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Abstract. This paper presents the first concurrent non-blocking k-ary
search tree. Our data structure generalizes the recent non-blocking binary
search tree of Ellen et al. [5] to trees in which each internal node has k
children. Larger values of k decrease the depth of the tree, but lead
to higher contention among processes performing updates to the tree.
Our Java implementation uses single-word compare-and-set operations
to coordinate updates to the tree. We present experimental results from
a 16-core Sun machine with 128 hardware contexts, which show that our
implementation achieves higher throughput than the non-blocking skip
list of the Java class library and the leading lock-based concurrent search
tree of Bronson et al. [3].
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1 Introduction

With the arrival of machines with many cores, there is a need for efficient, scal-
able linearizable concurrent implementations of often-used abstract data types
(ADTs) such as the set. Most existing concurrent implementations of the set
ADT are lock-based (e.g., [3,9]). However, locks have some disadvantages (see
[7]). Other implementations use operations not directly supported by most hard-
ware, such as load-link/store-conditional [2] and multi-word compare-and-swap
(CAS) [8]. Software transactional memory (STM) has been used to implement
the set ADT (e.g., [10]), but this approach is currently inefficient [3].

Most multicore machines support (single-word) CAS operations. Non-blocking
implementations of dictionaries have been given based on skip lists and binary
search tree structures. Sundell and Tsigas [12], Fomitchev and Ruppert [6], and
Fraser [8] have implemented a skip list using CAS operations. A binary search
tree implementation using only CAS operations was sketched by Valois [13], but
the first complete algorithm is due to Ellen et al. [5]. The non-blocking property
ensures by definition that, while a single operation may be delayed, the system as
a whole will always make progress. (Some refer to this property as lock-freedom.)

In this paper, we generalize the binary search tree of Ellen et al. (BST) to a k-
ary search tree (k-ST) in which nodes have up to k−1 keys and k children. This

A. Fernández Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 207–221, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



208 T. Brown and J. Helga

requires generalizing the existing BST update operations to k-ary trees, creating
new kinds of updates to handle insertion and deletion of keys from nodes, and
verifying that the coordination scheme works with the new updates. Using larger
values of k decreases the average depth of nodes, but increases the local work
done at each internal node in routing searches and performing updates to the
tree. However, the increased work at each node is offset by the improved spatial
locality offered by larger nodes. By varying k, we can balance these factors
to suit a particular system architecture, expected level of contention, or ratio
of updates to searches. Searches are extremely simple and fast. Oblivious to
concurrent updates, they behave exactly as they would in the sequential case.

We have implemented both the BST and our k-ST in Java, and have com-
pared these implementations with ConcurrentSkipListMap (SL) of the Java class
library, and the lock-based AVL tree of Bronson et al. (AVL) [3]. The AVL tree
is the leading concurrent search tree implementation. It has been compared in
[3] with SL, a lock-based red-black tree, and a red-black tree implemented using
STM. Since SL and AVL drastically outperform the red-black tree implementa-
tions, we have not included the latter in our comparison. In our experiments, the
BST and 4-ST (k-ST with k = 4) algorithms are top performers in both high and
low contention cases. We did not observe significant benefits when using values
of k > 4, but we expect this would change with algorithmic improvements to the
management of keys within nodes. This paper also provides the first performance
data for the BST of Ellen et al. [5].

The BST and k-ST are both unbalanced trees. All performance tests in this
paper use uniformly distributed random keys. If keys are not random then, in
certain cases, SL (which uses randomization to maintain balance) and AVL (a
balanced tree) will take the lead. Extending the techniques in this paper to
provide balanced trees is the subject of current work.

2 k-ary Search Trees

2.1 The Structure

We use a leaf-oriented, non-blocking k-ST to implement the set ADT. A set
stores a set of keys from an ordered universe. It does not admit duplicate keys.
Here, we define the operations on the ADT to be Find(key), Insert(key), and
Delete(key). The Find operation returns True if key is in the set, and False
otherwise. An Insert(key) operation returns False if key was already present
in the set. Otherwise, it adds key to the set and returns True. A Delete(key)
returns False if key was not present. Otherwise, it removes key and returns
True. The other implementations we compare to the k-ST and BST can addi-
tionally associate a value with each key, and it is a simple task to modify our
structure to do so (as discussed in [4]).

