
Online Regenerator Placement�

George B. Mertzios1, Mordechai Shalom2,
Prudence W.H. Wong3, and Shmuel Zaks4

1 School of Engineering and Computing Sciences, Durham University, UK
george.mertzios@durham.ac.uk

2 TelHai College, Upper Galilee, 12210, Israel
cmshalom@telhai.ac.il

3 Department of Computer Science, University of Liverpool, Liverpool, UK
pwong@liverpool.ac.uk

4 Department of Computer Science, Technion, Haifa, Israel
zaks@cs.technion.ac.il

Abstract. Connections between nodes in optical networks are realized
by lightpaths. Due to the decay of the signal, a regenerator has to be
placed on every lightpath after at most d hops, for some given positive
integer d. A regenerator can serve only one lightpath. The placement of
regenerators has become an active area of research during recent years,
and various optimization problems have been studied. The first such
problem is the Regeneration Location Problem (Rlp), where the goal is
to place the regenerators so as to minimize the total number of nodes
containing them. We consider two extreme cases of online Rlp regard-
ing the value of d and the number k of regenerators that can be used
in any single node. (1) d is arbitrary and k unbounded. In this case a
feasible solution always exists. We show an O(log |X| · log d)-competitive
randomized algorithm for any network topology, where X is the set of
paths of length d. The algorithm can be made deterministic in some

cases. We show a deterministic lower bound of Ω
(

log(|E|/d)·log d
log(log(|E|/d)·log d)

)
,

where E is the edge set. (2) d = 2 and k = 1. In this case there is not
necessarily a solution for a given input. We distinguish between feasible
inputs (for which there is a solution) and infeasible ones. In the latter
case, the objective is to satisfy the maximum number of lightpaths. For
a path topology we show a lower bound of

√
l/2 for the competitive ra-

tio (where l is the number of internal nodes of the longest lightpath) on
infeasible inputs, and a tight bound of 3 for the competitive ratio on
feasible inputs.

Keywords: online algorithms, optical networks.

1 Introduction

Background. Optical wavelength-division multiplexing (WDM) is the most
promising technology today that enables us to deal with the enormous growth of
� This work was supported in part by the Israel Science Foundation grant No. 1249/08

and British Council Grant UKTELHAI09.

A. Fernández Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 4–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Online Regenerator Placement 5

traffic in communication networks, like the Internet. Optical fibers using WDM
technology can carry around 80 wavelengths (colors) in real networks and up to
few hundreds in testbeds. As satisfactory solutions have been found for various
coloring problems, the focus of studies shifts from the number of colors to the
hardware cost. These new measures provide better understanding for designing
and routing in optical networks.

A communication between a pair of nodes is done via a lightpath. The energy
of the signal along a lightpath decreases and thus amplifiers are used every fixed
distance. Yet, as the amplifiers introduce noise into the signal there is a need to
place a regenerator every at most d hops.

There is a limit imposed by the technology on the number of regenerators that
can be placed in a network node [3,5]. We denote this limit by k and refer to the
case where this limit is not likely to be reached by any regenerator placement as
k = ∞.

The problems. Given a network G, a set of lightpaths in G, and integers d and k,
we need to place regenerators at the nodes of the network, such that a) for each
lightpath there is a regenerator in at least one of each d consecutive internal
nodes, and b) at most k regenerators are placed at any node. When k = ∞
we consider the regenerator location problem (Rlp) where the objective is to
minimize the number of nodes that are assigned regenerators. When k is bounded
there are inputs for which there is no feasible regenerator placement that satify
both conditions. For example, consider the case d = 2 and k = 1, and three
identical lightpaths u−v−w−x. Each of these lightpaths must have a regenerator
either at v or w, and this is clearly impossible). In this case we consider the Path
Maximization Problem (Pmp) that seeks for regenerator placements that serve
as many lightpaths as possible. We consider online algorithms (see [2]) for these
problems.

Online algorithms. In the online setting the lightpaths are given one at a time,
the algorithm has to decide on the locations of the regenerators and cannot
change the decision later. An algorithm is c-competitive for Rlp if for every
input the number of locations used is no more than c times the locations used
by an optimal offline algorithm. An online algorithm is c-competitive for Pmp
if the number of lightpaths that it satisfies is at least 1/c times the number of
lightpaths that could be satisfied by an optimal offline algorithm.

Related Work. Placement of regenerators in optical networks has become an ac-
tive area in recent years. Most of the researches have focused on the technological
aspects of the problems, heuristics and simulations in order to reduce the num-
ber of regenerators, (e.g., [3,4,7,9,10,11,12]). The regenerator location problem
(Rlp) was shown to be NP-complete in [3], followed by heuristics and simula-
tions. In [5] theoretical results for the offline version of Rlp are presented. The
authors study four variants of the problem, depending on whether the number k
of regenerators per node is bounded, and whether the routings of the requests are
given. Regarding the complexity of the problem, they present polynomial-time
algorithms and NP-completeness results for a variety of special cases.

