
Anonymous Agreement: The Janus Algorithm

Zohir Bouzid1,�, Pierre Sutra1,��, and Corentin Travers2,� � �

1 University Pierre et Marie Curie - Paris 6, LIP6-CNRS 7606, France
name.surname@lip6.fr

2 LaBRI University Bordeaux 1
name.surname@labri.fr

Abstract. We consider the consensus problem in an n-process shared-
memory distributed system when processes are anonymous, i.e., they
have no identities and are programmed identically.

We present Janus, a new anonymous consensus algorithm that reaches
decision after O(

√
n) writes in every solo execution. The set of values that

can be proposed is unbounded and the algorithm tolerates an arbitrary
number of crash failures. The algorithm relies on an anonymous eventual
leader election mechanism. Furthermore, during solo executions in which
a non-faulty process is elected since the beginning, the individual step
complexity of Janus is O(n), matching a recent lower bound by Aspnes
and Ellen (SPAA 2011).

The algorithm is then extended to the case of homonymous system
in which c, 1 ≤ c ≤ n, identities are available. In every solo execution,
the modified algorithm achieves O(

√
n− c + 1+ log c

log log c
) individual write

complexity and O(n− c + log c
log log c

) individual step complexity.

Keywords: Anonymity, asynchronous shared memory, consensus,
failure detectors, homonym processes, indulgent algorithms.

1 Introduction

In a typical distributed system, processes are eponymous, i.e., they have unique
identities. On the other hand, in anonymous systems, processes have no identity
and are programmed identically. When provided with the same input, processes
in such systems are indistinguishable. Anonymity adds a new, challenging, diffi-
culty to distributed computing.

From a practical point of view, anonymity is sometimes unavoidable. For
example, consider a system composed of many tiny nodes, e.g., sensors networks.
Sensors nodes might have limited storage and computational capability, and
might not have been provided with unique identifiers [2]. Some other systems,
like peer-to-peer file sharing applications [13], might require users to remain
anonymous as a prerequisite to ensure privacy. See [19] for more details regarding
anonymous computing and privacy.

� Supported by DIGITEO project PACTOLE.
�� Supported in part by the ANR projects PROSE and CONCORDANT.

� � � Supported in part by the ANR project DISPLEXITY.

A. Fernández Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 175–190, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

176 Z. Bouzid, P. Sutra, and C. Travers

Recently, several papers [4,5,14,22,24,29] have addressed the question of the
computational power of anonymous systems, with an emphasis on the consensus
problem. In particular, Aspnes and Ellen [4] have shown that, when the number
of proposed values is unbounded, the solo step complexity of consensus is Θ(n)
in an n-process system. This paper presents a new, efficient, consensus algorithm
for anonymous system.

The consensus problem. Consensus is a fundamental problem in fault-tolerant
distributed computing. Informally, n processes, each starting with a private
value, are required to agree on one value chosen among their initial values.
For shared memory systems, it is well known that asynchronous fault tolerant
consensus is impossible as soon as at least one process may fail by crashing [28].
Trivially, consensus is thus impossible in anonymous, asynchronous and failure-
prone shared memory. The same impossibility holds for non-anonymous message
passing asynchronous systems [20].

Since the publication of this result, several approaches have been identified
to overcome this impossibility, including randomization (e.g., [6]), strengthening
the model with timing assumptions (e.g., [18]) or failure detectors (e.g., [12]) and
strong synchronization primitives [25]. Similarly, in anonymous systems, random-
ization [10], failure detectors [7,14], as well as additional synchrony assumptions
[16] have been investigated to solve consensus.

A failure detector is a distributed device which provides processes with possi-
bly unreliable information about failures. Unreliable failure detectors, and more
generally system assumptions which are not guaranteed to always hold, have
motivated the study of indulgent algorithms [23]. Informally, an algorithm is
indulgent if it is always safe, i.e., it never violates the safety part of the problem
it is supposed to solve, and converges to a decision when the failure detector
matches its eventual property. In this line of research, the key question is deter-
mining how fast indulgent algorithms converge when the eventual property of
the failure detector is satisfied [17].

Contributions of the paper. This paper investigates the consensus problems in
an anonymous, crash prone and asynchronous shared memory systems. In par-
ticular, we are interested in the individual write step complexity of anonymous
consensus. Typically, shared memory systems use caching techniques to improve
performances. When a write is performed, the system has to ensure that every
cached copy is updated, which is costly. Differently, repeatedly reading a shared
location may be a local operation. The paper presents the following two main
results:

– The first result is a consensus algorithm. The set of input values that pro-
cesses might propose is unbounded. The algorithm relies on a failure detector
of the class AΩ [8] and tolerates up to n − 1 process crashes. The “anony-
mous leader” class AΩ is the anonymous counterpart of the class Ω, which
is the weakest failure detector for solving consensus [11] in the eponymous
settings. Informally, when queried, a failure detector of the class AΩ returns

Anonymous Agreement: The Janus Algorithm 177

a boolean. Eventually, each query, except the queries issued by some non-
faulty process, returns false. If no failure detector is available, we note that
our algorithm can easily be made obstruction-free [26] by simply removing
failure detector invocations. The algorithm is write-efficient in the follow-
ing sense : a process executing solo decides after performing O(

√
n) write

operations and O(n) shared memory operations in total.
– The second result is a generalization of our consensus algorithm to the case

of homonymous systems recently introduced by Delporte-Gallet et al [15], in
which a small number c, 1 ≤ c ≤ n of identities is available. The system is
no longer totally anonymous since processes have identities. However, when
the number of ids is smaller than n, several processes may share the same id.
The generalized algorithm achieves O(

√
n − c + 1 + log c/ log log c) individ-

ual write complexity and O(n − c + log c/ log log c) step complexity in solo
execution. As in the case of anonymous systems, the algorithm relies on a
failure detector of the class AΩ and the set of values that can be proposed
is unbounded.

