
The First Fully Polynomial Stabilizing Algorithm for
BFS Tree Construction�

Alain Cournier1, Stéphane Rovedakis2, and Vincent Villain1

1 Laboratoire MIS, Université de Picardie, 33 Rue St Leu, 80039 Amiens Cedex 1, France
{alain.cournier,vincent.villain}@u-picardie.fr

2 Laboratoire CEDRIC, CNAM, 292 Rue St Martin, 75141 Paris Cedex 03, France
stephane.rovedakis@cnam.fr

Abstract. The construction of a spanning tree is a fundamental task in distributed
systems which allows to resolve other tasks (i.e., routing, mutual exclusion, net-
work reset). In this paper, we are interested in the problem of constructing a
Breadth First Search (BFS) tree. Stabilization is a versatile technique which en-
sures that the system recover a correct behavior from an arbitrary global state
resulting from transient faults.

A fully polynomial algorithm has a round complexity in O(da) and a step com-
plexity in O(nb) where d and n are the diameter and the number of nodes of the
network and a and b are constants. We present the first fully polynomial stabiliz-
ing algorithm constructing a BFS tree under a distributed daemon. Moreover, as
far as we know, it is also the first fully polynomial stabilizing algorithm for span-
ning tree construction. Its round complexity is in O(d2) and its step complexity
is in O(n6).

To our knowledge, since in general the diameter of a network is much smaller
than the number of nodes (log(n) in average instead of n), this algorithm reaches
the best compromise of the literature between the complexities in terms of rounds
and in terms of steps.

Keywords: Distributed systems, Fault-tolerance, Stabilization, Spanning tree
construction.

1 Introduction

The construction of spanning trees is a fundamental problem in the field of distributed
systems. A spanning tree is a virtual structure which contains no cycle and intercon-
nects all the nodes of a network. In distributed systems, the construction of a span-
ning tree is commonly used to design algorithms resolving other distributed tasks, like
routing, token circulation or message broadcasting in a network. Spanning trees are
also used to obtain algorithms resolving a particular distributed problem with a better
time complexity compared to algorithms for the same problem which do not use this
structure. There are many different spanning tree construction problems guaranteeing
various properties, e.g., the construction of a depth first search (DFS) tree, a spanning
tree of minimum weight or a spanning tree of minimum diameter. A crucial class of

� This work has been supported in part by the ANR project SPADES (08-ANR-SEGI-025).

A. Fernández Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 159–174, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

160 A. Cournier, S. Rovedakis, and V. Villain

spanning trees is the construction of a Breadth First Search (BFS) tree, which contains
shortest paths (in hops) from every node to the root of the tree. This structure is mainly
used in networks to quickly broadcast information from a source node. When a cost
is associated to communication links, this problem is known as the construction of a
Shortest Path tree.

Self-stabilization introduced first by Dijkstra in [16] and later publicized by several
books [17,23] is one of the most versatile techniques to handle transient faults aris-
ing in distributed systems. A distributed algorithm is self-stabilizing if starting from
any arbitrary global state (due to faults or attacks) the system is able to recover from
this catastrophic situation in finite time without external (e.g., human) intervention. As
self-stabilization makes no hypothesis about the nature or the extent of the faults, this
paradigm can also be used to handle dynamic changes on the network topology since
these modifications are seen as faults by the system. Another kind of stabilization was
introduced by Bui et al [4], called snap-stabilization. These algorithms have the abil-
ity to always guarantee a correct system behavior according to the specifications of the
problem to be solved, starting from any arbitrary global state.

Related work. Due to the importance of the construction of spanning trees, there are a
lot of works which study this task. A survey on several self-stabilizing tree constructions
can be found in [19]. Moreover, Table 1 summarizes the time complexities (round and
step complexities) of some self-stabilizing tree construction algorithms. The number of
steps required to compute a solution is an important criterion since it reflects the num-
ber of messages exchanged by an algorithm; especially for a self-stabilizing algorithm
for which each node has to send messages to its neighbors in order to inform them that
its state has been changed. However, few works give a step complexity analysis as can
be seen in Table 1, except for [22,11,10,13] and [9] which presented an algorithm im-
proving the step complexity to Θ(n2) steps for the construction of an arbitrary spanning
tree (with n the number of nodes of the network). Another essential criterion concerns
the round complexity of a distributed algorithm, that is to have a round complexity only
function of the network diameter (which is much smaller than the size of network for
most network topologies). Some of the algorithms cited in Table 1 are optimal in terms
of rounds for the construction of an arbitrary spanning tree or a BFS tree.

From the above discussion, we give a characterization for self-stabilizing distributed
algorithms having an efficient complexity to solve a task, called fully polynomial al-
gorithms. A fully polynomial algorithm has a round complexity in O(da) and a step
complexity in O(nb) where d and n are the diameter and the number of nodes of the
network and a and b are constants. As presented in Table 1, the existing self-stabilizing
spanning tree construction algorithms with a polynomial step complexity requires Ω(n)
rounds, or a round complexity of Θ(max(d2, n)) for the construction of a BFS tree. To
our knowledge, no fully polynomial stabilizing algorithm was given for the construction
of a spanning tree. Therefore, a legitimate question can be the following: Is it possible to
construct in a self-stabilizing manner a spanning tree with a polynomial step complexity
and a round complexity lower than Θ(max(d2, n))?

Contributions. In this paper, we present the first fully polynomial stabilizing algo-
rithm for the construction of a spanning tree with a round complexity lower than
Θ(max(d2, n)). Notice that the algorithm presented in [13] does not satisfy the

The First Fully Polynomial Stabilizing Algorithm 161

Table 1. Distributed stabilizing algorithms for the construction of spanning trees. n, d and Δ are
respectively the number of nodes, the diameter and the maximum degree in the network, while
N is an upper bound of n and Max is the maximum height value in the tree of a node in the
initial configuration. The silent property for a self-stabilizing algorithm is to guarantee that when
a legitimate configuration is reached the values stored in the registers do not change anymore.