6 G.B. Mertzios et al.

We note that while considering the path topology, Rlp has implications for the
following scheduling problem: Assume a company has n cars and that car i needs
to be serviced within every at most d days between day ai and bi. Furthermore,
assume that the garage can serve at most k cars per day and charges a certain
cost each time the garage is used. The objective is to service the cars in the
fewest number of days and hence minimizing the number of times the garage is
used.

Other objective functions have also been considered in the context of regen-
erator placement. E.g., in [8] the problem of minimizing the total number of
regenerators is studied under other settings.

Our Contribution. In this paper we study the online version of the regenerator
location problem, and consider two extreme cases regarding the value of d and
the value k of the number of regenerators that can be used in any single node.

– Rlp: k = ∞, G and d are arbitrary (in this case there is a solution for every
input, and the measurement is the number of locations in which regenerators
are placed). We show:
• an O(log |X | · log d)-competitive randomized algorithm for any network

topology, that can be made deterministic (with the same competitive
ratio) for some cases including tree topology networks, where X is the
set of all paths of length d in G.

• a deterministic lower bound of Ω
(

log(|E|/d)·log d
log(log(|E|/d)·log d)

)
, where E is the

edge set of G.
– Pmp: G is a path, k = 1 and d = 2 (in this case there is not necessarily a

solution, and the measurement is the number of satisfied lightpaths). We dis-
tinguish between feasible inputs (for which there is a solution) and infeasible
ones, on a path topology, and show:
• a lower bound of

√
l/2 for the competitive ratio for general instances

which may be infeasible (where l is the number of internal nodes of the
longest lightpath).

• a tight bound of 3 for the competitive ratio of deterministic online algo-
rithms for feasible instances.

Organization of the paper. In Section 2 we present some preliminaries. In
Section 3 we consider general topology and analyze the first extreme case (k
unbounded). In Section 4 we analyze the other extreme case (k = 1) for a path
topology. In Section 5 we present further research directions.

2 Preliminaries

Given an undirected underlying graph G = (V, E) that corresponds to the
network topology, a lightpath is a simple path in G. We are given a set
P = {P1, P2, ..., Pn} of simple paths in G that represent the lightpaths. The
length of a lightpath is the number of edges it contains. The internal vertices

Online Regenerator Placement 7

(resp. edges) of a path P are the vertices (resp. edges) in P except the first and
the last ones.

A regenerator assignment is a function reg : V × P �→ {0, 1}. For any
v ∈ V, P ∈ P , reg(v, P) = 1 if a regenerator is assigned to P at node v. Note that
reg(v, P) = 1 only if v is an internal node of P . We denote by reg(v) the number
of regenerators located at node v, i.e., reg(v) =

∑
P∈P reg(v, P) . Denote by

cost(reg) the cost of the assignment reg, measured by the total number of loca-
tions where regenerators have been placed. Let R(reg) = {v ∈ V |reg(v) ≥ 1},
then cost(reg) = |R(reg)|.

Given an integer d, a lightpath P is d-satisfied by the regenerator assignment
reg if it does not contain d consecutive internal vertices without a regenera-
tor, in other words, for any d consecutive internal vertices of P , v1, v2, · · · , vd,∑d

i=1 reg(vi, P) ≥ 1. A set of lightpaths is d-satisfied if each of its lightpaths is
d-satisfied. Note that a path with at most d edges is d-satisfied regardless of reg,
therefore we assume without loss of generality that every path P ∈ P has at least
d + 1 edges. For the sake of the analysis we assume, without loss of generality,
that every edge of the graph is used by at least one path P ∈ P . We want to
emphasize that this is not assumed by the online algorithms, (what would be a
loss of generality).

The Regenerator Location Problem (Rlp): given a graph G = (V, E), a set P
of paths in G, a distance d ≥ 1, determine the smallest number of nodes R ⊆ V
to place regenerators so that all the paths in P are d-satisfied. Formally:

Regenerator Location Problem (Rlp)a

Input: An undirected graph G = (V, E), a set P of paths in G, d ≥ 1
Output: A regenerator assignment reg such that every path P ∈ P is
d-satisfied.
Objective: Minimize cost(reg).

a The offline version of this problem is denoted as RPP/∞/+ in [5].

reg∗ denotes an optimal regenerator assignment and cost∗ denotes its cost
cost(reg∗). We consider the online version of the problem in which G and d are
given in advance and the paths P = {P1, P2, . . . , Pn} arrive in an online manner,
one at a time in this order. An online algorithm finds a regenerator assignment
as the input arrives and once reg(v, P) is set to 1 it cannot be reverted to 0. An
online algorithm Alg for Rlp is c-competitive, for c ≥ 1, if its cost is at most
c · cost∗. Clearly, when d = 1, cost(reg) = |VI | for any regenerator assignment reg
where VI is the set of nodes that are internal nodes of some lightpaths, therefore
any algorithm is 1-competitive. Hence we consider the case d ≥ 2.

