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Preface

On behalf of the Technical Committee of the International Conference on
Principles of Distributed Systems (OPODIS 2011), we are very pleased to present
in this volume the proceedings of the 15th edition of the conference, which was
held during December 13–16, and was hosted by LAAS-CNRS, Toulouse, France.

OPODIS is an international forum that attracts the best researchers and
practitioners in the design, analysis and development of distributed and real-
time systems.

In response to the call for papers, 96 complete submissions were received.
After an accurate reviewing process that involved 32 Program Committee mem-
bers, 36 papers were selected that, in our opinion, represent the current state of
the art of the research in our field. We would like to thank all reviewers for their
fundamental contribution in selecting the best papers.

The papers and associated presentations were grouped into 11 sessions. For
this edition, we decided to generate randomly the order of presentations, and
hence the content of sessions in order to encourage interactions. This volume also
includes the abstract of the keynote speech, which was given by Marco Ajmone
Marsan, from Politecnico di Torino, Italy, and Institute IMDEA Networks, Spain,
on “From Energy-Efficient Networking to ZEN.”

This edition also had two colocated workshops: the second annual TOR-
RENTS workshop on Time-Oriented Reliable Embedded Networked Systems
that featured an invited talk from Klaus Havelund (Nasa/JPL) and the First
International Workshop on Dynamic Systems (DYNAM).

This event would not have been possible without the support of LAAS-CNRS,
from the logistic and administrative support to its director Jean Arlat, and of the
Midi-Pyrénées delegation of CNRS. We would like to express our gratitude to our
sponsors and particularly to the RTRA STAE, the French Space and Aeronautic
Sciences & Technologies foundation, that allowed us to provide insightful related
workshops.

We hope you enjoy the proceedings.

December 2011 Antonio Fernández Anta
Giuseppe Lipari

Matthieu Roy
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Sébastien Tixeuil

Fused State Machines for Fault Tolerance in Distributed Systems . . . . . . 266
Bharath Balasubramanian and Vijay K. Garg

Fork-Consistent Constructions from Registers . . . . . . . . . . . . . . . . . . . . . . . . 283
Matthias Majuntke, Dan Dobre, Christian Cachin, and Neeraj Suri

Easy Impossibility Proofs for k-Set Agreement in Message Passing
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Martin Biely, Peter Robinson, and Ulrich Schmid

On the Nature of Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Maurice Herlihy and Nir Shavit

Byzantine Fault-Tolerance with Commutative Commands . . . . . . . . . . . . . 329
Pavel Raykov, Nicolas Schiper, and Fernando Pedone

Partially Non-Preemptive Dual Priority Multiprocessor Scheduling . . . . . 343
Chiahsun Ho and Shelby H. Funk

Private Similarity Computation in Distributed Systems: From
Cryptography to Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Mohammad Alaggan, Sébastien Gambs, and Anne-Marie Kermarrec



Table of Contents XIII

The Impact of Edge Deletions on the Number of Errors in Networks . . . . 378
Christian Glacet, Nicolas Hanusse, and David Ilcinkas

N-party BAR Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Xavier Vilaça, João Leitão, Miguel Correia, and Lúıs Rodrigues
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From Energy-Efficient Networking to ZEN�

Marco Ajmone Marsan1,2

1 Politecnico di Torino, Italy
ajmone@polito.it

2 Institute IMDEA Networks, Spain

1 Summary

Energy-efficiency has become a hot topic in networking research. Several large in-
ternational research projects have been activated in recent years on this subject.
Examples are GreenTouch [1], conceived at Alcatel Lucent Bell Labs, TREND,
EARTH, ECONET, C2POWER, CHRON, STRONGEST, Fit4Green, COST
IC 804 [2,3,4,5,6,7,8,9], all funded by the European Commission through its 7th
Framework Programme, and many national research projects, such as COOL
SILICON in Germany and EFFICIENT in Italy. In addition, most equipment
manufacturers feature their own internal research projects on this topic, such
as GREAT in Huawei. The objective of all these research efforts consists in the
reduction of the energy consumption of data networks, but their targets vary,
from the 20% saving in today’s networks quite realistically claimed by TREND,
to the reduction by a factor 1000 in future networks somewhat optimistically
foreseen by GreenTouch.

In spite of all this interest in energy-efficient networking research, in reality,
the power consumed by actual networks keeps growing at an alarming pace.
While this is a significant concern for network operators in developed countries,
because of the impact that energy costs have on the growth of OPEX, and of
the consequent reduction of margins and profits, the energy-greedy attitude of
today’s networks, coupled with the lack of reliable power sources, remains one
of the main obstacles (if not the obstacle) for the widespread diffusion of data
networks in some developing countries.

This is the reason why we advocate the need for a paradigm shift in energy-
efficient networking research, toward what we call Zero Electricity Networking
(ZEN).

The ZEN concept is based on network elements (such as routers, base stations,
etc.) that are not connected to a power grid, but can acquire limited amounts
of energy from (probably intermittent) local generators exploiting renewable
sources (solar, wind, etc.). During periods of sufficient energy production by the
generator associated with a network element, energy is used to operate it, in a
mode which is carefully chosen to balance performance and power consumption,

� The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n. 257740
(Network of Excellence TREND).

A. Fernández Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 1–3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 M. Ajmone Marsan

and any energy surplus is stored in a battery, so that the element can operate
also in periods of low or no production, as long as energy is available, but it
is forced to switch off when the battery is depleted. Typically, we can expect
that some periodicity exists in the possibility of energy production at network
elements, for example because of the day/night variation in solar energy produc-
tion (similar periodicities also exist in traffic demands, and we can expect the
correlation to be significant). This means that (most of) network elements may
be fully operational only for fractions of time, until energy lasts, or that they
must choose operation modes which correspond to less-than-desired capacity,
but are compatible with the available energy.

Research on ZEN can build upon many studies performed under similar con-
straints, but with different objectives, in the field of ad hoc networks, sensor
networks, and wireless mesh networks [10,11,12,13,14,15,16], as well as in de-
lay tolerant networks, or in military networks, where the activity of network
elements cannot be given for granted at all times [17,18,19,20,21,22,23].

The viability of the ZEN approach must be investigated under realistic as-
sumptions as regards the quantity of energy that is necessary at network nodes,
that can be obtained from renewable sources at limited cost, and that can be
stored in reasonable size/cost batteries. The investigation must also consider
realistic traffic patterns, and performance or QoS/QoE (Quality of Service /
Quality of Experience) requirements, consistent with the needs of a network op-
erator (this is a major difference with respect to research performed in ad hoc
and sensor networks or in delay tolerant networks, and is also one of the main
challenges in ZEN).

The assessment of the feasibility of the ZEN approach requires multidisci-
plinary research, including competences in energy generation and storage, in
low-power networking systems and equipment, in energy-efficient distributed and
adaptive algorithms, and, of course, in networking. The ZEN concept has the
possibility of opening new opportunities for the development of modern data net-
works in regions where energy grids are inexistent, or unreliable, or temporarily
unavailable (because of both structural problems, and exceptional events, such
as earthquakes, wars, or terrorism), or simply where energy is too expensive for
operators to provide services at reasonable cost (a risk that may be faced also
by developed countries in the not-so-distant future).
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Online Regenerator Placement�

George B. Mertzios1, Mordechai Shalom2,
Prudence W.H. Wong3, and Shmuel Zaks4

1 School of Engineering and Computing Sciences, Durham University, UK
george.mertzios@durham.ac.uk

2 TelHai College, Upper Galilee, 12210, Israel
cmshalom@telhai.ac.il

3 Department of Computer Science, University of Liverpool, Liverpool, UK
pwong@liverpool.ac.uk

4 Department of Computer Science, Technion, Haifa, Israel
zaks@cs.technion.ac.il

Abstract. Connections between nodes in optical networks are realized
by lightpaths. Due to the decay of the signal, a regenerator has to be
placed on every lightpath after at most d hops, for some given positive
integer d. A regenerator can serve only one lightpath. The placement of
regenerators has become an active area of research during recent years,
and various optimization problems have been studied. The first such
problem is the Regeneration Location Problem (Rlp), where the goal is
to place the regenerators so as to minimize the total number of nodes
containing them. We consider two extreme cases of online Rlp regard-
ing the value of d and the number k of regenerators that can be used
in any single node. (1) d is arbitrary and k unbounded. In this case a
feasible solution always exists. We show an O(log |X| · log d)-competitive
randomized algorithm for any network topology, where X is the set of
paths of length d. The algorithm can be made deterministic in some

cases. We show a deterministic lower bound of Ω
(

log(|E|/d)·log d
log(log(|E|/d)·log d)

)
,

where E is the edge set. (2) d = 2 and k = 1. In this case there is not
necessarily a solution for a given input. We distinguish between feasible
inputs (for which there is a solution) and infeasible ones. In the latter
case, the objective is to satisfy the maximum number of lightpaths. For
a path topology we show a lower bound of

√
l/2 for the competitive ra-

tio (where l is the number of internal nodes of the longest lightpath) on
infeasible inputs, and a tight bound of 3 for the competitive ratio on
feasible inputs.

Keywords: online algorithms, optical networks.

1 Introduction

Background. Optical wavelength-division multiplexing (WDM) is the most
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traffic in communication networks, like the Internet. Optical fibers using WDM
technology can carry around 80 wavelengths (colors) in real networks and up to
few hundreds in testbeds. As satisfactory solutions have been found for various
coloring problems, the focus of studies shifts from the number of colors to the
hardware cost. These new measures provide better understanding for designing
and routing in optical networks.

A communication between a pair of nodes is done via a lightpath. The energy
of the signal along a lightpath decreases and thus amplifiers are used every fixed
distance. Yet, as the amplifiers introduce noise into the signal there is a need to
place a regenerator every at most d hops.

There is a limit imposed by the technology on the number of regenerators that
can be placed in a network node [3,5]. We denote this limit by k and refer to the
case where this limit is not likely to be reached by any regenerator placement as
k = ∞.

The problems. Given a network G, a set of lightpaths in G, and integers d and k,
we need to place regenerators at the nodes of the network, such that a) for each
lightpath there is a regenerator in at least one of each d consecutive internal
nodes, and b) at most k regenerators are placed at any node. When k = ∞
we consider the regenerator location problem (Rlp) where the objective is to
minimize the number of nodes that are assigned regenerators. When k is bounded
there are inputs for which there is no feasible regenerator placement that satify
both conditions. For example, consider the case d = 2 and k = 1, and three
identical lightpaths u−v−w−x. Each of these lightpaths must have a regenerator
either at v or w, and this is clearly impossible). In this case we consider the Path
Maximization Problem (Pmp) that seeks for regenerator placements that serve
as many lightpaths as possible. We consider online algorithms (see [2]) for these
problems.

Online algorithms. In the online setting the lightpaths are given one at a time,
the algorithm has to decide on the locations of the regenerators and cannot
change the decision later. An algorithm is c-competitive for Rlp if for every
input the number of locations used is no more than c times the locations used
by an optimal offline algorithm. An online algorithm is c-competitive for Pmp
if the number of lightpaths that it satisfies is at least 1/c times the number of
lightpaths that could be satisfied by an optimal offline algorithm.

Related Work. Placement of regenerators in optical networks has become an ac-
tive area in recent years. Most of the researches have focused on the technological
aspects of the problems, heuristics and simulations in order to reduce the num-
ber of regenerators, (e.g., [3,4,7,9,10,11,12]). The regenerator location problem
(Rlp) was shown to be NP-complete in [3], followed by heuristics and simula-
tions. In [5] theoretical results for the offline version of Rlp are presented. The
authors study four variants of the problem, depending on whether the number k
of regenerators per node is bounded, and whether the routings of the requests are
given. Regarding the complexity of the problem, they present polynomial-time
algorithms and NP-completeness results for a variety of special cases.
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We note that while considering the path topology, Rlp has implications for the
following scheduling problem: Assume a company has n cars and that car i needs
to be serviced within every at most d days between day ai and bi. Furthermore,
assume that the garage can serve at most k cars per day and charges a certain
cost each time the garage is used. The objective is to service the cars in the
fewest number of days and hence minimizing the number of times the garage is
used.

Other objective functions have also been considered in the context of regen-
erator placement. E.g., in [8] the problem of minimizing the total number of
regenerators is studied under other settings.

Our Contribution. In this paper we study the online version of the regenerator
location problem, and consider two extreme cases regarding the value of d and
the value k of the number of regenerators that can be used in any single node.

– Rlp: k = ∞, G and d are arbitrary (in this case there is a solution for every
input, and the measurement is the number of locations in which regenerators
are placed). We show:
• an O(log |X | · log d)-competitive randomized algorithm for any network

topology, that can be made deterministic (with the same competitive
ratio) for some cases including tree topology networks, where X is the
set of all paths of length d in G.

• a deterministic lower bound of Ω
(

log(|E|/d)·log d
log(log(|E|/d)·log d)

)
, where E is the

edge set of G.
– Pmp: G is a path, k = 1 and d = 2 (in this case there is not necessarily a

solution, and the measurement is the number of satisfied lightpaths). We dis-
tinguish between feasible inputs (for which there is a solution) and infeasible
ones, on a path topology, and show:
• a lower bound of

√
l/2 for the competitive ratio for general instances

which may be infeasible (where l is the number of internal nodes of the
longest lightpath).

• a tight bound of 3 for the competitive ratio of deterministic online algo-
rithms for feasible instances.

Organization of the paper. In Section 2 we present some preliminaries. In
Section 3 we consider general topology and analyze the first extreme case (k
unbounded). In Section 4 we analyze the other extreme case (k = 1) for a path
topology. In Section 5 we present further research directions.

2 Preliminaries

Given an undirected underlying graph G = (V, E) that corresponds to the
network topology, a lightpath is a simple path in G. We are given a set
P = {P1, P2, ..., Pn} of simple paths in G that represent the lightpaths. The
length of a lightpath is the number of edges it contains. The internal vertices
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(resp. edges) of a path P are the vertices (resp. edges) in P except the first and
the last ones.

A regenerator assignment is a function reg : V × P �→ {0, 1}. For any
v ∈ V, P ∈ P , reg(v, P ) = 1 if a regenerator is assigned to P at node v. Note that
reg(v, P ) = 1 only if v is an internal node of P . We denote by reg(v) the number
of regenerators located at node v, i.e., reg(v) =

∑
P∈P reg(v, P ) . Denote by

cost(reg) the cost of the assignment reg, measured by the total number of loca-
tions where regenerators have been placed. Let R(reg) = {v ∈ V |reg(v) ≥ 1},
then cost(reg) = |R(reg)|.

Given an integer d, a lightpath P is d-satisfied by the regenerator assignment
reg if it does not contain d consecutive internal vertices without a regenera-
tor, in other words, for any d consecutive internal vertices of P , v1, v2, · · · , vd,∑d

i=1 reg(vi, P ) ≥ 1. A set of lightpaths is d-satisfied if each of its lightpaths is
d-satisfied. Note that a path with at most d edges is d-satisfied regardless of reg,
therefore we assume without loss of generality that every path P ∈ P has at least
d + 1 edges. For the sake of the analysis we assume, without loss of generality,
that every edge of the graph is used by at least one path P ∈ P . We want to
emphasize that this is not assumed by the online algorithms, (what would be a
loss of generality).

The Regenerator Location Problem (Rlp): given a graph G = (V, E), a set P
of paths in G, a distance d ≥ 1, determine the smallest number of nodes R ⊆ V
to place regenerators so that all the paths in P are d-satisfied. Formally:

Regenerator Location Problem (Rlp)a

Input: An undirected graph G = (V, E), a set P of paths in G, d ≥ 1
Output: A regenerator assignment reg such that every path P ∈ P is
d-satisfied.
Objective: Minimize cost(reg).

a The offline version of this problem is denoted as RPP/∞/+ in [5].

reg∗ denotes an optimal regenerator assignment and cost∗ denotes its cost
cost(reg∗). We consider the online version of the problem in which G and d are
given in advance and the paths P = {P1, P2, . . . , Pn} arrive in an online manner,
one at a time in this order. An online algorithm finds a regenerator assignment
as the input arrives and once reg(v, P ) is set to 1 it cannot be reverted to 0. An
online algorithm Alg for Rlp is c-competitive, for c ≥ 1, if its cost is at most
c · cost∗. Clearly, when d = 1, cost(reg) = |VI | for any regenerator assignment reg
where VI is the set of nodes that are internal nodes of some lightpaths, therefore
any algorithm is 1-competitive. Hence we consider the case d ≥ 2.

When k is finite, we study the Path Maximization Problem (Pmp): given a
graph G = (V, E), a set P of paths in G, a distance d ≥ 1, place regenerators so
that the number of d-satisfied paths in P is maximized. Formally:



8 G.B. Mertzios et al.

Path Maximization Problem (Pmp)

Input: An undirected graph G = (V, E), a set P of paths in G, d, k ≥ 1
Output: A regenerator assignment reg for which reg(v) ≤ k for every
node v ∈ V .
Objective: Maximize the number of d-satisfied paths in P .

An online algorithm Alg for Pmp is c-competitive, for c ≥ 1, if the number of
paths it satisfies is at least 1/c times the number of paths satisfied by an optimal
offline algorithm.

3 The Regenerator Location Problem

In this section we consider the case where the technological limit imposed on the
number of regenerators at a node is unlikely to be reached by any regenerator
assignment. In this case we can assume without loss of generality that whenever
there is a node v and a path P with reg(v, P ) = 1 then reg(v, P ′) = 1 for every
other path P ′ ∈ P , because this does not affect cost(reg). In other words for any
given node v and any two paths P, P ′ ∈ P we assume reg(v, P ) = reg(v, P ′),
thus reg(v) =

∑
P∈P reg(v, P ) ∈ {0, |P|}. In this section we divide the objective

function by |P| and denote by reg(v) the value reg(v, P1) = reg(v, P2), = · · · .

3.1 Upper Bound for Path Topology

Lemma 1. There is a 2-competitive deterministic online algorithm in path
topologies for Rlp.

Proof. Let V = {v1, v2, . . . , vn} be the nodes of the path and E =
{{vi, vi+1} |1 ≤ i < n} be its edge set. We set R = {vd, v2d, . . .} ⊆ V and start
with the empty assignment, i.e. reg(v) = 0 for every node v ∈ V . When a path
P is presented to the algorithm we set reg(v) = 1 for every v ∈ R ∩ P . This
strategy clearly d satisfies all the paths.

We show that this algorithm is 2-competitive. Consider the union ∪P of all the
paths in the input. ∪P is a disjoint union of maximal sub-paths of G. Consider
such a maximal sub-path, and let � be its length. Clearly, our algorithm uses at
most � �

d locations among the nodes of this sub-path. Note that � > d, because
otherwise there is at least one path in the input with at most d edges. Using
these fact one can show by induction on m = � �

2d that any solution uses at
least m locations among the nodes of this sub-path. ��

3.2 Upper Bound for General Topologies

In this section we use the randomized algorithm presented in [1] for the online
set-cover problem. For completeness, we provide brief descriptions of the problem
and the algorithm.
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An instance of the set cover problem is a pair (X,S) where X = {x1, x2, . . .}
is a ground set of elements, and S = {S1, S2, . . .} is a collection of subsets of
X . Given such an instance, one has to find a subset C ⊆ S that covers X , i.e.
∪Si∈CSi = X . In [1] an online variant of the set cover problem is considered. An
instance of the online set cover problem is a triple (X,S, X ′) where X and S are
as before, and X ′ ⊆ X is presented in an online manner, one element at a time.
At any given time one has to provide a cover C′ ⊆ S of X ′, i.e. X ′ ⊆ ∪Si∈C′Si.
Once a set is included in the cover C′ this decision can not be changed when
subsequent input is received. In other words, whenever an element is presented
an online algorithm has to cover it by at least one set from S if it is not already
covered. It is important to note that X and S are known in advance but X ′ is
given online.

We proceed with a description of the online algorithm in [1]. We denote by

S(i) the set of all sets containing xi, i.e. S(i) def
= {Sj ∈ S|xi ∈ Sj}. Let f an upper

bound for the frequencies of the elements, i.e. ∀xi ∈ X,
∣∣S(i)

∣∣ ≤ f . The algorithm
associates a weight wj with each set Sj which is initiated to 1/f . The weight
w(i) of each element xi ∈ X is the sum of the weights of the sets containing it,
i.e. w(i) =

∑
Sj∈S(i) wj . See pseudo-code in Algorithm OnLineSetCover below

for a description of the algorithm.

Algorithm 1. OnLineSetCover

1: When a non-covered element xi ∈ X is presented:
2: Find the smallest non-negative integer q such that 2q · w(i) ≥ 1;
3: for each set Sj ∈ S(i) do
4: δj = 2q · wj − wj ;
5: wj+ = δj ;
6: end for
7: do 4 log |X| times
8: Choose at most one set (from S(i)) to the cover
9: where each set Sj is chosen with probability δj/2;

From an instance (G,P , d) of Rlp we build an instance (X,S, X ′) of the
online set cover problem. X is the set of all possible paths of length d in G and
|S| = |V |. Each set Sj ∈ S consists of all the paths in X containing the node vj .
For a path P , let P (d) be the set of all its sub-paths of length d. X ′ is ∪P∈PP (d).
Now we observe that for any feasible regenerator assignment reg, R(reg) is a set
cover, and vice versa, i.e. any set cover C corresponds to a feasible regenerator
assignment reg such that R(reg) = C. Indeed, a path P is d-satisfied if and only if
every path of P (d) ⊆ X ′ contains a node vj with regenerators, that corresponds
to a set Sj ∈ C containing this path. Therefore all the paths P ∈ P are d-satisfied
if and only if C constitutes a set cover of X ′. Moreover the cost of the set cover is
equal to the number of regenerator locations, i.e. |C| =

∑
vj

reg(vj) = cost(reg).
When a path P is presented, we present to OnLineSetCover all the paths

of P (d) one at a time. For each set Sj added to the cover by OnLineSetCover,
we set reg(vj) = 1.
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We first note that although the number of sets in X is exponential in terms
of the input size of our problem, for every path P the set P (d) contains only a
polynomial number of paths, therefore the first loop of Algorithm OnLineSet-
Cover runs only a polynomial number of times. The second loop is executed
log |X | times, which is also polynomial in terms of our input size.

Algorithm OnLineSetCover is proven to be O(log |X | · log f)-competitive.
Note that a path of length d contains d + 1 nodes, thus f = d + 1. As the cost
of a cover is equal to the cost of a solution of (G,P , d) we conclude

Lemma 2. There is an O(log |X | · log d)-competitive polynomial-time random-
ized online algorithm for instances (G,P , d) of Rlp where X is the set of all the
paths of length d in G.

In [1] algorithm OnLineSetCover is de-randomized using the method of condi-
tional expectation. However in this method, in order to calculate the conditional
expectancies, one has to consider all the elements of X . In our case X is the set of
all paths of length d in G which is, in general, exponential in d, thus applying the
technique in [1] directly to our case leads to an exponential algorithm. Although
the definition of competitive ratio does not require polynomial running-time,
for practical purposes we would like to have polynomial-time algorithms. The
following theorem states some cases for which this condition is satisfied.

Theorem 1. There is an O(log |X | · log d)-competitive polynomial-time deter-
ministic online algorithm for instances (G,P , d) of Rlp in each one of the fol-
lowing cases where X is the set of all the paths of length d in G.

– Both d and the maximum degree Δ(G) of G are bounded by two constants.
– The number of cycles in G is bounded, in particular G is a ring.
– G has bounded treewidth, in particular G is a tree.

3.3 Lower Bound for General Topologies

In this section we show a lower bound nearly matching the upper bound in the
previous subsection, by using the online version of a reduction in [5] of set cover
to Rlp. Given an instance (X,S, X ′) of online set cover we build an instance
(G,P , d) of Rlp as follows (see Figure 1).

We set d = |S|. The node set V (G) of G is S ∪ V1 ∪ V2 where V1 =
{si, ti|1 ≤ i ≤ |X |} and V2 = {vij |1 ≤ i ≤ |X | , 1 ≤ j ≤ |S|}. We proceed with
a description of the paths P . The edge set of G will be all the edges induced by
the paths of P . For each element xi there is a path Pi in P between si and ti. If
xi ∈ Sj then Sj ∈ V (G) is an internal node of the Pi, otherwise vij is an internal
node of Pi. The internal nodes are ordered within the path Pi by their j index,
i.e. the path xi is of the form (si − u1 − u2 − · · · − u|S| − ti) where uj is either
Sj or vij as described before.

By this construction every path xi has exactly |S| = d internal nodes. There-
fore a regenerator assignment is feasible if and only if it assigns at least one
regenerator to one of the internal nodes of every path. Without loss of gen-
erality every element xi is contained in at least one set Sj , otherwise no set
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Fig. 1. Reduction from online set cover to Rlp

cover exists. A feasible regenerator assignment reg corresponds to a set cover,
in the following way. We first obtain a regenerator assignment reg′ such that
reg′(vij) = 0 for every vij ∈ V2 and cost(reg′) ≤ cost(reg). For every node with
reg(vij) = 1 we set reg′(vij) = 0, and if Pi is not d-satisfied in reg′ we choose
arbitrarily a node Sj on Pi and set reg′(Sj) = 1. Now R(reg′) ⊆ S is a set cover
of cardinality at most cost(reg).

Lemma 3. There is no O( log(|E|/d)·log d
log(log(|E|/d)·log d))-competitive online algorithm for

Rlp.

Sketch of proof: Assume by contradiction that there is an O( log(|E|/d)·log d
log(log(|E|/d)·log d) )-

competitive randomized algorithm Alg for Rlp. From an instance (X,S, X ′) of
online set cover we build an instance of Rlp as described in the above discussion,
and whenever we are presented an element xi ∈ X ′ ⊆ X we present the path
Pi to Alg. We transform the regenerator assignment returned by Alg to a set
cover C as described above. Note that the transformation does not exclude a set
Sj from C if is was already in C before xi was presented, thus C is an online set
cover. We note that |V | = Θ(|X | · |S|), |E| = Θ(|V |), d = Θ(|S|). This implies
an O( log|X|·log|S|

log(log|X|·log|S|) )-competitive algorithm for the online set cover problem,
which is proven to be impossible in [1]. �

4 Path Maximization in Path Topology. (k = 1, d = 2)

In this section we consider possibly the simplest instances of the Pmp problem,
i.e. the case where the network is a path, and k = 1, d = 2.

We say that an instance is feasible, if there is a regenerator assignment that d-
satisfies all the paths in P , and infeasible otherwise. We first show in Section 4.1
that if the input instance is infeasible, no online algorithm (for Pmp) has a small
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competitive ratio; precisely, we show that no online algorithm is better than
√

l-
competitive, where l is the length of the longest path in the input. We then focus
on feasible instances in Section 4.2.

4.1 Infeasible Instances

We show that there is a lower bound in terms of the length of the longest path
if the input instance is infeasible, as follows:

Lemma 4. Consider the path topology. For k = 1 and d = 2, any deterministic
online algorithm for Pmp has a competitive ratio at least

√
l/2, where l is the

number of internal vertices of the longest path.

Proof. The adversary first releases a path of length l +1 with l internal vertices.
The online algorithm has to satisfy this path, otherwise, the competitive ratio
is unbounded. Then the adversary releases

√
l paths along the first path each

with
√

l (disjoint) internal vertices. If the online algorithm does not satisfy any
of these paths, the competitive ratio is at least

√
l and we are done. Suppose x

of these paths are satisfied. In order to make the first path and these x paths
2-satisfied, there is one regenerator placed in each node along these x paths. For
each of these x paths P , the adversary releases

√
l/2 paths along P each with

two (disjoint) internal vertices. The online algorithm is not able to satisfy any
of these short paths and the total number of 2-satisfied paths is x + 1. On the
other hand, the optimal offline algorithm satisfies all the paths except the first
path of length l, i.e.,

√
l + x

√
l/2 paths. As a result, the competitive ratio of the

online algorithm is (x+2)
√

l
2(x+1) >

√
l/2. ��

4.2 Feasible Instances

We now consider feasible instances, that is, instances, where there exists a place-
ment of regenerators such that all paths are satisfied. We will prove that, for
feasible instances, there is a tight bound of 3 for the competitive ratio. That is,
we provide an online algorithm Algorithm 2 with competitive ratio 3, and we
show a lower bound of 3 for the competitive ratio of every deterministic online
algorithm for feasible instances.

Algorithm 2 adopts a greedy approach and satisfies a newly presented path
whenever possible. When a path Pi is presented, it checks whether there exist
two consecutive internal vertices of Pi that are already assigned regenerators for
previous paths. If yes, this means it is impossible (under the current assignment)
to satisfy Pi. Otherwise, the algorithm satisfies Pi, as follows. There are two
possible locations for the leftmost regenerator of Pi, namely, either its leftmost
internal node, or the internal node adjacent to it. Among these two alternatives
we choose the alternative that uses the smaller number of regenerators by trying
the following regenerator allocation process. Suppose we put a regenerator at a
certain internal node v of Pi. We check whether the node at distance 2 from v
already has a regenerator; if no, we put a regenerator there and continue; if yes,
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we put a regenerator at the node at distance 1 from v1. This continues until Pi

is 2-satisfied.

Algorithm 2. Online algorithm for a path-topology, k = 1 and d = 2.
1: When the path Pi is presented:
2: if it is not possible to place regenerators to completely satisfy Pi then
3: leave Pi unsatisfied;
4: else
5: using the procedure described in the preamble of Algorithm 2, satisfy Pi using

the smallest possible number of new regenerators
6: end if

Theorem 2. Algorithm 2 is 3-competitive for Pmp for feasible inputs in path
topologies, when k = 1 and d = 2.

Proof. Let S and U denote the sets of paths that have been satisfied and unsatis-
fied by the algorithm, respectively. We prove the theorem by showing that |U | ≤
2|S|. Then, the competitive ratio of Algorithm 2 is |P|

|S| = |U|+|S|
|S| ≤ 2|S|+|S|

|S| = 3,
i.e., Algorithm 2 is 3-competitive. In the sequel we prove that |U | ≤ 2|S| by
associating with every path in U some paths of S, and showing that each path
in S is associated with at most two paths in U .

Note that for d = 2 a feasible solution can be described as follows: Remove
the first and last edges of every path P ∈ P presented, and return a vertex cover
of the remaining edges. Therefore, in this proof, when we refer to a path Pi, we
mean the path that the leftmost and rightmost edges have been removed.

Note also that, since the instance is assumed to be feasible, for every edge uv
there exist at most two paths Pi, Pj , such that uv ∈ Pi and uv ∈ Pj (indeed,
otherwise there would exist at least one path that is unsatisfied on the edge
uv). Suppose that a path Pi presented at iteration i is unsatisfied, i.e., when Pi

arrives, it cannot be satisfied by placing new regenerators. Then, there exists
an edge ab ∈ Pi, where both a and b already have regenerators of paths that
have been previously satisfied by the algorithm. We distinguish now two cases
regarding the regenerators on vertices a and b.

Case 1: reg(a, Pj) = reg(b, Ph) = 1, with j, h < i and j �= h, where the paths
Pj , Ph have been satisfied previously by the algorithm.

We first consider the cases where ab ∈ Pj or ab ∈ Ph. Suppose that ab ∈ Pj .
Then, since also ab ∈ Pi by assumption, it follows that ab /∈ Ph, since the
instance is feasible. That is, b is an endpoint of Ph. In this case, associate the
unsatisfied path Pi to the satisfied path Ph. Suppose now that ab ∈ Ph. Then
it follows similarly that ab /∈ Pj , and thus a is an endpoint of Pj . In this case,
associate the unsatisfied path Pi to the satisfied path Pj .
1 The node at distance 1 must have no regenerator, else there are two consecutive

internal nodes with regenerators and the algorithm would have rejected the path.
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Suppose now that ab /∈ Pj and ab /∈ Ph, i.e., a is an endpoint of Pj and b is
an endpoint of Ph. If there exists another path P� that is left unsatisfied by the
algorithm, such that ab ∈ P�, then associate the unsatisfied paths {Pi, P�} to
the satisfied paths {Pj , Ph}. Otherwise, if no such path P� exists, then associate
the path Pi to either Pj or Ph.

Case 2: reg(a, Pj) = reg(b, Pj) = 1, where j < i and the path Pj has been
satisfied previously by the algorithm.

The edge ab ∈ Pj . Furthermore, neither a nor b is an endpoint of path Pj ,
since otherwise Algorithm 2 would not place a regenerator on both vertices a and
b of path Pj . That is, there exist two vertices d, c of Pj , such that (d, a, b, c) is a
subpath of Pj . Moreover, since a and b are consecutive vertices of Pj , according
to the algorithm there must exist two other satisfied paths Ph, P�, such that
reg(d, Ph) = reg(c, P�) = 1.2 Note also that ab /∈ Ph and ab /∈ P�, since the
instance is feasible, and since ab ∈ Pi and ab ∈ Pj . That is, d or a is an endpoint
of Ph, while b or c is an endpoint of P�.

We claim that there exist at most two different unsatisfied paths Pi and Pi′

that include at least one of the edges da, ab, bc. Suppose otherwise that there
exist three such unsatisfied paths Pi, Pi′ , Pi′′ . Recall that ab ∈ Pi and that
da, ab, bc ∈ Pj . Therefore, since the instance is assumed to be feasible, it follows
that, either da ∈ Pi′ and bc ∈ Pi′′ , or bc ∈ Pi′ and da ∈ Pi′′ . Since these cases
are symmetric, we assume without loss of generality that da ∈ Pi′ and bc ∈ Pi′′ .
In any optimal (i.e., offline) solution, at least one of {a, b} has a regenerator
for path Pj ; assume without loss of generality that reg(b, Pj) = 1 (the other
case reg(a, Pj) = 1 is symmetric). Then, it follows that reg(a, Pi) = 1. Then,
since the edge da must be satisfied for both paths Pj and Pi′ , it follows that
reg(d, Pj) = reg(d, Pi′) = 1. This is a contradiction, since every vertex can have
at most one regenerator. Therefore there exist at most two different unsatisfied
paths Pi, Pi′ that include at least one of the edges da, ab, bc.

In the case that Pi is the only unsatisfied path that includes at least one of the
edges da, ab, bc, associate the unsatisfied path Pi to either the satisfied path Ph or
to the satisfied path P�. Otherwise, if there exist two different unsatisfied paths
Pi, Pi′ that include at least one of the edges da, ab, bc, associate the unsatisfied
paths {Pi, Pi′} to the satisfied paths {Ph, P�}.

We observe that by the above associations of unsatisfied paths to satisfied
ones, that at most two unsatisfied paths are associated to every satisfied path
P (i.e., at most one to the left side and one to the right side of P , respectively).
This gives |U | ≤ 2|S| and the theorem follows. ��

2 Here we simplify the discussion slightly by assuming that the path Pi does not
contain a chain of two internal edges that both do not belong to any other paths
because the algorithm can simply assign regenerators to alternate internal nodes
without conflicting any other paths and this would not affect the number of paths
that can be satisfied by the algorithm.
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Lemma 5. Any deterministic online algorithm for Pmp has a competitive ratio
at least 3 even when the instance is restricted to feasible ones path topologies and
k = 1, d = 2.

Proof. We will prove that, for every ε > 0, there exists an input such that every
algorithm has competitive ratio at least 3−ε. Choose n, such that 2

n+1 < ε. The
adversary provides initially a path P0 with 13n − 2 edges. The algorithm must
satisfy the path P0, since otherwise the adversary stops and the competitive
ratio is infinite. We divide P0 into n subpaths Pi, i = 1, 2, . . . , n, with 11 edges
each, where between two consecutive subpaths there exist two edges.

Consider any such subpath Pi, i = 1, 2, . . . , n. Suppose that there exist two
edges ab and cd of Pi, where {a, b}∩{c, d} = ∅, such that reg(a, P0) = reg(b, P0) =
1 and reg(c, P0) = reg(d, P0) = 1. Then the adversary provides next the paths
Pi,1 = (a, b) and Pi,2 = (c, d). These two paths Pi,1 and Pi,2 can not be satisfied,
since each of the vertices a, b, c, d has a regenerator for path P0.

Suppose that there do not exist two such edges ab and cd of Pi. That is, there
exist at most three consecutive vertices u1, u2, u3 of Pi, such that reg(u1, P0) =
reg(u2, P0) = reg(u3, P0) = 1, while for every other edge uu′ of Pi, there exists a
regenerator for P0 either on vertex u or on vertex u′. Then, it is easy to check
that there always exist five consecutive vertices v1, v2, v3, v4, v5 of Pi, such that
reg(v1, P0) = reg(v3, P0) = reg(v5, P0) = 1 and reg(v2, P0) = reg(v4, P0) = 0.

The adversary now provides the path P ′
i = (v2, v3, v4). Thus, since

reg(v3, P0) = 1 and reg(v2, P0) = reg(v4, P0) = 0, the only way that the al-
gorithm can satisfy P ′

i is to place regenerators for P ′
i at the vertices v2 and v4

(that is, reg(v2, P
′
i ) = reg(v4, P

′
i ) = 1).

The adversary proceeds as follows. In the case where the algorithm chooses
not to satisfy the path P ′

i , the adversary does not provide any other path that
shares edges with Pi. Otherwise, if the algorithm satisfies P ′

i , then the adversary
provides the paths P ′′

i = (v1, v2) and P ′′′
i = (v4, v5). In this case, reg(v2, P

′
i ) =

reg(v4, P
′
i ) = 1 and reg(v1, P0) = reg(v5, P0) = 1, and thus the paths P ′′

i and P ′′′
i

remain unsatisfied by the algorithm. In the sequel we show that the instance
constructed in the proof is feasible. We prove that the instance delivered by the
adversary is indeed a feasible instance. To this end, we provide a placement of
the regenerators such that the path P0, as well as all paths Pi,1, Pi,2, P ′

i , P ′′
i ,

and P ′′′
i are satisfied. First, we place a regenerator for P0 on the vertex that lies

between every two consecutive subpaths Pi and Pi+1 of P0. Inside the subpaths
Pi of P0, we place regenerators for P0 on vertices with distance two between
two regenerators. Then, we can assign appropriately regenerators to the paths
Pi,1, Pi,2, P ′

i , P ′′
i , and P ′′′

i . In particular, for every subpath Pi of P0, for which
the opponent provides the path P ′

i , we have reg(v3, P
′
i ) = 1 and reg(v2, P0) =

reg(v4, P0) = 1. Furthermore, for the subpaths Pi of P0, for which the opponent
provides also the paths P ′′

i and P ′′′
i , we have reg(v1, P

′′
i ) = reg(v5, P

′′′
i ) = 1.

Therefore, there exists a placement of regenerators on the vertices of the paths
of the instance that the opponent delivers, such that all paths are satisfied. That
is, the instance is feasible.
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Denote now by h1 the number of subpaths Pi, for which the algorithm adds
the paths Pi,1 and Pi,2. Furthermore, denote by h2 the number of subpaths Pi,
for which the algorithm adds the path P ′

i , but not the paths P ′′
i and P ′′′

i . Finally,
denote by h3 the number of subpaths Pi, for which the algorithm adds the three
paths P ′

i , P ′′
i , and P ′′′

i . Clearly, h1 + h2 + h3 = n. The total number of paths
that the adversary provided equals 1 + 2h1 + h2 + 3h3, while the number of
satisfied paths equals 1 + h3. That is, the competitive ratio of the algorithm is
1+2h1+h2+3h3

1+h3
≥ 1+h1+h2+3h3

1+h3
= 3 + n−h3−2

1+h3
. Therefore, since h3 ≥ n, it follows

that the competitive ratio of the algorithm is at least 3 − 2
1+n > 3 − ε. Since

this holds for every ε > 0, it follows that any deterministic online algorithm has
competitive ratio at least 3. This completes the proof of the lemma. ��

5 Future Work

We list some open problems and research directions:

– Close the gap between the bounds shown in this paper. In particular, we used
in Section 3 a known approximation result of set cover and modified it for our
problem. It might be of interest to improve the upper bound by developing a
better algorithm for these special instances of the set cover problem. However
we note that OnLineSetCover does not use the set of all potential elements
but only its size. Therefore if the algorithm is supplied with an a priori
information about the total length of the paths to be received, the algorithm
can use it to get an upper bound which is logarithmic in terms of this bound,
instead of the number of all possible paths of size d which can be much bigger.

– Extend the results for other values of the parameters d and k.
– Consider the regenerator location problem when also traffic grooming is al-

lowed (that is, when up to g (the grooming factor) paths that share an edge
can be assigned the same wavelength and can then share regenerators). In
[6] optimizing the use of regenerators in the presence of traffic grooming is
studied, but with two fundamental differences: (1) the cost function there
is the number of locations where regenerators are used rather than the to-
tal number of regenerators suggested here, and (2) the authors consider the
online case, where the requests for connection are not known a-priori, while
here all requests are given in advance.

– Consider other objective functions (some of them are discussed in Section 1).
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Abstract. Distributed software transactional memory (D-STM)
promises to alleviate difficulties with lock-based (distributed) synchro-
nization and object performance bottlenecks in distributed systems.
Past single copy data-flow (SC) D-STM proposals keep only one
writable copy of each object in the system and are not fault-tolerant
in the presence of network node/link failures in large-scale distributed
systems. In this paper, we propose a quorum-based replication (QR)
D-STM model, which provides provable fault-tolerant property without
incurring high communication overhead compared with SC model.
QR model operates on an overlay tree constructed on a metric-space
failure-prone network where communication cost between nodes forms a
metric. QR model stores object replicas in a tree quorum system, where
two quorums intersect if one of them is a write quorum, and ensures
the consistency among replicas at commit-time. The communication
cost of an operation in QR model is proportional to the communication
cost from the requesting node to its closest read or write quorum. In
the presence of node failures, QR model exhibits high availability and
degrades gracefully when the number of failed nodes increases, with
reasonable higher communication cost.

1 Introduction

Lock-based synchronization is non-scalable, non-composable, and inherently
error-prone. Transactional memory (TM) is an alternative synchronization model
for shared memory objects that promises to alleviate these difficulties. In addi-
tion to a simple programming model, TM provides performance comparable to
highly concurrent fine-grained locking and is composable. TM for multiproces-
sors has been proposed in hardware, called HTM, in software, called STM, and
in hardware/software combination [1].

Similar to multiprocessor TM, distributed STM (or D-STM) is motivated
by the difficulties of lock-based distributed synchronization (e.g., distributed
race conditions, composability). D-STM can be supported in any of the classical
distributed execution models, including a) dataflow [2], where transactions are
immobile, and objects are migrated to invoking transactions; b) control flow [3],
where objects are immobile and transactions invoke object operations through
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RPCs; and c) hybrid models (e.g., [4]), where transactions or objects are mi-
grated, based on access profiles, object size, or locality. The different models
have their concomitant tradeoffs.

D-STM can be classified based on the system architecture: cache-coherent
D-STM (cc D-STM) [2], where a number of nodes are interconnected using
message-passing links, and a cluster model (cluster D-STM), where a group of
linked computers works closely together to form a single computer ([4,5,6,7]). The
most important difference between the two is communication cost. cc D-STM
assumes a metric-space network, whereas cluster D-STM differentiates between
local cluster memory and remote memory at other clusters.

In this paper, we focus on cc D-STM. The data-flow cc D-STM model is pro-
posed by Herlihy and Sun [2]. In this model, only a single (writable) copy is kept
in the system. Transactions run locally and objects move in the network to meet
transactions’ requests. When a node vA initiates a transaction A that requests
a read/write operation on object o, its TM proxy first checks whether o is in
the local cache; if not, the TM proxy invokes a cache-coherence (CC) protocol
to locate o in the network by sending a request CC.locate(o). Assume that o is
in use by a transaction B initiated by node vB . When vB receives the request
CC.locate(o) from vA, its TM proxy checks whether o is in use by an active
local transaction; if so, the TM proxy invokes a contention manager to handle
the conflict between A and B. Based on the result of contention management,
vB’s TM proxy decides whether to abort B immediately, or postpone A’s request
and let B proceed to commit. Eventually, CC moves o to vA.

In the aforementioned single copy data-flow model (or SC model), the main
responsibility of CC protocol is to locate and move objects in the network. A
directory-based CC protocol is often adopted such that the latest location of
the object is saved in the distributed directory and the cost to locate and move
an object is bounded. Such CC protocols include Ballistic [2], Relay [8] and
Combine [9].

Since SC model only keeps a single writable copy of each object, it is in-
herently vulnerable in the presence of node and link failures. If a node failure
occurs, the objects held by the failed node will be simply lost and all following
transactions requesting such objects would never commit. Hence, SC model can-
not afford any node failures. Ballistic and Relay also assumes a reliable and fifo
logical link between nodes, since they may not perform well when the message is
reordered [10]. On the other hand, Combine can tolerate partial link failures and
support non-fifo message delivery, as long as a logical link exists between any
pair of nodes. However, similar to other directory-based CC protocols, Combine
does not permit network partitioning incurred by link failures, which may make
some objects inaccessible from outer transactions. In general, SC model is not
suitable in a network environment with aforementioned node/link failures.

To achieve high availability in the presence of network failures, keeping only
one copy of each object in the system is not sufficient. Inherited from database
systems, replication is a promising approach to build fault-tolerant D-STM
systems, where each object has multiple (writable) copies. However, only a
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few replicated D-STM solutions have been proposed for cluster-based D-STM
([4,5,6,7]). These solutions require some form of broadcasting to maintain consis-
tency among replicas and assume a uniform communication cost across all pairs
of nodes. As the result, we cannot directly apply these solutions for cc D-STM.

This paper presents QR model, a quorum-based replication cc D-STM model
which provides provable fault-tolerance property in a failure-prone metric-space
network, where communication cost between nodes forms a metric. To the best
of our knowledge, this is the first replication cc D-STM proposal which provides
provable fault-tolerant properties. In distributed systems, a quorum is a set of
nodes such that the intersection of any two quorums is non-empty if one of them
is a write quorum. By storing replicated copies of each object in an overlay tree
quorum system motivated by the one in [11], QR model supports concurrent
reads of transactions, and ensures the consistency among replicated copies at
commit-time. Meanwhile, QR model exhibits a bounded communication cost of
its operations, which is proportional to the communication cost from v to its
closest read/write quorum, for any operation starting from node v. Compared
with directory-based CC protocols, the communication cost of operations in QR
model does not rely on the stretch of the underlying overlay tree (i.e., the worst-
case ratio between the cost of direct communication between two nodes v and w
and the cost of communication along the shortest tree path between v and w).
Therefore QR model provides a more promising solution to support D-STM in
the presence of network failures with communication cost comparable with SC
model.

The rest of the paper is organized as follows. We introduce the system model
and identify the limitations of SC model in Section 2. We present QR model and
analyze its properties in Section 3. The paper concludes in Section 4.

2 Preliminaries

2.1 System Model

We consider a distributed system which consists of a set of distinct nodes that
communicate with each other by message-passing links over a communication
network. Similar to [2], we assume that the network contains n physical nodes
scattered in a metric space of diameter D. The metric d(u, v) is the distance
between nodes u and v, which determines the communication cost of sending a
message from u to v. Scale the metric so that 1 is the smallest distance between
any two nodes.

We assume that nodes are fail-stop [12] and communication links may also
fail to deliver messages. Further, node and link failures may occur concurrently
and lead to network partitioning failures, where nodes in a partition may com-
municate with each other, but no communication can occur between nodes in
different partitions. A node may become inaccessible due to node or partitioning
failures.

We consider a set of distributed transactions T := {T1, T2, . . .} sharing a set
of objects O := {o1, o2, . . .} distributed on the network. A transaction contains
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a sequence of requests, each of which is a read or write operation request to an
individual object.

An execution of a transaction is a sequence of timed operations. An execution
ends by either a commit (success) or an abort (failure). A transaction’s status
is one of the following three: live, aborted, or committed. A transaction is live
after its first operation, and completes either by a commit or an abort operation.
When a transaction aborts, it is restarted from its beginning immediately and
may access a different set of shared objects. Two transactions are concurrent if
they are both live at the same time. Suppose there are two live transactions Tj

and Tk which request to access oi and at least one of the access is a write. Then
Tj and Tk are said to conflict at oi, i.e., two live transactions conflict if they
both access the same object and at least one of the accesses is a write. There
are three types of conflicts: (1) Read-After-Write (W → R); (2) Write-After-
Read (R → W ); and (3) Write-After-Write (W → W ). A contention manager is
responsible for resolving the conflict, and does so by aborting or delaying (i.e.,
postponing) one of the conflicting transactions. Most contention managers do
not allow two transactions to proceed (i.e., make progress) simultaneously. In
other words, two operations from different transactions over the same object
cannot be overlapped if one of them is a write. In this paper, we assume an
underlying contention manager which has consistent policies to assign priorities
to transactions. For example, the Greedy contention manager [13] always assigns
higher priority to the transaction earlier timestamp.

Each node has a TM proxy that provides interfaces to the TM application
and to proxies of other nodes. A transaction performs a read/write operation
by first sending a read/write access request to its TM proxy. The TM proxy
invokes a CC protocol to acquire a valid object copy in the network. For a
read operation, the protocol returns a read-only copy of the object. For a write
operation, the CC protocol returns a writable copy of the object. When there
are multiple copies (or replicas) of an object existing in the network, the CC
protocol is responsible to ensure the consistency over replicas such that multiple
copies of an object must appear as a single logical object to the transactions,
which is termed as one-copy equivalence [14].

2.2 Motivation: Limitations of SC D-STM Model

As mentioned in Section 1, SC model lacks the fault-tolerant property in the
presence of network failures. SC model also suffers from some other limitations.

Limited support of concurrent reads. Although directory-based CC pro-
tocols for SC model allows multiple read-only copies of an object existing in
the system, these protocols lacks the explanation on how they maintain the
consistency over read-only and writable copies of objects. Consider two trans-
actions A and B, where A contains operations {read(o1), write(o2)} and B
contains operations {read(o2), write(o1)}. In SC model, the operations of A
and B could be interleaved, e.g., transaction A reads o1 before B writes to o1,
and transaction B reads o2 before A writes to o2. Obviously, transactions A and
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B conflict on both objects. In order to detect the conflict, each object needs
to keep a record for any of its readers. When transaction A (or B) detects a
conflict on object o2 (or o1), it does not know: i) the type of the conflicting
transaction (read-only or read/write); and ii) the status of the conflicting trans-
action (live/aborted/committed). It is not possible for a contention manager to
make distributed agreement without these knowledge (e.g., it is not necessary
to resolve the conflict between a live transaction and an aborted/committed
transaction). To keep each object updated with the knowledge of its readers,
a transaction has to send messages to all objects in its readset once after its
termination (commit or abort). Unfortunately, in SC model such mechanism in-
curs high communication and message overhead, and it is still possible that a
contention manager may make a wrong decision if it detects a conflict between
the time the conflicting transaction terminated and the time the conflicting ob-
ject receives the updated information, due to the relatively high communication
latency.

Due to the inherent difficulties in supporting concurrent read operations, prac-
tical implementations of directory-based CC protocols often do not differentiate
between a read and write operation of a read/write transaction (i.e., if a trans-
action contains both read and write operations, all its operations are treated as
write operations and all its requested objects have to be moved). Such over-
generalization obviously limits the possible concurrency of transactions. For
example, in the scenario where the workload is composed of late-write trans-
actions [10], a directory-based CC protocol cannot perform better than a simple
serialization schedule, while the optimal schedule maybe much shorter when con-
current reads are supported for read/write operations.

Limited locality. One major concern of directory-based CC protocols is to
exploit locality in large-scale distributed systems, where remote access is often
several orders of magnitude slower than local ones. Reducing communication
cost and remote accesses is the key to achieving good performance for D-STM
implementations. Existing CC protocols claim that the locality is preserved by
their location-aware property: the cost to locate and move the objects between
two nodes u and v is often proportional to the shortest path between u and v
in the directory. In such a way directory-based CC protocols route transactions’
requests efficiently: if two transactions requests an object at the same time, the
transaction “closer” to the object in the directory will get the object first. The
object will be first sent to the closer transaction, then to the further transaction.

Nevertheless, it is unrealistic to assume that all transactions start at the same
time. Even if two transactions start at the same time, since a non-clairvoyant
transaction may access a sequence of objects, it is possible that a closer trans-
action may request to access an object much later than a further transac-
tion. In such cases, transactions’ requests may not be routed efficiently by
directory-based CC protocols. Consider two transactions A and B, where A
is {〈some work〉, write(o)} and B is {write(o), 〈some work〉}. Object o is located
at node v. Let d(v, vA) = 1 and d(v, vB) = d(vA, vB) = D, it is possible that
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o first receives B’s request of o. Assume that o is sent to B from v, then the
directory of o points to vB. Transaction A’s request of o is forwarded to vB and a
conflict may occur at vB. If B is aborted, the object o is moved to vA from vB . In
this scenario, object o has to travel at least 3D distance to let two transactions
A commit. On the other hand, when object o receives B’s request at v, if we
let o waits for time to to let A’s request reach v, then o could be first moved to
vA and then to vB. In this case, object o travels to +D + 1 distance to let two
transactions commit. Obviously the second schedule may exploit more locality:
as long as to is less than 2D − 1 (which is a quite loose bound), the object is
moved more quickly.

In practice, it is often impractical to predict to. As the result, directory-
based CC protocols often overlook possible locality by simply keeping track of
the single writable copy of each object. Such locality can be more exploited to
reduce communication cost and improve performance.

3 Quorum-Based Replication Data-Flow D-STM Model

3.1 Overview

We present QR model, a quorum-based replication data-flow D-STM model,
where multiple (writable) copies of each object are distributed at several nodes in
the network. To perform a read or write operation, a transaction reads an object
by reading object copies from a read quorum, and writes an object by writing
copies to a write quorum. A quorum is assigned with the following restriction:

Definition 1 (Quorum Intersection Property). A quorum is a collection
of nodes. For any two quorums q1 and q2, where at least one of them is a write
quorum, the two quorums must have a non-empty intersection: q1 ∩ q2 �= ∅.

Generally, by constructing a quorum system over the network, QR model is able
to keep multiple copies of each object. QR model provides 5 operations for a
transaction: read, write, request-commit, commit and abort. Particularly, QR
model provides a request-commit operation to validate the consistency of its
readset and writeset before it commits. A transaction may request to commit
if it is not aborted by other transactions before its last read/write operation.
Concurrency control solely occurs during the request-commit operation: if a
conflict is detected, the transaction may get aborted or abort the conflicting
transaction. After collecting the response of the request-commit operation, a
transaction may commit or abort.

We first present read and write operations of QR model in Algorithm 1. In
following algorithms, notation “msg � v” is interpreted as “receiving msg from
node v”, and notation “msg � v” is interpreted as “sending msg to node v”.

Read. When transaction T at node v starts a read operation, it sends a request
message req(T, read(o)) to a selected read quorum qr. The algorithm to find and
select a read or write quorum will be elaborated in the next section. Node v′,
upon receiving req(T, read(o)), checks whether it has a copy of o. If not, it sends
a null response to v.
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In QR model, each object copy contain three fields: the value field, which is the
value of the object; the version number field, starting from 0, and the protected
field, a boolean value which records the status of the copy. The protected field is
maintained and updated by request-commit, commit and abort operations. Each
object copy o keeps a potential readers list PR(o), which records the identities
of the potential readers of o. Therefore, if v′ has a copy of o, it adds T to PR(o)
and sends a response message rsp(T, o) to v, which contains a copy of o.

Transaction T waits to collect responses until it receives all responses from a
read quorum. Among all copies it receives, it selects the copy with the highest
version number as the valid copy of o. The read operation finishes.

Algorithm 1. QR model: read and write

1 procedure Read (v, T, o)
2 Local Phase:
3 ReadQuorum (v, req(T, read(o)));
4 wait until find(v) = true;
5 foreach d � vi do
6 if d.version > data(o).version

then
7 data(o)← d;

8 add o to T.readset;

9 Remote Phase:
10 Upon receiving req(T, read(o)) � v;
11 if data(o) exists then
12 add T to PR(o);
13 rsp(T, o) � v;

14 procedure Write (v, T, o, value)
15 Local Phase:
16 ReadQuorum (v, req(T,write(o)));
17 wait until find(v) = true;
18 foreach d � vi do
19 if d.version > data(o).version

then
20 data(o)← d;

21 dataCopy(o)← data(o);
22 dataCopy(o).value← value;
23 dataCopy(o).version←

data(o).version+ 1;
24 add o to T.writeset;

25 Remote Phase:
26 Upon receiving req(T,write(o)) � v;
27 if data(o) exists then
28 add T to PW (o);
29 rsp(T, o) � v;

Write. The write operation is similar to the read operation. Transaction T sends
a request message req(T,write(o)) to a selected read quorum. Note that T does
not need to send request to a write quorum because in this step it only needs
to collect the latest copy of o. If a remote node v′ has a copy of o, it adds T to
o’s potential writers list PW (o) and sends a response message to T with a copy
of o.

Transaction T selects the copy with with the highest version number among
the responses from a read quorum. Then it creates a temporary local copy
(dataCopy(o)) and updates it with the value it intends to write, and increases
its version number by 1 compared with the selected copy.
Remarks: The read and write operations of QR model are simple: a transaction
just has to fetch all latest copies of required objects and perform all computations
locally. Unlike a directory-based CC protocol, there is no need to construct and
update a directory for each shared object. In QR model a transaction can always
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query its “closest” read quorum to locate the latest copy of each object required.
Therefore the locality is preserved.

If a transaction is not aborted (by any other transaction) during all its read
and operations, the transaction can request to commit by requesting to propa-
gate its changes to objects into the system. The concurrency control mechanism
is needed when any non-consistent status of an object is detected. The request-
commit operation is presented in Algorithm 2.

Algorithm 2. QR model: request-commit

1 procedure Request-Commit (v, T )
2 Local Phase:
3 WriteQuorum (v, req cmt(T ));
4 AT (T )← ∅;
5 wait until find(v) = true;
6 if ∃rsp cmt(T,abort) received then
7 Abort (v, T );

8 else
9 foreach rsp cmt(T, cmt,CT (T ))

do
10 AT (T )← AT (T )∪ CT (T );

11 Commit (v, T );

12 Remote Phase:
13 Upon receiving req cmt(T )� v;
14 CT (T )← ∅;
15 abort(T )← false;
16 Conflict-Detect (v, T );
17 if abort(T ) = false then
18 if CT (T ) = ∅ then
19 rsp cmt(T, cmt,CT (T ))� v;

20 else
21 CM (T,CT (T ));
22 if CT (T ) �= ∅ then
23 rsp cmt(T, cmt,CT (T ))�v;

24 if abort(T ) = false then
25 foreach oT ∈ T.writeset do
26 oT .protected← true;

27 ∀o, remove T from PR(o) and PW (o);

28 procedure Conflict-Detect (v, T )
29 foreach oT ∈ T.readset ∪ T.writeset

of object o do
30 if data(o).protected = true or
31 data(o).version > oT .version

then
32 abort(T )← true;
33 rsp cmt(T, abort)� v;
34 break;

35 if data(o).version = oT .version
then

36 if data(o).value �= oT .value
then

37 abort(T )← true;
38 rsp cmt(T, abort)� v;
39 break;

40 else
41 add PW (o) to CT (T );
42 if oT ∈ T.writeset then
43 add PR(o) to CT (T );

44 procedure CM (T,CT (T ))
45 foreach T ′ ∈ CT (T ) do
46 if T ′ ≺ T then
47 abort(T )← true;
48 rsp cmt(T, abort)� v;
49 CT (T )← ∅;
50 break;

Request-Commit.When transaction T requests to commit, it sends a message
req cmt(T ) (which contains all information of its readset and writeset) to a write
quorum qw. Note that it is required that for each transaction T , and ∀qr, qw
selected by T , qr ⊆ qw.

In the remote phase, when node v′ receives the message req cmt(T ), it im-
mediately removes T from its potential read and write lists of all objects and
creates an empty conflicting transactions list CT (T ) which records the
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Algorithm 3. QR model: commit and abort

1 procedure Commit (v, T )
2 Local Phase:
3 foreach object o ∈ T.writeset do
4 data(o)← dataCopy(o);

5 foreach T ′ ∈ AT (T ) do
6 req abt(T ′)� T ′;
7 WriteQuorum (v, commit(T ));
8 wait until find(v) = true;

9 Remote Phase:
10 Upon receiving commit(T ):
11 foreach oT ∈ T.writeset of object o

do
12 data(o)← oT ;
13 data(o).protected← false;

14 Upon receiving req abt(T ′):
15 Abort (v′, T ′)

16 procedure Abort (v, T )
17 Local Phase:
18 foreach object o ∈ T.writeset do
19 discard dataCopy(o);

20 WriteQuorum (v, abort(T ));
21 wait until find(v) = true;

22 Remote Phase:
23 Upon receiving abort(T ):
24 foreach oT ∈ T.writeset of object o

do
25 data(o).protected← false;

26 ∀o, remove T from PR(o) and PW (o);

transactions conflicting with T . Node v′ determines the conflicting transactions
of T in the following manner:

1) if oT .protected = true, then T must be aborted since oT is waiting for a
possible update;
2) if oT is a copy read or written by T of object o, and the local copy of o at v′

(data(o)) has the higher version than oT , then T reads a stale version of o. In
this case, T must be aborted.
3) if oT is a copy read by T of object o, and the local copy of o at v′ (data(o))
has the same version with oT , then T conflicts with all transactions in PW (o)
(potential writers of object copy data(o)).
4) if oT is a copy written by T of object o, and the local copy of o at v′ (data(o) has
the same version with oT , then T conflicts with all transactions in PW (o)∪PR(o)
(potential readers and writers of data(o)).

The contention manager at v′ compares priorities between T and its conflicting
transactions (line 21). If ∀T ′ ∈ CT (T ), T ≺ T ′ (T has the higher priority than
any of its conflicting transactions), T is allowed to commit by v′. Node v′ sends a
message rsp cmt(T, cmt, CT (T )) with CT (T ) to v and sets the status of data(o)
as protected, for any o ∈ T.writeset. If ∃T ′ ∈ CT (T ) such that T ′ ≺ T , then T
is aborted. Node v′ sends rsp cmt(T, abort) to v and resets CT (T ).

In the local phase, transaction T collects responses from all nodes in the write
quorum. If any rsp cmt(T, abort) message is received, T is aborted. If not, T can
proceed to the commit operation. In this case, transaction T saves conflicting
transactions from all responses into an aborted transactions list AT (T ).

Remarks: For each transaction T , its concurrency control mechanism is carried
by the request-commit operation. Therefore, the request-commit operation must
guarantee that all existing conflicts with T are detected. Note that a remote node
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makes this decision based on its potential read and write lists. Therefore, these
lists must be efficiently updated: a terminated transaction must be removed from
these lists to avoid an unnecessary conflict detected. By letting qr ⊆ qw for all
qr and qw selected by the same transaction T , QR model guarantees that all T ’s
records in potential read and write lists are removed during T ’s request-commit
operation.

On the other hand, if v′ allows T proceed to commit, then v′ needs to protect
local object copies written by T from other accesses until T ’s changes to these
objects propagate to v′. These objects copies become valid only after receiving
T ’s commit or abort information. We describe T ’s commit and abort operations
in Algorithm 3.

Commit. When T commits, it sends a message commit(T ) to each node in
the same write quorum qw as the one selected by the request-commit oper-
ation. Meanwhile, it sends a request-abort message req abt(T ′) for any T ′ ∈
AT (T ). In the remote phase, when a node v′ receives commit(T ), for any
o ∈ T.writeset, it updates data(o) with the new value and version number,
and sets data(o).protected = false. If a transaction T ′ receives req abt(T ′), it
aborts immediately.

Abort. A transaction may abort in two cases: after the request-commit op-
eration, or receives a request-abort message. When T aborts, it rolls back all
its operations of local objects. Meanwhile, it sends a message abort(T ) to each
node in the write quorum qw (which is the same as the write quorum selected
by the request-commit operation). Then transaction T restarts from the be-
ginning. In the remote phase, when a node v′ receives abort(T ), it removes T
from any of its potential read and write list (if it has not done so), and sets
data(o).protected = false for any o ∈ T.writeset.

3.2 Quorum Construction: Flooding Protocol

One crucial part of QR model is the construction of a quorum system over
the network. We adopt the hierarchical clustering structure similar to the one
described in [2]. An overlay tree with depth L is constructed. Initially, all physical
nodes are leaves of the tree. Starting from the leaf nodes at level l = 0, parent
nodes at the immediate higher level l + 1 is elected recursively so that their
children are all nodes at most at distance 2l from them.

Our quorum system is motivated by the classic tree quorum system [11]. On
the overlay tree, a quorum system is constructed by Flooding protocol such
that each constructed quorum is a valid tree quorum.

We present Flooding protocol in Algorithm 4. For each node v, when the
system starts, a basic read quorum Qr(v) and a basic write quorum Qw(v) are
constructed by BasicQuorums method. The protocol tries to construct Qr(v)
and Qw(v) by first putting root into these quorums and setting a distance vari-
able δ to d(v, root). Starting from level = L − 1, the protocol recursively se-
lects the majority of descendants levelHead = closestMajority(v, parent, level)
for each parent selected in the previous level (level + 1), so that the distance



28 B. Zhang and B. Ravindran

Algorithm 4. Flooding protocol

1 procedure BasicQuorums (v, root)
2 δ ← d(v, root);
3 Qr(v)← {root};
4 Qw(v)← {root};
5 Qr(v).level← L;
6 currentHead← {root};
7 for level = L− 1, L− 2, . . . , 0 do
8 levelHead← ∅;
9 foreach parent ∈ currentHead

do
10 new ←

closestMajority(v, parent, level);
11 add new to Qw(v);
12 add new to levelHead;

13 if d(v, levelHead) < δ then
14 Qr(v)← levelHead;
15 Qr(v).level← level;
16 δ ← d(v, levelHead);

17 currentHead← levelHead;

18 procedure WriteQuorum (v,msg)
19 msg �Qw(v);
20 if v′ ∈ Qr(v) is down then
21 find(v)← false;
22 validAns(v)← null;
23 validLevel(v)← null;
24 for level = 1, . . . , L do
25 msg � ancestor(v, level);
26 if ancestor(v, level) is up

then
27 validAns(v)←

ancestor(v, level);
28 validLevel(v)← level;
29 break;

30 if validAns(v) = null then
31 restart WriteQuorum (v,msg);
32 if validLevel(v) > Qr(v).level

then
33 msg �Qr(v);
34 DownProbe

(validAns(v), validLevel(v), write);
35 if find(v) = false then
36 restart WriteQuorum (v,msg);

37 procedure DownProbe
(v, validLevel, type)

38 curRdHead← v;
39 curWrHead← v;
40 noWriteQ← false;

41 for level = [validLevel − 1, 0] do
42 levelRdHead← ∅;
43 levelWrHead← ∅;
44 foreach parent ∈ curRdHead do
45 msg �

descend(parent, level)∩Qw(v);
46 if w is down then
47 add w to levelRdHead;

48 if type = write then
49 foreach parent ∈

curWrHead do
50 if ∃newSet =

closestMajority(v, parent, level)
then

51 msg � newSet;
52 add newSet to

levelWrHead;
53 else
54 noWriteQ← true;
55 break;

56 if noWriteQ = true then
57 break;
58 if levelRdHead = ∅ and

type = read then
59 find(v)← true;
60 break;

61 else
62 curRdHead← levelRdHead;
63 curWrHead← levelWrHead;

64 if noWriteQ = false and
type = write then

65 find(v)← true;

66 procedure ReadQuorum (v,msg)
67 msg �Qr(v);
68 find(v)← false;
69 if v′ ∈ Qr(v) is down then
70 find(v)← false;
71 if v′ �= root then
72 for level = [Qr(v).level+1, L] do
73 msg � ancestor(v, level);
74 if ancestor(v, level) is up

then
75 find(v)← true;
76 break;

77 if find(v) = false then
78 DownProbe

(v′, Qr(v).level, read);
79 if find(v) = false then
80 restart ReadQuorum (v,msg);
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from v to closestMajority(v, parent, level) is the minimum over all possible
choices. Note that closestMajority(v, parent, level) only contains parent’s de-
scendants at level level. We define the distance from v to a quorum Q as:
d(v,Q) := maxv′∈Q d(v, v′). The basic write quorum Qw(v) is constructed by
including all selected nodes.

At each level, after a set of nodes levelHead has been selected, the protocol
checks the distance from v to levelHead (d(v, levelHead)). If d(v, levelHead) <
δ, then the protocol replacesQr(v) with levelHead and sets δ to d(v, levelHead).
If d(v, levelHead) ≥ δ, the protocol continues to the next level. At the end, Qr(v)
contains a set of nodes from the same level, which is the levelHead closest from
v for all levels.

When node v requests to access a read quorum, the protocol invokes
ReadQuorum(v,msg) method. Initially, node v sends msg to every node in
Qr(v). If all nodes in Qr(v) are accessible from v, then a live read quorum is
found. If any node v′ in Qr(v) is down, then the protocol needs to probe v′’s
substituting nodes sub(v′) such that sub(v′)∪Qr(v)\v′ still forms a read quorum.

The protocol first finds if there exists any v′’s ancestor available. If so, v′’s
substituting node has been found. If not, the protocol probes downwards from
v′ to check if there exists v′ substituting nodes such that a constructed read
quorum is a subset of Qw(v) by calling DownProbe method.

The protocol invokes WriteQuorum(v,msg) method when node v requests
to access a write quorum. Similar to ReadQuorum(v,msg), node v first sends
msg to every node in Qw(v). If any node v′ is down, then the protocol first finds
if there is a live ancestor of v′ (validAns(v)). Starting from validAns(v), the
protocol calls DownProbe to probe downwards.

DownProbemethod works similarly asBasicQuorums by recursively prob-
ing an available closest majority set of descendants for each parent selected in
the previous level. By adoptingDownProbemethod, Flooding protocol guar-
antees that ReadQuorum and WriteQuorum can always probe an available
quorum if at least one live read (or write) quorum exists in the network.

3.3 Analysis

We first analyze the properties of the quorum system constructed by Flooding,
then we prove the correctness and evaluate the performance of QR model.

Lemma 1. Any read quorum qr or write quorum qw constructed by Flooding

is a classis tree quorum defined in [11].

Proof. From the description of Flooding, we know that for a tree of height
h+ 1,

qr = {root} ∨ {majority of read quorums for subtrees of height h},

qw = {root} ∪ {majority of write quorums for subtrees of height h}.
From Theorem 1 in [11], the lemma follows.

Then we immediately have the following lemma.
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Lemma 2. For any two quorums q1 and q2 constructed by Flooding, where at
least one of them is a write quorum, qr ∩ qw �= ∅.

Lemma 3. For any read quorum qr(v) and write quorum qw(v) constructed by
Flooding for node v, qr(v) ⊆ qw(v).

Proof. The theorem follows from the description of Flooding. If no node fails,
the theorem holds directly since Qr(v) ⊆ Qw(v).

If a node v′ �∈ Qr(v) fails, then qr(v) = Qr(v). If v′ ∈ Qw(v), Flood-

ing detects that v′ is not accessible when it calls WriteQuorum method.
If level(q) ≥ Qr(v).level, then Flooding adds Qr(v) to qw(v) and starts to
probe v′’s substituting nodes; if level(v′) < Qr(v).level, then the level of v′’s
substituting node is at most Qr(v).level and then the protocol starts to probe
downwards. In either case, qr(v) ⊂ qw(v).

If a node v′ ∈ Qr(v) fails, then Flooding detects that v′ is not accessible
when it calls ReadQuorum or WriteQuorum method. Both methods starts
to probe v′’s substituting nodes from v′. When probing upwards, v′’s ancestors
are visited. If a live ancestor(v′) is found, then both methods add ancestor(v′) to
the quorum. Then ReadQuorum stops and WriteQuorum continues probing
downwards from ancestor(v′). The theorem follows.

With the help of Lemmas 2, we have the following theorem.

Theorem 1. QR model provides 1-copy equivalence for all objects.

Proof. We first prove that for any object o, if at time t, no transaction request-
ing o is propagating its change to o (i.e., in the commit operation), then all
transactions accessing o at t get the same copy of o.

Note that if any committed transaction writes to o before t, there exists
a write quorum qw such that {∀v ∈ qw} ∧ {∀v′ �∈ qw}, data(o, v).version >
data(o, v′).version. If any transaction T accesses o at time t, it collects a set of
copies from a read quorum qr. From Lemma 2, ∃v ∈ {qw∩qr} such that data(o, v)
is collected by T . Note that read and write operations select the object copy with
the highest version number. Hence, for any transaction T , data(o, v) is selected
as the latest copy.

We now prove that for any object o, if at time t: 1) a transaction T is propa-
gating its change to o; and 2) another transaction T ′ accesses a read quorum qr
before T ’s change propagates to qr, then T ′ will never commit.

Note that in this case, T ′ reads a stale version oT ′ of o. When it requests to
commit (if it is not aborted before that), it sends the request to a write quorum
qw. Then ∃v ∈ qw, such that: 1) T ’s change of o still has not propagated to v
and data(o, v).protected = true; or 2) T ’s change has been applied to data(o, v)
and data(o, v).version > oT .version. In either case, T is aborted by Conflict-

Detect method.
As the result, at any time, the system exhibits that only one copy exists

for any object and transactions observing an inconsistent state of object never
commit. The theorem follows.
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With the help of Lemma 3 and Theorem 1, we can prove that QR model
provides one-copy serializability [14].

Theorem 2. QR model implements one-copy serializability.

QR model provides five operations and every operation incurs a remote com-
munication cost. We now analyze the communication cost of each operation.

Theorem 3. If a live read quorum qr(v) exists, the communication cost of a
read or write operation that starts at node v is O(k ·d(v, qr(v))) for k ≥ 1, where
k is the number of nodes failed in the system. Specifically, if no node fails, the
communication cost is O(d(v,Qr(v))).

Proof. For a read or write operation, the transaction callsReadQuorummethod
to collect the latest value of the object from a read quorum. If no node fails,
the communication cost is 2d(v,Qr(v)). If a node v′ ∈ Qr(v) fails, the trans-
action needs to probe v′’s substituting nodes to construct a new read quo-
rum. The time for v to restart the probing is at most 2d(v,Qr(v)). Note that
∀qr(v), d(v,Qr(v)) ≤ d(v, qr(v)).

In the worst case, if k nodes fail and v detects only one failed node at each it
accesses a read quorum, at most k rounds of probing are needed for v to detect
a live read quorum. On the other hand, v always starts probing from the closest
possible read quorum. Therefore for each round, the time for v to restart the
probing is at most 2d(v, qr(v)). The theorem follows.

Similar to Theorem 3, the communication cost of other three operation can be
proved in the same way.

Theorem 4. If a live write quorum qr(v) exists, the communication cost of
a request-commit, commit or abort operation that starts at node v is O(k ·
d(v, qw(v))) for k ≥ 1, where k is the number of nodes failed in the system.
Specifically, if no node fails, the communication cost is O(v,Qw(v)).

Theorems 3 and 4 illustrate the advantage of exploiting locality for QR model.
For read and write operations starting from v, the communication cost is only
related to the distance from v to its closest read quorum. If no node fails, the com-
munication cost is bounded by 2d(v,Qr(v)). Note that d(v,Qr(v)) ≤ d(v, root)
from the construction of Qr(v). On the other hand, the communication cost of
other three operations is bounded by O(v,Qw(v)). Since each transaction in-
volves at most two operations from {request-commit, commit, abort}, when the
number of read/write operations increases, the communication cost of a transac-
tion only increases proportional to d(v,Qr(v)). Compared with directory-based
protocols, the communication cost of a operation in QR model is not related to
the stretch provided by the underlying overlay tree.

When the number of failed nodes increases, the performance of each operation
degrades linearly. In QR model, it is crucial to analyze the availability of the
constructed quorum system. From the construction of the quorum system we
know that if a live quorum exists, Flooding protocol can always probe it. Let
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p be the probability that node lives and Rh be the availability of a read quorum,
i.e., at least one live read quorum exists in a tree of height h. Then we have the
following theorem.

Theorem 5. Assuming the degree of each node in the tree is at least 2d+1, the
availability of a read quorum is

Rh+1 ≥ p+ (1− p) ·
[( 2d

d+ 1

)
(Rh)

d+1(1− Rh)
d +

(
2d

d+ 2

)
(Rh)

d+2(1−Rh)
d−1

+ . . .+ (Rh)
2d(1−Rh)

]

Proof. From [11], we have

Rh =Prob{Root is up}
+ Prob{Root is down} × [Read Availability of Majority of Subtrees].

Note that in our overlay tree, if a node v at level h+ 1 is down, then one of its
descendants at h is also down for h ≥ 0, because they are mapped to the same
physical node. The theorem follows.

Similarly, let Wh be the availability of a write quorum in a tree of height h, then

Theorem 6.

Wh+1 ≥ p ·
[( 2d

d+ 1

)
(Wh)

d+1(1 −Wh)
d +

(
2d

d+ 2

)
(Wh)

d+2(1−Wh)
d−1

+ . . .+ (Wh)
2d(1−Wh)

]

Initially, R0 and W0 is p (only the root exists). Theorems 5 and 6 provide the
recurrence relations of Rh and Wh, which can be used to calculate specific tree
configurations. As the result, Flooding provides the availability similar to the
classic tree quorum system in [11].

4 Conclusion

QRmodel requires that at least one read and one write quorums live in the system.
If no live read (or write) quorum exists, Flooding protocol cannot proceed after
ReadQuorum (or WriteQuorum) operation. In this case, a reconfiguration of
the system is needed to rebuild a new overlay tree structure. Each node then runs
Flooding protocol to find their new basic read and write quorums.

QRmodel exhibits graceful degradation in a failure-prone network. In a failure-
free network, the communication cost imposedbyQRmodel is comparablewith SC
model. When failures occur, QR model continues executing operations with high
probability and reasonable higher communication cost. Such property is especially
desirable for large-scale distributed systems in the presence of failures.
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Abstract. In this paper we present first ever error-free, asynchronous
broadcast (called as A-cast) and Byzantine Agreement (called as ABA)
protocols with optimal communication complexity and fault tolerance.
Our protocols are multi-valued, meaning that they deal with � bit input
and achieve communication complexity of O(n�) bits for large enough
� for a set of n ≥ 3t + 1 parties in which at most t can be Byzantine
corrupted. Previously, Patra and Rangan (Latincrypt’10, ICITS’11) re-
ported multi-valued, communication optimal A-cast and ABA protocols
that are only probabilistically correct.

Following all the previous works on multi-valued protocols, we too
follow reduction-based approach for our protocols, meaning that our pro-
tocols are designed given existing A-cast and ABA protocols for small
message (possibly for single bit). Our reductions invoke less or equal num-
ber of instances of protocols for single bit in comparison to the reductions
of Patra and Rangan. Furthermore, our reductions run in constant ex-
pected time, in contrast to O(n) of Patra and Rangan (ICITS’11). Also
our reductions are much simpler and more elegant than their reductions.

By adapting our techniques from asynchronous settings, we present
new error-free, communication optimal reduction-based protocols for
broadcast (BC) and Byzantine Agreement (BA) in synchronous settings
that are constant-round and call for only O(n2) instances of protocols for
single bit. Prior to this, communication optimality has been achieved by
Fitzi and Hirt (PODC’06) who proposed probabilistically correct multi-
valued BC and BA protocols with constant-round and O(n(n + κ)) (κ
is the error parameter) invocations to the single bit protocols. Recently,
Liang and Vaidya (PODC’11) achieved the same without error prob-
ability. However, their reduction calls for round complexity and num-
ber of instances that are function of the message size, O(

√
� + n2) and

O(n2
√

� + n4), respectively where � = Ω(n6).
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1 Introduction

The problem of Broadcast (BC) and Byzantine Agreement (BA) (also popu-
larly known as consensus) were introduced in [PSL80] and since then they have
been considered as the most fundamental problems in distributed computing.
In brief, a BC protocol allows a special party among a set of parties, called
sender, to send some message identically to all other parties. The challenge lies
in achieving the above task despite the presence of some faulty parties (possibly
including the sender), who may deviate from the protocol arbitrarily. The BA
primitive is slightly different from BC. A BA protocol allows a set of parties,
each holding some input bit, to agree on a common bit, even though some of
the parties may act maliciously in order to make the honest parties disagree.
The BC and BA primitives have been used as building blocks in several im-
portant secure distributed computing tasks such as Secure Multiparty Com-
putation (MPC) [BOGW88, BKR94, RBO89], Verifiable Secret Sharing (VSS)
[CGMA85, BOGW88, RBO89] etc.

An important, practically motivated variant of BC and BA problem are
asynchronous broadcast (known as A-cast) and asynchronous BA (known as
ABA) that study the conventional BC and BA problems in asynchronous net-
work settings. It is well-known that asynchronous network setting is consid-
ered to be more realistic than synchronous network setting. The works of
[BO83, Rab83, Bra84],[FM88, CR93, Can95, ADH08, PW92, PR11] have re-
ported different A-cast and ABA protocols. In this paper, we focus on the com-
munication complexity of error-free A-cast and ABA protocols and present first
ever optimal protocols.

The Model. We follow the standard network model of [PSL80] for synchronous
network and [CR93, Can95] for asynchronous network. Our A-cast, ABA, BC
and BA protocols are carried out among a set of n parties, say P = {P1, . . . , Pn},
where every two parties are directly connected by an authenticated and secure
channel and at most t out of the n parties can be under the influence of a
computationally unbounded Byzantine adversary, denoted as At. The adversary
corrupts the parties adaptively at any point during the course of the protocol
execution and the choice may base on the information gathered so far by the
adversary. We assume that n = 3t + 1 which is the minimum number of parties
required to design error-free A-cast, ABA, BC and BA protocols [Lyn96, PSL80].
The parties not under the influence of At are called honest or uncorrupted.

We do not make any cryptographic assumptions such as public key infrastruc-
ture (PKI) etc in our protocols. All our protocols are randomized.

Definitions. We now define A-cast and ABA formally.

Definition 11 (A-cast [Can95]). Let Π be an asynchronous protocol executed
among the set of parties P and initiated by a special party called sender S ∈ P,
having input m (the message to be sent). Π is an A-cast protocol tolerating At

if the following hold, for every behavior of At and every input m:
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– Termination: If S is honest, then all honest parties in P will eventually
terminate Π. If any honest party terminates Π, then all other honest parties
will eventually terminate Π.

– Correctness: If the honest parties terminate Π, then they do so with a
common output m�. Furthermore, if the sender S is honest then m� = m.

Definition 12 (ABA [CR93]). Let Π be an asynchronous protocol executed
among the set of parties P, with each party having a private binary input. We
say that Π is an ABA protocol tolerating At if the following hold, for every
possible behavior of At and every possible input:

– Termination: All honest parties eventually terminate the protocol.
– Correctness: All honest parties who have terminated the protocol hold iden-

tical outputs. Furthermore, if all honest parties had same input, say ρ, then
all honest parties output ρ.

The celebrated result of [FLP85] shows that any ABA protocol that never reaches
disagreement must have some nonterminating executions. For a protocol that
never reaches disagreement, the best we can hope for is that the set of nonter-
minating executions has probability zero. Such protocols are termed as almost-
surely terminating by [ADH08]. In this work, we construct ABA protocol that
is almost-surely terminating and has no error in correctness. The important
complexity measures of A-cast and ABA protocol are: Communication Com-
plexity: It is the total number of bits communicated by the honest parties in
the protocol; Expected Running Time: Refer to [CR93, Can95] for a detailed
definition of expected running time of a randomized asynchronous protocol.

While the basic definitions of A-cast and ABA consider message of single bit,
multi-valued protocols allow message to be long string of bits and exploit the
fact that the task is to be attained for the entire string and not bit by bit. This
fact generally allows a multi-valued protocol to be considerably more efficient
than many parallel executions of protocol for single bit.

Brief Literature. Error-free BC and BA protocol in synchronous network are
possible if and only if n ≥ 3t + 1 [PSL80, Lyn96]. The same bound holds for
A-cast and ABA both with and without error probability [Lyn96]. The seminal
result of [DR85] shows that any error-free BA or BC must communicate Ω(n2)
bits (which again carry over for the case of A-cast and ABA). Since the message
must be at least single bit, the lower bound on the communication complexity
for single bit is Ω(n2) bits. However, communication complexity of O(n�) bits
can be achieved for large enough value of � (at least � ≥ n bits) as shown in
[FH06]. Requiring large value for � is practically motivated in many distributed
computing applications, like reaching agreement on a large file in fault-tolerant
distributed storage system, distributed voting where ballots containing gigabytes
of data is to be handled, MPC where many broadcasts and agreements are
invoked which can be combined into fewer executions of multi-valued protocols.

Following the approach of Turpin and Coan [TC84], all the subsequent multi-
valued protocols apply reduction-based approach [FH06, LV11, PR11, PR10],
meaning that they are constructed based on access to protocols for small message
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or single bit message. The reductions presented in [FH06, LV11] for synchronous
settings and in [PR11, PR10] for asynchronous settings achieve optimal communi-
cation complexity of O(n�) bits. While the reduction presented in [FH06] involves
error probability, the reduction of [LV11] is error-free. In the asynchronous set-
tings, [PR11, PR10] reported multi-valued protocols with error probability.

Our Contribution. We achieve optimal complexity of O(n�) bits for error-
free A-cast and ABA with optimal fault-tolerance of t < n/3. We too follow
reduction-based approach of [TC84]. We now compare our reductions with that
of [PR10, PR11] and show that our reductions are better in all the following as-
pects: (a) error-free, (b) running time and (c) number of invocations to protocols
for single bit. All the protocols have optimal fault tolerance of t < n/3.

Ref. Type Running Time # Invocations to single bit protocol

[PR10], A-cast Probabilistic constant O(n2 log n) A-cast
[PR11], ABA Probabilistic O(n) O(n3) ABA

This paper, A-cast Error-free constant O(n2 log n) A-cast
This paper, ABA Error-free constant O(n) ABA

We now compare our results with the current best error-free A-cast and ABA
for single bit. The only error-free A-cast is due to [Bra84] that communicates
O(n2) bits and runs in constant time. Similarly, the only error-free ABA is due
to [ADH08] that runs in O(n2) time and requires communication of O(n8 logn)
bits and A-cast of same number of bits. Our protocols in this paper show clear
improvement over � executions of these protocols for large enough �.

Technically, our reductions are simple and are based on linear error correcting
code (e.g. Reed-Solomon Code) and a graph theoretic algorithm for finding some
special structure (called (n, t)-star; defined in Section 2) in undirected graph
[CR93, Can95]. While the existing reductions for multi-valued protocols [PR11,
LV11] are constructed in player-elimination [HMP00] or dispute control [BTH06]
framework, our reductions do not require them and therefore they are more
elegant. Finally, we note that the multi-valued A-cast protocol of [PR10] also
employs the algorithm for finding (n, t)-star [CR93, Can95]. However, we mark
an important and crucial observation about the outcome of the algorithm in our
context that allows to construct our protocol in an error-free manner.

Finally, we discuss our results in synchronous settings. By adapting our tech-
niques from asynchronous settings, we present new error-free reduction that is
constant-round and calls for O(n2) instances of protocols for single bit. We now
compare our result with the communication optimal reductions of [FH06, LV11].

Ref. Type Fault Round # Invocations
Tolerance Complexity to single bit protocol

[FH06] Probabilistic t < n/2 constant O(n(n + κ))

[LV11] Error-free t < n/3 O(
√

� + n2) O(n2
√

� + n4)

This paper Error-free t < n/3 constant O(n2)

Road-map. In section 2 and 3, we present our construction for A-cast and
ABA respectively. We present our BA and BC protocols in Section 4 and then
conclude in Section 5.
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2 Error-free Communication Optimal A-cast

Here we present our A-cast protocol. We start with brief presentation of the
tools that we use: (a) A-cast protocol of Bracha [Bra84]; (b) An algorithm for
finding a graphical structure called (n, t)-star in an undirected graph; (c) Linear
Error Correcting Code. We discuss them one by one.

Bracha’s A-cast. The first ever protocol for A-cast is due to Bracha [Bra84]
(a good description is available in [Can95]). The protocol is error-free, runs with
n ≥ 3t+1 in constant time and communicates O(n2) bits for a single bit message.
Notation 21. By saying that ‘Pi A-casts M ’, we mean that Pi as a sender,
initiates Bracha’s A-cast protocol with M as the message. Similarly ‘Pj receives
M from the A-cast of Pi’ will mean that Pj terminates the A-cast protocol ini-
tiated by Pi and outputs M . By the property of A-cast, if some honest party Pj

terminates the A-cast of some sender Pi with M as the output, then every other
honest party will eventually do so, irrespective of the behavior of the sender Pi.

Finding (n, t)-star in an Undirected Graph. We now describe an existing
solution for a graph theoretic problem, called finding (n, t)-star in an undirected
graph G = (V,E). Let G be an undirected graph with the n parties in P as
its vertex set. A pair (C,D) of sets with C ⊆ D ⊆ P is an (n, t)-star [Can95,
BOCG93] in G, if: (i) |C| ≥ n − 2t; (ii) |D| ≥ n − t; (iii) for every Pj ∈ C and
every Pk ∈ D the edge (Pj , Pk) exists in G.

Following the idea of [GJ79], [BOCG93] presented an elegant and efficient
algorithm for finding an (n, t)-star in a graph of n nodes, provided that the
graph contains a clique of size n−t. Actually, the algorithm, called as Find-STAR
takes the complementary graph G of G as input and tries to find (n, t)-star in G,
where (n, t)-star is a pair (C,D) of sets with C ⊆ D ⊆ P , satisfying the following
conditions: (a) |C| ≥ n − 2t; (b) |D| ≥ n − t; (c) There are no edges between
the nodes in C and nodes in C ∪ D in G. Clearly, a pair (C,D) representing an
(n, t)-star in G, is an (n, t)-star in G. Find-STAR outputs either an (n, t)-star, or a
message star-Not-Found. Whenever the input graph G contains an independent
set of size n − t, Find-STAR always outputs an (n, t)-star. For simple notation,
we denote G by H . The algorithm Find-STAR is presented below:

Algorithm Find-STAR(𝐻)

1. Find a maximum matching 𝑀 in 𝐻. Let 𝑁 be the set of matched nodes (namely,
the endpoints of the edges in 𝑀), and let 𝑁 = 𝒫 ∖𝑁 .

2. Compute output as follows:
(a) Let 𝑇 = {𝑃𝑖 ∈ 𝑁 ∣∃𝑃𝑗 , 𝑃𝑘 s.t (𝑃𝑗 , 𝑃𝑘) ∈ 𝑀 and (𝑃𝑖, 𝑃𝑗), (𝑃𝑖, 𝑃𝑘) ∈ 𝐸}. 𝑇 is

called the set of triangle-heads. Let 𝒞 = 𝑁 ∖ 𝑇 .
(b) Let 𝐵 be the set of matched nodes that have neighbors in 𝒞. So 𝐵 = {𝑃𝑗 ∈

𝑁 ∣∃𝑃𝑖 ∈ 𝒞 s. t. (𝑃𝑖, 𝑃𝑗) ∈ 𝐸}. Let 𝒟 = 𝒫 ∖𝐵.
(c) If ∣𝒞∣ ≥ 𝑛 − 2𝑡 and ∣𝒟∣ ≥ 𝑛 − 𝑡, output (𝒞,𝒟). Otherwise, output

star-Not-Found.
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Linear Error Correcting Code. We use Reed-Solomon (RS) codes in our
protocols. We consider an (n, t + 1) RS code in Galois Field F = GF (2c), where
n ≤ 2c. Each element of F is represented by c bits. An (n, t+1) RS code encodes
t+1 elements of F into a codeword consisting of n elements from F. We denote the
encoding function as ENC() and the corresponding decoding function as DEC().
Let m0,m1, . . . ,mt be the input to ENC, then ENC computes a codeword of
length n, (s1, . . . , sn), as follows: It constructs a polynomial of degree-t, f(x) =
m0 +m1x+ . . .+mtx

t. It then computes si = f(i). We use the following syntax
for ENC: (s1, s2, . . . , sn) = ENC(m0,m1, . . . ,mt). Each element of the codeword
is computed as a linear combination of the t + 1 input data elements, such that
every subset of (t+1) elements from the codeword uniquely determine the input
data elements. Similarly, knowledge of any t + 1 elements from the codeword
suffices to determine the remaining elements of the codeword.

The decoding function DEC can be applied as long as t + 1 elements from a
codeword are available. A RS code is capable of error correction and detection.
The task of error correction is to find the error locations and error values in
a received vector. On the other hand, error detection means an indication that
errors have occurred, without attempting to correct them. We recall the following
well known result from coding theory. DEC can correct up to c Byzantine error
and simultaneously detect up to additional d Byzantine errors in a vector of
length N (where N ≤ n) if and only if N − t − 1 ≥ 2c + d. In our protocols, we
may invoke DEC on a vector of length N ≤ n with specific value of c and d. If
c, d and N satisfy the above relation, then DEC returns back the correct data
elements corresponding to the vector; otherwise DEC returns ‘failure’.

2.1 Multi-valued A-cast Protocol

With the above tools, we are now ready to present our multi-valued A-cast
protocol, called Multi-Valued-Acast. We assume that the sender S has a message
m containing � bits that he would like to communicate to all the parties in P
identically. Our protocol is structured into two phases, (a) S-dependent Phase
and (b) S-independent Phase. In the S-dependent phase, S proves that it has
communicated the same message to at least a set of 2t+1 parties, say CORE. The
S-dependent phase, as the name suggests, demands S to perform some special
roles. For an honest S, this phase will always be completed successfully. However,
a corrupted S may choose not to perform his actions and therefore this phase may
not be terminated for a corrupted S. The second phase, called S-independent
phase is initiated upon completion of the first phase. If S successfully proves the
existence of some CORE in the first phase, then the parties in CORE propagate
their common message to the remaining parties without any help from S.

In the first phase, S communicates his message m to every party over private
channel. Upon receiving a message from S, a party applies ENC on the message
to get a codeword and communicates elements of the codeword to different party.
Intuitively, the parties here check if they received the same message from S. They
A-cast [Bra84] their responses. Based on the response of the parties, a consistency
graph is constructed by the parties individually. S now finds a special structure
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in the graph, namely a quadruple (C,D,F , E) such that (C,D) is an (n, t)-star ,
|F| ≥ 2t+1 and every party in F has at least t+1 neighbors in C, |E| ≥ 2t+1 and
every party in E has at least 2t+ 1 neighbors in F . Such a quadruple essentially
proves that there is a set of at least 2t+1 parties, CORE (same as E), to whom
S indeed communicated same message. On finding such a quadruple, S A-casts
the same and all other parties can verify if indeed such quadruple exists in their
individual graph. In this process, all the (honest) parties agree on CORE and
proceed to second phase. The algorithm for finding (n, t)-star and an important
observation are combined intelligibly in order to find a quadruple in a graph.
The observation is that if S is honest then eventually, the set C of an (n, t)-
star will contain at least t+1 honest parties and when it happens, F and E can
be computed such that a valid quadruple can be formed. In the second phase, the
parties use error correction and detection of RS code to compute and agree on
the common message of the parties in CORE. We present the protocol in Figure
1 and Figure 2 and subsequently prove the properties.

Lemma 22. The honest parties in CORE hold same message of length �. If S
is honest then the message is S’s message.

Proof. The set CORE is the E component of a quadruple (C,D,F , E). We start
with proving that the honest parties in C hold the same message of length �.
We recall that D contains at least t + 1 honest parties and every Pi ∈ C is
neighbor of every party in D. Let {Pi1 , . . . , Piα} be the set of α honest parties
in D, where α ≥ t + 1. Then for every Pi in C, siik

is same as sikik
of all

k = [1, α]. Therefore the codewords corresponding to the messages of the honest
parties in C are same at least at t + 1 locations corresponding to the identities
of the honest parties in D. Since the codewords belong to (n, t+1) RS code, the
messages of the honest parties in C are same. Let the common message be m,
|m| = �. Let (s1, . . . , sn) = ENC(m0,m1, . . . ,mt), where m = m0|m1| . . . , |mt.
Now we show that every honest party Pi ∈ F holds si. Recall that Pi has at
least t + 1 neighbors in C in which at least one is honest, say Pj . This implies
that sii of Pi is same as sji of Pj . However, sji = si, since Pj holds m. Hence
sii = si. Therefore every honest Pi in F holds si which is same as sii. Finally,
we show that every honest Pi ∈ E holds m. Recall that Pi has at least 2t + 1
neighbors in F in which at least t + 1 are honest. Let {Pi1 , . . . , Piα} be the set
of α honest parties in F , where α ≥ t + 1. Then siik

of Pi is same as sikik
of

every honest Pik
for k = [1, α]. Now sikik

of Pik
is same as sik

. Therefore the
codeword corresponding to the message of Pi ∈ E matches with (s1, . . . , sn) at
least at t + 1 locations corresponding to the identities of the honest parties in
F . This implies the codeword of Pi is identical to (s1, . . . , sn), since they belong
to (n, t + 1) RS code. Hence Pi ∈ E holds m. This completes the proof for the
first part of the lemma. The second part of the lemma is easy to prove. �

To prove the lemma below, we will show that when S is honest then eventually
an (n, t)-star can be found such that the set C will contain at least t + 1 honest
parties. This observation is very crucial and is at the heart of our protocol.
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Protocol Multi-Valued-Acast(S,m)
S-dependent Phase:

Code for S.
1. S sends his message m to every Pi.

Code for every Pi including S.
1. On receiving message mi, divide the � bit message mi into t + 1 blocks,

mi0, . . . , mit, each containing �
t+1

(assume this to be an integer for simplicity)
bits. Compute (si1, . . . , sin) = ENC(mi0, . . . , mit).

2. Send sii to every party. Send sij to Pj for j = [1, n].
3. On receiving sjj and sji from Pj , A-cast OK(Pi, Pj) if sjj = sij and sji = sii.
4. Construct a graph Gi with the parties in P as the vertices. Add an edge

(Pj , Pk) in Gi if OK(Pj , Pk) and OK(Pk, Pj) are received from the A-cast of Pj

and Pk respectively.
Code for S.

1. Upon every new receipt of some OK(∗, ∗), update GS. If a new edge is added
to GS , then execute Find-STAR(GS). Let there are α ≥ 0 distinct (n, t)-stars
that are found in the past from different executions of Find-STAR(GS).
(a) Now if an (n, t)-star is found from the current execution of Find-STAR(GS)

that is distinct from all the α (n, t)-star obtained before, do the following:
i. Call the new (n, t)-star as (Cα+1,Dα+1).
ii. Create a list Fα+1 as follows: Add Pj to Fα+1 if Pj has at least t + 1

neighbors in Cα+1 in GS.
iii. Create a list Eα+1 as follows: Add Pj to Eα+1 if Pj has at least 2t + 1

neighbors in Fα+1 in GS .
iv. For every γ, with γ = 1, . . . , α update Fγ and Eγ :

A. Add Pj to Fγ , if Pj �∈ Fγ and Pj has at least t + 1 neighbors in Cγ

in GS .
B. Add Pj to Eγ , if Pj �∈ Eγ and Pj has at least 2t + 1 neighbors in

Fγ in GS .
(b) If no (n, t)-star is found or an (n, t)-star that has been already found in

the past is obtained, then update existing Fγ ’s and Eγ ’s.
(c) Now let (Eβ,Fβ) be the first pair such that |Eβ| ≥ 2t+1 and |Fβ | ≥ 2t+1

Assign CORE = Eβ and A-cast (Cβ,Dβ , Eβ,Fβ).
Code for Pi including S.

1. Assign CORE = Eβ, when all the following events occur: (a) (Cβ,Dβ , Eβ,Fβ)
is received from the A-cast of S; (b) (Cβ,Dβ) becomes a valid (n, t)-star in
Gi; (c) every party Pj ∈ Fβ has at least t + 1 neighbors in Cβ in Gi; and (d)
every party Pj ∈ Eβ has at least 2t + 1 neighbors in Fβ in Gi.

Fig. 1. Error-free Communication Optimal A-cast

Lemma 23. If S is honest, then all the parties terminate S-dependent Phase,
after agreeing on CORE.

Proof. If S is honest, then he sends same message m to all the parties. Therefore,
all honest parties generate same codeword, (s1, . . . , sn) = ENC(m0, . . . ,mt), such
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S-independent Phase:

Code for Pi including S.
1. If CORE is constructed and Pi ∈ CORE, then assign si = sii.
2. If CORE is constructed and Pi �∈ CORE, then assign si to be the value sji

that is received from at least t + 1 Pj ’s in CORE.
3. Send si to all the parties.
4. On receiving 2t + 1 + r, r ≥ 0, sj ’s apply DEC with c = r and d = t − r, if

DEC returns ‘failure’, then wait for more values. If DEC returns data elements
m0, . . . , mt, then output m = m0|m1| . . . |mt, where | denotes concatenation.

Fig. 2. Error-free Communication Optimal A-cast

that m = m0|m1| . . . |mt. Therefore eventually there will be an edge between
every pair of honest parties. This implies that there will be a clique of size
at least 2t + 1 eventually. This guarantees that S will eventually find at least
one (n, t)-star in GS . Now we show that S will eventually find a quadruple
(C,D,F , E) such that (C,D) is an (n, t)-star and every party in F has at least
t + 1 neighbors in C and every party in E has at least 2t + 1 neighbors in
F . To prove this we start with proving that an honest S will eventually find
an (n, t)-star such that the set C will contain at least t + 1 honest parties.
For an honest S, eventually the edges between each pair of honest parties will
vanish from the complementary graph GS . So the edges in GS will be either
(a) between an honest and a corrupted party OR (b) between two corrupted
parties. Let β be the first index, such that (n, t)-star (Cβ ,Dβ) is generated in
GS , when GS contains edges of above two types only. Now, by construction of Cβ

(see Algorithm Find-STAR), it excludes the parties in N (set of parties that are
endpoints of the edges of maximum matching M) and T (set of parties that are
triangle-heads). An honest Pi belonging to N implies that (Pi, Pj) ∈ M for some
Pj and hence Pj is corrupted (as the current GS does not have edge between
two honest parties). Similarly, an honest party Pi belonging to T implies that
there is some (Pj , Pk) ∈ M such that (Pi, Pj) and (Pj , Pk) are edges in GS . This
clearly implies that both Pj and Pk are surely corrupted. So for every honest Pi

not in Cβ, at least one (if Pi belongs to N , then one; if Pi belongs to T , then
two) corrupted party also remains outside Cβ . As there are at most t corrupted
parties, Cβ may exclude at most t honest parties. Still Cβ is bound to contain at
least t + 1 honest parties.

Now all honest parties will be neighbors of the t + 1 honest parties in Cβ in
GS . Therefore Fβ will eventually contain all the honest parties. Finally since
all honest parties are neighbors of each other, Eβ will contain all honest parties
eventually and therefore it is guaranteed to contain at least 2t+1 parties. Hence
we proved that S can find a quadruple (C,D,F , E) with the required properties.
S now A-casts the quadruple.
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We now argue that every honest party will find (C,D,F , E) in their graphs
and agree on the same. Though the graphs are constructed and maintained by
parties individually in their local memory, it is always guaranteed that if an edge
appears in the graph of an honest party, then the edge will eventually appear
in the graphs of the other honest parties. This is ensured since the graphs are
updated based on the responses of the parties that are A-casted. It now follows
that if some honest party agree on CORE, then eventually all honest parties will
also agree on the same. So we proved that all the honest parties will terminate
S-dependent Phase, after agreeing on CORE = E . �

Lemma 24. If the honest parties initiate S-independent Phase, then they
terminate the phase with the common message of the parties in CORE as output.

Proof. An honest party initiates S-independent Phase, if he agrees on CORE.
By Lemma 22, all the honest parties in CORE hold common message, say m
of length � and therefore same codeword (s1, . . . , sn) = ENC(m0,m1, . . . ,mt),
where m = m0|m1| . . . , |mt. Then every honest Pi in CORE already holds si,
the ith element in the codeword. Every party Pi not in CORE would receive si

from the t+1 honest parties of CORE. Therefore every honest Pi will eventually
hold the ith component of the codeword. Now every Pi send his si to every other
party. Now on receiving at least 2t+ 1 + r, 0 ≤ r ≤ t sj ’s, party Pi applies DEC
with c = r and d = t−r. Note that c+d = t, where t is the maximum number of
corruption. Therefore if there are more than r wrong values (sent by Byzantine
corrupted parties), DEC will return ‘failure’. However for at least one value of
r, 0 ≤ r ≤ t, there will be at most r errors in the received vector and then
the message can be reconstructed back successfully. This technique has been
previously used in [CR93, Can95]. They call it as Online Error Correction. �

Theorem 21. Multi-Valued-Acast is an A-cast protocol satisfying Definition 11.

Proof. We first consider the case of an honest S. By Lemma 23, for an honest
S all the parties terminate S-dependent Phase, after agreeing on CORE. By
Lemma 22, the honest parties in CORE hold the message of S, i.e. m. By Lemma
24, all honest parties will terminate with the common message m.

For a corrupted S, all we need to show is that if some honest party terminates
with message m�, then every other honest party do the same. Let Pi be the first
honest party to terminate the protocol with m� as output. Then Pi must have
agreed on CORE and the parties in CORE holds m�. Then every other honest
party will agree on the same CORE and eventually terminate with m� as the
output (by Lemma 24). �

Theorem 22. Multi-Valued-Acast communicates O(n�) bits and invokes
O(n2 log n) A-cast protocol for single bit.

Proof. S communicates his message m, |m| = � to all the parties. This requires
n� bits of communication. Every party Pi sends two values sii and sij to every
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other party Pj . The values are �
t+1 bits long each. Therefore in total there are

�
t+1O(n2) = O(n�) bits of communication.

S A-casts (C,D,F , E). Each set in the quadruple can be represented by an n
length bit vector. Therefore 4n invocations to A-cast protocol for single bit are
required. Finally every party may A-cast OK signal for every other party. Each
OK signal includes identities of two parties that can be represented by 2 logn
bits. Therefore O(n2 logn) invocations to A-cast for single bit are required. �

We note that for an (n, t + 1) RS code, the field F = GF (2c) in which the code
is defined should satisfy n ≤ 2c or logn ≤ c . In our case c = �

t+1 (recall that m

is divided into t + 1 parts each containing �
t+1 bits). Therefore �

t+1 ≥ logn →
� ≥ (t + 1) logn.

3 Error-free Communication Optimal ABA

In this section, we present our ABA protocol. We use our multi-valued A-cast
protocol Multi-Valued-Acast from the previous section as one of the sub-protocols.
Similar to Multi-Valued-Acast that uses A-cast protocol for single bit, our new
ABA uses existing error-free ABA for single bit as another sub-protocol. In fact
we use a very well-known asynchronous primitive called Agreement on Common
Subset (ACS) introduced by [BKR94] that uses ABA for single bit as black
box. We recall that the only error-free ABA is due to [ADH08]. We will use the
following notation for invoking Multi-Valued-Acast.

Notation 31. By saying that ‘Pi Multi-casts M ’, we mean that Pi as a sender,
initiates Multi-Valued-Acast protocol with M as the message. Similarly ‘Pj re-
ceives M from the Multi-cast of Pi’ will mean that Pj terminates the execution
of Multi-Valued-Acast protocol initiated by Pi and outputs M . By the property of
Multi-Valued-Acast, if some honest party Pj terminates the Multi-Valued-Acast
protocol of some sender Pi with M as the output, then every other honest party
will eventually do so, irrespective of the behavior of the sender Pi.

Agreement on a Common Subset (ACS). Consider the following scenario.
The parties in P are asked to A-cast (or Multi-cast) some value. While the honest
parties in P will eventually execute the A-cast (Multi-cast), the corrupted parties
may or may not do the same. So the (honest) parties in P want to agree on a
common set T ⊂ P , with |T | = 2t + 1, such that A-cast (Multi-cast) of each
party in T will be eventually terminated by the (honest) parties in P . For this,
the parties use ACS primitive presented in [BKR94]. The ACS protocol uses n
instances of ABA for single bit.

3.1 Multi-valued ABA Protocol

Given the above sub-protocols, our ABA is very simple. Every party Pi on
having a message mi of length �, computes an n length codeword (si1, . . . , sin) =
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ENC(mi0, . . . ,mit) where mi0| . . . |mit. Pi Multi-casts sii. Using ACS, the parties
then agree on some subset of 2t + 1 parties, say X whose Multi-casts will be
terminated eventually. Every party then verifies if the values Multi-casted by
the parties in X match with their corresponding elements of the codeword and
then A-cast their response. The parties again agree on some subset of 2t + 1
parties using ACS, say Y. Based on the responses of the parties in Y and the
values Multi-casted by the parties in X , the agreement is reached. Note that
we use Multi-cast for the elements of the codewords (i.e. sii’s) and A-cast for
the responses. The reason is that sii’s are message dependent and therefore can
be arbitrarily large. Therefore by appropriately setting the value of �, we can
implement Multi-casting of sii values in O(n�) overall complexity. However, we
will see from the protocol given below, the response vector will be always n length
bit vector. Therefore, using Multi-cast for this case will worsen the complexity,
as compared to the case when A-cast of Bracha is used for the same purpose. The
protocol is now presented in Figure 3 and its properties are proved subsequently.

Protocol Multi-Valued-ABA()

Code for Pi.
1. On having message mi, divide the � bit message mi into t + 1 blocks,

mi0, . . . , mit, each containing �
t+1

(assume this to be an integer) bits. Compute
(si1, . . . , sin) = ENC(mi0, . . . , mit). Multi-cast sii.

2. Participate in an instance of ACS to agree on X containing 2t+1 parties whose
Multi-casts will be eventually terminated by all honest parties.

3. Construct a binary vector Vi of length n. Assign Vi[j] = 1, if Pj ∈ X and
sij = sjj where sjj is received from the Multi-cast of Pj . Otherwise assign
Vi[j] = 0. A-cast Vi.

4. Participate in an instance of ACS to agree on Y containing 2t+1 parties whose
A-casts will be terminated eventually by all honest parties.

5. Check if there are at least t + 1 parties in Y, whose vectors are identical
and have at least t + 1 1’s. Let {i1, . . . , ii+1} ⊆ X be the t + 1 minimum
indices where they all have 1’s. If there is no such set of t + 1 parties in Y,
then {i1, . . . , ii+1} be the t + 1 minimum indices in X . Then apply DEC on
si1,i1 , . . . , sit+1it+1 and let m0, m1, . . . , mt be the data returned by DEC. Then
output m = m0| . . . |mt.

Fig. 3. Error-free Communication Optimal ABA

Theorem 31. Protocol Multi-Valued-ABA is an ABA protocol.

Proof. The termination is guaranteed due to the termination properties of Multi-
Valued-Acast, A-cast protocol of Bracha [Bra84] and ACS (the termination of
ACS is guaranteed due to the termination of the underlying ABA for single bit).
Since Multi-Valued-Acast initiated by the honest parties will eventually termi-
nate, the set X will be agreed among the parties by the termination of ACS.
Similarly, since A-cast (of Bracha) initiated by the honest parties will eventually
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terminate, the set Y will be agreed among the parties by the termination of ACS.
Once X and Y are agreed, the rest is local computation. Therefore termination
of Multi-Valued-ABA is guaranteed.

We now argue about the correctness of Multi-Valued-ABA. First we show that
all the honest parties will agree on the same message. This follows from the
fact that all the honest parties agree on {i1, . . . , it+1} ⊆ X in the last step of
the protocol. Furthermore, by the correctness property of Multi-Valued-Acast,
all the honest parties also agree on the values Multi-casted by the parties in
{Pi1 , . . . , Pit+1}. Our claim now follows trivially. We now consider the case when
all the honest parties start with same input message m of length � and argue
that all honest parties will agree on m eventually. If all the honest parties start
with m, then they generate (s1, . . . , sn) = ENC(m0, . . . ,mt) locally, where m =
m0| . . . |mt. Every honest party Pi then Multi-casts si. By the property of Multi-
Valued-Acast, all the parties will receive the same value Multi-casted by the
parties in X . Therefore the honest parties in Y will have identical Vi vectors.
Furthermore the Vi vectors will have 1’s at least at t+1 locations corresponding to
the parties in X who Multi-casted correct value from the codeword (s1, . . . , sn).
So {i1, . . . , it+1} ⊆ X in the last step of the above protocol will be t+1 identities
of the parties in X (having t+1 minimum indices) who Multi-casted correct value
from codeword (s1, . . . , sn). So DEC when applied on the values Multi-casted by
{Pi1 , . . . , Pit+1} will return m0,m1, . . . ,mt where m = m0| . . . |mt. �

Theorem 32. Multi-Valued-ABA communicates O(n�) bits, invokes O(n3 logn)
instances of A-cast for single bit and invokes 2n instances of ABA for single bit.

Proof. Every party Multi-casts �
t+1 bits. This requires communication of O(n�)

bits and O(n3 logn) invocations to A-cast for single bit. Then every party A-
casts an n length bit vector. Therefore n2 invocations to A-cast is required.
Finally two invocations to ACS calls for 2n instances of ABA for single bit. �

To make the underlying protocol Multi-Valued-Acast work correctly, we require
�

t+1 ≥ (t+1) logn. Recall that when the input message size for Multi-Valued-Acast
is �, then we require that � ≥ (t+1) logn. In our ABA protocol, the input to Multi-
valued-Acast is �

t+1 . Therefore we have �
t+1 ≥ (t + 1) logn → � ≥ (t + 1)2 logn.

4 Error-free Communication Optimal BA and BC

Here we present our new multi-valued BA and BC protocol. We first present a BA
protocol. A BC protocol with same complexity of the BA protocol can be achieve
by letting the sender send the message to all the parties and then running a BA
to reach agreement. This is the standard reduction in synchronous settings from
BA to BC [Lyn96]. Our BA protocol follows the idea of Multi-Valued-Acast. We
use the BC protocol of [BGP09, CW92] for single bit that communicates O(n2)
bits. We now present the protocol in Figure 4.
Lemma 41. The honest parties in CORE hold same message of length �.

The proof of Lemma 41 completely follows from the proof of Lemma 22.
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Protocol Multi-Valued-BA()

Code for Pi.
1. On having message mi, divide the � bit message mi into t + 1

blocks, mi0, . . . , mit, each containing �
t+1

bits. Compute (si1, . . . , sin) =
ENC(mi0, . . . , mit). Send sii to every party. Send sij to Pj for j = [1, n].

2. Construct a binary vector Vi of length n. Assign Vi[j] = 1, if sij = sjj and
sii = sji where sjj and sji are received from Pj . Otherwise assign Vi[j] = 0.

3. Broadcast Vi using BC protocol for single bit.
4. Construct graph Gi using parties in P as the vertices. Add edge (Pj , Pk)

if Vj [k] = 1 and Vk[j] = 1. Execute Find-STAR(Gi). If star-Not-Found is
returned, then set bi = 0. Else let (Ci,Di) be the (n, t)-star returned by Find-
STAR. Let Fi be the set of parties who have at least t + 1 neighbors in Ci in
graph Gi. Let Ei be the set of parties who have at least 2t + 1 neighbors in Fi

in graph Gi. If |Fi| ≥ 2t + 1 and |Ei| ≥ 2t + 1, then set bi = 1, else set bi = 0.
5. Broadcast only bi when bi = 0; else broadcast bi and (Ci,Di,Fi, Ei) using BC

protocol for single bit.
6. If t+1 bj ’s are zero, then agree on some predefined message m� of length �. Else

let α be the minimum index of the party where bα = 1 and (Cα,Dα,Fα, Eα)
be such that (Cα,Dα) is an (n, t)-star in Gi, every party in Fα has at least
t + 1 neighbors in Cα and every party in Eα has at least 2t + 1 neighbors in
Fα. Assign CORE = Eα.

7. Assign si to be the value sji received from the majority of the parties in
CORE. Send si to every party.

8. Let (s1, . . . , sn) be the vector where sj is received from Pj . Apply DEC on
(s1, . . . , sn) with c = t and d = 0. Let m0, m1, . . . , mt be the data returned by
DEC. Output m = m0| . . . |mt.

Fig. 4. Error-free Multi-valued BA with Optimal Communication Complexity

Lemma 42. If all honest parties start with same input m, then all the parties
will agree on CORE, |CORE| ≥ 2t + 1.

Proof. The proof here follows from the proof of Lemma 23. Briefly, when all
honest parties start with same input, every pair of honest parties will have edge
between them. In other words, the edges in the complementary graph will be ei-
ther (a) between an honest and a corrupted party OR (b) between two corrupted
parties. Therefore following the argument given in Lemma 23, C component of
an (n, t)-star will contain at least t + 1 honest parties, which subsequently will
lead to the construction of F and E with size at least 2t + 1. Although it is
not guaranteed that all honest parties find same quadruple (C,D,F , E), but it
is ensured that they will find some quadruple. So the honest parties never agree
on predefined m� in this case. Now since all the parties broadcast their quadru-
ple, it is easy to reach agreement on a valid quadruple which the parties do by
selecting the one broadcasted by the party with minimum index. Therefore all
the parties will agree on CORE. �
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Lemma 43. If CORE is agreed, all honest parties output the common message
of the parties in CORE.

Proof. By Lemma 41, all honest parties in CORE hold same message, say m.
The proof now follows from the proof of Lemma 24. �

Theorem 41. Multi-Valued-BA is a BA protocol.

Proof. If CORE is agreed, then all honest parties will output the common mes-
sage of the parties in CORE (by Lemma 43). If CORE is not agreed, then there
must be at least t+1 parties who broadcasted bi = 0. Since bi’s are broadcasted,
all honest parties will agree on predefined m� of length. So agreement is always
achieved at the end. Now if all the honest parties start with same m, then they
will agree on CORE (by Lemma 42) and output m (by Lemma 43). �

Theorem 42. Multi-valued-BA communicates O(n�) bits and invokes O(n2)
broadcast protocol for single bit.

Proof. Every party Pi sends two values sii and sij to every other party Pj . The
values are �

t+1 bits long each. Therefore in total there are �
t+1O(n2) = O(n�) bits

of communication. Every party Pi broadcasts n-length binary vector Vi, a bit bi

and quadruple (Ci,Di,Fi, Ei). Each set in the quadruple can be represented by
n-length bit vector. Therefore every party invokes 5n+ 1 instances of broadcast
for single bit. This leads to total O(n2) instances of broadcast for single bit. �

The value of � should be at least (t + 1) logn to make the underlying (n, t + 1)
RS code work (following the same logic as explained for Multi-Valued-Acast).

5 Open Problems

An important open question is to investigate whether multi-valued communi-
cation optimal protocols can be achieved with less number of invocations to
protocols for single bit in comparison to what we provide in this paper.
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Abstract. Remus is one of the first systems which implemented whole
virtual machine replication to achieve high availability (HA). Recently a
fast, lightweight migration mechanism (LLM) was proposed to reduce the
long network delay in Remus. However, these virtualized systems have
the long downtime problem, which is a bottleneck to achieve HA. Based
on LLM, in this paper, we describe a fine-grained block identification
(or FGBI) mechanism to reduce the downtime in virtualized systems
so as to achieve HA, with support for a block sharing mechanism and
hybrid compression method. We implement the FGBI mechanism and
evaluate it against LLM and Remus, using several benchmarks such as
Apache, SPECweb, NPB and SPECsys. Our experimental results reveal
that FGBI reduces the type I downtime over LLM and Remus by as
much as 77% and 45% respectively, and reduces the type II downtime
by more than 90% and more than 70%, compared with LLM and Remus
respectively. Moreover, in all cases, the performance overhead of FGBI
is less than 13%.

1 Introduction

High availability (HA) refers to a system and associated service implementa-
tion that is continuously operational for a long period of time. With respect to
the clients, an ideal system never stops working, which also means the system
will always respond to the clients’ requests. Trying to achieve high availability
is therefore one of the key concerns in modern cluster computing and failover
systems. Whole-system replication is a conventional way to increase the system
availability: once the primary machine fails, the running applications will be
taken over by the backup machines. However, there are several limitations that
make this method unattractive for deployment: it needs specialized hardware
and software which are usually expensive. That the final system also requires
complex customized configurations makes it hard to manage efficiently.

As virtualization becomes more and more prevalent, we can overcome these
limitations by introducing the virtual machine (VM). In the virtual world, all
the applications are running in the VM, so now it’s possible to implement the
whole-system replication in an easy and efficient way — by saving the copy of the
whole VM running on the system. As VMs are totally hardware-independent,
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the cost is much lower compared to the hardware expenses in traditional HA so-
lutions. Besides, virtualization technology can facilitate the management of mul-
tiple VMs on a single physical machine. With virtual machine monitors (VMM),
the service applications are separated from physical machines, thus providing
increased flexibility and improved performance.

Remus [6], built on top of the well-known Xen hypervisor [3], provides trans-
parent, comprehensive high availability by using a checkpointing method under
the Primary-Backup model (Figure 1). It checkpoints the running VM on the
primary host, and transfers the latest checkpoint to the backup host as whole-
system migration. Once the primary host fails, the backup host will take over
the service based on the latest checkpoint. Remus proves that it is possible to
create a general, fully transparent, high-availability solution entirely in software.
However, checkpointing at high frequency will introduce significant overhead,
since significant CPU and memory resources are consumed by the migration.
Therefore, clients endure a long network delay.

Jiang et. al. [13] proposed an integrated live migration mechanism, called
LLM, which integrates both whole-system checkpointing and input replay to
reduce the network delay in Remus. The basic idea is that the primary host
migrates the guest VM image (including CPU/memory status updates and new
writes to the file system) to the backup host at low frequency. In the meanwhile,
the service requests from network clients are migrated at high frequency. As its
results show, LLM significantly outperforms Remus in terms of network delay
by more than 90%.

Primary Host

Backup Host

Client Host
ping

T1

T3

fail!

checkpoint checkpoint checkpoint

resume

T2

D1

D2 D2 D2

epoch

Fig. 1. Primary-Backup model and the downtime problem (T1: primary host crashes;
T2: client host observes the primary host crashes; T3: VM resumes on backup host;
D1 (T3 - T1): type I downtime; D2: type II downtime)

Downtime is the key factor for estimating the high availability of a system, since
any long downtime experience for clientsmay result in loss of client loyalty and thus
revenue loss. Under the Primary-Backupmodel, there are two types of downtime:
I) the time fromwhen the primary host crashes until the VM resumes from the last
checkpointed state on the backup host and starts to handle client requests (shown
as D1 in Figure 1); II) the time from when the VM pauses on the primary (to save
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for the checkpoint) until it resumes (shown as D2 in Figure 1). From Jiang’s paper
we observe that for memory-intensive workloads running on guest VMs (such as
the HighSys workload [13]), LLM endures much longer type I downtime than Re-
mus. This is because, these workloads update the guest memory at high frequency.
On the other side, LLM migrates the guest VM image update (mostly from mem-
ory) at low frequency but uses input replay as an auxiliary. In this case, when a
failure happens, a significant number of memory updates are needed in order to
ensure synchronization between the primary and backup hosts. Therefore, it needs
significantly more time for the input replay process in order to resume the VM on
the backup host and begin handling client requests.

Regarding the type II downtime, there are several migration epochs between
two checkpoints, and the newly updated memory data is copied to the backup
host at each epoch. At the last epoch, the VM running on the primary host is
suspended and the remaining memory states are transferred to the backup host.
Thus, the type II downtime depends on the amount of memory that remains
to be copied and transferred when pausing the VM on the primary host. If we
reduce the dirty data which need to be transferred at the last epoch, we can
reduce the type II downtime. Moreover, if we reduce the dirty data which needs
to be transferred at each epoch, trying to synchronize the memory state between
primary and backup host all the time, then at the last epoch, there will not be
too many new memory updates that need to be transferred, so we can reduce
the type I downtime as well.

Therefore, in order to achieve HA in these virtualized systems, especially to
address the downtime problem under memory-intensive workloads, we propose
a memory synchronization technique for tracking memory updates, called Fine-
Grained Block Identification (or FGBI). Our main contributions include:

1) Based on LLM, we develop a novel, efficient and fine-grained approach
called FGBI, to track and transfer the memory updates efficiently, by reducing
the total number of dirty bytes which need to be transferred from primary to
backup host. FGBI enhances LLM’s performance by overcoming its downtime
disadvantage, especially for applications with memory-intensive workloads.

2) We integrate memory block sharing support with FGBI to reduce the newly
introduced memory and computation/comparison overheads. In addition, we
also support a hybrid compression mechanism among the memory dirty blocks
to further reduce the migration traffic in the transfer period.

3) We present a fully functional prototype implementation and demonstrate
that it achieves comparable downtime compared with Remus/LLM. Our exper-
imental results reveal that FGBI reduces the type I downtime over LLM and
Remus by as much as 77% and 45% respectively, and reduces the type II down-
time by more than 90% and more than 70%, compared with LLM and Remus
respectively.

The rest of the paper is organized as follows. Section 2 discusses past and
related work. Section 3 presents the design and implementation of the integrated
FGBI mechanism. Section 4 reports our experimental environment, benchmarks,
and the evaluation results. We conclude and discuss future work in Section 5.
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2 Related Work

To achieve high availability, currently there exist many virtualization-based live
migration techniques [12, 18, 24]. Two representatives are Xen live migration [4]
and VMware VMotion [17], which share similar pre-copy strategies. During mi-
gration, physical memory pages are sent from the source (primary) host to the
new destination (backup) host, while the VM continues running on the source
host. Pages modified during the replication must be re-sent to ensure consis-
tency. After a bounded iterative transferring phase, a very short stop-and-copy
phase is executed, during which the VM is halted, the remaining memory pages
are sent, and the destination VMM is signaled to resume the execution of the
VM. However, these pre-copy methods incur significant VM downtimes, as the
evaluation results in [8] show.

