ of an embedded planar graph Gφ. (b) An upright spanning tree of Gφ.
(c) A spanning tree of Gφ that is not upright.

Let T be an upright spanning tree of Gφ. The rgbb-coloring of Gφ with respect to T
is a coloring of the edges of Gφ with four colors (red, green, blue, and black) such that:
An edge is colored black if it belongs to T ; an edge is colored green if it connects two
leaves of T ; an edge is colored red if it connects a leaf to an internal vertex of T ; an
edge is colored blue if it connects two internal vertices of T .

We denote by C(Gφ, T) the rgbb-coloring of Gφ with respect to T . We prove the
following lemma.

Lemma 1. Let Gφ be an embedded planar graph with n vertices, let T be an upright
spanning tree of Gφ, and let C(Gφ, T) be the rgbb-coloring of Gφ with respect to T .
Then we can compute a monotone drawing Γ of Gφ such that each black or green edge
of C(Gφ, T) is drawn as a straight-line segment, each red edge has 1 bend, and each
blue edge has 2 bends. The running time of the algorithm is O(n) and the drawing Γ
has O(n)×O(n2) area.

Proof. First, starting from Gφ and T , construct a graph G′
φ and an upright spanning

tree T ′ of G′
φ such that: (i) G′

φ is a 2-subdivision of Gφ, (ii) T is a subtree of T ′, and
(iii) all the edges of G′

φ that are not in T ′ connect two leaves of T ′. Fig. 2(a) and (b)
show a graph Gφ with an upright spanning tree T and the corresponding graph G′

φ with
its upright spanning tree T ′ satisfying (i)–(iii). Then, the monotone drawing of Gφ with
curve complexity 2 is constructed by first computing a straight-line monotone drawing
of G′

φ and then replacing each subdivision vertex with a bend; see Fig. 2(c).
Graphs G′

φ and T ′ are constructed as follows. Initialize G′
φ = Gφ and T ′ = T .

Subdivide each red edge (s, t) of G′
φ with a vertex k and add edge (t, k) to T ′, where

t is the internal vertex of T ′. Subdivide each blue edge (s, t) of G′
φ twice, with two

vertices k and z, and add edges (s, k) and (t, z) to T ′.
The straight-line monotone drawing of G′

φ is computed in two steps. First, with
Algorithm DFS-based [1], we construct a straight-line monotone drawing of T ′, and
then we add the remaining (non-tree) edges as straight-line segments, which results in
using two segments for red edges and three segments for blue edges.

To argue the monotonicity for non-tree edges, recall that, by Property 2, it is possible
to elongate the edges of T ′ without affecting monotonicity and planarity.

Monotone Drawings of Graphs with Fixed Embedding 383

a

b c

d

a

c

d

b

d

a
b c

(a) (b) (c)

Fig. 2. (a) A graph Gφ with an upright spanning tree T rooted at vertex b. Solid edges belong to
T , while dashed edges do not. Blue edges are thicker than red edges, which are thicker than black
edges. (b) The corresponding graph G′

φ with its upright spanning tree T ′. Solid edges belong
to T ′, while dashed edges do not. Subdivision vertices are drawn as squares. (c) A straight-line
monotone drawing of G′

φ that corresponds to a monotone drawing of Gφ with bent edges.

Further, as Algorithm DFS-based assigns slopes 1
1 , 2

1 , . . . , n−1
1 to the edges of T ′,

the elongation of each leaf-edge (u, v) intersects each vertical line x = k, where k is
any integer value greater than the x-coordinate of u, at an integer grid point. Moreover,
as by Property 2 the leaf-edge elongations diverge, such intersections appear in the
same order on each vertical line x = k′, where k′ is any integer value greater than the
x-coordinate of every internal vertex of T ′; see Fig. 3(a).

Another key observation is that the graph GL induced by the leaves of T ′ is outer-
planar and can be augmented, by adding dummy edges, to a biconnected outerplanar
graph in which each internal face is a 3-cycle in such a way that the order of the vertices
on the outer face is the same as the left-to-right order of the leaves of T ′; see Fig. 3(b).

The vertices of GL are assigned to levels in such a way that the end-vertices of each
edge of GL are either on the same level or on adjacent levels, as follows. The first and
the last vertex in the left-to-right order of the leaves of T ′ have level 1. Note that, these
two vertices are adjacent, as GL is a biconnected outerplanar graph and the order of the
vertices on its outer face is the same as the left-to-right order of the leaves of T ′. Then,
starting from this edge, consider any edge (u, v) on the outer face of the graph induced
by the vertices whose level has been already assigned and consider the unique vertex
w that is connected to both u and v, and whose level has not been assigned yet, if any.
Note that, either u and v have the same level i or one of them has level i and the other
has level i + 1. In both cases, assign level i + 1 to w, as shown in Fig. 3(b) and (c).

Let l be the number of levels of GL. Then, place all the vertices at level i, with
i = 1, . . . , l, on a vertical line x = k + l − i + 1, where k is the x-coordinate of the
rightmost internal vertex of T ′. This placement, together with the fact that each such
vertical line intersects the elongations of all the leaf-edges in the same order, ensures
the planarity of the straight-line drawing of GL. Further, as the order of the vertices on
the outer face of GL is the same as the left-to-right order of the leaves of T ′, the edges
of T ′ do not cross any edge of GL, hence ensuring the planarity of G′

φ; see Fig. 3(c).
The drawing of G′

φ is monotone because between any two vertices there exists a
monotone path composed only of edges of T ′, while edges not in T ′ do not affect the

384 P. Angelini et al.

(a)

1
2

3

4

5
6 7 8

9

10

11

12

13
14

(b)

1

2 3 4 5 13
11

14

6

121097 8

k

k + 1

k + 2

k + 3

(c)

Fig. 3. For readability, the drawings in (a) and (c) are rotated to 90◦ and the grid unit distances in
(c) are not uniform. (a) Leaf-edge elongations have integer intersections with all the vertical lines
in the same order. (b) An augmented graph GL. (c) The drawing of GL (where l = 3).

monotonicity. Hence, monotonicity is maintained when dummy edges are removed.
Note that, any monotone path traversing a leaf-edge of T ′ has the corresponding leaf
as an end-vertex. If the leaf is a subdivision vertex of any non-black edge, it does not
belong to Gφ. Hence, all the monotone paths in Gφ are composed only of edges of T ,
whose drawing is monotone since it is a subtree of T ′. Therefore, the drawing of Gφ is
monotone, each red edge has one bend, and each blue edge has two bends.

In order to compute the area of the obtained drawing, recall that Algorithm DFS-
based [1] produces a drawing of T ′ in O(n)×O(n2) area. Since the number of vertical
lines added to host the drawing of GL is equal to the number l of levels assigned to the
vertices of GL, and since l is bounded by the number of leaves, which is O(n), the area
of the whole drawing is still O(n)×O(n2).

It is easy to see that the drawing can be computed in O(n) time, by considering the
individual steps. The computation of the three necessary graphs, T , G′

φ and T ′, can
be performed in linear time. Also, the slopes of the edges of T ′ can be computed in
linear time with Algorithm DFS-based [1] by constructing the Stern-Brocot tree and by
performing a rightmost DFS visit of it. Further, graph GL can be augmented in linear
time. Finally, the assignment of levels to the vertices of GL is also performed in linear
time, as each vertex is considered just once and its level is assigned only based on the
levels of its two neighbors. This concludes the proof of Lemma 1. ��
Note that, according to Lemma 1 there always exists a monotone drawing Γ of Gφ

with curve complexity 2 and at most 4n− 10 bends in total, as Gφ has at most 3n− 6
edges and every spanning tree of Gφ has n− 1 edges. Using the algorithm described in
Lemma 1, Γ has at most 2(3n−6−n+1) = 4n−10 edges in total, and this upper bound

Monotone Drawings of Graphs with Fixed Embedding 385

vi−2

vi−1

ui−1

vi
vi+1

ui+1
vi+2

v2n−2

v2n−1

u2n−1

v2n v1

u1

v2

vi

vi+1

ui+1

vi+2 vi−1

ui−1

vi−2

(a) (b)

Fig. 4. (a) A graph Gφ with 3n vertices that does not admit any embedding-preserving straight-
line monotone drawing. (b) Edges (vi−1, vi) and (vi, vi+1) can not be drawn as straight-line
segments.

is asymptotically tight, as there exist embedded planar graphs that require a linear total
number of bends in any monotone drawing. Namely, we first prove in Lemma 2 that
there exist embedded planar graphs requiring at least one bend on some edges. Then,
based on this lemma, we prove in Lemma 3 that there exist infinitely many embedded
planar graphs whose monotone drawings require two bends on a linear number of edges.

Lemma 2. For every n ≥ 3 there exists an embedded planar graph Gφ with 3n vertices
and 3n edges that does not admit any straight-line monotone drawing.

Sketch of Proof: We describe an embedded planar graph Gφ that does not admit any
straight-line monotone drawing (refer to Fig. 4(a)). Gφ consists of a simple cycle C =
v1, . . . , v2n of length 2n and of n vertices u1, u3, . . . , u2n−1 of degree 1, called legs, in-
cident to the vertices v1, v3, . . . , v2n−1 of C with odd indices, respectively. The embed-
ding of Gφ is such that all the legs are inside C, that is, they are inside the unique inter-
nal face of C. As by Property 2 any two consecutive legs (vi−1, ui−1) and (vi+1, ui+1)
diverge in any straight-line monotone drawing, it is not possible to connect vertices vi−1

and vi+1 by drawing edges (vi−1, vi) and (vi, vi+1) as straight-line segments. Refer to
Fig. 4(b). �

The next lemma shows that there are infinitely many embedded planar graphs that re-
quire two bends per edge on a linear number of edges in any embedding-preserving
monotone drawing.

Lemma 3. For every odd n ≥ 9 there exists an embedded planar graph Gφ with n
vertices and 3

2 (n− 1) edges such that every monotone drawing of Gφ has at least n−3
6

edges with at least two bends and thus at least n−3
3 bends in total.

Sketch of Proof: Refer to Fig. 5. Consider an odd integer n ≥ 9. We construct Gφ it-
eratively. Let G1

φ be a triangle graph. Graph Gi
φ is constructed from Gi−1

φ as follows.

Initialize Gi
φ = Gi−1

φ . Let (u, v, w) be a triangular internal face of Gi
φ. Add 6 new ver-

tices u1, u2, v1, v2, w1, w2 and 9 new edges (u, u1), (u, u2), (u1, u2), (v, v1), (v, v2),
(v1, v2), (w, w1), (w, w2), (w1, w2) to Gi

φ in such a way that all the new vertices are
inside (u, v, w). Note that the n-vertex graph Gi

φ is planar and has 3
2 (n−1) edges. Any

monotone drawing of Gφ has at least n−3
6 edges with at least two bends. �

386 P. Angelini et al.

u v

w

u1
u2

v1
v2

w1 w2

u v

w

u1
u2

v1
v2

w1 w2

u v

w

u1

w1

v1

(a) (b) (c)

Fig. 5. (a) An example of a graph Gφ with n = 15 vertices, that coincides with a graph G3
φ

constructed from G2
φ by adding vertices u1, u2, v1, v2, w1, w2 inside triangular face u, v, w. (b)

A subgraph Gt
φ of Gφ induced by a triangle (u, v, w) and all the vertices inside it. (c) A subdi-

vision (white circles) of the subgraph Gh
φ (solid edges) of Gt

φ induced by u, v, w, u1, v1, w1. By
Lemma 2, this subdivision does not admit any straight-line monotone drawing.

Lemma 1 and Lemma 3 together provide a tight bound on the curve complexity of
monotone drawings in the fixed embedding setting. The next theorem summarizes the
main contribution of this section.

Theorem 1. Every embedded planar graph with n vertices admits a monotone drawing
with curve complexity 2, at most 4n− 10 bends in total, and O(n)×O(n2) area; such
a drawing can be computed in O(n) time. Also, there exist infinitely many embedded
planar graphs any monotone drawing of which requires two bends on Ω(n) edges.

4 Monotone Drawings with Straight-Line Edges

In this section we prove that there exist meaningful subfamilies of embedded planar
graphs that can be realized as straight-line monotone drawings. In particular, we prove
that both the class of outerplane graphs and the class of embedded planar biconnected
graphs have this property.

4.1 Outerplane Graphs

An embedded planar graph Gφ is an outerplane graph if all its vertices are on the outer
face. We prove the following result.

Theorem 2. Every outerplane graph admits a straight-line monotone drawing. Also,
there exists an algorithm that computes such a drawing in O(n) time and O(n)×O(n2)
area.

Proof. Let T be an upright spanning tree of Gφ obtained by performing a “rightmost
DFS” visit of Gφ; see Fig. 6(a). Consider a decomposition of Gφ into its maximal
biconnected components. Observe that, for each maximal biconnected component B
that is connected to the root of T through a cut-vertex v, T contains all the edges of
B except for the internal chords (dashed edges in Fig. 6(a)) and for the leftmost edge
incident to v (dotted edges in Fig. 6(a)).

Monotone Drawings of Graphs with Fixed Embedding 387

B

v
v1

vk
vk+1

vk−1

f

B

v

v1

vk

vk+1

vk−1

p

(a) (b)

Fig. 6. (a) An outerplane graph Gφ and the upright spanning tree T of Gφ obtained by performing
a “rightmost DFS” visit. Edges of T are represented as solid segments. (b) A strictly convex
drawing of a maximal biconnected component B of Gφ.

A straight-line monotone drawing of Gφ is constructed by first computing a straight-
line monotone drawing of T , with Algorithm DFS-based [1], and then reinserting the
edges not in T as straight-line segments. In order to reinsert such edges, for each maxi-
mal biconnected component B, consider the path p = (v, v1, . . . , vk) that is composed
of the edges belonging both to B and to T .

According to Algorithm DFS-based [1] the slopes of the edges of p are all positive
and increasing with respect to the distance from v in p. Hence, path p is drawn in T
as a polygonal line that is convex on the left side, that is, the straight-line segment
connecting any two non-consecutive vertices of p completely lies to the left of p; see
Fig. 6(b). Thus, reinserting edge (v, vk) as the straight-line segment between v and vk

determines that (v, vk) is the leftmost edge of B incident to v in the drawing and that
the boundary of B, that is, the cycle composed of the edges of p plus (v, vk), delimits a
strictly-convex region f .

We show that f does not contain any other vertex of T . Namely, the vertex vk+1 such
that edge (v, vk+1) follows (v, v1) in the counter-clockwise order of the edges around v
in T lies outside f . This is due to the fact that, according to Algorithm DFS-based, the
slope of (v, vk+1) is greater than the slope of (vk−1, vk) which in turn is greater than
the slope of (v, vk); see Fig. 6(b).

Hence, f is an empty strictly-convex region, and the chords of B can be reinserted
as straight-line segments while maintaining planarity.

The area of the drawing is the same as the area of T computed by Algorithm DFS-
based, namely O(n) × O(n2). The drawing can be computed in O(n) time. Namely,
drawing T by using Algorithm DFS-based takes O(n) time [1], and the same holds for
reinserting missing edges. ��

4.2 Biconnected Graphs

It is known [1] that straight-line monotone drawings of biconnected planar graphs in the
variable embedding setting can always be computed. This result is obtained by means

388 P. Angelini et al.

of an algorithm that exploits SPQR-trees and that preserves any given embedding, as
long as the graph contains no parallel component whose poles are connected by an
edge. However, this algorithm can be easily modified in order to compute monotone
drawings with curve complexity 1 of every embedded biconnected planar graph, as the
edges connecting the poles of a parallel component could be placed in their correct
position by adding a bend, when necessary.

In this section we prove that in fact we can compute a monotone drawing of every
embedded biconnected planar graph with no bends at all.

pW (μ) pE(μ)

pS(μ)

pN(μ)

βμ
αμ

βμ αμ

pE(μ)

pS(μ) = p′S(μ) = p′′S(μ)

pN(μ) = p′N(μ) = p′′N(μ)

βμ
αμ

p′W (μ)p′′W (μ) p′E(μ)
=

pW (μ)

p′′E(μ)
=

(a) (b)

Fig. 7. (a) A boomerang. (b) A diamond

As for the variable-embedding setting case [1], our algorithm relies on a bottom-up
visit of the SPQR-tree of the biconnected graph G in which at each step a drawing of the
pertinent graph of the currently considered node μ is constructed inside a boomerang
boom(μ), that is, a quadrilateral composed of points pN (μ), pE(μ), pS(μ), and pW (μ)
such that pW (μ) is inside triangle((pN (μ), pS(μ), pE(μ)) and 2αμ + βμ < π

2 , where

αμ = ̂pW (μ)pS(μ)pE(μ) = ̂pW (μ)pN (μ)pE(μ) and βμ = ̂pW (μ)pS(μ)pN (μ) =
̂pW (μ)pN (μ)pS(μ); see Fig. 7(a).

In order to cope with the fixed-embedding setting, we introduce a new shape, called
diamond and denoted by diam(μ), that is a convex quadrilateral (pN (μ), pE(μ), pS(μ),
pW (μ)) composed of two boomerangs boom′(μ) = (p′N (μ), p′E(μ), p′S(μ), p′W (μ))
and boom′′(μ) = (p′′N (μ), p′′E(μ), p′′S(μ), p′′W (μ)) such that pN(μ) = p′N(μ) = p′′N(μ),
pS(μ) = p′S(μ) = p′′S(μ), pE(μ) = p′E(μ) and pW (μ) = p′′E(μ); see Fig. 7(b).

A diamond is used for any P -node μ having an edge e between its poles. Namely,
one of the two boomerangs composing the diamond contains the child components of
μ that come before e in the ordering of the components around the poles, while the
other boomerang contains the other components. Note that, since P -nodes might be
contained into diamonds, the algorithm for drawing S- and R-nodes inside their own
boomerangs has to be adapted to deal with this case. We have the following.

Theorem 3. Every biconnected embedded planar graph admits a straight-line mono-
tone drawing, which can be computed in linear time.

Monotone Drawings of Graphs with Fixed Embedding 389

5 Conclusions and Open Problems

In this paper we studied monotone drawings of graphs in the fixed embedding setting.
Since not all embedded planar graphs admit an embedding-preserving monotone draw-
ing with straight-line edges, we focused on computing embedding-preserving monotone
drawings with low curve complexity. We proved that curve complexity 2 always suf-
fices and that this bound is worst-case optimal. Furthermore, we described algorithms
for computing straight-line monotone drawings for meaningful subfamilies of embed-
ded planar graphs. All the algorithms presented in this paper can be performed in linear
time and most of them produce drawings which require polynomial area.

The results in this paper naturally give rise to several interesting open problems;
some of them are listed below.

Existential Questions

Problem 1. Finding meaningful subfamilies of embedded planar graphs (other than out-
erplane graphs and embedded biconnected graphs) that admit monotone drawings with
curve complexity smaller than 2.

Problem 2. Is it possible to characterize the embedded planar graphs that admit mono-
tone drawings with curve complexity smaller than 2?

Complexity Questions

Problem 3. Given an embedded planar graph Gφ and an integer k ∈ {0, 1}, what is the
complexity of deciding whether Gφ admits a monotone drawing with curve complex-
ity k?

Problem 4. Given a graph G and an integer k ∈ {0, 1}, what is the complexity of
deciding whether there exists an embedding φ such that Gφ admits a monotone drawing
with curve complexity k?

Problem 5. Given a graph G and an integer k ∈ {0, 1}, what is the complexity of de-
ciding whether there exists an embedding φ such that Gφ does not admit any monotone
drawing with curve complexity k?

Notice that, although Problems 3-5 are related, there is no evidence that answering one
of them implies an answer for any other.

Algorithmic Questions

Problem 6. Is there any algorithm that computes monotone drawings of embedded bi-
connected planar graphs in polynomial area?

Problem 7. Is there any algorithm that computes monotone drawings of outerplane
graphs in subcubic area?

390 P. Angelini et al.

References

1. Angelini, P., Colasante, E., Di Battista, G., Frati, F., Patrignani, M.: Monotone Drawings
of Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 13–24.
Springer, Heidelberg (2011)

2. Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations.
J. Graph Algorithms Appl. 14(1), 19–51 (2010)

3. Arkin, E.M., Connelly, R., Mitchell, J.S.B.: On monotone paths among obstacles with ap-
plications to planning assemblies. In: Symposium on Computational Geometry, pp. 334–343
(1989)

4. Brocot, A.: Calcul des rouages par approximation, nouvelle methode. Revue
Chronometrique 6, 186–194 (1860)

5. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper
Saddle River (1999)

6. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25, 956–997 (1996)
7. Garg, A., Tamassia, R.: Upward planarity testing. Order 12, 109–133 (1995)
8. Huang, W., Eades, P., Hong, S.-H.: A graph reading behavior: Geodesic-path tendency. In:

PacificVis, pp. 137–144 (2009)
9. Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. Discrete &

Computational Geometry 44(3), 686–705 (2010)
10. Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor.

Comput. Sci. 344(1), 3–14 (2005)
11. Stern, M.A.: Ueber eine zahlentheoretische funktion. Journal fur die reine und angewandte

Mathematik 55, 193–220 (1858)

On the Page Number
of Upward Planar Directed Acyclic Graphs�

Fabrizio Frati1,2,3, Radoslav Fulek1, and Andres J. Ruiz-Vargas1

1 School of Basic Sciences - École Polytechnique Fédérale de Lausanne, Switzerland
{fabrizio.frati,radoslav.fulek,andres.ruizvargas}@epfl.ch

2 Dipartimento di Informatica e Automazione, Università Roma Tre
3 School of Information Technologies, University of Sydney

Abstract. In this paper we study the page number of upward planar directed
acyclic graphs. We prove that: (1) the page number of any n-vertex upward planar
triangulation G whose every maximal 4-connected component has page number
k is at most min{O(k log n), O(2k)}; (2) every upward planar triangulation G
with o(n

log n
) diameter has o(n) page number; and (3) every upward planar trian-

gulation has a vertex ordering with o(n) page number if and only if every upward
planar triangulation whose maximum degree is O(

√
n) does.

1 Introduction

A k-page book embedding of a graph G=(V, E) is a total ordering σ of V and a parti-
tion of E into subsets E1, E2, . . . , Ek, called pages, such that no two edges (u, v) and
(w, z) with u <σw <σv <σz belong to the same set Ei. The page number of G is the
minimum k such that G admits a k-page book embedding.

Book embeddings (first introduced by Kainen [15] and by Ollmann [19]) find ap-
plications in several contexts, such as VLSI design, fault-tolerant processing, sorting
networks, and parallel matrix multiplication (see, e.g., [4,11,20,21]). Henceforth, they
have been widely studied from a theoretical point of view; namely, the literature is
rich of combinatorial and algorithmic contributions on the page number of various
classes of graphs (see, e.g., [2,7,8,9,10,17,18]). We remark here a famous result of Yan-
nakakis [22] stating that any planar graph has page number at most four.

Heath et al. [13,14] extended the notions of book embedding and page number to
directed acyclic graphs (DAGs for short) in a very natural way: Given a DAG G=(V, E),
book embedding and page number of G are defined as for undirected graphs, except that
the total ordering of V is now required to be a linear extension of the partial order of V
induced by E. That is, if G contains an edge from a vertex u to a vertex v, then u <σv
in any feasible total ordering σ of V . The authors of [13,14] showed that DAGs with
page number equal to one can be characterized and recognized efficiently; however,
they proved that, in general, determining the page number of a DAG is NP-complete.

� Work partially supported by the Italian Ministry of Research, grant RBIP06BZW8, FIRB
project “Advanced tracking system in intermodal freight transportation”, by the Swiss National
Science Foundation 200021-125287/1, by the ESF project 10-EuroGIGA-OP-003 “Graph
Drawings and Representations”, and by the MIUR of Italy, project AlgoDEEP 2008TFBWL4.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 391–402, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

392 F. Frati, R. Fulek, and A.J. Ruiz-Vargas

The main problem raised by Heath et al. and studied in, e.g., [1,6,12,13,14], is
whether every upward planar DAG admits a book embedding in few pages. An up-
ward planar DAG is a DAG that admits a drawing which is simultaneously upward,
i.e., each edge is represented by a curve monotonically increasing in the y-direction,
and planar, i.e., no two edges cross. Upward planar DAGs are the natural counterpart
of planar graphs in the context of directed graphs. Notice that there exist DAGs which
admit a planar non-upward embedding and that require Ω(|V |) pages in any book em-
bedding [12,14]. No upper bound better than the trivial O(|V |) and no lower bound
better than the trivial Ω(1) are known for the page number of upward planar DAGs. It
is however known that directed trees have page number one [14], that unicyclic DAGs
have page number two [14], and that series-parallel DAGs have page number two [1,6].

In this paper we study the page number of upward planar DAGs. Before stating our
results we need some background.

First, it is known that every upward planar DAG G can be augmented to an upward
planar triangulation G′ [5]. That is, edges can be added to G so that the resulting graph
G′ is still an upward planar DAG and every face of G′ is delimited by a 3-cycle. Thus, in
order to establish tight bounds on the page number of upward planar DAGs, it suffices
to look at upward planar triangulations, as the page number of a subgraph G of a graph
G′ is at most the page number of G′. In the following, unless otherwise specified, all
the considered graphs are upward planar triangulations.

