
Self-stabilizing Mutual Exclusion and Group Mutual
Exclusion for Population Protocols with Covering

Joffroy Beauquier1,� and Janna Burman2,��

1 LRI, University Paris-Sud 11, France
joffroy.beauquier@lri.fr

2 MASCOTTE, INRIA, I3S (CNRS/University of Nice Sophia-Antipolis), France
janna.burman@inria.fr.

Abstract. This paper presents and proves correct two self-stabilizing determinis-
tic algorithms solving the mutual exclusion and the group mutual exclusion prob-
lems in the model of population protocols with covering. In this variant of the
population protocol model, a local fairness is used and bounded state anonymous
mobile agents interact in pairs according to constraints expressed in terms of their
cover times. The cover time is an indicator of the “time” for an agent to commu-
nicate with all the other agents. This indicator is expressed in the number of the
pairwise communications (events) and is unknown to agents. In the model, we
also assume the existence of a particular agent, the base station. In contrast with
the other agents, it has a memory size proportional to the number of agents. We
prove that without this kind of assumption, the mutual exclusion problem has no
solution.

The algorithms in the paper use a phase clock tool. This is a synchronization
tool that was recently proposed in the model we use. For our needs, we extend
the functionality of this tool to support also phases with unbounded (but finite)
duration. This extension seems to be useful also in the future works.

Keywords: distributed algorithms, mobile agent networks, population protocols,
cover times, self-stabilization, synchronization, (group) mutual exclusion.

1 Introduction

Population protocols is an elegant communication model [2] specially designed for
large cheap sensor networks with resource-limited mobile agents. In the original model,
each agent is represented by a finite state machine. Agents are anonymous and move in
an asynchronous way. When two agents come into range of each other (meet), they can
exchange information (communicate). It is important to note that in this model, a type
of global fairness condition (in the sense of, e.g., [3, 17]) is imposed on the scheduler.
According to this condition, a configuration that can be reached infinitely often during
the execution is reached infinitely often. This is in contrast to a weaker type of con-
dition called local fairness which is generally assumed in the theoretical literature on

� The work of this author was partially supported by grants from Grand Large project, INRIA
Saclay.

�� The work of this author was supported by Chateaubriand grant from the French Government.

A. Fernández Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 235–250, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

236 J. Beauquier and J. Burman

distributed computing. Informally, with local fairness, in an infinite fair execution, each
agent satisfying certain conditions is given a turn infinitely often. In contrast to local
fairness, global fairness brings an effect of randomization of the scheduling and hence
has the ability to circumvent many impossibility results. For example, self-stabilizing
algorithms which are proved correct in [3] will fail if local fairness is assumed (refer to
[3, 17] for examples and a more detailed discussion on fairness).

In the considered model of population protocols with covering [8], a type of local
fairness is used. According to this fairness, there is an indicator called cover time as-
sociated to each agent. A cover time of an agent x, cvx, is the minimum (unknown
to agents) number of global pairwise interactions (or events) that should happen in the
system for being certain that x has met each other agent. A scheduler schedules the next
event according to the cover times of agents. Even though this type of the local fairness
condition seems relatively strong, many problems stay impossible to solve in such a
model (see, e.g., [6, 9]). In this work, we prove a similar impossibility result stating that
in the model with only bounded state agents, mutual exclusion has no solution (Sec. 6).
This result can be easily extended to the group mutual exclusion problem as well. For
circumventing the impossibility result, as in [6, 9, 10], we introduce a special agent, the
base station (BS). We assume that BS has a memory size proportional to the number of
the other system agents.

Like in the original model of population protocols [2], we assume that the number of
agents in a system is unknown, that the agents, except BS, are anonymous (no identi-
fiers, uniform code) and have only a few bits of memory (independent of the number of
agents). As in [2], we assume a complete communication topology, where each agent
has the ability to communicate sometime with any other agent.

We note that the fairness condition expressed in terms of the bounded cover times is
supported by recent experimental and analytical studies. The assumption that an agent
communicates with all other agents periodically, within a bounded period of real time,
has been experimentally justified for some types of mobility such as the human or an-
imal mobility within a bounded area or mobility with “home coming tendency” (the
tendency to return periodically to some specific places, e.g., agents’ homes). In these
cases, a statistical analysis of experimental data sets confirms this assumption. These
data sets concern students in a campus [1, 24], participants in a network conference
[25], visitors at Disney World and more. All exhibit the fact that the Inter Contact Time
(ICT - the time period between two successive contacts of the same two mobile agents)
follows a so called truncated Pareto distribution [11, 20, 23]. In particular, this involves
that ICT is practically bounded. Thus, ICT is also bounded when measured in the num-
ber of events. In our model, the cover time of an agent can be expressed in terms of
ICTs. Hence, a cover time can be indeed bounded in practice.

The algorithms presented in this paper are self-stabilizing [14]. Such algorithms have
the important property of operating correctly (except for some finite period), regardless
of their initial configuration. In practice, self-stabilizing algorithms adjust themselves
automatically to any change or corruption of the network components (excluding the
algorithm’s code). Those changes are assumed to cease for some sufficiently long time.
Self-stabilization is considered here for two reasons. First, mobile agents are generally
fragile, subject to failures and hard to initialize. Second, systems of mobile agents are by

Self-stabilizing Mutual Exclusion and Group Mutual Exclusion 237

essence dynamic, some agents may leave the system while new ones can be introduced.
Self-stabilization is a well adapted framework for dealing with such situations.