References Round complexity Step complexity Memory complexity Silent property

BFS

[2] O(N2) Undetermined O(log(n)) Yes
[18] O(d) Undetermined O(Δ log(n)) Yes
[1] O(n2) Undetermined O(log(n)) Yes
[20] Θ(d) O(n(Max + d)n)4 O(log(n)) Yes
[3] O(d) Undetermined O(log2(n)) Yes
[21] Ω(d2) Undetermined O(log(Δ)) No
[5] O(d) Undetermined O(log2(n)) Yes
[15] O(n) Undetermined O(log(n)) Yes
[13] Θ(d2 + n) O(Δn3) O(log(n)) No
This paper O(d2) O(n6) O(log(n)) Yes

Any
[6] O(n) Ω(2n)4 O(log(n)) Yes
[22] O(n) Θ(n2d) O(log(n)) Yes
[9] Θ(n) Θ(n2) O(log(n)) Yes

DFS
[7] O(dnΔ) Undetermined O(n log(Δ)) Yes
[11] O(n2) O(n3) O(log(n)) Yes
[10] O(n) O(n2) O(n log(n)) Yes
[13] O(n) O(Δn3) O(log(Δ + n)) No

definition of a fully polynomial algorithm since it has a round complexity which is
related with the network size. Our algorithm computes a BFS tree in O(d2) rounds with
a polynomial number of steps in O(n6) (the step complexity is O(mn4) and m << n2)
under a distributed daemon without any fairness assumptions, with d the diameter, m
the number of edges and n the number of nodes in the network. To our knowledge, since
in general the diameter of a network is much smaller than the number of nodes (log(n)
in average instead of n), this algorithm reaches the best compromise of the literature
between the complexities in terms of rounds and in terms of steps. Moreover, this BFS
tree construction is based on a snap-stabilizing algorithm given in this paper resolving
the Question-Answer problem, in which each node requests a permission (delivered
by a subset of network nodes) in order to perform a defined computation, which is of
independent interest.

Outline of the paper. The paper is organized as follows. In Section 2 we present the
model assumed in this paper. We then present a fully polynomial stabilizing algorithm to
construct a BFS tree in Section 3, based on a snap-stabilizing algorithm to the Question-
Answer problem given in Section 4. We describe in Section 5 how these stabilizing
algorithms are composed together and give an explanation about the time complexity
to solve the BFS tree problem. Finally, we conclude in the last section.1

1 This is detailed in the analysis given in [8].

162 A. Cournier, S. Rovedakis, and V. Villain

2 Model

Notations. We consider a network as an undirected connected graph G = (V ,E) where
V is a set of nodes (or processors) and E is the set of bidirectional asynchronous com-
munication links. We state that n is the size of G (|V | = n). We assume that the network
is rooted, i.e., among the processors, we distinguish a particular one, r, which is called
the root of the network. In the network, p and q are neighbors if and only if a communi-
cation link (p,q) exists (i.e., (p,q) ∈ E). Every processor p can distinguish all its links.
To simplify the presentation, we refer to a link (p,q) of a processor p by the label q. We
assume that the labels of p, stored in the set Neigp, are locally ordered by ≺p. We also
assume that Neigp is a constant input from the system. Δ is the maximum degree of
the network (i.e., the maximal value among the local degrees of the processors). A tree
T = (VT , ET) is an acyclic connected subgraph such that VT ⊆ V and ET ⊆ E, where
the root of tree T is noted by root(T). Moreover, any processor has a parent in a tree T
which is the neighbor on the path leading to root(T). A processor p ∈ VT with at least
two neighbors in tree T is called an internal processor and a leaf processor otherwise.

Programs. In our model, protocols are semi-uniform, i.e., each processor executes the
same program except r. We consider the local shared memory model of computation. In
this model, the program of every processor consists in a set of variables and an ordered
finite set of actions inducing a priority. This priority follows the order of appearance
of the actions into the text of the protocol. A processor can write to its own variable
only, and read its own variables and that of its neighbors. Each action is constituted
as follows: < label > :: < guard > → < statement > . The guard of an action
in the program of p is a boolean expression involving variables of p and its neighbors.
The statement of an action of p updates one or more variables of p. An action can be
executed only if its guard is satisfied. The state of a processor is defined by the value
of its variables. The state of a system is the product of the states of all processors.
We will refer to the state of a processor and the system as a (local) state and (global)
configuration, respectively. We note C the set of all possible configuration of the system.
Let γ ∈ C and A an action of p (p ∈ V). A is said to be enabled at p in γ if and only if
the guard of A is satisfied by p in γ. Processor p is said to be enabled in γ if and only if
at least one action is enabled at p in γ. When several actions are enabled simultaneously
at a processor p: only the priority enabled action can be activated.

Let a distributed protocol P be a collection of binary transition relations denoted
by �→, on C. A computation of a protocol P is a maximal sequence of configurations
e = (γ0,γ1,...,γi,γi+1,...) such that, ∀i ≥ 0, γi �→ γi+1 (called a step) if γi+1 exists, else
γi is a terminal configuration. Maximality means that the sequence is either finite (and
no action of P is enabled in the terminal configuration) or infinite. All computations
considered here are assumed to be maximal. E is the set of all possible computations
of P .

As we already said, each execution is decomposed into steps. Each step is shared into
three sequential phases atomically executed: (i) every processor evaluates its guards,
(ii) a daemon (also called scheduler) chooses some enabled processors, (iii) each cho-
sen processor executes its priority enabled action. When the three phases are done, the
next step begins.

The First Fully Polynomial Stabilizing Algorithm 163

A daemon can be defined in terms of fairness and distributivity. In this paper, we
use the notion of unfairness: the unfair daemon can forever prevent a processor from
executing an action except if it is the only enabled processor. Concerning the distribu-
tivity, we assume that the daemon is distributed meaning that, at each step, if one or
more processors are enabled, then the daemon chooses at least one of these processors
to execute an action.

We consider that any processor p executed a disabling action in the computation
step γi �→ γi+1 if p was enabled in γi and not enabled in γi+1, but did not execute any
protocol action in γi �→ γi+1. The disabling action represents the following situation:
at least one neighbor of p changes its state in γi �→ γi+1, and this change effectively
made the guard of all actions of p false in γi+1.

To compute the time complexity, we use the definition of round. This definition cap-
tures the execution rate of the slowest processor in any computation. Given a computa-
tion e (e ∈ E), the first round of e (let us call it e′) is the minimal prefix of e containing
the execution of one action (an action of the protocol or a disabling action) of every
enabled processor from the initial configuration. Let e′′ be the suffix of e such that
e = e′e′′. The second round of e is the first round of e′′, and so on.