Roadmap. The paper is composed of 6 sections. Section 2 describes the anony-
mous shared memory model and the failure detector class AΩ. An anonymous
consensus is presented in Section 3. Its generalization to the case of systems
with homonym processes follows (Section 4). Section 5 surveys related work and
Section 6 concludes the paper.

2 System Model

Anonymous shared memory model. We consider a system Π of n ≥ 2 determin-
istic processes. Processes are anonymous: they do not have identifiers, and they
execute identical algorithms. The total number of processes n is however known
by the processes. The system is asynchronous, in the sense that each process
runs at its own speed, independently of the other processes.

Processes communicate with each other by reading and writing atomic shared
registers (they are linearizable [27]). Registers are multi-writer and multi-reader:
every register can be written in, or read from, by every process. In the pseudo-
code we use to describe our algorithm, shared objects are denoted by upper-case
letters, while lower-case identifiers are reserved for processes’ local variables.

Failures and failure detectors. Processes may crash. A process is correct in an
execution if it never crashes in this execution; otherwise it is faulty. We make no
assumption on the number of crashes that may occur during a run.

As noted in the Introduction, a failure detector is a distributed oracle that pro-
vides processes with possibly unreliable information about failures [12]. Several
classes of failure detectors suited to anonymous systems have been defined [8].
The failure detector we consider is anonymous Ω, denoted hereafter AΩ. Each
process is provided with a primitive AΩ.query(), which returns true or false .

178 Z. Bouzid, P. Sutra, and C. Travers

The following property, termed eventual leadership is ensured: there exists some
correct process p0 such that eventually every AΩ.query() always returns true at
p0, and false at every other process.

Consensus. Consensus is a distributed task which consists in a single operation
propose(v) that takes as input a value v in some (possibly unbounded) set V,
and returns a value v′ in V. When a process p invokes propose(v), we say that p
proposes v. Similarly, when propose(v) returns a value v, we say that p decides v.
Consensus requires that in every run: (Agreement) two processes cannot decide
different values; (Validity) if a process decides some value v, then v was proposed
before; and (Termination) every correct process eventually decides.

Time complexity. Consider an algorithm A that solves consensus in an asyn-
chronous system equipped with an eventual failure detector such as AΩ. In
every execution, a correct leader process eventually emerges, but there is no
bound on the time at which a correct process is elected. Obviously, the worst-
case number of reads, or writes, performed by a process is unbounded. Thus,
we measure the time complexity of asynchronous consensus algorithms in solo
executions. Specifically, the individual write complexity (respectively the individ-
ual step complexity) is the worst-case number of write operations (respectively
the total number of read aand write operation) that occur in solo executions in
which only one process participates and this process is the leader output by the
failure detector from the beginning of the execution.

3 The Janus1 Algorithm

3.1 Description of Janus

The Janus algorithm solves consensus among n asynchronous and anonymous
processes. Its pseudo-code is depicted in Figure 1. Janus relies on a failure de-
tector of the class AΩ and tolerates up to n − 1 process failures. No knowledge
of the set of values that can be proposed is required. In particular, this set might
be unbounded.

A process p initiates its algorithm by invoking propose(v), where v is the input
value of p. Process p then launches two tasks T1 and T2 that run in parallel (line
1). In task T2, p monitors a shared register decision D, which is initialized to
⊥2. If p reads a non-⊥ value d in D, p decides that value (line 21) and terminates.

In task T1, the execution proceeds in asynchronous rounds. Process p main-
tains an estimate (stored in the local variable est), which is the value it currently

1 In Roman religion and mythology, Janus is the god of gates. Most often he is depicted
as having two heads, facing opposite directions (Wikipedia). The choice of the name
is explained by the fact that each process in our algorithm has to look in two
directions: forward to check if another process has already started a new round, and
back to check if another process concurrently executed the K past rounds.

2 ⊥ is a special value that is never proposed by the processes.

Anonymous Agreement: The Janus Algorithm 179

shared variables

∀r > 0 : T [r] is a multivalued MWMR atomic register, initially ⊥
∀r > 0 : C[r] is a binary MWMR atomic register, initially false

D is a multivalued MWMR atomic register, initially ⊥

propose(v)

(1) est ← v; rnd← 0; start T1; start T2;

task T1 :

(2) while (true) do

(3) if (AΩ-query()) then

(4) rnd← rnd + 1

% Look for an estimate with higher priority %

(5) if (T [rnd] �= ⊥) then let r ← min{r′ > rnd | T [r′] = ⊥} ;

(6) est ← T [r − 1]; rnd← r − 1

(7) else T [rnd]← est

(8) end if

% Look for conflicting estimates in the last K rounds %

(9) for each i : 0 ≤ i < min(rnd,K) do

(10) if (T [rnd− i] �= est) then C[rnd− i]← true end if

(11) end for

% Check if no conflict occurs in the last K rounds %

(12) can decide← true;