The k-ST is leaf-oriented, meaning that at all times, the keys in the set ADT
are the keys in the leaves of the tree. Keys in internal nodes of the k-ST serve
only to direct searches down the tree.
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Each leaf in a BST contains one key. Each internal node has exactly two
children and one key. In our k-ST, each leaf has at most k−1 keys. It is permitted
for a leaf to have zero keys, in which case it is said to be an empty leaf. Each
internal node has exactly k children and k − 1 keys. Inside each node, keys are
maintained in increasing order.

The search tree property for k-STs is a natural generalization of the familiar
BST property. For any internal node with keys a1, a2, ..., ak−1, sub-tree 1 (left-
most) contains keys a < a1, sub-tree k (rightmost) contains keys a > ak−1, and
sub-tree 1 < i < k contains keys a with ai ≤ a < ai+1.

2.2 Modifications to the Tree

We first describe a sequential implementation of the set operations, and subse-
quently transform it into a concurrent and non-blocking implementation. Since
the k-ST is leaf-oriented, the Insert and Delete procedures always operate
on leaves. Inserting a key into the set replaces a leaf by a larger leaf (with one
more key), or by a new sub-tree if the leaf is full (has k − 1 keys). Deleting a
key replaces a leaf by a smaller leaf (without the deleted key), or prunes the leaf
and its parent out of the tree.

More precisely, the operation Insert(key) first searches for key. If it is found,
the Insert returns False. Otherwise, it proceeds according to two cases as
follows (see Fig. 1). Let l be the leaf into which key should be inserted. If l is
full (has k− 1 keys) then Insert replaces l by a newly created sub-tree of k+1
nodes. This sub-tree consists of an internal node n whose keys are the k − 1
greatest out of the k − 1 keys in l and the new key key. The children of n are k
new nodes, each containing one of the k aforementioned keys. We call this first
type of insertion a sprouting insertion. Otherwise, if l has fewer than k− 1 keys,
Insert simply replaces l by a new leaf that includes key in addition to all of
the keys that were in l. We call this second type of insertion a simple insertion.

The operation Delete(key) first searches for key. If it is not found, then
False is returned. Otherwise, it proceeds according to two cases (see Fig. 1).
Let l be the leaf from which key should be deleted. If l has only one key and
the parent of l has exactly two non-empty children, then the entire leaf l can

Fig. 1. The four types of modifications performed on the tree by an insertion or dele-
tion. Asterisks indicate that nodes are newly created in freshly allocated memory.
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be deleted (since it will be empty after the deletion) and, because it has only
one non-empty sibling s, the parent node is no longer useful (since its keys
just direct searches). Thus, the Delete procedure simply replaces the parent
with s. We call this first type of deletion a pruning deletion. Otherwise, if l has
more than one key or the parent of l has more than two non-empty children,
Delete replaces l by a new leaf with all of the keys of l except for key.We call
this second type of deletion a simple deletion. Simple deletion can yield empty
leaves. However, with this insertion and deletion scheme an internal node always
has at least two non-empty children. Note that if Null were used instead of
empty children, then the ABA problem would occur on child pointers.

Note that a pruning deletion changes a child pointer of the grandparent of l to
point to l’s only non-empty sibling. To avoid dealing with degenerate cases when
there is no parent or grandparent of l, we initialize the tree with two dummy
internal nodes and 2k− 1 empty leaves at the top, as shown in Fig. 2(a). These
internal nodes will not be deleted or replaced by an insertion. When k = 2, our
algorithm is simply the BST of Ellen et al. [5], with some slight modifications,
where all insertions and deletions are sprouting insertions and pruning deletions,
except for an Insert into an empty tree and a Delete on the last key in a tree.

2.3 Coordination between Updates

Without some form of coordination, interactions between concurrent updates
would produce incorrect results. Suppose that a pruning deletion and a simple
insertion are performed concurrently in the 2-ary tree on the left in Fig. 2(b). If
the steps of the Insert(d) and Delete(b) are interleaved in a particular order,
key d may be inserted as a grandchild of p, and erroneously deleted along with b.

