
On the Complexity of

the Regenerator Cost Problem
in General Networks with Traffic Grooming�

Michele Flammini1, Gianpiero Monaco1, Luca Moscardelli2,
Mordechai Shalom3, and Shmuel Zaks4

1 Department of Computer Science, University of L’Aquila, L’Aquila, Italy
{flammini,gianpiero.monaco}@di.univaq.it

2 Department of Science, University of Chieti-Pescara, Pescara, Italy
moscardelli@sci.unich.it

3 Tel Hai Academic College, Upper Galilee, 12210, Israel
cmshalom@telhai.ac.il

4 Department of Computer Science, Technion, Haifa, Israel
zaks@cs.technion.ac.il

Abstract. We consider the problem of minimizing the number of re-
generators in optical networks with traffic grooming. In this problem we
are given a network with an underlying topology of a graph G, a set of
requests that correspond to paths in G and two positive integers g and
d. There is a need to put a regenerator every d edges of every path, be-
cause of a degradation in the quality of the signal. Each regenerator can
be shared by at most g paths, g being the grooming factor. On the one
hand, we show that even in the case of d = 1 the problem is APX−hard,
i.e. a polynomial time approximation scheme for it does not exist (unless
P = NP). On the other hand, we solve such a problem for general G
and any d and g, by providing an O(log g)-approximation algorithm and
thus extending previous results holding only for specific topologies and
specific values of d or g.

Keywords: Optical Networks, Wavelength Division Multiplexing
(WDM), Regenerators, Traffic Grooming, Approximation Algorithms
and Complexity.

1 Introduction

In modern optical networks, high-speed signals are sent through optical fibers
using WDM (Wavelength Division Multiplexing) technology. The decrease in
the energy of the signal with the traveled distance necessitates optical ampli-
fication at every (almost) fixed distance. However this amplification introduces

� This work was partially supported by the Israel Science Foundation grant No.
1249/08, and by the PRIN 2008 research project COGENT (COmputational and
GamE-theoretic aspects of uncoordinated NeTworks), funded by the Italian Min-
istry of University and Research.

A. Fernández Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 96–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Complexity of the Regenerator Cost Problem 97

noise into the signal, so that it has to be regenerated after a certain number
of amplifications. The signal is regenerated by first using a ROADM (Recon-
figurable Optical Add-Drop Multiplexer) to extract a set of wavelengths from
the optical fiber. Then, for each extracted wavelength, an optical regenerator
regenerates the signal carried by that wavelength. That is, at a given optical
node, one needs one ROADM if any regeneration will take place, and as one
regenerators per wavelength to be regenerated.

The dominant part of the regeneration cost is the cost of the regenerators, be-
cause they are (a) expensive and (b) needed one per wavelength. Therefore the
total number of regenerators is an important cost parameter to be minimized [15].

A logical path formed by a signal traveling from its source to its destination
using a unique wavelength is termed a lightpath. Let d be the maximum number
of hops a lightpath can make without meeting a regenerator. Then an optimal
solution can be found by simply placing one regenerator for every d consecutive
vertices of each lightpath �. However the problem becomes harder when the
traffic grooming enters the picture.

Traffic grooming: The network usually supports traffic that is at rates lower
than the full wavelength capacity. Therefore the network operator puts together
(= grooms) low-capacity connection requests into high capacity lightpaths. In
graph-theoretic terms, we associate a path in the graph with each connection,
and the problem can viewed as assigning wavelengths to these paths so that at
most g of them using the same wavelength (g being the grooming factor) can
share one edge. Thus, all paths (i.e. connections) that get the same color (i.e.,
the same wavelength) and form a connected subgraph correspond to grooming
of these connections into one lightpath. The optical signal is routed in the inter-
mediate nodes, based on wavelength only, therefore connection requests assigned
the same wavelength can not split from each other, i.e. they might not induce a
graph with a node with degree 3 or higher. In other words a set of path assigned
the same wavelength induces a graph with maximum degree two.

1.1 Related Work

Various variants of regenerator placement problems were studied in [3,8,16,19].
Most of these results concentrate in heuristics and simulations and do not con-
sider traffic grooming.

In the literature, two different scenarios have been studied, depending on
whether or not it is allowed to split the paths in order, for instance, to reduce the
number of used wavelengths or the cost of hardware components. In particular,
[5,7] assume that no splitting is allowed, while [6] allows to split paths and [14]
considers both scenarios. In this work, we focus on the case in which splitting
lightpaths is not allowed.

In [9] theoretical results (upper bounds and lower bounds) are presented for a
family of related problems. The objective in that work is to minimize the number
of regenerator locations (as opposed to the total number of regenerators), and
traffic grooming is not considered. On the other hand, [15] consider the same
cost measure as this work but still does not consider traffic grooming.

98 M. Flammini et al.

The problem we study is shown to be NP-hard in other contexts such as fiber
minimization in [18] and its NP-hardness is also implied by the proof of a similar
result in [11] holding even for path topology and g = 2.