When k is finite, we study the Path Maximization Problem (Pmp): given a
graph G = (V, E), a set P of paths in G, a distance d ≥ 1, place regenerators so
that the number of d-satisfied paths in P is maximized. Formally:

8 G.B. Mertzios et al.

Path Maximization Problem (Pmp)

Input: An undirected graph G = (V, E), a set P of paths in G, d, k ≥ 1
Output: A regenerator assignment reg for which reg(v) ≤ k for every
node v ∈ V .
Objective: Maximize the number of d-satisfied paths in P .

An online algorithm Alg for Pmp is c-competitive, for c ≥ 1, if the number of
paths it satisfies is at least 1/c times the number of paths satisfied by an optimal
offline algorithm.

3 The Regenerator Location Problem

In this section we consider the case where the technological limit imposed on the
number of regenerators at a node is unlikely to be reached by any regenerator
assignment. In this case we can assume without loss of generality that whenever
there is a node v and a path P with reg(v, P) = 1 then reg(v, P ′) = 1 for every
other path P ′ ∈ P , because this does not affect cost(reg). In other words for any
given node v and any two paths P, P ′ ∈ P we assume reg(v, P) = reg(v, P ′),
thus reg(v) =

∑
P∈P reg(v, P) ∈ {0, |P|}. In this section we divide the objective

function by |P| and denote by reg(v) the value reg(v, P1) = reg(v, P2), = · · · .

3.1 Upper Bound for Path Topology

Lemma 1. There is a 2-competitive deterministic online algorithm in path
topologies for Rlp.

Proof. Let V = {v1, v2, . . . , vn} be the nodes of the path and E =
{{vi, vi+1} |1 ≤ i < n} be its edge set. We set R = {vd, v2d, . . .} ⊆ V and start
with the empty assignment, i.e. reg(v) = 0 for every node v ∈ V . When a path
P is presented to the algorithm we set reg(v) = 1 for every v ∈ R ∩ P . This
strategy clearly d satisfies all the paths.

We show that this algorithm is 2-competitive. Consider the union ∪P of all the
paths in the input. ∪P is a disjoint union of maximal sub-paths of G. Consider
such a maximal sub-path, and let � be its length. Clearly, our algorithm uses at
most � �

d locations among the nodes of this sub-path. Note that � > d, because
otherwise there is at least one path in the input with at most d edges. Using
these fact one can show by induction on m = � �

2d that any solution uses at
least m locations among the nodes of this sub-path. ��

3.2 Upper Bound for General Topologies

In this section we use the randomized algorithm presented in [1] for the online
set-cover problem. For completeness, we provide brief descriptions of the problem
and the algorithm.

Online Regenerator Placement 9

An instance of the set cover problem is a pair (X,S) where X = {x1, x2, . . .}
is a ground set of elements, and S = {S1, S2, . . .} is a collection of subsets of
X . Given such an instance, one has to find a subset C ⊆ S that covers X , i.e.
∪Si∈CSi = X . In [1] an online variant of the set cover problem is considered. An
instance of the online set cover problem is a triple (X,S, X ′) where X and S are
as before, and X ′ ⊆ X is presented in an online manner, one element at a time.
At any given time one has to provide a cover C′ ⊆ S of X ′, i.e. X ′ ⊆ ∪Si∈C′Si.
Once a set is included in the cover C′ this decision can not be changed when
subsequent input is received. In other words, whenever an element is presented
an online algorithm has to cover it by at least one set from S if it is not already
covered. It is important to note that X and S are known in advance but X ′ is
given online.

We proceed with a description of the online algorithm in [1]. We denote by

S(i) the set of all sets containing xi, i.e. S(i) def
= {Sj ∈ S|xi ∈ Sj}. Let f an upper

bound for the frequencies of the elements, i.e. ∀xi ∈ X,
∣∣S(i)

∣∣ ≤ f . The algorithm
associates a weight wj with each set Sj which is initiated to 1/f . The weight
w(i) of each element xi ∈ X is the sum of the weights of the sets containing it,
i.e. w(i) =

∑
Sj∈S(i) wj . See pseudo-code in Algorithm OnLineSetCover below

for a description of the algorithm.

