
Node-Disjoint Multipath Spanners and Their
Relationship with Fault-Tolerant Spanners

Cyril Gavoille1,�, Quentin Godfroy1,�, and Laurent Viennot2,��

1 University of Bordeaux, LaBRI
2 INRIA, University Paris 7, LIAFA

Abstract. Motivated by multipath routing, we introduce a multi-
connected variant of spanners. For that purpose we introduce the p-
multipath cost between two nodes u and v as the minimum weight of a
collection of p internally vertex-disjoint paths between u and v. Given
a weighted graph G, a subgraph H is a p-multipath s-spanner if for all
u, v, the p-multipath cost between u and v in H is at most s times the
p-multipath cost in G. The s factor is called the stretch.

Building upon recent results on fault-tolerant spanners, we show how
to build p-multipath spanners of constant stretch and of Õ(n1+1/k)
edges1, for fixed parameters p and k, n being the number of nodes of
the graph. Such spanners can be constructed by a distributed algorithm
running in O(k) rounds.

Additionally, we give an improved construction for the case p = k = 2.
Our spanner H has O(n3/2) edges and the p-multipath cost in H between
any two node is at most twice the corresponding one in G plus O(W ),
W being the maximum edge weight.

1 Introduction

It is well-known [2] that, for each integer k � 1, every n-vertex weighted graph
G has a subgraph H , called spanner, with O(n1+1/k) edges and such that for all
pairs u, v of vertices of G, dH(u, v) � (2k − 1) · dG(u, v). Here dG(u, v) denotes
the distance between u and v in G, i.e., the length of a minimum cost path
joining u to v. In other words, there is a trade-off between the size of H and its
stretch, defined here by the factor 2k − 1. Such trade-off has been extensively
used in several contexts. For instance, this can be the first step for the design of
a Distance Oracle, a compact data structure supporting approximate distance
query while using sub-quadratic space [25,4,5]. It is also a key ingredient for sev-
eral distributed algorithms to quickly compute a sparse skeleton of a connected
graph, namely a connected spanning subgraph with only O(n) edges. This can
� Supported by the European project “EULER”, the ANR-project “ALADDIN”, the

équipe-projet INRIA “CÉPAGE”. The first author is Member of the “Insitut Univer-
sitaire de France”.

�� Supported by the European project “EULER”, the ANR-project “ALADDIN”, and
the équipe-projet INRIA “GANG”.

1 Tilde-O notation is similar to Big-O up to poly-logarithmic factors in n.

A. Fernández Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 143–158, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



144 C. Gavoille, Q. Godfroy, and L. Viennot

be done by choosing k = O(log n). The target distributed algorithm can then be
run on the remaining skeleton [3]. The skeleton construction can be done in O(k)
rounds, whereas computing a spanning tree requires diameter rounds in general.
We refer the reader to [21] for an overview on graph spanner constructions.

However, it is also proved in [25] that if G is directed, then it may have no
sub-digraph H having o(n2) edges and constant stretch, the stretch being defined
analogously by the maximum ratio between the one-way distance from u to v
in H and the one-way distance from u to v in G. Nevertheless, a size/stretch
trade-off exists for the round-trip distance, defined as the sum of a minimum
cost of a dipath from u to v, and a minimum cost dipath from v to u (see [7,23]).
Similar trade-offs exist if we consider the p-edge-disjoint multipath distance (in
undirected graphs) for each p � 1, that is the minimum sum of p edge-disjoint
paths joining u and v, see [10].

1.1 Trade-Offs for Non-increasing Graph Metric

More generally, we are interested in size/stretch trade-offs for graphs (or di-
graphs) for some non-increasing graph metric. A non-increasing graph metric δ
associates with each pair of vertices u, v some non-negative cost that can only
decrease when adding edges. In other words, δG(u, v) � δH(u, v) for all vertices
u, v and spanning subgraphs H of G. Moreover, if δH(u, v) � α · δG(u, v) + β,
then we say that H is an (α, β)-spanner and that its stretch (w.r.t. the graph
metric δ) is at most (α, β). We simply say that H is an α-spanner if β = 0. The
size of a spanner is the number of its edges.

In the previous discussion we saw that every graph or digraph has a spanner
H of size o(n2) and with bounded stretch for graph metrics δ such as round-
trip, p-edge-disjoint multipath, and the usual graph distance. However, it does
not hold for one-way distance. A fundamental task is to determine which graph
metrics δ support such size/stretch trade-off. We observe that the three former
graph metrics cited above have the triangle inequality property, whereas the
one-way metric does not.

This paper deals with the construction of spanners for the vertex-disjoint
multipath metric. A p-multipath between u and v is a subgraph composed of
the union of p pairwise internally vertex-disjoint paths joining u and v. The
cost of a p-multipath between u and v is the sum of the weight of the edges it
contains. Given an undirected positively weighted graph G, define δp

G(u, v) as the
minimum cost of a p-multipath between u and v if it exists, and ∞ otherwise.
A p-multipath s-spanner is a spanner H of G with stretch at most s w.r.t. the
graph metric δp. In other words, for all vertices u, v of G, δp

H(u, v) � s · δp
G(u, v),

or δp
H(u, v) � α · δp

G(u, v) + β if s = (α, β). It generalizes classical spanners as
dG(u, v) = δp

G(u, v) for p = 1.