To avoid situations such as this, each internal node is augmented to contain
an UpdateStep object that indicates an operation has exclusive access to the

(a) (b)

Fig. 2. (a) The initial state of the k-ary search tree. The root and its leftmost child have
k−1 keys valued ∞ (a special key, larger than any key in the set). All other children of
these nodes are empty leaves. Keys in the set are stored in the sub-tree rooted at the
leftmost grandchild of the root. (b) Example of the danger of uncoordinated concurrent
updates. Faintly shaded nodes are no longer in the tree. If gp’s right child is changed
to s by a Delete(b), and p’s left child is changed to l′ by a concurrent Insert(d), then
the new key d is lost.
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child pointers of a node. This coordination scheme extends the work of Ellen
et al. [5]. UpdateStep objects serve as something similar to locks, because all
processes operate under the following agreement. When an operation intends
to modify a child pointer of an internal node n, it first stores an UpdateStep
object at n (using CAS). An operation cannot store an UpdateStep at node
n if another operation x has already stored an UpdateStep at n, until x has
relinquished control of n. Thus, UpdateStep objects behave like locks that are
owned by an operation, rather than by a process, and this allows us to guarantee
the non-blocking property by using the helping mechanism described in Sec. 2.4.

UpdateStep objects are divided into Flags and Marks. A Flag is placed on
a node to reserve its child pointers for exclusive access, indicating that one
will be changed by an operation. A Mark is similar to a Flag except, where
a Flag is temporary (removed once a modification is completed), a Mark is
permanent, and is placed on a node that is to be removed from the tree. The
Mark permanently prevents the child pointers of the node from ever changing
after it is removed. The final type of UpdateStep object is the Clean object
which, if stored at a node x, indicates that no operation has exclusive access to
x, and any operation is allowed to store a Flag or Mark there.

The details of the Insert and Delete operations, including flagging and
marking steps, are as follows. In the following, l is the target leaf for insertion
or deletion of a key, p is its parent, and gp is its grandparent. A simple insertion
or simple deletion (see Fig. 1) creates the new leaf, flags p with a ReplaceFlag
object (with a Flag CAS ), changes the child pointer of p (with a Child CAS ),
and unflags p (with an Unflag CAS ) by writing a new Clean object. Similarly,
a sprouting insertion creates the new sub-tree, flags p with a new ReplaceFlag
object, changes the child pointer of p, and unflags p. A pruning deletion flags
gp with a PruneFlag object, then attempts to mark p with a Mark CAS. If
the Mark CAS is successful, then the child pointer of gp is changed, finishing
the deletion, and gp is unflagged. Otherwise, if the marking step fails, then the
Delete must unflag gp (with a Backtrack CAS ) and try again from scratch.

We now return to Fig. 2(b) to illustrate how flagging and marking resolves
the issue. After Delete(b) has successfully stored a PruneFlag at gp, it must
store a Mark at p. Say the Mark is successfully stored at p. Then it is safe to
prune l and p out of the tree, since no child pointer of p will ever change, and
l is a leaf (which has no mutable fields). Once l and p are pruned out of the
tree, gp is unflagged by an Unflag CAS that replaces the PruneFlag stored by
Delete(b) by a newly created Clean object. If Insert(a) subsequently tries to
change a child reference belonging to p, it will first have to store a ReplaceFlag at
p, which is impossible, since p is already marked. Otherwise, if the Mark cannot
be successfully be stored at p (because p is already flagged or marked by another
operation), then Delete(b) will execute a Backtrack CAS, storing a new Clean
object at gp (relinquishing control of gp to allow other operations to work with
it), and retry from scratch.
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2.4 Helping

To overcome the threat of deadlock that is created by the exclusive access that
flags and marks grant to a single operation, we follow the approach taken by
Ellen et al. [5], which has some similarities to Barnes’ cooperative technique
[1]. Suppose that a process P flags or marks a node hoping to complete some
tree modification C. The Flag or Mark object is augmented to contain sufficient
information so that any process can read the Flag or Mark and complete C on
P ’s behalf. This allows the entire system to make progress even if individual
processes are stalled indefinitely.

