
Robust Network Supercomputing

without Centralized Control�

Seda Davtyan1, Kishori M. Konwar2, and Alexander A. Shvartsman1

1 Department of Computer Science & Engineering, University of Connecticut, Storrs
CT 06269, USA

{seda,aas}@engr.uconn.edu
2 Department of Immunology and Microbiology, University of British Columbia,

Vancouver BC V6T 1Z3, Canada
kishori@interchange.ubc.ca

Abstract. Internet supercomputing provides means for harnessing the
power of a vast number of interconnected computers. With this come the
challenges of marshaling distributed resources and dealing with failures.
Traditional centralized approaches employ a master processor and many
worker processors that execute a collection of tasks on behalf of the
master. Despite the simplicity and advantages of centralized schemes,
the master processor is a performance bottleneck and a single point of
failure. Additionally, a phenomenon of increasing concern is that workers
may return incorrect results, e.g., due to unintended failures, over-clocked
processors, or due to workers claiming to have performed work to obtain
a high rank in the system. This paper develops an original approach
that eliminates the master and instead uses a decentralized algorithm,
where workers cooperate in performing tasks. The failure model assumes
that the average probability of a worker returning a wrong result is
inferior to 1/2. We present a randomized synchronous algorithm for n
processors and t tasks (t ≥ n) achieving time complexity Θ(t

n
log n) and

work Θ(t log n). It is shown that upon termination the workers know
the results of all tasks with high probability, and that these results are
correct with high probability. The message complexity of the algorithm is
Θ(n log n), and the bit complexity is O(tn log3 n). Simulations illustrate
the behavior of the algorithm under realistic assumptions.

Keywords: Distributed Algorithms, Fault-Tolerance, Internet Super-
computing.

1 Introduction

Internet supercomputing is becoming a popular means for harnessing the com-
puting power of an enormous number of processors around the world. A typical
Internet supercomputer consists of a master computer and a large number of
computers called workers. Applications submit the tasks to be performed to

� This work is supported in part by the NSF award 1017232.

A. Fernández Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 435–450, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

436 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

the master that in turn directs the workers to perform the tasks and then col-
lects the results. Several Internet Supercomputers are in existence today. For
instance, Internet PrimeNet Server encompasses about 30,000 computers, achiev-
ing throughput of over 1 teraflop [1], and even higher throughput is reported by
the SETI@home project [2].

A major concern in network supercomputing is the correctness of the results
returned by the workers. While most workers may be reliable, workers have
been known to return incorrect results. This may be due to unintended failures
caused (e.g., by over-clocked processors), or the workers claiming to have per-
formed assigned work so as to obtain incentives, such as getting higher rank on
the SETI@home list of contributed units of work. Prior research developed mod-
els and algorithms for network supercomputing, e.g., [5,6,11]. In these models it
is assumed that a reliable master and a collection of unreliable workers coopera-
tively perform a set of tasks. Using a variety of probabilistic failure models, the
goal is to design algorithms that correctly perform all tasks with high probability.
One drawback of this approach is the assumption of the existence of a reliable
master processor. Despite the simplicity and advantages of this approach, the
master is a single point of failure. The master is further assumed to be able to
keep up with the large number of results returned by the workers, making such
systems poorly scalable. In any message passing system, during some short time
interval, a network node can maintain only a limited number of connections.
Thus scalable distributed (i.e., not centralized) solutions are desirable.

In the current paper, we aim to remove the assumption of an infallible and
bandwidth-unlimited master processor and consider a fully decentralized solution
using just the cooperating workers.

Contributions. We consider the problem of performing t tasks in a distributed
system of n workers. The tasks are independent, they admit at-least-once ex-
ecution semantics, and each task can be performed by any worker in constant
time. The workers either obtain the tasks from some repository or the tasks are
initially known to all processors. The workers can return incorrect results and ul-
timately crash. The fully-connected message-passing system is synchronous, and
the workers communicate using authenticated messages (to prevent malicious
workers from impersonating other workers). Our system of autonomous proces-
sors is fully decentralized in the sense that it does not contain any distinguished
participants (e.g., a master). We present an original randomized decentralized
algorithm of logarithmic time complexity, where in each iteration of the algo-
rithm each worker sends just one message. The algorithm works under several
failure models differing in the assumptions about the fraction of possibly faulty
workers and the failure probabilities. In more detail our contributions are as
follows.

1. We define a general failure model F, where each worker i (i ∈ [n]) inde-
pendently returns an incorrect result, each time it performs a task, with
probability pi, such that 1

n

∑
i∈[n] pi <

1
2 − ε for some ε > 0. (We show later

how this model specializes to other intuitive models.)

Robust Network Supercomputing without Centralized Control 437

2. We provide a n-processor, n-task decentralized randomized algorithm for
model F that works in synchronous rounds. The number of rounds performed
by the algorithm is an external (compile-time) parameter. Within each round
each processor performs a random task (for some number of rounds), and
communicates its cumulative knowledge to one randomly chosen processor.
The algorithm naturally generalizes for t tasks, where t ≥ n, by having
processors work on groups of �t/n� tasks instead of single tasks.