Remus [6] is now part of the official Xen repository. It achieves HA by main-
taining an up-to-date copy of a running VM on the backup host, which automat-
ically activates if the primary host fails. Remus (and also LLM [13]) copies over
dirty data after memory update, and uses the memory page as the granularity
for copying. However, the dirty data tracking method is not efficient, as shown
in [16] (we also illustrate this inefficiency in Section 3.1). Thus, our goal in this
paper is to further reduce the size of the memory transferred from the primary
to the backup host, by introducing a fine-grained mechanism.

Lu et. al. [16] applied three memory state synchronization techniques to
achieve HA in systems such as Remus: dirty block tracking, speculative state
transferring and active backup. The first technology is similar to our proposed
method, however, it incurs additional memory associated overhead. For example,
when running the Exchange workload in their evaluation, the memory overhead
is more than 60%. Since main memory is always a scarce resource, the high per-
centage overhead is a problem. Different from these authors’ work, we reduce
memory overhead incurred by FGBI by integrating a new memory blocks shar-
ing mechanism, and a hybrid compression method when transferring the memory
update.

To solve the memory overhead problems under Xen-based systems, there are
several ways to harness memory redundancy in VMs, such as page sharing and
patching. Past efforts showed the memory sharing potential in virtualization-
based systems. Working set changes were examined in [4, 21], and their re-
sults showed that changes in memory were crucial for the migration of VMs
from host to host. For a guest VM with 512 MB memory assigned, low loads
changed roughly 20 MB, medium loads changed roughly 80 MB, and high loads
changed roughly 200 MB. Thus, normal workloads are likely to occur between
these extremes. The evaluation in [4, 21] also revealed the amount of memory
changes (within minutes) in VMs running different light workloads. None of them
changed more than 4 MB of memory within two minutes. The Content-Based
Page Sharing (CBPS) method [22] also illustrated the sharing potential in mem-
ory. CBPS was based on the compare-by-hash technique introduced in [9, 10]. As
claimed, CBPS was able to identify as much as 42.9% of all pages as sharable,
and reclaimed 32.9% of the pages from ten instances of Windows NT doing
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real-world workloads. Nine VMs running Redhat Linux were able to find 29.2%
of sharable pages and reclaimed 18.7%. When reduced to five VMs, the numbers
were 10.0% and 7.2%, respectively.

To share memory pages efficiently, recently, the Copy-on-Write (CoW) shar-
ing mechanism was widely exploited in the Xen VMM [19]. Unlike the sharing
of pages within an OS that uses CoW in a traditional way, in virtualization,
pages are shared between multiple VMs. Instead of using CoW to share pages
in memory, we use the same idea in a more fine-grained manner, i.e., by sharing
among smaller blocks. The Difference Engine project demonstrates the poten-
tial memory savings available from leveraging a combination of page sharing,
patching, and in-core memory compression [8]. It shows the huge potential of
harnessing memory redundancy in VMs. However, Difference Engine also suffers
from complexity problems when applying the patching method. It needs addi-
tional modifications to Xen. We will present our corresponding mechanism and
advantages over Difference Engine in Section 3.2.

Besides high availability systems such as Remus, LLM, and Kemari [20], which
apply the pre-copy mechanism, there are also other related works that focus
on migration optimization. Post-copy based migration [11] is proposed to ad-
dress the drawbacks of pre-copy based migration. The experimental evaluation
in [11] shows that the migration time using the post-copy method is less than
the pre-copy method, under SPECweb2005 and Linux Kernel Compile bench-
marks. However, its implementation only supports PV guests as the mechanism
for trapping memory accesses and utilizes an in-memory pseudo-paging device
in the guest OS. Since the post-copy mechanism needs to modify the guest OS,
it is not so much widely used as the pre-copy mechanism.

3 Design and Implementation

We first overview the integrated FGBI design, including some necessary pre-
liminaries about the memory saving potential. We then present the FGBI ar-
chitecture, explain each component, and discuss the execution flow and other
implementation details.

3.1 FGBI

Remus and LLM track memory updates by keeping evidence of the dirty pages
at each migration epoch. Remus uses the same page size as Xen (for x86, this is
4KB), which is also the granularity for detecting memory changes. However, this
mechanism is not efficient. For instance, no matter what changes an application
makes to a memory page, even just modify a boolean variable, the whole page
will still be marked dirty. Thus, instead of one byte, the whole page needs to be
transferred at the end of each epoch. Therefore, it is logical to consider tracking
the memory update at a finer granularity, like dividing the memory into smaller
blocks.
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We propose the FGBI mechanism which uses memory blocks (smaller than
page sizes) as the granularity for detecting memory changes. FGBI calculates
the hash value for each memory block at the beginning of each migration epoch.
Then it uses the same mechanism as Remus to detect dirty pages. However, at the
end of each epoch, instead of transferring the whole dirty page, FGBI computes
new hash values for each block and compares them with the corresponding old
values. Blocks are only modified if their corresponding hash values do not match.
Therefore, FGBI marks such blocks as dirty and replaces the old hash values with
the new ones. Afterwards, FGBI only transfers dirty blocks to the backup host.

However, because of using block granularity, FGBI introduces new overhead.
If we want to accurately approximate the true dirty region, we need to set the
block size as small as possible. For example, to obtain the highest accuracy, the
best block size is one bit. That is impractical, because it requires storing an
additional bit for each bit in memory, which means that we need to double the
main memory. Thus, a smaller block size leads to a greater number of blocks and
also requires more memory for storing the hash values. Based on these past efforts
illustrating the memory saving potential (section 2), we present two supporting
techniques: block sharing and hybrid compression. These are discussed in the
subsections that follow.

3.2 Block Sharing and Hybrid Compression Support

From the memory saving results of related work (section 2), we observe that
while running normal workloads on a guest VM, a large percentage of memory
is usually not updated. For this static memory, there is a high probability that
pages can be shared and compressed to reduce memory usage.

Block Sharing. Note that these past efforts [4, 9, 10, 21, 22] use the memory
page as the sharing granularity. Thus, they still suffer from the “one byte differ,
both pages cannot be shared” problem. Therefore, we consider using a smaller
block in FGBI as the sharing granularity to reduce memory overhead.

The Difference Engine project [8] also illustrates the potential savings due to
sub-page sharing, both within and across virtual machines, and achieves sav-
ings up to 77%. In order to share memory at the sub-page level, the authors
construct patches to represent a page as the difference relative to a reference
page. However, this patching method requires selected pages to be accessed in-
frequently, otherwise the overhead of compression/decompression outweighs the
benefits. Their experimental evaluations reveal that patching incurs additional
complexity and overhead when running memory-intensive workloads on guest
VMs (from results for “Random Pages” workload in [8]).

Unlike Difference Engine, we apply a straightforward sharing technique to
reduce the complexity. The goal of our sharing mechanism is to eliminate re-
dundant copies of identical blocks. We share blocks and compare hash values
in memory at runtime, by using a hash function to index the contents of every
block. If the hash value of a block is found more than once in an epoch, there is
a good probability that the current block is identical to the block that gave the
same hash value. To ensure than these blocks are identical, they are compared
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bit by bit. If the blocks are identical, they are reduced to one block. If, later on,
the shared block is modified, we need to decide which of the original constituent
blocks has been updated and will be transferred.

Hybrid Compression. Compression techniques can be used to significantly
improve the performance of live migration [14]. Compressed dirty data takes
shorter time to be transferred through the network. In addition, network traffic
due to migration is significantly reduced when much less data is transferred
between primary and backup hosts. Therefore, for dirty blocks in memory, we
consider compressing them to reduce the amount of transferred data.

Before transmitting a dirty block, we check for its presence in an address-
indexed cache of previously transmitted blocks (through pages). If there is a
cache hit, the whole page (including this memory block) is XORed with the
previous version, and the differences are run-length encoded (RLE). At the end
of each migration epoch, we send only the delta from a previous transmission of
the same memory block, so as to reduce the amount of migration traffic in each
epoch. Since smaller amount of data is transferred, the total migration time and
downtime can both be decreased.

However, in the current migration epoch, there still may remain a significant
fraction of blocks that is not present in the cache. In these cases, we find that
Wilson et. al. [7] claims that there are a great number of zero bytes in the
memory pages (so as in our smaller blocks). For this kind of block, we just scan
the whole block and record the information about the offset and value of nonzero
bytes. And for all other blocks with weak regularities, a universal algorithm with
high compression ratio is appropriate. Here we apply a general-purpose and very
fast compression technique, zlib [1], to achieve a higher degree of compression.

3.3 Architecture

We implement the FGBI mechanism integrated with sharing and compression
support, as shown in Figure 2. In addition to LLM, which is labeled as “LLM
Migration Manager” in the figure, we add a new component, shown as “FGBI”,
and deploy it at both Domain 0 and guest VM.

For easiness in presentation, we divide FGBI into three main components:

1) Dirty Identification: It uses the hash function to compute the hash value
for each block, and identify the new update through the hash comparison at the
end of migration epoch. It has three subcomponents:
Block Hashing: It creates a hash value for each memory block;
Hash Indexing: It maintains a hash table based on the hash values generated
by the Block Hashing component. The entry in the content index is the hash
value that reflects the content of a given block;
Block Comparison: It compares two blocks to check if they are bitwise iden-
tical.

2) Block Sharing Support: It handles sharing of bitwise identical blocks.
3) Block Compression: It compresses all the dirty blocks on the primary side,

before transferring them to the backup host. On the backup side, after receiving
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Fig. 2. The FGBI architecture with sharing and compression support

the compressed blocks, it decompresses them first before using them to resume
the VM.

Basically, the Block Hashing component produces hash values for all blocks
and delivers them to the Hash Indexing component. The Hash Indexing and
Block Comparison components then check the hash table to determine whether
there are any duplicate blocks. If so, the Hash Comparison component requests
the Block Sharing Support components to update the shared blocks information.
At the end of each epoch, the Block Compression component compresses all the
dirty blocks (including both shared and not shared).

In this architecture, the components are divided between the privileged VM
Domain 0 and the guest VMs. The VMs contain the Block Sharing Support
components. We house the Block Sharing Support component in the guest VMs
to avoid the overhead of using shadow page tables (SPTs). Each VM also con-
tains a Block Hashing component, which means that it has the responsibility of
hashing its address space. The Dirty Identification component is placed in the
trusted and privileged Domain 0. It receives hash values of the hashed blocks
generated by the Block Hashing component in the different VMs.

3.4 FGBI Execution Flow

Figure 3 describes the execution flow of the FGBI mechanism. The numbers on
the arrows in the figure correspond to numbers in the enumerated list below:

1) Hashing: At the beginning of each epoch, the Block Hashing components
at the different guest VMs compute the hash value for each block.

2) Storing: FGBI stores and delivers the hash key of the hashed block to the
Hash Indexing component.

3) Index Lookup: It checks the content index for identical keys, to determine
whether the block has been seen before. The lookup can have two different
outcomes:
Key not seen before: Add it to the index and proceed to step 6.
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Fig. 3. Execution flow of FGBI mechanism

Key seen before: An opportunity to share, so request block comparison.
4) Block Comparison: Two blocks are shared if they are bitwise identical.

Meanwhile, it notifies the Block Sharing Support Components on corresponding
VMs that they have a block to be shared. If not, there is a hash collision, the
blocks are not shared, and proceed to step 6.

5) Shared Block Update: If two blocks are bitwise identical, then store the
same hash value for both blocks. Unless there is a write update to this shared
block, it doesn’t need to be compared at the end of the epoch.

6) Block Compression: Before transferring, compress all the dirty blocks.
7) Transferring: At the end of epoch, there are three different outcomes:

Block is not shared: FGBI computes the hash value again and compares
with the corresponding old value. If they don’t match, mark this block as dirty,
compress and send it to the backup host. Repeat step 1 (which means begin the
next migration epoch).
Block is shared but no write update: It means that either block is modified
during this epoch. Thus, there is no need to compute hash values again for this
shared block, and therefore, there is no need to make comparison, compression,
or transfer either. Repeat step 1.
Block is shared and write update occurs: This means that one or both
blocks have been modified during this epoch. Thus, FGBI needs to check which
one is modified, and then compress and send the dirty one or both to the backup
host. Repeat step 1.

4 Experimental Evaluation

We experimentally evaluated the performance of the proposed techniques (i.e.,
FGBI, sharing, and compression), which i simply referred to here as the FGBI
mechanism. We measured downtime and overhead under FGBI, and compared
the result with that under LLM and Remus.
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4.1 Experimental Environment

Our experimental platform included two identical hosts (one as primary and the
other as backup), each with an IA32 architecture processor (Intel Core 2 Duo
Processor E6320, 1.86 GHz), and 3 GB RAM. We set up a 1 Gbps network
connection between the two hosts, which is specifically used for migration. In
addition, we used a separate machine as a network client to transmit service
requests and examine the results based on the responses. We built Xen 3.4 from
source [23], and let all the protected VMs run PV guests with Linux 2.6.18. The
VMs were running CentOS Linux, with a minimum of services executing, e.g.,
sshd. We allocated 256 MB RAM for each guest VM, the file system of which
is an image file of 3 GB shared by two machines using NFS. Domain 0 had a
memory allocation of 1 GB, and the remaining memory was left free. The Remus
patch we used was the nearest 0.9 version [5]. We compiled the LLM source code
and installed its modules into Remus.

Our experiments used the following VM workloads under the Primary-Backup
model:

Static web application: We used Apache 2.0.63 [15]. Both hosts were config-
ured with 100 simultaneous connections, and repetitively downloaded a 256KB
file from the web server. Thus, the network load will be high, but the system
updates are not so significant.

Dynamicwebapplication: SPECweb99 is a complex application-level bench-
mark for evaluating web servers and the systems that host them. This benchmark
comprises a web server, serving a complex mix of static and dynamic page (e.g.,
CGI script) requests, among other features. Both hosts generate a load of 100 si-
multaneous connections to the web server [2].

Memory-intensive application: Since FGBI is proposed to solve the long
downtime problem under LLM especially when running heavy computational
workloads on the guest VM, we continued our evaluation by comparing FGBI
with LLM/Remus under a set of industry-standard workloads, specifically NPB
and SPECsys.

1. NPB-EP: This benchmark is derived from CFD codes, and is a standard
measurement procedure used for evaluating parallel programs. We selected the
Kernel EP program from the NPB benchmark [19], because the scale of this
program set is moderate and its memory access style is representative. Therefore,
this example involves high computational workloads on the guest VM.

2. SPECsys: This benchmark measures NFS (version 3) file server throughput
and response time for an increasing load of NFS operations (lookup, read, write,
and so on) against the server over file sizes ranging from 1 KB to 1 MB. The
page modification rate when running SPECsfs has previously been reported as
approximately 10,000 dirty pages/second [2], which is approximately 40% of the
link capacity on a 1 Gbps network.

To ensure that our experiments are statistically significant, each data point
is averaged from twenty sample values. The standard deviation computed from
the samples is less than 7.6% of the mean value.
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4.2 Downtime Evaluations

Type I Downtime. Figures 4a, 4b, 4c, and 4d show the type I downtime com-
parison among FGBI, LLM, and Remus mechanisms under Apache, NPB-EP,
SPECweb, and SPECsys applications, respectively. The block size used in all
experiments is 64 bytes. For Remus and FGBI, the checkpointing period is the
time interval of system update migration, whereas for LLM, the checkpointing
period represents the interval of network buffer migration. By configuring the
same value for the checkpointing frequency of Remus/FGBI and the network
buffer frequency of LLM, we ensure the fairness of the comparison. We observe
that Figures 4a and 4b show a reverse relationship between FGBI and LLM.
Under Apache (Figure 4a), the network load is high but system updates are
rare. Therefore, LLM performs better than FGBI, since it uses a much higher
frequency to migrate the network service requests. On the other hand, when
running memory-intensive applications (Figures 4b and 4d), which involve high
computational loads, LLM endures a much longer downtime than FGBI (even
worse than Remus).
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Fig. 4. Type I downtime comparison under different benchmarks

Although SPECweb is a web workload, it still has a high pagemodification rate,
which is approximately 12,000 pages/second [4]. In our experiment, the 1 Gbps
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migration link is capable of transferring approximately 25,000pages/second.Thus,
SPECweb is not a lightweight computational workload for these migration mech-
anisms. As a result, the relationship between FGBI and LLM in Figure 4c is more
similar to that in Figure 4b (and also Figure 4d), rather than Figure 4a. In con-
clusion, compared with LLM, FGBI reduces the downtime by as much as 77%.
Moreover, compared with Remus, FGBI yields a shorter downtime, by as much as
31% under Apache, 45% under NPB-EP, 39% under SPECweb, and 35% under
SPECsys.

Type II Downtime. Table 1 shows the type II downtime comparison among
Remus, LLM, and FGBI mechanisms under different applications. We have three
main observations: (1) Their downtime results are very similar for the idle run.
This is because, Remus is a fast checkpointing mechanism and both LLM and
FGBI are based on it. Memory updates are rare during the “idle” run, so the type
II downtime in all three mechanisms is short. (2) When running the NPB-EP
application, the guest VM memory is updated at a high frequency. When saving
the checkpoint, LLM takes much more time to save huge dirty data caused by
its low memory transfer frequency. Therefore, in this case FGBI achieves a much
lower downtime than Remus (more than 70% reduction) and LLM (more than
90% reduction). (3) When running the Apache application, the memory update
is not so much as that when running NPB, but the memory update is definitely
more than idle run. The downtime results shows that FGBI still outperforms
both Remus and LLM.

Table 1. Type II downtime comparison

Application Remus downtime LLM downtime FGBI downtime

idle 64 ms 69 ms 66 ms

Apache 1032 ms 687 ms 533 ms

NPB-EP 1254 ms 16683 ms 314 ms

4.3 Overhead Evaluations

Figure 5a shows the overhead during VM migration. The figure compares the
applications’ runtime with and without migration, under Apache, SPECweb,
NPB-EP, and SPECsys, with the size of the fine-grained blocks varying from 64
bytes to 128 bytes and 256 bytes. We observe that in all cases the overhead is
low, no more than 13% (Apache with 64 bytes block). As discussed in Section 3,
the smaller the block size that FGBI chooses, greater is the memory overhead
that it introduces. In our experiments, the smaller block size that we chose is 64
bytes, so this is the worst case overhead compared with the other block sizes.
Even in this “worst” case, under all these benchmarks, the overhead is less than
8.21%, on average.
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In order to understand the respective contributions of the three proposed tech-
niques (i.e., FGBI, sharing, and compression), Figure 5b shows the breakdown
of the performance improvement among them under the NPB-EP benchmark.
It compares the downtime between integrated FGBI (which we use for evalua-
tion in this Section), FGBI with sharing but no compression support, FGBI with
compression but no sharing support, and FGBI without sharing nor compression
support, under the NPB-EP benchmark. As previously discussed, since NPB-EP
is a memory-intensive workload, it should present a clear difference among the
three techniques, all of which focus on reducing the memory-related overhead.
We do not include the downtime of LLM here, since for this compute-intensive
benchmark, LLM incurs a very long downtime, which is more than 10 times the
downtime that FGBI incurs.

We observe from Figure 5b that if we just apply the FGBI mechanism without
integrating sharing or compression support, the downtime is reduced, compared
with that of Remus in Figure 4b, but it is not significant (reduction is no more
than twenty percent). However, compared with FGBI with no support, after in-
tegrating hybrid compression, FGBI further reduces the downtime, by as much
as 22%. We also obtain a similar benefit after adding the sharing support (down-
time reduction is a further 26%). If we integrate both sharing and compression
support, the downtime is reduced by as much as 33%, compared to FGBI without
sharing or compression support.

5 Conclusions

One of the primary bottlenecks on achieving high availability in virtualized sys-
tems is downtime. We presented a novel fine-grained block identification mecha-
nism, called FGBI, that reduces the downtime in lightweight migration systems.
In addition, we developed a memory block sharing mechanism to reduce the
memory and computational overheads due to FGBI. We also developed a dirty
block compression support mechanism to reduce the network traffic at each mi-
gration epoch. We implemented FGBI with the sharing and compression mech-
anisms and integrated them with the LLM lightweight migration system. Our
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experimental evaluations reveal that FGBI overcomes the downtime disadvan-
tage of LLM by more than 90%, and of Xen/Remus by more than 70%. In all
cases, the performance overhead of FGBI is less than 13%.

Several directions for future work exist. It is possible to reduce the imple-
mentation complexity in the FGBI design. For instance, we can deploy some
subcomponents (such as the Block Comparison part) in the VMM directly, and
design a transparent solution by using the shadow page table mechanism. More-
over, compressing memory blocks that are unlikely to be accessed in the near
future can further reduce the memory overhead.
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Abstract. It is well known that guaranteeing program consistency when
accessing shared data comes at the price of degraded performance and
scalability.

This paper initiates the investigation of consistency oblivious pro-
gramming (COP). In COP, sections of concurrent code that meet certain
criteria are executed without checking for consistency. However, check-
points are added before any shared data modification to verify the al-
gorithm was on the right track, and if not, it is re-executed in a more
conservative and expensive consistent way. We show empirically that
the COP approach can enhance a software transactional memory (STM)
framework to deliver more efficient concurrent data structures from serial
source code. In some cases the COP code delivers performance compa-
rable to that of more complex fine-grained structures.

1 Introduction and Related Work

The need to maintain consistency when accessing data has been a major source
of overhead in concurrent software and a great limitation on its scalability with
respect to its matching sequential code.

There are in the literature concurrent algorithms that reduce the consistency
overhead by traversing the data structure while ignoring all locks and meta-data.
Examples are the concurrent lazy list [1] and skip list [2] algorithms that allow
traversal operations to execute while ignoring the locks that are taken by threads
modifying the structure. The traversal correctness is derived from properties of
the structure and post validation. Another example is Lee’s Java hash table [3],
where a thread first traverses the bucket unsafely, and only if the key is not
found, takes locks to guarantee consistency and then re-traverses it.

Our goal in this paper is to generalize this approach to derive a broader class
of algorithms that execute without verifying consistency. We provide a method-
ology for designing concurrent algorithms in which we optimistically make a first
attempt at executing an operation in a completely un-instrumented way. We will
call this approach consistency oblivious programming (COP). This paper makes
a first attempt at formulating COP and providing examples of its usefulness.

We base our COP generalization in part on using the software transactional
memory (STM) programming paradigm. Transactional memory is a leading tech-
nique for simplifying concurrent programming. Software transactional memory
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systems suffer from major overheads because they maintain, in some form or
another, a level of consistency among concurrently executing transactions. In [4]
Shavit and Touitou allow a transaction to see an inconsistent state but from that
point on the operation is considered a zombie, and will not complete success-
fully. Most modern STM algorithms [5,6,7,8] conservatively abort a transaction
as soon as the possibility of inconsistency is detected. Others [5,7,9] force con-
sistency by having even read-only operations check locks and global clocks or by
maintaining multiple versions per address. Consistency, as many authors argue,
simplifies the interaction of the STM algorithm with its environment, and allows
simplified correctness proofs, yet it comes at a cost. Each and every access of
a transaction to a shared variable or object must be instrumented in some way
or another. This instrumentation is a major source of modern STM overhead,
which in some cases can be reduced by algorithms such as the NORec STM
[6]. These schemes avoid per object meta data, which reduces instrumentation
overhead at the price of reduced scalability.

Our approach here is to provide a set of criteria that will allow a programmer
to determine if a given data structure can be converted to work in the COP
framework. If the conversion is possible, COP allows us to optimistically execute
various operations on the data structure in native code, without any consistency
checks, then test the outcome, and either retry or resort to a traditional STM
based consistent execution if the earlier consistency oblivious ones failed.

1.1 COP and Acceptability Oriented Programming

Our approach follows along the lines of Rinard’s acceptability oriented program-
ming [10], where he introduces the idea of allowing programs to execute while
making errors, attempting to recover from them only eventually.

In concurrent programs we consider sections of a thread’s code (such as, but
not only, transactional memory transactions) that can be viewed as having two
types of sequential segments. A given section starts with a segment of code that
does not affect the system, consisting usually (but not always) of reads, followed
by a second segment that writes and updates the memory in addition to further
reads. An example could be an insert operation in a data structure where it is
first traversed to find the insert location and then writes to memory take place
in order to implement the actual insertion of a new item.

In COP we add a third segment of code, called a Validating White-Box,
between the first part and the updating part. The idea is to execute the first
part, called the Black-Box, in a concurrent environment, as fast as possible
without worrying about consistency of any form. Then, in the Validating White-
Box, the values returned from the first part are checked to make sure they are
in a consistent state with respect to the values returned from the first part. If
the validation fails, then the entire operation re-starts.

We allow a transformed section of code to encompass multiple black and white
boxes, as long as each black box is followed by its corresponding white box. It is
interesting that a black box may include writes, as long as each write, by itself,
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is a valid addition to the system. We show an example for such writes later, in
a union-find compression algorithm.

We say that the output of a black-box is acceptable if there exists a consistent
execution of the black-box in which exactly the same outputs are generated
by the black-box. As we do not check the consistency of the execution, we must
extract other properties of the output that imply it is consistent with the system.
We call these properties acceptability properties.

The programmer must first determine the acceptability properties of the out-
put of the black-boxes and then devise tests that verify that these properties are
satisfied given a set of outputs. If any of these tests fail, it means the output of
the black-box is not acceptable. We call these tests acceptability rules.

We define our approach following Rinard and in the same way. Several activ-
ities characterize this approach:

– Acceptability Property Identification: The programmer identifies what
in the output of the black-box marks it valid, i.e., what are the acceptability
properties of the output. These properties are specific to each algorithm and
implementation.

– Enforcement: Minimal set of acceptability rules is constructed to verify
that the output of the black-box is acceptable. Once a rule is violated, it
means an acceptability property is violated, and an action which fixes it is
taken.

– Monitoring: The programmer produces components that enable the ac-
ceptability rules testing. These components must indicate whether a rule is
violated in the output.

As mentioned, we split the concurrent code to boxes. The boxes terminology is
borrowed again from Rinard, into COP, and relates to the above activities:

– Black Box: A native, sequential code section. We know the code does not
crash or corrupt the system, yet we cannot trust its output.

– White Box: The code of this box monitors and enforces the acceptability
rules on the outputs of the black box. It must enforce continuous correctness
and undo any error that may occur.

– Gray Box: The code is not modified, but it is recompiled with synchroniza-
tion, such as STM. Gray boxes are self contained as they are synchronized
and are thus concurrency safe.

The performance advantage of COP is that the black boxes run without any
synchronization. Our goal is to have as much code as possible in the black boxes,
and as little of it as possible in the white and gray ones. The size of a box is its
execution time.

The remainder of the paper is structured as follows. In Section 2 we present
the conditions and justifications for the use of COP, and we use an example to
demonstrate where it can be most affective. Then in section 3 we show several
COP algorithms. In section 4 we evaluate the performance of the COP, and
conclude in Section 5.
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2 When Can We Use COP

To determine if one can use the COP approach, we must check if a breakup into
the three boxes is possible. When checking a sequential section of code, to see if
it can be in a black box, we need to examine each shared variable access in that
function. If all accesses are reads If the access is a write, we must make sure that
it is:

– Based only on committed data, and
– any single write is a valid modification, so we do not need synchronization.

If a write is tentative, it must be reversible, and can not be visible, thus it
must be instrumented.

The COP un-instrumented write accesses are immediately published and can
not be undone. Thus, if the written values are calculated according to un-
instrumented reads from transactional addresses, we have to use a commit time
locking STM in the system. This means when a value is recorded in a transac-
tional address, the value will be final and ready to use. We also need to see that
any subset of the un-instrumented writes is a valid addition to the current state.

An un-instrumented read can be added if its encapsulating data structure
precludes:

– permanent loops, even in deleted objects.
– un-initialized pointers, even for an object that is not yet fully connected.

Since COP does not validate consistency, an infinite loop may go undetected,
unless it is caught by the serial algorithm. We notice that the second condition
applies partially to any STM: this is the privatization problem of [11]. If trans-
action T1 reached a node N during traversal and went to sleep, and then another
transaction, T2 freed N, then T1 could wake up and read N’s next pointer. If N
is actually freed by T2, T1 may prompt an exception. Currently this problem is
best solved by quiescence barriers [12].

When inspecting a data structure to see if it is fit for COP, the challenging
part is to identify the set of acceptability checks that it requires. In the next
section we show useful and common data structures that benefit from COP.

Any COP code has the layout of Algorithm 1 below. It executes a black box
(BB) which generates some output V. Then a white box (WB) is used to verify
V is acceptable, and finally it executes a gray box (GB), which is compiled with
full synchronization using V to complete the operation. Multiple such operations
may reside in the same transactions.

The gray box may be empty, but if we have a black box we must have a white
box following it. If there are no black-boxes in a transaction it is not related to
COP.
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Algorithm 1. COP
1: V ← BB
2: if failed(WB(V )) then
3: restart
4: end if
5: if exists(GB(V )) then
6: GB(V )
7: end if

3 COP Algorithms

This section shows the viability of the COP approach by way of a series of
examples, presenting COP versions of a linked list data structure, a union-find
data structure, and a linked, bottom balanced variant of a red-black tree data
structure. The latter structure is a fundamental data structure [13] not known
to be parallelizable before.

3.1 COP Linked List

In Algorithm 2 we show the delete function of the COP linked list. In the
white boxes we assume the existence of an STM and use txld(address) and
txst(address, value) which are respectively a transactional load and a transac-
tional store. The transactional operations are affecting the read / write set, are
validated, and if necessary, aborted, according to the used transactional memory
algorithm.

Note that this list supports the standard single node insert, delete, and lookup
operations. When we reach a node which has the desired value or greater, we

Algorithm 2. COP WBLookup, which deletes a node from a linked list.
1: val, n, prev ← BBLookup(ValToDelete))
2: //n is the last traversed node, val is its value and prev is its predecessor
3: if txld(n.val) �= val then
4: Abort
5: end if
6: if txld(prev.next) �=n then
7: Abort
8: end if
9: if txld(prev.val) ≥ValToDelete then

10: Abort
11: end if
12: if txld(n.val) = V alToDelete then
13: txst(n.val, MAXVAL)
14: txst(n.next, n)
15: GBDelete(n)
16: end if



70 Y. Afek, H. Avni, and N. Shavit

return that node together with its value and its predecessor at line 2. The ad-
dition we make to the serial algorithm is the setting of the node’s deleted value
to MAXVAL in line 13 to prevent BBLookup from continuing looping in the
deleted node. Deleted nodes are pointing to themselves, and if their value are
less than the looked up one, the code would get trapped in them.

The acceptance rules are that a successfully found node has the value it is
supposed to have in line 5 and is still pointed-to by its predecessor in line 8.
The predecessor, in turn, must have a lower value than the one to be deleted, as
checked in line 11. If we would not have modified the deleted node to point to
itself, it would pass an STM load as consistent, and no white box will be able to
notice the node is deleted. If the deleted value would not be set to MAXVAL,
the lookup would hit an infinite loop when a lookup is trapped in a concurrently
deleted node.

3.2 COP Union Find

The union-find algorithm maintains disjoint sets under union. Each set is rep-
resented by a rooted tree whose nodes are the elements of the set. The root is
called the representative of the set. The representative may change when the tree
is updated by a union operation. The data structure provides two operations:
find, which follows the path from the element to the representative and returns
it, and union, which links two set representatives by making one point to the
other.

The union function calls find for the two elements to be unified and then
uses symmetry breaking to decide the direction of the link to be installed. We
will look in the find. Actually it is called the find-compress function as it also
compresses the path from the element to the representative.

The way FindCompress works is that it follows the next pointers of nodes
to their parents until it hits a representative. If a node points to itself, then
this node is the representative of its set. Otherwise, if the parent is not the
representative, a compression occurs. In compression, the nodes’ next pointer is
rewritten to point to the grandparent of the node.

Algorithm 3 is searching for the representative of x and compresses the path
of x to its representative. Forest is an array of nodes where each node has a

Algorithm 3. Transactional FindCompress in union-find.
1: next = txld(forest[x].next)
2: while x �= next do
3: t = next
4: t next=txld(forest[next].next)
5: txst(forest[x].next, forest[t].next)
6: x=t
7: next=txld(forest[t].next)
8: end while
9: return x
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next field which is the index of its representative, or a member from its set that
is closer to the representative. The interesting thing is that as long as all data
read is valid, the write in line 5 does not need any instrumentation, because no
matter what value is written by a correct reader, it will perform some helpful
compression. However, if transaction T1 wrote a link and that link was used by
T2 in compression, and then T1 is aborted, the compression performed will be
wrong. Thus, for algorithm 4, we use a commit time STM, which keeps written
values in a buffer. BBFindCompress is the transactional Algorithm 3, replacing
each instrumented access with an uninstrumented one.

Algorithm 4. COP WBFindCompress in union-find.
1: repeat
2: x← BBFindCompress(x)
3: y←txld(forest[x].next)
4: if x �=y then
5: x←y
6: continue
7: end if
8: until x=y
9: return x

Transaction T which calls WBFindCompress(x) gets the representative of x,
but then verifies it is the representative by reading the next link transactionally
in line 3. Note that there is no read-after write hazard, as any transactional
write will replace a self pointing pointer, and a self pointing pointer is always
read transactionally eventually.

Now, either x is still pointing to itself, or it was changed within T , or T read
it transactionally for the first time, and it is different. This will keep the function
running, or it will be read transactionally for the second time by T . Now if x
was changed by another transaction, T will abort.

As we will show empirically, the COP version of union-find performs well
when there are many unions which introduce memory contention, because in
that situation it saves cycles. When there are mostly finds, the path length
to a representative becomes one, and there the COP and STM have the same
overhead and performance. However, in applications, usually there is a burst
of unions when a new network structure is constructed and then the structure
becomes read only, where instrumentation can be eliminated by a barrier [14].
Thus, the high contention scenario seems more important.

3.3 COP Red-Black Tree

The next example for COP is a balanced binary red-black (RB) search tree,
which is balanced bottom up. Balancing the tree from the bottom, makes the
balancing effect unpredictable, so no locking mechanism, except global lock, can
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be used to parallelize it. The algorithm is taken from [13], where the interface
is:

– Lookup(K, Tree) which searches the tree and returns the node with key K,
or its successor if it is missing as a left son, or its predecessor in case K is
missing as a right son.

– Insert(K,Tree) which runs Lookup and inserts the node with key K in case
it is missing.

– Delete(K, Tree) which runs Lookup and deletes K in case it is present.

As can be seen, Lookup is the main part of all functions. Luckily, we can fit it
into a black box. We verify that in the serial implementation of the RB tree,
no uninitialized pointers are visible and no permanent loops are created. The
challenge is then to add the appropriate white box with fitting acceptance rules.

During balancing there are two problematic states that should be addressed.
A node can be temporarily detached and missed, or a successfully found node
can be deleted by a concurrently executing transaction.

To solve the first issue we exploit the fact that a binary search tree has a
total order on its keys and that a lookup in any binary search tree always arrives
to the target node from the node with the predecessor or the successor key,
depending on whether the key is the left or right son of its parent. In the white
box we connect all nodes in a doubly linked list of successor - predecessor. Than
we add the acceptance rule that if a node is found missing, then its predecessor
must be connected to its successor or vice versa. We maintain the list with
synchronization so we know it is correct. The list is not changed during balancing,
and takes only a few accesses to maintain. We also have to verify that the node
is missing in the parent we found. To determine this we verify the place where
the node was supposed to be is still null. The problem of successfully found
deleted nodes is solved with a transactionally maintained live mark, which is set
by Insert and reset by Delete operations.

Algorithm 5 is the code for the Lookup operation which uses the original RB
tree Lookup as a black box and adds the acceptance rules in order to make
it always return a node that is valid, and which can be used safely by the
other operations. In the code, we first check that the node was not removed by
reading its live indication in line 8. Then in lines 14, 25, 25 and 28 we check the
predecessor or the successor of the node, to verify that the requested key falls
in the gap between them and is thus definitely missing. In lines 20 and 31 we
verify the node is not only missing, but is missing in the found location.

In Figure 1 we see a lookup for key 26 that starts when the tree is unbalanced,
and goes from the root which is 20 to 30 and to 27, then the tree is balanced, and
the lookup continues through 27 back to 20, then to 25 and finally to 26. During
the lookup we go through the right link of 20 to two different nodes. Before
balancing we go to 30 and after we go to 25. This operation would abort on all
known single version STM algorithms. The only known STM that will endure it
is the multi version [9] which will introduce high overhead. As said, no existing
locking protocol, including the new DL [15], will tolerate such a rebalancing
move during lookup either.
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In Algorithms 6 and 7, we see that Delete and Insert in the RB tree, which
use the WB lookup and then insert or delete the node in the list in line 4 and
set or unset its mark in line 5. Though it is a subjective matter, we found that
the amount of work required to convert the bottom balancing serial RB tree we
started from, into an efficient concurrent algorithm, is small and the correctness
of it is easy to verify. If we wanted to keep all these features in a fully hand
crafted algorithm we would end up spending a lot of work on and would involve
a complex proof. Thus another good side of COP is that it is engineer friendly
and saves work as well as inevitable bugs.

4 Evaluation

We first evaluated COP for the union-find algorithm. We started with an imple-
mentation of the classical union-find serial algorithm from [13] and transactified
it using the TL2 STM [5]. We then created the COP version of the union-find ac-
cording to the description in section 3.2. We compare the above to an optimized
implementation of the parallel union-find algorithm from [16].

Next we examined the performance of COP for RB tree. We started with the
classical red-black tree from [13] as it was transactified by Dave Dice. We derived
the COP RB tree as described in 3.3. We compared the COP to the TL2-Enc
[5] and NORec [6] STM, early release elastic transactions [17], and to Hanke’s
concurrent RB tree algorithm [18]. Later we will focus on comparing the COP
RB tree to STMs and elastic transactions, because Hanke’s tree is relaxed and
top-down balanced, so its comparison to the bottom up and perfectly balanced
RB tree from [13] is misleading.

Experimental setup: We collected results on two hardware platforms: a Sun
SPARC T5240 and an Intel Core i7. The Sun is a dual-chip machine, powered
by two UltraSPARC T2 Plus (Niagara II) chips. The Niagara II is a chip mul-
tithreading (CMT) processor, with 8 1.165 GHz in-order cores with 8 hardware
strands per core, for a total of 64 hardware strands per chip. The Core i7 920
processor in the Intel machine holds four 2.67GHz cores that each multiplex 2
hardware threads.

4.1 Union Find

As explained in section 3.2, each representative lookup compresses the path
from the element to the representative, so after a certain level of find opera-
tions, almost all paths are of length one. In this situation the COP and the
transactional algorithm will perform the same number of instrumentations and
their performance will be the same. However, usually the union-find is used to
build a network and then is used in read only mode, so the practically important
scenario is when the amount of unions is high.
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Algorithm 5. COP WBLookup in RB tree.
1: n ← BBLookup(K, Tree)
2: if txld(n.live) �= TRUE then
3: Abort
4: end if
5: if n.key = K then
6: if txld(n.key) �= K then
7: Abort
8: end if
9: return

10: else
11: if n.key < K then
12: if txld(n.key) > K then
13: Abort
14: end if
15: if txld(txld(n.successor).key) < K then
16: Abort
17: end if
18: if txld(n.right) �= ⊥ then
19: Abort
20: end if
21: end if
22: else
23: if txld(n.key) < K then
24: Abort
25: end if
26: if txld(txld(n.predecessor).key) > K then
27: Abort
28: end if
29: if txld(n.left) �= ⊥ then
30: Abort
31: end if
32: end if
33: return n

Algorithm 6. Insert in RB Tree.
1: n ← WBLookup(key)
2: GBAddToTree(new node)
3: GBBalanceTree
4: WBInsertToList(new node)
5: txst(new node.live, true)

Algorithm 7. Delete in RB Tree.
1: n ← WBLookup(key)
2: GBRemoveFromTree(new node)
3: GBBalanceTree
4: WBRemoveFromList(new node)
5: txst(new node.live, false)



Towards Consistency Oblivious Programming 75

20

3010

27 40

2825

26

27

20

10

30

28 40

25

26

UNBALANCED BALANCED

Fig. 1. COP RB Tree is finding a key 26 during rebalancing

Fig. 2. Union Find with different amount of unions, benchmark results on Intel Ne-
halem machine with 4 cores, each multiplexing 2 hardware threads

In Figure 2, most 90-100 percents of the operations are the mutating union.
As seen, when the amount of union operations is high, the COP performance
is closer to the optimized hand crafted concurrent algorithm than to the STM
version. We note that the COP is simple to develop and is composable and may
participate in STM transactions.
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4.2 Red Black Tree

Our bottom up and perfectly balanced serial algorithm does not have a concur-
rent, non-transactional version. Thus, we chose the top down, locally balanced
Hanke algorithm as an upper bound for the performance of the concurrent red-
black tree.

Fig. 3. RB Tree benchmark results for 1024 and 65536 nodes on Intel Nehalem machine.
The benchmarks have 50% lookups with 25% inserts and 25% deletes or 98% lookups
with 1% inserts and 1% deletes.

In Figure 3 we show the COP RB Tree throughput compared to Hanke and
a global lock as upper and lower performance bounds. In addition, we compare
to the NORec, TL2-Enc and Elastic STM algorithms. The results show that
COP consistently outperforms all other transactional variations, for all tested
combinations of tree size and contention level. However, it is not as good as the
more loosely balanced Hanke algorithm.

In Figure 4 we compare throughput in the first row and cycles per operation
in the second row, and see a perfect match. The lower the count, the higher the
throughput. In this case the COP algorithm has the lowest count and respectively
has about twice the throughput.

As our COP RB tree contains links, which can be useful for range queries,
we present its comparison to the STM version of RB tree with links, i.e., trees
whose nodes are chained in a predecessor - successor doubly linked list, in Figure
5. As expected, the COP wins by a large margin.
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Fig. 4. RB Tree of 1024 and 65536 nodes. Graphs show rate of completed operations per
second and hardware performance instruction counter per operation. The benchmarks
have 50% lookups with 25% inserts and 25% deletes or 98% lookups with 1% inserts
and 1% deletes.

Fig. 5. RB Tree of 1024 and 65536 nodes with 50% lookups and 25% inserts and 25%
deletes or 98% lookups with 1% inserts and 1% deletes when using both processors of
the Sun machine (i.e., NUMA configuration). Default OS policy is to place threads on
chips in round robin order.
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5 Conclusion

In this paper we introduced consistency oblivious programming, an approach
for efficient parallelization of serial code. It manages to reduce significantly the
footprint of synchronization compared to automatic transactification or coarse
locking.

The reasoning needed to parallelize an RB tree using COP is negligible, while
its performance compares, in some cases, to that of the celebrated concurrent
algorithm of Hanke [18]. In contrast, locking protocols such as hand over hand
or DL [15] are not as flexible as COP and are not applicable, for example, to the
RB tree we converted.

All the COP algorithms we presented are composable and have controllable
number of transactional accesses, characteristics which make COP HTM friendly.
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Abstract. Cooperative, peer-to-peer (P2P) services—distributed sys-
tems consisting of participants from multiple administrative domains
(MAD)—must deal with the threat of arbitrary (Byzantine) failures
while incentivizing the cooperation of potentially selfish (rational) nodes
that such services rely on to function. This paper investigates how to
specify conditions (i.e., a solution concept) for rational cooperation in
an environment that also contains Byzantine and obedient peers. We
find that regret-free approaches—which, inspired by traditional Byzan-
tine fault tolerance, condition rational cooperation on identifying a strat-
egy that proves a best response regardless of how Byzantine failures
occur—are unattainable in many fault-tolerant distributed systems. We
suggest an alternative regret-braving approach, in which rational nodes
aim to best respond to their expectations regarding Byzantine failures:
the chosen strategy guarantees no regret only to the extent that such ex-
pectations prove correct. While work on regret-braving solution concepts
is just beginning, our preliminary results show that these solution con-
cepts are not subject to the fundamental limitations inherent to regret
freedom.

1 Introduction

Traditional fault-tolerant distributed computing relies on the assumption that
nodes can be cleanly categorized as correct or faulty; the former can be counted
on to run protocols that guarantee that systems will continue to provide desirable
functionalities despite a limited number of the latter. The rise of cooperative,
peer-to-peer (P2P) systems spanning multiple administrative domains (MAD)
complicates this simple picture. Much evidence suggests that a large number of
peers in MAD services will free-ride (e.g.,[5,24,36]) or deviate from the assigned
protocol if it is in their interest to do so (e.g., [1,36]). To maintain the service,
it is essential to give these peers sufficient incentives to cooperate, and informal
common-sense reasoning about incentives may still leave systems vulnerable to
strategic attacks (e.g., [27,30,35]). But what should be the basis for a rigorous
treatment of MAD systems?

There is little controversy about the failure model. It is clear that one cannot
simply assume that every peer will be rational, as in standard game theory: like
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other distributed systems, P2P services are susceptible to arbitrary failures.1

And, of course, some peers may simply be happy to run whatever protocol is
assigned to them—similar to correct nodes in traditional distributed systems.
P2P services should hence be designed to function in environments consisting of
a mix of Byzantine, acquiescent,2 and rational (or BAR) participants.

Building a BAR-tolerant system then involves two steps: 1) designing a Byzan-
tine fault-tolerant protocol and 2) proving that rational peers will cooperate and
follow the prescribed protocol. But how does one specify the conditions, i.e., the
solution concept [17], under which rational peers will be willing to cooperate?

A natural approach is to draw inspiration from traditional Byzantine fault-
tolerant (BFT) computing. In threshold-based BFT, as long as the number of
Byzantine nodes does not exceed a threshold t, the system is guaranteed to
provide its safety properties independent of who the t Byzantine nodes are and
how they behave. Similarly, it is appealing to aim for a notion of equilibrium
in which rational nodes—either unilaterally or as a part of a coalition—cannot
improve their utility by deviating independent of who the t Byzantine nodes
are and of how they behave. This approach, elegantly formalized in the notion
of (k, t)-robustness [3,4], is in principle very attractive: at equilibrium, peers
will never have reason to regret their chosen strategy, which is guaranteed to
prove a best response to any Byzantine strategy, independent of the identities
of Byzantine nodes.

The main result of this paper is to show that, despite its appeal, a solution
concept that guarantees regret freedom is fundamentally unable to yield non-
trivial equilibria in games (which we name communication games) that capture
three key characteristics of many practical fault-tolerant distributed systems:
(a) to achieve some desired functionality, some nodes need to communicate; (b)
bandwidth is not free; and (c) the desired functionality can be achieved despite
t Byzantine failures.

More, we find that weakening (k, t)-robustness, even considerably, seems un-
likely to help. For example, suppose that, magically, all rational nodes in a com-
munication game knew precisely the identity of all Byzantine nodes (but not
their strategy); or, alternatively, that they knew their strategy (but not their
identities). We find that in both cases a regret-free equilibrium can be achieved
only under very limited circumstances.

These results are not interesting because of their proofs, which are straight-
forward, but because they show that in fault-tolerant distributed systems, con-
ditioning rational cooperation on the expectation of regret freedom may be
fundamentally too much to ask. Furthermore, the limitations of this approach

1 Of course, arbitrarily faulty peers too can be modeled as rational peers who follow
an unknown utility function. Unfortunately, doing so does not simplify the problem.

2 We originally named these nodes altruistic [6] but have since been made aware [2] of
the risk of confusing such peers (whose irrational generosity is only driven by obe-
dience to the given protocol) with peers who are irrationally generous for arbitrary
reasons. We believe that “acquiescent” better captures our original intentions.
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appear hard to fix, since they are rooted in the universal quantifiers (e.g., “for
all strategies” or “for all sets of t Byzantine nodes”) that are at the very essence
of regret freedom.

The second part of the paper points to a promising research agenda to over-
come this impasse, an approach we call regret braving. Regret braving is mo-
tivated by the observation that rational agents that operate under uncertainty
about the strategy of other players (as is the case when players are Byzantine)
are often willing to cooperate without requiring absolute regret freedom. For
instance, when stock traders buy or sell shares, they are well aware of the pos-
sibility of regretting their actions. Nonetheless, they follow a particular strategy
as long as they cannot improve their utility with respect to their expectation
about their environment—the worth of the traded asset, their comfort with risk,
and what they believe will be the trends in the market—by deviating. Similarly,
we consider solution concepts in which rational nodes aim to best respond to
their expectations regarding Byzantine failures: the chosen strategy guarantees
no regret only to the extent that such expectations prove correct.

We find that regret-braving solution concepts admit simple and intuitive equi-
libria for communication games where even the weakened versions of (k, t)-
robustness could not. In particular, we consider two solution concepts: in the
first, rational nodes play a maximin strategy that guarantees the best worst-
case outcome despite any possible Byzantine failure; in the other, rational nodes
assign probabilities to various possible faulty behaviors and aim for a Bayesian
equilibrium. We do not suggest that these solution concepts are the “right” ones
or that they can be directly applied to every BAR-tolerant system; in fact, we
believe that an exciting research opportunity lies in identifying increasingly re-
alistic models for Byzantine failure expectations. What these preliminary results
do show, however, is that regret-braving solution concepts are not subject to the
fundamental limitations inherent to regret freedom.

The paper proceeds as follows. Section 2 formalizes how we model players and
introduces the communication game that we use to compare solution concepts.
Section 3 explores the land of the (regret) free, showing why equilibria that base
rational cooperation on regret freedom are fundamentally hard to achieve. Sec-
tion 4 describes instead the home of the (regret) brave: we discuss two models
of rational beliefs that admit useful equilibria in an instantiation of the commu-
nication game. Section 5 discusses related work, and Section 6 concludes.

2 Model

A communication game models any fault-tolerant system in which communica-
tion is not free and at least some nodes need to communicate in order to achieve
the desired functionality.

Definition 1. A communication game consists of some set of nodes
N = {1, . . . , n} in which

– Communication incurs some cost and does not generate immediate benefit
to the sender,
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– Communication incurs some cost to the receiver, and
– Benefit is obtained from functionality that (a) can be achieved in the presence

of up to t < n Byzantine failures and (b) requires communication between
some pair of nodes.

For simplicity, we use the same communication cost γ for both sending and
receiving, and we assume that messages are never lost.

Protocols are strategies played in the communication game, and strategies in-
volve actions drawn from a non-empty, finite set. We refer to the service-assigned
protocol as the assigned strategy. A strategy profile σ = (σx)x∈N assigns a strat-
egy σx to each node x, and Σ denotes the space of all possible strategy profiles
σ that nodes may use. Every strategy profile σ results in some utility Ux(σ)
for every node x. Following common game theory notation, we use (σ′

x, σ−x)
to denote the strategy profile in which x plays σ′

x and everyone else plays their
component in σ (we also do this for sets of players, e.g., (σ′

K , σ−K)), and we drop
redundant parentheses when using a strategy profile as a parameter to a utility
function, e.g., Ux(σ′

x, σ−x) vs. Ux((σ′
x, σ−x)). We primarily focus on non-trivial

strategy profiles, in which some positive utility is expected for at least one node;
this implies that some communication must occur.

We are interested in systems that include Byzantine, rational, and (optionally)
acquiescent nodes; each node x belongs to a type θx that falls into one of these
groups. For simplicity, we assume that all rational nodes are of the same type
R, and we ignore acquiescent nodes (who would anyway follow any strategy
assigned to them). These assumptions do not affect our impossibility results,
and they simplify the analysis for the positive results in regret braving—which,
as in any game-theoretic analysis, depend on the types of players and solution
concept. Because a Byzantine node may potentially play one of many different
strategies, it is convenient to denote the node’s type using the strategy it plays.
Formally, if some Byzantine node z plays some strategy τz, then we say that
θz = τz; the type space Θ then consists of Σ ∪ {R}.

We focus on environments in which neither trusted hardware nor trusted
third-parties are used to monitor communication. Although a trusted mediator
is useful [10,23,38], it is often impractical or even infeasible to provide one, and
in practice few cooperative systems leverage trusted hardware to prove commu-
nication. We express this reality in the following assumption:

Assumption 2. it A node that sent a message m cannot unilaterally prove that
it sent m.

3 Byzantine Regret Freedom in Communication Games

In BFT systems, safety properties hold regardless of how Byzantine failures
occur. Ideally, one would like rational cooperation to be achieved under simi-
larly strong guarantees. (k, t)-robustness [3,4] is an elegant solution concept that
captures this attractive intuition. A (k, t)-robust equilibrium is completely im-
pervious to the actions of Byzantine nodes: rational nodes will never have to
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second-guess their decision even if the identities and strategies of the Byzantine
nodes become known. Specifically, (k, t)-robustness offers two key properties.
The first, t-immunity [3], captures the intuition that nodes following a strategy
profile should not be adversely affected by up to t Byzantine failures.

Definition 3. A strategy profile σ is t-immune if, for all T ⊆ N such that
|T | ≤ t, all strategy profiles τ , and x /∈ T ,

Ux(σ−T , τT ) ≥ Ux(σ)

Note that t-immunity is not equivalent to Byzantine fault-tolerance, as t-immunity
does not specify that a strategy profile σ must provide any sort of desirable safety
or liveness properties despite t faults. In fact, any σ, fault-tolerant or not, is t-
immune if it specifies actions so bad that Byzantine nodes, playing anything other
than σ, cannot hurt a player’s utility.

The second, k-resilience [3], addresses the possibility of collusion: a k-resilient
strategy guarantees that a coalition of size at most k cannot deviate in a way
that benefits every member.3

Definition 4. A strategy profile σ∗ is k-resilient if, for all K ⊆ N such that
|K| ≤ k, there exists no alternate strategy profile σ′ such that for all x ∈ K,

Ux(σ′
K , σ∗

−K) > Ux(σ∗)

The (k, t)-robustness solution concept is the combination of t-immunity, k-
resilience, and regret freedom with respect to Byzantine failure: regardless of
how Byzantine failures occurs, (k, t)-robustness guarantees that no coalition of
at most k nodes can ever do better than following the equilibrium strategy.

Definition 5. A strategy profile σ∗ is a (k, t)-robust equilibrium if σ∗ is t-
immune and, for all (a) K,T ⊆ N such that K ∩ T = ∅, |K| ≤ k, and |T | ≤ t,
and (b) strategy profiles τ , there does not exist an alternate strategy profile σ′

such that for all x ∈ K,

Ux(σ′
K , τT , σ

∗
−{K∪T}) > Ux(σ∗

−T , τT )

3.1 (k, t)-robustness Is Infeasible in Communication Games

We show that the very property that makes (k, t)-robustness so appealing—
regret freedom regardless of how Byzantine failures occur—makes it infeasible
in many real-world systems. The reason, fundamentally, is that communication
always incurs cost but could potentially yield no benefit if one is communicating
with a Byzantine node. In other words, a rational node may realize in hindsight
3 Abraham et al. also define a strong version of collusion resilience in which there must

not exist a deviation in which even one coalition member can do better [3,4]. We
focus on the weak version as Abraham et al. do in [4]. Since any strongly k-resilient
equilibria is (weakly) k-resilient, our impossibility results hold in both versions.
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that it could have reduced its costs without affecting its benefits by avoiding all
communication with Byzantine nodes, thus improving its utility. As any node
can be Byzantine, this implies that the only possible (k, t)-robust equilibrium is
one in which no node communicates.

Theorem 6. There exist no non-trivial (k, t)-robust equilibria in any commu-
nication game.

Proof. Consider some non-trivial (k, t)-robust strategy σ∗. There must exist
some node x which, with positive probability α under σ∗, sends a message
to some other node z before receiving any other messages. Suppose that z is
Byzantine. Since σ∗ is (k, t)-robust, x must not be able to do better with some
alternate strategy, regardless of who has failed and what a failed node will do.
In particular, for all alternate strategies σ′

x for x and Byzantine strategies τz for
z, it must be that

Ux(σ∗
−z , τz) ≥ Ux(σ′

x, τz , σ
∗
−{x,z}) (1)

Suppose τz is the strategy in which z “crashes” immediately, i.e., z never sends
any messages. Let σ′

x be the strategy in which x does everything in σ∗
x, except x

sends nothing to z. By Assumption 2, x cannot prove that it communicated with
z; it thus follows that (σ′

x, τz , σ
∗
−{x,z}) has the same functionality as (σ∗

−z , τz) and
is indistinguishable to any node in N \ {x, z}. Clearly, if z follows τz , x can do
better by never communicating with z; x’s outcome will not change (since z never
communicates with anyone), and x’s communication costs are lower. Formally,

Ux(σ′
x, τz, σ

∗
−{x,z}) = Ux(σ∗

−z , τz) + αγ > Ux(σ∗
−z , τz)

which directly contradicts inequality (1). ��
More broadly, Theorem 6 suggests that it may be hard to build non-trivial (k, t)-
robust equilibria for any game where a player’s actions incur cost. Indeed, in all
the games for which Abraham et al. derive (k, t)-robust equilibria [3,4], a node’s
utility depends only on the game’s outcome (e.g., in a secret-sharing game based
on Shamir’s scheme, utility depends on whether a node can learn the secret) and
is independent of how much communication is required to reach that outcome.

Discussion. (k, t)-robustness promises regret freedom simultaneously along two
axes: who the Byzantine nodes are and how they behave. Theorem 6 suggests that
this may be too strong to require in practice. But what if we only require regret
freedom along only one axis? If we know exactly who the Byzantine nodes are,
but not how they will behave, can we achieve regret freedom in communication
games? What if we do not know who is Byzantine, but we know their strategy?

3.2 What If We Know Who Is Byzantine?

Let us assume that we know exactly who all the Byzantine players are before the
game begins. This may already appear a strong assumption, but it is necessary,
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since if the identity of even one Byzantine node were unknown, Theorem 6 would
still apply. We show that, even with this strong assumption, a solution concept
that is regret-free with respect to the strategies of Byzantine nodes is possible
only to the extent that it defines away the problem: the only possible equi-
libria are those in which rational nodes communicate only among themselves,
completely excluding Byzantine nodes from the system. Furthermore, we show
that many interesting communication games do not yield a regret-free equilib-
rium even if one takes the drastic step of excluding Byzantine nodes: specifically,
communication games in which Byzantine nodes may take actions that can affect
a rational node’s utility by more than the cost of sending a single message have
no regret-free equilibrium, even if the identity of all Byzantine nodes are known
a priori.

We first define the equivalent of t-immunity (Definition 3) and (k, t)-robustness
(Definition 5) for a fixed set T of Byzantine nodes.

Definition 7. A strategy profile σ is T -strategy-immune if for all strategy pro-
files τ and x /∈ T ,

Ux(σ−T , τT ) ≥ Ux(σ)

Definition 8. A strategy profile σ∗ is (k, T )-strategy-robust with respect to T ⊆
N iff σ∗ is T -strategy-immune and for all K ⊆ N \ T such that |K| ≤ k and all
Byzantine strategies τ , there does not exist some σ′ such that for all x ∈ K,

Ux(σ′
K , τT , σ

∗
−(K∪T )) > Ux(σ∗

−T , τT )

A (k, T )-strategy-robust equilibrium need only be a best response to the specified
set T of Byzantine nodes. The following theorem shows that no (k, T )-strategy-
robust equilibrium is possible unless rational nodes “blacklist” all nodes in T .

Theorem 9. In a communication game, there does not exist any (k, T )-strategy-
robust equilibrium σ∗ where any x /∈ T communicates with any z ∈ T .

Proof. Similar to proof of Theorem 6 (see [42]). ��
Although Theorem 9 does not rule out all (k, T )-strategy-robust equilibria, The-
orem 10 proves that these equilibria, which must be regret-free for any Byzantine
strategy, only exist in limited circumstances.

Theorem 10. No communication game can yield a (k, T )-strategy-robust equi-
librium for any set T ⊆ N of Byzantine nodes if for some x /∈ T and some
z ∈ T , (a) x has at least one opportunity to send a message to z and (b) for any
strategy profile σ, there exist two Byzantine strategies τz and τ ′z such that τz and
τ ′z are the same until x’s first opportunity to communicate with z and

Ux(σ−z , τz) − Ux(σ−z , τ
′
z) > γ
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We omit the straightforward proof for lack of space (see [42]): in essence, if there
exists a Byzantine strategy in which a rational node may gain by interacting with
Byzantine nodes, then ignoring Byzantine players may not prove, in hindsight,
an optimal strategy.

Theorem 10—unlike Theorem 6—provides conditions under which no (k, t)-
strategy-robust equilibria exist, whether trivial or not. Since (k, t)-strategy-robust
equilibria are a superset of (k, t)-robust equilibria, it naturally follows from The-
orem 10 that no (k, t)-robust equilibria exist under the same conditions.

3.3 What If We Know How Byzantine Nodes Behave?

Let us now consider a solution concept that assumes that the strategy played by
every Byzantine node is known a priori and yields equilibria that are regret-free
with respect to who the Byzantine nodes are.

Definition 11. The strategy profile σ∗ is a (k, t, τ)-type-robust equilibrium iff
σ∗ is t-immune and for all K,T ⊆ N such that K∩T = ∅, |K| ≤ k, and |T | ≤ t,
there does not exist some σ′ such that for all x ∈ K,

Ux(σ′
K , τT , σ

∗
−(K∪T )) > Ux(σ∗

−T , τT )

Despite the strong assumption on which they rely, (k, t, τ)-type-robust equilibria
are impossible to achieve for many Byzantine behaviors. In particular, it follows
immediately from Theorem 6 that no such equilibrium is possible if the known
Byzantine strategy calls for any Byzantine node to crash at the very beginning
of the game.

Theorem 12. There exist no non-trivial (k, t, τ)-type-robust equilibria in the
communication game in which a Byzantine node z, following τz, crashes at the
beginning of the game.

Proof. Same as proof of Theorem 6. ��
In general, it is possible to show (see [42]) that non-trivial (k, t, τ)-type-robust
equilibria are impossible whenever there is a point in the known Byzantine strat-
egy after which a Byzantine node becomes “unresponsive,” i.e., the node’s be-
havior becomes independent of how the game has been played so far (e.g., the
node crashes or starts flooding all other nodes with messages).

4 Dealing with Byzantine Failures through Regret
Bravery

Finding a single strategy that is a best response against all possible Byzantine
strategies or all possible t-sized subsets of Byzantine nodes (or both) appears
fundamentally hard: regret-free solution concepts, for which rational cooperation
depends on finding such a strategy, seem unlikely to provide a viable theoretical
framework for many BAR-tolerant systems.
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Regret bravery, the alternative we explore in this section, explicitly forgoes
seeking a“universal” best response. Instead, it makes rational cooperation de-
pendent on identifying a strategy that is a best response to the Byzantine be-
havior that rational nodes expect to be exposed to. Before we proceed to look at
examples of regret-braving equilibria, we answer some natural questions.

Is aiming for a best response towards only a subset of all possible Byzantine
behaviors in effect abdicating the general claims (and benefits) of Byzantine fault
tolerance? No. Any BAR-tolerant protocol, independent of the underlying so-
lution concept, must be a strategy that guarantees Byzantine fault tolerance.
The choice of a solution concept is not about fault tolerance; rather, it specifies
under which conditions rational nodes will be willing to follow a given strat-
egy, fault-tolerant or not. Regret-braving solution concepts are motivated by the
observation that rational nodes may be willing to cooperate even without the
guarantee that the considered strategy will, in all circumstances, prove to be a
best response.

Do regret-braving solution concepts limit how Byzantine node can behave? No
more than a threshold t on the number of Byzantine faults limits a system to
experience, in reality, more than t faults. Regret braving asks rational nodes to
build a model of expected Byzantine behavior, but of course Byzantine nodes are
in no way bound to follow that model. If Byzantine behavior does not match the
expectation of rational nodes, then a regret-braving equilibrium strategy may
not, in hindsight, prove to be a best response.

What is the right set of expectations when it comes to Byzantine behavior? It
all depends on the application being considered. We discuss below two concrete
examples inspired by approaches (maximin and Bayes equilibria) that have been
extensively studied in the economics literature, but we do not claim that these
solution concepts model “realistic” expectations for all distributed systems. For
example, the maximin approach produces a best response to the expectation that
the system always includes exactly t Byzantine nodes, when it may instead often
be reasonable to expect that the actual number of Byzantine faults will be lower.4

Indeed, we believe that the challenge of finding equilibrium strategies under more
flexible solution concepts is an extremely exciting research opportunity.

Regret Braving the Quorum Communication Game. To show the via-
bility of regret-brave solution concepts in a communication game, we consider
a concrete communication game: a quorum game, which models protocols, such
as secret-sharing [38], replicated state machines [26] and terminating reliable
broadcast [21] in which functionality is achieved if and only if some subset of
nodes (a quorum) work together.

Definition 13. A (synchronous) quorum game is an infinitely-repeated commu-
nication game where

4 A worst-case attitude is actually not uncommon when designing fault-tolerant
systems, even for benign failures. For instance, non-early stopping protocols for
synchronous terminating reliable broadcast always run for t + 1 rounds, even in
executions that experience no failures.
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– There are at least 3 nodes (n ≥ 3).
– The game repeats indefinitely. In every round, for each y ∈ N , a node x = y

decides whether to send a message (“contribute”) or not (“snub”) to y.
– At the end of the round, every x ∈ N simultaneously (1) observes who con-

tributed to it and (2) receives its payoff.5 x incurs a cost of γ for each node
x contributes to and for each node that contributes to x; x incurs no cost
for snubbing or being snubbed. x realizes a positive benefit of b > 2nγ in any
round where q other nodes (a quorum) contribute to x.6

– The total payoff is the δ-discounted sum of each individual round’s payoff,
where 0 < δ < 1.

δ-discounting is a commonly-accepted way of handling utility in infinite-horizon
games [17]. This models the reality that earning benefit (incurring cost) now is
better (worse) than doing so later.7

We consider two concrete regret-braving solution concepts for the quorum
game. In the first, rational nodes best-respond to fearing the worst, i.e., they
follow a maximin strategy with respect to Byzantine failures.

Definition 14. The strategy profile σ∗ is a k-resilient t-maximin equilibrium iff
for any coalition K ⊆ N such that |K| ≤ k, there does not exist an alternate
strategy profile σ′ such that for all x ∈ K,

min
T⊆N\K:
|T |≤t

min
τ

Ux(σ′
K , τT , σ

∗
−(K∪T )) ≥ min

T⊆N\K:
|T |≤t

min
τ

Ux(σ∗
−T , τT )

and for some y ∈ K, the inequality is strict.

In the second, rational nodes weigh the probabilities of various Byzantine fail-
ures; an equilibrium is thus these probabilities—known as beliefs in game theory
parlance—and the strategy profile that is an expected best response given these
beliefs. A set of beliefs μ = {μx}x∈N is, for each node, a probability distribution
over sets of nodes and their types—whether they are rational, or Byzantine and
playing a particular strategy. We use μx((R−T , τT )|RK) to denote a rational
node x’s belief that all nodes z ∈ T are Byzantine and of type (i.e., playing
strategy) τz and all nodes w /∈ T are rational (i.e., of type R), given that there
is some K (the coalition) in which x ∈ K and all y ∈ K are rational.

Definition 15. The strategy profile/belief tuple (σ∗, μ∗) is a k-resilient Bayes
equilibrium iff for all K ⊆ N such that |K| ≤ k, there does not exist an alternate

5 In game theory parlance, the game is a simultaneous game; in distributed systems,
synchronous.

6 Technically, the quorum size is q + 1: q other nodes and the node itself (we assume
that it costs nothing for a node to contribute to itself). For simplicity, we will simply
say that the quorum size is q.

7 For example, it is often preferable to have a dollar now rather than later, since money
can be invested and can earn interest in the meantime.
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strategy profile σ′ such that for all x ∈ K,
∑

T⊆N\K

∑
τ

μ∗
x((R−T , τT )|RK)Ux(σ′

K , τT , σ
∗
−(K∪T ))

≥
∑

T⊆N\K

∑
τ

μ∗
x((R−T , τT )|RK)Ux(σ∗

−T , τT )

and for some y ∈ K, the inequality is strict.

In both definitions, we extend previous work that uses regret-brave solution
concepts [6,28,29,41] by explicitly considering collusion, which prior work avoided
by either considering collusion a Byzantine failure or making informal arguments
on the basis of experimental results. For simplicity, we use k-resilience (Definition
4); however, we could have used any notion of collusion resilience, as this choice
is orthogonal to how rational participants view Byzantine peers.

An example of a t-maximin equilibrium. We prove a k-resilient t-maximin equi-
librium in the quorum game. Although we argue that communication always has
cost and the quorum game does not explicitly model communication that coali-
tion members may perform to coordinate, our proof implicitly assumes that the
coalition can coordinate its actions. Thus, our results hold even if we augmented
the game to allow coalition members to coordinate via cheap talk [12,16].

Theorem 16. Let the strategy profile σ∗ be defined as follows: any x ∈ N fol-
lowing σ∗

x contributes to some y = x iff x and y have always contributed to each
other in the past and x has been snubbed by at most t different nodes. σ∗ is a
k-resilient t-maximin equilibrium if q = n − t− 1, k ≤ q, and

b

γ
≥ max

(
1 + δ2

δ2
(n − 1),

1
1 − δ

(t + k) + 1
)

(2)

Proof. (Sketch)8 Since q = n − t − 1, a rational node needs the cooperation
of all other rational nodes to achieve a quorum; as k ≤ q, a coalition cannot
achieve quorum by itself.9 Consider some coalition K of size at most k. It can be
easily verified that, given the conditions above, a coalition member x ∈ K never
snubs a cooperative, non-coalition node y /∈ K following σ∗. Intuitively, suppose
x snubs y in some round r and y is not Byzantine. If t Byzantine nodes snub
every node at least once by round r, y, having observed t + 1 snubs, will then
snub every node in round r + 1. This causes all non-coalition nodes to follow
suit and snub in round r + 2. It follows that all members of K, including x,
will only receive up to k − 1 < q other contributions for the remainder of the
game starting from round r+2. As this is not enough to achieve quorum, such a
deviation results in the loss of benefit for the remainder of the game and is thus
not worthwhile for K given the above conditions.
8 See [42] for the full details.
9 Recall that a node needs q other nodes to contribute in order to achieve quorum.
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However, coalition members have an additional possible deviation: they may
choose to help each other save on receiving extraneous contributions (stemming
from the fault-tolerant nature of the quorum game, nodes typically send and
receive contributions from more than q members) by “snubbing” one another
without threat of punishment.

Suppose that nodes in K play such an alternate strategy σ′
K in which some

nodes in K snub, for the first time, some x ∈ K in round r. Then Byzantine
nodes may also snub x in order to cause x to lose quorum in round r. Specifically,
by deviating, x may

– lose the benefit b it would have normally gained from playing σ∗,
– save at most (t + 1)γ from not receiving contributions from t + 1 members

(the reason why x did not achieve quorum and lost benefit), and
– save at most kγ from not contributing to other coalition members.

Therefore, as compared to σ∗
K , σ′

K loses x at least b − (t + k + 1)γ in utility.
However, in all subsequent rounds, x could save on contributing to

– Byzantine nodes that snubbed x in round r, saving at most tγ per round (in
the worst case, the Byzantine nodes still continue to contribute to x), and

– coalition members, saving at most kγ per round.

This implies that x saves at most δ/(1− δ)(t+ k)γ in utility over all subsequent
rounds.

Thus, in order for σ′
K to be worthwhile for x, it must be the case that

−b + (t + k + 1)γ +
δ

1 − δ
(t + k)γ > 0

which is never satisfied given inequality (2). ��

An example of a Bayesian equilibrium. One advantage of using the t-maximin
solution concept is its simplicity: because we need only consider the worst possi-
ble case, t-maximin equilibria are simple to analyze. Unfortunately, although a
rational node playing a t-maximin equilibrium may receive a safe, steady amount
of utility, Byzantine failures are unlikely to always occur in the worst possible
way, and a rational node willing to take a risk and deviate from the prescribed
strategy may be able to do better in expectation.

In the remainder of this section, we demonstrate that the Bayesian approach
provides flexibility in how Byzantine nodes are modeled by rational nodes by
demonstrating a simple example of a k-resilient Bayes equilibrium. Our goal
is to simply illustrate the existence of Bayesian equilibria, not to derive tight
bounds for when these equilibria exist. Thus, for simplicity of exposition, we
use simple beliefs, optimistic bounds about the utility earned by deviating, and
pessimistic bounds about the utility earned by cooperating.
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Theorem 17. Define the strategy profile σ∗ such that any x ∈ N , following σ∗
x,

contributes to any y = x iff x and y have always contributed to each other in the
past and x has been snubbed by at most t peers, where t is some constant.

Let τ be defined as the random t-crash strategy: in any given round, a node
z playing τz has some positive probability ρ of crashing. Define the set of beliefs
μ∗ such that for all subsets K ⊆ N such that |K| ≤ k and all y ∈ K,

– μ∗
y((R−T , τT )|RK) = 0 for any T such that |T | = t, and

– μ∗
y((R−T1 , τT1)|RK) = μ∗

y((R−T2 , τT2)|RK) > 0 for any T1, T2 ⊆ N \K such
that |T1| = |T2| = t.

Then (σ∗, μ∗) is a k-resilient Bayes equilibrium if n > t + k, k ≤ q, and

b

γ
≥ n + t− 1

ρtδ2(1 − δ)
n− k

n − k − t
+ n − t− 1 (3)

Proof. Fix some rational node x and some coalition K, where x ∈ K and |K| ≤ k.
We optimistically assume a rational node that deviates in round r only loses
utility if t nodes crash on or before round r, which occurs with probability at
least ρt.

It can be easily verified that by following σ∗, each member of K, including x,
earns no less than

1
1 − δ

(b− 2(n− 1)γ) (4)

in utility, since x can achieve quorum even if every Byzantine node crashes, so
the “worst” that happens is x achieves quorum in every round while incurring
cost from communication from everyone.

Suppose that x snubs some node y /∈ K. Since the probability that a node is
rational is uniform across all (non-coalition) nodes, y is rational with probability
at least 1 − t/(n − k), and with probability at least ρt, y will observe t other
nodes snub it by round r. y then snubs everyone starting in round r + 1, all
non-coalition nodes snub everyone starting in round r + 2, and x earns at most
0 in every round starting from round r + 2. Otherwise, we assume x earns the
maximum round payoff b− qγ. Thus, deviating is worthwhile only if

ρt

(
1 − t

n− k

)
(1 + δ)(b − qγ) +

(
1 − ρt

(
1 − t

n − k

))
1

1 − δ
(b− qγ)

exceeds expression (4). This never holds given inequality (3).
Otherwise, suppose that x ∈ K “snubs” its peer y ∈ K to save on y’s com-

munication costs. Again, y, with probability at least ρt, will not achieve quorum
if all t nodes crash on or before round r. However, unlike before, y only loses
quorum for one round; we otherwise assume that it achieves the maximum round
payoff b− qγ. Thus, deviating as a coalition is worthwhile only if

ρt δ

1 − δ
(b− qγ) + (1 − ρt)

1
1 − δ

(b− qγ) >
1

1 − δ
(b − 2(n− 1)γ)

which never holds given inequality (3). ��
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5 Related Work

Outside of (k, t)-robustness [3,4], Eliaz [15] also defined a solution concept which
is effectively (1, t)-robustness. Gradwohl [19] explored regret-free equilibria with
t arbitrary or colluding nodes in leader election and random sampling games.
Our results still apply to the solution concepts used in these papers. Moscibroda
et al. [33] use an approach similar to t-maximin to consider worst-case Byzantine
behavior in the context of a computer virus propagation model.

Coalitions have been studied in depth in the game theory literature. Aumann
[40] proposed a notion of collusion resilience which is the basis for k-resilience.
Berheim et al. [11], Moreno et al. [32], Einy et al. [14], among others, have
proposed weaker solution concepts that only consider deviations that are self-
enforcing, meaning that there does not exist an even more profitable deviation
for a sub-coalition within the coalition. All of these notions are complementary
to regret-brave equilibria and can be used as a part of a regret-brave solution
concept.

Our results are similar in spirit to previous work in mechanism design
[13,18,20,25,34,37] where mechanisms that incentivize nodes to reveal their true
preferences or types for every possible realization of types are found to be often
impossible or heavily restricted. Others [13,34] found positive results by using
Bayesian solution concepts instead of dominant ones. Mookherjee et al. [31]
define conditions in which Bayesian incentive-compatible mechanisms can be
replaced by equivalent dominant-strategy mechanisms.

Maximin strategies have been previously explored in conjunction with adver-
sarial or possibly irrational agents. Alon et al. [7] quantify how, in a two-player
zero-sum game, the payoff of playing a mixed maximin strategy is affected by an
adversary who can choose its actions based on some information about its peer’s
realized strategy. Tennenholtz [39], extending the work of Aumann et al. [8,9],
explores how maximin strategies can approximate the payoff of a Nash equi-
librium when a rational node may not want to rely on the rationality of its
peers.

6 Conclusion

Distributed systems that span multiple administrative domains must tolerate
the possibility that nodes may be Byzantine, rational, and (possibly) acquies-
cent. To formally reason about such services, we need a solution concept that
provides rigorous guarantees for rational cooperation without sacrificing real-
world applicability. This paper argues that solution concepts based on regret
freedom, despite their intuitive correspondence to the traditional guarantees of
fault-tolerant distributed computing, are unlikely to provide the basis for a vi-
able theoretical framework for real-world systems. In particular, we believe that
any practical solution concept should be able to admit equilibria in games where
a rational node’s payoff is not based simply on the outcome but also on the
cost of the actions required to achieve said outcome. While our discussion here
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has focused on communication costs, other costs should be included, such as
the computational costs discussed in the recent work of Halpern and Pass [22].
We believe that regret-brave solution concepts provide a rigorous and realistic
framework for games that account for these costs.
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Abstract. We consider the problem of minimizing the number of re-
generators in optical networks with traffic grooming. In this problem we
are given a network with an underlying topology of a graph G, a set of
requests that correspond to paths in G and two positive integers g and
d. There is a need to put a regenerator every d edges of every path, be-
cause of a degradation in the quality of the signal. Each regenerator can
be shared by at most g paths, g being the grooming factor. On the one
hand, we show that even in the case of d = 1 the problem is APX−hard,
i.e. a polynomial time approximation scheme for it does not exist (unless
P = NP ). On the other hand, we solve such a problem for general G
and any d and g, by providing an O(log g)-approximation algorithm and
thus extending previous results holding only for specific topologies and
specific values of d or g.
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1 Introduction

In modern optical networks, high-speed signals are sent through optical fibers
using WDM (Wavelength Division Multiplexing) technology. The decrease in
the energy of the signal with the traveled distance necessitates optical ampli-
fication at every (almost) fixed distance. However this amplification introduces
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noise into the signal, so that it has to be regenerated after a certain number
of amplifications. The signal is regenerated by first using a ROADM (Recon-
figurable Optical Add-Drop Multiplexer) to extract a set of wavelengths from
the optical fiber. Then, for each extracted wavelength, an optical regenerator
regenerates the signal carried by that wavelength. That is, at a given optical
node, one needs one ROADM if any regeneration will take place, and as one
regenerators per wavelength to be regenerated.

The dominant part of the regeneration cost is the cost of the regenerators, be-
cause they are (a) expensive and (b) needed one per wavelength. Therefore the
total number of regenerators is an important cost parameter to be minimized [15].

A logical path formed by a signal traveling from its source to its destination
using a unique wavelength is termed a lightpath. Let d be the maximum number
of hops a lightpath can make without meeting a regenerator. Then an optimal
solution can be found by simply placing one regenerator for every d consecutive
vertices of each lightpath �. However the problem becomes harder when the
traffic grooming enters the picture.

Traffic grooming: The network usually supports traffic that is at rates lower
than the full wavelength capacity. Therefore the network operator puts together
(= grooms) low-capacity connection requests into high capacity lightpaths. In
graph-theoretic terms, we associate a path in the graph with each connection,
and the problem can viewed as assigning wavelengths to these paths so that at
most g of them using the same wavelength (g being the grooming factor) can
share one edge. Thus, all paths (i.e. connections) that get the same color (i.e.,
the same wavelength) and form a connected subgraph correspond to grooming
of these connections into one lightpath. The optical signal is routed in the inter-
mediate nodes, based on wavelength only, therefore connection requests assigned
the same wavelength can not split from each other, i.e. they might not induce a
graph with a node with degree 3 or higher. In other words a set of path assigned
the same wavelength induces a graph with maximum degree two.

1.1 Related Work

Various variants of regenerator placement problems were studied in [3,8,16,19].
Most of these results concentrate in heuristics and simulations and do not con-
sider traffic grooming.

In the literature, two different scenarios have been studied, depending on
whether or not it is allowed to split the paths in order, for instance, to reduce the
number of used wavelengths or the cost of hardware components. In particular,
[5,7] assume that no splitting is allowed, while [6] allows to split paths and [14]
considers both scenarios. In this work, we focus on the case in which splitting
lightpaths is not allowed.

In [9] theoretical results (upper bounds and lower bounds) are presented for a
family of related problems. The objective in that work is to minimize the number
of regenerator locations (as opposed to the total number of regenerators), and
traffic grooming is not considered. On the other hand, [15] consider the same
cost measure as this work but still does not consider traffic grooming.
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The problem we study is shown to be NP-hard in other contexts such as fiber
minimization in [18] and its NP-hardness is also implied by the proof of a similar
result in [11] holding even for path topology and g = 2.

When the underlying graph is a path the problem is equivalent to a machine
scheduling problem studied in [10], where several approximation algorithms are
presented for it and for some of its special cases. In [12] and [13] these results have
been extended to the tree topology, and also an algorithm for general networks
has been provided. Unfortunately, the worst case approximation ratio of that
algorithm is very high for general topologies, namely as the order of the number
of lightpaths.

1.2 Our Contribution

In this work we consider the problem of minimizing the number of regenerators
in optical networks with traffic grooming, extending the results in [10,12,13] for
general settings.

We first show that even in the case of d = 1, G being a bipartite graph, the
problem is APX − hard for any g ≥ 2, i.e. a polynomial time approximation
scheme (PTAS) for it does not exist (unless P = NP ). We then provide an
O(log g)-approximation algorithm for the most general version of this problem
in which general topologies are admitted and both d and g can be arbitrary.

The paper is organized as follows. In Section 2 we define our problem. On
the one hand, in Section 3 we show that our problem is APX-Hard even in
the case of d = 1, G being a bipartite graph and g ≥ 2. On the other hand,
in Section 4 we provide a polynomial time approximation algorithm solving the
problem for general topologies and any value of g and d, with an approximation
ratio logarithmic in g. We conclude by suggesting open research directions in
Section 5.

2 Definitions and Problem Statement

We consider instances (G,P , g, d) where G = (V,E) is a graph modeling the
optical network, P is a set of simple paths in G, g ∈ N

+ is the grooming factor
and d is the maximum number of hops a lightpath can travel without meeting a
regenerator.

A coloring (or wavelength assignment) of (G,P) is a function w : P �→ N. For
a coloring w and color λ, Pw

λ denotes the subset of paths from P colored λ by

w, i.e. Pw
λ

def
= {P ∈ P|w(P ) = λ}. When there is no ambiguity on the coloring

w under consideration, we omit the superscript w and use Pλ.
For a node v, Pv denotes the subset of paths of P having v as an intermediate

node, and similarly for an edge e, Pe denotes the subset of paths of P using
the edge e. For every e ∈ E we define load(P , e)

def
= |Pe| and load(P)

def
=

maxe∈E load(P , e).
A set of paths is called a no-split instance or shortly an NSI if the union of

its paths (as sets of edges) induces a graph of maximum degree at most 2. In
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particular, if also the minimum degree of such a graph is 2 (i.e., such a graph
is a vertex disjoint union of rings), we call every connected component of it a
ring-NSI, otherwise we call every connected component a path-NSI.

In this work we assume (as in [5,7,14]) that splitting of paths is not allowed,
i.e. paths using the same wavelength and going through the same edge of the
network can be routed only to another unique edge. Moreover, since we do not
consider bounds on the number of colors and our goal is independent of it,
without loss of generality we assume that, in any solution, paths belonging to
different NSIs are assigned different colors, and therefore every set of paths with
the same color has to be an NSI.

A valid coloring (or wavelength assignment) w of (G,P , g, d) is a coloring of
P such that for every λ, Pw

λ satisfies the following two conditions:

– The load condition: For any edge e at most g paths using e are colored with
λ, i.e. load(Pw

λ ) ≤ g.
– The no-splitting condition: Pw

λ is an NSI.

Given a valid coloring w of (G,P , g, d), a regenerator assignment is a boolean
function rw : V × N �→ {0, 1}; in particular, rw(u, λ) = 1 if and only if a
regenerator operating at wavelength λ is placed at node u.

We are now ready to give a formal definition of our problem.

Total Regenerators with Grooming (Trg)

Input: A quadruple (G,P , g, d), where G = (V,E) is a graph, P =
{P1, P2, ..., Pn} is a set of simple paths in G, g is an integer, namely the groom-
ing factor, and d is the maximum number of hops a lightpath can go through
without needing a regenerator.
Output: A valid coloring w : P �→ N and a regenerator assignment rw such
that, rw satisfies the constraint that every lightpath has a regenerator every
at most d hops (we will refer to this condition as the regeneration condition
through this work).
Objective: The cost of a solution is given by the total number of regenerators

REGw def
=
∑

λ

∑
u∈V rw(u, λ). The goal is to minimize the total number of

regenerators REGw.

OPT (G,P , g, d) denotes the cost of any optimal coloring.

3 Hardness of Approximation

In this section we show that the problem Trg is APX-hard even if restricted
to instances (G,P , g, 1), with g at least 2.

Notice that, if d = 1, the coloring w univocally identifies the regenerator
assignment rw; in fact, given an NSI N colored λ by w, a regenerator is needed
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at each node being an internal node of some path in N , i.e., rw(u, λ) = 1 if and
only if u is an internal node of some path in N .

We first define a problem that will be used in our proof.

B-Bounded Edge Partition into Triangles and Minimum Paths
(MEPTP-B):
Input: A graph G = (V,E) with Δ(G) ≤ B, where Δ(G) is the maximum
degree of a node of G.
Output: A partition of E into connected graphs with at most 3 edges.
Measure of a solution: The number of paths of the returned partition.
Objective: Minimizing the measure of the returned solution.

By exploiting a reduction similar to the one used in [1] we will prove that this
problem is APX-Hard. Finally we will reduce this problem to the (G,P , g, 1)
problem with g ≥ 2 in order to show the APX-Hardness of the latter.

Definition 1. Given a tripartite graph G = (V0 ∪ V1 ∪ V2, E) we can obtain a
directed graph, by directing the edges from nodes of Vi nodes of V(i+1) mod 3. We
will say that G is directed Eulerian if the directed graph obtained in this way is
directed Eulerian.

Lemma 1. The MEPTP-B problem is APX-Hard for any fixed B ≥ 12 even
when the graph is directed Eulerian tripartite and the optimum is at least |E| /10.

Theorem 1. The set of (G,P , g, 1) instances of the Trg problem is APX-hard
for any g ≥ 2 and even when G is a bipartite graph.

Proof. We will give an approximation ratio preserving reduction from the
MEPTP-B problem in graphs satisfying the conditions of Lemma 1 to the
(G,P , g, 1) instances of Trg, with g ≥ 2.

Let G′ = (V ′
0 ∪ V ′

1 ∪ V ′
2 , E

′) be an instance of MEPTP-B. We build an
instance (G = (V,E),P , g, 1) of our problem as follows (see Figure 1): For each
i ∈ {1, 2, 3} and for every node v ∈ V ′

i , G contains a path with three nodes
v−, v, v+ and two edges (v−, v), (v, v+). G contains 3 special nodes u01, u12, u20.
Node uij is connected to all the v+ nodes corresponding to any v ∈ V ′

i and to
all the v− nodes corresponding to any v ∈ V ′

j .
For each edge (v, w) ∈ E′ where v ∈ V ′

i and w ∈ V ′
j (j ≡ (i + 1) mod 3), P

contains the path (v−, v, v+, uij , w
−, w, w+).

The constructed instance has the following properties:

– Any two distinct edges of G′ both connecting nodes from V ′
i and V ′

j corre-
spond to two paths in P that induce a graph with degree 3 or 4 at node uij .
Therefore these two paths cannot be part of an NSI. We conclude an NSI
can contain at most 3 paths, i.e., one corresponding to an edge of G′ from
V ′

0 to V ′
1 , another one corresponding to an edge of G′ from V ′

1 to V ′
2 , and

another one corresponding to an edge of G′ from V ′
2 to V ′

0 .
– The two paths corresponding to any pair of adjacent edges in G′ are compat-

ible (i.e., form together an NSI) and have one intermediate node in common.
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V0

V1

V2

u01
u20

u12
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x+x-
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y+ y-

z
z+ z-

Fig. 1. The bipartite graph in the proof of Theorem 1

We conclude that the edges in G′ corresponding to the paths of an NSI form
either a triangle, or a path with 1, 2 or 3 edges, and conversely, every such
subgraph of G′ corresponds to an NSI. Let T be the number of NSIs correspond-
ing to triangles of G′, and lk be the number of NSIs corresponding to paths
of length k of G′ for k ∈ {1, 2, 3}. Note that each path of P has 5 intermedi-
ate nodes. Therefore the number Reg of regenerators used by such a solution
is Reg = 5 |E′| − 3T − 2l3 − l2. As G′ is directed Eulerian tripartite, for any
T there is a solution with l2 = l1 = 0, with cost Reg = 5 |E′| − 3T − 2l3 =
5 |E′| − (3T + 2l3) = 5 |E′| − (|E′| − l3) = 4 |E′| + l3. Therefore the minimum
number of regenerators is obtained at the optimum of the MEPTP-B instance.
Let Reg∗ be the optimum of instance (G,P , g, 1), and consider a ρ-approximate
solution of it with Reg = ρ ·Reg∗. Moreover, let l∗k, for k ∈ {1, 2, 3}, be the num-
ber of paths of length k in an optimal solution of the corresponding instance of
the MEPTP-B problem. Then

l3 = Reg − 4 |E′| = ρ ·Reg∗ − 4 |E′| = ρ · (l∗3 + 4 |E′|) − 4 |E′|
= ρ · l∗3 + 4(ρ− 1) |E′| ≤ ρ · |l∗3| + 40(ρ− 1)l∗3 (1)
= (ρ + 40(ρ− 1))l∗3 ,

where 1 holds because by Lemma 1 we can assume that the optimum of G′ is at
least |E′|

10 .
Assume that our problem admits a PTAS. For any ε > 0 we run the PTAS

with the parameter ε′ = ε/41 to obtain a ρ = 1 + ε/41 approximated solution.



102 M. Flammini et al.

This corresponds to a solution of the MEPTP-B with l3 ≤ (1 + ε)l∗3. A con-
tradiction to the fact that MEPTP-B does not admit a PTAS unless P=NP.

�

4 Approximation Algorithm

In this section we provide an approximation algorithm for the Trg problem for
general topologies, guaranteeing an O(log g) approximation ratio in polynomial
time.

A proper set P̄ of paths, is a set of paths that constitute and independent set
with respect to inclusion. In other words no paths of P̄ is included in another.
An instance is said to be proper if its set of paths P is proper.

This section is organized as follows: We first provide an O(log g)-
approximation algorithm for the case of proper instances with d = 1. We then
extend this result to the more general case in which d = 1 but the instance is not
necessarily proper. Finally we extend the result to any value of d. Each time we
extend the previous result, we lose only a constant factor in the approximation
ratio, therefore achieving an O(log g)-approximation ratio for the general case.

We introduce some definitions that will be useful in the proofs contained in
this section. We denote by INT (P ) the set of intermediate nodes, i.e. of all the

nodes not being endpoints, of a path P in G, and int(P ) def= |INT (P )|. For a
set P of paths we define:

SPAN(P)
def
=
⋃

P∈P
INT (P ), span(P)

def
= |SPAN(P)| , len(P)

def
=
∑
P∈P

int(P ).

Notice that, if d = 1, the number of regenerators operating at wavelength λ is
span(Pw

λ ); in fact, at each node being an intermediate node of some path in Pw
λ

a regenerator operating at this wavelength is needed. Moreover, when d = 1, we
have the following trivial lower bound (the grooming bound) for the cost of any
coloring w (in particular for an optimal coloring), holding because a regenerator
can be used by at most g intermediate nodes of paths: REGw ≥ len(P)

g .

4.1 Proper Instances with d = 1

In this section, we focus on the case d = 1, i.e., a regenerator is needed at
every internal node of a path, and the set of paths constitute a proper set.
In particular, we provide Algorithm 2 working for (G, P̄ , g, 1) instances, with
P̄ being a proper set of paths. It exploits the greedy set cover approximation
algorithm GreedySetCover for the minimum weight set cover problem presented
in [4]. Such an algorithm guarantees an Hk approximation ratio, where k is the
maximum cardinality of a subset in the input and Hk is the k-th harmonic
number

∑k
i=1

1
i .
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More formally, the Set Cover problem is defined as follows:
Minimum Weighted Set Cover
Output: A subcollection SC ⊆ S of subsets covering the elements in A, i.e. such
that ∪SC = A.
Measure of a solution:

∑
S∈SC weight[S], i.e. the sum of the weights of the

selected subsets.
Objective: Minimizing the measure of the returned solution.

We present here the GreedySetCover Algorithm of [4] because we will slightly
modify it in the sequel, to improve the time complexity of our algorithm.

Algorithm 1. [4] GreedySetCover(A,S, weight)
1: SC ← ∅
2: Covered ← ∅
3: while Covered �= A do
4: for i = 1 to m do
5: eff [Si] ← weight[Si]

|Si\Covered|
6: end for
7: min ← argminm

i=1 eff [Si]
8: SC ← SC ∪ {Smin}
9: Covered ← Covered ∪ Smin

10: end while
11: return SC

Definition 2. Given a set Q of paths, and a path P ∈ Q, we say that P domi-
nates Q if ∀P ′ ∈ Q, E(P ′)∩E(P ) = ∅. A set Q of paths is said to be dominated
if there exists a path P ∈ Q that dominates Q.

We term an NSI N such that load(N ) ≤ g as a g-NSI. Our algorithm is based
on the following basic lemma.

Lemma 2. Let N be a proper g-NSI. N can be covered with proper, dominated
g-NSI’s QN

0 ,QN
1 , . . ., such that

∑
i span(QN

i ) ≤ 2 · span(N ).

Proof. Let N̂ ⊆ N be a maximal subset of pairwise edge-disjoint paths in N .
It follows from the maximality, that every path P ∈ N edge-intersects with
at least one path of N̂ . Let N̂ = {P0, P1, . . . , P|N̂ |−1}; if N is a path-NSI we
assume without loss of generality that P0, P1, . . . are ordered from left to right,
otherwise (i.e., if N is a ring-NSI) we assume that they are ordered clockwise. In
the following the terms before and after refer to this order, right and clockwise
are used interchangeably, and when N is a ring-NSI index arithmetic is done
modulo |N̂ |.

We observe that a path P ∈ N intersects either exactly one path Pi, or
two consecutive paths Pi, Pi+1, because otherwise there would exist a path
Pj included in P , contradicting the properness of N . We partition N into
QN

0 , . . . ,QN
|N̂|−1

such that, for i = 0, . . . , |N̂ | − 1, Qi consists of the paths of
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N intersecting only Pi, or both Pi and Pi+1. Clearly each QN
i is a proper g-NSI

dominated by Pi. It remains to show that the last condition in the statement of
the Lemma holds. We will show that every node v ∈ SPAN(N ) is in at most
two sets SPAN(QN

i ) and SPAN(QN
i+1).

Clearly, the claim holds when
∣∣∣N̂
∣∣∣ ≤ 2. Assume that

∣∣∣N̂
∣∣∣ ≥ 3 and that there is

a node v ∈ SPAN(QN
i )∩SPAN(QN

i+j) where j > 1. If v is not before the right
endpoint of Pi+1 then there is a path P ∈ QN

i whose right endpoint is not before
the right endpoint of Pi+1, thus including Pi+1, contradicting the properness of
N . If v is before the right endpoint of Pi+1, then there is a path P ∈ QN

i+j that
intersects Pi+1 contradicting the way we partitioned N . �

Algorithm 2. (G, P̄ , g, 1)
1: � Prepare the input for GreedySetCover
2: S ← ∅
3: for each Q ⊆ P̄ such that |Q| ≤ 2g − 1 do
4: if load(Q) ≤ g and Q is dominated and Q is an NSI then
5: S ← S ∪ {Q}
6: weight[Q] ← span(Q)
7: end if
8: end for
9: SC ← GreedySetCover(P̄,S , weight)

10: � Eliminate inclusions
11: while there exist S, S′ ∈ SC such that S ∩ S′ �= ∅ do
12: S ← S \ S′

13: end while
14: � Assign colors to paths
15: for each Si ∈ SC do
16: for each P ∈ S do
17: w(P ) ← i
18: end for
19: end for
20: return w

Theorem 2. Algorithm 2 is a 2H2g−1-approximation algorithm for (G, P̄ , g, 1)
instances, where P̄ is a proper set of paths. Its running time is not polynomial
in g.

Proof. The cost of the solution is at most the cost of the set cover returned
by the greedy algorithm, because the elimination of inclusions (lines 11–13 of
Algorithm 2) can only reduce the cost of the cover.

Since the maximum cardinality of a subset in the collection S given in input
to GreedySetCover is 2g− 1 and therefore, by [4], GreedySetCover guarantees
an H2g−1 approximation ratio, in order to prove the claim, it remains to show
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that there exists a subcollection SC ⊆ S such that
∑

S∈SC weight[S] ≤ 2 ·
OPT (G, P̄, g, 1).

Let N ∗
1 ,N ∗

2 , . . . ,N ∗
W∗ be the NSIs of an optimal solution. For each 1 ≤ i ≤

W ∗, let QN∗
i

0 , . . . ,QN∗
i

|N̂∗
i |−1

be the proper, dominated g-NSIs whose existence is

guaranteed by Lemma 2, and let SC =
{
QN∗

i
j |1 ≤ i ≤ W ∗, 0 ≤ j ≤ |N̂ ∗

i | − 1
}
.

It holds that:

∑

S∈SC
weight[S] =

∑

S∈SC
span(S) =

W∗∑
i=1

|N̂∗
i |−1∑

j=0

span(QN∗
i

j )

≤
W∗∑
i=1

2 · span(N ∗
i ) = 2 · OPT (G, P̄, g, 1).

To conclude the proof we note that a proper, dominated g-NSI contains at most
2g−1 paths. This is because each path of such a set must use one of the extremal
edges of the dominating path, otherwise such a path either does not intersect the
dominating path, or it is included in it, both of which contradict the definition of
dominated, proper set. There can be at most g− 1 paths except the dominating
path using each extremal edge, therefore at most 2(g − 1) + 1 = 2g − 1 paths.
We thus conclude SC ⊆ S. �

Though Algorithm 2 is not polynomial in g (as it considers all subset of paths
of cardinality at most 2g−1) we are able to provide a polynomial time algorithm
preserving the same approximation ratio up to a constant factor. First of all, we
relax the greedy choice (line 7) of algorithm GreedySetCover as the following
algorithm does.

Algorithm 3. GreedySetCover2(A,S, weight, ρ)
1: SC ← ∅
2: Covered ← ∅
3: while Covered �= A do
4: for i = 1 to m do
5: eff [Si] ← weight[Si]

|Si\Covered|
6: end for
7: Let j such that eff [Sj ] ≤ ρ · minm

i=1 eff [Si]
8: SC ← SC ∪ {Sj}
9: Covered ← Covered ∪ Sj

10: end while
11: return SC

The following lemma states a well known fundamental result on the approxi-
mation ratio guaranteed by Algorithm GreedySetCover2.

Lemma 3. Algorithm GreedySetCover2 guarantees a (ρ · Hk)-approximation
for the set cover problem, where k is the size of the biggest set in the input.
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An immediate consequence of the above lemma and Theorem 2 is

Corollary 1. Algorithm 2 in which, at line 9, GreedySetCover2 is invoked with
ρ = 2 instead of GreedySetCover is a 4H2g−1-approximation algorithm for
(G, P̄ , g, 1) instances, where P̄ is a proper set of paths. Its running time is not
polynomial in g.

We are now ready to provide and analyze the following algorithm.

Algorithm 4. (G, P̄ , g, 1)
1: SC ← ∅
2: Covered ← ∅
3: while Covered �= P̄ do
4: for each Qi ⊆ P̄ \Covered such that |Qi| ≤ 3 and Qi is a dominated NSI do
5: for each P ∈ P̄ \ Covered do
6: if Qi ∪ {P} is a dominated g-NSI and SPAN(Qi ∪ {P}) = SPAN(Qi)

then
7: Qi ← Qi ∪ {P}
8: end if
9: end for

10: eff [Qi] ← span(Qi)
|Qi|

11: end for
12: Choose Qmin that minimizes eff [Qmin]
13: SC ← SC ∪ {Qmin}
14: Covered ← Covered ∪Qmin

15: end while
16: � Assign colors to paths
17: for each Qi ∈ SC do
18: for each P ∈ Qi do
19: w(P ) ← i
20: end for
21: end for
22: return w

Lemma 4. Algorithm 4 is a polynomial time 4H2g−1-approximation algorithm
for (G, P̄ , g, 1) instances, with P̄ being a proper set of paths.

Proof. In this proof Algorithm 2 refers to the variant in which, at line 9, in-
stead of GreedySetCover, GreedySetCover2 is invoked with ρ = 2. Recall that
Corollary 1 holds for this variant. Actually Algorithm 4 is equivalent to Algo-
rithm 2 in the following sense: Instead of preparing an exponential number of
sets (lines 2–8 of Algorithm 2) and passing it to GreedySetCover2 (line 9 of
Algorithm 2), it actually simulates it, and each time calculates the greedy choice
of GreedySetCover2, by iterating over a polynomial number of sets.

In particular, in the following we show that the subcollection SC computed
at the end of line 15 of Algorithm 4 is one of the possible subcollections
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that Algorithm GreedySetCover2, executed at line 9 of Algorithm 2 on input
(P̄ ,S, weight) (where S and weight are those computed at lines 2–8 of Algorithm
2), could return as output.

Let without loss of generality the subcollection SC computed at lines 1–
15 of Algorithm 4 be {B1,B2, . . .} in the order they are chosen in the while
loop. We prove that SC is a possible subcollection that can be returned by the
GreedySetCover2 algorithm invoked at line 9 of Algorithm 2. It is enough to
show that for every k, Bk is a possible outcome of iteration k of the while loop of
GreedySetCover2. In the following discussion we confine ourselves to the k-th
iteration of both algorithms and to the values of SC and Covered in the be-
ginning of this iteration. Specifically we have to show that for every D ∈ S,
eff [Bk] ≤ 2 · eff [D] that means that Bk can be chosen by GreedySetCover2

algorithm at iteration k. Consider an arbitrary set D ∈ S. Since D is a dom-
inated, proper g-NSI then |D| ≤ 2g − 1 and there exists a set of three1 paths
P1, P2, P3 ∈ D dominated by P1, such that SPAN(D) = SPAN({P1, P2, P3}).
The set {P1, P2, P3} is considered by Algorithm 4 at line 4 and therefore a cor-
responding set of paths Qi with at least min(g, |D|) paths is built, such that
SPAN(Qi) = SPAN({P1, P2, P3}). We get |Qi| ≥ |D|

2 and therefore

eff [Qi] =
SPAN({P1, P2, P3})

|Qi| =
SPAN(D)

|Qi| ≤ 2 · SPAN(D)
|D| = 2 · eff [D].

Since Bk is chosen as the subset of paths with minimum cost-effectiveness at line
12 of Algorithm 4, eff [Bk] ≤ eff [Qi] ≤ 2 · eff [D], as required.

As a final remark, notice that the algorithm puts each path in exactly one sub-
set of the subcollection SC, and therefore there is no need to eliminate inclusions
as in lines 11–13 of Algorithm 2. �

4.2 Case d = 1

In this section we deal with the case d = 1 and general instances, by reducing
the problem to the special case of proper instances.

In order to show such a reduction, we exploit Algorithm “FirstFit” of [13] and
we also need a lemma of [13].

Algorithm FirstF it colors the paths greedily by considering them one after
the other, from longest to shortest. Each path is assigned the lowest possible
color for it. FirstF it uses colors starting from λstart.

Lemma 5. [13] Let w be the coloring returned by FirstF it and W ≥ 1 be the
number of colors used by w; for any λstart < λ ≤ λstart + W , len(Pλ−1) ≥
g
3span(Pλ).

We are now ready to prove the following lemma.

1 Actually, the number of such paths could be less than three, but the proof easily
extends to these cases.
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Algorithm 5. [13] FirstF it(G,P , g, λstart) where G is a path or a ring
1: Sort the paths in non-increasing order of length, i.e., int(P1) ≥ int(P2) ≥ . . . ≥

int(Pn).
2: Consider the paths by the above order and, for any path Pj , j ∈ {1, . . . , n}, let

w(Pj) be the first possible color λ ≥ λstart that will not violate the load condition.
Namely, find the minimum value λ ≥ λstart such that, for every edge e of Pj ,
load(Pλ, e) ≤ g − 1 and set w(Pj) ← λ.

3: return w

Lemma 6. Given a polynomial time ρ-approximation algorithm A for
(G, P̄ , g, 1) such that P̄ is a proper set of paths, it is possible to obtain a polyno-
mial time (2ρ + 3)-approximation algorithm A′ for (G,P , g, 1), where P is not
necessarily proper.

Proof. As a first step we calculate a maximal subset P̄ ⊆ P of proper paths, by
picking up all the paths P ∈ P and adding P to P̄ as long as P is not included in
any other path of P̄ . Clearly, P̄ is proper and every path P ∈ P \P̄ is included in
a path of P̄ . Consider Algorithm 6 executed on input ((G,P = P ′ ∪ P̄ , g, 1), w̄),
where w̄ = A(G, P̄ , g, 1). For any 1 ≤ λ ≤ W̄ , let firstλ and lastλ be the
minimum and the maximum color used by wλ, respectively. By Lemma 5, we
obtain

lastλ∑
λ′=firstλ+1

span(Pλ′) =
lastλ−1∑

λ′=firstλ

span(Pλ′+1)

≤ 3
g

lastλ−1∑
λ′=firstλ

len(Pλ′) <
3
g
len(P ′

λ). (2)

Moreover, Algorithm 6 guarantees that span(Pfirstλ
) ≤ span(N̄λ), because all

the paths in Pfirstλ
are included in some path of N̄λ.

The number of regenerators used by the coloring w returned by Algorithm 6
is

W̄∑
λ=1

span(N̄λ) +
W̄∑

λ=1

lastλ∑
λ′=firstλ

span(Pλ′)

=
W̄∑

λ=1

span(N̄λ) +
W̄∑

λ=1

⎛
⎝span(Pfirstλ

) +
lastλ∑

λ′=firstλ+1

span(Pλ′)

⎞
⎠

≤
W̄∑

λ=1

span(N̄λ) +
W̄∑

λ=1

(
span(N̄λ) +

3
g
· len(P ′

λ)
)

(3)

= 2
W̄∑

λ=1

span(N̄λ) +
3
g

W̄∑
λ=1

len(P ′
λ)
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≤ 2ρ · OPT (G, P̄, g, 1) + 3 ·OPT (G, P ′, g, 1) (4)
≤ (2ρ + 3) ·OPT (G, P ′ ∪ P̄ , g, 1), (5)

where inequality 3 holds by (2); inequality 4 holds because A is ρ-approximation
algorithm for (G, P̄ , g, 1) and by the grooming bound; finally, inequality 5 holds
because both OPT (G, P̄, g, 1) and OPT (G, P ′, g, 1) are at most OPT (G, P ′ ∪
P̄, g, 1). �

Algorithm 6. ((G,P , g, 1),w̄), where w̄ is a valid coloring for the instance
(G, P̄ , g, 1) with P̄ = P \ P ′ being a maximal proper set of paths
1: Let 1, 2, . . . , W̄ be the colors used by w̄
2: λnew ← W̄ + 1
3: for λ = 1 to W̄ do
4: N̄λ = P̄λ � P̄λ is the set of paths in P̄ colored λ by w̄
5: P ′

λ ← ∅
6: for each P ∈ P ′ such that P is included in some path of N̄λ do
7: P ′

λ ← P ′
λ ∪ {P}

8: end for
9: wλ ← FirstF it(N̄λ,P ′

λ, g, λnew)
10: λnew ← 1+ the maximum color used in wλ

11: end for
12: return w = ∪W̄

λ=1wλ.

4.3 The General Case

The following lemma of [13] shows that, given a ρ-approximation algorithm for
(G,P , g, 1), it is possible to obtain a 4ρ-approximation algorithm for (G,P , g, d).

Lemma 7 ([13]). Given a polynomial time ρ-approximation algorithm A for
(G,P , g, 1), for any d > 1, it is possible to obtain a polynomial time algorithm
A′ guaranteeing a (4 · ρ)-approximation for (G,P , g, d).

Given an NSI N , let G(N ) = (V (N ), E(N )) be the graph corresponding
to the NSI N , i.e. such that V (N ) =

⋃
P∈N V (P ) and E(N ) =

⋃
P∈N E(P ).

We now provide a polynomial time algorithm (Algorithm 7) whose existence is
shown in Lemma 7, transforming a feasible solution for (G,P , g, 1) into a feasible
solution for (G,P , g, d).

By combining Algorithms 4, 6 and 7, we are finally able to provide a polyno-
mial time approximation algorithm (Algorithm 8) working for any (G,P , g, d)
instance of the general problem.

By exploiting Lemmata 7, 6 and 4, we obtain the following theorem.

Theorem 3. Algorithm 8 is a (32H2g−1 + 12)-approximation polynomial time
algorithm for general instances.
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Algorithm 7. ((G,P , g, d), w), w being a valid coloring such that Pλ is an NSI
for any λ

1: Let 1, 2, . . . , W be the colors used by w
2: for λ = 1 to W do
3: Nλ = Pλ

4: for each connected component G′ in the subgraph of G(Nλ) induced by the
nodes in SPAN(Nλ) do � G′ is either a path or a cycle

5: Build rw such that in G′ there is a regenerator every d nodes
6: end for
7: end for
8: return (w, rw)

Algorithm 8. (G,P , g, d)
1: P ′ ← ∅ � Partition P into P̄ and P ′ such that P̄ is a maximal proper set of paths.
2: P̄ ← P
3: while there exist P, P̄ ∈ P̄ such that P is included in P̄ do
4: P ′ ← P ′ ∪ {P}
5: P̄ ← P̄ \ {P}
6: end while
7: w′ ← Algorithm 4 (G, P̄ , g, 1)
8: w′′ ← Algorithm 6 ((G,P , g, 1), w′)
9: w ← Algorithm 7 ((G,P , g, d), w′′)

10: return w

5 Open Problems

The main open problem is that of closing the gap between the hardness result of
Section 3 and the approximation ratio guaranteed by the Algorithm 8 provided in
Section 4. In particular, determining whether the problem is in APX constitutes
a very interesting research direction.

Interesting research directions are that of modeling the network by means
of a edge-weighted graph and also that of considering lightpaths requiring a
bandwidth being b

g , with 1 ≤ b ≤ g; notice that in this paper we have dealt with
the case b = 1.

It would be also interesting to extend our result by considering more involved
cost functions taking into account other switching parameters (e.g., the ADMs -
Add-Drop-Multiplexers - used at the endpoints of the lightpath) or the possibility
of splitting paths.
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Petr Kuznetsov and Srivatsan Ravi

TU Berlin/Deutsche Telekom Laboratories

Abstract. The promise of software transactional memory (STM) is to
combine an easy-to-use programming interface with an efficient utiliza-
tion of the concurrent-computing abilities provided by modern machines.
But does this combination come with an inherent cost?

We evaluate the cost of concurrency by measuring the amount of
expensive synchronization that must be employed in an STM implemen-
tation that ensures positive concurrency, i.e., allows for concurrent trans-
action processing in some executions. We focus on two popular progress
conditions that provide positive concurrency: progressiveness and per-
missiveness.

We show that in permissive STMs, providing a very high degree of
concurrency, a transaction may perform a linear number of expensive
synchronization patterns with respect to its read-set size. In contrast,
progressive STMs provide a very small degree of concurrency but, as
we demonstrate, can be implemented using at most one expensive syn-
chronization pattern per transaction. However, we show that even in
progressive STMs, a transaction has to “protect” (e.g., by using locks or
strong synchronization primitives) a linear amount of data with respect
to its write-set size. Our results suggest that achieving high degrees of
concurrency in STM implementations may bring a considerable synchro-
nization cost.

1 Introduction

The software transactional memory (STM) paradigm promises to efficiently
exploit the concurrency provided by modern computers while offering an easy-
to-use programming interface. It allows a programmer to write a concurrent pro-
gram as a sequence of transactions. A transaction is a series of read and write
operations on transactional objects (or t-objects). An STM implementation turns
this series into a sequence of accesses to underlying base objects and exports
“all-or-nothing” semantics: a transaction either commits in which case all its
operations instantaneously “take effect”, or aborts in which case the transaction
does not affect any other transaction. In this paper, the default STM correct-
ness property is opacity [13,15] that, informally, requires that in every execution,
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there is a total order on all transactions, including aborted ones, where every
read operation returns the argument of the last committed write operation on
the read t-object.

An STM implementation that aborts every transaction is trivially correct but
useless. Therefore, we need to specify a progress condition that captures the exe-
cution scenarios in which a transaction should commit. Consider, for example, a
simple non-trivial progress condition that only requires a transaction to commit
if it does not run concurrently with any other transaction. This condition can
be implemented using a single lock that is acquired at the beginning of a trans-
action and released at its end. The resulting “single-lock” STM will be running
one transaction at a time, thus ignoring the potential benefits of multiprocess-
ing. Similarly, an obstruction-free STM [12] that only requires a transaction to
commit if it eventually runs with no contention allows for no concurrency at all.
But to exploit the power of modern multiprocessor machines, an STM imple-
mentation must allow at least some transactions to make progress concurrently.
If this is the case, we say that the implementation provides positive concurrency,
in contrast to zero concurrency provided by “single-lock” and obstruction-free
STMs.

In this paper, we try to understand the inherent costs of allowing multiple
concurrent transactions to commit. Therefore, we focus on progress conditions
that provide positive concurrency: progressiveness [14] and permissiveness [11].
Informally, a progressive STM [14] provides a very small degree of concurrency
by only enforcing a transaction T to commit if it encounters no concurrent con-
flicting transaction T ′: T and T ′ conflict on a t-object X if they concurrently
access X and one of the transactions tries to update X . A stronger variant of
progressiveness, called strong progressiveness, additionally requires that in case
a set of transactions conflict on at most one t-object, at least one transaction
commits. A much more demanding permissive STM [11] stipulates that a trans-
action must commit, unless committing it violates correctness, which, intuitively,
provides the highest possible degree of concurrency.

To understand the inherent cost of positive concurrency in STM implementa-
tions, we first consider the number of RAW/AWAR synchronization patterns [6]
that must be performed by a process in the course of a transaction. A read-after-
write (RAW) pattern consists of a write to a (shared) base object x followed by a
read from a different base object y (without a write to y in between). An atomic
write-after-read (AWAR) pattern consists of an atomic (indivisible) execution of
a read of a base object followed by a write on (possibly the same) base object.
Accounting for RAW/AWAR patterns is important since most modern processor
architectures use relaxed memory models, where maintaining the order of oper-
ations in a RAW requires a memory fence [22] and each AWAR is manifested as
an atomic instruction such as Compare-and-Swap (CAS). In most architectures,
memory fences and atomic instructions are believed to be considerably slower
than regular shared-memory accesses [1, 20, 22, 21].

We show that every permissive and opaque STM implementation has, for
any m ∈ N, an execution in which a transaction with a read set of size m
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incurs Ω(m) consecutive RAW/AWAR patterns. This contrasts with a single-
lock STM that uses only one such pattern, since a successful lock acquisition
can be implemented using only one (multi-) RAW [19] or (multi-)AWAR [4].1

We show that one RAW/AWAR is in fact optimal for single lock STMs. More-
over, we present implementations of progressive STMs that employ just a single
multi-RAW or multi-AWAR pattern per transaction. Additionally, we describe a
strongly progressive space-bounded STM implementation that incurs four RAWs
per transaction.

These implementations suggest that the (multi-)RAW/AWAR metric is too
coarse-grained to evaluate the complexity of progressive STMs: for example, a
multi-AWAR such as mCAS may be very hard to implement in practice. There-
fore, we introduce a new metric called protected data size that, intuitively, cap-
tures the amount of data that a transaction must exclusively control at some
point of its execution. All progressive STM implementations we are aware of (see,
e.g., an overview in [14]) use locks or timing assumptions to give an updating
transaction exclusive access to all objects in its write set at some point of its ex-
ecution. E.g., lock-based progressive implementations require that a transaction
grabs all locks on its write set before updating the corresponding base objects.
Our results show that this is an inherent price to pay for providing progressive
concurrency: every committed transaction in a progressive and disjoint-access-
parallel2 STM implementation must, at some point of its execution, protect every
object in its write set. Interestingly, as our progressive implementations show,
the transaction’s read set does not need to be protected.

In brief, our results imply that providing high degrees of concurrency in
opaque STM implementations incurs a considerable synchronization cost. Per-
missive STMs, while providing the best possible concurrency in theory, require
a strong synchronization primitive or a memory fence per read operation, which
may result in excessively slow execution times. Progressive STMs provide only
basic concurrency but perform considerably better in this respect: we present
progressive implementations that incur constant RAW/AWAR complexity. Does
this mean that maximizing the ability of processing multiple transactions in par-
allel should not be an important factor in STM design? Should we rather assume
little positive concurrency provided by progressiveness or even focus on specula-
tive single-lock solutions á la flat combining [16]? Difficult to say affirmatively,
but our results suggest that the question makes sense.

The rest of the paper is organized as follows. Section 2 briefly introduces
our system model and defines the correctness criteria of STM implementations.
Section 3 recalls the definitions of the progress conditions. Sections 4 presents a

1 A multi-RAW consists of a series of writes followed by a series of reads from distinct
locations. Maintaining the multi-RAW order can be achieved with a single mem-
ory fence. A multi-AWAR (e.g., multi-CAS) performs an atomic write-after-read on
multiple base objects.

2 A disjoint-access-parallel STM implementation [17, 8] guarantees that concurrent
transactions accessing disjoint sets of transactional objects are executed indepen-
dently of each other, i.e., without conflicting on the base objects.
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linear lower bound on the number of RAW/AWAR patterns executed by a trans-
action in a permissive STM. Section 5 describes our progressive STM implemen-
tations that perform constant RAWs or AWARs per transaction and presents a
lower bound on the amount of data to be protected by a transaction in a pro-
gressive STM. Section 6 summarizes some related work and Section 7 concludes
the paper. The full version of this paper [18] contains detailed correctness proofs
for our implementations along with some extensions and side results.

2 Model

Our STM model, while keeping the spirit of the original definitions of [13, 15],
introduces some refinements that are instrumental for our results.

Transactions. Transactional memory provides the ability of reading and writ-
ing to a set of transactional objects, or t-objects using atomic transactions. A
transaction is a sequence of accesses (reads or writes) to t-objects. We assume
that every transaction Tk has a unique identifier k. Formally, STM exports the
following operations (called tm-operations in the paper): (1) readk(X) that re-
turns a value in a set V or a special value Ak /∈ V (abort); (2) writek(X, v) that
returns okk or Ak; (3) tryC k that returns Ck /∈ V (commit)or Ak and (4) tryAk

that returns Ak.
A history H is a sequence of invocations and responses of tm-operations.

A history H is sequential if every invocation is either the last event in H or
is immediately followed by a matching response. H |k denotes the subsequence
of H restricted to events with index k. If H |k is non-empty we say that Tk

participates in H , and parts(H) denotes the set of transactions that participate
in H . A history is well-formed if for all Tk, H |k is sequential and contains no
events that appear after Ak or Ck. Throughout this paper, we assume that all
histories are well-formed, i.e., the user of transactional memory never invokes
a new operation before receiving a response from the current one and does not
invoke any operation opk after Tk has returned Ck or Ak. A history H is complete
if for every Tk ∈ parts(H), H |k ends with a response event. A transaction Tk ∈
parts(H) is live in H if H |k does not end with Ak or Ck. Otherwise, Tk is called
complete. A history is t-complete if parts(H) contains only complete transactions.
A transaction Tk ∈ parts(H) is forcefully aborted in H if some operation opk =
tryAk returns Ak. Two histories H and H ′ are equivalent if for every transaction
Tk, H |k = H ′|k.

The read set (resp., the write set) of a transaction Tk ∈ parts(H), denoted
Rset(Tk) (resp., Wset(Tk)), is the set of t-objects that Tk reads (resp., writes to)
in H . Dset(Tk) = Rset(Tk)∪Wset(Tk) is called the data set of Tk. A transaction
Tk is called read-only if Wset(Tk) = ∅, otherwise, it is called updating.

Real-time and deferred-update orders. For Tk, Tm ∈ parts(H), we say that Tk

precedes Tm in the real-time order in H , and we write Tk ≺H Tm, if Tk is
committed or aborted and the last event of Tk precedes the first event of Tm
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in H . If neither Tk ≺H Tm nor Tm ≺H Tk, then we say that Tk and Tm are
concurrent in H . A transaction Tk ∈ parts(H) which is not concurrent with any
other transaction in H is called uncontended in H . A history H is t-sequential
if no two transactions are concurrent in H .

For Tk, Tm ∈ parts(H), we say that Tk precedes Tm in the deferred-update
order, and we write Tk ≺DU

H Tm if there exists X ∈ Rset(Tk) ∩ Wset(Tm), Tm

has committed, such that the response of readk(X) precedes the invocation of
tryCm() in H . For Tk, Tm ∈ parts(H), we write Tk

X≺H
Tm, if Tk has committed

and the response of readm(X), X ∈ Rset(Tm) ∩ Wset(Tk) returns v, the value
of X updated in writek(X, v).

Legal histories. Let H be a complete t-sequential history. For every operation
readk(X) in H that reads a t-object X , we define the latest written value of X
as follows: (1) If Tk contains a writek(X, v) preceding readk(X) then the latest
written value of X is the value of the latest such write. (2) Otherwise, if H
contains a writem(X, v) such that m = k, Tm precedes Tk, and Tm commits in
H , then the latest written value of X is the value of the latest such write in H .
(3) Otherwise, the latest written value of X is the initial value of X . Without loss
of generality, we assume that H starts with a fictitious initializing transaction
T0 that writes 0 to every t-object. We say that a complete t-sequential history
H is legal if for every t-object X , every read of X in H returns the latest written
value of X .

Opacity. Let H be any complete sequential history. Now H̄ denotes a history
constructed from H as follows: (1) For every live transaction Tk in H , we insert
tryCk ·Ak immediately after the last event of Tk in H and (2) For every aborted
transaction Tk in H , we remove all write operations in Tk with the matching
responses.

Definition 1. A complete sequential history H is opaque if there exists a legal
complete t-sequential history S such that (1) H̄ and S are equivalent and (2) S
respects ≺H and ≺DU

H .

We call such a legal complete t-sequential history S a serialization of H . A
weaker property, called strict serializability [23], guarantees opacity with respect
to committed transactions in H . Obviously, every opaque history is also strictly
serializable.

Implementations. We consider an asynchronous shared-memory system in which
processes p1, . . . pN communicate by executing atomic operations on shared base
objects.

An STM implementation provides the processes with algorithms for opera-
tions readk, writek, tryCk and tryAk. Without loss of generality, we assume that
base objects are accessed with atomic read-write operations, but we allow the
programmer to aggregate a sequence of operations on base objects using clearly
demarcated atomic sections : the operations within an atomic section are to be
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executed sequentially. The atomic-section construct is general enough to imple-
ment various strong synchronization primitives, such as test-and-set (TAS) or
compare-and-swap (CAS). We assume that atomic sections may only contain a
bounded number of base-object operations.

An execution of an implementation M is a sequence of atomic accesses to base
objects (base-object events), and invocation and responses of the TM operations
(TM-events). If a base-object event is a write or an atomic-section that contains
a write (in one of its execution paths), we say that the event is non-trivial.

A configuration of M (after some execution E) is determined by the states
of all base objects and the states of the processes. An initial state of M is
determined by the initial states of base objects and t-objects. We assume that
each base object and each t-object is initialized to 0. A history of an execution
E, denoted by E|TM is the subsequence of E restricted to TM-events. E|TM,pi

denotes the subsequence of E|TM restricted to events issued by process pi.
The interval of a transaction Tk in E is the fragment of E that starts with the

first event of Tk in E and ends with the completing event of Tk (Ak or Ck) in E,
or, if Tk has not completed in E, with the last event of E. A tm-operation op1

precedes op2 in H if the invocation of op2 appears after the response of op1 in H .
An execution E is well-formed if every atomic section is executed sequentially in
E, E|TM,pi is t-sequential for each pi, and no event on behalf of a transaction Tk

is taking place outside of an interval between invocation and response of some
TM-operation in Tk. We assume here that a TM implementation generates only
well-formed executions.

A completion of H is a history constructed from H by removing some pending
invocations and adding responses to the remaining pending invocations to the
end of H . To account for initial values of t-objects, we add to the beginning of
H a (fictitious) transaction T0 that writes 0 to every t-object and commits. A
complete sequential history H ′ is a linearization of H if there exists a history
H ′′, a completion of H , such that (1) H ′ respects the precedence order of H ,
and (2) H ′ and H ′′ are equivalent.

Definition 2. An STM implementation M is opaque if for every execution E
of M , there exists an opaque linearization of E|TM .

RAW/AWAR complexity. Let M be an STM implementation. Let π be a frag-
ment of an execution of M and let πi denote the i-th event in π (i = 0, . . . , |π|−1).
We say that process p performs a RAW (read-after-write) in π if ∃i, j; 0 ≤ i <
j < |π| such that (1) πi is a write to a base object x by process p, (2) πj is a read
of a base object y = x by process p and (3) there is no πk such that i < k < j
and πk is a write to y by p. We say that two RAWs by process p overlap in an
execution E with the read event of the first RAW occurs after the write event
of the second RAW. A multi-RAW consists of series of writes to a set of base
objects, followed by a series of reads from different base objects.