Algorithm 1. OnLineSetCover

1: When a non-covered element xi ∈ X is presented:
2: Find the smallest non-negative integer q such that 2q · w(i) ≥ 1;
3: for each set Sj ∈ S(i) do
4: δj = 2q · wj − wj ;
5: wj+ = δj ;
6: end for
7: do 4 log |X| times
8: Choose at most one set (from S(i)) to the cover
9: where each set Sj is chosen with probability δj/2;

From an instance (G,P , d) of Rlp we build an instance (X,S, X ′) of the
online set cover problem. X is the set of all possible paths of length d in G and
|S| = |V |. Each set Sj ∈ S consists of all the paths in X containing the node vj .
For a path P , let P (d) be the set of all its sub-paths of length d. X ′ is ∪P∈PP (d).
Now we observe that for any feasible regenerator assignment reg, R(reg) is a set
cover, and vice versa, i.e. any set cover C corresponds to a feasible regenerator
assignment reg such that R(reg) = C. Indeed, a path P is d-satisfied if and only if
every path of P (d) ⊆ X ′ contains a node vj with regenerators, that corresponds
to a set Sj ∈ C containing this path. Therefore all the paths P ∈ P are d-satisfied
if and only if C constitutes a set cover of X ′. Moreover the cost of the set cover is
equal to the number of regenerator locations, i.e. |C| =

∑
vj

reg(vj) = cost(reg).
When a path P is presented, we present to OnLineSetCover all the paths

of P (d) one at a time. For each set Sj added to the cover by OnLineSetCover,
we set reg(vj) = 1.

10 G.B. Mertzios et al.

We first note that although the number of sets in X is exponential in terms
of the input size of our problem, for every path P the set P (d) contains only a
polynomial number of paths, therefore the first loop of Algorithm OnLineSet-
Cover runs only a polynomial number of times. The second loop is executed
log |X | times, which is also polynomial in terms of our input size.

Algorithm OnLineSetCover is proven to be O(log |X | · log f)-competitive.
Note that a path of length d contains d + 1 nodes, thus f = d + 1. As the cost
of a cover is equal to the cost of a solution of (G,P , d) we conclude

Lemma 2. There is an O(log |X | · log d)-competitive polynomial-time random-
ized online algorithm for instances (G,P , d) of Rlp where X is the set of all the
paths of length d in G.

In [1] algorithm OnLineSetCover is de-randomized using the method of condi-
tional expectation. However in this method, in order to calculate the conditional
expectancies, one has to consider all the elements of X . In our case X is the set of
all paths of length d in G which is, in general, exponential in d, thus applying the
technique in [1] directly to our case leads to an exponential algorithm. Although
the definition of competitive ratio does not require polynomial running-time,
for practical purposes we would like to have polynomial-time algorithms. The
following theorem states some cases for which this condition is satisfied.

Theorem 1. There is an O(log |X | · log d)-competitive polynomial-time deter-
ministic online algorithm for instances (G,P , d) of Rlp in each one of the fol-
lowing cases where X is the set of all the paths of length d in G.

– Both d and the maximum degree Δ(G) of G are bounded by two constants.
– The number of cycles in G is bounded, in particular G is a ring.
– G has bounded treewidth, in particular G is a tree.

3.3 Lower Bound for General Topologies

In this section we show a lower bound nearly matching the upper bound in the
previous subsection, by using the online version of a reduction in [5] of set cover
to Rlp. Given an instance (X,S, X ′) of online set cover we build an instance
(G,P , d) of Rlp as follows (see Figure 1).

We set d = |S|. The node set V (G) of G is S ∪ V1 ∪ V2 where V1 =
{si, ti|1 ≤ i ≤ |X |} and V2 = {vij |1 ≤ i ≤ |X | , 1 ≤ j ≤ |S|}. We proceed with
a description of the paths P . The edge set of G will be all the edges induced by
the paths of P . For each element xi there is a path Pi in P between si and ti. If
xi ∈ Sj then Sj ∈ V (G) is an internal node of the Pi, otherwise vij is an internal
node of Pi. The internal nodes are ordered within the path Pi by their j index,
i.e. the path xi is of the form (si − u1 − u2 − · · · − u|S| − ti) where uj is either
Sj or vij as described before.

By this construction every path xi has exactly |S| = d internal nodes. There-
fore a regenerator assignment is feasible if and only if it assigns at least one
regenerator to one of the internal nodes of every path. Without loss of gen-
erality every element xi is contained in at least one set Sj , otherwise no set

Online Regenerator Placement 11

v2,2

Sm−1 Sm

s1

s2

s3

sn−1

sn

S1 S2 S3

t1

t2

t3

tn−1

tn

v1,1

Fig. 1. Reduction from online set cover to Rlp

cover exists. A feasible regenerator assignment reg corresponds to a set cover,
in the following way. We first obtain a regenerator assignment reg′ such that
reg′(vij) = 0 for every vij ∈ V2 and cost(reg′) ≤ cost(reg). For every node with
reg(vij) = 1 we set reg′(vij) = 0, and if Pi is not d-satisfied in reg′ we choose
arbitrarily a node Sj on Pi and set reg′(Sj) = 1. Now R(reg′) ⊆ S is a set cover
of cardinality at most cost(reg).