(13) if (rnd ≥ K) then

(14) for each i : 0 ≤ i < K do

(15) if (C[rnd− i] = true) ∨ (T [rnd− i] �= est) then can decide← false endif

(16) end for end if

(17) if (can decide) then D ← est endif

(18) end if

(19) end while

task T2 :

(20) repeat d← D until d �= ⊥
(21) stop T1; decide(d)

Fig. 1. The Janus algorithm, K = 2
⌈√

n
⌉

+ 1

favors. During each round to which it participates, p tries to commit its esti-
mate by writing it in the decision register D (line 17). The algorithm ensures
that (1) no two distinct values are committed and (2) at least one process even-
tually commits its estimate. To that end, each round r is associated with two
multi-writer/multi-reader shared registers: the value register T [r] and the con-
flict register C[r]. Intuitively, T [r] stores a value that some process is willing
to commit in round r, while C[r], when set to true, indicates that two or more
processes try to commit distinct values in round r.

A process p entering round r first checks whether a value has already been
written in T [r] (line 5). If this happens, p immediately enters round r′ ≥ r, where
r′ is the greatest round for which a value has been written to the associated
register T [r′], thus possibly skipping rounds r, . . . , r′ − 1. In addition, p adopts

180 Z. Bouzid, P. Sutra, and C. Travers

the value currently stored in T [r′] as its new estimate. Otherwise, i.e., when T [r]
equals ⊥, p writes its estimate in T [r].

Writing/reading value v to/from the value register T [r] is however not suffi-
cient to allow this value to be committed. Several processes may be performing
write operations concurrently on T [r] and thus, assuming that v is committed,
a process entering round r later might adopt a value v′ �= v and commits this
value. Therefore, before committing its estimate v (that is, writing v in D, line
17), process p first checks that no conflicts have been detected in the last K
rounds and that the registers T [r], T [r − 1], . . . , T [r − K + 1] still store v (lines
14–16). For large enough values of K, these two conditions prevent any other
value different from v from being written in T [r]. We show in the proof (Lemma
6) that for K ≥ �2√n� + 1 this property is ensured.

Conflicts are detected at lines 9–11. A process p with estimate v executing
round r performs a read operation in every register T [r′], r − K + 1 ≤ r′ ≤ r.
Whenever a value different from v is returned, the corresponding conflict register
C[r′] is updated to true.

Finally, the progress of Janus relies on the underlying failure detector AΩ. A
process is allowed to enter round r only if it considers itself as a leader. In more
details, before entering round r, each process queries its local failure detector
module (line 3). Only if this query returns true, the process starts round r.
Eventually, a unique non-faulty process is elected by the failure detector. This
process eventually executes rounds alone, and eventually decides (See Lemma
3). When a failure detector is not available, we note that Janus is easily made
obstruction-free by removing the query to the failure detector at line 3.

3.2 Proof of the Janus Algorithm

Fix some execution of the algorithm. Since the shared objects (i.e. the registers)
are atomic the execution (as an interleaved sequence of reads and writes oper-
ation of the processes) is linearizable [27]. As a consequence, we may consider
σ a linearization of the reads and writes operations. We shall say that an op-
eration in σ on some register occurs at time τ if τ is the linearization point of
that operation. As usual, we shall note varp the local variable var of process p.
The execution of the (asynchronous) round r by p is the interval during which
rndp = r. More precisely, it is the sequence of steps applied by p when rndp = r.
Missing proofs of Lemmata 1 and 1 can be found in the full version [9].

A process, executing round r, writes its estimate v in T [r], provided it observes
that no value has been previously written in T [r] (line 7). The following Lemma
implies that if this occurs, v has been previously written to T [1], . . . , T [r − 1].

Lemma 1. Let r > 1. Suppose that a write operation op with parameter v is
performed on T [r]. Then a write operation op′ of value v to T [r−1] occurs before
op.

It then follows from the previous Lemma that algorithm 1 satisfies the validity
requirement of consensus.

Anonymous Agreement: The Janus Algorithm 181

Lemma 2 (Validity). Every decided value is a proposed value.

Termination then followed from the eventual leadership property of the failure
detector AΩ.

Lemma 3 (Termination). Every correct process eventually decides.

Proof. Assume for contradiction that some correct process q never decides. As,
(1) only non-⊥ values can be written in D, and (2) q reads D infinitely many
times and never decides, no value v �= ⊥ is written in D. As a process may
decide only if it reads a value different from ⊥ in D, this implies that no process
decides.

By the eventual leadership property of the failure detector class AΩ, there is
a correct process p and a time τ such that each AΩ-query() performed after
τ returns true if and only if the invoking process is p. At time τ , let R be the
largest round such that T [R − 1] = ⊥. Clearly, p is the only process that can
execute rounds R +1, R+2, . . . (line 3). Moreover by Lemma 1, for all i > 0, we
have that T [R + i] = ⊥.

As p is correct, it never decides, and for all i > 0 we have that T [R+ i] = ⊥, p
eventually executes rounds R+1, R+2, . . . As p is the only process that executes
those rounds, it follows from the code (lines 5–7) that p writes in each register
T [R + i] for all i > 0. Besides, it is not difficult to observe that the same value,
say v, is written by p in each register T [R + i].