We say a process p performs an AWAR (atomic-write-after-read) in π if
∃i, j, 0 ≤ i < j < |π| such that (1) πi is a read of a base object x by pro-
cess p, (2) πj is a write to a base object y by process p and (3) πi and πj belong
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to the same atomic section. A multi-AWAR performs an atomic write-after-read
on multiple base objects. Examples of AWAR and multi-AWAR are CAS and
mCAS [5] respectively.

In the rest of the paper we simply say RAW/AWAR instead of
multi-RAW/AWAR.

Disjoint-access parallelism. Let I be a fragment of an execution E. Following [17,
8], we first define a conflict graph which relates transactions that are live in I.
Vertices of the graph represent t-objects. The vertices representing distinct t-
objects X and Y are related with an edge if and only if there is a transaction T
such that {X,Y } ⊆ Dset(T ) and the interval of T overlaps with I in E.

Two transactions Ti and Tj are disjoint-access in E if there is no path between
an item in Dset(Ti) and an item in Dset(Tj) in the conflict graph of the minimal
execution interval containing the intervals of Ti and Tj .

Two processes concurrently contend on a base object x in a given configuration
if they have pending events on x in the configuration and one of these events is
non-trivial (contains a write to x).

Definition 3. An STM implementation M is disjoint-access parallel (DAP)
if, for all executions E of M , two processes executing Ti and Tj concurrently
contend on the same base object in E only if Ti and Tj are not disjoint-access.

Lemma 1. [8] Let E be an execution of a DAP STM implementation M in
which a complete execution of T1 is immediately followed by a (possibly incom-
plete) execution of T2 such that T1 and T2 are disjoint-access. Then there does
not exist a base object x such that both processes executing T1 and T2 access x
in E and one of the accessing events is non-trivial.

3 Liveness and Progress

To describe the conditions under which a TM implementation does something
useful, we need to address two orthogonal dimensions. First, we need to give a tm-
liveness property [3] that determines the conditions under which an individual
tm-operation must return. Second, we need to give a progress condition that
describes the conditions under which a transaction must commit.

TM-liveness properties. A TM implementation M is wait-free if in every infi-
nite execution of M , each tm-operation returns in a finite number of its own
steps, regardless of the behavior of concurrent transactions. In other words, a
wait-free individual tm-operation (tm-read, tm-write, tryC or tryA) cannot be
delayed because of a concurrent operation. The property can be very beneficial
if executions of transactions are subject to unpredictable delays or failures.

In this paper, we do not assume failures: every operation is expected to take
steps until it terminates. Moreover, we are interested in deriving inherent costs
of implementing non-trivial concurrency in TM. Therefore, we assume a weaker
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default tm-liveness guarantee, that we call starvation-freedom. A TM implemen-
tation M is starvation-free in every infinite execution of M , each tm-operation
eventually returns, assuming that no concurrent tm-operation stops indefinitely
before returning. Starvation-freedom allows a tm-operation to be delayed only
by a concurrent tm-operation.

Progress conditions. A progress condition determines the scenarios in which a
transaction is allowed to abort. Technically, unlike tm-liveness, a progress con-
dition is a safety property [3], since it can be violated in a finite execution. The
simplest non-trivial progress property we consider in this paper is single-lock
progressiveness that says that a transaction can only abort if there is a concur-
rent transaction. Clearly, an opaque single-lock TM can be implemented using
any mutual exclusion algorithm [24] with one critical section per transaction.
Stronger progress conditions allow some transactions to progress concurrently in
some scenarios implying positive concurrency.

Progressiveness allows an implementation to abort a transaction only in case
of a conflict. Transactions Ti, Tj conflict in a history H on a t-object X if Ti and
Tj are concurrent in H , X ∈ Dset(Ti)∩Dset(Tj), and X ∈ Wset(Ti)∪Wset(Tj).

Definition 4. A TM implementation M is (weakly) progressive if for every
history H of M and every transaction Ti ∈ parts(H) that is forcefully aborted,
there exists a prefix H ′ of H and a transaction Tk ∈ parts(H ′) that is live in H ′,
such that Tk and Ti conflict in H ′.

The strong progressiveness property [14] additionally requires that, in case of
a conflict on at most one t-object, at least one transaction commits. A formal
definition can be found in [15].

Let C be any correctness property, i.e., any safety property on TM histories [3].
The following property guarantees that no transaction is forcefully aborted if
there is a chance of committing the transaction and preserving C.

Definition 5. A TM implementation M is permissive with respect to C if for
every history H of M such that H ends with a response rk and replacing rk with
some rk = Ak gives a history that satisfies C, we have rk = Ak.

In this paper, we consider TM implementations that are permissive with respect
to opacity. Clearly, permissiveness with respect to opacity is strictly stronger
than progressiveness: every opaque and permissive with respect to opacity im-
plementation is also opaque and progressive.

4 RAW/AWAR Cost of Permissive STMs

In this section, we show that an execution of a transaction in a permissive STM
implementation may require to perform at least one RAW/AWAR pattern per
tm-read.

Let M be a permissive, opaque TM implementation. Consider an execution E
of M with a history H consisting of transactions T1, T2, T3 as shown in Figure 1:
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R1(X1)

tryC2

R1(Xm)

W2(X1, v)

R3(X1)

T1

T2
C2

T3

Fig. 1. Execution E of a permissive, opaque STM: T2 and T3 force T1 to perform a
RAW/AWAR in each R1(Xk), 2 ≤ k ≤ m

T3 performs a read of X1, then T2 performs a write on X1 and commits, and
finally T1 performs a series of reads from objects X1, . . . , Xm. Here, Rk(X),
Wk(X, v) denote complete executions of readk(X) and writek(X, v) respectively.
Since the implementation is permissive, no transaction can be forcefully aborted
in E, and the only valid serialization of this execution is T3, T2, T1. Note also that
the execution generates a sequential history: each invocation of a tm-operation
is immediately followed by a matching response in H . Thus, since we assume
starvation-freedom as a liveness property, such an execution exists.

Imagine that we modify the execution E as follows. Immediately after R1(Xk)
executed by T1 we add W3(X, v), and tryC3 executed by T3 (let TC3(Xk) denote
the complete execution of W3(Xk, v) followed by tryC3). Obviously, TC3(Xk)
must return abort: neither T3 can be serialized before T1 nor T1 can be serialized
before T3. On the other hand if TC3(Xk) takes place just before R1(Xk), then
TC3(Xk) must return commit but R1(Xk) must return the value written by T3.
In other words, R1(Xk) and TC3(Xk) are strongly non-commutative [6]: both of
them see the difference when ordered differently. As a result, intuitively, R1(Xk)
needs to perform a RAW or AWAR to make sure that the order of these two
“conflicting” operations is properly maintained. A formal proof follows.

Theorem 1. Let M be a permissive opaque STM implementation. Then, for
any m ∈ N, M has an execution in which some transaction performs m tm-
reads such that the execution of each tm-read contains at least one RAW or
AWAR.

Proof. We consider R1(Xk), 2 ≤ k ≤ m in execution E.
Imagine a modification E′ of E, in which T3 performs W3(Xk) immediately

after R1(Xk) and then tries to commit. A serialization of H ′ = E′|TM should
obey T3 ≺DU

H′ T2 and T2 ≺H′ T1. The execution of R1(Xk) does not modify
base objects, hence, T3 does not observe R1(Xk) in E′. Since M is permissive,
T3 must commit in E′. But since T1 performs R1(Xk) before T3 commits and
T3 updates Xk, we also have T1 ≺DU

H′ T3. Thus, T3 cannot precede T1 in any
serialization—contradiction. Consequently, each R1(Xk) must perform a write
to a base object.

Let π be a fragment of E that represents the complete execution of R1(Xk).
Clearly, π contains a write to a base object. Let πj be the first write to a base
object in π and πw, the shortest fragment of π that contains the atomic section
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to which πj belongs, else if πj is not part of an atomic section, πw = πj . Thus,
π can be represented as πs · πw · πf .

Suppose that π does not contain a RAW or AWAR. Since πw does not contain
an AWAR, there are no read events in πw that precede πj . Thus, πj is the first
base object event in πw. Consider the execution fragment πs · ρ, where ρ is the
complete execution of TC3(Xk) by T3. Such an execution exists since πs does
not perform any base object write, hence, πs ·ρ is indistinguishable to T3 from ρ.

Since, by our assumption, πw · πf contains no RAW, any read performed in
πw · πf can only be applied to base objects previously written in πw · πf . Thus,
there exists an execution πs · ρ · πw · πf that is indistinguishable to T1 from π.
In πs · ρ · πw · πf , T3 commits (as in ρ) but T1 ignores the value written by T3

to Xk. But T3, T2, T1 is the only valid serialization for E|TM—contradiction.
Thus, each R1(Xk), 2 ≤ k ≤ m must contain a RAW/AWAR.

Note that since all tm-reads of T1 are executed sequentially, all these
RAW/AWAR patterns are pairwise non-overlapping.

5 RAW/AWAR Cost and Protected Data in Progressive
STMs

In this section, we first describe our progressive STM implementations that per-
form at most one RAW/AWAR per transaction. Then we present a lower bound
on the amount of data to be protected by a transaction in a progressive STM.

5.1 Constant RAW/AWAR Implementations for Progressive STM

We show first that even a single-lock progressive STM cannot avoid performing
one RAW/AWARs per transaction in some executions (the proof is a simple
variation of the arguments of [6], where a single RAW/AWAR is shown to be
necessary to acquire an indivisible lock).

Theorem 2. Let M be a single-lock progressive opaque STM implementation.
Then every execution of M in which an uncontended transaction performs at
least one read, at least one write, and commits, must contain a RAW/AWAR
pattern.

Since every progressive or permissive STM implementation is also single-lock pro-
gressive, the RAW/AWAR lower bound of Theorem 2 also holds for progressive
and permissive STM implementations. The lower bound is actually tight, and
we sketch two progressive opaque implementations (complete proofs of correct-
ness can be found in [18]). Both implementations are strict data-partitioned [15]
(split the set of base objects used into disjoint subsets, each subset storing infor-
mation of only a single t-object) and single-version (maintain exactly one copy
of a t-object’s state at a time). They also use invisible reads, i.e., no execution
of a tm-read operation performs a write to a base object.
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Our first implementation uses a simple multi-trylock primitive which can be
implemented with a single RAW. The multi-trylock primitive exports operations
acquire(W ), release(W ) and isContended(X), for all sets of t-objects W and all
t-objects X . Informally, if there is no contention on the locks on objects in W ,
then acquire(W ) returns true which means that exclusive locks on all objects in
W are acquired. Otherwise, acquire(W ) returns false which means that no locks
on objects in W are acquired. Operation release(W ) releases the acquired locks
on objects in W and isContended(X) returns true iff a lock on X is currently
held by any other process. The implementation of acquire(W ) first writes to a
series of base objects and then reads a series of base objects incurring a single
RAW, while operations release(W ) and isContended(X) incur no RAW.

Algorithm 1. Progressive STM with one multi-RAW: the implementation of
Tk executed by pi

1: Shared variables:

2: vj , for each t-object Xj

3: L, a multi-trylock object

4: readk(Xj ):

5: ovj := read(vj)
6: Rset(Tk) := Rset(Tk) ∪ {Xj}
7: if isAbortable() then
8: return Ak

9: return the value of ovj

10: writek(Xj, v):

11: if Xj �∈ Wset(Tk) then
12: nvj := v
13: Wset(Tk) := Wset(Tk) ∪ {Xj}
14: return okk

15: tryAk():

16: return Ak

17: tryCk():

18: if |Wset(Tk)| = ∅ then
19: return Ck

20: locked := L.acquire(Wset(Tk))
21: if not locked then
22: return Ak

23: if isAbortable() then
24: L.release(Wset(Tk))
25: return Ak

26: for all Xj ∈ Wset(Tk) do
27: write(vj , (nvj , k))

28: L.release(Wset(Tk))
29: return Ck

30: Function: isAbortable():

31: if ∃Xj ∈ Rset(Tk):L.isContended(Xj )
then

32: return true
33: if isInvalid() then
34: return true
35: return false

36: Function: isInvalid():

37: if ∃Xj ∈ Rset(Tk):ovj �= read(vj)
then

38: return true
39: return false

Algorithm 1 describes the implementation of a progressive STM incurring a
single RAW per updating transaction. Every t-object Xi is associated with a
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distinct base object vi that stores the “most recent” value of Xi together with
the id of the transaction that was the last to update Xi. Each time a transaction
Tk performs a read of a t-object Xi, it reads vi, adds Xi to its read set and checks
if the t-objects in the current read set of Tk have not been updated since Tk has
read them. Additionally, the implementation checks if no object in the current
read set is locked by an updating transaction. If some object in the read set
has been modified or is locked, the transaction is forcefully aborted. Otherwise,
Tk returns the value read in vi. Each time Tk performs a write to a t-object
Xi, it adds Xi to its write set and returns ok. For every updating transaction
Tk, tryCk() invokes acquire(Wset(Tk)). If it returns true, tryCk() returns Ck,
otherwise it returns Ak. Read-only transactions simply returns Ck.

Theorem 3. There exists a progressive opaque STM implementation with wait-
free operations that employs a single RAW per transaction. Moreover, no RAWs
are performed in read-only transactions.

Alternatively, a single AWAR implementation can be trivially obtained using a
(theoretical) mCAS primitive [5].

In [18], we also derive a strongly progressive STM using only reads and writes
that incurs at most four RAWs per updating transaction and uses a finite num-
ber of bounded registers. This implementation uses a starvation-free multi-trylock
primitive inspired by the Black-White Bakery Algorithm [25], a bounded ver-
sion of the Bakery Algorithm [19]. Informally, if no concurrent process contends
infinitely long on some X ∈ W , then the acquire(W ) operation of the starvation-
free multi-trylock eventually returns true which means that exclusive locks on
all objects in W are acquired. The implementation of acquire(W ) incurs three
RAWs, while operation release(W ) performs a single RAW.

Implementations of tm-reads and tm-writes are identical to the ones in Algo-
rithm 1. For every updating transaction Tk, tryCk() invokes the acquire operation
of the starvation-free multi-trylock over Wset(Tk). Note that this always returns
true and a transaction Tk with Rsetk = ∅ eventually returns Ck. Read-only
transactions simply returns Ck. Consequently, the implementation incurs four
RAWs per updating transaction.

Theorem 4. There exists a strongly progressive single-version opaque STM im-
plementation with starvation-free operations that uses invisible reads and employs
four RAWs per transaction. Moreover, no RAWs are performed in read-only
transactions.

Since we only assume that that transactional operations are stravation-free, our
implementation does not violate the impossibility result of Guerraoui and Ka-
palka [15] who proved that a strongly progressive opaque STM cannot be imple-
mented using only reads and writes if tm-operations are required to be wait-free.

5.2 Protected Data

Let M be a progressive STM implementation. Intuitively, a t-object Xj is pro-
tected at the end of some finite execution π of M if some transaction T0 is about
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to atomically change the value of Xj in its next step (e.g., by performing a CAS
operation) or does not allow any concurrent transaction to read Xj (e.g., by
holding a lock on Xj).

Formally, let α · π be an execution of M such that π is an uncontended
complete execution of a transaction T0, where Wset(T0) = {X1, . . . , Xm}. Let
uj (j = 1, . . . ,m) denote the value written by T0 to t-object Xj in π. We say
that π′ is a proper prefix of π if π′ is a prefix of π and every atomic section
is complete in π′. In this section, let πt denote the t-th shortest proper prefix
of π. Let π0 denote the empty prefix. (Recall that an atomic event is either a
tm-event, a read or write on a base object, or an atomic section.)

For any Xj ∈ Wset(T0), let Tj denote a transaction that tries to read Xj and
commit. Let Et

j = α · πt · ρt
j denote the extension of α · πt in which Tj runs solo

until it completes. Note that, since we only require the implementation to be
starvation-free, ρt

j can be infinite.
We say that α · πt is (1, j)-valent if the read operation performed by Tj in

α · πt · ρt
j returns uj (the value written by T0 to Xj). We say that α · πt is

(0, j)-valent if the read operation performed by Tj in α · πt · ρt
j does not abort

and returns an ”old” value u = uj . Otherwise, if the read operation of Tj aborts
or never returns in α · πt · ρt

j , we say that α · πt is (⊥, j)-valent.
Definition 6. We say that T0 protects an object Xj in α · πt, where πt is the
t-th shortest proper prefix of π (t > 0) if one of the following conditions holds:
(1) α · πt is (0, j)-valent and α · πt+1 is (1, j)-valent, or (2) α · πt or α · πt+1 is
(⊥, j)-valent.
For disjoint-access parallel (DAP) progressive STM, we show that every uncon-
tended transaction must protect every object in its write set at some point of
its execution.

Theorem 5. Let M be a progressive, opaque and disjoint-access-parallel STM
implementation. Let α · π be an execution of M , where π is an uncontended
complete execution of a transaction T0. Then there exists πt, a proper prefix of
π, such that T0 protects |Wset(T0)| t-objects in α · πt.

The lower bound of Theorem 5 is tight: it is matched by all progressive imple-
mentations we are aware of, including ones in Section 5.1. Note that any DAP
single-lock STM implementation automatically provides a stronger progress con-
dition than just single-lock progressiveness. A transaction T in a DAP single-lock
STM can only be forcefully aborted if it observes a concurrent transaction T ′

such that Dset(T )∩Dset(T ′) = ∅. This is not very far from progressiveness, where
T may abort only if T and T ′ experience a write-write or write-read conflict on
a t-object. Thus, in the realm of DAP STM implementations, progressiveness is
very close to the weakest non-trivial progress condition.

6 Related Work

Crain et al. [9] proved that a permissive opaque TM implementation cannot
maintain invisible reads, which inspired the derivation of our lower bound on
RAW/AWAR complexity in Section 4.
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The RAW/AWAR complexity for concurrent implementations was recently
introduced in [6]. It was shown in [6] that at least one RAW/AWAR is needed to
perform a strongly non-commutative linearizable operation (an operation that
cannot be commuted with any other operation so that at least one of them does
not see the difference). The proofs of Theorems 1 and 2 extend the arguments
used in [6] to the STM context, where a transaction may consist of multiple such
operations.

A related paper by Attiya et al. [8] showed that every permissive strictly
serializable and DAP TM in which every read-only transaction must commit
in a wait-free manner has an execution in which some read-only transaction
Tk performs at least |Dset(Tk)|-1 base-object writes. In this paper, we do not
assume that a read operation must be wait-free and we do not require disjoint-
access parallelism. Also, we focus the number of RAW/AWAR patterns and not
only base-object writes. On the other hand, we consider a stronger correctness
property (opacity). Therefore, our lower bound in Section 4 incomparable with
the one of [8].

To establish the lower bound on t-objects that must be ”protected” in an
opaque, progressive TM (Section 5.2), we use the definition of disjoint-access
parallelism introduced in [8]. Guerraoui and Kapalka [15] considered a stronger
version of DAP called strict data-partitioning to prove a linear lower bound on
the number of steps performed by a successful read operation in a progressive,
opaque TM that uses invisible reads. Interestingly, the constant RAW/AWAR
implementations of progressive, opaque TMs sketched in Section 5 are strict
data-partitioned.

7 Concluding Remarks

In this paper, we derived inherent costs of implementing STMs with non-trivial
concurrency guarantees. At a high level, our results suggest that providing high
degrees of concurrency in STM may incur considerable unavoidable costs. Our
results give rise to many intriguing questions, and we list some of them below.

In this paper, we focused on progress conditions that provide positive concur-
rency, progressiveness and permissiveness. The results do not apply to
obstruction-free STMs [12] that only guarantee that a transaction commits
if it eventually runs without contention. Effectively, an obstruction-free STM
provides zero concurrency, since progress is guaranteed only when one trans-
action is active at a time. However, unlike single-lock implementations, it does
allow overlapping transactions to make progress (one at a time). Does this incur
higher RAW/AWAR complexity?

We cannot expect the lower bound of Theorem 5 (the protected-data size) to
apply to non-DAP STMs, including trivial ones that allow storing the state of
the whole STM in one base object. One way to generalize our result and avoid
trivialities is to assume that a base object can store information only about a
constant number of t-objects (the constant-size information property in [13])
which can potentially give asymptotically close lower bounds.
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We focused on implementations that allow a tm-operation to be delayed only
by concurrent operations performed by other transactions. Does relaxing the
tm-liveness property by allowing a read operation to wait until a concurrent
transaction terminates [7] improve the RAW/AWAR complexity with respect to
permissive implementations? It is easy to see that the proof of our permissive
lower bound (Theorem 1) does not work for this case. But it is unclear a priori
how this may affect the cost of progressive implementations.

Last but not least, the results of this paper assume opacity as a correctness
property. Recently, multiple relaxations of opacity were proposed [10, 2, 9, 8]. It
would be very interesting to understand the concurrency benefits gained by such
relaxed consistency conditions.
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Intra-Task Precedence Constraints
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Abstract. Prior work has provided bounds on the deadline tardiness
that a set of sporadic real-time tasks may incur when scheduled using
the global earliest-deadline-first (G-EDF) scheduling algorithm. Under
the sporadic task model, it is necessary that no individual task overutilize
a single processor and that the set of all tasks does not overutilize the set
of all processors. In this work we generalize the task model by allowing
jobs within a single task to run concurrently. In doing so we remove the
requirement that no task overutilize a single processor. We also provide
tardiness bounds that are better than those available with the standard
sporadic task model.

1 Introduction

Multicore processors have been shown to be useful for supporting traditional
soft real-time (SRT) workloads when bounded deadline tardiness is acceptable
[1, 2, 3, 4]. In this paper we extend these works to a broader class of workloads
in which jobs are independent of each other and can be executed in parallel,
such as servers handling independent requests. For both types of SRT workloads,
temporal correctness requires that tardiness bounds exist, i.e., for each task, there
exists an upper bound on the amount of time between the deadline of any job of
that task and its actual completion time. Prior work has shown that the global
earliest-deadline-first (G-EDF) algorithm is a good candidate scheduler when
bounded tardiness is desired, as its use allows all available processing capacity
to be utilized.

In most previous analysis of G-EDF, successive jobs (i.e. invocations) of each
task are required to execute in sequence. This constraint arises naturally when
jobs correspond to separate invocations of the same code segment. However, in
some settings, jobs are released as separate threads in response to interrupts, in
which case, successive jobs of the same task may execute concurrently. In prior
hard real-time analysis of G-EDF [5], the impact of such concurrently-executing
jobs has been considered, but to our knowledge, no such analysis exists for SRT
systems for which bounded deadline tardiness is acceptable. Such analysis is the
focus of this paper.

The task model considered in this paper is based on the widely-studied spo-
radic model, but differs from the usual specification of that model in two ways.
First, as implied by the discussion above, successive jobs of the same task are
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allowed to execute in parallel. Second, early release behavior [6] is allowed: a
job may have an actual release time (or, a-release time) that is earlier than its
scheduler release time (or, s-release time) A job’s deadline is defined based on
its s-release time, and constructive s-releases of each task τi are constrained to
be no closer than Ti time units apart, where Ti is the minimum separation pa-
rameter of τi. However, a job may begin execution as early as its a-release time.
These changes to the traditional sporadic model allow us to support general
event models, as the following example illustrates.

Example In high-frequency trading systems, short response times are critical to
minimize risk [7]. Consider such a system that responds to data from the market
about two stocks. One stock is highly critical and should receive new information
every 2 ms (but due to network uncertainty may not be timed precisely.) It may
take up to 3 ms to process and should be processed as quickly as possible, so
its deadline is 3 ms. Observe that this stock overutilizes a single processor and
could not be supported using the traditional sporadic task model, even on a
multiprocessor. However, it can be supported using the methodology provided
in this paper. A second stock is less critical, should receive new information
every 4 ms, and can take up to 2 ms to process. One possible execution on two
processors is depicted in Fig. 1. Observe that the a-release times sometimes do
occur before the s-release times (because incoming packets can arrive early or
late) and that some jobs do miss deadlines.

The main contribution of this paper is to show that tardiness under G-EDF
is greatly lessened if jobs of the same task are not constrained to execute in
sequence. We show this by deriving per-job response-time bounds, from which
tardiness bounds can be deduced. After deriving such bounds, we compare them
experimentally to prior bounds, which were derived assuming no intra-task par-
allelism. We begin in the next section by more fully describing our system model.

2 System Model

We consider a system τ of n arbitrary-deadline sporadic tasks {τ1, τ2, . . . , τn}
running on m processors, with each task τi characterized by a worst-case execu-
tion time Ci, a minimum separation time (between s-releases) Ti, and a relative
deadline Di. No job may run concurrently with itself, but distinct jobs within
the same task may run concurrently. In addition, we define a task’s utilization
Ui

def= Ci

Ti
, the task system utilization U(τ) def=

∑
τi∈τ Ui, and m+ def= �U(τ)�.

Under the traditional task model with implicit precedence constraints, provid-
ing bounded response time required that no τi had Ui > 1 and that U(τ) ≤ m [3].
However, under the task model considered here, a job with Ui > 1 can have
bounded response time if subsequent invocations run on separate processors, as
depicted for τ1 in Fig. 1. U(τ) ≤ m remains necessary so that the entire system is
not overutilized. In this work we demonstrate that U(τ) ≤ m is also a sufficient
condition for bounded response times and provide response-time bounds relative
to the s-release time of each job.
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Fig. 1. Example high-frequency trading system

3 Response Time Characterization

Over an interval of any given length t, the total amount of work from jobs of
τi (with both s-release times and deadlines inside the interval) is bounded. This
bound, called the demand bound function, was first defined in [8]:

dbf(τi, t)
def= Ci · max

{
0,
⌊
t −Di

Ti

⌋
+ 1
}
. (1)

(1) is defined by counting the number of possible jobs of τi having both s-release
times and deadlines in an interval of length t, and multiplying that number by the
worst-case execution time Ci. Because we still assume a sporadic s-release pattern
for jobs, and deadlines are based solely on s-release times, allowing multiple jobs
within a task to execute at the same time does not invalidate (1). An early release
of a job can only reduce the demand as compared to that predicted in (1).

Lem. 1 of [3] used (1) to demonstrate that for all τi and t ≥ 0,

dbf(τi, t) ≤ Uit + Si, (2)

where Si
def= Ci ·max{0, 1−Ci/Di}. Essentially, Si accounts for the extra demand

that can be created by a job with a short deadline.
For an n-task system τ , we wish to define a vector of non-negative real numbers

〈x1, x2, . . . xn〉 such that the response time of each task τi, 1 ≤ i ≤ n, is at most
xi + Ci when τ is scheduled using G-EDF on m unit-speed processors. Each xi

value depends upon the other xi values. Therefore, we initially define the vectors
using an implicit criterion, and as in [2, 3] we define the notion of a compliant
vector as one that meets this criterion.

Definition 1. For each task τi, non-negative integer p < m+ − 1, and non-
negative real number xi, let

l(τi, xi, p) = min{Ci,max{0, xi + Ci − pTi}}. (3)
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For any x = 〈x1, x2, . . . , xn〉, an ordered list of n non-negative real numbers, let

L(x) def=
∑

m+−1 largest

l(τi, xi, p), (4)

S(τ) def=
∑
τi∈τ

Si. (5)

We define x as a compliant vector if and only if

L(x) + S(τ) + U(τ)Di − Ci

m
≤ xi (6)

is satisfied for all i, 1 ≤ i ≤ n.

Our definition differs from that of [3] both in the definition of L(x) and in the
additional U(τ)Di term.

We now derive a response-time bound by considering a compliant vector
x = 〈x1, x2, . . . , xn〉 and an arbitrary collection I ′ of jobs generated by τ . We
order jobs by deadline with ties broken arbitrarily (as per the standard G-EDF
algorithm). We analyze the response time of an arbitrary job Jk with s-release
time rk and deadline dk, assuming that each job of each τi ordered prior to Jk

completes within (Ci + xi) units of its s-release time. We denote as I the set of
all jobs ordered at or before Jk, which (by the definition of G-EDF) contains all
jobs that affect the scheduling of Jk. We also denote Ic

def= I \{Jk} (i.e., the work
competing with Jk).

Without loss of generality, we assume that the earliest s-release time for any
job in I is 0. We denote as Wi(t) the remaining execution for jobs in I of task
τi at time t, and let W (t) def=

∑
τi∈τ Wi(t).

Lemma 1. If x is a compliant vector and for all i, 1 ≤ i ≤ N , the response
time of each job of τi in Ic is at most xi + Ci, then

W (t) ≤ U(τ)(dk − t) + L(x) + S(τ). (7)

Proof. We will define an interval as busy if at least m+ processors are executing
work throughout the interval, and nonbusy if fewer than m+ processors are
executing work. We will consider a set of time instants {t0, t1, . . . tk}, t0 = 0,
tk = rk, such that each [ti, ti+1) is either all busy or all nonbusy. We will prove
the lemma by induction.

Base Case (t0 = 0). All jobs with both s-release times and deadlines within
[0, dk] contribute to W (0). By (2) Wi(0) ≤ Uidk + Si, and therefore, summing
over all Wi(0) values, W (0) ≤ U(τ)dk + S(τ) ≤ U(τ)dk + S(τ) + L(x).

Induction Step. Suppose the lemma is true for ti. We will consider two sub-
cases, based on whether [ti, ti+1) is busy or nonbusy.
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Case A. Suppose [ti, ti+1) is busy. Then,

W (ti+1)
≤ {Since at least m+(ti+1 − ti) work is completed}

W (ti) −m+(ti+1 − ti)
≤ {By the inductive assumption}

U(τ)(dk − ti) + S(τ) + L(x) −m+(ti+1 − ti)
≤ {Since U(τ) ≤ m+}

U(τ)(dk − ti) + S(τ) + L(x) − U(τ)(ti+1 − ti)
= {Simplifying}

U(τ)(dk − ti+1) + S(τ) + L(x),

so the lemma is true for ti+1 as well.

Case B. Suppose [ti, ti+1) is nonbusy. We will say that a job J is “executing
at time instant t−i+1” if there is an ε greater than 0 such that J is executing over
the entire interval [ti+1 − ε, ti+1). In [3], the presence of an idle CPU implied
that at most m+−1 tasks have work available for execution at time instant t−i+1,
whereas here the same condition implies that at most m+ − 1 jobs are available
for execution. In [3] it was necessary to account for released jobs that were not
running due to a precedence constraint, despite the presence of an idle CPU.
In order to do so, assuming that Ui ≤ 1 for each τi was necessary. Here we do
not need to account for such a case, but do need to account for the fact that
several jobs running in a non-busy interval could be from the same task. The
assumption that Ui ≤ 1 is no longer necessary.

We now consider two cases for jobs that may contribute to W (ti+1): jobs that
are executing at time instant t−i+1 (Case B.1) and jobs that have s-release time
at or after ti+1 (Case B.2).

B.1 In total, there may be at most m+ − 1 jobs executing at time instant t−i+1.
We ignore early-released jobs that have s-releases at or after t−i+1, as these are
accounted for in Case B.2. We consider the jobs of each task τj that has jobs
executing at time instant t−i+1. We will use p to index each executing job relative
to the job with the most recent s-release within τj : p = 0 indicates the job
with the most recent s-release, p = 1 the next most recent s-release, etc. By the
assumption of the lemma, if p > 0 for job J ∈ τj , then J must complete by xj+Cj

units after its s-release time, and must be have a s-release time before ti+1−pTj.
Therefore, J must complete by time ti+1 + xj + Cj − pTj, and its contribution
to Wj(ti+1) is at most min{Cj ,max{0, xj + Cj − pTj}} By (3)= l(τj , xj , p).

When p = 0 for J ∈ τj , xj + Cj − pTj ≥ Cj . Therefore l(τj , xj , p) = Cj by
(3), so J ’s contribution to Wj(ti+1) is also at most l(τj , xj , p).

B.2 We now consider jobs with s-release time at or after ti+1. By (2), each
task τj contributes at most Uj(dk − ti+1) + Sj units of work over [ti+1, dk).
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Cumulatively, all tasks contribute at most U(τ)(dk − ti+1) + S(τ) units of work
over [ti+1, dk).

Total W (ti+1) contains at most m+ − 1 jobs from Case B.1, in addition to all
jobs from Case B.2, so W (ti+1) ≤ U(τ)(dk − ti+1) + S(τ) + L(x).

Thus the lemma is true for ti+1.

We now use the previous lemma to bound the response time of a job under the
same assumptions.

Lemma 2. If x is a compliant vector and for all i, 1 ≤ i ≤ N , the response
time of each job of τi in Ic is at most xi +Ci, then the response time of Jk is at
most xk + Ck.

Proof. Recall that rk is the s-release time of Jk, and dk is its deadline. By Lem. 1,

W (rk) ≤ U(τ)(dk − rk) + S(τ) + L(x). (8)

After rk, Jk is continuously running until it is finished, except when all other
CPUs are occupied by jobs from Ic. Recall that, by definition, W (rk) is the total
remaining work after time rk for jobs in I. We define Wc(rk) as the total amount
of remaining work after time rk for jobs in Ic. Because the upper bound in (8)
assumes that all jobs (including Jk) run for their full worst-case execution times,
(8) implies

Wc(rk) ≤ U(τ)(dk − rk) + S(τ) + L(x) − Ck. (9)

The total amount of time after rk during which m CPUs are busy with work
from Ic can be at most

Wc(rk)
m

≤ {By (9)}
L(x) + S(τ) + U(τ)Dk − Ck

m
≤ {By (6)}

xk.

Thus, Jk is prevented from executing after its s-release time for at most xk time
units, so its response time is at most xk + Ck.

This lemma leads directly to the main result of this section:

Theorem 1. If x is a compliant vector then ∀i, 1 ≤ i ≤ N , each job of τi

completes within xi + Ci units of its s-release time.

Proof. By inducting over the jobs of I ′ using Lem. 2.
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4 The Minimum Compliant Vector

Thm. 1 uses compliant vectors to express response-time bounds. Our objective
is to compute response-time bounds that are as small as possible. We show that
for any arbitrary-deadline sporadic task system τ without implicit precedence
constraints there exists a unique minimum compliant vector. This proof closely
follows a similar one provided in [3], and some lemmas have nearly identical
proofs. For space reasons, proofs of such lemmas are ommitted. We also provide
an Appendix with an algorithm for computing the minimum compliant vector
in polynomial time.

We first characterize the behavior of L(x). We consider two vectors x and y
differing by a constant for some of their values, and are the same elsewhere. For
example, x = 〈1, 2, 3〉 and y = 〈2, 2, 4〉 differ by exactly 1 in two places (the first
and third) and are the same in the second; Lem. 3 would apply to x and y with
k = 2. The reasoning for Lem. 3 is identical to Lem. 4 of [3].

Lemma 3. Suppose length-n vectors x and y differ at exactly k values, and for
these values yi = xi+δ, where δ is a positive constant.Denotew = min{k,m+−1}.
Then, the following inequality holds:

L(x) ≤ L(y) ≤ L(x) + δ · w. (10)

We say that length-n x is strictly smaller than length-n y if for all i, xi ≤ yi and
there exists a j such that xj < yj. Clearly y cannot be considered “minimum”
if there exists such an x. We next use Lem. 3 to characterize the minimum
compliant vector, with logic identical to Lem. 5 of [3].

Lemma 4. If y is compliant and there is a j such that yj > (L(y) + S(τ) +
U(τ)Di − Ci)/m, then there exists a strictly smaller vector x that is also com-
pliant.

Lem. 4 demonstrates that each inequality in (6) should actually be an equality, or
the vector cannot be the minimum. A minimum compliant vector must therefore
be of the form

xi =
L(x) + S(τ) + U(τ)Di − Ci

m
∀i. (11)

Because L(x) does not depend on i, there must exist a real number

s =
L(x)
m

(12)

such that

xi = s +
S(τ) + U(τ)Di − Ci

m
∀i. (13)

We define some functions:

v(s) def= x such that (13) holds (14)

L(s) def= L(v(s)) (15)

M(s) def= L(s) −ms. (16)
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By (13), any minimum compliant vector must be v(s) for some s. Furthermore,
L(s) must equal ms, by (12). Therefore, M(s) = 0 if and only if v(s) is a
compliant vector in the form of (11), and thus the minimum compliant vector.
We are now ready to prove this section’s main result:

Theorem 2. For any given task set τ , there exists a unique minimum compliant
vector.

Proof. We wish to demonstrate that exactly one real s exists such that M(s) = 0.
We will use the Intermediate Value Theorem from calculus.

A necessary precondition for the Intermediate Value Theorem is that M(s)
is a continuous function. The following lemma is essentially Lem. 21 of [3] and
leads to the desired result as a corollary.

Lemma 21. L(s) is continuous over R

Let Cmax denote the largest Ci value in τ . We now show that M(0) > 0 and
M(Cmax) < 0, completing the preconditions for the Intermediate Value Theo-
rem.

Lemma 22. M(0) > 0

Proof. Let 1 ≤ i ≤ N be arbitrary. Then:

M(0)
= {By (16) with s = 0}

L(0)
= {By (15) and (4)}∑

m+−1 largest

l(τi, vi(0), p)

≥ {Since, by (3), l(τi, vi(0), p) can’t be negative}
l(τi, vi(0), 0)

= {By (3) and (14), with s = 0 and p = 0}

min
{
Ci,max

{
0,

S(τ) + U(τ)Di − Ci

m
+ Ci

}}

= {Simplifying}

= min
{
Ci,max

{
0,

S(τ) + U(τ)Di + (m − 1)Ci

m

}}

> 0.

Lemma 23. M(Cmax) < 0.

Proof. By (3), l(τi, xi, p) ≤ Ci for any i and p. Therefore, for any i and p,

l(τi, xi, p) ≤ Cmax. (17)
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Therefore,

M(Cmax)
= {By (16) with s = Cmax}

L(Cmax) − mCmax

≤ {By (15), (4), and (17)}
(m+ − 1)Cmax −mCmax

≤ {Since m+ ≤ m}
− Cmax

< 0.

Lemma 24. There is an s in (0, Cmax) such that M(s) = 0.

Proof. By Lem. 21, Lem. 22, Lem. 23, and the Intermediate Value Theorem.

We now verify that the s value of Lem. 24 is unique, using the following lemma,
with identical reasoning to Lem. 22 of [3].

Lemma 25. s1 = s2 implies M(s1) = M(s2)

Lem. 25 demonstrates that s1 = s2 and M(s1) = 0 imply M(s2) = 0, so the
value of s characterized in Lem. 24 is unique.

In Lem. 24 we have a substantial improvement compared to [3], where the upper
bound was given as the sum of the m+−1 largest values of Ci. This improvement
leads to Thm. 3, which provides a response-time bound that can be quickly
calculated.

Theorem 3. The response time of any job of any task τi cannot exceed Cmax +
S(τ)+U(τ)Di−Ci

m + Ci.

Proof. Follows from Lem. 24, (13), and Thm. 1.

5 Evaluation

This work allows smaller response-time bounds than are possible using prior
work. In particular, these results are especially competitive for implicit-deadline
sporadic task systems. By Thm. 3, combined with U(τ) ≤ m (a necessary con-
dition), and the fact that, for implicit-deadline systems, S(τ) = 0, the response
time of any job of any task τi must be upper-bounded by Cmax + Di + m−1

m Ci.
Therefore, the tardiness of any job of τi must be no greater than Cmax + m−1

m Ci.
In order to evaluate the improvement to the bounds we obtain by eliminating

implicit precedence constraints, we compared our results to the best available
analysis for implicit-deadline sporadic tasks, found in [2]. For the experiments
in this paper, we compared the best results of our work to the best bounds
attainable using [2].
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Fig. 2. Results of experiments

Our experimental methodology is inspired by the tests in [2]. All experiments
were done with processor counts of 4, 8, and 16. We used uniform distributions
for the task worst-case execution times and utilizations, and we determined the
effects of varying each of four parameters: mean worst-case execution time (C̄),
standard deviation of worst-case execution time (Cσ), mean utilization (Ū), and
standard deviation of utilization (Uσ). For mean x and standard deviation σ,
values were chosen uniformly over (x− σ

√
3, x + σ

√
3).

In each experiment, the processor count m and three of the four parameters
above were fixed, and the remaining parameter was varied. For each value of the
varied parameter, we generated 1000 task sets. For each individual task set, we
generated tasks until a task was generated that would cause U(τ) to exceed m.
For each task set we computed the mean tardiness bound with respect to [2], δ,
and with respect to our work, δ′. For each set of 1000 task sets we computed δ̄
(the mean value of δ) and δ̄′ (the mean value of δ′). The absolute improvement
for each set of sets is defined as δ̄− δ̄′, and the relative improvement for each set
of sets is defined as (δ̄ − δ̄′)/δ̄.

Results are in Fig. 2. We see that the improvement to tardiness is quite
substantial, particularly with large execution times, small variance in execu-
tion times, large utilizations, and large variance in utilizations. More significant
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improvement occurs with larger processor counts because the bounds of [2] in-
crease significantly with m, while our bounds are upper-bounded by Cmax +
m−1

m Ci. This improvement is possible even when per-task utilization is restricted
to be less than one to make our results comparable to prior work. We do not
have results comparing our work to previous results when per-task utilization
may exceed one, because prior work is not applicable in this case.

6 Conclusion

G-EDF scheduling has already proven useful for traditional SRT workloads in
which jobs of the same task have implicit precedence constraints. Here we have
demonstrated that G-EDF scheduling may be even more useful for SRT work-
loads in which jobs may be released as separate threads that can safely run
concurrently. We have shown that doing so not only improves response times
compared to prior work, but enables new workloads where a single task may
overutilize a single processor.

For future work, allowing critical sections would be useful, so that tasks that
write shared data but do not have precedence constraints could be handled.
Supporting integrated workloads where some tasks have internal precedence
constraints and some do not would also be interesting to consider. Further-
more, in past work on slack reclaiming, precedence constraints between jobs
have prevented slack produced by a job from being reclaimed after its successor
is released. Using the methods in this paper, we may be able to overcome this
limitation.
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Appendix

Computation Algorithm

We now show how to compute the minimum compliant vector for a task system
τ in time polynomial to the size of τ and the number of processors. L(s) as
defined in (15) is a piecewise linear function; our algorithm works by tracing
L(s) until we find a fixed point L(s) = ms.

In order to assist the reader’s understanding of this algorithm, we provide
an example task system in Table 1.1 Simple calculations reveal that, for this
system, S(τ) = 0 and U(τ) = 2. Furthermore, in a two-CPU system, by Def. 1,
we only need to consider p = 0. A graph of the relevant l(τi, vi(s), 0) functions
with respect to s is provided in Fig. 3.

Table 1. 2 CPU task system example for Sec. 6

Ci Ti Di

τ1 6 10 10
τ2 12 10 10
τ3 4 20 20
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Fig. 3. l functions for the system in Table 1

We define the slope at point s of a piecewise linear function f(s) to be
limε→0+

f(s+ε)−f(s)
ε . This definition differs from the common notion of derivative

1 In this system, the worst-case execution time of τ2 exceeds its deadline, so it appears
that it is impossible for τ2 to meet its deadline. However, because execution times
given are worst-case rather than exact, it is actually possible for this job to complete
before its deadline. Furthermore, here we are interested in response-time bounds
rather than hard deadlines.
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in that its limit is taken from the right; it is thus defined for all real s. For exam-
ple, l(τ1, v1(s), 0) in Fig. 3 has a slope of 1 at s = −22, but is not differentiable
at s = −22.

For each value of s we will define l(τi, vi(s), p) as being in one of three states,
depending on the value of vi(s) + Ci − pTi:

– If vi(s) +Ci − pTi < 0, then l(τi, vi(s), p) is in state 0, is equal to 0, and has
a slope of 0. l(τ1, v1(s), 0) in Fig. 3 is in state 0 in the interval (−∞,−22).

– If 0 ≤ vi(s) + Ci − pTi < Ci, then l(τi, vi(s), p) is in state 1, is equal to
vi(s) + Ci − pTi, and has a slope of 1. l(τ1, v1(s), 0) in Fig. 3 is in state 1 in
the interval [−22,−18).

– If Ci ≤ vi(s) + Ci − pTi, then l(τi, vi(s), p) is in state 2, is equal to Ci, and
has a slope of 0. l(τ1, v1(s), 0) in Fig. 3 is in state 1 in the interval [−18,∞).

In order to analyze the piecewise linear function L(s), we will need to determine
where the slope changes. To do so, we need to determine which l(τi, vi(s), p) com-
ponents contribute to L(s) for various intervals. For some intervals, the choice is
arbitrary. For example, the task system in Fig. 3 has only one l(τi, vi(s), p) compo-
nent contributing to L(s), because m − 1 = 2 − 1 = 1. However, for s < −22 all
l(τi, vi(s), p) components equal zero. We provide a sufficient solution by arbitrarily
tracking some valid set of l(τi, vi(s), p) components.

We will create a set Points of tuples, one for each possible change in the
slope of L(s). (Each will have an associated s value, but there could be multiple
possible changes at the same s value.) Each tuple will identify a point where
some l(τi0 , vi0(s), p0) in state h0 is replaced by some l(τi1 , vi1(s), p1) in state h1.
Such a tuple will be of the form {s, i0, p0, h0, i1, p1, h1}. In some cases, more
than one old component may be appropriate. To handle these cases efficiently,
any of i0, p0, or h0 may be set to ∗, which is defined as matching any value of
the relevant parameter. For example, the tuple {s, ∗, ∗, 0, i1, p1, 1} indicates that
any arbitrary l(τi0 , vi0(s), p0) in state 0 should be replaced by l(τi1 , vi1(s), p1) in
state 1.

The slope of L(s) may change in any of the following cases:

1. Some l(τi, vi(s), p) changes from state 0 to state 1. This occurs where vi(s)+
Ci − pTi = 0. The resulting tuple will be {s, ∗, ∗, 0, i, p, 1}, as we can view
l(τi, vi(s), pi) as replacing any l(τj , vj(s), pj) in state 0 in the system—they
all have value 0. This change occurs exactly once per l(τi, vi(s), p) and there-
fore m−1 times per task (once per value of p), for a total of O(mn) times for
the system. In Fig. 3, this state change occurs for l(τ1, v1(s), 0) at s = −22,
for l(τ2, v2(s), 0) at s = −13, and for l(τ3, v3(s), 0) at s = −16.

2. Some l(τi, vi(s), p) changes from state 1 to state 2. This occurs where vi(s)+
Ci − pTi = Ci (so vi(s) = pTi). The resulting tuple will be {s, i, p, 1, i, p, 2}.
As above, this change occurs O(mn) times for the system. In Fig. 3, this state
change occurs for l(τ1, v1(s), 0) at s = −18, for l(τ2, v2(s), 0) at s = −7, and
for l(τ3, v3(s), 0) at s = −4.

3. Some l(τi, vi(s), pi) is in state 1 and crosses Cj , and thus potentially crosses
l(τj , vj(s), pj) (for some pj) where the latter is in state 2. This occurs when
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Ci>Cj and vi(s)+Ci−piTi =Cj . The resulting tuple will be {s, j, ∗, 2, i, p, 1}.
This point may exist at most n−1 times per l(τi, vi(s), p) (in the worst case,
l(τi, vi(s), p) crosses one l(τj , vj(s), pj) for each other τj), so occurs at most
O(mn2) times for the system. In Fig. 3, this point does not occur for τ1 (as
C1 is the smallest value in the system), occurs for l(τ2, v2(s), 0) with τ1 at
s = −9, and occurs for l(τ3, v3(s), 0) with τ1 at s = −12 and with τ2 at
s = −10. (Although l(τ3, v3(s), 0) does not actually cross l(τ2, v2(s), 0) at
s = −10, our algorithm nonetheless records the point where l(τ3, v3(s), 0)
crosses C2.)

In order to track L(s), we order the tuples in Points by s value, breaking ties
in favor of tuples indicating a change in state for a particular l(τi, vi(s), p) com-
ponent. We create a list Active containing tuples {i, p, h}, each representing the
corresponding l(τi, vi(s), p) in state h that contributes its value to L(s). For s
smaller than the smallest in Points, we may arbitrarily make m+ − 1 choices of
l(τi, vi(s), p) components, each in state 0. Therefore, we initialize Active to an
arbitrary choice of m+ − 1 tuples of the form {i, p, 0}.

The appropriate s value is computed using Algorithm 1, which works by
tracing the piecewise linear function and checking for L(s) = ms (as per (12),
(14), and (15)) in each segment.

Algorithm 1. Compute s value
tuple set Active, Points, described in text
integer slope, current initially 0
real s, s2

for all {s1, i1, p1, h1, i2, p2, h2} ∈ Points do
if {i1, p1, h1} matches some {i, p, h} in Active then

Replace {i, p, h} with {i2, p2, h2}
if h2 = 1 then

{Changing to state 1 means slope increases}
slope := slope + 1

else
{Must be changing away from state 1 or {s1, i1, p1, h1, i2, p2, h2} wouldn’t
be in Points}
slope := slope − 1

end if
s2 := next s value from Points, or Cmax if there is no such value
s := current−slope·s1

m−slope

if s ∈ [s1, s2) then
return s

end if
current := current + slope · (s2 − s1)

end if
end for

As an example, suppose Active is initialized to {{3, 0, 0}}, which represents
l(τ3, v3(s), 0) in state 0. The first tuple in Points is {−22, ∗, 0, 0, 1, 0, 1},
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representing the leftmost slope change in Fig. 3. This tuple will match the sin-
gle tuple in Active, so Active will become {1, 0, 1}. slope is used to track the
slope between s1 and the next s value in Points (which is called s2). current
is used to represent the correct value of L(s1). In this case, the current interval
of interest is −22 ≤ s < −18. The new state h2 is 1, so the slope (which was
initially 0) will be incremented by 1, resulting in a new slope of 1. We now know
the slope slope = 1 of L(s) over [−22,−18) and its value L(s1) = current = 0
at s1 = −22. We therefore compute the point where L(s) = ms would hold,
assuming a linear function that is equal to the correct piecewise linear function
over the interval of interest. In this case, s is assigned the value 0−(−22)

2−1 = 22,
which is not in [−22,−18), so the desired value of s for the algorithm is not in
the current interval of interest. We do not return, so we update the value current
to match the value of L(s2) at the end of the current interval of interest (and
thus in the next iteration the correct value of L(s1)). In this case, current will
be assigned to 0 + 1 · 4 = 4.

Points is of size O(mn2) and Active of size O(m), so checking for matches
will require O(m2n2) operations over the execution of the algorithm. Each match
requires O(1) time to process, so the complexity of Algorithm 1 is O(m2n2).
Computing Points requires O(mn2) time, and sorting requires O(mn2 log(mn))
time, so the complexity of computing s is O(mn2log(mn) + m2n2). Once an s
value has been computed using Algorithm 1, the correct minimum compliant
vector is simply v(s), which can be computed in O(n) time.
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Abstract. Motivated by multipath routing, we introduce a multi-
connected variant of spanners. For that purpose we introduce the p-
multipath cost between two nodes u and v as the minimum weight of a
collection of p internally vertex-disjoint paths between u and v. Given
a weighted graph G, a subgraph H is a p-multipath s-spanner if for all
u, v, the p-multipath cost between u and v in H is at most s times the
p-multipath cost in G. The s factor is called the stretch.

Building upon recent results on fault-tolerant spanners, we show how
to build p-multipath spanners of constant stretch and of Õ(n1+1/k)
edges1, for fixed parameters p and k, n being the number of nodes of
the graph. Such spanners can be constructed by a distributed algorithm
running in O(k) rounds.

Additionally, we give an improved construction for the case p = k = 2.
Our spanner H has O(n3/2) edges and the p-multipath cost in H between
any two node is at most twice the corresponding one in G plus O(W ),
W being the maximum edge weight.

1 Introduction

It is well-known [2] that, for each integer k � 1, every n-vertex weighted graph
G has a subgraph H , called spanner, with O(n1+1/k) edges and such that for all
pairs u, v of vertices of G, dH(u, v) � (2k − 1) · dG(u, v). Here dG(u, v) denotes
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joining u to v. In other words, there is a trade-off between the size of H and its
stretch, defined here by the factor 2k − 1. Such trade-off has been extensively
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be done by choosing k = O(log n). The target distributed algorithm can then be
run on the remaining skeleton [3]. The skeleton construction can be done in O(k)
rounds, whereas computing a spanning tree requires diameter rounds in general.
We refer the reader to [21] for an overview on graph spanner constructions.

However, it is also proved in [25] that if G is directed, then it may have no
sub-digraph H having o(n2) edges and constant stretch, the stretch being defined
analogously by the maximum ratio between the one-way distance from u to v
in H and the one-way distance from u to v in G. Nevertheless, a size/stretch
trade-off exists for the round-trip distance, defined as the sum of a minimum
cost of a dipath from u to v, and a minimum cost dipath from v to u (see [7,23]).
Similar trade-offs exist if we consider the p-edge-disjoint multipath distance (in
undirected graphs) for each p � 1, that is the minimum sum of p edge-disjoint
paths joining u and v, see [10].

1.1 Trade-Offs for Non-increasing Graph Metric

More generally, we are interested in size/stretch trade-offs for graphs (or di-
graphs) for some non-increasing graph metric. A non-increasing graph metric δ
associates with each pair of vertices u, v some non-negative cost that can only
decrease when adding edges. In other words, δG(u, v) � δH(u, v) for all vertices
u, v and spanning subgraphs H of G. Moreover, if δH(u, v) � α · δG(u, v) + β,
then we say that H is an (α, β)-spanner and that its stretch (w.r.t. the graph
metric δ) is at most (α, β). We simply say that H is an α-spanner if β = 0. The
size of a spanner is the number of its edges.

In the previous discussion we saw that every graph or digraph has a spanner
H of size o(n2) and with bounded stretch for graph metrics δ such as round-
trip, p-edge-disjoint multipath, and the usual graph distance. However, it does
not hold for one-way distance. A fundamental task is to determine which graph
metrics δ support such size/stretch trade-off. We observe that the three former
graph metrics cited above have the triangle inequality property, whereas the
one-way metric does not.

This paper deals with the construction of spanners for the vertex-disjoint
multipath metric. A p-multipath between u and v is a subgraph composed of
the union of p pairwise internally vertex-disjoint paths joining u and v. The
cost of a p-multipath between u and v is the sum of the weight of the edges it
contains. Given an undirected positively weighted graph G, define δp

G(u, v) as the
minimum cost of a p-multipath between u and v if it exists, and ∞ otherwise.
A p-multipath s-spanner is a spanner H of G with stretch at most s w.r.t. the
graph metric δp. In other words, for all vertices u, v of G, δp

H(u, v) � s · δp
G(u, v),

or δp
H(u, v) � α · δp

G(u, v) + β if s = (α, β). It generalizes classical spanners as
dG(u, v) = δp

G(u, v) for p = 1.

1.2 Motivations

Our interest in the node-disjoint multipath graph metric stems from the need
for multipath routing in networks. Using multiple paths between a pair of nodes
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is an obvious way to aggregate bandwidth. Additionally, a classical approach to
quickly overcome link failures consists in pre-computing fail-over paths which are
disjoint from primary paths [14,19,18]. Multipath routing can be used for traffic
load balancing and for minimizing delays. It has been extensively studied in ad
hoc networks for load balancing, fault-tolerance, higher aggregate bandwidth,
diversity coding, minimizing energy consumption (see [17] for a quick overview).
Considering only a subset of links is a practical concern in link state routing
in ad hoc networks [13]. This raises the problem of computing spanners for the
multipath graph metric, a first step towards constructing compact multipath
routing schemes.

1.3 Our Contributions

Our main contribution is to show that sparse p-multipath spanners of constant
stretch do exist for each p � 1. Moreover, they can be constructed locally in a
constant number of rounds. More precisely, we show that:

1. Every weighted graph with n vertices has a p-multipath kp ·O(1 + p/k)2k−1-
spanner of size Õ(p2 · n1+1/k), where k and p are integral parameters � 1.
Moreover, such a multipath spanner can be constructed distributively in
O(k) rounds.

2. For p = k = 2, we improve this construction whose stretch is 18. Our algo-
rithm provides a 2-multipath (2, O(W ))-spanner of size O(n3/2) where W is
the largest edge weight of the input graph.

Distributed algorithms are given in the classical LOCAL model of computations
(cf. [20]), a.k.a. the free model [15]. In this model nodes operate in synchronous
discrete rounds (nodes are also assumed to wake up simultaneously). At each
round, a node can send and/or receive messages of unbounded capacity to/from
its neighbors and can perform any amount of local computations. Hence, each
round costs one time unit. Also, nodes have unique identifiers that can be used for
breaking symmetry. As long as we are concerned with running time (number of
rounds) and not with the cost of communication, synchronous and asynchronous
message passing models are equivalent.

1.4 Overview

Multipath spanners have some flavors of fault-tolerant spanners, notion intro-
duced in [6] for general graphs. A subgraph H is an r-fault tolerant s-spanner
of G if for any set F of at most r � 0 faulty vertices, and for any pair u, v of
vertices outside F , dH\F (u, v) � s · dG\F (u, v).

At first glance, r-fault tolerant spanners seem related to (r + 1)-multipath
spanners. (Note that both notions coincide to usual spanners if r = 0.) This
is motivated by the fact that, if for an edge uv of G that is not in H , and if,
for each set F of r vertices, u and v are connected in H \ F , then by Menger’s
Theorem H must contain some p-multipath between u and v. If the connectivity
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condition fulfills, there is no guarantee however on the cost of the p-multipath
in H compared to the optimal one in G. Actually, as presented on Fig. 1, there
are 1-fault tolerant s-spanners that are 2-multipath but with arbitrarily large
stretch.

s
u v

1

s/n

Fig. 1. A weighted graph G composed of a cycle of n+1 vertices plus n−1 extra edges,
and a spanner H = G \ {uv}. Edge uv has weight 1, non-cycle edges have weight s,
and cycle edges weight s/n so that dH(u, v) = s. Removing any vertex z /∈ {u, v}
implies dG\{z}(u, v) = 1 and dH\{z}(u, v) = 2s(1 − 1/n). For other pairs of vertices
x, y, dH\{z}(x, y)/dG\{z}(x, y) < 2s. Thus, H is a 1-fault tolerant 2s-spanner. However
δ2

H(u, v)/δ2
G(u, v) � sn/s. Thus, H is a 2-multipath spanner with stretch at least n.

Nevertheless, a relationship can be established between p-mutlipath spanners
and some r-fault tolerant spanners. In fact, we prove in Section 2.4 that every r-
fault tolerant s-spanner that is b-hop is a (r+1)-multipath spanner with stretch
bounded by a function of b, r and s. Informally, a b-hop spanner H must replace
every edge uv of G not in H by a path simultaneously of low cost and composed of
at most b edges. We observe that many classical spanner constructions (including
the greedy one) do not provide bounded-hop spanners, although such spanners
exist as proved in Section 2.1. Some variant presented in [6] of the Thorup-Zwick
constructions [25] are also bounded-hop (Section 2.2). Combining these specific
spanners with the generic construction of fault tolerant spanners of [9], we show
in Section 2.3 how to obtained a LOCAL distributed algorithm for computing
a p-mutlipath spanner of bounded stretch. A maybe surprising fact is that the
number of rounds is independent of p and n. We stress that the distributed
algorithm that we obtain has significantly better running time than the original
one presented in [9] that was Ω(p3 logn).

For instance for p = 2, our construction can produce a 2-multipath 18-spanner
with O(n3/2 log3/2 n) edges. For this particular case we improve the general
construction in Section 3 with a completely different approach providing a low
multiplicative stretch, namely 2, at the cost of an additive term depending of
the largest edge weight.

We note that the graph metric δp does not respect the triangle inequality
for p > 1. For p = 2, a cycle from u to w and a cycle from w to v does not
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imply the existence of a cycle from u to v. The lack of this property introduces
many complications for our second result. Basically, there are Ω(n2) pairs u, v of
vertices, each one possibly defining a minimum cycle Cu,v of cost δ2

G(u, v). If we
want to create a spanner H with o(n2) edges, we cannot keep Cu,v for all pairs
u, v. Selecting some vertex w as pivot for going from u to v is usually a solution
of save edges (in particular at least one between u and v). One pivot can indeed
serve for many other pairs. However, without the triangle inequality, Cu,w and
Cw,v do not give any cost guarantee on δ2

H(u, v).

2 Main Construction

In this section, we prove the following result:

Theorem 1. Let G be a weighted graph with n vertices, and p, k be integral pa-
rameters � 1. Then, G has a p-multipath kp · O(1 + p/k)2k−1-spanner of size
O(kp2−1/kn1+1/k log2−1/k n) that can be constructed w.h.p. by a randomized dis-
tributed algorithm in O(k) rounds.

Theorem 1 is proved by combining several constructions presented now.

2.1 Spanners with Few Hops

An s-spanner H of a weighted graph G is b-hop if for every edge uv of G, there
is a path in H between u and v composed of at most b edges and of cost at most
s ·ω(uv) (where ω(uv) denotes the cost of edge uv). An s-hop spanner is simply
an s-hop s-spanner.

If G is unweighted (or the edge-cost weights are uniform), the concepts of
s-hop spanner and s-spanner coincide. However, not all s-spanners are s-hop. In
particular, the (2k− 1)-spanners produced by the greedy2 algorithm [2] are not.

For instance, consider a weighted cycle of n + 1 vertices and any stretch s
such that 1 < s < n. All edges of the cycle have unit weight, but one, say
the edge uv, which has weight ω(uv) = n/s. Note that dG(u, v) = ω(uv) > 1.
The greedy algorithm adds the n unit cost edges but the edge uv to H because
dH(u, v) = n � s · ω(uv) (recall that uv is added only if dH(u, v) > s · dG(u, v)).
Therefore, H is an s-spanner but it is only an n-hop spanner.

However, we have:

Proposition 1. For each integer k � 1, every weighted graph with n vertices
has a (2k − 1)-hop spanner with less than n1+1/k edges.

Proof. Consider a weighted graph G with edge-cost function ω. We construct the
willing spanner H of G thanks to the following algorithm which can be seen as
the dual of the classical greedy algorithm, till a variant of Kruskal’s algorithm:
2 For each edge uv in non-decreasing order of their weights, add it to the spanner if

dH(u, v) > s · dG(u, v).
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(1) Initialize H with V (H) := V (G) and E(H) := ∅;
(2) Visit all the edges of G in non-decreasing order of their weights, and add the

edge uv to H only if every path between u and v in H has more than 2k− 1
edges.

Consider an edge uv of G. If uv is not in H then there must exist a path P in H
from u to v such that P has at most 2k−1 edges. We have dH(u, v) � ω(P ). Let
e be an edge of P with maximum weight. We can bound ω(P ) � (2k− 1) ·ω(e).
Since e has been considered before the edge uv, ω(e) � ω(uv). It follows that
ω(P ) � (2k − 1) · ω(uv), and thus dH(u, v) � (2k − 1) · ω(uv). Obviously, if
uv belongs to H , dH(u, v) = ω(uv) � (2k − 1) · ω(uv) as well. Therefore, H is
(2k − 1)-hop.

The fact that H is sparse comes from the fact that there is no cycle of length
� 2k in H : whenever an edge is added to H , any path linking its endpoints has
more than 2k − 1 edges, i.e., at least 2k.

We observe that H is simple even if G is not. It has been proved in [1] that
every simple n-vertex m-edge graph where every cycle is of length at least 2k+1
(i.e., of girth at least 2k + 1), must verify the Moore bound:

n � 1 + d
k−1∑
i=0

(d− 1)i > (d− 1)k

where d = 2m/n is the average degree of the graph. This implies that m <
1
2 (n1+1/k + n) < n1+1/k.

Therefore, H is a (2k − 1)-hop spanner with at most n1+1/k edges. �

2.2 Distributed Bounded Hop Spanners

There are distributed constructions that provide s-hop spanners, at the cost of
a small (poly-logarithmic in n) increase of the size of the spanner compared to
Proposition 1.

If we restrict our attention to deterministic algorithms, [8] provides for un-
weighted graphs a (2k − 1)-hop spanner of size O(kn1+1/k). It runs in 3k − 2
rounds without any prior knowledge on the graph, and optimally in k rounds if
n is available at each vertex.

Proposition 2. There is a distributed randomized algorithm that, for every
weighted graph G with n vertices, computes w.h.p. a (2k − 1)-hop spanner of
O(kn1+1/k log1−1/k n) edges in O(k) rounds.

Proof. The algorithm is a distributed version of the spanner algorithm used in [6],
which is based on the sampling technique of [25]. We make the observation that
this algorithm can run in O(k) rounds. Let us briefly recall the construction
of [6, p. 3415].

To each vertex w of G is associated a tree rooted at w spanning the cluster of
w, a particular subset of vertices denoted by C(w). The construction of C(w) is



Node-Disjoint Multipath Spanners and Their Relationship 149

a refinement over the one given in [25]. The main difference is that the clusters’
depth is no more than k edges. The spanner is composed of the union of all such
cluster spanning trees. The total number of edges is O(kn1+1/k log1−1/k n). It is
proved in [6] that for every edge uv of G, there is a cluster C(w) containing u
and v. The path of the tree from w to one of the end-point has at most k − 1
edges and cost � (k−1) ·ω(uv), and the path from w to the other end-point has
at most k edges and cost � k · ω(uv). This is therefore a (2k − 1)-hop spanner.

The random sampling of [25] can be done without any round of communica-
tions, each vertex randomly select a level independently of the other vertices.
Once the sampling is performed, the clusters and the trees can be constructed
in O(k) rounds as their the depth is at most k. �

2.3 Fault Tolerant Spanners

The algorithm of [9] for constructing fault tolerant spanners is randomized and
generic. It takes as inputs a weighted graph G with n vertices, a parameter r � 0,
and any algorithm A computing an s-spanner of m(ν) edges for any ν-vertex
subgraph of G. With high probability, it constructs for G an r-fault tolerant
s-spanner of size O(r3 · m(2n/r) · logn). It works as follows:
Set H := ∅, and repeat independently O(r3 logn) times:

(1) Compute a set S of vertices built by selecting each vertex with probability
1 − 1/(r + 1);

(2) H := H ∪ A(G \ S).

Then, they show that for every fault set F ⊂ V (G) of size at most r, and every
edge uv, there exists with high probability a set S as computed in Step (1) for
which u, v /∈ S and F ⊆ S. As a consequence, routine A(G \ S) provides a path
between u and v in G \ S (and thus also in G \ F ) of cost � s · ω(uv). If uv
lies on a shortest path of G \ F , then this cost is � s · dG\F (u, v). From their
construction, we have:

Proposition 3. If A is a distributed algorithm constructing an s-hop spanner
in t rounds, then algorithm [9] provides a randomized distributed algorithm that
in t rounds constructs w.h.p. an s-hop r-fault tolerant spanner of size O(r3 ·
m(2n/r) · logn).

Proof. The resulting spanner H is s-hop since either the edge uv of G is also in
H , or a path between u and v approximating ω(uv) exists in some s-hop spanner
given by algorithm A. This path has no more than s edges and cost � s ·ω(uv).

Observe that the algorithm [9] consists of running in parallel q = O(r3 logn)
times independent runs of algorithm A on different subgraphs of G, each one
using t rounds. Round i of all these q runs can be done into a single round of
communication, so that the total number of rounds is bounded by t, not by q.

More precisely, each vertex first selects a q-bit vector, each bit set with prob-
ability 1− 1/(r+1), its jth bit indicating whether it participates to the jth run
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of A. Then, q instances of algorithm A are run in parallel simultaneously by
all the vertices, and whenever the algorithms perform their ith communication
round, a single message concatenating the q messages is sent. Upon reception, a
vertex expands the q messages and run the jth instance of algorithm A only if
the jth bit of its vector is set.

The number of rounds is no more than t. �

2.4 From Fault Tolerant to Multipath Spanner

Theorem 2. Let H be a s-hop (p−1)-fault tolerant spanner of a weighted graph
G. Then, H is also a p-multipath ϕ(s, p)-spanner of G where ϕ(s, p) = sp ·
O(1 + p/s)s and ϕ(3, p) = 9p.

To prove Theorem 2, we need the following intermediate result, assuming that
H and G satisfy the statement of Theorem 2.

Lemma 1. Let uv be an edge of G of weight ω(uv) that is not in H. Then, H
contains a p-multipath connecting u to v of cost at most ϕ(s, p) · ω(uv) where
ϕ(s, p) = sp · O(1 + p/s)s and ϕ(3, p) = 9p.

Proof. From Menger’s Theorem, the number of pairwise vertex-disjoint paths be-
tween two non-adjacent vertices x and y equals the minimum number of vertices
whose removal disconnects x and y.

By definition of H , H \ F contains a path PF of at most s edges between
u and v for each set F of at most p − 1 vertices (excluding u and v). This is
because u and v are always connected in G \ F , precisely by a single edge path
of cost ω(uv). Consider PH the subgraph of H composed of the union of all such
PF paths (so from u to v in H \ F – see Fig. 2 for an example with p = 2 and
s = 5).

Vertices u and v are non-adjacent in PH . Thus by Menger’s Theorem, PH has
to contain a p-multipath between u and v. Ideally, we would like to show that
this multipath has low cost. Unfortunately, Menger’s Theorem cannot help us
in this task.

Let κs(u, v) be the minimum number of vertices in PH whose deletion de-
stroys all paths of at most s edges between u and v, and let μs(u, v) denote the
maximum number of internally vertex-disjoint paths of at most s edges between
u and v. Obviously, κs(u, v) � μs(u, v), and equality holds by Menger’s Theorem
if s = n− 1. Equality does not hold in general as presented in Fig. 2. However,
equality holds if s is the minimum number of edges of a path between u and v,
and for s = 2, 3, 4 (cf. [16]).

Since not every path of at most s edges between u and v is destroyed after
removing p−1 vertices in PH , we have that κs(u, v) � p. Let us bound the total
number of edges in a p-multipath Q of minimum size between u and v in PH .
Let r be the least number such that μr(u, v) � p subject to κs(u, v) � p. The
total number of edges in Q is therefore no more than pr.
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vu

Fig. 2. A subgraph PH constructed by adding paths between u and v with at most
s = 5 edges and with p = 2. Removing any vertex leaves a path of at most 5 edges, so
κ5(u, v) > 1. However, there aren’t two vertex-disjoint paths from u to v of at most 5
edges, so κ5(u, v) > μ5(u, v). Observe that μ6(u, v) = κ5(u, v) = 2.

By construction of PH , each edge of PH comes from a path in H \ F of cost
ω(PF ) � s · dG\F (u, v) � s · ω(uv). In particular, each edge of Q has weight at
most s · ω(uv). Therefore, the cost of Q is ω(Q) � prs · ω(uv).

It has been proved in [22] that r can be upper bounded by a function
r(s, p) <

(
p+s−2

s−2

)
+
(
p+s−3

s−2

)
= O(1 + p/s)s for integers s, p, and r(3, p) = 3 since

as seen earlier κ3(u, v) = μ3(u, v). It follows that H contains a p-multipath Q
between u and v of cost ω(Q) � sp · O(1 + p/s)s · ω(uv) as claimed. �

Proof of Theorem 2. Let x, y be any two vertices of a graph G with edge-cost
function ω. We want to show δp

H(x, y) � ϕ(s, p) · δp
G(x, y). If δp

G(x, y) = ∞,
then we are done. So, assume that δp

G(x, y) = ω(PG) for some minimum cost
p-multipath PG between x and y in G. Note that ω(PG) =

∑
uv∈E(PG) ω(uv).

We construct a subgraph PH between x and y in H by adding: (1) all the
edges of PG that are in H ; and (2) for each edge uv of PG that is not in H , the
p-multipath Quv connecting u and v in H as defined by Lemma 1.

The cost of PH is therefore:

ω(PH) =
∑

uv∈E(PH)

ω(uv) =

⎛
⎝ ∑

uv∈E(PG)∩E(H)

ω(uv)

⎞
⎠ +

⎛
⎝ ∑

uv∈E(PG)\E(H)

ω(Quv)

⎞
⎠ .

By Lemma 1, ω(Quv) � ϕ(s, p) · ω(uv). It follows that:

ω(PH) � ϕ(s, p) ·
∑

uv∈E(PG)

ω(uv) = ϕ(s, p) · ω(PG) = ϕ(s, p) · δp
G(x, y)

as ϕ(s, p) � 1 and by definition of PG.
Clearly, all edges of PH are in H . Let us show now that PH contains a

p-multipath between x and y. We first assume x and y are non-adjacent in
PH . By Menger’s Theorem applied between x and y in PH , if the removal of
every set of at most p− 1 vertices in PH does not disconnect x and y, then PH

has to contain a p-multipath between x and y.
Let S be any set of less than p− 1 faults in G. Since PG is a p-multipath, PG

contains at least one path between x and y avoiding S. Let’s call this path Q.
For each edge uv of Q not in H , Quv is a p-multipath, so it contains one path
avoiding S. Note that Quv may intersect Qwz for different edges uv and wz of
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Q. If it is the case then there is a path in Quv ∪ Qwz from u to z (avoiding v
and w), assuming that u, v, w, z are encountered in this order when traversing Q.
Overall there must be a path connecting x to y and avoiding S in the subgraph
(Q ∩ H) ∪ ⋃uv∈Q\H Quv. By Menger’s Theorem, PH contains a p-multipath
between x and y.

If x and y are adjacent in PH , then we can subdivide the edge xy into the
edges xz and zy by adding a new vertex z. Denote by P ′

H this new subgraph.
Clearly, if P ′

H contains a p-multipath between x and y, then PH too: a path
using vertex z in P ′

H necessarily uses the edges xz and zy. Now, P ′
H contains

a p-multipath by Menger’s Theorem applied on P ′
H between x and y that are

non-adjacent.
We have therefore constructed a p-multipath between x and y in H of cost at

most ω(PH) � ϕ(s, p) · δp
G(x, y). It follows that δp

H(x, y) � ϕ(s, p) · δp
G(x, y) as

claimed. �
Theorem 1 is proved by applying Theorem 2 to the construction of Proposi-
tion 3, which is based on the distributed construction of s-hop spanners given
by Proposition 2. Observe that the number of edges of the spanner is bounded
by O(kp3 · m(2n/p) · logn) = O(kp2−1/kn1+1/k log2−1/k n).

3 Bi-path Spanners

In this section we concentrate our attention on the case p = 2, i.e., 2-multipath
spanners or bi-path spanners for short. Observe that for p = k = 2 the stretch
is ϕ(3, 2) = 18 using our first construction (cf. Theorems 1 and 2). We provide
in this section the following improvement on the stretch and on the number of
edges.

Theorem 3. Every weighted graph with n vertices and maximum edge-weight
W has a 2-multipath (2, O(W ))-spanner of size O(n3/2) that can be constructed
in O(n4) time.

While the construction shown earlier was essentially working on edges, the ap-
proach taken here is more global. Moreover, this construction essentially yields
an additive stretch whereas the previous one is only multiplicative. Note that a
2-multipath between two nodes u and v corresponds to an elementary cycle. We
will thus focus on cycles in this section.

An algorithm is presented in Section 3.1. Its running time and the size of the
spanner are analyzed in Section 3.2, and the stretch in Section 3.3. Due to space
limitation some proofs of these sections appear in the long version [11].

3.1 Construction

Classical spanner algorithms combines the use of trees, balls, and clusters. These
standard structures are not suitable to the graph metric δ2 since, for instance,
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two nodes belonging to a ball centered in a single vertex can be in two different bi-
components3 and therefore be at an infinite cost from each other. We will adapt
theses standard notions to structures centered on edges rather than vertices.

Consider a weighted graph G and with an edge uv that is not a cut-edge4.
Let us denote by G[uv] the bi-component of G containing uv, and by δ2

H(uv, w)
the minimum cost of a cycle in subgraph H passing through the edge uv and
vertex w, if it exists and ∞ otherwise.

We define a 2-path spanning tree of root uv as a minimal subgraph T of G
such that every vertex w of G[uv] belongs to a cycle of T containing uv. Such
definition is motivated by the following important property (see Property 1 in
Section 3.3): for all vertices a, b in G[uv]\{u, v}, δ2

G(a, b) � δ2
T (uv, a)+δ2

T (uv, b).
This can be seen as a triangle inequality like property.

If δ2
T (uv, w) = δ2

G(uv, w) for every vertex w of G[uv], T is called a shortest
2-path spanning tree. An important point, proved in Lemma 2 in Section 3.2,
is that such T always exists and contains O(ν) edges, ν being the number of
vertices of G[uv].

In the following we denote by B2
G(uv, r) =

{
w : δ2

G(uv, w) � r
}

and
BG(u, r) = {w : dG(u,w) � r} the 2-ball (resp. 1-ball) of G centered at edge
uv (at vertex u) and of radius r. We denote by NG(u) the set of neighbors of
u in G. We denote by BFS(u, r) any shortest path spanning tree of root u and
of depth r (not counting the edge weights). Finally, we denote by SPST2

G(uv)
any shortest 2-path spanning tree of root uv in G[uv].

The spanner H is constructed with Algorithm 1 from any weighted graph G
having n vertices and maximum edge weight W . Essentially, the main loop of
the algorithm selects an edge uv from the current graph lying at the center of a
dense bi-component, adds the spanner H shortest 2-path spanning tree rooted
at uv, and then destroys the neigborhood of uv.

F := G, H := (∅,∅);
while ∃uv ∈ E(G), |B2

G(uv, 4W ) ∩ (NG(u) ∪NG(v))| > √
n do

H := H ∪ SPST2
F (uv) ∪ BFSG(u, 2) ∪ BFSG(v, 2);

G := G \ (B2
G(uv, 4W ) ∩ (NG(u) ∪NG(v)))

H := H ∪G

Algorithm 1. Construction of H

3.2 Size Analysis

The proof of the spanner’s size is done in two steps, thanks to the two next
lemmas.

First, Lemma 2 shows that the while loop does not add too much edges: a
shortest 2-path spanning tree with linear size always exists. It is built upon
the algorithm of Suurballe-Tarjan [24] for finding shortest pairs of edge-disjoint
paths in weighted digraphs.
3 A short for 2-vertex-connected components.
4 A cut-edge is an edge that does not belong to a cycle.
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Lemma 2. For every weighted graph G and for every non cut-edge uv of G,
there is a shortest 2-path spanning tree of root uv having O(ν) edges where ν is
the number of vertices of G[uv]. It can be computed in time O(n2) where n is
the number of vertices of G.

Secondly, Lemma 3 shows that the graph G remaining after the while loop has
only O(n3/2) edges. For that, G is transformed as an unweighted graph (edge
weights are set to one) and we apply Lemma 3 with k = 2. The result we present
is actually more general and interesting in its own right. Indeed, it gives an
alternative proof of the well-known fact that graphs with no cycles of length
� 2k have O(n1+1/k) edges since B2

G(uv, 2k) = ∅ in that case.

Lemma 3. Let G be an unweighted graph with n vertices, and k � 1 be an
integer. If for every edge uv of G, |B2

G(uv, 2k) ∩ NG(u)| � n1/k, then G has at
most 2 · n1+1/k edges.

Combining these two lemmas we have:

Lemma 4. Algorithm 1 creates a spanner of size O(n3/2) in time O(n4).

Proof. Each step of the while loop adds O(n) edges from Lemma 2, and as it
removes at least

√
n vertices from the graph this can continue at most

√
n times.

In total the while loop adds O(n3/2) edges to H .
After the while loop, the graph G is left with every B2

G(uv, 4W ) ∩ (NG(u) ∪
NG(v)) smaller than

√
n. If we change all edges weights to 1, it is obvious that

every B2
G(uv, 4)∩(NG(u)∪NG(v)) is also smaller than

√
n. Then as B2

G(uv, 4)∩
NG(u) is always smaller than B2

G(uv, 4)∩(NG(u)∪NG(v)) we can apply Lemma 3
for k = 2, and therefore bound the number of edges added in the last step of
Algorithm 1.

The total number of edges of H is O(n3/2).
The costly steps of the algorithm are the search of suitable edges uv and the

cost of construction of SPST2.
The search of suitable edges is bounded by the number of edges as an edge e

which is not suitable can be discarded for the next search: removing edges from
the graph cannot improve B2

G(e, 4W ). Then for each edge a breadth first search
of depth 3 must be computed, whose cost is bounded by the number of edges of
G. So in the end the search costs at most O(n4).

The cost of building a SPST2 is bounded by the running time of [24], which
at worst costs O(n2) (the reduction is essentially in O(m + n)). Since the loop
is executed at most

√
n times, the total cost is O(n7/2).

So the total running time is O(n4). �

3.3 Stretch Analysis

The proof for the stretch is done as follows: we consider a, b two vertices such that
δ2
F (a, b) = � is finite (if it is infinite there is nothing to prove). We need to prove
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that the spanner construction is such that at the end, δ2
H(a, b) � 2� + O(W ) .

To this effect, we define PF = P 1
F ∪P 2

F as a cycle composed of two disjoint paths
(P 1

F and P 2
F ) going from a to b such that its weight sums to δ2

F (a, b).
Proving the stretch amounts to show that there exists a cycle PH = P 1

H ∪P 2
H

joining a and b in the final H , with cost at most 2�+O(W ) . Observe that if the
cycle PF has all its edges in H then one candidate for PH is PF and we are done.
If not, then there is at least one 2-ball whose deletion provokes actual deletion
of edges from PF (that is edges of PF missing in the final H).

In the following, let uv be the root edge of the first 2-ball whose removal
deletes edges from PF (that is they are not added in H neither during the while
loop nor the last step of the algorithm). Let Gi be the graph G just before the
removal of B2

G(uv, 4W ) ∩ (NG(u) ∪NG(v)) , and Gi+1 the one just after.
The rest of the discussion is done in Gi otherwise noted.
The proof is done as follows: we first show in Lemma 5 that any endpoint of

a deleted edge (of PF ) belongs to an elementary cycle comprising the edge uv
and of cost at most 6W . We then show in Lemma 6 that we can construct cycles
using a and/or b passing through the edge uv, effectively bounding δ2

H(uv, a)
and δ2

H(uv, b) due to the addition of the shortest 2-path spanning tree rooted at
uv. Finally we show in Lemma 7 that the union of a cycle passing through uv
and a and another one passing through uv and b contains an elementary cycle
joining a to b, its cost being at most the sums of the costs of the two original
cycles.

Lemma 5. Let e = wt be an edge of (Gi \Gi+1) \H. Then in Gi both w and t
are connected to uv by a cycle of cost at most 6W .

We now show that we can use this lemma to exhibit cycles going from a to uv
and from b to uv.

From the vertices belonging to both B2
Gi

(uv, 6W ) and PF we choose the ones
which are the closest from a and b (we know that at least two of them exist
because one edge was removed from PF during step i of the loop). There are
at maximum four of them (a1, a2, b1, b2), one for each sub-path P i

F and each
extremity {a, b}. Note that each extremity is connected to the root edge by an
elementary cycle of cost at most 6W . Two cases are possible (the placement of
the vertices is shown on Fig. 3):

Case 1: There are only two extremities (then they belong to the same sub-
path) and their cycles which connect them to uv do not intersect the second
subpath (w.l.o.g we can suppose it is a1 and b1).

Case 2: There are more than two extremities: either some edges of the second
path were removed or one of the cycles going from one of the extremities a1

or b1 to uv intersects the second path.

We show next that we can bound δ2
H(uv, a) and δ2

H(uv, b) with the help of the
cycles connecting the endpoints and the path PG. This is done with the two next
lemmas.
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Fig. 3. Proof of Lemma 7: the two cases for the simple paths

Lemma 6. For any two vertices joined to the same edge uv by elementary cycles
there is a simple path of cost at most the sum of the cycles’ costs and passing
through the edge uv.

Lemma 7. Let a, b be two vertices such that an elementary cycle of cost δ2(a, b)
has common vertices with some B2(uv, 6W ). Then δ2(a, uv) and δ2(b, uv) are
bounded by δ2(a, b) + 12W

Property 1. Let uv be a non cut-edge of G and T be any 2-path spanning tree
rooted at uv. Then, for all vertices a, b in G[uv] \ {u, v}, δ2

G(a, b) � δ2
T (uv, a) +

δ2
T (uv, b) − ω(uv).

Proof. There is in T a cycle joining a to uv of cost δ2
T (uv, a), and another one

joining b to uv of cost δ2
T (uv, b). Consider the subgraph P containing only the

edges from these two cycles. The cost of P is ω(P ) � δ2
T (uv, a)+δ2

T (uv, b)−ω(uv)
as edge uv is counted twice. It remains to show that P contains an elementary
cycle between a and b. Note that since a /∈ {u, v}, a has in P two vertex-disjoint
paths leaving a and excluding edge uv: one is going to u, and one to v. Similarly
for vertex b.

W.l.o.g. we can assume that a and b are not adjacent in P . Otherwise we
can subdivide edge ab to obtain a new subgraph P ′. Clearly, if P ′ contains an
elementary cycle between a and b, then P too. Consider that one vertex z,
outside a and b, is removed in P . From the remark above, in P \ {z}, there
must exists a path leaving a and joining some vertex wa ∈ {u, v} \ {z} and
one path leaving b and joining some vertex wb ∈ {u, v} \ {z}. If wa = wb,
then a and b are connected in P \ {z}. If wa = wb, then edge uv be-
longs to P \ {z} since in this case z /∈ {u, v}, and thus a path connected a to
b in P \{z}. By Menger’s Theorem, P contains a 2-multipath between a and b. �

Lemma 8. H is a 2-multipath (2, 24W )-spanner.
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Proof. If there is in F a path of cost δ2(a, b) such that every edge of it is in
H , then there is nothing to prove. If there is some removed edge, then we can
identify the loop order i which removed the first edge, and we can associate the
graph Gi just before the deletion performed in the second step of the loop (so
PF still completely exist in Gi). By virtue of Lemma 5 we can identify some
root-edge uv and we know that there are some vertices of PF linked to uv by
an elementary cycle of length at most 6W . Lemma 7 can then be applied, and
so in Gi, δ2

Gi
(a, uv) and δ2

Gi
(b, uv) are both bounded by δ2

Gi
(a, b) + 12W . As the

loop’s first step is to build a shortest 2-path spanning tree rooted in uv we know
that in H

δ2
H(a, uv) � δ2

Gi
(a, uv) � δ2

Gi
(a, b) + 12W

and the same for b. Property 1 can then be used in the 2-path spanning tree, to
bound δ2

H(a, b):

δ2
H(a, b) � δ2

H(a, uv) + δ2
H(b, uv) � 2 · δ2

Gi
(a, b) + 24W

Finally, as in Gi PF still exists completely, we have that δ2
Gi

(a, b) = δ2
F (a, b), so

δ2
H(a, b) � 2 · δ2

F (a, b) + 24W

�4 Conclusion

We have introduced a natural generalization of spanner, the vertex-disjoint path
spanners. We proved that there exists for multipath spanners a size-stretch
trade-off similar to classical spanners. We also have presented a O(k) round
distributed algorithm to construct p-multipath kp · O(1 + p/k)2k−1-spanners of
size Õ(p2n1+1/k), showing that the problem is local : it does not require commu-
nication between distant vertices.

Our construction is based on fault tolerant spanner. An interesting question
is to know if better construction (in term of stretch) exists as suggested by our
alternative construction for p = 2.

The most challenging question is to explicitly construct the p vertex-disjoint
paths in the p-multipath spanner. This is probably as hard as constructing effi-
cient routing algorithm from sparse spanner. We stress that there is a significant
difference between proving the existence of short routes in a graph (or subgraph),
and constructing and explicitly describing such short routes. For instance it is
known (see [12]) that sparse spanners may exist whereas routing in the spanner
can be difficult (in term of space memory and stretch of the routes).
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Abstract. The construction of a spanning tree is a fundamental task in distributed
systems which allows to resolve other tasks (i.e., routing, mutual exclusion, net-
work reset). In this paper, we are interested in the problem of constructing a
Breadth First Search (BFS) tree. Stabilization is a versatile technique which en-
sures that the system recover a correct behavior from an arbitrary global state
resulting from transient faults.

A fully polynomial algorithm has a round complexity in O(da) and a step com-
plexity in O(nb) where d and n are the diameter and the number of nodes of the
network and a and b are constants. We present the first fully polynomial stabiliz-
ing algorithm constructing a BFS tree under a distributed daemon. Moreover, as
far as we know, it is also the first fully polynomial stabilizing algorithm for span-
ning tree construction. Its round complexity is in O(d2) and its step complexity
is in O(n6).

To our knowledge, since in general the diameter of a network is much smaller
than the number of nodes (log(n) in average instead of n), this algorithm reaches
the best compromise of the literature between the complexities in terms of rounds
and in terms of steps.

Keywords: Distributed systems, Fault-tolerance, Stabilization, Spanning tree
construction.

1 Introduction

The construction of spanning trees is a fundamental problem in the field of distributed
systems. A spanning tree is a virtual structure which contains no cycle and intercon-
nects all the nodes of a network. In distributed systems, the construction of a span-
ning tree is commonly used to design algorithms resolving other distributed tasks, like
routing, token circulation or message broadcasting in a network. Spanning trees are
also used to obtain algorithms resolving a particular distributed problem with a better
time complexity compared to algorithms for the same problem which do not use this
structure. There are many different spanning tree construction problems guaranteeing
various properties, e.g., the construction of a depth first search (DFS) tree, a spanning
tree of minimum weight or a spanning tree of minimum diameter. A crucial class of
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spanning trees is the construction of a Breadth First Search (BFS) tree, which contains
shortest paths (in hops) from every node to the root of the tree. This structure is mainly
used in networks to quickly broadcast information from a source node. When a cost
is associated to communication links, this problem is known as the construction of a
Shortest Path tree.

Self-stabilization introduced first by Dijkstra in [16] and later publicized by several
books [17,23] is one of the most versatile techniques to handle transient faults aris-
ing in distributed systems. A distributed algorithm is self-stabilizing if starting from
any arbitrary global state (due to faults or attacks) the system is able to recover from
this catastrophic situation in finite time without external (e.g., human) intervention. As
self-stabilization makes no hypothesis about the nature or the extent of the faults, this
paradigm can also be used to handle dynamic changes on the network topology since
these modifications are seen as faults by the system. Another kind of stabilization was
introduced by Bui et al [4], called snap-stabilization. These algorithms have the abil-
ity to always guarantee a correct system behavior according to the specifications of the
problem to be solved, starting from any arbitrary global state.

Related work. Due to the importance of the construction of spanning trees, there are a
lot of works which study this task. A survey on several self-stabilizing tree constructions
can be found in [19]. Moreover, Table 1 summarizes the time complexities (round and
step complexities) of some self-stabilizing tree construction algorithms. The number of
steps required to compute a solution is an important criterion since it reflects the num-
ber of messages exchanged by an algorithm; especially for a self-stabilizing algorithm
for which each node has to send messages to its neighbors in order to inform them that
its state has been changed. However, few works give a step complexity analysis as can
be seen in Table 1, except for [22,11,10,13] and [9] which presented an algorithm im-
proving the step complexity to Θ(n2) steps for the construction of an arbitrary spanning
tree (with n the number of nodes of the network). Another essential criterion concerns
the round complexity of a distributed algorithm, that is to have a round complexity only
function of the network diameter (which is much smaller than the size of network for
most network topologies). Some of the algorithms cited in Table 1 are optimal in terms
of rounds for the construction of an arbitrary spanning tree or a BFS tree.

From the above discussion, we give a characterization for self-stabilizing distributed
algorithms having an efficient complexity to solve a task, called fully polynomial al-
gorithms. A fully polynomial algorithm has a round complexity in O(da) and a step
complexity in O(nb) where d and n are the diameter and the number of nodes of the
network and a and b are constants. As presented in Table 1, the existing self-stabilizing
spanning tree construction algorithms with a polynomial step complexity requires Ω(n)
rounds, or a round complexity of Θ(max(d2, n)) for the construction of a BFS tree. To
our knowledge, no fully polynomial stabilizing algorithm was given for the construction
of a spanning tree. Therefore, a legitimate question can be the following: Is it possible to
construct in a self-stabilizing manner a spanning tree with a polynomial step complexity
and a round complexity lower than Θ(max(d2, n))?

Contributions. In this paper, we present the first fully polynomial stabilizing algo-
rithm for the construction of a spanning tree with a round complexity lower than
Θ(max(d2, n)). Notice that the algorithm presented in [13] does not satisfy the
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Table 1. Distributed stabilizing algorithms for the construction of spanning trees. n, d and Δ are
respectively the number of nodes, the diameter and the maximum degree in the network, while
N is an upper bound of n and Max is the maximum height value in the tree of a node in the
initial configuration. The silent property for a self-stabilizing algorithm is to guarantee that when
a legitimate configuration is reached the values stored in the registers do not change anymore.

References Round complexity Step complexity Memory complexity Silent property

BFS

[2] O(N2) Undetermined O(log(n)) Yes
[18] O(d) Undetermined O(Δ log(n)) Yes
[1] O(n2) Undetermined O(log(n)) Yes
[20] Θ(d) O(n(Max + d)n)4 O(log(n)) Yes
[3] O(d) Undetermined O(log2(n)) Yes
[21] Ω(d2) Undetermined O(log(Δ)) No
[5] O(d) Undetermined O(log2(n)) Yes
[15] O(n) Undetermined O(log(n)) Yes
[13] Θ(d2 + n) O(Δn3) O(log(n)) No
This paper O(d2) O(n6) O(log(n)) Yes

Any
[6] O(n) Ω(2n)4 O(log(n)) Yes
[22] O(n) Θ(n2d) O(log(n)) Yes
[9] Θ(n) Θ(n2) O(log(n)) Yes

DFS
[7] O(dnΔ) Undetermined O(n log(Δ)) Yes
[11] O(n2) O(n3) O(log(n)) Yes
[10] O(n) O(n2) O(n log(n)) Yes
[13] O(n) O(Δn3) O(log(Δ + n)) No

definition of a fully polynomial algorithm since it has a round complexity which is
related with the network size. Our algorithm computes a BFS tree in O(d2) rounds with
a polynomial number of steps in O(n6) (the step complexity is O(mn4) and m << n2)
under a distributed daemon without any fairness assumptions, with d the diameter, m
the number of edges and n the number of nodes in the network. To our knowledge, since
in general the diameter of a network is much smaller than the number of nodes (log(n)
in average instead of n), this algorithm reaches the best compromise of the literature
between the complexities in terms of rounds and in terms of steps. Moreover, this BFS
tree construction is based on a snap-stabilizing algorithm given in this paper resolving
the Question-Answer problem, in which each node requests a permission (delivered
by a subset of network nodes) in order to perform a defined computation, which is of
independent interest.

Outline of the paper. The paper is organized as follows. In Section 2 we present the
model assumed in this paper. We then present a fully polynomial stabilizing algorithm to
construct a BFS tree in Section 3, based on a snap-stabilizing algorithm to the Question-
Answer problem given in Section 4. We describe in Section 5 how these stabilizing
algorithms are composed together and give an explanation about the time complexity
to solve the BFS tree problem. Finally, we conclude in the last section.1

1 This is detailed in the analysis given in [8].
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2 Model

Notations. We consider a network as an undirected connected graph G = (V ,E) where
V is a set of nodes (or processors) and E is the set of bidirectional asynchronous com-
munication links. We state that n is the size of G (|V | = n). We assume that the network
is rooted, i.e., among the processors, we distinguish a particular one, r, which is called
the root of the network. In the network, p and q are neighbors if and only if a communi-
cation link (p,q) exists (i.e., (p,q) ∈ E). Every processor p can distinguish all its links.
To simplify the presentation, we refer to a link (p,q) of a processor p by the label q. We
assume that the labels of p, stored in the set Neigp, are locally ordered by ≺p. We also
assume that Neigp is a constant input from the system. Δ is the maximum degree of
the network (i.e., the maximal value among the local degrees of the processors). A tree
T = (VT , ET ) is an acyclic connected subgraph such that VT ⊆ V and ET ⊆ E, where
the root of tree T is noted by root(T ). Moreover, any processor has a parent in a tree T
which is the neighbor on the path leading to root(T ). A processor p ∈ VT with at least
two neighbors in tree T is called an internal processor and a leaf processor otherwise.

Programs. In our model, protocols are semi-uniform, i.e., each processor executes the
same program except r. We consider the local shared memory model of computation. In
this model, the program of every processor consists in a set of variables and an ordered
finite set of actions inducing a priority. This priority follows the order of appearance
of the actions into the text of the protocol. A processor can write to its own variable
only, and read its own variables and that of its neighbors. Each action is constituted
as follows: < label > :: < guard > → < statement > . The guard of an action
in the program of p is a boolean expression involving variables of p and its neighbors.
The statement of an action of p updates one or more variables of p. An action can be
executed only if its guard is satisfied. The state of a processor is defined by the value
of its variables. The state of a system is the product of the states of all processors.
We will refer to the state of a processor and the system as a (local) state and (global)
configuration, respectively. We note C the set of all possible configuration of the system.
Let γ ∈ C and A an action of p (p ∈ V ). A is said to be enabled at p in γ if and only if
the guard of A is satisfied by p in γ. Processor p is said to be enabled in γ if and only if
at least one action is enabled at p in γ. When several actions are enabled simultaneously
at a processor p: only the priority enabled action can be activated.

Let a distributed protocol P be a collection of binary transition relations denoted
by �→, on C. A computation of a protocol P is a maximal sequence of configurations
e = (γ0,γ1,...,γi,γi+1,...) such that, ∀i ≥ 0, γi �→ γi+1 (called a step) if γi+1 exists, else
γi is a terminal configuration. Maximality means that the sequence is either finite (and
no action of P is enabled in the terminal configuration) or infinite. All computations
considered here are assumed to be maximal. E is the set of all possible computations
of P .

As we already said, each execution is decomposed into steps. Each step is shared into
three sequential phases atomically executed: (i) every processor evaluates its guards,
(ii) a daemon (also called scheduler) chooses some enabled processors, (iii) each cho-
sen processor executes its priority enabled action. When the three phases are done, the
next step begins.
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A daemon can be defined in terms of fairness and distributivity. In this paper, we
use the notion of unfairness: the unfair daemon can forever prevent a processor from
executing an action except if it is the only enabled processor. Concerning the distribu-
tivity, we assume that the daemon is distributed meaning that, at each step, if one or
more processors are enabled, then the daemon chooses at least one of these processors
to execute an action.

We consider that any processor p executed a disabling action in the computation
step γi �→ γi+1 if p was enabled in γi and not enabled in γi+1, but did not execute any
protocol action in γi �→ γi+1. The disabling action represents the following situation:
at least one neighbor of p changes its state in γi �→ γi+1, and this change effectively
made the guard of all actions of p false in γi+1.

To compute the time complexity, we use the definition of round. This definition cap-
tures the execution rate of the slowest processor in any computation. Given a computa-
tion e (e ∈ E), the first round of e (let us call it e′) is the minimal prefix of e containing
the execution of one action (an action of the protocol or a disabling action) of every
enabled processor from the initial configuration. Let e′′ be the suffix of e such that
e = e′e′′. The second round of e is the first round of e′′, and so on.

3 Spanning Tree Construction

In this section, we are interested in the problem of constructing a tree spanning all
the processors of the network. We consider there is a particular root processor, noted r,
which is used to construct a spanning tree. More precisely, we consider the construction
of a Breadth First Search (BFS) tree rooted at processor r. We can define a BFS tree as
in Definition 1.

Definition 1 (BFS Tree). Let G = (V,E) be a network and r a node called the root.
A graph T = (VT , ET ) of G is called a Breadth First Search tree if the following
conditions are satisfied:

1. VT = V and ET ⊆ E, and
2. T is a connected graph (i.e., there exists a path in T between any pair of nodes

x, y ∈ VT ) and |ET | = |V | − 1, and
3. For each node p ∈ VT , there exists no shorter path (in hops) between p and r in G

than the path between p and r in T .

We give a formal specification to the problem of constructing a BFS tree, stated in
Specification 1.

Specification 1 (Tree Construction). Let C the set of all possible configurations of the
system. An algorithm ABFS solving the problem of constructing a stabilizing BFS tree
satisfies the following conditions:

[TC1] Algorithm ABFS reaches a set of terminal configurations T ⊆ C in finite time,
and

[TC2] Every configuration γ ∈ T satisfies Definition 1.
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3.1 Breadth First Search Tree Algorithm

In this section, we present a snap-stabilizing algorithm, called BFS, to construct a BFS
tree. Algorithm BFS is a semi-uniform algorithm, this means that exactly one of the
processors, called the root and denoted r, is distinguished. This distinguished processor
is used in Algorithm BFS as the root of the spanning tree.

Algorithm BFS is a composition of two algorithms. Algorithm 1 is based on the
fact that a processor has to choose a neighbor with the minimal distance to the root as
its parent in the tree. It is well known that this common idea is enough to get a round
complexity in O(d), but does not ensure a step complexity in O(nb)2 So we allow a
processor to connect to a neighbor only if this neighbor is in the tree rooted at r and
in the shortest path to r. The detection of such neighbors is assigned to Algorithm 2
(see Section 4) which can be seen as an oracle by Algorithm 1. The second role of
Algorithm 1 is to remove the abnormal trees, i.e., those that are not rooted at r.

Variables. We define below the different variables used by Algorithm 1. For Algo-
rithm 1, we characterize r by the predicate Allowed (i.e., Allowed(p) ≡ (p = r),
∀p ∈ V ).

Shared variable. Each processor p ∈ V has a local shared variable p.Req which is
used by Algorithm 1 to monitor Algorithm 2 at p. This shared variable can take four
values: ASK,WAIT,REP, and OUT . By setting the shared variable p.Req to ASK ,
Algorithm 1 informs Algorithm 2 that a permission from the root of the tree that p
belongs to is needed at p. In this case, Algorithm 2 tries to send a request and to obtain
a permission for p if it is possible (i.e., if p belongs to an allowed tree and this request
has the highest priority during enough time). If a permission is delivered to processor
p, then Algorithm 2 sets this shared variable to REP in order to inform Algorithm 1.
Then, every neighbor of p can execute Algorithm 1 to join the tree that p belongs to.
When there is no neighbor of p to connect, then Algorithm 1 sets p.Req to OUT which
allows to Algorithm 1 to request another permission through Algorithm 2 if needed.

Local variables. Each processor p ∈ V maintains three local variables:

– p.P : it gives the parent of p in the tree it belongs to, p.P = ⊥ for processor p = r.
– p.L: it stores the level (or height) of p in the tree it belongs to, p.L = 0 for processor

p = r.
– p.S: it defines the status of processor p. It can take two values: E if p does not be-

long to a tree rooted to a processor x satisfying Predicate Allowed(x), C otherwise.
We have p.S = C for processor p = r.

Algorithm Description. As described before, we consider a forest F of trees and a
distinguished processor r which is the only processor authorized to deliver permissions
in the network (i.e., Allowed(p) ≡ (p = r) for every processor p ∈ V ). We can notice

2 Indeed, this approach is used in [20] to construct a BFS tree with a round complexity in Θ(d)
but with a step complexity in Ω(Max × n2), as demonstrated in [8]. However, Max is an
upper bound of n and can be arbitrary high with respect to n so the step complexity can be at
least exponential. Note that the gap between the lower and the upper bound (see Table 1) of
the step complexity lead us to think that the lower bound in [8] is not tight.
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that in a tree there is a strong constraint between the level of a processor and the level
of its parent in the tree: For any processor p = r, the level of p’s parent must be equal to
p’s level minus 1. Therefore, the root of a tree in forest F is either (i) processor r, or (ii)
a processor p = r such that p.L ≤ (p.P ).L (it is used to detect cycles in the network).
Since we want to construct a spanning tree, in case (ii) we say that processor p is an
abnormal root. Moreover, any processor p = r in a tree in F rooted at an abnormal root
belongs to an abnormal tree. Every processor p ∈ V in an abnormal tree can execute E-
action to change its Status to E (i.e., p.S = E) and to inform its descendants in the tree
(see the formal description of Algorithm 1). Note that to reduce the number of moves
executed by Algorithm BFS, a processor p ∈ V in an abnormal tree does not ask any
permission. Processor p waits until a neighbor q in the tree rooted at r authorizes p to
connect to q.

Algorithm 1. Spanning Tree Construction for any p ∈ V

Inputs: Neigp : set of (locally) ordered neighbors of p;
Shared variable: p.Req ∈ {ASK, WAIT, REP, OUT};
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Macros:
Child(p) = {q ∈ Neigp :: q.P = p ∧ q.L = p.L + 1}
Parent(p) = p.P
Height(p) = p.L
ChPar(p) = {q ∈ Neigp\Child(p) :: q.S = C}
MinChPar(p) = min{q ∈ ChPar(p) :: ∀t ∈ ChPar(p), q.L ≤ t.L}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Global Predicates:
GoodT (p) ≡ p.S �= E ∧ (p �= r ⇒ p.L = (p.P ).L + 1)
GoodL(p) ≡ (∀q ∈ Neigp :: |p.L − q.L| > 1 ⇒ (p.L < q.L ∨ q.S = E))
GP -REP (p) ≡ (∃q ∈ Neigp :: q.S = E ∨ q.L − p.L > 1)
Start(p) ≡ p.Req = OUT ∧ GP -REP (p)
End(p) ≡ p.Req = REP ∧ ¬GP -REP (p)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm for p = r:

Constants: p.S = C; p.P = ⊥; p.L = 0;
Predicates:
Allowed(p) ≡ true

Actions:
A-action :: Start(p) → p.Req := ASK;
O-action :: End(p) → p.Req := OUT ;

Algorithm for p �= r:
Variables: p.S ∈ {C, E}; p.P ∈ Neigp; p.L ∈ �;
Predicates:
Allowed(p) ≡ false
AbnormalTree(p) ≡ p.S = C ∧ ((p.P ).S = E ∨ (p.P ).L ≥ p.L)
Connect(p) ≡ (∃q ∈ Neigp :: q.Req = REP ∧ q = MinChPar(p)

∧(p.S = C ⇒ p.L − q.L > 1))

Actions:
E-action :: AbnormalTree(p) → p.S := E;
C-action :: Connect(p) → p.S := C;p.P := MinChPar(p); p.L := (p.P ).L + 1;

p.Req := OUT ;
A-action :: Start(p) → p.Req := ASK;
O-action :: End(p) → p.Req := OUT ;

When a BFS tree is constructed, the following property is verified at each pro-
cessor p ∈ V, p = r: The level of p’s parent is equal to p’s level minus 1 (i.e.,
(p = r) ⇒ (p.L = (p.P ).L + 1)). For processor r, we have the following constant
values: r has no parent and a level equal to zero (i.e., (p = r) ⇒ (p.P = ⊥∧p.L = 0)).
Moreover, according to Claim 3 of Definition 1 we must have that the deviation on the
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level values between any processor p ∈ V and its neighbors does not exceed one (i.e.,
∀q ∈ Neigp, |q.L− p.L| < 1). If one of these above constraints are not verified then a
BFS tree is not constructed. Therefore, we have either at least one abnormal tree in F
or there is a processor p ∈ V with a neighbor q such that q.L− p.L > 1 (i.e., Predicate
GP -REP (p) is satisfied at p). In these cases, processor p executes A-action to set the
shared variable p.Req to ASK in order to ask the permission to allow q to connect to
p, if p is not already asking a permission (i.e., we have p.Req = OUT ). To this end,
Algorithm 2 sends a request to the root of the tree.

Inputs for Algorithm 2. In order to allows Algorithm 2 to send a request the following
inputs are given at processor p: (i) Child(p) is the set of children of p in the tree (i.e.,
Child(p) ≡ {q ∈ Neigp : q.P = p}), (ii) Parent(p) is the parent of p in the tree (i.e.,
Parent(p) ≡ p.P ), (iii) Height(p) is the height in the tree of the requesting processor
p, and (iv) Allowed(p) is a predicate which notifies if p can deliver permissions (i.e.,
Allowed(p) ≡ (p = r)). Remind that Allowed(p) must be satisfied only at processor
p = r in Algorithm 2 to allow that eventually every processor joins the tree rooted at r,
since eventually the processors cannot join another tree in forest F .

In the case a permission is delivered at processor p (i.e., we have p.Req = REP ),
then each neighbor q of p can execute C-action to connect to p. However to construct a
BFS tree without an overcost on moves, processor q waits for until its neighbor x with
the smallest level in a normal tree gives its authorization to q to connect by executing
C-action (i.e., we have x.Req = REP ∧ x = MinChPar(q)). When processor q
executes C-action then it sets its variables p.P and p.L according to its new parent in
the tree, and it changes its status to Status C and its shared variable p.Req to OUT .
Finally, if there is no neighbor for which processor p needs a permission (i.e., Predicate
GP -REP (p) is no more satisfied at p), then p executes O-action to set its shared
variable p.Req to OUT . This informs Algorithm 2 that the permission can be removed
at p, then this allows p to ask a new permission later.

4 Question-Answer problem

In this section, we present a snap-stabilizing algorithm to implement the oracle used
by the BFS tree construction given in Section 3. Formally, this oracle has to solve the
Question-Answer problem which can be stated as following, a formal specification is
given in Specification 2.

Given a static forest F of trees in a network G = (V,E), a set of processors De ⊆ V
requesting a permission to make a defined computation and a set of processorsAP ⊂ V
authorized to deliver permissions. Each p ∈ AP is a root of a tree T ∈ F . The Question-
Answer problem is to deliver a permission (or acknowledgement) to a processor p in a
tree T ∈ F if and only if the root q of T is in AP .

Specification 2 (Question-Answer). Let G = (V,E) be a network and F the static
forest of trees in G. Let a tree T ∈ F and root(T ) the root of T . T is an allowed
tree if root(T ) ∈ AP and not allowed otherwise. A protocol P which resolves the
Question-Answer problem satisfies:
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[Liveness 1] During an infinite computation, if a processor has to send infinitely often
a request and it cannot send its request in an allowed tree, then there exist
an infinite number of requests which were sent.

[Liveness 2] For every computation suffix, if a processor in an allowed tree has sent a
request at time t, then there exist at least one processor in the same tree
which receives an acknowledgement to its own sent request at time t′ > t.

[Safety 1] Every processor which has sent a request receives at most one acknowl-
edgement causally related to its sent request.

[Safety 2] Every processor in a not allowed tree which has sent a request never re-
ceives an acknowledgement.

Remark that only semi-algorithms can satisfy Specification 2, that is no acknowledge-
ment is sent to processors in a not allowed tree, from Property [Safety 2] of Specifica-
tion 2.

4.1 Question-Answer Algorithm

In this section, we present a snap-stabilizing algorithm for the Question-Answer prob-
lem, a formal description is given by Algorithm 2. This is a non-uniform algorithm
because some rules are only executed by a subset of processors p ∈ V satisfying a local
Predicate Allowed(p) (i.e., p can deliver a permission or not).

Variables. We define below the different variables used by Algorithm 2.

Shared variable. Each processor p ∈ V has a local shared variable p.Req which al-
lows an external algorithm to require the Question-Answer algorithm at p. This shared
variable can take four values: ASK, WAIT, REP, and OUT . By setting the shared
variable p.Req to ASK in the external algorithm, p requests a permission through the
Question-Answer algorithm to its root of the tree. To this end, Question-Answer algo-
rithm tries to send a request to the root of the tree and sets the shared variable p.Req to
WAIT . At least the request of a requesting processor with the lowest level (or height) in
the tree will reach the root and then receive a permission (an acknowledgement). When
p receives an acknowledgement, it sets p.Req to REP . Finally, the external algorithm
must set p.Req to OUT to request another permission through Question-Answer algo-
rithm.

Local variables. Each processor p ∈ V maintains two local variables:

– p.Q: it defines the status of the Question-Answer algorithm at processor p. There
are three distinct status: R, W, and A. Status R notifies that p transmits a request to
the root of the tree, whereas Status W indicates that p waits for an acknowledge-
ment from the root for the transmitted request. The third status, Status A, indicates
that p has received an acknowledgement from the root.

– p.HQ: it stores at p the height of the processor which has sent the request.

Algorithm Description. To simplify the presentation of the algorithm, consider a for-
est of allowed trees (i.e., trees rooted at nodes p satisfying Predicate Allowed(p)) and
a fixed set of requests. In the following, we explain the way our algorithm handles re-
quests focusing on a single tree T of the forest, but this is the same for other trees since
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Algorithm 2. Question-Answer algorithm for any p ∈ V

Inputs: Neigp : set of (locally) ordered neighbors of p;
Child(p): set of neighbors considered as children of p in the tree;
Allowed(p): predicate which indicates if p is able to acknowledge to a request;
Parent(p): parent of p in the tree, equal to a processor q ∈ Neigp if ¬Allowed(p) or equal to ⊥ otherwise ;
Height(p): height of p in the tree;

Shared variable: p.Req ∈ {ASK, WAIT, REP, OUT};
Variables: p.Q ∈ {R, W, A}; p.HQ ∈ �;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Macros:
RC(p) = {q ∈ Child(p) :: q.Q ∈ {R, W}}
PrioRC(p) = {q ∈ RC(p) :: ∀t ∈ RC(p), q.HQ ≤ t.HQ}
Chp = min{q ∈ PrioRC(p)}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Global Predicates:
Transmit(p) ≡ p.Q = A ∧ (∀q ∈ Child(p) :: q.Q = W ⇒ q.HQ �= p.HQ)
Retransmit(p) ≡ p.Q = W ∧ (∃q ∈ Child(p) :: q.Q = R ∧ q.HQ = p.HQ)
Error(p) ≡ p.Q �=A∧[(p.Req �∈ {ASK, WAIT}∧p.HQ = Height(p)) ∨ (p.HQ �= Height(p)

∧(p.Req �= REP ⇒ (∀q ∈ Child(p) :: q.HQ = p.HQ ⇒ q.Q = A)))]
Request(p) ≡ p.Req = ASK ∧ (|PrioRC(p)| > 0 ⇒ Height(p) ≤ (Chp).HQ)
RequestT (p) ≡ p.Req �= REP

∧|PrioRC(p)| > 0 ∧ [((Chp).HQ ≥ p.HQ ⇒ Transmit(p)) ∨ Retransmit(p)]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Algorithm:
Predicates:
Wait(p) ≡ (Allowed(p) ∧ p.Q = R ∧ (∀q ∈ Child(p) :: q.HQ = p.HQ ⇒ q.Q = W ))∨

(¬Allowed(p) ∧ Parent(p).Q = R ∧ p.Q = R ∧ Parent(p).HQ = p.HQ
∧(∀q ∈ Child(p) :: q.HQ = p.HQ ⇒ q.Q = W ))

Answer(p) ≡ (Allowed(p) ∧ p.Q = W )∨
(¬Allowed(p) ∧ Parent(p).Q = A ∧ p.Q = W ∧ Parent(p).HQ = p.HQ)

Actions:
QE-action :: Error(p) → p.Q := A; p.HQ := Height(p);
QR-action :: Request(p) → p.Q := R; p.HQ := Height(p); p.Req = WAIT ;
QRC-action :: RequestT (p) → p.Q := R; p.HQ := (Chp).HQ;

if p.HQ < Height(p) ∧ p.Req = WAIT then p.Req := ASK; fi
QW -action :: Wait(p) → p.Q := W ;
QA-action :: Answer(p) → p.Q := A;

if p.Req = WAIT then p.Req := REP ; fi

the requests in each tree are handled independently. In the algorithm, the requests sent
by nodes of lowest height in the tree are handled in priority.

When a processor p has a local request requested by the external algorithm (i.e.,
p.Req = ASK), p can execute QR-action to set its variables p.Req, p.Q, and p.HQ
to WAIT,R, and to Height(p) respectively, in order to send its request to the root of
the tree it belongs to. The external algorithm is informed that the request is sent since
p.Req = WAIT . Otherwise, an internal processor p in the tree with no local request
(i.e., p.Req = REP ) could have to transmit requests from its children (the request
from a requesting descendant of lowest height first) in the following cases:

– a child of p is sending a request with a highest priority (i.e., (Chp).HQ < p.HQ);
– the acknowledgement received for the transmitted request is no more needed at

p (all its children waiting it have transfered the acknowledgment, see Predicate
Transmit(p));

– p is waiting for an acknowledgement for a request and a new request is transmitted
by a child of p with the same height (see Predicate Retransmit(p)).

In all these above cases, p executes QRC-action to set p.Q to R and p.HQ to the
lowest height among requesting descendant of p (i.e., p.HQ = (Chp).HQ).
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A processor p waits for an acknowledgement for a current request when its parent has
transmitted the request (see Predicate Wait(p)). Moreover, all p’s children transmitting
the same request (i.e., with the same height) have to wait for an acknowledgement.
Hence, Status W allows to remove bad requests due to an incorrect initial configuration
and to synchronize request transmissions of same priority. In this case, p sets its variable
p.Q to W using QW -action.

When the root root(T ) of the tree T has no local request and is waiting for an ac-
knowledgement for requesting descendant(s) (see Predicate Answer), then it executes
QA-action to set its variable root(T ).Q to A. This permission is propagated down in
the tree to the requesting descendant(s) following the path(s) used to transmit the re-
quest. Finally, a processor p waiting for an acknowledgement to a local request (i.e.,
p.Q = W and p.Req = WAIT ) executes QA-action to receive the acknowledge-
ment and sets the shared variable p.Req to REP to notify to the external algorithm of
the delivered permission. Note that as soon as a received acknowledgement is no more
needed at a processor p (i.e., p.Req is setted to OUT by the external algorithm), then
another request transmitted by a child of p can be transmitted by p up in the tree.

However, a processor must be able to detect wrong requests due to an incorrect initial
configuration. A request treated by a processor p is a wrong request in the following
cases (see Predicate Error(p)):

– p is sending a local request whereas it has no local request (i.e., p.Q = A∧p.Req ∈
{ASK,WAIT } and p.HQ = Height(p));

– p is transmitting a request from a child, however no child of p has a request with
the same height (i.e., p.Q = A∧ p.HQ = Height(p)∧ (∀q ∈ Child(p), q.HQ =
p.HQ ⇒ q.Q = A)).

When a processor p detects a wrong request, then p executes QE-action. This action
has the highest priority among the actions at p, and it reinitiates p’s state like if an
acknowledgement to a local request was received, i.e., to set p.Q to A and p.HQ to
Height(p) (without changing the state of the shared variable p.Req).

A questioning mechanism close to the mechanism presented here was used in [12]
to design a snap-stabilizing solution to the problem of Propagation of Information with
Feedback (PIF) with a round complexity in O(n) and a step complexity in O(Δn3).
However, solving the PIF problem involves a strong synchronization in the network
to insure that all the nodes in the network belong to the same broadcast tree before
to initiate the feedback phase. Indeed, each time a node is added to the broadcast tree
the questioning mechanism is reset leading to a O(n) round complexity. Contrary to
this questioning mechanism, here our mechanism needs a weakest synchronization to
resolve the Question-Answer problem. Let De the set of requesting nodes and hmin the
height of closest requesting nodes from the root in T . The first requests acknowledged
by root(T ) are the requests from nodes at height hmin. Then, if the set of requests is
static then the requests at height hmin + 1 are acknowledged by root(T ) (if any) and
so on. In fact, only a synchronization for the requests of requesting nodes at height
hmin (whose requests are of highest priority) in tree T is required leading to a round
complexity function of the height of T . The transmission of a request requires O(n)
steps, however this transmission can be interrupted only by a requesting node with the
same height in T , that is at most |De| times.
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The following lemma summarizes the above discussion:

Lemma 1. Let T an allowed tree and hmin the height of closest requesting nodes in
De from the root in T , in O(hmin) rounds and O(n|De|) steps at least one requesting
node in De receive an acknowledgement from root(T ) to its request.

5 Composition and Complexities

Algorithm BFS is obtained by composition of Algorithm 2 and Algorithm 1. These two
algorithms are composed together at each processor p ∈ V with a conditional composi-
tion (first introduced in [14]): Algorithm 1 ◦ |Cond(p) Algorithm 2, where each guard
g of the actions of Algorithm 2 at each processor p ∈ V has the form Cond(p)∧ g with
Predicate Cond(p) defined below (see Algorithm 1 for the description of predicates):
Cond(p) ≡ GoodT (p) ∧GoodL(p).

Using this composition, each processor p ∈ V can execute Algorithm 2: (i) to trans-
mit requests and acknowledgements only if the tree containing p is locally correct (i.e.,
Predicate GoodT (p) is satisfied), and (ii) to ask a permission if needed (i.e., Predicate
GoodL(p) is satisfied). Indeed, actions in Algorithm 2 can be locked to avoid proces-
sors belonging to a tree not rooted at r (abnormal tree) to transmit useless requests since
no acknowledgement can be received (only r can deliver acknowledgements). There-
fore, processors in abnormal trees can only execute actions in Algorithm 1 to hook on to
another tree in the forest via a neighbor with a permission (acknowledgement delivered
by Algorithm 2). Moreover, actions of Algorithm 2 and Algorithm 1 can be enabled at
p simultaneously. In this case, Algorithm 2 is executed before Algorithm 1 at p.

Algorithm BFS uses Algorithm 2 which can be viewed as a synchronizer allowing
the BFS tree construction of T rooted at r layer by layer, the addition of any new layer
of processors depending of a permission request. The requesting processors closest to
r at height k in T receive an acknowledgement to their request from r in O(k) rounds
(Lemma 1) which allows their neighbors to hook on to T . The same argument holds for
the addition of each new layer of T . Moreover, the height of a BFS tree is lower than or
equal to the network diameter. Therefore, summing up the round complexity associated
to each layer we obtain a round complexity O(d2) to construct a BFS tree, with d the
network diameter. In another hand, the mechanism we use for deleting the abnormal
trees is obviously in O(n) rounds, since the height of such a tree can be in O(n). But
any processor in an abnormal tree far from the root of this tree will become the neighbor
of at least a processor of the normal BFS tree in O(d2) rounds and will hook to it even
if the abnormal tree is not yet deleted. So the global round complexity is still O(d2) as
stated in the following lemma.

Lemma 2. From any configuration, in O(d2) rounds Algorithm BFS reaches a con-
figuration γ ∈ C satisfying Definition 1, with d the diameter of the network.

We discuss above the ideas leading to the round complexity of AlgorithmBFS. We give
below the main arguments allowing to show that Algorithm BFS has a step complexity
in O(mn4). We define a topological change as follows: Given a forest F of trees in
a configuration γ ∈ C, a topological change in F is obtained by the execution of E-
action or C-action at a processor p ∈ V in step γ �→ γ′. We first consider the step
complexity of Algorithm 1. A processor can hook on to several abnormal trees until
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belonging to the tree rooted at r. First of all, we establish the number of connections to
an abnormal tree that any processor p ∈ V can make until belonging to the tree rooted
at r. In the reminder, the tree rooted at r is noted Tree(r) and root(T ) describes the
root node of a tree T .

Proposition 1. Every processor p ∈ V is hooked on to the neighbor q such that ∀s ∈
Neigp, q.L ≤ s.L.

Proof. According to the formal description of Algorithm 1, a processor hooks on to
a neighbor using C-action. Assume, by the contradiction, that there is a processor
p ∈ V such that ∃s ∈ Neigp, (p.P ).L > s.L. We must consider two cases: s is
in an abnormal tree or not. If s is in an abnormal tree then either s.S = E then s ∈
MinChPar(p) ⇒ ¬Connect(p) a contradiction, or s.S = C then by Property [Safety
2] of Specification 2 s never receives an acknowledgement and we have that s.Req =
REP ⇒ ¬Connect(p), otherwise C-action is enabled at p, a contradiction. If s is in
a normal tree then by Property [Liveness 2] of Specification 2 we have that s.Req =
REP and C-action is enabled at p, a contradiction. ��

Lemma 3. Let any abnormal tree T ∈ F and the set of processors B = {p ∈ V : p ∈
T ∧ (∃q ∈ Neigp :: q ∈ T )}. In any execution, only processors in B can hook on to T .

Proof. Consider any abnormal tree T ∈ F in configuration γ ∈ C. According to the
formal description of Algorithm 1, a processor p must execute C-action to hook on to
a tree, i.e., there is a neighbor q such that q.Req = REP . Suppose that every processor
q ∈ B executes C-action and they are hooked on to T in configuration γk. Note that
after executing C-action, we have q.Req = OUT at every processor q ∈ B. Assume,
by the contradiction, that there is a processor p ∈ T in configuration γk which hooks
on to T in step γk �→ γk+j , j > 0. This implies that p hooks on to a neighbor q ∈ B
(by definition of B) such that q.Req = REP , a contradiction by Property [Safety 2] of
Specification 2 because q cannot receive an acknowledgement from root(T ) since T is
an abnormal tree. ��

Proposition 2. Let a processor p ∈ V which hooks on to a tree T in configuration
γi ∈ C. If another processor q ∈ V hooks on to T by p in γi+j , j > 0, then T is a
normal tree.

Proof. According to Lemma 3, the expansion of an abnormal tree T ′ is limited at dis-
tance one from T ′. After p hooks on to T , to allow the processor q to hook on to T by
p then p receives an acknowledgement from root(T ). Therefore, T is a normal tree by
Specification 2. ��
Lemma 4. Let any abnormal tree T ∈ F . A processor p ∈ V can hook on to T at most
once by the same neighbor q ∈ T .