When the underlying graph is a path the problem is equivalent to a machine
scheduling problem studied in [10], where several approximation algorithms are
presented for it and for some of its special cases. In [12] and [13] these results have
been extended to the tree topology, and also an algorithm for general networks
has been provided. Unfortunately, the worst case approximation ratio of that
algorithm is very high for general topologies, namely as the order of the number
of lightpaths.

1.2 Our Contribution

In this work we consider the problem of minimizing the number of regenerators
in optical networks with traffic grooming, extending the results in [10,12,13] for
general settings.

We first show that even in the case of d = 1, G being a bipartite graph, the
problem is APX − hard for any g ≥ 2, i.e. a polynomial time approximation
scheme (PTAS) for it does not exist (unless P = NP). We then provide an
O(log g)-approximation algorithm for the most general version of this problem
in which general topologies are admitted and both d and g can be arbitrary.

The paper is organized as follows. In Section 2 we define our problem. On
the one hand, in Section 3 we show that our problem is APX-Hard even in
the case of d = 1, G being a bipartite graph and g ≥ 2. On the other hand,
in Section 4 we provide a polynomial time approximation algorithm solving the
problem for general topologies and any value of g and d, with an approximation
ratio logarithmic in g. We conclude by suggesting open research directions in
Section 5.

2 Definitions and Problem Statement

We consider instances (G,P , g, d) where G = (V, E) is a graph modeling the
optical network, P is a set of simple paths in G, g ∈ N

+ is the grooming factor
and d is the maximum number of hops a lightpath can travel without meeting a
regenerator.

A coloring (or wavelength assignment) of (G,P) is a function w : P �→ N. For
a coloring w and color λ, Pw

λ denotes the subset of paths from P colored λ by

w, i.e. Pw
λ

def
= {P ∈ P|w(P) = λ}. When there is no ambiguity on the coloring

w under consideration, we omit the superscript w and use Pλ.
For a node v, Pv denotes the subset of paths of P having v as an intermediate

node, and similarly for an edge e, Pe denotes the subset of paths of P using
the edge e. For every e ∈ E we define load(P , e)

def
= |Pe| and load(P)

def
=

maxe∈E load(P , e).
A set of paths is called a no-split instance or shortly an NSI if the union of

its paths (as sets of edges) induces a graph of maximum degree at most 2. In

On the Complexity of the Regenerator Cost Problem 99

particular, if also the minimum degree of such a graph is 2 (i.e., such a graph
is a vertex disjoint union of rings), we call every connected component of it a
ring-NSI, otherwise we call every connected component a path-NSI.

In this work we assume (as in [5,7,14]) that splitting of paths is not allowed,
i.e. paths using the same wavelength and going through the same edge of the
network can be routed only to another unique edge. Moreover, since we do not
consider bounds on the number of colors and our goal is independent of it,
without loss of generality we assume that, in any solution, paths belonging to
different NSIs are assigned different colors, and therefore every set of paths with
the same color has to be an NSI.

A valid coloring (or wavelength assignment) w of (G,P , g, d) is a coloring of
P such that for every λ, Pw

λ satisfies the following two conditions:

– The load condition: For any edge e at most g paths using e are colored with
λ, i.e. load(Pw

λ) ≤ g.
– The no-splitting condition: Pw

λ is an NSI.

Given a valid coloring w of (G,P , g, d), a regenerator assignment is a boolean
function rw : V × N �→ {0, 1}; in particular, rw(u, λ) = 1 if and only if a
regenerator operating at wavelength λ is placed at node u.

We are now ready to give a formal definition of our problem.

Total Regenerators with Grooming (Trg)

Input: A quadruple (G,P , g, d), where G = (V, E) is a graph, P =
{P1, P2, ..., Pn} is a set of simple paths in G, g is an integer, namely the groom-
ing factor, and d is the maximum number of hops a lightpath can go through
without needing a regenerator.
Output: A valid coloring w : P �→ N and a regenerator assignment rw such
that, rw satisfies the constraint that every lightpath has a regenerator every
at most d hops (we will refer to this condition as the regeneration condition
through this work).
Objective: The cost of a solution is given by the total number of regenerators

REGw def
=

∑
λ

∑
u∈V rw(u, λ). The goal is to minimize the total number of

regenerators REGw.

OPT (G,P , g, d) denotes the cost of any optimal coloring.

3 Hardness of Approximation

In this section we show that the problem Trg is APX-hard even if restricted
to instances (G,P , g, 1), with g at least 2.

Notice that, if d = 1, the coloring w univocally identifies the regenerator
assignment rw; in fact, given an NSI N colored λ by w, a regenerator is needed

100 M. Flammini et al.

at each node being an internal node of some path in N , i.e., rw(u, λ) = 1 if and
only if u is an internal node of some path in N .

We first define a problem that will be used in our proof.

B-Bounded Edge Partition into Triangles and Minimum Paths

(MEPTP-B):

Input: A graph G = (V, E) with Δ(G) ≤ B, where Δ(G) is the maximum
degree of a node of G.
Output: A partition of E into connected graphs with at most 3 edges.
Measure of a solution: The number of paths of the returned partition.
Objective: Minimizing the measure of the returned solution.