Unfortunately, while helping guarantees progress, it can mean duplication
of effort. Several processes may come across the same UpdateStep object and
perform the work necessary to advance the operation by performing some local
work, followed by a Mark CAS, Child CAS, or Unflag CAS, but only one process
can successfully perform each CAS, so the work performed by all other processes
is wasted. For this reason it is advantageous to limit helping as much as possible.
To this end, a search ignores flags and marks in our implementation, and proceeds
down the tree without helping any operation. An Insert or Delete helps only
those operations that interfere with its own completion. Thus, an Insert will
only help an operation that has flagged or marked p, and aDelete will only help
an operation that has flagged or marked p or gp (although they may help other
operations recursively). After an Insert or Delete helps another operation,
it restarts, performing another search from the top of the tree. An Insert or
Delete operation is repeatedly attempted until it successfully modifies the tree
or finds that it can return False.

1 � Type definitions:
2 type Node {
3 final Key ∪ {∞} a1, ..., ak−1

4 }
5 subtype Leaf of Node {
6 final int keyCount
7 }
8 subtype Internal of Node {
9 Node c1, ..., ck
10 UpdateStep pending

� (initially a new Clean() object)
11 }
12 type UpdateStep { }
13 subtype ReplaceFlag of UpdateStep {
14 final Node l, p, newChild
15 final int pindex
16 }

17 subtype PruneFlag of UpdateStep {
18 final Node l, p, gp
19 final UpdateStep ppending
20 final int gpindex
21 }
22 subtype Mark of UpdateStep {
23 final PruneFlag pending
24 }
25 subtype Clean of UpdateStep { }
26 � Initialization:
27 shared Internal root := the structure

described in Fig. 2(a), with the pending
fields of root and root.c1 set to refer to
new Clean objects.

Fig. 3. Type definitions and initialization

2.5 Pseudocode

Java-like pseudocode for all operations is found in Fig. 3 through Fig. 5. We
borrow the concept of a reference type from Java. Any variable x of type C,
where C is a type defined in Fig. 3, is a reference to an instance (or object) of
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type C. Such a variable x behaves like a C pointer, but does not require explicit
dereferencing. References can point to an object or take on the value Null, and
management of their memory is automatic: memory is garbage-collected once it
is unreachable from any executing thread. We use a.b to refer to field b of the
object referred to by a. We also adopt a Java-like definition of CAS: it atomically
compares a field R with an expected value exp and either writes a new value
and returns true (if R contains exp), or returns false (otherwise).

The Search(key) operation is straightforward. Beginning at the leftmost
child of root (line 29) and continuing until it reaches a leaf (line 32), it compares
its argument key with the key stored at each node and follows the appropriate
child reference (line 36), saving some information along the way. (The keys of
a node can be naively inspected in sequence because they never change.) The
Find(key) operation returns True if Search finds a leaf containing key; oth-
erwise it returns False. Find can actually call a highly optimized version of
Search, given in Appendix A (see [4]).

To perform an Insert(key), a process P locates the leaf l and its parent p,
and stores the parent’s pending field in ppending and the index of the child
reference of gp that contained p in pindex (line 49). If key is already in l, then
the operation simply returns False (line 50). Otherwise, P checks whether the
parent’s pending field was of type Clean when it was read (line 51). If not, then
p.pending was occupied by a Flag or Mark belonging to some other operation
x in progress at p. P helps x complete, and then re-attempts its own operation
from scratch. Otherwise, if p.pending was Clean, P tries to flag p by creating
newChild, a new leaf or sub-tree depending on which insertion case applies
(lines 54 to 58), creating the ReplaceFlag object op (line 59), and executing
an Rflag CAS to store it in the pending field of p (line 60). If the Rflag CAS
succeeds, P calls HelpReplace(op) to finish the insertion (line 62) and the
operation returns True. Otherwise, if the Rflag CAS failed, another process
must have changed p’s pending field to a ReplaceFlag object, a PruneFlag object,
a Mark object, or a new Clean object (different from the one read at line 49).
Process P helps this other operation (if not a Clean object) complete, and then
re-attempts its own operation. A call to HelpReplace executes a Child CAS
to change the appropriate child pointer of p from l to newChild (line 116), and
executes an Runflag CAS to unflag p (line 117).

