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Abstract. Replication is a standard technique for fault-tolerance in distributed
systems modeled as deterministic finite state machines (DFSMs or machines).
To correct f crash faults among n machines, replication requires n f additional
backup machines. We present a fusion-based solution that requires just f addi-
tional backup machines (called fusions or fused backups). In this paper, we first
propose a fundamental problem regarding DFSMs, independent of fault toler-
ance, that has not been explored in the literature so far: Given a machine M, with
a set of states and a set of events, can we replace it with machines each containing
fewer events than M? To formalize this we define a (k,e)-event decomposition of
a given machine M, that is a set of k machines each with at least e events fewer
than the event set of M, that acting in parallel, are equivalent to M. We present an
algorithm to generate such machines with time complexity O(|XM |3|ΣM |e), where
XM is the set of states and ΣM the set of events of M. Second, we use our event
decomposition algorithm to generate fused backups that can correct faults among
a given set of machines. We show that these backups are minimal w.r.t the number
of states they contain and the number of events in their event set. Third, we use
the notion of locality sensitive hashing to present algorithms for the detection and
correction of faults for the fusion-based solution. The algorithm for the detection
of Byzantine faults has time complexity O(n f ) on average, which is the same as
that for replication. The algorithm for the correction of both crash and Byzantine
faults has time complexity O(nρ f ) with high probability (w.h.p), where ρ is the
average state reduction achieved by fusion. We show that for small values of n
(for most practical systems, n < 10) and ρ (average value of ρ < 2 in our ex-
periments), this results in almost no overhead as compared to replication. Finally,
we evaluate fusion on the widely used MCNC’91 benchmarks for DFSMs and
results show that the average state space savings in fusion (over replication) is
38% (range 0-99%), while the average event-reduction is 4% (range 0-45%).
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1 Introduction

Distributed applications often use deterministic finite state machines (or just machines)
to model computations such as regular expressions for pattern detection, syntactical
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analysis of documents or mining algorithms for large data sets. These machines exe-
cuting on distinct distributed processes are often prone to faults. Traditional solutions
to this problem involve some form of replication, in which to correct f crash faults
[21] among n given machines (referred to as primaries), f copies of each primary are
maintained [14,23,22]. If the backups start from the same initial state as the corre-
sponding primaries and act on the same events, then in the case of faults, the state of
the failed machines can be recovered from one of the remaining copies. These backups
can also correct � f /2� Byzantine faults [15], where the processes lie about the state of
the machine, since a majority of truthful machines is always available. This approach
is expensive both in terms of the total number of backup machines, n f and the total
backup state space.

Consider a distributed application that is searching for three different string patterns
among a huge file, as modeled by the state machines A, B and C shown in Fig. 1. A state
machine in our system consists of a finite set of states (including the initial execution
state) and a finite set of events. On application of an event, the state machine transitions
to the next state based on the state-transition function. For example, machine A in Fig.
1 contains the states {a0, a1}, events {0, 2} and the initial state, shown by the dark ended
arrow, is a0. The state transitions are shown by the arrows from one state to another.
Hence, if A is in state a0 and event 0 is applied to it, then it transitions to state a1. In this
example, A checks the parity of {0, 2} and so, if it is in state a0, then an even number of
0s or 2s have been applied to the machine and if it is in state a1, then an odd number
of the inputs have been applied. Machines B and C check for the parity of {1, 2} and {0}
respectively.

To correct one crash fault among these machines, replication requires a copy of each
of them, resulting in three backup machines, consuming total state space of eight (23).
Rather than replicate the machines, we can correct one fault by maintaining just one
additional machine F1 shown in Fig. 1. The relevant events from the client (or environ-
ment) are applied to all the machines. So if the event sequence 0, 0, 1, 2 is applied on
all the machines, A, B, C and F1 will be in states a1, b0, c0 and f 1

1 respectively. Assume
a crash fault in C. Given the parity of 1s (state of F1) and the parity of 1s or 2s (state of
B), we can first determine the parity of 2s. Using this, and the parity of 0s or 2s (state
of A), we can determine the parity of 0s (state of C). Hence, we can correct the crash
fault in C using A, B and F1. This argument can be extended to correcting one fault
among any of the machines in {A, B,C, F1}. This approach consumes fewer backups
than replication (one vs. three) and less backup state space (two vs. eight).