By exploiting a reduction similar to the one used in [1] we will prove that this
problem is APX-Hard. Finally we will reduce this problem to the (G,P , g, 1)
problem with g ≥ 2 in order to show the APX-Hardness of the latter.

Definition 1. Given a tripartite graph G = (V0 ∪ V1 ∪ V2, E) we can obtain a
directed graph, by directing the edges from nodes of Vi nodes of V(i+1) mod 3. We
will say that G is directed Eulerian if the directed graph obtained in this way is
directed Eulerian.

Lemma 1. The MEPTP-B problem is APX-Hard for any fixed B ≥ 12 even
when the graph is directed Eulerian tripartite and the optimum is at least |E| /10.

Theorem 1. The set of (G,P , g, 1) instances of the Trg problem is APX-hard
for any g ≥ 2 and even when G is a bipartite graph.

Proof. We will give an approximation ratio preserving reduction from the
MEPTP-B problem in graphs satisfying the conditions of Lemma 1 to the
(G,P , g, 1) instances of Trg, with g ≥ 2.

Let G′ = (V ′
0 ∪ V ′

1 ∪ V ′
2 , E′) be an instance of MEPTP-B. We build an

instance (G = (V, E),P , g, 1) of our problem as follows (see Figure 1): For each
i ∈ {1, 2, 3} and for every node v ∈ V ′

i , G contains a path with three nodes
v−, v, v+ and two edges (v−, v), (v, v+). G contains 3 special nodes u01, u12, u20.
Node uij is connected to all the v+ nodes corresponding to any v ∈ V ′

i and to
all the v− nodes corresponding to any v ∈ V ′

j .
For each edge (v, w) ∈ E′ where v ∈ V ′

i and w ∈ V ′
j (j ≡ (i + 1) mod 3), P

contains the path (v−, v, v+, uij , w
−, w, w+).

The constructed instance has the following properties:

– Any two distinct edges of G′ both connecting nodes from V ′
i and V ′

j corre-
spond to two paths in P that induce a graph with degree 3 or 4 at node uij .
Therefore these two paths cannot be part of an NSI. We conclude an NSI
can contain at most 3 paths, i.e., one corresponding to an edge of G′ from
V ′

0 to V ′
1 , another one corresponding to an edge of G′ from V ′

1 to V ′
2 , and

another one corresponding to an edge of G′ from V ′
2 to V ′

0 .
– The two paths corresponding to any pair of adjacent edges in G′ are compat-

ible (i.e., form together an NSI) and have one intermediate node in common.

On the Complexity of the Regenerator Cost Problem 101

V0

V1

V2

u01
u20

u12

x

x+x-

y
y+ y-

z
z+ z-

Fig. 1. The bipartite graph in the proof of Theorem 1

We conclude that the edges in G′ corresponding to the paths of an NSI form
either a triangle, or a path with 1, 2 or 3 edges, and conversely, every such
subgraph of G′ corresponds to an NSI. Let T be the number of NSIs correspond-
ing to triangles of G′, and lk be the number of NSIs corresponding to paths
of length k of G′ for k ∈ {1, 2, 3}. Note that each path of P has 5 intermedi-
ate nodes. Therefore the number Reg of regenerators used by such a solution
is Reg = 5 |E′| − 3T − 2l3 − l2. As G′ is directed Eulerian tripartite, for any
T there is a solution with l2 = l1 = 0, with cost Reg = 5 |E′| − 3T − 2l3 =
5 |E′| − (3T + 2l3) = 5 |E′| − (|E′| − l3) = 4 |E′| + l3. Therefore the minimum
number of regenerators is obtained at the optimum of the MEPTP-B instance.
Let Reg∗ be the optimum of instance (G,P , g, 1), and consider a ρ-approximate
solution of it with Reg = ρ ·Reg∗. Moreover, let l∗k, for k ∈ {1, 2, 3}, be the num-
ber of paths of length k in an optimal solution of the corresponding instance of
the MEPTP-B problem. Then

l3 = Reg − 4 |E′| = ρ · Reg∗ − 4 |E′| = ρ · (l∗3 + 4 |E′|) − 4 |E′|
= ρ · l∗3 + 4(ρ − 1) |E′| ≤ ρ · |l∗3| + 40(ρ− 1)l∗3 (1)
= (ρ + 40(ρ − 1))l∗3 ,

where 1 holds because by Lemma 1 we can assume that the optimum of G′ is at
least |E′|

10 .
Assume that our problem admits a PTAS. For any ε > 0 we run the PTAS

with the parameter ε′ = ε/41 to obtain a ρ = 1 + ε/41 approximated solution.

102 M. Flammini et al.

This corresponds to a solution of the MEPTP-B with l3 ≤ (1 + ε)l∗3. A con-
tradiction to the fact that MEPTP-B does not admit a PTAS unless P=NP.

�

4 Approximation Algorithm

In this section we provide an approximation algorithm for the Trg problem for
general topologies, guaranteeing an O(log g) approximation ratio in polynomial
time.

A proper set P̄ of paths, is a set of paths that constitute and independent set
with respect to inclusion. In other words no paths of P̄ is included in another.
An instance is said to be proper if its set of paths P is proper.