As no process except p executes rounds R + i, i > 0, no process except p
performs write operations on registers T [R + i], i > 0. Therefore it holds forever
that C[R+ i] = false and T [R+ i] = v, once p has written v in T [R+ i]. Consider
the execution of round R +K by p. Process p first writes v in T [R +K] (line 7).
After this occurs, we have C[R+i] = false and T [R+i] = v for each i, 0 < i ≤ K.
Hence, can decidep = true after the execution of the for each loop at lines 14–
16. We conclude that p writes v in D (line 17), and decides by the code of task
T2: contradiction.

Proof of agreement. We divide the execution in epochs as follows. Epoch ei is
an interval that starts with the first write (according to the linearization σ) to
register T [i] and ends immediately before the first write (if any) performed to
register T [i + 1]. Given a read, or write, operation op, we say that op occurs in
epoch ei, or equivalently, that op is performed in ei, if op is linearized in the
interval ei. Clearly, if a write to T [j] occurs in ei, then j ≤ i. The next lemma
directly follows from the code of Janus (lines 5 and 7).

Lemma 4. Suppose that p performs a write operation op on T [i]. The last op-
eration preceding op performed by p is a read on T [i], and the value returned by
that operation is ⊥.

Suppose that process p performs a write operation on register T [j] in epoch
ei. When this operation terminates, a value has already been written in T [i] by
definition of ei. Lemma 4 then implies that the next write operation by p (if any)
is performed on some register T [j′] such that j′ > i. Lemma 5 bellow captures
precisely this observation.

182 Z. Bouzid, P. Sutra, and C. Travers

Lemma 5. Denote by op, op′ two write operations performed by the same process
p. Suppose that: (1) op occurs in ei, (2) op′ is a write on register T [j] with j �= i,
and (3) op precedes op′. Then, j > i.

Proof. By Lemma 4, p reads from T [j] immediately before executing op′, and
this read operation returns ⊥. Let op′′ denote that operation. It follows from
the third condition of the Lemma that op′′ occurs after op, which in turn occurs
after some non-⊥ value has been written in T [i′] for each i′ ≤ i (By definition
of ei, and the fact op occurs in ei.). Since the read operation op′′ performed on
T [j] returns ⊥, we conclude that j > i.

Consider a round number r, and a value v. We say that value v is committed
at round r if there exists a process p that writes v in D (line 17) while it is
executing round r. Observe that in such a case, v is the estimate of p, and v has
been written in T [r] (by p itself or some other process). Note moreover that for
each decided value v, there exists a round during which v is committed.

The following lemma is central to the proof of the agreement property. In-
formally, this lemma says that if some process writes a value v in the decision
register D while executing round r, no other value than v can be written to T [r].

Lemma 6. Let v be a value, and R be a round number such that v is committed
at round R. For every value v′ written in T [R], it holds that v′ = v.

The agreement property then follows by combining Lemma 1 and Lemma 6, and
observing that every decided value has been committed.

Lemma 7 (Agreement). No two process decide different values.

Proof. Let v and v′ be two decided values (at line 21). By the code of Algo-
rithm 1, v and v′ have been previously written in D (at line 17). Hence, v and
v′ are committed at some round, say, r and r′ respectively. Without loss of gen-
erality, assume that r ≤ r′. Let p′ be a process that writes v′ in D in round r′.
Observe that v′ is the estimate of p′ in round r′. Therefore, v′ has been written
in T [r′], either by p′ (at line 7) or by some other process (in the latter case, v′

was read by p′ at line 6). As r ≤ r′, it follows from Lemma 1 that v′ is written
in T [r] as well. Since v is committed at round r, we conclude by Lemma 6 that
v = v′.

The rest of this section is devoted to the proof of Lemma 6. We proceed by
contradiction. We name H the following assumption:

There exists a round R such that two write operations with parameters u �= v
are performed on T [R + K] and v is committed in round R + K.

In the following, we show that to satisfy assumption H the system must consist
of at least n + 1 processes.

Anonymous Agreement: The Janus Algorithm 183

Denote by R the round number appearing in assumption H . For each i, j, 1 ≤
i, j ≤ K, note W i

j the set of processes that perform a write operation to register
T [R + j] during epoch ei. More precisely, a process p belongs to W i

j if and only
if there exists a write operation to T [R + j] by p which occurs in ei. By the
definition of epochs, we know that if j > i, then W i

j = ∅. The three lemmata
below further precise how the sizes of the W i

j ’s and the round numbers are
related.

Lemma 8. If assumption H holds, then: ∀i, 1 ≤ i < K, |W i
i | ≥ 2.

Proof. By assumption H , at least two values v and u are written in T [R + K].
It follows from Lemma 1 that v and u must have been written in T [R + i] for
each i such that 1 ≤ i < K. It remains to show that such a write operation with
parameter v (resp. u) occurs in ei.