In this paper, for the model of population protocols with covering, we present self-
stabilizing deterministic solutions for two basic and classical problems in distributed
computing, mutual exclusion [21, 26] (Sec. 4) and group mutual exclusion - GME
[18, 22] (Sec. 5). Self-stabilizing mutual exclusion in population protocols has been
addressed in [3] and in [12]. In [3], a solution is given for Dijkstra-style token circula-
tion in oriented ring communication topology and assumes global fairness (it does not
work in the considered case of local fairness). In [12], a deterministic solution assum-
ing local fairness is given. However, it uses strong schemes of “mobile agents” and of
oracles. In [6], a simple self-stabilizing algorithm for GME is proposed for the same
model as here. However, in this solution, agents can spend only some bounded prede-
fined period in the critical session (CS). This is in contrast with the classical definition
of GME, according to which they are allowed to spend an unbounded but finite amount
of time in CS. Refer to Sec. 2.3 for the specifications we consider for mutual exclusion
and for GME.

We design our algorithms in combination with the phase clock tool proposed in [6].
This synchronization tool provides an easy way to organize protocol execution into
phases. However, the tool in [6] allows to define and run only phases with bounded
duration. In order to be able to grant to an agent an unbounded (but finite) amount of
time in CS, we extend the phase clock with the mechanism allowing it to manage also
the unbounded duration phases (Sec. 3).1

The technique we use for stabilizing the algorithms is similar to the one used in
[5, 15]. The variables of the algorithm are regularly reset to predetermined values and
an instance of a protocol is repeatedly executed. Note that the automatic self-stabilizing
transformer of [9], which uses the same technique, cannot be useful here, because it
applies only to static problems.

The problems are not as simple as they appear at first sight, because of the self-
stabilization requirement, unknown population size, asynchrony and the anonymity of
agents, in particular, when fairness of access to a resource is concerned.

2 Model and Problem Specifications

Basically, the model is as in [2], with the addition of the cover times (Sec. 2.2) and BS.

2.1 Transition System

Let A be the set of all the agents in system S, where the (population) size of S is
|A| = n, and n is unknown to agents. Among the agents, there may be a distinguish-
able one, the base station (BS), which is said non-mobile2 (and which can have an
unbounded memory in contrast with the other agents). All the other agents are bounded
state, anonymous (have uniform codes and no identifiers) and are referred as mobile.

1 Note however that this extension does not imply an automatic or easy extension of the GME
solution in [6], mainly due to the requirements of CS access fairness in GME.

2 If BS is actually mobile, it will not change the analysis in this paper.

238 J. Beauquier and J. Burman

Population protocols can be modeled as transition systems. We adopt the common
definitions of the following: state of an agent (a vector of the values of its variables),
configuration (a vector of states of all the agents), transitions (possible atomic steps
of agents and their associated state changes), execution (a possibly infinite sequence of
configurations in which each element follows its predecessor by a transition). For the
formal definitions, refer, e.g., to [26]. We refine and add some terms below.

A local transition system of an agent x is defined by a set of states and a set of
transitions between states.

An event (x, y) is a pairwise communication (meeting) of two agents x and y. During
an event, a transition of the form (πx, πy) → (π′

x, π
′
y) is executed, where πx and πy

are the states of x and y before the event, and π′
x and π′

y are the states of x and y
after the event (the states after the event may not change). We assume symmetrical
communication during (x, y), and (x, y) is an unordered pair. However, the results in
the paper can be adapted to asymmetrical communications, in which the state of only x
(or y) is modified during an event (x, y).

We extend the transitions between states to configurations as follows. Without loss
of generality and as in [2], we assume that no two events happen “simultaneously”.
Then, there is a transition between two configurations C and C′, iff there is a transition
(πx, πy) → (π′

x, π
′
y), from C and resulting in C′, for some two agents x and y, and

such that the states of all the other (than x and y) agents are identical in C and C′. Note
that each execution corresponds to a unique sequence of events.

Intuitively, it is convenient to view executions as if a scheduler (an adversary)
”chooses” which two agents participate in the next event. Formally, a scheduler D is
a predicate on the sequences of events. A schedule of D is a sequence of events that
satisfies predicateD. To each schedule s corresponds a unique execution of the system
(if it is deterministic, and possibly several executions, if it is not). We say that this (or
these) execution(s) is (are) induced by the schedule s. Let a period or a segment of a
schedule (or of an execution) s be any consecutive sequence of events.

For some l (∈ N0) and agent x, let l local events at x, denoted [l]x, be l consecutive
(from x’s “point of view”) events in which agent x participates. This stands in contrast
to l global events (or just events) which are l consecutive events in an execution. Note
that if [l]x events occurred, then at least l global events occurred.

As in [26], a specification P of a problem is a predicate on the executions. We say
that a system (algorithm) S solves a specification P , iff any execution of S satisfies P .

A transition system (or an algorithm) is said to be self-stabilizing for a specification
P iff there exists a subset of the set of configurations, called legitimate configurations,
such that starting from an arbitrary configuration, any execution reaches a legitimate
configuration and any execution starting from a legitimate configuration satisfies P .
When an execution reaches a legitimate configuration, we say that a system (algorithm)
stabilizes for P or just that stabilization has occurred. The maximum number of events
until stabilization is the stabilization time of the protocol. More formal definitions can
be found in [26].

Self-stabilizing Mutual Exclusion and Group Mutual Exclusion 239

2.2 The Cover Time Property (Covering)

Definition 1. Given a system S with n agents, a vector cv = (cv1, cv2, . . . , cvn) of
positive integers (the cover times) and a scheduler D, D (and any of its schedules) is
said to satisfy the cover time property for cv (in S), if and only if any segment of cvi

(∀i : i ∈ {1 . . .n}) consecutive events of each schedule ofD contains at least one event
of an agent xi with every other agent.
• Any execution of S under such a scheduler is said to satisfy the cover time property
for cv.
• The minimum cover time value in cv is denoted by cvmin and the maximum one by
cvmax. A fastest / slowest agent x has cvx = cvmin / cvx = cvmax.