3. We analyze our algorithm under model F and show that it is sufficient for
it to iterate for Θ(log n) rounds in order to perform all tasks with high
probability (whp). More specifically, we prove that after Θ(log n) rounds
every processor holds the array of computed results that are all correct whp,
and that the arrays of results are consistent among all processors whp. With
t tasks (t ≥ n), the algorithm has time complexity Θ(t

n logn), message

complexity Θ(n logn), bit communication complexity O(t n log3 n), space
complexity is Θ(t n log2 n), and work Θ(t log n).

4. We show that failure model F can be extended to incorporate processor
crashes in the way that does not require any changes to our algorithm. We
also present three additional failure models that specialize model F and that
are more intuitive. Since each of these models is a specialization of model
F, the same algorithm works under all these models and has the same (or
better) complexity.

5. We present selected simulation results that illustrate and provide insights
into the behavior of the algorithm.

Note that our problem is related to the Do-All problem [4,9] of using n proces-
sors to perform a collection of t independent tasks in the presence of adversity.
However the two problems are not identical. In Do-All, the problem is solved
when some correct processor knows that all tasks have been performed. In our
problem, with the removal of the infallible master, a client application should be
able to obtain the results from any worker. Thus the current problem is solved
when all correct processors know that all tasks have been performed and are in
the possession of the results of all tasks (whp in this work).

Consequently, an algorithm solving our problem is also an algorithm for Do-
All, but not necessarily vice versa. Additionally a lower bound for Do-All is
also a lower bound for the current problem. In [3] Chlebus and Kowalski give a
lower bound Ω(t+n logn

log logn) on work of any algorithm solving Do-All, including
randomized, against an adaptive linearly bounded adversary. This bound applies
also to the current problem, and the work of our algorithm is close to this bound.

Prior work. Several approaches have been explored to improve the quality
of the results obtained from untrusted workers. Fernandez, Georgiou, Lopez,
and Santos [5,6] and Konwar, Rajasekaran, and Shvartsman [11] consider a dis-
tributed system consisting of a reliable master and a collection of workers that
execute tasks on behalf of the master, where the workers may act maliciously
by deliberately returning wrong results. Works [5,6,11] focus on designing algo-
rithms that help the master determine the correct result with high probability,
and at the least possible cost in terms of the total number of tasks executed.

438 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

The failure models assume that some fraction of processors can exhibit faulty
behavior.

Gao and Malewicz [8] consider the problem of maximizing the expected num-
ber of correct results when the tasks have dependencies. Their distributed system
is composed of a reliable server that coordinates unreliable workers that com-
pute correctly with some probability, and where any incorrectly performed task
corrupts all dependent tasks. The goal is to produce a schedule for task execu-
tion by the participants that maximizes the expected number of correct results
under a constraint on the computation time.

Paquette and Pelc [13] consider a general model of a fault-prone system in
which a decision has to be made on the basis of unreliable information. They
assume that a Boolean value is conveyed to the deciding agent by several pro-
cessors. An a priori probability distribution of this value is known to the agent
and can be any arbitrary distribution. Relaying processors are assumed to fail
independently with a known probability distribution. Fault-free processors relay
the correct value, but faulty ones may behave arbitrarily. The deciding agent
receives the vector of relayed values and must make a decision concerning the
original value. The authors design a deterministic decision strategy with a high
probability of correctness, and it is shown that a locally optimal decision strategy
need not have the highest probability of correctness globally.

We have already mentioned the related problem of distributed cooperation
called Do-All. Many algorithms, both deterministic and randomized, have been
developed for Do-All in various models of computation, including message-passing
and shared-memory models [10,9]. A related problem is the Omni-Do problem of
performing a collection of tasks with the help of group communication services
in partitionable networks [9].

Document structure. In Section 2 we give models of computation and failure,
and measures of efficiency. Section 3 presents our algorithm. In Section 4 we carry
out the analysis of the algorithm and derive complexity bounds. In Section 5
we deal with processor crashes. In Section 6 we present the simulation of the
algorithm. We conclude in Section 7 with a discussion.

2 Model of Computation and Definitions

System model. We consider a set of n processors, or workers, each with a
unique identifier (id) from set P = [n]. We refer to the processor with id i
as processor i. The system is synchronous and the processors communicate by
exchanging reliable authenticated messages. Computation is structured in terms
of synchronous steps, where in each step a processor can send or receive messages,
and perform some local computation. The duration of each step depends on the
algorithm and need not be constant (e.g., it may depend on n), but it is fixed
at compile-time. Messages received by a processor in a given step include all
messages sent to it in the previous step.

Tasks. There are t tasks to be performed, each with a unique id from set T =
[t]. We refer to the task with id i as Task[i]. Workers obtain tasks from some

Robust Network Supercomputing without Centralized Control 439

repository or workers initially know all tasks. The tasks are (a) similar, meaning
that any task can be done in constant time by any processor, (b) independent,
meaning that each task can be performed independently of other tasks, and
(c) idempotent, meaning that the tasks admit at-least-once semantics and can
be performed concurrently. For simplicity, we assume that the outcome of each
task is a binary value. The problem is most interesting when there are at least
as many tasks as there are processors, thus we only consider t ≥ n.