However, it is not always possible to design these backups merely by inspection.
In Fig. 1, it may not be obvious that F1 and F2 can correct two crash faults among
the primaries. In [18], we present the theory and algorithm to automatically generate f
backup machines (called fusions) for any given set of primaries that can correct f crash
faults (or � f /2� Byzantine faults). In this paper, we focus on the three main challenges
faced by fusion which are the large event-sets of the fusions, the high time complexity
for the generation of fusions and the high cost for detecting and correcting faults. To
summarize our contributions in this paper:

Event-based Decomposition. We start with a question that is fundamental to the un-
derstanding of DFSMs, independent of fault-tolerance: Given a machine M, can it be
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Fig. 1. Fused-Backups for Fault Tolerance
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Fig. 2. Event-based Decomposition

replaced by two or more machines executing in parallel, each containing fewer events
than M? In other words, given the state of these fewer-event machines, can we uniquely
determine the state of M? In Fig. 2, the 2-event machine M (it contains events 0 and 1
in its event set), checks for the parity of 0s and 1s. M can be replaced by two 1-event
machines P and Q, that check for the parity of just 1s or 0s respectively. Given the state
of P and Q, we can determine the state of M. How can we generate these event-reduced
machines (if they exist) for any given machine? While there has been work on both
the state-based decomposition [11,16] and the minimization of completely specified
machines [13,12], this is the first paper that presents the problem of event-reduction.

In this paper, we define the concept of a (k,e)-event decomposition of a machine M
that is a set of k machines, each with at least e events fewer than the event set of M, such
that given the state of these machines, we can determine the state of M. We present an
algorithm to generate such machines with time complexity O(|XM|3|ΣM |e), where XM is
the set of states and ΣM the set of events of M. The load on a process running a machine
is directly proportional to the number of events in the event-set of the machine. Hence,
this decomposition is crucial for applications such as sensor networks in which there
are strict limits on the number of events that each process can service.

Space-Event Optimized Fusion Algorithm. We apply our event-decomposition algo-
rithm to generate backups for fault tolerance that are optimized for both events and
states. In Fig. 1, it is better to choose the 1-event F1 over the 3-event F2 as a backup
machine to correct one fault. We show that if our solution achieves no event-reduction,
then no solution with the same number of backups achieves it. Further, we present an
incremental approach for generating the fusions that improves the time complexity by
a factor of ρn, where ρ is the average state savings achieved by fusion.

Efficient Algorithms for Detection/Correction of Faults. In [18], the algorithm for the
correction of crash and Byzantine faults, has time complexity O(n2ρ+ nρ f + sn), where
n is the number of primaries, f is the number of crash faults, s is the maximum number
of states among primaries and ρ is the average state savings achieved by fusion. In this
paper, we present a Byzantine detection algorithm with time complexity O(n f ) on aver-
age, which is the same as the time complexity of detection for replication. Hence, for a
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Table 1. Symbols/Notation used in the paper

P Set of primaries n Number of primaries
RCP Reachable Cross Product of P N Number of states in the RCP

f No. of crash faults s Maximum number of states among primaries
F Set of fusions/backups ρ Average State Reduction in fusion
Σ Union of primary event-sets β Event-Reduction parameter

Table 2. Fusion vs. Replication (n primaries, O(s) states each, f faults, |Σ | total events, average
state reduction ρ)

Replication Fusion
Number of Backups n f f

Backup Space O(sn f ) O((s/ρ)n f )
Backup Generation Time Complexity O(ns f ) O(sn|Σ | f /ρn)

Maximum Events/Backup Maximum Events/primary Minimal for f backups
Byzantine Detection Time Complexity O(n f ) O(n f ) on average

Crash Correction Time Complexity θ( f ) O(nρ f ) w.h.p
Byzantine Correction Time Complexity O(n f ) O(nρ f ) w.h.p

system that needs to periodically detect liars, fusion causes no additional overhead. We
reduce the problem of fault correction to one of finding points within a certain Ham-
ming distance of a given query point in n-dimensional space and present algorithms to
correct crash and Byzantine faults with time complexity O(nρ f ) with high probability.
The time complexity for crash and Byzantine correction in replication is θ( f ) and O(n f )
respectively. Hence, for small values of n and ρ, fusion causes almost no overhead for
recovery. In Table 1 we summarize the notation used in this paper and in Table 2 we
compare replication and the current version of fusion.

Evaluation of Fusion. In [18], we evaluated fusion on simple examples such as counters
and dividers. In this paper, we evaluate our fusion algorithm on the MCNC’91 [24]
benchmarks for DFSMs, that are widely used in the fields of logic synthesis and circuit
design. Our results show that the average state space savings in fusion (over replication)
is 38% (range 0-99%), while the average event-reduction is 4% (range 0-45%). Further,
the average savings in time by the incremental approach for generating the fusions (over
the non-incremental approach) is 8%. To illustrate the practical use of fusion, we apply
its design to the grep application of the MapReduce framework [6]. Using a simple
example, we show that the currently used checkpointing approach for fault tolerance
needs 600,000 map tasks causing high latency, while replication requires 1200,000 tasks
with minimum latency. Fusion offers a compromise with just 800,000 tasks but smaller
latency than the checkpointing approach.

