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Abstract. Remus is one of the first systems which implemented whole
virtual machine replication to achieve high availability (HA). Recently a
fast, lightweight migration mechanism (LLM) was proposed to reduce the
long network delay in Remus. However, these virtualized systems have
the long downtime problem, which is a bottleneck to achieve HA. Based
on LLM, in this paper, we describe a fine-grained block identification
(or FGBI) mechanism to reduce the downtime in virtualized systems
so as to achieve HA, with support for a block sharing mechanism and
hybrid compression method. We implement the FGBI mechanism and
evaluate it against LLM and Remus, using several benchmarks such as
Apache, SPECweb, NPB and SPECsys. Our experimental results reveal
that FGBI reduces the type I downtime over LLM and Remus by as
much as 77% and 45% respectively, and reduces the type II downtime
by more than 90% and more than 70%, compared with LLM and Remus
respectively. Moreover, in all cases, the performance overhead of FGBI
is less than 13%.

1 Introduction

High availability (HA) refers to a system and associated service implementa-
tion that is continuously operational for a long period of time. With respect to
the clients, an ideal system never stops working, which also means the system
will always respond to the clients’ requests. Trying to achieve high availability
is therefore one of the key concerns in modern cluster computing and failover
systems. Whole-system replication is a conventional way to increase the system
availability: once the primary machine fails, the running applications will be
taken over by the backup machines. However, there are several limitations that
make this method unattractive for deployment: it needs specialized hardware
and software which are usually expensive. That the final system also requires
complex customized configurations makes it hard to manage efficiently.

As virtualization becomes more and more prevalent, we can overcome these
limitations by introducing the virtual machine (VM). In the virtual world, all
the applications are running in the VM, so now it’s possible to implement the
whole-system replication in an easy and efficient way — by saving the copy of the
whole VM running on the system. As VMs are totally hardware-independent,
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the cost is much lower compared to the hardware expenses in traditional HA so-
lutions. Besides, virtualization technology can facilitate the management of mul-
tiple VMs on a single physical machine. With virtual machine monitors (VMM),
the service applications are separated from physical machines, thus providing
increased flexibility and improved performance.

Remus [6], built on top of the well-known Xen hypervisor [3], provides trans-
parent, comprehensive high availability by using a checkpointing method under
the Primary-Backup model (Figure 1). It checkpoints the running VM on the
primary host, and transfers the latest checkpoint to the backup host as whole-
system migration. Once the primary host fails, the backup host will take over
the service based on the latest checkpoint. Remus proves that it is possible to
create a general, fully transparent, high-availability solution entirely in software.
However, checkpointing at high frequency will introduce significant overhead,
since significant CPU and memory resources are consumed by the migration.
Therefore, clients endure a long network delay.

Jiang et. al. [13] proposed an integrated live migration mechanism, called
LLM, which integrates both whole-system checkpointing and input replay to
reduce the network delay in Remus. The basic idea is that the primary host
migrates the guest VM image (including CPU/memory status updates and new
writes to the file system) to the backup host at low frequency. In the meanwhile,
the service requests from network clients are migrated at high frequency. As its
results show, LLM significantly outperforms Remus in terms of network delay
by more than 90%.
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Fig. 1. Primary-Backup model and the downtime problem (T1: primary host crashes;
T2: client host observes the primary host crashes; T3: VM resumes on backup host;
D1 (T3 - T1): type I downtime; D2: type II downtime)

Downtime is the key factor for estimating the high availability of a system, since
any long downtime experience for clientsmay result in loss of client loyalty and thus
revenue loss. Under the Primary-Backupmodel, there are two types of downtime:
I) the time fromwhen the primary host crashes until the VM resumes from the last
checkpointed state on the backup host and starts to handle client requests (shown
as D1 in Figure 1); II) the time from when the VM pauses on the primary (to save
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for the checkpoint) until it resumes (shown as D2 in Figure 1). From Jiang’s paper
we observe that for memory-intensive workloads running on guest VMs (such as
the HighSys workload [13]), LLM endures much longer type I downtime than Re-
mus. This is because, these workloads update the guest memory at high frequency.
On the other side, LLM migrates the guest VM image update (mostly from mem-
ory) at low frequency but uses input replay as an auxiliary. In this case, when a
failure happens, a significant number of memory updates are needed in order to
ensure synchronization between the primary and backup hosts. Therefore, it needs
significantly more time for the input replay process in order to resume the VM on
the backup host and begin handling client requests.