Models of Failure. Some processors may exhibit faulty behavior by (mali-
ciously) returning an incorrect result for a task. We assume that the result of
each task is signed by the performing processor and that the signatures are
unforgeable. The main failure model is defined as follows.

Model F: Each worker, independently of other workers, returns faulty results
for a performed task with probability pi, for i ∈ [n], such that, 1

n

∑
i pi <

1
2−ε

for some ε > 0.

We use the constant ε to ensure that the average probability of worker misbe-
havior does not become arbitrarily close to 1/2 as n tends to infinity.

In algorithm simulations we also use three related specialized models that
were introduced in [5,11] in the context of the centralized master-worker setting.

Model Fa: Each worker, independently of other workers, returns faulty results
for a task with probability p < 1

2 .

Model Fb: A fixed fraction f of workers can return faulty results for any task
with probability p, with fp < 1

2 .

Model Fc: A fixed fraction f of workers can return faulty results for any task,
with f < 1

2 .

Observe that model F generalizes these specialized models since in all three
cases the average probability of worker returning a wrong result is inferior to
1/2. Thus any algorithm that solves our problem in model F also solves it in
models Fa, Fb, and Fc. Because the last three models are simpler to implement
we use them in simulations.

Measures of efficiency. We use the conventional worst-case measures of time
complexity, work complexity, and space complexity. Message complexity is the
worst-case number of point-to-point messages sent in an execution, and bit com-
plexity is the total number of bits sent in all messages.

Lastly, we use the common definition of an event E occurring with high prob-
ability (whp) to mean that Pr[E] = 1−O(n−α) for some constant α > 0.

3 Algorithm Description

In this section we present our decentralized algorithm A that employs no mas-
ter and instead uses a gossip-based approach. We present the algorithm for n

440 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

procedure for processor i;
external n /* the number of processors and tasks */
external L /* 2L is the the number of rounds */
Task[1..n] /* set of tasks */
Ri[1..n] init ∅n /* set of collected results */
Resultsi[1..n] /* array of results */

Compute:
1: Randomly select j ∈ T /* choose task id */
2: Compute the result vj for Task[j]
3: Ri[j]← {〈vj , i, 0〉} /* Record result for round 0 */

for r = 1 to 2L do
Send:

4: Randomly select a processor q ∈ P
5: Send the array Ri[] to processor q

Receive:
6: Let M be the set of received messages
7: for all j ∈ T
8: Ri[j]← Ri[j] ∪ {R[j] : R[] ∈M}

Compute:
9: if r < L then

10: Randomly select j ∈ T /* choose task id */
11: Compute the result vj for Task[j]
12: Ri[j]← Ri[j] ∪ {〈vj , i, r〉}

13: for each j ∈ T
14: Resultsi[j]← u such that triples 〈u, , 〉 form a plurality in Ri[j]

end

Fig. 1. Algorithm A at processor i for i ∈ P , and t = n

processors and t = n tasks. The algorithm naturally generalizes for t tasks,
where t ≥ n, by having processors perform work on fixed groups of �t/n� tasks
instead of single tasks (we discuss this in more detail at the conclusion of the
analysis). Each processor (worker) maintains two arrays of size linear in n, one
used to accumulate knowledge gathered from different processors, and another
to store the results. The algorithm works in synchronous rounds. The number
of rounds performed by the algorithm is an external (compile-time) parameter.
Within each round a processor communicates its cumulative knowledge to one
randomly chosen processor and performs a random task (for some determined
number of rounds). The pseudocode for the algorithm is given in Figure 1, and
we now detail it.

Local knowledge and state variables. Every processor i maintains the fol-
lowing:

Robust Network Supercomputing without Centralized Control 441

– L, the external parameter that is used to control the number of iterations,
i.e., 2L, of the main loop; r is the current round (iteration) number.

– The array of results Ri[1..n], where the element Ri[j], for j ∈ T , is the set
of results for Task[j]. Each Ri[j] is a set of triples 〈vj , i, r〉 representing the
result vj computed for Task[j] by processor i during round r. The use of
such triples eliminates repeated inclusions of the results for the same task,
in the same round, by the same processor.

– The array Resultsi[1..n] stores the final results.

Control flow. The algorithm contains the main for-loop, and we use the term
round to refer to a single iteration of the loop. The loop contains three stages
(or steps), viz., Send, Receive, and Compute. The algorithm starts by performing
a single Compute stage, after which it enters the main loop. The algorithm
uses an external parameter L (whose value is established in the analysis of the
algorithm). The main loop iterates 2L times, where in the first L iterations all
three stages are executed, and the final L iterations only the Send and Receive
stages are executed. (We will prove that L needs to be Θ(log n) to yield our high
probability guarantee.)