2 Model

The DFSMs in our system execute on separate processes with no shared state or commu-
nication. Clients of the state machines issue the events (or commands) to the concerned
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primaries and backups, all of which act on them in the same relative order. We assume
loss-less FIFO communication links with a strict upper bound on the time taken for mes-
sage delivery. Faults in our system are of two types: crash faults, resulting in a loss of the
execution state of the machines and Byzantine faults resulting in an arbitrary execution
state. Henceforth in the paper, when we simply say faults, we refer to crash faults. When
faults are detected by a trusted recovery agent using timeouts (crash faults) or a detection
algorithm (Byzantine faults) no further events are sent by any client to these machines.
After the machines act on all events sent to them thus far, the recovery agent obtains
their states, and recovers the correct execution states of all faulty machines. Since we
assume a trusted recovery agent, the work on consensus in the presence of Byzantine
faults [7,20], does not apply to our paper. In the following section, we summarize the
relevant concepts and results introduced in our previous work.

3 Background [18]

State-based Decomposition. A DFSM, denoted by R, consists of a set of states XR,
set of events ΣR, transition function αR : XR × ΣR → XR and initial state x0

R. The size
of R, denoted by |R| is the number of states in R. We can partition the state space of R
such that the transition function αR, maps each block of the partition to another block
for all events in ΣR [11,16]. In other words, we combine the states of R to generate
machines that are consistent to the transition function. The set of all machines generated
by combining the states of R is called the closed partition set of R (example in Fig. 3).

Consider machine M2 in Fig. 3, generated by combining the states r0 and r2 of R. On
event 0, {r0, r2} self-transitions to {r0, r2} (self transitions not shown). However, since r0

and r2 transition to r1 and r3 respectively on event 1, we need to combine the states r1

and r3. Continuing this procedure, we obtain the combined states in M2. We can define
an order (≤) among any two machines P and Q in this set as follows: P ≤ Q, if each
block of Q is contained in a block of P (shown by an arrow from P to Q). P and Q are
incomparable, i.e., P||Q, if P ≮ Q and Q ≮ P. In Fig. 3, F1 < M2, while M1||M2.

Minimum Hamming distance for DFSMs (dmin). Consider a set of machines R each
less than R, i.e., machines belonging to the closed partition set of R. We define the
Hamming distance [10] between each ri, r j ∈ XR, denoted d(ri, r j), as the number of
machines in R that contain ri and r j in different blocks (separate ri and r j). The mini-
mum Hamming distance across all such pairs is denoted dmin(R) or just dmin. In Fig. 3,
if R = {A, B}, d(r0, r1) = 1 (B separates them), while d(r0, r7) = 0 and hence dmin = 0.

Given the state of the machines in R we can determine the state of R if there is at
least one machine in R to distinguish between each pair of states in XR, or in other
words, dmin > 0. In Fig. 3 if R = {A, B} and A and B are in states a0 = {r0, r1, r7, r6} and
b0 = {r0, r2, r7, r5}, we cannot determine if R is in state r0 or r7 (intersection of a0 and
b0). However, if R = {A, B,C} (dmin = 1), then given that A, B and C are in a0, b0 and
c0, we can determine that R is in state r0 (only state common to a0, b0 and c0).

Fault Tolerance in DFSMs. To generate the backups (or fusions) for a set of ma-
chines, we first construct their reachable cross product. Given any two machines
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Fig. 3. Set of Machines less than R (all machines not shown due to space constraint)

A = (XA, ΣA, αA, x0
A) and B = (XB, ΣB, αB, x0

B), their reachable cross product, de-
noted RCP({A, B}) is the machine which consists of all the states in the product set
of XA and XB reachable from the initial state {x0

A, x
0
B}, with the transition function

αRCP({a, b}, σ) = {αA(a, σ), αB(b, σ)} for all reachable states {a, b} ∈ XA × XB and
σ ∈ ΣA ∪ ΣB. Given a set of n primaries P, their reachable cross product is denoted
RCP (XRCP, Σ, αRCP, r0), where Σ is the union of the event sets of all primary machines.
The machine R in Fig. 3, is in fact the RCP of P = {A, B,C} shown in Fig. 1. For
convenience, we label the states of the RCP, r0 . . . r7, where each ri ∈ XRCP is a tuple
consisting of the primary states (mapping shown in Fig. 3). The closed partition set of
the RCP always includes the primary machines and its states correspond to the RCP
states that contains it. In Fig. 3, a0 = {a0b0c0, a0b1c0, a0b1c1, a0b0c1}.