1.2 Motivations

Our interest in the node-disjoint multipath graph metric stems from the need
for multipath routing in networks. Using multiple paths between a pair of nodes



Node-Disjoint Multipath Spanners and Their Relationship 145

is an obvious way to aggregate bandwidth. Additionally, a classical approach to
quickly overcome link failures consists in pre-computing fail-over paths which are
disjoint from primary paths [14,19,18]. Multipath routing can be used for traffic
load balancing and for minimizing delays. It has been extensively studied in ad
hoc networks for load balancing, fault-tolerance, higher aggregate bandwidth,
diversity coding, minimizing energy consumption (see [17] for a quick overview).
Considering only a subset of links is a practical concern in link state routing
in ad hoc networks [13]. This raises the problem of computing spanners for the
multipath graph metric, a first step towards constructing compact multipath
routing schemes.

1.3 Our Contributions

Our main contribution is to show that sparse p-multipath spanners of constant
stretch do exist for each p � 1. Moreover, they can be constructed locally in a
constant number of rounds. More precisely, we show that:

1. Every weighted graph with n vertices has a p-multipath kp ·O(1 + p/k)2k−1-
spanner of size Õ(p2 · n1+1/k), where k and p are integral parameters � 1.
Moreover, such a multipath spanner can be constructed distributively in
O(k) rounds.

2. For p = k = 2, we improve this construction whose stretch is 18. Our algo-
rithm provides a 2-multipath (2, O(W ))-spanner of size O(n3/2) where W is
the largest edge weight of the input graph.

Distributed algorithms are given in the classical LOCAL model of computations
(cf. [20]), a.k.a. the free model [15]. In this model nodes operate in synchronous
discrete rounds (nodes are also assumed to wake up simultaneously). At each
round, a node can send and/or receive messages of unbounded capacity to/from
its neighbors and can perform any amount of local computations. Hence, each
round costs one time unit. Also, nodes have unique identifiers that can be used for
breaking symmetry. As long as we are concerned with running time (number of
rounds) and not with the cost of communication, synchronous and asynchronous
message passing models are equivalent.

1.4 Overview

Multipath spanners have some flavors of fault-tolerant spanners, notion intro-
duced in [6] for general graphs. A subgraph H is an r-fault tolerant s-spanner
of G if for any set F of at most r � 0 faulty vertices, and for any pair u, v of
vertices outside F , dH\F (u, v) � s · dG\F (u, v).

At first glance, r-fault tolerant spanners seem related to (r + 1)-multipath
spanners. (Note that both notions coincide to usual spanners if r = 0.) This
is motivated by the fact that, if for an edge uv of G that is not in H , and if,
for each set F of r vertices, u and v are connected in H \ F , then by Menger’s
Theorem H must contain some p-multipath between u and v. If the connectivity



146 C. Gavoille, Q. Godfroy, and L. Viennot

condition fulfills, there is no guarantee however on the cost of the p-multipath
in H compared to the optimal one in G. Actually, as presented on Fig. 1, there
are 1-fault tolerant s-spanners that are 2-multipath but with arbitrarily large
stretch.

s
u v

1

s/n

Fig. 1. A weighted graph G composed of a cycle of n+1 vertices plus n−1 extra edges,
and a spanner H = G \ {uv}. Edge uv has weight 1, non-cycle edges have weight s,
and cycle edges weight s/n so that dH(u, v) = s. Removing any vertex z /∈ {u, v}
implies dG\{z}(u, v) = 1 and dH\{z}(u, v) = 2s(1 − 1/n). For other pairs of vertices
x, y, dH\{z}(x, y)/dG\{z}(x, y) < 2s. Thus, H is a 1-fault tolerant 2s-spanner. However
δ2

H(u, v)/δ2
G(u, v) � sn/s. Thus, H is a 2-multipath spanner with stretch at least n.

Nevertheless, a relationship can be established between p-mutlipath spanners
and some r-fault tolerant spanners. In fact, we prove in Section 2.4 that every r-
fault tolerant s-spanner that is b-hop is a (r +1)-multipath spanner with stretch
bounded by a function of b, r and s. Informally, a b-hop spanner H must replace
every edge uv of G not in H by a path simultaneously of low cost and composed of
at most b edges. We observe that many classical spanner constructions (including
the greedy one) do not provide bounded-hop spanners, although such spanners
exist as proved in Section 2.1. Some variant presented in [6] of the Thorup-Zwick
constructions [25] are also bounded-hop (Section 2.2). Combining these specific
spanners with the generic construction of fault tolerant spanners of [9], we show
in Section 2.3 how to obtained a LOCAL distributed algorithm for computing
a p-mutlipath spanner of bounded stretch. A maybe surprising fact is that the
number of rounds is independent of p and n. We stress that the distributed
algorithm that we obtain has significantly better running time than the original
one presented in [9] that was Ω(p3 log n).

For instance for p = 2, our construction can produce a 2-multipath 18-spanner
with O(n3/2 log3/2 n) edges. For this particular case we improve the general
construction in Section 3 with a completely different approach providing a low
multiplicative stretch, namely 2, at the cost of an additive term depending of
the largest edge weight.

We note that the graph metric δp does not respect the triangle inequality
for p > 1. For p = 2, a cycle from u to w and a cycle from w to v does not



Node-Disjoint Multipath Spanners and Their Relationship 147

imply the existence of a cycle from u to v. The lack of this property introduces
many complications for our second result. Basically, there are Ω(n2) pairs u, v of
vertices, each one possibly defining a minimum cycle Cu,v of cost δ2

G(u, v). If we
want to create a spanner H with o(n2) edges, we cannot keep Cu,v for all pairs
u, v. Selecting some vertex w as pivot for going from u to v is usually a solution
of save edges (in particular at least one between u and v). One pivot can indeed
serve for many other pairs. However, without the triangle inequality, Cu,w and
Cw,v do not give any cost guarantee on δ2

H(u, v).