Let us consider the first write of v in T [R + i]. Clearly, this operation occurs
in epoch eR+i′ , for some i′ ≥ i. Suppose for the sake of contradiction that i′ > i.
Hence, the first time v is written in T [R+ i], a value has already been written in
T [R+i+1]. Let p be the process that performs this first write of v in T [R+i+1].
As v is written to T [R+K], p must exist by Lemma 1. Denote wp(R+ i+1) the
write operation of p. According to the code of Janus we know that: (1) p performs
that operation while it is executing round R + i + 1 (line 7), (2) wp(R + i + 1)
is preceded by a read operation of T [R + i + 1] (denoted rp(R + i + 1)) by p
that returns ⊥ , and (3) in round R + i, there is a read operation from T [R + i]
that returns v or a write of v by p to T [R + i]. Denote by opp(R + i) this last
operation, and opp(R + i), rp(R + i + 1), wp(R + i + 1) the operations that occur
in this order. Moreover, opp(R + i), which reads or writes v in T [R + i] occurs
in epoch eR+i′′ for some i′′ ≥ i′, since the write of v in T [R + i] occurs in eR+i′ .
Therefore, operation rp(R+ i+1) occurs after a write in T [R+ i+1], from which
we conclude that rp(R + i+ 1) returns a non-⊥ value. It thus follows by Lemma
4 that p does not write in T [R + i + 1] : a contradiction.

We have shown that a write of v in T [R + i] occurs in epoch ei. A similar
argument applied to value u yields that a write of u in T [R + i] occurs in ei.
Since each process does not write twice in the same register, |W i

i | ≥ 2.

Lemma 9. If assumption H holds, then : ∀i, j : 1 ≤ i < K and 1 ≤ j < i,
|W i

j | ≥ 1.

Proof. We start by establishing that two read operations that return v and u
respectively occur in ei.

As v is written in T [R +K], v is also written in T [R + i + 1] (Lemma 1). Let
p the process that performs the first write of v in T [R + i + 1]. By the code,
p executes round R + i before performing that write operation, and v is the
estimate of p in that round. At the beginning of round R + i, p either reads v in
T [R + i] or writes v in T [R + i]. Moreover, the read operation on T [R + i + 1]
performed by p at the beginning of round R + i + 1 returns ⊥ (Otherwise p
does not perform a write operation on T [R + i + 1]). Therefore, every operation
performed by p while it is executing round R + i occurs in epoch eR+i.

184 Z. Bouzid, P. Sutra, and C. Travers

In particular, the read of T [R + j] performed by p at line 10 occurs in eR+i.
This read must return v. Otherwise, p writes true in C[R+ i], and this operation
occurs in eR+i. As no process ever writes false in C[R + i], every read operation
performed on C[R+i] that occurs in later epochs return true. Consider a process
p′ executing round R+K. p′ reads C[R+i] at line 15. This read operation occurs
after a write operation has been performed on T [R+K], so it occurs after the end
of epoch eR+i. Hence, that operation returns true and thus p′ cannot write in D
in that round. Therefore, no value is committed in round R + K, contradicting
assumption H .

Similarly, by considering the process that performs the first write of u in
T [R + i + 1], we get that a read operation of T [R + j] that returns u occurs in
eR+i.

Finally, as there are two read operations of T [R + j] returning two different
values occur in ei, there must exist a write operation on T [R + j] that occurs in
ei. We thus conclude that W i

j �= ∅.
Lemma 10. Suppose that assumption H holds. Let i, i′, j, j′ such that 1 ≤ i ≤
i′ < K and 1 ≤ j < i, 1 ≤ j′ < i′. W i

j ∩ W i′
j′ �= ∅ ⇒ (i = i′ ∧ j = j′) ∨ (i < j′)

Proof. Let p ∈ W i
j ∩W i′

j′ . By definition, a write operation by p occurs in ei and
ei′ . Either i = i′ and j = j′ or, by Lemma 5, i < j′.

Proof of Lemma 6. Assume for the sake of contradiction that assumption H is
satisfied, and consider the following set:

S =
{

(i, j) :
⌈K − 1

2

⌉
≤ i ≤ K − 1, 1 ≤ j ≤

⌈K− 1
2

⌉}

In what follows, we count the total number of processes that appear in the union
of the sets W i

j , where (i, j) ∈ S, then we show that this union includes at least
n + 1 distinct processes.

Let (i, j) �= (i′, j′) ∈ S such that i ≤ i′. By definition of S, i ≥ j′ and thus it
follows from Lemma 10 that W i

j ∩ W i′
j′ = ∅. Hence,

∣∣∣∣∣∣
⋃

(i,j)∈S

W i
j

∣∣∣∣∣∣
=

∑
(i,j)∈S

|W i
j |

Moreover, It follows from Lemmas 8 and 9 that |W i
j | ≥ 1 for each (i, j) ∈ S and

|W i
i | ≥ 2 for each (i, i) ∈ S. Therefore,

∣∣∣∣∣∣
⋃

(i,j)∈S

W i
j

∣∣∣∣∣∣
≥

⌈K − 1
2

⌉
·
⌈K − 1

2

⌉
+ 1

Finally, as K = 2 · �√n�+ 1, we get
∣∣∣⋃(i,j)∈S W i

j

∣∣∣ ≥ n + 1. Therefore, assuming
that H is satisfied, we have exhibited a set of n+1 distinct processes : a contra-
diction. Consequently, H cannot be satisfied, from which we conclude that no
value different from v is written in T [R], as desired.

Anonymous Agreement: The Janus Algorithm 185

Theorem 1. The Janus algorithm described in Figure 1, when instantiated with
a failure detector of the class AΩ solves consensus in an n-processes, anonymous
shared memory system.

Proof. Immediately follows from Lemmas 2, 3 and 7.