Regarding the type II downtime, there are several migration epochs between
two checkpoints, and the newly updated memory data is copied to the backup
host at each epoch. At the last epoch, the VM running on the primary host is
suspended and the remaining memory states are transferred to the backup host.
Thus, the type II downtime depends on the amount of memory that remains
to be copied and transferred when pausing the VM on the primary host. If we
reduce the dirty data which need to be transferred at the last epoch, we can
reduce the type II downtime. Moreover, if we reduce the dirty data which needs
to be transferred at each epoch, trying to synchronize the memory state between
primary and backup host all the time, then at the last epoch, there will not be
too many new memory updates that need to be transferred, so we can reduce
the type I downtime as well.

Therefore, in order to achieve HA in these virtualized systems, especially to
address the downtime problem under memory-intensive workloads, we propose
a memory synchronization technique for tracking memory updates, called Fine-
Grained Block Identification (or FGBI). Our main contributions include:

1) Based on LLM, we develop a novel, efficient and fine-grained approach
called FGBI, to track and transfer the memory updates efficiently, by reducing
the total number of dirty bytes which need to be transferred from primary to
backup host. FGBI enhances LLM’s performance by overcoming its downtime
disadvantage, especially for applications with memory-intensive workloads.

2) We integrate memory block sharing support with FGBI to reduce the newly
introduced memory and computation/comparison overheads. In addition, we
also support a hybrid compression mechanism among the memory dirty blocks
to further reduce the migration traffic in the transfer period.

3) We present a fully functional prototype implementation and demonstrate
that it achieves comparable downtime compared with Remus/LLM. Our exper-
imental results reveal that FGBI reduces the type I downtime over LLM and
Remus by as much as 77% and 45% respectively, and reduces the type II down-
time by more than 90% and more than 70%, compared with LLM and Remus
respectively.

The rest of the paper is organized as follows. Section 2 discusses past and
related work. Section 3 presents the design and implementation of the integrated
FGBI mechanism. Section 4 reports our experimental environment, benchmarks,
and the evaluation results. We conclude and discuss future work in Section 5.
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2 Related Work

To achieve high availability, currently there exist many virtualization-based live
migration techniques [12, 18, 24]. Two representatives are Xen live migration [4]
and VMware VMotion [17], which share similar pre-copy strategies. During mi-
gration, physical memory pages are sent from the source (primary) host to the
new destination (backup) host, while the VM continues running on the source
host. Pages modified during the replication must be re-sent to ensure consis-
tency. After a bounded iterative transferring phase, a very short stop-and-copy
phase is executed, during which the VM is halted, the remaining memory pages
are sent, and the destination VMM is signaled to resume the execution of the
VM. However, these pre-copy methods incur significant VM downtimes, as the
evaluation results in [8] show.

Remus [6] is now part of the official Xen repository. It achieves HA by main-
taining an up-to-date copy of a running VM on the backup host, which automat-
ically activates if the primary host fails. Remus (and also LLM [13]) copies over
dirty data after memory update, and uses the memory page as the granularity
for copying. However, the dirty data tracking method is not efficient, as shown
in [16] (we also illustrate this inefficiency in Section 3.1). Thus, our goal in this
paper is to further reduce the size of the memory transferred from the primary
to the backup host, by introducing a fine-grained mechanism.

Lu et. al. [16] applied three memory state synchronization techniques to
achieve HA in systems such as Remus: dirty block tracking, speculative state
transferring and active backup. The first technology is similar to our proposed
method, however, it incurs additional memory associated overhead. For example,
when running the Exchange workload in their evaluation, the memory overhead
is more than 60%. Since main memory is always a scarce resource, the high per-
centage overhead is a problem. Different from these authors’ work, we reduce
memory overhead incurred by FGBI by integrating a new memory blocks shar-
ing mechanism, and a hybrid compression method when transferring the memory
update.