2 Main Construction

In this section, we prove the following result:

Theorem 1. Let G be a weighted graph with n vertices, and p, k be integral pa-
rameters � 1. Then, G has a p-multipath kp · O(1 + p/k)2k−1-spanner of size
O(kp2−1/kn1+1/k log2−1/k n) that can be constructed w.h.p. by a randomized dis-
tributed algorithm in O(k) rounds.

Theorem 1 is proved by combining several constructions presented now.

2.1 Spanners with Few Hops

An s-spanner H of a weighted graph G is b-hop if for every edge uv of G, there
is a path in H between u and v composed of at most b edges and of cost at most
s ·ω(uv) (where ω(uv) denotes the cost of edge uv). An s-hop spanner is simply
an s-hop s-spanner.

If G is unweighted (or the edge-cost weights are uniform), the concepts of
s-hop spanner and s-spanner coincide. However, not all s-spanners are s-hop. In
particular, the (2k− 1)-spanners produced by the greedy2 algorithm [2] are not.

For instance, consider a weighted cycle of n + 1 vertices and any stretch s
such that 1 < s < n. All edges of the cycle have unit weight, but one, say
the edge uv, which has weight ω(uv) = n/s. Note that dG(u, v) = ω(uv) > 1.
The greedy algorithm adds the n unit cost edges but the edge uv to H because
dH(u, v) = n � s · ω(uv) (recall that uv is added only if dH(u, v) > s · dG(u, v)).
Therefore, H is an s-spanner but it is only an n-hop spanner.

However, we have:

Proposition 1. For each integer k � 1, every weighted graph with n vertices
has a (2k − 1)-hop spanner with less than n1+1/k edges.

Proof. Consider a weighted graph G with edge-cost function ω. We construct the
willing spanner H of G thanks to the following algorithm which can be seen as
the dual of the classical greedy algorithm, till a variant of Kruskal’s algorithm:
2 For each edge uv in non-decreasing order of their weights, add it to the spanner if

dH(u, v) > s · dG(u, v).



148 C. Gavoille, Q. Godfroy, and L. Viennot

(1) Initialize H with V (H) := V (G) and E(H) := ∅;
(2) Visit all the edges of G in non-decreasing order of their weights, and add the

edge uv to H only if every path between u and v in H has more than 2k− 1
edges.

Consider an edge uv of G. If uv is not in H then there must exist a path P in H
from u to v such that P has at most 2k−1 edges. We have dH(u, v) � ω(P ). Let
e be an edge of P with maximum weight. We can bound ω(P ) � (2k − 1) ·ω(e).
Since e has been considered before the edge uv, ω(e) � ω(uv). It follows that
ω(P ) � (2k − 1) · ω(uv), and thus dH(u, v) � (2k − 1) · ω(uv). Obviously, if
uv belongs to H , dH(u, v) = ω(uv) � (2k − 1) · ω(uv) as well. Therefore, H is
(2k − 1)-hop.

The fact that H is sparse comes from the fact that there is no cycle of length
� 2k in H : whenever an edge is added to H , any path linking its endpoints has
more than 2k − 1 edges, i.e., at least 2k.

We observe that H is simple even if G is not. It has been proved in [1] that
every simple n-vertex m-edge graph where every cycle is of length at least 2k+1
(i.e., of girth at least 2k + 1), must verify the Moore bound:

n � 1 + d
k−1∑

i=0

(d − 1)i > (d − 1)k

where d = 2m/n is the average degree of the graph. This implies that m <
1
2 (n1+1/k + n) < n1+1/k.

Therefore, H is a (2k − 1)-hop spanner with at most n1+1/k edges. �

2.2 Distributed Bounded Hop Spanners

There are distributed constructions that provide s-hop spanners, at the cost of
a small (poly-logarithmic in n) increase of the size of the spanner compared to
Proposition 1.

If we restrict our attention to deterministic algorithms, [8] provides for un-
weighted graphs a (2k − 1)-hop spanner of size O(kn1+1/k). It runs in 3k − 2
rounds without any prior knowledge on the graph, and optimally in k rounds if
n is available at each vertex.

Proposition 2. There is a distributed randomized algorithm that, for every
weighted graph G with n vertices, computes w.h.p. a (2k − 1)-hop spanner of
O(kn1+1/k log1−1/k n) edges in O(k) rounds.

Proof. The algorithm is a distributed version of the spanner algorithm used in [6],
which is based on the sampling technique of [25]. We make the observation that
this algorithm can run in O(k) rounds. Let us briefly recall the construction
of [6, p. 3415].

To each vertex w of G is associated a tree rooted at w spanning the cluster of
w, a particular subset of vertices denoted by C(w). The construction of C(w) is



Node-Disjoint Multipath Spanners and Their Relationship 149

a refinement over the one given in [25]. The main difference is that the clusters’
depth is no more than k edges. The spanner is composed of the union of all such
cluster spanning trees. The total number of edges is O(kn1+1/k log1−1/k n). It is
proved in [6] that for every edge uv of G, there is a cluster C(w) containing u
and v. The path of the tree from w to one of the end-point has at most k − 1
edges and cost � (k−1) ·ω(uv), and the path from w to the other end-point has
at most k edges and cost � k · ω(uv). This is therefore a (2k − 1)-hop spanner.