The following theorem proves that the step complexity of Janus is O(n), which
is optimal [4], and that its write complexity equals to O(

√
n).

Theorem 2. The Janus algorithm has a step complexity of O(n), and a write
complexity of O(

√
n).

Proof. Consider a solo execution of some process p. During this execution, p
executes K = 2�√n� + 1 rounds, then decides. Name {1, . . . ,K} the rounds
executed by p, and consider some round i. According to the code of Algorithm 1,
during round i process p executes a single write (line 7), and reads 3i+1 shared
registers (lines 5, 9 to 11, and 14 to 16). As a consequence, the step complexity
of Janus is O(n), and its write complexity equals O(

√
n).

4 The Case of Homonymous Systems

In an homonymous system, c, 1 ≤ c ≤ n identities are available [15,30]. Each
process has an identifier in the range {1, . . . , c}. Processes that share the same
identifier are said to be homonym, and for each i ∈ {1, . . . , c}, there is at least
one process with id i (and thus at most n − c + 1).

In this section we present a consensus algorithm for homonymous shared-
memory systems that tolerates up to n − 1 process failures. As in the case of
anonymous systems, the algorithm relies on a failure detector of the class AΩ
and the set of values that can be proposed is unbounded. The algorithm is built
in a modular way from several copies of the Janus algorithm and an efficient
implementation of m-valued adopt-commit objects due to Aspnes and Ellen [4].

Adopt-commit. An adopt-commit object [21] is a shared object that supports
a single operation denoted propose(v) where v is a value taken from some set
V. Every invocation of propose(·) returns a response of the form (b, v′) where
b ∈ {commit , adopt} and v′ ∈ V such that the following properties hold: (Ter-
mination) Every invocation of propose(·) by a correct process terminates; (Va-
lidity) If (b, v) is returned, then some process previously invoked propose(v);
(Agreement) If (commit , v) is returned, then every decision has the form (∗, v);
(Convergence) If every process proposes the same value v, then (commit , v) is
the only possible decision.

An efficient crash-tolerant asynchronous implementation of m-valued adopt-
commit objects from multi-reader multi-writer registers in anonymous system
is presented by Aspnes and Ellen in [4]. The algorithm achieves O(log m

log log m)
individual step-complexity provided that the set V from which proposed values
are taken is a priori known contains at most m values.

186 Z. Bouzid, P. Sutra, and C. Travers

Overview of the algorithm. The algorithm, described in Figure 2, proceeds in
asynchronous rounds. Each round is divided in two phases, an agreement phase
in which each group of homonym processes agree on a common value, and a
conciliation phase in which processes check whether every group agrees on the
same value.

The agreement phase of round r is implemented by c instances of the Janus al-
gorithm that we note J [r][1], . . . , J [r][c]. As in the Janus algorithm, each process
maintains an estimate stored in the local variable est. Processes with identity id
propose their estimate to the same instance of Janus J [r][id] (line 4). The array
V [r][1..c] is then used to store the decisions that occur (if any) in each of the c
instances J [r][1..c] (line 5). This completes the agreement phase of round r.

Note that each instance of Janus is implemented with its own collection of
registers. Processes however share a single failure detector AΩ. This means that
a given instance of Janus might not progress if no process participating in this
instance is elected by the failure detector. Nevertheless, if every correct process
participates in at least one of the Janus instances of round r, termination is
ensured in at least one instance, namely the instance J [r][id], where id is the
identity of the eventual leader. The conciliation phase of round r is implemented
by a single adopt-commit object denoted AC[r]. A process p with identity id
that has previously obtained a decision d from the instance of Janus J [r][id]

shared objects
∀r > 0 : J [r][1..c] is an array of c copies of Janus
∀r > 0 : AC[r] is an adopt-commit object
∀r > 0 : V [r][1..c] is an array of c MRMW registers, initially ⊥
DD is a multivalued MWMR atomic register, initially ⊥

propose(v)
(1) est← v; rnd← 0; start T1; start T2;

task T1 :
(2) while (true) do
(3) rnd← rnd + 1;
(4) est← J [rnd][id].propose(est);
(5) V [rnd][id]← est;
(6) (b, id′)← AC[rnd].propose(id);
(7) est← V [rnd][id′];
(8) if b = commit then DD ← est endif
(9) end while

task T2 :
(10) repeat d← DD until d �= ⊥
(11) stop T1; decide(d)

Fig. 2. Consensus with homonyms, code for processes with identity id

Anonymous Agreement: The Janus Algorithm 187

and has written this value to the register V [r][id] checks whether it is safe to
decide this value. To do so, it proposes its identity to the adopt-commit object
AC[r] (line 6). Let (b, id′) denote the response of the object obtained by p. p
first adopts the value it reads from V [r][id′] as its new estimate (line 7). Note
that the read operation of V [r][id′] returns a non-⊥ value. This is because by
the validity property of adopt-commit, a process p′ with identity id′ must have
proposed its identity to AC[r] before p obtains the response (b, id′). In addition,
before accessing AC[r], p′ must have written a value to V [r][id′].

Second, if b = commit , p then writes its estimate in the shared register DD ,
indicating that this value can be safely decided. Indeed, by the agreement prop-
erty of adopt-commit, every propose() operation to AC[r] returns (adopt , id′) or
(commit , id′). Hence, as a unique value v is written in V [r][id′], the estimate of
each process that completes round r is equal to v. It thus follows that v is the
only value that may be written to DD in round r and any subsequent round.