Proof. Assume, by the contradiction, that there is a configuration γk ∈ C such that
there is a processor p ∈ V which hooks on to T by the same neighbor q ∈ T a second
time. To hook on to T , p must execute C-action, i.e., there is a neighbor x ∈ T of p
such that x.S = C and x.Req = REP . According to Proposition 1, p hooks on to
the neighbor x ∈ V such that x.S = C ∧ (∀s ∈ Neigp, x.L ≤ s.L). Suppose that
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p hooks on to T by the neighbor q a first time in step γi−1 �→ γi ∈ C, then p hooks
on to another neighbor s of p, s = q, in step γj−1 �→ γj ∈ C, j > i. Now, we must
consider several cases in configuration γk, i < j < k. If p is hooked on to s in γj

because q.S = E and s.Req = REP in γi then since q ∈ T we have q.S = E in γk

and q ∈ MinChPar(p) ⇒ ¬Connect(p), a contradiction. Otherwise s.S = q.S = C
and p is hooked on to s in γj , i < j < k, because s.L < q.L and s.Req = REP .
When p hooks on to q the first time in step γi−1 �→ γi, we have s.S = E or s.L > q.L.
Since we have s.S = C ∧ s.L < q.L ∧ s.Req = REP and p hooks on to s in step
γj−1 �→ γj , this implies that s is in a normal tree in γj according to Proposition 2.
Thus, we have s.S = C ∧ s.L < q.L in γk and q ∈ MinChPar(p) ⇒ ¬Connect(p),
a contradiction. ��

Lemma 5. In any execution, every processor p ∈ V \{r} produces at most 2Δ topolog-
ical changes in forest F while p ∈ Tree(r), with Δ the maximum degree of a processor
in the network.

Proof. To hook on to a tree, a processor p ∈ V must execute C-action. According to
Lemma 4, p cannot hook on to an abnormal tree T ∈ F twice by the same neighbor q
of p. Since a processor can have at most Δ neighbors, p can hook on at most Δ times
to an abnormal tree. Observe that E-action has a higher priority than C-action and
E-action can be executed between two executions of C-action, i.e., at most Δ times
while p ∈ Tree(r). Therefore, by the definition of a topological change the lemma
follows. ��

After giving a bound for the number of connections to abnormal trees, we provide below
an upper bound for the number of connections that a processor can make in the normal
tree.

Remark 1. For every processor p ∈ Tree(r), E-action is disabled at p.

Lemma 6. In any execution, every processor p ∈ V \{r} produces at most n topolog-
ical changes in forest F while p ∈ Tree(r), with n the number of processors in the
network.

Proof. Observe that for every processor p ∈ Tree(r) we have p.S = C. Moreover, by
Remark 1, for every processor p ∈ Tree(r), E-action is disabled. So, by definition the
only topological change in F that a processor p ∈ Tree(r) can produce is to execute
C-action in order to reduce its level in Tree(r). Thus, by Proposition 1 each execution
of C-action by a processor p ∈ Tree(r) in step γi �→ γi+1 implies that p hooks on
to the neighbor with the lowest level in γi+1 and p.L in γi is higher than p.L in γi+1.
Therefore, since the size of Tree(r) is bounded by n then any processor p can hook on
to at most n− 1 processors by executing C-action while p ∈ Tree(r). ��

From the above lemmas, each processor can hook on to at most 2Δ + n times until
reaching its correct position in the final BFS tree. Thus, there are at most 2Δn + n2

topological changes in the forest until a BFS tree is reached. Moreover, each topologi-
cal change yields at most Δ requests in the network, so to construct a BFS tree at most
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2Δm+mn requests are generated by Algorithm 1. We now consider the step complex-
ity of Algorithm 2. According to Lemma 1, a processor receives an acknowledgement
with Algorithm 2 in O(n2) steps (since |De| ≤ n). So, in O(n3) steps every requesting
processor receives an acknowledgement (there are at most n requests in the network).

Given an upper bound on the number of requests generated by Algorithm 1, we have
to multiply this amount by the number of steps needed by Algorithm 2 to acknowl-
edge these requests in order to obtain an upper bound to the total step complexity of
Algorithm BFS. This is stated by the following lemma.

Lemma 7. From any configuration, O(Δmn3 + mn4) steps are needed by Algorithm
BFS to reach a terminal configuration.

Notice that in one hand using a questioning mechanism allows us to save steps by avoid-
ing the transmission of useless requests, but in the other hand we obtain a higher round
complexity (O(d2) instead of O(d) with standard algorithms for BFS trees) due to the
fact that permissions must be delivered before the add of new nodes to the constructed
tree. Moreover, the step complexity established in Lemma 7 is not related with any
initial value of a variable and it holds under any fairness assumptions.

Lemma 7 implies that Algorithm BFS always satisfies Property [TC1] of Specifica-
tion 1 and is silent. We now consider any terminal configuration. Since the configuration
is terminal, no action is enabled in Algorithm BFS. It is trivial to verify by induction
on the distance of a processor to r that every processor is in Tree(r) and at the right
level as stated in the following lemma.

Lemma 8. Every terminal configuration reached by Algorithm BFS satisfies
Definition 1.

According to Lemmas 7 and 8, Algorithm BFS always satisfies respectively Properties
[TC1] and [TC2] of Specification 1. Therefore, we can state the following theorem.

Theorem 1. Algorithm BFS is a silent snap-stabilizing algorithm to construct a BFS
tree.

6 Conclusion
In this paper a silent snap-stabilizing algorithm resolving the Question-Answer problem
has been given, in which each node requests a permission (delivered by a subset of
network nodes) in order to perform a defined computation. Based on this algorithm,
the first fully polynomial stabilizing algorithm for the construction of a spanning tree
has been presented. A Breadth First Search tree is constructed in O(d2) rounds and in
O(n6) steps, with d the diameter and n the number of nodes in the network. Moreover,
a distributed daemon without any fairness assumptions is considered.

One crucial open question is the following: Is it possible to design a fully polynomial
self-stabilizing algorithm to construct a spanning tree in O(d) rounds with a polynomial
step complexity?
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Abstract. We consider the consensus problem in an n-process shared-
memory distributed system when processes are anonymous, i.e., they
have no identities and are programmed identically.

We present Janus, a new anonymous consensus algorithm that reaches
decision after O(

√
n) writes in every solo execution. The set of values that

can be proposed is unbounded and the algorithm tolerates an arbitrary
number of crash failures. The algorithm relies on an anonymous eventual
leader election mechanism. Furthermore, during solo executions in which
a non-faulty process is elected since the beginning, the individual step
complexity of Janus is O(n), matching a recent lower bound by Aspnes
and Ellen (SPAA 2011).

The algorithm is then extended to the case of homonymous system
in which c, 1 ≤ c ≤ n, identities are available. In every solo execution,
the modified algorithm achieves O(

√
n − c + 1+ log c

log log c
) individual write

complexity and O(n − c + log c
log log c

) individual step complexity.

Keywords: Anonymity, asynchronous shared memory, consensus,
failure detectors, homonym processes, indulgent algorithms.

1 Introduction

In a typical distributed system, processes are eponymous, i.e., they have unique
identities. On the other hand, in anonymous systems, processes have no identity
and are programmed identically. When provided with the same input, processes
in such systems are indistinguishable. Anonymity adds a new, challenging, diffi-
culty to distributed computing.

From a practical point of view, anonymity is sometimes unavoidable. For
example, consider a system composed of many tiny nodes, e.g., sensors networks.
Sensors nodes might have limited storage and computational capability, and
might not have been provided with unique identifiers [2]. Some other systems,
like peer-to-peer file sharing applications [13], might require users to remain
anonymous as a prerequisite to ensure privacy. See [19] for more details regarding
anonymous computing and privacy.
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Recently, several papers [4,5,14,22,24,29] have addressed the question of the
computational power of anonymous systems, with an emphasis on the consensus
problem. In particular, Aspnes and Ellen [4] have shown that, when the number
of proposed values is unbounded, the solo step complexity of consensus is Θ(n)
in an n-process system. This paper presents a new, efficient, consensus algorithm
for anonymous system.

The consensus problem. Consensus is a fundamental problem in fault-tolerant
distributed computing. Informally, n processes, each starting with a private
value, are required to agree on one value chosen among their initial values.
For shared memory systems, it is well known that asynchronous fault tolerant
consensus is impossible as soon as at least one process may fail by crashing [28].
Trivially, consensus is thus impossible in anonymous, asynchronous and failure-
prone shared memory. The same impossibility holds for non-anonymous message
passing asynchronous systems [20].

Since the publication of this result, several approaches have been identified
to overcome this impossibility, including randomization (e.g., [6]), strengthening
the model with timing assumptions (e.g., [18]) or failure detectors (e.g., [12]) and
strong synchronization primitives [25]. Similarly, in anonymous systems, random-
ization [10], failure detectors [7,14], as well as additional synchrony assumptions
[16] have been investigated to solve consensus.

A failure detector is a distributed device which provides processes with possi-
bly unreliable information about failures. Unreliable failure detectors, and more
generally system assumptions which are not guaranteed to always hold, have
motivated the study of indulgent algorithms [23]. Informally, an algorithm is
indulgent if it is always safe, i.e., it never violates the safety part of the problem
it is supposed to solve, and converges to a decision when the failure detector
matches its eventual property. In this line of research, the key question is deter-
mining how fast indulgent algorithms converge when the eventual property of
the failure detector is satisfied [17].

Contributions of the paper. This paper investigates the consensus problems in
an anonymous, crash prone and asynchronous shared memory systems. In par-
ticular, we are interested in the individual write step complexity of anonymous
consensus. Typically, shared memory systems use caching techniques to improve
performances. When a write is performed, the system has to ensure that every
cached copy is updated, which is costly. Differently, repeatedly reading a shared
location may be a local operation. The paper presents the following two main
results:

– The first result is a consensus algorithm. The set of input values that pro-
cesses might propose is unbounded. The algorithm relies on a failure detector
of the class AΩ [8] and tolerates up to n − 1 process crashes. The “anony-
mous leader” class AΩ is the anonymous counterpart of the class Ω, which
is the weakest failure detector for solving consensus [11] in the eponymous
settings. Informally, when queried, a failure detector of the class AΩ returns
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a boolean. Eventually, each query, except the queries issued by some non-
faulty process, returns false. If no failure detector is available, we note that
our algorithm can easily be made obstruction-free [26] by simply removing
failure detector invocations. The algorithm is write-efficient in the follow-
ing sense : a process executing solo decides after performing O(

√
n) write

operations and O(n) shared memory operations in total.
– The second result is a generalization of our consensus algorithm to the case

of homonymous systems recently introduced by Delporte-Gallet et al [15], in
which a small number c, 1 ≤ c ≤ n of identities is available. The system is
no longer totally anonymous since processes have identities. However, when
the number of ids is smaller than n, several processes may share the same id.
The generalized algorithm achieves O(

√
n− c + 1 + log c/ log log c) individ-

ual write complexity and O(n − c + log c/ log log c) step complexity in solo
execution. As in the case of anonymous systems, the algorithm relies on a
failure detector of the class AΩ and the set of values that can be proposed
is unbounded.

Roadmap. The paper is composed of 6 sections. Section 2 describes the anony-
mous shared memory model and the failure detector class AΩ. An anonymous
consensus is presented in Section 3. Its generalization to the case of systems
with homonym processes follows (Section 4). Section 5 surveys related work and
Section 6 concludes the paper.

2 System Model

Anonymous shared memory model. We consider a system Π of n ≥ 2 determin-
istic processes. Processes are anonymous: they do not have identifiers, and they
execute identical algorithms. The total number of processes n is however known
by the processes. The system is asynchronous, in the sense that each process
runs at its own speed, independently of the other processes.

Processes communicate with each other by reading and writing atomic shared
registers (they are linearizable [27]). Registers are multi-writer and multi-reader:
every register can be written in, or read from, by every process. In the pseudo-
code we use to describe our algorithm, shared objects are denoted by upper-case
letters, while lower-case identifiers are reserved for processes’ local variables.

Failures and failure detectors. Processes may crash. A process is correct in an
execution if it never crashes in this execution; otherwise it is faulty. We make no
assumption on the number of crashes that may occur during a run.

As noted in the Introduction, a failure detector is a distributed oracle that pro-
vides processes with possibly unreliable information about failures [12]. Several
classes of failure detectors suited to anonymous systems have been defined [8].
The failure detector we consider is anonymous Ω, denoted hereafter AΩ. Each
process is provided with a primitive AΩ.query(), which returns true or false .



178 Z. Bouzid, P. Sutra, and C. Travers

The following property, termed eventual leadership is ensured: there exists some
correct process p0 such that eventually every AΩ.query() always returns true at
p0, and false at every other process.

Consensus. Consensus is a distributed task which consists in a single operation
propose(v) that takes as input a value v in some (possibly unbounded) set V,
and returns a value v′ in V. When a process p invokes propose(v), we say that p
proposes v. Similarly, when propose(v) returns a value v, we say that p decides v.
Consensus requires that in every run: (Agreement) two processes cannot decide
different values; (Validity) if a process decides some value v, then v was proposed
before; and (Termination) every correct process eventually decides.

Time complexity. Consider an algorithm A that solves consensus in an asyn-
chronous system equipped with an eventual failure detector such as AΩ. In
every execution, a correct leader process eventually emerges, but there is no
bound on the time at which a correct process is elected. Obviously, the worst-
case number of reads, or writes, performed by a process is unbounded. Thus,
we measure the time complexity of asynchronous consensus algorithms in solo
executions. Specifically, the individual write complexity (respectively the individ-
ual step complexity) is the worst-case number of write operations (respectively
the total number of read aand write operation) that occur in solo executions in
which only one process participates and this process is the leader output by the
failure detector from the beginning of the execution.

3 The Janus1 Algorithm

3.1 Description of Janus

The Janus algorithm solves consensus among n asynchronous and anonymous
processes. Its pseudo-code is depicted in Figure 1. Janus relies on a failure de-
tector of the class AΩ and tolerates up to n − 1 process failures. No knowledge
of the set of values that can be proposed is required. In particular, this set might
be unbounded.

A process p initiates its algorithm by invoking propose(v), where v is the input
value of p. Process p then launches two tasks T1 and T2 that run in parallel (line
1). In task T2, p monitors a shared register decision D, which is initialized to
⊥2. If p reads a non-⊥ value d in D, p decides that value (line 21) and terminates.

In task T1, the execution proceeds in asynchronous rounds. Process p main-
tains an estimate (stored in the local variable est), which is the value it currently

1 In Roman religion and mythology, Janus is the god of gates. Most often he is depicted
as having two heads, facing opposite directions (Wikipedia). The choice of the name
is explained by the fact that each process in our algorithm has to look in two
directions: forward to check if another process has already started a new round, and
back to check if another process concurrently executed the K past rounds.

2 ⊥ is a special value that is never proposed by the processes.
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shared variables

∀r > 0 : T [r] is a multivalued MWMR atomic register, initially ⊥
∀r > 0 : C[r] is a binary MWMR atomic register, initially false

D is a multivalued MWMR atomic register, initially ⊥

propose(v)

(1) est ← v; rnd ← 0; start T1; start T2;

task T1 :

(2) while (true) do

(3) if (AΩ-query()) then

(4) rnd ← rnd + 1

% Look for an estimate with higher priority %

(5) if (T [rnd] �= ⊥) then let r ← min{r′ > rnd | T [r′] = ⊥} ;

(6) est ← T [r − 1]; rnd ← r − 1

(7) else T [rnd] ← est

(8) end if

% Look for conflicting estimates in the last K rounds %

(9) for each i : 0 ≤ i < min(rnd,K) do

(10) if (T [rnd − i] �= est) then C[rnd − i] ← true end if

(11) end for

% Check if no conflict occurs in the last K rounds %

(12) can decide ← true;

(13) if (rnd ≥ K) then

(14) for each i : 0 ≤ i < K do

(15) if (C[rnd − i] = true) ∨ (T [rnd − i] �= est) then can decide ← false endif

(16) end for end if

(17) if (can decide) then D ← est endif

(18) end if

(19) end while

task T2 :

(20) repeat d ← D until d �= ⊥
(21) stop T1; decide(d)

Fig. 1. The Janus algorithm, K = 2
⌈√

n
⌉

+ 1

favors. During each round to which it participates, p tries to commit its esti-
mate by writing it in the decision register D (line 17). The algorithm ensures
that (1) no two distinct values are committed and (2) at least one process even-
tually commits its estimate. To that end, each round r is associated with two
multi-writer/multi-reader shared registers: the value register T [r] and the con-
flict register C[r]. Intuitively, T [r] stores a value that some process is willing
to commit in round r, while C[r], when set to true, indicates that two or more
processes try to commit distinct values in round r.

A process p entering round r first checks whether a value has already been
written in T [r] (line 5). If this happens, p immediately enters round r′ ≥ r, where
r′ is the greatest round for which a value has been written to the associated
register T [r′], thus possibly skipping rounds r, . . . , r′ − 1. In addition, p adopts
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the value currently stored in T [r′] as its new estimate. Otherwise, i.e., when T [r]
equals ⊥, p writes its estimate in T [r].

Writing/reading value v to/from the value register T [r] is however not suffi-
cient to allow this value to be committed. Several processes may be performing
write operations concurrently on T [r] and thus, assuming that v is committed,
a process entering round r later might adopt a value v′ = v and commits this
value. Therefore, before committing its estimate v (that is, writing v in D, line
17), process p first checks that no conflicts have been detected in the last K
rounds and that the registers T [r], T [r − 1], . . . , T [r − K + 1] still store v (lines
14–16). For large enough values of K, these two conditions prevent any other
value different from v from being written in T [r]. We show in the proof (Lemma
6) that for K ≥ �2√n� + 1 this property is ensured.

Conflicts are detected at lines 9–11. A process p with estimate v executing
round r performs a read operation in every register T [r′], r − K + 1 ≤ r′ ≤ r.
Whenever a value different from v is returned, the corresponding conflict register
C[r′] is updated to true.

Finally, the progress of Janus relies on the underlying failure detector AΩ. A
process is allowed to enter round r only if it considers itself as a leader. In more
details, before entering round r, each process queries its local failure detector
module (line 3). Only if this query returns true, the process starts round r.
Eventually, a unique non-faulty process is elected by the failure detector. This
process eventually executes rounds alone, and eventually decides (See Lemma
3). When a failure detector is not available, we note that Janus is easily made
obstruction-free by removing the query to the failure detector at line 3.

3.2 Proof of the Janus Algorithm

Fix some execution of the algorithm. Since the shared objects (i.e. the registers)
are atomic the execution (as an interleaved sequence of reads and writes oper-
ation of the processes) is linearizable [27]. As a consequence, we may consider
σ a linearization of the reads and writes operations. We shall say that an op-
eration in σ on some register occurs at time τ if τ is the linearization point of
that operation. As usual, we shall note varp the local variable var of process p.
The execution of the (asynchronous) round r by p is the interval during which
rndp = r. More precisely, it is the sequence of steps applied by p when rndp = r.
Missing proofs of Lemmata 1 and 1 can be found in the full version [9].

A process, executing round r, writes its estimate v in T [r], provided it observes
that no value has been previously written in T [r] (line 7). The following Lemma
implies that if this occurs, v has been previously written to T [1], . . . , T [r − 1].

Lemma 1. Let r > 1. Suppose that a write operation op with parameter v is
performed on T [r]. Then a write operation op′ of value v to T [r−1] occurs before
op.

It then follows from the previous Lemma that algorithm 1 satisfies the validity
requirement of consensus.
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Lemma 2 (Validity). Every decided value is a proposed value.

Termination then followed from the eventual leadership property of the failure
detector AΩ.

Lemma 3 (Termination). Every correct process eventually decides.

Proof. Assume for contradiction that some correct process q never decides. As,
(1) only non-⊥ values can be written in D, and (2) q reads D infinitely many
times and never decides, no value v = ⊥ is written in D. As a process may
decide only if it reads a value different from ⊥ in D, this implies that no process
decides.

By the eventual leadership property of the failure detector class AΩ, there is
a correct process p and a time τ such that each AΩ-query() performed after
τ returns true if and only if the invoking process is p. At time τ , let R be the
largest round such that T [R − 1] = ⊥. Clearly, p is the only process that can
execute rounds R+1, R+2, . . . (line 3). Moreover by Lemma 1, for all i > 0, we
have that T [R + i] = ⊥.

As p is correct, it never decides, and for all i > 0 we have that T [R+ i] = ⊥, p
eventually executes rounds R+1, R+2, . . . As p is the only process that executes
those rounds, it follows from the code (lines 5–7) that p writes in each register
T [R + i] for all i > 0. Besides, it is not difficult to observe that the same value,
say v, is written by p in each register T [R + i].

As no process except p executes rounds R + i, i > 0, no process except p
performs write operations on registers T [R+ i], i > 0. Therefore it holds forever
that C[R+ i] = false and T [R+ i] = v, once p has written v in T [R+ i]. Consider
the execution of round R+K by p. Process p first writes v in T [R+K] (line 7).
After this occurs, we have C[R+i] = false and T [R+i] = v for each i, 0 < i ≤ K.
Hence, can decidep = true after the execution of the for each loop at lines 14–
16. We conclude that p writes v in D (line 17), and decides by the code of task
T2: contradiction.

Proof of agreement. We divide the execution in epochs as follows. Epoch ei is
an interval that starts with the first write (according to the linearization σ) to
register T [i] and ends immediately before the first write (if any) performed to
register T [i + 1]. Given a read, or write, operation op, we say that op occurs in
epoch ei, or equivalently, that op is performed in ei, if op is linearized in the
interval ei. Clearly, if a write to T [j] occurs in ei, then j ≤ i. The next lemma
directly follows from the code of Janus (lines 5 and 7).

Lemma 4. Suppose that p performs a write operation op on T [i]. The last op-
eration preceding op performed by p is a read on T [i], and the value returned by
that operation is ⊥.

Suppose that process p performs a write operation on register T [j] in epoch
ei. When this operation terminates, a value has already been written in T [i] by
definition of ei. Lemma 4 then implies that the next write operation by p (if any)
is performed on some register T [j′] such that j′ > i. Lemma 5 bellow captures
precisely this observation.
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Lemma 5. Denote by op, op′ two write operations performed by the same process
p. Suppose that: (1) op occurs in ei, (2) op′ is a write on register T [j] with j = i,
and (3) op precedes op′. Then, j > i.

Proof. By Lemma 4, p reads from T [j] immediately before executing op′, and
this read operation returns ⊥. Let op′′ denote that operation. It follows from
the third condition of the Lemma that op′′ occurs after op, which in turn occurs
after some non-⊥ value has been written in T [i′] for each i′ ≤ i (By definition
of ei, and the fact op occurs in ei.). Since the read operation op′′ performed on
T [j] returns ⊥, we conclude that j > i.

Consider a round number r, and a value v. We say that value v is committed
at round r if there exists a process p that writes v in D (line 17) while it is
executing round r. Observe that in such a case, v is the estimate of p, and v has
been written in T [r] (by p itself or some other process). Note moreover that for
each decided value v, there exists a round during which v is committed.

The following lemma is central to the proof of the agreement property. In-
formally, this lemma says that if some process writes a value v in the decision
register D while executing round r, no other value than v can be written to T [r].

Lemma 6. Let v be a value, and R be a round number such that v is committed
at round R. For every value v′ written in T [R], it holds that v′ = v.

The agreement property then follows by combining Lemma 1 and Lemma 6, and
observing that every decided value has been committed.

Lemma 7 (Agreement). No two process decide different values.

Proof. Let v and v′ be two decided values (at line 21). By the code of Algo-
rithm 1, v and v′ have been previously written in D (at line 17). Hence, v and
v′ are committed at some round, say, r and r′ respectively. Without loss of gen-
erality, assume that r ≤ r′. Let p′ be a process that writes v′ in D in round r′.
Observe that v′ is the estimate of p′ in round r′. Therefore, v′ has been written
in T [r′], either by p′ (at line 7) or by some other process (in the latter case, v′

was read by p′ at line 6). As r ≤ r′, it follows from Lemma 1 that v′ is written
in T [r] as well. Since v is committed at round r, we conclude by Lemma 6 that
v = v′.

The rest of this section is devoted to the proof of Lemma 6. We proceed by
contradiction. We name H the following assumption:

There exists a round R such that two write operations with parameters u = v
are performed on T [R + K] and v is committed in round R + K.

In the following, we show that to satisfy assumption H the system must consist
of at least n + 1 processes.
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Denote by R the round number appearing in assumption H . For each i, j, 1 ≤
i, j ≤ K, note W i

j the set of processes that perform a write operation to register
T [R + j] during epoch ei. More precisely, a process p belongs to W i

j if and only
if there exists a write operation to T [R + j] by p which occurs in ei. By the
definition of epochs, we know that if j > i, then W i

j = ∅. The three lemmata
below further precise how the sizes of the W i

j ’s and the round numbers are
related.

Lemma 8. If assumption H holds, then: ∀i, 1 ≤ i < K, |W i
i | ≥ 2.

Proof. By assumption H , at least two values v and u are written in T [R + K].
It follows from Lemma 1 that v and u must have been written in T [R + i] for
each i such that 1 ≤ i < K. It remains to show that such a write operation with
parameter v (resp. u) occurs in ei.

Let us consider the first write of v in T [R + i]. Clearly, this operation occurs
in epoch eR+i′ , for some i′ ≥ i. Suppose for the sake of contradiction that i′ > i.
Hence, the first time v is written in T [R+ i], a value has already been written in
T [R+i+1]. Let p be the process that performs this first write of v in T [R+i+1].
As v is written to T [R+K], p must exist by Lemma 1. Denote wp(R+ i+1) the
write operation of p. According to the code of Janus we know that: (1) p performs
that operation while it is executing round R + i + 1 (line 7), (2) wp(R + i + 1)
is preceded by a read operation of T [R + i + 1] (denoted rp(R + i + 1)) by p
that returns ⊥ , and (3) in round R + i, there is a read operation from T [R+ i]
that returns v or a write of v by p to T [R + i]. Denote by opp(R + i) this last
operation, and opp(R+ i), rp(R+ i+ 1), wp(R+ i+ 1) the operations that occur
in this order. Moreover, opp(R + i), which reads or writes v in T [R + i] occurs
in epoch eR+i′′ for some i′′ ≥ i′, since the write of v in T [R+ i] occurs in eR+i′ .
Therefore, operation rp(R+ i+1) occurs after a write in T [R+ i+1], from which
we conclude that rp(R+ i+ 1) returns a non-⊥ value. It thus follows by Lemma
4 that p does not write in T [R + i + 1] : a contradiction.

We have shown that a write of v in T [R + i] occurs in epoch ei. A similar
argument applied to value u yields that a write of u in T [R + i] occurs in ei.
Since each process does not write twice in the same register, |W i

i | ≥ 2.

Lemma 9. If assumption H holds, then : ∀i, j : 1 ≤ i < K and 1 ≤ j < i,
|W i

j | ≥ 1.

Proof. We start by establishing that two read operations that return v and u
respectively occur in ei.

As v is written in T [R + K], v is also written in T [R + i + 1] (Lemma 1). Let
p the process that performs the first write of v in T [R + i + 1]. By the code,
p executes round R + i before performing that write operation, and v is the
estimate of p in that round. At the beginning of round R+ i, p either reads v in
T [R + i] or writes v in T [R + i]. Moreover, the read operation on T [R + i + 1]
performed by p at the beginning of round R + i + 1 returns ⊥ (Otherwise p
does not perform a write operation on T [R+ i+ 1]). Therefore, every operation
performed by p while it is executing round R + i occurs in epoch eR+i.
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In particular, the read of T [R + j] performed by p at line 10 occurs in eR+i.
This read must return v. Otherwise, p writes true in C[R+ i], and this operation
occurs in eR+i. As no process ever writes false in C[R+ i], every read operation
performed on C[R+i] that occurs in later epochs return true. Consider a process
p′ executing round R+K. p′ reads C[R+i] at line 15. This read operation occurs
after a write operation has been performed on T [R+K], so it occurs after the end
of epoch eR+i. Hence, that operation returns true and thus p′ cannot write in D
in that round. Therefore, no value is committed in round R + K, contradicting
assumption H .

Similarly, by considering the process that performs the first write of u in
T [R + i + 1], we get that a read operation of T [R + j] that returns u occurs in
eR+i.

Finally, as there are two read operations of T [R + j] returning two different
values occur in ei, there must exist a write operation on T [R+ j] that occurs in
ei. We thus conclude that W i

j = ∅.
Lemma 10. Suppose that assumption H holds. Let i, i′, j, j′ such that 1 ≤ i ≤
i′ < K and 1 ≤ j < i, 1 ≤ j′ < i′. W i

j ∩W i′
j′ = ∅ ⇒ (i = i′ ∧ j = j′) ∨ (i < j′)

Proof. Let p ∈ W i
j ∩W i′

j′ . By definition, a write operation by p occurs in ei and
ei′ . Either i = i′ and j = j′ or, by Lemma 5, i < j′.

Proof of Lemma 6. Assume for the sake of contradiction that assumption H is
satisfied, and consider the following set:

S =
{

(i, j) :
⌈K − 1

2

⌉
≤ i ≤ K − 1, 1 ≤ j ≤

⌈K − 1
2

⌉}

In what follows, we count the total number of processes that appear in the union
of the sets W i

j , where (i, j) ∈ S, then we show that this union includes at least
n + 1 distinct processes.

Let (i, j) = (i′, j′) ∈ S such that i ≤ i′. By definition of S, i ≥ j′ and thus it
follows from Lemma 10 that W i

j ∩W i′
j′ = ∅. Hence,

∣∣∣∣∣∣
⋃

(i,j)∈S

W i
j

∣∣∣∣∣∣
=
∑

(i,j)∈S

|W i
j |

Moreover, It follows from Lemmas 8 and 9 that |W i
j | ≥ 1 for each (i, j) ∈ S and

|W i
i | ≥ 2 for each (i, i) ∈ S. Therefore,

∣∣∣∣∣∣
⋃

(i,j)∈S

W i
j

∣∣∣∣∣∣
≥
⌈K − 1

2

⌉
·
⌈K − 1

2

⌉
+ 1

Finally, as K = 2 · �√n� + 1, we get
∣∣∣⋃(i,j)∈S W i

j

∣∣∣ ≥ n + 1. Therefore, assuming
that H is satisfied, we have exhibited a set of n+1 distinct processes : a contra-
diction. Consequently, H cannot be satisfied, from which we conclude that no
value different from v is written in T [R], as desired.
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Theorem 1. The Janus algorithm described in Figure 1, when instantiated with
a failure detector of the class AΩ solves consensus in an n-processes, anonymous
shared memory system.

Proof. Immediately follows from Lemmas 2, 3 and 7.

The following theorem proves that the step complexity of Janus is O(n), which
is optimal [4], and that its write complexity equals to O(

√
n).

Theorem 2. The Janus algorithm has a step complexity of O(n), and a write
complexity of O(

√
n).

Proof. Consider a solo execution of some process p. During this execution, p
executes K = 2�√n� + 1 rounds, then decides. Name {1, . . . ,K} the rounds
executed by p, and consider some round i. According to the code of Algorithm 1,
during round i process p executes a single write (line 7), and reads 3i+1 shared
registers (lines 5, 9 to 11, and 14 to 16). As a consequence, the step complexity
of Janus is O(n), and its write complexity equals O(

√
n).

4 The Case of Homonymous Systems

In an homonymous system, c, 1 ≤ c ≤ n identities are available [15,30]. Each
process has an identifier in the range {1, . . . , c}. Processes that share the same
identifier are said to be homonym, and for each i ∈ {1, . . . , c}, there is at least
one process with id i (and thus at most n− c + 1).

In this section we present a consensus algorithm for homonymous shared-
memory systems that tolerates up to n − 1 process failures. As in the case of
anonymous systems, the algorithm relies on a failure detector of the class AΩ
and the set of values that can be proposed is unbounded. The algorithm is built
in a modular way from several copies of the Janus algorithm and an efficient
implementation of m-valued adopt-commit objects due to Aspnes and Ellen [4].

Adopt-commit. An adopt-commit object [21] is a shared object that supports
a single operation denoted propose(v) where v is a value taken from some set
V. Every invocation of propose(·) returns a response of the form (b, v′) where
b ∈ {commit , adopt} and v′ ∈ V such that the following properties hold: (Ter-
mination) Every invocation of propose(·) by a correct process terminates; (Va-
lidity) If (b, v) is returned, then some process previously invoked propose(v);
(Agreement) If (commit , v) is returned, then every decision has the form (∗, v);
(Convergence) If every process proposes the same value v, then (commit , v) is
the only possible decision.

An efficient crash-tolerant asynchronous implementation of m-valued adopt-
commit objects from multi-reader multi-writer registers in anonymous system
is presented by Aspnes and Ellen in [4]. The algorithm achieves O( log m

log log m)
individual step-complexity provided that the set V from which proposed values
are taken is a priori known contains at most m values.
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Overview of the algorithm. The algorithm, described in Figure 2, proceeds in
asynchronous rounds. Each round is divided in two phases, an agreement phase
in which each group of homonym processes agree on a common value, and a
conciliation phase in which processes check whether every group agrees on the
same value.

The agreement phase of round r is implemented by c instances of the Janus al-
gorithm that we note J [r][1], . . . , J [r][c]. As in the Janus algorithm, each process
maintains an estimate stored in the local variable est. Processes with identity id
propose their estimate to the same instance of Janus J [r][id] (line 4). The array
V [r][1..c] is then used to store the decisions that occur (if any) in each of the c
instances J [r][1..c] (line 5). This completes the agreement phase of round r.

Note that each instance of Janus is implemented with its own collection of
registers. Processes however share a single failure detector AΩ. This means that
a given instance of Janus might not progress if no process participating in this
instance is elected by the failure detector. Nevertheless, if every correct process
participates in at least one of the Janus instances of round r, termination is
ensured in at least one instance, namely the instance J [r][id], where id is the
identity of the eventual leader. The conciliation phase of round r is implemented
by a single adopt-commit object denoted AC[r]. A process p with identity id
that has previously obtained a decision d from the instance of Janus J [r][id]

shared objects
∀r > 0 : J [r][1..c] is an array of c copies of Janus
∀r > 0 : AC[r] is an adopt-commit object
∀r > 0 : V [r][1..c] is an array of c MRMW registers, initially ⊥
DD is a multivalued MWMR atomic register, initially ⊥

propose(v)
(1) est ← v; rnd ← 0; start T1; start T2;

task T1 :
(2) while (true) do
(3) rnd ← rnd + 1;
(4) est ← J [rnd][id].propose(est);
(5) V [rnd][id] ← est;
(6) (b, id′) ← AC[rnd].propose(id);
(7) est ← V [rnd][id′];
(8) if b = commit then DD ← est endif
(9) end while

task T2 :
(10) repeat d ← DD until d �= ⊥
(11) stop T1; decide(d)

Fig. 2. Consensus with homonyms, code for processes with identity id
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and has written this value to the register V [r][id] checks whether it is safe to
decide this value. To do so, it proposes its identity to the adopt-commit object
AC[r] (line 6). Let (b, id′) denote the response of the object obtained by p. p
first adopts the value it reads from V [r][id′] as its new estimate (line 7). Note
that the read operation of V [r][id′] returns a non-⊥ value. This is because by
the validity property of adopt-commit, a process p′ with identity id′ must have
proposed its identity to AC[r] before p obtains the response (b, id′). In addition,
before accessing AC[r], p′ must have written a value to V [r][id′].

Second, if b = commit , p then writes its estimate in the shared register DD ,
indicating that this value can be safely decided. Indeed, by the agreement prop-
erty of adopt-commit, every propose() operation to AC[r] returns (adopt , id′) or
(commit , id′). Hence, as a unique value v is written in V [r][id′], the estimate of
each process that completes round r is equal to v. It thus follows that v is the
only value that may be written to DD in round r and any subsequent round.

Termination relies on the underlying failure detector AΩ. The eventual lead-
ership property ensures that after some time τ , a single correct process considers
itself as a leader. Let id denote the identity of this eventual leader. Observe that,
by the code of Janus, a process participating in the execution of an instance of
Janus does not take write steps unless it considers itself as a leader (Figure 1,
line 3). Therefore, no decisions occur in every instance J [r][id′] that starts after
τ if id′ = id. On the other hand, every instance J [r′][id], r′ ≥ 1 eventually pro-
duces a decision because the set of processes that participate in these instances
includes the eventual leader. Consequently, if each round r instance of Janus
starts after τ , only process with identity id may access the object AC[r]. Since
they all propose the same value, namely id, it follows from the convergence prop-
erty of adopt-commit that they get back (adopt, id). This implies that a value is
eventually written to the decision register DD , and termination follows.

Complexity. Since at most n−c+1 processes participate in each instance of Janus
(n− c+ 1 is the maximal size of a group of homonym processes), the parameter
K is set to 2

√
n− c + 1 + 1 in each instance. Values proposed to objects AC[r]

are always taken from the set of available identities {1, . . . , c}. Each adopt-
commit object is thus implemented by the optimal algorithm by Aspnes and
Ellen [4]. A process executing solo, and elected leader by the failure detector
from the beginning of the execution, decides after participating in one instance
of Janus, and performing one propose() operation on an adopt-commit object. In
addition, it performs two write operations (at lines 5 and 8). Therefore, in solo
executions, the individual write complexity equals to O(

√
n − c + 1 + log c

log log c)
and the individual step complexity equals to O(n − c + 1 + log c

log log c ).

Proof. The correctness proof of the algorithm described in Figure 2 is presented
in a companion technical report [9].
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5 Related Work

Attiya et al. [5] characterized failure-free tasks that are solvable using regis-
ters when the number of processes n is unknown. In particular, the authors
show, using bivalence and covering arguments, that consensus in such an envi-
ronment requires more than Ω(logn) atomic registers, and at least Ω(logn) total
work. Recently, Aspnes and Ellen [4] proved that the individual step complexity
of adopt-commit object in anonymous shared-memory is Θ(min ( log m

log log m , n)),
where m is the number of different values that might be proposed to the object.
Because consensus satisfies the specification of an adopt-commit object [21], this
lower bound also holds for the consensus object.

Guerraoui and Ruppert [24] studied the computational power of shared mem-
ory distributed systems in the presence of both anonymity and failures. They
propose constructions for several fundamental abstractions: wait-free timestamp-
ing and snapshots, and obstruction-free consensus. In particular, the authors
depict an anonymous binary consensus algorithm having a step complexity of
O(1). When m is known, this algorithm solves anonymous consensus in O(logm)
write operations and O(logm) individual work. Delporte-Gallet and Fauconnier
[14] proposed an anonymous consensus which relies on failure detector AΩ and a
weak set abstraction. If m is known, this algorithm solves consensus in O(logm)
individual work and O(1) writes.

Abrahamson [1] studied binary consensus in the probabilistic-write model
with eponymous processes, when identities are only used to label registers. Re-
cently, Aspnes [3] proposed a consensus algorithm for the probabilistic-write
anonymous model which solves consensus in O(logm) individual work. The algo-
rithm is based on the decomposition of consensus into two distinct components:
an adopt-commit object which detects agreement, and a conciliator, which en-
sure agreement with some probability. Aside from their lower bound result, the
authors of [4] proposed two asymptotically optimal implementations of adopt-
commit objects: a O( log m

log log m ) solution which requires that m is known, and a
O(n) solution which solves the problem without any assumptions over m. During
a solo execution, the latter algorithm writes in O(n) different registers.

The Janus algorithm we depicted in Section 3 solves anonymous consensus
in O(n) individual work, and O(

√
n) write operations, a result which matches

the lower bound of [3] and further improves the write complexity of anonymous
consensus.

The notion of partial anonymity in which some processes may share the same
identifier was first introduced by Yamashita et al. [30] in the context of the
leader election problem. The term homonyms was coined recently by Delporte
et al. [15]. In this work, the authors study the Byzantine consensus problem in
message passing systems when a limited number of identities is available.

6 Conclusion

This paper has presented two efficient consensus algorithms for anonymous and
partially anonymous asynchronous shared memory systems. Both algorithms do
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not impose restrictions on the set V from which proposed values are taken.
The complexity depends solely on the number of processes n and the number
of available identifiers c in the partially anonymous case. To the best of our
knowledge, the generalized algorithm presented in Section 4 is the first non-
trivial consensus implementation for shared memory homonymous systems.

Of note, by limiting the Janus algorithm to its first K rounds and removing
the queries to the failure detector, we obtain an anonymous adopt-commit im-
plementation whose individual write complexity is O(

√
n), while retaining an

optimal O(n) individual work. With respect to the write complexity, this is an
improvement over existing implementations.

This paper focuses on consensus algorithms for which the set of input values
is not restricted. A direction for future research is to investigate the interplay
between the size of the input set m, the number of available identifiers c, the
number of processes n, and the number of distinct values k that can be decided.
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1 Introduction

1.1 The Problem and the Model

Consensus is one of the fundamental problems in distributed computing. In this
paper we consider a generalized version of consensus in synchronous anonymous
message passing systems. Processors communicate through links of a network,
modeled as an undirected connected graph. Nodes of this network represent
processors, and we use terms “processor” and “node” as synonyms. We assume
that nodes are unlabeled. It is desirable to be able to achieve consensus without
relying on labels of processors because the latter may refrain from revealing their
identities, due to privacy or security reasons. On the other hand, ports at each
node of degree δ are labeled 1, . . . , δ, but no coherence between these labelings
is assumed. Nodes are equipped with local clocks that tick at the same rate, in
synchronous rounds. An adversary wakes up some subset of nodes at possibly
different rounds and assigns them arbitrary numerical input values. All other
nodes are dormant and do not have input values. The local clock of every awake
node is initialized to 0 at its wake-up round. In each round every awake node
can exchange messages with all neighbors, and the duration of each transmission
is one round. Any message wakes up a dormant node. The goal of consensus is
to wake up all nodes and have them agree on exactly one of the input values in
the same round; all nodes have to be aware when this is done. As opposed to
most of the literature on consensus, the difficulty of our scenario are not faults
(we assume that the network is fault-free) but the arbitrary network topology
combined with the anonymity of nodes.

Note that, in a fault-free environment, this version of consensus is more general
and has a stronger requirement than the usual formulation. First, the adversary
can wake up only some processors and may do this at different times, whereas
in the classic version [21] all processors are active from the beginning. Second,
we require that consensus be made on one of the input values, whereas the
classic validity condition only stipulates that this be the case if all input values
are identical. Third, consensus has to be achieved by all processors in the same
round, which is not required in the classic version. As will be seen, all our positive
results concern this stronger, more general version, while our negative results are
valid even for the classic, weaker version.

We consider two scenarios: that of ad-hoc (i.e., unknown) and that of known
networks. In the scenario of unknown networks the only knowledge that nodes
have about the network is a linear upper bound on the number of its nodes.
Note that without knowing any bound on the size of the network, consensus
is impossible even in an oriented ring. Indeed, due to anonymity, nodes cannot
distinguish if they are in a small or in a large ring. At some point each node must
make a decision and it is easy to construct an instance with a large ring, where
two remote groups of nodes make incompatible decisions before communicating.
In the scenario of known networks, every node is provided with a map of the
network, which is an isomorphic copy of it containing all port numbers, with the
location of the given node marked in the map. Note that, due to the lack of node
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labels, if the network has non-trivial automorphisms preserving port numbers,
then it is impossible to distinguish between isomorphic nodes in the map.

A problem related to consensus is that of establishing global time. In our set-
ting, clocks of all awake nodes tick at the same rate but they do not necessarily
show the same round number; instead, the clock at each node shows the num-
ber of rounds since the wake-up of this node. This is sometimes called local
synchronization [17]. Establishing global time (or achieving global synchroniza-
tion) consists in waking up all nodes and having all their clocks show the same
round number. All nodes must be aware when this happens. These two levels
of synchrony of the system have been previously studied in various contexts
and it turns out that global synchronization is much more powerful than local
synchronization.

1.2 Our Results

We seek deterministic consensus algorithms using as few messages as possible.
For unknown n-node networks we show a consensus algorithm using O(n2) mes-
sages. This complexity is optimal for this class: indeed, if the network is unknown
to nodes, some networks require Ω(n2) messages for consensus. We show that if
the network is known, then the complexity of consensus decreases significantly.
Our main contribution is an algorithm that uses O(n3/2 log2 n) messages on any
n-node network and we show that some networks require Ω(n logn) messages
to achieve consensus. We also observe that the availability of distinct labels of
nodes helps to improve complexity of consensus for known networks but has no
effect for the class of unknown networks. Indeed, even with labeled nodes, Ω(n2)
messages are sometimes necessary if the network is unknown but for known
labeled networks consensus can be always achieved with O(n) messages.

The main challenge in achieving low message complexity of consensus in
anonymous systems is that nodes woken up by the adversary behave identically
in highly symmetric networks and thus may collectively send many messages be-
fore communicating and coordinating their actions. Our algorithmic techniques
for known networks use careful pruning of the subnetworks informed by some
nodes and stopping the growth of subnetworks informed by others, depending
on their age in the network and on their input value.

Our results also imply the same complexity bounds for the problem of global
synchronization in locally synchronized systems with arbitrary wake up times.
To get the upper bounds, our algorithms can be transformed as follows. Since our
requirement for consensus stipulates that all nodes must be awake and agree on
one of the input values in the same round, we can run the respective consensus
algorithm with all input values 0 and use the round when consensus is achieved
to reset all clocks to 0, thus achieving global synchronization. For the lower
bounds, we indicate in each case how the argument should be modified to work
for the global synchronization problem.

Due to lack of space, proofs of several results are omitted and will appear in
the full version of the paper.
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1.3 Related Work

Consensus is a classic problem in distributed computing, mostly studied assum-
ing that processes communicate by shared variables or through message passing
networks [4,21]. Most of the literature on consensus concerns the presence of
processor faults, that can be either crash or Byzantine, starting from the semi-
nal paper [22]; see the recent book [23] for a comprehensive survey. In [18] the
authors showed a randomized consensus for crash faults with optimal communi-
cation complexity. In [11], feasibility and complexity of consensus in a multiple
access channel (MAC) with simultaneous wake-up and crash failures were stud-
ied in the context of different collision detectors. Consensus (without faults) in
a MAC with different wake-up times was studied in [15]. The authors also inves-
tigated the impact of global synchronization on the time efficiency of consensus.
It should be noted that communication through a MAC significantly differs from
our setting. First, the underlying topology of the MAC is a complete graph, un-
like in our case where the topology is arbitrary. Second, one of the main problems
in a MAC are message collisions that do not occur in message passing systems
(cf. [6]) for which we investigate consensus. Consensus in the quantum setting
has been studied, e.g., in [10].

The differences between local and global synchronization for the wake-up
problem were first studied in [17] and then in [8,9,14]. The communication model
used in these papers was that of radio networks in which the main challenge are
collisions between simultaneously received messages. Global synchronization is
often used in the study of broadcasting in radio networks (cf. [7,14]).

Computability in anonymous networks and feasibility of various distributed
tasks performed using message exchange in anonymous networks have been stud-
ied, e.g., in [1,5,13,19,20,24,25,26] for arbitrary network topologies, and in [2,3,16]
for rings. To the best of our knowledge, the present paper is the first to study
communication complexity of consensus in arbitrary anonymous networks.

2 Unknown Networks

In this section we assume that nodes of the network do not know its topology
but only have a linear bound N on the total number n of nodes. We first show
a consensus algorithm that uses O(n2) messages.

2.1 Algorithm Flooding-with-Delays

Messages circulating in the network have signatures which are pairs (age, value),
where age is a counter set to 0 when the node initially sending the message is
woken up, and incremented by 1 in each round; value is the input value of the
node initially sending the message. Signatures are ordered lexicographically. (In
each round the signature of a message changes, as its age is incremented.) Any
node of degree δ woken up by the adversary creates a message μ with signature
(0, val), where val is its input value. It also switches on its termination counter
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initialized at 0, that increments by 1 in each round. The node waits δ rounds.
If during this waiting time it does not obtain any message of larger signature
than the current signature of μ, it sends μ with its current signature to all its
neighbors.

A node of degree δ that obtains a message ν whose signature is larger than
current signatures of all messages it has seen previously, resets its termination
counter to 0 and switches on its delay counter initialized to 0. Recall that both
counters increment by 1 at each round. The node waits δ rounds and if it does not
obtain any message of larger signature than the current signature of ν during this
waiting time, it relays message ν on all incident links. If during the waiting period
some message of larger signature arrives, the delay counter and the termination
counter are reset to 0 and waiting δ rounds for relay restarts. In the round when
the termination counter gets to 4N−a, where a is the age in the largest signature
of any received message at its reception time, the node terminates executing the
algorithm and decides on the value in this signature. �

In order to prove the correctness and analyze the complexity of Algorithm
Flooding-with-Delays we will use the following well known combinatorial lemma.

Lemma 1. For any n-node graph G and for any nodes u and v in G, there exists
a path (v1, . . . , vk) in the graph, such that u = v1, v = vk, and

∑k
i=1 δi ≤ 3n,

where δi is the degree of vi.

Theorem 1. Algorithm Flooding-with-Delays is correct and uses O(n2) mes-
sages.

Proof. Consider a message μ having the largest signature and let t be the time
when nodes creating message μ are woken-up by the adversary. Message μ is
received by all nodes in the network within time t+4n. Indeed, since no message
with a signature larger than the one of μ exists in the network, any node of
degree δ that receives message μ at time t′ for the first time forwards it to all
its neighbors at time t′ + δ. By Lemma 1 the sum of the degrees of nodes in a
shortest path between any two nodes u and v is bounded by 3n and any simple
path between two nodes is bounded by n− 1.

The correctness of the algorithm follows from the fact that all nodes agree on
the value in the largest signature of a message they have ever seen and that by
the time of the decision each node has seen this message. The way nodes use
their termination counter guarantees that the decision is made by all nodes in
the same round.

It remains to estimate the message complexity of the algorithm. A node of
degree δ sends at most δ messages in any segment of δ rounds. Hence the amor-
tized number of messages per round sent by any node is at most 1. The duration
of the entire algorithm is at most 4n rounds, hence the total number of messages
is at most 4n2.

It should be noted that waiting periods while flooding are a crucial tool to
decrease message complexity in our algorithm. The following example shows
that simple flooding without waiting can result in message complexity Ω(n3) for
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some networks. Let n = 4x and consider the n-node network composed of a path
(v1, w1, v2, w2, . . . , vx, wx) of 2x nodes, whose extremity wx is adjacent to x nodes
forming the set S, each of which is in turn adjacent to x nodes forming the set
T (the graph induced by S and T is complete bipartite). If the adversary wakes
up node vi in round i of some global time (unknown to nodes), for i = 1, . . . , x,
then node wx would relay all the messages initiated at these nodes, one after
another, which would result in all nodes from S relaying all these messages to
all nodes from T . The total number of messages would then be Ω(n3).

We now show that it is impossible to improve the complexity O(n2) of Al-
gorithm Flooding-with-Delays for the entire class of n-node networks, if the
topology is unknown to nodes.

Proposition 1. For any consensus algorithm working correctly for all n-node
connected networks without knowledge of topology, there exists an n-node con-
nected network for any positive integer n, on which this algorithm requires Ω(n2)
messages.

Proof. For simplicity we assume that n is divisible by 4. We give a proof of
this proposition that holds also for the classic (weaker) version of the consensus
problem. In fact, we prove that Ω(n2) messages are needed for the clique, even
if nodes know that they are in the clique, as long as the arrangement of port
numbers is unknown to nodes.

Consider any consensus algorithm A for the n-node clique. The port numbers
will be assigned by the adversary in such a way that for every edge the port
numbers at both endpoints of the edge are equal. We will call this common port
number the color of the edge.

Without loss of generality we may assume that any node that sends a mes-
sage according to algorithm A appends to it its entire history, consisting of its
input value and of the sequence of all messages received in each round since its
wake-up (some of the messages could be empty), together with the color of the
edge on which each message was received. Suppose that all nodes are woken up
simultaneously by the adversary and each node is given value 0 or 1. The edge
color on which each node sends its first message, before it got any message, de-
pends only on its input value. Suppose that this color is i1 for nodes with input
value 0. Now suppose that integers i1, . . . , ir have been defined. We define the
integer ir+1 as the (r + 1)-st edge color on which a node v with input value 0
sends a message, if it has the following history: in every round in which it sent a
message on edge color i, it received a message from its neighbor w on this edge
color and the history of w before this round is exactly the same as the history
of v. Similarly we define by induction integers j1, j2 . . . , with the only difference
that in the definition input value 0 is replaced by 1. (If many new colors are used
by a node in a round, they are added to the sequence in the order of increasing
numbers.)

Let n = 4m. Partition all nodes of the clique into subsets X = {a0, . . . , am−1,
b0, . . . , bm−1} and Y = {c0, . . . , cm−1, d0, . . . , dm−1}. Consider the scenario σ in
which all nodes in X have input value 0 and all nodes in Y have input value
1. In this scenario the adversary assigns colors as follows (additions of indices
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are modulo m): pairs of nodes ai and bi, for 0 ≤ i ≤ m − 1, are joined by an
edge of color i1, pairs of nodes ai and bi+1 are joined by an edge of color i2,
and in general, pairs of nodes ai and bi+c are joined by an edge of color ic+1. A
similar coloring is done in the set Y using colors j1, j2 . . . instead of i1, i2 . . . , and
then the adversary colors all other edges arbitrarily. (Notice that the subgraphs
induced by the node sets X and Y are fully symmetric.) We claim that in this
scenario at least m2 messages have to be sent. Suppose not. By induction on the
round number, all nodes in X have identical history until the round in which
they send a message on an edge of color im , and all nodes in Y have identical
history until the round in which they send a message on an edge of color jm.
Hence, by the definition of numbers i1, i2 . . . and j1, j2 . . . , the order of colors on
which nodes from X and Y send messages (disregarding repetitions of already
used colors) is i1, i2 . . . and j1, j2 . . . , respectively. Since we assumed that fewer
than m2 messages were sent, none of the nodes in X could get to sending a
message on an edge of color im and none of the nodes in Y could get to sending
a message on an edge of color jm. It follows that no communication occurred
between any node of X and any node of Y . Suppose that algorithm A reaches
consensus on input value 1 in scenario σ (the case of input value 0 is symmetric
and thus omitted from the proof). Now consider the scenario σ0 in which all
nodes have input value 0. In this scenario, the adversary assigns edge colors
according to the sequence i1, i2, . . . to both sets X and Y . Nodes in X and Y ,
however, have the exact same history in scenario σ0 as nodes in X in scenario
σ, up to the round when they have to reach consensus on input value 1. Hence,
all nodes would reach consensus on input value 1 in scenario σ0 as well, which
contradicts validity, as all nodes in scenario σ0 have input value 0.

In the case when n is not divisible by 4, the proof can be easily adapted using
an n− (n mod 4) node clique as before, using the remaining (n mod 4) nodes
as dummy nodes that are left dormant by the adversary. Each node in partitions
X and Y of the clique is connected to the dummy nodes by ports that are not
in {i1, . . . , im} ∪ {j1, . . . , jm}. Port numbers at the dummy nodes are arbitrary.

The following simple modification of the above proof allows to get the same
lower bound for global synchronization. The adversary wakes up simultaneously
only nodes of the set X . The same argument shows that Ω(n2) messages have
to be sent before any node in Y is woken up.

3 Known Networks

In this section we assume that each node is provided with a map of the network,
which is an isomorphic copy of it containing all port numbers, with the location
of the given node marked in the map. We will show that in this setting the
complexity of consensus decreases significantly with respect to the scenario of
unknown networks. We start considering fully symmetric networks, and we later
extend our algorithm to handle arbitrary networks.
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3.1 Fully Symmetric Networks

Algorithm Span-and-Prune, presented below, achieves consensus in fully sym-
metric networks. In any such network G, for any pair of nodes u, v, there exists a
port-preserving automorphism of G that carries u to v. Hence different behavior
of nodes can only occur if the histories of these nodes are different, which may
be caused by different wake-up times or input values. The overall idea of our
algorithm is to first find a sparse spanner of the network, using the available
map, and then grow a spanning forest of this spanner, where each tree is rooted
at a node awaken by the adversary. The reason why we grow a forest instead of a
single tree is that two trees rooted at nodes having the same value and the same
wake-up time may be perfectly symmetric, making it impossible to chose which
one should be killed and which one should survive. At the end, every node is in
some tree, such that all roots have the same input value and the same wake-up
time. All nodes terminate in the same round, agreeing on this input value. We
start with the following lemma.

Lemma 2. Let G be a fully symmetric connected n-node graph. Then there ex-
ists a fully symmetric connected spanning subgraph G′ of G with at most n�logn 
edges.

Lemma 2 implies that it is always possible to fix a permutation π of port num-
bers that results in the construction of a fully symmetric, connected spanning
subgraph G′ of G, when the first �logn ports are selected by each node. Hence
from now on we can assume that nodes of G have degree bounded by �logn .

Similarly as in Algorithm Flooding-with-Delays, messages sent by nodes dur-
ing the execution of Algorithm Span-and-Prune have signatures which are pairs
(age, value). As before, age is a counter set to 0 when the node initially send-
ing the message is woken up, and incremented by 1 in each round, and value is
the input value of the node initially sending the message. Signatures of different
messages are compared lexicographically based on their current age.

Define the code of a path P = (v1, v2, . . . , vk) in the graph G as the sequence
(p1, p2, . . . , pk), where pi is the port number at node vi, corresponding to the
edge (vi, vi+1) in P .

Define a spanning tree Td of G, rooted at a node u, according to the following
rule.

Rule 1. Let P be the path in Td connecting node u to a node v, and let (p1, p2, . . . ,
pk) be the code of P . Then P is a shortest path between u and v in G and
(p1, p2, . . . , pk) is the lexicographically smallest code of any shortest path con-
necting u to v.

Notice that Rule 1 defines a unique spanning tree rooted at u, for any node u, i.e.,
the spanning tree corresponding to a breadth-first search performed following the
increasing order of port numbers.

Each node v in the tree Td, rooted at node u, is assigned a unique number
ru(v), in [0, n− 1], according to the following rule.
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Rule 2. ru(v) < ru(v′), if and only if, the path P connecting u to v in Td is
shorter than the path P ′ connecting u to v′ in Td, or P and P ′ have the same
length but the code of P is lexicographically smaller than the code of P ′.

The assignment of ranks to nodes in Td is performed according to a breadth-first
visit of the tree, visiting children in increasing order of port numbers. Notice
that neither the removal of edges that bounds node degrees in G′ by �logn 
nor the design of the spanning trees and local numbering of nodes require any
message exchange, as both tasks can be performed independently by each node
using the map.

Algorithm Span-and-Prune

Any node u woken up by the adversary computes the permutation π, designs the
spanning tree Td rooted at u, computes ranks of all nodes in Td, and initializes
its age counter to 0.

Algorithm Span-and-Prune proceeds in phases. Each phase lasts 2n2 rounds
and is divided in two parts: Part 1 uses rounds from 1 to n2 and Part 2 uses
rounds from n2+1 to 2n2. In phase i, the root u having a designed tree Td tries to
conquer all nodes in Td having ranks in [2i−1, 2i−1]. When a node v is conquered,
it becomes part of the conquered tree Tc of u. If node u is unable to conquer some
node v during a phase, either its designed tree Td is pruned or it is completely
destroyed. Pruning is done when the conquest of node v failed because v has
been already included in a tree T ′

c of another node u′, whose messages have the
same signature as those of u. After pruning, the whole subtree rooted in v is
removed from Td. The tree Td is destroyed when it meets another tree rooted
at a node whose messages have larger signatures. Note that different nodes in
the network could be running different phases (or different rounds of the same
phase), due to different activation times.

Part 1. Rounds from 1 to n2 of phase i are used to try to conquer nodes
having ranks in [2i−1, 2i − 1]. In particular, if ru(v) = 2i−1 + j and the parent w
of v in Td is in Tc, then a conquer message is sent from w to v in round nj + 1,
unless node w received a message with a larger signature than those originated
by tree Tc in some previous round. Conquer messages contain the subtree of
Td rooted at the node to be conquered, annotated with node ranks. Node v is
included in Tc if the signature of the message it receives from w is the largest it
has ever received. If by the time when it receives the message from w, node v
already received a message with a larger signature (i.e., either it received it in
some previous round, or in the same round as the message from w), it notifies w
that tree Tc must be destroyed, by sending it a kill message. If node v already
belongs to a tree T ′

c whose messages have the same signature as those from
tree Tc, it notifies w that the conquest of v by tree Tc failed. This is done by
sending a prune message from v to w. Both the sender and the receiver of a
prune message save the edge connecting them in memory, calling it a connecting
edge. As a consequence of the failed conquest of node v, the tree Td is pruned
by removing the entire subtree rooted at v. Here we are not specifying how to
give precedence to conquer messages coming from trees with the same signature
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in the same round. The omission is legitimate since we can prove that this event
is impossible.

If a node v in a tree Tc is subsequently conquered by a tree T ′
c (whose messages

have a larger signature), node v reports this event in the following round by
sending a kill message to all its neighbors in Tc and through all its connecting
edges. Then it removes the connecting edges from its memory. A node that
receives for the first time in some round a kill message having a signature larger
than the one of its tree Tc, relays this message in the following round to all its
neighbors in Tc and to all its connecting edges. Then it removes the connecting
edges from its memory.

In Part 2 of each phase only kill messages are transmitted.
A node terminates executing the algorithm and decides on the value from the

signature of messages coming from the root of the tree to which it belongs, when
the age in the signature of these messages reaches 2n2�logn�. �

In order to prove the correctness of Algorithm Span-and-Prune we will use
the following lemma.

Lemma 3. Let M be the set of nodes generating messages with the largest sig-
nature s in G. Let v be a node in G that does not belong to M . Let m be the node
in M that minimizes rm′(v), for m′ ∈ M . Finally, let Tc be the conquered tree
of m at the end of the execution of algorithm Span-and-Prune. Then v belongs
to Tc.

Theorem 2. Algorithm Span-and-Prune reaches consensus, in an arbitrary fully
symmetric n-node network G, exactly after 2n2�logn� rounds.

Proof. By Lemma 3, after 2n2�logn� rounds, each node belongs to a tree Tc

rooted at a node that generates messages with the largest signature. Hence all
nodes terminate in the same round, and agree on the input value in this signature.

The rest of this subsection is devoted to the analysis of the communication
complexity of Algorithm Span-and-Prune.

Consider a round t on the global clock of the adversary (t is unknown to the
nodes). Two conquered trees Tc and T ′

c met if one tried to conquer a node already
conquered by the other in a round t′ ≤ t. A component is a forest of conquered
trees. Two trees Tc and T ′

c belong to the same component, if and only if, their
roots have the same signature s and there exists a sequence (Tc, T1, . . . , T

′
c) of

trees with signature s such that consecutive trees in this sequence met. Two
components are separated, if no tree inside one component met a tree inside the
other. The set of edges of a component is the union of all edges of the trees
inside the component, together with connecting edges (traversed by messages
that made pair of trees inside the component meet). We say that a component
is alive in round t, if none of its trees met a tree whose messages have a larger
signature. A component is dying in round t, if one or more of its trees met a tree
whose messages have a larger signature. A component is dead when all its nodes
have received a kill message. Since kill messages flood a component in at most
n rounds, a component that is dying in a round i becomes dead by round i+ n.
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Lemma 4. The total number of messages sent in an execution of Algorithm
Span-and-Prune in an n-node fully symmetric network G is in O(n3/2 log2 n).

Proof. We will show that, for some constant c and an arbitrary round t (on
the global clock of the adversary), at most cn3/2 logn messages are sent in G
in rounds [t, t+ n2). Since Algorithm Span-and-Prune terminates in O(n2 logn)
rounds, this implies the lemma.

Fix a round t and consider a snapshot of the network G in this round. Since
components that were already dead in round t do not generate any messages in
subsequent rounds, all messages sent in rounds [t, t+n2) are either due to dying
components or to alive components.

Claim 1. The number of messages sent in the network G in rounds [t, t + n2)
due to dying components is in O(n log n).

Proof of Claim 1. Let D1, D2, . . . , Dh be the dying components in round t.
Since a dying component becomes dead within n rounds, all dying components
were separated in round t − n. In n rounds, a component can conquer at most
as many nodes as its size. Indeed, each tree inside the component can only
conquer one node in n rounds and there cannot be more trees than nodes inside
a component. Hence |D1| + |D2| + . . . + |Dh| ≤ 2n. Notice that the sum of sizes
of dying components can grow above n, since nodes conquered by other trees
are still counted in the dying component. Assume that each of the trees in the
dying components conquers a new node before becoming dead. Hence the total
number of nodes that the dying components can conquer before all of them die is
bounded by 3n. The number of messages sent in the network in rounds [t, t+n2)
due to dying components is given by the sum of the number of messages sent
for expanding these components plus the sum of the number of messages sent
for killing them. Conquering one node for each tree costs as many messages
as the number of trees. Hence at most n messages can be sent for conquering
new nodes. Each node whose conquest failed would send either a kill or a prune
message, for at most n additional messages.

Kill messages for a given component can travel at most twice along each
edge of the component. Since the sum of numbers of dying components edges
is bounded by 3n logn, at most 6n logn kill messages can be sent due to dying
components, which completes the proof of the claim.

Claim 2. The number of messages sent in the network G in rounds [t, t + n2)
due to alive components is in O(n3/2 logn).

Proof of Claim 2. Let S1, S2, . . . , Sk be the alive components in round t. Let φi

be the last phase whose Part 1 was completed by component Si in round t. Hence
each round in the segment [t, t + n2) is either in Part 2 of phase φi or in phase
φi + 1, for component Si. If Si and Sj are two distinct components whose nodes
have the same signature, then Si and Sj are separated by definition. If a tree in
one component met a tree in another component whose nodes have a different
signature, then one of the two components would be dying in round t. It follows
that components S1, S2, . . . , Sk are pairwise separated. Hence

∑k
i=1 |Si| ≤ n.

Moreover, for any i ∈ [1, k], Si ≥ 2φi . Indeed, a single tree Tc in Si would have
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grown to size 2φi and any node that Tc failed to conquer must be in another tree
T ′

c ∈ Si.
Let Ŝi be the set of nodes conquered by Si by round t + n2. Clearly |Ŝi| ≤

n, since no component can grow outside of the graph G. Moreover, |Ŝi| ≤
2φi+1|Si| ≤ 2|Si|2. Indeed, each tree Tc in Si can grow at most to size 2φi+1

during phase φi + 1 and there are at most |Si| trees in Si.
Let S be the number of nodes conquered by an alive component by round

t + n2. Then at most S + 4S logn messages were sent in the network in rounds
[t, t + n2) due to this component. Indeed each node that is conquered requires
only 1 message, and each internal node can fail to conquer at most logn external
nodes, totalling in less than S + 2S logn messages (at most S messages for
conquering, at most S logn failed conquests each of which costs 1 message to
attempt the conquest and one kill or prune message sent back by the unconquered
node). Kill messages (sent in the case when some tree in the component met
some other tree whose messages have a larger signature) are bounded by twice
the number of component edges. This number is in turn bounded by S logn.

If follows that the total number of messages sent due to alive components in
rounds [t, t+n2) is upper bounded by

∑k
i=1 |Ŝi|+4|Ŝi| logn < 8 logn

∑k
i=1 |Ŝi|,

while the following conditions hold.
(1)
∑k

i=1 |Si| ≤ n. (2) ∀i ∈ [1, k] |Ŝi| ≤ 2|Si|2. (3) ∀i ∈ [1, k] |Ŝi| ≤ n.
Let A = {i ≤ k : |Si| ≤

√
n/2} and let B = {i ≤ k : |Si| >

√
n/2}.

We have that
∑k

i=1 |Ŝi| =
∑

i∈A |Ŝi|+
∑

i∈B |Ŝi| ≤
∑

i∈A |Ŝi|+|B|n, where the
second inequality follows from condition (3). Condition (1) implies |B| ≤ √

2n.
Moreover, by condition (2) we have that

∑
i∈A |Ŝi| ≤

∑
i∈A 2|Si|2, which, under

condition (1), is maximized if |A| =
√

2n and |Si| =
√

n/2, for all i ∈ A. Hence∑
i∈A |Ŝi| +

∑
i∈B |Ŝi| ≤ 2n

√
2n < 4n3/2, which proves the claim.

Claims 1 and 2 show that O(n3/2 logn) messages are sent in any segment of
n2 rounds. Since the total number of rounds used by Algorithm Span-and-Prune
is in O(n2 logn), this concludes the proof.

3.2 Arbitrary Networks

Algorithm Extended Span-and-Prune, presented below, achieves consensus in
arbitrary networks.

For each node u, assign a unique number in [0, n − 1] to each node in G
according to a breadth-first visit of the graph G starting from node u. Neighbors
of a node v are visited according to the increasing order of port numbers, at node
v, of the edges connecting them to v. Assign a label �u to each node u as follows.
Perform a breadth-first visit of the graph G; the visit starts from u, and the first
term of �u is 0. Let v be the current node in the visit and let v1, v2, . . . , vδ be the
nodes connected to v by edges having port numbers 1, 2, . . . , δ at v, respectively.
Let ri, be the number assigned to vi. For i going from 1 to δ, append ri to �u.
Clearly, two nodes in the same isomorphism class are assigned the same label by
the above procedure. On the other hand, if two nodes u and v are assigned the
same label �u = �v, then a port-preserving automorphism of G mapping u to v
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can be constructed by mapping node with number ri in the breadth-first visit of
G starting from u to the node having the same number in the breadth-first visit
of G starting from v. It follows that nodes in different isomorphism classes are
assigned different labels. This in turn implies that it is possible to uniquely define
the class C = {c1, c2, . . . , cs} which is the isomorphism class corresponding to
the lexicographically smallest label �. Nodes in C will be called chiefs.

Each node u not in C selects as its chief the node in C closest to u, and
among those with minimum distance, it selects the one with the shortest path
of minimum code (see the previous subsection for the definition of a code). For
each node having chief ci (including ci itself) construct a spanning tree of the
whole network, rooted at ci, according to Rule 1, assign ranks to nodes in this
spanning tree according to Rule 2, and prune it of all nodes that have smaller
ranks in the spanning tree rooted at another chief cj . At the end of this process,
each resulting tree Ti contains exactly one node from each isomorphism class
(n/s nodes for each tree). The trees rooted at chiefs c1, . . . , cs are disjoint and
constitute a spanning forest of G.

Construct a s-node graph S (in general not simple) as follows. Nodes of S are
the trees Ti and there is an edge e′ between Ti and Tj in S, if and only if, there
are two nodes u and v, respectively in Ti and Tj, that are connected by an edge e
in G. Edge e′ in S is labeled with the set of pairs {(rci(u), pu(e)), (rcj (v), pv(e))},
where rci(u) and rcj (v) are the ranks of the endpoints of the edge e in the trees of
their respective chiefs and pu(e) and pv(e) are the port numbers, respectively, at
endpoints u and v of edge e. The graph S is fully symmetric. Hence, by Lemma 2,
a fully symmetric spanning subgraph S′ of S can be constructed, having at most
s�log s edges. (Notice that Lemma 2 holds for non simple graphs as well.)

Consensus on S can be achieved by applying Algorithm Span-and-Prune.
Algorithm Extended Span-and-Prune simulates an execution of Algorithm Span-
and-Prune on network S in order to achieve consensus on network G. Below is
a detailed description of the algorithm.

Algorithm Extended Span-and-Prune

Each node, when woken up, computes the isomorphism classes, identifies its chief
(or selects itself as a chief) and constructs the rooted tree Ti to which it belongs.
No message exchange is needed to perform these tasks, as each node can perform
this computation locally using its map of the network.

Nodes in a tree Ti woken up by the adversary send their value to their parent
in Ti. These nodes never relay any value from other nodes in their tree. Nodes in
Ti woken up by a message containing the value from another node in Ti only relay
to their parent one value (i.e., the largest one they received in the round they got
woken up). The root ci decides on a value which is among those first obtained
(i.e., its own value in the case when it is woken up by the adversary, or the largest
value received in the first non silent round). Once the chief ci of a tree is woken up
and has decided on a value, ci informs all nodes in its tree Ti (exactly n/s rounds
are allotted to this task). Then all nodes in Ti set their age counters to zero and Ti

starts the simulation of Algorithm Span-and-Prune. Let τd and τc be respectively
the designed and the conquered trees (these are subtrees of the graph S′, hence
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their nodes are the trees Ti) built during the simulation of Algorithm Span-and-
Prune. Each round of the simulated algorithm takes n/s rounds. Hence, each
phase takes 2s2 · (n/s) = 2ns rounds. A message sent by node Ti in round t of
phase i over an edge e′ having label {(rci(u), pu(e)), (rcj (v), pv(e))}, is simulated
by sending the same message from node u to node v over edge e in round (n/s) ·t
of simulated phase i. Messages are relayed by the receiving node to all neighbors
in its tree Ti and relayed (inside Ti) in consecutive rounds, thus flooding the
whole tree in at most n/s rounds. Hence all nodes in Ti are informed of the
received message by the time when one of them has to send another message in
the next simulated round.

A node terminates executing the algorithm and decides on the value from the
signature of messages coming from the root of the tree τc to which it belongs,
when the age in the signature of these messages reaches 2ns�log s�. �

Theorem 3. Let G be an arbitrary n-node network. Algorithm Extended Span-
and-Prune achieves consensus in G using O(n3/2 log2 n) messages.

3.3 Lower Bound

We now establish a lower bound on the message complexity of consensus in
known networks. The result also holds for the classic, weaker version of the
consensus problem.

Theorem 4. For every positive integer k and for n = 2k, there exists a n-node
network for which every consensus algorithm requires Ω(n log n) messages.

4 Do Labels Help?

In this section we answer the question whether the availability of distinct labels
of nodes, with each node knowing its label, permits to decrease the complexity of
consensus with respect to the anonymous setting. It turns out that the answer is
negative for unknown networks and positive for known networks. First observe
that if the network is unknown, then a slight modification of the argument for
anonymous networks from the proof of Proposition 1 gives a lower bound Ω(n2)
on message complexity of consensus for the following class of n-node networks,
even if all nodes have distinct labels. A network in this class is defined as follows.
Take two cliques on disjoint sets A and B, each of size Θ(n). Replace a pair of
edges {a, a′} in A and {b, b′} in B by the pair of “bridges” {a, b} and {a′, b′}. For
any consensus algorithm, the adversary can label ports, so as to delay message
transmissions through both bridges until Ω(n2) messages have been sent.

On the other hand, if the (labeled) network is known to the nodes, i.e., if a
labeled map of the network (an isomorphic copy of it with all node labels marked)
is available to all nodes, then consensus can be done more efficiently than in the
anonymous setting with known network. Recall that in the anonymous setting
with known network, some networks required Ω(n log n) messages for consensus.
By contrast, in the labeled setting we have the following proposition.
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Proposition 2. If all nodes have distinct labels and are provided with a labeled
map of the network, then consensus can be done with O(n) messages for n-node
networks. This complexity is optimal.

Proof. It is straightforward that at least n−1 messages have to be used (even for
the classic, weaker version of consensus, and also for establishing global time). In
order to give a consensus algorithm using O(n) messages, first observe that all
nodes can find a common rooted spanning tree T without any message exchange,
by choosing the node with the largest label as the root and applying a fixed
spanning tree construction procedure. Once the tree T is fixed, consensus can be
achieved as follows. Any node woken up by the adversary sends its input value
to its parent in T . Any node other than the root relays only one value to its
parent (the one it got first and if it got many values simultaneously first, then
it relays the largest of them). The root adopts the value received first (if it was
woken up by the adversary, this is its own input value), and if it got many values
simultaneously first, then it adopts the largest of them). Then the root sends the
adopted value down the tree and consensus is made on this value. Together with
the value, the root sends a message “consensus will be achieved in x rounds”
with the counter x initialized to n. At each transmission the counter is decreased
by 1, and nodes use their local clocks to make the agreement in the same round.
At most two messages travel on each edge of the tree: one up and one down.
Hence the number of messages is at most 2n− 2.

5 Conclusion

We gave bounds on the message complexity of consensus in anonymous message
passing systems. For unknown networks our bounds are tight and give Θ(n2)
complexity. For known networks we showed that the complexity of consensus is
significantly smaller. In this scenario our bounds differ by a factor

√
n logn: the

upper bound is O(n3/2 log2 n) while the lower bound is Ω(n logn). Closing this
gap is a natural open problem.
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Abstract. This paper presents the first concurrent non-blocking k-ary
search tree. Our data structure generalizes the recent non-blocking binary
search tree of Ellen et al. [5] to trees in which each internal node has k
children. Larger values of k decrease the depth of the tree, but lead
to higher contention among processes performing updates to the tree.
Our Java implementation uses single-word compare-and-set operations
to coordinate updates to the tree. We present experimental results from
a 16-core Sun machine with 128 hardware contexts, which show that our
implementation achieves higher throughput than the non-blocking skip
list of the Java class library and the leading lock-based concurrent search
tree of Bronson et al. [3].
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1 Introduction

With the arrival of machines with many cores, there is a need for efficient, scal-
able linearizable concurrent implementations of often-used abstract data types
(ADTs) such as the set. Most existing concurrent implementations of the set
ADT are lock-based (e.g., [3,9]). However, locks have some disadvantages (see
[7]). Other implementations use operations not directly supported by most hard-
ware, such as load-link/store-conditional [2] and multi-word compare-and-swap
(CAS) [8]. Software transactional memory (STM) has been used to implement
the set ADT (e.g., [10]), but this approach is currently inefficient [3].

Most multicore machines support (single-word) CAS operations. Non-blocking
implementations of dictionaries have been given based on skip lists and binary
search tree structures. Sundell and Tsigas [12], Fomitchev and Ruppert [6], and
Fraser [8] have implemented a skip list using CAS operations. A binary search
tree implementation using only CAS operations was sketched by Valois [13], but
the first complete algorithm is due to Ellen et al. [5]. The non-blocking property
ensures by definition that, while a single operation may be delayed, the system as
a whole will always make progress. (Some refer to this property as lock-freedom.)

In this paper, we generalize the binary search tree of Ellen et al. (BST) to a k-
ary search tree (k-ST) in which nodes have up to k−1 keys and k children. This
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requires generalizing the existing BST update operations to k-ary trees, creating
new kinds of updates to handle insertion and deletion of keys from nodes, and
verifying that the coordination scheme works with the new updates. Using larger
values of k decreases the average depth of nodes, but increases the local work
done at each internal node in routing searches and performing updates to the
tree. However, the increased work at each node is offset by the improved spatial
locality offered by larger nodes. By varying k, we can balance these factors
to suit a particular system architecture, expected level of contention, or ratio
of updates to searches. Searches are extremely simple and fast. Oblivious to
concurrent updates, they behave exactly as they would in the sequential case.

We have implemented both the BST and our k-ST in Java, and have com-
pared these implementations with ConcurrentSkipListMap (SL) of the Java class
library, and the lock-based AVL tree of Bronson et al. (AVL) [3]. The AVL tree
is the leading concurrent search tree implementation. It has been compared in
[3] with SL, a lock-based red-black tree, and a red-black tree implemented using
STM. Since SL and AVL drastically outperform the red-black tree implementa-
tions, we have not included the latter in our comparison. In our experiments, the
BST and 4-ST (k-ST with k = 4) algorithms are top performers in both high and
low contention cases. We did not observe significant benefits when using values
of k > 4, but we expect this would change with algorithmic improvements to the
management of keys within nodes. This paper also provides the first performance
data for the BST of Ellen et al. [5].

The BST and k-ST are both unbalanced trees. All performance tests in this
paper use uniformly distributed random keys. If keys are not random then, in
certain cases, SL (which uses randomization to maintain balance) and AVL (a
balanced tree) will take the lead. Extending the techniques in this paper to
provide balanced trees is the subject of current work.

2 k-ary Search Trees

2.1 The Structure

We use a leaf-oriented, non-blocking k-ST to implement the set ADT. A set
stores a set of keys from an ordered universe. It does not admit duplicate keys.
Here, we define the operations on the ADT to be Find(key), Insert(key), and
Delete(key). The Find operation returns True if key is in the set, and False

otherwise. An Insert(key) operation returns False if key was already present
in the set. Otherwise, it adds key to the set and returns True. A Delete(key)
returns False if key was not present. Otherwise, it removes key and returns
True. The other implementations we compare to the k-ST and BST can addi-
tionally associate a value with each key, and it is a simple task to modify our
structure to do so (as discussed in [4]).

The k-ST is leaf-oriented, meaning that at all times, the keys in the set ADT
are the keys in the leaves of the tree. Keys in internal nodes of the k-ST serve
only to direct searches down the tree.
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Each leaf in a BST contains one key. Each internal node has exactly two
children and one key. In our k-ST, each leaf has at most k−1 keys. It is permitted
for a leaf to have zero keys, in which case it is said to be an empty leaf. Each
internal node has exactly k children and k − 1 keys. Inside each node, keys are
maintained in increasing order.

The search tree property for k-STs is a natural generalization of the familiar
BST property. For any internal node with keys a1, a2, ..., ak−1, sub-tree 1 (left-
most) contains keys a < a1, sub-tree k (rightmost) contains keys a > ak−1, and
sub-tree 1 < i < k contains keys a with ai ≤ a < ai+1.

2.2 Modifications to the Tree

We first describe a sequential implementation of the set operations, and subse-
quently transform it into a concurrent and non-blocking implementation. Since
the k-ST is leaf-oriented, the Insert and Delete procedures always operate
on leaves. Inserting a key into the set replaces a leaf by a larger leaf (with one
more key), or by a new sub-tree if the leaf is full (has k − 1 keys). Deleting a
key replaces a leaf by a smaller leaf (without the deleted key), or prunes the leaf
and its parent out of the tree.

More precisely, the operation Insert(key) first searches for key. If it is found,
the Insert returns False. Otherwise, it proceeds according to two cases as
follows (see Fig. 1). Let l be the leaf into which key should be inserted. If l is
full (has k− 1 keys) then Insert replaces l by a newly created sub-tree of k+1
nodes. This sub-tree consists of an internal node n whose keys are the k − 1
greatest out of the k − 1 keys in l and the new key key. The children of n are k
new nodes, each containing one of the k aforementioned keys. We call this first
type of insertion a sprouting insertion. Otherwise, if l has fewer than k− 1 keys,
Insert simply replaces l by a new leaf that includes key in addition to all of
the keys that were in l. We call this second type of insertion a simple insertion.

The operation Delete(key) first searches for key. If it is not found, then
False is returned. Otherwise, it proceeds according to two cases (see Fig. 1).
Let l be the leaf from which key should be deleted. If l has only one key and
the parent of l has exactly two non-empty children, then the entire leaf l can

Fig. 1. The four types of modifications performed on the tree by an insertion or dele-
tion. Asterisks indicate that nodes are newly created in freshly allocated memory.
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be deleted (since it will be empty after the deletion) and, because it has only
one non-empty sibling s, the parent node is no longer useful (since its keys
just direct searches). Thus, the Delete procedure simply replaces the parent
with s. We call this first type of deletion a pruning deletion. Otherwise, if l has
more than one key or the parent of l has more than two non-empty children,
Delete replaces l by a new leaf with all of the keys of l except for key.We call
this second type of deletion a simple deletion. Simple deletion can yield empty
leaves. However, with this insertion and deletion scheme an internal node always
has at least two non-empty children. Note that if Null were used instead of
empty children, then the ABA problem would occur on child pointers.

Note that a pruning deletion changes a child pointer of the grandparent of l to
point to l’s only non-empty sibling. To avoid dealing with degenerate cases when
there is no parent or grandparent of l, we initialize the tree with two dummy
internal nodes and 2k− 1 empty leaves at the top, as shown in Fig. 2(a). These
internal nodes will not be deleted or replaced by an insertion. When k = 2, our
algorithm is simply the BST of Ellen et al. [5], with some slight modifications,
where all insertions and deletions are sprouting insertions and pruning deletions,
except for an Insert into an empty tree and a Delete on the last key in a tree.

2.3 Coordination between Updates

Without some form of coordination, interactions between concurrent updates
would produce incorrect results. Suppose that a pruning deletion and a simple
insertion are performed concurrently in the 2-ary tree on the left in Fig. 2(b). If
the steps of the Insert(d) and Delete(b) are interleaved in a particular order,
key d may be inserted as a grandchild of p, and erroneously deleted along with b.

To avoid situations such as this, each internal node is augmented to contain
an UpdateStep object that indicates an operation has exclusive access to the

(a) (b)

Fig. 2. (a) The initial state of the k-ary search tree. The root and its leftmost child have
k−1 keys valued∞ (a special key, larger than any key in the set). All other children of
these nodes are empty leaves. Keys in the set are stored in the sub-tree rooted at the
leftmost grandchild of the root. (b) Example of the danger of uncoordinated concurrent
updates. Faintly shaded nodes are no longer in the tree. If gp’s right child is changed
to s by a Delete(b), and p’s left child is changed to l′ by a concurrent Insert(d), then
the new key d is lost.
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child pointers of a node. This coordination scheme extends the work of Ellen
et al. [5]. UpdateStep objects serve as something similar to locks, because all
processes operate under the following agreement. When an operation intends
to modify a child pointer of an internal node n, it first stores an UpdateStep
object at n (using CAS). An operation cannot store an UpdateStep at node
n if another operation x has already stored an UpdateStep at n, until x has
relinquished control of n. Thus, UpdateStep objects behave like locks that are
owned by an operation, rather than by a process, and this allows us to guarantee
the non-blocking property by using the helping mechanism described in Sec. 2.4.

UpdateStep objects are divided into Flags and Marks. A Flag is placed on
a node to reserve its child pointers for exclusive access, indicating that one
will be changed by an operation. A Mark is similar to a Flag except, where
a Flag is temporary (removed once a modification is completed), a Mark is
permanent, and is placed on a node that is to be removed from the tree. The
Mark permanently prevents the child pointers of the node from ever changing
after it is removed. The final type of UpdateStep object is the Clean object
which, if stored at a node x, indicates that no operation has exclusive access to
x, and any operation is allowed to store a Flag or Mark there.

The details of the Insert and Delete operations, including flagging and
marking steps, are as follows. In the following, l is the target leaf for insertion
or deletion of a key, p is its parent, and gp is its grandparent. A simple insertion
or simple deletion (see Fig. 1) creates the new leaf, flags p with a ReplaceFlag
object (with a Flag CAS ), changes the child pointer of p (with a Child CAS ),
and unflags p (with an Unflag CAS ) by writing a new Clean object. Similarly,
a sprouting insertion creates the new sub-tree, flags p with a new ReplaceFlag
object, changes the child pointer of p, and unflags p. A pruning deletion flags
gp with a PruneFlag object, then attempts to mark p with a Mark CAS. If
the Mark CAS is successful, then the child pointer of gp is changed, finishing
the deletion, and gp is unflagged. Otherwise, if the marking step fails, then the
Delete must unflag gp (with a Backtrack CAS ) and try again from scratch.

We now return to Fig. 2(b) to illustrate how flagging and marking resolves
the issue. After Delete(b) has successfully stored a PruneFlag at gp, it must
store a Mark at p. Say the Mark is successfully stored at p. Then it is safe to
prune l and p out of the tree, since no child pointer of p will ever change, and
l is a leaf (which has no mutable fields). Once l and p are pruned out of the
tree, gp is unflagged by an Unflag CAS that replaces the PruneFlag stored by
Delete(b) by a newly created Clean object. If Insert(a) subsequently tries to
change a child reference belonging to p, it will first have to store a ReplaceFlag at
p, which is impossible, since p is already marked. Otherwise, if the Mark cannot
be successfully be stored at p (because p is already flagged or marked by another
operation), then Delete(b) will execute a Backtrack CAS, storing a new Clean
object at gp (relinquishing control of gp to allow other operations to work with
it), and retry from scratch.
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2.4 Helping

To overcome the threat of deadlock that is created by the exclusive access that
flags and marks grant to a single operation, we follow the approach taken by
Ellen et al. [5], which has some similarities to Barnes’ cooperative technique
[1]. Suppose that a process P flags or marks a node hoping to complete some
tree modification C. The Flag or Mark object is augmented to contain sufficient
information so that any process can read the Flag or Mark and complete C on
P ’s behalf. This allows the entire system to make progress even if individual
processes are stalled indefinitely.

Unfortunately, while helping guarantees progress, it can mean duplication
of effort. Several processes may come across the same UpdateStep object and
perform the work necessary to advance the operation by performing some local
work, followed by a Mark CAS, Child CAS, or Unflag CAS, but only one process
can successfully perform each CAS, so the work performed by all other processes
is wasted. For this reason it is advantageous to limit helping as much as possible.
To this end, a search ignores flags and marks in our implementation, and proceeds
down the tree without helping any operation. An Insert or Delete helps only
those operations that interfere with its own completion. Thus, an Insert will
only help an operation that has flagged or marked p, and aDelete will only help
an operation that has flagged or marked p or gp (although they may help other
operations recursively). After an Insert or Delete helps another operation,
it restarts, performing another search from the top of the tree. An Insert or
Delete operation is repeatedly attempted until it successfully modifies the tree
or finds that it can return False.

1 � Type definitions:
2 type Node {
3 final Key ∪ {∞} a1, ..., ak−1

4 }
5 subtype Leaf of Node {
6 final int keyCount
7 }
8 subtype Internal of Node {
9 Node c1, ..., ck
10 UpdateStep pending

� (initially a new Clean() object)
11 }
12 type UpdateStep { }
13 subtype ReplaceFlag of UpdateStep {
14 final Node l, p, newChild
15 final int pindex
16 }

17 subtype PruneFlag of UpdateStep {
18 final Node l, p, gp
19 final UpdateStep ppending
20 final int gpindex
21 }
22 subtype Mark of UpdateStep {
23 final PruneFlag pending
24 }
25 subtype Clean of UpdateStep { }
26 � Initialization:
27 shared Internal root := the structure

described in Fig. 2(a), with the pending
fields of root and root.c1 set to refer to
new Clean objects.

Fig. 3. Type definitions and initialization

2.5 Pseudocode

Java-like pseudocode for all operations is found in Fig. 3 through Fig. 5. We
borrow the concept of a reference type from Java. Any variable x of type C,
where C is a type defined in Fig. 3, is a reference to an instance (or object) of
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type C. Such a variable x behaves like a C pointer, but does not require explicit
dereferencing. References can point to an object or take on the value Null, and
management of their memory is automatic: memory is garbage-collected once it
is unreachable from any executing thread. We use a.b to refer to field b of the
object referred to by a. We also adopt a Java-like definition of CAS: it atomically
compares a field R with an expected value exp and either writes a new value
and returns true (if R contains exp), or returns false (otherwise).

The Search(key) operation is straightforward. Beginning at the leftmost
child of root (line 29) and continuing until it reaches a leaf (line 32), it compares
its argument key with the key stored at each node and follows the appropriate
child reference (line 36), saving some information along the way. (The keys of
a node can be naively inspected in sequence because they never change.) The
Find(key) operation returns True if Search finds a leaf containing key; oth-
erwise it returns False. Find can actually call a highly optimized version of
Search, given in Appendix A (see [4]).

To perform an Insert(key), a process P locates the leaf l and its parent p,
and stores the parent’s pending field in ppending and the index of the child
reference of gp that contained p in pindex (line 49). If key is already in l, then
the operation simply returns False (line 50). Otherwise, P checks whether the
parent’s pending field was of type Clean when it was read (line 51). If not, then
p.pending was occupied by a Flag or Mark belonging to some other operation
x in progress at p. P helps x complete, and then re-attempts its own operation
from scratch. Otherwise, if p.pending was Clean, P tries to flag p by creating
newChild, a new leaf or sub-tree depending on which insertion case applies
(lines 54 to 58), creating the ReplaceFlag object op (line 59), and executing
an Rflag CAS to store it in the pending field of p (line 60). If the Rflag CAS
succeeds, P calls HelpReplace(op) to finish the insertion (line 62) and the
operation returns True. Otherwise, if the Rflag CAS failed, another process
must have changed p’s pending field to a ReplaceFlag object, a PruneFlag object,
a Mark object, or a new Clean object (different from the one read at line 49).
Process P helps this other operation (if not a Clean object) complete, and then
re-attempts its own operation. A call to HelpReplace executes a Child CAS
to change the appropriate child pointer of p from l to newChild (line 116), and
executes an Runflag CAS to unflag p (line 117).

When process P performs a Delete(key) operation, it first locates the leaf
l, its parent p and grandparent gp, and stores the parent’s and grandparent’s
pending fields in ppending and gppending, and the indices of the child references
of gp and p that contained p and l, respectively, in gpindex and pindex (line 78).
If l does not contain key, then the operation simply returns False (line 79).
Otherwise, P checks gppending and ppending to determine whether gp and p
were Clean when their pending fields were read (lines 80 and 82). If either has
been flagged or marked by another operation, P helps complete this operation
and re-attempts its own operation from scratch. Otherwise, it counts the number
of non-empty children of p to determine the deletion case to apply. We shall



214 T. Brown and J. Helga

28 Search(Key key) : 〈Internal, Internal,Leaf,UpdateStep,UpdateStep〉 {
� Used by Insert, Delete and Find to traverse the k-ST
� Search satisfies following postconditions:
� (1) leaf points to a Leaf node, and parent and gparent point to Internal nodes
� (2) parent.cpindex has contained leaf , and gparent.cgpindex has contained parent
� (3) parent.pending has contained ppending,

and gparent.pending has contained gppending
29 Node gparent, parent := root, leaf := parent.c1
30 UpdateStep gppending, ppending := parent.pending
31 int gpindex, pindex := 1
32 while type(leaf) = Internal { � Save details for parent and grandparent of leaf
33 gparent := parent; gppending := ppending
34 parent := leaf ; ppending := parent.pending
35 gpindex := pindex
36 〈leaf, pindex〉 := 〈appropriate child of parent by the search tree property,

index such that parent.cpindex is read and stored in leaf〉
37 }
38 return 〈gparent, parent, leaf, ppending, gppending, pindex, gpindex〉
39 }
40 Find(Key key) : boolean {
41 if Leaf returned by Search(key) contains key, then return True, else return False

42 }
43 Insert(Key key) : boolean {
44 Node p, newChild
45 Leaf l
46 UpdateStep ppending
47 int pindex
48 while True {
49 〈−, p, l, ppending,−, pindex,−〉 := Search(key)
50 if l already contains key then return False

51 if type(ppending) 	= Clean then {
52 Help(ppending) � Help the operation pending on p
53 } else {
54 if l contains k − 1 keys { � Sprouting insertion
55 newChild := new Internal node with pending := new Clean(),

and with the k − 1 largest keys in S = {key} ∪ keys of l,
and k new children, sorted by keys, each having one key from S

56 } else { � Simple insertion
57 newChild := new Leaf node with keys: {key} ∪ keys of l
58 }
59 ReplaceFlag op := new ReplaceFlag(l, p, newChild, pindex)
60 boolean result := CAS(p.pending, ppending, op) � Rflag CAS
61 if result then { � Rflag CAS succeeded
62 HelpReplace(op) � Finish the insertion
63 return True

64 } else { � Rflag CAS failed
65 Help(p.pending) � Help the operation pending on p
66 } } } }
67 Help(UpdateStep op) {

� Precondition: op 	= Null has appeared in x.pending for some internal node x
68 if type(op) = ReplaceFlag then HelpReplace(op)
69 else if type(op) = PruneFlag then HelpPrune(op)
70 else if type(op) = Mark then HelpMarked(op.pending)
71 }

Fig. 4. Pseudocode for Search, Find, Insert and Help
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72 Delete(Key key) : boolean {
73 Node gp, p
74 UpdateStep gppending, ppending
75 Leaf l
76 int pindex, gpindex
77 while True {
78 〈gp, p, l, ppending, gppending, pindex, gpindex〉 := Search(key)
79 if l does not contain key, then return False

80 if type(gppending) 	= Clean then {
81 Help(gppending) � Help the operation pending on gp
82 } else if type(ppending) 	= Clean then {
83 Help(ppending) � Help the operation pending on p
84 } else { � Try to flag gp
85 int ccount := number of non-empty children of p (by checking them in sequence)
86 if ccount = 2 and l has one key then � Pruning deletion
87 PruneFlag op := new PruneFlag(l, p, gp, ppending, gpindex)
88 boolean result = CAS(gp.pending, gppending, op) � Pflag CAS
89 if result then { � Pflag CAS successful–now delete or unflag
90 if HelpPrune(op) then return True;
91 } else { � Pflag CAS failed
92 Help(gp.pending) � Help the operation pending on gp
93 }
94 } else { � Simple deletion
95 Node newChild := new copy of l with key removed
96 ReplaceFlag op := new ReplaceFlag(l, p, newChild, pindex)
97 boolean result := CAS(p.pending, ppending, op) � Rflag CAS
98 if result then { � Rflag CAS succeeded
99 HelpReplace(op) � Finish inserting the replacement leaf
100 return True

101 } else { � Rflag CAS failed
102 Help(p.pending) � Help the operation pending on p
103 } } } } }
104 HelpPrune(PruneFlag op) : boolean { � Precondition: op is not Null

105 boolean result := CAS(op.p.pending, op.ppending, new Mark(op)) � Mark CAS
106 UpdateStep newV alue := op.p.pending
107 if result or newV alue is a Mark with newV alue.pending = op then {
108 HelpMarked(op) � Marking successful–complete the deletion
109 return True

110 } else { � Marking failed
111 Help(newV alue) � Help the operation pending on p
112 CAS(op.gp.pending, op, new Clean()) � Unflag op.gp � Backtrack CAS
113 return False

114 } }
115 HelpReplace(ReplaceFlag op) { � Precondition: op is not Null

116 CAS(op.p.cop.pindex, op.l, op.newChild) � Replace l by newChild � Rchild CAS
117 CAS(op.p.pending, op, new Clean()) � Unflag p � Runflag CAS
118 }
119 HelpMarked(PruneFlag op) { � Precondition: op is not Null

120 Node other := any non-empty child of op.p
(found by visiting each child of op.p), or op.p.c1 if none

121 CAS(op.gp.cop.gpindex, op.p, other) � Replace l by other � Pchild CAS
122 CAS(op.gp.pending, op, new Clean()) � Unflag gp � Punflag CAS
123 }

Fig. 5. Pseudocode for Delete, HelpPrune, HelpReplace and HelpMarked



216 T. Brown and J. Helga

explain why counting the children in sequence is not problematic when we discuss
correctness. We consider the two types of deletion separately.

If the operation is a simple deletion (line 94), it creates newChild, a new copy
of leaf l with key removed, and a new ReplaceFlag object op to facilitate helping
(line 96). Next, P attempts an Rflag CAS to store op in p.pending (line 97) and,
if it succeeds, it calls HelpReplace to finish the deletion (line 99). Otherwise,
if the Rflag CAS fails, P helps any operation that may be pending on p. After
helping, P retries its own operation from scratch. Note that, apart from the
creation of the new leaf, this is identical to simple insertion.

If the operation is a pruning deletion (line 86), P creates a PruneFlag ob-
ject (line 87), then attempts a Pflag CAS to store it in the pending field of gp
(line 88). If the Pflag CAS succeeds, P calls HelpPrune(op) to finish the dele-
tion (line 90) and the operation returnsTrue (more onHelpPrune later). Oth-
erwise, if the Pflag CAS fails, another process must have changed gp’s pending
field to a ReplaceFlag object, a PruneFlag object, a Mark object, or a new Clean
object (different from the one read at line 78). To help any other operation pend-
ing on gp to make progress, P calls Help(gp.pending) (line 92) before retrying
its own operation from scratch.

TheHelpPrune procedure, invoked by theDelete operation (and byHelp),
attempts the second (marking) CAS step of a pruning deletion. Recall that op,
created in the Delete routine, contains pointers to l, the leaf containing the key
to be deleted, its parent p, and its grandparent gp. The HelpPrune procedure
begins by attempting to mark the parent op.p (line 105). If the CAS successfully
marks op.p, or another helping process already stored a Mark for this opera-
tion, then the mark is considered to be successful. In this case, HelpMarked is
called to finish the pruning deletion (line 108), and True is returned. Otherwise,
if the CAS failed and the Mark was not already stored by a helping process, then
another operation involving op.p has interfered with the Delete. If the other
operation is still in progress, it is helped (line 111), and then the operation
backtracks, unflagging the grandparent op.gp (line 112), and HelpPrune re-
turns False. The process that invoked the Delete procedure will ultimately
retry the operation from scratch.

The HelpMarked procedure performs the final step of a pruning deletion,
pruning out some dead wood by changing the appropriate child pointer of op.gp
from op.p to point to the only non-empty sibling of op.l. This sibling of op.l is
found at line 120. (It is explained in Sec. 2.6 why this can be found simply by
visiting each child of op.p.) The CAS-Child routine is invoked to change the
child pointer of op.gp (line 121), and an Unflag CAS is executed to unflag op.gp
(line 122).

2.6 Correctness

It can be demonstrated that our algorithm exhibits linearizability (defined in
[11]), and the argument is very similar to the one made in the proof in [5]. We
simply give the linearization points of operations here. See [4] for the complete
proof of correctness. Consider some invocation of Search(key). It can be proved
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that each node visited by Search was on the search path for key in the tree at
some time during the execution of Search, so we linearize Search at a point
when the leaf it returns was on the search path. An invocation of Find(key)
is linearized at the point its corresponding Search was linearized. It can be
proved that each Insert or Delete invocation that returns True has executed
a successful Child CAS. An invocation of Insert(key) or Delete(key) that
returns True is linearized at this Child CAS ; an invocation that returns False
is linearized at the same point as the corresponding Search that discovered key
was already in the tree, or was not in the tree, respectively.

The k-ST algorithm differs significantly from the BST algorithm at lines 85
and 120, which both involve accessing several children in sequence. Let P be
a process executing line 85. We note that no flagging or marking has yet been
attempted by P , and the expected values to be used by the CASs at lines 88 and
97 were verified to be Clean a few lines prior. Further, if any process Q wants
to add or remove a key from a child x of p that P will read at line 85, it must
replace x, changing a child pointer of p. However, it must flag p to change its
child pointers, overwriting the Clean object that was read earlier by P to be
used as the expected value for its Flag CAS. It is easy to prove that there is
no ABA problem on pending fields, which implies that the expected value used
by P for the CAS can never appear in p.pending again, so P ’s CAS must fail,
and the operation will be retried. It can then be shown that if an operation op
successfully flags or marks p, ccount contains the number of non-empty children
of p until a Child CAS is executed for op, and that only the first Child CAS
will be successful (occurring immediately after line 120). Thus, it can be shown
that when line 120 is executed, the children of op.p are precisely op.l and one
other leaf, or else the Child CAS will fail, so the value of other is irrelevant.
This is rigorously demonstrated in the detailed proof of correctness presented in
Appendix A (see [4]).

3 Experiments

In this section we present results from experiments comparing the performance
of the BST of Ellen et al. [5], our k-ST algorithm, ConcurrentSkipListMap (SL)
of the Java class library and the lock-based AVL tree (AVL) of Bronson et al.
[3]. Experiments on each structure used put-if-absent and delete-if-present (set
functions), returning True if the operation could be completed, and False

otherwise. Preliminary experiments were run to tune the parameters of the final
experimental set to maximize trial length while keeping standard deviations rea-
sonable. The final experiments each consisted of selecting a particular algorithm
and executing a sequence of 17 three-second trials, in which a fixed number of
threads randomly perform Inserts, Deletes and Finds according to a desired
probability distribution (e.g., 5% Insert, 5% Delete, 90% Find), on uniformly
distributed random keys, drawn from a particular key range (e.g., the integers
from 0 to 106). The average throughput (operations per second) was recorded for
each trial, and the first few trials were discarded to account for the few seconds
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of “warm-up” time that the Java Virtual Machine (VM) needs to perform just-
in-time compilation and optimization. We observed that throughput stabilized
after the first three to five seconds of execution, so the first two trials (six sec-
onds) of each experiment were discarded. Garbage collection was also triggered
in between trials to minimize its haphazard impact on measurements.

Our experiments were run on a Sun machine at the University of Rochester,
with two UltraSPARC-III CPUs, each having eight 1.2GHz cores capable of
running 8 hardware threads apiece (totalling 128 hardware contexts), and 32GB
of RAM, running Sun’s Solaris 10 and the Java 64-bit VM version 1.6.0 21 (with
15GB initial and maximum heap sizes).

We call the probability distribution of Inserts and Deletes a ratio, and de-
note an experiment with x% Inserts, y%Deletes and (100−x−y)% Finds as,
simply xi-yd. We denote the key range of integers from 0 to 10x−1 by [0, 10x). The
experimental results we present herein used algorithms BST, 4-ST, SL and AVL,
key ranges [0, 102) and [0, 106) and ratios 0i-0d, 5i-5d, 8i-2d and 50i-50d. The key
ranges induce high and low levels of contention, respectively, with small trees in-
creasing the probability that operations on random keys will coincide. The four
ratios represent situations in which operations consist (1) entirely of searching,
(2) mostly of searching, (3) mostly of searching, but with far more Inserts than
Deletes, and (4) entirely of updates. Initially, each data structure was empty for
each trial, except when the ratio was 0i-0d, since that would mean performing all
operations on an empty tree. In this case, each structure was pre-filled at the be-
ginning of each trial by performing random operations in the ratio 50i-50d until
the structure’s size stabilized (to within 5% of the expected half-full). Additional
results, including more operation mixes and key ranges, and results from a 32-core
system at Intel’s Multicore Testing Lab can be found in [4]. For implementations
of the BST and k-ST, see [4].

We now discuss the graphs presented in Fig. 6. The [0, 102) key range repre-
sents very high contention. There were at most 102 keys in the set, and as many
as 128 threads accessing the tree. Under this load, BST was the top performer in
all experiments. The low degree of BST’s nodes permits many simultaneous up-
dates to different parts of the tree, and its simplicity offers strong performance.
4-ST matched BST’s performance in the 0i-0d and 8i-2d cases, indicating that,
in the absence of many deletions, it can perform just as well under extremely
high contention. For the other two ratios, 4-ST’s performance was similar to the
lock-free SL, surpassing AVL by a fair margin. BST scaled very well in all cases;
4-ST scaled equally well when deletions were few.

The [0, 106) key range represents low contention: with as many as one million
keys and only 128 threads, the chance of collisions in random keys is quite small.
With this level of contention, 4-ST exhibits strong performance, surpassing BST,
and the other algorithms. This is in line with expectations; as the size of the tree
increases, the higher degree of the 4-ST affords it a shallower depth, allowing
all operations to complete more quickly. Unlike the [0, 102) case, all algorithms
scale reasonably well in the [0, 106) case, approaching linear improvement in
throughput with an increase in the number of hardware threads.
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Fig. 6. Experimental results. Error bars are drawn to represent one standard deviation
from the mean. Columns display ranges from which random keys are drawn. Rows
display ratios of Inserts to Deletes to Finds. The y-axis displays average throughput
(millions of operations/sec.), and the x-axis displays the number of hardware threads.
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4 Conclusion and Future Work

BST has the greatest advantage in high contention settings. Its simplicity pushes
its performance beyond the other algorithms. As trees get larger and contention
decreases, 4-ST surpasses BST to become the top performer. Similar to 4-ST,
AVL also performs well as the size of the data structure increases. SL tends to
performs well when its set of keys is small.

AVL is a balanced tree, so it does some extra work in maintaining this prop-
erty. However, since our experiments insert random keys, 4-ST and BST also are
nearly balanced. In this experimental setting, the balancing work of AVL does
not pay off. In a situation where the keys inserted are not random, AVL would
have a significant advantage over 4ST and BST. Since in many cases BST and
4ST outperform AVL and SL by a fair margin, we believe that it may be possible
to add balancing and remain competitive, while offering a non-blocking progress
guarantee.

Acknowledgments. We thank Michael L. Scott for providing access to the
multi-core machine at the University of Rochester. Financial support for this
research was provided by NSERC. We also thank Eric Ruppert and Franck van
Breugel for their supervision and assistance in the preparation of this paper.
Finally, we thank the anonymous OPODIS reviewers for their comments.

References

1. Barnes, G.: A method for implementing lock-free data structures. In: Proc. 5th
ACM Symposium on Parallel Algorithms and Architectures, pp. 261–270 (1993)

2. Bender, M.A., Fineman, J.T., Gilbert, S., Kuszmaul, B.C.: Concurrent cache-
oblivious B-trees. In: Proc. 17th ACM Symposium on Parallel Algorithms and
Architectures, pp. 228–237 (2005)

3. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. In: Proc. 15th ACM Symposium on Principles and Practice of Parallel
Programming, pp. 257–268 (2010)

4. Brown, T., Helga, J.: Non-blocking k-ary search trees. Technical Report CSE-2011-
04, York University (2011), Appendix (with complete proof) and code available at
http://www.cs.toronto.edu/~tabrown/ksts/

5. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: Proc. 29th ACM Symposium on Principles of Distributed Computing,
pp. 131–140 (2010); Full version in Tech. Report CSE-2010-04, York University

6. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: Proc. 23rd
ACM Symposium on Principles of Distributed Computing, pp. 50–59 (2004)

7. Fraser, K., Harris, T.: Concurrent programming without locks. ACM Transactions
on Computer Systems 25(2), 5 (2007)

8. Fraser, K.A.: Practical lock-freedom. PhD thesis, University of Cambridge (2003)
9. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: Proc.
19th IEEE Symp. on Foundations of Computer Science, pp. 8–21 (1978)

http://www.cs.toronto.edu/~tabrown/ksts/


Non-blocking k-ary Search Trees 221

10. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: Proc. 22nd ACM Symposium on
Principles of Distributed Computing, pp. 92–101 (2003)

11. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems 12(3), 463–
492 (1990)

12. Sundell, H., Tsigas, P.: Scalable and lock-free concurrent dictionaries. In: Proc.
19th ACM Symposium on Applied Computing, pp. 1438–1445 (2004)

13. Valois, J.D.: Lock-free linked lists using compare-and-swap. In: Proc. 14th ACM
Symposium on Principles of Distributed Computing, pp. 214–222 (1995)



Probabilistic Compositional Reasoning
for Guaranteeing Fault Tolerance Properties

Jan Olaf Blech
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Abstract. We present a framework to formally describe system behavior and
symbolically reason about possible failures. We regard systems which are com-
posed of different units: sensors, computational parts and actuators. Considering
worst-case failure behavior of system components, our framework is used to derive
reliability guarantees for composed systems. The behavior of system components
is modeled using monad like constructs that serve as an abstract representation
for system behavior. We introduce rules to reason about these representations and
derive results like, e.g., guaranteed upper bounds for system failure. Our approach
is characterized by the fact that we do not just map a certain component to a fail-
ure probability, but regard distributions of error behavior. These serve as basis for
deriving failure probabilities.

1 Introduction

The need for analysis of failure probabilities arises in many domains connected to safety
critical embedded systems. Guaranteeing worst-case failure probabilities is an impor-
tant prerequisite for certification of safety critical systems.

In this paper we present a new framework to model systems and their failure behav-
ior. Our framework represents distinct parts of system behavior in an abstract monadic
[16] way. We allow the modeling of behavioral entities with probabilistic distributions
representing possible failures or uncertainties. When composing a system from dif-
ferent components, our approach allows modeling the propagation of failures through
components by monadic composition of behavior associated with the components.

The second ingredient of our framework comprises rules to reason about systems.
Our rules allow determining the semantic equivalence of systems and the reduction of
systems to other systems such that certain properties are guaranteed to be preserved.
The reduction of systems into simpler systems may be used to analyze and optimize
systems.

Our approach comprises the following characteristics that all together distinguish it
from existing approaches:

– Modeling of system behavior and possible faults using monad like constructs.
– Representation of uncertain/faulty behavior as distributions of possible behavior.
– Rules to reason about system behavior and distributions of values that appear in

this system.

The work presented in this paper presents a complete framework and a case studies.
The main intended purpose is the usage in safety critical industrial automation systems.

A. Fernández Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 222–234, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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1.1 Related Work

Early work establishing fault tolerance guarantees using theorem proving techniques
is presented in [10]. Based on a formalism using extended petri nets, properties of
(digital) hardware systems are shown. Furthermore, [13] describes work on guaran-
teeing fault-tolerance related properties using the PVS theorem prover. Here, systems
and constraints are ported and proved in PVS. The presented examples come from the
microprocessor and avionics domains.

Abstractions for reasoning about fault-tolerant systems in a higher-order theorem
prover are presented and discussed in [17]. The abstraction aims at facilitating and stan-
dardizing the use of formal methods, especially higher-order theorem provers. Abstrac-
tions for individual message passing, faults, fault-masking, and further communication
aspects are regarded.

Other early work comprises [2] which presents a Specification and Design Language
(SDL) based framework. Other related work for guaranteeing fault tolerant properties
using formal methods comprise the use of model-checking techniques [14] and con-
centrate on formal specification techniques [9]. The analysis of probabilistic system
behavior is the goal of probabilistic model-checkers, like PRISM [11].

Modeling and reasoning aspects about probabilistic programs have been extensively
studied in [12]. Here a language is introduced to describe probabilistic programs and
reasoning about programs has a strong connection to this language. Further work on
formal analysis of probabilistic systems has been done in the event-B context [7].

Like the work focused on theorem proving techniques, but unlike the (probabilistic)
model checking approaches, we have a strong focus on symbolic reasoning. Unlike the
existing theorem prover based work we have a strong focus on symbolically represent-
ing distributions of values and combining them. Handling errors and varying values as
distributions as we do in this work allows a much richer failure analysis than assigning
failure probabilities to distinct system components. For example, it allows the specifi-
cation and handling of ranges in which a deviation from an optimal value is acceptable.

The framework presented in this paper builds upon work for a monadic representa-
tion of probabilities in programs [1] and an application for the analysis of cryptographic
protocols [3]. Like in the analysis of cryptographic protocols, we regard possible com-
putations that are associated with certain distributions of values. Furthermore, we regard
rules that allow reasoning about sequences of such computations. In [3] and in this work
the use of a monadic representation was chosen because:

– It gives a syntactic representation of the semantics of non-deterministic systems.
This non-determinism can be “quantified” in the sense that different possibilities in
the system execution can be assigned to different probabilities. This is achieved in
combination with the use of distributions. Finally, it enables us to even specify an
infinite amount of possibilities and reason about probabilities by using continuous
probability distributions.

– The syntactic representation is well suited to match rules against and reason about
it in a symbolic way.

– As used in [3] and as a possible future extension this gives us the possibility to
reason about our system in an automatic or interactive way using, e.g., a higher-
order theorem prover.
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A future goal of our work is giving rise to certifying properties of systems in a scenario
similar to [5].

As an amendment to our work on guaranteeing distinct probabilities, patterns for
achieving fault tolerance have been extensively studied (e.g., [8]).

1.2 Overview

We present prerequisites like our monad and basic facts about probabilities in Section 2.
The modeling framework is presented in Section 3. Section 4 features the rules to reason
about system descriptions modeled in our framework. In Section 5 we present a case
study from the industrial control domain. Finally, Section 6 gives a conclusion.

2 Prerequisites

In this section we describe a monad like construct to formalize computations [1,3]. This
is needed to represent system behavior in a compositional way. The idea is to divide
system behavior into different computation steps which correspond to distinct system
components. These steps realize state transitions. Traditionally, a state comprises a kind
of memory, e.g., variables which are associated with values. Unlike this, in our work,
we consider states in which a variable is associated with a probabilistic distribution of
possible values rather than a single value. Furthermore, we present some probabilistic
background knowledge.

Distributions. Distributions may be either discrete or continuous. For a finite type T the
(discrete) uniformly random distribution is denoted $T . For a given value val associated
with a type T the distribution that contains just this value (probability 100 percent) is
denoted UT (val). We omit the T if the type is obvious from the context.

In the case of discrete distributions, the distribution can be regarded as a function
that maps an element to its probability. For a given discrete distribution, the probability
of an element x from D is denoted D(x).

For the non-discrete case, PD denotes the density function of the distribution D.
Assuming a total order on the elements of D, the probability of all elements in D that
are less or equal than x is denoted PD(x), In the case of normal distributions we use
N (μ, σ2) for a normal distribution with mean μ and variance σ2.

Monads and their composition. In our formalization, behavior is formalized using ab-
stract computations. These are based on the abstract computation monad (cf. [1,3]) used
for representing the changes of variable distributions. Here, we use a slightly adapted
definition:

Definition 1 (Abstract Computation). For a set of variables V an abstract computa-
tion MV is defined by two functors unit and bind.

unit : (V → CV ) → MV bind : MV → V → U → MV

unit comprises a set of initial variables distributions: (V → CV ) is a mapping from
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variable names of type V to their distributions of type CV . bind comprises an ab-
stract computation, an update set of variables of type V : V and a set of updates U .
The update set contains all variables that have to be updated. An update is a tuple:
(V × ((V → ValV ) → DV ))

It comprises a variable to be updated of type V and a function that takes a map-
ping from variables of type V to values of type ValV and returns a distribution of type
DV .

The unit constructor formalizes initial variable distributions. A bind is a single distinct
computation step: The variable to distributions mapping resulting from evaluating the
abstract computation (first argument of bind) is taken and for all variables in the update
set (second argument of bind) the appropriate update function (in the third argument of
bind) is performed resulting in new distributions for these variables.

Example. The semantics of the term

bind (bind (unit {(v �→ $Tv )}) {v} {(v, v �→ UTv (f(v)))} ) {v} {(v, v �→ UTv (g(v)))}

is that a value is drawn from a uniformly distributed distribution $Tv . A function is
applied to this value, thus obtaining f(v). and a distribution is made of this inner bind
statement. In the next step a value is drawn from this distribution (associated with vari-
able v) and a function g is applied to it. The entire term again denotes a distribution.
v �→ D is used to denote a function that maps a variable v to a distribution D.

If f and g are permutations the resulting distribution will be again uniformly dis-
tributed. In the remainder of this paper the “,” is used to denote monadic composition
of terms composed of bind and unit.

As a second example, we present an equation: a value is drawn from a distribution
and one builds a new distribution that contains just this value. This denotes the original
distribution:

(v,D), (v,UTv (v)) = (v,D)

Events and Probabilities. We define probabilistic events on abstract computations.
Events take values associated with variables val1, ..., valn and return a truth value:

Definition 2 (Event). An event E is a function:
E(valv1 , ..., valvn) → {true, false}

with v1, ..., vn ∈ V and valv1 ∈ Tv1 , ..., valvn ∈ Tvn .

An Event E can be applied to an abstract computation C thereby specifying a value
between 0 and 1 stating the probability that E does hold after the computation of C.
We denote this: Pr([C]E) ∈ [0, 1].

Example. An event that states that a value drawn from a boolean distribution associated
with a variable b is true is formalized as b = true. The probability of this event for a
uniform boolean distribution:

Pr([(b, ${true,false})](b = true)) = 0.5
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3 Our Modeling Framework

In this section we describe the framework for specification of systems using abstract
computations from Section 2.

3.1 Monadic Representation of Probabilistic Systems

Complex systems composed of different components can be described with abstract
computations. The components are modeled as functions that take some values bound
to distinct variables and map them to their distributions.

Different components realizing a certain behavior may be modeled independently.
They may be composed so that a system description can be realized. In the industrial
automation domain – which we focus on – typical components for modeling systems
comprise sensors, actuators, and plain computations. Sensors and actuators comprise
a distinct failure behavior which can be modeled by using distributions. Computations
may also be formalized in a way that they are associated with a failure behavior. This
can be used, e.g., to model potential failures in the underlying hardware.

We give a small overview on modeling system behavior using our formalism.

Sequential Composition. Given two system components A and B performing a certain
task and formalized using our abstract computation. To activate A and B sequentially
we may combine them using standard monadic composition:

A , B

A gets executed before B and all values computed in A are accessible in B.

Parallel Composition. Two componentsA, B can be combined in parallel composition.
This is denoted:

(
A
B

)

A and B should not depend on each other, i.e., no write access to a value which is used
by the other component. Thus, it is possible to linearize parallel composition to:

A , B or B , A

Conditional Structures. Conditional structures depending on an expression e can be
realized in a straightforward way:

if e then A1, ..., An else B1, ...Bn

Distributions of variables’ values can be effected in different ways by different branches
of conditional expressions. For this reason, rather complex definitions of distributions
may occur due to conditional structures.
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Looping Structures. Given a loop body A, looping structures may be formalized in the
following way, resembling process algebras:

L := A , L

Our framework bears some similarity to the way one describes Programmable Logic
Controllers (PLCs) by, e.g., using the IEC-61131–3 standard [15]. It is intended to be
an extension of the property certification proposed in [4] for PLCs.

3.2 An Example

Here we present a generic example that realizes a composed component made from
sensors and a computation.

voter

sensor 1

sensor 2

sensor 3

Value

Fig. 1. Voting Example

The example system in Figure 1 realizes a voting. This is a fault tolerance mecha-
nism that aims at eliminating errors occurring in individual components by replicating
them. In our case a sensor is replicated. One physical value x is read by three different
sensors. Each of these sensors may read a wrong value: some noise is added to x which
corresponds to the distribution NE and is associated with the variable names e1, e2 and
e3. Thus, this noise is independent for each sensor. The voting reads the three sensor
values v1, v2, v3 and can, e.g., be realized by computing the arithmetic mean r.

voter mean(x) ≡
⎛
⎝

e1,NE

e2,NE

e3,NE

⎞
⎠ ,

⎛
⎝

v1,UT (x+ e1)
v2,UT (x+ e2)
v3,UT (x+ e3)

⎞
⎠ , (r,UTr

(
v1+v2+v3

3 )
)

An alternative realization – in the case of discrete noise given by the distribution E
– is given below:

voter 2 (x) ≡
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⎛
⎝

e1, E
e2, E
e3, E

⎞
⎠ ,

⎛
⎝

v1,UT (x + e1)
v2,UT (x + e2)
v3,UT (x + e3)

⎞
⎠ , (r,UTr

⎛
⎜⎜⎝

if v1 = v2 then v1
if v1 = v3 then v1
if v2 = v3 then v2

else v3

⎞
⎟⎟⎠)

Here we compare the values from the three different sensors. If two are equal we re-
turn one of these equal values. If all three are different, we return the value of the third
sensor.

4 Deductive Rules

We have established rules to reason about system descriptions which are based on ab-
stract computations. Two goals can be distinguished:

– Rules that transform system descriptions into other system descriptions. A special
case of transformation rules perform semantically equivalent transformations.

– Rules that allow reasoning about probabilities of certain events. Some of these rules
allow the transformation of systems with respect to certain events.

4.1 Soundness and Semantics of Rules

Our abstract computations represent both: system components and a semantical repre-
sentation of them. Further elements that carry semantical meaning are the application
of an event to an abstract computation and the probability function Pr. For this reason,
proving soundness of our rules to reason about abstract computations does not need
to take a transformation between syntax and semantics into account. In order to prove
soundness one proves that certain semantical aspects are preserved during a rule appli-
cation. In particular our rules are proven sound with respect to the following notions of
correctness:

– Rules that transform system descriptions into other system descriptions: These rules
have the following form:

AbstractComputation(val1, ..., valn)

additional assumptions (val1, ..., valn, val′1, ..., val
′
n) �

AbstractComputation′(val′1, ..., val
′
n)

Soundness of such a rule is established by proving the following lemma:

∀ E val1 ... valn val′1 ... val
′
n ε.

additional assumptions (val1, ..., valn, val′1, ..., val
′
n) ∧

Pr([AbstractComputation(val1, ..., valn)]E) = ε
−→

Pr([AbstractComputation′(val′1, ..., val
′
n)]E) = ε

Thus, our notion of correctness states that the probability of all possible events is
preserved while transforming an abstract computation. We use � in this paper to
denote probability preservation for all possible events.

– Rules that allow reasoning about probabilities of certain events directly correspond
to a lemma stating a fact on abstract computations.

Rules are applied by matching the bottom part of the rule to a system description and
event. The application reduces the expression to the upper part of the rule.
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4.2 Basic Rules

Here we present basic rules to handle system descriptions within our framework. Their
soundness is proved in our scheme by using the properties of abstract computations.

Function Propagation Rule. We have established rules to reason and simplify our
monadic system descriptions. Simple rules comprise, e.g., function propagation.

∀i ≤ m,x′
i �= x′ (x′′,UT (g(f(x1, ..., xn), x

′
1, ...x

′
m))) �

(x′,UT (f(x1, ..., xn))) , (x
′′,UT (g(x

′, x′
1, ..., x

′
m)))

Omitting Unused Parts Rule. Unused parts of an expression may be omitted.

∀i ≤ n, x′
i �= x

(x,X ′(x′
1, ..., x

′
n)) �

(x,X(x1, ..., xn)) , (x,X
′(x′

1, ..., x
′
n))

This rule performs a kind of dead-code elimination

Congruence Exchange Rule. Semantical equivalent parts may be replaced by each
other.

A,B,C B � B′
�

A,B′, C

Permutation Rule. Parts may be permuted if they do not depend on each other.

∀i ≤ n, xi �= x

∀i′ ≤ m,x′
i �= x′

(x,X(x1, ..., xn)) , (x
′, X ′(x′

1, ..., x
′
m)) �

(x′, X ′(x′
1, ..., x

′
m)) , (x,X(x1, ..., xn))

4.3 General Rules Relating Events and Probabilities

The following rules bridge the gaps between abstract computations, events and proba-
bilities. Soundness is established by using the definitions from Section 2.

Event Approximation for Continuous Distributions Rule. The following rule allows
the numerical approximation of a probability. Given the continuous distribution D, its
probability density function PD and an order on the elements with this distribution
≤. We can use an approximation of PD : PA in order to guarantee a certain maximal
probability of an event that checks whether a certain value drawn from D is below some
upper bound a.

∀ v .PD(v) ≤ PA(v) PA(a) < ε

Pr([(x,D)](x ≤ a)) < ε
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We can use this rule to simplify expressions and leave the subgoal PA(a) < ε for
numerical approximation. Similarly the following rule holds:

∀ v .PA(v) ≤ PD(v) 1− PA(a) < ε

Pr([(x,D)](x ≥ a)) < ε

Note that for the first rule the approximation
∫∞
−∞ PA(v) dv will be greater or equal

than 1 while in the second rule it while be smaller or equal than one. This is ensured by
the first condition in both rules.

Range Event Splitting Rule. The following rule may be used to split an event stating
that a variable is outside a certain range into two independent subevents.