This section is organized as follows: We first provide an O(log g)-
approximation algorithm for the case of proper instances with d = 1. We then
extend this result to the more general case in which d = 1 but the instance is not
necessarily proper. Finally we extend the result to any value of d. Each time we
extend the previous result, we lose only a constant factor in the approximation
ratio, therefore achieving an O(log g)-approximation ratio for the general case.

We introduce some definitions that will be useful in the proofs contained in
this section. We denote by INT (P) the set of intermediate nodes, i.e. of all the

nodes not being endpoints, of a path P in G, and int(P) def= |INT (P)|. For a
set P of paths we define:

SPAN(P)
def
=

⋃

P∈P
INT (P), span(P)

def
= |SPAN(P)| , len(P)

def
=

∑

P∈P
int(P).

Notice that, if d = 1, the number of regenerators operating at wavelength λ is
span(Pw

λ); in fact, at each node being an intermediate node of some path in Pw
λ

a regenerator operating at this wavelength is needed. Moreover, when d = 1, we
have the following trivial lower bound (the grooming bound) for the cost of any
coloring w (in particular for an optimal coloring), holding because a regenerator
can be used by at most g intermediate nodes of paths: REGw ≥ len(P)

g .

4.1 Proper Instances with d = 1

In this section, we focus on the case d = 1, i.e., a regenerator is needed at
every internal node of a path, and the set of paths constitute a proper set.
In particular, we provide Algorithm 2 working for (G, P̄ , g, 1) instances, with
P̄ being a proper set of paths. It exploits the greedy set cover approximation
algorithm GreedySetCover for the minimum weight set cover problem presented
in [4]. Such an algorithm guarantees an Hk approximation ratio, where k is the
maximum cardinality of a subset in the input and Hk is the k-th harmonic
number

∑k
i=1

1
i .

On the Complexity of the Regenerator Cost Problem 103

More formally, the Set Cover problem is defined as follows:
Minimum Weighted Set Cover

Output: A subcollection SC ⊆ S of subsets covering the elements in A, i.e. such
that ∪SC = A.
Measure of a solution:

∑
S∈SC weight[S], i.e. the sum of the weights of the

selected subsets.
Objective: Minimizing the measure of the returned solution.

We present here the GreedySetCover Algorithm of [4] because we will slightly
modify it in the sequel, to improve the time complexity of our algorithm.

Algorithm 1. [4] GreedySetCover(A,S, weight)
1: SC ← ∅
2: Covered← ∅
3: while Covered �= A do
4: for i = 1 to m do
5: eff [Si]← weight[Si]

|Si\Covered|
6: end for
7: min← argminm

i=1 eff [Si]
8: SC ← SC ∪ {Smin}
9: Covered← Covered ∪ Smin

10: end while
11: return SC

Definition 2. Given a set Q of paths, and a path P ∈ Q, we say that P domi-
nates Q if ∀P ′ ∈ Q, E(P ′)∩E(P) �= ∅. A set Q of paths is said to be dominated
if there exists a path P ∈ Q that dominates Q.

We term an NSI N such that load(N) ≤ g as a g-NSI. Our algorithm is based
on the following basic lemma.

Lemma 2. Let N be a proper g-NSI. N can be covered with proper, dominated
g-NSI’s QN

0 ,QN
1 , . . ., such that

∑
i span(QN

i) ≤ 2 · span(N).

Proof. Let N̂ ⊆ N be a maximal subset of pairwise edge-disjoint paths in N .
It follows from the maximality, that every path P ∈ N edge-intersects with
at least one path of N̂ . Let N̂ = {P0, P1, . . . , P|N̂ |−1}; if N is a path-NSI we
assume without loss of generality that P0, P1, . . . are ordered from left to right,
otherwise (i.e., if N is a ring-NSI) we assume that they are ordered clockwise. In
the following the terms before and after refer to this order, right and clockwise
are used interchangeably, and when N is a ring-NSI index arithmetic is done
modulo |N̂ |.

We observe that a path P ∈ N intersects either exactly one path Pi, or
two consecutive paths Pi, Pi+1, because otherwise there would exist a path
Pj included in P , contradicting the properness of N . We partition N into
QN

0 , . . . ,QN
|N̂|−1

such that, for i = 0, . . . , |N̂ | − 1, Qi consists of the paths of

104 M. Flammini et al.

N intersecting only Pi, or both Pi and Pi+1. Clearly each QN
i is a proper g-NSI

dominated by Pi. It remains to show that the last condition in the statement of
the Lemma holds. We will show that every node v ∈ SPAN(N) is in at most
two sets SPAN(QN

i) and SPAN(QN
i+1).