We now describe the stages in more detail, starting with Compute. In Compute
stage in round r processor i randomly selects a task j, computes the result vj ,
and adds the triple 〈vj , i, r〉 to the results set Ri[j]. This is done in the first L
rounds.

In each Send stage, a processor choses a target processor q at random from
the set of processors P . The array of results R[] is sent to processor q.

During the Receive stage processor i receives messages (if any) sent to it
during the Send stage by other processors (including itself). Upon receiving the
messages the processor updates its Ri[j] (for each j ∈ T) by taking a union with
the triples for task j received in all messages.

When the main loop terminates after 2L rounds, each processor goes over
the result set for every task and computes the result that corresponds to the
plurality of the results (in the analysis we prove that in fact a majority exists).
The results of the tasks are available locally in array Resultsi[1..n].

4 Algorithm Analysis

We now analyze algorithm A for t = n, then extend the analysis to t ≥ n. We
start by stating the Chernoff bound result that we use in several places.

Lemma 1 (Chernoff Bounds). Let X1, X2, · · · , Xn be n independent Bernoulli
random variables with Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi, then it holds
for X =

∑n
i=1 Xi and μ = E[X] =

∑n
i=1 pi that for all δ > 0, (i) Pr[X ≥

(1 + δ)μ] ≤ e−
μδ2

3 , and (ii) Pr[X ≤ (1− δ)μ] ≤ e−
μδ2

2 .

The following lemma shows that within Θ(log n) rounds of algorithm A every
task τ is chosen for execution Θ(log n) times whp. Weaker variations of Lemma 2
are known in the literature, e.g., see the Occupancy Problem [12]. We prove our

442 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

lemma for completeness, and more importantly, for acquiring a stronger bound
required for our complexity results.

Lemma 2. In Θ(log n) rounds of the algorithm every task is performed Θ(log n)
times whp, possibly by different processors.

Proof. Let us assume that after L = k logn rounds of algorithm A, where k is
a sufficiently large constant, there exists a task τ that is performed less than
(1 − δ)L times among all workers, for some δ > 0. We prove that whp such a
task does not exist.

According to our assumption at the end of round L for some task τ , we have
|∪n

j=1Rj [τ]| < (1−δ)L. Let Xi be a Bernoulli random variable such that Xi = 1
if the task was chosen to be performed in line 10 (only once the task is chosen
in line 1) of the algorithm, and Xi = 0 otherwise.

Let us next define the random variable X = X1+ · · ·+XLn to count the total
number of times task τ is performed by the end of L rounds of algorithm A.

Note that according to line 10 any worker picks a task uniformly at random.
To be more specific let x be an index of one of Ln executions of line 10. Observe
that for any x, Pr[Xx = 1] = 1

n given that the workers choose task τ uniformly

at random. Let μ = E[X] =
∑Ln

x=1
1
n = L, then by applying Chernoff bound, for

the same δ > 0 chosen as above, we have:

Pr[X ≤ (1− δ)L] ≤ e−
Lδ2

2 ≤ e−
(k log n)δ2

2 ≤ 1

n
cδ2

2

≤ 1

nα

where α > 1 for some sufficiently large c. Now let us denote by Eτ the fact that
| ∪n

i=1 Ri(τ)| > (1 − δ)L by the round L of the algorithm and we denote by Ēτ
the complement of that event. Next by Boole’s inequality we have Pr[∪τ Ēτ] ≤∑

τ Pr[Ēτ] ≤ 1
nβ , where β = α − 1 > 0. Hence each task is performed at least

Θ(log n) times whp, i.e., Pr[∩τEτ] = Pr[∪τ Ēτ] ≥ 1− 1
nβ .

The following lemma shows that whp after Θ(log n) rounds of the algorithm
every worker obtains every triple generated in the system by either generating
it locally or by means of gossiping.

A somewhat similar result is shown by Fraigniaud and Glakkoupis [7] who
study the communication complexity of rumor-spreading in the random phone-
call model. They consider n players communicating in parallel rounds, where
in each round every player u calls a randomly selected communication partner.
Player u is allowed to exchange information with the partner, either by pulling
or pushing information. In order to avoid repetition, we anchor part of our proof
to their results related to the push part of their algorithm.

The following lemma, proved in [7], shows that every triple ϑ = 〈vj , i, r〉 (in
their work a rumor ρ) is disseminated to at least 3

4n workers (in their work
players) whp.

Lemma 3. With probability 1−n−3+o(1), at least 3
4 fraction of the players knows

ρ at the end of round τ = lgn+ 3 lg lg n.

Our proof also makes use of the Coupon Collector’s problem [12]:

Robust Network Supercomputing without Centralized Control 443

Definition 1. The Coupon Collector’s Problem (CCP). There are n types of
coupons and at each trial a coupon is chosen at random. Each random coupon is
equally likely to be of any of the n types, and the random choices of the coupons
are mutually independent. Let m be the number of trials. The goal is to study the
relationship between m and the probability of having collected at least one copy
of each of n types.

In [12] it is shown that E[X] = n lnn + O(n) and that whp the number of
trials for collecting all n coupon types lies in a small interval centered about its
expected value. Now we state and prove the needed lemma.