3 Spanning Tree Construction

In this section, we are interested in the problem of constructing a tree spanning all
the processors of the network. We consider there is a particular root processor, noted r,
which is used to construct a spanning tree. More precisely, we consider the construction
of a Breadth First Search (BFS) tree rooted at processor r. We can define a BFS tree as
in Definition 1.

Definition 1 (BFS Tree). Let G = (V, E) be a network and r a node called the root.
A graph T = (VT , ET) of G is called a Breadth First Search tree if the following
conditions are satisfied:

1. VT = V and ET ⊆ E, and
2. T is a connected graph (i.e., there exists a path in T between any pair of nodes

x, y ∈ VT) and |ET | = |V | − 1, and
3. For each node p ∈ VT , there exists no shorter path (in hops) between p and r in G

than the path between p and r in T .

We give a formal specification to the problem of constructing a BFS tree, stated in
Specification 1.

Specification 1 (Tree Construction). Let C the set of all possible configurations of the
system. An algorithm ABFS solving the problem of constructing a stabilizing BFS tree
satisfies the following conditions:

[TC1] Algorithm ABFS reaches a set of terminal configurations T ⊆ C in finite time,
and

[TC2] Every configuration γ ∈ T satisfies Definition 1.

164 A. Cournier, S. Rovedakis, and V. Villain

3.1 Breadth First Search Tree Algorithm

In this section, we present a snap-stabilizing algorithm, called BFS, to construct a BFS
tree. Algorithm BFS is a semi-uniform algorithm, this means that exactly one of the
processors, called the root and denoted r, is distinguished. This distinguished processor
is used in Algorithm BFS as the root of the spanning tree.

Algorithm BFS is a composition of two algorithms. Algorithm 1 is based on the
fact that a processor has to choose a neighbor with the minimal distance to the root as
its parent in the tree. It is well known that this common idea is enough to get a round
complexity in O(d), but does not ensure a step complexity in O(nb)2 So we allow a
processor to connect to a neighbor only if this neighbor is in the tree rooted at r and
in the shortest path to r. The detection of such neighbors is assigned to Algorithm 2
(see Section 4) which can be seen as an oracle by Algorithm 1. The second role of
Algorithm 1 is to remove the abnormal trees, i.e., those that are not rooted at r.

Variables. We define below the different variables used by Algorithm 1. For Algo-
rithm 1, we characterize r by the predicate Allowed (i.e., Allowed(p) ≡ (p = r),
∀p ∈ V).

Shared variable. Each processor p ∈ V has a local shared variable p.Req which is
used by Algorithm 1 to monitor Algorithm 2 at p. This shared variable can take four
values: ASK, WAIT, REP, and OUT . By setting the shared variable p.Req to ASK ,
Algorithm 1 informs Algorithm 2 that a permission from the root of the tree that p
belongs to is needed at p. In this case, Algorithm 2 tries to send a request and to obtain
a permission for p if it is possible (i.e., if p belongs to an allowed tree and this request
has the highest priority during enough time). If a permission is delivered to processor
p, then Algorithm 2 sets this shared variable to REP in order to inform Algorithm 1.
Then, every neighbor of p can execute Algorithm 1 to join the tree that p belongs to.
When there is no neighbor of p to connect, then Algorithm 1 sets p.Req to OUT which
allows to Algorithm 1 to request another permission through Algorithm 2 if needed.

Local variables. Each processor p ∈ V maintains three local variables:

– p.P : it gives the parent of p in the tree it belongs to, p.P = ⊥ for processor p = r.
– p.L: it stores the level (or height) of p in the tree it belongs to, p.L = 0 for processor

p = r.
– p.S: it defines the status of processor p. It can take two values: E if p does not be-

long to a tree rooted to a processor x satisfying Predicate Allowed(x), C otherwise.
We have p.S = C for processor p = r.

Algorithm Description. As described before, we consider a forest F of trees and a
distinguished processor r which is the only processor authorized to deliver permissions
in the network (i.e., Allowed(p) ≡ (p = r) for every processor p ∈ V). We can notice

2 Indeed, this approach is used in [20] to construct a BFS tree with a round complexity in Θ(d)
but with a step complexity in Ω(Max × n2), as demonstrated in [8]. However, Max is an
upper bound of n and can be arbitrary high with respect to n so the step complexity can be at
least exponential. Note that the gap between the lower and the upper bound (see Table 1) of
the step complexity lead us to think that the lower bound in [8] is not tight.

The First Fully Polynomial Stabilizing Algorithm 165

that in a tree there is a strong constraint between the level of a processor and the level
of its parent in the tree: For any processor p �= r, the level of p’s parent must be equal to
p’s level minus 1. Therefore, the root of a tree in forest F is either (i) processor r, or (ii)
a processor p �= r such that p.L ≤ (p.P).L (it is used to detect cycles in the network).
Since we want to construct a spanning tree, in case (ii) we say that processor p is an
abnormal root. Moreover, any processor p �= r in a tree in F rooted at an abnormal root
belongs to an abnormal tree. Every processor p ∈ V in an abnormal tree can execute E-
action to change its Status to E (i.e., p.S = E) and to inform its descendants in the tree
(see the formal description of Algorithm 1). Note that to reduce the number of moves
executed by Algorithm BFS, a processor p ∈ V in an abnormal tree does not ask any
permission. Processor p waits until a neighbor q in the tree rooted at r authorizes p to
connect to q.