To solve the memory overhead problems under Xen-based systems, there are
several ways to harness memory redundancy in VMs, such as page sharing and
patching. Past efforts showed the memory sharing potential in virtualization-
based systems. Working set changes were examined in [4, 21], and their re-
sults showed that changes in memory were crucial for the migration of VMs
from host to host. For a guest VM with 512 MB memory assigned, low loads
changed roughly 20 MB, medium loads changed roughly 80 MB, and high loads
changed roughly 200 MB. Thus, normal workloads are likely to occur between
these extremes. The evaluation in [4, 21] also revealed the amount of memory
changes (within minutes) in VMs running different light workloads. None of them
changed more than 4 MB of memory within two minutes. The Content-Based
Page Sharing (CBPS) method [22] also illustrated the sharing potential in mem-
ory. CBPS was based on the compare-by-hash technique introduced in [9, 10]. As
claimed, CBPS was able to identify as much as 42.9% of all pages as sharable,
and reclaimed 32.9% of the pages from ten instances of Windows NT doing
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real-world workloads. Nine VMs running Redhat Linux were able to find 29.2%
of sharable pages and reclaimed 18.7%. When reduced to five VMs, the numbers
were 10.0% and 7.2%, respectively.

To share memory pages efficiently, recently, the Copy-on-Write (CoW) shar-
ing mechanism was widely exploited in the Xen VMM [19]. Unlike the sharing
of pages within an OS that uses CoW in a traditional way, in virtualization,
pages are shared between multiple VMs. Instead of using CoW to share pages
in memory, we use the same idea in a more fine-grained manner, i.e., by sharing
among smaller blocks. The Difference Engine project demonstrates the poten-
tial memory savings available from leveraging a combination of page sharing,
patching, and in-core memory compression [8]. It shows the huge potential of
harnessing memory redundancy in VMs. However, Difference Engine also suffers
from complexity problems when applying the patching method. It needs addi-
tional modifications to Xen. We will present our corresponding mechanism and
advantages over Difference Engine in Section 3.2.

Besides high availability systems such as Remus, LLM, and Kemari [20], which
apply the pre-copy mechanism, there are also other related works that focus
on migration optimization. Post-copy based migration [11] is proposed to ad-
dress the drawbacks of pre-copy based migration. The experimental evaluation
in [11] shows that the migration time using the post-copy method is less than
the pre-copy method, under SPECweb2005 and Linux Kernel Compile bench-
marks. However, its implementation only supports PV guests as the mechanism
for trapping memory accesses and utilizes an in-memory pseudo-paging device
in the guest OS. Since the post-copy mechanism needs to modify the guest OS,
it is not so much widely used as the pre-copy mechanism.

3 Design and Implementation

We first overview the integrated FGBI design, including some necessary pre-
liminaries about the memory saving potential. We then present the FGBI ar-
chitecture, explain each component, and discuss the execution flow and other
implementation details.

3.1 FGBI

Remus and LLM track memory updates by keeping evidence of the dirty pages
at each migration epoch. Remus uses the same page size as Xen (for x86, this is
4KB), which is also the granularity for detecting memory changes. However, this
mechanism is not efficient. For instance, no matter what changes an application
makes to a memory page, even just modify a boolean variable, the whole page
will still be marked dirty. Thus, instead of one byte, the whole page needs to be
transferred at the end of each epoch. Therefore, it is logical to consider tracking
the memory update at a finer granularity, like dividing the memory into smaller
blocks.
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We propose the FGBI mechanism which uses memory blocks (smaller than
page sizes) as the granularity for detecting memory changes. FGBI calculates
the hash value for each memory block at the beginning of each migration epoch.
Then it uses the same mechanism as Remus to detect dirty pages. However, at the
end of each epoch, instead of transferring the whole dirty page, FGBI computes
new hash values for each block and compares them with the corresponding old
values. Blocks are only modified if their corresponding hash values do not match.
Therefore, FGBI marks such blocks as dirty and replaces the old hash values with
the new ones. Afterwards, FGBI only transfers dirty blocks to the backup host.