Clearly, the claim holds when
∣
∣
∣N̂

∣
∣
∣ ≤ 2. Assume that

∣
∣
∣N̂

∣
∣
∣ ≥ 3 and that there is

a node v ∈ SPAN(QN
i)∩SPAN(QN

i+j) where j > 1. If v is not before the right
endpoint of Pi+1 then there is a path P ∈ QN

i whose right endpoint is not before
the right endpoint of Pi+1, thus including Pi+1, contradicting the properness of
N . If v is before the right endpoint of Pi+1, then there is a path P ∈ QN

i+j that
intersects Pi+1 contradicting the way we partitioned N . �

Algorithm 2. (G, P̄ , g, 1)
1: � Prepare the input for GreedySetCover
2: S ← ∅
3: for each Q ⊆ P̄ such that |Q| ≤ 2g − 1 do
4: if load(Q) ≤ g and Q is dominated and Q is an NSI then
5: S ← S ∪ {Q}
6: weight[Q]← span(Q)
7: end if
8: end for
9: SC ← GreedySetCover(P̄,S , weight)

10: � Eliminate inclusions
11: while there exist S, S′ ∈ SC such that S ∩ S′ �= ∅ do
12: S ← S \ S′

13: end while
14: � Assign colors to paths
15: for each Si ∈ SC do
16: for each P ∈ S do
17: w(P)← i
18: end for
19: end for
20: return w

Theorem 2. Algorithm 2 is a 2H2g−1-approximation algorithm for (G, P̄ , g, 1)
instances, where P̄ is a proper set of paths. Its running time is not polynomial
in g.

Proof. The cost of the solution is at most the cost of the set cover returned
by the greedy algorithm, because the elimination of inclusions (lines 11–13 of
Algorithm 2) can only reduce the cost of the cover.

Since the maximum cardinality of a subset in the collection S given in input
to GreedySetCover is 2g− 1 and therefore, by [4], GreedySetCover guarantees
an H2g−1 approximation ratio, in order to prove the claim, it remains to show

On the Complexity of the Regenerator Cost Problem 105

that there exists a subcollection SC ⊆ S such that
∑

S∈SC weight[S] ≤ 2 ·
OPT (G, P̄, g, 1).

Let N ∗
1 ,N ∗

2 , . . . ,N ∗
W∗ be the NSIs of an optimal solution. For each 1 ≤ i ≤

W ∗, let QN∗
i

0 , . . . ,QN∗
i

|N̂∗
i |−1

be the proper, dominated g-NSIs whose existence is

guaranteed by Lemma 2, and let SC =
{
QN∗

i
j |1 ≤ i ≤ W ∗, 0 ≤ j ≤ |N̂ ∗

i | − 1
}
.

It holds that:

∑

S∈SC
weight[S] =

∑

S∈SC
span(S) =

W∗
∑

i=1

|N̂∗
i |−1∑

j=0

span(QN∗
i

j)

≤
W∗
∑

i=1

2 · span(N ∗
i) = 2 · OPT (G, P̄, g, 1).

To conclude the proof we note that a proper, dominated g-NSI contains at most
2g−1 paths. This is because each path of such a set must use one of the extremal
edges of the dominating path, otherwise such a path either does not intersect the
dominating path, or it is included in it, both of which contradict the definition of
dominated, proper set. There can be at most g − 1 paths except the dominating
path using each extremal edge, therefore at most 2(g − 1) + 1 = 2g − 1 paths.
We thus conclude SC ⊆ S. �

Though Algorithm 2 is not polynomial in g (as it considers all subset of paths
of cardinality at most 2g−1) we are able to provide a polynomial time algorithm
preserving the same approximation ratio up to a constant factor. First of all, we
relax the greedy choice (line 7) of algorithm GreedySetCover as the following
algorithm does.

Algorithm 3. GreedySetCover2(A,S, weight, ρ)
1: SC ← ∅
2: Covered← ∅
3: while Covered �= A do
4: for i = 1 to m do
5: eff [Si]← weight[Si]

|Si\Covered|
6: end for
7: Let j such that eff [Sj] ≤ ρ ·minm

i=1 eff [Si]
8: SC ← SC ∪ {Sj}
9: Covered← Covered ∪ Sj

10: end while
11: return SC

The following lemma states a well known fundamental result on the approxi-
mation ratio guaranteed by Algorithm GreedySetCover2.

Lemma 3. Algorithm GreedySetCover2 guarantees a (ρ · Hk)-approximation
for the set cover problem, where k is the size of the biggest set in the input.

106 M. Flammini et al.

An immediate consequence of the above lemma and Theorem 2 is

Corollary 1. Algorithm 2 in which, at line 9, GreedySetCover2 is invoked with
ρ = 2 instead of GreedySetCover is a 4H2g−1-approximation algorithm for
(G, P̄ , g, 1) instances, where P̄ is a proper set of paths. Its running time is not
polynomial in g.

We are now ready to provide and analyze the following algorithm.

Algorithm 4. (G, P̄ , g, 1)
1: SC ← ∅
2: Covered← ∅
3: while Covered �= P̄ do
4: for each Qi ⊆ P̄ \Covered such that |Qi| ≤ 3 and Qi is a dominated NSI do
5: for each P ∈ P̄ \ Covered do
6: if Qi ∪ {P} is a dominated g-NSI and SPAN(Qi ∪ {P}) = SPAN(Qi)

then
7: Qi ← Qi ∪ {P}
8: end if
9: end for

10: eff [Qi]← span(Qi)
|Qi|

11: end for
12: Choose Qmin that minimizes eff [Qmin]
13: SC ← SC ∪ {Qmin}
14: Covered← Covered ∪Qmin

15: end while
16: � Assign colors to paths
17: for each Qi ∈ SC do
18: for each P ∈ Qi do
19: w(P)← i
20: end for
21: end for
22: return w

Lemma 4. Algorithm 4 is a polynomial time 4H2g−1-approximation algorithm
for (G, P̄ , g, 1) instances, with P̄ being a proper set of paths.