Lemma 4. If every task is performed Θ(log n) times, then whp in Θ(log n)
rounds of the algorithm each worker acquires the results for every task.

Proof. Let us assume that in some round r task j is performed by worker i; thus
a triple ϑ ≡ 〈vj , i, r〉 is generated by worker i, where vj is the calculated value
of task j.

By applying Lemma 3 to our algorithm we infer that in Θ(log n) rounds of
algorithm A at least 3

4n of the workers become aware of triple ϑ whp. Next
consider any round d such that at least 3

4n of the workers are aware of triple ϑ
for the first time. Let us denote this subset of workers by Sd (|Sd| ≥ 3

4n.)
We denote by Ud the remaining fraction of the workers that are not aware of

ϑ. We are interested in the number of rounds required for every worker in Ud to
learn about ϑ whp by receiving a message from one of the workers in Sd in some
round following d.

We show that, by the analysis very similar to CCP, in Θ(log n) rounds triple
ϑ is known to all workers whp. Every worker in P has a unique id, hence we can
think of those workers as of different types of coupons and we assume that the
workers in Sd collectively represent the coupon collector. In this case, however,
we do not require that every worker in Sd contacts all workers in Ud whp. Instead,
we require only that the workers in Sd collectively contact all workers in Ud whp.
According to our algorithm in every round every worker in P (Sd ⊂ P), selects
a worker uniformly at random and sends all its data to it. Let us denote by
m the collective number of trials by workers in Sd to contact workers in Ud.
According to CCP if m = O(n lnn) then whp workers in Sd collectively contact
every worker in P , including those in Ud. Since there are at least 3

4n workers
in Sd then in every round the number of trials is at least 3

4n, hence in O(lnn)
rounds whp all workers in Ud learn about ϑ. Therefore, in Θ(log n) rounds whp
all workers in Ud learn about ϑ.

Thus we showed that if a new triple is generated in the system then whp it will
be known to all workers in Θ(log n) rounds. Now by applying Boole’s inequality
we want to show that whp in Θ(log n) rounds all generated triples are spread
among all workers.

According to our algorithm every worker generates L = Θ(log n) triples before
it terminates. We have n workers which means that by the end of the algorithm
the number of generated triples is Θ(n log n). Let us denote the set of all gener-
ated triples by V . Let Eϑ be the event that some triple ϑ is not spread around

444 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

among all workers when the algorithm terminates. In the preceding part of the
proof we have shown that Pr[Eϑ] <

1
nβ , where β > 1. By Boole’s inequality, the

probability that there exists one triple that did not get spread to all workers,
can be bounded as

Pr[∪ϑ∈VEϑ] ≤ Σϑ∈VPr[Eϑ] = Θ(n log n)
1

nβ
≤ 1

nγ

where γ > 0. This implies that upon termination every worker collects all
Θ(n log n) triples generated in the system whp.

Next theorem shows that at termination the correct result for each task is
obtained from the collectively computed results, whether correct or incorrect.

Theorem 1. In Θ(log n) rounds algorithm A produces the results of all n tasks
correctly at every processor whp.

Proof. We first prove that at termination the algorithm computes correctly a
majority of the results for any task τ whp. Then we argue that whp at termination
the result computed for each task by any processor is correct.

In order to prove the first step we estimate (with a concentration bound) the
number of times the results are computed correctly. Then we estimate the bound
on total number of times task τ was computed (whether correctly or incorrectly),
and we show that a majority of the results are computed correctly.

Let us consider random variables Xir that denote the success or failure of
correctly computing the result of some task τ in round r by worker i. Specifically,
Xir = 1 if in round r, worker i computes the result of task τ correctly, otherwise
Xir = 0. According to our algorithm we observe that Pr[Xir = 1] = qi

n and
Pr[Xir = 0] = 1−Pr[Xir = 1], where qi ≡ 1− pi.

Let Xr ≡
∑n

i=1 Xir denote the number of correctly computed results for task
t among all workers during round r. By linearity of expected values of a sum of
random variables we have

E[Xr] = E[

n∑

i=1

Xir] =

n∑

i=1

E[Xir] =

n∑

i=1

qi
n

We denote by X ≡
∑L

r=1 Xr the number of correctly computed results for some
task τ at termination. Again, using the linearity of expected values of a sum of
random variables we have

E[X] = E[

n∑

i=1

L∑

r=1

Xir] =
L

n

n∑

i=1

qi

Note that since 1
n

∑n
i=1 qi > 1

2 + ε, for some fixed ε > 0, there exists some

δ > 0, such that, (1 − δ)Ln
∑n

i=1 qi > (1 + δ)L2 . Also, observe that the ran-
dom variablesX1, X2, · · · , XL are mutually independent. Therefore, by applying
Chernoff bound on X1, X2, · · · , XL we have

Robust Network Supercomputing without Centralized Control 445

Pr[X ≤ (1 − δ)E[X]] ≡ Pr[X ≤ (1− δ)
L

n

n∑

i=1

qi] ≤ e−
δ2L(1+δ)
4(1−δ) ≤ 1

nα1

where α1 > 1 such that L = k logn for some sufficiently large constant k > 0.
Let us now count the total number of times task τ is chosen to be performed

during the execution of the algorithm in the course of the first L rounds. We
represent the choice of task τ by worker i during round r by the random variable
Yir. We assume Yir = 1 if τ is chosen by worker i in round r, otherwise Yir =
0. Since Yir’s are mutually independent we have E[Yir] = 1

n . We denote by

Y ≡
∑n

i=1

∑L
r=1 Yir the number of times task t is computed at termination.