However, because of using block granularity, FGBI introduces new overhead.
If we want to accurately approximate the true dirty region, we need to set the
block size as small as possible. For example, to obtain the highest accuracy, the
best block size is one bit. That is impractical, because it requires storing an
additional bit for each bit in memory, which means that we need to double the
main memory. Thus, a smaller block size leads to a greater number of blocks and
also requires more memory for storing the hash values. Based on these past efforts
illustrating the memory saving potential (section 2), we present two supporting
techniques: block sharing and hybrid compression. These are discussed in the
subsections that follow.

3.2 Block Sharing and Hybrid Compression Support

From the memory saving results of related work (section 2), we observe that
while running normal workloads on a guest VM, a large percentage of memory
is usually not updated. For this static memory, there is a high probability that
pages can be shared and compressed to reduce memory usage.

Block Sharing. Note that these past efforts [4, 9, 10, 21, 22] use the memory
page as the sharing granularity. Thus, they still suffer from the “one byte differ,
both pages cannot be shared” problem. Therefore, we consider using a smaller
block in FGBI as the sharing granularity to reduce memory overhead.

The Difference Engine project [8] also illustrates the potential savings due to
sub-page sharing, both within and across virtual machines, and achieves sav-
ings up to 77%. In order to share memory at the sub-page level, the authors
construct patches to represent a page as the difference relative to a reference
page. However, this patching method requires selected pages to be accessed in-
frequently, otherwise the overhead of compression/decompression outweighs the
benefits. Their experimental evaluations reveal that patching incurs additional
complexity and overhead when running memory-intensive workloads on guest
VMs (from results for “Random Pages” workload in [8]).

Unlike Difference Engine, we apply a straightforward sharing technique to
reduce the complexity. The goal of our sharing mechanism is to eliminate re-
dundant copies of identical blocks. We share blocks and compare hash values
in memory at runtime, by using a hash function to index the contents of every
block. If the hash value of a block is found more than once in an epoch, there is
a good probability that the current block is identical to the block that gave the
same hash value. To ensure than these blocks are identical, they are compared
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bit by bit. If the blocks are identical, they are reduced to one block. If, later on,
the shared block is modified, we need to decide which of the original constituent
blocks has been updated and will be transferred.

Hybrid Compression. Compression techniques can be used to significantly
improve the performance of live migration [14]. Compressed dirty data takes
shorter time to be transferred through the network. In addition, network traffic
due to migration is significantly reduced when much less data is transferred
between primary and backup hosts. Therefore, for dirty blocks in memory, we
consider compressing them to reduce the amount of transferred data.

Before transmitting a dirty block, we check for its presence in an address-
indexed cache of previously transmitted blocks (through pages). If there is a
cache hit, the whole page (including this memory block) is XORed with the
previous version, and the differences are run-length encoded (RLE). At the end
of each migration epoch, we send only the delta from a previous transmission of
the same memory block, so as to reduce the amount of migration traffic in each
epoch. Since smaller amount of data is transferred, the total migration time and
downtime can both be decreased.

However, in the current migration epoch, there still may remain a significant
fraction of blocks that is not present in the cache. In these cases, we find that
Wilson et. al. [7] claims that there are a great number of zero bytes in the
memory pages (so as in our smaller blocks). For this kind of block, we just scan
the whole block and record the information about the offset and value of nonzero
bytes. And for all other blocks with weak regularities, a universal algorithm with
high compression ratio is appropriate. Here we apply a general-purpose and very
fast compression technique, zlib [1], to achieve a higher degree of compression.

3.3 Architecture

We implement the FGBI mechanism integrated with sharing and compression
support, as shown in Figure 2. In addition to LLM, which is labeled as “LLM
Migration Manager” in the figure, we add a new component, shown as “FGBI”,
and deploy it at both Domain 0 and guest VM.