Given the state of the RCP, the state of the primaries can be determined. The basic
goal of fault tolerance is to generate a set of machinesF , each less than the RCP, so that
despite f crash faults, there are sufficient machines in P ∪ F , i.e., among the primaries
and backups, whose dmin > 0. In other words, a set of machines in P ∪ F can correct f
crash faults iff dmin(P ∪ F ) > f . In Fig. 3, for P = {A, B,C} and F = {F1, F2}, it can
be seen that dmin(P ∪ F ) > 2. Consider the state of the machines after the application
of the event sequence 0, 1, 1 on the machines in P∪F . Assume that B and C crash and
we need to recover their state. Given the state of A, F1 and F2 as a1 = {r2, r3, r4, r5},
f 0
1 = {r0, r2, r4, r6} and f 1

2 = {r1, r2}, we can determine the state of the RCP as r2 (only
state common to a1, f 0

1 and f 1
2 ). Since r2 = a1b0c1, we can recover the states of B and

C as b0 and c1 respectively.
When |F | = f , we call it the f -fusion ofP and call the machines inF , fused-backups

or just fusions. An f -fusion is minimal if there exists no other f -fusionG in which every
machine is less than or equal to some machine in F and at least one machine is strictly
less than some machine in F . In section 6, we describe how an f -fusion can also detect
f Byzantine faults or correct � f /2� Byzantine faults.
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Coding theory is often used in data fault tolerance for reducing redundancy [19,5].
In our previous work, we present coding-theoretic solutions to fault tolerance in data
structures [2] and infinite state machines [8]. However, a direct coding-theoretic ap-
proach to DFSMs, in which we maintain the parity of the states of each machine would
be too expensive in terms of communication and computation, since after every event
transition, the machine needs to sends its state and the parity needs to be recalculated.
Instead, we use our Hamming distance metric to construct backups that independently
act on events.

4 Event-Based Decomposition of Machines

In this section, we explore the problem of replacing a given machine M with two or
more machines, each containing fewer events than M. We present an algorithm to gen-
erate such event-reduced machines with time complexity polynomial in the size of M.
This is important for applications with limits on the number of events each individual
process running a DFSM can service. Note that, the contributions in this section are
independent of fault tolerance. We first define the notion of event-based decomposition.

Definition 1. A (k,e)-event decomposition of a machine M(XM , αM , ΣM ,m0) is a set of
k machines E, each less than M, such that dmin(E) > 0 and ∀P(XP, αP, ΣP, p0) ∈ E,
|ΣP| ≤ |ΣM | − e.

As dmin(E) > 0, given the state of the machines in E, the state of M can be determined
(section 3). So, the machines inE, each containing at most |ΣM |−e events, can effectively
replace M. In Fig. 4, we present the eventDecompose algorithm that takes as input,
machine M, parameter e, and returns a (k,e)-event decomposition of M (if it exists) for
some k ≤ |XM |2.

In each iteration, Loop 1 generates machines that contain at least one event less than
the machines of the previous iteration. So, starting with M in the first iteration, at the
end of e iterations, M contains the set of largest machines (according to the order ≤
defined in 3) less than M, each containing at most |ΣM | − e events. Loop 2, iterates
through each machine P generated in the previous iteration, and uses the reduceEvent
algorithm to generate the set of largest machines less than P containing at least one
event less than ΣP. To generate a machine less than P, that does not contain an event
σ in its event set, the reduceEvent algorithm combines the states such that they loop
onto themselves on σ. The algorithm then constructs the largest machine that contains
these states in the combined form. This machine, in effect, ignores σ. This procedure is
repeated for all events in ΣP and the incomparable machines among them are returned.
Loop 3 constructs an event-decomposition E of M, by iteratively adding at least one
machine fromM to separate each pair of states in M, thereby ensuring that dmin(E) > 01.

1 Since each machine added to E can separate more than one pair of states, an efficient way to
implement Loop 3 is to check for the pairs that still need to be separated in each iteration and
add machines till no pair remains.
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eventDecompose
Input: Machine M (XM , αM , ΣM ,m0), e;
Output: (k,e)-event decomposition of M for
some k ≤ |XM |

2;
M = {M};
for ( j = 1 to e) //Loop 1
G ← {};
for (P ∈ M) //Loop 2
G = G ∪ reduceEvent(P);

M = G;
E ← {};
for (mi,mj ∈ XM) //Loop 3

E ← Any machine inM separating (mi,mj);
if (E == {}) return {};
else E ← E ∪ {E};

return E;
————————————————————-
reduceEvent

Input: Machine P (XP, αP, ΣP, p0);
Output: Largest Machines < P with ≤ |ΣP| − 1
events;
B = {};
for (σ ∈ ΣP)

Set of states, XB = XP;
//combine states to self-loop on σ
for (s ∈ XB)

s = s ∪ αP(s, σ);
B = B ∪ {Largest machine consistent with
XB};

return Incomparable machines in B;

Fig. 4. Event-based Decomposition

Let the 4-event machine M shown in Fig. 4 be the input to the eventDecompose algo-
rithm with e = 1. In the first and only iteration of Loop 1, P = M and the reduceEvent
algorithm generates the set of largest 3-event machines less than M, by successively
eliminating each event. To eliminate event 0, since m0 transitions to m3 on event 0,
these two states are combined. This is repeated for all states and the largest machine
containing all the combined states self looping on event 0 is M1. Similarly, the largest
machines not acting on events 3,1 and 2 are M2, M3 and M⊥ respectively. The re-
duceEvent algorithm returns M1 and M2 as the only incomparable machines in this set.
The eventDecompose algorithm returns E = {M1, M2}, since each pair of states in M are
separated by M1 or M2. Hence, the 4-event M can be replaced by the 3-event M1 and
M2, i.e., E = {M1,M2} is a (2,1)-event decomposition of M. We show in the technical
report [4], that the eventDecompose algorithm has time complexity O(|XM |3|ΣM |e) and
also present the proof for the following theorem.