The random sampling of [25] can be done without any round of communica-
tions, each vertex randomly select a level independently of the other vertices.
Once the sampling is performed, the clusters and the trees can be constructed
in O(k) rounds as their the depth is at most k. �

2.3 Fault Tolerant Spanners

The algorithm of [9] for constructing fault tolerant spanners is randomized and
generic. It takes as inputs a weighted graph G with n vertices, a parameter r � 0,
and any algorithm A computing an s-spanner of m(ν) edges for any ν-vertex
subgraph of G. With high probability, it constructs for G an r-fault tolerant
s-spanner of size O(r3 · m(2n/r) · log n). It works as follows:
Set H := ∅, and repeat independently O(r3 log n) times:

(1) Compute a set S of vertices built by selecting each vertex with probability
1 − 1/(r + 1);

(2) H := H ∪ A(G \ S).

Then, they show that for every fault set F ⊂ V (G) of size at most r, and every
edge uv, there exists with high probability a set S as computed in Step (1) for
which u, v /∈ S and F ⊆ S. As a consequence, routine A(G \ S) provides a path
between u and v in G \ S (and thus also in G \ F ) of cost � s · ω(uv). If uv
lies on a shortest path of G \ F , then this cost is � s · dG\F (u, v). From their
construction, we have:

Proposition 3. If A is a distributed algorithm constructing an s-hop spanner
in t rounds, then algorithm [9] provides a randomized distributed algorithm that
in t rounds constructs w.h.p. an s-hop r-fault tolerant spanner of size O(r3 ·
m(2n/r) · log n).

Proof. The resulting spanner H is s-hop since either the edge uv of G is also in
H , or a path between u and v approximating ω(uv) exists in some s-hop spanner
given by algorithm A. This path has no more than s edges and cost � s ·ω(uv).

Observe that the algorithm [9] consists of running in parallel q = O(r3 log n)
times independent runs of algorithm A on different subgraphs of G, each one
using t rounds. Round i of all these q runs can be done into a single round of
communication, so that the total number of rounds is bounded by t, not by q.

More precisely, each vertex first selects a q-bit vector, each bit set with prob-
ability 1− 1/(r +1), its jth bit indicating whether it participates to the jth run



150 C. Gavoille, Q. Godfroy, and L. Viennot

of A. Then, q instances of algorithm A are run in parallel simultaneously by
all the vertices, and whenever the algorithms perform their ith communication
round, a single message concatenating the q messages is sent. Upon reception, a
vertex expands the q messages and run the jth instance of algorithm A only if
the jth bit of its vector is set.

The number of rounds is no more than t. �

2.4 From Fault Tolerant to Multipath Spanner

Theorem 2. Let H be a s-hop (p−1)-fault tolerant spanner of a weighted graph
G. Then, H is also a p-multipath ϕ(s, p)-spanner of G where ϕ(s, p) = sp ·
O(1 + p/s)s and ϕ(3, p) = 9p.

To prove Theorem 2, we need the following intermediate result, assuming that
H and G satisfy the statement of Theorem 2.

Lemma 1. Let uv be an edge of G of weight ω(uv) that is not in H. Then, H
contains a p-multipath connecting u to v of cost at most ϕ(s, p) · ω(uv) where
ϕ(s, p) = sp · O(1 + p/s)s and ϕ(3, p) = 9p.

Proof. From Menger’s Theorem, the number of pairwise vertex-disjoint paths be-
tween two non-adjacent vertices x and y equals the minimum number of vertices
whose removal disconnects x and y.

By definition of H , H \ F contains a path PF of at most s edges between
u and v for each set F of at most p − 1 vertices (excluding u and v). This is
because u and v are always connected in G \ F , precisely by a single edge path
of cost ω(uv). Consider PH the subgraph of H composed of the union of all such
PF paths (so from u to v in H \ F – see Fig. 2 for an example with p = 2 and
s = 5).

Vertices u and v are non-adjacent in PH . Thus by Menger’s Theorem, PH has
to contain a p-multipath between u and v. Ideally, we would like to show that
this multipath has low cost. Unfortunately, Menger’s Theorem cannot help us
in this task.

Let κs(u, v) be the minimum number of vertices in PH whose deletion de-
stroys all paths of at most s edges between u and v, and let μs(u, v) denote the
maximum number of internally vertex-disjoint paths of at most s edges between
u and v. Obviously, κs(u, v) � μs(u, v), and equality holds by Menger’s Theorem
if s = n − 1. Equality does not hold in general as presented in Fig. 2. However,
equality holds if s is the minimum number of edges of a path between u and v,
and for s = 2, 3, 4 (cf. [16]).

Since not every path of at most s edges between u and v is destroyed after
removing p−1 vertices in PH , we have that κs(u, v) � p. Let us bound the total
number of edges in a p-multipath Q of minimum size between u and v in PH .
Let r be the least number such that μr(u, v) � p subject to κs(u, v) � p. The
total number of edges in Q is therefore no more than pr.



Node-Disjoint Multipath Spanners and Their Relationship 151

vu

Fig. 2. A subgraph PH constructed by adding paths between u and v with at most
s = 5 edges and with p = 2. Removing any vertex leaves a path of at most 5 edges, so
κ5(u, v) > 1. However, there aren’t two vertex-disjoint paths from u to v of at most 5
edges, so κ5(u, v) > μ5(u, v). Observe that μ6(u, v) = κ5(u, v) = 2.

By construction of PH , each edge of PH comes from a path in H \ F of cost
ω(PF ) � s · dG\F (u, v) � s · ω(uv). In particular, each edge of Q has weight at
most s · ω(uv). Therefore, the cost of Q is ω(Q) � prs · ω(uv).