Note that agents are not assumed to know cover times. They are (usually) unable to
store them as their memory is bounded (note that each cover time depends on n).

During the analysis, we consider all the executions that satisfy the cover time prop-
erty for a given vector of cover times. However, for some vectors of cover times,
there is no schedule satisfying the cover time property (take, for instance, the vector
(4, 6, 11, 11)). A vector of cover times cv is acceptable if and only if there exists at
least one schedule satisfying the cover time property for cv. In the sequel, we will only
consider acceptable vectors of cover times.

Remark 1. Let cv be a vector of cover times in system S. Assume that in S, there exists
a schedule s of length cvmin containing at least once every possible event. Then, the
infinite schedule s∞ resulting from the infinite iteration of s satisfies the cover time
property of S.

In our algorithms, for the purpose of event counting and for being able to use the phase
clock tool from [6], BS should be able to estimate the upper bounds on the values of
cvmin and cvmax in the system. The self-stabilizing algorithms that estimate cvmin

and cvmax are presented in [9]. They are executed at BS and stabilize in O([cvmin]
BS)

events. We assume that those algorithms provide the upper bounds of cvmin and cvmax

in variables cv∗
min and cv∗

max respectively.

2.3 Specifications

2.3.1 The Mutual Exclusion Problem
We adopt here the presentation of the mutual exclusion problem in [21]. Thus, it is as-
sumed that each mobile agent has a section of code programmed to use some shared
resource. This section of code is called a critical section (CS). For the mutual exclusion,
it is required that at most one mobile agent executes CS at any given time. An execu-
tion of CS is preceded by an entry section and followed by an exit section. An agent
executing its entry section is said to ask for entering CS. After entering CS, an agent is
assumed to leave it after some finite but unbounded period. Agents have to deliver the
requests one at a time. Once a request is delivered, an agent has to access its CS before
making another request.

Definition 2 (Specification of Mutual Exclusion).

– Safety: In any configuration, no two agents are executing CS.

240 J. Beauquier and J. Burman

– Bounded waiting: There exists some bound B such that when an agent asks for
entering CS, it can be preceded by at most B other agents, but eventually enters
CS.

The problem of mutual exclusion can be also presented and solved by introducing a
token that circulates between the agents and grants the access to CS (see, e.g., [14]).
Thus, the mutual exclusion problem is sometimes named a problem of token circulation.
Our solution to the problem use the circulating token as well.

2.3.2 The Group Mutual Exclusion Problem (GME)
GME was introduced by Joung [22]. The problem deals with sharing r mutually ex-
clusive resources between n processors (agents, in our case). There has been some
discussions about a precise specification of GME. We adopt here the one given in [18],
which is the most precise. As in the mutual exclusion problem, each mobile agent has
a section of code called a critical section (CS), which is preceded by an entry section
and followed by an exit section. After entering CS, an agent is assumed to leave it after
a finite but unbounded period. In [18], an agent wishing to enter CS is said to request
a session. Sessions represent resources. One resource can be used simultaneously by
an arbitrary number of mobile agents, but two or more resources cannot.3 Thus, agents
that have requested different sessions cannot be in CS simultaneously, but agents that
have requested the same session can. Each agent requests only one session at a time and
it cannot request another session while a request it made is still pending. In [18], the
remaining part of the code of an agent, which is outside the critical section, the entry
section and the exit section, is called a noncritical section (NCS).

Definition 3 (Specification of Group Mutual Exclusion).

– Mutual exclusion: If two agents are in CS at the same time, then they request the
same session.

– Lockout freedom: If an agent enters its entry section, then it eventually enters CS.
– Bounded exit: If an agent enters the exit section then it enters NCS within a

bounded number of its own steps.
– Concurrent entering: If an agent x requests a session and no other agent requests

a different session, then x enters CS within a bounded number of its own steps.

3 Self-stabilizing Phase Clock Tool

The algorithms we propose use the self-stabilizing bounded phase clock designed in
[6]. The specification it satisfies is given below and follows a conventional definition
of a phase clock (see, e.g., [4, 13]) with some adaptation (as the frequency of progress
condition) to better suit the model of population protocols with covering.

Definition 4 (Specification of a Phase Clock [6]).
A bounded phase clock (the clock size K is definable) provides each agent x with a
clock/phase value in the variable clockx subject to the following conditions.

3 In the following, session is also referred as the period during which agents can share the same
resource.

Self-stabilizing Mutual Exclusion and Group Mutual Exclusion 241

– Progress: In any execution, every variable clock is updated infinitely often and
each time, according to the assignment statement clock := (clock+ 1) mod K
only.

– Frequency of progress: In any execution, after every update of clockx, the next
update cannot happen before β(clockx) events, where β is a predefined function.

– Asynchronous unison: In any configuration reached by an execution, the clock
values of any two agents differ by no more than 1 (mod K). That is, for any two
agents x and y, the following predicate is true: (clockx = clocky)∨
(clockx = (clocky + 1) mod K) ∨ (clocky = (clockx + 1) mod K)

In the phase clock algorithm of [6], agents synchronize their clocks with BS. According
to the algorithm, BS is the only agent that increments the clock value, which is then
propagated to the other agents. A maximal period (a segment of an execution) during
which clockBS = p (for some p) is called phase p. A period between two increments
of the clock at BS is called a complete phase p if after the first increment clockBS = p.
Incomplete phases arise from a bad (faulty) initialization.