Pr([(x,D)](x ≥ a)) < ε1 Pr([(x,D)](x ≤ b)) < ε2

Pr([(x,D)](x ≥ a ∨ x ≤ b)) < ε1 + ε2

4.4 Rules for Normal Distributions

Here we present a few rules valid for normal distributions. Their soundness can be
easily proven since they correspond to well known facts about normal distributions.

Normal Distribution Rule. We have established a rule for combining values originating
from different normal distributions N (μi, σ

2
i ) .

(x′,N (μ1 + ...+ μn, σ
2
1 + ...+ σ2

n)) �⎛
⎝

x1,N (μ1, σ
2
1)

...
xn,N (μn, σ

2
n)

⎞
⎠ , (x′,UT (x1 + ...+ xn))

Normal Distribution Probability Event Rule. Another rule relates normal distributions,
events, and probabilities.

Pr([(x,N (μ, σ2))](x ≤ μ− a)) < ε a ≤ σ σ ≤ σ′

Pr([(x,N (μ, σ′2))](x ≤ μ− a)) < ε

It corresponds to standard facts on normal distributions. Likewise the following rule
holds.

Pr([(x,N (μ, σ2))](x ≥ μ+ a)) < ε a ≤ σ σ ≤ σ′

Pr([(x,N (μ, σ′2))](x ≤ μ+ a)) < ε

These rules relate abstract computations with typical events that check whether a nor-
mally distributed variable has a value in a certain range. Their correctness is established
by looking at the probability density function for the normal distribution,

PN (x) = 1
σ
√
2π

exp
(
− 1

2

(
x−μ
σ

)2)

its derivation and especially the points μ− σ and μ+ σ.
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Voting Abstraction Rule. A specialized rule for simplifying the semantics of voting can
be established. Setups containing a voting computing the mean of several values which
may be influenced by N distributed errors can be simplified by using the following rule:

((e,N (μ1+...+μn

n ,
σ2
1+...+σ2

n

n2 )) , (r,UTr (x + e)))
�⎛

⎝ e1,N (μ1, σ
2
1)

...
en,N (μn, σ

2
n)

⎞
⎠ ,

⎛
⎝ v1,UT (x + e1)

...
vn,UT (x + en)

⎞
⎠ , (r,UTr

(
v1+...+vn

n )
)

The soundness of this rule is derived from the Normal Distribution Rule and the
Function Propagation Rule.

Additional Rules and Approximations. Our presented rules may be used to perform
simplifications in order to discover a certain correctness result. Additionally, after these
simplifications we may use numerical methods, e.g., to approximate probabilities of
expressions that are not easily handled in an algebraic way.

5 Case Study

In this case study we regard a work piece on a conveyor belt. Actuators and sensors are
used to bring it close to a desired position. A version of the voting element (cf. Sec-
tion 3.2) with two sensors is used in our case study:

vote2(x) ≡(
e1,N (μE , σ

2
E)

e2,N (μE , σ
2
E)

)
,

(
v1, x+ e1
v2, x+ e2

)
, (r,UTr

(
v1+v2

2 )
)

In the actual case study a work piece is put on a conveyor belt. Our goal is to bring
this work piece close to a position p. We can measure the position x on the conveyor
belt by using two sensors. The sensors can be influenced by normal distributed errors.
We can activate the conveyor belt to adjust the position. This repositioning will also be
influenced by some possible error.

Our conveyor belt case study is shown in Figure 2. In our formalism it is described as
shown in Figure 3. The following sequence is performed two times in order to achieve
a good positioning of the work piece:

position on conveyor belt

sensor 1

sensor 2

mean actuator

sensor 1

sensor 2

mean actuator

time

x

Fig. 2. Conveyor belt control
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conv belt(x, p) ≡
(
e1,N (μE, σ

2
E)

e2,N (μE, σ
2
E)

)
,

(
v1, x+ e1
v2, x+ e2

)
, (r,UTr

(
v1+v2

2
)
)
, (p′,UT (p− r)) ,

(e,N (μ′
E , σ

′2
E )), (x,UT (p

′ · (1 + e))) ,

(
e1,N (μE , σ

2
E)

e2,N (μE , σ
2
E)

)
,

(
v1, x+ e1
v2, x+ e2

)
,

(r,UTr

(
v1+v2

2
)
)
, (p′,UT (p− r)) , (e,N (μ′

E , σ
′2
E )), (x,UT (p

′ · (1 + e)))

Fig. 3. Conveyor belt control (formal description)

– We read the value of the work piece via two different sensors. The value of the
position of the work piece x may be effected by N (σE , σE) distributed sensor
errors e1, e2 while reading them with the sensors. The sensors write the values
which they have read to variables v1, v2. We perform a mean voting on their results
and store it in a variable r.

– We activate the conveyor belt in order to move the work piece close to p by giving
it p− r as repositioning information.

– The conveyor belt is not necessarily moved exactly by the requested distance, but
again, the actuator introduces an error which is N (σ′

E , σ
′
E) distributed.

Our goal is to ensure that the conveyor belt will be in a close range to a distinct position
p with a certain probability. We are interested in questions like: what is the probability
that the difference between optimal and actual position is smaller than a given constant
l: p− x < l:

Pr([conv belt(x, p)](l ≤ p− x)) < ε

The maximal probability that this is not the case shall be ε.
In order to do so, we apply our rules defined in Section 4 to the system definition.

The goal is to derive the distribution of p once the system has reached its terminal state.
In a first step, we simplify the voting of the sensors (Congruence Exchange, Voting
Abstraction, Permutation, associativity of monads). Thus, we derive the following sim-
plified system description:

(r,N (x + μE ,
σ2
E

2 )) , (p′,UT (p− r)) , (e,N (μ′
E , σ

′2
E )) , (x,UT (p

′ · (1 + e))) ,

(r,N (x + μE ,
σ2
E

2 )) , (p′,UT (p− r)) , (e,N (μ′
E , σ

′2
E )) , (x,UT (p

′ · (1 + e)))

This can be further simplified (Congruence Exchange, Function Propagation):

(r,N (x + μE ,
σ2
E

2 )) , (e,N (μ′
E , σ

′2
E )) , (x,UT ((p− r) · (1 + e))) ,

(r,N (x + μE ,
σ2
E

2 )) , (e,N (μ′
E , σ

′2
E )) , (x,UT ((p− r) · (1 + e)))

We do not touch the expression containing the product of normal distributed
variables.

Since the initial position x and p are known, at this stage one can numerically handle
the expression in order to convince oneself that numerical constraints on these dis-
tributions are met. Computer algebra systems allow for an over-approximation of the



Probabilistic Compositional Reasoning for Guaranteeing Fault Tolerance Properties 233

distribution above. Thus, one can apply the Event Approximation for Continuous Dis-
tributions Rule and ensure that the given failure probability ε is met.

Furthermore, given the expression above one can consider possible optimization al-
ternatives, like, e.g., updating the sensors or actuators so that they feature a better error
distribution. Another optimization possibility would be to replicate the sensor- actuator
part another time. One can numerically recalculate the the results and convince oneself
that they meet a certain ε.

6 Conclusion

We propose a framework to specify systems and their behavior and possible divergences
that might occur in these systems. Our framework is build upon a monadic represen-
tation of execution steps which allows the representation of possible errors and their
probabilities. A rule based logic is presented to reason about our system description and
perform algebraic simplifications. Ultimately we derive guarantees for the system de-
scription. Our rules encapsulate common tasks, reasoning is not limited to these rules. In
particular we allow numerical approximations. We present two case studies to demon-
strate possible usage scenarios of our framework.

Future Work. As a long term goal, our framework is intended to be used with the
Coq [6] theorem prover. Depending on the usage scenario, an implementation in another
verification / analysis tool might also be an option. Currently we are also looking at
additional case studies.

Acknowledgment. This work has been supported by the European research project
ACROSS under the Grant Agreement ARTEMIS-2009-1-100208.
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Abstract. This paper presents and proves correct two self-stabilizing determinis-
tic algorithms solving the mutual exclusion and the group mutual exclusion prob-
lems in the model of population protocols with covering. In this variant of the
population protocol model, a local fairness is used and bounded state anonymous
mobile agents interact in pairs according to constraints expressed in terms of their
cover times. The cover time is an indicator of the “time” for an agent to commu-
nicate with all the other agents. This indicator is expressed in the number of the
pairwise communications (events) and is unknown to agents. In the model, we
also assume the existence of a particular agent, the base station. In contrast with
the other agents, it has a memory size proportional to the number of agents. We
prove that without this kind of assumption, the mutual exclusion problem has no
solution.

The algorithms in the paper use a phase clock tool. This is a synchronization
tool that was recently proposed in the model we use. For our needs, we extend
the functionality of this tool to support also phases with unbounded (but finite)
duration. This extension seems to be useful also in the future works.

Keywords: distributed algorithms, mobile agent networks, population protocols,
cover times, self-stabilization, synchronization, (group) mutual exclusion.

1 Introduction

Population protocols is an elegant communication model [2] specially designed for
large cheap sensor networks with resource-limited mobile agents. In the original model,
each agent is represented by a finite state machine. Agents are anonymous and move in
an asynchronous way. When two agents come into range of each other (meet), they can
exchange information (communicate). It is important to note that in this model, a type
of global fairness condition (in the sense of, e.g., [3, 17]) is imposed on the scheduler.
According to this condition, a configuration that can be reached infinitely often during
the execution is reached infinitely often. This is in contrast to a weaker type of con-
dition called local fairness which is generally assumed in the theoretical literature on
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distributed computing. Informally, with local fairness, in an infinite fair execution, each
agent satisfying certain conditions is given a turn infinitely often. In contrast to local
fairness, global fairness brings an effect of randomization of the scheduling and hence
has the ability to circumvent many impossibility results. For example, self-stabilizing
algorithms which are proved correct in [3] will fail if local fairness is assumed (refer to
[3, 17] for examples and a more detailed discussion on fairness).

In the considered model of population protocols with covering [8], a type of local
fairness is used. According to this fairness, there is an indicator called cover time as-
sociated to each agent. A cover time of an agent x, cvx, is the minimum (unknown
to agents) number of global pairwise interactions (or events) that should happen in the
system for being certain that x has met each other agent. A scheduler schedules the next
event according to the cover times of agents. Even though this type of the local fairness
condition seems relatively strong, many problems stay impossible to solve in such a
model (see, e.g., [6, 9]). In this work, we prove a similar impossibility result stating that
in the model with only bounded state agents, mutual exclusion has no solution (Sec. 6).
This result can be easily extended to the group mutual exclusion problem as well. For
circumventing the impossibility result, as in [6, 9, 10], we introduce a special agent, the
base station (BS). We assume that BS has a memory size proportional to the number of
the other system agents.

Like in the original model of population protocols [2], we assume that the number of
agents in a system is unknown, that the agents, except BS, are anonymous (no identi-
fiers, uniform code) and have only a few bits of memory (independent of the number of
agents). As in [2], we assume a complete communication topology, where each agent
has the ability to communicate sometime with any other agent.

We note that the fairness condition expressed in terms of the bounded cover times is
supported by recent experimental and analytical studies. The assumption that an agent
communicates with all other agents periodically, within a bounded period of real time,
has been experimentally justified for some types of mobility such as the human or an-
imal mobility within a bounded area or mobility with “home coming tendency” (the
tendency to return periodically to some specific places, e.g., agents’ homes). In these
cases, a statistical analysis of experimental data sets confirms this assumption. These
data sets concern students in a campus [1, 24], participants in a network conference
[25], visitors at Disney World and more. All exhibit the fact that the Inter Contact Time
(ICT - the time period between two successive contacts of the same two mobile agents)
follows a so called truncated Pareto distribution [11, 20, 23]. In particular, this involves
that ICT is practically bounded. Thus, ICT is also bounded when measured in the num-
ber of events. In our model, the cover time of an agent can be expressed in terms of
ICTs. Hence, a cover time can be indeed bounded in practice.

The algorithms presented in this paper are self-stabilizing [14]. Such algorithms have
the important property of operating correctly (except for some finite period), regardless
of their initial configuration. In practice, self-stabilizing algorithms adjust themselves
automatically to any change or corruption of the network components (excluding the
algorithm’s code). Those changes are assumed to cease for some sufficiently long time.
Self-stabilization is considered here for two reasons. First, mobile agents are generally
fragile, subject to failures and hard to initialize. Second, systems of mobile agents are by
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essence dynamic, some agents may leave the system while new ones can be introduced.
Self-stabilization is a well adapted framework for dealing with such situations.

In this paper, for the model of population protocols with covering, we present self-
stabilizing deterministic solutions for two basic and classical problems in distributed
computing, mutual exclusion [21, 26] (Sec. 4) and group mutual exclusion - GME
[18, 22] (Sec. 5). Self-stabilizing mutual exclusion in population protocols has been
addressed in [3] and in [12]. In [3], a solution is given for Dijkstra-style token circula-
tion in oriented ring communication topology and assumes global fairness (it does not
work in the considered case of local fairness). In [12], a deterministic solution assum-
ing local fairness is given. However, it uses strong schemes of “mobile agents” and of
oracles. In [6], a simple self-stabilizing algorithm for GME is proposed for the same
model as here. However, in this solution, agents can spend only some bounded prede-
fined period in the critical session (CS). This is in contrast with the classical definition
of GME, according to which they are allowed to spend an unbounded but finite amount
of time in CS. Refer to Sec. 2.3 for the specifications we consider for mutual exclusion
and for GME.

We design our algorithms in combination with the phase clock tool proposed in [6].
This synchronization tool provides an easy way to organize protocol execution into
phases. However, the tool in [6] allows to define and run only phases with bounded
duration. In order to be able to grant to an agent an unbounded (but finite) amount of
time in CS, we extend the phase clock with the mechanism allowing it to manage also
the unbounded duration phases (Sec. 3).1

The technique we use for stabilizing the algorithms is similar to the one used in
[5, 15]. The variables of the algorithm are regularly reset to predetermined values and
an instance of a protocol is repeatedly executed. Note that the automatic self-stabilizing
transformer of [9], which uses the same technique, cannot be useful here, because it
applies only to static problems.

The problems are not as simple as they appear at first sight, because of the self-
stabilization requirement, unknown population size, asynchrony and the anonymity of
agents, in particular, when fairness of access to a resource is concerned.

2 Model and Problem Specifications

Basically, the model is as in [2], with the addition of the cover times (Sec. 2.2) and BS.

2.1 Transition System

Let A be the set of all the agents in system S, where the (population) size of S is
|A| = n, and n is unknown to agents. Among the agents, there may be a distinguish-
able one, the base station (BS), which is said non-mobile2 (and which can have an
unbounded memory in contrast with the other agents). All the other agents are bounded
state, anonymous (have uniform codes and no identifiers) and are referred as mobile.

1 Note however that this extension does not imply an automatic or easy extension of the GME
solution in [6], mainly due to the requirements of CS access fairness in GME.

2 If BS is actually mobile, it will not change the analysis in this paper.
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Population protocols can be modeled as transition systems. We adopt the common
definitions of the following: state of an agent (a vector of the values of its variables),
configuration (a vector of states of all the agents), transitions (possible atomic steps
of agents and their associated state changes), execution (a possibly infinite sequence of
configurations in which each element follows its predecessor by a transition). For the
formal definitions, refer, e.g., to [26]. We refine and add some terms below.

A local transition system of an agent x is defined by a set of states and a set of
transitions between states.

An event (x, y) is a pairwise communication (meeting) of two agents x and y. During
an event, a transition of the form (πx, πy) → (π′

x, π
′
y) is executed, where πx and πy

are the states of x and y before the event, and π′
x and π′

y are the states of x and y
after the event (the states after the event may not change). We assume symmetrical
communication during (x, y), and (x, y) is an unordered pair. However, the results in
the paper can be adapted to asymmetrical communications, in which the state of only x
(or y) is modified during an event (x, y).

We extend the transitions between states to configurations as follows. Without loss
of generality and as in [2], we assume that no two events happen “simultaneously”.
Then, there is a transition between two configurations C and C′, iff there is a transition
(πx, πy) → (π′

x, π
′
y), from C and resulting in C′, for some two agents x and y, and

such that the states of all the other (than x and y) agents are identical in C and C′. Note
that each execution corresponds to a unique sequence of events.

Intuitively, it is convenient to view executions as if a scheduler (an adversary)
”chooses” which two agents participate in the next event. Formally, a scheduler D is
a predicate on the sequences of events. A schedule of D is a sequence of events that
satisfies predicate D. To each schedule s corresponds a unique execution of the system
(if it is deterministic, and possibly several executions, if it is not). We say that this (or
these) execution(s) is (are) induced by the schedule s. Let a period or a segment of a
schedule (or of an execution) s be any consecutive sequence of events.

For some l (∈ N0) and agent x, let l local events at x, denoted [l]x, be l consecutive
(from x’s “point of view”) events in which agent x participates. This stands in contrast
to l global events (or just events) which are l consecutive events in an execution. Note
that if [l]x events occurred, then at least l global events occurred.

As in [26], a specification P of a problem is a predicate on the executions. We say
that a system (algorithm) S solves a specification P , iff any execution of S satisfies P .

A transition system (or an algorithm) is said to be self-stabilizing for a specification
P iff there exists a subset of the set of configurations, called legitimate configurations,
such that starting from an arbitrary configuration, any execution reaches a legitimate
configuration and any execution starting from a legitimate configuration satisfies P .
When an execution reaches a legitimate configuration, we say that a system (algorithm)
stabilizes for P or just that stabilization has occurred. The maximum number of events
until stabilization is the stabilization time of the protocol. More formal definitions can
be found in [26].
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2.2 The Cover Time Property (Covering)

Definition 1. Given a system S with n agents, a vector cv = (cv1, cv2, . . . , cvn) of
positive integers (the cover times) and a scheduler D, D (and any of its schedules) is
said to satisfy the cover time property for cv (in S), if and only if any segment of cvi

(∀i : i ∈ {1 . . .n}) consecutive events of each schedule of D contains at least one event
of an agent xi with every other agent.
• Any execution of S under such a scheduler is said to satisfy the cover time property
for cv.
• The minimum cover time value in cv is denoted by cvmin and the maximum one by
cvmax. A fastest / slowest agent x has cvx = cvmin / cvx = cvmax.

Note that agents are not assumed to know cover times. They are (usually) unable to
store them as their memory is bounded (note that each cover time depends on n).

During the analysis, we consider all the executions that satisfy the cover time prop-
erty for a given vector of cover times. However, for some vectors of cover times,
there is no schedule satisfying the cover time property (take, for instance, the vector
(4, 6, 11, 11)). A vector of cover times cv is acceptable if and only if there exists at
least one schedule satisfying the cover time property for cv. In the sequel, we will only
consider acceptable vectors of cover times.

Remark 1. Let cv be a vector of cover times in system S. Assume that in S, there exists
a schedule s of length cvmin containing at least once every possible event. Then, the
infinite schedule s∞ resulting from the infinite iteration of s satisfies the cover time
property of S.

In our algorithms, for the purpose of event counting and for being able to use the phase
clock tool from [6], BS should be able to estimate the upper bounds on the values of
cvmin and cvmax in the system. The self-stabilizing algorithms that estimate cvmin

and cvmax are presented in [9]. They are executed at BS and stabilize in O([cvmin]
BS)

events. We assume that those algorithms provide the upper bounds of cvmin and cvmax

in variables cv∗
min and cv∗

max respectively.

2.3 Specifications

2.3.1 The Mutual Exclusion Problem
We adopt here the presentation of the mutual exclusion problem in [21]. Thus, it is as-
sumed that each mobile agent has a section of code programmed to use some shared
resource. This section of code is called a critical section (CS). For the mutual exclusion,
it is required that at most one mobile agent executes CS at any given time. An execu-
tion of CS is preceded by an entry section and followed by an exit section. An agent
executing its entry section is said to ask for entering CS. After entering CS, an agent is
assumed to leave it after some finite but unbounded period. Agents have to deliver the
requests one at a time. Once a request is delivered, an agent has to access its CS before
making another request.

Definition 2 (Specification of Mutual Exclusion).

– Safety: In any configuration, no two agents are executing CS.
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– Bounded waiting: There exists some bound B such that when an agent asks for
entering CS, it can be preceded by at most B other agents, but eventually enters
CS.

The problem of mutual exclusion can be also presented and solved by introducing a
token that circulates between the agents and grants the access to CS (see, e.g., [14]).
Thus, the mutual exclusion problem is sometimes named a problem of token circulation.
Our solution to the problem use the circulating token as well.

2.3.2 The Group Mutual Exclusion Problem (GME)
GME was introduced by Joung [22]. The problem deals with sharing r mutually ex-
clusive resources between n processors (agents, in our case). There has been some
discussions about a precise specification of GME. We adopt here the one given in [18],
which is the most precise. As in the mutual exclusion problem, each mobile agent has
a section of code called a critical section (CS), which is preceded by an entry section
and followed by an exit section. After entering CS, an agent is assumed to leave it after
a finite but unbounded period. In [18], an agent wishing to enter CS is said to request
a session. Sessions represent resources. One resource can be used simultaneously by
an arbitrary number of mobile agents, but two or more resources cannot.3 Thus, agents
that have requested different sessions cannot be in CS simultaneously, but agents that
have requested the same session can. Each agent requests only one session at a time and
it cannot request another session while a request it made is still pending. In [18], the
remaining part of the code of an agent, which is outside the critical section, the entry
section and the exit section, is called a noncritical section (NCS).

Definition 3 (Specification of Group Mutual Exclusion).

– Mutual exclusion: If two agents are in CS at the same time, then they request the
same session.

– Lockout freedom: If an agent enters its entry section, then it eventually enters CS.
– Bounded exit: If an agent enters the exit section then it enters NCS within a

bounded number of its own steps.
– Concurrent entering: If an agent x requests a session and no other agent requests

a different session, then x enters CS within a bounded number of its own steps.

3 Self-stabilizing Phase Clock Tool

The algorithms we propose use the self-stabilizing bounded phase clock designed in
[6]. The specification it satisfies is given below and follows a conventional definition
of a phase clock (see, e.g., [4, 13]) with some adaptation (as the frequency of progress
condition) to better suit the model of population protocols with covering.

Definition 4 (Specification of a Phase Clock [6]).
A bounded phase clock (the clock size K is definable) provides each agent x with a
clock/phase value in the variable clockx subject to the following conditions.

3 In the following, session is also referred as the period during which agents can share the same
resource.
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– Progress: In any execution, every variable clock is updated infinitely often and
each time, according to the assignment statement clock := (clock+ 1) mod K
only.

– Frequency of progress: In any execution, after every update of clockx, the next
update cannot happen before β(clockx) events, where β is a predefined function.

– Asynchronous unison: In any configuration reached by an execution, the clock
values of any two agents differ by no more than 1 ( mod K). That is, for any two
agents x and y, the following predicate is true: (clockx = clocky)∨
(clockx = (clocky + 1) mod K) ∨ (clocky = (clockx + 1) mod K)

In the phase clock algorithm of [6], agents synchronize their clocks with BS. According
to the algorithm, BS is the only agent that increments the clock value, which is then
propagated to the other agents. A maximal period (a segment of an execution) during
which clockBS = p (for some p) is called phase p. A period between two increments
of the clock at BS is called a complete phase p if after the first increment clockBS = p.
Incomplete phases arise from a bad (faulty) initialization.

Remark 2. A useful property of the phase clock after stabilization is that during a com-
plete phase p, there is a period of at least β(p) events, where all the agents have the
same clock value p (Lem. 7 [6]).
In addition, by Lem. 1 [6], every phase p is bounded, if β(p) is bounded. Every complete
phase p lasts [β(p) + min(2 · cv∗

min, cv
∗
max)]

BS events.

Extending the Phase Clock of [6]. To use the phase clock of [6], one should define the
size of the clock K (the number of the required phases) and the duration β for every
phase. However, the ability to define only a bounded phase duration does not seem to
be good enough for our purposes here. For being able to grant an agent a finite but
unbounded period in CS, we should be able to define an unbounded phase that could
be preempted externally, after some finite period. Then, the progress condition (in Def.
4) could be still satisfied. Thus, we slightly extend the phase clock of [6] to provide
this functionality. We change appropriately the frequency of progress condition in the
specification.

Definition 5 (New frequency of progress condition).
Frequency of progress: In any execution, after every update of clockx, the next update
cannot happen before β(clockx) events, if β(clockx) �= ∞, where β is a predefined
function. Otherwise (β(clockx) = ∞), the next update happens in a finite period.

To satisfy the new specification, we adopt the same implementation of the phase clock
as in [6] and we add only two things. First, we allow to define an unbounded dura-
tion for a phase p, by defining β(p) = ∞. Second, we design a user interface pro-
cedure called switch() which, when invoked, causes the phase clock to switch to
the next phase in a finite period. The switch() procedure is implemented as follows:
switch() = {event ctr ← min(2 · cv∗

min, cv
∗
max)}, where event ctr is the counter

variable of the phase clock in [6] which is managed by BS and holds the number of
the events that are still to count before the next switch (increment) of clockBS . This
counter is decremented on each event of BS with some agent. Thus, whenever a user
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calls switch(), in [min(2 · cv∗
min, cv

∗
max)]

BS events, the phase clock switches to the
next phase. Note that in switch(), event ctr is not set to 0. This is to ensure that
each phase lasts at least min(2 · cv∗

min, cv
∗
max) events, as required in [6].

Remark 3. It is easy to verify that the correctness proofs of the new phase clock are
similar to those in [6], with the only difference that now a phase may be defined to have
some unbounded but finite duration. To guarantee the stabilization of the phase clock,
the user should ensure that if for some p, β(p) = ∞, then phase p is indeed finite (e.g.,
ensure that switch() is called after a finite period).

The Extended Phase Clock in a Composition. Our algorithms for mutual exclusion
(Sec. 4) and for group mutual exclusion (Sec. 5) use the extended phase clock tool as a
module. The (group) mutual exclusion module reads only the clock variables (clock)
of the phase clock module and invokes the switch() procedure when appropriate. The
modules are composed in a strict interleaving. That means that during each event, the
codes of both modules are executed one after the other. This composition is not fair
in the sense of [19] or [26], so that general results about fair composition cannot be
applied. However, the main result remains true and comes from Remark 3. That is, for
proving that the composition of the two modules is self-stabilizing, it suffices to prove
the self-stabilization of the (group) mutual exclusion module, assuming that the phase
clock is already stabilized. In particular, this implies that one should first prove that
every phase is finite.
For the phase clock module used in our algorithms, we define K = 3 (that is, clock ∈
{0, 1, 2}), β(0) = cv∗

max, β(1) = ∞ and β(2) = cv∗
min. Thus, to prove stabilization,

the first step is to prove that phase 1 is finite (see Lem. 1 and Lem. 7 [7]).

4 A Self-stabilizing Solution to Mutual Exclusion

In this section we present a self-stabilizing algorithm, Alg. 1, solving the mutual exclu-
sion problem in the model of population protocols with covering (for any given accept-
able vector of cover times) and with BS. As there is no such algorithm if all agents have
a bounded state (Corollary 1), we assume that BS has a memory size proportional to
the number of agents. The codes of the mobile agents are identical, but BS has a special
code. Our solution uses a phase clock tool as explained in Sec. 3.

First, we describe the algorithm once stabilization has occurred. It operates by infi-
nite iteration of a succession of three phases. A first phase (phase 0; lines 6-8), called
a request phase, has a phase duration (see Sec. 3) of cv∗

max events. An agent requesting
CS (state = request), delivers a request to BS (and becomes registered) when it
meets BS during phase 0 and its clock is equal to 0( mod 3). During this phase, BS
counts the number of requests (in a variable req ctr). Each request phase is followed
by a finite but unbounded phase, which is controlled by BS and called an access phase.
During an access phase, BS gives the token to the first registered agent visiting it (lines
9-14), waits for the token to be returned (remember that as a basic assumption, an agent
uses its CS for a finite time), and then decrements req ctr (lines 15-20). Then, BS
waits for another registered agent and so on, until req ctr goes down to 0. Then, a
sweeping phase (having a phase duration of cv∗

min events) resets all the counters and
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the states of all the agents (to a neutral state) and a new request phase can begin (lines
34-43).

For the protocol to be self-stabilizing, we use the technique of re-initializing period-
ically the variables of the algorithm. After the re-initialization in the sweeping phase,
the algorithm executes as described above. However, due to a bad initialization of the
variables, the execution could stay forever in phase 1 and never reach a sweeping phase,
and hence, never reach stabilization. As req ctr ≤ 0 is the natural condition for ending
phase 1 (line 32), we examine the cases in which req ctr could stay strictly positive
forever. We identify two such cases. The first one is when the number of the registered
agents is lesser than the value of req ctr (lines 20 and 32-33). The second case is when
there is no token, neither at BS, nor at any mobile agent (consequently, BS will never
be able to decrease req ctr and switch to the sweeping phase; see lines 10,15, 20 and
32-33). We treat separately these two cases. We introduce a variable no req evntctr

for checking that there are still registered agents (or agents in CS) when req ctr > 0
(lines 21-25), and a variable no token evntctr for checking that the system is not
in the second case (lines 26-30). These variables are event counters of the local events
at BS. Each counter counts till cv∗

max events to ensure that BS has met all the mobile
agents during the last period, but neither the registered ones, nor the ones in CS or the
ones in the CS exit section (that is, one of the cases above is satisfied). Then, BS calls
switch() (line 32-33) to switch to the next (sweeping) phase to reset the algorithm
and to stabilize.

4.1 Proving Correctness

First, according to Remark 3, we prove that phase 1 is finite. Recall that phases 0 and 2
are finite (and bounded) by the correctness of the phase clock (see Remark 2).

Lemma 1. In Alg. 1, every phase 1 is finite.

Proof: At the beginning of a phase 1 (complete or incomplete), there are two cases:

(A) there is at least one token either at BS or at some agent which is in state in or out;
(B) there is no such agent holding a token (however, there may be an agent in a different
state, holding a token).

In case (A) there are two possibilities:

(a) the number of the registered agents is greater or equal to the value of req ctr;
(b) the number of the registered agents is strictly lesser than the value of req ctr.

In case (a), if BS does not hold a token, then during the next event of BS with an agent in
state out holding a token, tokenBS becomes true (line 16) and req ctr is decremented
(line 20). From this point, BS can dispatch the token to different registered agents until
req ctr ≤ 0 (lines 9-20). Then, the end of the phase condition, in line 32, triggers.

In case (b), the same happens, but once all the registered agents have visited BS and
received the requested CS, req ctr stays strictly positive. However, there are no more
registered agents. Then, BS counts cv∗

max events without seeing a registered agent (lines
21-25) and the condition no req evntctr ≥ cv∗

max, in line 32, causes the end of the
phase.
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Algorithm 1. Self-stabilizing Mutual Exclusion
Memory in a mobile agent x �= BS
tokenx : boolean
statex ∈ {neutral, request, registered, in,out}

Memory in BS
tokenBS : boolean
req ctr : integer
no req evntctr : integer
no token evntctr : integer

1: when agent x enters its entry section do
2: statex ← request
3: when agent x enters its exit section do
4: statex ← out
5: when agent x communicates with BS - event (x,BS)) do
6: if (clockBS = clockx = 0 mod 3 ∧ statex = request) then // Request Phase
7: statex ← registered
8: req ctr ← req ctr + 1
9: if (clockBS = clockx = 1 mod 3 ∧ req ctr > 0) then // Access Phase

10: if (tokenBS ∧ statex = registered) then // entering CS
11: tokenBS ← false
12: tokenx ← true
13: statex ← in
14: 〈 x enters CS 〉
15: if (clockBS = clockx = 1 mod 3 ∧ tokenx ∧ statex = out) then // exiting CS
16: tokenBS ← true
17: tokenx ← false
18: statex ← neutral
19: if (req ctr > 0) then
20: req ctr ← req ctr− 1
21: if (clockBS = 1 mod 3 ∧ req ctr > 0) then // control of requests
22: if (statex = registered ∨ statex = in) then
23: no req evntctr ← 0
24: else
25: no req evntctr ← no req evntctr + 1
26: if (clockBS = 1 mod 3) then // control of tokens
27: if (tokenBS ∨ (tokenx ∧ (statex = in ∨ statex = out))) then
28: no token evntctr ← 0
29: else
30: no token evntctr ← no token evntctr + 1
31: if (clockBS = 1 mod 3) then // end of access phase
32: if (req ctr ≤ 0) ∨ (no req evntctr ≥ cv∗

max) ∨ (no token evntctr ≥ cv∗
max) then

33: switch()
34: if (clockBS = clockx = 2 mod 3) then // Sweeping Phase
35: tokenBS ← true
36: req ctr ← 0
37: no req evntctr ← 0
38: no token evntctr ← 0
39: when two mobile agents x and y communicate - event (x, y) do
40: if (clockx = clocky = 2 mod 3) then // Sweeping Phase
41: if statex �= request then
42: statex ← neutral
43: tokenx ← false
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In case (B), BS has no token and cannot receive one, since the only possibility to
receive a token is by executing lines 15-20. In this case, these lines cannot be exe-
cuted, since for any agent x, the condition tokenx ∧ statex = out (line 15) is false.
Hence, during each meeting with BS, line 30 is executed and no token evntctr is
incremented until the end of the phase condition (in line 32) triggers.

Lem. 1 is the key lemma of the proof of correctness, since it ensures that whatever
the initial configuration is, a sweeping phase is eventually reached and causes all the
variables to reset. Then, from Remark 3, there is no loss of generality in assuming that
at the beginning of an execution, the phase clock is stabilized.

Lemma 2. In any execution of Alg. 1, at the end of a complete phase 2 (the sweeping
phase), tokenBS = true and, for every mobile agent x, tokenx = false.

Proof: By Remark 2, during phase 2, there is a period of at least cv∗
min events where all

the agents have the clock value 2. During cv∗
min events happening in the system, at least

cvmin events occur. During cvmin events, at least one agent (a fastest one) meets every
other agent, including BS. Hence, during phase 2, for every mobile agent, the condition
in line 40 and, for BS, the condition in line 34 become true at least once. Thus, by the
end of phase 2, for every mobile agent x, tokenx = false due to the execution of line
43, and tokenBS = true due to the execution of line 35.

Lemma 3. In Alg. 1, after the end of the first complete phase 2, in each configuration
during a (complete) phase 1, there is exactly one agent x with tokenx = true, and at
the end of the phase 1, tokenBS = true.

Proof: By Lem. 2 and the fact that during a request phase the token variables are not
updated (lines 6-8), at the end of a request phase (0) the only token is in BS. Right after,
in phase 1, the update of the token variables can be done only by executing lines 9-14.
There, BS and some mobile agent x in an event exchange the token. Then, the token can
be exchanged again, only between the same agents (x returns the token to BS) in lines
15-20. Later in phase 1, the token can move according to the same unique scenario only
(with a mobile agent y �= x), because the token variables are updated in lines 9-14 and
15-20 only. Hence, during phase 1 (that comes after the first complete phase 2), there is
only one token in the system.
After the sequence of the complete phases 2 and then, 0 (at the beginning of the phase
1), req ctr equals the number of the registered agents. Hence, the scenario described
in phase 1 will repeat to the very end of this phase (till req ctr becomes 0). Thus, at
the end of phase 1, tokenBS = true.

Lemma 4 (safety). In Alg. 1, in each configuration after the end of the first complete
phase 2, there is exactly one agent x with tokenx = true.

Proof: By Lem. 2 and the fact that during a request phase the token variables are not
updated (lines 6-8), during the whole phase 0 (following a complete phase 2) the only
token is in BS. Then, in phase 1, the lemma is correct by Lem. 3. By the same lemma,
at the end of this phase 1, the only token is in BS. Then, during the whole phase 2, the
token stays in BS (lines 35 and 43). Then, the whole scenario of the 3 complete phases
repeats and hence, the lemma follows.
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Lemma 5 (bounded waiting). Assume that in Alg. 1, following a complete phase 2, a
mobile agent x asks to enter CS (by line 2). Then, x enters CS (in line 14) during the
next (or after the next) phase 1.

Proof: Starting from the event when x asks to enter CS, x meets BS during phase 0. If
the closest phase 0 is incomplete and x does not meet BS, then it meets BS during the
next complete phase 0. This is because the duration of the complete phase 0 is cv∗

max

events (during which every mobile agent meets BS). During the event of x with BS in
phase 0, x becomes registered and req ctr is incremented (lines 6-8). Moreover, there
are exactly req ctr registered agents at the end of this phase. During the following
phase 1 (this is case (A)-(a) of Lem. 1 proof), there are req ctr entries in CS (in line
14) by the req ctr different agents, including x. In the worst case, x has asked to enter
CS during phase 0 in which it was not registered. Even in this case, it has not waited
more than 2 · (n− 1) entries of the other agents before entering CS.

Lemmas 1-5 yield the following theorem.

Theorem 1. Alg. 1 (composed with the extended phase clock from Sec. 3) is a self-
stabilizing solution to the mutual exclusion problem.

Proof: Define the legitimate configurations as those reached in an execution after a
complete phase 2. Lem. 1 involves that starting from an arbitrary configuration, any ex-
ecution reaches a legitimate configuration. Lem. 2-5 involve that any execution, starting
from a legitimate configuration, satisfies the mutual exclusion specification - Def. 2.

5 From Mutual Exclusion to Group Mutual Exclusion

Our solution to group mutual exclusion is given in Alg. 2 and follows a similar scheme
as the solution for mutual exclusion (Alg. 1). It also iterates three phases: sweeping
phase (phase 2 of the phase clock), request (phase 0) and access phase (phase 1). The
difference here is that each such iteration represents a session and has a session number
j ∈ {1, 2, . . . , r} during the execution. BS executes sessions successively for resources
{1, 2, . . . , r} in a repetitive way. Session j starts with the first event of phase 2, where
the session number is incremented to value j (line 33) and it ends with the last event of
the next phase 1.

During session j, in the access phase, agents that have requested an access to session
j (by going into the state requestj), receive a token from BS and access CS as in Alg.
1. The difference here is that several tokens can be given at the same time. This allows
several agents requesting the same resource to enter CS, what (partially) satisfies the
concurrent entering condition of GME. For each session, the request and the sweeping
phases operate similarly as in Alg. 1 with the following differences. In the request phase,
BS registers only agents having requested the current session j (those which are in state
requestj ; see line 6). In the sweeping phase, BS also advances to the next session by
incrementing a session number j by 1 ( mod r), in line 33.

Again, as in Alg. 1, to deal with bad initialization and to achieve self-stabilization,
every execution should reach a complete sweeping phase. This is ensured by exactly the
same mechanism as in Alg. 1 (lines 19-31). The mutual exclusion condition of GME is
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satisfied because two successive access phases are totally disjoint in time (by the cor-
rectness of the phase clock). All the other conditions of GME are mainly or partially
satisfied by ensuring that each phase in the algorithm is finite. The proof of the algo-
rithm follows almost the same lines as the proof of Alg. 1. Due to the lack of space, it
is provided in [7].

6 Impossibility Result

We prove that if local transition systems of all agents are bounded in memory, the
mutual exclusion problem has no self-stabilizing solution (which applies to an infinite
family of systems) in the model of population protocols with covering. This impossi-
bility result can be easily extended to GME. It justifies the strong assumption of the
existence of BS in the paper.

Similar impossibility results are already known in the classical distributed models
and also in the population protocol models without cover times (see [3, 12]). However,
since the cover time property of the scheduler has similarities with partial synchrony
[16] (cover times impose restrictions on scheduling of agents), previous results may ap-
pear to be different. Moreover, “bad execution” demonstrating the impossibility should
be proved to satisfy the cover time property. Hence, for completeness, we provide the
impossibility proof for the mutual exclusion problem in the considered model. We begin
by giving some definitions required for proving and for stating the result.

Since the mobile agents are anonymous and their codes (the set of transitions) are
uniform, their local transition systems are identical. Thus, in the model we use, a (global
transition) system is entirely characterized by a vector of cover times and the local tran-
sition systems of a mobile agent and of BS, if BS exists. Two systems Si and Sj , with
possibly different number of agents and/or cover time vectors, are said to be similar, if
and only if they have identical local transition systems.

A local transition system of an agent x is said bounded if and only if the number
of the states (and the transitions) of x is upper bounded by some (predefined) integer
constant. A (global transition) system is bounded, if and only if the local transition
systems of a mobile agent and of BS (if BS exist) are bounded.

A generic solution to a problem P is a relation that associates to any positive integer
n and to any acceptable vector of cover times cv (of size n) a system SP

n,cv, with n
agents and a vector of cover times cv (the system scheduler satisfies the cover time
property according to cv), such that SP

n,cv solves P . The set of all such systems is
called an image of the generic solution. A generic solution is said bounded if and only if
every element of its image is bounded. A self-stabilizing generic solution to the mutual
exclusion problem is a generic solution, such that every system in the image is self-
stabilizing for the specification of mutual exclusion in Def. 2.

The first lemma is a simple application of a well known combinatorial property - the
pigeonhole principle.

Lemma 6. Let A be a bounded generic solution to a problem P and let IA be its
image. Then, there exists an infinite subset IsimA of IA of similar systems such that for
any integer k and for any vector of cover times cv, there exists in IsimA a system of
size strictly greater than k with a vector of cover times strictly greater (component by
component) than cv.



248 J. Beauquier and J. Burman

Algorithm 2. Self-stabilizing Group Mutual Exclusion
Memory in a mobile agent x �= BS
tokenx : boolean
statex ∈ {neutral, {requestj′ |j′ = 1, 2, . . . , r}, registered, in, out}

Memory in BS
req ctr : integer
no req evntctr : integer
no token evntctr : integer
j ∈ {1, 2, . . . , r}

1: when agent x enters its entry section for resource j′ do
2: statex ← requestj′
3: when agent x enters its exit section do
4: statex ← out
5: when agent x communicates with BS - event (x,BS) do
6: if (clockBS = clockx = 0 mod 3 ∧ statex = requestj) then // Request Phase
7: statex ← registered
8: req ctr ← req ctr + 1
9: if (clockBS = clockx = 1 mod 3 ∧ req ctr > 0) then // Access Phase

10: if (statex = registered) then // entering CS
11: tokenx ← true
12: statex ← in
13: 〈 x accesses resource j 〉
14: if (clockBS = clockx = 1 mod 3 ∧ tokenx ∧ statex = out) then // exiting CS
15: tokenx ← false
16: statex ← neutral
17: if (req ctr > 0) then
18: req ctr ← req ctr− 1
19: if (clockBS = 1 mod 3 ∧ req ctr > 0) then // control of requests
20: if (statex = registered ∨ statex = in) then
21: no req evntctr ← 0
22: else
23: no req evntctr ← no req evntctr + 1
24: if (clockBS = 1 mod 3) then // control of tokens
25: if (tokenx ∧ (statex = in ∨ statex = out)) then
26: no token evntctr ← 0
27: else
28: no token evntctr ← no token evntctr + 1
29: if (clockBS = 1 mod 3) then // end of access phase
30: if (req ctr ≤ 0) ∨ (no req evntctr ≥ cv∗

max) ∨ (no token evntctr ≥ cv∗
max) then

31: switch()
32: if (clockBS = clockx = 2 mod 3) then // Sweeping Phase
33: j ← (j + 1) mod r // advance to the next session
34: req ctr ← 0
35: no req evntctr ← 0
36: no token evntctr ← 0
37: when two mobile agents x and y communicate - event (x, y) do
38: if (clockx = clocky = 2 mod 3) then // Sweeping Phase
39: if statex /∈ {requestj′} then // for any j′
40: statex ← neutral
41: tokenx ← false
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The intuitive justification for the lemma is the following. Since every system in the
image of A is bounded, there are only a finite number of possible choices for the local
transition systems. Thus, these choices have necessarily to be made infinitely many
times, both for n and for cv.

Theorem 2. There exists no self-stabilizing bounded generic solution to the mutual
exclusion problem (in the model of population protocols with covering).

Proof: Assume by contradiction that there exists a self-stabilizing bounded generic
solution to mutual exclusion. Lem. 6 shows that there exists an infinite subset Isim

of similar systems self-stabilizing to the mutual exclusion specification (in Def. 2).
Without loss of generality, let us assume that the circulating token is used in these
systems. Consider some system S1 ∈ Isim that applies to a population of size n1 (> 1)
with a vector of cover times cv1. Let T be the stabilization time of S1.

By Lem. 6, in Isim , there is another system S2 self-stabilizing to the mutual exclu-
sion and similar to S1, with n2 agents and a cover time vector cv2 such that n2 > n1

and cvmin(S2) > T + n2·(n2−1)
2 (where cvmin(S2) is cvmin in S2).

Consider a legitimate configuration C′ of S2 in which there is (exactly) one token
in some mobile agent x, and let C be the projection of C′ on n1 arbitrary agents not
holding a token. We consider C as the initial configuration of an execution e in S1.
Note that C is effectively a configuration of S1, since S1 and S2 are similar. Moreover,
execution e does exist, because cv1 is acceptable. Since S1 is assumed to be a self-
stabilizing solution, in the execution e from C, after at most T events, e reaches a con-
figuration in which one token has been created. Let us denote by < token creation >
the step during which this token is created. Then e = e1 < token creation > e2
and the length of e1 is at most T . We claim that e1 < token creation > is the prefix
of a possible (infinite) execution of S2, from configuration C′. First, all the transitions
used in this prefix are transitions of S2, since S2 and S1 are similar. Second, since
cvmin(S2) > |e1 < token creation > |+ n2·(n2−1)

2 , the fact that the n2 − n1 agents
in S2, but not in S1, that have no events in e1 < token creation >, does not violate
the cover time property. Third, e1 < token creation > can be completed to the seg-
ment e′ of length cvmin(S2) events by adding all the missing (according to the cover
time property) meetings in at least n2·(n2−1)

2 next events. Now, if we repeat indefinitely
many times the schedule of e′, we can get an infinite execution e′∞ of S2 that satisfies
the cover time property (see Remark 1). However, in the configuration reached by this
execution after the prefix e1 < token creation >, there are two tokens - the token
that is just created and the token at agent x. That contradicts the assumption that C′ is
legitimate and that S2 is a self-stabilizing solution. That proves the theorem.

Corollary 1. If all agents have a bounded state (bounded by some predefined integer
constant, independent of the population size n), there is no generic self-stabilizing solu-
tion (and, in particular, no self-stabilizing algorithm) to the mutual exclusion problem.
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Exploration without Sense of Direction
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Abstract. In this paper, we investigate the exclusive perpetual explo-
ration of grid shaped networks using anonymous, oblivious and fully
asynchronous robots. Our results hold for robots without sense of direc-
tion (i.e. they do not agree on a common North, nor do they agree on
a common left and right ; furthermore, the “North” and “left” of each
robot is decided by an adversary that schedules robots for execution, and
may change between invocations of particular robots). We focus on the
minimal number of robots that are necessary and sufficient to solve the
problem in general grids.

In more details, we prove that three deterministic robots are necessary
and sufficient, provided that the size of the grid is n×m with 3 ≤ n ≤ m
or n = 2 and m ≥ 4. Perhaps surprisingly, and unlike results for the
exploration with stop problem (where grids are “easier” to explore and
stop than rings with respect to the number of robots), exclusive perpetual
exploration requires as many robots in the ring as in the grid.

Furthermore, we propose a classification of configurations such that
the space of configurations to be checked is drastically reduced. This pre-
processing lays the bases for the automated verification of our algorithm
for general grids as it permits to avoid combinatorial explosion.

1 Introduction

We consider a set of autonomous robots that have to collaborate to perpetually
explore an area modeled as a grid graph. Each robot has to visit each vertex
of the grid infinitely many times, with the additional constraint that no two
robots may be present at the same vertex at the same time or may switch their
positions by crossing the same edge. Introduced in [1], this problem is called the
exclusive perpetual exploration.

Robots are endowed with visibility sensors and motion actuators and operate
in cycles that comprise look, compute, and move phases. The look phase consists
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in taking a snapshot of the other robots positions using its visibility sensors. In
the compute phase a robot computes a target destination based on the previous
observation. The move phase consists in moving toward the computed destina-
tion using motion actuators. We consider an asynchronous scheduling model, i.e.
a finite yet unbounded amount of time may elapse between any two phases of a
robot’s cycle.

The difficulty to solve the exclusive perpetual exploration on the grid, de-
pends on the restricted robot capabilities and on their asynchronous behavior.
In particular, robots are anonymous (they execute the same protocol and have
no mean to distinguish themselves from other robots), oblivious (their memory
is not persistent between cycles), and they have no sense of direction (i.e. they
may not agree on a common direction or orientation in the grid as each local
direction and orientation are chosen by an adversary and may change between
cycles). Asynchrony makes the problem harder because robots have to coordi-
nate their movements despite the fact that a robot can decide to move according
to an old snapshot of the system and that different robots may be in different
phases of their cycles at the same time.

The robots’ positions in the grid is the only information that can be use
to decide moving. In this context, the number of robots on the grid directly
impacts on the ability to break initial symmetry and to provide a grid reference
“milestone” to help robots in their exploration process. Observe that due to the
mutual exclusion constraints on the vertices occupancy, we cannot exploit the
usual approach [7] of creating “towers” (having more than one robot on the same
node) to construct a reference milestone in the graph to be explored.

Related work. While the vast majority of literature on coordinated distributed
robots considers that those robots are evolving in a continuous two-dimensional
Euclidean space and use visual sensors with perfect accuracy that permit to
locate other robots with infinite precision, a recent trend was to shift from the
classical continuous model to the discrete model. In the discrete model, space is
partitioned into a finite number of locations. This setting is conveniently repre-
sented by a graph, where nodes represent locations that can be sensed, and where
edges represent the possibility for a robot to move from one location to the other.
For each location, a robot is able to sense if the location is empty or if robots are
positioned on it (instead of sensing the exact position of a robot). Also, a robot
is not able to move from a position to another unless there is explicit indication
to do so (i.e., the two locations are connected by an edge in the representing
graph). The discrete model permits to simplify many robot protocols by reason-
ing on finite structures (i.e., graphs) rather than on infinite ones. However, as
noted in most related papers [6,7,8,10,11,12,13], this simplicity comes with the
cost of extra symmetry possibilities, especially when the authorized paths are
also symmetric.

Assuming visibility capabilities, anonymous and oblivious robots, the three
main problems that have been studied in the discrete robot model are gath-
ering [10,11,12] (all robots are requested to reach a single node, not known
beforehand), exploration with stop [5,6,7,8,13] (all nodes must be visited by at
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least one robot, and eventually all robots must stop moving forever), and exclu-
sive perpetual exploration [1,2] (all nodes must be visited by all robots infinitely
often, and no node or edge should be occupied by more than one robot at any
time).

For the exploration with stop problem, the fact that robots need to stop
after exploring all locations requires robots to “remember” how much of the
graph was explored, i.e., be able to distinguish between various stages of the
exploration process since robots have no persistent memory. As configurations
can be distinguished only by robot positions, the main complexity measure is
then the number of robots that are needed to explore a given graph. The vast
number of symmetric situations induces a large number of required robots. For
tree networks, [8] shows that Ω(n) robots are necessary for most n-sized tree,
and that sublinear robot complexity is possible only if the maximum degree of
the tree is 3. In uniform rings, [7] proves that the necessary and sufficient number
of robots is Θ(log n), although it is required that the number k of robots and
the size n of the ring are coprime. Note that both approaches are deterministic,
i.e., if a robot is presented twice the same situation, its behavior is the same
in both cases. In [4,6], the authors propose to adopt a probabilistic approach
to lift constraints and to obtain tighter bounds. They show that four identical
probabilistic robots are necessary and sufficient to solve the exploration problem
in any anonymous unoriented ring, also removing the coprime constraint between
the number of robots and the ring size. The impossibility presented in [6] for
three robots to explore a ring is for the semi-synchronous model and naturally
extends to the asynchronous model. This impossibility result extends to four
robots in the deterministic setting, while five robots are sufficient to explore
and stop a ring deterministically [13]. By contrast, it was recently pointed out
that in the general case three robots are necessary and sufficient to explore an
n × m grid-shaped network with m > 3 [5]. So, with respect to the required
number of robots to explore and stop a graph, grid exploration is easier that
ring exploration.

Most related to our task is the exclusive perpetual exploration of anonymous
graphs [1,2]. Baldoni et al. [1] prove that the mutual exclusion constraint and the
underlying graph structure drive an upper bound on the number of robots that
can perpetually and exclusively explore a graph. They also provide a method to
compute this upper bound for a given graph. In the same paper, they provide an
algorithm to perpetually and exclusively explore any partial grid provided that
the number of robots enables a solution. However, the considered scheduling
model is synchronous and contrary to the vast majority of existing solutions in
the literature [5,6,7,8,10,11,12,13], robots have a strong sense of direction as they
agree on the four basic directions: North, South, East, and West. This strong
settings permits to break all cases of initial symmetry since a global total order
can be inferred on the vertices of the graph. Finally, Blin et al. [2] investigate
exclusive perpetual exploration of an anonymous ring. Considering asynchronous
scheduling and no sense of direction, they prove that three robots are necessary
and sufficient to perpetually and exclusively explore a ring.
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Our contribution. First, we prove that three deterministic robots are necessary
and sufficient, provided that the size of the grid is n × m with 3 ≤ n ≤ m or
n = 2 and m ≥ 4. Perhaps surprisingly, and unlike results for the exploration
with stop problem (where grids are “easier” to explore and stop than rings with
respect to the number of robots), exclusive perpetual exploration requires as
many robots in the ring and in the grid.

Second, we propose a general classification of all possible system configura-
tions. Observing that in each symmetric configuration, deterministic robots act
in the same manner, we consider a single representative configuration for each
set of such symmetric configurations. Moreover, we classify representative con-
figurations with respect to the positions of robots and their mobility constraints.
Some configurations are more complex to manage than others, as several robots
may be scheduled to move concurrently. Then, due to asynchrony one robot can
move before the other, leading to a new unstable configuration where the second
robot may move according to an old snapshot. We expect that our classification
benefits protocol designers to ease the proving of exploration process and lays
the basis of their automatic verification.

2 Model and Problem Specification

We consider a distributed system of k mobile robots that are scattered on an
n×m grid graph where 2 ≤ n ≤ m. The grid is anonymous, i.e., there exists no
labeling to distinguish nodes or edges. The robots are identical, i.e., they cannot
be distinguished using their appearance and they execute the same protocol.
Moreover, the robots are oblivious, i.e., they have no memory of their past ac-
tions, and they neither have a common North direction, nor a common chirality
(handedness). Robots cannot explicitly communicate, but have the ability to
sense their environment and see the position of the other robots.

Robots operate in three phase cycles: Look, Compute and Move. During the
Look phase robots take a snapshot of the grid together with the robots. The
collected information (position of the other robots in the egocentered view) are
used in the compute phase in which robots decide to move or to stay idle. In the
move phase, robots may move to one of their adjacent nodes computed in the
previous phase.

The computational model we consider is the asynchronous CORDA model
[9,14] in a discrete setting. Thus, when a robot takes a snapshot of the grid, it
sees the other robots on nodes only. On the other hand, the time between Look,
Compute, and Move operations is finite but unbounded, and it is decided by
the adversary for each action of each robot. Thus, because of the asynchrony,
different robots can execute concurrently different phases (e.g., a robot can per-
form a look operation while another robot is moving), and a robot can use an
outdated snapshot of the grid to compute where to move and whether to move.
A configuration at a given time is defined by the positions of all robots at that
time. We assume that initially every vertex of the grid contains at most one
robot.
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Exclusive Perpetual Exploration Problem

We study the Exclusive Perpetual Exploration problem introduced by Baldoni
et al. [1] for the synchronous setting.

Definition 1 (Perpetual Exclusive Grid Exploration). For any grid G
of size n × m and for any initial configuration where all robots are located on
different vertices, an algorithm solves the perpetual exclusive grid exploration
problem if it guarantees the following two properties:

– liveness Each robot visits each vertex in G infinitely often.
– no collision No two robots visit the same vertex or traverse the same edge

at the same time.

3 Classification of Configurations

The lack of a global orientation implies that many configurations are alike from
a robot’s point of view. Two configurations are indistinguishable if they are
symmetric in the robots egocentered view (see Figure 1). However, when the
grid is not square (that is, when n = m) robots can distinguish landscape and
portrait orientation. In this paper, we suppose w.l.o.g. that all configurations
are in a landscape orientation.

X

X X

X X

X X

X X

Fig. 1. Three indistinguishable configurations on a 3 × 4 grid

Representative Configuration. For notation purpose, we label each cell of a grid
n ×m with an integer in the set {0, . . . , nm − 1} according to the left-to-right-
top-to-bottom reading direction. This labeling is not available to the robots.

Given an n × m grid, any configuration involving three robots on different
vertices is conveniently represented by a unique sorted sequence s = (s1, s2, s3)
where each si ∈ {0, . . . , nm − 1} is different and represents one of the cells
occupied by the robots. The three configurations on Figure 1, for example, are
respectively denoted by the sorted sequences (5, 10, 11), (2, 3, 5), and (6, 8, 9).

Since robots are identical, deterministic, and execute the same code, in every
indistinguishable configuration, robots perform the same actions. In each set of
indistinguishable configurations, we choose a representative.

Definition 2 (representative configuration). Let G be a grid with left-to-
right-top-to-bottom labeling, and any non-empty set I of indistinguishable con-
figurations of G, we say that a configuration s ∈ I is the representative configu-
ration of every configuration in I iff s is the smallest in I w.r.t. the lexicographic
order, ≺. That is, there is no s′ ∈ I such that s′ ≺ s.
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Considering Figure 1, the natural labeling is
0 1 2 3
4 5 6 7
8 9 10 11

and
X X

X is the

representative configuration, whose corresponding sorted sequence is (0, 1, 6),
which is the smallest amongst all indistinguishable configurations. In the se-
quel, we consider only representative configurations that are thus simply called
configurations.

Classes of Configurations (for grids with 3 robots)

Given a particular configuration, we say that two robots are indistinguishable
iff there is no deterministic way of distinguishing them. For example, in the
second grid on Figure 2, the robots respectively located at cell 5 and cell 9 are
indistinguishable.

Formally, in a configuration C there are two indistinguishable robots iff C is
axially symmetric and two robots are symmetric in this axial symmetry1. For
the second grid on Figure 2, the axis of symmetry is the vertical line that goes
through the middle of the third column. For the third grid on Figure 2, the axis
of symmetry is the diagonal line that goes from top-left to bottom-right.

Breaking and avoiding symmetric configurations is crucial to guarantee both
liveness and the absence of collisions. Thus, we classify the set of configurations
into four classes, depending on the amount of symmetry (with respect to the
three robots) and the move possibilities of robots:

1. Asymmetrical configuration: every robot is uniquely distinguishable. In this
case, even an adversarial scheduling cannot lead to ambiguous situations.

2. Semi-symmetrical configuration: two robots have symmetrical views but the
third. This third robot can break the symmetry, possibly in more than one
step.

3. Semi-symmetrical blocked configuration: two robots are indistinguishable,
the other robot cannot move, but the two indistinguishable robots can move,
without violating the vertex mutual exclusion (the no collision property).
These configurations are difficult to deal with, since there is no immediate
way of breaking the symmetry. One can nevertheless observe that any algo-
rithm solving the perpetual exclusive exploration problem has to enable the
movement of the two indistinguishable robots (the third robot is blocked).

4. Symmetrical blocked configuration: no possible move. For any possible move,
an adversarial scheduling can decide an activation order that would lead to
a collision.

From an algorithmic point of view, configurations of type 1 and 2 are ideal,
while the configuration of type 4 is a dead-end. Thus, when designing an algo-
rithm one should focus on configurations of type 3 which are the most complex

1 If such an axis exists, it is necessarily the perpendicular bisector of the segment
whose extremities are the two indistinguishable robots. The third robot lies on that
axis.
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X X

X X X X

X X

X X X

X

Fig. 2. The four types of configurations

to deal with. The complexity arises from the fact that the two indistinguishable
robots may be scheduled to execute concurrently, but due to the asynchrony
one robot may move first, bringing the system to a new configuration, while the
second robot will move later and according to an old snapshot. This means that
the system may transiently be in configurations of type 1 or 2 but having a robot
move later because of a snapshot it took when in a configuration of type 3. The
algorithm should be resilient to this unexpected movement.

4 Algorithms for the Perpetual Grid Exploration

4.1 Impossibility Results

Theorem 1. There is no algorithm that solves the perpetual exploration problem

– with one robot for any grid but the 1 × 1 and 1 × 2 grid,
– with two robots for any grid.

Proof. With one robot, since there are less configurations than the number of
vertices, it is not possible to design a deterministic algorithm2.

With two robots, there exist symmetric configurations, e.g. robots on two
corners. If the scheduler always activate simultaneously both robots, it is not
possible to break the symmetry and thus robots cannot explore the grid; each
robot will stay in its half-side of the grid.

Theorem 2. There is no algorithm that solves the perpetual exploration problem
with three robots in the 2 × 2 grid or 2 × 3 grid.

Due to page limitations, the proof appears in [3]. The proof simply consists
in an exhaustive exploration of all possible moves.

4.2 Decomposition in Two Sub-problems

The exclusive perpetual exploration problem as defined in Section 2 can be
decomposed into two independent sub-problems. To complete the exclusive per-
petual exploration, one needs to solve both problems. The first sub-problem is
directly related to the perpetual exploration, while the second sub-problem deals
with the transient period starting from the (arbitrary) initial configuration.

2 One probabilistic robot can explore any grid using a simple random walk.
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1. Find a sequence of asymmetrical configurations (i.e. configurations of type
1) such that when robots “execute” this sequence, each robot visits each cell.
This sequence must start and end with the same configuration, and in each
step of the sequence exactly one robot moves.

2. From any initial configuration, find an algorithm that allows robots to reach,
in a finite number of steps, a configuration that belongs to the previous
sequence.

4.3 Grid 3 × 3

Theorem 3. There exists an algorithm that solves the exclusive perpetual ex-
ploration with three robots starting from any initial configuration in the 3 × 3
grid.

Proof. Sub-problem 1 The Figure 3 describes how the perpetual exploration is
executed. For each configuration, the blue robot represents the robot that is
allowed to move in that configuration. After 4 moves, the initial configuration is
reached again with a rotation of the grid by 90◦ and a circular permutation of
the positions of robots. In this process, one robot (the one initially on position
5) has visited the four colored cells. The union of this set of cells and the same
sets of cells after rotations of 90◦, 180◦, and 270◦ covers the entire grid. Thus
after 12 iterations3 of this sequence (i.e. 48 moves) every robot has visited every
cell of the grid.

X X

’X’

X X

X

X X

X

X X

X

X

X

X

(0, 1, 5) (0, 1, 4) (0, 1, 7) (0, 1, 6) (1, 3, 6) = (0, 1, 5) Explored area

Fig. 3. Sequence that achieves the perpetual exploration for the 3 × 3 grid

Sub-problem 2 There is no configuration of type 4 and exactly one of type 3.
For all other configurations (i.e. configurations of type 2, there is no problem
since an algorithm can deterministically select one robot and make it move to
reach a configuration of type 1; for example from configuration (0, 1, 8), the
system evolves to configuration (0, 1, 7). Figure 4 explains how the algorithm
deals with the single configuration of type 3. The main problem lies in the fact
that only the two indistinguishable robots can move but due to asynchrony, it
is possible that (a) only one robot sees this configuration and moves (the other
one never sees this configuration); the system arrives in (0, 1, 6), or (b) both
robots see the configuration, compute their moves and then one robot moves;
the system arrives in (0, 1, 6). The color red for the robot in position 1 means
that the system is in the configuration where this robot has computed its move
3 12 = 3positions×4orientations: It guarantees that each robot starts in position 5 for

each of the four orientations of the grid.
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(phase look/compute) according to a previous configuration but has not yet
accomplished its move (phase move).

This is problematic because the system arrives in a configuration (0, 1, 6)
where the robot located at position 0 is supposed to be the (only) robot to move
(from our sequence of moves described in Figure 3). Thus from configuration
(0, 1, 6), three cases are possible depending on the first moving robot:

– The robot in 1 moves before the robot in 0 sees the current configuration.
The system reaches (0, 2, 6).

– The robot in 1 moves after the robot in 0 sees the current configuration. The
system reaches (0, 2, 6) and then (0, 1, 8).

– The robot in 0 sees the current configuration and moves before the robot in
1 moves. The system arrives in (0, 1, 5) and then (0, 1, 8).

In all cases, the system leaves the “bad” configuration (0, 1, 3) of type 3 and
arrives, in at most three steps, in a configuration of type 1 or 2 without any
“red” robot. The complete list of moves appears in [3].

X X
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X X
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X X

X

X X

X

X X

X

X

X

X

X

X

X

(0, 1, 3) (0, 1, 6) (0, 1, 6) (0, 2, 6) (0, 2, 6) (0, 1, 5) (0, 1, 8)

Fig. 4. From the configuration (0, 1, 3) of type 3 to a configuration of type 1 or 2

4.4 Grids 2 × m with m ≥ 4

Theorem 4. There exists an algorithm that solves the exclusive perpetual ex-
ploration with three robots starting from any initial configuration in 2×m grids,
with m ≥ 4.

Proof. Sub-problem 1 One valid sequence is described informally on Figure 5 and
the formal definition appears in [3]. After 2m moves, the system returns to the
initial configuration with a circular permutation of the robot positions. In this
process, one robot (the one initially in position 1) has visited all positions but 0
(Position 0 will be visited by this robot within the next 2m moves). Thus, after
3 iterations of this sequence (i.e. 3 × 2m moves), every robot has visited every
cell of the grid.

Sub-problem 2 There is no configuration of type 3 or 4. There exist configura-
tions of type 2 only when m is odd; from these configurations it is easy to break
the symmetry by moving the robot which is uniquely distinguishable. From any
configuration of type 1, it is sufficient to move successively one robot to position
0, then one robot to position 1, then the last one in a position between m − 1
and 2m−1. The total number of moves in this process is bounded by m+m+1.
The complete list of moves appears in [3].
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X X
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(0, 1, 5) (0, 2, 5) (0, 3, 5) (0, 4, 5)

X X

X

X X X X X

X

X X

X

(1, 4, 5) = (0, 3, 9) (0, 1, 4) (0, 1, 9) (0, 1, 8)

X X

X

X X

X

X X

X

(0, 1, 7) (0, 1, 6) (0, 1, 5) Explored area

Fig. 5. Sequence for the perpetual exploration for 2 × m grids (m ≥ 4). Here m = 5

4.5 Grids n × m with 3 ≤ n < m

Theorem 5. There exists an algorithm that solves the exclusive perpetual ex-
ploration with three robots starting from any initial configuration in n×m grids,
with 3 ≤ n < m.

Proof. Sub-problem 1 One valid sequence is described informally on Figure 6 and
formally in [3]. After (2n− 2)× (m− 3)+n+ 1+ (n− 3)+ (m− 2)+ (n− 1)+1
moves, the configuration of the system returns to the initial configuration with
a circular permutation of the three robots and a rotation of the grid by 180◦.
Doing zigzag moves, one robot (the one initially located on position 2m − 1)
explores all the grid but the first line and the two first columns. Thus, after 6
iterations4 every robot has visited every vertex of the grid.

Sub-problem 2 There exists no configuration of type 3 or 4. There exist config-
urations of type 2 only when m or n is odd; from these configurations it is easy
to break the symmetry by moving the robot which is uniquely distinguishable.
As for the previous case, we show that, for any configuration of type 1, it is
possible to reach one configuration used during the perpetual exploration. It is
sufficient to move successively one robot to the position 0, then one robot to the
position 1 and finally one robot to the position (n− 1)m to reach configuration
C = (0, 1, (n − 1)m). However, depending on the initial configuration, it may
happen that, while executing these moves, the system reaches a configuration
C′ used in the perpetual exploration phase; in that case, the sub-problem 2 is
solved and robots start the perpetual exploration from this configuration C′,
without reaching C. Indeed, a move is already defined from C′ and it is not
possible to define a different one for this phase since robots are oblivious. The
total number of moves is grossly bounded by nm+ nm+ nm. The complete list
of moves appears in [3].

4 6 = 3 positions × 2 orientations: It guarantees that each robot starts in position
2m − 1 for each of the two orientations of the grid.
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Fig. 6. Sequence for the perpetual exploration of n × m grids. Here (n, m) = (4, 5)

4.6 Grids n × n with n ≥ 4

Theorem 6. There exists an algorithm that solves the exclusive perpetual ex-
ploration with three robots starting from any initial configuration in n×n grids,
with n ≥ 4.

Proof. Sub-problem 1 One valid sequence is described informally on Figure 7
and formally in [3]. After (2n− 2) × (n− 3) + n + 1 moves, the configuration of
the system returns to the initial configuration with a rotation of the grid by 90◦

and a circular permutation of the positions of robots. In this process, one robot
(the one initially in 2n − 1) has explored all the grid but the first line and the
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Fig. 7. Sequence for the perpetual exploration for n × n grids (n ≥ 4). Here n = 5.
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two first columns. Since n ≥ 4, after 12 iterations every robot has visited every
vertex of the grid5.

Sub-problem 2 In the transient phase, robots try to reach configuration C =
(0, 1, (n − 1)n) by successively moving one robot to position 0, then one to
position 1, and finally the last one to position (n − 1)n. There is however one
main difference with the previous case: there exist symmetric configurations
where the three robots are not on the same line/column, namely configurations
(0, x, xn), with 1 ≤ x ≤ n−1 and in particular configuration (0, 1, n), which is of
type 3. To deal with these “bad” initial configurations we need a special behavior
that is described on Figure 8. Informally, we first move the robot located in 0
to break the symmetry6 and then we move another robot away from the side of
the grid, so that a bad configuration cannot be reached again when the system
evolves towards the configuration (0, 1, (n− 1)n). The total number of moves is
grossly bounded by 4 + n2 + n2 + n2. The complete list of moves appears in [3].
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Fig. 8. From the configurations (0, 1, n) and (0, x, xn) with 2 ≤ x ≤ n − 1

5 Conclusions and Open Problems

We proved that three robots are necessary and sufficient to solve the problem of
the exclusive perpetual exploration of grids. Similarly to [1], it would be inter-
esting to generalize our result to any partial grid. Of course, only partial grids
that preserve symmetry patterns are to be considered, as asymmetric partial
grids give a global sense of direction for free.

5 n ≥ 4 is necessary since for n = 3, the central vertex is never visited with this
algorithm as “avoiding” the first line and the two first columns prevents robots to
visit the central vertex.

6 Contrary to the 3×3 grid, configuration (0, 1, n) does not raise issues since configura-
tion (0, 1, 2n) (reached after one move) does not belong to the set of configurations
used during the perpetual exploration. From this configuration, we can decide to
move the robot in position 2 to position 3, thus this robot executes the same move
if it sees the previous configuration or the current configuration.
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Studying the coordination of robots to solve basic tasks, such as exploration, in
a distributed manner requires considering all possible reachable configurations.
Our proposal for defining and classifying configurations considerably simplifies
the design and verification of our algorithms. We believe it can be extended to
address an arbitrary number of robots and be a first step in providing a complete
framework to study coordination problems in mobile robots networks.
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Abstract. Replication is a standard technique for fault-tolerance in distributed
systems modeled as deterministic finite state machines (DFSMs or machines).
To correct f crash faults among n machines, replication requires n f additional
backup machines. We present a fusion-based solution that requires just f addi-
tional backup machines (called fusions or fused backups). In this paper, we first
propose a fundamental problem regarding DFSMs, independent of fault toler-
ance, that has not been explored in the literature so far: Given a machine M, with
a set of states and a set of events, can we replace it with machines each containing
fewer events than M? To formalize this we define a (k,e)-event decomposition of
a given machine M, that is a set of k machines each with at least e events fewer
than the event set of M, that acting in parallel, are equivalent to M. We present an
algorithm to generate such machines with time complexity O(|XM |3|ΣM |e), where
XM is the set of states and ΣM the set of events of M. Second, we use our event
decomposition algorithm to generate fused backups that can correct faults among
a given set of machines. We show that these backups are minimal w.r.t the number
of states they contain and the number of events in their event set. Third, we use
the notion of locality sensitive hashing to present algorithms for the detection and
correction of faults for the fusion-based solution. The algorithm for the detection
of Byzantine faults has time complexity O(n f ) on average, which is the same as
that for replication. The algorithm for the correction of both crash and Byzantine
faults has time complexity O(nρ f ) with high probability (w.h.p), where ρ is the
average state reduction achieved by fusion. We show that for small values of n
(for most practical systems, n < 10) and ρ (average value of ρ < 2 in our ex-
periments), this results in almost no overhead as compared to replication. Finally,
we evaluate fusion on the widely used MCNC’91 benchmarks for DFSMs and
results show that the average state space savings in fusion (over replication) is
38% (range 0-99%), while the average event-reduction is 4% (range 0-45%).

Keywords: Distributed Systems, Fault Tolerance, Finite State Machines.

1 Introduction

Distributed applications often use deterministic finite state machines (or just machines)
to model computations such as regular expressions for pattern detection, syntactical
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analysis of documents or mining algorithms for large data sets. These machines exe-
cuting on distinct distributed processes are often prone to faults. Traditional solutions
to this problem involve some form of replication, in which to correct f crash faults
[21] among n given machines (referred to as primaries), f copies of each primary are
maintained [14,23,22]. If the backups start from the same initial state as the corre-
sponding primaries and act on the same events, then in the case of faults, the state of
the failed machines can be recovered from one of the remaining copies. These backups
can also correct � f /2� Byzantine faults [15], where the processes lie about the state of
the machine, since a majority of truthful machines is always available. This approach
is expensive both in terms of the total number of backup machines, n f and the total
backup state space.

Consider a distributed application that is searching for three different string patterns
among a huge file, as modeled by the state machines A, B and C shown in Fig. 1. A state
machine in our system consists of a finite set of states (including the initial execution
state) and a finite set of events. On application of an event, the state machine transitions
to the next state based on the state-transition function. For example, machine A in Fig.
1 contains the states {a0, a1}, events {0, 2} and the initial state, shown by the dark ended
arrow, is a0. The state transitions are shown by the arrows from one state to another.
Hence, if A is in state a0 and event 0 is applied to it, then it transitions to state a1. In this
example, A checks the parity of {0, 2} and so, if it is in state a0, then an even number of
0s or 2s have been applied to the machine and if it is in state a1, then an odd number
of the inputs have been applied. Machines B and C check for the parity of {1, 2} and {0}
respectively.

To correct one crash fault among these machines, replication requires a copy of each
of them, resulting in three backup machines, consuming total state space of eight (23).
Rather than replicate the machines, we can correct one fault by maintaining just one
additional machine F1 shown in Fig. 1. The relevant events from the client (or environ-
ment) are applied to all the machines. So if the event sequence 0, 0, 1, 2 is applied on
all the machines, A, B, C and F1 will be in states a1, b0, c0 and f 1

1 respectively. Assume
a crash fault in C. Given the parity of 1s (state of F1) and the parity of 1s or 2s (state of
B), we can first determine the parity of 2s. Using this, and the parity of 0s or 2s (state
of A), we can determine the parity of 0s (state of C). Hence, we can correct the crash
fault in C using A, B and F1. This argument can be extended to correcting one fault
among any of the machines in {A, B,C, F1}. This approach consumes fewer backups
than replication (one vs. three) and less backup state space (two vs. eight).

However, it is not always possible to design these backups merely by inspection.
In Fig. 1, it may not be obvious that F1 and F2 can correct two crash faults among
the primaries. In [18], we present the theory and algorithm to automatically generate f
backup machines (called fusions) for any given set of primaries that can correct f crash
faults (or � f /2� Byzantine faults). In this paper, we focus on the three main challenges
faced by fusion which are the large event-sets of the fusions, the high time complexity
for the generation of fusions and the high cost for detecting and correcting faults. To
summarize our contributions in this paper:

Event-based Decomposition. We start with a question that is fundamental to the un-
derstanding of DFSMs, independent of fault-tolerance: Given a machine M, can it be
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replaced by two or more machines executing in parallel, each containing fewer events
than M? In other words, given the state of these fewer-event machines, can we uniquely
determine the state of M? In Fig. 2, the 2-event machine M (it contains events 0 and 1
in its event set), checks for the parity of 0s and 1s. M can be replaced by two 1-event
machines P and Q, that check for the parity of just 1s or 0s respectively. Given the state
of P and Q, we can determine the state of M. How can we generate these event-reduced
machines (if they exist) for any given machine? While there has been work on both
the state-based decomposition [11,16] and the minimization of completely specified
machines [13,12], this is the first paper that presents the problem of event-reduction.

In this paper, we define the concept of a (k,e)-event decomposition of a machine M
that is a set of k machines, each with at least e events fewer than the event set of M, such
that given the state of these machines, we can determine the state of M. We present an
algorithm to generate such machines with time complexity O(|XM|3|ΣM |e), where XM is
the set of states and ΣM the set of events of M. The load on a process running a machine
is directly proportional to the number of events in the event-set of the machine. Hence,
this decomposition is crucial for applications such as sensor networks in which there
are strict limits on the number of events that each process can service.

Space-Event Optimized Fusion Algorithm. We apply our event-decomposition algo-
rithm to generate backups for fault tolerance that are optimized for both events and
states. In Fig. 1, it is better to choose the 1-event F1 over the 3-event F2 as a backup
machine to correct one fault. We show that if our solution achieves no event-reduction,
then no solution with the same number of backups achieves it. Further, we present an
incremental approach for generating the fusions that improves the time complexity by
a factor of ρn, where ρ is the average state savings achieved by fusion.

Efficient Algorithms for Detection/Correction of Faults. In [18], the algorithm for the
correction of crash and Byzantine faults, has time complexity O(n2ρ+ nρ f + sn), where
n is the number of primaries, f is the number of crash faults, s is the maximum number
of states among primaries and ρ is the average state savings achieved by fusion. In this
paper, we present a Byzantine detection algorithm with time complexity O(n f ) on aver-
age, which is the same as the time complexity of detection for replication. Hence, for a
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Table 1. Symbols/Notation used in the paper

P Set of primaries n Number of primaries
RCP Reachable Cross Product of P N Number of states in the RCP

f No. of crash faults s Maximum number of states among primaries
F Set of fusions/backups ρ Average State Reduction in fusion
Σ Union of primary event-sets β Event-Reduction parameter

Table 2. Fusion vs. Replication (n primaries, O(s) states each, f faults, |Σ | total events, average
state reduction ρ)

Replication Fusion
Number of Backups n f f

Backup Space O(sn f ) O((s/ρ)n f )
Backup Generation Time Complexity O(ns f ) O(sn|Σ | f /ρn)

Maximum Events/Backup Maximum Events/primary Minimal for f backups
Byzantine Detection Time Complexity O(n f ) O(n f ) on average

Crash Correction Time Complexity θ( f ) O(nρ f ) w.h.p
Byzantine Correction Time Complexity O(n f ) O(nρ f ) w.h.p

system that needs to periodically detect liars, fusion causes no additional overhead. We
reduce the problem of fault correction to one of finding points within a certain Ham-
ming distance of a given query point in n-dimensional space and present algorithms to
correct crash and Byzantine faults with time complexity O(nρ f ) with high probability.
The time complexity for crash and Byzantine correction in replication is θ( f ) and O(n f )
respectively. Hence, for small values of n and ρ, fusion causes almost no overhead for
recovery. In Table 1 we summarize the notation used in this paper and in Table 2 we
compare replication and the current version of fusion.

Evaluation of Fusion. In [18], we evaluated fusion on simple examples such as counters
and dividers. In this paper, we evaluate our fusion algorithm on the MCNC’91 [24]
benchmarks for DFSMs, that are widely used in the fields of logic synthesis and circuit
design. Our results show that the average state space savings in fusion (over replication)
is 38% (range 0-99%), while the average event-reduction is 4% (range 0-45%). Further,
the average savings in time by the incremental approach for generating the fusions (over
the non-incremental approach) is 8%. To illustrate the practical use of fusion, we apply
its design to the grep application of the MapReduce framework [6]. Using a simple
example, we show that the currently used checkpointing approach for fault tolerance
needs 600,000 map tasks causing high latency, while replication requires 1200,000 tasks
with minimum latency. Fusion offers a compromise with just 800,000 tasks but smaller
latency than the checkpointing approach.

2 Model

The DFSMs in our system execute on separate processes with no shared state or commu-
nication. Clients of the state machines issue the events (or commands) to the concerned
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primaries and backups, all of which act on them in the same relative order. We assume
loss-less FIFO communication links with a strict upper bound on the time taken for mes-
sage delivery. Faults in our system are of two types: crash faults, resulting in a loss of the
execution state of the machines and Byzantine faults resulting in an arbitrary execution
state. Henceforth in the paper, when we simply say faults, we refer to crash faults. When
faults are detected by a trusted recovery agent using timeouts (crash faults) or a detection
algorithm (Byzantine faults) no further events are sent by any client to these machines.
After the machines act on all events sent to them thus far, the recovery agent obtains
their states, and recovers the correct execution states of all faulty machines. Since we
assume a trusted recovery agent, the work on consensus in the presence of Byzantine
faults [7,20], does not apply to our paper. In the following section, we summarize the
relevant concepts and results introduced in our previous work.

3 Background [18]

State-based Decomposition. A DFSM, denoted by R, consists of a set of states XR,
set of events ΣR, transition function αR : XR × ΣR → XR and initial state x0

R. The size
of R, denoted by |R| is the number of states in R. We can partition the state space of R
such that the transition function αR, maps each block of the partition to another block
for all events in ΣR [11,16]. In other words, we combine the states of R to generate
machines that are consistent to the transition function. The set of all machines generated
by combining the states of R is called the closed partition set of R (example in Fig. 3).

Consider machine M2 in Fig. 3, generated by combining the states r0 and r2 of R. On
event 0, {r0, r2} self-transitions to {r0, r2} (self transitions not shown). However, since r0

and r2 transition to r1 and r3 respectively on event 1, we need to combine the states r1

and r3. Continuing this procedure, we obtain the combined states in M2. We can define
an order (≤) among any two machines P and Q in this set as follows: P ≤ Q, if each
block of Q is contained in a block of P (shown by an arrow from P to Q). P and Q are
incomparable, i.e., P||Q, if P ≮ Q and Q ≮ P. In Fig. 3, F1 < M2, while M1||M2.

Minimum Hamming distance for DFSMs (dmin). Consider a set of machines R each
less than R, i.e., machines belonging to the closed partition set of R. We define the
Hamming distance [10] between each ri, r j ∈ XR, denoted d(ri, r j), as the number of
machines in R that contain ri and r j in different blocks (separate ri and r j). The mini-
mum Hamming distance across all such pairs is denoted dmin(R) or just dmin. In Fig. 3,
if R = {A, B}, d(r0, r1) = 1 (B separates them), while d(r0, r7) = 0 and hence dmin = 0.

Given the state of the machines in R we can determine the state of R if there is at
least one machine in R to distinguish between each pair of states in XR, or in other
words, dmin > 0. In Fig. 3 if R = {A, B} and A and B are in states a0 = {r0, r1, r7, r6} and
b0 = {r0, r2, r7, r5}, we cannot determine if R is in state r0 or r7 (intersection of a0 and
b0). However, if R = {A, B,C} (dmin = 1), then given that A, B and C are in a0, b0 and
c0, we can determine that R is in state r0 (only state common to a0, b0 and c0).

Fault Tolerance in DFSMs. To generate the backups (or fusions) for a set of ma-
chines, we first construct their reachable cross product. Given any two machines
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Fig. 3. Set of Machines less than R (all machines not shown due to space constraint)

A = (XA, ΣA, αA, x0
A) and B = (XB, ΣB, αB, x0

B), their reachable cross product, de-
noted RCP({A, B}) is the machine which consists of all the states in the product set
of XA and XB reachable from the initial state {x0

A, x
0
B}, with the transition function

αRCP({a, b}, σ) = {αA(a, σ), αB(b, σ)} for all reachable states {a, b} ∈ XA × XB and
σ ∈ ΣA ∪ ΣB. Given a set of n primaries P, their reachable cross product is denoted
RCP (XRCP, Σ, αRCP, r0), where Σ is the union of the event sets of all primary machines.
The machine R in Fig. 3, is in fact the RCP of P = {A, B,C} shown in Fig. 1. For
convenience, we label the states of the RCP, r0 . . . r7, where each ri ∈ XRCP is a tuple
consisting of the primary states (mapping shown in Fig. 3). The closed partition set of
the RCP always includes the primary machines and its states correspond to the RCP
states that contains it. In Fig. 3, a0 = {a0b0c0, a0b1c0, a0b1c1, a0b0c1}.

Given the state of the RCP, the state of the primaries can be determined. The basic
goal of fault tolerance is to generate a set of machinesF , each less than the RCP, so that
despite f crash faults, there are sufficient machines in P ∪ F , i.e., among the primaries
and backups, whose dmin > 0. In other words, a set of machines in P ∪ F can correct f
crash faults iff dmin(P ∪ F ) > f . In Fig. 3, for P = {A, B,C} and F = {F1, F2}, it can
be seen that dmin(P ∪ F ) > 2. Consider the state of the machines after the application
of the event sequence 0, 1, 1 on the machines in P∪F . Assume that B and C crash and
we need to recover their state. Given the state of A, F1 and F2 as a1 = {r2, r3, r4, r5},
f 0
1 = {r0, r2, r4, r6} and f 1

2 = {r1, r2}, we can determine the state of the RCP as r2 (only
state common to a1, f 0

1 and f 1
2 ). Since r2 = a1b0c1, we can recover the states of B and

C as b0 and c1 respectively.
When |F | = f , we call it the f -fusion ofP and call the machines inF , fused-backups

or just fusions. An f -fusion is minimal if there exists no other f -fusionG in which every
machine is less than or equal to some machine in F and at least one machine is strictly
less than some machine in F . In section 6, we describe how an f -fusion can also detect
f Byzantine faults or correct � f /2� Byzantine faults.
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Coding theory is often used in data fault tolerance for reducing redundancy [19,5].
In our previous work, we present coding-theoretic solutions to fault tolerance in data
structures [2] and infinite state machines [8]. However, a direct coding-theoretic ap-
proach to DFSMs, in which we maintain the parity of the states of each machine would
be too expensive in terms of communication and computation, since after every event
transition, the machine needs to sends its state and the parity needs to be recalculated.
Instead, we use our Hamming distance metric to construct backups that independently
act on events.

4 Event-Based Decomposition of Machines

In this section, we explore the problem of replacing a given machine M with two or
more machines, each containing fewer events than M. We present an algorithm to gen-
erate such event-reduced machines with time complexity polynomial in the size of M.
This is important for applications with limits on the number of events each individual
process running a DFSM can service. Note that, the contributions in this section are
independent of fault tolerance. We first define the notion of event-based decomposition.

Definition 1. A (k,e)-event decomposition of a machine M(XM , αM , ΣM ,m0) is a set of
k machines E, each less than M, such that dmin(E) > 0 and ∀P(XP, αP, ΣP, p0) ∈ E,
|ΣP| ≤ |ΣM | − e.

As dmin(E) > 0, given the state of the machines in E, the state of M can be determined
(section 3). So, the machines inE, each containing at most |ΣM |−e events, can effectively
replace M. In Fig. 4, we present the eventDecompose algorithm that takes as input,
machine M, parameter e, and returns a (k,e)-event decomposition of M (if it exists) for
some k ≤ |XM |2.

In each iteration, Loop 1 generates machines that contain at least one event less than
the machines of the previous iteration. So, starting with M in the first iteration, at the
end of e iterations, M contains the set of largest machines (according to the order ≤
defined in 3) less than M, each containing at most |ΣM | − e events. Loop 2, iterates
through each machine P generated in the previous iteration, and uses the reduceEvent
algorithm to generate the set of largest machines less than P containing at least one
event less than ΣP. To generate a machine less than P, that does not contain an event
σ in its event set, the reduceEvent algorithm combines the states such that they loop
onto themselves on σ. The algorithm then constructs the largest machine that contains
these states in the combined form. This machine, in effect, ignores σ. This procedure is
repeated for all events in ΣP and the incomparable machines among them are returned.
Loop 3 constructs an event-decomposition E of M, by iteratively adding at least one
machine fromM to separate each pair of states in M, thereby ensuring that dmin(E) > 01.

1 Since each machine added to E can separate more than one pair of states, an efficient way to
implement Loop 3 is to check for the pairs that still need to be separated in each iteration and
add machines till no pair remains.
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eventDecompose
Input: Machine M (XM , αM , ΣM ,m0), e;
Output: (k,e)-event decomposition of M for
some k ≤ |XM |

2;
M = {M};
for ( j = 1 to e) //Loop 1
G ← {};
for (P ∈ M) //Loop 2
G = G ∪ reduceEvent(P);

M = G;
E ← {};
for (mi,mj ∈ XM) //Loop 3

E ← Any machine inM separating (mi,mj);
if (E == {}) return {};
else E ← E ∪ {E};

return E;
————————————————————-
reduceEvent

Input: Machine P (XP, αP, ΣP, p0);
Output: Largest Machines < P with ≤ |ΣP| − 1
events;
B = {};
for (σ ∈ ΣP)

Set of states, XB = XP;
//combine states to self-loop on σ
for (s ∈ XB)

s = s ∪ αP(s, σ);
B = B ∪ {Largest machine consistent with
XB};

return Incomparable machines in B;

Fig. 4. Event-based Decomposition

Let the 4-event machine M shown in Fig. 4 be the input to the eventDecompose algo-
rithm with e = 1. In the first and only iteration of Loop 1, P = M and the reduceEvent
algorithm generates the set of largest 3-event machines less than M, by successively
eliminating each event. To eliminate event 0, since m0 transitions to m3 on event 0,
these two states are combined. This is repeated for all states and the largest machine
containing all the combined states self looping on event 0 is M1. Similarly, the largest
machines not acting on events 3,1 and 2 are M2, M3 and M⊥ respectively. The re-
duceEvent algorithm returns M1 and M2 as the only incomparable machines in this set.
The eventDecompose algorithm returns E = {M1, M2}, since each pair of states in M are
separated by M1 or M2. Hence, the 4-event M can be replaced by the 3-event M1 and
M2, i.e., E = {M1,M2} is a (2,1)-event decomposition of M. We show in the technical
report [4], that the eventDecompose algorithm has time complexity O(|XM |3|ΣM |e) and
also present the proof for the following theorem.

Theorem 1. Given machine M (XM , αM, ΣM ,m0), the eventDecompose algorithm gen-
erates a (k,e)-event decomposition of M (if it exists) for some k ≤ |XM |2.
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5 State-Event Optimized Fusions

Given a set of n primaries P, we present an algorithm in [18] to generate a minimal f -
fusion ofP. In this paper, we present an algorithm to generate fusions that are optimized
for both states and events. We show that if each fusion in our solution contains more
than Σ − β events, then no f -fusion of P contains a machine with less than or equal to
Σ − β events, where β is a user defined parameter. Further, we present an incremental
approach to this problem that improves the time complexity by a factor of ρn, where ρ
is the average state reduction achieved by fusion, i.e., (|RCP|/Average size of a fusion).

The genFusion algorithm that generates the fusion machines is shown in Fig. 5.
Starting with the RCP of the primaries, RCP(P), the algorithm generates one machine
for each iteration of Loop 1 that increases dmin by 1 and at the end of f iterations we
have f machines in F such that dmin(P ∪ F ) > f . Loops 2 and 3 reduce the events and
states of the fusion machines.

Loop 2, Event Reduction: Starting with the RCP, which always increases dmin by one,
Loop 2 uses the reduceEvent algorithm in Fig. 4 to iteratively generate reduced event
machines that increase dmin by one. In each iteration of Loop 2, we generate the set of

genFusion
Input: Primaries P, faults f , event depth β;
Output: f -fusion of P;
F ← {};
for (i = 1 to f ) //Loop 1
M← {RCP(P)};
for ( j = 1 to β) //Loop 2
G ← {};
for (M ∈ M)
G = G ∪ reduceEvent(M);

M =Machines in G that increment dmin;
M ← Any machine inM;
while (M � RCP(P)⊥) //Loop 3
C ← reduceState(M);
M=Machine in C that increments dmin;

F ← {M}
⋃
F ;

return F ;

reduceState
Input: Machine P (XP, αP, ΣP, p0);
Output: Largest Machines with ≤ |XP| − 1
states;
B = {};
for (si, s j ∈ XP)
//combine states si and s j

Set of states, XB = XP with (si, s j)
combined;
B = B ∪ {Largest machine consistent
with XB};

return Incomparable machines in B;
——————————————————-
incFusion

Input: Primaries P, faults f , event depth β;
Output: f -fusion of P;
F ← {};
for each (Pi ∈ P)
F ← genFusion({Pi} ∪ RCP(F ), f , β);

return F ;

Fig. 5. Optimized Fusion Algorithm
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machines that contain one event less than the machines in the previous iteration and
increase dmin by one. At the end of β iterations, we generate machine M that increases
dmin by one and contains at most Σ − β events, if such a machine exists. At any stage,
if no valid machine was found, we exit the loop and select a machine from the previous
iteration.

Loop 3, State Reduction [18]: In Loop 3, we try to find a minimal machine less
than the event-reduced M that increases dmin by one. Starting with M, the reduceState
algorithm in Fig. 5 generates the set of largest machines less than M in which at least
two states of M are combined. We choose a machine in that set that increases dmin and
reduce it until no further state reduction is possible (hit the bottom machine RCP(P)⊥).

In Fig. 3, let P = {A, B,C}, f = 1, β = 2. Since, dmin(P) = 1, we need to add a
machine that increases dmin to two. The set of machines containing one event less than
the RCP are M1 and M2 among which only M2 increases dmin. Reducing the event-set
of M2, at the end of β = 2 iterations, M = F1. Since there is no machine less than F1

that increases dmin, no state reduction is possible and the genFusion algorithm returns
F1. Note that, for β = 0 (no event-reduction), the genFusion algorithm is identical to
the one in [18]. However, without event-reduction, the state reduction algorithm can
combine r0 and r3 into a single block and generate F2 as the largest machine containing
this block. Since this is a minimal machine, the genFusion algorithm can return this
3-event machine. The event-reduction in the current version forces the algorithm to
pick the 1-event machine F1. In the technical report, we show that the time complexity
of genFusion is O(N2|Σ|β f + N3|Σ| f ), where N = |RCP| and present a proof for the
following theorem.

Theorem 2. Given a set of n machinesP, the genFusion algorithm generates a minimal
f -fusion (state minimality) ofP such that if each machine inF contains more than |Σ|−β
events, then no f -fusion ofP contains a machine with less than or equal to |Σ|−β events
(event minimality).

Incremental Approach. Given n primaries each of size s, the genFusion algorithm
generates their RCP, that has size O(sn), and hence the algorithm can have very high
execution times. In Fig. 5, we present an incremental approach to generate the fusions,
referred to as the incFusion algorithm in which we may never have to reduce the RCP
of all the primaries. In each iteration, we generate the fusion corresponding to a new
primary and the RCP of the (possibly small) fusions generated for the set of primaries
in the previous iteration.

In Fig. 6, rather than generate a fusion by reducing the 8-state RCP of {A, B,C},
we can reduce the 4-state RCP of {A, B} to generate fusion F′ and then reduce the 4-
state RCP of {C, F′} to generate fusion F. In the technical report, we present the proof
of correctness for the incremental approach and show that it has time complexity ρn

times better than that of the genFusion algorithm, where ρ is the average state reduction
achieved by fusion.

6 Detection and Correction of Faults

In [18], the time complexity to detect and correct faults is O(n2ρ+ nρ f +N), where n is
the number of primaries, f is the number of crash faults, s is the size of each machine,
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Fig. 6. Incremental Approach: First generate F′ and then F

N is the size of the RCP and ρ is the average state reduction achieved by fusion. In this
section, we provide algorithms to detect Byzantine faults with time complexity O(n f ),
on average, and correct crash/Byzantine faults with time complexity O(nρ f ), with high
probability. Throughout this section, we refer to Fig. 3, with primaries, P = {A, B,C}
and backups F = {F1, F2}, that can correct two crash faults. The execution state of the
primaries is represented collectively as a n-tuple (primary tuple) while the state of each
backup is represented as the set of primary tuples it corresponds to (tuple-set). In Fig. 3,
if A, B, C and F1 are in their initial states, then the primary tuple is a0b0c0 and the state
of F1 is f 0

1 = {a0b0c0, a1b0c1, a1b1c0, a0b1c1} (which corresponds to {r0, r2, r4, r6}).

6.1 Detection of Byzantine Faults

Given the primary tuple and the tuple-sets corresponding to the backup states, the de-
tectByz algorithm in Fig. 7 detects up to f Byzantine faults (liars). Assuming that the
tuple-set of each backup state is stored in a permanent hash table at the recovery agent,
the detectByz algorithm simply checks if the primary tuple r is present in each backup
tuple-set b. In Fig. 3, if the states of machines A, B, C, F1 and F2 are a1, b1, c0, f 1

1 and
f 1
2 respectively, then the algorithm flags a Byzantine fault, since a1b1c0 is not present in

either f 1
1 = {a0b1c0, a1b1c1, a1b0c0, a0b0c1} or f 1

2 = {a0b1c0, a1b0c1}. In the following
theorem we show that if there are liars in the system, then the primary tuple will not be
present in at least one of the backup tuple-sets.

Theorem 3. Given a set of n machines P and an f -fusion F corresponding to it, the
detectByz algorithm detects up to f Byzantine faults among them.

In the technical report we present the proof for this theorem and also show that the
space complexity for the detectByz algorithm is O(N f n log s) while its time complex-
ity is O(n f ) (on average). Even for replication, the recovery agent needs to compare the
state of n primaries with the state of each of its f replicas, giving time complexity O(n f ).

6.2 Correction of Faults

Given the primary tuple and the tuple-sets of the backup states, to correct f crash
faults (or � f /2� Byzantine faults), we first need to find the tuples among the backup
tuple-sets that are within Hamming distance of f (� f /2� for Byzantine faults) from
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detectByz
Input: set of of fusion states B, primary
tuple r;
Output: true or false
for (b ∈ B)

if ¬(hash table(b) · contains(r))
return false;

return true;
——————————————————-
correctCrash

Input: set of of fusion states B, primary
tuple r,
crash faults among the primaries c (≤ f );
Output: corrected primary n-tuple;
D← {} //list of tuple-sets
for (b ∈ B)
//tuples in b within Hamming distance c
of r
S ← lsh tables(b) · search(r, c);
D · add(S );

return Intersection of sets in D;

correctByz
Input: set of of fusion states B, primary
tuple r;
Output: corrected primary n-tuple;
D← {} //list of tuple-sets
for (b ∈ B)
//tuples in b within Hamming distance
� f /2� of r

S ← lsh tables(b) · search(r, � f /2�);
D · add(S );

G ← Set of tuples that appear in D;
V← Vote array of size |G|;
for (g ∈ G)
// get votes from fusions
V[g]← Number of times g appears
in D;
// get votes from primaries
for (i = 1 to n)

if(r[i] ∈ g)
V[g] + +;

return Tuple g : V[g] ≥ n + � f /2�;

Fig. 7. Detection and Correction of Faults

the primary tuple (explained in sections 6.2 and 6.2). In Fig. 3, the tuples in f 0
1 ={a0b0c0, a1b0c1, a1b1c0, a0b1c1} that are within Hamming distance one of a primary tu-

ple a0b0c1 are a0b0c0, a1b0c1 and a0b1c1. An efficient solution to finding the points
among a large set within a certain Hamming distance of a query point is locality sensi-
tive hashing (LSH) [1,9]. Based on this, we maintain L hash tables, {g1 . . . gL}, for each
fusion state at the recovery agent. The hash function for g j, takes as input an n-tuple,
selects k coordinates uniformly at random from them and returns the concatenated bit
representation of these coordinates. In the example shown in Fig. 8(i), the tuple a1b0c1

of f 0
1 , is hashed into the 2nd bucket of g1 and the 3rd bucket of g2.

Given a point q and distance f , we obtain the points found in the buckets g j(q) for
j = 1 . . . L, and return those that are within distance of f from q. For example, in Fig.
8(i), given q = a0b1c0, f = 2, this point hashes into the 1st bucket of g1 and the 0th

bucket of g2 and hence the points returned are a0b1c1 and a0b0c0 respectively. If we set
L = log1−γk δ, where γ = 1 − f /n, such that (1 − γk)L < δ, then any f -neighbor of a
point q is returned with probability at least 1 − δ [1,9]. In the following sections, we
present algorithms for the correction of crash and Byzantine faults based on these LSH
functions.



278 B. Balasubramanian and V.K. Garg

3
2 (a1b0c1)

1
0 (a0b0c0)

(a0b1c1)

���������	
 � ��� �

��	 ��

3
2 (a1b1c0)

1
0 (a0b0c0)

(a0b1c1)

(a1b1c0) 3
2
1
0 (a0b0c0)

3 (a1b1c1)

2
1
0 (a0b0c0)

(a1b1c1)(a1b0c1)

��� ������ 	
�
� f 0
1 = {a0b0c0, a1b0c1, a1b1c0, a0b1c1} ���� ������ 	
�
� f 0

2 = {a0b0c0, a1b1c1}

g1 ��������
�� � ��� �� g2 ��������
�� � ��� �� g1 ��������
�� � ��� �� g2 ��������
�� � ��� ��

Fig. 8. LSH Example for fusion states in Fig. 3 with k = 2, L = 2

Crash Correction. Given the primary tuple (with possible gaps because of faults) and
the tuple-sets of the available backup states, the correctCrash algorithm in Fig. 7 cor-
rects up to f crash faults. The algorithm finds the tuples in the tuple-sets of each fusion
state b that are within a Hamming distance c (actual number of faults) of the primary
tuple r using the LSH tables for each fusion state. If the intersection of these sets is
singleton, then we return that as the correct primary tuple. When the intersection is not
singleton, we need to exhaustively search each fusion state for points within distance c
of r (LSH has not returned all of them), but this happens with a very low probability
[1,9]. In Fig. 3, assume crash faults in primaries B and C among {A, B,C}. Given the
states of A, F1 and F2 as a0, f 0

1 and f 0
2 respectively, the tuples within Hamming distance

two of r = a0{}{} among f 0
1 = {a0b0c0, a1b0c1, a1b1c0, a0b1c1} and f 0

2 = {a0b0c0, a1b1c1}
are {a0b0c0, a0b1c1} and {a0b0c0} respectively. The algorithm returns their intersection,
a0b0c0 as the corrected primary tuple. In the following theorem, we prove that the cor-
rectCrash algorithm returns a unique primary tuple.

Theorem 4. Given a set of n machines P and an f -fusion F corresponding to it, the
correctCrash algorithm corrects up to f crash faults among them.

In the technical report, we present the proof for this theorem and show that the space
complexity of the correctCrash algorithm is O(N f n log s) and its time complexity is
O(nρ f ) w.h.p. Crash correction in replication simply involves copying the state of the
replicas of f failed primaries which has time complexity O( f ).

Byzantine Correction. Given the primary tuple and the tuple-sets of the backup states,
the correctByz algorithm in Fig. 7 corrects up to � f /2� Byzantine faults. The algorithm
finds the set of tuples among the tuple-sets of each fusion state that are within Hamming
distance � f /2� of the primary tuple r using the LSH tables and stores them in list D.
It then constructs a vote vector V for each unique tuple in this list. The votes for each
tuple g ∈ V is the number of times it appears in D plus the number of primary states of
r that appear in g. The tuple with greater than or equal to n + � f /2� votes is the correct
primary tuple. When there is no such tuple, we need to exhaustively search each fusion
state for points within distance � f /2� of r (LSH has not returned all of them). In Fig.
3, let the states of machines A, B, C F1 and F2 are a0, b1, c0, f 0

1 and f 0
2 respectively,

with one liar among them (� f /2� = 1). The tuples within Hamming distance one of
r = a0b1c0 among f 0

1 = {a0b0c0, a1b0c1, a1b1c0, a0b1c1} and f 0
2 = {a0b0c0, a1b1c1} are

{a0b0c0, a1b1c0, a0b1c1} and {a0b0c0} respectively. The algorithm returns a0b0c0, with
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four votes in total (one each from A, C, F1 and F2), since n + � f /2� = 3 + 1 = 4. We
show in the following theorem that there are enough machines separating each pair of
tuples and even with liars the true primary tuple will get sufficient votes.

Theorem 5. Given a set of n machines P and a f -fusion F corresponding to it, the
correctByz algorithm corrects up to � f /2� Byzantine faults among them.

In the technical report, we present a proof for the following theorem and show that
the space complexity of the correctByz algorithm is O(N f n log s) and its time complex-
ity of is O(nρ f ) w.h.p. In the case of replication, we just need to obtain the majority
across f copies of each primary with time complexity O(n f ).

7 Evaluation

7.1 Experimental Results

In [18], we evaluate fusion for simple examples such as counters and dividers. In this
section, we evaluate fusion using the MCNC’91 benchmarks [24] for DFSMs, widely
used for research in the fields of logic synthesis and finite state machine synthesis
[17,25]. We implemented the incFusion algorithm of Fig. 5 in Java 1.6 and compared
the performance of fusion with replication for 100 different combinations of the bench-
mark machines, with n = 3, f = 2, β = 3 and present some of the results in Table 3.
The machine descriptions, implementation and detailed results are available in [3].

Let the primaries be denoted P1, P2 and P3 and the fused-backups F1 and F2. Col-
umn 1 of Table 3 specifies the names of three primary DFSMs. Column 2 specifies the
backup space required for replication (

∏1=3
i=1 |Pi| f ), column 3 specifies the backup space

for fusion (
∏i=2

i=1 |Fi|) and column 4 specifies the percentage state space savings ((column
2-column 3)* 100/column 2). Column 5 specifies the total number of primary events,
column 6 specifies the average number of events across F1 and F2 and the last column
specifies the percentage reduction in events ((column 5-column 6)*100/column 5).

The average state space savings in fusion (over replication) is 38% (range 0-99%)
over the 100 combination of benchmark machines, while the average event-reduction is
4% (range 0-45%). We also present results in [3] that show that the average savings in

Table 3. Evaluation of Fusion on the MCNC’91 Benchmarks

Machines Replication
State Space

Fusion State
Space

% Savings
State Space

Primary
Events

Fusion
Events

% Reduction
Events

dk15, bbara, mc 25600 19600 23.44 16 10 37.5
lion, bbtas, mc 9216 8464 8.16 8 7 12.5

lion, tav, modulo12 36864 9216 75 16 16 0
lion, bbara, mc 25600 25600 0 16 9 43.75

tav, beecount, lion 12544 10816 13.78 16 16 0
mc, bbtas, shiftreg 36864 26896 27.04 8 7 12.5

tav, bbara, mc 25600 25600 0 16 16 0
dk15, modulo12, mc 36864 28224 23.44 8 8 0
modulo12, lion, mc 36864 36864 0 8 7 12.5
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time by the incremental approach for generating the fusions (over the non-incremental
approach) is 8%. Hence, fusion achieves significant savings in space for standard bench-
marks, while the event-reduction indicates that for many cases, the backups will not
contain a large number of events.

7.2 Practical Example: MapReduce

To motivate the practical use of fusion, we discuss its application to the MapReduce
framework which is used to model large scale distributed computations. Typically, the
Map-Reduce framework is built using the master-worker configuration where the mas-
ter assigns the map and reduce tasks to various workers. Due to high cost of resources in
replication, handling faults among the map workers is primarily based on checkpoint-
ing in which the processes periodically write to permanent storage. In the case of faults,
the tasks are restarted from the last available state. This approach increases latency and
may be inadequate for some applications.

Consider a distributed grep application over large files, where the master assigns
three map tasks, each searching for one of the string patterns modeled by {A, B,C}
in Fig. 1. When the input files are partitioned into 200,000 chunks of data (the usual
number in [6]), the current checkpointing-based approach requires 200,00*3= 600,000
tasks in total, while causing high latency. A replication-based solution for correcting
just one fault will involve creating a replica of each of the tasks A, B and C for each
chunk of data, requiring 1200,000 tasks in total. A fusion-based approach needs to run
only one additional backup task for each chunk of data, running F1 shown in Fig. 1.
Though recovery is costlier than replication, this approach requires only 800,000 tasks
with much better latency than checkpointing.

8 Conclusion

We challenge the traditional approach of replication that requires n f backups to correct
f crash faults among n machines and present a fusion-based solution that requires only
f backups consuming considerably lesser state space. We present a problem that is
fundamental to DFSMs: Can we replace a given DFSM with DFSMs containing fewer
events? To formalize this, we introduce the concept of a (k,e)-event decomposition of a
given machine and present efficient algorithms to generate such a decomposition. Based
on this, we describe an algorithm to generate fused backups for a given set of machines
that is optimized for both states and events.

Further, we present efficient algorithms to detect and correct faults in a system with
fused backups. The algorithm for the detection of Byzantine faults has time complexity
O(n f ) (on average), which is the same as that for replication. We apply the concept
of locality sensitive hashing to the correction of faults and the time complexity for the
correction of crash and Byzantine faults is O(nρ f ) w.h.p. For relatively small values of
n and ρ, fusion causes almost no overhead for recovery. Finally, we evaluate fusion on
standard benchmarks for DFSMs and the results confirm that fusion achieves significant
savings in space over replication. The event-reduction algorithm ensures that for many
examples, the fused backups contain small event sets. Hence, in addition to our results
on the theoretical optimality of the fused backups, we have illustrated the practical
usefulness of fusion.
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Abstract. Users increasingly execute services online at remote providers, but
they may have security concerns and not always trust the providers. Fork-consis-
tent emulations offer one way to protect the clients of a remote service, which is
usually correct but may suffer from Byzantine faults. They feature linearizability
as long as the service behaves correctly, and gracefully degrade to fork-consistent
semantics in case the service becomes faulty. This guarantees data integrity and
service consistency to the clients.

All currently known fork-consistent emulations require the execution of non-
trivial computation steps by the service. From a theoretical viewpoint, such a ser-
vice constitutes a read-modify-write object, representing the strongest object in
Herlihy’s wait-free hierarchy [1]. A read-modify-write object is much more pow-
erful than a shared memory made of so-called registers, which lie in the weakest
class of all shared objects in this hierarchy. In practical terms, it is important to re-
duce the complexity and cost of a remote service implementation as computation
resources are typically more expensive than storage resources.

In this paper, we address the fundamental structure of a fork-consistent em-
ulation and ask the question: Can one provide a fork-consistent emulation in
which the service does not execute computation steps, but can be realized only
by a shared memory? Surprisingly, the answer is yes. Specifically, we provide
two such algorithms that can be built only from registers: A fork-linearizable
construction of a universal type, in which operations are allowed to abort under
concurrency, and a weakly fork-linearizable emulation of a shared memory that
ensures wait-freedom when the registers are correct.

Keywords: distributed system, shared memory, fork-consistency, universal
object, atomic register, Byzantine faults.

1 Introduction

The increasing trend of executing services online “in the cloud” [2] offers many eco-
nomic advantages, but also raises the challenge of guaranteeing security and strong
consistency to its users. As the service is provided by a remote entity that wants to re-
tain its customers, the service usually acts as specified. But online services may fail for
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various reasons, ranging from simply closing down (corresponding to a crash fault) to
deliberate and sometimes malicious behavior (corresponding to a Byzantine fault).

For some kinds of services, cryptographic techniques can prevent a malicious provi-
der from forging responses or snooping on customer data. But other violations are still
possible in the asynchronous model considered here: for instance, when multiple iso-
lated clients interact only through a remote provider, the latter may send diverging and
inconsistent replies to the clients. In this context, “forking” consistency conditions [3,4]
offer a gracefully degrading solution because they make it much easier for the clients
to detect such violations. More precisely, they ensure that if a Byzantine provider even
once sent a wrong response to some client, then this client becomes forever isolated
or forked from those other clients to which the provider responded differently. With
this notion, clients may easily detect service misbehavior from a single inconsistent
operation, e.g. by out-of-band communication.

Forking consistency conditions are often encapsulated in the notion of a Byzantine em-
ulation [4], which ensures graceful degradation of the service’s semantics: If the service
is correct, then operations execute atomically. In any other case, the clients still observe
operations according to the forking consistency notion. Fork-consistency represents a
safety property — after all, a faulty service may simply stop. The liveness property in a
Byzantine emulation refers to the good case when the service behaves correctly.

Fork-linearizability [3,4] ensures that clients always observe linearizable [5] service
behavior and that two clients, once forked, will never again see each other’s updates to
the system (i.e. they share the same history prefix up to the forking point). However, it
has been found that fork-linearizable Byzantine emulations of a shared memory cannot
always provide wait-free operations [4], i.e., some clients may be blocked because of
other clients that execute operations concurrently. An escape is offered by the weaker
liveness property of abortable emulations, which allow client operations to abort under
contention [6]. As another alternative, the notion of weak fork-linearizability relaxes
fork-linearizability in order to allow wait-free client operations in Byzantine emula-
tions [7]. Weak fork-linearizability [7] allows two clients, after being forked, to observe
a single operation of the other one (at-most-one-join), and that the real-time order in-
duced by linearizability may be violated by the last operation of each client (weak
real-time order).

In this paper, we explore the fundamental assumptions required for building a By-
zantine service emulation. Up to now, all fork-consistent emulation protocols have re-
quired the service to execute non-trivial computation steps, i.e., the service must be
implemented by an object of universal type [1], capable of read-modify-write oper-
ations [8]. We show the surprising result that this requirement can be dropped, and
implement fork-consistent emulation protocols only from memory objects, so-called
registers. They provide simple read and write operations and represent one of the weak-
est forms of computational objects. A long tradition of research has already addressed
how to realize powerful abstractions from weaker base objects (e.g., [1,9]).

Specifically, we propose the first fork-linearizable Byzantine emulation of a univer-
sal object only from registers. Our algorithm necessarily offers abortable operations
because a wait-free construction of a universal object from registers is not possible in
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an asynchronous system using only registers [1]. Moreover, we give an algorithm for a
weakly fork-linearizable Byzantine emulation of a shared memory only from registers.
It allows wait-free client operations when the underlying registers are correct.

Our two algorithms may directly replace the computation-based constructions in the
existing respective emulations of shared memory on Byzantine servers [6,7,10]. For
instance, our second construction, which yields a weakly fork-linearizable Byzantine
emulation, allows to eliminate the server code from Venus [10]. Currently, Venus runs
server code implemented by a cloud computing service, but our construction may realize
it from a cloud storage service. For practical systems this can make a big difference in
cost because full-fledged servers or virtual machines (e.g., Amazon EC2) are typically
more expensive than simple disks or cloud-based key-value stores (e.g., Amazon S3).

Note that although our approach uses a collection of registers, we refrain from mak-
ing more specific failure assumptions on them. Our remote service is comprised of
registers, and as soon as one register is faulty, we consider the service to be faulty. It
is conceivable to use fault-prone registers in our algorithms. Standard methods imple-
menting robust shared registers from fault-prone base registers show how to tolerate up
to a fraction of Byzantine base registers [11]. This extension, which is orthogonal to our
work, would further refine our notion of graceful service degradation with faulty base
objects.

Related Work. The notion of fork-linearizability was introduced by Mazières and
Shasha [3]. They implemented a fork-linearizable multi-user storage system called
SUNDR. An improved fork-linearizable storage protocol is described by Cachin et
al. [4]; it reduces the communication complexity compared to SUNDR from O(n2)
to O(n). More recently, fork-linearizable Byzantine emulations have been extended to
universal services [12]. All fork-linearizable emulations are blocking and sometimes
require one client to wait for another client to complete [4].

In order to circumvent blocking the clients, Majuntke et al. [6] propose the first
abortable fork-linearizable storage implementations. Their work takes up the notion
of an abortable object introduced by Aguilera et al. [13]. They demonstrated, for the
first time, how an abortable (and, hence, obstruction-free [14]) universal object can be
constructed from abortable registers, which are base objects weaker than registers. In
more recent work, it has been shown that abortable objects can be boosted to wait-free
objects in a partially synchronous system [15]. This makes our Byzantine emulations
of abortable objects very attractive in practical systems.

Actually implemented systems offering data storage integrity through forking consis-
tency semantics include SUNDR (LKMS) [16], which realizes the protocol of Mazières
and Shasha [3]. Furthermore, Cachin et al. [17] add fork-linearizable semantics to the
Subversion revision control system, such that integrity and consistency of the server can
be verified. The “blind stone tablet” of Williams et al. [18] provides fork-linearizable
semantics for an untrusted database server; it may abort conflicting operations. Using
a relaxation of fork-linearizability, called fork-* consistency, Feldman et al. [19] intro-
duce a lock-free implementation for online collaboration that protects consistency and
integrity of the service against a malicious provider.

Cachin et al. [7] present the storage service FAUST, which emulates a shared mem-
ory in a wait-free manner by exploiting the notion of weak fork-linearizability. It relaxes
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fork-linearizability in two fundamental ways: (1) after being forked, two clients may
observe each others’ operations once more and (2) the real-time order of the last opera-
tion of each client is not preserved. FAUST incorporates client-to-client communication
in a higher layer, which ensures that all operations become eventually consistent over
time (or the server is detected to misbehave). The Venus system [10] implements the
mechanisms behind FAUST and describes a practical solution for ensuring integrity and
consistency to the users of cloud storage.

Li and Mazières [20] study storage systems, built from 3f +1 server replicas, where
more than f replicas are Byzantine faulty. Their storage protocol ensures fork-* con-
sistency. Similar to weak fork-linearizability, fork-* consistency allows that two forked
clients observe again at most one common operation.

Contributions We present, for the first time, Byzantine emulations with forking con-
sistency conditions only from registers, instead of more powerful computation objects.
Any number of registers may be affected by Byzantine failures. Our constructions are
linearizable provided that the base registers are correct. The constructions are:

– A register-based abortable Byzantine emulation of a fork-linearizable universal
type.

– A register-based wait-free Byzantine emulation of weak fork-linearizable shared
memory.

In Section 1, we discuss related work; Section 2 introduces the underlying system
model. The two main constructions are given in Sections 3 and 4. The paper concludes
in Section 5. The correctness proofs of the protocols can be found in our Technical
Report [21].

2 System Model

We consider a distributed system consisting of n > 1 clients C1, . . . , Cn that commu-
nicate through shared objects. Each such base object has a type which is given by a set
of invocations, a set of responses, and by its sequential specification. The sequential
specification defines the allowed sequences of invocations and responses. An invoca-
tion and the corresponding response constitute an operation of an object. A collection
of base objects is used to implement high-level objects, where clients execute algorithm
A, consisting of n state machines A1, . . . , An (where Ci implements Ai). When client
Ci receives an invocation of an operation to the high-level object, it takes steps of Ai,
where it (1) either invokes an operation on some base object, (2) or receives the response
to its previous invocation to a base object, (3) or it performs some local computation.
At the end of a step, Ci changes its local state and possibly returns a response to the
pending high-level operation.

An execution of algorithm A is defined as the (interleaved) sequence of invocation
and response events. Every execution induces a history which is the sequence of in-
vocations and responses of the high-level operations. If σ is a history of an execution
of algorithm A, then σ|Ci denotes the subsequence of σ containing all events of client
Ci. For sequence σ and operation o, σ|o denotes the prefix of σ that ends with the last
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event of o. We say that a response matches an invocation, if both are events of the same
operation. An operation is called complete, if there exists a matching response to its
invocation, else incomplete. We assume that each client invokes a new operation only
after the previous operation has completed. A history consisting only of matching in-
vocation/response pairs is called well-formed. Operation o precedes operation o′ in a
sequence of events σ (o <σ o′) iff o is complete and the response of o happens before
the invocation of o′. If o precedes o′ we denote o and o′ as sequential, if neither one
precedes the other, then o and o′ are said to be concurrent.

For the proposed abortable construction (Sec. 3), we introduce the special response
ABORT. A complete operation o is called unsuccessful (“o is aborted”), if it returns
ABORT, else it is called successful (“o successfully completes”). The formal definition
of an abortable object comprises a non-triviality property which allows aborts only
under concurrency [13].

Clients may fail by crashing, i.e. they stop taking steps and hence, the last opera-
tion of each client might be incomplete. Base objects may deviate arbitrarily from their
specification exhibiting non-responsive-arbitrary faults [22] (called Byzantine). Clients
have access to a digital signature scheme used by each client to sign its data such that
any other client can determine the authenticity of a datum by verifying the correspond-
ing signature. We assume that signatures cannot be forged.

All constructions appearing in this paper are based on atomic registers. An atomic
register provides two operations, read and write1. Operation write(v) stores value v
from domain Values into the register. A call of read() returns the latest written value
from the register or the special value ⊥ if no value has been written. As the register
is atomic, its history satisfies linearizability [1], i.e. operations seem to appear as se-
quential, atomic events2. Further, the atomic registers used allow single-writer-multiple-
reader access (SWMR), i.e. to each register we assign a dedicated client that may call
write and read, while all other clients may only call read to that register.

A sequence of operations π satisfies weak real-time order of σ if π, excluding the
last operation of each client in π, satisfies real-time order of σ. Causality between two
operations depends on the type of the implemented object3. For two operations of a
shared memory o and o′ in σ, o causally precedes o′ (o →σ o′), if o, o′ are called
by the same client and o happens before o′, or if o′ is a READ operation that returns
the value written by WRITE operation o. The next definition formalizes the notion of
fork-linearizability [4] and weak fork-linearizability [7]; for a formal definition of the
term possible view as well as the above-mentioned notions we refer to the Technical
Report [21].

Definition 1. Let σ be a history of an object of type T and for each client Ci there
exists a sequence of events πi such that πi is a possible view of σ at Ci with respect
to T .
History σ is fork-linearizable with respect to object type T if for each client Ci:

1 We type operation calls to base registers in italic font and calls to constructed objects in CAP-
ITALS.

2 Hence, the “latest written value” is well-defined.
3 As causality is needed to define weak fork-linearizability, here, we give causality for a shared

memory, which is the type we implement with weak fork-linearizability.
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1. πi preserves the real-time order of σ, and
2. for every client Cj and for every o ∈ πi ∩ πj , it holds πi|o = πj |o.

History σ is weak fork-linearizable with respect to object type T if for each client Ci:

1. πi preserves the weak real-time order of σ, and
2. for every operation o ∈ πi and every operation o′ ∈ σ such that o′ →σ o, it holds

that o′ ∈ πi and that o′ <πi o, and
3. (At-most-one-join) for every client Cj and every two operations o, o′ ∈ πi ∩ πj by

the same client such that o <σ o′, it holds πi|o = πj |o.

The notion of a Byzantine emulation [4] allows us to formally define the safety and live-
ness properties of our protocols. Note that the liveness condition of abortable operations
is weaker than wait-freedom but still not weaker than obstruction-freedom [13].

Definition 2. An algorithm A emulates an object of type T on a set of Byzantine base
objects B with {fork|weak fork}-linearizability whenever following conditions hold:

1. If all objects in set B are correct, the history of every fair4 and well-formed execu-
tion of A is linearizable with respect to type T , and

2. the history of every fair and well-formed execution of A is {fork|weak fork}-
linearizable with respect to type T .

Such an emulation is wait-free (abortable resp.), iff every fair and well-formed execu-
tion of the protocol with correct base objects is wait-free [1] (abortable [13] resp.).

3 A Fork-Linearizable Universal Type

In this section we present as our first main contribution an abortable fork-linearizable
Byzantine emulation of a universal type implemented from atomic registers. The shared
object ensures fork-linearizability in the presence of any number of faulty base regis-
ters. High-level operations are abortable [13], i.e. under concurrency, the special re-
sponse ABORT may be returned. The functionality of a universal type T is encoded in
the procedure APPLYT . For client Ci, state s and operation o, APPLYT (s, o, i) returns
(s′, res), where s′ is the new state of the universal object, res the computation result,
and where the sequence of invoking APPLYT (s, o, i) and returning (s′, res) is defined
by the sequential specification of type T .

Our algorithm uses timestamp vectors called versions whose order reflects the real-
time order in which operations are applied to the shared object. Each operation carries a
version and the linearization of operations is achieved through the use of an INC&READ

counter object C with two atomic operations INC&READ and READ. An invocation to
INC&READ(C) advances the counter object C and returns a value which is higher than
any value returned before, and READ(C) returns the current value of the counter object.
An implementation of the INC&READ counter is given in the Technical Report [21]
together with its formal properties. Our implementation uses wait-free atomic registers
as base objects which makes it a wait-free variant of the abortable INC&READ counter
described by Aguilera et al. [13].

4 For a formal definition we refer to standard literature [23].
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3.1 Algorithm Ideas

Universal Type. To implement universal type T , we use n SWMR registers
R1, . . . , Rn such that client Ci can read from all registers but may write only to Ri.
The registers store states of the universal object. To implement high-level operations,
client Ci reads from the register which holds the most current state, applies the relevant
state transformation, and writes the new state to Ri. Note, that all information are dig-
itally signed by the clients as base objects are untrusted. Thereby, operations “affect”
each other which leads to the following relation on operations: Operation o of Ci affects
operation o′ of Cj , if during o′, Cj is able to verify the signature of Ci on state s that has
been written during o and if Cj executes APPLYT on s during o′; further, an operation
of Ci affects each later operation of Ci.

Concurrency detection. We allow operations to abort under concurrency for two rea-
sons: there is no wait-free construction of a universal type from registers, as shown
by Herlihy [1], and no fork-linearizable protocol can be wait-free in all executions, as
shown in a more recent work of Cachin et al. [4]. Cachin’s impossibility is based on
two runs, indistinguishable for the reader: In the first run a READ operation does not
return value v as it is concurrently written, while in the second run v has been previ-
ously written and is hidden by malicious registers. To avoid such a situation, our pro-
tocol implements a concurrency detection mechanism [13] using INC&READ counter
object C. If concurrency is detected, a pending operation is aborted. At the invocation
of a high-level operation o, our protocol calls INC&READ(C) and remembers the time-
stamp returned. At the end of o, READ(C) is executed to check whether counter C still
returns the same timestamp. If not, another operation o′ was invoked during o — thus,
o is aborted. Else, if at the end of o C has not been changed, all successful operations
either terminated before o or will be invoked after o has terminated. This is because the
timestamps, returned from INC&READ, are used to linearize operations: The current
state is written together with the timestamp, and the timestamp is used to determine the
most recent state. Hence, all other operations invoked so far write a state with a lower
timestamp than o. Consequently, such operations are linearized before o and only the
state written by o can be read by later operations.