Second, consider a total ordering σ of V . A twist is a set of pairwise crossing edges,
i.e., a set {(u1, v1), (u2, v2), . . . , (uk, vk)} of edges such that u1 <σu2 <σ· · · <σuk <σ

v1 <σv2 <σ· · · <σvk. It is straightforward that the page number of a graph G is lower
bounded by the minimum over all vertex orderings σ of the maximum size of a twist
in σ. Moreover, a function of the maximum size of a twist in a vertex ordering upper
bounds the page number of an n-vertex graph G, as stated in the following two lemmata.

Lemma 1. [3] Let σ be a vertex ordering of an n-vertex graph G. Suppose that the
maximum twist of σ has size k. Then G admits a book embedding with vertex ordering
σ and with O(k log n) pages.

Lemma 2. [16] Let σ be a vertex ordering of an n-vertex graph G. Suppose that the
maximum twist of σ has size k. Then G admits a book embedding with vertex ordering
σ and with O(2k) pages.

Thus, in order to get upper bounds for the page number of a graph, it often suffices to
construct vertex orderings with small maximum twist size.

In this paper we consider the relationship between the page number of an n-vertex
upward planar triangulation G and three important graph parameters of G: The connec-
tivity, the diameter, and the degree. We show the following results. (i) In Sect. 3, we
prove that an upward planar triangulation G admits a vertex ordering with maximum
twist size O(f(n)) if and only if every maximal 4-connected component of G does. As
a corollary, upward planar 3-trees have constant page number. (ii) In Sect. 4, we prove
that every upward planar triangulation G has a vertex ordering whose maximum twist
size is a function of the diameter of G, that is, of the length of the longest directed path
in G. As a corollary, every upward planar triangulation whose diameter is o(n/ log n)

On the Page Number of Upward Planar Directed Acyclic Graphs 393

admits a book embedding in o(n) pages. (iii) In Sect. 5, we show that every upward
planar triangulation has a vertex ordering with o(n) page number if and only if every
upward planar triangulation whose maximum degree is O(

√
n) does.

2 Definitions

A directed graph is a graph with direction on the edges. The underlying graph of a
directed graph G is the undirected graph obtained from G by removing the directions
on its edges. We denote by (u, v) an edge directed from a vertex u, which is called the
origin of (u, v), to a vertex v, which is called the destination of (u, v); edge (u, v) is
incoming v and outgoing u. A source (resp. sink) is a vertex with no incoming edge
(resp. with no outgoing edge). A directed cycle is a directed graph whose underlying
graph is a cycle and containing no source and no sink. A directed acyclic graph (DAG
for short) is a directed graph containing no directed cycle. A directed path is a directed
graph whose underlying graph is a path and containing exactly one source and one sink.
The diameter of a directed graph is the number of vertices in its longest directed path.

A drawing of a directed graph is a mapping of each vertex to a point in the plane and
of each edge to a Jordan curve between its end-points. A drawing is upward if each edge
(u, v) is a curve monotonically increasing in the y-direction and it is planar if no two
edges intersect except, possibly, at common end-points. A drawing is upward planar if
it is both upward and planar. An upward planar graph is a graph that admits an upward
planar drawing. A planar drawing of a graph partitions the plane into connected regions,
called faces. The unbounded face is the outer face, all the other faces are internal faces.
Two upward planar drawings of an upward planar DAG are equivalent if they determine
the same clockwise ordering of the edges around each vertex. An embedding of an
upward planar DAG is an equivalence class of upward planar drawings. An embedded
upward planar graph is an upward planar DAG together with an embedding.

An upward planar triangulation is an upward planar graph whose underlying graph
is a maximal planar graph. Consider any two upward planar drawings Γ1 and Γ2 of an
upward planar triangulation G. Then, either Γ1 and Γ2 are equivalent, or the clockwise
ordering of the edges around each vertex in Γ1 is exactly the opposite of the one in Γ2.
The outer face of an upward planar drawing Γ of an upward planar triangulation G is
delimited by a cycle composed of three edges (u, v), (u, z), and (v, z). Then, u, v, and
z are called bottom vertex, middle vertex, and top vertex of Γ , respectively. Consider
the two embeddings E1 and E2 of an upward planar triangulation G. Then, the bottom,
middle, and top vertex of E1 coincide with the bottom, middle, and top vertex of E2,
respectively. Hence such vertices are simply called the bottom vertex of G, the middle
vertex of G, and the top vertex of G, respectively.

A total vertex ordering σ of a DAG G is upward if G has no edge (u, v) such
that v<σu. The upward vertex orderings are all and only the vertex orderings that
are feasible for a book embedding of a DAG. We say that an upward vertex order-
ing σ induces a twist of size k if G contains edges (u1, v1), . . . , (uk, vk) such that
u1<σ. . . <σuk<σv1<σ. . . , vk. The maximum twist size of an upward vertex ordering
σ is the maximum number of edges in a twist induced by σ. Two edges (u1, v1) and
(u2, v2) are nested in σ if u1<σu2<σv2<σ v1. Two edges (u1, v1) and (u2, v2) cross
in σ if u1<σu2<σv1<σ v2.

394 F. Frati, R. Fulek, and A.J. Ruiz-Vargas

An undirected graph is k-connected if the removal of any k − 1 vertices leaves the
graph connected. A directed graph is k-connected if its underlying graph is. A maximal
k-connected component of a graph G is a subgraph G′ of G such that G′ is k-connected
and no subgraph G′′ of G with G′ ⊂ G′′ is k-connected. A separating triangle C in a
graph G is a 3-cycle such that the removal of the vertices of C from G disconnects G.
A separating triangle C in a graph G is maximal if G has no separating triangle C′ such
that C is internal to C′.

The degree of a vertex is the number of edges incident to it. The degree of a graph is
the maximum among the degrees of its vertices. A DAG is Hamiltonian if it contains a
directed path passing through all its vertices. An Hamiltonian DAG G has exactly one
upward total vertex ordering. Moreover, if G is upward planar, then it has page number
at most 2. A plane 3-tree is a maximal plane graph that can be constructed as follows.
Let G3 be a 3-cycle embedded in the plane. A plane 3-tree with n vertices is a plane
graph that can be constructed from a plane graph Gn−1 with n− 1 vertices by inserting
a vertex inside an internal face of Gn−1 and by connecting such a vertex to the three
vertices incident to the face. A planar 3-tree is a planar graph that can be embedded
as a plane 3-tree. An upward plane 3-tree is an upward planar DAG whose underlying
graph is a plane 3-tree.

3 Page Number and Connectivity

In this section we study the relationship between the page number of an upward pla-
nar DAG and the page number of its maximal 4-connected components. We prove the
following:

Theorem 1. Let f(n) be any function such that f(n) ∈ Ω(1) and f(n) ∈ O(n).
Consider any n-vertex upward planar triangulation G and suppose that every maximal
4-connected component of G has an upward vertex ordering with maximum twist size at
most f(n). Then G has an upward vertex ordering with maximum twist size O(f(n)).

First, we define a rooted tree T = (V ′, E′), whose nodes correspond to subgraphs of
G=(V, E), which reflects the structure of separating triangles in G. Tree T is recur-
sively defined as follows (see Fig. 1(a)). The root r of T corresponds to G′(r) = G.
Suppose that a node a of T corresponds to a subgraph G′(a) of G. If G′(a) contains
no separating triangle, then a is a leaf of T . Otherwise, consider every maximal sepa-
rating triangle (u, v, z) of G′(a); then, insert a node b in T as a child of a, such that
G′(b) is the subgraph of G′(a) induced by the vertices internal to or on the border of
cycle (u, v, z). For each node a ∈ T , denote as V ′(a) and E′(a) the vertex set and the
edge set of G′(a). Further, for each node a ∈ T , let G(a) = (V (a), E(a)) denote the
subgraph of G′(a) induced by all the vertices which are not internal to any separating
triangle of G′(a). Note that G(a) is 4-connected for every a ∈ V ′.

We now define a total ordering o(V) of V and we later prove that the maximum
twist size of o(V) is O(f(n)). Ordering o(V) is constructed by induction on T . In the
base case a is a leaf; then let o(V ′(a)) be any total ordering of V ′(a) such that the
maximum twist size of o(V ′(a)) is f(n). Such an ordering exists by hypothesis, since
G′(a) is 4-connected. In the inductive case, let a1, . . . , am be the children of a in T ,

On the Page Number of Upward Planar Directed Acyclic Graphs 395

G = G′(r)

r

G′(u) u

G′(v)

v

T

(a)

w

u

v

(b)

Fig. 1. (a) Tree T capturing the structure of the separating triangles in G. (b) Graph G′(a); the
thick edges belong to M0.

where total orderings o(V ′(a1)), . . . , o(V ′(am)) of V ′(a1), . . . , V ′(am), respectively,
have already been computed. Compute a total ordering o(V (a)) of V (a) such that the
maximum twist size of o(V (a)) is f(n). Again, such an ordering exists by hypothesis,
since G(a) is 4-connected. Next, we merge o(V ′(a1)), . . . , o(V ′(am)) with o(V (a)). In
order to do this, we define the operation of merging an ordering V2 into an ordering V1,
that takes as input two total vertex orderings o(V1) and o(V2) such that V1 and V2 share a
single vertex v, and outputs a single total vertex ordering o(V1∪V2) of V1∪V2 such that
o(V1 ∪ V2) coincides with o(Vi) when restricted to the vertices in Vi, for i = 1, 2, and
such that every vertex of V1 that precedes v in o(V1) (resp. follows v in o(V1)) precedes
all the vertices of V2 in o(V) (resp. follows all the vertices of V2 in o(V)). Denote
by b(H), by m(H), and by t(H) the bottom vertex, the middle vertex, and the top
vertex of an upward triangulation H , respectively. Then, ordering o(V ′(a)) is defined as
follows: Let o1 = o(V (a)) and let oi+1 be the ordering obtained by merging o(V ′(ai))\
{b(G′(ai)), t(G′(ai))} into oi, for i = 1, . . . , m; then o(V ′(a)) = om+1. Observe that
o(V ′(a)) is an upward vertex ordering because o(V (a)), o(V ′(a1)), . . . , o(V ′(am)) are
and because of the definition of the merging operation.

We now prove that the size of the maximum twist induced by o(V) is O(f(n)). Let
M = {e1=(u1, v1), . . . , ek=(uk, vk)} denote any maximal twist induced by o(V). We
have the following:

Claim 1. Let a be a node of T . Let a1 and a2 be two distinct children of a. There is
no pair of distinct edges (ui, vi), (uj , vj) in M such that (ui, vi) ∈ E′(a1), (uj , vj) ∈
E′(a2), and {ui, vi, uj , vj} ∩ V (a) = ∅.
Proof: Let (u1, v1, z1) and (u2, v2, z2) be the separating triangles of G′(a) that delimit
the outer faces of G′(a1) and G′(a2), where vi is the middle vertex of G′(ai), for
i = 1, 2. If v1 �= v2, then, by the construction of o(V), all internal vertices of G′(a1)
precede all internal vertices of G′(a2) or vice versa, thus ei and ej do not both belong to
M . Otherwise, v1 = v2. Then, again by the construction of o(V), ei and ej are nested,
thus they do not both belong to M . �
Let r be the root of T . We assume that G is “minimal”, that is, we assume that there
exists no child a of r such that all the edges in M belong to G′(a). Indeed, if such a child
exists, graph G=G′(r) can be replaced by G′(a), and the bound on the size of M can
be achieved by arguing on G′(a) rather than on G′(r). Denote by Mi, with i = 0, 1, 2,
the subset of M that contains all the edges having i endpoints in V (r). Observe that
|M | = |M0| + |M1| + |M2|, hence it suffices to prove that |Mi| ∈ O(f(n)), for

396 F. Frati, R. Fulek, and A.J. Ruiz-Vargas

i = 0, 1, 2, in order to prove the theorem. By hypothesis and since G(r) is 4-connected,
we have |M2| ≤ f(n). We now deal with the edges in M1.

Claim 2. |M1| ∈ O(f(n)).

Proof: First, we argue that M1 contains at most one edge e such that an end-vertex of
e is the middle vertex of an upward planar triangulation G′(a), for some child a of r.
Indeed, by the vertex ordering’s construction, any two such edges, say ea and eb, are
either incident to the same vertex or are such that both end-vertices of ea come before
both end-vertices of eb in o(V ′(a)). Thus, it is enough to bound the number of edges
in M1 whose end-vertex in V (r) is the bottom vertex or the top vertex of an upward
planar triangulation G′(a), where a is a child of r.

Let M b
1 (resp. M t

1) be the subset of the edges in M1 whose end-vertex in V (r) is the
bottom vertex (resp. the top vertex) of an upward planar triangulation G′(a), where a
is a child of r. Observe, that by the above observation, |M | ≤ |M b

1 |+ |M t
1|+ 1. In the

following we bound |M b
1 | (the bound for |M t

1| can be obtained analogously).
Consider any edge (u, v) ∈ M b

1 , where u ∈ V (r). We define a corresponding edge
of (u, v) in G(r) as follows. Let au,v be the child of r such that G′(au,v) contains
edge (u, v). Further, denote by mu,v the middle vertex of G′(au,v). Then, (u, mu,v)
is the corresponding edge of (u, v) in G(r). Observe that edge (u, mu,v) exists and
belongs to E(r). Now consider the multi-set Eb

1 of the corresponding edges, that is
Eb

1 = {(u, mu,v)|(u, v) ∈ M b
1}. First, we have that, for each vertex w in V (r), there

exist at most two edges (z, w) in Eb
1, since each vertex in V (r) is the middle vertex

of at most two upward planar triangulations G′(ai), where ai is a child of r, and since
G′(ai) has at most one edge in M b

1 . If there exist two edges (z1, w) and (z2, w) in Eb
1,

then remove one of them. Then, after such deletions, |Eb
1| ≥ |M b

1 |/2.
Next, we prove that each vertex in V (r) is an end-vertex of at most two edges in Eb

1.
Namely, consider any two edges (u1, v1) and (u2, v2) in Eb

1. Then, v1 �= v2 because
of the deletions performed on Eb

1, and u1 �= u2 as otherwise the corresponding edges
in M b

1 would share a vertex, contradicting the assumption that M is a twist; thus, each
vertex in V (r) is the source of at most one edge in Eb

1 and the sink of at most one edge
in Eb

1. Since the degree of graph (V (r), Eb
1) is two, there exists a subset E∗ of Eb

1 such
that the degree of graph (V (r), E∗) is one and |E∗| ≥ |Eb

1|/3.
Finally, we have that every two edges in E∗ cross. Namely, if they do not, then by the

vertex ordering’s construction the corresponding edges in M b
1 would not cross either,

thus contradicting the assumption that M is a twist.
Since E∗ ⊆ E(r) and the maximum size of a twist of edges in E(r) is f(n), given

that G(r) is 4-connected, it follows that E∗ ≤ f(n). Using |E∗| ≥ |Eb
1|/3 and |Eb

1| ≥
|M b

1 |/2, we get |M b
1 | ≤ 6f(n). Such an inequality, together with the analogous bound

|M t
1| ≤ 6f(n) and with |M | ≤ |M b

1 |+ |M t
1|+ 1, proves the theorem. �

We now proceed by bounding the size of M0.

Claim 3. |M0| ∈ O(f(n)).

Proof: By Claim 1, all the edges in M0 belong to a graph G′(a), for a certain descendant
a of r. Let us choose a so that the length of the path from a to r is maximized. Let w
be the middle vertex of the separating triangle (u, v, w) delimiting G′(a). Let a′ denote

On the Page Number of Upward Planar Directed Acyclic Graphs 397

the child of r which is an ancestor of a or that coincides with a. Let w′ be the middle
vertex of the separating triangle (u′, v′, w′) delimiting G′(a′).

For any edge (y, z) ∈M0, we have that (y, z) “nests around w′”, that is, y precedes
w′ and w′ precedes z in o(V). Indeed, if both y and z precede w′ in o(V) (or if they
both follow w′ in o(V)), then only the edges in G′(a′) can possibly cross (y, z), by the
construction of o(V), thus contradicting the minimality of r.

If w �= w′, then |M0| ≤ 3, since only the edges incident to u, v and w can belong
to M0. Otherwise we have w′ = w (see Fig. 1(b)). Consider graph G′(a); partition the
edges in M0 into two subsets, namely M ′

0 contains all the edges of M0 having at least
one end-vertex in V (a) and M ′′

0 contains all the edges of M0 having no end-vertex in
V (a). By definition of a and by Claim 1, |M ′

0| > 0, as otherwise there would exist a
child of a containing all the edges of M0. However, by Claim 2 applied to G′(a) and by
the hypothesis of the theorem, we have |M ′

0| ∈ O(f(n)). Moreover, every edge in M ′′
0

is in a separating triangle of G′(a) having w as middle vertex; however, any such edge
is nested inside any edge of M ′

0; thus, since |M ′
0| > 0, we have |M ′′

0 | = 0 and hence
|M0| ∈ O(f(n)), which concludes the proof. �

Since |Mi| ∈ O(f(n)), for i = 0, 1, 2, it follows that |M | ∈ O(f(n)), thus proving
Theorem 1. By Lemmata 1 and 2, we have the following:

Corollary 1. If every n-vertex upward planar 4-connected triangulation has o(n
log n)

page number, then every n-vertex upward planar triangulation has o(n) page number.

Corollary 2. Every upward planar 3-tree has O(1) page number.

4 Page Number and Diameter

In this section we study the relationship between the page number of an upward pla-
nar DAG and its diameter D. We show that upward planar DAGs with small diameter
have sub-linear page number. Notice that such a result pairs the observation that graphs
with diameter n− o(n) have sub-linear page number as well, given that upward planar
Hamiltonian DAGs have page number two. We have the following:

Theorem 2. Every n-vertex upward planar triangulation whose diameter is at most D
admits an upward vertex ordering whose maximum twist size t(n) is a function satisfy-
ing t(n) ≤ aD + t(n

2) + b, for some constants a and b.

We will prove the statement for a family of upward planar DAGs that is strictly larger
than the family of upward planar triangulations. Namely, we call upward cactus an
embedded upward planar DAG G having exactly one source s(G) and such that ev-
ery internal face is delimited by a 3-cycle. See Fig. 2. Observe that an upward planar
triangulation is an upward cactus.

Consider an upward cactus G. We call monotone path any directed path
P = (u1, . . . , uk) from s(G) to a sink of G. Consider an upward planar drawing Γ of
G in which uk is the vertex with highest y-coordinate. Observe that such a drawing Γ
always exists because G is an upward cactus. Then, we define the left side of P as the

398 F. Frati, R. Fulek, and A.J. Ruiz-Vargas

s(G)

left side of P

right side of P

Fig. 2. An upward cactus G. The thick edges represent a monotone path P

subgraph of G induced by all the vertices which are to the left of the Jordan curve rep-
resenting P in Γ . The right side of P is defined analogously. Observe that the vertices
of P , the vertices of the left side of P , and the vertices of the right side of P form a
partition of the vertices of G. We have the following:

Claim 4. In every n-vertex upward cactus there exists a monotone path P such that
both the left side of P and the right side of P have less than n

2 vertices.

We now prove the statement of the theorem for every n-vertex upward cactus G with
diameter at most D. The proof is by induction on n. If n ≤ 3, then in any upward vertex
ordering of G the maximum twist size is 1, hence t(3) ≤ b, for any b ≥ 1, thus proving
the base case.

Suppose that n > 3. By Claim 4, there exists a monotone path P in G such that both
the left side of P and the right side of P have less than n

2 vertices. We now associate
each vertex in the left side of P and each vertex in the right side of P to a vertex of
P . Namely, we associate a vertex v in the left side of P to the vertex ui of P such that
there exists a directed path from ui to v and such that, for every j > i, there exists no
directed path from uj to v. Observe that, for every vertex v in the left side of P , there
exists a directed path from s(G) to v, since G has a unique source, hence v is associated
to exactly one vertex of P . Then, we call left bag of ui the set of vertices in the left side
of P which are associated to ui, for each i = 1, . . . , k. Vertices in the right side of P
are associated to vertices of P analogously, thus analogously defining the right bag of
ui, for each i = 1, . . . , k. We have the following:

Claim 5. The subgraph GL
i of G induced by the left bag of ui and by ui is an upward

cactus, for every i = 1, . . . , k.

An analogous claim holds for the subgraph GR
i of G induced by the right bag of ui and

by ui.
Next, we construct an upward vertex ordering of G. This is done as follows. First,

inductively construct an upward vertex ordering σL
i of GL

i and an upward vertex order-
ing σR

i of GR
i , for i = 1, . . . , k, such that the maximum twist size of each of σR

i and
σL

i is t(n
2). This is possible since GL

i and GR
i are upward cacti, by Claim 5, and they

have less than n
2 vertices, by Claim 4. Observe that ui is the first vertex both in σL

i and
in σR

i , given that it is the only source of both GL
i and GR

i . Then, denote by σi the vertex
ordering of GL

i ∪GR
i which is obtained by concatenating σL

i and σR
i \ {ui}. Finally a

vertex ordering σ of G is obtained by concatenating σ1, σ2, . . . , σk.

On the Page Number of Upward Planar Directed Acyclic Graphs 399

Claim 6. σ is an upward vertex ordering.

Next, we prove that the maximum twist size t(n) of σ is at most aD + t(n
2) + b, for

some constants a and b.
First, observe that the edges that have both end-vertices in P create twists of size at

most two, since the graph induced by the vertices of P is upward planar Hamiltonian.
Second, we discuss the size of a twist composed of intra-bag edges, which are edges

whose both end-vertices are associated to the same vertex of P . Consider any edge eL
i

of GL
i and any edge eR

i of GR
i . Such edges do not cross. Namely, if such edges are

both incident to ui, then they do not cross by definition. If eR
i is not incident to ui, then

both end-vertices of eR
i come after both end-vertices of eL

i , by construction, hence such
edges do not cross. Moreover, if eR

i is incident to ui and eL
i is not, then eL

i is nested
inside eR

i , by construction, hence such edges do not cross. It follows that the maximum
size of a twist of intra-bag edges is equal to the maximum twist size of σ restricted
to the vertices in Ga

i for some a ∈ {L, R} and some 1 ≤ i ≤ k. By Claim 5, graph
Ga

i is an upward cactus. Moreover, by Claim 4, Ga
i has at most n

2 vertices, hence the
maximum size of a twist of intra-bag edges is at most t(n

2).
Third, we discuss the maximum size of a twist composed of inter-bag edges, which

are edges whose end-vertices are associated to distinct vertices of P . We show that the
maximum size of a twist composed of inter-bag edges in the left side of P is 2D. An
analogous proof shows that the maximum size of a twist composed of inter-bag edges
in the right side of P is also 2D.

Consider any two inter-bag edges (w1, w2) and (w3, w4) in the left side of P . Sup-
pose that (w1, w2) and (w3, w4) cross in σ. Denote by uj1 , uj2 , uj3 , and uj4 , such
that uj1 < uj2 and uj3 < uj4 , the vertices of P vertices w1, w2, w3, and w4 have
been assigned to, respectively. The following claim asserts that any two inter-bag edges
(w1, w2) and (w3, w4) that cross in σ either have their sources assigned to the same
vertex of P , or have their destinations assigned to the same vertex of P , or the source
of one of them and the destination of the other of them are assigned to the same vertex
of P .

Claim 7. At least one of the following holds: j1 = j3 < j2, j4, or j1 < j2 = j3 < j4,
or j3 < j4 = j1 < j2, or j1, j3 < j2 = j4.

Hence, if there are more than 2D inter-bag edges pairwise crossing in the left side of
P , then either there are more than D inter-bag edges pairwise crossing in the left side
of P such that the origins of such edges have all been assigned to the same vertex of
P , or there are more than D inter-bag edges pairwise crossing in the left side of P such
that the destinations of such edges have all been assigned to the same vertex of P . In
the following, we discuss such two cases.

Claim 8. Suppose that G contains inter-bag edges (v1, w1), (v2, w2), . . . , (vk, wk) in
the left side of P , where v1 <σ v2 <σ · · · <σ vk <σ w1 <σ w2 <σ · · · <σ wk and
where all the vertices wi have been assigned to the same vertex ul of P , for i = 1, . . . , k,
or all the vertices vi have been assigned to the same vertex ul of P , for i = 1, . . . , k.
Then, there exists a directed path starting at ul and passing through w1, w2, . . . , wk .

400 F. Frati, R. Fulek, and A.J. Ruiz-Vargas

Since by hypothesis any directed path contains at most D vertices, then, by Claim 8,
the maximum size of a twist of inter-bag edges sharing their destinations in the left side
of P is at most D and the maximum size of a twist of inter-bag edges sharing their
origins in the left side of P is at most D. Hence, by Claim 7, the maximum size of a
twist of inter-bag edges in the left side of P is at most 2D and the maximum size of a
twist of inter-bag edges is at most 4D. Since every edge of G is either an edge having
both end-vertices in P , or is an intra-bag edge, or is an inter-bag edge, it follows that
the maximum size of a twist in σ is t(n) = 2 + t(n

2) + 4D, thus proving Theorem 2.
By Lemma 1, we have the following:

Corollary 3. Every n-vertex upward planar triangulation whose diameter is o(n
log n)

has o(n) page number.