When process P performs a Delete(key) operation, it first locates the leaf
l, its parent p and grandparent gp, and stores the parent’s and grandparent’s
pending fields in ppending and gppending, and the indices of the child references
of gp and p that contained p and l, respectively, in gpindex and pindex (line 78).
If l does not contain key, then the operation simply returns False (line 79).
Otherwise, P checks gppending and ppending to determine whether gp and p
were Clean when their pending fields were read (lines 80 and 82). If either has
been flagged or marked by another operation, P helps complete this operation
and re-attempts its own operation from scratch. Otherwise, it counts the number
of non-empty children of p to determine the deletion case to apply. We shall
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28 Search(Key key) : 〈Internal, Internal,Leaf,UpdateStep,UpdateStep〉 {
� Used by Insert, Delete and Find to traverse the k-ST
� Search satisfies following postconditions:
� (1) leaf points to a Leaf node, and parent and gparent point to Internal nodes
� (2) parent.cpindex has contained leaf , and gparent.cgpindex has contained parent
� (3) parent.pending has contained ppending,

and gparent.pending has contained gppending
29 Node gparent, parent := root, leaf := parent.c1
30 UpdateStep gppending, ppending := parent.pending
31 int gpindex, pindex := 1
32 while type(leaf) = Internal { � Save details for parent and grandparent of leaf
33 gparent := parent; gppending := ppending
34 parent := leaf ; ppending := parent.pending
35 gpindex := pindex
36 〈leaf, pindex〉 := 〈appropriate child of parent by the search tree property,

index such that parent.cpindex is read and stored in leaf〉
37 }
38 return 〈gparent, parent, leaf, ppending, gppending, pindex, gpindex〉
39 }
40 Find(Key key) : boolean {
41 if Leaf returned by Search(key) contains key, then return True, else return False
42 }
43 Insert(Key key) : boolean {
44 Node p, newChild
45 Leaf l
46 UpdateStep ppending
47 int pindex
48 while True {
49 〈−, p, l, ppending,−, pindex,−〉 := Search(key)
50 if l already contains key then return False
51 if type(ppending) �= Clean then {
52 Help(ppending) � Help the operation pending on p
53 } else {
54 if l contains k − 1 keys { � Sprouting insertion
55 newChild := new Internal node with pending := new Clean(),

and with the k − 1 largest keys in S = {key} ∪ keys of l,
and k new children, sorted by keys, each having one key from S

56 } else { � Simple insertion
57 newChild := new Leaf node with keys: {key} ∪ keys of l
58 }
59 ReplaceFlag op := new ReplaceFlag(l, p, newChild, pindex)
60 boolean result := CAS(p.pending, ppending, op) � Rflag CAS
61 if result then { � Rflag CAS succeeded
62 HelpReplace(op) � Finish the insertion
63 return True
64 } else { � Rflag CAS failed
65 Help(p.pending) � Help the operation pending on p
66 } } } }
67 Help(UpdateStep op) {

� Precondition: op �= Null has appeared in x.pending for some internal node x
68 if type(op) = ReplaceFlag then HelpReplace(op)
69 else if type(op) = PruneFlag then HelpPrune(op)
70 else if type(op) = Mark then HelpMarked(op.pending)
71 }