Fork-Linearizability. In addition to the timestamp from INC&READ counter C, each
operation is assigned a vector of timestamps of length n, called version. The order re-
lation ≤ defined on versions respects real-time order and the ”affected by” relation on
operations. The idea is that each operation reads the most recent version from the stor-
age, increments its own entry and writes the new version back to the storage. Thereby,
each operation checks, if the version it reads, has been affected by the version of its own
last successful operation, i.e. one which was not aborted. If the last successful operation
of client Ci is hidden from Cj , then Ci does not accept operations of Cj as they have
not been affected by the last successful operation of Ci. This ensures that the views
of the clients after a forking attack are not rejoined. This principle is based on ideas
of Mazières and Shasha [3], and Cachin et al. [4]. To apply it to this work, we have
to add a specific handling for aborted operations: If operation o of client Ci is aborted,
Ci cannot expect that o will affect later operations. However, it is still possible that some
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operation of Cj is affected by aborted o. In this case we call o relevant for Cj (refer to
the Technical Report [21] for a formal definition).

3.2 Description of Algorithm 1

We now describe the steps preformed by client Ci when executing high-level operation
o. The algorithm is given as Algorithm 1, the variables used are collected in Figure 1.

The protocol is framed by INC&READ(C) and READ(C) calls to the counter objectC
implementing the concurrency detection mechanism (lines 1.2 and 1.14). If the returned
timestamps are not equal, the operation is aborted in line 1.16. In lines 1.3–1.5, the client
reads from all atomic registers R1, . . . , Rn and determines by means of the assigned
timestamps the index l of the register holding the latest written data 〈tsl, Vl, sl, sigl〉,
where tsl is a timestamp, Vl is the version, sl is the state and sigl is a signature. If
some data have been written to Rl, the signature of the content of Rl is verified (line
1.6). Then, client Ci checks whether the read version Vl is not smaller than Vsuc the
version of its own last successful operation (line 1.7). When the check is passed the
new state of the universal object and the computation result is computed by calling
APPLYT (sl, o, i) (line 1.8). Finally the new version for operation o has to be computed.
This is done by taking the per-entry maximum of version V , which is the local version
of Ci, and Vl, and by incrementing the ith entry (lines 1.9–1.11). After signing the
current timestamp, the new version V , and new state s in line 1.12, client Ci writes ts,
V , s and the signature into register Ri (line 1.13). If operation o is successful, version
V is stored as last successful version Vsuc and the computation result is returned (lines
1.17–1.19).

C INC&READ counter object, initially 0
R1, . . . Rn SWMR atomic register, initially 〈0, (0, ..., 0),⊥,⊥〉 /*
ts+version+state+sig */
ts, ts′, tsl, cn integer, initially 0 /* timestamp & counter */
V [1..n], Vl[1..n], Vsuc[1..n] array of integers, intially (0, ..., 0) /* version */
s, sl state, initially⊥ /* state */
res operation result, initially⊥ /* return value */
sig, sigl signature, initially⊥ /* signature */

Fig. 1. Variables used in Algorithm 1

3.3 Correctness Arguments

In this section we argue why Algorithm 1 satisfies fork-linearizability. The goal is
to construct for each client Ci a view πi of σ that satisfies the properties of fork-
linearizability. To construct πi, we simplify our argumentation by ignoring operations
that are not relevant for Ci. Recall, any operation is relevant for client Ci that affects
Ci’s last successful operation. Hence, operations that are not relevant for client Ci do
not change the object’s state fromCi’s point of view. Thus, we can order them arbitrarily
among the operations in πi and the resulting sequences still satisfy fork-linearizability.
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Algorithm 1. Universal Object Implementation, Code of Client i

EXECUTE(o) do1.1

ts← INC&READ(C) /* increment and read from counter */1.2

for j = 1, . . . , n do1.3

〈tsj , Vj , sj , sigj〉 ← read(Rj) /* low-level atomic read */1.4

let l be such that tsl = max1≤j≤n(tsj) /* find register with most1.5

recent data */
if Vl �= [0 . . . 0] ∧ ¬verifyl(sigl, 〈tsl, Vl, sl〉) then halt /* signature1.6

verified? */
if ∃k : Vsuc[k] > Vl[k] then halt /* fork-linearizability check1.7

passed? */
〈s, res〉 ← APPLYT (sl, o, i) /* compute new state + result */1.8

for j = 1, . . . , n, j �= i do1.9

V [j]← max(V [j], Vl[j]) /* determine1.10

V [i]← V [i] + 1 new version */1.11

sig ← signi(ts||V ||s) /* signature on ts, version, state */1.12

write(Ri, 〈ts, V, s, sig〉) /* low-level atomic write */1.13

ts′ ← READ(C) /* read from counter */1.14

if ts �= ts′ then1.15

return ABORT /* concurrency detected */1.16

else1.17

Vsuc ← V /* reset last successful version */1.18

return res /* return result */1.19

The idea behind the construction of the πi in the proof is that operations are ordered
according to their assigned versions. The proof shows that this order respects the “af-
fected by” relation, the sequential specification of a universal type, and the real-time
order. As during an operation the new version is computed using the client’s last ver-
sion and the read version, proving “affected by” and real-time order is straightforward.
The core of the proof is to show that the order of version also respects the sequential
specification. We sketch the intuition behind this with the following argument leading
to a contradiction:

Assume that some operation oc is not affected by the most recent state of the uni-
versal object, which has been written by relevant operation ob, but is affected by an
older state written by operation oa. In this case, the clients of ob and oc are forked,
and neither ob nor oc affect each other. We argue, that in such a situation, there is no
relevant operation that has been affected by both ob and oc, as such an operation would
join the two clients violating fork-consistency. We assume for contradiction, that a rel-
evant operation ojoin of client Cjoin, affected by ob and oc exists which is also the first
among such operations (see Figure 2). Operation ojoin is affected by ojoin suc, the last
successful operation of Cjoin previous to ojoin, and by or that wrote the state which
is read during ojoin. Hence, without loss of generality ojoin suc is affected by ob while
or is affected by oc. During operation ojoin suc, client Cjoin raises its value in the ver-
sion to V [join]join suc. This implies that ojoin only accepts versions where the jointh
entry is at least V [join]join suc (line 1.7). As ojoin suc is not on the path of “affected



292 M. Majuntke et al.

oa ob oc ojoinojoin suc

or

. . .

Fig. 2. Correctness Idea of Algorithm 1. Arrows denote the “affected by” relation.

by” relations from oc to or, ojoin would block while reading the state of or which is a
contradiction. Thus, ojoin does not exist.

Finally, it follows directly from the described construction, that sequences πi satisfy
the no-join property. To complete the correctness proof of the Byzantine emulation, we
show that when all base objects are correct, no operation blocks and that no operation
trivially aborts.

4 A Weak Fork-Linearizable Shared Memory

In this section we describe as our second contribution a wait-free, weak fork-linearizab-
le Byzantine emulation of a shared memory implemented from atomic registers. The
presented construction satisfies weak fork-linearizability in the presence of any number
of faulty base objects. The implemented shared memory provides n atomic registers,
such that each client can write to one dedicated register exclusively and may read from
all registers. Operation WRITE(v), called by client Ci, writes value v to Ci’s regis-
ter. Operation READ(i) returns the last written value from Ci’s register, and may be
called by any client. Our algorithm makes use of an atomic single-writer snapshot ob-
ject S with n components [24,25]. Snapshot object S provides two atomic operations:
UPDATE(d, S, i), that changes the state of component i of S to d, and SCAN(S) that
returns vector (d1, . . . , dn) such that di is the state of component i of S, i = 1 . . . , n.
Formally, di is the state written by the last UPDATE to component i prior to SCAN. It
has been shown, that such a shared snapshot object can be wait-free implemented only
from registers [24,25].

4.1 Algorithm Ideas

Each client locally maintains a timestamp that respects causality and real-time order
of its own operations. As the basic principle, during each operation this timestamp is
written to the shared memory and timestamps left by other operations are read. For each
client Ci our implementation uses two registers only Ci may write to, but which can be
read by all clients. The first one is needed to store value and timestamp written by Ci’s
WRITE operations and is implemented by a SWMR atomic register Wi (i.e. registers
W1, ...,Wn in total). The second “register” is required to store the latest timestamp of
Ci’s READ operations. It is implemented as the ith component within the single-writer
snapshot object with n components, S.

During READ(j) operation of Ci, Ci’s current timestamp is written to S using UP-
DATE, thereafter, Ci reads a timestamp-value pair from register Wj (using low-level
read). High-level WRITE(v) of Ci proceeds analogously: Ci writes its current time-
stamp plus value v to register Wi using low-level write, thereafter, it reads all
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write high-level write(v) ow

high-level read or

update read

write scan write scan

Fig. 3. Basic principle implemented by Algorithm 2

components from S using SCAN. By this, operations are able to observe each other,
as expressed in the relation “seen”: We say that a WRITE operation ow of Cj sees a
READ operation or of Ci with timestamp ts if Ci digitally signed ts and updated the ith
component of S by signed ts during or and, if during ow, Cj scanned S and was able
to verify the signature of Ci on ts; READ operation or sees WRITE operation ow if or
returns the value written by ow.

This construction guarantees the following property on interleaved high-level oper-
ations: Whenever high-level READ(j) or of Ci and WRITE(v) ow of Cj appear in an
execution such that or does not return v but a value written before v, then, by regular-
ity of the atomic base registers, ow.write5 does not precede or.read, i.e., or.read has
been invoked before ow.write finishes. Consequently, or.UPDATE precedes ow.SCAN

(see Figure 3). Thus, if or does not “see” ow, then ow “sees” or. A similar property on
interleaving operations has also been leveraged in our previous work [26] as well as by
Aguilera et al. [9].

We can expect that client Cj writes information during its next WRITE operation
such that future operations of Ci may verify whether operation ow actually has seen
operation or. More concrete, if READ or has seen WRITE ow then the client checks
during or whether the next WRITE operation after ow (of the same client as ow), has
seen READ operation or or a newer one. Else, the base objects are faulty, as shown
in the following example: Let ow and o′w be two sequential WRITE operations of Ci,
o′w precedes READ operation or of Cj but it is hidden by the malicious base objects
such that or sees only ow. As o′w precedes or, o′w cannot see or. However, as or sees
ow, it expects that o′w will see or. The next WRITE operation o′′w of Ci will write this
information. If client Cj sees o′′w, which would violate weak fork-linearizablility, the
check, explained above, is not passed.

4.2 Description of Algorithm 2

This section explains the steps taken by client Ci to implement high-level READ and
WRITE operations. The algorithm is given as Algorithm 2, its variables in Figure 2.

At invocation of high-level READ(j), client Ci increments its local timestamp and
generates a digital signature of it. The signed timestamp is stored to snapshot ob-
ject S using operation UPDATE((ots, sig), S, i) (lines 2.2–2.4). Then, client Ci reads
register Wj and verifies the signature (line 2.5–2.6). The content of register Wj con-
tains the written value wv, the corresponding timestamp wts, as well as two matrices

5 The notation x.y denotes the call of low-level operation y during high-level operation x.
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S, atomic snapshot object with n componenets, initially ((0,⊥), ..., (0,⊥)) /*
timestamp+sig */
W1, . . . ,Wn, SWMR atomic registers, initially (⊥, 0, ∅, ∅,⊥) /*
val+ts+rs+ws+sig */
v, wv value, initially⊥ /* value written to storage */
wts, ots, i, k, r, r′, w,w′, tmp1, . . . , tmpn integer, initially 0 /* timestamps +
temp. variables */
read seen[1..n][1..n], write seen[1..n][1..n], /* matrices of seen

r write seen[1..n][1..n], matrix of sets of pairs (integer, integer), initially ∅
operations */
sig, sig1, . . . , sign signature, initially ⊥ /* signatures */

Fig. 4. Variables used in Algorithm 2

r read seen and r write seen. Both matrices are of size n×n where each entry holds
a set of integer pairs (r, w). Client Ci maintains a variable read seen of the same type,
where a pair (r, w) ∈ read seen[i][j] denotes that READ of client Ci with timestamp
r has seen WRITE of client Cj with timestamp w. Analogously, client Ci maintains
a second matrix write seen, where (r, w) ∈ write seen[i][j] denotes that WRITE of
client Ci with timestamp w has seen READ of client Cj with timestamp r. In the next
step (line 2.7), client Ci “merges” variables r read seen and read seen. The merge
procedure returns for each entry of two n × n set matrices A, B set A[i][j] ∪ B[i][j],
i, j = 1, . . . , n. Then, Ci adds a pair consisting of its current timestamp and timestamp
wts from Wj to read seen[i][j]. To ensure weak fork-linearizability, client Ci calls
procedure “check” (line 2.9). If all checks are passed, Ci merges r write seen and
write seen and returns value wv (lines 2.10–2.11).

At invocation of WRITE(v), client Ci increments its timestamp (line 2.13). It dig-
itally signs value v, its timestamp, and variables read seen and write seen to write
to register Wi (lines 2.14–2.15). Next, it reads all timestamps of READs by calling
SCAN to snapshot object S (line 2.16). All entries in S are digitally signed and thus
client Ci verifies the signatures (line 2.18). Then, it adds to all sets write seen[i][k]
(k = 1, . . . , n) a pair consisting of the timestamp of the kth component of S and Ci’s
current timestamp (line 2.19). Finally, client Ci successfully returns (line 2.20).

Procedure “check” implements the principle sketched in section 4.1 for n clients.
It ensures that weak fork-linearizability is never violated. The procedure, called by Ci

during READ(j) (line 2.21), moves through a loop performing two checks: The first
check (line 2.24–2.25) considers the information left by clients during READ(i) op-
erations (this information is stored in the ith column of read seen). If READ(i) with
timestamp r of client Ck has seen WRITE of Ci with timestamp w, then it is tested
whether the next WRITE of Ci has read (using SCAN) timestamp r or higher of client
Ck. The check uses the local write seen variable of Ci. The second check (line 2.27–
2.28) reviews the information left by client Ci during any READ(k) (which is kept in
the ith row of read seen). If READ(k) with timestamp r of client Ci has seen WRITE

of Ck with timestamp w, then we check whether the next WRITE of Ck has read (using
SCAN) timestamp r or higher of client Ci. This check requires matrix r write seen,
which has been fetched from Wj in line 2.5 before procedure “check” is called.
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Algorithm 2. Weak Fork-Linearizable Memory for n Clients, Code of Client Ci

READ(j) do2.1

ots← ots+ 1 /* increment timestamp */2.2

sig ← signi(ots) /* signature on timestamp */2.3

UPDATE((ots, sig), S, i) /* update call to snapshot object */2.4

(wv,wts, r read seen, r write seen, sig)← read(Wj) /* low-level2.5

atomic read */
if not verifyj(sig) then halt /* signature verified? */2.6

read seen← merge(read seen, r read seen) /* update read seen */2.7

read seen[i][j]← read seen[i][j].add((ots,wts)) /* add seen write */2.8

check() /* check passed? */2.9

write seen← merge(write seen, r write seen) /* update write seen2.10

*/
return wv /* return read value */2.11

WRITE(v) do2.12

ots← ots+ 1 /* increment timestamp */2.13

sig ← signi(v, ots, read seen,write seen) /* signature on timestamp2.14

*/
write((v, ots, read seen,write seen, sig),Wi) /* low-level atomic2.15

write */
〈(tmp1, sig1), . . . , (tmpn, sign)〉 ← SCAN(S) /* scan call to snapshot2.16

object */
for k = 1, ..., n do2.17

if not verifyk(sigk) then halt /* signature verified? */2.18

write seen[i][k]← write seen[i][k].add((tmpk, ots)) /* add all seen2.19

reads */
return OK /* successfully return */2.20

check() do2.21

for k = 1, ..., n do2.22

forall (r, w) ∈ read seen[k][i] do2.23

/* check if own writes have seen read operations
reading my values */

if ∃(r′, w′) ∈ write seen[i][k] s.t. w′ > w and w′ minimal then2.24

if r′ < r then halt2.25

forall (r, w) ∈ read seen[i][k] do2.26

/* check if own reads have been seen by other’s
write operations */

if ∃(r′, w′) ∈ r write seen[k][i] s.t. w′ > w and w′ minimal then2.27

if r′ < r then halt2.28

4.3 Correctness Arguments

In this section we give the intuition why Algorithm 2 satisfies the properties of a wait-
free Byzantine emulation of a shared memory with weak fork-linearizability. Intuitively,
the definition of weak fork-linearizability requires for each client Ci to construct a
sequence πi such that causality among operations, the sequential specification a shared
memory, and weak real-time order is satisfied, and that two sequences πi and πj share
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Client Ci: or o′′w

ow o′′ro′wClient Cj :

Fig. 5. Correctness Ideas of Algorithm 2. Arrows denote the “seen” relation.

the same prefix up to the second last common operation (at-most-one-join). The proof
proceeds in steps, where in the first step all operations that have to be included in se-
quence πi are causally ordered. Next, this order is extended such that it additionally re-
spects the sequential specification. Intuitively, as all written values are digitally signed,
the sequential specification never interferes with causality. The hardest step is to prove,
that this order can be further refined such that it does not violate the weak real-time
order. The intuition for this is given below as a proof by contradiction:

We assume that READ(j) operation or of client Ci does not return the latest value,
written by WRITE operation o′w, but an older value written by operation ow (see Figure
5). Further, let or be not the last operation of Ci. During operation or, the pair (r, w)6

is added to set read seen[i][j]. The data written by the next WRITE operation o′′w of
Ci contains this information. Now, the algorithm prevents client Cj from reading the
value written by o′′w which would violate weak real-time order (as or is ordered before
o′w according to the sequential specification). When during o′′r Cj sees operation o′′w, it
finds the pair (r, w) in r read seen. As o′w precedes or, it could not have seen or, thus
write seen[j][i] contains a pair (r′, w′) such that r′ < r and the check in line 2.25
is not passed. Hence, operation o′′r of client Cj would block — a contradiction. This
implies that such a situation does not appear and the constructed order of operations
also satisfies weak real-time order.

As the last step, showing that the sequences πi satisfy the at-most-one-join property
follows directly from a simple construction argument. To prove liveness, as required in
the definition of a Byzantine emulation (Definition 2), we show that no operation blocks
when all base objects are correct, which follows from the principle sketched in section
4.1 as in this case all checks are passed.

5 Analysis and Conclusions

The abortable construction in Algorithm 1 requires n atomic registers plus n additional
ones to implement the INC&READ counter. The presented construction has an overall
communication complexity of O(n2), as the size of the version vectors used in Algo-
rithm 1 is linear in the number of clients n and as a linear number of such version vec-
tors are exchanged per operation. In contrast, the lock-step protocol of Cachin et al. [4],
also based on linear size version vectors, has an overall communication complexity of
O(n). This difference results from the fact that the server objects used by Cachin et
al. are computationally strong enough to select the latest written version vector while in
Algorithm 1 the client is required to read from all register objects to find the latest one
by itself. For the implementation of Algorithm 2, we need n atomic registers plus 2n

6 We assume that operation ox is assigned timestamp x.
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additional ones for the atomic snapshot object. Algorithm 2, uses matrices of size n×n
where the size of each entry depends on the total number of operations N , resulting in
a communication complexity of O(N · n2). We leave for future research whether this
complexity can be reduced by implementing a “garbage collection”. However, both of
our algorithms require only a linear number of base registers.

We have shown by ways of two protocols as a first known result that fork-consistent
semantics can be implemented only from registers. Our first protocol satisfies fork-
linearizability and implements a shared object of universal type. Similar to non-fork-
consistent universal constructions from registers, our protocol may abort operations
under concurrency. Hence, fork-linearizability may be “added” to such protocols with-
out making additional assumptions. Our second protocol implements a shared memory
object that ensures weak fork-linearizability and where operations are wait-free as long
as the base registers behave correctly. Weak fork-linearizability is the strongest known
fork-consistency property that may be implemented in a wait-free manner. Although it
weakens fork-linearizability, it has shown to be of practical relevance [7]. Moreover,
our second algorithm shows for the first time that registers are sufficient to implement a
fork-consistent shared memory. So far, all existing implementations are based on com-
putationally stronger objects (featuring read-modify-write operations [8]). We leave as
an open question whether there is a weak fork-linearizable construction of a universal
type providing a stronger liveness condition than abortable in the fault-free case.
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Abstract. Despite of being quite similar (agreement) problems, 1-set
agreement (consensus) and general k-set agreement require surprisingly
different techniques for proving the impossibility in asynchronous sys-
tems with crash failures: Rather than the relatively simple bivalence
arguments as in the impossibility proof for consensus in the presence of
a single crash failure, known proofs for the impossibility of k-set agree-
ment in shared memory systems with f � k > 1 crash failures use
algebraic topology or a variant of Sperner’s Lemma. In this paper, we
present a generic theorem for proving the impossibility of k-set agree-
ment in various message passing settings, which is based on a reduction
to the consensus impossibility in a certain subsystem resulting from a
partitioning argument.

We demonstrate the broad applicability of our result by exploring the
possibility/impossibility border of k-set agreement in several message-
passing system models: (i) asynchronous systems with crash failures, (ii)
partially synchronous processes with (initial) crash failures, and, most
importantly, (iii) asynchronous systems augmented with failure detec-
tors. In (i), (ii), and (iii), the impossibility part is an instantiation of our
main theorem, whereas the possibility of achieving k-set agreement in
(ii) follows by generalizing the consensus algorithm for initial crashes by
Fisher, Lynch and Patterson. In (iii), applying our technique reveals the
exact border for the parameter k where k-set agreement is solvable with
the failure detector class (Σk, Ωk)1�k�n−1 of Bonnet and Raynal. As Σk

was shown to be necessary for solving k-set agreement, this result yields
new insights on the quest for the weakest failure detector.
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1 Introduction

Agreement problems like consensus and set agreement are undoubtly the most
prominent target for exploring the solvability/impossibility border in fault-
tolerant distributed computing. In such problems, every process pi, 1 � i � n, in
a distributed system owns a local proposal value xi, and the problem is to irre-
vocably compute local output values (also called decision values) yi that satisfy
certain properties. For consensus, no two processes may decide on different val-
ues, for set agreement, the number of different decision values must be at most
n− 1 system-wide. An obvious generalization is k-set agreement, which requires
that the number of different decision values is at most k; clearly, consensus is just
1-set agreement, whereas set agreement is equivalent to (n−1)-set agreement.

Due to the landmark FLP impossibility result [1], which employs (now classic)
combinatorial arguments (bivalence proofs), it is well-known that consensus is
impossible to solve in asynchronous systems if a single process may crash. The
corresponding result for general k-set agreement is the impossibility of solving
this problem in asynchronous systems if f � k processes may crash. Surprisingly,
establishing this result requires quite involved techniques based on algebraic
topology or a variant of Sperner’s lemma [2, 3, 4].

A well-known general technique for establishing impossibility results are parti-
tioning arguments, which have been used successfully for many distributed com-
puting problems [5]. Essentially, a partitioning argument exploits the fact that
one cannot guarantee agreement among those processes of a distributed system
that never, neither directly nor indirectly, communicate with each other. In this
paper, we use partitioning arguments in a—to the best of our knowledge—new
way, namely, as a means for reduction.

More specifically, we present a surprisingly generic theorem that reduces the
impossibility of k-set agreement to the impossibility of achieving consensus in
a certain subsystem: In a nutshell, if failures and asynchrony in a model allow
for runs where the system partitions into k parts, the processes must decide
on their own in every partition. By choosing distinct proposal values, solving
k-set agreement in such runs requires solving consensus in every partition. Con-
sequently, the impossibility of k-set agreement can be proved by showing that it
is impossible to reach consensus in at least one of these partitions.

Detailed Contributions: We present a generic impossibility result (Theo-
rem 1) for k-set agreement that can be applied to a wide variety of message-
passing system models and failure assumptions: It neither restricts the asyn-
chrony of the model nor the types of failures that can occur. In Section 4, we
revisit the impossibility of k-set agreement in asynchronous systems with crash
failures (some of which are not initial crashes), with (and without) partially
synchronous processes. Applying our generic theorem reveals the border that
separates impossibility and possibility in this setting. Furthermore, by extending
the algorithm for initial crashes of [1] to general k-set agreement, we show that
the impossibility border is tightly matched. In Section 6, we present a techni-
cally involved application of our theorem to derive new results for asynchronous
systems with failure detectors: We use our theorem to show that (Σk, Ωk) is



Easy Impossibility Proofs for k-Set Agreement in Message Passing Systems 301

too weak for solving k-set agreement for 1 < k < n − 1. Considering that Σk

was shown to be necessary for solving k-set agreement with any failure detector,
this provides new insights on the quest for the weakest failure detector for k-set
agreement.

Related work: We are not aware of much research that uses similar ideas:
We have employed reduction already in [6] to show that consensus is impossi-
ble in certain partially synchronous models, and to prove the tightness of our
generalized loneliness failure detector L(k) for k-set agreement. Similar reduc-
tion arguments are employed in [7] and, in particular, in [8], where certain k-set
agreement runs with disjoint participants are pasted together in order to prove
the necessity of the generalized quorum failure detector Σk for solving k-set
agreement. In [9], reduction to asynchronous set agreement is used to derive a
lower bound on the minimum size of a “synchronous window” that is necessary
for k-set agreement.

Unlike existing approaches based on algebraic topology and related tech-
niques [2, 3, 4], our work provides an easy way of determining the impossibility
in previously unexplored settings with varying degrees of synchrony and dif-
ferent system assumptions (e.g., models augmented with failure detectors and
initial crash failures); it is not clear whether and how the modeling and analysis
of [2,3,4] could be extended to such settings. On the other hand, our results do
not subsume the impossibility results developed via such involved techniques for
specific models, i.e., the impossibility of k-set agreement in the presence of up
to f = k crash failures. Our corresponding result, established in Section 4, holds
only for relatively large values of f as compared to k: Consequently, according to
Condition (1) on page 306, Theorem 2 does not cover the impossibility of k-set
agreement in the presence of up to f = k crash failures in case of 2 � k � n− 1.
It is unclear whether this is just due to a technical limitation of the applicabil-
ity of our generic theorem or rather some different cause of impossibility that
cannot be captured by a partitioning argument; this topic is a subject of further
research.

2 System Models and Failure Assumptions

We use the computing model of [10], extended with the possibility of querying
failure detectors. For the sake of brevity, we will not re-state the whole formal
model of [10] here. Instead, we just introduce the necessary notations and explain
the changes required for dealing with k-set agreement.

We consider a system Π = {p1, . . . , pn} of n processes with unique id’s
{1, . . . , n} that communicate via message-passing, using messages taken from
some (possibly infinite) universe M . The communication subsystem is modeled
by one buffer per process, which contains messages that have been sent to that
process but not yet received. Every process p ∈ Π is modeled as a deterministic
state machine, which has a local state (program counter, local variables) that
incorporates an input value xp initialized to some value from a finite set of values
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V , and a write-once output value yp ∈ V ∪ {⊥} initialized to ⊥ �∈ V . All other
components of the local state are initialized to some fixed value.

State transitions are guided by a transition relation, which atomically takes
the current local state of p, a (possibly empty) subset of messages L from p’s
current message buffer, and, in case of failure detectors, a value from the failure
detector’s domain, and provides a new local state. Sending of messages is guided
by a deterministic message sending function, which determines a possibly empty
set of messages that are to be sent to the processes in the system, i.e., maps the
current state and the subset of messages L to a subset of Π×M . Every message
(q,m) in this subset is sent by just putting m into q’s buffer.

A configuration of the system consists of the vector of local states and the
message buffers of all the processes; in the initial configuration, all processes are
in an initial state and the message buffers are empty. A run ρ = (C0, C1, . . . )
is an infinite sequence of configurations that starts from an initial configuration
C0, and Ci+1 results from a legitimate (according to the transition relation and
message sending function) step of a single process p in configuration Ci.

The above basic model is strengthened by restricting the set of runs by some
admissibility conditions that depend on the particular system model M used. For
example, the FLP model [1], denoted as MASYNC, requires that (1) every correct
process takes an infinite number of steps, (2) faulty processes execute only finitely
many steps and may omit sending messages to a subset of receivers in the very
last step, and (3) every message sent by a process to a correct receiver process
is eventually received. With the exception of Section 3, we will assume systems
adhering to the asynchronous model MASYNC, sometimes augmented with a
failure detector (Section 2.3) or with the assumption of partially synchronous
processes (Section 4). The notation MA will be used to denote the set of runs of
algorithm A in model M.

2.1 k-Set Agreement

We study distributed algorithms that solve agreement problems, namely, k-set
agreement. Their purpose is to compute and irrevocably set the output yi of
process pi to some decision value, based on the proposal values xi ∈ V , for
|V | � n,1 which must satisfy the following properties:

k-Agreement: Processes must decide on at most k different values.
Validity: If a process decides on v, then v was proposed by some process.
Termination: Every correct process must eventually decide.
Note that the agreement property binds together the decision values of all (cor-
rect or faulty) processes. For k = 1, k-set agreement is hence equivalent to
uniform consensus [11]. It follows from [1] that non-uniform and hence also uni-
form consensus cannot be solved in asynchronous systems if just one process
may crash.

1 The assumption |V | � n allows runs where all processes start with different propose
values.
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2.2 Restrictions of Algorithms and Indistinguishability of Runs

We will occasionally use a subsystem M′ that is a restriction of M, in the sense
that it consists of a subset of processes in Π , while using the same mode of com-
putation (atomicity of computing steps, etc.) as M. We make this explicit by us-
ing the notation M = 〈Π〉 and M′ = 〈D〉, for some set of processes D ⊆ Π . Note
that this definition does not imply anything about the synchrony assumptions
which hold in M′. All that is required is that M′ is computationally compatible
with M: Any algorithm designed for M can also be run in M′, albeit on a smaller
set of processes.

Definition 1 (Restriction of an Algorithm). Let A be an algorithm that
works in system M = 〈Π〉 and let D ⊆ Π be a nonempty set of processes.
Consider a restricted system M′ = 〈D〉. The restricted algorithm A|D for system
M′ is constructed by dropping all messages sent to processes outside D in the
message sending function of A.

Note that we do not change the actual code of algorithm A in any way. This
means that—for example—the restricted algorithm still uses the value of |Π | for
the size of the system, even though the real size of D might be much smaller.

Whereas this is sufficient for running an algorithm designed for M in the
restricted systemM′, in practice, one would also remove any dead code (resulting
from state transitions triggered by message arrivals from processes inΠ\D) from
the transition relation of A to obtain the actual transition relation of A|D.

We will use a concept of indistinguishability of runs that is slightly weaker
than the usual notion [12, Page 21], as we require the same states only until
a decision state is reached. This makes a difference for algorithms where p can
help others in reaching their decision after p has decided, e.g., by forwarding
messages.

Definition 2 (Indistinguishability of Runs). Two runs α and β are indis-
tinguishable (until decision) for a process p, if p has the same sequence of states

in α and β until p decides. By α
D∼ β we denote the fact that α and β are

indistinguishable (until decision) for every p ∈ D.

Definition 3 (Compatibility of Runs). Let R and R′ be sets of runs. We
say that runs R′ are compatible with runs R for processes in D, denoted by

R′ �D R, if ∀α ∈ R′ ∃β ∈ R : α
D∼ β.

2.3 Failure Detectors

A failure detector D is an oracle that can be queried by processes in any step,
before making a state transition [13]. We assume familiarity with the notions
of failure environment, the failure pattern F (t) of a run, and the “weaker than”
relation on FDs.2

2 Due to lacking space, we had to relegate the detailed definitions, including the ones
of the well-known generalized quorum FD Σk [8] and the generalized leader oracle
Ωk, to the full paper [14].
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We denote the augmented asynchronous model, where runs are admissible in
MASYNC and processes can query failure detector D in any step, as 〈MASYNC,D〉.
While the weakest failure detector for message passing k-set agreement is still
unknown (except for k ∈ {1, n− 1}), the quorum family Σk was shown in [8] to
be necessary for solving k-set agreement with any failure detector X , in the sense
that there is a transformation that implements Σk in the system 〈MASYNC,X〉;
see [15] for a recent overview of failure detectors for k-set agreement.

3 The Impossibility Theorem

In this section, we present our general k-set agreement impossibility theorem.
Due to its very broad applicability, it is stated in a highly generic and somewhat
abstract way. It captures a reasonably simple idea, however, which boils down
to extracting a consensus algorithm for a certain subsystem where consensus is
unsolvable: Suppose that a given k-set agreement algorithm A for some system
model M has runs, where processes start with distinct values, and k partitions
D1, . . . , Dk−1 and D can be formed: Processes in the k − 1 partitions Di decide
on (at least) k − 1 different values, and no process in partition D ever hears
from any process in Di before it decides. Note carefully that processes in D can
communicate arbitrarily within D. Then, the ability of A to solve k-set agree-
ment would imply that the restricted algorithm A|D can solve consensus in the

restricted model M′ = 〈D〉. However, if the synchrony and failure assumptions
are such that consensus cannot be solved in M′, this is a contradiction. This
intuition will become completely clear when we apply Theorem 1 in Sections 4
and 6.

Theorem 1 (k-Set Agreement Impossibility). Let M = 〈Π〉 be a system
model and consider the runs MA that are generated by some fixed algorithm A
in M, where every process starts with a distinct input value. Fix some nonempty
disjoint sets of processes D1, . . . , Dk−1, and a set of distinct decision values
{v1, . . . , vk−1}. Moreover, let D =

⋃
1�i<k Di and D = Π \ D. Consider the

following two properties:

(dec-D). For every set Di, value vi was proposed by some p ∈ D, and there is
some q ∈ Di that decides vi.

(dec-D). If pj ∈ D then pj receives no messages from any process in D until
every process in D has decided.

Let R(D) ⊆ MA and R(D,D) ⊆ MA be the sets of runs of A where (dec-D)

respectively both, (dec-D) and (dec-D), hold.3 Suppose that the following condi-
tions are satisfied:

(A) R(D) is nonempty.

(B) R(D) �D R(D,D).

3 Note that R(D) is by definition compatible with the runs of the restricted algorithm
A|D.
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In addition, consider M′ = 〈D〉 such that the following holds:

(C) There is no algorithm that solves consensus in M′.
(D) M′

A|D
�D MA.

Then, A does not solve k-set agreement in M.

Proof. For the sake of a contradiction, assume that there is a k-set agreement al-
gorithm A for model M, sets of runsR(D) and R(D,D) and some sets of processes

D1, . . . , Dk−1 such that conditions (A)–(D) hold. Due to (A) we have R(D) �= ∅;
then, (B) implies that R(D,D) is nonempty too. Observe that (dec-D) ensures
that there are at least k−1 distinct decision values among the processes in D, in
every run in R(D,D). Since algorithm A satisfies k-agreement, the compatibility

requirement (B) between runs R(D) and R(D,D) for processes in D implies the
following constraint:

(Fact 1). In each run inR(D), all processes inD must decide on a common value.

We will now show that this fact yields a contradiction. Starting from M′
A|D

,

i.e., the set of runs of the restricted algorithm in model M′, we know by (D) that

for each ρ′ ∈ M′
A|D

, there exists a run ρ ∈ MA such that ρ′
D∼ ρ. Obviously, no

process p ∈ D receives messages from a process q ∈ D in ρ′ before p’s decision,
as such a process q does not exist in the restricted model M′. Clearly, the same
is true for the indistinguishable run ρ (even though such a process q does exist
in model M). Therefore, we have that, in fact, ρ ∈ R(D), and due to (Fact 1), it

follows that in each run ρ′ ∈ M′
A|D

all processes decide on the same value. This,

however, means that we could employ A|D to solve consensus in M′, which is a

contradiction to (C). ��

There are several noteworthy points about Theorem 1:
– The proof neither restricts the types of failures that can occur in M nor the

underlying synchrony assumptions of M in any way.
– Our impossibility result uses a 2-partitioning argument but does not require

the system to (temporarily or permanently) decompose into k+1 partitions.
In particular, there is no further restriction on the communication among
processes within D and within D.

– At a first glance, requirement (B) might appear to be redundant. After all,
it should always be possible to find a run in R(D,D) that is indistinguishable

for the processes in D, given some run in R(D). To see why (B) is necessary,

first consider some run γ (of some algorithm in some model M) that satisfies
property (dec-D). This stipulates k − 1 distinct decision values among the
processes in D, which essentially means that γ was a quite “asynchronous”
run for the processes in D. It could therefore be the case that the synchrony
assumptions of M require γ to be “synchronous” for the processes in D.
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Now suppose that we are given a run α ∈ R(D) and we need to find a run

β ∈ R(D,D) that is indistinguishable for processes in D, in order to make

(B) hold. If α is an “asynchronous” run for the processes in D, we might not
be able to find a matching run β ∈ R(D,D), as the above setting requires

such runs to be “synchronous” for the processes in D. Consider, for example,
the model where computing speed and communication among processes in
D is synchronous in a run if and only if the processes in D decide on at
least k−1 distinct values. Clearly R(D) �D R(D,D) does not hold here. (See

Theorem 4 for a less artificial example.)

4 Impossibility in Partially Synchronous and
Asynchronous Systems

It is easy to show that k-set agreement is impossible in the purely asynchronous
model, if we assume a wait-free environment: It suffices to simply delay all com-
munication until every process has decided on its own value. When the number
of failures is somewhat restricted and/or the model is partially synchronous,
however, a more involved argument is necessary.4

Theorem 2. There is no algorithm that solves k-set agreement in a system M

of n processes where processes are synchronous, communication is asynchronous,
a process can broadcast a message in an atomic step, and receiving and sending
are part of the same atomic step, for any

k � n− 1

n− f
, (1)

even if, of the f possibly faulty processes, f − 1 can fail by crashing initially and
only one process can crash during the execution.

Proof. Assume in contradiction that some f -resilient algorithm A solves k-set
agreement. We will show that conditions (A)–(D) of Theorem 1 are satisfied,
thus yielding a contradiction.

As a first step, we will identify suitable sets Di such that (A)–(B) hold for
the runs in R(D) and R(D,D), respectively. Let  = n− f ; for 1 � i < k, define

Di =
{
p(i−1)�+1, . . . , pi�

}
and let D =

⋃
1�i�k−1 Di. Since |D| = (k − 1) and

(1) can be rewritten as k � n− 1, we easily obtain the following lemma about
the process set sizes.

Lemma 1. The set D contains at least n − f + 1 processes, and every Di,
1 � i < k, contains exactly  = n− f processes.

We can now establish the conditions of Theorem 1:

4 Due to lacking space, we only present the major issues here; all the details and proofs
can be found in the full paper [14].
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(A), (B) These two conditions follow from asynchrony of communication in
conjunction with Lemma 1.

(C) Consider a system M′ = 〈D〉 that has the same system assumptions as
M, with the restriction that at most one process can crash in M′ (at any
time). Condition (C) follows immediately from the result of [10, Table I],
since |D| � n − f + 1 � 2 (see Lemma 1) and one process can crash in the
runs of M′.

(D) We will show that for every run ρ′ ∈ M′
A|D

, there is a corresponding run

ρ ∈ MA such that ρ′
D∼ ρ. Fix any ρ′ ∈ M′

A|D
and consider the run ρ ∈ MA

where every correct process in D has the same sequence of states in ρ as in ρ′,
and all remaining processes—of which there are � f − 1—are initially dead
in ρ. Such a run ρ exists, since A|D is the restriction of A (see Definition 1).

We can therefore apply Theorem 1 and conclude that A does not solve k-set
agreement. ��

Corollary 1. The impossibility of k-set agreement from Theorem 2 continues
to hold under weaker assumptions, in particular, if processes are asynchronous,
broadcasts are not possible in one step, sending and receiving within one atomic
step is not possible, and all f processes may fail by crashing.

5 Possibility of k-Set Agreement with Initially Dead
Processes

In this section, we will show that Theorem 2 tightly captures the impossibility
of k-set agreement, by presenting a matching bound for the solvability of k-set
agreement in asynchronous systems with f initial crashes.

For the consensus case k = 1, we know from [1] that it is sufficient for a
majority of processes to be correct. The protocol of [1] operates in two stages:
In the first stage, each process broadcasts a message (containing its process id).
Every process then waits until it has received L − 1 (where L is �(n + 1)/2�)
messages. In the second stage, every process broadcasts a message containing its
initial value and the list of L− 1 processes it has received messages from in the
first stage. Then it waits for messages from those L− 1 processes it has received
messages from in the first stage, and for a message from every remote process
mentioned in one of the lists it receives.

Now consider a directed simple graph, in which each node corresponds to a
process and there is an edge from u to w iff the process corresponding to w
has received a message from the process corresponding to u in the first stage.
Let us call this graph G. Clearly, every node in G has in-degree L− 1. Another
(less obvious) feature of G is the existence of a source component. We call a
strongly connected component C of a directed graph source component if, in the
directed acyclic graph (DAG) generated by contracting all vertices of the strongly
connected components of G into single vertices, the vertex corresponding to C
is a source, i.e., has in-degree 0. As we will see below, n > 2f implies that there
is only one source component.
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While processes only know the in-arcs of their own node in G after the first
stage, after the second stage, they have got complete and consistent knowledge
of the source component. Therefore, a deterministic rule for choosing one of the
proposal values of the processes in C (e.g., the value proposed by the process
whose identifier is minimal in the source component) can be used as the decision
value of every process.

For the general case k � 1, we can use the same algorithm if we can make sure
that each process can determine at least one of at most k source components. We
will now determine a value for L, which guarantees this for some given k. Note
that the ability to select a value for L is also restricted by f , to avoid blocking.
Thus, by combining the relations between L and k and f , respectively, we will
be able to determine the range of f for which k-set agreement is solvable.

Lemma 2. Consider a finite directed simple graph G, where each vertex has at
least in-degree δ > 0. In each weakly connected component (WCC) of G, there
exists at least one source component of size at least δ + 1.

From this lemma, it follows that every process has (at least) one directed incoming
path from all the processes in (at least) one source component. Moreover, it is easy
to see that there can be at most �n/(δ+1)� source components. Returning to the
algorithm from [1], waiting for L − 1 messages in the first stage clearly induces a
graph G with δ = L − 1, and thus at most �n/L� source components. From this
it follows that processes will decide on at most �n/L� values, so k-set agreement
with k � �n/L� is indeed solvable.

As our last step, we have to relate L to the bound on the number of initially
crashed processes f . On one hand, we want L to be as large as possible in order
to decrease the number of source components. On the other hand, since processes
wait until they have received a message from L − 1 remote processes in the first
stage, it is clearly not advisable to choose L − 1 � n − f . Therefore, we now fix
L = n− f , which leads to k-set agreement being solvable when k � �n/(n− f)�.
Since n, f , and k are all integers, we get that k + 1 > n/(n− f) and hence kn >
(k + 1)f . Note that, for k = 1, this matches the requirement of a majority of
correct processes.

Considering the border case kn = (k + 1)f , we get n − f = n/(k + 1). A
standard partitioning argument reveals that k-set agreement is impossible in
this case: Assume that there is an algorithm A that solves k-set agreement in
such a system. The above condition on n and f implies that we can partition
the system into k + 1 disjoint groups of processes Π0, . . . , Πk. From the set of
possible input values V , choose any v0, . . . , vk, s.t., vi = vj ⇔ i = j. Clearly,
for each i, there is an execution εi of A where all processes in Πi have initial
value vi and all processes in Π \ Πi are initially dead. Since A solves k-set
agreement, all processes in Πi have to eventually decide on vi in εi. Therefore,
by delaying messages between the partitions Πi sufficiently long, it is easy to
construct an execution ε without any initial crashes, which is indistinguishable
(until decision) for all p ∈ Πi from εi, 0 � i � k. But now we have k+1 different
decision values (i.e., v0, . . . , vk) in ε, which contradicts the assumption that A
solves k-set agreement. Therefore, we have get the following result:
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Theorem 3. In an asynchronous system with n processes up to f of which may
be initially dead, k-set agreement is solvable if and only if kn > (k + 1)f or,
equivalently, k > f/(n− f).

Comparison with this theorem reveals that the bound (1) in Theorem 2 is indeed
tight.

6 Impossibility with Failure Detector (Σk, Ωk)

In this section, we will demonstrate the full power of Theorem 1 by deriving a
new result: We prove the impossibility of achieving k-set agreement with failure
detector (Σk, Ωk), for all 1 < k < n− 1. In [7, Theorem 2], it was shown that k-
set agreement is impossible with (Σk, Ωk) if 1 < 2k2 � n, which is a much more
restrictive bound than the one given by Theorem 4 below. For our impossibility
proof, we will make use of a certain stronger failure detector that nevertheless
allows up to k partitions.

Definition 4. Let {D1, . . . , Dk−1, Dk} be a partitioning of the processes in Π,
and let D = Dk. The partition failure detector (Σ′

k, Ω
′
k) provides failure detector

histories with the following properties; note that we call a history of (Σ′
k, Ω

′
k) a

partitioning history:

1. For 1 � i � k, the output of Σ′
k at every process in Di is a valid history

for Σ (= Σ1) in the restricted model Mi = 〈Di〉 (where only processes from
Di are ever output by Σ), with an additional condition: Let tj be the earliest
point in time when pj failed, i.e., pj ∈ F (tj), for any pj ∈ Di. If tj is finite,
then ∀t � tj it holds that the output of Σ′

k at pj is defined to be the whole
set Π (rather than Di).

2. Ω′
k is the same as Ωk.

Lemma 3. Failure detector (Σk, Ωk) is weaker than (Σ′
k, Ω

′
k).

Theorem 4. There is no (n− 1)-resilient algorithm that solves k-set agreement
in an asynchronous system with failure detector (Σk, Ωk), for all 2 � k � n− 2.

Proof. The restriction of the range of k implies that there are exactly n = k−1+j
processes in the system, for some j � 3. Consider the following partitioning of
Π : Let D = {p1, . . . , pj} and choose D1, . . . , Dk−1 such that they partition the
set Π \ D; since we have D =

⋃
1�i<k Di, and therefore |D| = n − j = k − 1,

such a partitioning exists.
We assume by contradiction that there is an algorithm A that solves k-set

agreement using (Σ′
k, Ω

′
k). Applying Lemma 3 will then complete the proof of

Theorem 4.
We start with two technical lemmas, which justify why we call histories of

(Σ′
k, Ω

′
k) partitioning histories: Intuitively speaking, it is straightforward to com-

bine histories at different processes. The first lemma proves that we can “paste to-
gether” different executions at partition boundaries. Let R ⊆ R(D,D) be the set
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of runs where all communication between the sets of processes D1, . . . , Dk−1, D
is delayed until every correct process has decided, and assume that R �= ∅ (which
will be proved in Lemma 5).

Lemma 4. Let β ∈ R (and hence β ∈ R(D,D) and β ∈ R(D)) and α ∈ R(D)

be given, where tαdec resp. tβdec denotes the time when the last process in D has

crashed or decided in α resp. β. Then, a run β′ which fulfills β′ ∈ R and β′ D∼ α
is obtained from β by

1. replacing Hβ(p, t) by Hα(p, t) at all processes p ∈ D at all times t � 0,
2. setting Fβ′(t) = (Fβ(t)∩ (Π \D))∪ (Fα(t)∩D) at all times t � 0, and hence

Fβ′ = (Fβ ∩ (Π \D)) ∪ (Fα ∩D),
3. letting the processes in D receive messages and perform their steps exactly

as in α,
4. delivering messages between D1, . . . , Dk only after all correct processes have

decided in β′,
5. choosing some (arbitrarily large) tGST � max{tαdec, t

β
dec} and some set LD

that satisfies LD ∩ (Π \ Fβ′) �= ∅, and setting LDt
j = LD in Hβ′ for all

processes pj ∈ Π \ Fβ′ and all t � tGST.

Lemma 5. R(D,D) �= ∅, in particular, R ⊂ R(D,D) is nonempty.

Equipped with these results, we can establish the conditions required for apply-
ing Theorem 2:
(A): Consider the run αk where all processes outside D are initially dead, then
clearly processes in D decide before receiving a message from processes outside
D. Since αk ∈ R(D), we obviously have R(D) �= ∅.
(B): Consider any run α ∈ R(D), then we can use Lemma 5 to obtain some

β ∈ R from which we can construct β′ ∈ R, s.t., α
D∼ β′ using Lemma 4. As

β′ ∈ R ⊆ R(D,D), we have R(D) �D R(D,D).

(C): Wewill first choose an appropriately restrictedmodelM′: Since |D| = j � 3,
let M′ = 〈D〉 be an asynchronous system where up to j − 1 processes may fail
by crashing. Moreover, M′ is augmented with a failure detector that is compat-
ible to (Σ′

k, Ω
′
k), in the sense that its failure detector histories can be extended

to match an admissible history of (Σ′
k, Ω

′
k) in M, without changing the output

at processes in D: Considering Definition 4, we just assume that processes in M′

effectively access a failure detector (Σ,Γ ), where Γ satisfies the part of Defini-
tion 4 that concernsΩk in the following constrained way, for all processes inD: Γ
outputs a possibly changing set of k process ids in the range of Π , which eventu-
ally stabilizes on some set LD that intersects D in exactly two processes ps and
pt. Obviously, this restriction is compatible with Ω′

k. Note that one of ps and pt
(but not necessarily both) may be faulty. InM′ we can easily implement Ω2 using
Γ (the transformations uses Γ to eventually choose two fixed processes from D)
and vice versa (by just extending the output of Γ with processes from D), thus
(Σ,Γ ) is and (Σ,Ω2) are equally strong.Moreover, (Σ,Ω2) is strictly weaker than
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(Σ,Ω), as there is no transformation T providing the properties of (Σ,Ω) from
those of (Σ,Ω2): If T existed, we could use it to obtain a wait-free transforma-
tion T ′ for shared memory to obtain Ω from Ω2 (by simulating an asynchronous
message passing system equipped with Σ, cf. [16]) which contradicts the results
of [17]. Since (Σ,Ω) is the weakest failure detector for solving consensus, we can
therefore conclude that (Σ,Γ ) is too weak for solving consensus in M′.
(D): Finally, for any run in M′

A|D
, there is obviously a run in R(D) where all

processes in D are initially dead, the processes in D take identical steps, fail
at the same time, and receive the same failure detector output and the same
messages. Hence, M′

A|D
�D R(D) and, by transitivity, M′

A|D
�D MA. Applying

Theorem 1 thus yields the required contradiction. ��

From [8], we know that Σn−1 (and thus also (Σn−1, Ωn−1)) is sufficient for
solving (n−1)-set agreement, Together with the fact that (Σ1, Ω1) is sufficient
for solving consensus [16], we have the following result:

Corollary 2. There is an (n−1)-resilient algorithm that solves k-set agreement
with failure detector class (Σk, Ωk)1�k�n−1 in an asynchronous system, if and
only if k = 1 or k = n− 1.

7 Discussion

In this paper, we introduced a reduction to consensus for generically character-
izing the impossibility of k-set agreement in message passing systems. The main
advantage of our approach is that we are independent of a specific system model,
since Theorem 1 neither makes assumptions on the available synchrony, nor on
the power of computing steps and communication primitives available.A par-
ticularly promising application of our theorem is as both a guidance and quick
verification tool for finding new models and algorithms for k-set agreement. This
is particularly true for the quest for the (still unknown) weakest failure detec-
tor for solving message-passing k-set agreement: As we have shown, Σk, which
is known to be necessary for k-set agreement in [8], is not powerful enough for
overcoming the fatal partitioning into k subsystems. So what can be learned from
our result is that, whatever one adds to Σk, it has to allow solving consensus in
each partition.
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Abstract. We identify a simple relationship that unifies seemingly unre-
lated progress conditions ranging from the deadlock-free and starvation-
free properties common to lock-based systems, to non-blocking conditions
such as obstruction-freedom, lock-freedom, and wait-freedom.

Properties can be classified along two dimensions based on the demands
they make on the operating system scheduler. A gap in the classification
reveals a new non-blocking progress condition, weaker than obstruction-
freedom, which we call clash-freedom.

The classification provides an intuitively-appealing explanationwhypro-
grammers continue to devise data structures that mix both blocking and
non-blocking progress conditions. It also explains why the wait-free prop-
erty is a natural basis for the consensus hierarchy: a theory of shared-memory
computation requires an independent progress condition, not one thatmakes
demands of the operating system scheduler.

1 Introduction

The advent of multicore architectures has brought about a renewed interest
in concurrent data structures and algorithms, whose behavior is captured, in
addition to safety properties, by their progress conditions. The literature en-
compasses a bewildering array of progress conditions. Some (“non-blocking”)
conditions guarantee progress even if one or more threads halt, while others do
not. Some blocking conditions guarantee that threads will not deadlock, and
some go further and rule out starvation.

On modern multiprocessor machines, programmers often use a variety of lock-
based and non-blocking algorithms, sometimes mixing and matching progress
conditions within a single system. (For example, consider lock-free, obstruction-
free, and lock-based software transactional memory systems [13]). How can these
data structures and algorithms work well together when they make incomparable
and incompatible progress guarantees?

This paper proposes a novel unified explanation that ties together these
seemingly unrelated progress conditions, ranging from the deadlock-free and
starvation-free properties common to lock-based data structures, to the
obstruction-free, lock-free, and wait-free properties that have been the focus
� Supported by NSF 0811289.
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Obstruction-free Starvation-free

Deadlock-free?

every method 
makes progress

some method 
makes progress

maximal vs. mimimal

dependent
vs. 
independent

blocking
vs. 
non-blocking

independent 
non-blocking

dependent 
non-blocking

dependent 
blocking

Fig. 1. A “Periodic Table” Style Chart of Progress Conditions

of so much recent research. We are deliberately not presenting a “unified the-
ory”, (even though our explanation is not difficult to formalize), because our
primary goal is to provide a clear, simple, and intuitively-appealing explana-
tion how these dissimilar properties actually fit together. These ideas may seem
straightforward, perhaps even obvious, but we have never seen this formulation
in any published work.

We show that progress conditions can be classified as shown in Figure 1.
The horizontal line separates properties that ensure maximal progress, that is,
progress for all threads, from properties that ensure minimal progress, progress
for only some threads. The vertical lines separate properties that depend on
different kinds of guarantees provided by the operating system (OS) scheduler.

It is important to distinguish between dependent and independent progress
conditions. At one extreme, the wait-free and lock-free properties are independent
of the OS scheduler: they guarantee progress as long as threads are scheduled,
but no matter how they are scheduled. The other properties are dependent :
they rely on the OS scheduler to satisfy certain properties. The deadlock-free
and starvation-free properties guarantee progress only if each thread eventually
leaves each critical section, and the obstruction-free property [8] requires the
scheduler to allow each thread to run in isolation for a sufficient duration.

If we further restrict our attention to schedulers that satisfy a benevolent prop-
erty defined below, then the distinction between minimal and maximal progress
along the horizontal axis vanishes: any algorithm that provides minimal progress
provides maximal progress as long as the scheduler is benevolent. This is why
algorithms that (in principle) permit starvation are so widely used in practice:
programmers implicitly (and reasonably) assume that OS schedulers are benev-
olent in practice.

Here is how to unify the disparate progress conditions in the literature. Instead
of analyzing each algorithm and its progress properties in isolation, focus on the
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interaction between the algorithm and the guarantees provided by the OS sched-
uler. Implicitly, programmers, whether they design starvation-free, deadlock-free,
obstruction-free, lock-free, or wait-free data structures, all want the same thing:
maximal progress1 They differ only in the assumptions they make about the OS
scheduler.

One way to test an ambitious hypothesis is by its predictive power. Figure 1
contains a hole: the obstruction-free property has no minimal counterpart. We
define a new clash-free property to fill this gap, and show it is strictly weaker
than the obstruction-free property (addressing an open question due to Herlihy,
Luchangco, and Moir [8]).

Finally, we observe that our classification explains why the wait-free property
is a natural basis for the consensus hierarchy [7]: a theory of shared-memory
computation requires an independent progress condition, not one that makes
demands of the OS scheduler.

The remainder of this paper expands these observations. It builds on many
papers, and a comprehensive survey of relevant literature would take up too
much space. Instead, we refer the reader to books by Attiya and Welch [4],
Lynch [14], Taubenfeld [17], and to references cited later.

2 Conventional Explanations

We start with a review of the conventional view of progress conditions taken
from the literature. We then reformulate these notions in our unified model.

An object is a container for data. Each object provides a set of methods which
are the only way to manipulate that object. Each object has a class, which
defines the object’s methods and how they behave. An object has a well-defined
state (for example, a FIFO queue’s current sequence of items).

The simplest way to synchronize concurrent access to an object is to associate
a mutual exclusion lock with the object. Each method acquires the lock when it
is called, and releases the lock when it returns. (We postpone consideration of
methods that need to block, waiting until a condition is satisfied.)

Perhaps the weakest progress condition one could demand of a method that
employs locks is that the method be deadlock-free, meaning that some thread
trying to acquire the lock eventually succeeds. This condition guarantees that
the system as a whole makes progress, but does not guarantee progress to indi-
vidual threads. For example, a test-and-set spin lock is deadlock-free, because
some thread will acquire a free lock. Here is an important point that we will
explore later on: a deadlock-free lock guarantees progress only if every thread
that acquires the lock eventually releases it. This requirement constrains both
the scheduler, which cannot halt a thread in a critical section, and the software,
which must use the lock correctly.

Sometimes we would like locks to have an even stronger property. A lock
is starvation-free if every attempt to acquire the lock eventually succeeds. For
example, a test-and-set spin lock is not starvation-free, because it is possible
1 “Purity of heart is to will one thing” – Sören Kierkegaard.
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(though unlikely) that some thread’s attempts to acquire the lock repeatedly fail.
By contrast, queue locks [15] are typically starvation-free because threads acquire
locks in the order they are requested. Like deadlock-free locks, starvation-free
locks make sense only if every thread that acquires a lock eventually releases it.

We described the deadlock and starvation-free properties directly in terms of
classical mechanisms such as locks and critical sections because that is usually
how these properties are used in the literature [3]. Later on, when we make
these notions precise, we will see that this approach is unsatisfactory for several
reasons. First, it is relatively easy to devise obfuscated object implementations
where it is difficult to identify a particular field as a lock and particular state-
ments as critical sections. Second, it is unclear how to compare such a property
to non-blocking properties that, by definition, do not use locks and critical sec-
tions. Finally, progress should not be defined in terms of locks, which are low-level
mechanisms, but in a more general way in terms of completed method calls.

While operating system schedulers rarely, if ever, halt threads holding locks, it
is possible that preemption might well delay a thread holding a lock, effectively
blocking progress by other threads. To address such issues, a number of non-
blocking progress conditions have emerged. A non-blocking condition ensures
that an arbitrary and unexpected delay by any thread (say, one holding a lock)
does not prevent other threads from making progress.

A method is lock-free if some thread that calls that method eventually returns.
A method is wait-free if every thread that calls that method eventually returns.

There is another non-blocking progress condition. We say that a method call
executes in isolation for a duration if no other threads take steps during that
time. A method is obstruction-free if every thread that calls that method re-
turns if that thread executes in isolation for long enough. This condition is
non-blocking, and is strictly weaker than the lock-free condition. It rules out the
use of locks and mutual exclusion, but does not guarantee progress when mul-
tiple threads execute concurrently. Obstruction-free algorithms typically rely on
a contention manager [9] module to delay threads so that a given thread can
make progress. For example, a contention manager might employ a back-off de-
lay policy: a thread that is about to conflict with another pauses to give the
earlier thread time to finish.

3 Modeling Progress

Our model is adapted from Herlihy and Wing, assuming linearizability [11] as our
basic correctness condition. We are interested in progress conditions for methods
of abstract objects. A given object has a set of different methods, each of which
can be invoked many times during an execution.

An execution of a concurrent object is modeled by a history, a sequence of
method invocation and response events. A subhistory of a history H is a sub-
sequence of the events of H . An interval is a finite subhistory consisting of
contiguous events.

We focus on two-level implementations that include an abstract object (the
one being implemented) and concrete ones (the ones used in the implementa-
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tion). Informally, each abstract method call is implemented by the sequence of
concrete method calls it encompasses. We use this two-level approach because
we care about the number of concrete steps needed to implement an abstract
method call.

An abstract method call that never returns could happen in two ways: if it
encompasses an infinite number of concrete steps, then the thread starved, but if
it encompasses only a finite number of concrete steps, then the thread halted in
the middle of the call. These situations are different, and must be distinguished.

A thread is active if it takes an infinite number of concrete steps (and is
suspended if not), and an invocation is active if it is made by an active thread.
To avoid clutter, we focus on implementation histories of a single abstract object
with a single method, which is repeatedly called by all threads. It is easy to
generalize these definitions to encompass multiple objects and methods, and to
allow threads to shut down gracefully.

3.1 Minimal and Maximal Progress

In some sense, the weakest interesting notion of progress requires that the system
as a whole continues to advance. Consider a fixed history H . An abstract method
provides minimal progress in H if, in every suffix of H , some pending active
invocation has a matching response. In other words, there is no point in the
history where all threads that called the abstract method take an infinite number
of concrete steps without returning. This condition might, for example, be useful
for a thread pool, where we care about advancing the overall computation, but
do not care whether individual threads are underutilized.

The strongest notion of progress, and arguably the one most programmers
actually want, requires that each individual thread continues to advance. An
abstract method provides maximal progress in a history H if in every suffix of H ,
every pending active invocation has a matching response. In other words, there
is no point in the history where a thread that calls the abstract method takes
an infinite number of concrete steps without returning. This condition might be
useful for a web server, where each thread represents a customer request, and
we care about advancing each individual computation.

3.2 The Scheduler’s Role

A history is fair if each thread takes an infinite number of concrete steps. A
history is uniformly isolating if, for every k > 0, any thread that takes an infinite
number of steps has an interval where it takes at least k concrete contiguous
steps (that is, not interleaved with any other thread). Exponential back-off [1]
is one possible mechanism to make schedules uniformly isolating (with high
probability). Threads back off until all but one are inactive. Back-off durations
can be controlled by the programmer.

We are now ready to reformulate the definitions of the progress properties
surveyed in Section 2.

Definition 1. A method implementation is deadlock-free if it guarantees min-
imal progress in every fair history, and maximal progress in some fair history.
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The restriction to fair histories captures the informal requirement that each
thread eventually leaves its critical section. The definition does not mention
locks or critical sections because progress should be defined in terms of completed
method calls, not low-level mechanisms. Moreover, as noted, not all deadlock-free
object implementations will have easily recognizable locks and critical sections.

The requirement that the implementation will provide maximal progress in
some fair history is intended to rule out certain pathological cases. For example,
the first thread to access an object might lock it and never release the lock.
Such an implementation guarantees minimal progress (for the thread holding
the lock) in every fair execution, but does not provide maximal progress in any
execution. Clearly, such an implementation would not be considered acceptable
in practice and is of no interest to us.

The starvation-free property is now straightforward:

Definition 2. A method implementation is starvation-free if it guarantees max-
imal progress in every fair history.

These properties are dependent : they are restricted to the subset of fair his-
tories. Informally, these properties depend on a well-behaved operating system
scheduler. We can capture the notion of dependency as follows:

Definition 3. A progress condition is dependent if it does not guarantee mini-
mal progress in every history, and is independent if it does.

Here are the non-blocking properties.

Definition 4. A method implementation is lock-free if it guarantees minimal
progress in every history, and maximal progress in some history.

Definition 5. A method implementation is wait-free if it guarantees maximal
progress in every history.

The two properties above are independent: they apply to all histories. There is
however a dependent non-blocking property:

Definition 6. A method implementation is obstruction-free if it guarantees
maximal progress in every uniformly isolating history.

4 The Structure of Progress

Although these progress conditions may have seemed quite different, each pro-
vides either minimal or maximal progress with respect to some set of histories.
The result is a simple and regular structure illustrated in the “periodic table”
style chart shown in Figure 1 (and its more complete counterpart in Figure 2).
These observations may appear so simple as to be obvious in retrospect, but we
have never seen them described in this way.



On the Nature of Progress 319

Wait-free

Lock-free

Obstruction-free Starvation-free

Deadlock-freeClash-free

helping

no helping

benevolent scheduler

uniformly
 isolating
scheduler

     fair
scheduler

No limitations 
on thread delays

threads delayed 
infinitely often

thread delays 
limited 

Fig. 2. Clash-freedom: the missing element

There are three dividing lines, two vertical and one horizontal, that split
the five conditions. The leftmost vertical line separates dependent conditions
from the rest. The lock-free and wait-free properties apply to any histories,
while obstruction-freedom, starvation-freedom, and deadlock-freedom require
some kind of external scheduler support to guarantee progress.

The rightmost vertical line separates the blocking and non-blocking condi-
tions. The lock-free, wait-free, and obstruction-free conditions are non-blocking:
if a suspended thread stops at an arbitrary point in a method call, at least
some active threads can make progress. The deadlock-free and starvation-free
conditions do not have this property.

Finally, the horizontal line separates the minimal and maximal progress con-
ditions. The minimal conditions guarantee the system as a whole makes progress
while the maximal conditions guarantee that each thread makes progress. For
brevity, minimal progress properties encompass the lock-free and deadlock-free
properties, while maximal properties encompass the wait-free, starvation-free,
and obstruction-free properties. Later we will see several ways to cross this line:
“helping” (Section 5) and benevolent schedulers (Section 8). Helping [7] is an
algorithmic mechanism which has threads avoid being delayed by others that
are slow by completing the slow threads’ work in their place. Benevolence is an
assumption on the scheduler behavior that allows one to avoid the high commu-
nication costs associated with helping.

There is a hole in Figure 1: a conspicuous empty slot occupied by a dependent,
non-blocking progress property that guarantees minimal progress in uniformly-
isolating histories.

Definition 7. A method implementation is clash-free if it guarantees minimal
progress in every uniformly isolating history, and maximal progress in some such
history.
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In the next two sections we show that being clash-free is strictly weaker than
being obstruction-free2.

5 Universal Constructions

In this section we define two universal constructions that transform any se-
quential object into a linearizable concurrent object satisfying the same mini-
mal progress condition as its consensus objects. We will use them, among other
things, to demonstrate a separation result: a clash-free object implementation
that is not obstruction-free.

The construction relies on a supply of one-time consensus objects (see Fig-
ure 3), ones in which each thread can call the decide() method at most once in
any execution history. Interestingly enough, the minimal progress universal con-
struction provides the minimal form of whatever progress guarantee is provided
by the consensus objects: it is lock-free if the consensus objects are lock-free or
wait-free, clash-free if they are clash-free or obstruction-free, and deadlock-free
if they are deadlock-free or starvation-free.

The maximal-progress universal construction does the same, except that it
provides the maximal form of the consensus objects’ progress guarantee: it is
wait-free if the consensus objects are lock-free or wait-free, obstruction-free if
they are clash-free or obstruction-free, and starvation-free if they are deadlock-
free or starvation-free (notice that for one-time objects the minimal progress
conditions are by definition equal to the maximal progress conditions).

Our two constructions are adapted from Herlihy and Shavit [10], which con-
tains their proofs of correctness.

1 public interface Consensus<T> {
2 T decide(T value);
3 }

Fig. 3. Consensus Object Interface

1 public interface SeqObject {
2 public abstract Response apply(Invocation invoc );
3 }

Fig. 4. A Generic Sequential Object: the apply() method applies the invocation and
returns a response

Figure 4 shows a generic definition for a sequential object. Each object is
created in a fixed initial state. The apply() method takes as argument an invo-
cation which describes the method being called and its arguments, and returns
2 Clash-freedom is arguably the Einsteinium of progress conditions. Like Einsteinium,

symbol Es, atomic number 99, it fills a vacant table slot, yet does not occur naturally
in any measurable quantities and has no commercial value.
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a response, containing the call’s termination condition (normal or exceptional)
and the return value, if any. For example, a stack invocation might be push()
with an argument, and the corresponding response would be normal and void.

Figures 5 and 6 show a universal construction that transforms any sequential
object into a linearizable concurrent object satisfying the same minimal progress
condition as its consensus objects.

For simplicity, this construction assumes that sequential objects are deter-
ministic: if we apply a method to an object in a particular state, then there is
only one possible response and one possible new object state. We can represent
any object as a combination of a sequential object in its initial state and a log:
a linked list of nodes representing the sequence of method calls applied to the
object (and hence the object’s sequence of state transitions). A thread executes
a method call by scanning the log, starting at the oldest node (the tail ), until
it finds the newest node (the head). It then uses the node’s consensus object to
append its own node to the list. It then retraverses the log, applying the method
calls to a private copy of the object. The thread finally returns the result of
applying its own operation. It is important to understand that only the head of
the log is mutable: the initial state and nodes following the head never change.

This algorithm works even when apply() calls are concurrent because the prefix
of the log up to the thread’s own node never changes. The losing threads, who
failed to append their own nodes, must start over.

The maximal-progress universal construction appears in Figure 7. We must
guarantee that every thread completes an apply() call within a finite number
of steps, that is, no thread starves. To guarantee this property, threads making

1 public class Node {
2 public Invoc invoc ; // method name and args
3 public Consensus<Node> decideNext; // decide next Node in list
4 public Node next; // the next node
5 public int seq; // sequence number
6 public Node(Invoc invoc) {
7 invoc = invoc;
8 decideNext = new Consensus<Node>()
9 seq = 0;

10 }
11 public static Node max(Node[] array) {
12 Node max = array[0];
13 for ( int i = 1; i < array. length ; i++)
14 if (max.seq < array[ i ]. seq)
15 max = array[i ];
16 return max;
17 }
18 }

Fig. 5. The Node class
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1 public class MinUniversal {
2 private Node tail ;
3 public MinUniversal() {
4 tail = new Node();
5 tail .seq = 1;
6 }
7 public Response apply(Invoc invoc) {
8 int i = ThreadID.get();
9 Node prefer = new Node(invoc);

10 Node head = tail;
11 while ( prefer .seq == 0) {
12 while (head.next != null) {
13 head = head.next;
14 }
15 Node after = head.decideNext.decide( prefer );
16 head.next = after ;
17 after .seq = head.seq + 1;
18 }
19 SeqObject myObject = new SeqObject();
20 current = tail .next;
21 while (current != prefer ){
22 myObject.apply(current . invoc );
23 current = current.next;
24 }
25 return myObject.apply(current . invoc );
26 }
27 }

Fig. 6. The minimal-progress universal construction

progress must help less fortunate threads to complete their calls.
To allow helping, each thread shares with other threads the apply() call that it

is trying to complete. We add an n-element announce[] array, where announce[i]
is the node thread i is currently trying to append to the list. Initially all entries
refer to the sentinel node, which has a sequence number 1. A thread i announces
a node when it stores the node in announce[i].

To execute apply(), a thread first announces its new node. This step ensures
that if the thread itself does not succeed in appending its node onto the list, some
other thread will append that node on it’s behalf. It then proceeds as before,
attempting to append the node into the log.

6 Separation Results

We can now use our universal constructions to prove the following theorem:

Theorem 1. There exists a clash-free object implementation that is not
obstruction-free.
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1 public class MaxUniversal {
2 private Node[] announce; // array added to coordinate helping
3 private Node[] head;
4 private Node tail = new node(); tail . seq = 1;
5 for ( int j=0; j < n; j++){head[j] = tail ; announce[j] = tail };
6 public Response apply(Invoc invoc) {
7 int i = ThreadID.get();
8 announce[i ] = new Node(invoc);
9 head[ i ] = Node.max(head);

10 while (announce[i ]. seq == 0) {
11 Node before = head[i ];
12 Node help = announce[(before.seq + 1 % n)];
13 if (help .seq == 0)
14 prefer = help;
15 else
16 prefer = announce[i];
17 after = before.decideNext.decide( prefer );
18 before .next = after ;
19 after .seq = before.seq + 1;
20 head[ i ] = after ;
21 }
22 SeqObject MyObject = new SeqObject();
23 current = tail .next;
24 while (current != announce[i]){
25 MyObject.apply(current.invoc );
26 current = current.next;
27 }
28 head[ i ] = announce[i];
29 return MyObject.apply(current.invoc );
30 }
31 }

Fig. 7. The maximal-progress universal construction

Proof. Herlihy, Luchangco, and Moir [8] observe that one can implement an
obstruction-free (and hence clash-free) one-time consensus object by derandom-
izing the randomized consensus protocol of Aspnes and Herlihy [2] (replacing
the random coin by a deterministic one). 3 The minimal-progress universal con-
struction using such an obstruction-free consensus object is easily shown to be
clash-free.

We now construct a history in which the minimal-progress universal construc-
tion using an obstruction-free consensus object is not obstruction-free.

The line numbers in the next paragraph refer to Figure 6. Pick one favored
thread A. Run each thread until it reaches Line 12. When all n threads have

3 Similarly, it is easy to implement a deadlock-free consensus object using a mutual
exclusion lock.
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arrived, run each one through the entire loop between Lines 12 and 14. After all
the threads have executed the loop, allow A to call and return from the consensus
object, completing its own call. The others call the consensus object after A’s
call has returned, so A succeeds while the others fail.

If we repeat this interleaving, the result is a uniformly-isolating history, be-
cause each thread scans the log in isolation, and each time the log is longer.
However, all threads but A will never succeed and so the implementation is not
obstruction-free.

It follows that being clash-free is a weaker condition than being obstruction-
free.

7 Partial Methods

So far we have considered only total methods, methods that are always capable of
returning a response. Much of concurrent programming, however, makes use of
partial methods that block when called in certain states. For example, Figure 8
shows how one might implement a partial FIFO queue in the JavaTM program-
ming language. The deq() method is synchronized : it acquires an implicit lock

1 public class Queue<T> {
2 T items [];
3 int head, size ;
4 int capacity ;
5 public Queue(int capacity) {
6 items = (T[]) new Object[capacity ];
7 head = size = 0;
8 }
9 public synchronized T deq() {

10 while ( size == 0) {
11 wait ();
12 }
13 notifyAll ();
14 size−−;
15 return items[head++];
16 }
17 public synchronized void enq(T x) {
18 while ( size == capacity) {
19 wait ();
20 }
21 notifyAll ();
22 items [(head + size) % capacity] = x;
23 size ++;
24 }
25 }

Fig. 8. A FIFO queue with partial methods
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when it is called and releases it when it returns. If it encounters an empty queue
(Line 10) the method temporarily releases the lock and suspends itself. Later,
if an enq() call adds an item to the queue, it calls notifyAll () to wake up any
suspended dequeuers. These threads reacquire the lock and retest whether the
queue is empty. We say that an invocation is enabled if there is a response it
could return.

It is not obvious how to define minimal and maximal progress for partial
methods. For example, one might be tempted to say that a method provides
maximal progress in a history if no pending invocation is infinitely often enabled.
(In other words, any invocation enabled often enough will return.) The following
example illustrates why this definition is problematic. Consider an empty FIFO
queue, where thread A calls a blocking deq(). Because the queue is empty, the
method cannot return, so A’s invocation is disabled, and A blocks. Thread B
then enqueues an item, enabling A’s invocation, but then immediately dequeues
that item, again disabling A’s invocation. If B repeats this sequence forever,
then A’s invocation is infinitely often enabled, yet A never returns. Should we
deem this history as not providing maximal progress?

The problem with rejecting such a history is that it is permitted by all threads
packages of which we are aware. For example, in the Queue implementation of
Figure 8, A’s deq() call releases the lock and waits. B’s enq() call notifies A asyn-
chronously, but before the operating system reschedules A, B’s deq() removes
the item. (Similar behavior can occur also with the Pthreads and .Net threads
libraries.) We should avoid any definition of maximal progress that cannot be
implemented.

A pending invocation is continually enabled in H if it is enabled at every step
in some suffix of H . Once an invocation becomes continually enabled, then when
its thread is awakened and resumed, however asynchronously, it is certain to
discover a response.

We are ready to propose another definition. A method provides minimal
progress in H if, in every suffix of H where some active invocation is contin-
ually enabled, some pending active invocation has a matching response. In other
words, at no point in H does the method have continually-enabled active invoca-
tions, none of which ever returns. Similarly, a method provides maximal progress
in H if it has no continually-enabled active invocations ever.

8 Benevolent Schedulers

In practice, programmers often use implementations that guarantee only mini-
mal progress, not because they do not care about lack of progress by individual
threads, but because such lack of progress almost never happens under normal
circumstances. For example, while programs that use spin locks are deadlock
free, they are not starvation-free because the scheduler might schedule one par-
ticular thread only when the lock is held by another thread. In practice, few
programmers worry about this prospect because they do not expect schedulers
to persecute individual threads.
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Let us make this notion more precise. Consider an algorithm that guarantees
a minimal progress condition. A scheduler is benevolent for that algorithm if it
guarantees maximal progress for that algorithm in every history it permits. Such
a guarantee can also be probabilistic in nature.

For example, an oblivious scheduler is a fair scheduler that chooses the next
thread to take a step uniformly at random. Now consider a deadlock-free spin
lock algorithm where each thread repeatedly acquires the lock (by spinning),
executes an operation, and releases the lock.

Theorem 2. An oblivious scheduler is benevolent (with probability one) for any
deadlock-free spin-lock algorithm.

Proof. Because the scheduler is fair, the lock must become free an infinite number
of times. Each time the lock becomes free, that thread is chosen with probability
at least 1/n, implying that the thread starves with probability measure zero.

Along the same lines, we can use exponential back-off [1] to make lock-free
algorithms wait-free.

We have barely scratched the surface with these theorems, and we leave it as
an open question to derive more theorems of this nature. In particular, this ap-
proach provides a new way to think about contention managers [9], application-
specific modules that modify the behavior of schedulers.

9 Foundations of Shared-Memory Computability

Our classification of dependent progress conditions has implications for the foun-
dations of shared-memory computability. Lamport’s register-based approach [12]
to read-write memory computability is based on wait-free implementations of one
register type from another. Similarly, Herlihy’s consensus hierarchy [7] applies to
wait-free or lock-free object implementations. Combined, these structures form
the basis of a theory of concurrent shared-memory computability [10] that ex-
plains what objects can be used to implement other objects in an asynchronous
shared memory multiprocessor environment.

One might ask, however, why such a theory should rest on non-blocking
progress conditions (that is, wait-free or lock-free) and not on locks. After all,
locking implementations are common in practice. Moreover, the obstruction-free
condition is a non-blocking progress condition where read-write registers are
universal [8], effectively leveling the consensus hierarchy.

We are now in a position to address this question. Perhaps surprisingly, Fig-
ure 2 suggests that the lock-free and wait-free conditions provide a sound basis
for a concurrent computability theory because they are independent progress
conditions that do not rely on the good behavior of the operating system sched-
uler. A theory based on a dependent condition would require strong, perhaps
arbitrary assumptions about the environment in which programs were executed.

When studying the computational power of synchronization primitives, it is
unsatisfactory to rely on the operating system to ensure progress, both because
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it obscures the inherent synchronization power of the primitives, and because we
might want to use such primitives in the construction of the operating system
itself. For these reasons, a satisfactory theory of shared-memory computability
should rely on independent progress conditions such as the wait-free or lock-free
properties, and not on the other, dependent properties.

We have discussed progress properties of individual methods, not of entire
objects, because it is often useful for objects to provide different methods that
satisfy different progress properties. For example, Heller et al. [6]) describe a
linked-list that supports starvation-free lock-based insertion and removal, but
with a wait-free search.

Our definitions are easily generalized to collections of methods ranging from
a single method to all of an object’s methods. For example, the Harris-Michael
lock-free list [5,16] provides add(), remove(), and contains() methods. Each
method on its own is obstruction-free, but the collection of all methods taken
together is lock-free.

10 Conclusions

This paper proposes a novel way to impose order on the previously unstruc-
tured world of progress conditions for algorithms on multicore machines. Much,
however, remains to be done.

For example, it would be of great interest to identify new classes of benevo-
lent schedulers. It could be of practical importance to understand how contention
managers [9], application-specific modules that modify the behavior of sched-
ulers, serve in making them benevolent. It would be interesting to better under-
stand the role of “helping” in overcoming scheduler limitations, possibly finding
lower bounds on the cost of universal helping, a cost that perhaps captures the
value of the benevolence scheduling property.

Finally, our approach implies that real-world operating system designers
should be aware of the progress guarantees that their systems and services pro-
vide. Perhaps it is time that these criteria be formally stated and made available
to the user in a manner similar to how memory models are defined with respect
to correctness.

Acknowledgments. We are grateful to Ori Shalev and Victor Luchangco for their
help in formulating and crystallizing some of the concepts presented here.
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Abstract. State machine replication is a popular approach to increas-
ing the availability of computer services. While it has been largely studied
in the presence of crash-stop failures and malicious failures, all existing
state machine replication protocols that provide byzantine fault-tolerance
implement some variant of atomic broadcast. In this context, this paper
makes two contributions. First, it presents the first byzantine fault-tolerant
generic broadcast protocol. Generic broadcast is more general than atomic
broadcast, in that it allows applications to deliver commutative commands
out of order—delivering a command out of order can be done in fewer com-
munication steps than delivering a command in the same order. Second,
the paper presents an efficient state machine replication protocol that tol-
erates byzantine failures. Our protocol requires fewer message delays than
the best existing solutions under similar conditions. Moreover, processing
of commutative commands on replicas requires only twoMAC operations.
The protocol is speculative in that it may rollback non-commutative com-
mands.

1 Introduction

State machine replication is a popular approach to increasing the availability of
computer services [1,2]. By replicating a service on multiple machines, hardware
and software failures can be tolerated. Although state machine replication has
been largely studied in the presence of crash-stop failures and malicious fail-
ures, all existing protocols that provide byzantine fault-tolerance (BFT) (e.g.,
[3,4,5,6,7]) implement some variant of atomic broadcast, a group communication
primitive that guarantees agreement on the set of commands delivered and on
their order. In this context, this paper makes two contributions.

The first contribution of this paper is a byzantine fault-tolerant generic broad-
cast protocol. Generic broadcast defines a conflict relation on messages, or
commands, and only orders messages that conflict. Two messages conflict if their
associated commands do not commute. For instance, two increment operations of
some variable x commute since the final value of x is independent of the execution
order of these operations. Generic broadcast generalizes atomic broadcast—the
two problems are equivalent when every two messages conflict. Previous generic
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broadcast protocols appeared in the crash-stop model [8,9,10]; ours is the first
to tolerate malicious failures. The difficulty with generic broadcast stems from
the need to deliver commutative commands in two communication delays and
ensure that their delivery order, with respect to non-commutative commands,
is the same at all correct processes. To address this challenge under byzantine
failures we define Recovery Consensus, an abstraction that ensures proper or-
dering between conflicting and non-conflicting messages. The proposed protocol
requires n ≥ 5f + 1 replicas to tolerate f byzantine failures. We use Recovery
Consensus at the core of our generic broadcast protocol.

The second contribution of this paper is a state machine replication proto-
col that generalizes and improves current byzantine fault-tolerant state machine
replication protocols. Our protocol builds on our generic broadcast algorithm. A
naive implementation of state machine replication based on generic broadcast to
propagate commands to servers would lead to a best latency of three communi-
cation delays. We rely on speculative execution to provide an efficient algorithm
that executes commutative commands in two communication delays. The algo-
rithm is speculative in that it may rollback commands in some cases (i.e., when
non-commutative commands are issued). To summarize, the principal advantage
of the proposed state machine replication protocol is to allow fast execution of
commutative commands in two message delays. Moreover, when commands com-
mute servers only need to execute two MAC operations per command.

The remainder of the paper is structured as follows. Section 2 defines the
system model. Sections 3 and 4, respectively, present the Recovery Consensus
and generic broadcast protocols. We extend our generic broadcast protocol to
provide state machine replication in Section 5. Section 6 discusses related work
and Section 7 concludes the paper. Correctness proofs of the protocols can be
found in the appendix of the full version of this paper [11].

2 System Model and Definitions

We consider an asynchronous message passing system composed of n processes
Π = {p1, . . . , pn}, out of which f are byzantine (i.e., they can behave arbitrarily).
A process that is not byzantine is correct. The adversary that controls byzantine
processes is computationally bounded (i.e., it cannot break cryptographic prim-
itives) and cannot change the content of messages sent by one correct process to
another correct process. The network is fully connected and quasi-reliable: if a
correct process p sends a message m to a correct process q, then q receives m.1

We make use of public-key signatures to allow a process to sign a messagem [12].
We denote message m signed by process pi as 〈m〉σi . We also use HMACs [13]
to establish a bidirectional authenticated channel between any two processes px
and py, with the notation 〈m〉σxy indicating a message m signed with a secret
key shared between processes px and py.

1 The presented algorithms can trivially be modified to tolerate fair-lossy links, links
that may drop messages but guarantee delivery of a message m if m is repeatedly
sent. We assume quasi-reliable links to simplify the presentation of the algorithms.
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Due to the impossibility to solve consensus in asynchronous systems prone to
crash failures [14], it is also impossible to solve atomic broadcast and generic
broadcast [15]. This impossibility is typically overcome by strengthening the
model with further assumptions (e.g., [16,17,18]). In this paper we assume the
existence of an atomic broadcast oracle [19]. Atomic broadcast is defined by the
primitives A-Bcast(m) and A-Deliver(m), where m is a message. It guarantees
the following properties:

– (Validity) If a correct process p A-Bcasts a message m, then p eventually
A-Delivers m.

– (Agreement) If a correct process pA-Delivers a messagem, then every correct
process q eventually A-Delivers m.

– (Integrity) For any message m, every correct process p A-Delivers m at most
once.

– (Order) If correct processes p and q both A-Deliver messagesm and m′, then
p and q A-Deliver them in the same order.

3 Recovery Consensus

In this section we introduce Recovery Consensus, an abstraction used by generic
broadcast to order messages whose associated commands do not commute, also
denoted as conflicting messages. Below, we provide an implementation of Recov-
ery Consensus that employs digital signatures for message authentication.

3.1 Problem Definition

Recovery Consensus allows each process pi to propose a set of non-conflicting
messages NCSeti and a set of conflicting messages CSeti. The set NCSeti is
called non-conflicting since every pair of messages in it does not conflict, and
the set CSeti is called conflicting since for every message m ∈ CSeti there is a
message m′ ∈ NCSeti such that m and m′ conflict. Recovery Consensus ensures
agreement on a set of non-conflicting messages NCSet and on a set of conflicting
messages CSet. Additionally, it guarantees that if nchk − f correct processes pi
propose a message m, i.e., m belongs to either NCSeti or CSeti, where nchk is
a parameter of the problem, m will be part of either NCSet or CSet.

More formally, Recovery Consensus is defined by primitives
proposeRC(NCSeti, CSeti) and decideRC(NCSet, CSet). Provided that
every correct process pi invokes proposeRC(NCSeti, CSeti) and there are no
conflicting messages in NCSeti, the following properties are guaranteed:

– (Termination) Every correct process eventually decides on some pair of mes-
sage sets.

– (Agreement) If two correct processes decide on pairs of message sets (NCSet1,
CSet1) and (NCSet2, CSet2), thenNCSet1 = NCSet2 and CSet1 = CSet2.

– (Validity) If a correct process invokes decideRC(NCSet, CSet), then:

1. NCSet ∩ CSet = ∅.
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2. If a message m belongs to nchk − f NCSeti sets of correct processes,
then m ∈ NCSet.

3. No two messages in NCSet conflict.
4. If a message m is in nchk − f sets NCSeti ∪CSeti of correct processes,

then m ∈ NCSet ∪ CSet.

3.2 Solving Recovery Consensus

Algorithm Cabsign requires at least nchk correct processes, where nchk ≤ n −
f . It consists of a single task and works as follows. Each process pi starts by
atomically broadcasting the pair (NCSeti, CSeti) signed with pi’s signature—
in the algorithm, the signed message is denoted as 〈NCSeti, CSeti〉σi (line 2).
Process pi then waits until it A-Delivered nchk unique and valid messages, that
is, messages from distinct sources that do not contain conflicting messages in
NCSetj (line 3). Detecting unique messages is done with signatures: if pi A-
Delivers two messages from the same source pj , then pi discards both messages
since pj is byzantine. By considering the first nchk unique and valid messages,
this ensures that at least nchk − f messages A-Delivered by pi were broadcast
by correct processes.

Algorithm Cabsign
Process pi Recovery Consensus algorithm with atomic broadcast and signatures

1: Procedure proposeRC(NCSeti, CSeti)
2: A-Bcast(〈NCSeti, CSeti〉σi)

3: wait until [ |GS| = nchk : GS
def
= {(NCSetj , CSetj) | A-Delivered unique and

4: valid 〈NCSetj , CSetj〉σj from pj } ]
5: NCSet← {m | ∃

⌈
nchk+1

2

⌉
NCSetj : (NCSetj , ·) ∈ GS and m ∈ NCSetj}

6: CSet← (
⋃

(NCSetj ,CSetj)∈GS NCSetj ∪ CSetj)�NCSet

7: decideRC(NCSet, CSet)

Any message that appears in a majority of the nchk NCSetj sets will appear
in NCSet (line 5). This guarantees the third validity property, namely that no
two messages in NCSet conflict, since (i) the considered NCSetj sets at line 3
do not contain conflicting messages and (ii) any message in NCSet belongs to
a majority of NCSetj sets.

Let Qnchk−f be a quorum of nchk−f correct processes that propose a message
m as part of NCSeti, and let Qnchk

be a quorum of nchk processes, the number
of unique and valid A-Delivered messages processes consider at line 3. To ensure
that we include m in NCSet if m belongs to nchk − f NCSeti sets of correct
processes, the minimum size of the intersection between Qnchk−f and Qnchk

must
be �nchk+1

2 �. Hence, nchk must satisfy inequality (nchk−f)+nchk ≥ n+�nchk+1
2 �.

Since nchk ≤ n− f , we conclude that Cabsign requires n > 5f .
Finally, the set of conflicting messages CSet consists of messages gathered

using atomic broadcast that are not part of NCSet (line 6). From the total order
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property of atomic broadcast, correct processes gather the same set of pairs
(NCSetj, CSetj). Since NCSet and CSet are constructed from the gathered
pairs using a deterministic procedure, all correct processes agree on these two
sets.

4 BFT Generic Broadcast

We present a byzantine fault-tolerant generic broadcast protocol that we de-
note as PGB. This protocol relies on Recovery Consensus to handle conflicting
messages. We first define generic broadcast in our model and then present the
algorithm.

4.1 Generic Broadcast

Generic broadcast is defined by the primitives g-Broadcast(m) and g-Deliver(m),
where m is a message from the predefined set M, to which all messages belong.
We assume that each message broadcast has a unique identifier. Generic broad-
cast is parameterized by a symmetric relation ∼ on M×M. If (m,m′) ∈ ∼, or
m ∼ m′ for short, we say that m and m′ conflict or are conflicting messages. If
m and m′ conflict, then generic broadcast will order m and m′. If m and m′ do
not conflict, they can be delivered in any order.

Generic broadcast guarantees the following properties, adapted from [10] to
the byzantine failure model:

– (Validity) If a correct process p g-Broadcasts a message m, then p eventually
g-Delivers m.

– (Agreement) If a correct process p g-Delivers a messagem, then every correct
process q eventually g-Delivers m.

– (Integrity) For any message m, every correct process p g-Delivers m at most
once.

– (Order) If correct processes p and q both g-Deliver conflicting messages m
and m′ (m ∼ m′), then p and q g-Deliver them in the same order.

As noted in [10], atomic broadcast is a special case of generic broadcast when
all messages conflict with all messages, that is, ∼ = M ×M. Thus, one could
question the difficulty of implementing generic broadcast since we assume the ex-
istence of an atomic broadcast primitive that could be used to implement generic
broadcast. The main idea of our generic broadcast protocol is that it allows fast
delivery (i.e., in two communication delays) of non-conflicting messages, a bound
that no atomic broadcast protocol can achieve in the general case [20].

4.2 Solving Generic Broadcast

The protocol is composed of two phases: an acknowledgment phase (ack) and a
check phase (chk). Consecutive ack and chk phases form a “round”. During the
ack phase processes g-Deliver non-conflicting messages in two message delays.



334 P. Raykov, N. Schiper, and F. Pedone

Algorithm PGB
Process pi generic broadcast algorithm

1: Initialization:
2: Received← ∅, G del← ∅, pending1 ← ∅, gAck del1 ← ∅, k← 1
3: To execute g-Broadcast(m): {Task 1}
4: send(m) to all
5: g-Deliver(m) occurs as follows:
6: when receive(m) do {Task 2a}
7: Received← Received ∪ {m}
8: when receive(〈k, pendingkj , ack〉σij ) do {Task 2b}
9: Received← Received ∪ pendingkj

10: when receive(k, Sj ,chk) do {Task 2c}
11: Received← Received ∪ Sj

12: when
(
Received� (G del ∪ pendingk) �= ∅

)
do {Task 3}

13: if (∀ m,m′ ∈ (Received�G del) : m �∼ m′) then
14: pendingk ← Received�G del
15: send(〈k, pendingk, ack 〉σij ) to all processes pj
16: else
17: send(k, (Received�G del),chk) to all � start of chk phase
18: proposeRC(k, pendingk, (Received� (G del ∪ pendingk)))
19: wait until decideRC(k,NCSetk, CSetk)
20: for each m ∈ NCSetk � (G del ∪ gAck delk) do g-Deliver(m)
21: for each m ∈ CSetk � (G del ∪ gAck delk) in ID order do
22: g-Deliver(m)
23: G del← G del ∪NCSetk ∪ CSetk

24: k← k + 1, pendingk ← ∅, gAck delk ← ∅ � end of chk phase
25: end if

26: when ∃ m : [ for nack processes pj : received 〈k, pendingkj , ack〉σij {Task 4}
27: from pj and m ∈ (pendingkj � gAck delk) ∩ pendingk ] do
28: gAck delk ← gAck delk ∪ {m}
29: g-Deliver(m)

atomic

atomic

In the chk phase, the protocol orders conflicting messages. Notice that PGB
does not require signatures to deliver non-conflicting messages.

Algorithm PGB consists of six concurrent tasks. Each line of the algorithm,
lines 20–24, and lines 26–29 are executed atomically. The following variables are
used by the algorithm: k defines the current round number, Received contains
all the g-Broadcast messages that the process has received so far, G del contains
all the messages that have been g-Delivered in the previous rounds, pendingk

defines the set of non-conflicting messages acknowledged by the process in the
current round, and gAck delk is the set of messages g-Delivered in the ack phase
of the current round.

When a process p wishes to g-Broadcast a messagem, p sendsm to all (line 4).
When receiving m, a process q adds m to its Received set (line 7) and eventually
checks whether m conflicts with any message that was received but not delivered
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yet (line 13). If it is not the case, then q adds m to its pendingk set and acknowl-
edges all messages in this set by sending pendingk to all (lines 14–15).2 A process
q g-Delivers m in the ack phase when q receives nack acknowledgments for m
(lines 26–29). To prevent conflicting messages from being g-Delivered in the ack
phase despite f byzantine processes, nack must be greater than (n+ f)/2.

It is possible that q receives a messagem′ that conflicts withm before receiving
nack acknowledgments for m. In that case, q proceeds to the chk phase. At
this point, processes start by exchanging all messages that they received but
did not deliver in previous rounds (line 17). In doing so, all correct processes
eventually receive m and m′ despite potentially faulty senders, and enter the
chk phase. PGB then relies on Recovery Consensus to ensure agreement on the
set of non-conflicting messages NCSetk that were potentially g-Delivered in the
ack phase, and the set CSetk of conflicting messages to deliver at the end of the
current round. Correct processes invoke proposeRC with round number k, the
set of non-conflicting messages pendingk, and all the other messages that were
received but not delivered so far, denoted as Received � (G del ∪ pendingk)
(line 18), and decide on sets NCSetk and CSetk (line 19). Processes deliver
non-conflicting messages in NCSetk that they had not delivered so far (line 20),
and then deliver conflicting messages CSetk (line 22).

To ensure that if a message m was delivered in the ack phase m will appear
in set NCSetk decided by Recovery Consensus, m must be proposed by nchk−f
correct processes in pendingk at line 18. If m was delivered in the ack phase,
at least nack − f correct processes propose m to Recovery Consensus. Hence, to
maximize resilience we set nack equal to nchk.

Note that Recovery Consensus (Algorithm Cabsign) runs n atomic broadcasts
in parallel. Hence, when conflicting messages are issued, PGB has message com-
plexity n times bigger than a usual atomic broadcast protocol. PGB is optimized
to perform well when non-conflicting messages are broadcast and Recovery Con-
sensus is invoked rarely.

5 State Machine Replication

5.1 A Trivial Algorithm

Implementing state machine replication [1,2] using the generic broadcast algo-
rithm of Section 4 is straightforward: each command of the state machine cor-
responds to a message in the set M and the conflict relation on messages is
defined such that two messages conflict if and only if their associated commands
do not commute. For instance, if replicas store bank accounts, two deposit com-
mands on the same account commute since their execution order does not have
an effect on the final state of the state machine nor on the respective outputs of
these commands, which in this case only contain an acknowledgment that the

2 To ensure that messages are not acknowledged twice and improve the efficiency of
the algorithm, processes can remember the set of messages that were acknowledged
and only acknowledge them once.



336 P. Raykov, N. Schiper, and F. Pedone

Algorithm SMRclient

Client c algorithm

1: To execute command m:
2: send(〈m〉σc) to all replicas
3: wait until [ ∃ k, s.t. received from different replicas
4: nack 〈k,m, res(m),ack〉σric

or f + 1 〈k,m, res(m),chk〉σric
]

5: return res(m)

operations were successfully executed. Clients can then directly broadcast com-
mands to replicas using Algorithm PGB. Once replicas deliver a command, they
execute it and send back the result to the client. When f + 1 identical replies
are received by the client, the result of the command is known. This technique
guarantees a form of linearizability [21,22].

5.2 An Optimal Algorithm

The above algorithm allows clients to learn the outcome of a command cmd in
three communication delays if cmd commutes with concurrent commands. As
we show next, a lower latency can be achieved by modifying Algorithm PGB
and speculatively executing commands.

Before presenting the algorithm, we extend the system model of Section 2. We
assume a population of n replicas, aforenamed processes, and a set of clients.
Any number of clients may be byzantine and f bounds the number of faulty
replicas. The latter execute a command cmd of the state machine by invoking
execute(cmd). This invocation modifies the state of the replica and returns a re-
sult. Commands are deterministic, that is, they produce a new state and a result
only based on the current state. Our protocol speculatively executes commands
and may require rolling back some commands if their speculative order does
not correspond to their definitive order. The effect of operation rollback(cmd)
is such that if a sequence of commands Seq is executed between execute(cmd)
and rollback(cmd) then the replica’s state is as if only commands in sequence
Seq were executed. Notice that although replicas may rollback some commands,
clients always see the definitive result of a command (i.e., clients do not perform
rollbacks).

The protocols for clients and replicas are presented in Algorithms SMRclient

and SMRreplica respectively. The replica’s algorithm is similar to PGB, except
for the handling of acknowledgment messages, which is moved to the client. We
highlight in gray the differences between SMRreplica and PGB. Similarly to
PGB, replicas do not need to sign any messages when clients issue commutative
commands.

When a client c invokes a command m, c sends 〈m〉σc to all replicas
(SMRclient, line 2). A replica includes message 〈m〉σc in the Received set at
lines 4,6,8 if m’s signature is valid. When m arrives at a replica r, one of two
things can happen: either (a) m does not conflict with any other command that
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Algorithm SMRreplica

Replica r algorithm(the differences with AlgorithmPGB are highlighted in gray)

1: Initialization:
2: Received← ∅, G del← ∅, pending1 ← ∅, k ← 1, Res← ∅

3: when receive(〈m〉σc) do {Task 1a}
4: Received← Received ∪ {〈m〉σc}
5: when receive(k, pendingkj , ack) do {Task 1b}
6: Received← Received ∪ pendingkj

7: when receive(k, Sj ,chk) do {Task 1c}
8: Received← Received ∪ Sj

9: when
(
Received� (G del ∪ pendingk) �= ∅

)
do {Task 2}

10: if (∀ m,m′ ∈ (Received�G del) : m �∼ m′) then
11: for each m ∈ (Received� (G del ∪ pendingk)) do
12: res(m)← execute(m), Res← Res ∪ (m, res(m))
13: send(〈k,m, res(m),ack〉σrc) to client(m)
14: pendingk ← Received�G del
15: send(k, pendingk, ack) to all replicas
16: else
17: send(k, (Received�G del),chk) to all replicas � start of chk phase
18: proposeRC(k, pendingk, (Received� (G del ∪ pendingk)))
19: wait until decideRC(k,NCSetk, CSetk)
20: for each m ∈ pendingk �NCSetk do
21: rollback(m), remove(m, res(m)) from Res
22: for each m ∈ NCSetk �G del do
23: if m �∈ pendingk then res(m)← execute(m)
24: send(〈k,m, res(m),chk〉σrc) to client(m) � res(m) is retrieved from

Res if needed
25: in ID order: for each m ∈ CSetk �G del do
26: res(m)← execute(m), send(〈k,m, res(m),chk〉σrc) to client(m)
27: G del← G del ∪NCSetk ∪ CSetk

28: k← k + 1, pendingk ← ∅, Res← ∅ � end of chk phase
29: end if

r received in the current round or (b) m conflicts with a command received in
the same round.

In case (a), r speculatively executes m, stores the result in set Res, and
sends the result back to the client as an acknowledgment message (SMRreplica,
lines 10–12). We use a function client(m) defining for a given message m the
client that issued m. If client c receives nack identical acknowledgment messages
form, c learns the result of commandm (SMRclient, lines 3–5)—this is a similar
condition under which a process can g-Deliver a message in the ack phase of
Algorithm PGB.

In case (b), command m conflicts with a command received in the current
round. Similarly to PGB, each replica r uses Recovery Consensus to order these
commands. For each command m′ that was received by r in the ack phase
but that does not appear in the decided NCSet, r rollbacks m′ and deletes
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the corresponding entry from Res—the speculative execution order of m′ differs
from its final execution order (SMRreplica, line 21).

Then, commands in NCSet are executed if they were not acknowledged in
the ack phase, and the results of these commands are sent to the corresponding
clients (lines 22–24). Similar actions are done for the conflicting commands of
CSet (lines 25–26). A client learns the result of a command m that was executed
in the chk phase after receiving f+1 identical replies for m (SMRclient, line 4).

5.3 Optimizations

We briefly discuss two optimizations allowing Algorithms SMRclient and
SMRreplica (a) to achieve the optimal latency of two communication delays
in executions without contention, defined next, and (b) to avoid message signing
by clients.

No contention. Assume that pending sets contain the order in which commands
were received and executed by the replicas; essentially, a pending set becomes
a command sequence. We say that two pending sets conflict if they contain two
conflicting messages executed in a different order. When no pending sets conflict,
we say that there is no contention.

The main idea behind this optimization is that now we consider the conflicts
between pending sets instead of the conflicts between individual messages. In
the optimized Algorithm SMRclient, a client c learns the result res(m) of the
execution of commandm if: (1) c received nack non-conflicting pending sets with
res(m) or (2) c received f + 1 chk messages with res(m). A replica enters the
chk phase if: (1) it has received two conflicting pending sets or (2) it has received
a chk message indicating that some other replica entered the chk phase in the
current round.

Since conflicting commands can be executed in the ack phase, provided that
they are executed in the same order, replicas include the execution order of com-
mands in sets NCSeti proposed to Recovery Consensus. Hence, the Recovery
Consensus algorithm must be modified and NCSet essentially contains com-
mands proposed by �nchk+1

2 � replicas ri as part of NCSeti, such that no two
pending sets containing m include two non-commutative commands m1 and m2

that were executed before m and in different orders.

Avoiding message signing by clients. Digital signatures based on asymmetric
cryptography can be expensive to generate or verify, let alone the problem of
distributing and refreshing key pairs. Instead of signing a message m, clients can
use an authenticator (a list of HMACs) to authenticate m [5].

We modify Algorithm SMRreplica as follows: (1) during the ack phase replica
rj puts message m at lines 4,6,8 in the Received set only if m’s authenticator
contains a valid HMAC entry for rj ; (2) during the chk phase, we change the
way CSet is built in the underlying protocol Cabsign: message m is included in
CSet only if it belongs to f + 1 different NCSetj ∪ CSetj . This guarantees
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Table 1. Byzantine fault-tolerant replication protocols (“bf”:“byzantine failures”)

Protocol PBFT [5] Zyzzyva [3] HQ [6] Q/U [4] Aliph [7] this paper

Resilience f < n/3 f < n/3 f < n/3 f < n/5 f < n/3 f < n/5

Best-case latency 4 3 4 2 2 2

Best-case latency bf bf bf bf bf bf
in the absence of... slow links contention contention contention contention

slow links

MAC operations at 2+8f 2+3f 2+4f 2+4f 23 2
bottleneck server

Command classification read-only/ read-only/ read-only/ read-only/ none by conflict
mutative mutative mutative mutative relation ∼

Client-based recovery no yes yes yes yes no

that only client c can issue commands with c’s identifier, i.e., it is impossible to
impersonate client c.

Unfortunately these modifications are more difficult to apply in Recovery
Consensus. To avoid expensive signing during Recovery Consensus one could
use matrix signatures [23] or employ the approach described in [6] for signing
certificates, both of which essentially trade off signatures for additional network
delays.

Digital signatures scale better than authenticators, whose size grows linearly
with the number of replicas, so deciding which technique to apply depends
on the specific system settings. In any case, we note that by design, Algo-
rithms SMRreplica and SMRclient optimize the ack phase, since this is the
case we expect to happen more often.

6 Related Work

In the following we compare our BFT state machine replication protocol to the
related work (see Table 1). To the best of our knowledge, this paper is the first
to present an implementation of byzantine generic broadcast. All BFT state
machine replication protocols we are aware of have a “fast mode”—analogous
to the ack phase, where messages are delivered fast under certain assumptions
(also called “best-case”), and a recoverymechanism to switch to a “slowmode”—
analogous to the chk phase that resolves possible problems, usually contention
or failures. Despite these similarities, existing protocols differ from each other in
a number of aspects:

– PBFT was the first practical work on BFT state-machine replication. The
best-case latency of four message delays is achieved when there are no byzan-
tine failures. For read-only operations, the protocol can be optimized to
achieve a latency of two message delays.

3 In Table 2 of paper [7], Aliph’s latency and throughput represent two different
sub-protocols: Chain and Quorum. We here show the number of MAC operations
that Quorum uses since only Quorum achieves the best-case latency of two network
delays.
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– Zyzzyva employs tentative execution to improve the best-case delay of PBFT.
It executes commands in three network delays when there are no byzantine
failures and links are timely. Otherwise, the protocol requires five network
delays. Like PBFT, it can be optimized to execute read-only operations in
two message delays.

– HQ, a descendant of PBFT, is optimized to execute read-only commands in
two message delays and update commands in four message delays when the
execution is contention-free.

– Q/U was the first protocol to achieve the best-case latency of two network
delays for all commands when replicas are failure-free and updates do not
access the same object concurrently.

– In [7], the authors propose a modular approach to build BFT services based
on the concept of abstract instances. An abstract instance is a BFT replica-
tion protocol optimized for specific system conditions that can abort com-
mands. In this context, the authors propose Aliph, a composition of three
abstract instances: Quorum, Chain, and PBFT. Quorum is optimized for
latency and allows command execution in two network delays when links are
timely and the execution is contention- and failure-free. Chain, on the other
hand, is optimized for throughput and achieves a latency of f + 2 network
delays when there are no failures.

The protocol presented in this paper is the first to achieve a latency of two net-
work delays when the execution is failure-free but concurrent commutative com-
mands are submitted. Under the same conditions, PBFT and Zyzzyva achieve
latency of four and three message delays respectively, while HQ, Q/U and Aliph
run an additional protocol to resolve contention.

Q/U [4] and HQ [6] proposed a simplified version of the conflict relation: all
commands are either reads or writes [6] (respectively, queries and updates in
[4]); reads do not conflict with reads, and writes conflict with reads and writes.
This is more restrictive than a conflict relation, as mutative operations on the
same object do not necessarily conflict (e.g., incrementing a variable).

Zyzzyva, Q/U, and Aliph, more specifically the Quorum instance, do not use
inter-replica communication to agree on the order of commands; instead they
assume that it is the client’s responsibility to resolve contention by collecting
authenticated responses from replicas and distributing a valid certificate to the
replicas. PBFT and the state machine replication protocol presented in this
paper rely on inter-replica communication to serialize commands, which allows
a lightweight protocol for clients. HQ uses a hybrid approach: it uses inter-replica
communication only when clients demand to resolve contention explicitly, while
in the “fast case” clients coordinate the execution.

Finally, we note that although [24] executes commutative commands in paral-
lel, all commands are totally ordered using PBFT, resulting in a higher latency
than our protocol in the aforementioned scenario.
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7 Final Remarks

This paper introduces the first generic broadcast algorithm that tolerates byzan-
tine failures. Generic broadcast is based on message conflicts, a notion that is
more general than read and write operations [4,6]. The proposed algorithm is
modular and relies on an abstraction called Recovery Consensus, used to en-
sure that correct processes (i) deliver the same set of non-conflicting messages in
each round, and (ii) agree on the delivery order of conflicting messages. A mod-
ular approach facilitates the understanding of the ack phase and chk phase
of Algorithm PGB, and allows to explore various implementations of Recovery
Consensus. We provided an implementation of Recovery Consensus that is based
on atomic broadcast and digital signatures and requires at least 5f+1 processes.
Finally, we extended the proposed generic broadcast algorithm to provide state
machine replication. The resulting protocol, with its optimizations, can execute
commands in two message delays under weaker assumptions than state-of-the-art
algorithms.

The Aliph protocol [7] opened new directions in the development of state
machine replication protocols: it is now possible to combine different protocols
in one that switches through given implementations of state machine replication
under certain policies to speed up the execution. Hence, it could be an interesting
task to implement the protocol proposed in this paper as an Abstract instance
(Generic) and see the behavior of the resulting algorithm (e.g., Generic-Chain-
Quorum-Backup).
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Abstract. We propose a partially non-preemptive dual priority schedul-
ing algorithm (PNPDP) for multiprocessors. In dual priority scheduling,
each task has two fixed priorities. When a job is released, it executes
at its task’s lower priority. After some fixed amount of time, its priority
is promoted. Our approach is to prevent lower priority jobs from pre-
empting one another. We use the tasks’ Worst Case Response Times to
determine when a promotion must occur in order to guarantee all dead-
lines will be met. During execution, this promotion time is adjusted to
extend non-preemptive execution of lower priority tasks whenever pos-
sible. Tasks executing at their promoted priorities are scheduled using
preemptive fixed priority (FP) scheduling algorithm. Experimental re-
sults demonstrate that this approach reduces the preemption and mi-
gration overheads by as much as 90%. Moreover we found that many
FP-unschedulable task sets are PNPDP-schedulable.

Keywords: Dual Priority Scheduling, Multiprocessor Scheduling, Pro-
crastination, Delayed preemption, Cooperative Scheduling.

1 Introduction

Consider the scheduling of hard real-time systems on multiprocessor platforms.
Such systems may be scheduled with or without allowing preemptions.
Completely prohibiting preemptions can make schedulability impossible — par-
ticularly if some jobs have very long execution times. On the other hand, using a
global scheduling strategy can dramatically degrade schedulibility [6]. Hence, it
is important to develop algorithms that avoid preemptions as much as possible
without causing deadline misses.

Often real-time jobs execute repeatedly and at regular intervals. We call such
sequences periodic tasks. In general, there are two distinct strategies for schedul-
ing task sets: fixed-priority and dynamic-priority. In a fixed-priority scheduling
scheme, each task is assigned a priority level and all jobs generated by a given
task are executed at that task’s priority. In a dynamic-priority scheme, the tasks’
priorities may change over time. The flexibility of using dynamic priorities may
increase the likelihood that all deadlines will be met. However, maintaining the
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priorities of the tasks adds to the complexity of the scheduling algorithm. Hence,
fixed-priority scheduling is often preferred in practice.

In dual priority scheduling, each task has two priorities – a high priority and
a low priority. When a task releases a new job, it is initially assigned the lower
priority. If the job does not complete execution within a specified amount of
time, the job’s priority is reassigned to the higher priority level. Because each
task has exactly two priority levels, we observe that dual priority scheduling is
in some sense the least dynamic of the dynamic priority scheduling approaches1.
This paper considers a variation of dual priority scheduling for multiprocessor

platforms. With the advent of multicore processors, the study of multiprocessor
systems has become increasingly important. Multiprocessor scheduling is partic-
ularly difficult in the presence of hard real-time constraints. Real-time scheduling
algorithms that are known to perform very well on uniprocessor systems, such as
Earliest Deadline First (EDF) and rate monotonic (RM), do not perform as well
on multiprocessor platforms. As a result, the real-time scheduling community
has devoted quite a bit of attention to multiprocessor scheduling recently.

We consider a partially non-preemptive variation of dual priority scheduling
algorithm for multiprocessor platforms. Our variation applies two significant
changes to the standard dual priority algorithm. First, we only allow tasks to
preempt one another when executing at their higher priority level. In standard
dual priority scheduling, the highest-priority jobs are selected to execute at all
times. Thus, preemptions may occur either when a task releases a new job (if
its lower priority level is higher than that of some executing job) or when a
task’s priority is promoted to its higher level. Our partially non-preemptive
dual priority (PNPDP) approach does not allow tasks to preempt one another
when they are executing at their lower priority level. Thus, preemptions are
deferred and can occur only when a tasks priority gets promoted. Second, we
delay promotion times of tasks that execute at their lower priority level. Because
tasks cannot preempt unless they are executing at their higher priority level, this
delay of priority promotion also delays preemptions.

The contributions of this paper are as follows:

– We introduce a variation of dual priority scheduling for multiprocessor plat-
forms that prevents tasks from initiating preemptions before they are pro-
moted.

– We present an online method of delaying priority promotion times.
– We analytically demonstrate that any system that meets all deadlines using

standard preemptive fixed priority scheduling will also meet all deadlines
using the PNPDP approach.

– We experimentally demonstrate that this approach can significantly reduce
the context switch overheads (i.e., preemptions and migrations) as compared
to both fixed priority and dual priority schedules.

– We demonstrate that the PNPDP approach can sometimes prevent deadline
misses that might occur in a standard fixed priority system.

1 When considered in terms of jobs, EDF might be considered less dynamic. However,
there are advantages to managing priorities at the task level.
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The remainder of this paper is organized as follows. Section 2 presents other
research on dual priority scheduling and delayed preemption strategies. Section 3
introduces our model and notation in more detail. Section 4 analytically proves
that the validity of the PNPDP scheduling strategy. Section 5 experimentally
demonstrates that this strategy can significantly reduce scheduling overheads
and improve schedulability. Finally, Section 6 provides some concluding remarks
and ideas for further research.

2 Related Work

Because we do not allow tasks to initiate preemptions when executing at their
low priority level, the PNPDP algorithm has elements of both the dual priority
and deferred preemption scheduling strategies. Below, we discuss some important
results pertaining to each of these approaches.

2.1 Uniprocessor Scheduling Results

In 1995, Davis et al. [10] presented dual priority scheduling for uniprocessors in
order to improve aperiodic task response times. In [10], there are three distinct
priority ranges – upper, middle and lower. Periodic tasks are assigned priorities
in the upper and lower ranges, and aperiodic tasks are assigned priorities in
the middle range. Periodic tasks initially execute at lower priority level. If a job
does not complete execution within a specified amount of time, its priority is
promoted to the upper level.

Jejurikar et al. [16] extended the uniprocessor dual priority scheduling ap-
proach to reduce power consumption. In their model, task execution is procras-
tinated when the processor is in the sleep state. The algorithm extends the sleep
state as long as possible while still ensuring every task still meets its deadline.
Their goal is to reduce the number of transitions from sleep state to busy state
as these transitions consume energy.

Gopalakrishnan et al. [13] determined utilization bounds for EDF and RM
scheduling with deferred preemption. They assume tasks are scheduled in dis-
crete quanta and can only be preempted at quantum boundaries. They developed
tests to check if a task system can be scheduled with a given quantum length
using either EDF or RM.

Bril et al. [8] explore worst-case response time (WCRT) analysis of unipro-
cessor fixed priority systems using a deferred preemption strategy. Their work
explores various types of overhead resulting from preemption (such as cache
misses and reloads). They analyze the WCRT of a higher priority job which may
be blocked by a lower priority job.

Baruah [5] and Yao [21] both analyze systems that alternate between preemp-
tive and non-preemptive scheduling, providing a balance between feasibility and
overheads on uniprocessor platforms. In both cases, the authors present anal-
ysis finding the longest duration of a non-preemptive interval that does not cause
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deadlines to be missed. In [5], Baruah considers the EDF scheduling of sporadic
tasks. In [21], Yao et al. consider fixed priority scheduling of periodic tasks.

2.2 Multiprocessor Scheduling Results

All of the above approaches apply only to uniprocessor platforms. Recent re-
search has also considered dual priority scheduling and delayed preemption ap-
proaches on multiprocessor platforms.

Davis, et al. [12] introduce the fixed priority with zero laxity algorithm (FPZL).
We say a job has zero laxity if its remaining execution time is equal to the amount
of time that remains before its deadline. Any such job must execute immediately
in order to avoid missing its deadline. FPZL schedules tasks in a standard fixed
priority manner unless a job’s laxity is zero. All zero laxity jobs are given the
highest possible priority. Thus, FPZL may be viewed as a dual priority algorithm
where promotion times occur only when not executing a job is certain to result
in a missed deadline. FPZL is a fully preemptive algorithm that was developed
solely to correct fixed priority schedules in which jobs may miss their deadlines.

Tumeo et al. [20] consider deferred preemption on multiprocessor platforms
using a global fixed priority scheduling algorithm. They consider systems that
execute both periodic and aperiodic tasks on FPGA multiprocessor platforms.
Similar to [10], Tumeo et al. use three priority ranges. In addition, each task
is assigned to a particular processor. While tasks can execute on any processor
prior to promotion time, they must execute on their assigned processor once
they get promoted. As a result, priority promotion times can be determined
using uniprocessor WCRT analysis.

Banus et al. [4] also introduce a hybrid architecture combining global and
partitioned scheduling for multiprocessor platforms. Like [20], their system par-
titions the higher priority tasks onto the processors and uses uniprocessor WCRT
analysis to determine priority promotion times. Middle and lower priority tasks
are scheduled using the earliest promotion time first (EPF) strategy, a dynamic
scheduling approach. They introduce an acceptance test for aperiodic tasks with
deadlines. Their aim is to schedule as many hard aperiodic tasks as possible while
still trying to minimize the response times of the soft aperiodic tasks (which have
no deadlines).

Both of the above approaches focus on improving the response time of aperi-
odic jobs. By contrast, we aim to reduce overhead due to preemptions. Therefore,
we employ a non-preemptive approach until a task’s priority is promoted. Fur-
thermore, we allow tasks to migrate at any point in time (even after a job is
promoted). With a partitioned approach, WCRT values are determined using
uniprocessor analysis. Instead, we determine WCRT values using multiprocessor
analysis developed by Guan et al. [14]. Partitioning tasks onto processors is sim-
ilar to the bin-packing problem, which is known to be NP-complete. Therefore,
both of the above approaches may be unable to schedule task sets that could be
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scheduled using a global approach. Finally, none of the above approaches employ
the online adjustment of priority promotion times.

3 Model and Definition

Real-time processes often recur at regular intervals. Hence, the periodic [18] and
sporadic task models have proven very useful for the modeling and analysis of
real-time systems. We consider the scheduling tasks2 on multiprocessor platforms
comprised of m identical processors.

Let τ ≡ {T1, T2, . . . , Tn} be a collection of n tasks. Each task Ti is character-
ized by six parameters: worst case execution requirement (ei), period (pi), two
distinct priorities (πi,high and πi,low), relative deadline (Di), and promotion off-
set (Λi). Each task Ti generates an infinite sequence of jobs Ti,0, Ti,1, . . . , Ti,k, . . ..
A periodic task Ti generates each job Ti,k at time ai,k = k·pi, for all non-negative
integers k. The sporadic task model allows tasks to diverge from the strict arrival
pattern. Hence, consecutive arrivals of a sporadic task Ti occur at least pi time
units apart – i.e., ai,0 ≥ 0 and ai,k+1 ≥ ai,k + pi for k > 0. Each job Ti,k needs
to execute for ei units of time by its deadline of di,k = ai,k + Di. If pi = Di, we
say Ti has an implicit deadline and use the notation Ti = (pi, ei).

Each task Ti is assigned two priorities, πi,high and πi,low , and a promotion
offset Λi. Priorities are assigned in two bands — i.e., for every pair of tasks Ti

and Tj , πi,high is higher than πj,low. We assume tasks are indexed according to
their higher priority levels with π1,high being the highest and πn,high being the
lowest. When Ti releases a new job, it is initially assigned priority level πi,low .
If it does not complete execution within Λi time units, its priority is promoted
to πi,high. When task Ti generates a job Ti,k, we let λi,k denote this job’s latest
promotion time. Thus, λi,k = ai,k + Λi. At any time t, we let πi(t) denote Ti’s
current priority.

We assume a preemptive schedule which permits migration. Thus, jobs gen-
erated by higher-priority tasks can preempt (interrupt) a currently executing
lower-priority job and the preempted job can restart on any processor. How-
ever, our scheduling strategy will not allow a higher-priority task to preempt a
lower-priority task immediately. Whenever the scheduler executes a lower prior-
ity job while a higher priority job is waiting, we say a priority inversion occurs.
Priority inversions must be limited because they could lead to deadline misses.
However, as long as no deadline will be missed, we can use priority inversions to
our advantage.

While our goal is to reduce preemptions, we recognize that some preemp-
tions must occur in order to ensure all deadlines are met. Our aim is to delay
preemptions until further delay may cause a deadline to be missed. We show
that permitting priority inversions for limited periods of time may remove the
need for at least some preemptions. First, though, we describe our strategy and
demonstrate that it is correct.
2 The term “task” with no modifier indicates that the task may be either periodic or

sporadic.
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4 Partially Non-Preemptive Dual Priority Scheduling
Strategy

As described above, while both promoted and non-promoted tasks can be pre-
empted, only promoted tasks can initiate preemptions. If task Ti is promoted at
time t, it will initiate a preemption if and only if πi,high is higher than πj(t) for
some executing task Tj .

We use WCRT analysis to determine the promotion offset Λi for each task
Ti. Lehoczky et al. [17] developed the Time Demand Analysis (TDA) for fixed
priority schedules on uniprocessor platforms. This method was extended for mul-
tiprocessor platforms [1,7,9,14,19]. We use the approach presented by Guan et
al. [14], which examines the maximum interference from higher priority jobs
more precisely than the earlier extensions and applies to sporadic task sets with
unconstrained deadlines.

Below we demonstrate that our PNPDP approach will not introduce dead-
line misses if τ is FP-schedulable. We first consider PNPDP schedule without
adjusting priority promotion times. In Section 4.1, we demonstrate that priority
promotion times may be delayed.

Lemma 1. Assume τ is FP-schedulable when using all tasks’ high priority lev-
els. For each task Ti, let Ri be Ti’s WCRT in the FP schedule. If Λi = Di −Ri

for all Ti ∈ τ then τ is PNPDP schedulable regardless of how lower priority
levels are assigned.

Proof. Consider the sporadic task system τ ′ where D′
i = Ri, p′i = pi and e′i = ei

for all tasks Ti. Let S be any PNPDP schedule of τ . Construct a corresponding
FP schedule S′ of τ ′ where each job Ti,k arrives Λi time units later in S′ (i.e.,
a′i,k = ai,k + Λi) as illustrated in Figure 1. By assumption, the WCRT of each
job Ti is Ri. Therefore, all jobs meet their deadlines in the schedule S′ (because
D′

i = Ri). Note that

di,k = ai,k + Di = (ai,k + Λi) + (Di − Λi) = a′i,k + Ri = d′i,k.

Hence, each job in S′ has the same deadline as the corresponding job in S, but
has Λi fewer time units to execute.

Now let xi,k and yi,k be the amount of time job Ti,k executes in schedule S
before and after being promoted, respectively. Create a new schedule S′′ of τ ′

where each job Ti,k executes for yi,k time units. Clearly, yi,k ≤ ei, so no execution
times are longer in S′′ than in S′. By the predictability of FP scheduling [15],
all jobs meet their deadlines in the schedule S′′.

Let S|high be the high-priority portion of the schedule S — i.e., S|high replaces
any non-promoted execution with idle time. Note that S|high executes each job
Ti,k for yi,k time units at priority πi,high. Moreover, because all tasks’ low priority
levels are lower than any task’s high priority level, none of the non-promoted
execution in S can interfere with the promoted execution. Hence, S|high and S′′

are precisely the same schedule, so all jobs meet their deadlines in S|high (and
also S). ��
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4.1 Adjusting Task Promotion Times

Intuitively, we expect WCRT to decrease as execution time decreases. We use
this intuition to incorporate an online adjustment to tasks’ priority promotion
times.

τ ′ Ti

a′
i,k d′

i,k

τ Ti

ai,k di,k

Λi

Fig. 1. FP and PNPDP schedule comparison

All the TDA methods determine the maximum amount of time that a task
Ti will be forced to wait while higher priority tasks execute. We call this Ti’s
interference time, denoted Ii. Then Ti’s WCRT is simply the amount of time
Ti executes plus its worst-case interference time. I.e., Ri = Ii + ei. Note that if
a job Ti,k executes for ξi time units before its promotion time, its interference
time will not increase and its remaining execution time is decreased by ξi time
units. Hence, we can delay a job’s promotion time if it executes before being
promoted.