Proof. In this proof Algorithm 2 refers to the variant in which, at line 9, in-
stead of GreedySetCover, GreedySetCover2 is invoked with ρ = 2. Recall that
Corollary 1 holds for this variant. Actually Algorithm 4 is equivalent to Algo-
rithm 2 in the following sense: Instead of preparing an exponential number of
sets (lines 2–8 of Algorithm 2) and passing it to GreedySetCover2 (line 9 of
Algorithm 2), it actually simulates it, and each time calculates the greedy choice
of GreedySetCover2, by iterating over a polynomial number of sets.

In particular, in the following we show that the subcollection SC computed
at the end of line 15 of Algorithm 4 is one of the possible subcollections

On the Complexity of the Regenerator Cost Problem 107

that Algorithm GreedySetCover2, executed at line 9 of Algorithm 2 on input
(P̄ ,S, weight) (where S and weight are those computed at lines 2–8 of Algorithm
2), could return as output.

Let without loss of generality the subcollection SC computed at lines 1–
15 of Algorithm 4 be {B1,B2, . . .} in the order they are chosen in the while
loop. We prove that SC is a possible subcollection that can be returned by the
GreedySetCover2 algorithm invoked at line 9 of Algorithm 2. It is enough to
show that for every k, Bk is a possible outcome of iteration k of the while loop of
GreedySetCover2. In the following discussion we confine ourselves to the k-th
iteration of both algorithms and to the values of SC and Covered in the be-
ginning of this iteration. Specifically we have to show that for every D ∈ S,
eff [Bk] ≤ 2 · eff [D] that means that Bk can be chosen by GreedySetCover2

algorithm at iteration k. Consider an arbitrary set D ∈ S. Since D is a dom-
inated, proper g-NSI then |D| ≤ 2g − 1 and there exists a set of three1 paths
P1, P2, P3 ∈ D dominated by P1, such that SPAN(D) = SPAN({P1, P2, P3}).
The set {P1, P2, P3} is considered by Algorithm 4 at line 4 and therefore a cor-
responding set of paths Qi with at least min(g, |D|) paths is built, such that
SPAN(Qi) = SPAN({P1, P2, P3}). We get |Qi| ≥ |D|

2 and therefore

eff [Qi] =
SPAN({P1, P2, P3})

|Qi| =
SPAN(D)

|Qi| ≤ 2 · SPAN(D)
|D| = 2 · eff [D].

Since Bk is chosen as the subset of paths with minimum cost-effectiveness at line
12 of Algorithm 4, eff [Bk] ≤ eff [Qi] ≤ 2 · eff [D], as required.

As a final remark, notice that the algorithm puts each path in exactly one sub-
set of the subcollection SC, and therefore there is no need to eliminate inclusions
as in lines 11–13 of Algorithm 2. �

4.2 Case d = 1

In this section we deal with the case d = 1 and general instances, by reducing
the problem to the special case of proper instances.

In order to show such a reduction, we exploit Algorithm “FirstFit” of [13] and
we also need a lemma of [13].

Algorithm FirstF it colors the paths greedily by considering them one after
the other, from longest to shortest. Each path is assigned the lowest possible
color for it. FirstF it uses colors starting from λstart.

Lemma 5. [13] Let w be the coloring returned by FirstF it and W ≥ 1 be the
number of colors used by w; for any λstart < λ ≤ λstart + W , len(Pλ−1) ≥
g
3span(Pλ).

We are now ready to prove the following lemma.

1 Actually, the number of such paths could be less than three, but the proof easily
extends to these cases.

108 M. Flammini et al.

Algorithm 5. [13] FirstF it(G,P , g, λstart) where G is a path or a ring
1: Sort the paths in non-increasing order of length, i.e., int(P1) ≥ int(P2) ≥ . . . ≥

int(Pn).
2: Consider the paths by the above order and, for any path Pj , j ∈ {1, . . . , n}, let

w(Pj) be the first possible color λ ≥ λstart that will not violate the load condition.
Namely, find the minimum value λ ≥ λstart such that, for every edge e of Pj ,
load(Pλ, e) ≤ g − 1 and set w(Pj)← λ.

3: return w

Lemma 6. Given a polynomial time ρ-approximation algorithm A for
(G, P̄ , g, 1) such that P̄ is a proper set of paths, it is possible to obtain a polyno-
mial time (2ρ + 3)-approximation algorithm A′ for (G,P , g, 1), where P is not
necessarily proper.