Fig. 4. Pseudocode for Search, Find, Insert and Help
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72 Delete(Key key) : boolean {
73 Node gp, p
74 UpdateStep gppending, ppending
75 Leaf l
76 int pindex, gpindex
77 while True {
78 〈gp, p, l, ppending, gppending, pindex, gpindex〉 := Search(key)
79 if l does not contain key, then return False
80 if type(gppending) �= Clean then {
81 Help(gppending) � Help the operation pending on gp
82 } else if type(ppending) �= Clean then {
83 Help(ppending) � Help the operation pending on p
84 } else { � Try to flag gp
85 int ccount := number of non-empty children of p (by checking them in sequence)
86 if ccount = 2 and l has one key then � Pruning deletion
87 PruneFlag op := new PruneFlag(l, p, gp, ppending, gpindex)
88 boolean result = CAS(gp.pending, gppending, op) � Pflag CAS
89 if result then { � Pflag CAS successful–now delete or unflag
90 if HelpPrune(op) then return True;
91 } else { � Pflag CAS failed
92 Help(gp.pending) � Help the operation pending on gp
93 }
94 } else { � Simple deletion
95 Node newChild := new copy of l with key removed
96 ReplaceFlag op := new ReplaceFlag(l, p, newChild, pindex)
97 boolean result := CAS(p.pending, ppending, op) � Rflag CAS
98 if result then { � Rflag CAS succeeded
99 HelpReplace(op) � Finish inserting the replacement leaf
100 return True
101 } else { � Rflag CAS failed
102 Help(p.pending) � Help the operation pending on p
103 } } } } }
104 HelpPrune(PruneFlag op) : boolean { � Precondition: op is not Null
105 boolean result := CAS(op.p.pending, op.ppending, new Mark(op)) � Mark CAS
106 UpdateStep newV alue := op.p.pending
107 if result or newV alue is a Mark with newV alue.pending = op then {
108 HelpMarked(op) � Marking successful–complete the deletion
109 return True
110 } else { � Marking failed
111 Help(newV alue) � Help the operation pending on p
112 CAS(op.gp.pending, op, new Clean()) � Unflag op.gp � Backtrack CAS
113 return False
114 } }
115 HelpReplace(ReplaceFlag op) { � Precondition: op is not Null
116 CAS(op.p.cop.pindex, op.l, op.newChild) � Replace l by newChild � Rchild CAS
117 CAS(op.p.pending, op, new Clean()) � Unflag p � Runflag CAS
118 }
119 HelpMarked(PruneFlag op) { � Precondition: op is not Null
120 Node other := any non-empty child of op.p

(found by visiting each child of op.p), or op.p.c1 if none
121 CAS(op.gp.cop.gpindex, op.p, other) � Replace l by other � Pchild CAS
122 CAS(op.gp.pending, op, new Clean()) � Unflag gp � Punflag CAS
123 }

Fig. 5. Pseudocode for Delete, HelpPrune, HelpReplace and HelpMarked
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explain why counting the children in sequence is not problematic when we discuss
correctness. We consider the two types of deletion separately.

If the operation is a simple deletion (line 94), it creates newChild, a new copy
of leaf l with key removed, and a new ReplaceFlag object op to facilitate helping
(line 96). Next, P attempts an Rflag CAS to store op in p.pending (line 97) and,
if it succeeds, it calls HelpReplace to finish the deletion (line 99). Otherwise,
if the Rflag CAS fails, P helps any operation that may be pending on p. After
helping, P retries its own operation from scratch. Note that, apart from the
creation of the new leaf, this is identical to simple insertion.

If the operation is a pruning deletion (line 86), P creates a PruneFlag ob-
ject (line 87), then attempts a Pflag CAS to store it in the pending field of gp
(line 88). If the Pflag CAS succeeds, P calls HelpPrune(op) to finish the dele-
tion (line 90) and the operation returnsTrue (more onHelpPrune later). Oth-
erwise, if the Pflag CAS fails, another process must have changed gp’s pending
field to a ReplaceFlag object, a PruneFlag object, a Mark object, or a new Clean
object (different from the one read at line 78). To help any other operation pend-
ing on gp to make progress, P calls Help(gp.pending) (line 92) before retrying
its own operation from scratch.