5 Page Number and Degree

In this section we discuss the relationship between the page number of a graph and its
degree. We prove the following theorem.

Theorem 3. Let f(n) be any function such that f(n) ∈ Ω(
√

n) and f(n) ∈ O(n).
Suppose that every n-vertex upward planar triangulation whose degree is O(f(n))
admits a book embedding with O(g(n)) pages, for some function g(n) ∈ Ω(1) and
g(n) ∈ O(n). Then, every n-vertex upward planar triangulation admits a book embed-
ding with O(g(n) + n

f(n)) pages.

Consider any n-vertex upward planar triangulation G. We transform G into an O(n)-
vertex upward planar triangulation G′ with degree O(f(n)) as follows. Fix any constant
c > 0 and denote by u1, . . . , uk any ordering of the vertices of G whose degree is
greater than cf(n).

For i = 1, . . . , k, consider vertex ui. Suppose that ui is an internal vertex of G,
the case in which ui is an external vertex being analogous. Since it is an upward pla-
nar triangulation, G has exactly two faces (v1, v2, ui) and (v3, v4, ui) incident to ui

such that edges (v1, ui) and (v4, ui) are incoming ui and such that edges (ui, v2) and
(ui, v3) are outgoing ui. Assume, w.l.o.g., that (v1, ui), (ui, v2), (ui, v3), and (v4, ui)
appear in this clockwise order around ui. Denote by w1 = v2, w2, . . . , wx−1, wx =
v3, w

′
1 = v4, w

′
2, . . . , w

′
y−1, w

′
y = v1 the clockwise order of the neighbors of ui

(see Fig. 3(a)). Remove ui and its incident edges from G. Let M = � x
f(n)−1� and

N = � y
f(n)−1�. Insert M + N + 2 vertices z1, . . . , zM+N+2 in G inside the cy-

cle of the neighbors of ui. Insert an edge from zj to zj+1, for j = 1, . . . , M , in-
sert an edge from zj+1 to zj , for j = M + 1, . . . , M + N + 1, and insert edges
from zM+2 to z1, . . . , zM and from zM+3, . . . , zM+N+2 to z1. Insert edges from v1

to z1, from z1 to v2, from v4 to zM+2, and from zM+2 to v3. Insert edges from zj

to w(j−2)(f(n)−1)+1, w(j−2)(f(n)−1)+2, . . . , w(j−1)(f(n)−1), for j = 2, . . . , M + 1; in-
sert edges from w′

(j−2)(f(n)−1)+1, w
′
(j−2)(f(n)−1)+2, . . . , w

′
(j−1)(f(n)−1) to zM+j , for

j = 3, . . . , N + 2. See Fig. 3(b).
It is easy to see that the triangulation G′ obtained from G after all vertices u1, . . . , uk

have been considered is upward planar. We have the following.

On the Page Number of Upward Planar Directed Acyclic Graphs 401

w′
y=v1

w1=v2

w′
1=v4

wx=v3

w2

wx−1

w′
2

w′
y−1

ui z1

w′
y=v1

w1=v2

w′
1=v4

wx=v3

w2

wx−1

w′
2

w′
y−1

zM+1

zM+2zM+N+2

(a) (b)

Fig. 3. (a) Neighbors of a high-degree vertex ui. (b) Replacing ui with lower-degree vertices,
assuming f(n) = 3.

Claim 9. G′ has O(n) vertices and O(f(n)) degree. Moreover, for every upward vertex
ordering σ′ of G′, there exists an upward vertex ordering σ of G such that σ and σ′

restricted to the vertices that are both in G and in G′ coincide.

We now describe how to compute a book embedding of G in O(g(n) + n
f(n)) pages.

First, construct the upward planar triangulation G′ as above. Second, construct a book
embedding of G′ into O(g(n)) pages. Such a book embedding exists by hypothesis,
since G′ has O(n) vertices and O(f(n)) degree (by Claim 9). Denote by σ′ the total
ordering of the vertices of G′ in the constructed book embedding. Construct any total
ordering σ of the vertices of G such that σ and σ′ restricted to the vertices that are both
in G and in G′ coincide. Such an ordering exists (and can be easily constructed) by
Claim 9. The edges of G can be assigned to pages as follows: O(g(n)) pages suffice
to accommodate all the edges that are both in G and in G′; moreover, one page can be
used to accommodate all the edges incident to vertex ui, for i = 1, . . . , k ∈ O(n

f(n)). It
follows that G has a book embedding in O(g(n)+ n

f(n)) pages, thus proving Theorem 3.

Corollary 4. Every n-vertex upward planar triangulation has o(n) page number if and
only if every n-vertex upward planar triangulation with degree O(

√
n) has o(n) page

number.

6 Conclusions

In this paper we studied the relationship between the page number of an upward planar
triangulation G and three important parameters of G: The connectivity, the diameter,
and the degree. It would be interesting, in our opinion, to understand whether the state-
ments of Theorems 1 and 2 can be referred to the page number rather than to the max-
imum twist size. That is: (1) Is it true that any upward planar triangulation G has page
number O(k) if and only if every maximal 4-connected subgraph of G has page number
O(k)? (2) Is it true that any n-vertex upward planar triangulation G with diameter D
has page number p(n) satisfying p(n) = p(n

2) + aD + b, for some constants a and b?
Determining whether every n-vertex upward planar DAG has o(n) page number and

whether there exist upward planar DAGs with ω(1) page number remain among the
most important problems in the theory of linear graph layouts.

402 F. Frati, R. Fulek, and A.J. Ruiz-Vargas

Acknowledgments. The first author would like to thank Patrizio Angelini, Giuseppe
Di Battista, and Stefano Saraulli for very useful discussions.

References

1. Alzohairi, M., Rival, I.: Series-Parallel Planar Ordered Sets Have Pagenumber Two. In:
North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 11–24. Springer, Heidelberg (1997)

2. Buss, J.F., Shor, P.W.: On the pagenumber of planar graphs. In: Symposium on Theory of
Computing (STOC 1984), pp. 98–100. ACM (1984)

3. Cerný, J.: Coloring circle graphs. Elec. Notes Discr. Math. 29, 457–461 (2007)
4. Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: A layout prob-

lem with applications to VLSI design. SIAM J. Alg. Discr. Meth. 8, 33–58 (1987)
5. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor.

Comp. Sci. 61, 175–198 (1988)
6. Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Book embeddability of series-

parallel digraphs. Algorithmica 45(4), 531–547 (2006)
7. Enomoto, H., Nakamigawa, T., Ota, K.: On the pagenumber of complete bipartite graphs. J.

Comb. Th. Ser. B 71(1), 111–120 (1997)
8. Ganley, J.L., Heath, L.S.: The pagenumber of k-trees is O(k). Discr. Appl. Math. 109(3),

215–221 (2001)
9. Heath, L.S.: Embedding planar graphs in seven pages. In: Foundations of Computer Science

(FOCS 1984), pp. 74–83. IEEE (1984)
10. Heath, L.S., Istrail, S.: The pagenumber of genus g graphs is O(g). J. ACM 39(3), 479–501

(1992)
11. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as mechanisms

for laying out graphs. SIAM J. Discr. Math. 5(3), 398–412 (1992)
12. Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of posets. SIAM J. Discr. Math. 10(4),

599–625 (1997)
13. Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs: Part II.

SIAM J. Computing 28(5), 1588–1626 (1999)
14. Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic

graphs: Part I. SIAM J. Computing 28(4), 1510–1539 (1999)
15. Kainen, P.C.: Thickness and coarseness of graphs. Abh. Math. Sem. Univ. Hamburg 39, 88–

95 (1973)
16. Kostochka, A.V., Kratochvíl, J.: Covering and coloring polygon-circle graphs. Discr.

Math. 163(1-3), 299–305 (1997)
17. Malitz, S.M.: Genus g graphs have pagenumber O(

√
g). J. Algorithms 17(1), 85–109 (1994)

18. Malitz, S.M.: Graphs with e edges have pagenumber O(
√

e). J. Algorithms 17(1), 71–84
(1994)

19. Ollmann, L.T.: On the book thicknesses of various graphs. In: Hoffman, F., Levow, R.B.,
Thomas, R.S.D. (eds.) Southeastern Conference on Combinatorics, Graph Theory and Com-
puting. Congressus Numerantium, vol. VIII, p. 459 (1973)

20. Rosenberg: The Diogenes approach to testable fault-tolerant arrays of processors. IEEE
Trans. Comp. C-32, 902–910 (1983)

21. Tarjan, R.E.: Sorting using networks of queues and stacks. J. ACM 19(2), 341–346 (1972)
22. Yannakakis, M.: Embedding planar graphs in four pages. J. Comp. Syst. Sci. 38(1), 36–67

(1989)

Upward Point Set Embeddability

for Convex Point Sets Is in P �

Michael Kaufmann1, Tamara Mchedlidze2, and Antonios Symvonis2

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
mk@informatik.uni-tuebingen.de

2 Dept. of Mathematics, National Technical University of Athens, Greece
{mchet,symvonis}@math.ntua.gr

Abstract. In this paper, we present a polynomial dynamic program-
ming algorithm that tests whether a n-vertex directed tree T has an up-
ward planar embedding into a convex point-set S of size n. We also note
that our approach can be extended to the class of outerplanar digraphs.
This nontrivial and surprising result implies that any given digraph can
be efficiently tested for an upward planar embedding into a given convex
point set.

1 Introduction

A planar straight-line embedding of a graph G into a point set S is a mapping of
each vertex of G to a distinct point of S and of each edge of G to the straight-
line segment between the corresponding end points so that no two edges cross
each other. Planar straight-line embeddings for outerplanar graphs and trees
were studied by Gritzmann et al. [11], Bose [4] and Bose et al. [5]. Cabello [6]
proved that the problem to decide whether a given planar graph admits a planar
straight-line embedding into a given point set is NP-hard. Planar graph embed-
dings into point sets, where edges are allowed to bend, have also been studied
(see, e.g., [2,7,12,14,17]).

An upward planar directed graph is a digraph that admits a planar drawing
such that each edge is represented by a curve monotonically increasing in the
y-direction. An upward straight-line embedding (UPSE for short) of an upward
planar digraph G into a point set S is a mapping of each vertex of G to a
distinct point of S and of each edge to the straight-line segment between its
corresponding end points such that no two edges cross and for each edge (u, v)
the condition y(u) < y(v) holds, for the y-coordinates y(u) and y(v). Upward
point set embeddability is the decision problem of whether a given digraph has
an UPSE into a given point set.
� This research has been co-financed by EUROGIGA project GraDR 10-EuroGIGA-

OP-003 and by the European Union (European Social Fund - ESF) and Greek na-
tional funds through the Operational Program “Education and Lifelong Learning” of
the National Strategic Reference Framework (NSRF) - Research Funding Program:
Heracleitus II. Investing in knowledge society through the European Social Fund.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 403–414, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

404 M. Kaufmann, T. Mchedlidze, and A. Symvonis

Upward point set embeddability was first studied by Giordano et al. [9]. The
authors studied the version of the problem where bends on edges are allowed
and showed that every planar st-digraph admits an upward point set embedding
with at most two bends per edge. Upward point set embeddability with a given
mapping, i.e., where a correspondence between the nodes and the point set is part
of the input, was studied in [10,16]. Recently, straight-line drawings were studied
in [1,3,8] and many interesting and partial results were presented. Among them
are several results concerning upward point set embeddability of a tree into
a convex point set. More specifically, several families of trees were presented,
which have an UPSE into every convex point set, i.e., caterpillars, switch-trees,
hourglass trees. On the other hand, it was demonstrated that the family of k-
switch trees (generalization of switch-trees) does not have an UPSE into all
convex point sets. An immediate question that arises from these facts is whether
the existence of an UPSE of a tree into a convex point set can be efficiently
tested. The contribution of this paper is an affirmative answer to this question.
More specifically, we show that, given a directed tree T and a convex point set
S, it can be tested in polynomial time whether T has an UPSE into S.

Recently, Geyer et al. [8] proved that the general upward point-set embeddabil-
ity problem is NP-complete even for m-convex point sets1. Thus one interesting
open problem regarding UPSE was whether there exists a class of upward planar
digraphs D for which the upward point set embeddability problem remains NP-
complete even for convex point sets. We answer this question in the negative
by extending our UPSE algorithm for trees to the class of outerplanar graphs.
Since any graph admitting a planar embedding into a convex point set is an
outerplanar digraph, our result implies that the upward point-set embeddability
can be efficiently solved for convex point sets and general digraphs.

For simplicity of presentation, we concentrate on the case of directed trees. In
Section 2, we present the necessary notation and some basic results on UPSE,
which are utilized by our tree algorithm. In Section 3, we study a restricted
version of the UPSE problem which fixes the point in which the root of the tree
is embedded and places restrictions on the drawing of subtrees. In Section 4, we
explore the result of Section 3 and present a dynamic programming algorithm
for deciding whether a directed tree has an UPSE into a convex point set. In
Section 5 we state the extended result for outerplanar digraphs. Due to space
constraints the proof of this result as well as some other proofs are presented in
the extended version of this paper [15].

2 Notation - Preliminaries

Point Sets. Let S be a set of points on the plane. We assume that the points of
S are in general position, i.e., no three of them lie on the same line. Moreover,
we also assume that no two points of S share the same y-coordinate; if they do,
a slight rotation of the coordinate axes can ensure that all points have distinct
1 An m-convex point set can be intuitively defined as a set of m shelled, one into

another, distinct convex point sets.

Upward Point Set Embeddability for Convex Point Sets Is in P 405

y-coordinates. The convex hull CH(S) of S is the point set that is obtained as
a convex combination of the points of S. A point set such that no point is in
the convex hull of the others is called a point set in convex position, or a convex
point set. Given a point set S, by t(S) (resp., b(S)) we denote the top (bottom)
point of S i.e., the point with the largest (resp., smallest) y-coordinate.

A one-sided convex point set S is a convex point set in which b(S) and t(S)
are adjacent on the border of CH(S). If t(S) and b(S) appear adjacent and
in this order on the border of CH(S) as we traverse it in the clockwise (resp.,
counterclockwise) direction, then the one-sided convex point set is called a left-
sided convex point set (resp., right-sided convex point set). A point set consisting
of at most two points is considered to be either a left-sided or a right-sided convex
point set. A convex point set which is not one-sided, is called a two-sided convex
point set.

Each given convex point set S may be considered to be the union of two
specified (at the time S is given) one-sided convex point sets, one left-sided
which is denoted by L(S) and is referred to as the left-side of S, and one right-
sided which is denoted by R(S) and is referred to as the right-side of S. When
there is no confusion regarding the point set S we refer to, for simplicity, we use
the terms L and R instead of L(S) and R(S), respectively. Each of the points
b(S) and t(S) belongs to either L(S) or R(S) but not both.

A subset of points of a convex point set S is called consecutive if its points
appear consecutively as we traverse the convex hull of S in clockwise direction.
Given that all points of S have distinct y-coordinates, we can refer to the first,
the second, the third, etc., lowest point on the left (right) side of S. By pL

i , 1 ≤
i ≤ |L(S)|, we denote the i-th lowest point on the left side of S. Similarly, by
pR

i , 1 ≤ i ≤ |R(S)|, we denote the i-th lowest point on the right side of S.
Let Sa..b,c..d = {pL

i | a ≤ i ≤ b} ∪ {pR
i | c ≤ i ≤ d} denote the subset of S

consisting of b−a+1 consecutive points on the left side of S, starting from point
pL

a in the clockwise direction, and of d − c + 1 consecutive points on the right
side, starting from point pR

c in the counterclockwise direction. For simplicity, for
a one-sided point set S we use the notation Sa..b.

In this paper, we assume that queries of the form “Find the i-th point on the
left/right side of the convex point set S” can be answered in O(1) time, e.g.,
the points on each side of S are stored in an array in ascending order of their
y-coordinates.

Trees. Consider a directed tree T , i.e., a directed acyclic graph whose underlying
undirected structure is that of a tree. Tree T is rooted if one of its vertices,
denoted by r(T), is designated as its root. We then say that T is rooted at
vertex r(T). By d−(v) (resp., d+(v)) we denote the in-degree (resp., the out-
degree) of vertex v of T . By d(v) we denote the total degree of vertex v, i.e.,
d(v) = d−(v) + d+(v).

Let T be a rooted tree and let r = r(T) be its root. Let T l
1, . . . , T

l
d−(r), T h

1 , . . . ,

T h
d+(r) be the rooted subtrees of T obtained by removing from T its root r and

r’s incident arcs and having as their roots the vertices that are incident to r
by either an incoming or an outgoing arc (see Figure 1.a). Trees T l

1, . . . , T
l
d−(r),

406 M. Kaufmann, T. Mchedlidze, and A. Symvonis

lower(T)T

(c)(b)

−d (r)l
l

l

r

...
T

2T1T

d (r)T...1T h
h

(a)

+

−d (r)l
l

l

r

...
T

2T1T

d (r)T...1T h
+

r

h
upper(T)

h
2T h

2T

Fig. 1. (a) A rooted at vertex r tree T and its subtrees T l
1, . . . , T

l
d−(r), T h

1 , . . . , T h
d+(r).

(b) The subtree lower(T) of T . (c) The subtree upper(T) of T .

T h
1 , . . . , T h

d+(r) are called the subtrees of T . Note that the superscripts “l” and
“h” indicate whether a particular subtree of T is connected to r by an incoming
to r or by an outgoing from r arc, respectively.

The rooted subtree of T consisting of T ’s root, r, together with T l
1, . . . , T

l
d−(r)

is called the lower subtree of T and is also rooted at r. The lower subtree of T is
denoted by lower(T) (Figure 1.b). Similarly, the rooted subtree of T consisting
of T ’s root, r, together with T h

1 , . . . , T h
d+(r) is called the upper subtree of T and

is also rooted at r. The upper subtree of T is denoted by upper(T) (Figure 1.c).
In this paper, we use the notation {u, v} to denote arc (u, v) if (u, v) ∈ T or

arc (v, u) if (v, u) ∈ T . If u is mapped to point p and v is mapped to point q
that is located below p, then we say that {u, v} is drawn upward (downward) if
(v, u) ∈ T ((u, v) ∈ T).

2.1 Some known Results on UPSE of Rooted Directed Trees

We present some known results on UPSE of rooted directed trees that will be uti-
lized by our algorithms. Binucci et al.[3] proved the following lemma concerning
the placement of the subtrees of T in an UPSE of T on a convex point set.

Lemma 1 (Binucci et al. [3]). Let T be a n-vertex directed tree rooted at r
and let S be any convex point set of size n. Let T1, T2, . . . , Td(r) be the subtrees
of T . Then, in any UPSE of T into S, the vertices of subtree Ti are mapped to
a set of consecutive points of S, 1 ≤ i ≤ d(r). ��
The following lemma concerns the UPSE of a rooted tree into a one-sided convex
point set. It can be considered to be a simple restatement of a result by Heath
et al. [13] (Theorem 2.1).

Lemma 2. Let T be a n-vertex directed tree rooted at r and S be a one-sided
convex point set of size n. Let T1, T2, . . . , Td(r) be the subtrees of T . Then, T
admits an UPSE into S so that the following are true:

i) Each Ti, 1 ≤ i ≤ d(r), is drawn on consecutive points of S.

Upward Point Set Embeddability for Convex Point Sets Is in P 407

ii) If the root r of T is mapped to point pr then there is no arc connecting a
point of S below pr to a point of S above pr.

By utilizing Lemma 2, we prove the following.

Lemma 3. Let T be a n-vertex directed tree rooted at r and S be a one-sided
convex point set of size n. Then, an UPSE of T into S satisfying the properties of
Lemma 2 can be obtained in O(n) time. Moreover, after O(n) time preprocessing,
the point pr that hosts the root r of T can be determined in O(1) time (i.e.,
without determining the complete UPSE of T into S).

Proof. Let k = |lower(T)| be the size of subtree lower(T) (rooted at r). Assum-
ing that T was preprocessed in O(n) time, k can be retrieved in constant time.
It immediately follows that in an UPSE of T into S satisfying the properties
of Lemma 2 there are k − 1 vertices of T (all belonging to lower(T)) that are
placed below r. Thus, r is mapped to the k-th lowest point of S. This point,
say pr, can be computed in O(1) time. Having decided where to place the root
r, the UPSE of T can be completed in O(n) time by recursively embedding the
vertices of lower(T) (upper(T)) to the points of S below (above) pr. ��

3 A Restricted UPSE Problem for Rooted Directed Trees

In this section, we study a restricted UPSE problem that will be later on used
by our main algorithm which decides whether there exists an UPSE of a given
directed tree into a given convex point set.

Definition 1. In a restricted UPSE problem for trees we are given a directed
tree T rooted at r, a convex point set S, and a point pr ∈ S. We are asked to
decide whether there exists an UPSE of T into S such that (i) the root r of
T is mapped to point pr and, (ii) each subtree of T (rooted at r) is mapped to
consecutive points on the same side (either L or R) of S.

The following observation follows directly from the above definition.

Observation 1. In a restricted UPSE of a directed tree T rooted at r into a
convex point set S = L∪R, where the root r of T is mapped to point pr ∈ S, no
edge enters the triangles ((t(L), t(R), pr) and ((b(L), b(R), pr).

Figure 2.a shows a tree T rooted at vertex r, a convex point set S consisting
of a left-sided convex point set L and a right-sided convex point set R. Tree T
has a restricted UPSE only if its root r is mapped to point pr ∈ L (Figure 2.b).
Mapping r to any other point p ∈ S makes it impossible to map each subtree of
T to consecutive points on the same side of S.

Before we proceed to describe a decision algorithm for the restricted UPSE
problem, we need some more notation. Let T be a directed tree rooted at vertex
r and let λ = (T1, . . . , Td(r)) be an ordering of the subtrees of T . Let S be a
convex point set and let Γ be an UPSE of T into S. We say that UPSE Γ
respects ordering λ if for any two subtrees Ti and Tj, 1 ≤ i ≤ j ≤ d(r), that are

408 M. Kaufmann, T. Mchedlidze, and A. Symvonis

v8

T1
T2

T3T4

5v
r

(b)

v 7

4v

v3

v2

v1

8v

9v
10v

v6

4v

v10
v9v6

v3

v2

v1

r5v

v7

T

pr

RL

(a)

Fig. 2. (a) A tree T rooted at vertex r and a convex point set S = L ∪ R. (b) A
restricted UPSE of T into S so that r is mapped to point pr. No restricted UPSE of T
exists when r is mapped to any point other than pr.

both mapped on the same side of S, Ti is mapped to a point set that is entirely
below the point set Tj is mapped to.

Consider a tree T rooted at vertex r and let λ=(T l
1, . . . , T

l
d−(r), T h

1 , . . . , T h
d+(r))

be an ordering of the subtrees of T . Ordering λ is called a proper ordering of
the subtrees of T if it satisfies the following properties:

(i) |upper(T l
i)| ≤ |upper(T l

j)|, 1 ≤ i ≤ j ≤ d−(r), and
(ii) |lower(T h

i)| ≥ |lower(T h
j)|, 1 ≤ i ≤ j ≤ d+(r).

In Figure 2.a, ordering λ1 = (T2, T1, T4, T3) is a proper ordering of the subtrees of
T , while ordering λ2 = (T1, T2, T3, T4) is not. Observe that in a proper ordering
λ of T , the subtrees in the lower subtree of T appear before the subtrees in the
upper subtree of T . The following lemma can be proved by reconstruction.

Lemma 4. Let T be a n-vertex directed tree rooted at vertex r, λ be a proper
ordering of the subtrees of T , and S be a convex point set of size n. Then, if
there exists a restricted UPSE of T into S, there also exists a restricted UPSE
of T into S that respects λ. ��
Theorem 1. Let T be a n-vertex directed tree rooted at vertex r, L and R be
left-sided and right-sided convex point sets, resp., such that S = L∪R is a convex
point set of size n, and pr a point of S. The restricted UPSE problem with input
T , S and pr can be decided in O(d(r)n) time. Moreover, if a restricted UPSE
for T , S and pr exists, it can also be constructed in O(d(r)n) time.

Proof. Let λ = (T1, T2, . . . , Td(r)) be a proper ordering of the subtrees of T .
Proper ordering λ can be computed in O(n) time by a simple tree traversal that
computes at the root of T the number of vertices in each subtree of T \ {v}
followed by a bucket sort of the sizes of the subtrees rooted at r. Since the
restricted UPSE problem will be repeatedly solved on subtrees of T , we assume
that T has been appropriately preprocessed in O(n) time and, thus, a proper
ordering of these subtrees can be then computed in O(d(r)) time. By Lemma 4,

Upward Point Set Embeddability for Convex Point Sets Is in P 409

it is enough to test whether there exists a restricted UPSE that respects λ.
Thus, we will describe a dynamic programming algorithm that tests whether
there exists a restricted UPSE on input T , L, R and pr.

Our dynamic programming algorithm uses a two-dimensional d(r)×|L| matrix
M . Value M [i, j] is TRUE if and only if there exists a restricted UPSE of the
subtree of T induced by r and T1, . . . , Ti that uses all the j lowest points of the
left-sided point set L and as many consecutive points as required in the lowest
part of the right-sided convex point set R. Recall that {u, v} denotes arc (u, v)
if (u, v) ∈ T ; arc (v, u) if (v, u) ∈ T ; otherwise it is undefined.