By linearity of expected values we have E[Y] = L. Then by applying Chernoff
bound for the same δ > 0 chosen as above we have

Pr[Y ≥ (1 + δ)E[Y]] ≡ Pr[Y ≥ (1 + δ)L] ≤ e−
δ2L
3 ≤ 1

nα2

for some α2 > 1. Hence, applying Boole’s inequality to the bounds on the above
two events

Pr[{X ≤ (1− δ)
L

n

n∑

i=1

qi} ∪ {Y ≥ (1 + δ)L}] ≤ 2

nα

where α = min{α1, α2} > 1
Therefore, from above and by using (1− δ)Ln

∑n
i=1 qi > (1 + δ)L2 we have

Pr[Y/2 < X] ≥ Pr[{Y < (1 + δ)L} ∩ {X > (1− δ)
L

n

n∑

i=1

qi}]

= 1−Pr[{Y ≥ (1 + δ)L} ∪ {X ≤ (1− δ)
L

n

n∑

i=1

qi}]

≥ 1− 1

nβ

for some β > 1. Hence, at termination of the algorithm whp the majority of
calculated results for task τ are correct. Let us denote this event by Et.

From above we have Pr[Eτ] ≤ 1
nβ . Now, by Boole’s inequality we obtain

Pr[
⋃

t∈T
Eτ] ≤

∑

τ∈T
Pr[Eτ] ≤

1

nβ−1
≤ 1

nγ

where T is the set of all n tasks, and γ > 0.
By Lemma 4 whp all calculated results of every task are disseminated across

all workers. Thus, the majority of the results computed for any task at any
worker is the same among all workers, and moreover it is correct whp. Recall
that according to our algorithm (line 14) every processor computes the result
of every task by taking the plurality of calculated results, and hence the claim
of the theorem.

446 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

Algorithm A terminates after Θ(log n) rounds and thus every processor gen-
erates Θ(log n) triples. This implies that at termination Θ(n logn) triples are
generated. To obtain consistent and correct results among all processors whp we
want all processors to hold the same set of triples. Each triple consists of the
calculated result of a task, the id of the processor that performed the task, and
the round number. Thus Θ(log n) bits are required to represent each triple. Next
we assess work, message, bit, and space complexities.

Theorem 2. Algorithm A has work complexity Θ(n logn), message complexity
Θ(n log n), bit complexity O(n2 log3 n), and space complexity Θ(n2 log2 n).

Proof. Algorithm A terminates in Θ(log n) rounds, thus its work is Θ(n log n).
In every round every worker sends one message to a randomly chosen worker
(including itself). Hence, the message complexity is Θ(n log n).

Now let us estimate bit complexity. For every performed task algorithm adds
a triple to the result set, where Θ(log n) bits are required to store a triple.
According to our algorithm every processor sends O(n log2 n) bits in every round,
where the additional multiplicative logn factor represents the number of different
triples per task. On the other hand, the algorithm terminates in Θ(log n) rounds,
hence every processor communicates O(n log3 n) bits of information to other
processors. Therefore, the bit complexity of the algorithm is O(n2 log3 n).

Finally, it is easy to see that space complexity of the algorithm is Θ(n2 log2 n).
Indeed, by termination of the algorithm every processor i holds an array of sets
Ri and the result vector Resultsi, for i ∈ [n]. The result vector consists of
just n bits. On the other hand, according to Lemmas 2 and 4, after algorithm
terminates each Ri[j] contains Θ(log n) triples whp, hence the number of bits
required for each Ri[j] is Θ(log2 n), where i, j ∈ [n]. Considering that the number
of tasks and processors is n, the total bit complexity is Θ(n2 log2 n).

Finally, we extend the algorithm to handle the number of tasks larger than the
number of processors as follows. Let T ′ = [t] be the set of unique task identifiers,
where t ≥ n. We segment the t tasks into groups of �t/n� tasks, and construct
a new array of super-tasks with identifiers T = [n], where each super-task takes
Θ(t/n) time to perform by any processor. For a super-task τ , the result vτ is
now a sequence of �t/n� bits, instead of a single bit. We now use algorithm A,
where the only difference is that each Compute stage takes Θ(t/n) time, and the
data structures are larger to accommodate the results consisting of �t/n� bits.
We call the resulting algorithm A′ and we show the following.

Theorem 3. For t ≥ n algorithm A′ has time complexity Θ(t
n logn), work com-

plexity Θ(t log n), message complexity Θ(n log n), bit complexity O(t n log3 n),
and space complexity Θ(t n log2 n).