Algorithm 1. Spanning Tree Construction for any p ∈ V

Inputs: Neigp : set of (locally) ordered neighbors of p;
Shared variable: p.Req ∈ {ASK, WAIT, REP, OUT};
. .
Macros:
Child(p) = {q ∈ Neigp :: q.P = p ∧ q.L = p.L + 1}
Parent(p) = p.P
Height(p) = p.L
ChPar(p) = {q ∈ Neigp\Child(p) :: q.S = C}
MinChPar(p) = min{q ∈ ChPar(p) :: ∀t ∈ ChPar(p), q.L ≤ t.L}
. .
Global Predicates:
GoodT (p) ≡ p.S �= E ∧ (p �= r ⇒ p.L = (p.P).L + 1)
GoodL(p) ≡ (∀q ∈ Neigp :: |p.L − q.L| > 1 ⇒ (p.L < q.L ∨ q.S = E))
GP -REP (p) ≡ (∃q ∈ Neigp :: q.S = E ∨ q.L − p.L > 1)
Start(p) ≡ p.Req = OUT ∧ GP -REP (p)
End(p) ≡ p.Req = REP ∧ ¬GP -REP (p)
. .
Algorithm for p = r:

Constants: p.S = C; p.P = ⊥; p.L = 0;
Predicates:
Allowed(p) ≡ true

Actions:
A-action :: Start(p) → p.Req := ASK;
O-action :: End(p) → p.Req := OUT ;

Algorithm for p �= r:
Variables: p.S ∈ {C, E}; p.P ∈ Neigp; p.L ∈ �;
Predicates:
Allowed(p) ≡ false
AbnormalTree(p) ≡ p.S = C ∧ ((p.P).S = E ∨ (p.P).L ≥ p.L)
Connect(p) ≡ (∃q ∈ Neigp :: q.Req = REP ∧ q = MinChPar(p)

∧(p.S = C ⇒ p.L − q.L > 1))

Actions:
E-action :: AbnormalTree(p) → p.S := E;
C-action :: Connect(p) → p.S := C;p.P := MinChPar(p); p.L := (p.P).L + 1;

p.Req := OUT ;
A-action :: Start(p) → p.Req := ASK;
O-action :: End(p) → p.Req := OUT ;

When a BFS tree is constructed, the following property is verified at each pro-
cessor p ∈ V, p �= r: The level of p’s parent is equal to p’s level minus 1 (i.e.,
(p �= r) ⇒ (p.L = (p.P).L + 1)). For processor r, we have the following constant
values: r has no parent and a level equal to zero (i.e., (p = r) ⇒ (p.P = ⊥∧p.L = 0)).
Moreover, according to Claim 3 of Definition 1 we must have that the deviation on the

166 A. Cournier, S. Rovedakis, and V. Villain

level values between any processor p ∈ V and its neighbors does not exceed one (i.e.,
∀q ∈ Neigp, |q.L − p.L| < 1). If one of these above constraints are not verified then a
BFS tree is not constructed. Therefore, we have either at least one abnormal tree in F
or there is a processor p ∈ V with a neighbor q such that q.L− p.L > 1 (i.e., Predicate
GP -REP (p) is satisfied at p). In these cases, processor p executes A-action to set the
shared variable p.Req to ASK in order to ask the permission to allow q to connect to
p, if p is not already asking a permission (i.e., we have p.Req = OUT). To this end,
Algorithm 2 sends a request to the root of the tree.

Inputs for Algorithm 2. In order to allows Algorithm 2 to send a request the following
inputs are given at processor p: (i) Child(p) is the set of children of p in the tree (i.e.,
Child(p) ≡ {q ∈ Neigp : q.P = p}), (ii) Parent(p) is the parent of p in the tree (i.e.,
Parent(p) ≡ p.P), (iii) Height(p) is the height in the tree of the requesting processor
p, and (iv) Allowed(p) is a predicate which notifies if p can deliver permissions (i.e.,
Allowed(p) ≡ (p = r)). Remind that Allowed(p) must be satisfied only at processor
p = r in Algorithm 2 to allow that eventually every processor joins the tree rooted at r,
since eventually the processors cannot join another tree in forest F .

In the case a permission is delivered at processor p (i.e., we have p.Req = REP),
then each neighbor q of p can execute C-action to connect to p. However to construct a
BFS tree without an overcost on moves, processor q waits for until its neighbor x with
the smallest level in a normal tree gives its authorization to q to connect by executing
C-action (i.e., we have x.Req = REP ∧ x = MinChPar(q)). When processor q
executes C-action then it sets its variables p.P and p.L according to its new parent in
the tree, and it changes its status to Status C and its shared variable p.Req to OUT .
Finally, if there is no neighbor for which processor p needs a permission (i.e., Predicate
GP -REP (p) is no more satisfied at p), then p executes O-action to set its shared
variable p.Req to OUT . This informs Algorithm 2 that the permission can be removed
at p, then this allows p to ask a new permission later.

4 Question-Answer problem

In this section, we present a snap-stabilizing algorithm to implement the oracle used
by the BFS tree construction given in Section 3. Formally, this oracle has to solve the
Question-Answer problem which can be stated as following, a formal specification is
given in Specification 2.

Given a static forest F of trees in a network G = (V, E), a set of processors De ⊆ V
requesting a permission to make a defined computation and a set of processors AP ⊂ V
authorized to deliver permissions. Each p ∈ AP is a root of a tree T ∈ F . The Question-
Answer problem is to deliver a permission (or acknowledgement) to a processor p in a
tree T ∈ F if and only if the root q of T is in AP .

Specification 2 (Question-Answer). Let G = (V, E) be a network and F the static
forest of trees in G. Let a tree T ∈ F and root(T) the root of T . T is an allowed
tree if root(T) ∈ AP and not allowed otherwise. A protocol P which resolves the
Question-Answer problem satisfies:

The First Fully Polynomial Stabilizing Algorithm 167

[Liveness 1] During an infinite computation, if a processor has to send infinitely often
a request and it cannot send its request in an allowed tree, then there exist
an infinite number of requests which were sent.

[Liveness 2] For every computation suffix, if a processor in an allowed tree has sent a
request at time t, then there exist at least one processor in the same tree
which receives an acknowledgement to its own sent request at time t′ > t.

[Safety 1] Every processor which has sent a request receives at most one acknowl-
edgement causally related to its sent request.

[Safety 2] Every processor in a not allowed tree which has sent a request never re-
ceives an acknowledgement.

Remark that only semi-algorithms can satisfy Specification 2, that is no acknowledge-
ment is sent to processors in a not allowed tree, from Property [Safety 2] of Specifica-
tion 2.

4.1 Question-Answer Algorithm

In this section, we present a snap-stabilizing algorithm for the Question-Answer prob-
lem, a formal description is given by Algorithm 2. This is a non-uniform algorithm
because some rules are only executed by a subset of processors p ∈ V satisfying a local
Predicate Allowed(p) (i.e., p can deliver a permission or not).

Variables. We define below the different variables used by Algorithm 2.