Proof. As a first step we calculate a maximal subset P̄ ⊆ P of proper paths, by
picking up all the paths P ∈ P and adding P to P̄ as long as P is not included in
any other path of P̄ . Clearly, P̄ is proper and every path P ∈ P \P̄ is included in
a path of P̄ . Consider Algorithm 6 executed on input ((G,P = P ′ ∪ P̄ , g, 1), w̄),
where w̄ = A(G, P̄ , g, 1). For any 1 ≤ λ ≤ W̄ , let firstλ and lastλ be the
minimum and the maximum color used by wλ, respectively. By Lemma 5, we
obtain

lastλ∑

λ′=firstλ+1

span(Pλ′) =
lastλ−1∑

λ′=firstλ

span(Pλ′+1)

≤ 3
g

lastλ−1∑

λ′=firstλ

len(Pλ′) <
3
g
len(P ′

λ). (2)

Moreover, Algorithm 6 guarantees that span(Pfirstλ
) ≤ span(N̄λ), because all

the paths in Pfirstλ
are included in some path of N̄λ.

The number of regenerators used by the coloring w returned by Algorithm 6
is

W̄∑

λ=1

span(N̄λ) +
W̄∑

λ=1

lastλ∑

λ′=firstλ

span(Pλ′)

=
W̄∑

λ=1

span(N̄λ) +
W̄∑

λ=1

⎛

⎝span(Pfirstλ
) +

lastλ∑

λ′=firstλ+1

span(Pλ′)

⎞

⎠

≤
W̄∑

λ=1

span(N̄λ) +
W̄∑

λ=1

(

span(N̄λ) +
3
g
· len(P ′

λ)
)

(3)

= 2
W̄∑

λ=1

span(N̄λ) +
3
g

W̄∑

λ=1

len(P ′
λ)

On the Complexity of the Regenerator Cost Problem 109

≤ 2ρ · OPT (G, P̄, g, 1) + 3 · OPT (G, P ′, g, 1) (4)
≤ (2ρ + 3) · OPT (G, P ′ ∪ P̄ , g, 1), (5)

where inequality 3 holds by (2); inequality 4 holds because A is ρ-approximation
algorithm for (G, P̄ , g, 1) and by the grooming bound; finally, inequality 5 holds
because both OPT (G, P̄, g, 1) and OPT (G, P ′, g, 1) are at most OPT (G, P ′ ∪
P̄, g, 1). �

Algorithm 6. ((G,P , g, 1),w̄), where w̄ is a valid coloring for the instance
(G, P̄ , g, 1) with P̄ = P \ P ′ being a maximal proper set of paths
1: Let 1, 2, . . . , W̄ be the colors used by w̄
2: λnew ← W̄ + 1
3: for λ = 1 to W̄ do
4: N̄λ = P̄λ � P̄λ is the set of paths in P̄ colored λ by w̄
5: P ′

λ ← ∅
6: for each P ∈ P ′ such that P is included in some path of N̄λ do
7: P ′

λ ← P ′
λ ∪ {P}

8: end for
9: wλ ← FirstF it(N̄λ,P ′

λ, g, λnew)
10: λnew ← 1+ the maximum color used in wλ

11: end for
12: return w = ∪W̄

λ=1wλ.

4.3 The General Case

The following lemma of [13] shows that, given a ρ-approximation algorithm for
(G,P , g, 1), it is possible to obtain a 4ρ-approximation algorithm for (G,P , g, d).

Lemma 7 ([13]). Given a polynomial time ρ-approximation algorithm A for
(G,P , g, 1), for any d > 1, it is possible to obtain a polynomial time algorithm
A′ guaranteeing a (4 · ρ)-approximation for (G,P , g, d).

Given an NSI N , let G(N) = (V (N), E(N)) be the graph corresponding
to the NSI N , i.e. such that V (N) =

⋃
P∈N V (P) and E(N) =

⋃
P∈N E(P).

We now provide a polynomial time algorithm (Algorithm 7) whose existence is
shown in Lemma 7, transforming a feasible solution for (G,P , g, 1) into a feasible
solution for (G,P , g, d).

By combining Algorithms 4, 6 and 7, we are finally able to provide a polyno-
mial time approximation algorithm (Algorithm 8) working for any (G,P , g, d)
instance of the general problem.

By exploiting Lemmata 7, 6 and 4, we obtain the following theorem.

Theorem 3. Algorithm 8 is a (32H2g−1 + 12)-approximation polynomial time
algorithm for general instances.

110 M. Flammini et al.

Algorithm 7. ((G,P , g, d), w), w being a valid coloring such that Pλ is an NSI
for any λ

1: Let 1, 2, . . . , W be the colors used by w
2: for λ = 1 to W do
3: Nλ = Pλ

4: for each connected component G′ in the subgraph of G(Nλ) induced by the
nodes in SPAN(Nλ) do � G′ is either a path or a cycle

5: Build rw such that in G′ there is a regenerator every d nodes
6: end for
7: end for
8: return (w, rw)

Algorithm 8. (G,P , g, d)
1: P ′ ← ∅ � Partition P into P̄ and P ′ such that P̄ is a maximal proper set of paths.
2: P̄ ← P
3: while there exist P, P̄ ∈ P̄ such that P is included in P̄ do
4: P ′ ← P ′ ∪ {P}
5: P̄ ← P̄ \ {P}
6: end while
7: w′ ← Algorithm 4 (G, P̄ , g, 1)
8: w′′ ← Algorithm 6 ((G,P , g, 1), w′)
9: w ← Algorithm 7 ((G,P , g, d), w′′)

10: return w

5 Open Problems

The main open problem is that of closing the gap between the hardness result of
Section 3 and the approximation ratio guaranteed by the Algorithm 8 provided in
Section 4. In particular, determining whether the problem is in APX constitutes
a very interesting research direction.