For the boundary conditions of our dynamic programming we have that:

M [0, 0] = TRUE

M [1, j] =

⎧
⎨

⎩

TRUE, if j = 0 and pr �∈ R1..|T1| and {r(T1), pr} is upward
TRUE, if j = |T1| and pr �∈ L1..|T1| and {r(T1), pr} is upward
FALSE, otherwise

Let σ = |T1| + . . . + |Ti|. Value M [i, j], 1 < i ≤ d(r) and 0 ≤ j ≤ |L|, is set to
TRUE if any of the following conditions is true; otherwise it is set to FALSE.

c-1: M [i, j − 1] = TRUE and pr = Lj..j .
This is the case where point pr happens to be the j-th point of L. There is
no need to test for upwardness of {r(Ti), pr} since it has been already tested
when entry M [i, j − 1] was filled in.

c-2: M [i− 1, j − |Ti|] = TRUE and pr �∈ Lj−|Ti|+1..j and {r(Ti), pr} is up-
ward.
In this case, Ti is placed on L. We know that Ti fits on L since j < |L|,
however, we must make sure that it also holds that pr is not one of the |Ti|
topmost points of L1..j.

c-3: M [i − 1, j] = TRUE and pr ∈ R1..σ−j−|Ti|+1 and σ − j + 1 ≤ |R| and
{r(Ti), pr} is upward.
In this case, Ti is placed to R. If pr is one of the points in R1..σ−j−|Ti|+1

then we have to make sure that at least σ − j + 1 points exist in |R|.
c-4: M [i− 1, j] = TRUE and pr �∈ R1..σ−j and σ − j ≤ |R| and {r(Ti), pr}

is upward.
In this case, Ti is also placed to R. However, in contrast to case c-3, pr is
not one of the points in R1..σ−j . Thus, we only need to make sure that at
least σ − j points exist in |R|.

When determining the value of an entry M [i, j] we need to decide whether arc
{r(Ti), pr} is upward. In order to do that, we need to know the point to which
r(Ti) is mapped. By Lemma 3, this point can be computed in O(1) time since
Ti is mapped to |Ti| consecutive points forming a one-sided convex point set.

It can be easily verified that entry M [d(r), |L|] = TRUE if and only if there
is a restricted UPSE of T into L ∪R such that r(T) is mapped to pr.

Each entry of matrix M can be filled in O(1) time. Thus, all entries of matrix
M are filled in O(d(r)|L|) time. The embedding, if exists, can be constructed by
storing in each entry M [i, j] (that was set to TRUE) the side (“L” or “R”) in

410 M. Kaufmann, T. Mchedlidze, and A. Symvonis

+1
wT

i

wT
i−1

wT
2

Tw

i
Ts,w

wm=tiw +2

T

iw w
+1

i

i

(a)

w

+1−1

(b)

+1

i

1

w

w

2

w3

s= 1w

Tswi

Twi

s,wT i

Fig. 3. (a) The decomposition of tree T based on a path between a source s and a sink
t of T . (b) The structure of an UPSE of the tree T into point set S.

which Ti was placed. This information, together with the fact that the restricted
UPSE respects ordering λ is sufficient to construct the embedding. ��
Denote by L(T, L, R) the set of points p ∈ L∪R such that there exists a restricted
UPSE of T into L ∪ R where the root of T is mapped to p. The next theorem
follows from Theorem 1, testing each point of L∪R as a candidate host for r(T).

Theorem 2. Let T be an n-vertex directed tree rooted at vertex r and L and R
be left-sided and right-sided convex point sets, resp., such that S = L ∪ R is a
convex point set of size n. Set L(T, L, R) can be computed in O(d(r)n2) time. ��

4 The Testing Algorithm for Directed Trees

Let T be a directed tree and let S be a convex point set. In any UPSE of T into
S, a source node s and a sink node t of T will be mapped to points b(S) and t(S),
respectively. In this section, we present a dynamic programming algorithm that
decides in polynomial time whether, given a n-vertex directed tree T , a source s
and a sink t of T , and a convex point set S of size n, T has an UPSE into S so
that s and t are mapped to b(S) and t(S), respectively. Applying this algorithm
on all 〈source, sink〉 pairs of T , yields a polynomial time algorithm for deciding
whether T has an UPSE into S.

Let s and t be a source and a sink vertex of T , respectively. Denote by Ps,t =
{s = w1, w2, . . . , wm = t} the (undirected) path connecting s and t in T , see
Figure 3.a. By Ts,wi , 1 ≤ i < m, we denote the subtree of T that contains source
s and is formed by the removal of edge {wi, wi+1}. By definition, Ts,wm = T . Let
Twi = Ts,wi \ Ts,wi−1 , 1 < i ≤ m. By definition, Tw1 = Ts,w1 . By Lemma 1, we
know that Ts,wi is drawn on consecutive points of S, call this point set Si (see also
Figure 3.b). Since s is mapped to b(S), we infer that b(S) ∈ Si. Similarly, in any
UPSE of T into S, Ts,wi+1 is also drawn on consecutive points of S that contain
b(S), call this point set Si+1. Hence, Twi+1 is drawn on a set Swi+1 = Si+1 \ Si,
that is, a subset of S comprised by two consecutive point sets of S, one on its
left and one on its right side.

Upward Point Set Embeddability for Convex Point Sets Is in P 411

Our dynamic programming algorithm maintains a list of points P(a, b, k), 0 ≤
a ≤ |L|, 0 ≤ b ≤ |R|, 1 ≤ k ≤ m, such that:

p ∈ P(a, b, k)⇐⇒
{

Ts,wk
has an UPSE into point set S1..a,1..b with

vertex wk mapped to point p.
(1)

For the boundary conditions of our dynamic programming we have that
P(a, b, 1) = L(Tw1 , L1..a, R1..b) where a + b = |Tw1 |. Note that since w1 is a
source, P(a, b, 1) is either {b(s)} or ∅.

Our dynamic programming is based on the following recurrence relation,
which allows us to add points in P(a, b, i). For any 1 < i ≤ m we set:

P(a, b, i) = {p | ∃a1, b1 ∈ Z : a1 + b1 = |Twi |
and p ∈ L(Twi , La−a1+1..a, Rb−b1+1..b)
and ∃q ∈ P(a− a1, b− b1, i− 1)
and {p, q} is upward }

(2)

Next we prove that the recurrence relation (2) satisfies the property described
by equivalence (1). We start with the forward direction. From the boundary
conditions it is true for i = 1. Assume that if q ∈ P(a−a1, b−b1, i−1) then Ts,wi−1

has an UPSE into S1..a−a1,1..b−b1 with vertex wi−1 mapped to point q. Let now
p ∈ P(a, b, i). By the definition of the recurrence relation we infer that: (1) there
exist a1, b1 ∈ Z so that a1 + b1 = |Twi |, (2) p ∈ L(Twi , La−a1+1..a, Rb−b1+1..b),
which by definition of L, means that there is a restricted UPSE of Twi into
La−a1+1..a, Rb−b1+1..b with wi mapped to p, (3) ∃q ∈ P(a − a1, b − b1, i − 1),
thus, by induction hypothesis, Ts,wi−1 has an UPSE into S1..a−a1,1..b−b1 , and,
finally, (4) edge {p, q} is upward. Then we combine the UPSE for Ts,wi−1 with
the restricted UPSE for Twi in order to get an UPSE of Ts,wi on point set
S1..a,1..b. By Observation 1, we have that the combined drawing is planar.

For the reversed statement we also work by induction. From the boundary
conditions we know that if Ts,w1 = Tw1 has an UPSE into a point set S1..a,1..b

then b(S) ∈ P(a, b, 1), where a + b = |Tw1 |. Assume that the statement is true
for Ts,wi−1 , i.e., if Ts,wi−1 has an UPSE into a point set S1..a,1..b with vertex
wi−1 mapped to q then q ∈ P(a, b, i− 1). Assume also that Ts,wi has an UPSE
into a point set S1..a,1..b with vertices s and wi mapped to points b(S) and
p, respectively. By the discussion above we know that in every such embedding
Ts,wi−1 is mapped to consecutive points of S1..a,1..b that contains b(S). Therefore
there exist two numbers a1 and b1, so that a1 + b1 = |Twi | and subtree Twi is
mapped to the point set Sa−a1+1..a,b−b1+1..b, with vertex wi mapped to some
point p, p ∈ Sa−a1+1..a,b−b1+1..b. Moreover, by induction hypothesis, there exists
q ∈ P(a− a1, b− b1, i− 1). So, since the edge connecting p and q is upward, by
the definition of recurrence relation we infer that p ∈ P(a, b, i).

Finally we note that, an UPSE of T into S such that source s and sink t are
mapped to b(S) and t(S), respectively, exists if and only if P(|L|, |R|, m) is non-
empty. Note that if P(|L|, |R|, m) �= ∅, then it must hold that P(|L|, |R|, m) =
{t(S)}. The values P(a, b, k), when 0 ≤ a ≤ |L|, 0 ≤ b ≤ |R|, 1 ≤ k ≤ m are
calculated by Algorithm 1.

412 M. Kaufmann, T. Mchedlidze, and A. Symvonis

Algorithm 1. Tree-UPSE(T,S, s, t)

input : A directed tree T , a point set S, a source s and a sink t of T . Path
(s = w1, . . . , wm = t) is used to progressively build tree T from subtrees
Twi , 1 ≤ i ≤ m.

output : “YES” if T has an UPSE into S with s mapped to b(S) and t mapped
to t(S), “NO” otherwise.

1. For a = 0 . . . |L|
2. For b = 0 . . . |R|
3. P(a, b, 1) = L(Tw1 , L1..a, R1..b)
4. For k = 2 . . . m //Consider tree Twk

5. P(a, b, k) = ∅
6. For i = 0 . . . |Twk | //We consider the case where i vertices of Twk

are placed to the left side of S
7. if (a − i ≥ 0) and (b − (|Twk | − i) ≥ 0)
8. Let L = L(Twk , La−i+1..a, Rb−(|Twk

|−i)+1..b)
9. //We consider all possible placements of wk−1

10. For each q in P(a − i, b − (|Twk | − i), k − 1)
11. //We consider all the possible placements of vertex wk

12. For each p in L
13. if ({wi−1, wi} drawn on line-segment (q, p) is upward)
14. then add p to P(a, b, k).
15. if P(|L|, |R|, m) is empty then return(“NO”);
16. return(“YES”);

Theorem 3. Let T be a n-vertex rooted directed tree, S be a convex point set of
size n, s be a source of T and t be a sink of T . It can be decided in time O(n5)
whether T has an UPSE on S such that s is mapped to b(S) and t is mapped to
t(S). If such an UPSE exists, it can be constructed within the same time bound.

Proof. A naive analysis of Algorithm 1 yields an O(n7) time complexity. The
analysis assumes that (i) the left and the right side of S have both size O(n),
(ii) the path from s to t has length O(n), (iii) each tree Twi has size O(n) and
(iv) each L-list containing the solution of a restricted UPSE problem is computed
in O(n3) time. However, based on the following two observations, the total time
complexity can be reduced to O(n5).

A factor of n can be saved by realizing that in our dynamic programming we
can maintain a list P ′(a, i) which uses only one parameter for the left side of the
convex set (in contrast with P(a, b, i) which uses a parameter for each side of S).
The number of points on the right side ofS is implied since the size of each tree Ts,wi

is fixed. For simplicity, we have decided to use notation P(a, b, i). Another factor
of n can be saved by observing that the solution of a restricted UPSE is actually
O(deg(wi)n2). Thus, summing over all i gives O(n3) in total, and not O(n4).

The UPSE of T into S can be recovered easily by modifying Algorithm 1
so that it stores for each point p ∈ P(a, b, k) the point q where vertex wi−1 is
mapped to as well as the point set that hosts tree Ts,wi−1 (i.e., its top point on
the left and the right side of S). ��

Upward Point Set Embeddability for Convex Point Sets Is in P 413

By applying Algorithm 1 on all 〈source, sink〉 pairs of T we can decide whether
tree T has an UPSE on a convex point set S, as the main next theorem indicates.

Theorem 4. Let T be a n-vertex rooted directed tree and S be a convex point
set of size n. It can be decided in time O(n6) whether T has an UPSE into S.
If such an UPSE exists, it can also be constructed within the same time bound.

Proof. Note that a naive application of the idea leads to the algorithm with time
complexity O(n7), since there are O(n2) distinct pairs of sources and sinks. Next
we explain how the overall time complexity can be reduced to O(n6). Let Ps,t be
a path from s to t, passing through m vertices, and let t′ be the j-th vertex of
Ps,t that is also a sink of G. During the computation of P(a, b, m) corresponding
to path Ps,t we also compute P(a, b, j) and thus we can immediately answer
whether there exists an UPSE of G into S so that s and t′ is mapped to b(S)
and t(S), respectively. Next consider a sink t̃ that does not belong to path Ps,t.
Consider the path Ps,t̃. Assume that the last common vertex of Ps,t and Ps,t̃ is
the j-th vertex of Ps,t. In order to compute whether there is an UPSE of G into
S so that s and t̃ are mapped to b(S) and t(S), respectively, we can start the
computations of Algorithm 1 determined by variable k from the j + 1-th step
(see line 4 of the algorithm). Thus, for a single source s and all possible sinks
variable k changes at most n times. Since the number of different sources is O(n)
we conclude that the whole algorithm runs in time O(n6). ��

5 Conclusions

In this paper we presented a polynomial dynamic programming algorithm that
tests whether a n-vertex directed tree T has an upward planar embedding into a
convex point-set S of size n. In the long version of this paper [15] we explain how
our approach can be extended to the class of outerplanar digraphs, obtaining
the following theorem.

Theorem 5. Let G be a n-vertex digraph and S be a convex point set of size n.
It can be decided in polynomial time whether G has an UPSE into S. Moreover,
if such an UPSE exists, it can also be constructed in polynomial time. ��

Acknowledgments. We thank Markus Geyer for the useful discussions during
the work on this paper.

References

1. Angelini, P., Frati, F., Geyer, M., Kaufmann, M., Mchedlidze, T., Symvonis, A.:
Upward Geometric Graph Embeddings into Point Sets. In: Brandes, U., Cornelsen,
S. (eds.) GD 2010. LNCS, vol. 6502, pp. 25–37. Springer, Heidelberg (2011)

2. Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points.
Theor. Comput. Sci. 408(2-3), 129–142 (2008)

414 M. Kaufmann, T. Mchedlidze, and A. Symvonis

3. Binucci, C., Di Giacomo, E., Didimo, W., Estrella-Balderrama, A., Frati, F.,
Kobourov, S., Liotta, G.: Upward straight-line embeddings of directed graphs into
point sets. Computat. Geom. Th. Appl. 43, 219–232 (2010)

4. Bose, P.: On embedding an outer-planar graph in a point set. Computat. Geom.
Th. Appl. 23(3), 303–312 (2002)

5. Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a
point set. J. Graph Alg. Appl. 1(2), 1–15 (1997)

6. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. J. Graph Alg. Appl. 10(2), 353–366 (2006)

7. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Trotta, F., Wismath, S.K.: k-
colored point-set embeddability of outerplanar graphs. J. Graph Alg. Appl. 12(1),
29–49 (2008)

8. Geyer, M., Kaufmann, M., Mchedlidze, T., Symvonis, A.: Upward Point-Set Em-
beddability. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R.,
Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 272–283. Springer,
Heidelberg (2011)

9. Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A.: Computing Upward Topo-
logical Book Embeddings of Upward Planar Digraphs. In: Tokuyama, T. (ed.)
ISAAC 2007. LNCS, vol. 4835, pp. 172–183. Springer, Heidelberg (2007)

10. Giordano, F., Liotta, G., Whitesides, S.: Embeddability Problems for Upward Pla-
nar Digraphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp.
242–253. Springer, Heidelberg (2009)

11. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation
with vertices at specified positions. Amer. Math. Mont. 98, 165–166 (1991)

12. Halton, J.: On the thickness of graphs of given degree. Inf. Sci. 54, 219–238 (1991)
13. Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed

acyclic graphs: Part I. SIAM J. Comput. 28(4), 1510–1539 (1999)
14. Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for

planar graphs. J. Graph Alg. Appl. 6(1), 115–129 (2002)
15. Kaufmann, M., Mchedlidze, T., Symvonis, A.: Upward point set embed-

dability for convex point sets is in P. Technical report. arXiv:1108.3092,
http://arxiv.org/abs/1108.3092

16. Mchedlidze, T., Symvonis, A.: On ρ-Constrained Upward Topological Book Em-
beddings. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp.
411–412. Springer, Heidelberg (2010)

17. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs
and Combinatorics 17(4), 717–728 (2001)

http://arxiv.org/abs/1108.3092

Classification of Planar Upward Embedding�

Christopher Auer, Christian Bachmaier,
Franz Josef Brandenburg, and Andreas Gleißner

University of Passau, 94030 Passau, Germany
{auerc,bachmaier,brandenb,gleissner}@fim.uni-passau.de

Abstract. We consider planar upward drawings of directed graphs on
arbitrary surfaces where the upward direction is defined by a vector field.
This generalizes earlier approaches using surfaces with a fixed embedding
in R3 and introduces new classes of planar upward drawable graphs,
where some of them even allow cycles. Our approach leads to a classifi-
cation of planar upward embeddability.

In particular, we show the coincidence of the classes of planar up-
ward drawable graphs on the sphere and on the standing cylinder. These
classes coincide with the classes of planar upward drawable graphs with
a homogeneous field on a cylinder and with a radial field in the plane.

A cyclic field in the plane introduces the new class RUP of upward
drawable graphs, which can be embedded on a rolling cylinder. We es-
tablish strict inclusions for planar upward drawability on the plane, the
sphere, the rolling cylinder, and the torus, even for acyclic graphs. Fi-
nally, upward drawability remains NP-hard for the standing cylinder
and the torus; for the cylinder this was left as an open problem by
Limaye et al.

1 Introduction

Directed graphs are often used as a model for structural relations where the edges
express dependencies. Such graphs are often acyclic and are drawn as hierarchies
using the hierarchical approach introduced by Sugiyama et al. [22]. This drawing
style transforms the edge direction into a geometric direction: all edges point
upward. A graph is upward planar, for short UP, if it can be embedded into
the plane such that the curves of the edges are monotonically increasing in y-
direction with no crossing edges. UP is well-understood; see the comprehensive
study in [5]. A graph is upward planar if and only if it is a subgraph of a planar
st-graph. The graphs from UP admit straight-line upward drawings, which may
require an area of exponential size, or upward polyline drawings on quadratic
area using O(n) many bends. An important result of Garg and Tamassia [10]
states the NP-completeness of the recognition problem: Is a directed graph
in UP? On the other hand, there are efficient polynomial time algorithms for
upward planarity tests, if the graphs are given with an embedding or have a
single source or are triconnected.
� Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Br835/15-1.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 415–426, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

416 C. Auer et al.

There were some approaches to generalize upward planarity on other surfaces
using a fixed embedding of the surface in R3. Thomassen [23] studied graphs
with a single source and a single sink on a standing cylinder. Foldes et al. [9]
investigated ordered sets on the sphere and on a cylinder as a truncated sphere,
and Hashemi et al. [13, 12, 7] generalized results on planarity from the plane to
the sphere, including the NP-hardness of the recognition problem. They char-
acterized the graphs with a spherical upward drawing as the subgraphs of the
directed planar graphs with one source and one sink. Thus upward planarity
and upward sphericity are distinguished by the st-edge connecting the single
source and the single sink in the planar case. Dolati et al. [6, 8] studied upward
planarity on the lying and the standing torus, and Mohar and Rosenstiehl [19]
characterize toroidal maps with an upward orientation.

Planar upward drawings on the cylinder were also addressed from the view-
point of the circuit value problem (CVP) [24, 11, 16]. In these papers the above
papers were overseen, and the NP-hardness of upward cylindricality is stated as
an open problem [16]. We solve this by using the NP-hardness for upward spher-
ical and the coincidence of spherical and cylindrical upward planarity established
in this paper.

In our approach we use the model of the fundamental polygon to define sur-
faces such as the plane, the cylinder and the torus. The plane is identified with
the manifold I × I, where I is the open interval from −1 to +1. The standing
and rolling cylinder are obtained by identifying a pair of opposite sides, and the
torus by a simultaneous identification of both pairs of opposite sides.

Upwardness is defined by a vector field and gives rise to the common (strict)
increasing and the weak non-decreasing case. A vector field assigns a two-
dimensional vector to each point (x, y) indicating the direction of the field. The
basic case is the null field N , which assigns the null vector (0, 0) everywhere.
Then an upward direction becomes vacuous, and weakly upward planar coin-
cides with planar. The homogeneous field H assigns the direction (0, 1) and thus
describes upward in y-dimension as it is commonly used. In addition, we use the
cyclic, radial and antiparallel fields C, R and A, see Table 1.

Table 1. Typical fields

null homogeneous cyclic radial antiparallel

(x, y) �→ (0, 0) (x, y) �→ (0, 1) (x, y) �→ (−y, x) (x, y) �→ (x, y) (x, y) �→ (0, sin(yπ))

We introduce a new class of planar upward drawings on the rolling cylinder
which is called RUP. Graphs of RUP may have cycles. It turns out that the
rolling cylinder is stronger than the standing cylinder even for acyclic graphs.
The graphs of RUP are related to planar recurrent hierarchies, which were

Classification of Planar Upward Embedding 417

introduced by Sugiyama et al. [22] as a cyclic version of their hierarchical ap-
proach and were recently studied in [4]. In recurrent hierarchies the levels are
numbered from 0 to k − 1. The edges are upward where the difference of the
levels of the vertices is computed modulo k. Hence, all cycles are unidirectional.

Another subclass of RUP are the graphs with a queue layout, see [1]. The
input-output behavior of a queue is represented by a graph such that the behavior
is legal if and only if the graph has a RUP embedding with all vertices placed
on a horizontal line.

Our contributions are a general approach towards planar upward embeddings
(Sect. 2). In Sect. 3 we unify the concepts on the sphere and establish a hierarchy
for the plane, sphere, rolling cylinder and torus. Finally, the NP-hardness of the
recognition problem is addressed.

2 Upward Embeddings with Vector Fields on Surfaces

Let G = (V, E) be a simple directed graph with a finite set of vertices V and
a finite set of directed edges E. A surface S is a two-dimensional differentiable
manifold [20, 17]. An open interval from a to b is denoted by]a, b[and a closed
interval by [a, b]. 〈·, ·〉 denotes the standard scalar product in R2. For a map
f : A → B and a subset A′ ⊆ A denote the image of A′ under f by f [A′]. For
any point p = (p1, p2) define x(p) = p1 and y(p) = p2.

A drawing Γ (G) on S is a mapping where each vertex v ∈ V is mapped to
a unique point Γ (v) ∈ S, and each edge (u, v) ∈ E is mapped to a piecewise
continuously differentiable curve Γ (u, v) : [0, 1]→ S which starts at u and ends
at v and is disjoint to the other vertex points. Γ (u, v) does not self-intersect.
When it is clear from the context, we say that v ∈ V is placed at Γ (v) and we
do not distinguish between an edge e ∈ E and its curve Γ (e). Additionally, Γ
stands for the set of points in the drawing.

Two edges e1 �= e2 ∈ E cross if they have a common point apart from a
common endpoint. Γ (G) is called a plane drawing if it is crossing-free. Strict
upward planarity asks if a given graph admits a plane drawing where all edges
are drawn monotonically increasing in a common upward direction. In the weak
version the edges may be drawn monotonically non-decreasing. It is well-known
that this makes no difference on the plane.

As outlined in Sect. 1 most prior attempts towards planar upward embeddings
on the sphere, the cylinder, or the torus use a fixed embedding of the surface
in R3 and define upward in y-direction [6, 7, 8, 11, 13, 16]. They describe the
sphere and the (standing) cylinder by Cartesian coordinates {(x, y, z) : x2 +
y2 + z2 = 1} and {(x, y, z) : x2 + z2 = 1,−1 ≤ y ≤ 1)}, respectively. These
classes are called spherical and cylindrical. An alternative approach was used by
Mohar, Rosenstiehl and Thomassen [19, 23] embedding graphs on the flat torus
represented by its fundamental polygon. We generalize the idea by utilizing
vector fields, i. e., a drawing is upward if all edge curves “go with the flow”.

More formally, let F : S → R2 be a vector field on S. Let Cr(p) � [0, 1] be
the preimage of the bends of the curve p. Cr(p) is the countable critical point

418 C. Auer et al.

set of a piecewise continuously differentiable curve p : [0, 1]→ S. We say that p
(weakly) respects F if

∀
t∈[0,1]\Cr(p)

〈p′(t), F (p(t))〉 > 0 (resp. ≥ 0), (1)

where p′ is the first order derivative of p. Likewise, a drawing Γ (weakly) respects
F if Γ (e) (weakly) respects F for each edge e ∈ E. Then at each point of a
directed edge the angle between its tangent vector and the vector field is less
(not more) than π

2 . We call a graph (weakly) upward embeddable on S in respect
to F if it admits a plane drawing (weakly) respecting F . We say that G is a
drawn (weakly) upward on (S, F). Note that (1) holds true independently of the
norm of F (·), i. e., only its direction is relevant.