Theorem 1. Given machine M (XM , αM, ΣM ,m0), the eventDecompose algorithm gen-
erates a (k,e)-event decomposition of M (if it exists) for some k ≤ |XM |2.
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5 State-Event Optimized Fusions

Given a set of n primaries P, we present an algorithm in [18] to generate a minimal f -
fusion ofP. In this paper, we present an algorithm to generate fusions that are optimized
for both states and events. We show that if each fusion in our solution contains more
than Σ − β events, then no f -fusion of P contains a machine with less than or equal to
Σ − β events, where β is a user defined parameter. Further, we present an incremental
approach to this problem that improves the time complexity by a factor of ρn, where ρ
is the average state reduction achieved by fusion, i.e., (|RCP|/Average size of a fusion).

The genFusion algorithm that generates the fusion machines is shown in Fig. 5.
Starting with the RCP of the primaries, RCP(P), the algorithm generates one machine
for each iteration of Loop 1 that increases dmin by 1 and at the end of f iterations we
have f machines in F such that dmin(P ∪ F ) > f . Loops 2 and 3 reduce the events and
states of the fusion machines.

Loop 2, Event Reduction: Starting with the RCP, which always increases dmin by one,
Loop 2 uses the reduceEvent algorithm in Fig. 4 to iteratively generate reduced event
machines that increase dmin by one. In each iteration of Loop 2, we generate the set of

genFusion
Input: Primaries P, faults f , event depth β;
Output: f -fusion of P;
F ← {};
for (i = 1 to f ) //Loop 1
M← {RCP(P)};
for ( j = 1 to β) //Loop 2
G ← {};
for (M ∈ M)
G = G ∪ reduceEvent(M);

M =Machines in G that increment dmin;
M ← Any machine inM;
while (M � RCP(P)⊥) //Loop 3
C ← reduceState(M);
M=Machine in C that increments dmin;

F ← {M}
⋃
F ;

return F ;

reduceState
Input: Machine P (XP, αP, ΣP, p0);
Output: Largest Machines with ≤ |XP| − 1
states;
B = {};
for (si, s j ∈ XP)
//combine states si and s j

Set of states, XB = XP with (si, s j)
combined;
B = B ∪ {Largest machine consistent
with XB};

return Incomparable machines in B;
——————————————————-
incFusion

Input: Primaries P, faults f , event depth β;
Output: f -fusion of P;
F ← {};
for each (Pi ∈ P)
F ← genFusion({Pi} ∪ RCP(F ), f , β);

return F ;

Fig. 5. Optimized Fusion Algorithm
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machines that contain one event less than the machines in the previous iteration and
increase dmin by one. At the end of β iterations, we generate machine M that increases
dmin by one and contains at most Σ − β events, if such a machine exists. At any stage,
if no valid machine was found, we exit the loop and select a machine from the previous
iteration.

Loop 3, State Reduction [18]: In Loop 3, we try to find a minimal machine less
than the event-reduced M that increases dmin by one. Starting with M, the reduceState
algorithm in Fig. 5 generates the set of largest machines less than M in which at least
two states of M are combined. We choose a machine in that set that increases dmin and
reduce it until no further state reduction is possible (hit the bottom machine RCP(P)⊥).

In Fig. 3, let P = {A, B,C}, f = 1, β = 2. Since, dmin(P) = 1, we need to add a
machine that increases dmin to two. The set of machines containing one event less than
the RCP are M1 and M2 among which only M2 increases dmin. Reducing the event-set
of M2, at the end of β = 2 iterations, M = F1. Since there is no machine less than F1

that increases dmin, no state reduction is possible and the genFusion algorithm returns
F1. Note that, for β = 0 (no event-reduction), the genFusion algorithm is identical to
the one in [18]. However, without event-reduction, the state reduction algorithm can
combine r0 and r3 into a single block and generate F2 as the largest machine containing
this block. Since this is a minimal machine, the genFusion algorithm can return this
3-event machine. The event-reduction in the current version forces the algorithm to
pick the 1-event machine F1. In the technical report, we show that the time complexity
of genFusion is O(N2|Σ|β f + N3|Σ| f ), where N = |RCP| and present a proof for the
following theorem.

Theorem 2. Given a set of n machinesP, the genFusion algorithm generates a minimal
f -fusion (state minimality) ofP such that if each machine inF contains more than |Σ|−β
events, then no f -fusion ofP contains a machine with less than or equal to |Σ|−β events
(event minimality).