Remark 2. A useful property of the phase clock after stabilization is that during a com-
plete phase p, there is a period of at least β(p) events, where all the agents have the
same clock value p (Lem. 7 [6]).
In addition, by Lem. 1 [6], every phase p is bounded, if β(p) is bounded. Every complete
phase p lasts [β(p) + min(2 · cv∗

min, cv
∗
max)]

BS events.

Extending the Phase Clock of [6]. To use the phase clock of [6], one should define the
size of the clock K (the number of the required phases) and the duration β for every
phase. However, the ability to define only a bounded phase duration does not seem to
be good enough for our purposes here. For being able to grant an agent a finite but
unbounded period in CS, we should be able to define an unbounded phase that could
be preempted externally, after some finite period. Then, the progress condition (in Def.
4) could be still satisfied. Thus, we slightly extend the phase clock of [6] to provide
this functionality. We change appropriately the frequency of progress condition in the
specification.

Definition 5 (New frequency of progress condition).
Frequency of progress: In any execution, after every update of clockx, the next update
cannot happen before β(clockx) events, if β(clockx) �= ∞, where β is a predefined
function. Otherwise (β(clockx) =∞), the next update happens in a finite period.

To satisfy the new specification, we adopt the same implementation of the phase clock
as in [6] and we add only two things. First, we allow to define an unbounded dura-
tion for a phase p, by defining β(p) = ∞. Second, we design a user interface pro-
cedure called switch() which, when invoked, causes the phase clock to switch to
the next phase in a finite period. The switch() procedure is implemented as follows:
switch() = {event ctr← min(2 · cv∗

min, cv
∗
max)}, where event ctr is the counter

variable of the phase clock in [6] which is managed by BS and holds the number of
the events that are still to count before the next switch (increment) of clockBS . This
counter is decremented on each event of BS with some agent. Thus, whenever a user

242 J. Beauquier and J. Burman

calls switch(), in [min(2 · cv∗
min, cv

∗
max)]

BS events, the phase clock switches to the
next phase. Note that in switch(), event ctr is not set to 0. This is to ensure that
each phase lasts at least min(2 · cv∗

min, cv
∗
max) events, as required in [6].

Remark 3. It is easy to verify that the correctness proofs of the new phase clock are
similar to those in [6], with the only difference that now a phase may be defined to have
some unbounded but finite duration. To guarantee the stabilization of the phase clock,
the user should ensure that if for some p, β(p) =∞, then phase p is indeed finite (e.g.,
ensure that switch() is called after a finite period).

The Extended Phase Clock in a Composition. Our algorithms for mutual exclusion
(Sec. 4) and for group mutual exclusion (Sec. 5) use the extended phase clock tool as a
module. The (group) mutual exclusion module reads only the clock variables (clock)
of the phase clock module and invokes the switch() procedure when appropriate. The
modules are composed in a strict interleaving. That means that during each event, the
codes of both modules are executed one after the other. This composition is not fair
in the sense of [19] or [26], so that general results about fair composition cannot be
applied. However, the main result remains true and comes from Remark 3. That is, for
proving that the composition of the two modules is self-stabilizing, it suffices to prove
the self-stabilization of the (group) mutual exclusion module, assuming that the phase
clock is already stabilized. In particular, this implies that one should first prove that
every phase is finite.
For the phase clock module used in our algorithms, we define K = 3 (that is, clock ∈
{0, 1, 2}), β(0) = cv∗

max, β(1) = ∞ and β(2) = cv∗
min. Thus, to prove stabilization,

the first step is to prove that phase 1 is finite (see Lem. 1 and Lem. 7 [7]).

4 A Self-stabilizing Solution to Mutual Exclusion

In this section we present a self-stabilizing algorithm, Alg. 1, solving the mutual exclu-
sion problem in the model of population protocols with covering (for any given accept-
able vector of cover times) and with BS. As there is no such algorithm if all agents have
a bounded state (Corollary 1), we assume that BS has a memory size proportional to
the number of agents. The codes of the mobile agents are identical, but BS has a special
code. Our solution uses a phase clock tool as explained in Sec. 3.

First, we describe the algorithm once stabilization has occurred. It operates by infi-
nite iteration of a succession of three phases. A first phase (phase 0; lines 6-8), called
a request phase, has a phase duration (see Sec. 3) of cv∗

max events. An agent requesting
CS (state = request), delivers a request to BS (and becomes registered) when it
meets BS during phase 0 and its clock is equal to 0(mod 3). During this phase, BS
counts the number of requests (in a variable req ctr). Each request phase is followed
by a finite but unbounded phase, which is controlled by BS and called an access phase.
During an access phase, BS gives the token to the first registered agent visiting it (lines
9-14), waits for the token to be returned (remember that as a basic assumption, an agent
uses its CS for a finite time), and then decrements req ctr (lines 15-20). Then, BS
waits for another registered agent and so on, until req ctr goes down to 0. Then, a
sweeping phase (having a phase duration of cv∗

min events) resets all the counters and

Self-stabilizing Mutual Exclusion and Group Mutual Exclusion 243

the states of all the agents (to a neutral state) and a new request phase can begin (lines
34-43).

For the protocol to be self-stabilizing, we use the technique of re-initializing period-
ically the variables of the algorithm. After the re-initialization in the sweeping phase,
the algorithm executes as described above. However, due to a bad initialization of the
variables, the execution could stay forever in phase 1 and never reach a sweeping phase,
and hence, never reach stabilization. As req ctr ≤ 0 is the natural condition for ending
phase 1 (line 32), we examine the cases in which req ctr could stay strictly positive
forever. We identify two such cases. The first one is when the number of the registered
agents is lesser than the value of req ctr (lines 20 and 32-33). The second case is when
there is no token, neither at BS, nor at any mobile agent (consequently, BS will never
be able to decrease req ctr and switch to the sweeping phase; see lines 10,15, 20 and
32-33). We treat separately these two cases. We introduce a variable no req evntctr

for checking that there are still registered agents (or agents in CS) when req ctr > 0
(lines 21-25), and a variable no token evntctr for checking that the system is not
in the second case (lines 26-30). These variables are event counters of the local events
at BS. Each counter counts till cv∗

max events to ensure that BS has met all the mobile
agents during the last period, but neither the registered ones, nor the ones in CS or the
ones in the CS exit section (that is, one of the cases above is satisfied). Then, BS calls
switch() (line 32-33) to switch to the next (sweeping) phase to reset the algorithm
and to stabilize.