Proof sketch. As with algorithm A, algorithm A′ takes Θ(log n) iterations to
produce the results whp, except that each iteration now takes Θ(t/n) time. This
yields time complexity Θ(t

n logn). Work complexity is then n · Θ(t
n logn) =

Θ(t log n).

Robust Network Supercomputing without Centralized Control 447

The message complexity remains the same at Θ(n log n) as the number of
messages does not change. The messages are larger, however, by a factor of t/n
relative to the result of Theorem 2, thus the bit complexity is O(t n log3 n).
Lastly, the storage requirements are increased by the same factor, resulting in
space complexity Θ(tn log2 n). �
In closing this section we note that the same results hold for models Fa, Fb, and
Fc, since they are direct specializations of model F .

5 Tolerating Crash Failures

We now show that algorithm A correctly performs n tasks whp even if up to
fn processors crash for a constant f , where 0 < f < 1, under failure model
F. We prove that the asymptotics of the algorithm are unchanged if crashes do
not invalidate the definition of model F, meaning that the average probability
of a non-crashed worker returning an incorrect result remains inferior to 1/2.
Specifically, we show that Lemmas 2 and 4, and Theorem 1 remain valid under
this model.

In any execution of Algorithm A we denote the set of processors that do not
crash by P ′, and we let n′ = |P ′|. As before, we start with t = n.

Lemma 5. In Θ(log n) rounds of the algorithm every task is performed Θ(log n)
times whp, possibly by different processors when at most fn processors can crash.

Proof sketch. In the worst case all failure prone processors will crash in the first
round of the algorithm. Thus, it is sufficient to prove that whp every task is
performed Θ(log n) times among the processors in P ′. In order for every task to
be performed Θ(log n) times whp by processors in P ′ it is sufficient to increase
the value of L by a factor λ = 1

1−f (compared to the case without crashes). Since
all processors pick a new task to be performed from the set of n tasks uniformly
at random (line 10 of algorithm A) we can prove the results by carrying out the
computation using Chernoff bound as in the proof of Lemma 2. �
Now we prove that whp after Θ(log n) rounds of the algorithm every worker in
P ′ holds the same set of triples for every task.

Lemma 6. If processors in P ′ collectively hold Θ(log n) calculated results for
every task, then whp in Θ(log n) rounds of the algorithm each processor i ∈ P ′

obtains all Θ(log n) triples for every task j, when at most fn processors crash.

Proof sketch. Consider a triple ϑ that is generated (or obtained by gossiping) by
some processor in P ′. The proof of Lemma 4 uses the results from Lemma 3 and
CCP. Both of these results rely on the fact that there are Θ(n) participating
processors, and since there are at most fn processors that crash we have Θ(n)
processors left in P ′. Therefore, following a similar line of analysis we can claim
the lemma with respect to the processors that do not crash until the end of
algorithm A and the triples possessed by them. �

The final theorem shows that whp the correct results for each task are com-
puted in Θ(log n) rounds by the processors in P ′.

448 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

Theorem 4. Algorithm A computes all n tasks correctly at every live processor
in Θ(log n) rounds whp and has work Θ(n logn) in the presence of at most fn
crashes.

Proof sketch. To prove this we need to show that, at termination, for any task t
the majority of the results are computed correctly whp. Note that if we consider
only the results (triples) that are generated by the processors in P ′ then our high
probability correctness results can be shown similarly to the proof of Theorem 1.
Suppose that we also consider the triples that are generated by the processors
that are not in P ′. Note that according to our assumption the average probability
of a worker returning an incorrect result remains inferior to 1/2 in spite of
crashes. Hence, the probability of correctly choosing the result for a task is not
affected. Since algorithm A terminates in Θ(log n) rounds its work cannot exceed
Θ(n log n). �
Clearly in the presence of up to fn crashes the message and bit complexities, as
well as the space complexity of the algorithm A remains unchanged. Although
the complexity results do not change in the presence of crashes, it is important
to note that the overall number of rounds may increase by a constant factor of
λ = 1

1−f .
Finally, the algorithm is extended as discussed in the previous section to deal

with t tasks when t ≥ n. Given Theorem 4, the complexity bounds established
in Theorem 3 remain valid in the crash-extended failure model.

6 Simulation Results

To illustrate our analytical findings we present selected simulation results of
algorithm A (for t = n) in model F and in model Fc. We use model F as the
most general model, and we use model Fc to show the behavior of the algorithm
in one of the specialized settings. (We do not show simulations for all defined
models for paucity of space.)

Theorems 1 and 4 show that algorithm A performs all n tasks correctly whp at
every node in Θ(log n) rounds. In simulations we let L = k logn, where k > 0 is
a constant. We carried out simulations for up to n = 1000 tasks and processors,
and for modest values of k ∈ {2, 3, 4}. For every n paired with every k we ran the
simulation for 100 times and graphed the average of the percentage of incorrectly
calculated results as the function of n and k. In all simulations the calculated
results are always consistent among all processors in every run of the algorithm
as anticipated by Lemmas 4 and 6.