TheHelpPrune procedure, invoked by theDelete operation (and byHelp),
attempts the second (marking) CAS step of a pruning deletion. Recall that op,
created in the Delete routine, contains pointers to l, the leaf containing the key
to be deleted, its parent p, and its grandparent gp. The HelpPrune procedure
begins by attempting to mark the parent op.p (line 105). If the CAS successfully
marks op.p, or another helping process already stored a Mark for this opera-
tion, then the mark is considered to be successful. In this case, HelpMarked is
called to finish the pruning deletion (line 108), and True is returned. Otherwise,
if the CAS failed and the Mark was not already stored by a helping process, then
another operation involving op.p has interfered with the Delete. If the other
operation is still in progress, it is helped (line 111), and then the operation
backtracks, unflagging the grandparent op.gp (line 112), and HelpPrune re-
turns False. The process that invoked the Delete procedure will ultimately
retry the operation from scratch.

The HelpMarked procedure performs the final step of a pruning deletion,
pruning out some dead wood by changing the appropriate child pointer of op.gp
from op.p to point to the only non-empty sibling of op.l. This sibling of op.l is
found at line 120. (It is explained in Sec. 2.6 why this can be found simply by
visiting each child of op.p.) The CAS-Child routine is invoked to change the
child pointer of op.gp (line 121), and an Unflag CAS is executed to unflag op.gp
(line 122).

2.6 Correctness

It can be demonstrated that our algorithm exhibits linearizability (defined in
[11]), and the argument is very similar to the one made in the proof in [5]. We
simply give the linearization points of operations here. See [4] for the complete
proof of correctness. Consider some invocation of Search(key). It can be proved
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that each node visited by Search was on the search path for key in the tree at
some time during the execution of Search, so we linearize Search at a point
when the leaf it returns was on the search path. An invocation of Find(key)
is linearized at the point its corresponding Search was linearized. It can be
proved that each Insert or Delete invocation that returns True has executed
a successful Child CAS. An invocation of Insert(key) or Delete(key) that
returns True is linearized at this Child CAS ; an invocation that returns False
is linearized at the same point as the corresponding Search that discovered key
was already in the tree, or was not in the tree, respectively.

The k-ST algorithm differs significantly from the BST algorithm at lines 85
and 120, which both involve accessing several children in sequence. Let P be
a process executing line 85. We note that no flagging or marking has yet been
attempted by P , and the expected values to be used by the CASs at lines 88 and
97 were verified to be Clean a few lines prior. Further, if any process Q wants
to add or remove a key from a child x of p that P will read at line 85, it must
replace x, changing a child pointer of p. However, it must flag p to change its
child pointers, overwriting the Clean object that was read earlier by P to be
used as the expected value for its Flag CAS. It is easy to prove that there is
no ABA problem on pending fields, which implies that the expected value used
by P for the CAS can never appear in p.pending again, so P ’s CAS must fail,
and the operation will be retried. It can then be shown that if an operation op
successfully flags or marks p, ccount contains the number of non-empty children
of p until a Child CAS is executed for op, and that only the first Child CAS
will be successful (occurring immediately after line 120). Thus, it can be shown
that when line 120 is executed, the children of op.p are precisely op.l and one
other leaf, or else the Child CAS will fail, so the value of other is irrelevant.
This is rigorously demonstrated in the detailed proof of correctness presented in
Appendix A (see [4]).

3 Experiments

In this section we present results from experiments comparing the performance
of the BST of Ellen et al. [5], our k-ST algorithm, ConcurrentSkipListMap (SL)
of the Java class library and the lock-based AVL tree (AVL) of Bronson et al.
[3]. Experiments on each structure used put-if-absent and delete-if-present (set
functions), returning True if the operation could be completed, and False
otherwise. Preliminary experiments were run to tune the parameters of the final
experimental set to maximize trial length while keeping standard deviations rea-
sonable. The final experiments each consisted of selecting a particular algorithm
and executing a sequence of 17 three-second trials, in which a fixed number of
threads randomly perform Inserts, Deletes and Finds according to a desired
probability distribution (e.g., 5% Insert, 5% Delete, 90% Find), on uniformly
distributed random keys, drawn from a particular key range (e.g., the integers
from 0 to 106). The average throughput (operations per second) was recorded for
each trial, and the first few trials were discarded to account for the few seconds
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of “warm-up” time that the Java Virtual Machine (VM) needs to perform just-
in-time compilation and optimization. We observed that throughput stabilized
after the first three to five seconds of execution, so the first two trials (six sec-
onds) of each experiment were discarded. Garbage collection was also triggered
in between trials to minimize its haphazard impact on measurements.