The general definition allows for a plethora of combinations of surfaces and
vector fields. From a graph-theoretic point of view many of them are equivalent
in respect to upward embeddability. For reducing redundancy we consider map-
pings between surfaces which shall preserve the upward embeddability and so
obtain equivalences.

Let S1 and S2 be smooth manifolds, i. e., locally similar to a linear space,
with vector fields F1 and F2, respectively. Let f : S1 → S2 be an injective
smooth mapping between the surfaces. In the following we derive a way to express
whether or not f also somehow “maps F1 to F2”. The technique is also known
as the pushforward of f [14]. Let z be any point in S1 and p : [0, 1] → S1 be
a smooth curve (not necessarily representing an edge) tangent to F1 in z, i. e.,
p(0) = z and p′(0) = F1(z). We derive how f acts on F1(z) by considering the
derivative of f(p) at 0,

(f ◦p)′(0) = (f ′ ◦p)(0) ·p′(0) = f ′(p(0)) ·p′(0) = (f ′(p(0))) ·F1(z) = f ′(z) ·F1(z) .

Due to the identification of the tangent space of S1 with R2 we can express f ′(z)
by the Jacobian Jf (z). From this we obtain the requirement for F1 and F2 of
being f -related [14]: For each z ∈ S1, Jf (z) · F1(z) = F2(f(z)), or equivalently,
F2(z) = Jf (f−1(z)) · F1(f−1(z)). As we are only interested in the direction of
vectors rather than their lengths, denote by u + v if u = cv for some positive real
constant c. F1 and F2 are said to be f -related up to normalization if F2(z) +
Jf (f−1(z)) · F1(f−1(z)) for each z ∈ S1. We introduce a second property to
guarantee that upward embeddability is preserved.

Definition 1. Let S1 and S2 be smooth manifolds with vector fields F1 and
F2, respectively. We call a smooth injective homeomorphism f : S1 → S2 to
be field preserving from (S1, F1) to (S2, F2) if F1 and F2 are f -related up to
normalization, and for any smooth curve p : [0, 1]→ S1,

sgn〈p′(0), (F1 ◦ p)(0)〉 = sgn〈(f ◦ p)′(0), (F2 ◦ f ◦ p)(0)))〉 .
Rephrasing the above, f preserves the (non-)acuteness of the angle between a
tangent vector and the vector field at any point. This gives rise to the following
proposition.

Classification of Planar Upward Embedding 419

Proposition 1. Let G be a simple directed graph and let S1 and S2 be differen-
tiable two-dimensional manifolds with vector fields F1 and F2, respectively. Let
S′

1 be a subset of S1 such that in respect to F1, any graph upward embeddable on
S1 is also upward embeddable on S′

1. If G is (weakly) upward embeddable on S1

in respect to F1 and there is a field-preserving map f from (S′
1, F1) to (S2, F2),

then G is also (weakly) upward embeddable on S2 in respect to F2.

Proof. Assume G is upward embeddable on S1 in respect to F1. Let Γ be a plane
drawing of G on S′

1 respecting F1. The drawing f [Γ] of G on S2 is plane as f is
differentiable. It also respects F2 as f specifically preserves the acuteness of the
angles between the vector field and the tangents of the edge curves. ��
Note that the well-known conformal, i. e., angle-preserving, maps are just a spe-
cial case of the field-preserving maps if they relate F1 to F2 up to normalization.
Additionally, any composition of field-preserving maps is field-preserving in re-
spect to the corresponding manifolds and vector fields.

We define (S1, F1) ∼ (S2, F2) if and only if there are functions f and g such
that f is field-preserving from (S1, F1) to (S2, F2) and g is field-preserving from
(S2, F2) to (S1, F1). Proposition 1 allows us to speak of upward embeddability of
G in the equivalence class [S, F]. We can define the directed simple graph classes

[[SF]]s = {G : G is (strictly) upward embeddable on [S, F]} and
[[SF]]w = {G : G is weakly upward embeddable on [S, F]} ,

where the subscripts indicate the strict or weak case. This class scheme enables
us to classify and generalize prior approaches of upward planarity. We restrict
ourselves to manifolds which are obtained from a square where optionally oppo-
site sides are identified. Thus any of the considered manifolds can be represented
by rectangular fundamental polygons [18]. Let I =]− 1, 1[and derive I◦ from I
by identifying its boundaries −1 and 1. With a slight abuse of language we define
the following two-dimensional manifolds as the product manifolds of I and I◦
with their natural differentiable structure: The plane P = I × I, the standing
cylinder Cs = I◦×I, the rolling cylinder Cr = I×I◦, and the torus T = I◦×I◦.
See Table 2 for an illustration.

A point in each of the defined manifolds can be represented by a pair (x, y).
A vector field assigns a two-dimensional vector to each such pair (x, y) that
defines the direction of the field at (x, y). A basic case is the null field N , which
assigns the null vector (0, 0) everywhere. Then any direction of the edges weakly
respects the null field. Therefore, the graphs [[PN]]w, i. e., upward embeddable in
the plane and weakly respecting the null field, are exactly the planar graphs in
the usual sense, denoted by P. Similarily, T = [[TN]]w are the toroidal graphs.

Next we consider the homogeneous field H that maps each point to (0, 1).
Then the upward planar graphs UP are exactly captured by [[PH]]s. We addition-
ally investigate the following graph classes: SUP = [[CsH]]s, wSUP = [[CsH]]w,
RUP = [[CrH]]s, wRUP = [[CrH]]w, UT = [[TH]]s, and wUT = [[TH]]w, which
define (weakly) upward planarity on the standing and rolling cylinder, and on
the torus, respectively.

420 C. Auer et al.

Table 2. Surfaces resulting from the cross products of I and I◦

×
I =]− 1, 1[I◦

I =]− 1, 1[

P Cr

I◦
Cs

T

3 Classification of Upward Drawings

First we show that planar upward drawings on the sphere, the standing cylinder
and the plane with the radial field coincide both in the strict and in the weak
versions. Instead of proving that the spherical and cylindrical graph classes are
equal according to their graph-theoretical characterizations from [12, 15], our
proof makes use of the definitions from Sect. 2 by transforming the surfaces with
their endowed fields into each other.

Theorem 1. For a graph G the following statements are equivalent.

(i) G ∈ SUP (G ∈ wSUP)
(ii) G is (weakly) spherical
(iii) G is (weakly) cylindrical
(iv) G ∈ [[PR]]s (G ∈ [[PR]]w)

Proof. All of the following arguments apply to the weak and the strict case. We
first show (ii) ⇒ (i). Consider an upward drawing Γ of G on the sphere S1.
First assume that there is no vertex placed on the poles, i. e., with coordinates
(0, 1, 0) or (0,−1, 0). Let ymax be the maximum y-coordinate of vertices of G.
Note that there is no point of an edge above ymax as otherwise the upwardness
is violated. Analogously define ymin. Let S′

1 = {(x, y, z) : x2 +y2+z2 = 1, ymin <
y < ymax}, i. e., S′

1 is the truncated sphere [9]. We use the angle-preserving
Mercator projection M [21] to map S′

1 to the rectangle [x′
min, x′

max[×]y′
min, y

′
max[

in the plane. Afterwards, we scale and translate M [Γ] to obtain a drawing in
the fundamental polygon Cs by

f : (x, y) -→
(

2x

x′
max − x′

min

,
2y

y′
max − y′

min

)

+ (Δx, Δy) , (2)

where Δx and Δy are such that the scaled rectangle is centered at the origin.
Consider the tangent vector t at a point p on an edge curve in Γ on the

surface of S1 and the longitudinal vector l starting at p and pointing to the

Classification of Planar Upward Embedding 421

north pole. As the edge curve is strictly monotonous in y-direction 〈t, l〉 > 0.
The same holds for the corresponding vectors t′ = (t′x, t′y) and l′ in M [Γ] since
M preserves angles. Let t′′ = (t′′x, t′′y) and l′′ be the corresponding vectors in
(f ◦M)[Γ]. Note that M maps longitudinals to vertical lines. Since, up to the
translation, f is a combination of scalings in x- and y-direction, we have that
l′′ = (0, 1) after a normalization. Although f is not angle-preserving, it does
not change the sign of the corresponding scalar product in (f ◦ M)[Γ] since
〈t′′, l′′〉 = t′′x · 0 + t′′y · 1 = 2

y′
max−y′

min
t′y = 2

y′
max−y′

min
〈t′, l′〉 > 0. Hence, the resulting

edge curves respect H and we have an upward drawing of G on (Cs, H).
If a vertex vN is placed at the north pole, then define ymax to be the maximum

y-coordinate of any vertex in V \vN and define S′
1 as above. The mapping (f ◦M)

is applied to Γ ∩ S′
1 to obtain Γ ′. Note that Γ ′ does not contain vN. In Γ ′ the

edges to vN are cut at the upper side of the fundamental polygon. We additionally
shrink Γ ′ in y-direction by g : (x, y) -→ (x, 1

2y). Note that in g[Γ ′] all edges still
respect H . In g[Γ ′] we have obtained free space BN = [−1, 1[×] 12 , 1[in Cs with
no points of g[Γ ′]. We place vN somewhere in BN, e.g., at (0, 3

4), and reconnect
all its incident edges by straight lines, which respect the homogeneous field. A
similar procedure is applied when a vertex is placed at the south pole. For the
converse direction, i. e., (i) ⇒ (ii), the proof is analogous by using the inverse of
the transformation (f ◦M).

For (i) ⇒ (iii), let Γ be a drawing of G ∈ [[CsH]]s. Intuitively, we bend
the fundamental polygon containing Γ such that the identified left and right
sides actually mend. More formally, apply the map f :] − 1, 1[2→ R3 : (x, y) -→
(cosx, y, sin x) to Γ . As the y-coordinate is mapped onto itself and Γ respects
H pointing from bottom to top, all edges in f [Γ] increase monotonically in
the y-direction of the cylinder axis. The case (iii) ⇒ (i) follows analogously, as
essentially the inverse of f can be used.

For (i) ⇒ (iv) consider the map

f : Cs → P : (x, y) -→ y + 2
4
· (cos(πx), sin(πx)) . (3)

Intuitively, f transforms the lateral surface of the rolling cylinder to a ring in the
plane centered around the origin with inner radius 1

4 and outer radius 3
4 . The

bottom of the fundamental polygon Cs maps to the inner circular boundary and
the top to the outer circular boundary of the ring. f is a conformal map and
H is f -related to R, i. e., f preserves angles and maps H to R (see [2]). By
Proposition 1 we can conclude that any graph in [[CsH]]s is also in [[PR]]s.

For (iv) ⇒ (i), the inverse f−1 of f can be used. However, some care has to
be taken if a vertex is placed at the origin (0, 0) of P. Then the same technique
as with the sphere applies here as well. ��
Theorem 2. A graph G is embeddable in the plane respecting the cyclic field if
and only if G is embeddable on the rolling cylinder with the homogeneous field,
i. e., [[PC]]s = [[CrH]]s and [[PC]]w = [[CsH]]w.

Proof. The proof is analogous to the case (i) ⇔ (iv) in the proof of Theorem 1
except that for the functions f and g the coordinates x and y are swapped. ��

422 C. Auer et al.

Hashemi et al. have shown that deciding if a graph has an upward drawing on
the sphere is NP-complete [13]. Limaye et al. [16] stated this problem as open
on the cylinder. Theorem 1 solves this problem.

Corollary 1. Upward planarity testing on the cylinder is NP-hard.

Longitudinal cycles are permitted in RUP, whereas SUP contains only acyclic
graphs. Thus, RUP is stronger than SUP. Even more, this is also true if we
consider only acyclic graphs.

Theorem 3. SUP ⊆ RUP, even for acyclic graphs.

Proof. Consider a graph G ∈ SUP along with its drawing Γ on Cs with the
homogeneous field. Then G is acyclic. To show that G ∈ RUP we give a step-
by-step transformation of Γ to a drawing on Cr which respects the homogeneous
field H .

First we straighten Γ into a polyline drawing, which is then transformed from
the standing onto the rolling cylinder while upward planarity is preserved. Cut Γ
at the y-coordinates of the vertices. Each cut defines a ring of points, which are
the x-coordinates of the vertices, and temporarily introduce a dummy vertex for
each crossing of an edge with the cut. A slice consists of the region of Γ between
two adjacent cuts. It has a lower and an upper ring of (dummy) vertices and a
planar upward routing of segments of edges between the rings. We process slices
iteratively from bottom to top. For a slice S take an edge segment connecting two
(dummy) vertices, say p1 on the lower ring and q1 on the upper ring. Now rotate
the upper ring such that p1 and q1 have the same x-coordinate. Replace each
edge segment from a (dummy) vertex p on the lower ring to a (dummy) vertex on
the upper ring by a straight line, such that the cyclic order of the incident edges
of each vertex is preserved. Since two curves did not cross before, they cannot
cross after the straightening, because the relative order of their endpoints on the
rings with respect to (p1, q1) is preserved. (One can make (p1, q1) the boundary
of the fundamental polygon.)

Now let Γ be the so obtained polyline drawing. In the remainder of the proof
we need that all edges that cross the vertical line x = −1 leave the fundamental
polygon to the right and enter it from the left, i. e., the x-value of the edge
curves immediately before their crossing is positive and negative immediately
afterwards. According to Lemma 5 of [3] by identifying all edges with inner
segments a polyline drawing on Cs can always be transformed such that this
condition holds, which we assume to hold for Γ as well.

Let f : Cs → Cr : (x, y) -→ 1
2 (x, y) be the scaling which shrinks by 1

2 and
consider the drawing f [Γ] on Cr. Since the scalar product is linear and the scaling
factor 1

2 > 0, f [Γ] still respects the homogeneous field H . For instance, the
drawing of Fig. 1(a) is scaled to the drawing in the dotted rectangle in Fig. 1(b).
It remains to show how to reconnect the formerly identical points on the left and
right boundary of f [Γ] by field-respecting edges in Cr. Let y1 < y2 < . . . < yk

be the ascending y-coordinates of the points ri = (1
2 , yi) and li = (− 1

2 , yi) on
the right and left boundary in f [Γ], respectively. Define points r′i = (3

4 − yi

4 , 1
2)

Classification of Planar Upward Embedding 423

−1 1

−1

−1

1

2 3

4 5

6

7 8

(a) SUP-drawing

−1 1

−1

−1

1

2 3

4 5

6

7 8

(b) RUP-drawing

Fig. 1. Transformation from the standing to the rolling cylinder

1

7 2 4

8 3 5

9 6

(a) G on (Cr, H)

1

2

3

4

5

6

(b) Subgraph G′ on (Cs, H)

1

2 7

3 8

9

(c) Subgraph G′′

Fig. 2. An acyclic graph G ∈ RUP but not in SUP

and l′i = (− 3
4 − yi

4 ,− 1
2) with 1 ≤ i ≤ k. Connect ri to r′i by a straight-line

segment. Note that these segments do not intersect since yi < yj ⇔ x(r′i) > x(r′j)
for i �= j. Analogously, connect all l′i to li by non-intersecting segments. As
− 1

2 < yi < 1
2 , all (directed) line-segments strictly follow H . Finally, connect

all r′i to l′i. These line-segments also strictly follow H and are non-intersecting
since x(r′i) < x(r′j) ⇔ x(l′i) < x(l′j). The result of the whole process applied to
Fig. 1(a) is depicted in Fig. 1(b). ��

Proposition 2 ([2]). On the rolling cylinder with the homogeneous field, the
class of (strictly) upward embeddable graphs coincides with the class of weakly
upward embeddable graphs, i. e., [[CrH]]s = [[CrH]]w.

Forthcoming we shall establish proper inclusions among the main classes of up-
ward drawable graphs. For the plane and the sphere this has been proved at
several places and it comes from the distinction by the st-edge. The graph in
Fig. 2(c) serves as a counterexample.

The 2-wing graph displayed in Fig. 2(a) is an acyclic RUP graph which is
not planar upward drawable on the sphere or the standing cylinder. It is 3-
connected and due to the upward drawing its embedding is unique. Let G′ be the

424 C. Auer et al.

1

2

34

5

(a) G on (P, N)

1

2

3

4

5

(b) G on (Cr, H)

Fig. 3. A planar graph G with G /∈ RUP

subgraph of G induced by the vertices {1, 2, 3, 4, 5, 6} which are connected by the
path P = (1, 2, 3, 4, 5, 6). On (Cs, H) the vertices along P must be placed with
strictly increasing y-coordinate due to H . In Fig. 2(b) G′ is drawn on (Cs, H)
using the same embedding as in Fig. 2(a). The remaining vertices {7, 8, 9} of
G must all be placed above vertex 1, since there is path from 1 to 7, 8, and 9.
Due to the uniqueness of the embedding, the vertices {7, 8, 9} must be placed
within the shaded area in Fig. 2(b). This area is homeomorphic to the plane P.
Hence, if {7, 8, 9} could be placed within the shaded area without crossings,
then the subgraph G′′ of G induced by the vertices {1, 2, 3, 7, 8, 9} would have
an embedding on P respecting H , i. e., G′′ ∈ UP. However, G′′ is isomorphic to
the graph displayed in Fig. 2(c) which is known not to be in UP [5].

In wSUP latitudinal cycles are allowed and therefore wSUP properly con-
tains UP and SUP as the latter two only allow acyclic graphs. Also RUP allows
cycles, which implies similar proper inclusions.

The vertices of two cycles with one common vertex must have the same y-
coordinate on Cs with H . In contrast, this graph can easily be embedded on Cr

with H . Thus, SUP � RUP. Further, K5 can be embedded on the torus and,
hence, P � T. Finally, the wheel graph as shown in Fig. 3 shows that upward
planarity on a rolling cylinder is a proper restriction over planarity. As special
techniques apply, this is stated as our next lemma.

Lemma 1. RUP � P

Proof. RUP ⊆ P since the rolling cylinder is a surface of genus 0. For the
proper inclusion consider the planar graph G depicted in Fig. 3. We show that
G /∈ RUP. G has a Hamiltonian cycle C = (1, 2, 3, 4, 5, 1). Note that any cycle
embedded on Cr with the homogeneous field wraps exactly once around the
cylinder, i. e., its winding number is 1. Its winding number is greater 0 since
otherwise its start and endpoint could not connect and it must be less than
2 since otherwise the edge curve would be self-intersecting. As all other edges
in Fig. 3 follow the direction of C and start and end at distinct vertices of C,
their winding number on Cr is 0. Consider the embedding of G on Cr displayed
in Fig. 3, where edge (3, 1) is drawn dotted. C divides Cr into a left- and a
right-hand region. To avoid a crossing between the edges (1, 4) and (2, 5), they
must lie in different regions, e. g., (1, 4) to the right and (2, 5) to the left of C.
Now consider the region R enclosed by the edges (1, 2), (2, 5), (4, 5), (1, 4), which

Classification of Planar Upward Embedding 425

contains vertex 3. The curve of edge (3, 1) must start within R and, due to the
homogeneous field, must reach vertex 1 from below. Thus, the curve of edge
(3, 1) starts within R and ends outside of R, which always causes a crossing. ��

Theorem 4. Let DAG be the set of all acyclic graphs. The classes of graphs
are related as follows.

UP � SUP � RUP ∩DAG � RUP � UT

=

�
=

⊆

wUP wSUP wRUP wUT� �

P � T

(4)

Finally, we classify the work of Dolati et al. [8] on upward drawings on the lying
and on the standing torus, where in each case the edges respect the south-north
direction. On the lying torus the south (north) pole is a ring consisting of all
y-minimal (y-maximal) points of the torus. This corresponds to our notion of
the antiparallel field (see Tab. 1) and the graph class [[TA]]s. On the standing
cylinder the south (north) pole is the single point with minimal (maximal) y-
coordinate. In our classification this is the radial field and the graph class [[TR]]s.
The authors showed that [[TA]]s � [[TR]]s and state that the time complexity of
deciding whether or not a graph is in (one of) the two sets is unknown.

4 Complexity

Finally we address the recognition problems for upward drawability, which are
known to be NP-hard for the plane and sphere and, hence, the standing cylinder.
It is also NP-hard for the torus, and still remains open for the rolling cylinder.

Theorem 5. Deciding whether or not a graph G ∈ UT is NP-complete, even
if G is connected.

Proof. If the graph does not have to be connected, simply reduce from UP by
adding to G a suitably directed K7. Any embedding of the K7 must be two-cell, so
all remaining faces have genus 0. Thus G∪K7 ∈ UT⇔ G ∈ UP. For connected
graphs reconstruct the NP-completeness proof of UP. The constructed graph
candidate for UP has a dedicated vertex v lying on the outside of the graph.
Add an edge e from any of the K7 vertices to v. Again, G ∪K7 ∈ UT ∪ {e} ∈
UT⇔ G ∈ UP. ��

References

1. Auer, C., Bachmaier, C., Brandenburg, F.J., Brunner, W., Gleißner, A.: Plane
Drawings of Queue and Deque Graphs. In: Brandes, U., Cornelsen, S. (eds.)
GD 2010. LNCS, vol. 6502, pp. 68–79. Springer, Heidelberg (2011)

426 C. Auer et al.

2. Auer, C., Brandenburg, F.J., Bachmaier, C., Gleißner, A.: Classification of planar
upward embedding. Technical Report MIP-1106, Fakultät für Informatik und
Mathematik, Universität Passau (2011),
http://www.fim.uni-passau.de/wissenschaftler/forschungsberichte/

mip-1106.html

3. Bachmaier, C.: A radial adaption of the Sugiyama framework for visualizing hier-
archical information. IEEE Trans. Vis. Comput. Graphics 13(3), 583–594 (2007)

4. Bachmaier, C., Brandenburg, F.J., Brunner, W., Fülöp, R.: Coordinate Assignment
for Cyclic Level Graphs. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp.
66–75. Springer, Heidelberg (2009)

5. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall (1999)

6. Dolati, A.: Digraph embedding on th. In: Cologne-Twente Workshop on Graphs
and Combinatorial Optimization, CTW 2008, pp. 11–14 (2008)

7. Dolati, A., Hashemi, S.M.: On the sphericity testing of single source digraphs.
Discrete Math. 308(11), 2175–2181 (2008)

8. Dolati, A., Hashemi, S.M., Kosravani, M.: On the upward embedding on the torus.
Rocky Mt. J. Math. 38(1), 107–121 (2008)

9. Foldes, S., Rival, I., Urrutia, J.: Light sources, obstructions and spherical orders.
Discrete Math. 102(1), 13–23 (1992)

10. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM Journal on Computing 31(2), 601–625 (2001)

11. Hansen, K.A.: Constant width planar computation characterizes ACC0. Theor.
Comput. Sci. 39(1), 79–92 (2006)

12. Hashemi, S.M.: Digraph embedding. Discrete Math. 233(1-3), 321–328 (2001)
13. Hashemi, S.M., Rival, I., Kisielewicz, A.: The complexity of upward drawings on

spheres. Order 14, 327–363 (1998)
14. Lee, J.M.: Introduction to Smooth Manifolds. Springer, Heidelberg (2002)
15. Limaye, N., Mahajan, M., Sarma, J.M.N.: Evaluating Monotone Circuits on Cylin-

ders, Planes and Tori. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 660–671. Springer, Heidelberg (2006)

16. Limaye, N., Mahajan, M., Sarma, J.M.N.: Upper bounds for monotone planar
circuit value and variants. Comput. Complex 18(3), 377–412 (2009)

17. Marsen, J.E., Ratiu, T., Abraham, R.: Manifolds, Tensor Analysis, and Applica-
tions, 3rd edn. Springer, Heidelberg (2001)

18. Massey, W.S.: Algebraic Topology: An Introduction. Springer, Heidelberg (1967)
19. Mohar, B., Rosenstiel, P.: Tessellation and visibility representations of maps on

the torus. Discrete Comput. Geom. 19, 249–263 (1998)
20. Mohar, B., Thomassen, C.: Graphs on Surfaces. John Hopkins University Press

(2001)
21. Snyder, J.P.: Map projections – a working manual. US Geological Survey, 1395

(1987)
22. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-

chical system structures. IEEE Trans. Syst., Man, Cybern. 11(2), 109–125 (1981)
23. Thomassen, C.: Planar acyclic oriented graphs. Order 5(1), 349–361 (1989)
24. Wegener, I.: Complexity Theory - Exploring the Limits of Efficient Algorithms.

Springer, Heidelberg (2005)

http://www.fim.uni-passau.de/wissenschaftler/forschungsberichte/mip-1106.html
http://www.fim.uni-passau.de/wissenschaftler/forschungsberichte/mip-1106.html

Upward Planarity Testing of Embedded Mixed Graphs�

Carla Binucci and Walter Didimo

Dip. Ing. Elettronica e dell’Informazione
Università degli Studi di Perugia

{binucci,didimo}@diei.unipg.it

Abstract. A mixed graph has both directed and undirected edges. We study an
upward planarity testing problem for embedded mixed graphs and solve it using
Integer Linear Programming. Experiments show the efficiency of our technique.