4.1 Proving Correctness

First, according to Remark 3, we prove that phase 1 is finite. Recall that phases 0 and 2
are finite (and bounded) by the correctness of the phase clock (see Remark 2).

Lemma 1. In Alg. 1, every phase 1 is finite.

Proof: At the beginning of a phase 1 (complete or incomplete), there are two cases:

(A) there is at least one token either at BS or at some agent which is in state in or out;
(B) there is no such agent holding a token (however, there may be an agent in a different
state, holding a token).

In case (A) there are two possibilities:

(a) the number of the registered agents is greater or equal to the value of req ctr;
(b) the number of the registered agents is strictly lesser than the value of req ctr.

In case (a), if BS does not hold a token, then during the next event of BS with an agent in
state out holding a token, tokenBS becomes true (line 16) and req ctr is decremented
(line 20). From this point, BS can dispatch the token to different registered agents until
req ctr ≤ 0 (lines 9-20). Then, the end of the phase condition, in line 32, triggers.

In case (b), the same happens, but once all the registered agents have visited BS and
received the requested CS, req ctr stays strictly positive. However, there are no more
registered agents. Then, BS counts cv∗

max events without seeing a registered agent (lines
21-25) and the condition no req evntctr ≥ cv∗

max, in line 32, causes the end of the
phase.

244 J. Beauquier and J. Burman

Algorithm 1. Self-stabilizing Mutual Exclusion
Memory in a mobile agent x �= BS
tokenx : boolean
statex ∈ {neutral, request, registered, in,out}

Memory in BS
tokenBS : boolean
req ctr : integer
no req evntctr : integer
no token evntctr : integer

1: when agent x enters its entry section do
2: statex ← request
3: when agent x enters its exit section do
4: statex ← out
5: when agent x communicates with BS - event (x,BS)) do
6: if (clockBS = clockx = 0 mod 3 ∧ statex = request) then // Request Phase
7: statex ← registered
8: req ctr← req ctr + 1
9: if (clockBS = clockx = 1 mod 3 ∧ req ctr > 0) then // Access Phase

10: if (tokenBS ∧ statex = registered) then // entering CS
11: tokenBS ← false
12: tokenx ← true
13: statex ← in
14: 〈 x enters CS 〉
15: if (clockBS = clockx = 1 mod 3 ∧ tokenx ∧ statex = out) then // exiting CS
16: tokenBS ← true
17: tokenx ← false
18: statex ← neutral
19: if (req ctr > 0) then
20: req ctr← req ctr− 1
21: if (clockBS = 1 mod 3 ∧ req ctr > 0) then // control of requests
22: if (statex = registered ∨ statex = in) then
23: no req evntctr← 0
24: else
25: no req evntctr← no req evntctr + 1
26: if (clockBS = 1 mod 3) then // control of tokens
27: if (tokenBS ∨ (tokenx ∧ (statex = in ∨ statex = out))) then
28: no token evntctr ← 0
29: else
30: no token evntctr ← no token evntctr + 1
31: if (clockBS = 1 mod 3) then // end of access phase
32: if (req ctr ≤ 0) ∨ (no req evntctr ≥ cv∗

max) ∨ (no token evntctr ≥ cv∗
max) then

33: switch()
34: if (clockBS = clockx = 2 mod 3) then // Sweeping Phase
35: tokenBS ← true
36: req ctr← 0
37: no req evntctr← 0
38: no token evntctr ← 0
39: when two mobile agents x and y communicate - event (x, y) do
40: if (clockx = clocky = 2 mod 3) then // Sweeping Phase
41: if statex �= request then
42: statex ← neutral
43: tokenx ← false

Self-stabilizing Mutual Exclusion and Group Mutual Exclusion 245

In case (B), BS has no token and cannot receive one, since the only possibility to
receive a token is by executing lines 15-20. In this case, these lines cannot be exe-
cuted, since for any agent x, the condition tokenx ∧ statex = out (line 15) is false.
Hence, during each meeting with BS, line 30 is executed and no token evntctr is
incremented until the end of the phase condition (in line 32) triggers.

Lem. 1 is the key lemma of the proof of correctness, since it ensures that whatever
the initial configuration is, a sweeping phase is eventually reached and causes all the
variables to reset. Then, from Remark 3, there is no loss of generality in assuming that
at the beginning of an execution, the phase clock is stabilized.

Lemma 2. In any execution of Alg. 1, at the end of a complete phase 2 (the sweeping
phase), tokenBS = true and, for every mobile agent x, tokenx = false.

Proof: By Remark 2, during phase 2, there is a period of at least cv∗
min events where all

the agents have the clock value 2. During cv∗
min events happening in the system, at least

cvmin events occur. During cvmin events, at least one agent (a fastest one) meets every
other agent, including BS. Hence, during phase 2, for every mobile agent, the condition
in line 40 and, for BS, the condition in line 34 become true at least once. Thus, by the
end of phase 2, for every mobile agent x, tokenx = false due to the execution of line
43, and tokenBS = true due to the execution of line 35.