Figures 2 and 3 show results for model Fc and model F (without crashes)
respectively. For model Fc we let f = 1

4 of processors be faulty: these proces-
sors return incorrect results with probability p = 1. The rest of the processors
are correct. For model F we assume that the average probability of returning
incorrect results is inferior to 0.25. The results for models Fc and F are simi-
lar, showing the percentage of incorrect results is diminishing rapidly even for
modest k. Analysis shows that this error can be made as small as necessary by

Robust Network Supercomputing without Centralized Control 449

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

Pe
rc

en
ta

ge
 o

f
In

co
rr

ec
tly

 C
al

cu
la

te
d

R
es

ul
ts

Total number of tasks

Simulation Results for Model F_c when f=1/4

k=2
k=3
k=4

Fig. 2. Simulation results for model Fc

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

Pe
rc

en
ta

ge
 o

f
In

co
rr

ec
tly

 C
al

cu
la

te
d

R
es

ul
ts

Total number of tasks

Simulation Results for Model F

k=2
k=3
k=4

Fig. 3. Simulation results for model F

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

Pe
rc

en
ta

ge
 o

f
In

co
rr

ec
tly

 C
al

cu
la

te
d

R
es

ul
ts

Total number of tasks

Simulation Results for Model F with Crash Failures

k=2
k=3
k=4

Fig. 4. Simulation for model F with crashes

increasing k (of course if the average probability of calculating results incorrectly
tends to 1

2 , k may need to be substantial to guarantee the results).
Figure 4 shows the percentage of incorrectly calculated results in model F

with crashes. Here we let f = 3
5 fraction of processors be crash-prone, keeping

similar probabilities of returning incorrect results as before. Hence, the average
probability of returning an incorrect result is still inferior to 0.25 for all processors
that do not crash. The results again show diminishing error as k grows.

7 Conclusion

Abstracting the setting of network supercomputing with untrusted workers, we
defined a model of failures for workers that may return incorrect results, and
we presented and analyzed a decentralized algorithm that allows correct work-
ers to cooperatively perform a collection of tasks. The new algorithm breaks
with tradition and removes the assumption of the central infallible master pro-
cessor. The algorithm imposes only a logarithmic time overhead, while sharing
information about the progress of computation by means of gossip. Noteworthy,
each processor sends only one message for each iteration of the algorithm. We
showed that the algorithm performs all tasks correctly whp and we developed

450 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

a simulation of the algorithm to illustrate our analytical findings. Future work
includes considering more virulent failure behaviors and task sets with inter-task
dependencies.

References

1. Internet primenet server, http://mersenne.org/ips/stats.html
2. Seti@home, http://setiathome.ssl.berkeley.edu/
3. Chlebus, B., Kowalski, D.: Randomization helps to perform independent tasks

reliably. Random Structures and Algorithms 24(1), 11–41 (2004)
4. Dwork, C., Halpern, J.Y., Waarts, O.: Performing work efficiently in the presence

of faults. SIAM J. Comput. 27(5), 1457–1491 (1998)
5. Fernandez, A., Georgiou, C., Lopez, L., Santos, A.: Reliably executing tasks in the

presence of untrusted entities. In: Proc. of the 25th IEEE Symposium on Reliable
Distributed Systems, pp. 39–50 (2006)

6. Fernandez, A., Georgiou, C., Lopez, L., Santos, A.: Algorithmic mechanisms for
internet-based master-worker computing with untrusted and selfish workers. Tech.
rep., Proc. of the 24th IEEE Int’l Symposium on Parallel and Distributed Process-
ing (2010)

7. Fraigniaud, P., Giakkoupis, G.: On the bit communication complexity of random-
ized rumor spreading. In: Proc. of the 22nd ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2010, pp. 134–143 (2010)

8. Gao, L., Malewicz, G.: Toward maximizing the quality of results of dependent tasks
computed unreliably. Theory of Computing Systems 41(4), 731–752 (2007)

9. Georgiou, C., Shvartsman, A.A.: Do-All Computing in Distributed Systems: Co-
operation in the Presence of Adversity. Springer, Heidelberg (2008)

10. Kanellakis, P.C., Shvartsman, A.A.: Fault-Tolerant Parallel Computation. Kluwer
Academic Publishers (1997)

11. Konwar, K.M., Rajasekaran, S., Shvartsman, M.M.A.A.: Robust Network Su-
percomputing with Malicious Processes. In: Dolev, S. (ed.) DISC 2006. LNCS,
vol. 4167, pp. 474–488. Springer, Heidelberg (2006)

12. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

13. Paquette, M., Pelc, A.: Optimal decision strategies in byzantine environments.
Parallel and Distributed Computing 66(3), 419–427 (2006)

http://mersenne.org/ips/stats.html
http://setiathome.ssl.berkeley.edu/

	Robust Network Supercomputing without Centralized Control
	Introduction
	Model of Computation and Definitions
	Algorithm Description
	Algorithm Analysis
	Tolerating Crash Failures
	Simulation Results
	Conclusion
	References