Termination relies on the underlying failure detector AΩ. The eventual lead-
ership property ensures that after some time τ , a single correct process considers
itself as a leader. Let id denote the identity of this eventual leader. Observe that,
by the code of Janus, a process participating in the execution of an instance of
Janus does not take write steps unless it considers itself as a leader (Figure 1,
line 3). Therefore, no decisions occur in every instance J [r][id′] that starts after
τ if id′ �= id. On the other hand, every instance J [r′][id], r′ ≥ 1 eventually pro-
duces a decision because the set of processes that participate in these instances
includes the eventual leader. Consequently, if each round r instance of Janus
starts after τ , only process with identity id may access the object AC[r]. Since
they all propose the same value, namely id, it follows from the convergence prop-
erty of adopt-commit that they get back (adopt, id). This implies that a value is
eventually written to the decision register DD , and termination follows.

Complexity. Since at most n−c+1 processes participate in each instance of Janus
(n− c + 1 is the maximal size of a group of homonym processes), the parameter
K is set to 2

√
n − c + 1 + 1 in each instance. Values proposed to objects AC[r]

are always taken from the set of available identities {1, . . . , c}. Each adopt-
commit object is thus implemented by the optimal algorithm by Aspnes and
Ellen [4]. A process executing solo, and elected leader by the failure detector
from the beginning of the execution, decides after participating in one instance
of Janus, and performing one propose() operation on an adopt-commit object. In
addition, it performs two write operations (at lines 5 and 8). Therefore, in solo
executions, the individual write complexity equals to O(

√
n − c + 1 + log c

log log c)
and the individual step complexity equals to O(n − c + 1 + log c

log log c).

Proof. The correctness proof of the algorithm described in Figure 2 is presented
in a companion technical report [9].

188 Z. Bouzid, P. Sutra, and C. Travers

5 Related Work

Attiya et al. [5] characterized failure-free tasks that are solvable using regis-
ters when the number of processes n is unknown. In particular, the authors
show, using bivalence and covering arguments, that consensus in such an envi-
ronment requires more than Ω(log n) atomic registers, and at least Ω(log n) total
work. Recently, Aspnes and Ellen [4] proved that the individual step complexity
of adopt-commit object in anonymous shared-memory is Θ(min (log m

log log m , n)),
where m is the number of different values that might be proposed to the object.
Because consensus satisfies the specification of an adopt-commit object [21], this
lower bound also holds for the consensus object.

Guerraoui and Ruppert [24] studied the computational power of shared mem-
ory distributed systems in the presence of both anonymity and failures. They
propose constructions for several fundamental abstractions: wait-free timestamp-
ing and snapshots, and obstruction-free consensus. In particular, the authors
depict an anonymous binary consensus algorithm having a step complexity of
O(1). When m is known, this algorithm solves anonymous consensus in O(log m)
write operations and O(log m) individual work. Delporte-Gallet and Fauconnier
[14] proposed an anonymous consensus which relies on failure detector AΩ and a
weak set abstraction. If m is known, this algorithm solves consensus in O(log m)
individual work and O(1) writes.

Abrahamson [1] studied binary consensus in the probabilistic-write model
with eponymous processes, when identities are only used to label registers. Re-
cently, Aspnes [3] proposed a consensus algorithm for the probabilistic-write
anonymous model which solves consensus in O(log m) individual work. The algo-
rithm is based on the decomposition of consensus into two distinct components:
an adopt-commit object which detects agreement, and a conciliator, which en-
sure agreement with some probability. Aside from their lower bound result, the
authors of [4] proposed two asymptotically optimal implementations of adopt-
commit objects: a O(log m

log log m) solution which requires that m is known, and a
O(n) solution which solves the problem without any assumptions over m. During
a solo execution, the latter algorithm writes in O(n) different registers.

The Janus algorithm we depicted in Section 3 solves anonymous consensus
in O(n) individual work, and O(

√
n) write operations, a result which matches

the lower bound of [3] and further improves the write complexity of anonymous
consensus.

The notion of partial anonymity in which some processes may share the same
identifier was first introduced by Yamashita et al. [30] in the context of the
leader election problem. The term homonyms was coined recently by Delporte
et al. [15]. In this work, the authors study the Byzantine consensus problem in
message passing systems when a limited number of identities is available.

6 Conclusion

This paper has presented two efficient consensus algorithms for anonymous and
partially anonymous asynchronous shared memory systems. Both algorithms do

Anonymous Agreement: The Janus Algorithm 189

not impose restrictions on the set V from which proposed values are taken.
The complexity depends solely on the number of processes n and the number
of available identifiers c in the partially anonymous case. To the best of our
knowledge, the generalized algorithm presented in Section 4 is the first non-
trivial consensus implementation for shared memory homonymous systems.

Of note, by limiting the Janus algorithm to its first K rounds and removing
the queries to the failure detector, we obtain an anonymous adopt-commit im-
plementation whose individual write complexity is O(

√
n), while retaining an

optimal O(n) individual work. With respect to the write complexity, this is an
improvement over existing implementations.

This paper focuses on consensus algorithms for which the set of input values
is not restricted. A direction for future research is to investigate the interplay
between the size of the input set m, the number of available identifiers c, the
number of processes n, and the number of distinct values k that can be decided.