1 Introduction

An upward planar drawing of a planar digraph G is a planar drawing of G such that
all the edges are drawn as curves monotonically increasing in the vertical direction,
according to their orientation. The upward planarity testing problem is the problem of
deciding whether a planar digraph admits an upward planar drawing, and has a long
tradition in graph drawing [8]. It is polynomially solvable if the planar embedding of
the graph is fixed [2], while it is NP-hard in the variable embedding setting [9].

Many graphs arising from real applications have both directed and undirected edges.
These types of graphs are called mixed graphs and have received considerable attention
in the literature (see, e.g., [1]). Fig. 1(a) shows a mixed graph whose nodes represent
employees of a company; the directed edges describe hierarchical relationships while
the undirected edges describe collaborations. In a visual representation of a mixed graph
it is still desirable that directed edges flow upward, as in Fig. 1(b). Additionally, in order
to increase the readability of the layout, one may want that even the undirected edges
are drawn as curves vertically monotone when possible, as in Fig. 1(c). An upward
drawing of a mixed graph G is such that all the directed edges of G are drawn upward
and all the undirected edges of G are drawn monotone in the vertical direction.

In this paper we study the following problem: Given an embedded planar mixed
graph G, decide whether G admits an upward planar drawing that preserves the pla-
nar embedding of G. The drawing in Fig. 1(c) is an embedding-preserving upward
planar drawing of the graph in Fig. 1(a), while the drawing in Fig. 1(b) is not an up-
ward drawing, because edge (Mary, Kate) is not vertically monotone. Our problem is
equivalent to decide if there exists an orientation of the undirected edges of G such that
the resulting embedded digraph has an upward planar drawing. The contribution of this
paper is twofold:

– We describe an ILP (Integer Linear Programming) model for the upward planarity
testing problem of a planar embedded mixed graph G; the number of variables and

� Research supported in part by the MIUR project AlgoDEEP prot. 2008TFBWL4. We acknowl-
edge Maurizio Patrignani for the useful discussion on the subject of this paper.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 427–432, 2012.
© Springer-Verlag Berlin Heidelberg 2012

428 C. Binucci and W. Didimo

Kate

Paul

John

Frank
Mary

Hilary

(a)

Paul

Mary

John

Frank

Kate

Hilary

(b)

Paul

Mary

John

Frank

Kate

Hilary

(c)

Fig. 1. (a) A planar embedded mixed graph G. (b) An embedding-preserving planar drawing of
G, where the directed edges are drawn upward. (c) An embedding-preserving planar drawing of
G where the directed edges are upward and the undirected edges are vertically monotone.

constraints of the model is linear in the size of G. If G has an embedding-preserving
upward planar drawing, the model allows us to construct one (Section 3).

– We present an experimental study that shows how the proposed model can be solved
efficiently (Section 4). Indeed, for all instances of our test suite the computation of
a solution takes a few seconds, even for graphs with several hundreds of nodes.

We remark that the study of upward drawings of mixed graphs has been previously
addressed by Eiglsperger et al. [7]. Differently from our results, they describe a heuristic
that attempts to compute an upward drawing with few edge crossings. Hence, they do
not start from an embedded planar graph, and the final drawing may contain crossings
even if the original graph admits an upward planar drawing according to our definition.

2 Definitions and Notation

Let G be an embedded planar digraph. A source vertex (resp. a sink vertex) of G is
a vertex with only outgoing edges (resp. incoming edges). A source vertex or a sink
vertex of G is also called a switch vertex of G. A vertex v of G is bimodal if all its
incoming edges are consecutive around v (and thus also the outgoing edges are consec-
utive around v). If all vertices of G are bimodal then G and its embedding are called
bimodal. Acyclicity and bimodality are necessary but not sufficient conditions for the
upward planar drawability of an embedded planar digraph [2]. Note that, if G is bi-
modal, the circular list of edges incident to any vertex v of G is split into two linear
lists, one consisting of the incoming edges of v and the other consisting of the outgoing
edges of v.

Let f be a face of G and suppose that the boundary of f is visited clockwise if f
is internal, and counterclockwise if f is external. Let a = (e1, v, e2) be a triplet such
that v is a vertex of the boundary of f and e1, e2 are two edges incident to v that are
consecutive on the boundary of f (e1 and e2 may coincide if G is not biconnected).
Triplet a is called an angle at v in face f , or simply an angle of f . An angle a =
(e1, v, e2) of a face f is a switch angle of f if e1 and e2 are both incoming edges or
both outgoing edges of v; otherwise a is a non-switch angle. If v is a switch vertex, all

Upward Planarity Testing of Embedded Mixed Graphs 429

the angles at v are switch angles in the faces incident to v. We denote by deg(v) the
number of angles at v and by deg(f) the number of angles in f .

Let Γ be an upward planar drawing of an embedded planar digraph G. Assign to
each angle a of G a label S, F , or L, according to the following rules: a is labeled L
if it is a switch angle that corresponds to a geometric angle larger than π in Γ ; a is
labeled F if it is a non-switch angle; a is labeled S otherwise. Note that, an angle is
labeled S if it is a switch angle corresponding to a geometric angle smaller than π in Γ .
We call this labeling the upward labeling induced by Γ . Given an embedded bimodal
planar digraph G, an assignment L of labels S, F , and L to the angles of G is called an
upward planar embedding of G if there exists an upward planar drawing Γ of G such
that the upward labeling induced by Γ coincides with L. For a given angle labeling L
and for a given vertex v of G, we denote by L(v), S(v), and F (v) the number of angles
at v that are labeled L, S, and F , respectively; also, if f is a face of G, L(f), S(f), and
F (f) denote the number of angles of f that are labeled L, S, and F , respectively.

The next theorem characterizes the upward planar embeddings of an embedded bi-
modal planar digraph G. It is a consequence of the results in [2,5,6].

Theorem 1. Let G be an embedded bimodal planar digraph and letL be an assignment
of labels S, F , and L to the angles of G. L is an upward planar embedding of G if and
only if the following properties hold: (a) deg(f)−2 = 2L(f)+F (f), for each internal
face f of G; (b) deg(f) + 2 = 2L(f) + F (f), for the external face f of G; (c) switch
angles are labeled either S or L, and non-switch angles are labeled F ; (d) if v is a
switch vertex of G then: L(v) = 1, S(v) = deg(v) − 1, F (v) = 0; (e) if v is a
non-switch vertex of G then: L(v) = 0, S(v) = deg(v)− 2, F (v) = 2.

Given an upward planar embedding L of a digraph G, an upward planar drawing of G
that induces L can be computed efficiently by using algorithms described in [2,4].

3 An ILP Model

In order to decide whether an embedded planar mixed graph G = (V, E) admits an
upward planar drawing, we use the characterization of Theorem 1. Namely, we want
to find an orientation for the undirected edges of G and a labeling L for the angles
of G such that the resulting digraph is bimodal and L is an upward planar embedding
of this embedded digraph. G′ will denote the digraph obtained from G by orienting its
undirected edges. To decide whether G′ andL exist we define an ILP model, whose sets,
variables, and constraints are described below. We assume that the embedded digraph
obtained from G by removing all the undirected edges is bimodal, otherwise we can
immediately conclude that G does not have an upward planar drawing.

Sets. V is partitioned into two subsets VNS and VPS . Each vertex in VNS has both
incoming and outgoing edges, and therefore it cannot be a switch vertex of G′. Subset
VPS contains the remaining vertices of V ; each element in VPS is a potential switch
vertex of G′. E is partitioned into two subsets ED and EU , containing the directed and
the undirected edges of G, respectively. F is the set of faces of G and adj(v) is the set
of neighbors of v.

430 C. Binucci and W. Didimo

A denotes the set of angles of G and is partitioned into subsets ANS and APS , which
contain the angles of G at vertices in VNS and in VPS , respectively. For a vertex v and
for a face f , A(v) and A(f) denote all angles at v and all angles in f , respectively. For
a vertex v ∈ VNS , ANS(v) is the set of angles at v. For a vertex v ∈ VPS , APS(v)
is the set of angles at v. If v ∈ VNS , we denote by e′out and e′′out the first and the last
outgoing edge of v, respectively (e′out and e′′out may coincide). Analogously, e′in and
e′′in are the first and the last incoming edges of v. The set of angles at v formed by the
edges between e′in and e′out in clockwise order is denoted by Al

NS(v). The set of angles
at v formed by the edges between e′′in and e′′out in counterclockwise order is denoted by
Ar

NS(v). The set of the remaining angles at v is denoted by Am
NS(v).

Variables. We associate a variable �a with each angle a = (e1, v, e2). Variable �a takes
values 0, 1, or 2, which correspond to the labels S, F , or L for a, respectively.

For each edge e = (u, v) we define two variables, ouv and ovu, that take values in
the set {0, 1} and that define the orientation of e in G′; if ouv = 1 edge e is oriented
from u to v, otherwise it is oriented from v to u.

Finally, for each angle a = (e1, v, e2), we define a variable ca that takes values in the
set {−1, 0, 1}. This variable is used to guarantee consistency between the orientations
of e1, e2 and the value of �a, as explained later.

Constraints. We must guarantee the properties of Theorem 1. For an internal face (resp.
the external face) f of G, denote by cap(f) the number of angles in f minus 2 (resp.
plus 2). Properties (a) and (b) are guaranteed by the following constraints:

∑

a∈A(f)

�a = cap(f), ∀f ∈ F. (1)

Consistency about the orientations of the edges is ensured by Constraints 2: The first
constraint forces the directed edges of G to keep their orientation in G′, and the second
avoids that an edge can receive two distinct orientations at the same time.

ouv = 1, ∀(u, v) ∈ ED, ouv + ovu = 1, ∀(u, v) ∈ E. (2)

Properties (c)− (e) are guaranteed by Constraints 3 and 4.

∑

a∈APS(v)

�a = 2, ∀v ∈ VPS (3)

∑

a∈Al
NS(v)

�a = 1,
∑

a∈Ar
NS(v)

�a = 1,
∑

a∈Am
NS(v)

�a = 0, ∀v ∈ VNS (4)

Finally, for each angle a = (e1, v, e2) we have to guarantee consistency between its
label and the orientation of the edges e1 and e2. Namely, denote by v1 the vertex of e1

other than v, and denote by v2 the vertex of e2 other than v. If ovv1 and ovv2 have the
same value (which means that e1 and e2 are both incoming or both outgoing v) then �a

Upward Planarity Testing of Embedded Mixed Graphs 431

must take a value in {0, 2}. Otherwise, �a must take value 1. This property is forced by
the following constraint:

ovv1 + ovv2 = �a + 2ca, ∀a ∈ A (5)

We observe that Constraint 5 and the integrality constraints on variables ouv and ca,
imply that variables �a always assume integer values. Hence, we can relax the integrality
constraints on �a, by simply requiring that 0 ≤ �a ≤ 2. Also, note that the total number
of variables and constraints of our model is linear in the number of angles and edges
of G; therefore, since G is planar, it is linear in the number of vertices of G. The next
theorem summarizes the main contribution of this section.

Theorem 2. There exists an ILP model to decide if an embedded mixed planar graph
admits an upward planar embedding, and to find one in the positive case. The number of
variables and constraints of the model is linear in the number of vertices of the graph.

4 Experimental Study

We implemented our ILP model using CPLEX and we experimented it on a large set
of mixed graphs, in order to understand if it is computationally feasible in practice. We
focused on two major issues: (i) What is the time required to find an upward planar
embedding of an embedded mixed graph, if there exists one; (ii) what is the time re-
quired to decide whether a mixed graph admits or not an upward planar embedding. To
this aim, we run the experiments on two different test suites of mixed graphs, which we
refer to as MIXEDPOSITIVE and MIXEDGENERAL. MIXEDPOSITIVE contains mixed
embedded planar graphs that always admit an embedding-preserving upward planar
drawing. Hence, for these graphs the computation will never reject the instance, and we
can measure the time required to find an upward planar embedding. MIXEDGENERAL

contains mixed embedded planar graphs for which an upward planar drawing may or
may not exist. From the experiments we expect that the computation is faster on those
instances that do not admit a solution and that on the positive instances the time required
to find an embedding increases when the number of undirected edges increases.

Each graph G in MIXEDPOSITIVE was generated by first generating an upward
planar embedded digraph G′ with the algorithm described in [4], and then removing
the orientation on a certain percentage of edges of G′. The edges that are made undi-
rected were selected randomly with a uniform probability distribution. Each graph G in
MIXEDGENERAL was generated with the following procedure: Again, we first gener-
ated an upward planar embedded digraph G′ with the algorithm in [4]. Then a planar
embedded mixed graph was computed from G′ by repeating the following steps until
the desired percentage of undirected edges was reached: randomly choose a face f of G′

and add an edge in f randomly selecting its end-vertices (multiple edges were avoided);
then randomly remove from G′ a directed edge, while maintaining the connectivity. Ev-
ery random choice followed a uniform probability distribution. Set MIXEDPOSITIVE

contains 3 graphs for each distinct triple 〈n, d, p〉, where n ∈ {100, 200, . . . , 800} is
the number of vertices, d ∈ {1.4, 1.6, 1.8, 2.0} is the density, and p ∈ {20, 50, 80}
is the percentage of undirected edges of the graph. Hence, MIXEDPOSITIVE contains

432 C. Binucci and W. Didimo

288 graphs in total. Set MIXEDGENERAL contains 10 graphs for each distinct triple
〈n, d, p〉, where n, d, and p take the same values as before. Hence, it contains 960
graphs in total.

The experiments were performed under the Windows Vista OS, on an Intel Core-Duo
with 2.2 GHz and 2 GB of RAM; the computations were rather fast and confirmed our
hypothesis. As expected, the CPU time for the graphs in MIXEDPOSITIVE increases
when the percentage of undirected edges increases. Almost all computations required
less than 4 seconds, and the maximum time of a computation was 12 seconds, for an
instance with 600 vertices, 80% of undirected edges, and density 2.0.

The percentage of negative instances in MIXEDGENERAL (i.e., the percentage of
graphs for which an upward planar embedding does not exist) is close to 100% for most
graphs with no more than 50% of directed edges, while about half of the graphs with
80% of undirected edges admit a solution. As expected, the computation is very fast on
the negative instances, while the behavior on the positive instances reflects the one for
the graphs in MIXEDPOSITIVE.

5 Conclusions and Open Problems

We introduced a new upward planarity testing problem for embedded mixed graphs
and we experimentally showed that this problem can be efficiently solved using Integer
Linear Programming. The main open problem is to study what is the computational
complexity of our testing problem in theory. Is it NP-hard? It is worth recalling that the
upward planarity testing problem for embedded digraphs is polynomially solvable [2]
and that polynomial-time algorithms exist for finding upward embeddings of embedded
undirected graphs [6]. Another interesting problem is to design algorithmic solutions for
computing the maximum upward planar subgraph for a given mixed embedded graph.
We recall that the problem of computing a maximum upward planar subgraph of a
planar embedded digraph is NP-hard [3].

References

1. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn.
Springer, Heidelberg (2009)

2. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected
digraphs. Algorithmica 6(12), 476–497 (1994)

3. Binucci, C., Didimo, W., Giordano, F.: Maximum upward planar subgraphs of embedded
planar digraphs. Comput. Geom. 41(3), 230–246 (2008)

4. Didimo, W.: Upward planar drawings and switch-regularity heuristics. Journal of Graph Al-
gorithms and Applications 10(2), 259–285 (2006)

5. Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM
J. Discrete Math. 23(4), 1842–1899 (2009)

6. Didimo, W., Pizzonia, M.: Upward embeddings and orientations of undirected planar graphs.
Journal of Graph Algorithms and Applications 7(2), 221–241 (2003)

7. Eiglsperger, M., Eppinger, F., Kaufmann, M.: An approach for mixed upward planarization.
Journal of Graph Algorithms and Applications 7(2), 203–220 (2003)

8. Garg, A., Tamassia, R.: Upward planarity testing. Order 12, 109–133 (1995)
9. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity

testing. SIAM Journal on Computing 31(2), 601–625 (2001)

Combining Problems on RAC Drawings

and Simultaneous Graph Drawings

Evmorfia N. Argyriou1, Michael A. Bekos1,
Michael Kaufmann2, and Antonios Symvonis1

1 School of Applied Mathematical & Physical Sciences,
National Technical University of Athens, Greece
{fargyriou,mikebekos,symvonis}@math.ntua.gr

2 University of Tübingen, Institute for Informatics, Germany
mk@informatik.uni-tuebingen.de

1 Introduction and Problem Definition

We present an overview of the first combinatorial results for the so-called geo-
metric RAC simultaneous drawing problem (or GRacSim drawing problem, for
short), i.e., a combination of problems on geometric RAC drawings [3] and geo-
metric simultaneous graph drawings [2]. According to this problem, we are given
two planar graphs G1 = (V, E1) and G2 = (V, E2) that share a common vertex
set but have disjoint edge sets, i.e., E1 ⊆ V × V , E2 ⊆ V × V and E1 ∩E2 = ∅.
The main task is to place the vertices on the plane so that, when the edges are
drawn as straight-lines, (i) each graph is drawn planar, (ii) there are no edge
overlaps, and, (iii) crossings between edges in E1 and E2 occur at right angles.

A closely related problem is the following: Given a planar embedded graph G,
determine a geometric drawing of G and its dual G∗ (without the face-vertex
corresponding to the external face) such that: (i) G and G∗ are drawn planar,
(ii) each vertex of the dual is drawn inside its corresponding face of G and,
(iii) the primal-dual edge crossings form right-angles. We refer to this problem
as the geometric Graph-Dual RAC simultaneous drawing problem (or GDual-
GRacSim for short).

2 Results

A detailed presentation of our results (including technical proofs) is available
as a technical report [1]. The following theorem establishes that if two graphs
always admit a geometric simultaneous drawing, it is not necessary that they
also admit a GRacSim drawing.

Theorem 1. There exists a wheel and a cycle which do not admit a GRacSim
drawing.

For the case of a path P and a matching M, we can prove that a GRacSim
drawing always exists. The basic idea of our algorithm is to identify in the graph
induced by the union of P andM a set of cycles C1, . . . , Ck, k ≤ n/4, such that:

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 433–434, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

434 E.N. Argyriou et al.

(i) |E(C1)| + . . . + |E(Ck)| = n, (ii) M ⊆ C1 ∪ . . . ∪ Ck, and, (iii) the edges of
cycle Ci, i = 1, . . . , k alternate between edges of P andM. The edges of the cycle
collection do not cross each other, while the remaining ones introduce right-angle
crossings. The following theorem summarizes our result.

Theorem 2. A path and a matching always admit a GRacSim drawing on an
(n/2 + 1)× n/2 integer grid. The drawing can be computed in linear time.

We can extend the algorithm that produces a GRacSim drawing of a path and
a matching to also cover the case of a cycle C and a matching M. The idea is
simple. If we remove an edge from the input cycle, the remaining graph is a path
P . So, we can apply the developed algorithm and obtain a GRacSim drawing of
P and M, in which the insertion of the edge that closes the cycle can be done
without introducing any crossings by augmenting the total area of the drawing.

Theorem 3. A cycle and a matching always admit a GRacSim drawing on an
(n + 2)× (n + 2) integer grid. The drawing can be computed in linear time.

Corollary 1. Let G be a simple connected graph that can be decomposed into
a matching and either a hamiltonian path or a hamiltonian cycle. Then, G is a
RAC graph.

For the GDual-GRacSim drawing problem, we can show by an example that it
is not always possible to compute a GDual-GRacSim drawing if the input graph
is an arbitrary planar graph. This is summarized in the following theorem.

Theorem 4. Given a planar embedded graph G, a GDual-GRacSim drawing of
G and its dual G∗ does not always exist.

For the more restricted case of outerplanar graphs, we can state the following
theorem, which is based on a recursive geometric construction that computes a
GDual-GRacSim drawing of G and its dual.

Theorem 5. Given an outerplane embedding of an outerplanar graph G, it is
always feasible to determine a GDual-GRacSim drawing of G and its dual G∗.

Our study raises several open problems. It would be interesting to identify other
non-trivial classes of graphs, besides a matching and either a path or a cycle,
that admit a GRacSim drawing. For the classes where GRacSim drawings are
not possible, study drawings with bends. Study the required drawing area.

References

1. Argyriou, E.N., Bekos, M.A., Kaufmann, M., Symvonis, A.: Geometric simultaneous
rac drawings of graphs. CoRR abs/1106.2694 (2011)

2. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov,
S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Com-
putational Geometry: Theory and Applications 36(2), 117–130 (2007)

3. Didimo, W., Eades, P., Liotta, G.: Drawing Graphs with Right Angle Crossings.
In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS,
vol. 5664, pp. 206–217. Springer, Heidelberg (2009)

The Open Graph Archive:

A Community-Driven Effort�

Christian Bachmaier1, Franz Josef Brandenburg1, Philip Effinger2,
Carsten Gutwenger3, Jyrki Katajainen4, Karsten Klein3, Miro Spönemann5,

Matthias Stegmaier2, and Michael Wybrow6

1 University of Passau, Germany
2 Eberhard-Karls-Universität Tübingen, Germany

3 Technische Universität Dortmund, Germany
4 University of Copenhagen, Denmark

5 Christian-Albrechts-Universität zu Kiel, Germany
6 Monash University, Australia

1 Introduction

A graphbase, a term coined by Knuth [7], is a database of graphs and computer
programs that generate, analyze, manipulate, and visualize graphs. The terms
graph library and graph archive are often used as synonyms for this term. Our
vision is to provide an infrastructure and quality standards for a public graph-
base, named the Open Graph Archive, that is accessible to researchers and other
interested parties around the world via the worldwide web. This paper describes
the current work undertaken towards this goal; the paper is also intended to be
a call for participation since this will be a community-driven effort where most
of the content will be provided by users of the system.

Our motives for building this universal graphbase are similar to Knuth’s mo-
tives for building the Stanford GraphBase [7]; we are just working on a larger
scale. First, we want to provide standard sets of graphs to enable repeatability
of experiments. We expect that the graphbase would be particularly interesting
for researchers working in the areas of algorithm engineering and graph draw-
ing. Second, we want to provide a single point of access for datasets relevant for
people working with graphs. By annotating the datasets with their origin and
other semantic information, we can help researchers to find publications relevant
for their work. Third, a graphbase that is accessible worldwide can stimulate in-
teresting theory development. As pointed out by Knuth [7], a graphbase can
bridge the gap between theoreticians and practitioners. Fourth, the programs
(and maybe also the datasets) available in a graphbase, if done well, can have a
significant educational value.

Many existing collections, like the graphs available in the Stanford Graph-
Base [7] and the well-known Rome graphs [3], are static and only cover a small
number of data sizes, types, and properties that may be relevant for the users.
In order to allow collection and exchange of interesting graphs, it is important
� This work was initiated at Schloss Dagstuhl in seminar 11191 on “Graph Drawing

with Algorithm Engineering Methods”.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 435–440, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

436 C. Bachmaier et al.

to make the graphbase extendable. The needs of the community will certainly
change over time. Expandability has been recognized as an important goal by
other researchers as well (see, e.g., [1,2]), but the available data collections seem
to be relevant to a limited range of users only. Our goal is to support the use in
a wide variety of application areas.

2 User Needs and Requirements

In order to investigate the relevance of and the requirements for a universal
graphbase we conducted a survey among 30 participants of the Dagstuhl seminar
11191, coming from the graph drawing and algorithm engineering communities.
The survey solicited a variety of open-ended textual responses. In this section
we summarize the most interesting and commonly recurring feedback.

Describe two most important use cases for a graph archive. The most frequent
use cases were to search for graphs with specific properties, and to benchmark
and compare algorithms, both mentioned by 37% of the participants. Further
answers were to share datasets (27%), and to replicate experiments and compare
results (23%). Since these are fundamental aspects of experimental scientific
processes, we can see that a graphbase would be an important tool for researchers
of graph algorithms.

What services do you expect? We proposed nine services of which the survey
participants could select those they considered important. As shown in Table 1,
support for tags and arbitrary comments are the most crucial features. When
asked for further important services, a handful of people wanted to know which
publications refer to a specific graph or collection of graphs (17%).

Which category tags and analysis properties may be useful? Participants named
20 different application domains to categorize a graph or collection of graphs,
e.g., biology, social networks, geography, software engineering. Furthermore,
participants named 16 graph properties, most of which can be determined auto-
matically. The most popular properties were connectivity (60%), including the
number of k-connected components, and planarity (43%), including the best
known crossing number for non-planar graphs.

Table 1. Result of the multiple-choice question “Which services do you consider as
critical for a graph archive?”

Add categorization tags 80%
Add comments, links, or further information 77%
Search for specific tags 77%
Automatic conversion of file formats 70%
Search for specific properties 60%
Add information on how graphs were created 60%
Add images (drawings of the graphs) 50%
Automatic analysis of graph properties 47%
Programmatic web service 23%

The Open Graph Archive: A Community-Driven Effort 437

Name two file formats you use most. The most frequently mentioned formats
were GraphML (43%) and GML (33%). Since a total of 13 different formats
were named, it is evident that a universal graphbase should not rely on one
specific format, but offer support for several formats, preferably even converting
automatically between formats.