Shared variable. Each processor p ∈ V has a local shared variable p.Req which al-
lows an external algorithm to require the Question-Answer algorithm at p. This shared
variable can take four values: ASK, WAIT, REP, and OUT . By setting the shared
variable p.Req to ASK in the external algorithm, p requests a permission through the
Question-Answer algorithm to its root of the tree. To this end, Question-Answer algo-
rithm tries to send a request to the root of the tree and sets the shared variable p.Req to
WAIT . At least the request of a requesting processor with the lowest level (or height) in
the tree will reach the root and then receive a permission (an acknowledgement). When
p receives an acknowledgement, it sets p.Req to REP . Finally, the external algorithm
must set p.Req to OUT to request another permission through Question-Answer algo-
rithm.

Local variables. Each processor p ∈ V maintains two local variables:

– p.Q: it defines the status of the Question-Answer algorithm at processor p. There
are three distinct status: R, W, and A. Status R notifies that p transmits a request to
the root of the tree, whereas Status W indicates that p waits for an acknowledge-
ment from the root for the transmitted request. The third status, Status A, indicates
that p has received an acknowledgement from the root.

– p.HQ: it stores at p the height of the processor which has sent the request.

Algorithm Description. To simplify the presentation of the algorithm, consider a for-
est of allowed trees (i.e., trees rooted at nodes p satisfying Predicate Allowed(p)) and
a fixed set of requests. In the following, we explain the way our algorithm handles re-
quests focusing on a single tree T of the forest, but this is the same for other trees since

168 A. Cournier, S. Rovedakis, and V. Villain

Algorithm 2. Question-Answer algorithm for any p ∈ V

Inputs: Neigp : set of (locally) ordered neighbors of p;
Child(p): set of neighbors considered as children of p in the tree;
Allowed(p): predicate which indicates if p is able to acknowledge to a request;
Parent(p): parent of p in the tree, equal to a processor q ∈ Neigp if ¬Allowed(p) or equal to ⊥ otherwise ;
Height(p): height of p in the tree;

Shared variable: p.Req ∈ {ASK, WAIT, REP, OUT};
Variables: p.Q ∈ {R, W, A}; p.HQ ∈ �;
. .
Macros:
RC(p) = {q ∈ Child(p) :: q.Q ∈ {R, W}}
PrioRC(p) = {q ∈ RC(p) :: ∀t ∈ RC(p), q.HQ ≤ t.HQ}
Chp = min{q ∈ PrioRC(p)}
. .
Global Predicates:
Transmit(p) ≡ p.Q = A ∧ (∀q ∈ Child(p) :: q.Q = W ⇒ q.HQ �= p.HQ)
Retransmit(p) ≡ p.Q = W ∧ (∃q ∈ Child(p) :: q.Q = R ∧ q.HQ = p.HQ)
Error(p) ≡ p.Q �=A∧[(p.Req �∈ {ASK, WAIT}∧p.HQ = Height(p)) ∨ (p.HQ �= Height(p)

∧(p.Req �= REP ⇒ (∀q ∈ Child(p) :: q.HQ = p.HQ ⇒ q.Q = A)))]
Request(p) ≡ p.Req = ASK ∧ (|PrioRC(p)| > 0 ⇒ Height(p) ≤ (Chp).HQ)
RequestT (p) ≡ p.Req �= REP

∧|PrioRC(p)| > 0 ∧ [((Chp).HQ ≥ p.HQ ⇒ Transmit(p)) ∨ Retransmit(p)]
. .

Algorithm:
Predicates:
Wait(p) ≡ (Allowed(p) ∧ p.Q = R ∧ (∀q ∈ Child(p) :: q.HQ = p.HQ ⇒ q.Q = W))∨

(¬Allowed(p) ∧ Parent(p).Q = R ∧ p.Q = R ∧ Parent(p).HQ = p.HQ
∧(∀q ∈ Child(p) :: q.HQ = p.HQ ⇒ q.Q = W))

Answer(p) ≡ (Allowed(p) ∧ p.Q = W)∨
(¬Allowed(p) ∧ Parent(p).Q = A ∧ p.Q = W ∧ Parent(p).HQ = p.HQ)

Actions:
QE-action :: Error(p) → p.Q := A; p.HQ := Height(p);
QR-action :: Request(p) → p.Q := R; p.HQ := Height(p); p.Req = WAIT ;
QRC-action :: RequestT (p) → p.Q := R; p.HQ := (Chp).HQ;

if p.HQ < Height(p) ∧ p.Req = WAIT then p.Req := ASK; fi
QW -action :: Wait(p) → p.Q := W ;
QA-action :: Answer(p) → p.Q := A;

if p.Req = WAIT then p.Req := REP ; fi

the requests in each tree are handled independently. In the algorithm, the requests sent
by nodes of lowest height in the tree are handled in priority.

When a processor p has a local request requested by the external algorithm (i.e.,
p.Req = ASK), p can execute QR-action to set its variables p.Req, p.Q, and p.HQ
to WAIT, R, and to Height(p) respectively, in order to send its request to the root of
the tree it belongs to. The external algorithm is informed that the request is sent since
p.Req = WAIT . Otherwise, an internal processor p in the tree with no local request
(i.e., p.Req �= REP) could have to transmit requests from its children (the request
from a requesting descendant of lowest height first) in the following cases:

– a child of p is sending a request with a highest priority (i.e., (Chp).HQ < p.HQ);
– the acknowledgement received for the transmitted request is no more needed at

p (all its children waiting it have transfered the acknowledgment, see Predicate
Transmit(p));

– p is waiting for an acknowledgement for a request and a new request is transmitted
by a child of p with the same height (see Predicate Retransmit(p)).

In all these above cases, p executes QRC-action to set p.Q to R and p.HQ to the
lowest height among requesting descendant of p (i.e., p.HQ = (Chp).HQ).

The First Fully Polynomial Stabilizing Algorithm 169

A processor p waits for an acknowledgement for a current request when its parent has
transmitted the request (see Predicate Wait(p)). Moreover, all p’s children transmitting
the same request (i.e., with the same height) have to wait for an acknowledgement.
Hence, Status W allows to remove bad requests due to an incorrect initial configuration
and to synchronize request transmissions of same priority. In this case, p sets its variable
p.Q to W using QW -action.