Lemma 3. In Alg. 1, after the end of the first complete phase 2, in each configuration
during a (complete) phase 1, there is exactly one agent x with tokenx = true, and at
the end of the phase 1, tokenBS = true.

Proof: By Lem. 2 and the fact that during a request phase the token variables are not
updated (lines 6-8), at the end of a request phase (0) the only token is in BS. Right after,
in phase 1, the update of the token variables can be done only by executing lines 9-14.
There, BS and some mobile agent x in an event exchange the token. Then, the token can
be exchanged again, only between the same agents (x returns the token to BS) in lines
15-20. Later in phase 1, the token can move according to the same unique scenario only
(with a mobile agent y �= x), because the token variables are updated in lines 9-14 and
15-20 only. Hence, during phase 1 (that comes after the first complete phase 2), there is
only one token in the system.
After the sequence of the complete phases 2 and then, 0 (at the beginning of the phase
1), req ctr equals the number of the registered agents. Hence, the scenario described
in phase 1 will repeat to the very end of this phase (till req ctr becomes 0). Thus, at
the end of phase 1, tokenBS = true.

Lemma 4 (safety). In Alg. 1, in each configuration after the end of the first complete
phase 2, there is exactly one agent x with tokenx = true.

Proof: By Lem. 2 and the fact that during a request phase the token variables are not
updated (lines 6-8), during the whole phase 0 (following a complete phase 2) the only
token is in BS. Then, in phase 1, the lemma is correct by Lem. 3. By the same lemma,
at the end of this phase 1, the only token is in BS. Then, during the whole phase 2, the
token stays in BS (lines 35 and 43). Then, the whole scenario of the 3 complete phases
repeats and hence, the lemma follows.

246 J. Beauquier and J. Burman

Lemma 5 (bounded waiting). Assume that in Alg. 1, following a complete phase 2, a
mobile agent x asks to enter CS (by line 2). Then, x enters CS (in line 14) during the
next (or after the next) phase 1.

Proof: Starting from the event when x asks to enter CS, x meets BS during phase 0. If
the closest phase 0 is incomplete and x does not meet BS, then it meets BS during the
next complete phase 0. This is because the duration of the complete phase 0 is cv∗

max

events (during which every mobile agent meets BS). During the event of x with BS in
phase 0, x becomes registered and req ctr is incremented (lines 6-8). Moreover, there
are exactly req ctr registered agents at the end of this phase. During the following
phase 1 (this is case (A)-(a) of Lem. 1 proof), there are req ctr entries in CS (in line
14) by the req ctr different agents, including x. In the worst case, x has asked to enter
CS during phase 0 in which it was not registered. Even in this case, it has not waited
more than 2 · (n− 1) entries of the other agents before entering CS.

Lemmas 1-5 yield the following theorem.

Theorem 1. Alg. 1 (composed with the extended phase clock from Sec. 3) is a self-
stabilizing solution to the mutual exclusion problem.

Proof: Define the legitimate configurations as those reached in an execution after a
complete phase 2. Lem. 1 involves that starting from an arbitrary configuration, any ex-
ecution reaches a legitimate configuration. Lem. 2-5 involve that any execution, starting
from a legitimate configuration, satisfies the mutual exclusion specification - Def. 2.

5 From Mutual Exclusion to Group Mutual Exclusion

Our solution to group mutual exclusion is given in Alg. 2 and follows a similar scheme
as the solution for mutual exclusion (Alg. 1). It also iterates three phases: sweeping
phase (phase 2 of the phase clock), request (phase 0) and access phase (phase 1). The
difference here is that each such iteration represents a session and has a session number
j ∈ {1, 2, . . . , r} during the execution. BS executes sessions successively for resources
{1, 2, . . . , r} in a repetitive way. Session j starts with the first event of phase 2, where
the session number is incremented to value j (line 33) and it ends with the last event of
the next phase 1.

During session j, in the access phase, agents that have requested an access to session
j (by going into the state requestj), receive a token from BS and access CS as in Alg.
1. The difference here is that several tokens can be given at the same time. This allows
several agents requesting the same resource to enter CS, what (partially) satisfies the
concurrent entering condition of GME. For each session, the request and the sweeping
phases operate similarly as in Alg. 1 with the following differences. In the request phase,
BS registers only agents having requested the current session j (those which are in state
requestj ; see line 6). In the sweeping phase, BS also advances to the next session by
incrementing a session number j by 1 (mod r), in line 33.

Again, as in Alg. 1, to deal with bad initialization and to achieve self-stabilization,
every execution should reach a complete sweeping phase. This is ensured by exactly the
same mechanism as in Alg. 1 (lines 19-31). The mutual exclusion condition of GME is

Self-stabilizing Mutual Exclusion and Group Mutual Exclusion 247

satisfied because two successive access phases are totally disjoint in time (by the cor-
rectness of the phase clock). All the other conditions of GME are mainly or partially
satisfied by ensuring that each phase in the algorithm is finite. The proof of the algo-
rithm follows almost the same lines as the proof of Alg. 1. Due to the lack of space, it
is provided in [7].

6 Impossibility Result

We prove that if local transition systems of all agents are bounded in memory, the
mutual exclusion problem has no self-stabilizing solution (which applies to an infinite
family of systems) in the model of population protocols with covering. This impossi-
bility result can be easily extended to GME. It justifies the strong assumption of the
existence of BS in the paper.

Similar impossibility results are already known in the classical distributed models
and also in the population protocol models without cover times (see [3, 12]). However,
since the cover time property of the scheduler has similarities with partial synchrony
[16] (cover times impose restrictions on scheduling of agents), previous results may ap-
pear to be different. Moreover, “bad execution” demonstrating the impossibility should
be proved to satisfy the cover time property. Hence, for completeness, we provide the
impossibility proof for the mutual exclusion problem in the considered model. We begin
by giving some definitions required for proving and for stating the result.