For easiness in presentation, we divide FGBI into three main components:

1) Dirty Identification: It uses the hash function to compute the hash value
for each block, and identify the new update through the hash comparison at the
end of migration epoch. It has three subcomponents:
Block Hashing: It creates a hash value for each memory block;
Hash Indexing: It maintains a hash table based on the hash values generated
by the Block Hashing component. The entry in the content index is the hash
value that reflects the content of a given block;
Block Comparison: It compares two blocks to check if they are bitwise iden-
tical.

2) Block Sharing Support: It handles sharing of bitwise identical blocks.
3) Block Compression: It compresses all the dirty blocks on the primary side,

before transferring them to the backup host. On the backup side, after receiving
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Fig. 2. The FGBI architecture with sharing and compression support

the compressed blocks, it decompresses them first before using them to resume
the VM.

Basically, the Block Hashing component produces hash values for all blocks
and delivers them to the Hash Indexing component. The Hash Indexing and
Block Comparison components then check the hash table to determine whether
there are any duplicate blocks. If so, the Hash Comparison component requests
the Block Sharing Support components to update the shared blocks information.
At the end of each epoch, the Block Compression component compresses all the
dirty blocks (including both shared and not shared).

In this architecture, the components are divided between the privileged VM
Domain 0 and the guest VMs. The VMs contain the Block Sharing Support
components. We house the Block Sharing Support component in the guest VMs
to avoid the overhead of using shadow page tables (SPTs). Each VM also con-
tains a Block Hashing component, which means that it has the responsibility of
hashing its address space. The Dirty Identification component is placed in the
trusted and privileged Domain 0. It receives hash values of the hashed blocks
generated by the Block Hashing component in the different VMs.

3.4 FGBI Execution Flow

Figure 3 describes the execution flow of the FGBI mechanism. The numbers on
the arrows in the figure correspond to numbers in the enumerated list below:

1) Hashing: At the beginning of each epoch, the Block Hashing components
at the different guest VMs compute the hash value for each block.

2) Storing: FGBI stores and delivers the hash key of the hashed block to the
Hash Indexing component.

3) Index Lookup: It checks the content index for identical keys, to determine
whether the block has been seen before. The lookup can have two different
outcomes:
Key not seen before: Add it to the index and proceed to step 6.
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Fig. 3. Execution flow of FGBI mechanism

Key seen before: An opportunity to share, so request block comparison.
4) Block Comparison: Two blocks are shared if they are bitwise identical.

Meanwhile, it notifies the Block Sharing Support Components on corresponding
VMs that they have a block to be shared. If not, there is a hash collision, the
blocks are not shared, and proceed to step 6.

5) Shared Block Update: If two blocks are bitwise identical, then store the
same hash value for both blocks. Unless there is a write update to this shared
block, it doesn’t need to be compared at the end of the epoch.

6) Block Compression: Before transferring, compress all the dirty blocks.
7) Transferring: At the end of epoch, there are three different outcomes:

Block is not shared: FGBI computes the hash value again and compares
with the corresponding old value. If they don’t match, mark this block as dirty,
compress and send it to the backup host. Repeat step 1 (which means begin the
next migration epoch).
Block is shared but no write update: It means that either block is modified
during this epoch. Thus, there is no need to compute hash values again for this
shared block, and therefore, there is no need to make comparison, compression,
or transfer either. Repeat step 1.
Block is shared and write update occurs: This means that one or both
blocks have been modified during this epoch. Thus, FGBI needs to check which
one is modified, and then compress and send the dirty one or both to the backup
host. Repeat step 1.

4 Experimental Evaluation

We experimentally evaluated the performance of the proposed techniques (i.e.,
FGBI, sharing, and compression), which i simply referred to here as the FGBI
mechanism. We measured downtime and overhead under FGBI, and compared
the result with that under LLM and Remus.
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4.1 Experimental Environment

Our experimental platform included two identical hosts (one as primary and the
other as backup), each with an IA32 architecture processor (Intel Core 2 Duo
Processor E6320, 1.86 GHz), and 3 GB RAM. We set up a 1 Gbps network
connection between the two hosts, which is specifically used for migration. In
addition, we used a separate machine as a network client to transmit service
requests and examine the results based on the responses. We built Xen 3.4 from
source [23], and let all the protected VMs run PV guests with Linux 2.6.18. The
VMs were running CentOS Linux, with a minimum of services executing, e.g.,
sshd. We allocated 256 MB RAM for each guest VM, the file system of which
is an image file of 3 GB shared by two machines using NFS. Domain 0 had a
memory allocation of 1 GB, and the remaining memory was left free. The Remus
patch we used was the nearest 0.9 version [5]. We compiled the LLM source code
and installed its modules into Remus.