It has been proved in [22] that r can be upper bounded by a function
r(s, p) <

(
p+s−2

s−2

)
+

(
p+s−3

s−2

)
= O(1 + p/s)s for integers s, p, and r(3, p) = 3 since

as seen earlier κ3(u, v) = μ3(u, v). It follows that H contains a p-multipath Q
between u and v of cost ω(Q) � sp · O(1 + p/s)s · ω(uv) as claimed. �

Proof of Theorem 2. Let x, y be any two vertices of a graph G with edge-cost
function ω. We want to show δp

H(x, y) � ϕ(s, p) · δp
G(x, y). If δp

G(x, y) = ∞,
then we are done. So, assume that δp

G(x, y) = ω(PG) for some minimum cost
p-multipath PG between x and y in G. Note that ω(PG) =

∑
uv∈E(PG) ω(uv).

We construct a subgraph PH between x and y in H by adding: (1) all the
edges of PG that are in H ; and (2) for each edge uv of PG that is not in H , the
p-multipath Quv connecting u and v in H as defined by Lemma 1.

The cost of PH is therefore:

ω(PH) =
∑

uv∈E(PH)

ω(uv) =

⎛

⎝
∑

uv∈E(PG)∩E(H)

ω(uv)

⎞

⎠ +

⎛

⎝
∑

uv∈E(PG)\E(H)

ω(Quv)

⎞

⎠ .

By Lemma 1, ω(Quv) � ϕ(s, p) · ω(uv). It follows that:

ω(PH) � ϕ(s, p) ·
∑

uv∈E(PG)

ω(uv) = ϕ(s, p) · ω(PG) = ϕ(s, p) · δp
G(x, y)

as ϕ(s, p) � 1 and by definition of PG.
Clearly, all edges of PH are in H . Let us show now that PH contains a

p-multipath between x and y. We first assume x and y are non-adjacent in
PH . By Menger’s Theorem applied between x and y in PH , if the removal of
every set of at most p − 1 vertices in PH does not disconnect x and y, then PH

has to contain a p-multipath between x and y.
Let S be any set of less than p− 1 faults in G. Since PG is a p-multipath, PG

contains at least one path between x and y avoiding S. Let’s call this path Q.
For each edge uv of Q not in H , Quv is a p-multipath, so it contains one path
avoiding S. Note that Quv may intersect Qwz for different edges uv and wz of



152 C. Gavoille, Q. Godfroy, and L. Viennot

Q. If it is the case then there is a path in Quv ∪ Qwz from u to z (avoiding v
and w), assuming that u, v, w, z are encountered in this order when traversing Q.
Overall there must be a path connecting x to y and avoiding S in the subgraph
(Q ∩ H) ∪ ⋃

uv∈Q\H Quv. By Menger’s Theorem, PH contains a p-multipath
between x and y.

If x and y are adjacent in PH , then we can subdivide the edge xy into the
edges xz and zy by adding a new vertex z. Denote by P ′

H this new subgraph.
Clearly, if P ′

H contains a p-multipath between x and y, then PH too: a path
using vertex z in P ′

H necessarily uses the edges xz and zy. Now, P ′
H contains

a p-multipath by Menger’s Theorem applied on P ′
H between x and y that are

non-adjacent.
We have therefore constructed a p-multipath between x and y in H of cost at

most ω(PH) � ϕ(s, p) · δp
G(x, y). It follows that δp

H(x, y) � ϕ(s, p) · δp
G(x, y) as

claimed. �
Theorem 1 is proved by applying Theorem 2 to the construction of Proposi-
tion 3, which is based on the distributed construction of s-hop spanners given
by Proposition 2. Observe that the number of edges of the spanner is bounded
by O(kp3 · m(2n/p) · log n) = O(kp2−1/kn1+1/k log2−1/k n).

3 Bi-path Spanners

In this section we concentrate our attention on the case p = 2, i.e., 2-multipath
spanners or bi-path spanners for short. Observe that for p = k = 2 the stretch
is ϕ(3, 2) = 18 using our first construction (cf. Theorems 1 and 2). We provide
in this section the following improvement on the stretch and on the number of
edges.

Theorem 3. Every weighted graph with n vertices and maximum edge-weight
W has a 2-multipath (2, O(W ))-spanner of size O(n3/2) that can be constructed
in O(n4) time.

While the construction shown earlier was essentially working on edges, the ap-
proach taken here is more global. Moreover, this construction essentially yields
an additive stretch whereas the previous one is only multiplicative. Note that a
2-multipath between two nodes u and v corresponds to an elementary cycle. We
will thus focus on cycles in this section.

An algorithm is presented in Section 3.1. Its running time and the size of the
spanner are analyzed in Section 3.2, and the stretch in Section 3.3. Due to space
limitation some proofs of these sections appear in the long version [11].

3.1 Construction

Classical spanner algorithms combines the use of trees, balls, and clusters. These
standard structures are not suitable to the graph metric δ2 since, for instance,



Node-Disjoint Multipath Spanners and Their Relationship 153

two nodes belonging to a ball centered in a single vertex can be in two different bi-
components3 and therefore be at an infinite cost from each other. We will adapt
theses standard notions to structures centered on edges rather than vertices.

Consider a weighted graph G and with an edge uv that is not a cut-edge4.
Let us denote by G[uv] the bi-component of G containing uv, and by δ2

H(uv, w)
the minimum cost of a cycle in subgraph H passing through the edge uv and
vertex w, if it exists and ∞ otherwise.

We define a 2-path spanning tree of root uv as a minimal subgraph T of G
such that every vertex w of G[uv] belongs to a cycle of T containing uv. Such
definition is motivated by the following important property (see Property 1 in
Section 3.3): for all vertices a, b in G[uv]\{u, v}, δ2

G(a, b) � δ2
T (uv, a)+δ2

T (uv, b).
This can be seen as a triangle inequality like property.