Since the mobile agents are anonymous and their codes (the set of transitions) are
uniform, their local transition systems are identical. Thus, in the model we use, a (global
transition) system is entirely characterized by a vector of cover times and the local tran-
sition systems of a mobile agent and of BS, if BS exists. Two systems Si and Sj , with
possibly different number of agents and/or cover time vectors, are said to be similar, if
and only if they have identical local transition systems.

A local transition system of an agent x is said bounded if and only if the number
of the states (and the transitions) of x is upper bounded by some (predefined) integer
constant. A (global transition) system is bounded, if and only if the local transition
systems of a mobile agent and of BS (if BS exist) are bounded.

A generic solution to a problem P is a relation that associates to any positive integer
n and to any acceptable vector of cover times cv (of size n) a system SPn,cv, with n
agents and a vector of cover times cv (the system scheduler satisfies the cover time
property according to cv), such that SPn,cv solves P . The set of all such systems is
called an image of the generic solution. A generic solution is said bounded if and only if
every element of its image is bounded. A self-stabilizing generic solution to the mutual
exclusion problem is a generic solution, such that every system in the image is self-
stabilizing for the specification of mutual exclusion in Def. 2.

The first lemma is a simple application of a well known combinatorial property - the
pigeonhole principle.

Lemma 6. Let A be a bounded generic solution to a problem P and let IA be its
image. Then, there exists an infinite subset IsimA of IA of similar systems such that for
any integer k and for any vector of cover times cv, there exists in IsimA a system of
size strictly greater than k with a vector of cover times strictly greater (component by
component) than cv.

248 J. Beauquier and J. Burman

Algorithm 2. Self-stabilizing Group Mutual Exclusion
Memory in a mobile agent x �= BS
tokenx : boolean
statex ∈ {neutral, {requestj′ |j′ = 1, 2, . . . , r}, registered, in, out}

Memory in BS
req ctr : integer
no req evntctr : integer
no token evntctr : integer
j ∈ {1, 2, . . . , r}

1: when agent x enters its entry section for resource j′ do
2: statex ← requestj′
3: when agent x enters its exit section do
4: statex ← out
5: when agent x communicates with BS - event (x,BS) do
6: if (clockBS = clockx = 0 mod 3 ∧ statex = requestj) then // Request Phase
7: statex ← registered
8: req ctr← req ctr + 1
9: if (clockBS = clockx = 1 mod 3 ∧ req ctr > 0) then // Access Phase

10: if (statex = registered) then // entering CS
11: tokenx ← true
12: statex ← in
13: 〈 x accesses resource j 〉
14: if (clockBS = clockx = 1 mod 3 ∧ tokenx ∧ statex = out) then // exiting CS
15: tokenx ← false
16: statex ← neutral
17: if (req ctr > 0) then
18: req ctr← req ctr− 1
19: if (clockBS = 1 mod 3 ∧ req ctr > 0) then // control of requests
20: if (statex = registered ∨ statex = in) then
21: no req evntctr← 0
22: else
23: no req evntctr← no req evntctr + 1
24: if (clockBS = 1 mod 3) then // control of tokens
25: if (tokenx ∧ (statex = in ∨ statex = out)) then
26: no token evntctr ← 0
27: else
28: no token evntctr ← no token evntctr + 1
29: if (clockBS = 1 mod 3) then // end of access phase
30: if (req ctr ≤ 0) ∨ (no req evntctr ≥ cv∗

max) ∨ (no token evntctr ≥ cv∗
max) then

31: switch()
32: if (clockBS = clockx = 2 mod 3) then // Sweeping Phase
33: j ← (j + 1) mod r // advance to the next session
34: req ctr← 0
35: no req evntctr← 0
36: no token evntctr ← 0
37: when two mobile agents x and y communicate - event (x, y) do
38: if (clockx = clocky = 2 mod 3) then // Sweeping Phase
39: if statex /∈ {requestj′} then // for any j′
40: statex ← neutral
41: tokenx ← false

Self-stabilizing Mutual Exclusion and Group Mutual Exclusion 249

The intuitive justification for the lemma is the following. Since every system in the
image of A is bounded, there are only a finite number of possible choices for the local
transition systems. Thus, these choices have necessarily to be made infinitely many
times, both for n and for cv.

Theorem 2. There exists no self-stabilizing bounded generic solution to the mutual
exclusion problem (in the model of population protocols with covering).

Proof: Assume by contradiction that there exists a self-stabilizing bounded generic
solution to mutual exclusion. Lem. 6 shows that there exists an infinite subset Isim

of similar systems self-stabilizing to the mutual exclusion specification (in Def. 2).
Without loss of generality, let us assume that the circulating token is used in these
systems. Consider some system S1 ∈ Isim that applies to a population of size n1 (> 1)
with a vector of cover times cv1. Let T be the stabilization time of S1.

By Lem. 6, in Isim , there is another system S2 self-stabilizing to the mutual exclu-
sion and similar to S1, with n2 agents and a cover time vector cv2 such that n2 > n1

and cvmin(S2) > T + n2·(n2−1)
2 (where cvmin(S2) is cvmin in S2).