When the root root(T) of the tree T has no local request and is waiting for an ac-
knowledgement for requesting descendant(s) (see Predicate Answer), then it executes
QA-action to set its variable root(T).Q to A. This permission is propagated down in
the tree to the requesting descendant(s) following the path(s) used to transmit the re-
quest. Finally, a processor p waiting for an acknowledgement to a local request (i.e.,
p.Q = W and p.Req = WAIT) executes QA-action to receive the acknowledge-
ment and sets the shared variable p.Req to REP to notify to the external algorithm of
the delivered permission. Note that as soon as a received acknowledgement is no more
needed at a processor p (i.e., p.Req is setted to OUT by the external algorithm), then
another request transmitted by a child of p can be transmitted by p up in the tree.

However, a processor must be able to detect wrong requests due to an incorrect initial
configuration. A request treated by a processor p is a wrong request in the following
cases (see Predicate Error(p)):

– p is sending a local request whereas it has no local request (i.e., p.Q �= A∧p.Req �∈
{ASK, WAIT } and p.HQ = Height(p));

– p is transmitting a request from a child, however no child of p has a request with
the same height (i.e., p.Q �= A∧ p.HQ �= Height(p)∧ (∀q ∈ Child(p), q.HQ =
p.HQ ⇒ q.Q = A)).

When a processor p detects a wrong request, then p executes QE-action. This action
has the highest priority among the actions at p, and it reinitiates p’s state like if an
acknowledgement to a local request was received, i.e., to set p.Q to A and p.HQ to
Height(p) (without changing the state of the shared variable p.Req).

A questioning mechanism close to the mechanism presented here was used in [12]
to design a snap-stabilizing solution to the problem of Propagation of Information with
Feedback (PIF) with a round complexity in O(n) and a step complexity in O(Δn3).
However, solving the PIF problem involves a strong synchronization in the network
to insure that all the nodes in the network belong to the same broadcast tree before
to initiate the feedback phase. Indeed, each time a node is added to the broadcast tree
the questioning mechanism is reset leading to a O(n) round complexity. Contrary to
this questioning mechanism, here our mechanism needs a weakest synchronization to
resolve the Question-Answer problem. Let De the set of requesting nodes and hmin the
height of closest requesting nodes from the root in T . The first requests acknowledged
by root(T) are the requests from nodes at height hmin. Then, if the set of requests is
static then the requests at height hmin + 1 are acknowledged by root(T) (if any) and
so on. In fact, only a synchronization for the requests of requesting nodes at height
hmin (whose requests are of highest priority) in tree T is required leading to a round
complexity function of the height of T . The transmission of a request requires O(n)
steps, however this transmission can be interrupted only by a requesting node with the
same height in T , that is at most |De| times.

170 A. Cournier, S. Rovedakis, and V. Villain

The following lemma summarizes the above discussion:

Lemma 1. Let T an allowed tree and hmin the height of closest requesting nodes in
De from the root in T , in O(hmin) rounds and O(n|De|) steps at least one requesting
node in De receive an acknowledgement from root(T) to its request.

5 Composition and Complexities

AlgorithmBFS is obtained by composition of Algorithm 2 and Algorithm 1. These two
algorithms are composed together at each processor p ∈ V with a conditional composi-
tion (first introduced in [14]): Algorithm 1 ◦ |Cond(p) Algorithm 2, where each guard
g of the actions of Algorithm 2 at each processor p ∈ V has the form Cond(p)∧ g with
Predicate Cond(p) defined below (see Algorithm 1 for the description of predicates):
Cond(p) ≡ GoodT (p) ∧ GoodL(p).

Using this composition, each processor p ∈ V can execute Algorithm 2: (i) to trans-
mit requests and acknowledgements only if the tree containing p is locally correct (i.e.,
Predicate GoodT (p) is satisfied), and (ii) to ask a permission if needed (i.e., Predicate
GoodL(p) is satisfied). Indeed, actions in Algorithm 2 can be locked to avoid proces-
sors belonging to a tree not rooted at r (abnormal tree) to transmit useless requests since
no acknowledgement can be received (only r can deliver acknowledgements). There-
fore, processors in abnormal trees can only execute actions in Algorithm 1 to hook on to
another tree in the forest via a neighbor with a permission (acknowledgement delivered
by Algorithm 2). Moreover, actions of Algorithm 2 and Algorithm 1 can be enabled at
p simultaneously. In this case, Algorithm 2 is executed before Algorithm 1 at p.

Algorithm BFS uses Algorithm 2 which can be viewed as a synchronizer allowing
the BFS tree construction of T rooted at r layer by layer, the addition of any new layer
of processors depending of a permission request. The requesting processors closest to
r at height k in T receive an acknowledgement to their request from r in O(k) rounds
(Lemma 1) which allows their neighbors to hook on to T . The same argument holds for
the addition of each new layer of T . Moreover, the height of a BFS tree is lower than or
equal to the network diameter. Therefore, summing up the round complexity associated
to each layer we obtain a round complexity O(d2) to construct a BFS tree, with d the
network diameter. In another hand, the mechanism we use for deleting the abnormal
trees is obviously in O(n) rounds, since the height of such a tree can be in O(n). But
any processor in an abnormal tree far from the root of this tree will become the neighbor
of at least a processor of the normal BFS tree in O(d2) rounds and will hook to it even
if the abnormal tree is not yet deleted. So the global round complexity is still O(d2) as
stated in the following lemma.

Lemma 2. From any configuration, in O(d2) rounds Algorithm BFS reaches a con-
figuration γ ∈ C satisfying Definition 1, with d the diameter of the network.

We discuss above the ideas leading to the round complexity of AlgorithmBFS. We give
below the main arguments allowing to show that Algorithm BFS has a step complexity
in O(mn4). We define a topological change as follows: Given a forest F of trees in
a configuration γ ∈ C, a topological change in F is obtained by the execution of E-
action or C-action at a processor p ∈ V in step γ �→ γ′. We first consider the step
complexity of Algorithm 1. A processor can hook on to several abnormal trees until

The First Fully Polynomial Stabilizing Algorithm 171

belonging to the tree rooted at r. First of all, we establish the number of connections to
an abnormal tree that any processor p ∈ V can make until belonging to the tree rooted
at r. In the reminder, the tree rooted at r is noted Tree(r) and root(T) describes the
root node of a tree T .

Proposition 1. Every processor p ∈ V is hooked on to the neighbor q such that ∀s ∈
Neigp, q.L ≤ s.L.