Incremental Approach. Given n primaries each of size s, the genFusion algorithm
generates their RCP, that has size O(sn), and hence the algorithm can have very high
execution times. In Fig. 5, we present an incremental approach to generate the fusions,
referred to as the incFusion algorithm in which we may never have to reduce the RCP
of all the primaries. In each iteration, we generate the fusion corresponding to a new
primary and the RCP of the (possibly small) fusions generated for the set of primaries
in the previous iteration.

In Fig. 6, rather than generate a fusion by reducing the 8-state RCP of {A, B,C},
we can reduce the 4-state RCP of {A, B} to generate fusion F′ and then reduce the 4-
state RCP of {C, F′} to generate fusion F. In the technical report, we present the proof
of correctness for the incremental approach and show that it has time complexity ρn

times better than that of the genFusion algorithm, where ρ is the average state reduction
achieved by fusion.

6 Detection and Correction of Faults

In [18], the time complexity to detect and correct faults is O(n2ρ+ nρ f +N), where n is
the number of primaries, f is the number of crash faults, s is the size of each machine,
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Fig. 6. Incremental Approach: First generate F′ and then F

N is the size of the RCP and ρ is the average state reduction achieved by fusion. In this
section, we provide algorithms to detect Byzantine faults with time complexity O(n f ),
on average, and correct crash/Byzantine faults with time complexity O(nρ f ), with high
probability. Throughout this section, we refer to Fig. 3, with primaries, P = {A, B,C}
and backups F = {F1, F2}, that can correct two crash faults. The execution state of the
primaries is represented collectively as a n-tuple (primary tuple) while the state of each
backup is represented as the set of primary tuples it corresponds to (tuple-set). In Fig. 3,
if A, B, C and F1 are in their initial states, then the primary tuple is a0b0c0 and the state
of F1 is f 0

1 = {a0b0c0, a1b0c1, a1b1c0, a0b1c1} (which corresponds to {r0, r2, r4, r6}).

6.1 Detection of Byzantine Faults

Given the primary tuple and the tuple-sets corresponding to the backup states, the de-
tectByz algorithm in Fig. 7 detects up to f Byzantine faults (liars). Assuming that the
tuple-set of each backup state is stored in a permanent hash table at the recovery agent,
the detectByz algorithm simply checks if the primary tuple r is present in each backup
tuple-set b. In Fig. 3, if the states of machines A, B, C, F1 and F2 are a1, b1, c0, f 1

1 and
f 1
2 respectively, then the algorithm flags a Byzantine fault, since a1b1c0 is not present in

either f 1
1 = {a0b1c0, a1b1c1, a1b0c0, a0b0c1} or f 1

2 = {a0b1c0, a1b0c1}. In the following
theorem we show that if there are liars in the system, then the primary tuple will not be
present in at least one of the backup tuple-sets.

Theorem 3. Given a set of n machines P and an f -fusion F corresponding to it, the
detectByz algorithm detects up to f Byzantine faults among them.

In the technical report we present the proof for this theorem and also show that the
space complexity for the detectByz algorithm is O(N f n log s) while its time complex-
ity is O(n f ) (on average). Even for replication, the recovery agent needs to compare the
state of n primaries with the state of each of its f replicas, giving time complexity O(n f ).

6.2 Correction of Faults

Given the primary tuple and the tuple-sets of the backup states, to correct f crash
faults (or � f /2� Byzantine faults), we first need to find the tuples among the backup
tuple-sets that are within Hamming distance of f (� f /2� for Byzantine faults) from
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detectByz
Input: set of of fusion states B, primary
tuple r;
Output: true or false
for (b ∈ B)

if ¬(hash table(b) · contains(r))
return false;

return true;
——————————————————-
correctCrash

Input: set of of fusion states B, primary
tuple r,
crash faults among the primaries c (≤ f );
Output: corrected primary n-tuple;
D← {} //list of tuple-sets
for (b ∈ B)
//tuples in b within Hamming distance c
of r
S ← lsh tables(b) · search(r, c);
D · add(S );

return Intersection of sets in D;

correctByz
Input: set of of fusion states B, primary
tuple r;
Output: corrected primary n-tuple;
D← {} //list of tuple-sets
for (b ∈ B)
//tuples in b within Hamming distance
� f /2� of r

S ← lsh tables(b) · search(r, � f /2�);
D · add(S );

G ← Set of tuples that appear in D;
V← Vote array of size |G|;
for (g ∈ G)
// get votes from fusions
V[g]← Number of times g appears
in D;
// get votes from primaries
for (i = 1 to n)

if(r[i] ∈ g)
V[g] + +;

return Tuple g : V[g] ≥ n + � f /2�;

Fig. 7. Detection and Correction of Faults

the primary tuple (explained in sections 6.2 and 6.2). In Fig. 3, the tuples in f 0
1 ={a0b0c0, a1b0c1, a1b1c0, a0b1c1} that are within Hamming distance one of a primary tu-

ple a0b0c1 are a0b0c0, a1b0c1 and a0b1c1. An efficient solution to finding the points
among a large set within a certain Hamming distance of a query point is locality sensi-
tive hashing (LSH) [1,9]. Based on this, we maintain L hash tables, {g1 . . . gL}, for each
fusion state at the recovery agent. The hash function for g j, takes as input an n-tuple,
selects k coordinates uniformly at random from them and returns the concatenated bit
representation of these coordinates. In the example shown in Fig. 8(i), the tuple a1b0c1

of f 0
1 , is hashed into the 2nd bucket of g1 and the 3rd bucket of g2.