Consider a legitimate configuration C′ of S2 in which there is (exactly) one token
in some mobile agent x, and let C be the projection of C′ on n1 arbitrary agents not
holding a token. We consider C as the initial configuration of an execution e in S1.
Note that C is effectively a configuration of S1, since S1 and S2 are similar. Moreover,
execution e does exist, because cv1 is acceptable. Since S1 is assumed to be a self-
stabilizing solution, in the execution e from C, after at most T events, e reaches a con-
figuration in which one token has been created. Let us denote by < token creation >
the step during which this token is created. Then e = e1 < token creation > e2
and the length of e1 is at most T . We claim that e1 < token creation > is the prefix
of a possible (infinite) execution of S2, from configuration C′. First, all the transitions
used in this prefix are transitions of S2, since S2 and S1 are similar. Second, since
cvmin(S2) > |e1 < token creation > |+ n2·(n2−1)

2 , the fact that the n2 − n1 agents
in S2, but not in S1, that have no events in e1 < token creation >, does not violate
the cover time property. Third, e1 < token creation > can be completed to the seg-
ment e′ of length cvmin(S2) events by adding all the missing (according to the cover
time property) meetings in at least n2·(n2−1)

2 next events. Now, if we repeat indefinitely
many times the schedule of e′, we can get an infinite execution e′∞ of S2 that satisfies
the cover time property (see Remark 1). However, in the configuration reached by this
execution after the prefix e1 < token creation >, there are two tokens - the token
that is just created and the token at agent x. That contradicts the assumption that C′ is
legitimate and that S2 is a self-stabilizing solution. That proves the theorem.

Corollary 1. If all agents have a bounded state (bounded by some predefined integer
constant, independent of the population size n), there is no generic self-stabilizing solu-
tion (and, in particular, no self-stabilizing algorithm) to the mutual exclusion problem.

References

1. The Dartmouth wireless trace archive - Dartmouth College (2007),
http://crawdad.cs.dartmouth.edu/

http://crawdad.cs.dartmouth.edu/

250 J. Beauquier and J. Burman

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of
passively mobile finite-state sensors. DC 18(4), 235–253 (2006)

3. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols.
TAAS 3(4) (2008)

4. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: A time-optimal self-
stabilizing synchronizer using a phase clock. IEEE TDSC 4(3), 180–190 (2007)

5. Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building self-
stabilizing distributed protocols (extended abstract). In: FOCS, pp. 258–267 (1991)

6. Beauquier, J., Burman, J.: Self-Stabilizing Synchronization in Mobile Sensor Networks with
Covering. In: Rajaraman, R., Moscibroda, T., Dunkels, A., Scaglione, A. (eds.) DCOSS
2010. LNCS, vol. 6131, pp. 362–378. Springer, Heidelberg (2010)

7. Beauquier, J., Burman, J.: Self-stabilizing mutual exclusion and group mutual exclusion for
population protocols with covering (extended version). Technical Report Inria-00625838,
INRIA (2011), http://hal.inria.fr/inria-00625838/en/

8. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks of mobile
agents. In: PODC, pp. 305–314 (2010)

9. Beauquier, J., Burman, J., Kutten, S.: A self-stabilizing transformer for population protocols
with covering. Theor. Comput. Sci. 412(33), 4247–4259 (2011)

10. Beauquier, J., Clement, J., Messika, S., Rosaz, L., Rozoy, B.: Self-Stabilizing Counting in
Mobile Sensor Networks with a Base Station. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731,
pp. 63–76. Springer, Heidelberg (2007)

11. Cai, H., Eun, D.Y.: Crossing over the bounded domain: from exponential to power-law inter-
meeting time in MANET. In: MOBICOM, pp. 159–170 (2007)

12. Canepa, D., Gradinariu Potop-Butucaru, M.: Self-stabilizing tiny interaction protocols. In:
WRAS, pp. 10:1–10:6 (2010)

13. Couvreur, J.-M., Francez, N., Gouda, M.G.: Asynchronous unison (extended abstract). In:
ICDCS, pp. 486–493 (1992)

14. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. of the
ACM 17(11), 643–644 (1974)

15. Dolev, S.: Self-Stabilization. The MIT Press (2000)
16. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial synchrony.

J. ACM 35(2), 288–323 (1988)
17. Fischer, M., Jiang, H.: Self-Stabilizing Leader Election in Networks of Finite-State Anony-

mous Agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–
409. Springer, Heidelberg (2006)

18. Hadzilacos, V.: A note on group mutual exclusion. In: PODC, pp. 100–106 (2001)
19. Herman, T.: Adaptivity through Distributed Convergence (Ph.D. Thesis). University of Texas

at Austin (1991)
20. Hong, S., Rhee, I., Joon Kim, S., Lee, K., Chong, S.: Routing performance analysis of

human-driven delay tolerant networks using the truncated levy walk model. In: Mobility-
Models, pp. 25–32 (2008)

21. Peterson, J.L., Silberschatz, A.: Operating system concepts. Addison-Wesley (1985)
22. Joung, Y.-J.: Asynchronous group mutual exclusion. Distributed Computing 13(4), 189–206

(2000)
23. Karagiannis, T., Le Boudec, J., Vojnovic, M.: Power law and exponential decay of inter

contact times between mobile devices. In: MOBICOM, pp. 183–194 (2007)
24. McNett, M., Voelker, G.M.: Access and mobility of wireless PDA users, vol. 9, pp. 40–55

(2005)
25. Rhee, I., Shin, M., Hong, S., Lee, K., Chong, S.: On the levy-walk nature of human mobility.

In: INFOCOM, pp. 924–932 (2008)
26. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University Press (2000)

http://hal.inria.fr/inria-00625838/en/

	Self-stabilizing Mutual Exclusion and Group Mutual Exclusion for Population Protocols with Covering
	Introduction
	Model and Problem Specifications
	Transition System
	The Cover Time Property (Covering)
	Specifications

	Self-stabilizing Phase Clock Tool
	A Self-stabilizing Solution to Mutual Exclusion
	Proving Correctness

	From Mutual Exclusion to Group Mutual Exclusion
	Impossibility Result
	References