Existing archives and collections. Responses for existing archives showed that
GraphArchive [6] from the University of Tübingen and the datasets from the
DIMACS implementation challenges [5] were both known by a handful of people
(20% and 13%, respectively). These numbers are quite low and might also be
biased towards the archives used by the researchers that participated in the
seminar. They also suggest that there is currently no commonly used and ac-
cepted graph archive service. Regarding graph collections, participants mostly
worked with randomly generated graphs, as well as with the popular Rome [3]
and AT&T graphs [4].

Community contributions. Several participants of the survey declared that they
would be willing to provide human resources (students, testing and development
time), a hardware platform, or even money. This reaffirms that there is definite
interest and enthusiasm for such a system, and also that the project should take
advantage of this through involvement of the community.

Technical and service requirements. The survey results and subsequent commu-
nity discussions indicate that potential users agree on a core set of important
features, as well as a larger list of desirable functionality. However, several ques-
tions regarding the interface, architecture, and content remain open. Below we
list the most relevant issues that need to be discussed or dealt with.

Storage. Graphs must be stored persistently under a unique ID for identifica-
tion and access. Should graphs be stored in their original submission format,
or converted by the system or the user into a unique storage format? In file
conversions it is important that as much information as possible is preserved.

Metadata. There is a variety of metadata that can be stored with a graph, e.g.,
creator, description of the underlying data or the generator, additional key-
words, and links to corresponding experiments or publications. Some of this
data should be defined as mandatory properties, whereas other parts may
be added as generic text properties. Useful keywords/tags for categorization
need to be defined. Some tags could be attributes for graphs or collections
of graphs, and some could list their structural and semantic properties.

Searching. Based on the survey results and our own experience, we assume
that a graphbase should allow the user to search using both graph properties
(number of nodes, etc.) and annotations (categories, origin, etc.).

Data analysis. Automatic analysis of basic graph properties must be possible.
However, we are not sure if there should be a restriction on the computational
complexity of the analysis or on the size of the analyzed graphs, or if users
should be allowed to upload that information, e.g., the crossing number of a
graph.

438 C. Bachmaier et al.

Programs. In addition to datasets, it must be possible to store programs like
graph generators, analyzers, or visualizers. If the graphbase contains ran-
domly generated collections of graphs with certain attributes, it would be
useful to provide access to the programs used for their generation.

Ownership and copyright. The ownership of uploaded graphs must be clear
from the outset. The content should be as freely usable as possible with fair
attribution to the original authors. Contributors will need to take responsi-
bility for their submitted graphs and collections of graphs.

Existing collections. Existing popular collections should be made identifiable
and accessible via the system.

Possible extensions. Further useful extensions may include the following:

– Automatic file conversion could be provided as an additional service and the
programs providing these conversions could also be made available.

– A series of drawings (layouts) for submitted graphs could be provided, or
even automatic layout on demand, and the programs used for drawing the
graphs could be made publicly available.

– Special support for browsing collections of graphs could be provided. For
this purpose a hierarchical classification system can be useful.

– Structure-based searching could be supported, e.g., find graphs containing a
clique of a specific size.

– Versioning of individual graphs as well as the possibility to store a series of
dynamic graphs could be supported.

– A web-service API could be provided to allow interrogation of the graphbase
by computer programs, rather than via a web browser.

3 A Working Prototype: GraphArchive

In this section we give an overview of GraphArchive, a platform for exchanging
and archiving graphs meant as a prototype for the Open Graph Archive. It is
developed at the University of Tübingen and was designed as a successor to
GraphDB, a now discontinued first attempt at creating a web-based graphbase.
GraphArchive is an interactive online system built with modern web technolo-
gies. Below we list the main features of the existing prototype, followed by a
short description of its software architecture. For more details, we refer to [6].
The working system can be accessed online at

http://graphdrawing.org/grapharchive/ .

Main features. The features of GraphArchive, as listed below, have been chosen
to support the goal of providing an open and easily accessible system.

Web-based user interface. The user interface is provided via a browser. A
web portal offers all functionality that is needed to handle graphs, including
uploading datasets, inspection and management of existing graphs, search-
ing for specific graphs, and downloading datasets. Registration is performed

http://graphdrawing.org/grapharchive/

The Open Graph Archive: A Community-Driven Effort 439

online using a registration form, which is processed automatically. Standard
techniques are used to prevent registration by spam bots.

Minimal permission management. There are no groups of users that define
rights for small circles of users. Licenses for graphs limiting their usage are
not encouraged in our open approach. However, if necessary, a license can be
attached to a selected graph. After confirming registration by going through
the opt-in e-mail process, a user has access to all graphs and can initiate
queries without restrictions.

Categorization of graphs. For search queries, graphs can be assigned to the
field(s) of application that they originate from. This enables researchers from
different fields to use GraphArchive as a common platform.

Automatic graph analysis. After upload, graphs (with < 100, 000 vertices)
are automatically analyzed in order to provide consistent data. Consistency
is very important for queries on graph properties.

Multi-criterion search. Queries can be performed on multiple parameters,
specifying graph properties, categories, author, name, and upload date. Also,
parameters can be added later to further narrow down the result set.

Graph visualization. An image of a graph is valuable if a user wants to visu-
ally inspect the properties of a graph. Layouts are computed automatically
in the background and can also be changed after upload.

Unique links to graphs. A URI associated with each graph allows for a per-
manent reference to be used in publications. By giving the URI, the user can
quickly jump to a particular dataset. Reference annotations can be assigned
to a graph in order to highlight publications and/or websites that refer to
or make use of the graph.

Visual comparison of multiple graphs. For a quick comparison of graphs,
we support simultaneous presentation of multiple graphs. Properties are dis-
played for all graphs. Boolean properties, e.g., directed/undirected, are pre-
sented visually on a scale (properties can be shared by (a) no graph, (b) a
subset of the displayed graphs, or (c) all graphs).

Several file formats. When supporting many application domains it is im-
possible to dictate the file format used. Therefore, we aim at supporting as
many formats as possible. The system is extendable and allows for addition
of further formats in the future. For downloading graphs, a user can choose
the format that fits best to his or her work environment. We provide cross
conversion between different formats (the users can select any supported
format and the system performs the conversion automatically).

Import/export of multiple graphs. We allow upload/download of several
graphs simultaneously in zip-compressed form. In an upload process, each
file in a compressed archive can be optionally processed individually (for
property analysis and layout computation).

Guest access for non-registered users. If a user wants to check a specific
graph, he or she can access a detailed view of the graph using its URI.
All properties and attributes of that graph are made visible via a guest
account.

440 C. Bachmaier et al.

Software architecture. GraphArchive is built with common web technologies. The
application is written in PHP51 and uses Apache22 for online presentation. For
graph analysis and layout computation, we use the Java graph library yFiles;3

these computations are handled in the background via PHP/Java bridge.4 Data
storage is managed by PostgreSQL database management system.5

More details and a descriptive walk-through showing a typical use case of the
system can be found in [6]. For more news and information on the system and
its current development status, please consult the system website.

4 Outlook

Our hope is to stimulate discussion on the initial system proposal and trigger
community growth around the Open Graph Archive. The success of this project
requires a passionate and enthusiastic community. We urge you to step up and
participate by critiquing the existing system, helping the development effort, or
contributing material to the graphbase.

References

1. Boisvert, R.F., Pozo, R., Remington, K., Barrett, R., Dongarra, J.J.: The matrix
market: A web resource for test matrix collections. In: Quality of Numerical Soft-
ware: Assessment and Enhancement. IFIP Conference Series, vol. 76, pp. 125–137.
Chapman & Hall (1997), Graphs available at http://math.nist.gov/MatrixMarket

2. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1) (2011), Graphs available at
http://www.cise.ufl.edu/research/sparse/matrices/

3. Di Battista, G., Garg, A., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental
comparison of four graph drawing algorithms. Comput. Geom. Theory Appl. 7(5-6),
303–325 (1997), Graphs available at http://www.graphdrawing.org/

4. Di Battista, G., Garg, A., Tamassia, R., Tassinari, E., Vargiu, F.: Drawing directed
acyclic graphs: An experimental study. J. Comput. Geom. Apppl. 10(6), 623–648
(2000), Graphs available at http://www.graphdrawing.org/

5. 10th DIMACS implementation challenge: Graph partitioning and graph clustering,
http://www.cc.gatech.edu/dimacs10/downloads.shtml (accessed August 2011)

6. Effinger, P., Kaufmann, M., Meinert, S., Stegmaier, M.: GraphArchive: An on-
line graph data store. Technical Report WSI-2011-03, Wilhelm-Schickard-Institut,
Eberhard-Karls-Universität Tübingen (2011)

7. Knuth, D.: The Stanford GraphBase: A Platform for Combinatorial Computing.
ACM Press (1994)

1 See project homepage: http://www.php.net, accessed July 2011.
2 See project homepage: http://www.apache.org, accessed July 2011.
3 Developed by yWorks GmbH: http://www.yworks.com, accessed July 2011.
4 Seeproject homepage:http://php-java-bridge.sourceforge.net/pjb/index.php,

accessed July 2011.
5 See project homepage: http://www.postgresql.org/, accessed July 2011.

http://math.nist.gov/MatrixMarket
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.graphdrawing.org/
http://www.graphdrawing.org/
http://www.cc.gatech.edu/dimacs10/downloads.shtml
http://www.php.net
http://www.apache.org
http://www.yworks.com
http://php-java-bridge.sourceforge.net/pjb/index.php
http://www.postgresql.org/

Drawing Graphs with Vertices at Specified

Positions and Crossings at Large Angles

Martin Fink1, Jan-Henrik Haunert1, Tamara Mchedlidze2,
Joachim Spoerhase1, and Alexander Wolff1

1 Lehrstuhl für Informatik I, Universität Würzburg, Germany
2 Department of Mathematics, National Technical University of Athens, Greece

1 Introduction

In point-set-embeddability (PSE) problems one is given not just a graph that is
to be drawn, but also a set of points in the plane that specify where the vertices
of the graph can be placed. The problem class was introduced by Gritzmann et
al. [3] twenty years ago. In their work and most other works on PSE problems,
however, planarity of the output drawing was an essential requirement. Recent
experiments on the readability of drawings [4] showed that polyline drawings
with angles at edge crossings close to 90◦ and a small number of bends per edge
are just as readable as planar drawings. Motivated by these findings, Didimo
et al. [2] recently introduced RAC drawings where pairs of crossing edges must
form a right angle and, more generally, αAC drawings (for α ∈ (0, 90◦]) where
the crossing angle must be at least α. As usual, edges may not overlap and may
not go through vertices. We investigate the intersection of PSE and RAC/αAC.

Specifically, we consider the problems RAC PSE and αAC PSE defined as
follows. Given an n-vertex graph G = (V, E) and a set S of n points in the plane,
determine whether there exists a bijection μ between V and S, and a polyline
drawing of G so that each vertex v is mapped to μ(v) and the drawing is RAC
(or αAC). If such a drawing exists and the largest number of bends per edge in
the drawing is b, we say that G admits a RACb (or an αACb) embedding on S.
If we insist on straight-line edges, the drawing is completely determined by a
bijection between vertex and point set. If we allow bends, however, PSE is also
interesting with mapping, that is, if we are given a bijection μ between vertex
and point set. In order to measure the size of our drawings, we assume that the
given set of n points lies on a grid Γ of size n × n and, in the output drawing,
bends lie on a (potentially larger or finer) grid containing Γ . We further assume
that no two points lie on the same horizontal or vertical line. We call such a
point set an n× n grid point set.

2 Results

We can RAC3 embed any graph with n vertices and m edges on any n× n grid
point set using any mapping and area O

(
(n + m)2

)
, see Fig. 1. Here, the idea

is to have crossings only between segments with slopes +1 and −1. By choosing
the horizontal positions of the first and last bends of each edge (black boxes in

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 441–442, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

442 M. Fink et al.

Fig. 1. RAC3 embedding of K4 Fig. 2. Restricted RAC1 embedding

Fig. 1) so that they all have even Manhattan distance, we ensure that the middle
bends (squares in Fig. 1) lie on grid points, and, thus, the drawing is valid.

In order to get 1-bend drawings (again for any mapping μ), we refine the
grid by a factor of λ ∈ O(cot ε), for a small angle ε, that is, we insert, at equal
distances, λ−1 new rows and columns between each pair of consecutive old grid
rows and columns, respectively. For each edge uv of the given graph G, consider
the point puv in the same row as μ(u) and the same column as μ(v). Clearly,
puv lies on the original grid. We place the bend of uv at one of the four new grid
points that are diagonally adjacent to puv. This yields a (π/2−ε)AC1 embedding
of G on the given grid point set S; the refined grid has size O

(
(λn)2

)
.

We now turn to a restricted version of our problem where additionally every
edge has to be drawn on grid lines, see Fig. 2 (right).

We show that every n-vertex binary tree admits a restricted RAC1 embedding
on any n × n grid point set (which is not known for the planar case). This
was independently shown by Di Giacomo et al. [1]. We simply view the given
tree as a search tree for the points, sorted by x-coordinate, and draw the edges
(directed away from the root) such that we enter each vertex vertically and leave
it horizontally to the left and to the right to its at most two children, see Fig. 2.

By an old result of Vizing (1964), every graph of maximum degree 3 can be
4-edge-colored. We exploit this to construct restricted RAC2 embeddings of such
graphs on any n×n grid point set even if the mapping is prescribed. We interpret
each color as a direction (up, down, left, right) and, for each edge, we draw its
first and third segment into this direction and the middle segment far enough.

References

1. Di Giacomo, E., Frati, F., Fulek, R., Grilli, L., Krug, M.: Orthogeodesic point-set
embedding of trees. In: Speckmann, B., van Kreveld, M. (eds.) GD 2011. LNCS,
vol. 7034, pp. 52–63. Springer, Heidelberg (2011)

2. Didimo, W., Eades, P., Liotta, G.: Drawing Graphs with Right Angle Crossings.
In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS,
vol. 5664, pp. 206–217. Springer, Heidelberg (2009)

3. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation
with vertices at specified positions. Amer. Math. Mon. 98, 165–166 (1991)

4. Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: Proc. 7th Int. IEEE
Asia-Pacific Symp. Inform. Visual (APVIS), pp. 41–46 (2008)

Viewport for Component Diagrams

Lukas Holy and Premek Brada

Department of Computer Science and Engineering, University of West Bohemia,
Univerzitni 8, Pilsen, Czech Republic

Abstract. This paper describes a viewport technique for use in the visu-
alization of large graphs, e.g. UML component diagrams. This technique
should help to work with complex diagrams (hundreds or thousands of
components) by highlighting details of the important parts of the dia-
gram and their related surroundings without losing the global perspec-
tive. To avoid visual clutter it uses clusters of interfaces and components.

1 Introduction

Although software components [2] comprise relatively large parts of systems,
nowadays applications can easily consist of hundreds or thousands heavily in-
terconnected ones. Thus their UML component diagrams become large graphs
which are difficult to explore for humans. The main problem is how to show
the whole diagram and provide enough detailed information at the same time.
Diagrams displayed at the desired level of detail become too big to provide a
sufficient overview and keep orientation; especially difficult is to trace depen-
dencies between distant components. When displaying the whole diagram on
standard screens, individual elements are hard to recognize and often there is
visual clutter caused by dependency visualization.

Visualization techniques which handle the complexity, such as off-screen ren-
dering [1], can be used instead of the traditional pan&zoom technique. This
paper describes a novel approach called viewport which attempts to reconcile
the above mentioned contradictory requirements and helps to explore the de-
pendencies among components in an intuitive way.

2 Viewport for Component Diagrams

The proposed technique shows the graph (standard UML component diagram)
zoomed-out to provide the appropriate overview of the complete architecture,
with elements displayed without details. Besides that it shows selected compo-
nents in detail inside a viewport area plus all their relations with other compo-
nents in the diagram in an interactive border area (see Figure 1). These relations
are for each component clustered into two sets: all provided interfaces (displayed
as ”lollipops”) and all required interfaces (displayed as ”sockets”).

These interfaces are then connected to clustered proxy components, visually
represented as rectangles with rounded corners. Each rectangle represents one

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 443–444, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

444 L. Holy and P. Brada

Fig. 1. Viewport for component diagrams

or more components. Numbers inside the clustered interfaces and proxy compo-
nents represent a desired metric, e.g. the number of elements clustered in a given
symbol. One of the key factors of our approach will be the interactivity of the
border area, which should comprise user manipulation with clustering of inter-
faces or components, layout adjustments and selecting the components shown in
the viewport.

The viewport technique should enable to explore and understand the depen-
dencies in large diagrams by showing the context of a selected diagram subset.
The clustering shall reduce the visual clutter otherwise caused by large num-
ber of relations. The proxy elements should reduce the need for the disorienting
pan&zoom otherwise necessary while exploring dependencies and provide user
relevant information in one place. The viewport can either be placed on a given
position in the diagram (there can be more viewports in a diagram) or have a
fixed position on the screen.

3 Future Work

Important part of the future research on this technique are layout algorithms
for components displayed both inside and ouside of the viewport. Also, options
for automatic suggestion of diagram parts suitable for displaying in viewports
based on graph algorithms will be investigated.

References

1. Frisch, M., Dachselt, R.: Off-screen visualization techniques for class diagrams. In:
Proceedings of the 5th International Symposium on Software Visualization, SOFT-
VIS 2010, pp. 163–172. ACM, New York (2010)

2. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 3rd
edn. Addison-Wesley / ACM Press (2002)

Shortest-Paths Preserving Metro Maps

Tal Milea, Okke Schrijvers, Kevin Buchin, and Herman Haverkort

Dept. Mathematics and Computer Science, TU Eindhoven, The Netherlands
{t.y.milea,o.j.schrijvers}@student.tue.nl,
k.a.buchin@tue.nl cs.herman@haverkort.net

A metro map, or subway map, is a schematic representation of a metro system of
a city. The main goal of a metro map is to provide a traveler with information on
which lines to take to get from station A to station B, and at which stations he
needs to switch lines. It is often not beneficial to use the geographical embedding
of the system, but rather a representation where the relevant information is
presented as clearly as possible. There are several algorithms that aim to generate
such maps [2].

One criterion that is not considered in these algorithms is whether or not the
visually shortest route on the generated metro map still corresponds to the route
with the shortest travel time. This could lead users to plan their travel along a
route that results in a needlessly long travel time. To remedy this, we define the
theoretical planning error (TPE) of a pair of stations to be the ratio between the
travel time of the shortest route on the map and the shortest possible travel time
of the metro system. This idea can be extended such that the TPE of the metro
map is the maximum TPE over all pairs of stations. The theoretical planning
error of a metro map can thus be defined mathematically as

TPE = max
u,v∈V

t(argminR∈R(u,v)�(R))
minR∈R(u,v) t(R)

(1)

where V is the set of metro stations, R(u, v) is the set of routes from u to v,
�(R) is the perceived time it takes on the map to take route R and t(R) is the
actual time it takes.

Approach. We formulate the optimization of the TPE as a Mixed-Integer Pro-
gram (MIP). One advantage of a MIP is that it is flexible and we can integrate
our MIP with the one from Nöllenburg and Wolff [1]. The new objective func-
tion is a weighted combination of both approaches. The problem as defined in
Equation 1 would result in an exponential number of constraints. The number of
pairs of stations is already quadratic, but the number of possible routes between
every pair can be exponential. We therefore use an iterative approach.

The process is started by generating a metro map without adding any TPE
constraints. Then in each iteration the map that was generated in the previous
iteration is analyzed offline, i.e. not in the MIP, to find the pair of stations that
determines the TPE. For this pair, we generate a series of constraints for only
two routes, the route that appears to have the shortest travel time, and the one
that really has the shortest travel time. We add these constraints to the MIP

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 445–446, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

446 T. Milea et al.

(a) Original embedding.

TPE =
1.375

(b) Map without TPE.

TPE =
1.214

(c) After 7 iterations.

Fig. 1. Results for part of the Vienna metro system

and solve it again. Since the TPE adds to the objective function, it is up to
the linear program solver to see whether it can make the second route shorter
(or more commonly whether it can make the first one larger) on the map while
complying with the aesthetic requirements. The process terminates when the
TPE of the metro map is 1 and therefore all shortest routes on the metro map
correspond to the routes with the shortest travel time.

Results and Future Work. In Figure 1, a part of the results for the Vienna
metro system can be seen. From Figures 1b and 1c it follows that small changes
can in fact decrease the theoretical planning error (from 1.375 to 1.214). However,
even though we have tried to limit the number of constraints in the program, the
MIP solver CPLEX runs out of memory after 7 iterations. This cannot be solely
attributed to the number of constraints as the original program has 2379 and
iteration 7 contains 5816 constraints. We are currently looking into this issue.

We have verified that our approach indeed decreases the TPE. However, user
studies are required to see whether or not this truly influences the planning
capabilities of users. Additionally we consider allowing bends between adjacent
stations to see if this increases the quality of the map.

Acknowledgments. We would like to thank Martin Nöllenburg for making the
MIP generation code from [1] available to us.

References

1. Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-
integer programming. IEEE Transactions on Visualization and Computer Graph-
ics 17, 626–641 (2011)

2. Wolff, A.: Drawing subway maps: A survey. Informatik - Forschung und
Entwicklung 22, 23–44 (2007)

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 447–448, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Challenger, a New Way to Visualize Data

Remus Zelina1, Sebastian Bota1, Siebren Houtman2,
Jaap Jan van Assen2, and Bas Hattink2

1 Meurs HRM, Baia Mare, Romania
{rzelina,seby}@meurs.ro

2 Meurs HRM, Woerden, The Netherlands
{s.houtman,j.assen,b.hattink}@meurshrm.nl

Abstract. Challenger is a software product that provides fast and online data
visualization. This is done by visualizing data (graphs) as a network. Both force
based and modularization algorithms are used and experimented with.
Challenger facilitates fast and easy understanding of complex data. This is not
only a matter of showing one ‘perfect’ visualization, but rather of letting users
browse, analyze and ‘play’ visually with (subsets of) data interactively.

Keywords: Challenger, Force-Directed, Clustered Graph.

1 Introduction

This abstract1 presents Challenger, a software product, originally designed to
visualize organizations. Organizations were considered as a network of employees,
customers and projects (nodes) and links (i.e. ‘working on project x’) between them
(edges). Visualizing makes it easier to understand and interpret the (relations in)
organizations. However, as networks grow bigger, it turned out to be complex to draw
a meaningful visualization within a reasonable amount of time. Challenger as it is
now, is the result of our research on data visualization and our attempt to put this
knowledge in a useful and fast application. The solution is useful in general to
visualize complex data.

2 Implementation

We use different versions of force based algorithms [1], [2], [3] and modularization
algorithms [4], [5], [6]. We split the data (graph nodes) into “almost cliques” by
maximizing a global criterion. An almost clique is a subset of nodes of the graph that
has many internal links and less external links. The global criterion is a value
referring to a certain collection of almost cliques that covers the entire graph and it's

1 This abstract accompanies a poster that can be obtained by contacting us at

http://www.meurs.ro/challenger. Here one can also find additional information
and demonstrations of Challenger.

448 R. Zelina et al.

formula puts in evidence the above phenomenon. The best known formula for this
criterion is the Modularity (Q) [4]. It is defined to be the fraction of edges that fall
within the given cliques minus the fraction of edges that are expected to fall within
the clique if the edges were distributed at random. Splitting a graph into almost
cliques leads to information loss (due to external links). To reduce this we consider
influences of all almost cliques over a given node, not only those of the almost clique
that contains the given node. To optimize speed, we experimented with and optimized
different algorithms in different combinations and architectures. The application is
web based, and at the moment we achieve performances about 250.000 nodes and
1.000.000 edges in less than 60 seconds including data transfer.

More important than showing a single visualization, Challenger offers possibilities
to visually browse, analyze and redraw the graph. This improves the usability.
Challenger offers possibilities to:

• mix a number of entity types (nodes) and link types (edges) and combine them in a
single graph;

• involve characteristics of elements in the graph (i.e. gender when persons are the
elements) by entering the values (i.e. male; female) as ‘virtual’ nodes and put
edges - when relevant - between them;

• filter, search and redraw based on characteristics of nodes as well as weights of
edges;

• further analyze specific modules;
• create sub graphs and visualizations based on modules, selections of nodes or 1st

and 2nd degree relations of selected nodes;
• zoom in and zoom out and keep track in a mini map of the total graph;
• toggle visualization modes.

References

1. Fruchterman, T., Reingold, E.: Graph Drawing by Force-directed Placement. Software-
Practice and Experience 21(11), 1129–1164 (1991)

2. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information
Processing Letters 31(1), 7–15 (1989)

3. Noack, A.: Energy Models for Graph Clustering. Journal of Graph Algorithms and
Applications 11(2), 453–480 (2007)

4. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large
networks. Physical Review E 70, 066111 (2004)

5. Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social networks. In:
Proceedings of the 16th International Conference on World Wide Web, Banff, Alberta,
Canada, pp. 1275–1276. ACM, New York (2007)

6. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of community
hierarchies in large networks. J. Stat. Mech. (10), P10008 (2008)

Graph Drawing Contest Report

Christian A. Duncan1, Carsten Gutwenger2, Lev Nachmanson3, and Georg Sander4

1 Louisiana Tech University, Ruston, LA 71272, USA
duncan@latech.edu

2 Technische Universität Dortmund, Germany
carsten.gutwenger@tu-dortmund.de

3 Microsoft, USA
levnach@microsoft.com

4 IBM, Germany
georg.sander@de.ibm.com

Abstract. This report describes the 18th Annual Graph Drawing Contest, held in
conjunction with the 2011 Graph Drawing Symposium in Eindhoven, the Nether-
lands. The purpose of the contest is to monitor and challenge the current state of
graph-drawing technology.