Our experiments used the following VM workloads under the Primary-Backup
model:

Static web application: We used Apache 2.0.63 [15]. Both hosts were config-
ured with 100 simultaneous connections, and repetitively downloaded a 256KB
file from the web server. Thus, the network load will be high, but the system
updates are not so significant.

Dynamicwebapplication: SPECweb99 is a complex application-level bench-
mark for evaluating web servers and the systems that host them. This benchmark
comprises a web server, serving a complex mix of static and dynamic page (e.g.,
CGI script) requests, among other features. Both hosts generate a load of 100 si-
multaneous connections to the web server [2].

Memory-intensive application: Since FGBI is proposed to solve the long
downtime problem under LLM especially when running heavy computational
workloads on the guest VM, we continued our evaluation by comparing FGBI
with LLM/Remus under a set of industry-standard workloads, specifically NPB
and SPECsys.

1. NPB-EP: This benchmark is derived from CFD codes, and is a standard
measurement procedure used for evaluating parallel programs. We selected the
Kernel EP program from the NPB benchmark [19], because the scale of this
program set is moderate and its memory access style is representative. Therefore,
this example involves high computational workloads on the guest VM.

2. SPECsys: This benchmark measures NFS (version 3) file server throughput
and response time for an increasing load of NFS operations (lookup, read, write,
and so on) against the server over file sizes ranging from 1 KB to 1 MB. The
page modification rate when running SPECsfs has previously been reported as
approximately 10,000 dirty pages/second [2], which is approximately 40% of the
link capacity on a 1 Gbps network.

To ensure that our experiments are statistically significant, each data point
is averaged from twenty sample values. The standard deviation computed from
the samples is less than 7.6% of the mean value.
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4.2 Downtime Evaluations

Type I Downtime. Figures 4a, 4b, 4c, and 4d show the type I downtime com-
parison among FGBI, LLM, and Remus mechanisms under Apache, NPB-EP,
SPECweb, and SPECsys applications, respectively. The block size used in all
experiments is 64 bytes. For Remus and FGBI, the checkpointing period is the
time interval of system update migration, whereas for LLM, the checkpointing
period represents the interval of network buffer migration. By configuring the
same value for the checkpointing frequency of Remus/FGBI and the network
buffer frequency of LLM, we ensure the fairness of the comparison. We observe
that Figures 4a and 4b show a reverse relationship between FGBI and LLM.
Under Apache (Figure 4a), the network load is high but system updates are
rare. Therefore, LLM performs better than FGBI, since it uses a much higher
frequency to migrate the network service requests. On the other hand, when
running memory-intensive applications (Figures 4b and 4d), which involve high
computational loads, LLM endures a much longer downtime than FGBI (even
worse than Remus).
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Fig. 4. Type I downtime comparison under different benchmarks

Although SPECweb is a web workload, it still has a high pagemodification rate,
which is approximately 12,000 pages/second [4]. In our experiment, the 1 Gbps
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migration link is capable of transferring approximately 25,000pages/second.Thus,
SPECweb is not a lightweight computational workload for these migration mech-
anisms. As a result, the relationship between FGBI and LLM in Figure 4c is more
similar to that in Figure 4b (and also Figure 4d), rather than Figure 4a. In con-
clusion, compared with LLM, FGBI reduces the downtime by as much as 77%.
Moreover, compared with Remus, FGBI yields a shorter downtime, by as much as
31% under Apache, 45% under NPB-EP, 39% under SPECweb, and 35% under
SPECsys.