References

1. Abrahamson, K.: On achieving consensus using a shared memory. In: Proc. of the
17th Symp. on Principles of Distributed Computing (PODC), pp. 291–302. ACM
(1988)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

3. Aspnes, J.: A modular approach to shared-memory consensus, with applications
to the probabilistic-write model. In: Proc. of the 29th Symp. on Principles of Dis-
tributed Computing (PODC), pp. 460–467. ACM (2010)

4. Aspnes, J., Ellen, F.: Tight bounds for anonymous adopt-commit objects. In: Proc.
of the 23rd Symp. on Parallelism in Algorithms and Architectures (SPAA), pp.
317–324. ACM (2011)

5. Attiya, H., Gorbach, A., Moran, S.: Computing in totally anonymous asynchronous
shared memory systems. Inf. Comput. 173, 162–183 (2002)

6. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agree-
ment protocols (extended abstract). In: Proc. of the 2nd Symp. on Principles of
Distributed Computing (PODC), pp. 27–30. ACM (1983)

7. Bonnet, F., Raynal, M.: The Price of Anonymity: Optimal Consensus Despite
Asynchrony, Crash and Anonymity. In: Keidar, I. (ed.) DISC 2009. LNCS,
vol. 5805, pp. 341–355. Springer, Heidelberg (2009)

8. Bonnet, F., Raynal, M.: Anonymous Asynchronous Systems: The Case of Failure
Detectors. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343,
pp. 206–220. Springer, Heidelberg (2010)

9. Bouzid, Z., Sutra, P., Travers, C.: Anonymous Agreement: The Janus Algorithm.
Technical report, http://hal.inria.fr/inria-00625704/en/

10. Buhrman, H., Panconesi, A., Silvestri, R., Vitányi, P.M.B.: On the importance of
having an identity or, is consensus really universal? Distributed Computing 18(3),
167–176 (2006)

11. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

http://hal.inria.fr/inria-00625704/en/

190 Z. Bouzid, P. Sutra, and C. Travers

12. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

13. Chothia, T., Chatzikokolakis, K.: A Survey of Anonymous Peer-to-Peer File-
Sharing. In: Enokido, T., Yan, L., Xiao, B., Kim, D.Y., Dai, Y.-S., Yang, L.T.
(eds.) EUC-WS 2005. LNCS, vol. 3823, pp. 744–755. Springer, Heidelberg (2005)

14. Delporte-Gallet, C., Fauconnier, H.: Two Consensus Algorithms with Atomic Reg-
isters and Failure Detector Ω. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.)
ICDCN 2009. LNCS, vol. 5408, pp. 251–262. Springer, Heidelberg (2008)

15. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A.M., Ruppert, E.,
Tran-The, H.: Byzantine agreement with homonyms. In: Proc. of the 30th Symp.
on Principles of Distributed Computing (PODC), pp. 21–30. ACM (2011)

16. Delporte-Gallet, C., Fauconnier, H., Tielmann, A.: Fault-tolerant consensus in un-
known and anonymous networks. In: Proc. of the 29th Int’l Conference on Dis-
tributed Computing Systems (ICDCS), pp. 368–375. IEEE (2009)

17. Dutta, P., Guerraoui, R.: The inherent price of indulgence. Distributed Comput-
ing 18(1), 85–98 (2005)

18. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

19. Federrath, H. (ed.): Designing Privacy Enhancing Technologies. LNCS, vol. 2009.
Springer, Heidelberg (2001)

20. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

21. Gafni, E.: Round-by-round fault detectors: unifying synchrony and asynchrony.
In: Proc. of the 17th Symp. on Principles of Distributed Computing (PODC), pp.
143–152. ACM (1998)

22. Guerraoui, R., Ruppert, E.: What can be implemented anonymously? In: Fraig-
niaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 244–259. Springer, Heidelberg
(2005)

23. Guerraoui, R., Lynch, N.A.: A general characterization of indulgence. TAAS 3(4)
(2008)

24. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory com-
puting. Distributed Computing 20(3), 165–177 (2007)

25. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

26. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-
ended queues as an example. In: Proc. of the 23rd Int’l Conference on Distributed
Computing Systems (ICDCS), pp. 522–529. IEEE (2003)

27. Herlihy, M., Wing, J.: Linearizability: a correcteness condition for concurrent ob-
jects. ACM Trans. on Prog. Lang. 12(3), 463–492 (1990)

28. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research 4, 163–183 (1987)

29. Ruppert, E.: The Anonymous Consensus Hierarchy and Naming Problems. In:
Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 386–
400. Springer, Heidelberg (2007)

30. Yamashita, M., Kameda, T.: Leader election problem on networks in which pro-
cessor identity numbers are not distinct. IEEE Transactions on Parallel and Dis-
tributed Systems 10(9), 878–887 (1999)

	Anonymous Agreement: The Janus Algorithm
	Introduction
	System Model
	The JanusIn Roman religion and mythology, Janus is the god of gates. Most often he is depicted as having two heads, facing opposite directions (Wikipedia). The choice of the name is explained by the fact that each process in our algorithm has to look in two directions: forward to check if another process has already started a new round, and back to check if another process concurrently executed the K past rounds. Algorithm
	Description of Janus
	Proof of the Janus Algorithm

	The Case of Homonymous Systems
	Related Work
	Conclusion
	References