We first show that delaying the promotion time of a job will not cause that
job to miss its deadline. We then show that the delayed promotion will not cause
any other jobs to miss their deadlines.

Lemma 2. Assume Ti,k will be able meet its deadline if its priority is promoted
at time λi,k and it does not execute during [ai,k, λi,k). Then it will still be able
to meet its deadline if its promotion time is increased at a rate of 1 whenever
Ti,k executes.

Proof. Let Ii,k be the amount of time that Ti,k will have to wait for higher
priority jobs if it executes for ei time units after being promoted at time λi,k.
Because Ti,k will meet its deadline we know that λi,k + Ii,k + ei ≤ di,k.

Now consider what happens if Ti,k’s remaining work decreases. Because chang-
ing Ti’s execution has no impact on the behavior of higher priority tasks, its worst
case interference cannot be larger than it would have been had Ti executed for
the full ei time units. By definition, Ii is the maximum amount of time the (i− 1)
highest priority tasks can keep all m processors busy during an interval [λi,k, di,k).
Therefore, if Ti’s execution decreases by ξi time units, the remaining (ei−ξi) time
units cannot have a response time larger than Ii +(ei− ξi). Let Ci,k denote Ti,k’s
completion time. Then

Ci,k ≤ (λi,k + ξi) + (ei − ξi) + Ii

= λi,k + Ii,k + ei

≤ di,k

so Ti meets its deadline. ��



350 C. Ho and S.H. Funk

35 37 39 41 43 45

T1 T1 T1

T2 T2

T2 misses its deadline

9 time units

6 time units

(a) Jitter occurs with delayed exe-
cution

35 37 39 41 43 45

T1 T1 T1

T2 T2

7 time units

(b) No jitter occurs without
delayed execution

Fig. 2. Jitter may increase the response time of lower priority tasks

ai,k λi,k λi,k+ξi di,k=ai,k+1 λi,k+1

ξi ei − ξi ei

Pi

ξi

Fig. 3. Extending promotion time by ξi time units

One issue that we need to consider when changing promotion times is a jitter
in the release times. Such release time jitter can potentially cause the system
to fail due to a task imposing extra interference on lower priority tasks as the
following example illustrates.

Example 1. Consider two tasks T1 = (7,3) and T2 = (9,4). Because T1 should
execute for at most 3 time units in any interval of length 7, we see that R2 = 7.
If, however, T1 delays execution for 1 time unit as illustrated in Fig. 2, it may
execute for 6 out of 7 consecutive time units, thereby causing T2 to miss a
deadline. ��
The jitter issue illustrated in the above example occurs as a result of T1’s delaying
its start time and executing for the full 3 time units. If T1 had executed for only
2 time units (i.e., if execution time had been decreased by the duration of the
delay), T2 would have met its deadline.

If priority promotions are not adjusted then each task Ti will trigger priority
promotions exactly pi time units apart. However, our adjustment strategy may
cause a task Ti to have less time between consecutive promotion times. We
need to ensure that this adjustment cannot increase the response time of lower
priority jobs as illustrated in the example above. The following lemma addresses
this issue.

Lemma 3. Assume Ti,k’s priority promotion time is delayed as described in
Lemma 2. Then the maximum demand that Ti,k and Ti,k+1 can impose during
the pi time units after Ti,k’s promotion time is ei.
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Proof. Assume Ti,k executes for ξi time units at priority πi,low, and let λ′
i,k be

Ti,k’s delayed promotion time. Then λ′
i,k = λi,k + ξi = ai,k + Λi + ξi.

Clearly, Ti,k executes for at most ei−ξi time units during the interval [λ′
i,k, di,k).

Let λ′
i,k+1 be Ti,k+1’s priority promotion time (which may or may not be delayed)

and let ξi,k+1 be the amount of time Ti,k+1 executes during the interval [λ′
i,k, λ

′
i,k +

pi). Then,

ξi,k+1 ≤ (λ′
i,k + pi)− λ′

i,k+1

≤ (λ′
i,k + pi)− (ai,k+1 + Λi)

= (ai,k + Λi + ξi + pi)− (ai,k+1 + Λi)
= ξi + (pi − (ai,k+1 + ai,k))
≤ ξi.

Therefore, Ti,k and Ti,k+1 have a combined demand of at most (ei− ξi)+ ξi = ei

time units during the interval [λ′
i,k, λ

′
i,k + pi). Figure 3 illustrates this result.

We now prove that if Λi is determined using the TDA method introduced
by Guan et al. [14], then delaying priority promotion times will not cause any
deadline misses.

Theorem 1. Assume τ is any task set and TDA analysis determines each task
Ti has WCRT Ri ≤ Di. For each task Ti, let Λi be the promotion offset such
that Λi ≤ Di −Ri. If τ is scheduled in a PNPDP manner and promotion times
are delayed as described in Lemma 2, then τ will meet all deadlines.

Proof. Let Ii be Ti’s worst case interference from higher priority tasks in the
FP schedule as determined by Guan’s TDA method. Let I ′i and I ′′i be Ti’s worst
case interference from higher priority tasks while executing at priority πi,high

in the PNPDP schedule without and with adjusting priority promotion times,
respectively. By Lemma 2, we know that I ′i ≤ Ii. We now show that I ′′i ≤ I ′i
using induction.

Clearly, I ′′1 = I ′1 = 0. Assume, I ′′i ≤ I ′i for all i ≤ k. We need to show that
I ′′k+1 ≤ I ′k+1.

All of the TDA techniques including Guan’s find the WCRT by determining
the maximum possible interference that can be caused by each higher priority
task Ti during an interval of length x using the formula 	 x

pi

 · ei + δ · ei, where

δ measures the fraction of the worst case demand of some job of Ti that is
not completely contained within an interval of length x. If τi arrives before the
beginning of the interval we say δi ·ei is Ti’s “carry-in”. If Ti has a deadline after
the end of the interval we say δi · ei is Ti’s “carry-out”.

As discussed above, task Ti will execute at promoted proirity for at most ei of
the pi time units after promotion even if promotion times are adjusted. By our
induction hypothesis, for each i ≤ k task Ti has a worst case completion time in
the PNPDP schedule with adjusted promotion times of at most ei + I ′′i ≤ ei +
I ′i. I.e., adjusting promotion times cannot increase Ti’s WCRT. Therefore, Ti’s



352 C. Ho and S.H. Funk

carry-in in the PNPDP schedule cannot increase either. On the other hand, Ti’s
carry-out can increase if its promotion time was delayed. However, the increased
carry-out cannot be more than the decreased demand during the delayed priority
promotion3 Therefore, the maximum amount of time each task Ti can interfere
with task Tk+1 when promotion times can be delayed, cannot be more than the
interference when using the original promotion times — i.e., I ′′k+1 ≤ I ′k+1 ≤ Ik+1,
as desired.

We now show that every task completes execution before its deadline. Let R′
i

be Ti’s WCRT in the PNPDP schedule with online priority promotion adjust-
ment. Then

R′
i = Λi + ei + I ′′i
≤ Λi + ei + Ii

≤ Di −Ri + ei + Ii

= Di,

where the last step follows because Ri = ei + Ii. Thus every task meets its
deadline. ��
In summary, we present a variation of the dual priority scheduling algorithm
for multiprocessor platforms. This algorithm differs from standard dual priority
scheduling in two ways.

– In an effort to reduce preemptions. No job executing at its lower (non-
promoted) priority will preempt another job. Hence, we do not always exe-
cute m highest priority jobs.

– Whenever a non-promoted job executes, we delay its promotion time accord-
ingly.

In this section, we have proved that neither of these changes will cause deadlines
to be missed. In particular, if τ will meet all deadlines in a fixed priority schedule
then the PNPDP schedule with online adjustment of priority promotions will
also meet all deadlines. Below, we experimentally demonstrate the our strategy
can significantly reduce preemption overhead. Additionally, we demonstrate that
sometimes the PNPDP scheduling algorithm can successfully schedule task sets
even when the fixed priority schedule misses some deadlines.

5 Experimental Results

We use Baker’s method for randomly generating task sets [3] for platforms con-
taining 2, 4, 8, 16 and 32 identical processors. While the above analysis applies
to task sets with unconstrained deadlines, in this experiment we assume dead-
lines are equal to periods. We use the maximum utilization to characterize a
task set is light, medium or heavy (e.g., a task set with maximum utilization less

3 This follows from reasoning similar to that used to prove Lemma 3.
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than 30% is considered to be light; a task set with maximum utilization greater
than 60% is considered to be heavy). Heavy task sets potentially have higher
preemption overheads than light task sets. For every light, medium, and heavy
scenario with a given number of processors, we randomly generate 1,000 task
sets with total utilization uniformly distributed from 0.025×m to 0.975×m.

After generating task sets, we assigned the priority of each task using four
different strategies: Rate-Monotonic [18], TkC [11], Slack-Monotonic [2], and
OPA [11]. For standard dual priority (SDP) and PNPDP, the lower priorities
and the higher priorities both use the same order. We compute WCRT by using
Guan’s TDA analysis for multiprocessor platforms [14] for all four priority assign-
ment methods. Because this is a pessimistic calculation, we may have Ri > Di

even though the task will never miss a deadline. In this case, we simply set Ri to
be equal to Di. Hence, these tasks only execute at their promoted priority level.

Because task periods can greatly impact the frequency of preemptions, we
consider both harmonic task sets and randomly generated periods. Harmonic
task sets have periods uniformly selected from the set {4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048}. Randomly generated periods are selected within the interval
[10, 200].

For each priority assignment of each task set, we simulate the schedule using
SDP, PNPDP, fixed priority (FP) and fixed priority until zero laxity (FPZL)
and divided the task sets into two categories:

– Type I contains the prioritized task sets that are FP-schedulable — i.e., FP
simulation of these task sets met all deadlines at the given priority assign-
ment.

– Type II contains the prioritized task sets that are not FP-schedulable.

In each simulation we kept track of the number of preemptions and migrations.
As migration costs have been shown to be similar to preemption costs [6], we
use a simple count to determine the overhead of each algorithm.

For the Type I task sets, we compare the overheads of both SDP and PNPDP
to FP4. An average savings of 100% means all of the preemptions and migrations
in the fixed-priority schedule were avoided. By contrast, average savings of 0%
means that the SDP or PNPDP algorithm have the same number of preemptions
and migrations as the FP schedule.

Due to space limitations, we only present the result for 4 processors. Results
are similar for other platforms as well. Figure 4 illustrates the percentage of
task sets able to achieve a given level of overhead reduction. For instance, 20%
of the task sets with harmonic periods reduced overhead by at least 10% when
scheduled by SDP under OPA priority assignment. By contrast, more than 90%
of task sets achieve at least 10% savings when scheduled using PNPDP. We
see that the PNPDP strategy dramatically reduces overheads in all cases, with
higher reductions for randomly generated periods.

4 When FP schedules a system successfully, both FP and FPZL generate the same
schedule. Hence, we do not consider algorithm FPZL with the Type I task sets.
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Fig. 4. Overhead savings of PNPDP and SDP schedules as compared to FP schedule
using all four priority settings
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Fig. 5. Feasibility improvement of PNPDP, SDP and FPZL as compared to FP on 8
processors under OPA priority assignment

For the Type II task sets, we also examined the degree to which priority
adjustments can help meet deadlines that are missed in the FP schedule. We
executed these task sets using SDP, PNPDP and FPZL. We found that there is
a huge feasibility improvement in all cases, with PNPDP having slightly better
improvements than the other two algorithms. Figure 5, shows the total percent-
age of infeasible task sets that become feasible using these algorithms under the
OPA priority assignment. These improvements are typical of all Type II scenar-
ios. For instance, the feasibility improvement for task sets with harmonic periods
become significant when the total utilization is over 80%. By contrast, the fea-
sibility improvement for task sets with random periods become significant when
the total utilization is over 60%.
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6 Conclusion

We consider a multiprocessor scheduling algorithm using a partially non-
preemptable dual priority strategy. Experimental results indicate that this ap-
proach incurs significantly less overhead than both FP scheduling and standard
dual priority scheduling under a variety of priority assignment schemes. We ana-
lytically prove that PNPDP scheduling will never cause a deadline to be missed
that would not be missed under FP scheduling. In addition, we demonstrate
that systems that miss deadlines in an FP schedule might be schedulable using
a PNPDP approach.

In future we plan to consider methods of further delaying the priority pro-
motion times. Specifically, we would like to analyze how much work each task
performs at its low priority level and calculate Ri using the worst-case promoted
execution time. We would also like to explore priority assignment strategies that
can reduce overhead even more. In particular we plan to examine different meth-
ods of assigning tasks’ lower priorities.

Acknowledgments. The authors wish to thank the reviewers for their helpful
comments.
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Abstract. In this paper, we address the problem of computing the sim-
ilarity between two users (according to their profiles) while preserving
their privacy in a fully decentralized system and for the passive adversary
model. First, we introduce a two-party protocol for privately computing
a threshold version of the similarity and apply it to well-known similar-
ity measures such as the scalar product and the cosine similarity. The
output of this protocol is only one bit of information telling whether or
not two users are similar beyond a predetermined threshold. Afterwards,
we explore the computation of the exact and threshold similarity within
the context of differential privacy. Differential privacy is a recent notion
developed within the field of private data analysis guaranteeing that an
adversary that observes the output of the differentially private mecha-
nism, will only gain a negligible advantage (up to a privacy parameter)
from the presence (or absence) of a particular item in the profile of a
user. This provides a strong privacy guarantee that holds independently
of the auxiliary knowledge that the adversary might have. More specif-
ically, we design several differentially private variants of the exact and
threshold protocols that rely on the addition of random noise tailored
to the sensitivity of the considered similarity measure. We also analyze
their complexity as well as their impact on the utility of the resulting
similarity measure. Finally, we provide experimental results validating
the effectiveness of the proposed approach on real datasets.
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1 Introduction

In the Web 2.0, more and more personal data are released by users (queries, social
network, geolocated data. . . ), which creates a huge pool of useful information
to leverage in the context of search or recommendation for instance. In fully
decentralized systems, tapping on the power of this information usually involves
some kind of clustering process that relies on an exchange of personal data
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(such as profiles) to compute similarity between users [2]. In this paper, we
address the problem of computing similarity between users while preserving their
privacy and without relying on a central entity. Dissociating the identifiers of
users from their data, through the use of pseudonyms for instance, is clearly
not sufficient to protect their privacy. In fact, just looking at these Personal
Identifiable Information (PII) may sometimes be enough to infer the identity
of the associated users thus causing a privacy breach [3,22,21]. Moreover, to
preserve the fully distributed nature of such systems, no trusted third party
(e.g. central server) should be required.

In this paper, we propose a protocol based on cryptographic primitives that
computes the similarity between two user profiles (represented as vectors) in such
a way that each user only learns the output of the similarity computation but not
the profiles themselves. The novelty of our approach is twofold. First, considering
well-known similarity metrics, namely scalar product and cosine similarity, we
propose a two-party threshold similarity protocol for these metrics and prove its
security against a passive adversary. Instead of revealing the exact value of the
similarity, this protocol outputs only one bit of information stating whether or
not two users are similar beyond a predetermined threshold. Compared to the
exact similarity computation from which more information can be extracted, this
protocol is more privacy-preserving in the sense that it reveals less information.
While, we focus on the scalar product and the cosine similarity for illustration
purpose, our method is generic enough to be applied to other similarity metrics.

Second, we go beyond the traditional cryptographic framework by analyz-
ing the similarity computation within the context of differential privacy [9]. In
a nutshell, differential privacy is an orthogonal and complementary notion to
cryptography that, by adding random noise to the output of a function, pro-
vides strong privacy guarantees with respect to how well an adversary observing
the output of the function can deduce the presence (or absence) of a specific
item in a profile. We design a differentially private protocol for the exact and
threshold similarity and analyze their impact with respect to utility. To the best
of our knowledge, this is the first attempt to address differential privacy in the
context of distributed similarity computation. More specifically, we first analyze
the sensitivity of these similarity metrics in the context of a protocol computing
exactly the similarity between two user profiles. Finally, we also study the impact
of the differential privacy (which requires the addition of random noise) on the
resulting utility of the similarity measure, both through a theoretical analysis
and experimental validation.

The paper is organized as follows. Section 2 describes the system model and
provides the required background. In Section 3, we introduce the threshold sim-
ilarity protocol and prove its security with respect to a passive adversary. In
Section 4, we describe differentially-private protocols for the exact and thresh-
old similarity, while in Section 5, we provide a theoretical analysis of the impact
on utility of the differentially-private protocol as well as experimental results.
Finally, we briefly review related work in Section 6 before concluding.
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2 Preliminaries

In this section, we describe the system model, the definitions of the similarity
metrics considered, and the background in cryptography required in the context
of our contributions.

System model. We consider a distributed system of n nodes, connected via an
unstructured network [17]. (Each node is typically connected to O(log n) other
nodes picked uniformly at random [4].) The nodes need to periodically run a
clustering protocol that requires computing similarity between pairs of nodes.
This semantic clustering can later be used to improve the search, provide content
recommendation or personalized query expansion. Nodes are characterized by
their profile representing their interests. For example, a node’s profile can be a
vector of items the associated user has tagged using a collaborative system [1]
such as delicious1. We assume that for two different nodes A and B, their profiles
SA and SB can be represented as binary vectors of size l, where l is the size of
the domain. More precisely, SA = {a1, . . . , al} and SB = {b1, . . . , bl}, such that
ai = 1 if item i is in A’s profile and 0 otherwise (bi is defined similarly for the
second node). For illustration purpose, we shall call the first node Alice and the
second node Bob in the rest of the paper.

The profile is a personal and private information that should be protected,
and therefore our main concern is how to compute the similarity measure while
preserving its privacy. In this context, this means not revealing the content of
the profile and restricting the possibility for an adversary to infer the presence
or absence of a particular item in this profile. Moreover, besides the private
computation of the similarity, we also assume the existence of a bidirectional
anonymous lossless channel to break the link between a node’s identity and
its profile. Although, it is not the focus of this paper to detail how such a
channel could be implemented in practice, we describe in Appendix A a simple
implementation of this channel called gossip-on-behalf 2 that relies on the use of
a third node acting as an anonymizer to break the link between the two nodes
computing their similarity. Obviously, other implementations of the bidirectional
anonymous channel are possible but they require non-trivial modifications of
current anonymous communication networks [5,26,8] and are beyond the scope
of this paper3. In order to guarantee a high level of anonymity, as measured for
instance by the size of the anonymity set, it is also necessary to assume that the
size of the network is sufficiently large (n � 3). Moreover, in order to avoid the
possibility for an adversary to query several times the similarity computation
with different forged profiles, it is also necessary to restrict to limit the use of a
particular bidirectional anonymous channel (for instance to use it only once).

1 http://delicious.com/
2 The protocol described here is a modification of a protocol published earlier [4].
3 However, see http://www.torproject.org/docs/hidden-services.html for a de-

scription of how to build an anonymous server that can be accessed by anonymous
users within the network of the Tor project.

http://delicious.com/
http://www.torproject.org/docs/hidden-services.html
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Similarity measures. Nodes aim at detecting the most similar other nodes (i.e.
those which share similar interests). Thus, we assume the existence of similarity
measures that can be used by the two nodes to quantify how similar they are.
A similarity measure sim is a function that takes as input two sets SA and SB

representing the profiles of users Alice and Bob and outputs a value in the range
between 0 and 1 (i.e. sim(SA, SB) ∈ [0, 1]), where 0 indicates that the sets are
entirely different (the profiles have no items in common) while 1 means that the
sets are identical (and therefore the users can be considered as sharing exactly
the same interests).

The cosine similarity is commonly used to assess the similarity between two
sets [4] and can be seen as a normalized overlap between the sets. Formally, it
is defined as

|SA ∩ SB|√|SA| × |SB|
, (1)

where SA and SB are the private sets of the first and second node respectively and
|SA| and |SB| their corresponding sizes (i.e. the number of 1s in their profiles
for binary vectors). The size of the set intersection between SA and SB (i.e.
|SA ∩ SB|) is equivalent to the scalar product in the case where the sets are
represented as binary vectors. For instance, the scalar product of two vectors of
length l, a = (a1, · · · , a�) and b = (b1, · · · , b�), is defined as

∑�
i=1 aibi. Other

similarity metrics can be considered such as the Jaccard index [16], but for the
sake of clarity, we focus on the cosine similarity metric and the scalar product
in the sequel.

Cryptographic background. In this paper, we only consider privacy against a
computationally-bounded passive adversary (also sometimes called semi-honest
or honest-but-curious) that can control a fraction of the nodes (see [14] for a
formal cryptographic definition). Note that in this model (contrary to the active
one), nodes do not misbehave and follow the recipe of the protocol. However,
they may try to infer as much information as possible regarding the private
inputs of other participants from the interactions and messages they have seen
and recorded.

Definition 1 (Privacy – passive adversary [14]). A protocol is said to be
private with respect to passive adversary controlling a node (or a collusion of
nodes), if this adversary cannot learn (except with negligible probability) more
information from the execution of the protocol that it could from its own input
(i.e. the inputs of the nodes he controls) and the output of the protocol.

In our work, we rely on a cryptographic primitive known as homomorphic en-
cryption, which allows to perform arithmetic operations (such as addition and/or
multiplication) on encrypted values.

Definition 2 (Homomorphic cryptosystem). Consider a public-key (asym-
metric) cryptosystem where (1) Encpk(a) denotes the encryption of the mes-
sage a under the public key pk and (2) Decsk(a) = a is the decryption of
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this message with the secret key4 sk. A cryptosystem is additively homomor-
phic if there is an efficient operation ⊕ on two encrypted messages such that
Dec(Enc(a) ⊕ Enc(b)) = a + b. Moreover, such an encryption scheme is called
affine if there is also an efficient scalaring operation � taking as input a cipher-
text and a plaintext, such that Dec(Enc(c)� a) = c× a.

Besides, the elementary operations of addition and multiplication, more complex
arithmetic operations can also be performed on the ciphertexts, such as for
instance protocols for the comparison of integers [12,23]. These protocols take
as input two encrypted integers and output whether or not they correspond to
the same integer or which one is greater than the other, but without revealing
the corresponding plaintexts (i.e. values of the integers).

Paillier’s cryptosystem [25] is an instance of a homomorphic encryption scheme
that is both additive and affine. Moreover, Paillier’s cryptosystem is also semanti-
cally secure [14], which means that a computationally-bounded adversary cannot
derive non-trivial information about the plain text m encrypted from the cipher
text Enc(m) and the public key pk. For instance, a computationally-bounded
adversary who is given two different cipher texts encrypted with the same key of
a semantic cryptosystem, cannot even decide with non-negligible probability if
the two cipher texts correspond to the encryption of the same plain text or not.
This is because a semantically secure cryptosystem is by essence probabilistic,
meaning that even if the same message is encrypted twice, the two resulting
ciphertexts will be different except with negligible probability. In this paper, we
also use a threshold version of the Paillier’s cryptosystem [7].

Definition 3 (Threshold cryptosystem). A (t, n) threshold cryptosystem
is a public cryptosystem where at least t > 1 nodes out of n need to actively
cooperate in order to decrypt an encrypted message. In particular, no collusion
of even (t− 1) nodes can decrypt a cipher text. However, any node may encrypt
a value on its own using the public-key pk. After the threshold cryptosystem has
been set up, each node i gets as a result his own secret key ski (for 1 ≤ i ≤ n).

The cooperation between nodes for the decryption usually involves an interactive
cryptographic protocol during which several nodes need to combine their own
secret keys with an encrypted value to be able to perform the corresponding
decryption.

3 Threshold Similarity Protocol

The threshold similarity protocol preserves privacy by outputting only one bit
of information stating whether (or not) the similarity between two profiles is
above some well-chosen threshold τ . To this end, we define thereafter the notion
of threshold similarity.

4 In order to simplify the notation, we drop the indices and write Enc(a) instead of
Encpk(a) and Dec(a) instead of Decsk(a) for the rest of the paper.
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Definition 4 (Threshold similarity). Two nodes are τ-similar if the output
of applying a similarity measure sim on their respective profiles is above a certain
threshold 0 ≤ τ ≤ 1 (i.e. sim(SA, SB) > τ).

A threshold similarity protocol takes as input two profiles SA and SB (one pro-
file per node) and outputs one bit of information, which is 1 if SA and SB are
τ -similar (i.e. sim(SA, SB) > τ for sim a predefined similarity measure and τ the
value of the threshold) and 0 otherwise. In practice, the value of the threshold
τ is application dependent and is set empirically so as to be significantly above
the average similarity between nodes in the population. The threshold similarity
is very appealing with respect to privacy as it guarantees that the output of
the similarity computation only reveals one bit of information, which is poten-
tially much less than disclosing the exact value of the similarity measure. As a
practical illustration, we show how to compute privately the cosine similarity
between two profiles (Equation 1) represented as binary vectors using an algo-
rithm that we called ThresholdCosine. Note that our approach is generic enough
to accommodate other similarity metrics such as for example Jaccard index or
Hamming distance. The value of the threshold is set once and for all in advance
and therefore the adversary cannot perform a kind of binary with different values
for τ .

As a preprocessing step to this protocol, the two nodes engage in the setup
phase of a distributed key generation protocol of a threshold affine homomorphic
cryptosystem [7] (see for instance [24] for a detailed description of a distributed
key generation protocol without a trusted third party for the Paillier cryptosys-
tem). At the end of this key generation phase, both nodes receive the same
public key pk and each one of them gets as private input a different secret key,
respectively skA for the first node and skB for the second node. The threshold
cryptosystem5 is such that any node can encrypt a value using the public key
pk but that the decryption of a homomorphically encrypted value requires the
active cooperation of the two nodes.

At the beginning of the protocol, the two nodes compute the (encrypted) size
of the set intersection of their two profiles SA and SB by using one of the several
algorithms that can be found in the literature. Once this is done, the nodes only
receive as output a ciphertext that is an encrypted version of the size (and not
the size itself in plaintext). Let k denote the number of items in a profile and l is
the size of the domain (e.g. in the dataset delicious k is around 200 items and l
is approximately 1 million items). Some of the state-of-the-art algorithms work
directly with profiles represented as sets while others are specifically designed
to compute the scalar product when profiles are represented as binary vectors.
For instance, the two-party scalar product protocol proposed by Goethals [13]
provides semantic security for one node and information-theoretic security for the
other one, for a communication cost of O(l) bits and a computational complexity
in terms of cryptographic operations of O(l) for each node. Other recent protocols
for scalar product can be found in the litterature [28,29], but they have roughly
the same complexities as Goethals’ protocol. Regarding the cardinality of the
5 The threshold cryptosystem should not be confused with the threshold similarity.
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set intersection, a protocol presented in [19] also provides semantic security for
a communication cost of O(k log l) and a computational complexity of O(k2).
Apart from those specific algorithms, generic techniques from secure multiparty
computation could also be used but in general they are less efficient (see for
instance an analysis in [19]). In the rest of the paper, we denote by ScalarProduct
the subroutine corresponding to the use of the protocol of Goethals [13].

Afterwards, instead of computing directly the cosine similarity as denoted in
Equation (1), we avoid the need for performing a square root on encrypted val-
ues (an operation which is non-trivial and often costly) by squaring the whole
equation. The squaring operation renders the next cryptographic operations eas-
ier while preserving at the same time the order relation. Formally, the similarity
metric effectively used in ThresholdCosine is

|SA ∩ SB |2
|SA| × |SB| . (2)

On one hand for obtaining the numerator, we square the output of the scalar
product by applying the multiplication gate from [6] to multiply it by itself. On
the other hand, the denominator can be computed by the first node sending its
homomorphically-encrypted set cardinality to the second node (i.e. Enc(|SA|)),
who scalarizes it by its own set cardinality by doing Enc(|SA|)� |SB| to obtain
Enc(|SA| × |SB|). Recall, that the objective of the ThresholdCosine protocol is
only to learn if the similarity between SA and SB is above a certain (publicly
known) threshold τ . We assume that the threshold can be represented as a
fraction τ = a/b and therefore our goal is to verify whether or not the following
condition holds

|SA ∩ SB|2
|SA| × |SB| >

a

b
⇔ b|SA ∩ SB|2 > a|SA| × |SB|. (3)

The left side and right side of the inequality can be compared by using secure
protocols for integer comparison [12,23]. We choose to apply specifically the
comparison technique from [23] as it does not require knowledge of the input
as well as a full bit decomposition of the input. Although this protocol was
developed initially for secret-sharing, it can be implemented with homomorphic
encryption as well. The output of this comparison step is one bit stating whether
or not the (squared) cosine similarity is above the threshold τ .

Theorem 1 (Threshold cosine similarity). The protocol ThresholdCosine is
private with respect to a passive adversary and returns 1 if two nodes are τ-
similar and 0 otherwise. The protocol has a communication complexity of O(l)
bits and a computational cost of O(l), for l being the size of the binary vectors
representing the profiles.

Proof. All the communication exchanged between Alice and Bob is done using a
homomorphic encryption scheme with semantic security, therefore the encrypted
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Algorithm 1. ThresholdCosine(SA,SB)
1: Alice and Bob generate the keys of the threshold homomorphic encryption
2: Alice receives ska, Bob receives skb and they both get the public key pk
3: Alice and Bob compute Enc(|SA ∩ SB |) = ScalarProduct(SA, SB)
4: Alice applies the multiplication gate from [6] to obtain Enc(|SA ∩ SB |2)
5: Alice computes Enc(|SA|) and sends it to Bob
6: Bob computes Enc(|SA|) � |SB | = Enc(|SA| × |SB|)
7: Alice computes Enc(|SA ∩ SB|2) � b = Enc(b|SA ∩ SB|2)
8: Bob computes Enc(|SA| × |SB |) � a = Enc(a|SA| × |SB |)
9: Alice and Bob use the integer comparison protocol of [23] on Enc(b|SA ∩ SB |2)

and Enc(a|SA| × |SB |)
10: if Enc(b|SA ∩ SB |2) > Enc(a|SA| × |SB |) then
11: output 1 to state that Alice and Bob are τ -similar
12: else
13: output 0
14: end if

messages exchanged do not leak any information about their content. Moreover
as the encryption scheme is a threshold version, neither Alice nor Bob alone can
decrypt the messages and learn their content. The multiplication gate [6] as well
as the integer comparison protocol [23] are also semantically secure, which there-
fore guarantees that the protocol is secure against a passive adversary. Regarding
the correctness, it is easy to see from the execution of the protocol that if Alice and
Bob are τ-similar then this will result in Enc(b|SA ∩ SB|2) > Enc(a|SA| × |SB|)
when the integer comparison protocol is executed (and therefore an output of 1)
and in 0 otherwise. The multiplication gate and the integer comparison protocols
are independent of l and can be considered as having constant complexity (both in
terms of communication and computation) for the analysis. On the other hand,
the protocol ScalarProduct requires the exchange of O(l) bits between Alice and
Bob as well as O(l) computations [13]. This results in a similar complexity for
the global protocol ThresholdCosine.

4 Differentially Private Similarity Computation

Cryptography gives us the tools to compute any distributed function without
revealing any other information than the output of the function itself and while
removing the need for a trusted third party. This is a strong privacy guarantee
but at the same time, this does not preclude the possibility that the output itself
might leak information about the private inputs of participants. For instance,
suppose that a deterministic computation of the similarity is performed and
that it outputs 1 as similarity value. In this situation, both nodes know that
they exactly have the same profile. Differential privacy [9] precisely aims at
addressing the problem of what can be inferred about the inputs from the output
of a computation by adding some randomization to it. In that respect, differential
privacy can be seen as an orthogonal but complementary notion to cryptography
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as it addresses a different issue. Therefore, in order to get the best of both worlds,
the main idea is to combine them by using cryptographic techniques to compute
securely a differentially private algorithm.

4.1 Differential Privacy

Apart from the traditional cryptographic definition of privacy, we are also in-
terested in a recent notion called differential privacy [9]. Two inputs XA and
XB are said to differ in at most one element if they are both equal except for
possibly one entry of the inputs. For instance, if XA and XB would be databases,
it would mean that they are identical except for one row.

Definition 5 (Differential privacy [9]). A randomized function K gives
ε−differential privacy if for all possible inputs XA and XB differing in at most
one element, and all S ⊆ Range(K),

Pr[K(XA) ∈ S)] ≤ exp(ε)× Pr[K(XB) ∈ S)]. (4)

This probability is taken over all the coin tosses of K. (Range(K) is the range
of the function K and exp refers to the exponential function.)

Originally, differential privacy was developed within the context of private data
analysis and the main guarantee is that if a differentially private mechanism is
applied on a dataset composed of the personal data of individuals, no output
would become significantly more (or less) probable whether or not a participant
removes his data from the dataset. This means that for an adversary observing
the output of the mechanism, he only gains a negligible advantage from the
presence (or absence) of a particular individual in the database. This statement
is a statistical property about the behavior of the mechanism (function) and
holds independently of the auxiliary knowledge that the adversary might have
gathered. More specifically, even if the adversary knows the whole database but
one individual row, a mechanism satisfying differential privacy still protects the
privacy of this individual. The parameter ε is public and may take different values
depending on the application (for instance it could be 0.01, 0.1 or even 0.25).
Dwork, McSherry, Nissim and Smith have designed a general technique, called
Laplacian mechanism [11], that achieves ε-differential privacy for a function f
by adding random noise to the true answer. The amount of noise that has to be
added is directly proportional to the sensitivity of the function, which measures
how much the output of a function can change with respect to a small change
in the input [11].

Definition 6 ((Global) sensitivity [11]). For f : D → R, the sensitivity of
f is

GS(f) = max
XA,XB∈D

‖f(XA)− f(XB)‖1 (5)

for all XA, XB differing in at most one element, where D is the domain of the
function (for instance for binary vectors of l bits, D = {0, 1}l).
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The Laplacian mechanism achieves ε-differential privacy by adding noise di-
rectly proportional to GS(f) and ε.

Theorem 2 (Laplacian mechanism [11]). For f : D → R, a randomized
function K achieves ε-differential privacy if it releases on input x

K(x) = f(x) + Lap(
GS(f)

ε
) (6)

for GS(f) the sensitivity of the function f and Lap is a randomly generated noise
according to the Laplacian distribution parametrized by GS(f)

ε .

The smaller the value of ε, the higher the privacy but also, as a result, the higher
the impact might be on the utility of the resulting output. The following lemma
also shows that differential privacy is a “natural” notion that composes well.

Lemma 1 (Composition and post-processing [18]). If a randomized algo-
rithm A runs k algorithms A1,. . . , Ak where each Ai is ε-differentially private,
and outputs a function of the results (i.e A(x) = g(A1(x), . . . , Ak(x) for some
probabilistic algorithm g) then A is kε-differentially private.

4.2 Differentially Private Similarity

We define two profiles SA and SB as neighbors if they are the same except
for one particular item. Note that for simplicity and without loss of generality,
we consider only neighboring profiles of the same size. For instance, SA is a
neighbor of SB (and vice versa) if it is identical except for one item that may
have been replaced to obtain the profile SB. If the two profiles are represented
as binary vectors, they are neighbors if their Hamming distance is 0 or 2 (i.e.
‖SA ⊕ SB‖ ∈ {0, 2}). The following lemma states the sensitivity of the squared
cosine similarity. (Treatment for the differentially private computation of the
scalar product can be found in Appendix B.)

Lemma 2 (Sensitivity – squared cosine similarity).
The sensitivity of the function
ExactSquaredCosine is at most 2 min(|SA|,|SB|)+1

|SA|×|SB| .

Proof. Consider three different profiles SA, SB and SC , represented as binary
vectors of same size, such that SB and SC are neighbors. The computation of the
cosine similarity between SA and SB requires to compute two quantities: (1) the
squared size of the set intersection |SA ∩ SB|2 and (2) the multiplication of the
lengths of SA and SB (i.e. |SA| × |SB|). Replacing an object from SB to obtain
SC will only increase (or decrease) the value of the set intersection by 1 at most.
Moreover, replacing an object from SB will not change size of the profile |SC |.
Therefore

GS(Cosine2) = max
SA,SB ,SC

SB ,SC neighbors

‖sim(SA, SB)− sim(SA, SC)‖ = max
SA,SB ,SC

SB ,SC neighbors

∥∥∥∥
|SA ∩ SB|2 − |SA ∩ SC |2

|SA| × |SB|

∥∥∥∥

= max
SA,SB

∥∥∥∥
|SA ∩ SB|2 − (|SA ∩ SB| ± 1)2

|SA| × |SB|

∥∥∥∥ = max
SA,SB

∥∥∥∥
±2|SA ∩ SB| − 1

|SA| × |SB|

∥∥∥∥
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And then substituting the max quantifier yields:

=
2|SA ∩ SB|+ 1
|SA| × |SB| ≤ 2 min(|SA|, |SB |) + 1

|SA| × |SB| .

There are several ways to achieve ε-differential privacy in a distributed context.
For instance, if we assume that Alice and Bob have access to a semi-trusted party
that does not collude with any of the two nodes that computes their similarity, it
can be used to help Alice and Bob during the similarity computation. This is the
case for instance in the gossip-on-behalf protocol (Appendix A) in which another
node acts as an anonymizer. The anonymizer is semi-trusted because although
it is used to connect anonymously two nodes, it is not trusted to the point of
having access to the content of the messages exchanged between them due to the
semantic encryption scheme used. Another possible way to achieve differential
privacy would be for the two nodes to add the noise themselves directly when
executing the protocol for similarity computation.

Differential privacy via two-party computation. For instance, suppose
that Alice and Bob want to release the result of the scalar product between
their two profiles. At the end of the protocol, Alice and Bob could both sim-
ply add independently generated random noise with distribution Lap(1

ε ) using
the homomorphic property of the encryption scheme. Afterwards, they could
cooperate to perform the threshold decryption (which remember is not the same
as the threshold similarity computation) and they would both get to learn the
perturbed scalar product. Finally, Alice may subtract her own noise from the
released output to recover only a version of the similarity that has been random-
ized with Bob’s noise (which she cannot remove).

Differential privacy via semi-trusted third party. In the context of
gossip-on-behalf (Appendix A), the node that acts as an anonymizer to set up
the bidirectional anonymous channel could also generate some random noise and
add it to the similarity value that has been computed by using the homomorphic
property of the cryptosystem. Afterwards, the two nodes that have been involved
in the similarity computation would recover the result using the threshold de-
cryption. The following algorithm describes this procedure.

Theorem 3 (Protocol for differential squared cosine). The protocol Differ-
entialSquaredCosine is private with respect to a passive adversary and
ε-differentially private. The protocol has a communication complexity of O(l)
bits and a computational cost of O(l), for l the size of the binary vectors repre-
senting the profiles.

Proof. All the communication exchanged between Alice and Bob are done using a
homomorphic encryption scheme with semantic security, therefore the encrypted
messages exchanged do not leak any information about their content. Moreover as
the encryption scheme is a threshold version, it means that neither Alice nor Bob
alone can decrypt the messages and learn their content. At the end of the protocol
providing that the anonymizer does not collude either with Alice or Bob, Alice
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Algorithm 2. DifferentialSquaredCosine(SA,SB,ε)
1: Alice and Bob generate the keys of the threshold homomorphic encryption
2: Alice receives skA, Bob receives skB and they both get the public key pk
3: Alice and Bob compute Enc(|SA ∩ SB |2) = ScalarProduct(SA, SB)2

4: Alice and Bob gives to the node acting as the anonymizer Enc(|SA ∩ SB |2) as well
as the sizes of their profiles |SA| and |SB |

5: The anonymizer computes the squared cosine similarity Enc( |SA∩SB |2
|SA|×|SB | ) and adds

Laplacian noise parametrized by GS(Cosine2)
ε

= 2 min(|SA|,|SB |)+1
ε×|S1|×|S2| using the

homomorphic property
6: The anonymizer sends the perturbed squared cosine similarity (which is

homomorphically encrypted) to Alice and Bob
7: Alice and Bob cooperate to decrypt the homomorphically encrypted value and

get as output (ExactSquaredCosine(SA, SB) + Lap( 2 min(|SA|,|SB|)+1
ε×|SA|×|SB| ))

and Bob only get to learn (ExactSquaredCosine(SA, SB)+Lap(2 min(|SA|,|SB|)+1
ε×|SA|×|SB| ),

which ensures the ε-differential property of the protocol. Moreover, because of the
use of the protocol ScalarProduct as a subroutine, the protocol DifferentialSquared-
Cosine has a communication cost of O(l) bits as well as a computational cost of
O(l) (we consider here that the threshold decryption has constant complexity and
is negligible with respect to the cost of the scalar product).

Note that in this protocol, where the noise needed to reach differential privacy
is added by the semi-trusted third party, it needs to know the value of |SA| and
|SB| (or at least an upper bound on these values) to be able to add noise tailored
to the sensitivity of the function.

Differentially private threshold similarity. Regarding the threshold simi-
larity, it is important to notice that it is meaningless to add some random noise
to a binary value (for instance the output of the threshold similarity), because
it amounts to flipping this value with some non-negligible probability. Instead,
the most direct way to achieve differential privacy is to add the noise before the
application of the threshold function. The following observation states that this
does not hurt the privacy guarantee obtained.

Observation 1 (Impact of threshold on privacy). Applying the Laplacian
mechanism before the threshold function does not hurt the differential privacy
guarantee.

Proof. Suppose that we have some output of a function f to which we have added
some Laplacian noise calibrated to the sensitivity GS(f) of the function as well
as ε. As stated by Lemma 1 as this output is ε-differentially private, performing
some pre-determined post-processing on it such as applying a threshold function
before releasing it has no impact on the privacy guarantees. Therefore, the thresh-
old function is by itself ε-differentially private if it is fed with some similarity
measure that has been computed with a ε-differentially private algorithm.
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In the previous observation as well as in the context of Lemma 1, note that
k = 1 as only one differential privacy mechanism (namely A1 = f) is applied. The
threshold function itself corresponds to g as it only counts as a post-processing
step whose input is not the original profiles of nodes but rather the output of a
differentially private mechanism.

5 Utility Analysis

In this section, we are interested in evaluating the impact of differential privacy
on the utility of the application.

Theoretical analysis. In particular, we are interested in measuring the
amount of false negatives induced by applying differential privacy on a spe-
cific similarity metric. A false negative arises when the protocol outputs that
two nodes are not τ -similar while in fact they are. In particular, we have derived
an equation that takes the threshold value (τ) and the privacy parameter (ε) as
parameters and computes the probability of having false negatives when we use
the differentially private similarity metric. This equation may be use to guide
and set up the different parameters of the algorithms and also to measure the
achievable trade-off between utility and privacy. We focus primarily on false neg-
atives for the analysis because we believe that a high rate of false negatives will
have a big impact on the utility while a high rate of false positives will mainly
hurt privacy. However, the rate of false positives can be also derived straight-
forwardly by following the same approach we used to compute the rate of false
negatives.

In our model, the parameter l is the total number of items in the domain of
items (which we assume to be a finite domain) and lA = |SA| and lB = |SB | are
the sizes of the profiles of Alice and Bob. The random variable S represents the
number of items in common between any two profiles picked at random with the
given sizes lA and lB (i.e the size of the set intersection |SA ∩ SB|).
Lemma 3 (Hypergeometric distribution [15]). S ∼ Hypergeometric(max
(lA, lB),min(lA, lB), l), where l is the total number of items in the domain (which
is the size of the binary vectors).
Proof. Let min be the set which has the smallest size among the two sets (we
assumed it is SA without loss of generality). Fix min, and let Bob (owner of
set SB), pick lB items from the domain of size l without replacements. A pick is
successful if the item picked is also contained within the set min, hence the num-
ber of possible success is at most lB. This corresponds exactly to the definition
of the Hypergeometric distribution.

Remember that the utility is measured as the percentage of similarity mea-
sures that does not count as a false negative after the noise has been added and
that the similarity value is S2/(lAlB).
Definition 7 (Utility function). The utility function is:

u(lA, lB , l, τ, ε) = 1 − P (N ≤ τ − S2

lAlB
| S2

lAlB
> τ) = = 1 −

min(lA,lB)∑

s=�√lAlBτ�

fS(s)FN (τ − s2
lAlB

)

1 − FS

(√
lAlBτ

) ,



370 M. Alaggan, S. Gambs, and A.-M. Kermarrec

for S ∼ Hypergeometric(max(lA, lB),min(lA, lB), l). The τ parameter can be
chosen by substituting the desired acceptance rate of the threshold similar-
ity (without taking into account the error caused by the addition of noise)
into the inverse cumulative density function (CDF) of the Hypergeometric
distribution. This is a function of lA and lB assuming that l is fixed a pri-
ori and it corresponds to an integer, which when divided by the minimum
size among both sets, gives the threshold τ . To summarize, we have τ =
CDF−1(max(lA, lB),min(lA, lB), l, r)/min(lA, lB), where r is the desired accep-
tance rate. The utility function can be used by nodes to set the privacy parameter
ε dynamically depending on the size of the sets of the two nodes (see Appendix
C for more details).

Experimental evaluation. We have also studied experimentally the proposed
mechanisms in the context of a fully decentralized clustering algorithm [4] and
evaluate the achievable trade-off between utility (as measured by the quality of
the global clustering) and privacy. The clustering algorithm groups nodes accord-
ing to their interests. In the baseline implementation of the clustering algorithm
(which we refer simply as “baseline” in the sequel), each node samples the net-
work and exchanges a digest of its profile that is a Bloom filter representation
of its vector profile, which it uses to compute its squared cosine similarity with
other nodes. Based on that value, each node iteratively sorts its clustering view
and retains the c closest nodes according to the computed similarity metric (c is
set to 10 in our experiments). After a predetermined number of cycles when the
protocol converges, each node should end up with the c most similar (closest)
nodes in its view. (More details about this algorithm are available in [4].)

We used a dataset from delicious in which users tags items (i.e. URLs). The
user profile is represented as a vector of tagged items such that there is a 1 in
each vector entry corresponding to an item a user has tagged and 0 otherwise.
In our experiments, we compare two models against the baseline model. The
first one is a threshold similarity protocol, where nodes exchange their Bloom
filters only if the threshold protocol presented in Algorithm 2, outputs 1. This
protocol computes privately the similarity measure and outputs 1 if the similarity
between the two nodes exceeds the predetermined threshold τ . If a node has in
its view less than c nodes whose similarity is above τ , the rest of the view is
chosen at random and the Bloom filters are not transmitted. The second model,
which is the threshold differentially private protocol (TDP), is a variant of the
threshold version in which we added the property of differential privacy to the
cryptographic protocol. Computing similarity between two nodes requires O(k)
bits, where k is the size of the Bloom filter in the baseline model, while using
homomorphic encryption to encrypt each bitresult in an expansion factor of
∼ 2048 due to the size of the generated ciphertexts.

Experimental setup. Evaluations are conducted through the simulation of a
network of 500 nodes. Each node represents a user, selected randomly from a
dataset of 20, 000 users from a delicious trace crawled in 2009. The resulting
domain of items is a set of 1, 144, 000 URLs. In this datatset, the average num-
ber of items tagged by a user is 323 and the average similarity between pair
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of users is 0.00004 (which explained why the chosen values for τ may seem rel-
atively low). Specifically in the experiments, we have set τ ∈ {10−3, 10−4, 7 ×
10−5, 10−5, 1× 10−5, 5× 10−6} and ε ∈ {0.001, 0.01, 0.1, 1, 10, 100}. We evaluate
our two models (threshold and TDP) according to the following metrics: the
quality of the clustering and the level of privacy. The quality of the clustering is
measured by (i) the difference between the cluster view obtained by Threshold
and TDP protocols compared to the baseline and, (ii) the recall when looking
for items (previously removed from the profiles) in the profiles of the c closest
nodes. More specifically, clustering is done based on 90% of the tagged items of
each user and the remaining 10% is used to measure the recall by comparing
how many of them are in the set of tagged items of the view the node ends up
with. The level of privacy is measured as the number of Bloom filters exchanged
as well as the chosen value for ε.

Results. In Figure 1, the x-axis represents the privacy parameter ε. The larger
its value, the less privacy (i.e. noise) is provided. We plot the experiments as
a constant function with respect to ε. The threshold line for a given τ should
be interpreted as the upper bound of the performance of the “private experi-
ments” with the same value for τ . Therefore, the less the number of the Bloom
filters exchanged, the better for the users’ privacy. The results obtained demon-
strate that the number of Bloom filters exchanged are up to half that of the
baseline. Yet, for most of our choices of τ , the recall and view quality in the
threshold experiment are close to the one obtained with the baseline. Note that,
as observed on Figure 1b, the recall of the baseline is 0.26, which is mainly due
to the sparsity of the dataset. The exception being for the value of τ = 0.001
which turns out to be much higher than the average similarity (0.00004), re-
sulting in almost no exchange of Bloom filters (which has the same effect has
letting the nodes chosen their view at random). We observe that for some
choices of τ , adding privacy (in terms of noise) can even enhance the utility.
For instance, when we add a large amount of noise and that the threshold is
extremely low, this will increase the number of false positives, thus resulting
in more exchanges of Bloom filters than with the use of the threshold alone
without the addition of noise. Finally, Figure 1d displays the convergence time
obtained with τ = 0.00007. The convergence plots for the view and the Bloom
exchanges are similar to the one presented before. Moreover, we observe that
in all runs, the private protocols converges almost as fast as the baseline (in
less than 25 cycles) to their optimal value, with respect to the quality of the
view and the recall. To summarize, applying the threshold (respectively the
TDP) protocol impacts only slightly the recall by 4% (respectively 12%) but
reduces up to 80% the number of Bloom filters exchanged, thus providing a
higher privacy. Therefore, we can conclude that it is possible to achieve reliable
clustering and high recall even if instead of exchanging Bloom filters, we use a
differentially private threshold mechanism for computing the similarity between
nodes.
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Fig. 1. Experimental results obtained with 500 nodes from Delicious for different values
of ε and τ

6 Conclusion

Main results. The Web 2.0 has recently witnessed a proliferation of user gen-
erated content including a large proportion of personal data. Preserving privacy
is a major issue to be able to leverage this information to provide personalized
services. Fully decentralized systems somehow protect users privacy to be ex-
posed to large companies, avoiding the “Big brother is watching you” syndrome.
However, in some sense this is an illusion as they might expose personal data
to other users in the network. In this paper, we have addressed this challenge
by providing users with a way to compute their similarity with respect to other
users while preserving the privacy of their profiles. More precisely, we have in-
troduced a two-party threshold similarity protocol enabling a user to quantify
her similarity with another user, without revealing her profile and without re-
quiring a trusted third party. We proved that the proposed protocol is secure in
the presence of a passive adversary. We have also proposed differentially private
protocols for the exact and threshold similarity and studied the impact of the
noise generation on the utility of the resulting similarity. To summarize, our
work highlights the fact that cryptography and differential privacy are two dif-
ferent but complementary notions. On one hand, differential privacy gives strong
privacy guarantees with respect to how much information can be learned about
the inputs of the participants from the (perturbed) output of a function. Thus,
differential privacy helps us to reason on which type of information can be safely
released with respect to privacy. On the other hand, cryptography, and more
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specifically secure multi-party computation, gives us the tools to compute a dis-
tributed function in a secure and robust way and removes the need for a trusted
third party, which is of paramount importance in a decentralized setting. When
possible, it seems therefore natural to combine differential privacy and cryp-
tography into an integrated approach as we have done for private similarity
computation in distributed systems.

Related work. Distributed noise generation has been addressed in the context
of the secure multi-party and differential privacy [10]. The resulting protocol
has a greater complexity than our approach, but on the other hand is secure
against active (Byzantine) adversary. A protocol for nearest neighbor search in
distributed settings has been proposed in [27] but it was designed only within the
cryptography framework and not the differential privacy context. Therefore, if
it is possible that some privacy breach related to specific item in the profile may
arise if the adversary has some background knowledge. Differential private pro-
tocols have also been considered in centralized systems such as [20] for analyzing
the recommender system of Netflix with respect to differential privacy.

Future work. Currently, we have mainly focused on providing security with re-
spect to a passive adversary, which can be seen as a privacy analysis of how much
knowledge can be inferred by an adversary following the rules of the protocol
but trying to extract as much information as possible from the transcript of the
communications seen, the output of the protocol and its own input. While this
is a first step, we plan as future work to address malicious participants (mod-
eled by active adversaries) that can cheat during the execution of the protocol.
It might also be possible to add the unlinkability property to the bidirectional
anonymous channel to prevent an adversary from linking two queries to the same
honest node.

Acknowledgements. We are very grateful to the anonymous reviewers for
their constructive comments that have help us to improve the quality of this
paper.
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A Gossip-on-Behalf

In gossip-on-behalf, the first node, Alice, starts by choosing at random another
node C (that we refer thereafter as Charlie) from her random sample (typically
provided by a random peer sampling service [17]). She then generates a pair of
public key/secret key for this session and asks Charlie to select a node at random
(that we called Bob) as the second node that will be involved in the similarity
computation. Charlie does not disclose the identity of Bob to Alice (and vice
versa), therefore acting as an anonymizer. Afterwards, Charlie transmits the
public key of Alice to Bob that will use it to encrypt any data exchanged with
Alice. Finally, Bob either generates also a pair of public key/secret key for this
session or a secret that will be used as the key of a symmetric cryptosystem (such
as AES) and transmits this to Bob encrypted with his public key via Charlie as
a relay (this is similar in spirit to the SSL authentication protocol). Alice and
Bob now share a secure anonymous channel. The communication between Alice
and Bob goes through Charlie but as it is encrypted, this forbids Charlie from
learning any information exchanged during their interactions. One important
security assumption is that Charlie does not collude neither with Alice nor with
Bob, or otherwise this would break the anonymity property of the channel.

B Scalar Product

Lemma 4 (Sensitivity – scalar product). The sensitivity of the function
ScalarProduct is 1.

Proof. Consider three different profiles SA, SB and SC , represented as binary
vectors of the same size, such that SB and SC are neighbors. Replacing an object
from SB by another object to obtain SC increases (or decrease) the value of the
scalar product by 1 at most, and therefore the sensitivity of the scalar product
is 1.



376 M. Alaggan, S. Gambs, and A.-M. Kermarrec

Algorithm 3.DifferentialScalarProduct(SA,SB ,ε)
1: Alice and Bob generate the keys of the threshold homomorphic encryption
2: Alice receives skA, Bob receives skB and they both get the public key pk
3: Alice and Bob compute Enc(|SA ∩ SB |) = ScalarProduct(SA, SB)
4: Alice generates Laplacian noise parametrized by LapA( 1

ε
) and computes

Enc(|SA ∩ SB |) ⊕ Enc(LapA( 1
ε
)) = Enc(|SA ∩ SB | + LapA( 1

ε
)) and sends the result

to Bob
5: Bob generates Laplacian noise parametrized by LapB( 1

ε
) and computes

Enc(|SA ∩ SB |+ LapA( 1
ε
)) ⊕ Enc(LapB( 1

ε
)) = Enc(|SA ∩ SB |+ LapA( 1

ε
) + LapB( 1

ε
))

6: Alice and Bob cooperate to decrypt the homomorphically encrypted value and
get as output (|SA ∩ SB | + LapA( 1

ε
) + LapB( 1

ε
))

Theorem 4 (Protocol for differential scalar product). The protocol Dif-
ferentialScalarProduct is private with respect to a passive adversary and ε-
differentially private. The protocol has a communication complexity of O(l) bits
and a computational cost of O(l), for l the size of the binary vectors representing
the profiles.

Proof. All the communication exchanged between Alice and Bob are done using
an homomorphic encryption scheme with semantic security, therefore the en-
crypted messages exchanged do not leak any information about their content.
Moreover as the encryption scheme is a threshold version, it means that neither
Alice nor Bob alone can decrypt the messages and learn their content. At the
end of the protocol, Alice and Bob only get to learn (|SA ∩ SB| + LapA(1

ε ) +
LapB(1

ε )) which ensures the ε-differential property of the protocol6. Moreover,
because of the use of the protocol ScalarProduct as a subroutine, the protocol Dif-
ferentialScalarProduct has a communication cost of O(l) bits and as well as a
computational cost of O(l) (we consider here that the threshold decryption and
the generation of Laplacian noise have constant complexity and are negligible
with respect to the cost of the scalar product).

C Utility Analysis

The utility function can be used by nodes to set the privacy parameter ε dy-
namically depending on the size of the sets of the two nodes. The probability
that a node gets accepted is P (S2/(lAlB) > τ), where τ is the public threshold
value while the probability of getting rejected (false negative rate) after adding
the Laplacian noise is P (S2/(lAlB) + N ≤ τ) = P (N ≤ τ − S2/(lAlB)). This
result in the following utility function:

6 More precisely, Alice can learn (|SA ∩ SB |+ LapB( 1
ε
)) if she subtracts her own noise

but this still preserves ε-differential privacy (the same reasoning can be made for
Bob).
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1− P (N ≤ γ| S2

lAlB
> τ) = 1− P (N ≤ γ|S > θ) = 1− P (N ≤ γ ∧ S > θ)

1− Fs (θ)
= 1−

∑
s>θ

∫ γ
−∞ fN,S(n, s) dn

1− Fs (θ)

= 1−
∑
s>θ

∫ γ
−∞ fN (n)fS(s) dn

1− FS (θ)
= 1−

∑
s>θ

fS(s)
∫ γ
−∞ fN (n) dn

1− FS (θ)
= 1−

∑
s>θ

fS(s)FN (γ)

1− FS (θ)
,

where θ =
√
lAlBτ and γ = τ − S2

lAlB
. The upper limit of this sum is min(lA, lB)

whereas the lower limit is �θ�. The above equation (which is a function of lA,
lB, τ , ε, and l), when plotted with different values of lA and lB, shows the effect
of the privacy parameter ε for a given τ and domain cardinality l. Alternatively,
we can also derive the probability of not having false positives or the probability
of not having false decisions as described below.

Definition 8 (Utility as the probability of not having false positives.).

U+(lA, lB, l, τ, ε) = 1−
�√lAlBτ�∑

s=0

fS(s)FN ( s2

lAlB
− τ)

FS

(	√lAlBτ
) .

Definition 9 (Utility as the probability of not having false decisions.).

U† =
min(lA,lB)∑

s=0

fS (s)FN

(
d (s)

(
τ − s2

lAlB

))
,

where

d(s) =

{
1 ifs ≤ 	√lAlBτ

−1 ifs > 	√lAlBτ
 .
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Abstract. In this paper, we deal with an error model in distributed
networks. For a target t, every node is assumed to give an advice, ie.to
point to a neighbour that take closer to the destination. Any node giving
a bad advice is called a liar . Starting from a situation without any liar,
we study the impact of topology changes on the number of liars.
More precisely, we establish a relationship between the number of liars

and the number of distance changes after one edge deletion. Whenever �
deleted edges are chosen uniformly at random, for any graph with n nodes,
m edges and diameter D, we prove that the expected number of liars and

distance changes is O( �
2Dn
m

) in the resulting graph. The result is tight for
� = 1. For some specific topologies, we give more precise bounds.

Keywords: dynamic graph, errors and faults, shortest path and routing.

1 Introduction

1.1 The Search Problem

Everyone has already faced the problem of reaching a destination in an uncer-
tain network. This is typically the case whenever you are in an unknown city,
without a map, and you aim at reaching, let us say, the closest cash machine.
The only thing you can do is ask for some information from people in the street.
Unfortunately, there is no evidence that all the information you get is reliable.

Nowadays, in a communication network, a corresponding situation can occur.
Let us consider the routing task. Due to its dynamicity (change of topology, time
required to update local information) and its large-scale size, current networks
are not immune to faults and crashes. It is no more realistic to blindly trust the
data stored locally at each node. For instance, the Border Gate Protocol (BGP)
used in Internet to route messages between autonomous systems implicitly as-
sumes that some paths are known to reach any target. Ideally, these paths are
as short as possible. Unfortunately, many messages do not reach their destina-
tion because no paths are temporally known although some paths could exist.
Is there a way to find such paths ?

In the following, for a given target t, we informally refer to a liar as a
node containing bad information about the location of t. The word liar is used
even if nodes have not necessarily malicious intentions, but are simply ignorant.

� This work is granted by the european project EULER.
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A series of papers [HKK04,HKKK08,HIKN10] tackle the problem of locating a
target (node, resource, data, ...) in presence of liars.

A first model was introduced by Kranakis and Krizanc [KK99]. They de-
signed algorithms for searching in distributed networks having the ring or the
torus topology, when a node has a constant probability of being a liar. A more
realistic model was proposed by Hanusse et al. [HKK04]: the number of liars is a
parameter k and during a routing query, the information stored at every node is
unchanged. The main performance measure is the number of edge traversals dur-
ing a request. Several algorithms, either generic or dedicated to some topologies,
and bounds are presented in [HKK04,HKKK08,HIKN10] and are typically of the
form O(d + kO(1)) (for path,grids, expanders,. . . ) or Θ(d + 2O(k)) for bounded
degree graphs, d being the distance between the source and the target.

In these papers, there is an implicit assumption: the number of liars is small.
Our goal is to evaluate whether this is realistic or not. Starting from a network
without any liar, we aim at estimating bounds on the number of liars obtained
after few changes of topology. It turns out that this problem is related to the
problem of estimating the number of distance changes after few edge/node dele-
tions or insertions. In this paper, we focus on edge deletions for the following
reasons: it is a more atomic event than node deletion (any node deletion can
be represented as a sequence of edge deletions) and a deletion is much more
dramatic than an insertion in our context. On the one hand, after one deletion,
there is potentially no known or existing path toward the target and on the other
hand, after one insertion, we could only miss a shortcut.

1.2 Related Works

The influence of topology changes on graph parameters is studied in several
works. In [CG84,SBvL87], it is proved that for any sequence of  edge deletions
that do not disconnect the graph, the diameter D of any unweighted graph turns
to be less than D(+1). Our work is also related to the computation of the most
vital node of a shortest path [NPW03], that is the node whose removal results
in the largest increase of the distance for a given pair of source/target, and the
Vickrey pricing of edges [HS01].

Recently, some work on dynamic data structures for shortest paths/distance
computation problems has been proposed. By dynamic, we mean that the data
structures can tolerate some topology changes in a given network. A dynamic
network model defines how the underlying graph changes/evolves over time.
More precisely, the following type of models are usually considered:

• Evolving models without constraint : it consists in an ”online” insertion and/or
suppression of links and/or nodes. Roughly speaking, if G(t) is the network
at time t then G(0) and G(t) can be quite different.

• Failure model : G(t) is a subgraph of G(0). In practice, we consider that few
nodes/links are removed from G(0).

The most standard model of dynamic network is the following: starting from
an initial graph, a sequence of  insertions/deletions of edges/nodes is done.
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Each query has to be answered taking into account the  updates. The most
naive solution consists in recomputing all shortest paths after any update but
it is generally quite costly. For instance, the update time of the fastest dynamic
algorithms for the all-pairs shortest path takes O(n2polylog(n)) [DI04,Tho04].
It turns out that in the failure model, it is not always necessary to recompute all
shortest paths. Some solutions provide efficient data structures dedicated to the
problem of reporting shortest path or distance queries for  = 1. More precisely,
we can distinguish data structures dedicated to exact solution [DTCR08,BK09]
or constant approximation of the solution [KB10,CLPR10], that is a constant
factor of shortest path/distance after one edge/node deletion. The challenge is to
handle efficiently more than  > 1 updates. To our knowledge, the more general
result is the -sensitivity distance [CLPR10] oracle for which a data structure
of size O(sn1+1/s logn) is able to approximate the distance between any node

pairs within a factor O(s · ) for undirected graphs in O( logO(1) n) time. Note
that the data structures report distances / routing paths, given the knowledge
of the  nodes/edges to avoid. They provide a similar result for weighted graphs
and, only if  ≤ 2, for compact routing.

In these works, the implicit model is the one of a strong adversary model :
the worst sequence of updates. This is sometimes too pessimistic to explain
and to model macroscopic observations done on real dynamic networks. In
the following, we will also consider the random fault adversary model : any se-
quence of  updates has the same probability to occur. Estimating the number
of distance changes in a dynamic network can be used to get a tight anal-
ysis of the update time. In King’s algorithm analysis ([Kin99] - section 2.1
or [Ber09]), the update time to maintain a shortest path tree turns to be
O(D · #number of distance changes from the root) for connected bounded de-
gree graphs whenever  = 1. Our results allow to analyse the random fault case.

1.3 Contribution

Models. The network is modelled by a graph G = (V,E) of |V | = n nodes and
|E| = m edges. G is assumed to be unweighted and can be disconnected. Note
that D correspond to the maximum diameter of all the connected components.
The neighbourhood of vertex u is noted Γ (u) and includes u itself. Given a target
located at a node t, each node u ∈ V \ {t} has an advice Adv(u) ∈ Γ (u) \ {u}.
Node u is a truthteller if Adv(u) belongs to a shortest path from u to t and
otherwise u is a liar. The set of advice A can also define a directed subgraph of
G, noted GA. There is an arc (u, v) in GA if and only if v = Adv(u). Whenever
there exists no liar , GA is a shortest path spanning tree rooted at t.

We shall investigate two main parameters:
• The number of liars k = kG(A) for a set of advice A in graph G
• And the size of the set S of nodes whose distance to t has changed after one
edge deletion.

For instance, in Figure 2, we have n−D lying nodes pointing toward a dead-end
in the rightmost drawing and D− 1 nodes whose distance to t has changed after
one edge deletion.
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Given a graph G without any liar and a target t, we aim at analysing the
combined effect of the choice of set of advice A and the set of  edges. Note that
A is not arbitrary since we assume that G has no liar. After a deletion, it may
happen that the resulting graph turns to be disconnected. Nodes that do not
belong to the connected component of node t become liars. The set of advice is
unchanged with a potential exception: if a deleted edge was used as an advice,
one extremity needs to draw another advice among its current neighbours. We
focus on two models:

• The adversary model: this model represents a worst-case analysis. An
adversary has the capacity of choosing A, the set of edges to remove and the
potential new advice to draw. Thus, k is maximal in this model.

• The random fault model: A is assumed to be chosen uniformly at random
in the universe of set of advice without liars for the given graph. The set of
edges to delete and the potential new advice are chosen uniformly at random.

G̃ is the resulting subgraph of G after  deletions.

Results. The majority of our results focus on the random fault model since
most of the results in the adversary model are simpler. However, it is interesting
to take the two models in order to see a potential gap between them.

More precisely, our main result deals with the random fault model : after
 deleted edges are chosen uniformly at random, for any graph of n nodes, m
edges and diameter D, we prove that the expected number of liars, E(k), and

the expected number of distance changes E(|S|) is in O( �
2Dn
m ) in the resulting

graph.
Table 1 shows our results after one deletion in both models. Note that the

notation Θ(·) simultaneously stands for a lower bound and an upper bound.
The lower bound means that there exists a graph of the family for which the
number of liars is in Ω(·).

Note that an edge deletion does not necessarily imply the creation of a liar
even if some nodes have changed their distance to t, for instance the complete
graph 1). Conversely, some liars can appear without any change of distance
within the graph.

For the family of graphs of diameter D, it is easy to reach the bound for the
adversary model : just take a path of D nodes and add a star of n −D leaves
to one extremity. If t is located to the other extremity, one edge deletion can
disconnect the graph implying k and |S| to be of linear size. Even if somebody
would restrict edge deletion to connected graphs, we can easily claim a lower
bound of Ω(n−D − 1) (see Figure 2).

The structure of the paper is the following: we start by exhibiting a relation-
ship between the number of distance changes and the number of liars induced

1 In the complete graph, if an edge is removed,
• Either this edge was used as an advice by node u ∈ V , in this case d(u, t) = 2 and
any new advice takes closer to t ;

• Or not and therefore no liar is created.
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Topology Adversary Random fault

Graphs of diameter D Θ(n) Θ(Dn
m
)

Square Grid Θ(
√
n) Θ(1)

ErdsRnyi model n−1
4
+ 1 Θ( 1

n
)

Hypercube log n− 1 Θ( 1
log n

)

Fig. 1. Number of liars induced by a single edge deletion
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Fig. 2. An example of an edge deletion that creates n−D − 1 liars

by an arbitrary edge deletion (Lemma 2). Then, we prove that, in the random
fault model, E(|S|) ≤ Dn

m . Combining with Lemma 2, we show that E(k) < 2D
(Theorem 1). This result is then improved (Theorem 2) and generalized to  edge
deletions (Theorem 4) . More precisely, we prove that the deletion of  random

edges creates at most O( �
2nD
m ) liars. In the last section, we give more precise

bounds for specific topologies (see Table 1).

2 General Results

2.1 Preliminaries

We start by presenting some notations and some easy facts used in our paper.

G̃e G after deletion of edge e, G̃e = (V,E \ e), or simply G̃.
d(u, v) distance in G from u to v.

dG̃(u, v) distance in G̃ from u to v.
Γ (X) X ’s neighbourhood in G, Γ (X) =

⋃
x∈X Γ (x)

Adv−1(X) set of nodes advising another node that belongs to X ,

ie.Adv−1(X) = {u ∈ V | Adv(u) ∈ X}
F(e) indicates if edge e = {x, y} belongs to the set of advised edges GA.

More precisely, F(e) = 1 if Adv(x) = y ∨ Adv(y) = x
and F(e) = 0 otherwise.
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Many of our proofs are based on the notion of (s, t)-arterial edges:

Definition 1. An edge {x, y} is (s, t)-arterial if it belongs to all shortest paths
from s to t

The deletion of a (s, t)-arterial edge implies

the event Es,t : dG̃(s, t) > d(s, t) (1)

Otherwise, there exists a shortest path from s to t which does not contain {x, y}.
The set of arterial edges from s to t is denoted Cs,t. It follows that
Lemma 1. The distance from s to t is modified by a single edge deletion if and
only if this edge belongs to Cs,t.

2.2 Relationships between the Number of Liars and the Number of
Distance Changes

Let us denote S = Se
t = {s ∈ V | the deletion of e implies Es,t} the set of nodes

that have changed their distance to t after the deletion of some edge e.

Lemma 2. In any graph containing k0 liars, the number of liars k after deletion
of an edge e always satisfies∣∣Adv−1(S) \ S

∣∣ ≤ k ≤
∣∣Adv−1(S)

∣∣ + F(e) + k0 (2)

Proof. In any graph with k0 liars, after one edge deletion, we study the impact
for every node (ie.advice) on the resulting number of liars k. For every node u
with v ∈ V and Adv(u) = v, we have :

dG(u, t)− dG(v, t) ∈
{
{1} if u is a truthteller
{0,−1} if u is a liar

If u /∈ S and v ∈ S then

dG̃(u, t)− dG̃(v, t) ∈
{
{0,−1} if u was a truthteller
{−1} if u was a liar

hence u becomes (or remains) a liar. The minimum number of liars after one
deletion is then

k ≥
∣∣Adv−1(S) \ S

∣∣
Let us now consider the upper bound. First assume that the removed edge e �=
{u, v}. If v /∈ S then u remains a liar:

• u ∈ S and v /∈ S then :

dG̃(u, t)− dG̃(v, t) ∈
{
[2,∞] (impossible2) if u was a truthteller
{0, 1} (could be a liar) if u was a liar

2 impossible because u and v are neighbours.
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• if u /∈ S and v /∈ S then dG̃(u, t)− dG̃(v, t) = dG(u, t)− dG(v, t).

If u ∈ S and v ∈ S, then dG̃(u, t)− dG̃(v, t) ∈ {1, 0,−1}, so u could be a liar or
not independently of its previous state. So, the maximum number of liars added
by one edge deletion is at most

∣∣Adv−1(S)
∣∣. Then

k ≤
∣∣Adv−1(S)

∣∣ + k0

Finally, if the removed edge e = {u, v}, ie.F(e) = 1, then u has to change its
advice and becomes a liar. In the worst situation, the number of liars is then
increased by one. ��

2.3 Upper Bounds for � = 1 Deleted Edge in the Random Fault
Model

According to our model, and as we have already seen in Lemma 2, liars appari-
tion is due to distance changes and advice deletion.

Number of Distance Changes

Lemma 3. In any m-edge graph G = (V,E), if an edge, chosen uniformly at
random, is removed from E then the number |S| of distance changes satisfies

∀t ∈ V : E(|S|) = 1

m

∑
s∈V \{t}

|Cs,t|. (3)

Proof. From Lemma 1, if edge {x, y} is chosen uniformly at random in E then
∀s ∈ V :

P(Es,t) =
|Cs,t|
m

Let Xs,t be a random variable defined by Xs,t = 1 if Es,t, and Xs,t = 0 otherwise.
We get

E(|S|) = E(
∑

s∈V \{t}
Xs,t) =

∑
s∈V \{t}

E(Xs,t) =
∑

s∈V \{t}
P(Es,t) =

1

m

∑
s∈V \{t}

|Cs,t|

��

Corollary 1. For any n-node, m-edge graph of diameter D, after one random
edge deletion, we have in the random fault model

E(|S|) ≤ D(n− 1)

m
. (4)

Proof. In a graph of diameter D, by definition, all shortest paths lengths are at
most D. So, ∀s ∈ V \ {t}, there is at most D (s, t)-arterial edges in E. ��
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Number of Liars. Applying Lemma 2, we get

Corollary 2. For any n-node, m-edge graph of diameter D and maximal degree

Δ without liar, after one random edge deletion, we have E(k) ≤ (DΔ+1)(n−1)
m .

This turns to be optimal up to a constant factor for bounded degree graphs
(see Theorem 3). However, this is not the case whenever the graph has nodes of
unbounded degree.

Theorem 1. For graphs of diameter D without liar, after random one edge
deletion , we have

E(k) ≤ 2D (5)

Proof. According to Lemma 2, for any edge e, if |Se
e,t| nodes change their dis-

tance to t, then the number of added liars after deletion of edge e, is at most
|Adv−1(S)|+ F(e) ≤

∑
s∈S |Adv−1(s)|+ F(e).

Take the possible m edge deletions trials and consider the m corresponding
sets Si for i going from 1 to m. In a given trial in which event Es,t occurs, each
node s adds at most |Adv−1(s)| ≤ degree(s) − 1 liars (excluding itself) since G
contains initially no liar and at least one neighbour of s is closer to t than s.
Since ∀s ∈ V \ {t}, event Es,t can occur in at most |Cs,t| ≤ D instances among
the m ones. It follows that for given s,

∑
i:s∈Si

|Adv−1(s)| ≤ D(degree(s)− 1).

Thus, for any i ∈ [1,m], we have kG̃i
≤ |Adv−1(Si)|+F(e) ≤

∑
s∈Si

degree(s).
Summing over all values of i, we get

m∑
i=1

kG̃i
≤

m∑
i=1

∑
s∈Si

degree(s) =
∑

s∈V \{t}

∑
i:s∈Si

degree(s) ≤
∑

s∈V \{t}
D · degree(s) = 2m ·D

It turns out that E(kG̃) ≤
2mD
m = 2D. ��

A more precise bound can be found by reasoning on a hierarchical cutaway of
G from distance 0 to D with respect to target t. The following part shows a
detailed proof based on this principle to get a tighter upper bound (≤ Dn

m ).

Nodes in danger Let Tu,v be the set of nodes that have at least one shortest
path to v ∈ V through u ∈ V . Let Li = {x ∈ V | d(x, t) = i} be the set of nodes
at distance i from t. Every node v ∈ Tx,t with x ∈ Li is in danger3 with respect
to level i if and only if only one shortest path from x to t exists. In Figure 3, all
nodes from sets Tx2,t and Tx3,t are in danger.

Distances and shortest paths Let Ci = {{x, y} | x ∈ Li, y ∈ Li−1∧Γ (x)∩Li−1 =
{y}} be the set of arterial edges between Li and Li−1. Let Bt(i − 1) be the set
of nodes at distance at most i − 1 from t. If G is not connected then the set of
edges that does not belong to the connected component of t is C∞.

3 Can potentially turns into a liar.
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t

Li

Li−1

Tx1,t Tx2,t Tx3,t

x1 x2 x3

Fig. 3. G levels and nodes in danger (grey filled areas)

Lemma 4. For any graph, containing an arbitrary number of liars k0. If the
edge {x, y} is deleted uniformly at random between levels Li and Li−1 and i ≤ D
then the number of liars added knew

4 is

E(knew | {x, y} ∈ Ci) ≤
n− |Bt(i− 1)|

|Ci|
(6)

and E(knew | {x, y} ∈ C∞) = 0.

Proof. The number of arterial edges between Li and Li−1 is

|Ci| = |{x ∈ Li, |Γ (x) ∩ Li−1| = 1}|

Since all the nodes in danger belong to
⋃

x∈Li
Tx,t, the average number of liars

added by a random deletion between levels Li and Li−1 is at most

E(knew | {x, y} ∈ Ci) ≤
|
⋃

x∈Li
Tx,t|

|Ci|
≤ n−Bt(i− 1)

|Ci|
Note that some of the k0 liars could belong to

⋃
x∈Li

Tx,t. These liars will be
counted twice.

��
Theorem 2. For D ≥ 2, the numbers of liars added knew by deleting an edge
chosen uniformly at random in E is

E(knew) ≤
D(n− D−1

2 )

m
≤ D(n− 1)

m
(7)

For D = 1, E(knew) = knew = 0. This result holds for arbitrary graphs, unnec-
essarily connected.

Proof. The average number of liars added is the sum of the expected number of
liars induced by deletions between every levels L1, L2, . . . , LD

4 Note that knew = k − k0.
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E(knew) =

∞∑
i=1

(E(knew | {x, y} ∈ Ci)×P({x,y} ∈ Ci)) =

D∑
i=1

(E(knew | {x, y} ∈ Ci)×P({x,y} ∈ Ci))

The probability of deleting an edge at level i is

P({x, y} ∈ Ci) =
|Ci|
m

Thus, from lemma 4

E(knew) ≤
D∑
i=1

n− |Bt(i− 1)|
|Ci|

× |Ci|
m

≤ Dn

m
− 1

m

D∑
i=1

|Bt(i− 1)|

∀i ∈ D, |Bt(i − 1)| ≥ i− 1, hence, the average number of liars added is

E(knew) ≤
Dn

m
− D(D − 1)

2m
≤

D(n− D−1
2 )

m

��

2.4 Lower Bound for � = 1 in the Random Fault Model

Theorem 3. For any integers n,m,D such that m ≥ n ≥ 2D ≥ 20,

• There exists a graph of n + O(1) nodes, Θ(m) edges and diameter D for
which the expected number of liars after a random edge deletion is greater

than (D−8)n
32m .

• There exists a graph of Θ(n) nodes, Θ(m) edges and diameter D for which
the expected number of distance changes after a random edge deletion is
Ω(Dn

m ).

Proof. Let us consider a graph H (see H1 in Figure 4) built in the following
way: take a complete graph of size r and a stable of size r′. Add two extra nodes
u, v and link them to the r + r′ nodes. This graph has diameter 2, r + r′ + 2

nodes and r(r−1)
2 + 2(r + r′) edges. Take now four copies of H named H1, H2,

H3 and H4. For i going from 1 to 4, link ui to v(i mod 4)+1 by a path of D/2− 4

edges. The resulting graph G has diameter D. We set up r =
⌈√

m−D
2

⌉
and

r′ =
⌈
n−D
4 − r

⌉
. It follows that G has n + O(1) nodes. The total number of

edges is Θ(n). This graph is presented in Figure 4.
Without loss of generality, assume now that target t is either between u1 and

v2 or belongs to H1. In the first case, it follows that every node of H3 (excluding
v3 and potentially u3) has v3 as advice toward t. The probability that the deleted
random edge belongs to the path from u2 to v3 is p = D−8

2m . The expected number

of liars/distance changes is at least p(r + r′) ≥ (D−8)n
16m .

For the second case, every node of H3 excluding u3 or v3 can point arbitrarily
to u3 and v3. Take the node given by the majority. If v3 (resp. u3) is chosen,
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H1

v4

u4

u1

D/2− 4
u2

v3

v2

v1

u3

H2

H3

H4

Fig. 4. Sample graph in which the lower bound is reached

then p corresponds to the probability that the deleted random edge belongs to
the path from u2 to v3 (resp. v3 to u4). The expected number of liars turns to

be greater than p( r+r′
2 ) ≥ (D−8)n

32m .
In this last case, in order to get a similar lower bound for the expected num-

ber of distance changes, we just have to slightly modify each Hi copy. We just
substitute each node of the stable set by an edge between two nodes. Each copy

turns to have r+2r′ nodes and r(r−1)
2 +2r+3r′ edges. We only have to consider

the distance change from t and r′ nodes of this new set. To have r′ = Θ(n), we
might have to consider a graph G with Θ(n) nodes (at most 2n is enough). ��

3 Number of Liars after � Deletions

Lemma 5. After  edge deletions in any graph G of diameter D, every connected
component of the resulting graph have diameter at most D( + 1).

Proof. As claimed in [SBvL87], given , the maximum diameter of the graph
obtained by deleting  edges from a graph G of diameter D is D(+1), assuming
that the resulting graph is still connected. Now, if a single deletion disconnect in
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two parts a connected component of diameter D, both resulting components will
have diameter at most D. So, after  + 1 deletions, any connected component
has at most diameter D(+ 1). ��

Theorem 4. Let G be a n-nodes, m-edges graph of diameter D without any
liars. For any  ≤ m, after  edges deletion uniformly at random in G the

number of liars is O( �
2Dn
m ).

Proof. As stated in Theorem 2, deleting one edge into a graph of diameter D
creates an average of at most D(n−1)/m liars. From Lemma 5, after the deletion
of  edges, the expected number of liars is

E(k) ≤
�∑

i=1

Di(n− 1)

m− (i− 1)
≤

�∑
i=1

Di(n− 1)

m− (− 1)
≤ D(n− 1)

m− (− 1)

�∑
i=1

i

or

E(k) ≤ D(n− 1)

m− (− 1)
× (− 1)

2

��

4 Specific Topologies

In this section, we show how tight the bounds are for some specific topologies.
We just briefly describe the sketch of proofs. The study gives a justification for
the introduction of the adversary model. In order to get tight bounds in the
random fault model, we exhibit the worst configurations of advice and evaluate
their probabilities in the random fault model.

Theorem 5. In the adversary model,

• k = Θ(n) for ErdsRnyi’s random graphs with parameter p = 1/2;
• k = Θ(

√
n) for square grids;

• k = log2 n− 1 for hypercube.

In the random fault model,

• k = Θ(1/n) for ErdsRnyi’s random graphs with parameter p = 1/2;
• k = Θ(1) for square grids;
• k = Θ(1/ logn) for hypercube.

Here is some clue about the behaviour of the different graph families in the
adversary model :

• ErdsRnyi’s random graphs: each pair of nodes is connected with probability
p. For p = 1/2, almost all graphs have diameter 2. If the deleted edge is
between L1 and L2 then only 1 node can turn into a liar. However, a deletion
between L0 = {t} and L1 can create Θ(n) liars since on average, there are
(n− 1)/4 neighbours in L2 of any individual node of L1.
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• grids: only nodes that share a coordinate (same row or column) with t have
(s, t)-arterial edges and thus can change their distance to t. The number
of distance changes is then |S| = Θ(

√
n) for square grids. An adversary

can force all neighbours of S to point to S. From Lemma 2, we get that
k = Θ(

√
n).

• hypercube: only target’s neighbours can increase their distance to t after
one edge deletion, so |S| ≤ 1 and only k ≤ log2 n − 1 nodes of level L2 can
become liars.

In order to get tight bounds for the random fault model, we simulate the m
possible edge deletions and average k:

• ErdsRnyi’s random graphs: only edges leading to advice deletion can create
liars. Condition on this event, on average, only Θ(1) liars appear. However,
this event occurs with probability Θ(1/n). In the other cases, no liar are
obtained.

• grids: with probability 1−Θ(1/
√
n), there is no (s, t)-arterial edge between a

random node and t. It follows that, with probability 1−Θ(1/
√
n), we have at

most one new liar (if the deleted edge contains an advice). With probability
Θ(1/

√
n), we have Θ(

√
n) liars.

• hypercube: only edges leading to an advice deletion or being neighbours of
t can create liars. However neighbours of t can not become liars. For nodes
of levels Li≥2, there is no distance change after one edge deletion. Since
E(F(e)) = n−1

n log2 n = Θ(1/ logn), we have E(k) = O(1/ logn). To get a lower

bound of Ω(1/ logn), we just have to consider the n/2 closest nodes from t.
The probability that the deleted edge is linked to one of these nodes is at
least 1/2 and condition on this event, with probability at least 1

2 log2 n , a new

advice is required and create a liar.

5 Conclusion

This work shows the importance of the diameter for the number of distance
changes and liars appearances in a dynamic graph model. Of course, it would be
interesting to consider edge/node addition. Contrary to edge deletion, an edge
addition can drastically change the distance within the graph. Even for grids,
the number of distance changes would be Ω(n) after a random edge addition.
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Abstract. We introduce the N-party BAR transfer problem that con-
sists in reliably transferring arbitrarily large data from a set of N pro-
ducers to a set of N consumers in the BAR model, i.e., in the presence
of Byzantine, Altruistic, and Rational participants. The problem consid-
ers the existence of a trusted observer that gathers evidence to testify
that the producers and consumers have participated in the transfer. We
present an algorithm that solves the problem for N ≥ 2f + 1, where f
is the maximum number of Byzantine processes in each of the producer
and consumer sets. We do not impose limits on the number of Rational
participants, although they can deviate from the algorithm to improve
their utility. We show that our algorithm provides a Nash equilibrium.

1 Introduction

Peer-to-peer systems may be used to provide temporary or long-term storage ser-
vices. Such services are useful in a number of settings. For instance, peer-to-peer
systems can be used to process large volumes of data using volunteer compu-
tation, as illustrated by projects such as SETI@home [4] and, more recently, by
the Boinc infrastructure that supports several computationally intensive research
projects [3]. If such computations are performed using MapReduce, information
produced by mappers needs to be transferred to the reducers or to intermediate
storage. Volunteer storage nodes may not be willing to store data indefinitely,
so they have to transfer data to other nodes after serving the system for some
time. In any case, volunteers expect to be recognized for their contribution, for
instance by being awarded credits that make them appear in a chart with the
top contributors of the project.

In scenarios such as the ones listed above, a reliable protocol to transfer data
from a set of producers to a set of consumers is an important building block.
Any realistic service for this environment has to consider the existence of both
Byzantine and Rational nodes, i.e., of nodes that deviate from the protocol, re-
spectively, in an arbitrary way (Byzantine) and with the purpose of gaining some
measurable benefit like being listed as top contributors without really executing
jobs (Rational). A system model that captures the existence of these different
kinds of participants is the Byzantine-Altruistic-Rational (BAR) model [2].

This paper introduces the N-party BAR Transfer problem (BAR-Transfer).
This problem can be informally defined as follows. There are N producers and
N consumers, which we generically call processes. Up to f processes of each
of these sets can be Byzantine; the remainder are either Altruistic or Rational.

A. Fernández Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 392–408, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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All non-Byzantine producers have the same piece of arbitrarily large data that
they have to transfer to all non-Byzantine consumers. Altruistic processes follow
the protocol, Byzantine processes deviate arbitrarily from the protocol (e.g.,
omitting or sending modified messages), and Rational processes deviate from the
protocol following a strategy to increase their utility. There is an abstract trusted
observer that is not involved in the transfer, but that collects evidence about it.
BAR-Transfer is the problem of reliably transferring data from the producers to
the consumers, while providing the trusted observer enough evidence to testify
which processes participated in the transfer.

Systems not designed to cope with Rational behaviour may fall into the
Tragedy of Commons [15]: the job is not done because all participants are Ratio-
nal and aim for profit by not performing (part of) their role. To model Rational
behaviour, we use an approach based on Game Theory [25]. The protocol exe-
cuted by the processes is modelled as a game, in which each player (i.e., process)
follows a strategy to increase its utility. To contradict this behaviour, an al-
gorithm to solve BAR-Transfer should provide a Nash equilibrium, so that no
Rational process has an incentive to deviate from the protocol. We model the
BAR-Transfer problem as a strategic game, in which players choose a strategy
simultaneously, once and for all [25], i.e., without knowledge of the others strate-
gies and without the ability of changing it during the algorithm execution. This
is not a restriction in the case of our algorithm as explained later. We do the
usual assumption [9] that processes are risk-averse, i.e., that they do not follow
a strategy that may put their profit at risk.

Besides introducing the BAR-Transfer problem, we present an algorithm that
solves it in a synchronous message-passing distributed system. We prove its cor-
rectness and that it provides a Nash equilibrium which is a dominant strategy.
Therefore, all Rational processes should follow our solution. The paper makes
the following main contributions: i) defines the BAR-Transfer problem; ii) pro-
poses an algorithm that solves BAR-Transfer; iii) proves the correctness of the
algorithm and that it provides a Nash equilibrium.

The remaining of the paper is structured as follows. Section 2 compares this
work with related work. Section 3 describes the system model and defines the
BAR-Transfer problem. The algorithm to solve the problem is presented in Sec-
tion 4. The correctness and cost of the algorithm are analysed in Section 5.
Finally, Section 6 concludes the paper.

2 Related Work

The BAR-Transfer problem is related to classical distributed systems problems
such as Byzantine Agreement (BA), Reliable Broadcast (RB), Terminating Re-
liable Broadcast (TRB), and Interactive Consistency (IC) [19,11,7]. A first and
major difference is that these algorithms are executed among a single set of
processes, while BAR-Transfer is about communication and agreement between
two sets: producers and consumers. In that sense there is some resemblance
with Paxos with its three process roles – proposers, acceptors, learners – but in
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BAR-Transfer all producers are proposers of the same value, a notion that does
not exist in Paxos [18]. An algorithm for solving BAR-Transfer might be imple-
mented by running N instances of algorithms that solved these problems, or even
a single one in the case of IC. However, these solutions would be very inefficient
in terms of message, time, and bit complexity because they would not exploit
the fact that all (non-Byzantine) producers send the same data. Furthermore,
these problems do not consider the BAR model. If there were Rational processes,
algorithms that solved these problems would not satisfy their properties. The
same discussion applies to All-to-All Reliable Broadcast (ATA-RB) algorithms
[20,14]. Although they reduce the number of messages sent when compared with
parallel executions of BA, RB or TRB, to the best of our knowledge there is no
work in ATA-RB algorithms in the BAR model. Besides, these algorithms only
provide probabilistic guarantees.

Many Byzantine fault-tolerant algorithms have some relation to our work.
Several papers presented implementations of registers based on Byzantine quo-
rum systems [23,24]. Others presented algorithms to implement state machine
replication, a generic solution to implement fault-tolerant distributed services
[8,17]. In both cases the objective is to ensure that Byzantine nodes are unable
to disrupt the consistency of the data stored in the servers or the service pro-
vided by the servers. In contrast, our work aims at ensuring the transference
of a correct value from a set of nodes that produce the data independently, al-
though following a deterministic function, to another set of nodes which have to
determine which is the correct data. A third set of papers presented Byzantine
fault-tolerant consensus algorithms for asynchronous systems, which might also
be used as building blocks of less efficient solutions of BAR-Transfer [12,6,10].
Again, none of these works considers the BAR model.

Some works applied Game Theory to problems involving both Rational and
Byzantine players. Eliaz introduced the notion of k-Fault Tolerant Nash equilib-
rium (k-FNTE), as an equilibrium in which no Rational participant has any in-
centive to unilaterally deviate from the expected behaviour, with up to k players
whose strategy is arbitrary [13]. This concept was applied to auctions. Abraham
et al. extended the work of [13] by introducing the notion of (k, t)-robustness,
where k is the maximum number of colluding Rational participants and t is
the upper limit to the number of Byzantine players [1]. The authors propose
a solution for secret sharing that is (k, t)-robust. Contrary to our work, they
assumed that the utility of each player depends only on the output of the al-
gorithm, therefore ignoring communication costs. It has been proved that no
non-trivial distributed protocol for which Rational nodes take into consideration
communication costs can be (k, t)-robust [9].

The Byzantine-Altruistic-Rational (BAR) model was proposed as an abstrac-
tion for capturing these three distinct behaviours of processes [2]. The authors
also proposed a general three-tied architecture for developing BAR-tolerant
protocols, in cooperative distributed systems that span Multiple Administra-
tive Domains (MAD). The first two levels of the proposed architecture imple-
ment a Replicated State Machine using a BAR-tolerant TRB protocol [9] and a
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mechanism than enforces periodic work and guarantees responses. Although this
architecture might be used to solve the BAR-Transfer problem, the use of the
TRB protocol for transferring arbitrarily large data is too costly and the guar-
anteed response mechanism requires the active participation of a witness, which
must be either a centralized entity or implemented through message broadcast to
all the remaining nodes. Furthermore, the proposed mechanisms are based on the
long-term cooperation between participants modelled as a repeated game [25],
which is not the case of the BAR-Transfer problem.

The same authors [9] have shown that the Dolev and Strong’s TRB proto-
col [11] can be changed to provide a Nash equilibrium in the BAR model using
∞-tit-for-tat mechanisms [5]. The problem is modelled as a repeated game with
an infinite number of rounds. Each round a different participant runs an instance
of the protocol to broadcast its information to all the remaining non-Byzantine
participants. They proved that Rational participants cannot expect any increase
in their utility by omitting messages, even if a fraction of the participants is
Byzantine. In this work we are interested in large peer-to-peer networks in which
it is unlikely that the same participants interact more than once. For that rea-
son we do not consider repeated executions, but model the algorithm instead in
terms of a strategic game in which players interact only once. Therefore, in our
case it is not possible to apply the incentive mechanisms of [2,22,21] based on tit-
for-tat. Furthermore, none of these works addresses the problem of transferring
an arbitrarily large value without using an active witness or direct reciprocity.

The BAR model has also been used with gossip data dissemination al-
gorithms [22,21]. These algorithms are not directly applicable to solve BAR-
Transfer as they assume that the source of the information is trusted and provide
no guarantee that the disseminated information reaches its destination. Further-
more, data transfer between each pair of nodes is performed using direct reci-
procity in a fair exchange process. This requires that each Rational participant
has incentives to transfer data if it expects to receive an equivalent contribution
from its peer. In addition, the pestering mechanism of BAR Gossip [22] only
provides a Nash equilibrium if a certain fraction of the participants are Altruis-
tic [26]. In BAR-Transfer, consumers do not possess any data that may serve as
currency to pay the producers for the transfer, and no assumption is made about
the presence of Altruistic participants. Equicast [16] also implements a dissemi-
nation protocol in an environment with selfish participants, which is proven to
provide a Nash equilibrium. However, it assumes that Rational processes only
deviate from the protocol by adjusting a cooperation factor.

3 System Model and Problem Statement

3.1 System Model

The BAR-Transfer problem involves a set of producers P of cardinality NP
and a set of consumers C of cardinality NC . To simplify the description of our
algorithm, in this paper, we consider that the cardinality of both sets is the
same, i.e., NP = NC = N . We do not address the problem of forming these
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sets, in this paper. However, we assume that this mechanism ensures with high
probability that the number of Byzantine processes is upper bounded and that
processes cannot influence this mechanism. There is also a special process called
trusted observer (TO). We use the words processes or participants to designate
these entities. Sometimes we use the word players to designate producers and
consumers, when we model their interaction as a game.

We assume that the system is synchronous (there are maximum communi-
cation and processing delays) and that all processes are fully connected by au-
thenticated reliable channels. This is a reasonable assumption as we require that
the transfer may terminate after a finite period of time such that Rational pro-
cesses may have some guarantees that they will be eventually rewarded. However,
it is not strictly necessary for the communication and processing delays to be
upper bounded. Nevertheless, in order to simplify the description of our algo-
rithm, we will make that assumption. We also assume that each process has a
public-private key pair and that there is a public-key infrastructure in place, so
every process has access to the public key of all others. Each process has access
to a collision-resistant hash function (hash) and a signature function based on
public-key cryptography (sign, verifysig).

Participants can be Byzantine, Altruistic, and Rational, in accordance with
the BAR model. We assume that up to f elements of each of the P and C sets
can be Byzantine. Any number of consumers and producers can be Altruistic or
Rational. The trusted observer TO always follows its protocol.

An Altruistic process is one that follows the protocol. A Byzantine process
can deviate arbitrarily from its behaviour, e.g., by sending or not sending cer-
tain messages, or by sending messages in a format or with content that is not
according to the protocol. Byzantine processes however are not able to break
the cryptographic mechanisms used in the algorithm (e.g., they are not able to
generate signatures on behalf of Altruistic or Rational processes).

A Rational process is one that aims at maximizing a utility function, defined
in terms of benefits and costs. A producer has a benefit by proving to the TO
that it has contributed to the transfer; it incurs on the cost of sending the
data. Consumers send to the TO acknowledgements of the reception of the
data. A consumer benefits by obtaining the data and proving its reception to
the TO ; it incurs in the costs of receiving and processing messages and sending
the acknowledgements to the TO. We assume that there is no collusion among
Rational processes.

3.2 The BAR-Transfer Problem

The BAR-Transfer problem can be defined as follows. Each producer p has a
value (or data) of arbitrary size vp such that, for any two non-Byzantine pro-
ducers pi and pj , vpi = vpj = v. Sometimes we refer to this value as the correct
value, to denote that it is the value held by all non-Byzantine producers.

The algorithm terminates successfully when every non-Byzantine consumer
consumes v. A consumer c is said to consume value vc when the primitive
consume(c, vc) is called. All non-Byzantine producers start the algorithm by
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producing value v. A producer p is said to produce value vp by calling the prim-
itive produce(p, vp). The TO is said to produce evidence about the transfer by
calling primitive certify(TO, evidence). There are also two predicates hasPro-
duced(evidence, pi) and hasAcknowledged(evidence, cj) that take as input the
evidence produced by the TO to indicate, respectively, if producer pi partic-
ipated in the BAR-Transfer and if consumer cj notified the reception of the
correct value. The problem consists informally in i) transferring the value from
the producers to the consumers; and ii) providing evidence about the transfer.
More formally the problem is defined in terms of the following properties:

– BAR-Transfer 1 (Validity): If a non-Byzantine consumer consumes v, then v
was produced by some non-Byzantine producer.

– BAR-Transfer 2 (Integrity): No non-Byzantine consumer consumes more than
once.

– BAR-Transfer 3 (Agreement): No two non-Byzantine consumers consume differ-
ent values.

– BAR-Transfer 4 (Termination): Every non-Byzantine consumer consumes a
value.

– BAR-Transfer 5 (Evidence): The trusted observer produces evidence about the
transfer.

– BAR-Transfer 6 (Producer Certification): if producer p is non-Byzantine, then
hasProduced(evidence, p) is true.

– BAR-Transfer 7 (Consumer Certification): if consumer c is non-Byzantine, then
hasAcknowledged(evidence, c) is true.

With these definitions in mind, we can provide a more precise characterization
of the benefits that Rational nodes aim to obtain. The benefit of a producer p is
to have hasProduced(evidence, p) true. The benefit of a consumer c is twofold:
i) to obtain the correct value and ii) to have hasAcknowledged(evidence, c) true.

4 BAR-Transfer Algorithm

We now present an algorithm that solves the BAR-Transfer problem (Alg. 1).
The algorithm requires N ≥ 2f+1 producers and consumers. The algorithm aims
at ensuring that each consumer receives the value and can decide which is the
correct value, in case it receives several different values (e.g., due to Byzantine
producers). To satisfy this goal, each producer is not required to send a copy of
the (possibly large) value to every consumer. In fact, it is enough that it sends
the value to f + 1 consumers and a signed hash of the value to the remaining
N − f − 1 consumers.

We define a deterministic function that returns the set of consumers that
receive a copy of the value from producer pi, denoted consumerset i, as:
consumerset i = {cj |j ∈ [i...(i + f) mod N ]}. The intuition behind this func-
tion is that the consumers are seen as a circular space where each producer is
responsible for sending the value it has computed to a set of consecutive con-
sumers of cardinality f + 1, which are shifted from one another by one position.
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We model the operation of the algorithm in rounds. The round of a pro-
cess is increased as result of a nextRound event. The system is synchronous,
so non-Byzantine processes have their clocks synchronized and the nextRound
event occurs simultaneously in all of them. The synchrony of the system and
reliability of the channels ensure that if in response to event nextRound(n) a
non-Byzantine process sends a message to another non-Byzantine process, that
message is delivered to the destination before nextRound(n+1) is triggered. This
implies that nextround events are triggered periodically with a period greater
than the worst case latency of communication channels. The algorithm executes
in three rounds. In round 0, the producers send values or hashes to consumers.
In round 1, consumers send certificates of reception to the trusted observer. In
round 2, the trusted observer produces the evidence.

In round 0, a producer computes the hash of the value and signs it (lines 106-
108). When the first round starts, it sends the value, its hash, and signature to
the consumers in consumerset i (lines 111-113), but only the hash and signature
to the remaining consumers (lines 114-116).

A consumer starts by waiting for signed values and hashes from producers in
round 1 (lines 209 and 215). Each value, hash, and signature received is stored in
an array named values (lines 214 and 219). If a node does not send the message
it was supposed to in this round, or if the hash or signature are not valid, the
entry in the values set for that producer remains with the special value ⊥, which
will serve to build a proof of misbehaviour for the TO (if f+1 consumers provide
similar certificates).

When round 1 ends, the consumer picks the value v such that hash(v) appears
in more than f positions of the array (lines 222-223). There are at most f
faulty producers in the system, thus there is at most one value that matches
this condition. Then, the consumer prepares the confirm array to serve as a
certificate that vouches for the correct or incorrect behaviour of all producers,
and that simultaneously proves that it has received and picked the correct value
as described below (lines 224-225). For each producer pi, the consumer either
stores in confirm: i) the received hash and corresponding signature (extracted
from the values set) or ii) the special value ⊥ when no data, or incorrect data,
was received from that producer. The consumer then signs this data structure
with its private key and sends it as a proof of reception to the trusted observer
(lines 226-228). The consumer terminates by outputting the value (line 229).

The trusted observer waits for a certificate from each consumer in round 2
(line 306). The certificates are collected in an array called evidence (line 309).
In the end, the trusted observer produces the array as evidence (line 311).

Considering the data structure that is created by the trusted observer as
evidence, we can now define with more detail the predicates hasProduced and
hasAcknowledged. Let h(v) denote the hash of the value v and let spk

(h(v))
denote the hash of v signed by the producer pk:

– hasProduced(evidence, pi) is true if the following condition holds: there are
at least N − f consumers ck ∈ C: evidence[ck ][pi] = 〈h(v), spi (h(v))〉. It is
false otherwise.
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Algorithm 1. BAR-Transfer Algorithm

producer pi:
101 upon init do
102 myvalue := ⊥;
103 myhash :=⊥;
104 myhashsig := ⊥;
105 round := 0;
106 upon produce(pi,myvalue) ∧ round = 0 do
107 myhash := hash(myvalue);
108 myhashsig := sign (pi, myhash);
109 upon nextRound ∧ round = 0 do // start of round 1
110 round := 1;
111 msgsig := sign (pi, Value || myvalue || myhash || myhashsig);
112 forall cj ∈ consumerseti do
113 send (pi, cj, [Value, myvalue, myhash, myhashsig, msgsig])
114 msgsig := sign (pi, Summary || myhash || myhashsig);
115 forall cj ∈ C\consumerseti do
116 send (pi, cj, [Summary, myhash,myhashsig, msgsig])

consumer cj :

201 upon init do
202 myvalue :=⊥;
203 myhash:=⊥;

204 confirm := [⊥]P ;

205 values := [⊥]P ;
206 round := 0;
207 upon nextRound ∧ round = 0 do // start of round 1
208 round := 1;
209 upon deliver (pi, cj , [Value, pvalue, phash, phashsig, msgsig]) ∧ round = 1 do
210 if (cj ∈ consumerseti)then
211 if verifysig(pi, Value || pvalue || phash || phashsig, msgsig)then
212 if verifysig(pi ,phash, phashsig) then
213 if verifyhash(pvalue, phash) then
214 values[pi] := 〈pvalue, phash, phashsig〉;
215 upon deliver (pi, cj , [Summary, phash, phashsig, msgsig]) ∧ round = 1 do
216 if (cj �∈ consumerseti)then
217 if verifysig(pi, Summary ||phash || phashsig, msgsig) then
218 if verifysig(pi , phash, phashsig) then
219 values[pi] := 〈⊥, phash, phashsig〉;
220 upon nextRound ∧ round = 1 do // start of round 2
221 round := 2;
222 myhash := h : #({p|value[p] = 〈∗, h, ∗〉}) > f .
223 myvalue := v : {p|value[p] = 〈v, myhash, ∗〉}.
224 forall pi: values[pi] = 〈*, myhash, *〉 do
225 confirm[pi] := 〈values[pi].hash, values[pi].signature〉;
226 confsig := sign (cj , confirm);
227 msgsig := sign (cj , Certificate||confirm||confsig);
228 send (cj , TO, [Certificate, confirm, confsig, msgsig])
229 consume (cj, myvalue);

trusted observer TO:
301 upon init do

302 evidence:= [⊥]C ;
303 round := 0;
304 upon nextRound ∧ round < 2 do
305 round := round+1;
306 upon deliver (cj, TO, [Certificate, confirm, confsig, msgsig]) ∧ round = 2 do
307 if verifysig (cj , Certificate||confirm||confsig, msgsig) then
308 if verifysig (cj, confirm, confsig) then
309 evidence[cj] := 〈confirm, confsig〉;
310 upon nextRound ∧ round = 2 do // start of round 3
311 certify (TO, evidence);
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– hasAcknowledged(evidence, cj) is true if exists a set of producers, named
correctset j, such that |correctset j| ≥ N−f and for ∀pk ∈ correctset j hasPro-
duced(evidence, pk) is true and evidence[cj ][pk] = 〈h(v), spk

(h(v))〉. It is false
otherwise.

The algorithm does not require the observer to actively participate in the exe-
cution of the algorithm. Furthermore, the verification process performed by the
trusted observer is independent for each transfer. Therefore many instances of
BAR-Transfer can be executed in parallel under the jurisdiction of one or more
trusted observers, without the trusted entity being a single point of failure or a
bottleneck.

5 Analysis

The analysis of the algorithm has three parts. First, we prove its correctness.
Then, we demonstrate that it is a Nash equilibrium. Finally, we perform a com-
plexity analysis in terms of communication costs.

5.1 Correctness

This section provides a proof of the correctness of the algorithm, i.e., that it
satisfies the properties BAR-Transfer 1-7. The proof assumes that at most f
producers and f consumers are Byzantine and that the rest of the processes
follow the algorithm, i.e., are Altruistic. The case of Rational processes is left for
Section 5.2, in which we show that Rational processes also follow the algorithm.

We now show with the following Lemmas that the algorithm presented in
Section 4, satisfies each of the BAR-Transfer properties.

Lemma 1. (Validity) If a non-Byzantine consumer consumes v, then v was
produced by some non-Byzantine producer.
Proof. A non-Byzantine consumer c consumes v only if it receives a hash(v)
from at least f + 1 producers and v from at least one producer. There are at
most f Byzantine producers, which implies that c receives hash(v) from at least
a non-Byzantine producer pi. Thus, c consumes v only if v was input by pi.

Lemma 2. (Integrity) No non-Byzantine consumer consumes more than once.
Proof. A consumer consumes a value when the consume primitive is called. A
trivial inspection of the algorithm shows that this primitive can be called only
once in a non-Byzantine consumer, thus it consumes the value no more than
once.

Lemma 3. (Agreement) No two non-Byzantine consumers consume different
values.
Proof. By Lemma 1, if a non-Byzantine consumer consumes v, then v was pro-
duced by some non-Byzantine producer. By assumption, every non-Byzantine
producer produces the same value. Therefore, non-Byzantine consumers never
deliver a value different from v.
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Lemma 4. (Termination) Every non-Byzantine consumer consumes a value.

Proof. All the non-Byzantine producers produce and send v or its hash to all
the consumers in the beginning of round 1. Given that channels are reliable and
synchronous, all non-Byzantine consumers receive these values in that round.
Therefore, when round 2 begins, every non-Byzantine consumer must possess
both the correct value and f + 1 or more hashes of that value, so it executes the
consume primitive which means consuming v.

These four properties ensure the reliable transfer of the correct value in the
presence of Byzantine participants. In the following Lemmas, we prove that the
properties BAR-Transfer 5-7 related to Rational behaviour are fulfilled, therefore
ensuring that each node that obeys the protocol is rewarded after the completion
of the transfer.

Lemma 5. (Evidence) The trusted observer produces evidence about the trans-
fer.

Proof. A trivial inspection of the algorithm shows that certify(TO, evidence) is
executed at the end of round 2, which is the same as saying the trusted observer
produces evidence.

Lemma 6. (Producer Certification) If producer p is non-Byzantine, then
hasProduced(evidence, p) is true.

Proof. By Lemmas 3 and 4, every non-Byzantine consumer delivers the same
value v. Before delivering these consumers send their confirm vectors to the
trusted observer. Therefore, there are at least N − f non-Byzantine consumers
ck ∈ {c1 . . . cN−f} that send confirm vectors to the trusted observer at the start
of round 2. If producer pi followed the algorithm, each of these consumers ck

has received hash(v) from pi, and included 〈h(v), spi (h(v))〉 in the message sent
to the trusted observer. Since all those messages are included in the evidence
generated by the trusted observer, hasProduced(evidence, pi) is true.

Lemma 7. (Consumer Certification) If consumer c is non-Byzantine, then ha-
sAcknowledged(evidence, c) is true.

Proof. A non-Byzantine consumer sends its confirm vector to the trusted ob-
server. Also, since there are at least N − f non-Byzantine producers, consumer
cj includes 〈h(v), spi(h(v))〉 for each of these non-Byzantine producers pi in the
confirm vector sent to the trusted observer. According to Lemma 6, there ex-
ists a set correctset of at least N − f producers pk ∈ {p1 . . . pN−f} for which
hasProduced(evidence,pk) is true (the set of N − f non-Byzantine producers).
Therefore, hasAcknowledged(evidence, cj) becomes true for any non-Byzantine
consumer cj.

Theorem 1. (Correctness) If all non-Byzantine participants follow the protocol,
then the provided algorithm solves the BAR-Transfer problem defined in terms
of properties BAR-Transfer 1-7.

Proof. The proof follows directly from Lemmas 1, 2, 3, 4, 5, 6, and 7.
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5.2 Game Theoretic Analysis

To prove that the protocol provides a Nash equilibrium, we model the BAR-
Transfer problem as a strategic game Γ = (M,SM ,u), where M = P ⋃ C is the
set of players, SM the set of all possible strategies, and u is a vector with the
utility functions of all players.

Each player decides its strategy (or plan of action) once and it remains valid
for all its actions during the execution of BAR-Transfer. These decisions about
the strategy are made simultaneously and, as Rational players do not collude
among themselves, without knowledge of the strategies selected by other players.
The set of possible strategies for player i is denoted Si. SM consists on the set of
all possible strategies, i.e., of Si for all i ∈ M . The set of all possible strategies
of producers is SP . Altruistic producers send hash(v) to all consumers and the
value v to the consumers of consumerset i. Rational producers send hash(v) to
any subset of C and the value to any subset C′ ⊆ C. Similarly, SC denotes
the set of all possible strategies that can be followed by consumers. Altruistic
consumers process all the information received from producers, send it to the TO,
and consume one value. Rational consumers may or may not: consume a value,
process all the values or hashes received from producers, and send the received
information to the TO. Byzantine players follow an arbitrary strategy from SF ,
where F = FP ∪ FC is the set of all Byzantine producers (FP) and Byzantine
consumers (FC), such that |FP | ≤ f and |FC| ≤ f . Notice that these are pure
strategies, that is, the decisions about which strategy to follow is deterministic.

We now identify the reasons why modelling the BAR-Transfer problem as a
strategic game is not a limitation of our analysis. Strategic games are appropriate
for interactions between players where a player cannot form his expectation
from the behaviour of the other players on the basis of information about the
way that the game was played in the past. The information gathered by each
process regarding the past behaviour of other processes is determined by the
number of instances of BAR-Transfer in which those processes interacted, which
depends on the mechanism used to form the sets of processes in each instance.
This mechanism must ensure that with high probability the number of Byzantine
processes of each set is upper bounded by f . Furthermore, in a large peer-to-peer
network, it is true that N is much smaller than the total number of processes in
the system, and the processes connected to the network during the periods when
that mechanism is applied vary from instance to instance. Thus, it is reasonable
to assume that processes interact with a very small frequency, which implies that
the information of each process regarding the nature of other processes is limited
and never certain. Since processes do not incur in risks, they cannot form their
expectation from the behaviour of the other players on the basis of information
about the way that the game was played in the past. Therefore, it is reasonable
to model our solution as a strategic game.

In addition, it is only adequate to model a protocol as a strategic game if
players do not change their strategy during the execution of the game, which is
true in our protocol. Producers cannot increase their knowledge of the strategies
of other players during the execution of the algorithm, as they do not obtain any
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information from any other participant. Thus, the initial chosen strategy remains
adequate for the three rounds of the protocol. On the other hand, each consumer
cj learns about the behaviour of producers in round 1, so it can determine which
producers adopted the strategy of sending it the value or its hash. However, ac-
cording to the definition of hasAcknowledged, the TO rewards cj based not only
on the information included in the certificate sent by the consumer, but also
based on the information the producers (certified by cj) sent to the remaining
consumers. Therefore, the information gathered by cj is insufficient for the con-
sumer to determine if an alternative strategy provides greater expected profits.
For these reasons, it is reasonable to assume that Rational participants do not
change their strategy during the execution of the protocol.

We define a profile of strategies as the correspondence between players and
their respective strategy: σM : M �→ SM . By definition, σi denotes the strat-
egy followed by player i ∈ M . We define σM as the composition of differ-
ent profile strategies for disjoint subsets of players M1,M2, ...,MN : σM =
(σ1

M1
,σ2

M2
, ...,σN

MN
), where σi

Mi
is the strategy followed by all players of Mi

and M = M1 ∪M2 ∪ . . . ∪MN .
We also define an utility function ui(σM ) = βi(σM ) − νi(σM ) as the profit

that player i obtains when all the players follow the strategy specified by σM .
βi denotes the benefit obtained by player i. It is assumed that a producer p
gets a benefit of φP only if hasProduced(evidence, p) holds true. Otherwise, the
benefit is 0. A consumer c only gets a benefit φC if it consumes the correct
value v (therefore, all non-Byzantine consumers consume the correct value) and
if hasAcknowledged(evidence, c) holds true. The function νi(σM ) maps the costs
incurred by player i when every player follows the strategies specified by σM . We
assume that φP > νp(σM ) and φC > νc(σM ) for any non-Byzantine producer p
and consumer c, respectively. To distinguish the arbitrary behaviour of Byzantine
players from the strategies of Altruistic and Rational players, we denote by
πP ∈ ΠP the profile of strategies of Byzantine producers and by πC ∈ ΠC the
profile of strategies of Byzantine consumers.

The remaining of this section provides a proof that the protocol provides a
Nash equilibrium. In the BAR model, Rational players also take into consid-
eration Altruistic and Byzantine behaviour [2]. A utility function for Rational
player i that considers Byzantine, Altruistic and Rational behaviour, denoted
by ūi, is the expected utility for i if it obeys a given Rational strategy σi when
all the remaining participants either obey a non-Byzantine strategy specified by
the profile σM (that includes the Altruistic strategy of following the protocol)
or follow a Byzantine strategy specified by the profile πF . Given that Byzan-
tine participants may behave arbitrarily, in the definition of the expected utility
function it is necessary to consider not only the expected number of Byzan-
tine players but also the probability of each Byzantine player following each
of the possible Byzantine strategies. In this work, we assume that players are
risk-averse, therefore the expected utility considers the worst possible scenario
of Rational and Byzantine behaviour, i.e., it assumes that all non-Byzantine
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players are Rational and all Byzantine players adopt a strategy that minimizes
the utility of non-Byzantine players.

Hereupon, we provide a definition for the expected utility ūi(σM ) of player
i ∈ M when all Rational players follow the strategy specified by σM . Let
σ′

M\F ,πP ,πC = (σM\F ,πP ,πC) be a profile of strategies where no player in M is
Altruistic, all Rational players follow the strategy specified by σM\F , Byzantine
producers follow the strategy specified by πP , and Byzantine consumers follow
the strategy specified by πC . The expected utility of player i is given by the
following equation:

ūi(σM ) = min
FP :|FP |≤f,FC:|FC|≤f

◦ min
πP∈ΠP ,πC∈ΠC

ui(σ′
M\F ,πP ,πC ) (1)

Notice the distinction between the expected utility ūi(σM ), which denotes
the minimum utility Rational player i expects to obtain when all Ratio-
nal participants follow the strategy specified by σM , and the effective utility
ui(σ′

M\F ,πP ,πC), which is the difference between the benefits obtained and the
costs incurred by i when Byzantine players follow the specific strategies specified
by πP and πC .

We can now define the functions β̄i(σM ) and ν̄i(σM ) as the expected benefits
and costs for the worst possible scenario of Rational and Byzantine behaviour.
Thus, the expected utility of player i ∈ M can also be defined as ūi(σM ) =
β̄i(σM )− ν̄i(σM ).

We now introduce the notion of Nash equilibrium. Let σ∗
M\{i},σ∗

i
=

(σM\{i}, σ∗
i ) denote the profile of strategies where all Rational players follow the

strategy specified by σM\{i} and player i follows a given strategy σ∗
i . A Nash

equilibrium is a profile of strategies for which no player benefits from deviating
from its strategy, which can be stated as follows:

Definition 1. σM is a Nash equilibrium if ∀i∈M∀σ∗
i ∈Si ūi(σM ) ≥ ūi(σ∗

M\{i},σ∗
i
).

The following Lemmas provide the complete proof that neither the producers
nor the consumers benefit from deviating from the protocol. We use σP and
σC to denote the profile of strategies of, respectively, producers and consumers
that comply with the protocol. σM denotes the composition of the profiles of
strategies σP and σC , and σ∗

M denotes an alternative profile of strategies.
In the next Lemma and Corollary, we show that a producer does not benefit

from sending the expected information to less than N consumers and from not
sending the value to all consumers of consumerset. Then, in Theorem 2, we show
that no producer can increase its utility by deviating from the protocol, when
all consumers follow the expected strategy.

Lemma 8. For each producer p ∈ P, for each k such that 0 ≤ k < N , let σ∗
M =

(σP\{p},σC , σ∗
p) be a deviating profile of strategies, where σ∗

p is the strategy of
sending a value or its signature to k consumers. Then, β̄p(σ∗) = 0.

Proof. According to the Equation 1, Rational players determine their utility
considering the worst case scenario of Byzantine and Rational behaviour. Sup-
pose the set of k consumers to which p sends the information includes all the
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Byzantine players. According to the protocol, the trusted observer only receives
vectors containing signed hashes in the second round. Hence, if p only sends
the signature of the value or its hash to k < N consumers at the beginning of
the first round and if no Byzantine consumer sends their vectors to the trusted
observer, the trusted observer only receives max(k − f, 0) < N − f vectors that
contain 〈h(v), sp(h(v))〉 in the second round. Therefore, evidence will not contain
N−f entries with 〈h(v), sp(h(v))〉, hasProduced(evidence, p) will hold false, and
β̄p(σ∗) = 0.

Corollary 1. For each producer pi ∈ P, for each k such that 0 ≤ k < f + 1,
let σ∗

M = (σP\{pi},σC , σ∗
pi

) be a deviating profile of strategies, where σ∗
pi

is the
strategy of sending the value to k consumers. Then, β̄pi(σ∗) = 0.
Proof. The proof comes trivially from the previous lemma.

Theorem 2. No producer has any incentives to deviate from the protocol.
Proof. It follows from Lemma 8 and Corollary 1 that if the producer p follows
an alternative strategy specified by σ∗

M , then β̄p(σ∗
M ) = 0, ūp(σ∗

M ) = −ν̄p(σ∗
M ),

and ūp(σ∗
M ) < 0, for the worst possible scenario. According to the Theorem 1,

β̄p(σM ) = φP , up(σM ) = φP − ν̄p(σM ), and ūp(σM ) > 0, since φP > ν̄p(σM ).
Therefore, ūp(σM ) > ūp(σ∗

M ). Since it is assumed that Rational participants
are risk-averse, producers do not have incentives to deviate from the protocol.

We now show that no consumer benefits either by not sending the confirm vector
to the TO or by not processing all the information it receives from the producers.
Then, in Theorem 4, we prove that no consumer can increase its utility by
deviating from the protocol, given that producers follow the expected behaviour.

Lemma 9. For any consumer c ∈ C, let σ∗
M = (σP ,σC\{c}, σ∗

c ) be a deviating
profile of strategies, where σ∗

c is the strategy of not sending its vector containing
hashes sent by producers to the trusted observer in round 2. Then, β̄(σ∗

M ) = 0.
Proof. The proof derives directly from that fact that, if a consumer c does not
send its vector, this information is not included in the evidence and hasAcknowl-
edged(evidence, c) hods false. Hence, β̄c(σ∗

M ) = 0.

Lemma 10. For any consumer c ∈ C, let Pc be the set of producers that sent
the correct value or hash to the consumer c, and let σ∗

M = (σP ,σC\{c}, σ∗
c ) be a

deviating profile of strategies, where σ∗
c is the strategy of sending an incomplete

vector of hashes to the trusted observer with only f + 1 ≤ k < |Pc| entries
different from the ⊥ value. Then, β̄c(σ∗

M ) = 0.

Proof. The worst possible scenario for a non-Byzantine consumer cj occurs when
|FP | = f and for all these Byzantine producers hasProduced is false, while they
still send valid information to cj . In this case, there is only one set correctset j ,
where, for all p ∈ correctset j, hasProduced(evidence,p) is true: the set of non-
Byzantine producers. If cj does not set hashes [pi] = 〈hash(v), spi(hash(v)) and
pi is non-Byzantine, then, at the trusted observer, evidence[cj ] will not con-
tain the information of at least N − f producers from correctset j. Therefore,
hasAcknowledged(evidence,c) holds false, and β̄c(σ∗

M ) = 0.
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Theorem 3. No consumer has any incentives to deviate from the protocol.
Proof. It follows from Lemmas 9 and 10 that if the consumer c follows an al-
ternative strategy specified by σ∗

M , then β̄c(σ∗
M ) = 0, ūc(σ∗

M ) = −ν̄c(σ∗
M ),

and ūc(σ∗
M ) < 0, for the worst possible scenario. According to the Theorem 1,

β̄c(σM ) = φC , ūc(σM ) = φC − ν̄c(σM ), and ūc(σM ) > 0, since φC > ν̄c(σM ).
Therefore, ūc(σM ) > ūc(σ∗

M ). Since it is assumed that Rational participants are
risk-averse, consumers do not have any incentive to deviate from the protocol.

The following Theorem concludes that the protocol provides a Nash equilibrium.

Theorem 4. (Nash equilibrium) The profile of strategies σM where every
player follows the protocol is a Nash equilibrium.
Proof. It follows from Theorems 2 and 4 that for every player i ∈ M and,
for all alternative profiles of strategies σ∗

M where i deviates from the protocol,
ūi(σ∗

M ) < ūi(σM ). Hence, σM is a Nash equilibrium.
From the previous proofs, it is possible to observe that our solution is a dom-

inant strategy, that is, any other Nash equilibrium has a utility lower than the
utility that each Rational process expects to obtain when following our solution.
Hence, Rational processes should obey our algorithm.

5.3 Complexity Analysis

This section briefly evaluates the algorithm in terms of time, message, and bit
complexity. The time complexity is the number of rounds for termination and in
this case is constant: 3 rounds. For the other two we consider the case in which
all processes follow the protocol. The message complexity, i.e., the number of
messages sent by the algorithm, is N2 + N , or O(N2). The bit complexity, i.e.,
the number of bits sent, is O(Nflv + N2ls), where lv is the bit length of the
value and ls the bit length of a signature, assuming that 3ls � 2lh, where lh is
the bit length of an hash.

6 Conclusions

In this paper we have introduced the BAR-Transfer problem that abstracts the
problem of transferring data from a set of producers to a set of consumers under
the BAR system model. We have presented an algorithm that solves the BAR-
Transfer problem for N ≥ 2f + 1, where N is the number of producers and
consumers. We have shown that our algorithm is a Nash equilibrium, so Rational
participants are unable to extract any benefit from deviating from the algorithm.
BAR-Transfer is a powerful construct to build peer-to-peer systems that support
distributed storage and parallel processing based on volunteer nodes. We are
building such a system, based on a P2P architecture, which aims at supporting
distributed computations using the MapReduce model.
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Abstract. Population protocols have been introduced by Angluin et al.
as a model of networks consisting of very limited mobile agents that
interact in pairs but with no control over their own movement. A collec-
tion of anonymous agents, modeled by finite automata, interact pairwise
according to some rules that update their states. Predicates on the ini-
tial configurations that can be computed by such protocols have been
characterized as semi-linear predicates.
In an orthogonal way, several distributed systems have been termed

in literature as being realizations of games in the sense of game theory.
We investigate under which conditions population protocols, or more

generally pairwise interaction rules, correspond to games.
We show that restricting to asymetric games is not really a restric-

tion: all predicates computable by protocols can actually be computed
by protocols corresponding to games, i.e. any semi-linear predicate can
be computed by a Pavlovian population multi-protocol.

1 Introduction

The computational power of networks of anonymous resource-limited mobile
agents has been investigated recently. Angluin et al. proposed in [3] the model
of population protocols where finitely many finite-state agents interact in pairs
chosen by an adversary. Each interaction has the effect of updating the state
of the two agents according to a joint transition function. A protocol is said to
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(stably) compute a predicate on the initial states of the agents if, in any fair
execution, after finitely many interactions, all agents reach a common output
that corresponds to the value of the predicate.