Given a point q and distance f , we obtain the points found in the buckets g j(q) for
j = 1 . . . L, and return those that are within distance of f from q. For example, in Fig.
8(i), given q = a0b1c0, f = 2, this point hashes into the 1st bucket of g1 and the 0th

bucket of g2 and hence the points returned are a0b1c1 and a0b0c0 respectively. If we set
L = log1−γk δ, where γ = 1 − f /n, such that (1 − γk)L < δ, then any f -neighbor of a
point q is returned with probability at least 1 − δ [1,9]. In the following sections, we
present algorithms for the correction of crash and Byzantine faults based on these LSH
functions.
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Fig. 8. LSH Example for fusion states in Fig. 3 with k = 2, L = 2

Crash Correction. Given the primary tuple (with possible gaps because of faults) and
the tuple-sets of the available backup states, the correctCrash algorithm in Fig. 7 cor-
rects up to f crash faults. The algorithm finds the tuples in the tuple-sets of each fusion
state b that are within a Hamming distance c (actual number of faults) of the primary
tuple r using the LSH tables for each fusion state. If the intersection of these sets is
singleton, then we return that as the correct primary tuple. When the intersection is not
singleton, we need to exhaustively search each fusion state for points within distance c
of r (LSH has not returned all of them), but this happens with a very low probability
[1,9]. In Fig. 3, assume crash faults in primaries B and C among {A, B,C}. Given the
states of A, F1 and F2 as a0, f 0

1 and f 0
2 respectively, the tuples within Hamming distance

two of r = a0{}{} among f 0
1 = {a0b0c0, a1b0c1, a1b1c0, a0b1c1} and f 0

2 = {a0b0c0, a1b1c1}
are {a0b0c0, a0b1c1} and {a0b0c0} respectively. The algorithm returns their intersection,
a0b0c0 as the corrected primary tuple. In the following theorem, we prove that the cor-
rectCrash algorithm returns a unique primary tuple.

Theorem 4. Given a set of n machines P and an f -fusion F corresponding to it, the
correctCrash algorithm corrects up to f crash faults among them.

In the technical report, we present the proof for this theorem and show that the space
complexity of the correctCrash algorithm is O(N f n log s) and its time complexity is
O(nρ f ) w.h.p. Crash correction in replication simply involves copying the state of the
replicas of f failed primaries which has time complexity O( f ).

Byzantine Correction. Given the primary tuple and the tuple-sets of the backup states,
the correctByz algorithm in Fig. 7 corrects up to � f /2� Byzantine faults. The algorithm
finds the set of tuples among the tuple-sets of each fusion state that are within Hamming
distance � f /2� of the primary tuple r using the LSH tables and stores them in list D.
It then constructs a vote vector V for each unique tuple in this list. The votes for each
tuple g ∈ V is the number of times it appears in D plus the number of primary states of
r that appear in g. The tuple with greater than or equal to n + � f /2� votes is the correct
primary tuple. When there is no such tuple, we need to exhaustively search each fusion
state for points within distance � f /2� of r (LSH has not returned all of them). In Fig.
3, let the states of machines A, B, C F1 and F2 are a0, b1, c0, f 0

1 and f 0
2 respectively,

with one liar among them (� f /2� = 1). The tuples within Hamming distance one of
r = a0b1c0 among f 0

1 = {a0b0c0, a1b0c1, a1b1c0, a0b1c1} and f 0
2 = {a0b0c0, a1b1c1} are

{a0b0c0, a1b1c0, a0b1c1} and {a0b0c0} respectively. The algorithm returns a0b0c0, with
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four votes in total (one each from A, C, F1 and F2), since n + � f /2� = 3 + 1 = 4. We
show in the following theorem that there are enough machines separating each pair of
tuples and even with liars the true primary tuple will get sufficient votes.

Theorem 5. Given a set of n machines P and a f -fusion F corresponding to it, the
correctByz algorithm corrects up to � f /2� Byzantine faults among them.

In the technical report, we present a proof for the following theorem and show that
the space complexity of the correctByz algorithm is O(N f n log s) and its time complex-
ity of is O(nρ f ) w.h.p. In the case of replication, we just need to obtain the majority
across f copies of each primary with time complexity O(n f ).