Our experiments were run on a Sun machine at the University of Rochester,
with two UltraSPARC-III CPUs, each having eight 1.2GHz cores capable of
running 8 hardware threads apiece (totalling 128 hardware contexts), and 32GB
of RAM, running Sun’s Solaris 10 and the Java 64-bit VM version 1.6.0 21 (with
15GB initial and maximum heap sizes).

We call the probability distribution of Inserts and Deletes a ratio, and de-
note an experiment with x% Inserts, y%Deletes and (100−x−y)% Finds as,
simply xi-yd. We denote the key range of integers from 0 to 10x−1 by [0, 10x). The
experimental results we present herein used algorithms BST, 4-ST, SL and AVL,
key ranges [0, 102) and [0, 106) and ratios 0i-0d, 5i-5d, 8i-2d and 50i-50d. The key
ranges induce high and low levels of contention, respectively, with small trees in-
creasing the probability that operations on random keys will coincide. The four
ratios represent situations in which operations consist (1) entirely of searching,
(2) mostly of searching, (3) mostly of searching, but with far more Inserts than
Deletes, and (4) entirely of updates. Initially, each data structure was empty for
each trial, except when the ratio was 0i-0d, since that would mean performing all
operations on an empty tree. In this case, each structure was pre-filled at the be-
ginning of each trial by performing random operations in the ratio 50i-50d until
the structure’s size stabilized (to within 5% of the expected half-full). Additional
results, including more operation mixes and key ranges, and results from a 32-core
system at Intel’s Multicore Testing Lab can be found in [4]. For implementations
of the BST and k-ST, see [4].

We now discuss the graphs presented in Fig. 6. The [0, 102) key range repre-
sents very high contention. There were at most 102 keys in the set, and as many
as 128 threads accessing the tree. Under this load, BST was the top performer in
all experiments. The low degree of BST’s nodes permits many simultaneous up-
dates to different parts of the tree, and its simplicity offers strong performance.
4-ST matched BST’s performance in the 0i-0d and 8i-2d cases, indicating that,
in the absence of many deletions, it can perform just as well under extremely
high contention. For the other two ratios, 4-ST’s performance was similar to the
lock-free SL, surpassing AVL by a fair margin. BST scaled very well in all cases;
4-ST scaled equally well when deletions were few.

The [0, 106) key range represents low contention: with as many as one million
keys and only 128 threads, the chance of collisions in random keys is quite small.
With this level of contention, 4-ST exhibits strong performance, surpassing BST,
and the other algorithms. This is in line with expectations; as the size of the tree
increases, the higher degree of the 4-ST affords it a shallower depth, allowing
all operations to complete more quickly. Unlike the [0, 102) case, all algorithms
scale reasonably well in the [0, 106) case, approaching linear improvement in
throughput with an increase in the number of hardware threads.
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Fig. 6. Experimental results. Error bars are drawn to represent one standard deviation
from the mean. Columns display ranges from which random keys are drawn. Rows
display ratios of Inserts to Deletes to Finds. The y-axis displays average throughput
(millions of operations/sec.), and the x-axis displays the number of hardware threads.
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4 Conclusion and Future Work

BST has the greatest advantage in high contention settings. Its simplicity pushes
its performance beyond the other algorithms. As trees get larger and contention
decreases, 4-ST surpasses BST to become the top performer. Similar to 4-ST,
AVL also performs well as the size of the data structure increases. SL tends to
performs well when its set of keys is small.

AVL is a balanced tree, so it does some extra work in maintaining this prop-
erty. However, since our experiments insert random keys, 4-ST and BST also are
nearly balanced. In this experimental setting, the balancing work of AVL does
not pay off. In a situation where the keys inserted are not random, AVL would
have a significant advantage over 4ST and BST. Since in many cases BST and
4ST outperform AVL and SL by a fair margin, we believe that it may be possible
to add balancing and remain competitive, while offering a non-blocking progress
guarantee.
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