Lemma 3. There is no O(log(|E|/d)·log d
log(log(|E|/d)·log d))-competitive online algorithm for

Rlp.

Sketch of proof: Assume by contradiction that there is an O(log(|E|/d)·log d
log(log(|E|/d)·log d))-

competitive randomized algorithm Alg for Rlp. From an instance (X,S, X ′) of
online set cover we build an instance of Rlp as described in the above discussion,
and whenever we are presented an element xi ∈ X ′ ⊆ X we present the path
Pi to Alg. We transform the regenerator assignment returned by Alg to a set
cover C as described above. Note that the transformation does not exclude a set
Sj from C if is was already in C before xi was presented, thus C is an online set
cover. We note that |V | = Θ(|X | · |S|), |E| = Θ(|V |), d = Θ(|S|). This implies
an O(log|X|·log|S|

log(log|X|·log|S|))-competitive algorithm for the online set cover problem,
which is proven to be impossible in [1]. �

4 Path Maximization in Path Topology. (k = 1, d = 2)

In this section we consider possibly the simplest instances of the Pmp problem,
i.e. the case where the network is a path, and k = 1, d = 2.

We say that an instance is feasible, if there is a regenerator assignment that d-
satisfies all the paths in P , and infeasible otherwise. We first show in Section 4.1
that if the input instance is infeasible, no online algorithm (for Pmp) has a small

12 G.B. Mertzios et al.

competitive ratio; precisely, we show that no online algorithm is better than
√

l-
competitive, where l is the length of the longest path in the input. We then focus
on feasible instances in Section 4.2.

4.1 Infeasible Instances

We show that there is a lower bound in terms of the length of the longest path
if the input instance is infeasible, as follows:

Lemma 4. Consider the path topology. For k = 1 and d = 2, any deterministic
online algorithm for Pmp has a competitive ratio at least

√
l/2, where l is the

number of internal vertices of the longest path.

Proof. The adversary first releases a path of length l +1 with l internal vertices.
The online algorithm has to satisfy this path, otherwise, the competitive ratio
is unbounded. Then the adversary releases

√
l paths along the first path each

with
√

l (disjoint) internal vertices. If the online algorithm does not satisfy any
of these paths, the competitive ratio is at least

√
l and we are done. Suppose x

of these paths are satisfied. In order to make the first path and these x paths
2-satisfied, there is one regenerator placed in each node along these x paths. For
each of these x paths P , the adversary releases

√
l/2 paths along P each with

two (disjoint) internal vertices. The online algorithm is not able to satisfy any
of these short paths and the total number of 2-satisfied paths is x + 1. On the
other hand, the optimal offline algorithm satisfies all the paths except the first
path of length l, i.e.,

√
l + x

√
l/2 paths. As a result, the competitive ratio of the

online algorithm is (x+2)
√

l
2(x+1) >

√
l/2. ��

4.2 Feasible Instances

We now consider feasible instances, that is, instances, where there exists a place-
ment of regenerators such that all paths are satisfied. We will prove that, for
feasible instances, there is a tight bound of 3 for the competitive ratio. That is,
we provide an online algorithm Algorithm 2 with competitive ratio 3, and we
show a lower bound of 3 for the competitive ratio of every deterministic online
algorithm for feasible instances.

Algorithm 2 adopts a greedy approach and satisfies a newly presented path
whenever possible. When a path Pi is presented, it checks whether there exist
two consecutive internal vertices of Pi that are already assigned regenerators for
previous paths. If yes, this means it is impossible (under the current assignment)
to satisfy Pi. Otherwise, the algorithm satisfies Pi, as follows. There are two
possible locations for the leftmost regenerator of Pi, namely, either its leftmost
internal node, or the internal node adjacent to it. Among these two alternatives
we choose the alternative that uses the smaller number of regenerators by trying
the following regenerator allocation process. Suppose we put a regenerator at a
certain internal node v of Pi. We check whether the node at distance 2 from v
already has a regenerator; if no, we put a regenerator there and continue; if yes,

Online Regenerator Placement 13

we put a regenerator at the node at distance 1 from v1. This continues until Pi

is 2-satisfied.

Algorithm 2. Online algorithm for a path-topology, k = 1 and d = 2.
1: When the path Pi is presented:
2: if it is not possible to place regenerators to completely satisfy Pi then
3: leave Pi unsatisfied;
4: else
5: using the procedure described in the preamble of Algorithm 2, satisfy Pi using

the smallest possible number of new regenerators
6: end if

Theorem 2. Algorithm 2 is 3-competitive for Pmp for feasible inputs in path
topologies, when k = 1 and d = 2.