Type II Downtime. Table 1 shows the type II downtime comparison among
Remus, LLM, and FGBI mechanisms under different applications. We have three
main observations: (1) Their downtime results are very similar for the idle run.
This is because, Remus is a fast checkpointing mechanism and both LLM and
FGBI are based on it. Memory updates are rare during the “idle” run, so the type
II downtime in all three mechanisms is short. (2) When running the NPB-EP
application, the guest VM memory is updated at a high frequency. When saving
the checkpoint, LLM takes much more time to save huge dirty data caused by
its low memory transfer frequency. Therefore, in this case FGBI achieves a much
lower downtime than Remus (more than 70% reduction) and LLM (more than
90% reduction). (3) When running the Apache application, the memory update
is not so much as that when running NPB, but the memory update is definitely
more than idle run. The downtime results shows that FGBI still outperforms
both Remus and LLM.

Table 1. Type II downtime comparison

Application Remus downtime LLM downtime FGBI downtime

idle 64 ms 69 ms 66 ms

Apache 1032 ms 687 ms 533 ms

NPB-EP 1254 ms 16683 ms 314 ms

4.3 Overhead Evaluations

Figure 5a shows the overhead during VM migration. The figure compares the
applications’ runtime with and without migration, under Apache, SPECweb,
NPB-EP, and SPECsys, with the size of the fine-grained blocks varying from 64
bytes to 128 bytes and 256 bytes. We observe that in all cases the overhead is
low, no more than 13% (Apache with 64 bytes block). As discussed in Section 3,
the smaller the block size that FGBI chooses, greater is the memory overhead
that it introduces. In our experiments, the smaller block size that we chose is 64
bytes, so this is the worst case overhead compared with the other block sizes.
Even in this “worst” case, under all these benchmarks, the overhead is less than
8.21%, on average.
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Fig. 5. Overhead Measurements

In order to understand the respective contributions of the three proposed tech-
niques (i.e., FGBI, sharing, and compression), Figure 5b shows the breakdown
of the performance improvement among them under the NPB-EP benchmark.
It compares the downtime between integrated FGBI (which we use for evalua-
tion in this Section), FGBI with sharing but no compression support, FGBI with
compression but no sharing support, and FGBI without sharing nor compression
support, under the NPB-EP benchmark. As previously discussed, since NPB-EP
is a memory-intensive workload, it should present a clear difference among the
three techniques, all of which focus on reducing the memory-related overhead.
We do not include the downtime of LLM here, since for this compute-intensive
benchmark, LLM incurs a very long downtime, which is more than 10 times the
downtime that FGBI incurs.

We observe from Figure 5b that if we just apply the FGBI mechanism without
integrating sharing or compression support, the downtime is reduced, compared
with that of Remus in Figure 4b, but it is not significant (reduction is no more
than twenty percent). However, compared with FGBI with no support, after in-
tegrating hybrid compression, FGBI further reduces the downtime, by as much
as 22%. We also obtain a similar benefit after adding the sharing support (down-
time reduction is a further 26%). If we integrate both sharing and compression
support, the downtime is reduced by as much as 33%, compared to FGBI without
sharing or compression support.

5 Conclusions

One of the primary bottlenecks on achieving high availability in virtualized sys-
tems is downtime. We presented a novel fine-grained block identification mecha-
nism, called FGBI, that reduces the downtime in lightweight migration systems.
In addition, we developed a memory block sharing mechanism to reduce the
memory and computational overheads due to FGBI. We also developed a dirty
block compression support mechanism to reduce the network traffic at each mi-
gration epoch. We implemented FGBI with the sharing and compression mech-
anisms and integrated them with the LLM lightweight migration system. Our
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experimental evaluations reveal that FGBI overcomes the downtime disadvan-
tage of LLM by more than 90%, and of Xen/Remus by more than 70%. In all
cases, the performance overhead of FGBI is less than 13%.

Several directions for future work exist. It is possible to reduce the imple-
mentation complexity in the FGBI design. For instance, we can deploy some
subcomponents (such as the Block Comparison part) in the VMM directly, and
design a transparent solution by using the shadow page table mechanism. More-
over, compressing memory blocks that are unlikely to be accessed in the near
future can further reduce the memory overhead.
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