7 Evaluation

7.1 Experimental Results

In [18], we evaluate fusion for simple examples such as counters and dividers. In this
section, we evaluate fusion using the MCNC’91 benchmarks [24] for DFSMs, widely
used for research in the fields of logic synthesis and finite state machine synthesis
[17,25]. We implemented the incFusion algorithm of Fig. 5 in Java 1.6 and compared
the performance of fusion with replication for 100 different combinations of the bench-
mark machines, with n = 3, f = 2, β = 3 and present some of the results in Table 3.
The machine descriptions, implementation and detailed results are available in [3].

Let the primaries be denoted P1, P2 and P3 and the fused-backups F1 and F2. Col-
umn 1 of Table 3 specifies the names of three primary DFSMs. Column 2 specifies the
backup space required for replication (

∏1=3
i=1 |Pi| f ), column 3 specifies the backup space

for fusion (
∏i=2

i=1 |Fi|) and column 4 specifies the percentage state space savings ((column
2-column 3)* 100/column 2). Column 5 specifies the total number of primary events,
column 6 specifies the average number of events across F1 and F2 and the last column
specifies the percentage reduction in events ((column 5-column 6)*100/column 5).

The average state space savings in fusion (over replication) is 38% (range 0-99%)
over the 100 combination of benchmark machines, while the average event-reduction is
4% (range 0-45%). We also present results in [3] that show that the average savings in

Table 3. Evaluation of Fusion on the MCNC’91 Benchmarks

Machines Replication
State Space

Fusion State
Space

% Savings
State Space

Primary
Events

Fusion
Events

% Reduction
Events

dk15, bbara, mc 25600 19600 23.44 16 10 37.5
lion, bbtas, mc 9216 8464 8.16 8 7 12.5

lion, tav, modulo12 36864 9216 75 16 16 0
lion, bbara, mc 25600 25600 0 16 9 43.75

tav, beecount, lion 12544 10816 13.78 16 16 0
mc, bbtas, shiftreg 36864 26896 27.04 8 7 12.5

tav, bbara, mc 25600 25600 0 16 16 0
dk15, modulo12, mc 36864 28224 23.44 8 8 0
modulo12, lion, mc 36864 36864 0 8 7 12.5
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time by the incremental approach for generating the fusions (over the non-incremental
approach) is 8%. Hence, fusion achieves significant savings in space for standard bench-
marks, while the event-reduction indicates that for many cases, the backups will not
contain a large number of events.

7.2 Practical Example: MapReduce

To motivate the practical use of fusion, we discuss its application to the MapReduce
framework which is used to model large scale distributed computations. Typically, the
Map-Reduce framework is built using the master-worker configuration where the mas-
ter assigns the map and reduce tasks to various workers. Due to high cost of resources in
replication, handling faults among the map workers is primarily based on checkpoint-
ing in which the processes periodically write to permanent storage. In the case of faults,
the tasks are restarted from the last available state. This approach increases latency and
may be inadequate for some applications.

Consider a distributed grep application over large files, where the master assigns
three map tasks, each searching for one of the string patterns modeled by {A, B,C}
in Fig. 1. When the input files are partitioned into 200,000 chunks of data (the usual
number in [6]), the current checkpointing-based approach requires 200,00*3= 600,000
tasks in total, while causing high latency. A replication-based solution for correcting
just one fault will involve creating a replica of each of the tasks A, B and C for each
chunk of data, requiring 1200,000 tasks in total. A fusion-based approach needs to run
only one additional backup task for each chunk of data, running F1 shown in Fig. 1.
Though recovery is costlier than replication, this approach requires only 800,000 tasks
with much better latency than checkpointing.

8 Conclusion

We challenge the traditional approach of replication that requires n f backups to correct
f crash faults among n machines and present a fusion-based solution that requires only
f backups consuming considerably lesser state space. We present a problem that is
fundamental to DFSMs: Can we replace a given DFSM with DFSMs containing fewer
events? To formalize this, we introduce the concept of a (k,e)-event decomposition of a
given machine and present efficient algorithms to generate such a decomposition. Based
on this, we describe an algorithm to generate fused backups for a given set of machines
that is optimized for both states and events.

Further, we present efficient algorithms to detect and correct faults in a system with
fused backups. The algorithm for the detection of Byzantine faults has time complexity
O(n f ) (on average), which is the same as that for replication. We apply the concept
of locality sensitive hashing to the correction of faults and the time complexity for the
correction of crash and Byzantine faults is O(nρ f ) w.h.p. For relatively small values of
n and ρ, fusion causes almost no overhead for recovery. Finally, we evaluate fusion on
standard benchmarks for DFSMs and the results confirm that fusion achieves significant
savings in space over replication. The event-reduction algorithm ensures that for many
examples, the fused backups contain small event sets. Hence, in addition to our results
on the theoretical optimality of the fused backups, we have illustrated the practical
usefulness of fusion.
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