If δ2
T (uv, w) = δ2

G(uv, w) for every vertex w of G[uv], T is called a shortest
2-path spanning tree. An important point, proved in Lemma 2 in Section 3.2,
is that such T always exists and contains O(ν) edges, ν being the number of
vertices of G[uv].

In the following we denote by B2
G(uv, r) =

{
w : δ2

G(uv, w) � r
}

and
BG(u, r) = {w : dG(u, w) � r} the 2-ball (resp. 1-ball) of G centered at edge
uv (at vertex u) and of radius r. We denote by NG(u) the set of neighbors of
u in G. We denote by BFS(u, r) any shortest path spanning tree of root u and
of depth r (not counting the edge weights). Finally, we denote by SPST2

G(uv)
any shortest 2-path spanning tree of root uv in G[uv].

The spanner H is constructed with Algorithm 1 from any weighted graph G
having n vertices and maximum edge weight W . Essentially, the main loop of
the algorithm selects an edge uv from the current graph lying at the center of a
dense bi-component, adds the spanner H shortest 2-path spanning tree rooted
at uv, and then destroys the neigborhood of uv.

F := G, H := (∅, ∅);
while ∃uv ∈ E(G), |B2

G(uv, 4W ) ∩ (NG(u) ∪ NG(v))| >
√

n do
H := H ∪ SPST2

F (uv) ∪ BFSG(u, 2) ∪ BFSG(v, 2);
G := G \ (B2

G(uv, 4W ) ∩ (NG(u) ∪ NG(v)))
H := H ∪ G

Algorithm 1. Construction of H

3.2 Size Analysis

The proof of the spanner’s size is done in two steps, thanks to the two next
lemmas.

First, Lemma 2 shows that the while loop does not add too much edges: a
shortest 2-path spanning tree with linear size always exists. It is built upon
the algorithm of Suurballe-Tarjan [24] for finding shortest pairs of edge-disjoint
paths in weighted digraphs.
3 A short for 2-vertex-connected components.
4 A cut-edge is an edge that does not belong to a cycle.



154 C. Gavoille, Q. Godfroy, and L. Viennot

Lemma 2. For every weighted graph G and for every non cut-edge uv of G,
there is a shortest 2-path spanning tree of root uv having O(ν) edges where ν is
the number of vertices of G[uv]. It can be computed in time O(n2) where n is
the number of vertices of G.

Secondly, Lemma 3 shows that the graph G remaining after the while loop has
only O(n3/2) edges. For that, G is transformed as an unweighted graph (edge
weights are set to one) and we apply Lemma 3 with k = 2. The result we present
is actually more general and interesting in its own right. Indeed, it gives an
alternative proof of the well-known fact that graphs with no cycles of length
� 2k have O(n1+1/k) edges since B2

G(uv, 2k) = ∅ in that case.

Lemma 3. Let G be an unweighted graph with n vertices, and k � 1 be an
integer. If for every edge uv of G, |B2

G(uv, 2k) ∩ NG(u)| � n1/k, then G has at
most 2 · n1+1/k edges.

Combining these two lemmas we have:

Lemma 4. Algorithm 1 creates a spanner of size O(n3/2) in time O(n4).

Proof. Each step of the while loop adds O(n) edges from Lemma 2, and as it
removes at least

√
n vertices from the graph this can continue at most

√
n times.

In total the while loop adds O(n3/2) edges to H .
After the while loop, the graph G is left with every B2

G(uv, 4W ) ∩ (NG(u) ∪
NG(v)) smaller than

√
n. If we change all edges weights to 1, it is obvious that

every B2
G(uv, 4)∩(NG(u)∪NG(v)) is also smaller than

√
n. Then as B2

G(uv, 4)∩
NG(u) is always smaller than B2

G(uv, 4)∩(NG(u)∪NG(v)) we can apply Lemma 3
for k = 2, and therefore bound the number of edges added in the last step of
Algorithm 1.

The total number of edges of H is O(n3/2).
The costly steps of the algorithm are the search of suitable edges uv and the

cost of construction of SPST2.
The search of suitable edges is bounded by the number of edges as an edge e

which is not suitable can be discarded for the next search: removing edges from
the graph cannot improve B2

G(e, 4W ). Then for each edge a breadth first search
of depth 3 must be computed, whose cost is bounded by the number of edges of
G. So in the end the search costs at most O(n4).

The cost of building a SPST2 is bounded by the running time of [24], which
at worst costs O(n2) (the reduction is essentially in O(m + n)). Since the loop
is executed at most

√
n times, the total cost is O(n7/2).

So the total running time is O(n4). �

3.3 Stretch Analysis

The proof for the stretch is done as follows: we consider a, b two vertices such that
δ2
F (a, b) = 
 is finite (if it is infinite there is nothing to prove). We need to prove



Node-Disjoint Multipath Spanners and Their Relationship 155

that the spanner construction is such that at the end, δ2
H(a, b) � 2
 + O(W ) .

To this effect, we define PF = P 1
F ∪P 2

F as a cycle composed of two disjoint paths
(P 1

F and P 2
F ) going from a to b such that its weight sums to δ2

F (a, b).
Proving the stretch amounts to show that there exists a cycle PH = P 1

H ∪P 2
H

joining a and b in the final H , with cost at most 2
+O(W ) . Observe that if the
cycle PF has all its edges in H then one candidate for PH is PF and we are done.
If not, then there is at least one 2-ball whose deletion provokes actual deletion
of edges from PF (that is edges of PF missing in the final H).