Proof. Let S and U denote the sets of paths that have been satisfied and unsatis-
fied by the algorithm, respectively. We prove the theorem by showing that |U | ≤
2|S|. Then, the competitive ratio of Algorithm 2 is |P|

|S| = |U|+|S|
|S| ≤ 2|S|+|S|

|S| = 3,
i.e., Algorithm 2 is 3-competitive. In the sequel we prove that |U | ≤ 2|S| by
associating with every path in U some paths of S, and showing that each path
in S is associated with at most two paths in U .

Note that for d = 2 a feasible solution can be described as follows: Remove
the first and last edges of every path P ∈ P presented, and return a vertex cover
of the remaining edges. Therefore, in this proof, when we refer to a path Pi, we
mean the path that the leftmost and rightmost edges have been removed.

Note also that, since the instance is assumed to be feasible, for every edge uv
there exist at most two paths Pi, Pj , such that uv ∈ Pi and uv ∈ Pj (indeed,
otherwise there would exist at least one path that is unsatisfied on the edge
uv). Suppose that a path Pi presented at iteration i is unsatisfied, i.e., when Pi

arrives, it cannot be satisfied by placing new regenerators. Then, there exists
an edge ab ∈ Pi, where both a and b already have regenerators of paths that
have been previously satisfied by the algorithm. We distinguish now two cases
regarding the regenerators on vertices a and b.

Case 1: reg(a, Pj) = reg(b, Ph) = 1, with j, h < i and j �= h, where the paths
Pj , Ph have been satisfied previously by the algorithm.

We first consider the cases where ab ∈ Pj or ab ∈ Ph. Suppose that ab ∈ Pj .
Then, since also ab ∈ Pi by assumption, it follows that ab /∈ Ph, since the
instance is feasible. That is, b is an endpoint of Ph. In this case, associate the
unsatisfied path Pi to the satisfied path Ph. Suppose now that ab ∈ Ph. Then
it follows similarly that ab /∈ Pj , and thus a is an endpoint of Pj . In this case,
associate the unsatisfied path Pi to the satisfied path Pj .
1 The node at distance 1 must have no regenerator, else there are two consecutive

internal nodes with regenerators and the algorithm would have rejected the path.

14 G.B. Mertzios et al.

Suppose now that ab /∈ Pj and ab /∈ Ph, i.e., a is an endpoint of Pj and b is
an endpoint of Ph. If there exists another path P� that is left unsatisfied by the
algorithm, such that ab ∈ P�, then associate the unsatisfied paths {Pi, P�} to
the satisfied paths {Pj , Ph}. Otherwise, if no such path P� exists, then associate
the path Pi to either Pj or Ph.

Case 2: reg(a, Pj) = reg(b, Pj) = 1, where j < i and the path Pj has been
satisfied previously by the algorithm.

The edge ab ∈ Pj . Furthermore, neither a nor b is an endpoint of path Pj ,
since otherwise Algorithm 2 would not place a regenerator on both vertices a and
b of path Pj . That is, there exist two vertices d, c of Pj , such that (d, a, b, c) is a
subpath of Pj . Moreover, since a and b are consecutive vertices of Pj , according
to the algorithm there must exist two other satisfied paths Ph, P�, such that
reg(d, Ph) = reg(c, P�) = 1.2 Note also that ab /∈ Ph and ab /∈ P�, since the
instance is feasible, and since ab ∈ Pi and ab ∈ Pj . That is, d or a is an endpoint
of Ph, while b or c is an endpoint of P�.

We claim that there exist at most two different unsatisfied paths Pi and Pi′

that include at least one of the edges da, ab, bc. Suppose otherwise that there
exist three such unsatisfied paths Pi, Pi′ , Pi′′ . Recall that ab ∈ Pi and that
da, ab, bc ∈ Pj . Therefore, since the instance is assumed to be feasible, it follows
that, either da ∈ Pi′ and bc ∈ Pi′′ , or bc ∈ Pi′ and da ∈ Pi′′ . Since these cases
are symmetric, we assume without loss of generality that da ∈ Pi′ and bc ∈ Pi′′ .
In any optimal (i.e., offline) solution, at least one of {a, b} has a regenerator
for path Pj ; assume without loss of generality that reg(b, Pj) = 1 (the other
case reg(a, Pj) = 1 is symmetric). Then, it follows that reg(a, Pi) = 1. Then,
since the edge da must be satisfied for both paths Pj and Pi′ , it follows that
reg(d, Pj) = reg(d, Pi′) = 1. This is a contradiction, since every vertex can have
at most one regenerator. Therefore there exist at most two different unsatisfied
paths Pi, Pi′ that include at least one of the edges da, ab, bc.

In the case that Pi is the only unsatisfied path that includes at least one of the
edges da, ab, bc, associate the unsatisfied path Pi to either the satisfied path Ph or
to the satisfied path P�. Otherwise, if there exist two different unsatisfied paths
Pi, Pi′ that include at least one of the edges da, ab, bc, associate the unsatisfied
paths {Pi, Pi′} to the satisfied paths {Ph, P�}.