Proof. According to the formal description of Algorithm 1, a processor hooks on to
a neighbor using C-action. Assume, by the contradiction, that there is a processor
p ∈ V such that ∃s ∈ Neigp, (p.P).L > s.L. We must consider two cases: s is
in an abnormal tree or not. If s is in an abnormal tree then either s.S = E then s �∈
MinChPar(p) ⇒ ¬Connect(p) a contradiction, or s.S = C then by Property [Safety
2] of Specification 2 s never receives an acknowledgement and we have that s.Req �=
REP ⇒ ¬Connect(p), otherwise C-action is enabled at p, a contradiction. If s is in
a normal tree then by Property [Liveness 2] of Specification 2 we have that s.Req =
REP and C-action is enabled at p, a contradiction. ��

Lemma 3. Let any abnormal tree T ∈ F and the set of processors B = {p ∈ V : p �∈
T ∧ (∃q ∈ Neigp :: q ∈ T)}. In any execution, only processors in B can hook on to T .

Proof. Consider any abnormal tree T ∈ F in configuration γ ∈ C. According to the
formal description of Algorithm 1, a processor p must execute C-action to hook on to
a tree, i.e., there is a neighbor q such that q.Req = REP . Suppose that every processor
q ∈ B executes C-action and they are hooked on to T in configuration γk. Note that
after executing C-action, we have q.Req = OUT at every processor q ∈ B. Assume,
by the contradiction, that there is a processor p �∈ T in configuration γk which hooks
on to T in step γk �→ γk+j , j > 0. This implies that p hooks on to a neighbor q ∈ B
(by definition of B) such that q.Req = REP , a contradiction by Property [Safety 2] of
Specification 2 because q cannot receive an acknowledgement from root(T) since T is
an abnormal tree. ��

Proposition 2. Let a processor p ∈ V which hooks on to a tree T in configuration
γi ∈ C. If another processor q ∈ V hooks on to T by p in γi+j , j > 0, then T is a
normal tree.

Proof. According to Lemma 3, the expansion of an abnormal tree T ′ is limited at dis-
tance one from T ′. After p hooks on to T , to allow the processor q to hook on to T by
p then p receives an acknowledgement from root(T). Therefore, T is a normal tree by
Specification 2. ��

Lemma 4. Let any abnormal tree T ∈ F . A processor p ∈ V can hook on to T at most
once by the same neighbor q ∈ T .

Proof. Assume, by the contradiction, that there is a configuration γk ∈ C such that
there is a processor p ∈ V which hooks on to T by the same neighbor q ∈ T a second
time. To hook on to T , p must execute C-action, i.e., there is a neighbor x ∈ T of p
such that x.S = C and x.Req = REP . According to Proposition 1, p hooks on to
the neighbor x ∈ V such that x.S = C ∧ (∀s ∈ Neigp, x.L ≤ s.L). Suppose that

172 A. Cournier, S. Rovedakis, and V. Villain

p hooks on to T by the neighbor q a first time in step γi−1 �→ γi ∈ C, then p hooks
on to another neighbor s of p, s �= q, in step γj−1 �→ γj ∈ C, j > i. Now, we must
consider several cases in configuration γk, i < j < k. If p is hooked on to s in γj

because q.S = E and s.Req = REP in γi then since q ∈ T we have q.S = E in γk

and q �∈ MinChPar(p) ⇒ ¬Connect(p), a contradiction. Otherwise s.S = q.S = C
and p is hooked on to s in γj , i < j < k, because s.L < q.L and s.Req = REP .
When p hooks on to q the first time in step γi−1 �→ γi, we have s.S = E or s.L > q.L.
Since we have s.S = C ∧ s.L < q.L ∧ s.Req = REP and p hooks on to s in step
γj−1 �→ γj , this implies that s is in a normal tree in γj according to Proposition 2.
Thus, we have s.S = C ∧ s.L < q.L in γk and q �∈ MinChPar(p) ⇒ ¬Connect(p),
a contradiction. ��

Lemma 5. In any execution, every processor p ∈ V \{r} produces at most 2Δ topolog-
ical changes in forest F while p �∈ Tree(r), with Δ the maximum degree of a processor
in the network.

Proof. To hook on to a tree, a processor p ∈ V must execute C-action. According to
Lemma 4, p cannot hook on to an abnormal tree T ∈ F twice by the same neighbor q
of p. Since a processor can have at most Δ neighbors, p can hook on at most Δ times
to an abnormal tree. Observe that E-action has a higher priority than C-action and
E-action can be executed between two executions of C-action, i.e., at most Δ times
while p �∈ Tree(r). Therefore, by the definition of a topological change the lemma
follows. ��

After giving a bound for the number of connections to abnormal trees, we provide below
an upper bound for the number of connections that a processor can make in the normal
tree.

Remark 1. For every processor p ∈ Tree(r), E-action is disabled at p.

Lemma 6. In any execution, every processor p ∈ V \{r} produces at most n topolog-
ical changes in forest F while p ∈ Tree(r), with n the number of processors in the
network.

Proof. Observe that for every processor p ∈ Tree(r) we have p.S = C. Moreover, by
Remark 1, for every processor p ∈ Tree(r), E-action is disabled. So, by definition the
only topological change in F that a processor p ∈ Tree(r) can produce is to execute
C-action in order to reduce its level in Tree(r). Thus, by Proposition 1 each execution
of C-action by a processor p ∈ Tree(r) in step γi �→ γi+1 implies that p hooks on
to the neighbor with the lowest level in γi+1 and p.L in γi is higher than p.L in γi+1.
Therefore, since the size of Tree(r) is bounded by n then any processor p can hook on
to at most n − 1 processors by executing C-action while p ∈ Tree(r). ��

From the above lemmas, each processor can hook on to at most 2Δ + n times until
reaching its correct position in the final BFS tree. Thus, there are at most 2Δn + n2

topological changes in the forest until a BFS tree is reached. Moreover, each topologi-
cal change yields at most Δ requests in the network, so to construct a BFS tree at most

The First Fully Polynomial Stabilizing Algorithm 173

2Δm+mn requests are generated by Algorithm 1. We now consider the step complex-
ity of Algorithm 2. According to Lemma 1, a processor receives an acknowledgement
with Algorithm 2 in O(n2) steps (since |De| ≤ n). So, in O(n3) steps every requesting
processor receives an acknowledgement (there are at most n requests in the network).