In the following, let uv be the root edge of the first 2-ball whose removal
deletes edges from PF (that is they are not added in H neither during the while
loop nor the last step of the algorithm). Let Gi be the graph G just before the
removal of B2

G(uv, 4W ) ∩ (NG(u) ∪ NG(v)) , and Gi+1 the one just after.
The rest of the discussion is done in Gi otherwise noted.
The proof is done as follows: we first show in Lemma 5 that any endpoint of

a deleted edge (of PF ) belongs to an elementary cycle comprising the edge uv
and of cost at most 6W . We then show in Lemma 6 that we can construct cycles
using a and/or b passing through the edge uv, effectively bounding δ2

H(uv, a)
and δ2

H(uv, b) due to the addition of the shortest 2-path spanning tree rooted at
uv. Finally we show in Lemma 7 that the union of a cycle passing through uv
and a and another one passing through uv and b contains an elementary cycle
joining a to b, its cost being at most the sums of the costs of the two original
cycles.

Lemma 5. Let e = wt be an edge of (Gi \ Gi+1) \ H. Then in Gi both w and t
are connected to uv by a cycle of cost at most 6W .

We now show that we can use this lemma to exhibit cycles going from a to uv
and from b to uv.

From the vertices belonging to both B2
Gi

(uv, 6W ) and PF we choose the ones
which are the closest from a and b (we know that at least two of them exist
because one edge was removed from PF during step i of the loop). There are
at maximum four of them (a1, a2, b1, b2), one for each sub-path P i

F and each
extremity {a, b}. Note that each extremity is connected to the root edge by an
elementary cycle of cost at most 6W . Two cases are possible (the placement of
the vertices is shown on Fig. 3):

Case 1: There are only two extremities (then they belong to the same sub-
path) and their cycles which connect them to uv do not intersect the second
subpath (w.l.o.g we can suppose it is a1 and b1).

Case 2: There are more than two extremities: either some edges of the second
path were removed or one of the cycles going from one of the extremities a1

or b1 to uv intersects the second path.

We show next that we can bound δ2
H(uv, a) and δ2

H(uv, b) with the help of the
cycles connecting the endpoints and the path PG. This is done with the two next
lemmas.



156 C. Gavoille, Q. Godfroy, and L. Viennot

Fig. 3. Proof of Lemma 7: the two cases for the simple paths

Lemma 6. For any two vertices joined to the same edge uv by elementary cycles
there is a simple path of cost at most the sum of the cycles’ costs and passing
through the edge uv.

Lemma 7. Let a, b be two vertices such that an elementary cycle of cost δ2(a, b)
has common vertices with some B2(uv, 6W ). Then δ2(a, uv) and δ2(b, uv) are
bounded by δ2(a, b) + 12W

Property 1. Let uv be a non cut-edge of G and T be any 2-path spanning tree
rooted at uv. Then, for all vertices a, b in G[uv] \ {u, v}, δ2

G(a, b) � δ2
T (uv, a) +

δ2
T (uv, b) − ω(uv).

Proof. There is in T a cycle joining a to uv of cost δ2
T (uv, a), and another one

joining b to uv of cost δ2
T (uv, b). Consider the subgraph P containing only the

edges from these two cycles. The cost of P is ω(P ) � δ2
T (uv, a)+δ2

T (uv, b)−ω(uv)
as edge uv is counted twice. It remains to show that P contains an elementary
cycle between a and b. Note that since a /∈ {u, v}, a has in P two vertex-disjoint
paths leaving a and excluding edge uv: one is going to u, and one to v. Similarly
for vertex b.

W.l.o.g. we can assume that a and b are not adjacent in P . Otherwise we
can subdivide edge ab to obtain a new subgraph P ′. Clearly, if P ′ contains an
elementary cycle between a and b, then P too. Consider that one vertex z,
outside a and b, is removed in P . From the remark above, in P \ {z}, there
must exists a path leaving a and joining some vertex wa ∈ {u, v} \ {z} and
one path leaving b and joining some vertex wb ∈ {u, v} \ {z}. If wa = wb,
then a and b are connected in P \ {z}. If wa 
= wb, then edge uv be-
longs to P \ {z} since in this case z /∈ {u, v}, and thus a path connected a to
b in P \{z}. By Menger’s Theorem, P contains a 2-multipath between a and b. �

Lemma 8. H is a 2-multipath (2, 24W )-spanner.



Node-Disjoint Multipath Spanners and Their Relationship 157

Proof. If there is in F a path of cost δ2(a, b) such that every edge of it is in
H , then there is nothing to prove. If there is some removed edge, then we can
identify the loop order i which removed the first edge, and we can associate the
graph Gi just before the deletion performed in the second step of the loop (so
PF still completely exist in Gi). By virtue of Lemma 5 we can identify some
root-edge uv and we know that there are some vertices of PF linked to uv by
an elementary cycle of length at most 6W . Lemma 7 can then be applied, and
so in Gi, δ2

Gi
(a, uv) and δ2

Gi
(b, uv) are both bounded by δ2

Gi
(a, b) + 12W . As the

loop’s first step is to build a shortest 2-path spanning tree rooted in uv we know
that in H

δ2
H(a, uv) � δ2

Gi
(a, uv) � δ2

Gi
(a, b) + 12W

and the same for b. Property 1 can then be used in the 2-path spanning tree, to
bound δ2

H(a, b):

δ2
H(a, b) � δ2

H(a, uv) + δ2
H(b, uv) � 2 · δ2

Gi
(a, b) + 24W

Finally, as in Gi PF still exists completely, we have that δ2
Gi

(a, b) = δ2
F (a, b), so

δ2
H(a, b) � 2 · δ2

F (a, b) + 24W

�4 Conclusion

We have introduced a natural generalization of spanner, the vertex-disjoint path
spanners. We proved that there exists for multipath spanners a size-stretch
trade-off similar to classical spanners. We also have presented a O(k) round
distributed algorithm to construct p-multipath kp · O(1 + p/k)2k−1-spanners of
size Õ(p2n1+1/k), showing that the problem is local : it does not require commu-
nication between distant vertices.