We observe that by the above associations of unsatisfied paths to satisfied
ones, that at most two unsatisfied paths are associated to every satisfied path
P (i.e., at most one to the left side and one to the right side of P , respectively).
This gives |U | ≤ 2|S| and the theorem follows. ��

2 Here we simplify the discussion slightly by assuming that the path Pi does not
contain a chain of two internal edges that both do not belong to any other paths
because the algorithm can simply assign regenerators to alternate internal nodes
without conflicting any other paths and this would not affect the number of paths
that can be satisfied by the algorithm.

Online Regenerator Placement 15

Lemma 5. Any deterministic online algorithm for Pmp has a competitive ratio
at least 3 even when the instance is restricted to feasible ones path topologies and
k = 1, d = 2.

Proof. We will prove that, for every ε > 0, there exists an input such that every
algorithm has competitive ratio at least 3−ε. Choose n, such that 2

n+1 < ε. The
adversary provides initially a path P0 with 13n − 2 edges. The algorithm must
satisfy the path P0, since otherwise the adversary stops and the competitive
ratio is infinite. We divide P0 into n subpaths Pi, i = 1, 2, . . . , n, with 11 edges
each, where between two consecutive subpaths there exist two edges.

Consider any such subpath Pi, i = 1, 2, . . . , n. Suppose that there exist two
edges ab and cd of Pi, where {a, b}∩{c, d} = ∅, such that reg(a, P0) = reg(b, P0) =
1 and reg(c, P0) = reg(d, P0) = 1. Then the adversary provides next the paths
Pi,1 = (a, b) and Pi,2 = (c, d). These two paths Pi,1 and Pi,2 can not be satisfied,
since each of the vertices a, b, c, d has a regenerator for path P0.

Suppose that there do not exist two such edges ab and cd of Pi. That is, there
exist at most three consecutive vertices u1, u2, u3 of Pi, such that reg(u1, P0) =
reg(u2, P0) = reg(u3, P0) = 1, while for every other edge uu′ of Pi, there exists a
regenerator for P0 either on vertex u or on vertex u′. Then, it is easy to check
that there always exist five consecutive vertices v1, v2, v3, v4, v5 of Pi, such that
reg(v1, P0) = reg(v3, P0) = reg(v5, P0) = 1 and reg(v2, P0) = reg(v4, P0) = 0.

The adversary now provides the path P ′
i = (v2, v3, v4). Thus, since

reg(v3, P0) = 1 and reg(v2, P0) = reg(v4, P0) = 0, the only way that the al-
gorithm can satisfy P ′

i is to place regenerators for P ′
i at the vertices v2 and v4

(that is, reg(v2, P
′
i) = reg(v4, P

′
i) = 1).

The adversary proceeds as follows. In the case where the algorithm chooses
not to satisfy the path P ′

i , the adversary does not provide any other path that
shares edges with Pi. Otherwise, if the algorithm satisfies P ′

i , then the adversary
provides the paths P ′′

i = (v1, v2) and P ′′′
i = (v4, v5). In this case, reg(v2, P

′
i) =

reg(v4, P
′
i) = 1 and reg(v1, P0) = reg(v5, P0) = 1, and thus the paths P ′′

i and P ′′′
i

remain unsatisfied by the algorithm. In the sequel we show that the instance
constructed in the proof is feasible. We prove that the instance delivered by the
adversary is indeed a feasible instance. To this end, we provide a placement of
the regenerators such that the path P0, as well as all paths Pi,1, Pi,2, P ′

i , P ′′
i ,

and P ′′′
i are satisfied. First, we place a regenerator for P0 on the vertex that lies

between every two consecutive subpaths Pi and Pi+1 of P0. Inside the subpaths
Pi of P0, we place regenerators for P0 on vertices with distance two between
two regenerators. Then, we can assign appropriately regenerators to the paths
Pi,1, Pi,2, P ′

i , P ′′
i , and P ′′′

i . In particular, for every subpath Pi of P0, for which
the opponent provides the path P ′

i , we have reg(v3, P
′
i) = 1 and reg(v2, P0) =

reg(v4, P0) = 1. Furthermore, for the subpaths Pi of P0, for which the opponent
provides also the paths P ′′

i and P ′′′
i , we have reg(v1, P

′′
i) = reg(v5, P

′′′
i) = 1.

Therefore, there exists a placement of regenerators on the vertices of the paths
of the instance that the opponent delivers, such that all paths are satisfied. That
is, the instance is feasible.