Given an upper bound on the number of requests generated by Algorithm 1, we have
to multiply this amount by the number of steps needed by Algorithm 2 to acknowl-
edge these requests in order to obtain an upper bound to the total step complexity of
Algorithm BFS. This is stated by the following lemma.

Lemma 7. From any configuration, O(Δmn3 + mn4) steps are needed by Algorithm
BFS to reach a terminal configuration.

Notice that in one hand using a questioning mechanism allows us to save steps by avoid-
ing the transmission of useless requests, but in the other hand we obtain a higher round
complexity (O(d2) instead of O(d) with standard algorithms for BFS trees) due to the
fact that permissions must be delivered before the add of new nodes to the constructed
tree. Moreover, the step complexity established in Lemma 7 is not related with any
initial value of a variable and it holds under any fairness assumptions.

Lemma 7 implies that Algorithm BFS always satisfies Property [TC1] of Specifica-
tion 1 and is silent. We now consider any terminal configuration. Since the configuration
is terminal, no action is enabled in Algorithm BFS. It is trivial to verify by induction
on the distance of a processor to r that every processor is in Tree(r) and at the right
level as stated in the following lemma.

Lemma 8. Every terminal configuration reached by Algorithm BFS satisfies
Definition 1.

According to Lemmas 7 and 8, Algorithm BFS always satisfies respectively Properties
[TC1] and [TC2] of Specification 1. Therefore, we can state the following theorem.

Theorem 1. Algorithm BFS is a silent snap-stabilizing algorithm to construct a BFS
tree.

6 Conclusion
In this paper a silent snap-stabilizing algorithm resolving the Question-Answer problem
has been given, in which each node requests a permission (delivered by a subset of
network nodes) in order to perform a defined computation. Based on this algorithm,
the first fully polynomial stabilizing algorithm for the construction of a spanning tree
has been presented. A Breadth First Search tree is constructed in O(d2) rounds and in
O(n6) steps, with d the diameter and n the number of nodes in the network. Moreover,
a distributed daemon without any fairness assumptions is considered.

One crucial open question is the following: Is it possible to design a fully polynomial
self-stabilizing algorithm to construct a spanning tree in O(d) rounds with a polynomial
step complexity?

References

1. Afek, Y., Kutten, S., Yung, M.: Memory-Efficient Self-Stabilizing Protocols for General Net-
works. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486, pp. 15–28.
Springer, Heidelberg (1991)

174 A. Cournier, S. Rovedakis, and V. Villain

2. Arora, A., Gouda, M.: Distributed reset (extended abstract). In: Veni Madhavan, C.E., Nori,
K.V. (eds.) FSTTCS 1990. LNCS, vol. 472, Springer, Heidelberg (1990)

3. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time optimal self-
stabilizing synchronization. In: 25th Annual ACM Symposium on Theory of Computing
(STOC), pp. 652–661 (1993)

4. Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing pif in tree networks.
In: Workshop on Self-stabilizing Systems (WSS), pp. 78–85. IEEE Computer Society (1999)

5. Burman, J., Kutten, S.: Time Optimal Asynchronous Self-Stabilizing Spanning Tree. In: Pelc,
A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 92–107. Springer, Heidelberg (2007)

6. Chen, N.-S., Yu, H.-P., Huang, S.-T.: A self-stabilizing algorithm for constructing spanning
trees. Inf. Process. Lett. 39(3), 147–151 (1991)

7. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Inf. Process. Lett. 49(6), 297–301
(1994)

8. Cournier, A.: Mémoire d’Habilitation à Diriger les Recherches: Graphes et algorithmique
distribuée stabilisante. Université de Picardie Jules Verne (2009)

9. Cournier, A.: A New Polynomial Silent Stabilizing Spanning-Tree Construction Algorithm.
In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 141–153. Springer,
Heidelberg (2010)

10. Cournier, A., Devismes, S., Petit, F., Villain, V.: Snap-stabilizing depth-first search on arbi-
trary networks. The Computer Journal 49(3), 268–280 (2006)

11. Cournier, A., Devismes, S., Villain, V.: A Snap-Stabilizing DFS with a Lower Space Require-
ment. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 33–47. Springer,
Heidelberg (2005)

12. Cournier, A., Devismes, S., Villain, V.: Snap-stabilizing pif and useless computations. In:
12th International Conference on Parallel and Distributed Systems (ICPADS), pp. 39–48.
IEEE Computer Society (2006)

13. Cournier, A., Devismes, S., Villain, V.: Light enabling snap-stabilization of fundamental pro-
tocols. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4(1) (2009)

14. Datta, A.K., Gurumurthy, S., Petit, F., Villain, V.: Self-stabilizing network orientation algo-
rithms in arbitrary rooted networks. Stud. Inform. Univ. 1(1), 1–22 (2001)

15. Datta, A.K., Larmore, L.L., Vemula, P.: Self-Stabilizing Leader Election in Optimal Space.
In: Kulkarni, S., Schiper, A. (eds.) SSS 2008. LNCS, vol. 5340, pp. 109–123. Springer, Hei-
delberg (2008)

16. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

17. Dolev, S.: Self-Stabilization. MIT Press (2000)
18. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only

read/write atomicity. In: 9th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 103–117 (1990)

19. Gärtner, F.: A survey of self-stabilizing spanning-tree construction algorithms. Tech. rep.,
EPFL (October 2003)

20. Huang, S.-T., Chen, N.-S.: A self-stabilizing algorithm for constructing breadth-first trees.
Inf. Process. Lett. 41(2), 109–117 (1992)

21. Johnen, C.: Memory-efficient self-stabilizing algorithm to construct bfs spanning trees. In:
3rd Workshop on Self-stabilizing Systems (WSS), pp. 125–140 (1997)

22. Kosowski, A., Kuszner, Ł.: A Self-Stabilizing Algorithm for Finding a Spanning Tree in a
Polynomial Number of Moves. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski,
J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 75–82. Springer, Heidelberg (2006)

23. Tel, G.: Introduction to distributed algorithm, 2nd edn. Cambridge University Press (2000)

	The First Fully Polynomial Stabilizing Algorithm for BFS Tree Construction
	Introduction
	Model
	Spanning Tree Construction
	Breadth First Search Tree Algorithm

	Question-Answer problem
	Question-Answer Algorithm

	Composition and Complexities
	Conclusion
	References