Our construction is based on fault tolerant spanner. An interesting question
is to know if better construction (in term of stretch) exists as suggested by our
alternative construction for p = 2.

The most challenging question is to explicitly construct the p vertex-disjoint
paths in the p-multipath spanner. This is probably as hard as constructing effi-
cient routing algorithm from sparse spanner. We stress that there is a significant
difference between proving the existence of short routes in a graph (or subgraph),
and constructing and explicitly describing such short routes. For instance it is
known (see [12]) that sparse spanners may exist whereas routing in the spanner
can be difficult (in term of space memory and stretch of the routes).

References
1. Alon, N., Hoory, S., Linial, N.: The Moore bound for irregular graphs. Graphs and

Combinatorics 18, 53–57 (2002)
2. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D.A., Soares, J.: On sparse spanners

of weighted graphs. Discr. & Comp. Geometry 9, 81–100 (1993)
3. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polyloga-

rithmic time. In: 29th ACM Symp. PODC, pp. 410–419 (2010)



158 C. Gavoille, Q. Godfroy, and L. Viennot

4. Baswana, S., Gaur, A., Sen, S., Upadhyay, J.: Distance Oracles for Unweighted
Graphs: Breaking the Quadratic Barrier with Constant Additive Error. In: Aceto, L.,
Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I.
(eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 609–621. Springer,Heidelberg (2008)

5. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and
all-pairs small stretch paths. In: 47th Annual IEEE Symp. on Foundations of Com-
puter Science (FOCS), pp. 591–602. IEEE Comp. Soc. Press (October 2006)

6. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault tolerant spanners for gen-
eral graphs. SIAM Journal on Computing 39, 3403–3423 (2010)

7. Cowen, L.J., Wagner, C.: Compact roundtrip routing in directed networks. In: 19th
ACM Symp. PODC, pp. 51–59 (2000)

8. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: On the locality of distributed sparse
spanner construction. In: 27th ACM Symp. PODC, p. 273 (2008)

9. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: Better and simpler, Tech.
Rep. 1101.5753v1 [cs.DS], arXiv (January 2011)

10. Gavoille, C., Godfroy, Q., Viennot, L.: Multipath Spanners. In: Patt-Shamir, B.,
Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 211–223. Springer, Heidel-
berg (2010)

11. Gavoille, C., Godfroy, Q., Viennot, L.: Node-Disjoint Multipath Spanners and their
Relationship with Fault-Tolerant Spanners, HAL-00622915 (September 2011)

12. Gavoille, C., Sommer, C.: Sparse spanners vs. compact routing. In: 23rd ACM
Symp. SPAA, pp. 225–234 (June 2011)

13. Jacquet, P., Viennot, L.: Remote spanners: what to know beyond neighbors. In:
23rd IEEE International Parallel & Distributed Processing Symp. (IPDPS). IEEE
Computer Society Press (May 2009)

14. Kushman, N., Kandula, S., Katabi, D., Maggs, B.M.: R-bgp: Staying connected in
a connected world. In: 4th Symp. on NSDI (2007)

15. Linial, N.: Locality in distributed graphs algorithms. SIAM Journal on Comput-
ing 21, 193–201 (1992)

16. Lovász, L., Neumann-Lara, V., Plummer, M.D.: Mengerian theorems for paths of
bounded length. Periodica Mathematica Hungarica 9, 269–276 (1978)

17. Mueller, S., Tsang, R.P., Ghosal, D.: Multipath Routing in Mobile Ad Hoc Net-
works: Issues and Challenges. In: Calzarossa, M.C., Gelenbe, E. (eds.) MASCOTS
2003. LNCS, vol. 2965, pp. 209–234. Springer, Heidelberg (2004)

18. Nasipuri, A., Castañeda, R., Das, S.R.: Performance of multipath routing for on-
demand protocols in mobile ad hoc networks. Mobile Networks and Applications 6,
339–349 (2001)

19. Pan, P., Swallow, G., Atlas, A.: Fast Reroute Extensions to RSVP-TE for LSP
Tunnels. RFC 4090 (Proposed Standard) (2005)

20. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications (2000)

21. Pettie, S.: Low Distortion Spanners. In:Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 78–89. Springer, Heidelberg (2007)

22. Pyber, L., Tuza, Z.: Menger-type theorems with restrictions on path lengths. Dis-
crete Mathematics 120, 161–174 (1993)

23. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in
directed graphs. ACM Transactions on Algorithms 3, Article 29 (2008)

24. Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint
paths. Networks 14, 325–336 (1984)

25. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52,
1–24 (2005)


	Node-Disjoint Multipath Spanners and Their Relationship with Fault-Tolerant Spanners
	Introduction
	Trade-Offs for Non-increasing Graph Metric
	Motivations
	Our Contributions
	Overview

	Main Construction
	Spanners with Few Hops
	Distributed Bounded Hop Spanners
	Fault Tolerant Spanners
	From Fault Tolerant to Multipath Spanner

	Bi-path Spanners
	Construction
	Size Analysis
	Stretch Analysis

	Conclusion
	References