16 G.B. Mertzios et al.

Denote now by h1 the number of subpaths Pi, for which the algorithm adds
the paths Pi,1 and Pi,2. Furthermore, denote by h2 the number of subpaths Pi,
for which the algorithm adds the path P ′

i , but not the paths P ′′
i and P ′′′

i . Finally,
denote by h3 the number of subpaths Pi, for which the algorithm adds the three
paths P ′

i , P ′′
i , and P ′′′

i . Clearly, h1 + h2 + h3 = n. The total number of paths
that the adversary provided equals 1 + 2h1 + h2 + 3h3, while the number of
satisfied paths equals 1 + h3. That is, the competitive ratio of the algorithm is
1+2h1+h2+3h3

1+h3
≥ 1+h1+h2+3h3

1+h3
= 3 + n−h3−2

1+h3
. Therefore, since h3 ≥ n, it follows

that the competitive ratio of the algorithm is at least 3 − 2
1+n > 3 − ε. Since

this holds for every ε > 0, it follows that any deterministic online algorithm has
competitive ratio at least 3. This completes the proof of the lemma. ��

5 Future Work

We list some open problems and research directions:

– Close the gap between the bounds shown in this paper. In particular, we used
in Section 3 a known approximation result of set cover and modified it for our
problem. It might be of interest to improve the upper bound by developing a
better algorithm for these special instances of the set cover problem. However
we note that OnLineSetCover does not use the set of all potential elements
but only its size. Therefore if the algorithm is supplied with an a priori
information about the total length of the paths to be received, the algorithm
can use it to get an upper bound which is logarithmic in terms of this bound,
instead of the number of all possible paths of size d which can be much bigger.

– Extend the results for other values of the parameters d and k.
– Consider the regenerator location problem when also traffic grooming is al-

lowed (that is, when up to g (the grooming factor) paths that share an edge
can be assigned the same wavelength and can then share regenerators). In
[6] optimizing the use of regenerators in the presence of traffic grooming is
studied, but with two fundamental differences: (1) the cost function there
is the number of locations where regenerators are used rather than the to-
tal number of regenerators suggested here, and (2) the authors consider the
online case, where the requests for connection are not known a-priori, while
here all requests are given in advance.

– Consider other objective functions (some of them are discussed in Section 1).

References

1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, S.: The online set cover
problem. SIAM J. Computing 39(2), 361–370 (2009)

2. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

3. Chen, S., Ljubic, I., Raghavan, S.: The regenerator location problem. Net-
works 55(3), 205–220 (2010)

Online Regenerator Placement 17

4. Fedrizzi, R., Galimberti, G.M., Gerstel, O., Martinelli, G., Salvadori, E., Saradhi,
C.V., Tanzi, A., Zanardi, A.: Traffic independent heuristics for regenerator site se-
lection for providing any-to-any optical connectivity. In: Proceedings of IEEE/OSA
Conference on Optical Fiber Communications, OFC (2010)

5. Flammini, M., Marchetti-Spaccamela, A., Monaco, G., Moscardelli, L., Zaks, S.: On
the complexity of the regenerator placement problem in optical networks. IEEE-
TON 19(2), 498–511 (2011)

6. Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., Zaks, S.: Optimizing Re-
generator Cost in Traffic Grooming. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.)
OPODIS 2010. LNCS, vol. 6490, pp. 443–458. Springer, Heidelberg (2010)

7. Kim, S.W., Seo, S.W.: Regenerator placement algorithms for connection estab-
lishment in all-optical networks. IEE Proceedings Communications 148(1), 25–30
(2001)

8. Mertzios, G.B., Sau, I., Shalom, M., Zaks, S.: Placing Regenerators in Optical
Networks to Satisfy Multiple Sets of Requests. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6199, pp. 333–344. Springer, Heidelberg (2010)

9. Pachnicke, S., Paschenda, T., Krummrich, P.M.: Physical impairment based re-
generator placement and routing in translucent optical networks. In: Optical Fiber
Communication Conference and Exposition and The National Fiber Optic Engi-
neers Conference, page OWA2. Optical Society of America (2008)

10. Sriram, K., Griffith, D., Su, R., Golmie, N.: Static vs. dynamic regenerator as-
signment in optical switches: models and cost trade-offs. In: Proceedings of the
IEEE Workshop on High Performance Switching and Routing (HPSR), pp. 151–
155 (2004)

11. Yang, X., Ramamurthy, B.: Dynamic routing in translucent WDM optical net-
works. In: Proceedings of the IEEE International Conference on Communications
(ICC), pp. 955–971 (2002)

12. Yang, X., Ramamurthy, B.: Sparse regeneration in translucent wavelength-routed
optical networks: Architecture, network design and wavelength routing. Photonic
Network Communications 10(1), 39–53 (2005)

	Online Regenerator Placement
	Introduction
	Preliminaries
	The Regenerator Location Problem
	Upper Bound for Path Topology
	Upper Bound for General Topologies
	Lower Bound for General Topologies

	Path Maximization in Path Topology. (k=1, d=2)
	Infeasible Instances
	Feasible Instances

	Future Work
	References