1 Introduction

As in recent years, this year’s Graph Drawing Contest was divided into the offline con-
test and the online challenge. The offline contest had three categories: two dealt with
angular resolution and one was a composers graph, kindly provided by Tom Sawyer
Software. The data sets for the offline contest were published months in advance, and
contestants could solve and submit their results before the conference started. For the
two angular resolution categories, the submitted drawings were judged using visual
comparison with emphasis foremost on angular resolution, particularly the worst-case
deviation of the angular resolution from the perfect angular resolution value. The com-
posers graph data set represented a very large graph, and the task was to combine graph
drawing algorithms with appropriate techniques for complexity reduction (such as fil-
tering and varying the graphical attributes) to create an illuminating visualization (one
or more images, possibly with commentaries, or a movie). It was not a requirement to
present the entire data set.

The online challenge took place during the conference in a format similar to a typical
programming contest. Teams were presented with a collection of challenge graphs and
had approximately one hour to submit their highest scoring drawings. This year’s topic
was the same as in the previous year, namely to minimize the length of the longest edge
in a planar orthogonal grid drawing.

Overall, we received 30 submissions: 12 submissions for the offline contest and 18
submissions in the online challenge.

2 Angular Resolution

For the two categories in this topic, our primary concern was angular resolution. The
angular resolution of any vertex in a drawing is the smallest angle formed by its

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 449–455, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

450 C.A. Duncan et al.

Fig. 1. First place, Angular Resolution, Category A

adjacent edges. When the edges are drawn as curved arcs it is measured with regards to
the tangent at that vertex. In addition, we required that the graph should use a reason-
ably small grid area. The vertices did not have to be on an integer grid but the vertex
resolution, the ratio between the distance of the closest two vertices and the farthest two
vertices, should still remain relatively low. Both contest graphs were highly symmetric
so any exploitation of that feature was also taken into consideration.

2.1 Category A: Straight-Line Planar

The first data set for the angular resolution topic was a planar graph with 48 nodes and
102 edges, and contestants had to create a drawing of the graph in the plane, without
crossings, and using only straight-line edges. Whereas many bad examples of angu-
lar resolution use sequences of nested triangles, this graph contained only two nested
triangles whose removal created a collection of outerplanar graphs.

We received only one valid submission in this category, and hence the winner was
Hanley Weng from the University of Sydney; see Fig. 1. The layout was created by start-
ing with a drawing produced by a variation of the spring-embedder algorithm, which
was then manually modified such that the recursive symmetric structure of the graph
was emphasized.

2.2 Category B: Curved Drawings

The second graph had 15 nodes and 45 edges and was not planar. The drawing, again
in the plane, could have as many crossings as necessary but the angles of the crossings
were also taken into consideration. In addition, the drawings could use curved arcs.
There could be as many bends as needed but during judging both the number of bends
and smoothness of the bends were taken into consideration and weighed against the
gain in overall angular resolution.

Graph Drawing Contest Report 451

(a) poly-arc Lombardi (b) toroidal 2-Lombardi

Fig. 2. First place, Angular Resolution, Category B

We received 5 submissions (8 drawings), from which two submissions with poly-
arc Lombardi drawings [1,2] and perfect angular resolution looked quite the same (see
Fig. 2(a)), but one of these submissions also contained a different visualization on the
torus shown in Fig. 2(b). Though this is not really a drawing in the plane, it perfectly
reflects the structure of the graph. Therefore, this pair of drawings by Maarten Löffler,
David Eppstein, Michael Goodrich (UC Irvine) and Stephen Kobourov (University of
Arizona) was judged to be the winning submission in this category.

3 Composers Graph

The composers graph was a large directed graph, where the nodes represented Wikipedia
articles about composers, and the edges represented links between these articles. The
graph had 3405 nodes and 13832 edges.

We received 5 submissions for the composers graph, including several high-quality
submissions with movies, graph analysis, and specialized tools. The winning submis-
sion came from Remus Zelina, Sebastian Bota, Siebren Houtman, and Robert Ban
(Meurs, Romania). The submission was comprised of an A0 poster of the graph’s largest
connected component (see Fig. 3) with 2743 nodes and 13769 edges, a dynamic web
page that allowed one to browse and analyze the graph, as well as a movie showing
the dynamic web page in action. For many of the nodes, photos of the corresponding
composers were added. The underlying graph layout was mainly computed using force-
directed techniques. The layout revealed several modules (shown in different colors1)
corresponding to specific eras like Renaissance and Baroque, or genres like Russian
composers and troubadours.

1 This is only easily visible on the electronic version.

452 C.A. Duncan et al.

Fig. 3. First place, Composers Graph

Graph Drawing Contest Report 453

4 Graph Drawing Challenge

The online challenge, which took place during the conference, dealt with minimizing
the longest edge in a planar orthogonal grid drawing. The longest edge can be a bottle-
neck for many applications; hence, minimizing its length is important. The challenge
graphs were planar and had at most four incident edges per node. The task was to place
nodes and edge bends on integer coordinates so that the edge routing is orthogonal and
the layout contains no crossings or overlaps. At the start of the one-hour on-site com-
petition, the contestants were given six graphs with an initial legal planar layout with
very long edges. The goal was to rearrange the layout to reduce the length of the longest
edge. Only the length of the longest edge was judged; other aesthetic criteria, such as
the number of edge bends or the area, were ignored.

The contestants could choose to participate in one of two categories: automatic and
manual. To determine the winner in each category, the scores of each graph, determined
by dividing the longest edge length of the best submission in this category by the longest
edge length of the current submission, were summed up. If no legal drawing of a graph
was submitted (or a drawing worse than the initial solution), the score of the initial
solution was used.

In the automatic category, contestants received graphs ranging in size from 59 nodes
/ 85 edges to 1532 nodes / 2296 edges and were allowed to use their own sophisticated
software tools with specialized algorithms. Manually fine-tuning the automatically ob-
tained solutions was allowed. Six teams were rated in this category (2 manual teams
accidentally solved the automatic graphs and were rated in both categories). The two
top-scoring teams used the OGDF [3] graph drawing library for obtaining an initial so-
lution using flow-based bend minimization and compaction techniques combined with
their own heuristics to optimize the solution. With a score of 5.05, the winner in the
automatic category was Sergey Pupyrev from Ural State University.

The 14 manual teams solved the problems by hand using IBM’s Simple Graph Edit-
ing Tool provided by the committee. They received graphs ranging in size from 9 nodes
/ 17 edges to 150 nodes / 186 edges. Three of the larger input graphs were also in the au-
tomatic category, and the best manual teams scored similar (for two graphs) and better
(for one graph) than the automatic teams. With a score of 3.82, the winner in the manual
category was the team of Maarten Löffler from UC Irvine and Martin Nöllenburg from
Karlsruhe Institute of Technology who found the best results for three of the six contest
graphs.

Fig. 4 shows the initial layout and the best automatically obtained result of one chal-
lenge graph with 120 nodes and 146 edges. Fig. 5 shows the challenge graph used in
both categories for which the manual teams found a better solution than the automatic
teams (longest edge length one compared to two obtained by the automatic teams). Fi-
nally, Fig. 6 shows the only graph for which the judges know a better solution than
the best solution found during the contest (6 compared to 11 found by the team of Till
Bruckdorfer and Philip Effinger from Tübingen University). This graph was only used
in the manual category.

454 C.A. Duncan et al.

(a) initial (b) best automatic

Fig. 4. Challenge graph with 59 nodes and 85 edges: (a) initial layout (longest edge length: 52)
and (b) best automatic result obtained by Sergey Pupyrev (longest edge length: 6)

(a) best automatic (b) best manual

Fig. 5. Challenge graph with 110 nodes and 118 edges: (a) best automatic result by team Grone-
mann, Mallach, and Schmidt (longest edge length: 2) and (b) best manual result by team Löffler
and Nöllenburg (longest edge length: 1)

Graph Drawing Contest Report 455

(a) best found (b) best known

Fig. 6. Challenge graph with 118 nodes and 144 edges: (a) best solution found by team Bruck-
dorfer and Effinger with longest edge length 11 and (b) best known result with longest edge
length 6

Acknowledgments. The contest committee would like to thank the generous spon-
sors of the symposium and all the contestants for their participation. Further details
including submitted videos and winning images can be found at the contest website,
http://www.graphdrawing.de/contest2011/results.html.

References

1. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Löffler, M.: Planar and poly-arc
Lombardi drawings. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034,
pp. 308–319. Springer, Heidelberg (2011)

2. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi
Drawings of Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp.
195–207. Springer, Heidelberg (2011)

3. OGDF. The open graph drawing framework, http://www.ogdf.net

http://www.graphdrawing.de/contest2011/results.html
http://www.ogdf.net

Author Index

Aichholzer, Oswin 296
Aigner, Wolfgang 296
Alam, Muhammad Jawaherul 26
Alamdari, Soroush 14
Angelini, Patrizio 75, 379
Argyriou, Evmorfia N. 433
Auer, Christopher 415
Aurenhammer, Franz 296

Bachmaier, Christian 415, 435
Bannister, Michael J. 367
Bekos, Michael A. 433
Bereg, Sergey 136
Biedl, Therese 14, 26
Binucci, Carla 427
Bota, Sebastian 447
Brada, Premek 443
Brandenburg, Franz Josef 415, 435
Brandes, Ulrik 99
Brunel, Edith 179
Buchin, Kevin 445
Burch, Michael 226

Cano, Javier 290
Čech Dobiášová, Kateřina 296
Chernobelskiy, Roman 320
Chimani, Markus 87
Cornelsen, Sabine 111
Cunningham, Kathryn I. 320

Di Battista, Giuseppe 75, 191
Didimo, Walter 379, 427
Di Giacomo, Emilio 52
Dujmovic, Vida 64
Dumas, Maxime 203
Duncan, Christian A. 308, 449
Durocher, Stephane 39

Eades, Peter 1, 123, 148
Effinger, Philip 435
Eppstein, David 2, 308, 367
Evans, William 64, 166

Felsner, Stefan 26
Fink, Martin 441

Frati, Fabrizio 52, 391
Fulek, Radoslav 52, 343, 391

Gansner, Emden R. 166
Gemsa, Andreas 179
Gleißner, Andreas 415
Goodrich, Michael T. 308, 320
Greffard, Nicolas 215
Grilli, Luca 52
Gutwenger, Carsten 87, 435, 449

Halupczok, Immanuel 154
Hattink, Bas 447
Haunert, Jan-Henrik 441
Haverkort, Herman 445
Holroyd, Alexander E. 136
Holy, Lukas 443
Hong, Seok-Hee 1, 123
Houtman, Siebren 447

Jüttler, Bert 296

Karrenbauer, Andreas 111
Katajainen, Jyrki 435
Kaufmann, Michael 26, 75, 166, 403,

433
Klein, Karsten 435
Kobourov, Stephen G. 26, 308, 320, 379
Konevtsova, Natalia 226
Kornaropoulos, Evgenios M. 242
Krug, Marcus 52, 179
Kuntz, Pascale 215

Lazard, Sylvain 64
Lenhart, William 64
Liotta, Giuseppe 64, 148, 166
Löffler, Maarten 308

Mader, Martin 99
McGuffin, Michael J. 203
Mchedlidze, Tamara 75, 379, 403, 441
Meijer, Henk 166
Milea, Tal 445
Misue, Kazuo 1
Mondal, Debajyoti 39
Mukkamala, Padmini 254

458 Author Index

Nachmanson, Lev 136, 449
Nagele, Wolfgang 191
Nguyen, Quan 123
Nishat, Rahnuma Islam 39

Pach, János 278, 332
Pálvölgyi, Dömötör 254
Pelsmajer, Michael J. 343
Picarougne, Fabien 215
Pupyrev, Sergey 136

Rahman, Md. Saidur 39
Rappaport, David 64
Robert, Jean-Marc 203
Roselli, Vincenzo 75, 379
Rote, Günter 238, 296
Ruiz-Vargas, Andres J. 391
Rutter, Ignaz 179

Sander, Georg 449
Sarkar, Rik 355
Schaefer, Marcus 343
Schrijvers, Okke 445
Schulz, André 154
Simons, Joseph A. 2
Spillner, Andreas 166
Spoerhase, Joachim 441

Spönemann, Miro 435
Squarcella, Claudio 75, 191
Štefankovič, Daniel 343
Stegmaier, Matthias 435
Suk, Andrew 266
Symvonis, Antonios 379, 403, 433

Tollis, Ioannis G. 242
Tóth, Csaba D. 290
Tóth, Géza 278
Trott, Lowell 320

Urrutia, Jorge 290

van Assen, Jaap Jan 447
van Wijk, Jarke J. 86
Vehlow, Corinna 226

Wagner, Dorothea 179
Weiskopf, Daniel 226
Whitesides, Sue 39
Willig, Marie-Claire 203
Wismath, Stephen 64, 379
Wolff, Alexander 441
Wybrow, Michael 435

Zelina, Remus 447

	Title Page
	Preface
	Organization
	Table of Contents
	Obituary
	Kozo Sugiyama 1945 - 2011

	Papers
	Confluent Hasse Diagrams
	Introduction
	Preliminaries
	Posets and Lattices
	Hasse Diagrams and Upward Planarity
	Lattice Completion of a Poset
	Confluent Drawing

	The Algorithm
	Algorithm Correctness and Minimality
	Confluent Drawings of Series-Parallel Posets
	Conclusions
	References

	Planar Open Rectangle-of-Influence Drawings with Non-aligned Frames
	Background
	Preliminaries
	Results
	Conclusion
	References

	Proportional Contact Representations of Planar Graphs
	Introduction
	Related Work
	Our Results

	Preliminaries
	Proportional Point-Contact Representations of Planar Graphs
	Subclasses of Planar Graphs with Convex-Shape Representations
	2-Segment Graphs and Partial 2-Trees
	Maximal Outerplanar Graphs

	Conclusion and Open Problems
	References

	Embedding Plane 3-Trees in R2 and R3
	Introduction
	Preliminaries
	Point-Set Embeddings of Plane 3-Trees in R2
	Tetrahedral Embeddings of Tetrahedral 4-Trees
	Point-Set Embeddings of Plane 3-Trees in R3
	Conclusion
	References

	Orthogeodesic Point-Set Embedding of Trees
	Introduction
	Planar Orthogeodesic Pointset Embeddings
	Planar L-Shaped Orthogeodesic Pointset Embeddings
	Non-Planar L-Shaped Orthogeodesic Point-Set Embeddings
	Conclusions
	References

	On Point-Sets That Support Planar Graphs
	Introduction
	Preliminaries
	Universal Point-Sets for Drawing Planar Graphs with Bends
	A Set of $$(n) Points for Drawing Planar Graphs with Three Bends Per Edge
	A Set of $O(nlogn)$ Points for Drawing Planar Graphs with 2 Bends Per Edge
	A Set of $O(n2/logn)$ Points for Drawing Planar Graphs with 1 Bend Per Edge

	Biconvex Point-Sets and Series-Parallel Graphs
	Conclusions and Open Problems
	References

	Small Point Sets for Simply-Nested Planar Graphs
	Introduction
	A Universal Point Set for Simply-Nested Planar Graphs with n_i Vertices on Level i
	Construction of the Point Set
	Embedding a Simply-Nested Planar Graph on Point Set P

	A Universal Point Set for Simply-Nested Planar Graphs
	A Simple Point Set of Size $O(n3/2) $
	Further Refinement

	Concluding Remarks
	References

	Graph Visualization
	Advances in the Planarization Method: Effective Multiple Edge Insertions
	Introduction
	Planarization Approach
	Engineering
	Experiments
	References

	A Quantitative Comparison of Stress-Minimization Approaches for Offline Dynamic Graph Drawing
	Introduction
	Offline Dynamic Layout Approaches
	Aggregation
	Anchoring
	Linking

	Hypotheses
	Experiments
	Data
	Measurements
	Results

	Conclusion
	References

	Accelerated Bend Minimization
	Introduction
	Bend Minimization and Flow Networks
	The Primal Dual Algorithm
	A Recursive Approach
	References

	TGI-EB: A New Framework for Edge Bundling Integrating Topology, Geometry and Importance
	Introduction
	Related Work
	Integrated Framework for Edge Bundling
	New Edge Compatibility Measures
	The Framework
	Centrality Based Edge Bundling (CenEB)
	Topology Based Edge Bundling (TopoEB)
	Radial Bundling (RadEB)
	Orthogonal Edge Bundling (OrthEB)
	Time Complexity and Implementation

	Experimental Results
	Social Networks
	Clustered Graphs
	Biological Networks
	Geographic Networks

	Future Work
	References

	Edge Routing with Ordered Bundles
	Introduction
	Related Work
	Algorithm
	Edge Routing
	Local Adjustments and Spline Routing
	Ordering Paths

	Experimental Results
	Conclusions and Future Work
	References

	Right Angle Crossing Graphs and 1-Planarity
	Introduction
	Red-Blue-Green Coloring of Maximally Dense RAC Graphs
	Proof of Theorem 1
	Open Problems
	References

	Pinning Balloons with Perfect Angles and Optimal Area
	Introduction
	The Greedy Strategy
	Splitting the Set of Spokes
	The Final Layer
	Quality of the Greedy Strategy

	Drawing Unordered Trees with Perfect Angles
	Concluding Remarks
	References

	Approximate Proximity Drawings
	Introduction and Overview
	Problem and Results
	Related Work

	Approximate Gabriel Drawings
	(0,2)-Gabriel Drawings
	Approximate -Drawings and Delaunay Drawings
	(ε1, ε2)-β-Drawings
	(ε1, ε2)--Drawings

	Conclusions and Open Problems
	References

	Generalizing Geometric Graphs
	Introduction
	Generalizing the Vertex Set without Vertex-Clutter
	Complexity
	Approximating the Maximum Size of a Generalization

	Minimizing Edge-Clutter
	Vertex-Edge-Clutter
	Conclusion and Open Problems
	References

	How to Visualize the K-Root Name Server (Demo)
	Introduction
	Selecting a Metaphor
	The Algorithm
	Technical Aspects and User Feedback
	State of the Art
	Conclusions and Future Work
	References

	Optimizing a Radial Layout of Bipartite Graphs for a Tool Visualizing Security Alerts
	Introduction
	Problem Statement
	Related Work
	Assignment of Concentric Circles to Interior Points
	Optimally Connecting an Exterior Point to Interior Ones
	Connecting Multiple Exterior Points to Multiple Interior Points
	Heuristic I: The Minimum Perfect Matching
	Heuristic II: The Anchor Algorithm
	Empirical Comparison

	Conclusions
	References

	Visual Community Detection: An Evaluation of 2D, 3D Perspective and 3D Stereoscopic Displays
	Introduction
	Stereoscopic Perception
	Experimental Design
	Apparatus
	Graph Database
	Participants
	Experimental Procedure

	Results
	Quality of Community Detection
	Response Time
	Participant Perception

	Conclusion
	References

	Evaluating Partially Drawn Links for Directed Graph Edges
	Introduction
	Related Work
	Graph Generation and Layout
	Graph Model
	Graph Layout
	Edge Representation
	Link Length
	Graph Size

	User Experiment
	Research Questions
	Design
	Participants
	Study Procedure
	Tasks

	Results
	Conclusion and Future Work
	References

	Realizing Planar Graphs as Convex Polytopes
	Introduction
	Inductive Methods
	Tutte Embeddings
	Stacked Polytopes

	Nonlinear Methods
	Lower Bounds
	References

	Overloaded Orthogonal Drawings
	Introduction
	Overloaded Orthogonal Framework
	Compaction

	Clarity and Readability of the Model
	Directed Acyclic Graphs
	Other Graphs
	Conclusion and Open Problems
	References

	Drawing Cubic Graphs with the Four Basic Slopes
	Introduction
	Proof of Theorem 1
	Definitions and Subcubic Theorem
	Preliminaries
	Proof

	Which Four Slopes? and Other Concluding Questions
	References

	k-Quasi-Planar Graphs
	Introduction
	Generalized Davenport-Schinzel Sequences
	Simple Topological Graphs
	x-Monotone
	References

	Monotone Crossing Number
	Introduction
	Proof of Theorem 1
	Proof of Theorem 2
	Concluding Remarks
	References

	Upper Bound Constructions for Untangling Planar Geometric Graphs
	Introduction
	Preliminaries
	Upper Bound Constructions
	(a,b,c)-Triangulations
	Conclusion
	References

	Triangulations with Circular Arcs
	Introduction
	Angle Optimization
	Graph-Theoretic Approach
	Flipping in Arc Triangles
	Special Arc Triangles
	Graph Drawing
	Open Questions
	References

	Planar and Poly-arc Lombardi Drawings
	Introduction
	k-Lombardi Drawings
	Non-Lombardi Graphs
	Smooth 2-Lombardi Drawings

	Planar k-Lombardi Drawings
	A Planar 3-Tree with No Planar Lombardi Drawing
	Smooth Planar 2-Lombardi Drawings of Planar Max-Degree-3 Graphs
	Pointed Planar 2-Lombardi Drawings of Planar Graphs
	Smooth Planar 3-Lombardi Drawings of Planar Graphs

	Conclusions
	References

	Force-Directed Lombardi-Style Graph Drawing
	Introduction
	Related Work
	Our Results

	A Tangent-Based Lombardi Spring Embedder Formulation
	A Tangent-Based Near-Lombardi Spring Embedder
	Lombardi Metric

	A Dummy-Vertex Approach to Lombardi-Style Drawings
	A Comparative Analysis
	Conclusion and Future Work
	References

	Every Graph Admits an Unambiguous Bold Drawing
	Introduction
	Terminology and Two Preliminary Lemmas
	The Main Lemma
	The Proof of Theorem 2
	References

	Adjacent Crossings Do Matter
	Introduction
	Separating Monotone Crossing Numbers
	From Weighted Edges to Unweighted Edges

	Adjacent Crossings Are Not Trivial
	References

	Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane
	Introduction
	Related Work
	Our Contributions

	Basics and Notations
	Delaunay Embedding of Trees
	Delaunay Embedding of Metric Trees
	Delaunay Embedding with (1+) Distortion: Hyperbolic Spanner
	Conclusion
	References

	Hardness of Approximate Compaction for Nonplanar Orthogonal Graph Drawings
	Introduction
	Variations of the Compaction Problem
	New Results

	Preliminaries
	Orthogonal Drawing
	Graph Coloring and Inapproximability
	Notation

	Hardness of Row-by-Row Compaction
	Hardness of Vertex-by-Vertex Compaction
	Hardness of Vertex-by-Vertex Free Compaction
	Hardness of Three-Dimensional Compaction
	Approximation Algorithm
	Fixed-Parameter Tractability of Vertex-by-Vertex Vertical Compaction
	Conclusions
	References

	Monotone Drawings of Graphs with Fixed Embedding
	Introduction
	Preliminaries
	Monotone Drawings with Bends of Embedded Planar Graphs
	Monotone Drawings with Straight-Line Edges
	Outerplane Graphs
	Biconnected Graphs

	Conclusions and Open Problems
	References

	On the Page Number of Upward Planar Directed Acyclic Graphs
	Introduction
	Definitions
	Page Number and Connectivity
	Page Number and Diameter
	Page Number and Degree
	Conclusions
	References

	Upward Point Set Embeddability for Convex Point Sets Is in P
	Introduction
	Notation - Preliminaries
	Some known Results on UPSE of Rooted Directed Trees

	A Restricted UPSE Problem for Rooted Directed Trees
	The Testing Algorithm for Directed Trees
	Conclusions
	References

	Classification of Planar Upward Embedding
	Introduction
	Upward Embeddings with Vector Fields on Surfaces
	Classification of Upward Drawings
	Complexity
	References

	Upward Planarity Testing of Embedded Mixed Graphs
	Introduction
	Definitions and Notation
	An ILP Model
	Experimental Study
	Conclusions and Open Problems
	References

	Posters
	Combining Problems on RAC Drawings and Simultaneous Graph Drawings
	Introduction and Problem Definition
	Results
	References

	The Open Graph Archive: A Community-Driven Effort
	Introduction
	User Needs and Requirements
	A Working Prototype: GraphArchive
	Outlook
	References

	Drawing Graphs with Vertices at Specified Positions and Crossings at Large Angles
	Introduction
	Results
	References

	Viewport for Component Diagrams
	Introduction
	Viewport for Component Diagrams
	Future Work
	References

	Shortest-Paths Preserving Metro Maps
	References

	Challenger, a New Way to Visualize Data
	Introduction
	Implementation
	References

	Graph Drawing Contest
	Graph Drawing Contest Report
	Introduction
	Angular Resolution
	Category A: Straight-Line Planar
	Category B: Curved Drawings

	Composers Graph
	Graph Drawing Challenge
	References

	Author Index