Interesting research directions are that of modeling the network by means
of a edge-weighted graph and also that of considering lightpaths requiring a
bandwidth being b

g , with 1 ≤ b ≤ g; notice that in this paper we have dealt with
the case b = 1.

It would be also interesting to extend our result by considering more involved
cost functions taking into account other switching parameters (e.g., the ADMs -
Add-Drop-Multiplexers - used at the endpoints of the lightpath) or the possibility
of splitting paths.

References

1. Amini, O., Pérennes, S., Sau, I.: Hardness and approximation of traffic grooming.
Theor. Comput. Sci. 410(38-40), 3751–3760 (2009)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation, Combinatorial Optimization Problems
and Their Approximability Properties. Springer, Heidelberg (1999)

On the Complexity of the Regenerator Cost Problem 111

3. Chen, S., Ljubic, I., Raghavan, S.: The regenerator location problem, vol. 55, pp.
205–220 (2010)

4. Chvátal, V.: A greedy heuristic for the set covering problem. Mathematics of Op-
eration Research 4, 233–235 (1979)

5. Călinescu, G., Frieder, O., Wan, P.-J.: Minimizing electronic line terminals for au-
tomatic ring protection in general wdm optical networks. IEEE Journal of Selected
Area on Communications 20(1), 183–189 (2002)

6. Călinescu, G., Wan, P.-J.: Splitable traffic partition in wdm/sonet rings to minimize
sonet adms. Theoretical Computer Science 276(1-2), 33–50 (2002)

7. Călinescu, G., Wan, P.-J.: Traffic partition in wdm/sonet rings to minimize sonet
adms. Journal of Combinatorial Optimization 6(4), 425–453 (2002)

8. Fedrizzi, R., Galimberti, G.M., Gerstel, O., Martinelli, G., Salvadori, E., Saradhi,
C.V., Tanzi, A., Zanardi, A.: A Framework for Regenerator Site Selection Based
on Multiple Paths. In: Prooceedings of IEEE/OSA Conference on Optical Fiber
Communications, OFC (2010)

9. Flammini, M., Marchetti-Spaccamela, A., Monaco, G., Moscardelli, L., Zaks, S.:
On the complexity of the regenerator placement problem in optical networks.
IEEE/ACM Transactions on Networking 19(2), 498–511 (2011)

10. Flammini, M., Monaco, G., Moscardelli, L., Shachnai, H., Shalom, M., Tamir, T.,
Zaks, S.: Minimizing total busy time in parallel scheduling with application to
optical networks. Theor. Comput. Sci. 411(40-42), 3553–3562 (2010)

11. Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., Zaks, S.: Approximating
the Traffic Grooming Problem with Respect to ADMs and OADMs. In: Luque,
E., Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 920–929.
Springer, Heidelberg (2008)

12. Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., Zaks, S.: Optimizing Re-
generator Cost in Traffic Grooming (extended abstract). In: Lu, C., Masuzawa,
T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 443–458. Springer,
Heidelberg (2010)

13. Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., Zaks, S.: Optimizing re-
generator cost in traffic grooming. Technical Report CS-2011-07, Technion, De-
partment of Computer Science (2011)

14. Gerstel, O., Lin, P., Sasaki, G.: Wavelength assignment in a wdm ring to minimize
cost of embedded sonet rings. In: INFOCOM 1998, Seventeenth Annual Joint Con-
ference of the IEEE Computer and Communications Societies, pp. 69–77 (1998)

15. Mertzios, G.B., Sau, I., Shalom, M., Zaks, S.: Placing Regenerators in Optical
Networks to Satisfy Multiple Sets of Requests. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6199, pp. 333–344. Springer, Heidelberg (2010)

16. Sriram, K., Griffith, D., Su, R., Golmie, N.: Static vs. dynamic regenerator as-
signment in optical switches: models and cost trade-offs. In: Workshop on High
Performance Switching and Routing (HPSR), pp. 151–155 (2004)

17. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2004)
18. Winkler, P., Zhang, L.: Wavelength assignment and generalized interval graph

coloring. In: SODA, pp. 830–831 (2003)
19. Yang, X., Ramamurthy, B.: Sparse Regeneration in Translucent Wavelength-

Routed Optical Networks: Architecture, Network Design and Wavelength Routing.
Photonic Network Communications 10(1), 39–53 (2005)

	On the Complexity of the Regenerator Cost Problemin General Networks with Traffic
Grooming
	Introduction
	Related Work
	Our Contribution

	Definitions and Problem Statement
	Hardness of Approximation
	Approximation Algorithm
	Proper Instances with d=1
	Case d=1
	The General Case

	Open Problems
	References