The model has been originally proposed to model computations realized by
sensor networks in which passive agents are carried along by other entities. Vari-
ants of the original model considered so far include restriction to one-way com-
munications [1], restriction to particular interaction graphs [2], random interac-
tions [3], with “speed” [7]. Various kinds of fault tolerance have been considered
for population protocols [10], including the search for self-stabilizing solutions [5].
Solutions to classical problems of distributed algorithms have also been consid-
ered in this model (see [18]).

Most of the works so far on population protocols have concentrated on char-
acterizing which predicates on the initial states can be computed in different
variants of the model and under various assumptions [18]. In particular, the
predicates computable by the unrestricted population protocols from [3] have
been characterized as being precisely the semi-linear predicates, that is those
predicates on counts of input agents definable in first-order Presburger arith-
metic [3,4].

In an orthogonal way, pairwise interactions between finite-state agents are
sometimes motivated by the study of the dynamics of particular two-player
games from game theory. For example, the work in [11] considers the dynamics
of the so-called PAVLOV behavior in the iterated Prisoners’ Dilemma. Several
results about the time of convergence of this particular dynamics towards the
stable state can be found in [11], and [12], for rings, and complete graphs [16]
with having various classes of adversarial schedulers [15].

Our purpose is to better understand whether and when pairwise interactions,
and hence population protocols, can be considered as the result of a game. We
prove the result that restricting to games is not really a restriction: all predicates
computable by protocols can actually be computed by protocols corresponding to
games, i.e. any semi-linear predicate can be computed by a Pavlovian population
multi-protocol.

In Section 2, we recall population protocols. In Section 3, we give some basics
from game theory. In Section 4, we discuss how a game can be turned into a
dynamics, and introduce the notion of Pavlovian population. In Section 5 we
state our main result: any semi-linear predicate can be computed by a Pavlovian
population multi-protocol. Remaining sections correspond to its proof: we prove
that threshold and modulo predicates can be computed respectively in Sections
6 and 7.

Related Works. As we already said, population protocols have been introduced
in [3], and proved to compute all semi-linear predicates. They have been proved
not to be able to compute more in [4]. Various restrictions on the initial model
have been considered up to now. An survey can be found in [18].

More generally, population protocols arise as soon as populations of anony-
mous agents interact in pairs. Our original motivation was to consider rules corre-
sponding to two-player games, and population protocols arose quite incidentally.
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The main advantage of the [3] settings is that it provides a clear understanding
of what is called a computation by the model. Many distributed systems have
been described as the result of games, but as far as we know there has not been
attempt to characterize what can be computed by games in the spirit of this
computational model.

In this paper, we turn two players games into dynamics over agents, by consid-
ering PAVLOV behavior. This is inspired by [11,12,17] that consider the dynam-
ics of a particular set of rules termed the PAVLOV behavior in the iterated Pris-
oners’ Dilemma. The PAVLOV behavior is sometimes also termed WIN-STAY,
LOSE-SHIFT [19,6]. Notice, that we extended it from two-strategies two-player
games to n-strategies two-player games, whereas above references only talk about
two-strategies two-player games, and mostly of the iterated Prisoners’ Dilemma.
This is clearly not the only way to associate a dynamic to a game. Alternatives to
PAVLOV behavior could include MYOPIC dynamics (at each step each player
chooses the best response to previously played strategy by its adversary), or
the well-known and studied FICTIOUS-PLAYER dynamics (at each step each
player chooses the best response to the statistics of the past history of strategies
played by its adversary). We refer to [13,8] for a presentation of results known
about the properties of the obtained dynamics according to the properties of the
underlying game. This is clearly non-exhaustive, and we refer to [6] for a zoology
of possible behaviors for the particular iterated Prisoners’ Dilemma game, with
discussions of their compared merits.

Recently Jaggard et al. [16] studied a distributed model similar to protocol
populations where the interactions between pairs of agents correspond to a game.
Unlike in our model, each agent has there its own pay-off matrix and has some
knowledge of the history. This work gives several non-convergence results.

In this paper we consider possibly asymmetric games. In a recent paper [9] we
discussed population protocols corresponding to Pavlovian strategies obtained
from symmetric games and we gave some protocols to compute some basic pred-
icates. Unlike what we obtain here, where we prove that any computable pred-
icate is computable by a asymmetric Pavlovian population protocol, restricting
to symmetric games seems a (too) strong restriction and most predicates (e.g.
counting up to 5, to check where x = 0 mod 2) seems not even computable.

2 Population Protocols

A protocol [3] is given by (Q,Σ, ι, ω, δ) with the following components. Q is a
finite set of states. Σ is a finite set of input symbols. ι : Σ → Q is the initial
state mapping, and ω : Q → {0, 1} is the individual output function. δ ⊆ Q4 is a
joint transition relation that describes how pairs of agents can interact. Relation
δ is sometimes described by listing all possible interactions using the notation
(q1, q2) → (q′1, q

′
2), or even the notation q1q2 → q′1q

′
2, for (q1, q2, q

′
1, q

′
2) ∈ δ (with

the convention that (q1, q2) → (q1, q2) when no rule is specified with (q1, q2) in
the left-hand side). The protocol is termed deterministic if for all pairs (q1, q2)
there is only one pair (q′1, q

′
2) with (q1, q2) → (q′1, q

′
2). In that case, we write

δ1(q1, q2) for the unique q′1 and δ2(q1, q2) for the unique q′2.
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Computations of a protocol proceed in the following way. The computation
takes place among n agents, where n ≥ 2. A configuration of the system can
be described by a vector of all the agents’ states. The state of each agent is
an element of Q. Because agents with the same states are indistinguishable,
each configuration can be summarized as an unordered multiset of states, and
hence of elements of Q. Each agent is given initially some input value from Σ:
Each agent’s initial state is determined by applying ι to its input value. This
determines the initial configuration of the population.

An execution of a protocol proceeds from the initial configuration by interac-
tions between pairs of agents. Suppose that two agents in state q1 and q2 meet
and have an interaction. They can change into state q′1 and q′2 if (q1, q2, q

′
1, q

′
2) is

in the transition relation δ. If C and C′ are two configurations, we write C → C′

if C′ can be obtained from C by a single interaction of two agents: this means
that C contains two states q1 and q2 and C′ is obtained by replacing q1 and q2
by q′1 and q′2 in C, where (q1, q2, q

′
1, q

′
2) ∈ δ. An execution of the protocol is an

infinite sequence of configurations C0, C1, C2, · · · , where C0 is an initial configu-
ration and Ci → Ci+1 for all i ≥ 0. An execution is fair if for every configuration
C that appears infinitely often in the execution, if C → C′ for some configura-
tion C′, then C′ appears infinitely often in the execution. As proved in [4], the
fairness condition implies that any global configuration that is infinitely often
reachable is eventually reached.

At any point during an execution, each agent’s state determines its output at
that time. If the agent is in state q, its output value is ω(q). The configuration
output is 0 (resp. 1) if all the individual outputs are 0 (resp. 1). If the individual
outputs are mixed 0s and 1s then the output of the configuration is undefined.

Let p be a predicate over multisets of elements of Σ. Predicate p can be con-
sidered as a function whose range is {0, 1} and whose domain is the collection
of these multisets. The predicate is said to be computed by the protocol if, for
every multiset I, and every fair execution that starts from the initial configura-
tion corresponding to I, the output value of every agent eventually stabilizes to
p(I). Predicates can also be considered as functions whose range is {0, 1} and
whose domain is N|Σ|. The following is then known.

Theorem 1 ([3,4]). A predicate is computable in the population protocol model
if and only if it is semilinear.

Recall that semilinear sets are exactly the sets that are definable in first-order
Presburger arithmetic [20].

3 Game Theory

We now recall the simplest concepts from Game Theory. We focus on non-
cooperative games, with complete information, in normal form.

The simplest game is made up of two players, called I (or initiator) and R
(or responder), with a finite set of actions, called pure strategies, Strat(I) and
Strat(R). Denote by Ai,j (resp. Bi,j) the score for player I (resp. R) when I uses
strategy i ∈ Strat(I) and R uses strategy j ∈ Strat(R). The scores are given
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by n×m matrices A and B, where n and m are the cardinality of Strat(I) and
Strat(R).

A strategy x in Strat(I) is said to be a best response to strategy y in Strat(R),
denoted by x ∈ BRA(y) if Az,y ≤ Ax,y for all strategies z ∈ Strat(I). Conversely,
a strategy y ∈ Strat(R) satisfies y ∈ BRB(x) if Bx,z ≤ Bx,y for all strategies
z ∈ Strat(R). A pair (x, y) is a (pure) Nash equilibrium if x ∈ BRA(y) and
y ∈ BRB(x). In other words, two strategies (x, y) form a Nash equilibrium if in
that state neither of the players has a unilateral interest to deviate from it.

There are two main approaches to discuss dynamics of games. The first con-
sists in repeating games [8]. The second in using models from evolutionary game
theory. Refer to [14,21] for a presentation of this latter approach.

Repeating k times a game, is equivalent to extending the space of actions into
Strat(I)k and Strat(R)k: player I (respectively R) chooses his or her action
x(t) ∈ Strat(I), (resp. y(t) ∈ Strat(R)) at time t for t = 1, 2, · · · , k. This is
equivalent to a two-player game with respectively nk and mk choices for players.

In practice, player I (respectively R) has to solve the following problem at
each time t: given the history of the game up to now, that is to say Xt−1 =
x(1), · · · ,x(t− 1) and Yt−1 = y(1), · · · ,y(t− 1) what should I (resp. R) play at
time t? In other words, how to choose x(t) ∈ Strat(I)? (resp. y(t) ∈ Strat(R)?)

Is is natural to suppose that this is given by some behavior rules: x(t) =
f(Xt−1, Yt−1) and y(t) = g(Xt−1, Yt−1) for some particular functions f and g.

The question of the best behavior rule to use in games, in particular for the
Prisoners’ Dilemma gave birth to an important literature. In particular, after
the book [6], that describes the results of tournaments of behavior rules for the
iterated Prisoners’ Dilemma, and that argues that there exists a best behavior
rule called TIT − FOR − TAT . This consists in cooperating at the first step,
and then do the same thing as the adversary at subsequent times. A lot of other
behaviors, most of them with very picturesque names have been proposed and
studied: see for example [6].

Among possible behaviors there is PAVLOV behavior: in the iterated Prison-
ers’ Dilemma, a player cooperates if and only if both players opted for the same
alternative in the previous move. This name [6,17,19] stems from the fact that
this strategy embodies an almost reflex-like response to the payoff: it repeats its
former move if it was rewarded above a threshold value, but switches behavior
if it was punished by receiving under this value. Refer to [19] for some study
of this strategy in the spirit of Axelrod’s tournaments. The PAVLOV behavior
can also be termed WIN-STAY, LOSE-SHIFT since if the play on the previ-
ous round results in a success, then the agent plays the same strategy on the
next round. Alternatively, if the play resulted in a failure the agent switches to
another action [6,19].

4 From Games to Population Protocols

In the spirit of the previous discussion, to any game, we can associate a popula-
tion protocol as follows, corresponding to a PAVLOV (ian) behaviour:
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Definition 1 (Associating a Protocol to a Game). Assume a (possibly
asymmetric) two-player game is given. Let A and B be the corresponding matri-
ces. Let Δ be some threshold.

The protocol associated to the game is a population protocol whose set of states
is Q, where Q = Strat(I) = Strat(R) is the set of strategies of the game, and
whose transition rules δ are given as follows: (q1, q2, q

′
1, q

′
2) ∈ δ where

– q′1 = q1 when Aq1,q2 ≥ Δ,
– q′1 ∈ BRA(q2) when Aq1,q2 < Δ,

– q′2 = q2 when Bq2,q1 ≥ Δ,
– q′2 ∈ BRB(q1) when Bq2,q1 < Δ.

Definition 2 (Pavlovian Population Protocol). A population protocol is
Pavlovian if it can be obtained from a game as above.

A population protocol obtained from a game as above will be termed deter-
ministic if best responses are assumed to be unique; in this case, the rules
are deterministic: for all q1, q2, there is a unique q′1 and a unique q′2 such that
(q1, q2, q

′
1, q

′
2) ∈ δ.

In order to avoid to talk about matrices, we start by stating some structural
properties of Pavlovian population protocols.

Proposition 1. Consider a set of rules. For all rules ab → a′b′, we denote
δIa(b) = b′ and δRb (a) = a′. Let StableI(a) = {x ∈ Q|δIa(x) = x}, and
StableR(a) = {x ∈ Q|δRa (x) = x}.

Then the set of rules is deterministic Pavlovian iff ∀a ∈ Q ∃ maxI(a) ∈
StableI(a) and ∃ maxR(a) ∈ StableR(a) such that for all states a,

1. ∀b �∈ StableI(a) implies δIa(b) = maxI(a).

2. ∀b �∈ StableR(a) implies δRa (b) = maxR(a).

Proof. First, we consider a Pavlovian population protocol P obtained from cor-
responding matrices A and B. Let Δ be the associated threshold. Let a be an
arbitrary state in Q, and let q be the best response to strategy a for matrix B.

Focus on the rule aq → a′q′ where (a′, q′) ∈ Q2, i.e., focus on the case where
player I plays a while player R plays q. As q = BRB(a), we have, by Definition 1,
q′ equals to q. Thus, q ∈ StableI(a).

Now, let consider b such that b /∈ StableI(a). We focus on the rule ab → a′′b′

where (a′′, b′) ∈ Q2. So by definition of set StableI, we have b �= b′. Using
Definition 1, we have Bb,a < Δ and b′ = BRB(a). So b′ = BRB(a) = q. Thus, if
we let maxI(a) = q, maxI(a) satisfies the conditions of the proposition.

Using similar arguments, we can also prove that ∃ maxR(a) ∈ StableR(a)
such that ∀b �∈ StableR(a) implies δIa(b) = maxR(a). In fact, we can sum up the
relationship between the game matrix and rules by the following: for any a ∈ Q,
we have StableI(a) = {x ∈ Q|Bx,a ≥ Δ} ∪ {BRB(a)} and maxI(a) = BRB(a)
and StableR(a) = {x ∈ Q|Ax,a ≥ Δ} ∪ {BRA(a)} and maxR(a) = BRA(a).

Conversely, consider a population protocol P satisfying the properties of the
proposition. All rules ab → a′b′ are such that δIa(b) = b′ and δRb (a) = a′. We focus
on the construction on a two-player game having the corresponding matrices A,
and B. We fix an arbitrary value Δ as the threshold of the corresponding game.
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– If StableI(a) �= Q, then BmaxI(a),a = Δ + 1. If x ∈ StableI(a) and if x �=
maxI(a) then Bx,a = Δ. If x /∈ StableI(a), then Bx,a = Δ− 1.

– If StableI(a) = Q, then ∀x ∈ Q, Bx,a = Δ.
– If StableR(a) �= Q, then AmaxR(a),a = Δ + 1. If x ∈ StableR(a) and if

x �= maxR(a) then Ax,a = Δ. If x /∈ StableR(a), then Ax,a = Δ− 1.
– If StableR(a) = Q, then ∀x ∈ Q, Ax,a = Δ.

It is easy to see that this game describes all rules of P . So, P is a Pavlovian
population Protocol.

5 Main Result

Inverting value of the individual output function, the class of predicates com-
putable by a Pavlovian population protocol is clearly closed under negation.
However, this is not clear that predicates computable by Pavlovian population
protocols are closed under conjunction or disjunction.

This is true if one considers multi-protocol. The idea is to consider k (possibly
asymmetric) two-player games. At each step, each player chooses a strategy for
each of the k games. Now each of the k games is played independently when two
agents meet. Formally:

Definition 3 (Multiprotocol). Consider k (possibly asymmetric) two-player
games. For game i, let Qi be the corresponding states, Ai and Bi the correspond-
ing matrices.

The associated population protocol is the population protocol whose set of states
is Q = Q1 × Q2 × . . . × Qk, and whose transition rules are given as follows:
((q11 , . . . , q

k
1 ), (q

1
2 , . . . , q

k
2 ), (q

1
1
′
, . . . , qk1

′
), (q12

′
, . . . , qk1

′
)) ∈ δ where, for all 1 ≤ i ≤

k, (qi1, q
i
2, q

i
1
′
, qi2

′
) is a transition of the Pavlovian population protocol associated

to the ith game.

Notice that, when considering population protocols, a multi-protocol is a par-
ticular population protocol. This is the key property used in [3] to prove that
stably computable predicates are closed under boolean operations. When con-
sidering Pavlovian games, one can build multi-protocols that are not Pavlovian
protocols, and it is not clear whether one can always transform any pavlovian
multi-protocol into an equivalent pavlovian protocol.

As explained before, multisets of elements of Σ = (σ1, . . . , σl) are in bijection
with elements of N

l, and can be represented by a vector (x1, . . . , xl) of non-
negative integers where xi is the number of occurrences of σi in the multiset.
Thus, we consider predicates ψ over vectors of non-negative integers. We write
[ψ] for their characteristic functions. Recall that a predicate is semi-linear iff it is
Presburger definable [20]. Semi-linear predicate correspond to boolean combina-
tions of threshold predicates and modulo predicates defined as follows (variables
xi represent the number of agents initially in state σi): A threshold predicate is of
the form [Σaixi ≥ k], where ∀i, ai ∈ Z, k ∈ Z and the xis are variables. A modulo
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predicate is of the form [Σaixi ≡ b mod k], where ∀i, ai ∈ Z, k ∈ N \ {0, 1},
b ∈ [1, k − 1] and the xis are variables.

We can then state our main result:

Theorem 2. For any predicate ψ, the following conditions are equivalent:

– ψ is computable by a population protocol
– ψ is computable by a Pavlovian population multi-protocol
– ψ is semi-linear.

Due to lack of space, the proof of the following proposition is omitted.

Proposition 2. The class of predicates computable by multi-games are closed
under boolean operations.

As from Proposition 2, predicates computable by Pavlovian population multi-
protocols are closed under boolean operations, and as a Pavlovian population
protocol is a particular Pavlovian population multi-protocol, and as predicates
computable by (general) population protocols are known to be exactly semi-
linear predicates, to prove Theorem 2 we only need to prove that we can compute
threshold predicates and modulo predicates by Pavlovian population protocols.
This is the purpose of the following sections.

6 Threshold Predicates

In this section, we prove that we can compute threshold predicates using Pavlo-
vian protocols.

Proposition 3. For any integer k, and any integers a1, a2, · · · , am there exists
a Pavlovian population protocol that computes [

∑m
i=1 aixi ≥ k].

First note, that we can assume without loss of generality that k ≥ 1. Indeed,
[Σaixi ≥ −k] = [Σ(−ai)xi ≤ k] = [Σ(−ai)xi < k + 1] which is the negation of
[Σ(−ai)xi ≥ k + 1]. Thus from a population protocol computing [Σ(−ai)xi ≥
k + 1] with k ≥ 0, we just have to inverse the output function to obtain a
population protocol that computes [Σaixi ≥ −k].

The purpose of the rest of this section is to prove Proposition 3. We first
discuss some basic ideas: Our techniques are inspired by the work of Angluin
et al. [1]. The set of states we use is the set of integers from [−M,M ] where
M = max(|ai|, 2k − 1). Each agent with input σi is given an initial weight of
ai. During the execution, the sum of the weights over the whole population is
preserved. In [4], the general idea is the following: two interacting agents with
positive weights p and q such that p+ q ≤ M are transformed into an agent with
weight 0 and an agent with weight p+ q, while two agents with weight p and q
such that p + q > M are transformed into two agents with weight �(p + q)/2�
and �(p+ q)/2� that are both greater or equal to k.

In our setting, we cannot use the same rules since all agents that change their
states when they meet an agent in state p while being initiator (resp. responder)
must take the same state that only depends of p. To avoid this problem, a trick
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is to use rules of the following form: pq → (p+1)(q−1). However, we also have to
make sure that the protocol enables all agents to agree in the final configuration.
Whereas this kind of consideration is easy in the classical population protocol
model, this turns out to be tricky in our settings.

We describe a protocol that computes [
∑m

i=1 aixi ≥ k]. Our protocol is defined
as follows: we considerΣ = {σ1, . . . , σl}, Q = {"}∪[−M,M ]; for all i, ι(σi) = ai;
and we take ω(") = 1 and for any p ∈ [−M,M ], ω(p) = 1 if and only if p ≥ 1.

We distinguish two cases: either k = 1, or k ≥ 2. We present two protocols
here, because we need to have a mechanism in our protocols to enable to “broad-
cast”the result; this is not so difficult in the first case whereas it is more technical
in the second one. Due to lack of space, we only give the rules for k = 1, but
provide a full proof for the case k ≥ 2.

Case k = 1. Our protocol computing [Σaixi ≥ 1] is defined as follows. The rules
are the following.

!!→!!
1!→1!

∀n ∈ [−M, 0], ∀p ∈ [2,M − 1]
n!→ n0
nx→ nx ∀x ∈ [−M,M ],

!x→ !x ∀x ∈ [−M,M ]
1n→ (n+ 1)! ∀n ∈ [−M, 0]
1p→ 1p ∀p ∈ [1,M ]

p!→ p!
pn→(n+ 1)(p− 1)
pp′→ pp′ ∀p′ ∈ [1,M ]

Case k ≥ 2. Our protocol is deterministic and from Proposition 1 uniquely de-
termined by the sets StableI(q), StableR(q), and by the valuesmaxI(q),maxR(q)
defined as follows.

q ∈ Q StableI(q) maxI(q) StableR(q) maxR(q)

! {!} ∪ [−M, 0] ∪ [k,M ] −1 {!} ∪ [−M,M ]
n ∈ [−M,−1] [−M,M ] 0 {!} ∪ [−M, 0] (n+ 1)

0 [−M,M ] 0 {!} ∪ [−M,k − 1] 1
1 {!, 0,M} ! [−M, 0] 2

p ∈ [2, k − 1] {!, 0,M} (p− 1) [−M, 0] (p+ 1)
b ∈ [k,M − 1] {!} ∪ [k,M ] (b− 1) {!} ∪ [−M, 0] ∪ [k,M ] (b+ 1)

M {!} ∪ [k,M ] (M − 1) {!} ∪ [−M,M ]

The transition rules we obtain from these sets and values are the following.

��→ ��
�p→ (p + 1)(−1) ∀p ∈ [1, k − 1]
1�→ 1�
1x → (x + 1)� ∀x /∈ {�, 0, M}

∀p ∈ [2, k − 1]
p�→ p�
p0 → p0

∀n ∈ [−M, 0]
n�→ n0

∀b ∈ [k, M ]
b�→ b�
bx →(x + 1)(b − 1) ∀x ∈ [−M, k − 1]

�x→�x ∀x ∈ [−M, 0] ∪ [k, M ]

10 →10
1M→1M

px →(x + 1)(p − 1) ∀x /∈ {�, 0, M}
pM→pM

nx→nx ∀x ∈ [−M, M ]

bb′ →bb′ ∀b′ ∈ [k, M ]
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We say that an agent in state x ∈ [−M,M ] has weight x and that an agent in
state " has weight 0. Note that in the initial configuration the sum of the weights
of all agents is exactly Σaixi. Note that any of the rule of our protocol does not
modify the total weight of the population, i.e., at any step of the execution, the
sum of the weights of all agents is exactly Σaixi.

Note that the stable configurations, (i.e., the configurations where no rule can
be applied to modify the state of any agent), are the following:

– every agent a is in some state n(a) ∈ [−M, 0],

– a unique agent is in state p ∈ [1, k − 1] and every other agent is in state 0.

– every agent a is either in some state b(a) ∈ [k,M ] or in state ".

Note that no agent starts in state ", and that no rule enables the two interacting
agents to enter the state " except for the rule "" → "". Thus, we know that
it is impossible that all agents are in state ". Consequently, in the last case
described, we know that there is at least one agent in a state b ∈ [k,M ].

Note that in any stable configuration, all agents have the same output; if
Σaixi ≥ k then all agents output 1, while in all the other cases, the agents out-
put 0. Thus, if the population reaches a stable configuration, we know that the
computed output is correct and that it will not be modified any more. Now, we
should prove that the fairness condition ensures that we always reach a stable
configuration. In fact, it is sufficient to prove that from any reachable configu-
ration, there exists an execution that reaches a stable configuration.

Consider any configuration reached during the execution. As long as there
is an agent in state p ∈ [1,M ] and an agent in state n ∈ [−M,−1], we apply
pn → (n+1)(p− 1). Thus we can always reach a configuration where the states
of all agents are in [−M, 0] ∪ {"} if Σaixi ≤ 0, or in [0,M ] ∪ {"} otherwise.

If Σaixi ≤ 0, then there is at least one agent in state n ∈ [−M, 0], since all
agents cannot be in state ". In this case, applying iteratively the rule n" → n0,
we reach a stable configuration where all agents have a state in [−M, 0].

Suppose now that Σaixi ∈ [1, k − 1]. Since Σaixi ∈ [1, k − 1], each agent
with a positive weight is in a state in [1, k − 1]. Applying iteratively the rule
pp′ → (p−1)(p′+1) where p, p′ ∈ [1, k−1], we reach a configuration where there
is exactly one agent in state p ∈ [1, k − 1] while all the other agents are in state
0 or ". Applying iteratively the rules "p → (p+ 1)(−1) and (p+ 1)(−1) → 0p,
we reach a configuration where one agent is in state p ∈ [1, k − 1] while all the
other agents are in state 0.

Finally, assume that Σaixi ≥ k. If there is an agent in state p ∈ [1, k − 1],
we know that there is at least another agent in state q ∈ [1,M ]. If p + q ≤ M ,
applying iteratively the rule pq → (p − 1)(q + 1) between these two agents, we
reach a configuration where one of these two agents is in state 0 while the other
is in state p+ q. In this case, we have strictly reduced the number of agents in a
state in [1, k−1]. If p+q > M ≥ 2k, then q ∈ [k,M ], and applying iteratively the
rule qp → (q − 1)(p+ 1), we reach a configuration where one agent is in state k
while the other agent is in state p+ q− k ∈ [k, 2M ]. Here again, we have strictly
reduced the number of agents in a state in [1, k−1]. Applying these rules as long
as there exists an agent in state p ∈ [1, k− 1], we reach a configuration where all
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agents are either in a state in [k,M ], or in state 0 or ". Since Σaixi ∈ [k,M ],
we know there exists an agent in state b ∈ [k,M ]. Applying iteratively the rules
b0 → 1(b−1) and 1(b−1) → b", we reach a stable configuration where all agents
are either in state " or in a state in [k,M ].

7 Modulo Counting

Proposition 4. For any integers k, b, and any integers a1, a2, · · · , am there
exists a Pavlovian population protocol that computes [

∑m
i=1 aixi ≡ b mod k].

Due to lack of space, we only give the rules of the protocol for the case when
b ∈ [1, k − 1]. In that case, our protocol is defined as follows: Σ = {σ1, . . . , σl},
Q = {"} ∪ [0, k − 1]; for all i, let ι(σi) ≡ ai mod k; let ω(") = 1 and for any
p ∈ [0, k − 1], let ω(p) = 1 if and only if p = b.

The rules are the following:

!! → !!
b! → b!
0! → 0!

∀p ∈ [1, k − 1]
!p → !p

p(k − 1)→!(p− 1)
∀p ∈ [0, k − 1] \ {b}

0p → 0p

!0→ 00
0b→ !(k − 1) if b = k − 1
0b→ (b+ 1)(k − 1) if b �= k − 1

pp′→ pp′ ∀p′ ∈ [0, p− 1]
pp′→(p′ + 1)(p− 1) ∀p′ ∈ [p, k − 2]

p!→ 1(p− 1)

8 Conclusion

In this work, we present some (original an non-trivial) Pavlovian population
protocols that compute the general threshold and modulo predicates. From this,
we deduced that a predicate is computable in the Pavlovian population multi-
protocol model if and only if it is semilinear.

In other words, we proved that restricting to rules that correspond to asym-
metric games in pairwise interactions is not a restriction.

We however needed to consider multi-protocols, that is to say multi-games.
We conjecture that the Pavlovian population protocols (i.e. non-multi-protocol)
can not compute all semilinear predicates. A point is that in such protocols the
set of rules are very limited (see Proposition 1). In particular, it seems rather
impossible to perform an “or” operation between two modulo predicates in the
general case.

Notice that the hypothesis of asymmetric games seems also necessary. We
studied symmetric Pavlovian population protocols in [9] where we demonstrated
that some non-trivial predicates can be computed. However, even very basic
predicates, like the threshold predicate counting up to 5, seems problematic to
be computed by symmetric games. With asymmetric games, general threshold
and modulo predicates can be computed.
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Abstract. Two identical (anonymous) mobile agents have to meet in an
arbitrary, possibly infinite, unknown connected graph. Agents are mod-
eled as points, they start at nodes of the graph chosen by the adversary
and the route of each of them only depends on the already traversed
portion of the graph and, in the case of randomized rendezvous, on the
result of coin tossing. The actual walk of each agent also depends on an
asynchronous adversary that may arbitrarily vary the speed of the agent,
stop it, or even move it back and forth, as long as the walk of the agent
in each segment of its route is continuous, does not leave it and covers
all of it. Meeting means that both agents must be at the same time in
some node or in some point inside an edge of the graph.

In the deterministic scenario we characterize the initial positions of
the agents for which rendezvous is feasible and we provide an algorithm
guaranteeing asynchronous rendezvous from all such positions in an arbi-
trary connected graph. In the randomized scenario we show an algorithm
that achieves asynchronous rendezvous with probability 1, for arbitrary
initial positions in an arbitrary connected graph. In both cases the graph
may be finite or (countably) infinite.

Keywords: rendezvous, anonymous agent, graph, asynchronous, deter-
ministic, randomized.

1 Introduction

The problem and the model. Two mobile agents starting at different nodes of
an unknown connected graph have to meet. This task is known in the literature
as the rendezvous problem in networks. In this paper we study the asynchronous
version of this problem, for identical (anonymous) agents. Each agent designs
its route in the graph, which is a sequence of edges (consecutive edges being
incident), and an adversary controls the speed of each agent, can vary this speed,
stop the agent, or even move it back and forth, as long as the walk of the
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agent in each edge is continuous, does not leave it and covers all of it.1 In this
asynchronous version of the rendezvous problem, meeting at a node may be
impossible even in the two-node graph, as the adversary controlling the speed of
the agents can make them visit nodes at different times. Thus it is necessary to
relax the meeting requirement by allowing the agents to meet either in a node
or inside an edge. Such a definition of meeting is natural, e.g., when agents are
robots traveling in a labyrinth or people wandering along streets of an unknown
town. Since agents can meet inside an edge, the graph has to be geometrically
presented without edge crossings. (Such crossings would permit an “accidental”
meeting of two agents situated in different edges, which should not be considered
as a meeting in the graph.) Thus, we consider an embedding of the underlying
graph in the three-dimensional Euclidean space, with nodes of the graph being
points of the space and edges being pairwise disjoint line segments joining them.
Agents are modeled as points moving inside this embedding. This model of
asynchronous motion of agents that have to meet in a graph has been previously
used in [7,11,12].

If nodes of the graph have unique labels then a simple rendezvous algorithm is
to meet at the node with the smallest label, hence for finite graphs the rendezvous
problem reduces to graph exploration. However, in many applications, when
rendezvous is needed in a network of unknown topology, such labeling of nodes
may be unavailable, agents may be unable to perceive such labels due to limited
sensory capabilities, or nodes may be unwilling to reveal their labels, e.g., due
to security reasons. Hence it is important to design rendezvous algorithms for
agents operating in anonymous graphs, i.e., graphs without unique labeling of
nodes. It is important to note that the agents have to be able to locally distinguish
ports at a node: otherwise, the adversary could prevent an agent from choosing
a particular edge, thus making rendezvous impossible even in the simple case
of trees. This justifies a common assumption made in the literature: ports at
a node of degree d are enumerated 1, . . . , d. Local labelings of ports at each
node are fixed: every agent sees the same local labeling at each node of the
graph. However, no coherence between those local labelings over all the graph
is assumed. When an agent leaves a node, it is aware of the port number by
which it leaves and when it enters a node, it learns the entry port number and
the degree of the node. Agents know neither the topology of the graph nor the
initial distance between them. They cannot mark the nodes or the edges in any
way. Each agent stops at the time of meeting the other agent.

As opposed to [7,11,12], where agents were distinguishable either by their la-
bels or by known coordinates of their initial positions, in this paper we assume
that agents are anonymous, i.e., identical and that they execute the same algo-
rithm. In order to accomplish rendezvous, such identical agents usually have to
break symmetry to prevent executing identical moves that would keep them in

1 Notice that this definition of the adversary is very strong. In fact, all our positive
results (algorithms) are valid even with this powerful adversary, and our impossibility
result holds even for the much weaker synchronous adversary that always moves the
agent forward, keeping constant speed, which is equivalent to the synchronous model.
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different locations at all times. In the deterministic setting this can be done by
exploiting different views of both agents from their initial positions, and in the
random setting different results of coin tosses can be used. It will turn out that
in some cases even deterministic rendezvous of agents starting from symmetric
positions is possible. We do not impose any restriction on the memory of the
agents: from the computational point of view agents are Turing machines.

Two important notions used to describe movements of agents are the route
of the agent and its walk. Roughly speaking, the agent chooses the route where
it moves and the adversary describes the walk on this route, deciding how the
agent moves. More precisely, these notions are defined as follows. The adversary
initially places an agent at some node of the graph. The route is chosen by the
agent and is defined as follows. The agent chooses one of the available ports at the
current node. After getting to the other end of the corresponding edge, the agent
learns the port number by which it enters and the degree of the entered node.
Then it chooses one of the available ports at this node, and so on, indefinitely
(until rendezvous). The resulting route of the agent is the corresponding sequence
of edges (e1, e2, . . . ), such that ei is incident to ei+1. This sequence is a (not
necessarily simple) path in the graph.

We now describe the walk f of an agent on its route. Let R = (e1, e2, . . . ) be
the route of an agent. Let ei = {vi−1, vi}. Let (t0, t1, t2, . . . ), where t0 = 0, be
an increasing sequence of reals, chosen by the adversary, that represent points
in time. Let fi : [ti, ti+1] → [vi, vi+1] be any continuous function, chosen by the
adversary, such that fi(ti) = vi and fi(ti+1) = vi+1. For any t ∈ [ti, ti+1], we
define f(t) = fi(t). The interpretation of the walk f is as follows: at time t the
agent is at the point f(t) of its route. This general definition of the walk and
the fact that (as opposed to the route) it is designed by the adversary, are a
way to formalize the asynchronous characteristics of the process. The movement
of the agent can be at arbitrary speed, the adversary may sometimes stop the
agent or move it back and forth, as long as the walk in each edge of the route is
continuous and covers all of it. This definition makes the adversary very powerful,
and consequently rendezvous is hard to achieve.

Notice that the ability of the asynchronous adversary to produce any con-
tinuous walk inside edges of the routes determined by the agents implies the
following significant difference with respect to the synchronous scenario. While
in the latter scenario the relative movement of the agents depends only on their
routes and hence is entirely controlled by the agents, in the asynchronous setting
this relative movement is also controlled by the adversary.

Agents with routes R1 and R2 and with walks f1 and f2 meet at time t, if
points f1(t) and f2(t) are identical. A rendezvous is guaranteed for routes R1

and R2, if the agents using these routes meet at some time t, regardless of the
walks chosen by the adversary. A rendezvous algorithm executed by an agent in
a graph produces the route of the agent, given its starting point (and results of
coin tosses in the randomized scenario). We say that asynchronous rendezvous
is feasible from given initial positions, if there exist routes R1 and R2 starting
from these positions that guarantee rendezvous.
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An important feature of our rendezvous algorithms is that in the choice of
consecutive edges of its route an agent does not use the knowledge of the walk
to date. Thus the route depends only on the graph and on the starting point
chosen by the adversary (as well as on coin tosses for randomized algorithms),
but not on other decisions of the adversary.

Finally, we need to mention the termination problem. Since agents are iden-
tical and they do not know any bound on the size of the graph (in fact, the
graph can even be infinite), they are not able to recognize when rendezvous is
impossible. For example, agents situated in an oriented ring, where rendezvous
is impossible, cannot distinguish this situation from that of being in an oriented
ring with one node distinguished by an addition of a single leaf adjacent to it,
before visiting this special node. In the latter case rendezvous is possible. Hence
agents are never able to tell that rendezvous is impossible in the first situation
and in this case they walk indefinitely without meeting. We will show that when
rendezvous is possible, our agents always eventually meet and hence they stop.

Our results. In the deterministic scenario we characterize the initial positions
of the agents for which rendezvous is feasible. It turns out that this is the case
when the views2 from these initial positions are different or when these positions
are connected by a path whose corresponding sequence of port numbers is a
palindrome. We provide an algorithm guaranteeing deterministic asynchronous
rendezvous from all such initial positions in an arbitrary connected graph. In
the randomized scenario we show an algorithm that achieves asynchronous ren-
dezvous with probability 1, for arbitrary initial positions in an arbitrary con-
nected graph. In both cases the graph may be finite of arbitrary unknown size
or (countably) infinite. 3

Our result in the randomized scenario has the following, perhaps surpris-
ing, consequence. Fix an arbitrary positive constant ε. We show an algorithm
guaranteeing that two identical asynchronous agents equipped with a compass,
starting from arbitrary positions in the plane, will eventually get at distance
at most ε with probability 1. For synchronous agents (in the case of the plane
this restriction means that both agents move at constant identical speed), such
a result follows from the fact that a random walk on an infinite 2-dimensional
grid reaches any node of the grid with probability 1 [14]. Our algorithm permits
to accomplish such an ε-approach with probability 1 in the much harder asyn-
chronous setting, i.e., when each agent walks with arbitrary, possibly varying
speed, decided by the adversary . Moreover, our algorithm also works in higher
dimensions (e.g., in the 3-dimensional space), while random walks in an infinite
grid of dimension > 2 cannot be used (it is well known [14] that reaching a given
node of such grids by a random walk occurs with probability strictly smaller
than 1). To the best of our knowledge there are no previously known methods
of accomplishing an ε-approach of anonymous agents in the 3-dimensional space

2 See Section 2 for a precise definition of a view.
3 For simplicity, we assume that all node degrees are finite (although possibly un-

bounded). However, all our results can be easily generalized to graphs containing
nodes of (countably) infinite degrees.
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with probability 1, even in the synchronous scenario, while our algorithm permits
to do it in the much harder asynchronous setting.

Related work. A detailed discussion of the large literature on rendezvous, es-
pecially in the randomized scenario, can be found in the excellent book [3].
The recent survey [22] covers a large part of the literature on deterministic
rendezvous in graphs. Another line of research in this domain concerns the ge-
ometric scenario (rendezvous in the line, see, e.g., [8,16], or in the plane, see,
e.g., [5,6,9,15,23]). The probabilistic scenario where inputs and/or rendezvous
strategies are random was considered, e.g., in [1,2,4,8]. Randomized rendezvous
strategies often use random walks in graphs, which were thoroughly investigated
and applied also to other problems, such as on-line algorithms [10]. A generaliza-
tion of the rendezvous problem is that of gathering [15,17,18,21,25], when more
than 2 agents have to meet in one location.

If graphs are unlabeled, rendezvous requires breaking symmetry, which can
be accomplished either by coin tossing or – in the deterministic scenario – by
allowing marking nodes or by labeling the agents. Deterministic rendezvous with
anonymous agents working in unlabeled graphs but equipped with tokens used
to mark nodes was considered e.g., in [20]. In [27] the authors studied gathering
many agents with unique labels. In [13,19,24] deterministic rendezvous in graphs
with two labeled agents was considered. However, in all of the above papers, the
synchronous setting was assumed. Asynchronous gathering of anonymous agents
under geometric scenarios has been studied, e.g., in [9,15,23] in different models
than ours: agents could not remember past events, but they were assumed to
have at least partial visibility of the scene. Gathering many anonymous agents
in a graph, under an asynchronous scenario similar to the above but contrasting
with ours (no memory of past events but the whole graph can be seen by each
agent) has been studied in [17,18].

The first paper to consider deterministic rendezvous in graphs under our
model of asynchrony was [12]. The authors concentrated on complexity of ren-
dezvous of labeled agents in simple graphs, such as the ring and the infinite
line. They also showed feasibility of deterministic asynchronous rendezvous in
arbitrary finite connected graphs with known upper bound on the size. Asyn-
chronous rendezvous of labeled agents was studied in [11], both in arbitrary
connected graphs and in connected terrains in the plane. The main result of [11]
in the graph scenario was an algorithm guaranteeing asynchronous rendezvous
of arbitrary agents with distinct labels in an arbitrary connected graph. In [7]
the authors consider the asynchronous rendezvous problem in grids and in the
plane under the additional assumption that each agent knows its initial position
with respect to some common system of coordinates. In this stronger model they
show that agents starting in arbitrary positions in the plane can get at distance 1
from each other at cost O(d2polylog(d)), where d is the initial distance between
the agents. It should be stressed that both in [12,11] and in [7] agents were dis-
tinguishable: in the first case using labels, in the second case using coordinates.
Here is where our present scenario differs sharply: our agents are identical.



426 S. Guilbault and A. Pelc

2 Preliminary Notions and Results

We will use the following notion from [26]. Let G be a graph and v a node of G,
of degree k. The view from v is an infinite rooted tree V(v) with labeled ports,
defined recursively as follows. V(v) has the root x0 corresponding to v. For every
node vi, i = 1, . . . , k, adjacent to v, there is a neighbor xi in V(v) such that the
port number at v corresponding to edge {v, vi} is the same as the port number
at x0 corresponding to edge {x0, xi}, and the port number at vi corresponding to
edge {v, vi} is the same as the port number at xi corresponding to edge {x0, xi}.
Node xi, for i = 1, . . . , k, is now the root of the view from vi.

Our algorithms are based on the notion of a tunnel, introduced in [11]. Con-
sider any graph G and two routes R1 and R2 starting at nodes v and w,
respectively. We say that these routes form a tunnel, if there exists a prefix
[e1, e2, . . . , en] of route R1 and a prefix [en, en−1, . . . , e1] of route R2, for some
edges ei in the graph, such that ei = {vi, vi+1}, where v1 = v and vn+1 = w.
Intuitively, the route R1 has a prefix P ending at w and the route R2 has a
prefix which is the reverse of P , ending at v. For simplicity we will also say
that prefixes [e1, e2, . . . , en] and [en, en−1, . . . , e1] form a tunnel. The following
proposition was proved in [11].

Proposition 1. If routes R1 and R2 form a tunnel, then they guarantee ren-
dezvous.

We now briefly recall the idea of the rendezvous algorithm from [11], which,
as opposed to our scenario, works for agents that have distinct positive integer
labels. In [11] the authors assumed that each agent knows its own label but not
that of the other agent. Their algorithm will be later used as a building block
for our rendezvous of anonymous agents.

Let G = (V,E) be the connected graph in which the rendezvous must be
performed. Denote by N the set of positive integers. Let S be the set of all finite
sequences of positive integers. Let P = {(i, j, s′, s′′) | i, j ∈ N, i < j and s′, s′′ ∈
S}. Observe that the set P is countable. Let ϕ1, ϕ2, . . . be a fixed enumeration
of P .

For a finite path r in G, denote by r the path with the same edges as in r,
but in the reverse order. Remark that r and r form a tunnel. Consider a path
r = (e1, e2, . . . , em), such that ei = {vi, vi+1}. Let s = (p1, . . . , pm), where pi is
the port number at node vi, corresponding to ei. We say that the sequence s of
port numbers induces path r.

The algorithm from [11] forces the routes of any two agents to form a tunnel
for every possible combination of starting nodes and labels of the two agents. By
Proposition 1, this suffices to guarantee rendezvous. Any starting configuration
of agent i placed at node v and agent j placed at node w by the adversary
corresponds to a quadruple (i, j, s′, s′′) where s′ is a sequence of ports inducing
a path from v to w and s′′ is a sequence of ports inducing the reverse path from
w to v.

Each agent constructs its route in phases. In the beginning and at the end of
each phase the agent is in its starting node. In phase k the previously constructed
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initial part of the route is extended while the agent processes quadruple ϕk (some
of the extensions are null). This extension guarantees that the routes of agents
of the corresponding starting configuration will form a tunnel after both agents
have processed the quadruple ϕk . When agent with label l processes quadruple
ϕk = (i, j, s′, s′′) nothing happens if l �= i and l �= j. If l = i, agent i tries to
extend its route to guarantee rendezvous with agent j under the hypothesis that
a path q from v to w corresponds to the sequence s′ of ports and the reverse
path q corresponds to the sequence s′′. For this to happen, the agent first tries to
follow the path induced by the sequence s′ of ports. This attempt is considered
successful if the following conditions are satisfied:

• At consecutive nodes of the traversed path, ports with numbers from the
sequence s′ are available,
• The reverse path corresponds to the sequence s′′ of ports.

When the attempt is successful, the agent is at node w and has already traversed
the route rv

� q, where rv is the entire route traversed by it in the k − 1 first
phases. (The symbol � stands for concatenation.) Now it simulates the first
k − 1 phases of the execution of the algorithm by agent with label j starting
from w. The effect of this simulation is the path rw. Hence the agent traversed
route rv

� q � rw and is again in w. Now the agent goes back to v using path
q, it traverses rv getting back to v, traverses q again reaching w, uses rw getting
back to w and retracts to v using path q.

If l = j, the above actions are performed with the roles of i and j reversed
and the role of s′ and s′′ reversed. To summarize, after both agents with labels
i and j have processed the quadruple ϕk = (i, j, s′, s′′), where s′ is the sequence
of port numbers inducing q and s′′ is the sequence of port numbers inducing
q, then agent i traversed the route ρ = rv

� q � rw
� q � rv

� q � rw
� q.

and agent j traversed the route ρ′ = rw
� q � rv

� q � rw
� q � rv

� q.
By construction, the part rv

� q � rw
� q � rv

� q � rw of ρ and the part
rw

� q � rv
� q � rw

� q � rv of ρ′ form a tunnel, which guarantees rendezvous.
In order to construct the reverse paths q, rv, and rw, when the agent is

traversing one of the paths q, rv, or rw, each time it reaches a new node, it
stores the entry port number of the edge from which it arrives. The respective
reverse path is obtained by taking the sequences of entry port numbers in the
reverse order.

A finite path r in G is called a palindrome, if r and r are induced by the same
sequence of port numbers. (An equivalent condition is that the sequence of all
ports met when traversing this path is identical to its reverse sequence, i.e., to
this sequence read from end to beginning.)

3 Deterministic Rendezvous

In this section we characterize the initial positions of the agents for which de-
terministic rendezvous is feasible. More precisely, we show that these are initial
positions for which either views are different or which are connected by a path
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which is a palindrome. Moreover, we provide an algorithm guaranteeing deter-
ministic asynchronous rendezvous from all such initial positions in an arbitrary
connected graph.

The main difficulty in designing the algorithm is that, as opposed to [11],
agents do not have labels allowing them to break symmetry. Hence symmetry can
be broken only by inspecting the views of the agents, if these views are different.
Even when they are different, the agents cannot know how deeply these views
have to be explored to find the first difference. Thus the algorithm proceeds in
epochs: in each consecutive epoch each agent explores its view more deeply, and
creates a code of this truncated view, subsequently treating it as its temporary
label and applying the procedure described in the previous section to a restricted
list of quadruples. If views are different, a tunnel will be eventually created after
an epoch with sufficiently high index. The algorithm has an additional feature
permitting creation of a tunnel when views of the agents are the same but their
initial positions are joined by a path which is a palindrome. Below is a detailed
description of the algorithm.

Algorithm Deterministic-RV
We present the algorithm for an agent whose initial position is at node v. (The
name of the node is for description only, as nodes do not have labels.) The
algorithm proceeds in epochs numbered by consecutive integers 1, 2, . . . . In the
beginning and end of each epoch, the agent is in node v. In epoch n the agent first
performs a restricted depth-first search to depth n, leaving a visited node by all
ports with numbers at most n, in increasing order. At the end the agent is back
in v. Now the agent obtains the code C(v, n) of this DFS traversal, defined as
the sequence of port numbers it visited while performing it, with the provision
that all port numbers larger than n (by which the agent may have entered a
node) are replaced by 0. The code C(v, n) is a sequence of integers from the set
{0, 1, . . . , n} of length at most 4(n+1)n+1. Observe that if views V(v) and V(w)
are different, then C(v, n) �= C(w, n) for some integer n.

Now consider the following set of quadruples. A quadruple (c1, c2, s1, s2) be-
longs to this set if c1, c2 are sequences of numbers {0, 1, . . . , n} of length at most
4(n + 1)n+1, s1 and s2 are sequences of numbers 1, 2, . . . , n of lengths at most n
and either c1 �= c2, or c1 = c2 and s1 = s2. The list of all such quadruples ordered
lexicographically is denoted by Qn. Let ψn,i be the i-th quadruple in the list.

After obtaining the code C = C(v, n), the rest of epoch n is devoted to pro-
cessing quadruples from the list Qn in order and proceeds in stages. Stage i is
devoted to processing quadruple ψn,i = (c1, c2, s1, s2). At the beginning and end
of each stage, the agent is in node v. If C is different from c1 and from c2, nothing
happens in stage i. If C = c1, the agent processes the quadruple ψn,i similarly
as it was done for quadruple ϕk in the previous section. Let rv denote the route
traversed by the agent in all previous epochs and in the preceding part of the
current epoch. The route rv begins and ends at v. The agent tries to extend the
route rv to guarantee rendezvous with the other agent under the hypothesis that:
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(a) this agent is situated at a node w,
(b) c2 = C(w, n),
(c) a path q from v to w is induced by the sequence s1 of ports,
(d) the reverse path q is induced by the sequence s2.
The agent first tries to follow the path induced by the sequence s1 of ports. As
before, this attempt is considered successful if:
(1) at consecutive nodes of the traversed path, ports with numbers from the
sequence s1 are available,
(2) the reverse path corresponds to the sequence s2 of ports.

When the attempt is successful, the agent is at node w and has already traversed
the route rv

� q. Now it simulates all previous epochs and the preceding part
of the current epoch of the execution of the algorithm by an agent with code
c2 = C(w, n) starting from w. Observe that, in order to perform this simulation,
it is necessary to compute all codes C(w,m) for m < n, where c2 = C(w, n),
because an agent with code c2 in epoch n would have code C(w,m) in epoch
m < n. However, all codes C(w,m) for m < n can be deduced from C(w, n). This
is done as follows. From the code C(w, n) reconstruct the tree Tn corresponding
to the restricted depth-first search traversal to depth n. Now construct a subtree
Tm of Tn, by cutting off all subtrees rooted at children u of a node z such that
the port at z corresponding to edge {z, u} is larger than m. In this pruned
tree replace all port numbers larger than m by 0. Now the code C(w,m) is the
sequence of port numbers encountered while visiting Tm in a depth-first manner,
in increasing order of port numbers.

The effect of this simulation is the path rw . Hence the agent traversed route
rv

� q � rw and is again in w. Now the agent goes back to v using path q, it
traverses rv getting back to v, traverses q again reaching w, uses rw getting back
to w and retracts to v using path q.

If C = c2, the above actions are performed with the roles of c1 and c2 reversed
and the roles of s1 and s2 reversed. Notice that in our current algorithm the
processed quadruple can be of the form (c, c, s1, s2) (which could not happen
in the algorithm from [11], as labels where always assumed different). In this
case there is no ambiguity concerning the actions of the agent, because then the
equality s1 = s2 holds by the definition of the quadruples.

Upon completing all stages of epoch n, the agent starts epoch n + 1, until
rendezvous or indefinitely, if rendezvous is impossible.

Lemma 1. If views from the initial positions of the agents are different or if the
initial positions are connected by a path which is a palindrome, then Algorithm
Deterministic-RV guarantees asynchronous rendezvous.

Proof. First suppose that the views V(v) and V(w) from the initial positions v
and w of the agents are different. Consider the smallest n, such C(v, n) �= C(w, n)
and there exists a path q of length at most n between v and w, such that all port
numbers on q are at most n. Let c1 = C(v, n) and let c2 = C(w, n). Hence c1 �=
c2. Let s1 be the sequence of port numbers inducing q and let s2 be the sequence
of port numbers inducing q. Thus the quadruple (c1, c2, s1, s2) appears in the list
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Qn. Suppose that ψn,i = (c1, c2, s1, s2). We show that upon completion of stage
i of epoch n by both agents, a tunnel is formed and consequently asynchronous
rendezvous is guaranteed.

Let rv (resp. rw) be the route of the agent starting at v (resp. of the agent
starting at w) after completing all epochs 1, . . . , n− 1 and all stages 1, . . . , i− 1
of epoch n. Upon completing stage i of epoch n, the agent starting at v has
traversed the route ρ = rv

� q � rw
� q � rv

� q � rw
� q and the agent

starting at w has traversed the route ρ′ = rw
� q � rv

� q � rw
� q � rv

� q.
By construction, the part rv

� q � rw
� q � rv

� q � rw of ρ and the part
rw

� q � rv
� q � rw

� q � rv of ρ′ form a tunnel.
Next suppose that the views V(v) and V(w) from the initial positions v and

w of the agents are identical but these initial positions are connected by a path
q which is a palindrome. Let s be the sequence of port numbers inducing this
path and inducing the reverse path q. Let n be the larger of the two integers: the
length of the path q and the largest term of the sequence s. Let c = C(v, n) =
C(w, n). Thus the quadruple (c, c, s, s) appears in the list Qn. Suppose that
ψn,j = (c, c, s, s). We show that upon completion of stage j of epoch n by
both agents, a tunnel is formed and consequently asynchronous rendezvous is
guaranteed.

Let rv (resp. rw) be the route of the agent starting at v (resp. of the agent
starting at w) after completing all epochs 1, . . . , n− 1 and all stages 1, . . . , j − 1
of epoch n.

Upon completing stage j of phase 1 of epoch n, one agent has traversed the
route
rv

� q � rw
� q � rv

� q � rw
� q and the other agent has traversed the route

rw
� q � rv

� q � rw
� q � rv

� q. As before, these routes form a tunnel.

The next lemma shows that unless the initial positions of the agents satisfy the
condition of Lemma 1, asynchronous rendezvous cannot be guaranteed.

Lemma 2. If views from the initial positions of the agents are identical and
the initial positions are not connected by a path which is a palindrome, then
asynchronous rendezvous cannot be guaranteed.

Proof. Consider two agents starting at nodes v and w, such that V(v) = V(w).
Consider an arbitrary algorithm guaranteeing asynchronous rendezvous. It pro-
duces routes R(v) and R(w), respectively. Consider an adversary that moves
these agents along their routes at constant identical speed. A meeting of the
agents could either occur when they first get to some node u simultaneously, or
when they traverse the same edge e in the opposite directions simultaneously
(in which case rendezvous would occur in the middle of this edge). The first
situation is impossible because this would imply that distinct edges incident to
u have the same port number at u (in view of V(v) = V(w)). Hence we may as-
sume that the second situation occurs. Let π = (e1, . . . , ek) and π′ = (e′1, . . . , e′k)
be the parts of the routes R(v) and R(w), respectively, before the agents enter
edge e. In view of V(v) = V(w), the sequence of ports encountered by the agents
when they traverse these parts of their routes is the same and the ports at both
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extremities of edge e are identical. This implies that the path π � {e} � π′
connecting v and w is a palindrome.

Lemmas 1 and 2 imply our main result for deterministic asynchronous ren-
dezvous.

Theorem 1. Deterministic asynchronous rendezvous of anonymous agents is
feasible if and only if the views from the initial positions of the agents are dif-
ferent or the initial positions are connected by a path which is a palindrome. If
this condition is satisfied, Algorithm Deterministic-RV guarantees asynchronous
rendezvous of the agents.

4 Randomized Rendezvous

In this section we show a randomized algorithm that achieves asynchronous
rendezvous with probability 1, for arbitrary initial positions in an arbitrary con-
nected graph.

Algorithm Randomized-RV
We present the algorithm for an agent whose initial position is at node v. (As
before, the name of the node is for description only.) The algorithm proceeds
in epochs numbered by consecutive integers 1, 2, . . . . In the beginning and end
of each epoch, the agent is at node v. In the beginning of epoch n the agent
has a code C(v, n − 1) which is a binary sequence of length n − 1. The agent
starts epoch n by choosing a random bit with probability 1/2 and appending it
to C(v, n− 1), thus forming the code C(v, n).

Now consider the following set of quadruples. A quadruple (c1, c2, s1, s2) be-
longs to this set if c1 and c2 are different binary sequences of length n and s1

and s2 are sequences of numbers 1, 2, . . . , n of lengths at most n. The list of all
such quadruples ordered lexicographically is denoted by Pn. Let λn,i be the i-th
quadruple in the list.

After obtaining the code C = C(v, n), the rest of epoch n is devoted to
processing quadruples from the list Pn in order, and proceeds in stages. Stage
i is devoted to processing quadruple λn,i = (c1, c2, s1, s2). In the beginning and
end of each stage, the agent is in node v. If C is different from c1 and from
c2, nothing happens in stage i. If C = c1 or C = c2, the agent processes the
quadruple λn,i in the same way as it was done for quadruple ψn,i in Algorithm
Deterministic-RV. Notice that in our current algorithm (as opposed to Algorithm
Deterministic-RV) all processed quadruples satisfy c1 �= c2.

Upon completing all stages of epoch n, the agent starts epoch n + 1, until
rendezvous or indefinitely.

Theorem 2. Algorithm Randomized-RV guarantees asynchronous rendezvous
with probability 1, for arbitrary initial positions of the agents in an arbitrary
connected graph.
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Proof. Consider agents initially situated in nodes v and w. First observe that
the probability of the event that for some m the codes C(v,m) and C(w,m) are
different, is 1. Hence it is enough to prove that at some point of the execution
of the algorithm the routes of the agents form a tunnel, under the assumption
that C(v,m) �= C(w,m) for some m.

Let p be the smallest integer for which C(v, p) �= C(w, p). Let n ≥ p be the
smallest integer for which there exists a path q of length at most n joining v and
w, such that all ports on path q have numbers at most n. Denote c1 = C(v, n)
and c2 = C(w, n). Let s1 be the sequence of port numbers inducing q and let s2

be the sequence of port numbers inducing q. Thus the quadruple (c1, c2, s1, s2)
appears in the list Pn. Suppose that λn,i = (c1, c2, s1, s2). The same argument
as in the proof of Lemma 1 shows that upon completion of stage i of epoch n by
both agents, a tunnel is formed.

We conclude this section by presenting an application of the above Algorithm
Randomized-RV to the problem of approximate asynchronous rendezvous of
anonymous agents in the plane. Two agents (modeled as moving points) equipped
with compasses, start from arbitrary initial positions in the plane. For a fixed
constant ε > 0 known to the agents, ε-rendezvous consists in bringing the agents
at distance at most ε.

This problem can be solved with probability 1, by applying the above Al-
gorithm Randomized-RV as follows. Each agent executes this algorithm on a
rectangular ε-grid one of whose nodes is the initial position of the agent. More
precisely, neighbors of a given node in each grid are the four points North, East,
South and West of the given point, at distance ε. Port numbers corresponding
to these edges at each node of the grid are labeled 1, 2, 3, 4. Since each agent has
a compass, it can determine port numbers at each visited node of the grid.

Let v and w be the starting points of the agents and let Gv and Gw be the
respective grids of the agents. Denote by w′ the node of the grid Gv closest to
w (take any such node, if there are more than 1). The distance between w and
w′ is less than ε. Simulate the moves of the agent starting at w by making a
parallel shift by the vector [w,w′]. The simulated moves are on grid Gv starting
at w′. By Theorem 2, the agent starting at v and the (virtual) agent starting
at w′ will meet with probability 1 on grid Gv. At the time of their meeting, the
(real) agent starting at w is at distance less than ε from the agent starting at v.
Hence ε-rendezvous of the agents starting at v and at w is accomplished (with
probability 1).

It is interesting to compare this application of Algorithm Randomized-RV to
what can be done using other methods. For synchronous agents (i.e., agents mov-
ing in the plane at constant identical speed), ε-rendezvous in the plane with prob-
ability 1 follows from the fact that a random walk on an infinite 2-dimensional
grid reaches any node of the grid with probability 1 [14]. Our algorithm permits
to accomplish ε-rendezvous in the plane with probability 1 in the much harder
asynchronous setting.

More importantly, our algorithm works also in higher dimensions (e.g., in
the 3-dimensional space for agents with a “3-dimensional compass” that can
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establish directions North, East, South, West, Up and Down), while random
walks in an infinite grid of dimension > 2 cannot be used (it is well known
[14] that reaching a given node of such grids by a random walk occurs with
probability strictly smaller than 1).

5 Conclusion

Our deterministic algorithm accomplishes asynchronous rendezvous of anony-
mous agents in arbitrary connected graphs for all initial positions for which
such a rendezvous can be guaranteed. Our randomized algorithm accomplishes
rendezvous of anonymous agents in arbitrary connected graphs for all initial
positions, with probability 1. Hence, in terms of feasibility, the problem of asyn-
chronous rendezvous of anonymous agents is completely solved.

However, both our algorithms are inefficient in terms of the number of edge
traversals they use. The routes of the agents are obtained by appending simulated
routes of potential agents one after another, resulting in cost at least exponential
in the size of the graph, in case of finite graphs. Thus it is natural to ask if
there exists a deterministic algorithm accomplishing asynchronous rendezvous
of anonymous agents for feasible initial positions, or a randomized algorithm
accomplishing rendezvous of anonymous agents for all initial positions, with
probability 1, which uses a number of edge traversals polynomial in the size of
the graph, for agents operating in finite graphs.
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Abstract. Internet supercomputing provides means for harnessing the
power of a vast number of interconnected computers. With this come the
challenges of marshaling distributed resources and dealing with failures.
Traditional centralized approaches employ a master processor and many
worker processors that execute a collection of tasks on behalf of the
master. Despite the simplicity and advantages of centralized schemes,
the master processor is a performance bottleneck and a single point of
failure. Additionally, a phenomenon of increasing concern is that workers
may return incorrect results, e.g., due to unintended failures, over-clocked
processors, or due to workers claiming to have performed work to obtain
a high rank in the system. This paper develops an original approach
that eliminates the master and instead uses a decentralized algorithm,
where workers cooperate in performing tasks. The failure model assumes
that the average probability of a worker returning a wrong result is
inferior to 1/2. We present a randomized synchronous algorithm for n
processors and t tasks (t ≥ n) achieving time complexity Θ( t

n
log n) and

work Θ(t log n). It is shown that upon termination the workers know
the results of all tasks with high probability, and that these results are
correct with high probability. The message complexity of the algorithm is
Θ(n log n), and the bit complexity is O(tn log3 n). Simulations illustrate
the behavior of the algorithm under realistic assumptions.

Keywords: Distributed Algorithms, Fault-Tolerance, Internet Super-
computing.

1 Introduction

Internet supercomputing is becoming a popular means for harnessing the com-
puting power of an enormous number of processors around the world. A typical
Internet supercomputer consists of a master computer and a large number of
computers called workers. Applications submit the tasks to be performed to
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the master that in turn directs the workers to perform the tasks and then col-
lects the results. Several Internet Supercomputers are in existence today. For
instance, Internet PrimeNet Server encompasses about 30,000 computers, achiev-
ing throughput of over 1 teraflop [1], and even higher throughput is reported by
the SETI@home project [2].

A major concern in network supercomputing is the correctness of the results
returned by the workers. While most workers may be reliable, workers have
been known to return incorrect results. This may be due to unintended failures
caused (e.g., by over-clocked processors), or the workers claiming to have per-
formed assigned work so as to obtain incentives, such as getting higher rank on
the SETI@home list of contributed units of work. Prior research developed mod-
els and algorithms for network supercomputing, e.g., [5,6,11]. In these models it
is assumed that a reliable master and a collection of unreliable workers coopera-
tively perform a set of tasks. Using a variety of probabilistic failure models, the
goal is to design algorithms that correctly perform all tasks with high probability.
One drawback of this approach is the assumption of the existence of a reliable
master processor. Despite the simplicity and advantages of this approach, the
master is a single point of failure. The master is further assumed to be able to
keep up with the large number of results returned by the workers, making such
systems poorly scalable. In any message passing system, during some short time
interval, a network node can maintain only a limited number of connections.
Thus scalable distributed (i.e., not centralized) solutions are desirable.

In the current paper, we aim to remove the assumption of an infallible and
bandwidth-unlimited master processor and consider a fully decentralized solution
using just the cooperating workers.

Contributions. We consider the problem of performing t tasks in a distributed
system of n workers. The tasks are independent, they admit at-least-once ex-
ecution semantics, and each task can be performed by any worker in constant
time. The workers either obtain the tasks from some repository or the tasks are
initially known to all processors. The workers can return incorrect results and ul-
timately crash. The fully-connected message-passing system is synchronous, and
the workers communicate using authenticated messages (to prevent malicious
workers from impersonating other workers). Our system of autonomous proces-
sors is fully decentralized in the sense that it does not contain any distinguished
participants (e.g., a master). We present an original randomized decentralized
algorithm of logarithmic time complexity, where in each iteration of the algo-
rithm each worker sends just one message. The algorithm works under several
failure models differing in the assumptions about the fraction of possibly faulty
workers and the failure probabilities. In more detail our contributions are as
follows.

1. We define a general failure model F, where each worker i (i ∈ [n]) inde-
pendently returns an incorrect result, each time it performs a task, with
probability pi, such that 1

n

∑
i∈[n] pi <

1
2 − ε for some ε > 0. (We show later

how this model specializes to other intuitive models.)
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2. We provide a n-processor, n-task decentralized randomized algorithm for
model F that works in synchronous rounds. The number of rounds performed
by the algorithm is an external (compile-time) parameter. Within each round
each processor performs a random task (for some number of rounds), and
communicates its cumulative knowledge to one randomly chosen processor.
The algorithm naturally generalizes for t tasks, where t ≥ n, by having
processors work on groups of �t/n� tasks instead of single tasks.

3. We analyze our algorithm under model F and show that it is sufficient for
it to iterate for Θ(log n) rounds in order to perform all tasks with high
probability (whp). More specifically, we prove that after Θ(log n) rounds
every processor holds the array of computed results that are all correct whp,
and that the arrays of results are consistent among all processors whp. With
t tasks (t ≥ n), the algorithm has time complexity Θ( t

n logn), message

complexity Θ(n logn), bit communication complexity O(t n log3 n), space
complexity is Θ(t n log2 n), and work Θ(t log n).

4. We show that failure model F can be extended to incorporate processor
crashes in the way that does not require any changes to our algorithm. We
also present three additional failure models that specialize model F and that
are more intuitive. Since each of these models is a specialization of model
F, the same algorithm works under all these models and has the same (or
better) complexity.

5. We present selected simulation results that illustrate and provide insights
into the behavior of the algorithm.

Note that our problem is related to the Do-All problem [4,9] of using n proces-
sors to perform a collection of t independent tasks in the presence of adversity.
However the two problems are not identical. In Do-All, the problem is solved
when some correct processor knows that all tasks have been performed. In our
problem, with the removal of the infallible master, a client application should be
able to obtain the results from any worker. Thus the current problem is solved
when all correct processors know that all tasks have been performed and are in
the possession of the results of all tasks (whp in this work).

Consequently, an algorithm solving our problem is also an algorithm for Do-
All, but not necessarily vice versa. Additionally a lower bound for Do-All is
also a lower bound for the current problem. In [3] Chlebus and Kowalski give a
lower bound Ω(t+n logn

log logn ) on work of any algorithm solving Do-All, including
randomized, against an adaptive linearly bounded adversary. This bound applies
also to the current problem, and the work of our algorithm is close to this bound.

Prior work. Several approaches have been explored to improve the quality
of the results obtained from untrusted workers. Fernandez, Georgiou, Lopez,
and Santos [5,6] and Konwar, Rajasekaran, and Shvartsman [11] consider a dis-
tributed system consisting of a reliable master and a collection of workers that
execute tasks on behalf of the master, where the workers may act maliciously
by deliberately returning wrong results. Works [5,6,11] focus on designing algo-
rithms that help the master determine the correct result with high probability,
and at the least possible cost in terms of the total number of tasks executed.
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The failure models assume that some fraction of processors can exhibit faulty
behavior.

Gao and Malewicz [8] consider the problem of maximizing the expected num-
ber of correct results when the tasks have dependencies. Their distributed system
is composed of a reliable server that coordinates unreliable workers that com-
pute correctly with some probability, and where any incorrectly performed task
corrupts all dependent tasks. The goal is to produce a schedule for task execu-
tion by the participants that maximizes the expected number of correct results
under a constraint on the computation time.

Paquette and Pelc [13] consider a general model of a fault-prone system in
which a decision has to be made on the basis of unreliable information. They
assume that a Boolean value is conveyed to the deciding agent by several pro-
cessors. An a priori probability distribution of this value is known to the agent
and can be any arbitrary distribution. Relaying processors are assumed to fail
independently with a known probability distribution. Fault-free processors relay
the correct value, but faulty ones may behave arbitrarily. The deciding agent
receives the vector of relayed values and must make a decision concerning the
original value. The authors design a deterministic decision strategy with a high
probability of correctness, and it is shown that a locally optimal decision strategy
need not have the highest probability of correctness globally.

We have already mentioned the related problem of distributed cooperation
called Do-All. Many algorithms, both deterministic and randomized, have been
developed for Do-All in various models of computation, including message-passing
and shared-memory models [10,9]. A related problem is the Omni-Do problem of
performing a collection of tasks with the help of group communication services
in partitionable networks [9].

Document structure. In Section 2 we give models of computation and failure,
and measures of efficiency. Section 3 presents our algorithm. In Section 4 we carry
out the analysis of the algorithm and derive complexity bounds. In Section 5
we deal with processor crashes. In Section 6 we present the simulation of the
algorithm. We conclude in Section 7 with a discussion.

2 Model of Computation and Definitions

System model. We consider a set of n processors, or workers, each with a
unique identifier (id) from set P = [n]. We refer to the processor with id i
as processor i. The system is synchronous and the processors communicate by
exchanging reliable authenticated messages. Computation is structured in terms
of synchronous steps, where in each step a processor can send or receive messages,
and perform some local computation. The duration of each step depends on the
algorithm and need not be constant (e.g., it may depend on n), but it is fixed
at compile-time. Messages received by a processor in a given step include all
messages sent to it in the previous step.

Tasks. There are t tasks to be performed, each with a unique id from set T =
[t]. We refer to the task with id i as Task[i]. Workers obtain tasks from some
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repository or workers initially know all tasks. The tasks are (a) similar, meaning
that any task can be done in constant time by any processor, (b) independent,
meaning that each task can be performed independently of other tasks, and
(c) idempotent, meaning that the tasks admit at-least-once semantics and can
be performed concurrently. For simplicity, we assume that the outcome of each
task is a binary value. The problem is most interesting when there are at least
as many tasks as there are processors, thus we only consider t ≥ n.

Models of Failure. Some processors may exhibit faulty behavior by (mali-
ciously) returning an incorrect result for a task. We assume that the result of
each task is signed by the performing processor and that the signatures are
unforgeable. The main failure model is defined as follows.

Model F: Each worker, independently of other workers, returns faulty results
for a performed task with probability pi, for i ∈ [n], such that, 1

n

∑
i pi <

1
2−ε

for some ε > 0.

We use the constant ε to ensure that the average probability of worker misbe-
havior does not become arbitrarily close to 1/2 as n tends to infinity.

In algorithm simulations we also use three related specialized models that
were introduced in [5,11] in the context of the centralized master-worker setting.

Model Fa: Each worker, independently of other workers, returns faulty results
for a task with probability p < 1

2 .

Model Fb: A fixed fraction f of workers can return faulty results for any task
with probability p, with fp < 1

2 .

Model Fc: A fixed fraction f of workers can return faulty results for any task,
with f < 1

2 .

Observe that model F generalizes these specialized models since in all three
cases the average probability of worker returning a wrong result is inferior to
1/2. Thus any algorithm that solves our problem in model F also solves it in
models Fa, Fb, and Fc. Because the last three models are simpler to implement
we use them in simulations.

Measures of efficiency. We use the conventional worst-case measures of time
complexity, work complexity, and space complexity. Message complexity is the
worst-case number of point-to-point messages sent in an execution, and bit com-
plexity is the total number of bits sent in all messages.

Lastly, we use the common definition of an event E occurring with high prob-
ability (whp) to mean that Pr[E ] = 1−O(n−α) for some constant α > 0.

3 Algorithm Description

In this section we present our decentralized algorithm A that employs no mas-
ter and instead uses a gossip-based approach. We present the algorithm for n
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procedure for processor i;
external n /* the number of processors and tasks */
external L /* 2L is the the number of rounds */
Task[1..n] /* set of tasks */
Ri[1..n] init ∅n /* set of collected results */
Resultsi[1..n] /* array of results */

Compute:
1: Randomly select j ∈ T /* choose task id */
2: Compute the result vj for Task[j]
3: Ri[j]← {〈vj , i, 0〉} /* Record result for round 0 */

for r = 1 to 2L do
Send:

4: Randomly select a processor q ∈ P
5: Send the array Ri[ ] to processor q

Receive:
6: Let M be the set of received messages
7: for all j ∈ T
8: Ri[j]← Ri[j] ∪ {R[j] : R[ ] ∈M}

Compute:
9: if r < L then

10: Randomly select j ∈ T /* choose task id */
11: Compute the result vj for Task[j]
12: Ri[j]← Ri[j] ∪ {〈vj , i, r〉}

13: for each j ∈ T
14: Resultsi[j]← u such that triples 〈u, , 〉 form a plurality in Ri[j]

end

Fig. 1. Algorithm A at processor i for i ∈ P , and t = n

processors and t = n tasks. The algorithm naturally generalizes for t tasks,
where t ≥ n, by having processors perform work on fixed groups of �t/n� tasks
instead of single tasks (we discuss this in more detail at the conclusion of the
analysis). Each processor (worker) maintains two arrays of size linear in n, one
used to accumulate knowledge gathered from different processors, and another
to store the results. The algorithm works in synchronous rounds. The number
of rounds performed by the algorithm is an external (compile-time) parameter.
Within each round a processor communicates its cumulative knowledge to one
randomly chosen processor and performs a random task (for some determined
number of rounds). The pseudocode for the algorithm is given in Figure 1, and
we now detail it.

Local knowledge and state variables. Every processor i maintains the fol-
lowing:
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– L, the external parameter that is used to control the number of iterations,
i.e., 2L, of the main loop; r is the current round (iteration) number.

– The array of results Ri[1..n], where the element Ri[j], for j ∈ T , is the set
of results for Task[j]. Each Ri[j] is a set of triples 〈vj , i, r〉 representing the
result vj computed for Task[j] by processor i during round r. The use of
such triples eliminates repeated inclusions of the results for the same task,
in the same round, by the same processor.

– The array Resultsi[1..n] stores the final results.

Control flow. The algorithm contains the main for-loop, and we use the term
round to refer to a single iteration of the loop. The loop contains three stages
(or steps), viz., Send, Receive, and Compute. The algorithm starts by performing
a single Compute stage, after which it enters the main loop. The algorithm
uses an external parameter L (whose value is established in the analysis of the
algorithm). The main loop iterates 2L times, where in the first L iterations all
three stages are executed, and the final L iterations only the Send and Receive
stages are executed. (We will prove that L needs to be Θ(log n) to yield our high
probability guarantee.)

We now describe the stages in more detail, starting with Compute. In Compute
stage in round r processor i randomly selects a task j, computes the result vj ,
and adds the triple 〈vj , i, r〉 to the results set Ri[j]. This is done in the first L
rounds.

In each Send stage, a processor choses a target processor q at random from
the set of processors P . The array of results R[ ] is sent to processor q.

During the Receive stage processor i receives messages (if any) sent to it
during the Send stage by other processors (including itself). Upon receiving the
messages the processor updates its Ri[j] (for each j ∈ T ) by taking a union with
the triples for task j received in all messages.

When the main loop terminates after 2L rounds, each processor goes over
the result set for every task and computes the result that corresponds to the
plurality of the results (in the analysis we prove that in fact a majority exists).
The results of the tasks are available locally in array Resultsi[1..n].

4 Algorithm Analysis

We now analyze algorithm A for t = n, then extend the analysis to t ≥ n. We
start by stating the Chernoff bound result that we use in several places.

Lemma 1 (Chernoff Bounds). Let X1, X2, · · · , Xn be n independent Bernoulli
random variables with Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi, then it holds
for X =

∑n
i=1 Xi and μ = E[X ] =

∑n
i=1 pi that for all δ > 0, (i) Pr[X ≥

(1 + δ)μ] ≤ e−
μδ2

3 , and (ii) Pr[X ≤ (1− δ)μ] ≤ e−
μδ2

2 .

The following lemma shows that within Θ(log n) rounds of algorithm A every
task τ is chosen for execution Θ(log n) times whp. Weaker variations of Lemma 2
are known in the literature, e.g., see the Occupancy Problem [12]. We prove our
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lemma for completeness, and more importantly, for acquiring a stronger bound
required for our complexity results.

Lemma 2. In Θ(log n) rounds of the algorithm every task is performed Θ(log n)
times whp, possibly by different processors.

Proof. Let us assume that after L = k logn rounds of algorithm A, where k is
a sufficiently large constant, there exists a task τ that is performed less than
(1 − δ)L times among all workers, for some δ > 0. We prove that whp such a
task does not exist.

According to our assumption at the end of round L for some task τ , we have
|∪n

j=1Rj [τ ]| < (1−δ)L. Let Xi be a Bernoulli random variable such that Xi = 1
if the task was chosen to be performed in line 10 (only once the task is chosen
in line 1) of the algorithm, and Xi = 0 otherwise.

Let us next define the random variable X = X1+ · · ·+XLn to count the total
number of times task τ is performed by the end of L rounds of algorithm A.

Note that according to line 10 any worker picks a task uniformly at random.
To be more specific let x be an index of one of Ln executions of line 10. Observe
that for any x, Pr[Xx = 1] = 1

n given that the workers choose task τ uniformly

at random. Let μ = E[X ] =
∑Ln

x=1
1
n = L, then by applying Chernoff bound, for

the same δ > 0 chosen as above, we have:

Pr[X ≤ (1− δ)L] ≤ e−
Lδ2

2 ≤ e−
(k log n)δ2

2 ≤ 1

n
cδ2

2

≤ 1

nα

where α > 1 for some sufficiently large c. Now let us denote by Eτ the fact that
| ∪n

i=1 Ri(τ)| > (1 − δ)L by the round L of the algorithm and we denote by Ēτ
the complement of that event. Next by Boole’s inequality we have Pr[∪τ Ēτ ] ≤∑

τ Pr[Ēτ ] ≤ 1
nβ , where β = α − 1 > 0. Hence each task is performed at least

Θ(log n) times whp, i.e., Pr[∩τEτ ] = Pr[∪τ Ēτ ] ≥ 1− 1
nβ .

The following lemma shows that whp after Θ(log n) rounds of the algorithm
every worker obtains every triple generated in the system by either generating
it locally or by means of gossiping.

A somewhat similar result is shown by Fraigniaud and Glakkoupis [7] who
study the communication complexity of rumor-spreading in the random phone-
call model. They consider n players communicating in parallel rounds, where
in each round every player u calls a randomly selected communication partner.
Player u is allowed to exchange information with the partner, either by pulling
or pushing information. In order to avoid repetition, we anchor part of our proof
to their results related to the push part of their algorithm.

The following lemma, proved in [7], shows that every triple ϑ = 〈vj , i, r〉 (in
their work a rumor ρ) is disseminated to at least 3

4n workers (in their work
players) whp.

Lemma 3. With probability 1−n−3+o(1), at least 3
4 fraction of the players knows

ρ at the end of round τ = lgn+ 3 lg lg n.

Our proof also makes use of the Coupon Collector’s problem [12]:
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Definition 1. The Coupon Collector’s Problem (CCP). There are n types of
coupons and at each trial a coupon is chosen at random. Each random coupon is
equally likely to be of any of the n types, and the random choices of the coupons
are mutually independent. Let m be the number of trials. The goal is to study the
relationship between m and the probability of having collected at least one copy
of each of n types.

In [12] it is shown that E[X ] = n lnn + O(n) and that whp the number of
trials for collecting all n coupon types lies in a small interval centered about its
expected value. Now we state and prove the needed lemma.

Lemma 4. If every task is performed Θ(log n) times, then whp in Θ(log n)
rounds of the algorithm each worker acquires the results for every task.

Proof. Let us assume that in some round r task j is performed by worker i; thus
a triple ϑ ≡ 〈vj , i, r〉 is generated by worker i, where vj is the calculated value
of task j.

By applying Lemma 3 to our algorithm we infer that in Θ(log n) rounds of
algorithm A at least 3

4n of the workers become aware of triple ϑ whp. Next
consider any round d such that at least 3

4n of the workers are aware of triple ϑ
for the first time. Let us denote this subset of workers by Sd (|Sd| ≥ 3

4n.)
We denote by Ud the remaining fraction of the workers that are not aware of

ϑ. We are interested in the number of rounds required for every worker in Ud to
learn about ϑ whp by receiving a message from one of the workers in Sd in some
round following d.

We show that, by the analysis very similar to CCP, in Θ(log n) rounds triple
ϑ is known to all workers whp. Every worker in P has a unique id, hence we can
think of those workers as of different types of coupons and we assume that the
workers in Sd collectively represent the coupon collector. In this case, however,
we do not require that every worker in Sd contacts all workers in Ud whp. Instead,
we require only that the workers in Sd collectively contact all workers in Ud whp.
According to our algorithm in every round every worker in P (Sd ⊂ P), selects
a worker uniformly at random and sends all its data to it. Let us denote by
m the collective number of trials by workers in Sd to contact workers in Ud.
According to CCP if m = O(n lnn) then whp workers in Sd collectively contact
every worker in P , including those in Ud. Since there are at least 3

4n workers
in Sd then in every round the number of trials is at least 3

4n, hence in O(lnn)
rounds whp all workers in Ud learn about ϑ. Therefore, in Θ(log n) rounds whp
all workers in Ud learn about ϑ.

Thus we showed that if a new triple is generated in the system then whp it will
be known to all workers in Θ(log n) rounds. Now by applying Boole’s inequality
we want to show that whp in Θ(log n) rounds all generated triples are spread
among all workers.

According to our algorithm every worker generates L = Θ(log n) triples before
it terminates. We have n workers which means that by the end of the algorithm
the number of generated triples is Θ(n log n). Let us denote the set of all gener-
ated triples by V . Let Eϑ be the event that some triple ϑ is not spread around
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among all workers when the algorithm terminates. In the preceding part of the
proof we have shown that Pr[Eϑ] <

1
nβ , where β > 1. By Boole’s inequality, the

probability that there exists one triple that did not get spread to all workers,
can be bounded as

Pr[∪ϑ∈VEϑ] ≤ Σϑ∈VPr[Eϑ] = Θ(n log n)
1

nβ
≤ 1

nγ

where γ > 0. This implies that upon termination every worker collects all
Θ(n log n) triples generated in the system whp.

Next theorem shows that at termination the correct result for each task is
obtained from the collectively computed results, whether correct or incorrect.

Theorem 1. In Θ(log n) rounds algorithm A produces the results of all n tasks
correctly at every processor whp.

Proof. We first prove that at termination the algorithm computes correctly a
majority of the results for any task τ whp. Then we argue that whp at termination
the result computed for each task by any processor is correct.

In order to prove the first step we estimate (with a concentration bound) the
number of times the results are computed correctly. Then we estimate the bound
on total number of times task τ was computed (whether correctly or incorrectly),
and we show that a majority of the results are computed correctly.

Let us consider random variables Xir that denote the success or failure of
correctly computing the result of some task τ in round r by worker i. Specifically,
Xir = 1 if in round r, worker i computes the result of task τ correctly, otherwise
Xir = 0. According to our algorithm we observe that Pr[Xir = 1] = qi

n and
Pr[Xir = 0] = 1−Pr[Xir = 1], where qi ≡ 1− pi.

Let Xr ≡
∑n

i=1 Xir denote the number of correctly computed results for task
t among all workers during round r. By linearity of expected values of a sum of
random variables we have

E[Xr] = E[

n∑
i=1

Xir] =

n∑
i=1

E[Xir] =

n∑
i=1

qi
n

We denote by X ≡
∑L

r=1 Xr the number of correctly computed results for some
task τ at termination. Again, using the linearity of expected values of a sum of
random variables we have

E[X ] = E[

n∑
i=1

L∑
r=1

Xir] =
L

n

n∑
i=1

qi

Note that since 1
n

∑n
i=1 qi > 1

2 + ε, for some fixed ε > 0, there exists some

δ > 0, such that, (1 − δ)Ln
∑n

i=1 qi > (1 + δ)L2 . Also, observe that the ran-
dom variablesX1, X2, · · · , XL are mutually independent. Therefore, by applying
Chernoff bound on X1, X2, · · · , XL we have
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Pr[X ≤ (1 − δ)E[X ]] ≡ Pr[X ≤ (1− δ)
L

n

n∑
i=1

qi] ≤ e−
δ2L(1+δ)
4(1−δ) ≤ 1

nα1

where α1 > 1 such that L = k logn for some sufficiently large constant k > 0.
Let us now count the total number of times task τ is chosen to be performed

during the execution of the algorithm in the course of the first L rounds. We
represent the choice of task τ by worker i during round r by the random variable
Yir. We assume Yir = 1 if τ is chosen by worker i in round r, otherwise Yir =
0. Since Yir’s are mutually independent we have E[Yir] = 1

n . We denote by

Y ≡
∑n

i=1

∑L
r=1 Yir the number of times task t is computed at termination.

By linearity of expected values we have E[Y ] = L. Then by applying Chernoff
bound for the same δ > 0 chosen as above we have

Pr[Y ≥ (1 + δ)E[Y ]] ≡ Pr[Y ≥ (1 + δ)L] ≤ e−
δ2L
3 ≤ 1

nα2

for some α2 > 1. Hence, applying Boole’s inequality to the bounds on the above
two events

Pr[{X ≤ (1− δ)
L

n

n∑
i=1

qi} ∪ {Y ≥ (1 + δ)L}] ≤ 2

nα

where α = min{α1, α2} > 1
Therefore, from above and by using (1− δ)Ln

∑n
i=1 qi > (1 + δ)L2 we have

Pr[Y/2 < X ] ≥ Pr[{Y < (1 + δ)L} ∩ {X > (1− δ)
L

n

n∑
i=1

qi}]

= 1−Pr[{Y ≥ (1 + δ)L} ∪ {X ≤ (1− δ)
L

n

n∑
i=1

qi}]

≥ 1− 1

nβ

for some β > 1. Hence, at termination of the algorithm whp the majority of
calculated results for task τ are correct. Let us denote this event by Et.

From above we have Pr[Eτ ] ≤ 1
nβ . Now, by Boole’s inequality we obtain

Pr[
⋃
t∈T

Eτ ] ≤
∑
τ∈T

Pr[Eτ ] ≤
1

nβ−1
≤ 1

nγ

where T is the set of all n tasks, and γ > 0.
By Lemma 4 whp all calculated results of every task are disseminated across

all workers. Thus, the majority of the results computed for any task at any
worker is the same among all workers, and moreover it is correct whp. Recall
that according to our algorithm (line 14) every processor computes the result
of every task by taking the plurality of calculated results, and hence the claim
of the theorem.



446 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

Algorithm A terminates after Θ(log n) rounds and thus every processor gen-
erates Θ(log n) triples. This implies that at termination Θ(n logn) triples are
generated. To obtain consistent and correct results among all processors whp we
want all processors to hold the same set of triples. Each triple consists of the
calculated result of a task, the id of the processor that performed the task, and
the round number. Thus Θ(log n) bits are required to represent each triple. Next
we assess work, message, bit, and space complexities.

Theorem 2. Algorithm A has work complexity Θ(n logn), message complexity
Θ(n log n), bit complexity O(n2 log3 n), and space complexity Θ(n2 log2 n).

Proof. Algorithm A terminates in Θ(log n) rounds, thus its work is Θ(n log n).
In every round every worker sends one message to a randomly chosen worker
(including itself). Hence, the message complexity is Θ(n log n).

Now let us estimate bit complexity. For every performed task algorithm adds
a triple to the result set, where Θ(log n) bits are required to store a triple.
According to our algorithm every processor sends O(n log2 n) bits in every round,
where the additional multiplicative logn factor represents the number of different
triples per task. On the other hand, the algorithm terminates in Θ(log n) rounds,
hence every processor communicates O(n log3 n) bits of information to other
processors. Therefore, the bit complexity of the algorithm is O(n2 log3 n).

Finally, it is easy to see that space complexity of the algorithm is Θ(n2 log2 n).
Indeed, by termination of the algorithm every processor i holds an array of sets
Ri and the result vector Resultsi, for i ∈ [n]. The result vector consists of
just n bits. On the other hand, according to Lemmas 2 and 4, after algorithm
terminates each Ri[j] contains Θ(log n) triples whp, hence the number of bits
required for each Ri[j] is Θ(log2 n), where i, j ∈ [n]. Considering that the number
of tasks and processors is n, the total bit complexity is Θ(n2 log2 n).

Finally, we extend the algorithm to handle the number of tasks larger than the
number of processors as follows. Let T ′ = [t] be the set of unique task identifiers,
where t ≥ n. We segment the t tasks into groups of �t/n� tasks, and construct
a new array of super-tasks with identifiers T = [n], where each super-task takes
Θ(t/n) time to perform by any processor. For a super-task τ , the result vτ is
now a sequence of �t/n� bits, instead of a single bit. We now use algorithm A,
where the only difference is that each Compute stage takes Θ(t/n) time, and the
data structures are larger to accommodate the results consisting of �t/n� bits.
We call the resulting algorithm A′ and we show the following.

Theorem 3. For t ≥ n algorithm A′ has time complexity Θ( t
n logn), work com-

plexity Θ(t log n), message complexity Θ(n log n), bit complexity O(t n log3 n),
and space complexity Θ(t n log2 n).

Proof sketch. As with algorithm A, algorithm A′ takes Θ(log n) iterations to
produce the results whp, except that each iteration now takes Θ(t/n) time. This
yields time complexity Θ( t

n logn). Work complexity is then n · Θ( t
n logn) =

Θ(t log n).
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The message complexity remains the same at Θ(n log n) as the number of
messages does not change. The messages are larger, however, by a factor of t/n
relative to the result of Theorem 2, thus the bit complexity is O(t n log3 n).
Lastly, the storage requirements are increased by the same factor, resulting in
space complexity Θ(tn log2 n). �
In closing this section we note that the same results hold for models Fa, Fb, and
Fc, since they are direct specializations of model F .

5 Tolerating Crash Failures

We now show that algorithm A correctly performs n tasks whp even if up to
fn processors crash for a constant f , where 0 < f < 1, under failure model
F. We prove that the asymptotics of the algorithm are unchanged if crashes do
not invalidate the definition of model F, meaning that the average probability
of a non-crashed worker returning an incorrect result remains inferior to 1/2.
Specifically, we show that Lemmas 2 and 4, and Theorem 1 remain valid under
this model.

In any execution of Algorithm A we denote the set of processors that do not
crash by P ′, and we let n′ = |P ′|. As before, we start with t = n.

Lemma 5. In Θ(log n) rounds of the algorithm every task is performed Θ(log n)
times whp, possibly by different processors when at most fn processors can crash.

Proof sketch. In the worst case all failure prone processors will crash in the first
round of the algorithm. Thus, it is sufficient to prove that whp every task is
performed Θ(log n) times among the processors in P ′. In order for every task to
be performed Θ(log n) times whp by processors in P ′ it is sufficient to increase
the value of L by a factor λ = 1

1−f (compared to the case without crashes). Since
all processors pick a new task to be performed from the set of n tasks uniformly
at random (line 10 of algorithm A) we can prove the results by carrying out the
computation using Chernoff bound as in the proof of Lemma 2. �
Now we prove that whp after Θ(log n) rounds of the algorithm every worker in
P ′ holds the same set of triples for every task.

Lemma 6. If processors in P ′ collectively hold Θ(log n) calculated results for
every task, then whp in Θ(log n) rounds of the algorithm each processor i ∈ P ′

obtains all Θ(log n) triples for every task j, when at most fn processors crash.

Proof sketch. Consider a triple ϑ that is generated (or obtained by gossiping) by
some processor in P ′. The proof of Lemma 4 uses the results from Lemma 3 and
CCP. Both of these results rely on the fact that there are Θ(n) participating
processors, and since there are at most fn processors that crash we have Θ(n)
processors left in P ′. Therefore, following a similar line of analysis we can claim
the lemma with respect to the processors that do not crash until the end of
algorithm A and the triples possessed by them. �

The final theorem shows that whp the correct results for each task are com-
puted in Θ(log n) rounds by the processors in P ′.
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Theorem 4. Algorithm A computes all n tasks correctly at every live processor
in Θ(log n) rounds whp and has work Θ(n logn) in the presence of at most fn
crashes.

Proof sketch. To prove this we need to show that, at termination, for any task t
the majority of the results are computed correctly whp. Note that if we consider
only the results (triples) that are generated by the processors in P ′ then our high
probability correctness results can be shown similarly to the proof of Theorem 1.
Suppose that we also consider the triples that are generated by the processors
that are not in P ′. Note that according to our assumption the average probability
of a worker returning an incorrect result remains inferior to 1/2 in spite of
crashes. Hence, the probability of correctly choosing the result for a task is not
affected. Since algorithm A terminates in Θ(log n) rounds its work cannot exceed
Θ(n log n). �
Clearly in the presence of up to fn crashes the message and bit complexities, as
well as the space complexity of the algorithm A remains unchanged. Although
the complexity results do not change in the presence of crashes, it is important
to note that the overall number of rounds may increase by a constant factor of
λ = 1

1−f .
Finally, the algorithm is extended as discussed in the previous section to deal

with t tasks when t ≥ n. Given Theorem 4, the complexity bounds established
in Theorem 3 remain valid in the crash-extended failure model.

6 Simulation Results

To illustrate our analytical findings we present selected simulation results of
algorithm A (for t = n) in model F and in model Fc. We use model F as the
most general model, and we use model Fc to show the behavior of the algorithm
in one of the specialized settings. (We do not show simulations for all defined
models for paucity of space.)

Theorems 1 and 4 show that algorithm A performs all n tasks correctly whp at
every node in Θ(log n) rounds. In simulations we let L = k logn, where k > 0 is
a constant. We carried out simulations for up to n = 1000 tasks and processors,
and for modest values of k ∈ {2, 3, 4}. For every n paired with every k we ran the
simulation for 100 times and graphed the average of the percentage of incorrectly
calculated results as the function of n and k. In all simulations the calculated
results are always consistent among all processors in every run of the algorithm
as anticipated by Lemmas 4 and 6.

Figures 2 and 3 show results for model Fc and model F (without crashes)
respectively. For model Fc we let f = 1

4 of processors be faulty: these proces-
sors return incorrect results with probability p = 1. The rest of the processors
are correct. For model F we assume that the average probability of returning
incorrect results is inferior to 0.25. The results for models Fc and F are simi-
lar, showing the percentage of incorrect results is diminishing rapidly even for
modest k. Analysis shows that this error can be made as small as necessary by
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Fig. 2. Simulation results for model Fc
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Fig. 3. Simulation results for model F
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Fig. 4. Simulation for model F with crashes

increasing k (of course if the average probability of calculating results incorrectly
tends to 1

2 , k may need to be substantial to guarantee the results).
Figure 4 shows the percentage of incorrectly calculated results in model F

with crashes. Here we let f = 3
5 fraction of processors be crash-prone, keeping

similar probabilities of returning incorrect results as before. Hence, the average
probability of returning an incorrect result is still inferior to 0.25 for all processors
that do not crash. The results again show diminishing error as k grows.

7 Conclusion

Abstracting the setting of network supercomputing with untrusted workers, we
defined a model of failures for workers that may return incorrect results, and
we presented and analyzed a decentralized algorithm that allows correct work-
ers to cooperatively perform a collection of tasks. The new algorithm breaks
with tradition and removes the assumption of the central infallible master pro-
cessor. The algorithm imposes only a logarithmic time overhead, while sharing
information about the progress of computation by means of gossip. Noteworthy,
each processor sends only one message for each iteration of the algorithm. We
showed that the algorithm performs all tasks correctly whp and we developed
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a simulation of the algorithm to illustrate our analytical findings. Future work
includes considering more virulent failure behaviors and task sets with inter-task
dependencies.

References

1. Internet primenet server, http://mersenne.org/ips/stats.html
2. Seti@home, http://setiathome.ssl.berkeley.edu/
3. Chlebus, B., Kowalski, D.: Randomization helps to perform independent tasks

reliably. Random Structures and Algorithms 24(1), 11–41 (2004)
4. Dwork, C., Halpern, J.Y., Waarts, O.: Performing work efficiently in the presence

of faults. SIAM J. Comput. 27(5), 1457–1491 (1998)
5. Fernandez, A., Georgiou, C., Lopez, L., Santos, A.: Reliably executing tasks in the

presence of untrusted entities. In: Proc. of the 25th IEEE Symposium on Reliable
Distributed Systems, pp. 39–50 (2006)

6. Fernandez, A., Georgiou, C., Lopez, L., Santos, A.: Algorithmic mechanisms for
internet-based master-worker computing with untrusted and selfish workers. Tech.
rep., Proc. of the 24th IEEE Int’l Symposium on Parallel and Distributed Process-
ing (2010)

7. Fraigniaud, P., Giakkoupis, G.: On the bit communication complexity of random-
ized rumor spreading. In: Proc. of the 22nd ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2010, pp. 134–143 (2010)

8. Gao, L., Malewicz, G.: Toward maximizing the quality of results of dependent tasks
computed unreliably. Theory of Computing Systems 41(4), 731–752 (2007)

9. Georgiou, C., Shvartsman, A.A.: Do-All Computing in Distributed Systems: Co-
operation in the Presence of Adversity. Springer, Heidelberg (2008)

10. Kanellakis, P.C., Shvartsman, A.A.: Fault-Tolerant Parallel Computation. Kluwer
Academic Publishers (1997)

11. Konwar, K.M., Rajasekaran, S., Shvartsman, M.M.A.A.: Robust Network Su-
percomputing with Malicious Processes. In: Dolev, S. (ed.) DISC 2006. LNCS,
vol. 4167, pp. 474–488. Springer, Heidelberg (2006)

12. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

13. Paquette, M., Pelc, A.: Optimal decision strategies in byzantine environments.
Parallel and Distributed Computing 66(3), 419–427 (2006)

http://mersenne.org/ips/stats.html
http://setiathome.ssl.berkeley.edu/


On the Power of Waiting When Exploring

Public Transportation Systems

David Ilcinkas� and Ahmed Mouhamadou Wade�

LaBRI, CNRS & Université de Bordeaux
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Abstract. We study the problem of exploration by a mobile entity
(agent) of a class of dynamic networks, namely the periodically-varying
graphs (the PV-graphs, modeling public transportation systems, among
others). These are defined by a set of carriers following infinitely their
prescribed route along the stations of the network. Flocchini, Mans, and
Santoro [FMS09] (ISAAC 2009) studied this problem in the case when
the agent must always travel on the carriers and thus cannot wait on a
station. They described the necessary and sufficient conditions for the
problem to be solvable and proved that the optimal number of steps (and
thus of moves) to explore a n-node PV-graph of k carriers and maximal
period p is in Θ(k · p2) in the general case.

In this paper, we study the impact of the ability to wait at the stations.
We exhibit the necessary and sufficient conditions for the problem to
be solvable in this context, and we prove that waiting at the stations
allows the agent to reduce the worst-case optimal number of moves by
a multiplicative factor of at least Θ(p), while the time complexity is
reduced to Θ(n · p). (In any connected PV-graph, we have n ≤ k · p.) We
also show some complementary optimal results in specific cases (same
period for all carriers, highly connected PV-graphs). Finally this new
ability allows the agent to completely map the PV-graph, in addition to
just explore it.

Keywords: Exploration, Dynamic graphs, Mobile agent, PV-graph.

1 Introduction

1.1 The Problem

The problem of graph exploration consists, for a mobile entity, in exploring
all nodes (or edges) of an a priori unknown graph. This problem being one of
the most classical in the mobile agent computing framework, it has received
a lot of attention so far. Time complexity, space complexity or impact of a
priori knowledge have extensively been studied in the last 40 years (see, e.g.,
[PP99, Rei05, DP04]). However, the large majority of these works concern static
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graphs. Considering nowadays networks, it is now common to deal with dynamic
networks. In this paper, we study the graph exploration problem in one model
of dynamic networks, namely the periodically-varying graph (PV-graph) model.

Roughly speaking, a PV-graph consists of a set of carriers, each following
periodically its respective route among the sites of the system. This models in
particular various types of public transportation systems like bus systems or
subway systems for example. It also models low earth orbiting satellite systems,
or security systems composed of security guards making tours in the place to be
secured. Performing exploration in such systems may be useful for maintenance
operations for example. Indeed, an agent can check that everything is in order
during the exploration. This agent may be a piece of software, or a human being.

The exploration problem in the PV-graph model was already considered by
Flocchini, Mans, and Santoro in [FMS09]. They considered that the agent cannot
leave the carrier to stay on a site. Not being able to stay on a site is particularly
legitimate in low earth orbiting satellite systems for example, where the sites do
not correspond to any physical station. However, in most public transportation
systems, it is possible for the agent (human or not) to stay on a site in order
to wait for a (possibly different) carrier. In this paper, we consider the same
problem but in the case when the agent can leave carriers to wait on a site. We
study the impact of this new ability on the complexity (time and number of
moves) of the PV-graph exploration problem.

1.2 Related Work

Motivated by the automatic exploration of the Web, Cooper and Frieze [CF03]
studied the question of the minimum cover time of a graph that evolves over
time. They considered a particular model of so-called web graphs and show that
if after every constant number of steps of the walk a new node appears and is
connected to the graph, a randomwalk does not visit a constant fraction of nodes.
Kuhn, Lynch and Oshman [KLO10] introduced a stability property (intervals of
connectivity). They assume that for any T consecutive rounds, there is a stable
and connected common subgraph. In 2008, Avin, Koucky and Lotker [AKL08]
showed that a random walk may have an exponential cover time in some dynamic
graphs. They also show that a variant, the lazy random walk, has however a
polynomial cover time in any dynamic graph.

In 2009, Flocchini, Mans and Santoro [FMS09] introduced a new model of
dynamic networks, the PV-graph model. They first show that if the nodes of the
PV-graph are labeled, the knowledge of an upper bound on the longer period
or the exact knowledge of the number n of nodes is necessary and sufficient for
an agent to explore the PV-graph. If the nodes of the PV-graph are anonymous,
then the knowledge of an upper bound on the longer period is necessary and
sufficient. In both settings, the time and move complexity of the agent is proved
to be in Θ(k · p2), where k is the number of carriers and p the maximum period
of the carriers. In the particular case of homogeneous PV-graphs (PV-graphs for
which all carriers have the same period), the time and move complexity drops
to Θ(k · p).
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Flocchini, Kellett, Mason, and Santoro [FKMS10] studied the mapping of
a PV-graph containing black holes (sites destroying agents). They considered
that several agents are operating in the PV-graph, and that they can leave
messages on the sites. The goal of the agents is to construct the map of the
PV-graph without losing too many agents. Casteigts, Flocchini, Santoro and
Quattrociocchi [CFQS10] integrated a large collection of concepts, formalisms
and results in the literature about dynamic graphs in an unified space.

1.3 Our Results

In this article, we extend the study of Flocchini, Mans and Santoro [FMS09] to
the case when the agent can leave a carrier to stay at a site. This new ability
allows the agent to explore PV-graphs that are less connected over time (formal
definitions are given in Section 2). We prove that in the general case (so, even
considering non highly-connected PV-graphs) the move complexity is reduced to
Θ(min{k ·p, n·p, n2}), while the time complexity decreases to Θ(n·p). (Note that
in any connected PV-graph, we have n ≤ k ·p.) If the PV-graphs are restricted to
be both homogeneous and highly-connected, then Flocchini, Mans and Santoro
proved that the time complexity is in O(k · p). In this paper, we prove that if
the PV-graphs satisfy only one of these restrictions, then the time complexity
remains in Θ(n · p). Besides, it turns out that our algorithm not only performs
exploration but also performs mapping, i.e., it can output an isomorphic copy of
the PV-graph. Finally, note that our algorithm does not use possible identifiers
of the nodes, while all our lower bounds still hold when the agent has access to
unique node identifiers.

2 Model and Definitions

We consider a system S = {s1, · · · , sn} of n sites among which k carriers are
moving. Each carrier c has an identifier Id(c) and follows a finite sequence R(c) =
(si1 , · · · , sip(c)) of sites, called its route, in a periodic manner. The positive integer
p(c) is called the period of the carrier c. More precisely, the carrier c starts at
node si1 at time 0 and then proceeds along its route, moving to the next site at
each time unit, in a cyclic manner (that is, when c is at node sip(c) , it goes back
to si1 and follows the route again and again).

A PV-graph (for periodically-varying graph) is a pair (S,C), where S is a set
of sites, and C is a set of carriers operating among these sites. We will usually
denote by n, k and p, respectively, the number of sites, the number of carriers
and the maximum over the periods of the carriers. A PV-graph is said to be
homogeneous if and only if all its carriers have the same period.

For any PV-graph G, we define two (classical) graphs H1(G) and H2(G) as
follows. Both graphs have the set of carriers as the set of nodes. There is an edge
in H1(G) between two carriers c and c′ if and only if there exists a site appearing
in the routes of c and c′. There is an edge in H2(G) between two carriers c and
c′ if and only if there exists a site s and a time t ≥ 0 such that c and c′ are
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both in s at time t. A PV-graph is said to be connected if and only if H1(G)
is connected. A PV-graph is said to be highly-connected if and only if H2(G) is
connected. In this paper, we will always consider PV-graphs that are at least
connected. (Non-connected PV-graphs cannot be explored.) Furthermore note
that, for any connected PV-graph, its parameters n (number of sites), k (number
of carriers), and p (maximal period) satisfy the inequality n− 1 ≤ k(p− 1).

An entity, called agent, is operating on these PV-graphs. It can see the car-
riers and their identities. It can ride on a carrier to go from a site to another.
Contrary to the model in [FMS09], the agent is allowed to leave a carrier, stay
at the current site, and get back on a carrier (the same or another). We do
not assume any restriction on the memory size of the agent or on its computa-
tional capabilities. We consider two models concerning the nodes’ identities. In
an anonymous PV-graph, the nodes do not have any identities, or the agent is
not able to see them. In a labeled PV-graph, the nodes have distinct identities
and the agent can see and memorize them.

We say that an agent explores a PV-graph if and only if, starting at time 0
on the starting site of the first carrier (this can be assumed without loss of
generality), the agent eventually visits all sites of the PV-graph and switches
afterwards to a terminal state. This terminal state expresses the fact that the
agent knows that exploration has been completed.

3 Solvability

Similarly as in the case when the agent cannot wait, an agent without informa-
tion on the PV-graphs it has to explore cannot explore all PV-graphs (even if
restricted to the labeled homogeneous highly-connected ones).

Theorem 1. There exists a family of labeled homogeneous highly-connected PV-
graphs such that no agent can explore all the graphs of this family if it has no
information on the PV-graphs it has to explore.

Proof. Let S = {s1, s2, s3} be a set of three sites with distinct ids (Id(si) = i).
For l > 0, we define the PV-graph G� over the set S of sites composed of a single
carrier. Its route is (s1, s2, · · · , s1, s2, s1, s3), where (s1, s2) is repeated exactly l
times. Moreover, let G0 be the PV-graph over the set of sites {s1, s2} composed
of a single carrier, whose route is (s1, s2). The family {G0, G1, · · ·} is denoted G.

Assume, for the purpose of contradiction, that there exists an algorithm solv-
ing the exploration problem in all the PV-graphs in G, provided that the agent
A running this algorithm does not receive any additional information. In par-
ticular, A explores G0. Let m be the time at which A switches to the terminal
state. Assume now that A is placed in Gm. For the first m time units, A cannot
tell the difference between G0 and Gm, because A has no information about the
PV-graph it has to explore and in particular it does not know the number of
sites or an upper bound on the system period. It will therefore act exactly the
same in Gm than in G0. In particular, it will switch to the terminal state at time
m although the site s3 has not yet been explored. This contradiction concludes
the proof. ��
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4 General Case

In this section, we make no assumption on the PV-graphs (except the connected-
ness assumption of course). We basically show that the ability to wait allows the
agent to explore, and even map, all connected PV-graphs (not only the highly-
connected ones), provided that the agent knows for each of them an upper bound
on its maximal period. This can be done in only Θ(min{k · p, n · p, n2}) moves,
that is, at least p times less than when the agent cannot wait. Besides, the time
complexity is reduced from Θ(k · p2) to Θ(n · p).

4.1 Lower Bound on the Number of Moves

Flocchini, Mans and Santoro [FMS09] proved a lower bound Ω(k · p) on the
number of moves to explore the PV-graphs with k carriers and maximum period
p (even if restricted to the labeled homogeneous highly-connected ones). This
lower bound does not apply directly in our setting because the agent, having
the possibility to wait, could potentially be able to explore in significantly less
moves. We will prove later that this is actually the case: the move complexity
of our algorithm is bounded by O(min{k · p, n · p, n2}). We prove here that this
complexity is optimal.

Lemma 1. For any n, k, and p sufficiently large, p ≥ �n−1
k �+1 (necessary for

connectedness), there exists a labeled homogeneous highly-connected PV-graph
Gn,k,p with n sites, k carriers and period p such that any algorithm needs at
least min{k · p− 1, �n/8� · p− 1, 7n/8 · (�n/8� − 1)} moves to explore it.

Proof. Fix any integers n ≥ 8, k ≥ 8, and p ≥ 1 such that p ≥ �n−1
k �+ 1. First

assume that k ≤ n/8.

– Subcase 1: p ≤ n2

4k − k.
Let q = �n/2k�. Note that q ≥ 4 and p ≥ q. We denote by r the non-negative
integer �p/q�q − p. Let S = {s1, s2, . . . , sn} be a set of n sites. We partition
S into the sets S0 and Si,j , with 1 ≤ i ≤ k and 1 ≤ j ≤ q, such that:
• S0 = {s1, s2, . . . , sp/q�−1} and S1,1 = {sp/q�};
• for all 1 ≤ i ≤ k and 1 ≤ j ≤ q, we have Si,j �= ∅;
• for all 2 ≤ i ≤ k, we have |Si,1| ≤ �p/q� − 1;
• for all 1 ≤ i ≤ k and 2 ≤ j ≤ q − r, we have |Si,j | ≤ �p/q�;
• for all 1 ≤ i ≤ k and q − r < j ≤ q, we have |Si,j | ≤ �p/q�;

Note that such a partition is always possible when p satisfies our assumption

�n−1
k �+ 1 ≤ p ≤ n2

4k − k.
The PV-graph Gn,k,p is now defined as follows. Let S be its set of sites and
C = {c1, c2, . . . , ck} be the set of its carriers. For every 1 ≤ i ≤ k, the route
R(ci) is defined as follows. The route starts at s1 at time 0 and then visits
s2, s3, · · · , sl, with l = �p/q� − |Si,1|, followed by each site of the set Si,1.
The route continues by visiting, for successive values of j from 2 to q, the
sites s1, s2, · · · , sl, with l = �p/q� − |Si,j | (or l = �p/q� − |Si,j | if j > q − r),



456 D. Ilcinkas and A.M. Wade

followed by each site of the set Si,j . Note that Gn,k,p is both homogeneous
(of period p) and highly-connected.
The PV-graph Gn,k,p is constructed in such a way that the agent basically
has to follow each carrier’s route entirely to visit all sites. More precisely,
to visit the sites of any set Si,j , the agent has to pay �p/q� moves (�p/q� if
j > q − r). Hence the minimum number of moves an exploring agent has to
perform in Gn,k,p is k · p− 1.

– Subcase 2: p > n2

4k − k.
Let us first assume that k = �n/8�. The PV-graph Gn,k,p is defined in
this case as follows. Let S = {s1, s2, . . . , sn} be the set of its sites and let
C = {c1, c2, . . . , ck} be the set of its carriers. For every 1 ≤ i ≤ �n/8�,
the route R(ci) is any route of period p going through (and only through)
sites s1, s2, . . . , sn−�n/8� and sn−i+1, such that ci is only once per period in
sn−i+1, just after being in sn−�n/8�, and just before being in s1. Moreover,
if ci is in some site sj , 2 ≤ j ≤ n− �n/8� − 1, at some time t, then at time
t+ 1 the carrier ci can only be at sj−1, sj , or sj+1. We further assume that
all carriers are in s1 at time 0. If k is smaller than �n/8�, then each carrier
has to deal with several sites of the form sn−i+1, with 1 ≤ i ≤ �n/8�. This
is always possible thanks to our assumption on p. Note that Gn,k,p is both
homogeneous and highly-connected.
By construction, all sites sn−i+1, with 1 ≤ i ≤ �n/8�, are only accessible
through sn−�n/8� and the agent can only leave them by going to s1 with some
carrier. Again by construction, any agent willing to go from s1 to sn−�n/8�
has to go through all the sites s1, s2, . . . , sn−�n/8�. Therefore, for any i, j
such that 1 ≤ i �= j ≤ �n/8�, going from sn−i+1 to sn−j+1 requires any
agent to perform at least n− �n/8�+ 1 moves. Since any agent performing
exploration of the PV-graph must visit all its sites, any agent requires at
least (n− �n/8�+ 1)(�n/8� − 1) moves to explore Gn,k,p.

Now assume that k > n/8. In this case, we simply use the above constructions
for �n/8� carriers. All carriers ci, with i > �n/8� are given the same route as
c1 for example. This gives us immediately a lower bound �n/8� · p − 1 for p ≤

n2

4�n/8� −�n/8� and still the lower bound 7n/8 ·(�n/8�−1) for p > n2

4�n/8� −�n/8�.
��

Summarizing the previous lemma by considering the asymptotic behavior, we
directly obtain the following theorem.

Theorem 2. The move complexity of the PV-graph exploration problem is in
Ω(min{k ·p, n ·p, n2}), where n, k, and p denote respectively the number of sites,
the number of carriers, and the maximal period. This result holds even if the
agent knows completely the PV-graph, has unlimited memory, and even in the
labeled homogeneous highly-connected case.

4.2 Lower Bound on Time

We can prove a larger lower bound for the time complexity than for the move
complexity in the general case. More precisely, we have the following lemma.
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Lemma 2. Consider any n, k, and p, with n ≥ 6, 2 ≤ k ≤ n−1
3 , and p ≥

�n−1
k �+ 1 (necessary for connectedness). There exists a family Gn,p,k of labeled

homogeneous PV-graphs with n sites, k carriers and period p such that, for any
algorithm, there exists a PV-graph in this family which cannot be explored by the
algorithm using less than (k − 1)(p�n−1

k � − 1) + �n−1
k � − 1 time steps.

Proof. Fix any n, k, and p such that n ≥ 6, 2 ≤ k ≤ n−1
3 , p ≥ �n−1

k � + 1.
Fix any j1, j2, . . . , jk−1 and t2, t3, . . . , tk such that, for every 1 ≤ i ≤ k − 1, we
have (i − 1)�n−1

k � + 2 ≤ ji ≤ i�n−1
k � + 1 and 1 ≤ ti+1 ≤ p. The PV-graph

G((j1, t2), (j2, t3), . . . , (jk−1, tk)) is defined as follows.
Let S = {s1, s2, . . . , sn} be the set of its sites and let C = {c1, c2, . . . , ck} be

the set of its carriers. Let us partition S into k + 1 subsets S0, S1, . . . , Sk−1, Sk

such that S0 = {s1}, Si = {s(i−1)�n−1
k �+2, . . . , si�n−1

k �+1}, for 1 ≤ i ≤ k− 1, and

Sk contains all the remaining sites.
Let j0 = 1 and t1 = 0. Consider any i such that 1 ≤ i ≤ k. The route R(ci) is

any route of period p going through (and only through) all the sites in Si∪{sji−1}
satisfying the following two conditions. First, ci visits sji−1 only once per period,
at all times equal to ti modulo p. Second, the route R(ci) does not depend on
the values jl and tl+1, for l ≥ i.

The family Gn,p,k is defined as the set of all PV-graphs G((j1, t2), (j2, t3), . . . ,
(jk−1, tk)) with, for every 1 ≤ i ≤ k− 1, (i− 1)�n−1

k �+2 ≤ ji ≤ i�n−1
k �+1 and

1 ≤ ti+1 ≤ p. All these PV-graphs are labeled homogeneous PV-graphs with n
sites, k carriers and period p.

Let A be any exploring agent (i.e. executing any exploration algorithm).
Given 1 ≤ i ≤ k and G a PV-graph of Gn,p,k, let Ti(G) be the first time at
which the agent A, starting at s1 at time 0 in G, sees the carrier ci. Given q,
1 ≤ q ≤ k, and j1, j2, . . . , jq−1 and t2, t3, . . . , tq in the usual ranges, we define
Gn,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq)) as the set of all the PV-graphs G((j1, t2),
(j2, t3), . . . , (jk−1, tk)) with, for every q ≤ i ≤ k − 1, (i − 1)�n−1

k � + 2 ≤ ji ≤
i�n−1

k �+ 1 and 1 ≤ ti+1 ≤ p.

Claim. For every q, 1 ≤ q ≤ k, and every i, 1 ≤ i ≤ q − 1, there exist ji and
ti+1 satisfying (i − 1)�n−1

k � + 2 ≤ ji ≤ i�n−1
k � + 1 and 1 ≤ ti+1 ≤ p such

that for every graph G ∈ Gn,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq)) we have Tq(G) ≥
(q − 1)(p�n−1

k � − 1).

Proof of the Claim: We prove the claim by induction on q. The base case q = 1
is trivially true. Fix any q such that 1 ≤ q ≤ k − 1, and assume, by induction
hypothesis, that the claim holds for the value q.

Let Gq be the family Gn,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq)) whose existence is
guaranteed by the induction hypothesis. Note that all PV-graphs in Gq have
exactly the same routes R(ci), for 1 ≤ i ≤ q. We can thus define Hq to be the
PV-graph consisting only of the carriers c1 to cq of any PV-graph in Gq. Let us
consider now the agent A starting at s1 at time 0 in Hq. By induction hypothesis
and by construction of Hq, the agent A sees cq for the first time at time t with
t ≥ (q − 1)(p�n−1

k � − 1) time steps. Thus there exists jq and tq+1 satisfying
(q − 1)�n−1

k � + 2 ≤ jq ≤ q�n−1
k � + 1 and 1 ≤ tq+1 ≤ p such that A is never at
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sjq at a time equal to tq+1 modulo p before time t+p�n−1
k �− 1, and thus before

time q(p�n−1
k � − 1).

Consider now the agent A starting at s1 at time 0 in any PV-graph G in
Gn,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq), (jq , tq+1)). Before time q(p�n−1

k � − 1), the
agent will behave exactly the same as in Hq and will not see the carrier cq+1.
This concludes the proof of the claim. ♦

The theorem now follows by considering the claim for the last value q = k−1,
and by noting that the agent still has to visit all sites of Sk after reaching ck,
which requires additional �n−1

k � − 1 time steps. ��

Again, summarizing the previous lemma by considering the asymptotic behavior,
we directly obtain the following theorem.

Theorem 3. The time complexity of the PV-graph exploration problem is in
Ω(n · p) in the general case. This result holds even if the agent knows n, k, and
p, has unlimited memory, and even in the labeled case.

4.3 Our Algorithm

In the above part of the paper, we exhibited some necessary conditions on the
existence of a solution. We then provided lower bounds on the move and time
complexities. We now essentially prove that all these results are optimal by
describing and proving a PV-graph exploration algorithm with matching upper
bounds on the move and time complexities, provided that the agent knows a
linear upper bound B on the maximum period p. As a consequence, we show
that the ability to wait allows to decrease both the move and time complexities,
the former by a multiplicative factor at least Θ(p).

Algorithm EXPLORE-WITH-WAIT
Our algorithm stores a matrix Mat where lines correspond to (known so far)
carriers. The algorithm progressively fills in each line with the sequence of sites
visited by the corresponding carrier. In order to do that, the agent stays 2B
steps at each site, looking at each visit of the carriers at this site. From each
partially filled in line, the algorithm computes a divisor of the period of the
corresponding carrier, allowing the agent to predict the exact schedule of the
carriers at the sites already known by the agent. The algorithm also maintains
a tree of carriers, where a carrier c is a child of a carrier c′ if c was discovered
for the first time while visiting c′. The algorithm visits successively new sites
until the whole matrix is filled in. Note that the completed matrix contains the
complete schedule of all carriers. Hence one can easily extract a map of the
PV-graph from the matrix.

Let a start with carrier c1. Initially: Home = c1; parent(Home) := ∅;
V isited := ∅; ToExplore := {c1}; p := 1.
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Algorithm 1. EXPLORE-WITH-WAIT (c)

1: if c = Home and ToExplore = ∅ then
2: Terminate
3: else
4: if c /∈ V isited then
5: VISIT(c)

6: end if
7: c′ ← NEXT(c)
8: EXPLORE-WITH-WAIT (c’)

9: end if

Algorithm 2. NEXT-EMPTY-CELL (Mat, j, c, v)

1: p = period(Mat[idC])
2: while Mat[Id(c), j] �= v and j < B do
3: u←Mat[Id(c), j]
4: i← j + 1
5: while Mat[Id(c), i] �= u and Mat[Id(c), i] �= v and i < B do
6: i← i+ 1
7: end while
8: if Mat[Id(c), i]=u then
9: Get on c at its next visit at the current site u
10: j ← i
11: else
12: if Mat[Id(c), i] = v then
13: Get on c at the first time k such that k mod p = j
14: Do one move with c
15: j ← j + 1
16: if Mat[Id(c), j] �= v then
17: Get off on the current site
18: end if
19: else
20: j ← i
21: end if
22: end if
23: end while
24: Return j
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Algorithm 3. NEXT(c)

1: if (N(c)) = ∅ and (c = c0) then
2: Return c0
3: else if c �= c0 then
4: c′ ← NEXT (parent(c))
5: else
6: c′ ← an element of N(c) ∩ ToExplore
7: end if
8: p = period(Mat[Id(c′)])
9: i← 0
10: while Mat[Id(c′), i] == ∅ do
11: i← i+ 1
12: end while
13: v=Mat[Id(c’), i]
14: j ← NEXT-EMPTY-CELL (Mat, j, c, v)
15: Stay on site v
16: Get on c′ at the first time k such that k mod p = i
17: Parent(c’) := c
18: Return c′

Algorithm 4. VISIT (c, j)

1: MyParent← parent (c); N(c) := {MyParent}
2: i← j
3: while j < B + i do
4: u← current site
5: Get off on site u
6: if Mat[Id(c), j] == ∅ then
7: Mat[Id(c), j]← u
8: while i < (2B + j) do
9: Stay on u and at each step DO
10: i← i+ 1
11: if c visits u at this step then
12: Mat[Id(c), i mod 2B]← u
13: else
14: if the agent sees c′ /∈ (ToExplore∩ V isit) then
15: Mat[Id(c′), i mod 2B]← u
16: ToExplore := ToExplore∪ {c’}
17: N(c) := N(c) ∪ {c′}
18: end if
19: end if
20: p = period(Mat[Id(c)])
21: end while
22: else
23: j ← NEXT− EMPTY − CELL(Mat, j, c, ∅)
24: end if
25: end while
26: V isit← V isit ∪ {c}
27: ToExplore← ToExplore− {c}
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Correctness

Theorem 4. Algorithm EXPLORE-WITH-WAIT correctly explores and maps
in finite time any PV-graph, even anonymous, but provided that an upper bound
on the maximum period is known.

Proof. First observe that when an agent stays at a site for 2B steps, where B is
the known upper bound on the maximum period, it sees all the carriers visiting
that site. Moreover, after filling in the matrix with that information, it is able
to predict at any point in the future which carrier will be at that site. Since the
PV-graph is connected, the agent will miss no carriers and thus no sites either.
At the end of the algorithm, the matrix will be completely filled in and it will
be equivalent to a map of the PV-graph. ��

Move and Time Complexities

Theorem 5. With the algorithm EXPLORE-WITH-WAIT, the agent makes at
most O(min{k · p, n · p, n2}) moves to explore any n-site k-carrier PV-graph of
maximum period p.

Proof. Let us first prove that the move complexity is in O(n2). Obviously, the
agent only moves when looking for the next empty cell. Since an empty cell
always corresponds to a new unvisited site, looking for the next empty cell is
done at most n times. The algorithm is done in such a way that, during the
travel from the last visited site u to the following new site v, each site w is
visited at most once. Indeed, it is always possible for the agent to wait on w for
the appropriate carrier to come at w. Hence the number of moves is bounded
by n2.

We now prove that the move complexity is in O(k ·p). During a single travel to
go to the next empty cell, the agent may have to use several carriers. However,
we visit the carriers following a DFS traversal of the tree of carriers. Hence in
total the agent uses at most 2k carriers. When using a carrier, the agent does at
most p moves. Hence the number of moves is bounded by 2k · p.

We finally prove that the move complexity is in O(n · p). This is done by
refining the previous argument. A carrier is always added as a leaf to the tree
of carriers. Moreover, a carrier is used only if the agent goes to an empty cell
of this carrier. Since the agent goes to at most n empty cells, it means that at
most n carriers of the tree are used. Hence the number of moves is bounded by
2n · p. ��

Theorem 6. The algorithm EXPLORE-WITH-WAIT allows to explore any n-
node PV-graph in O(nB) time steps, where B is a known upper bound on p.

Proof. A lot of time is spent by the agent by staying O(B) steps on a site to
note all passing carriers. Since there are n sites to visit, the agent spends at
most O(nB) time steps doing this. It turns out that this is the main cost of the
algorithm in terms of time complexity. Indeed, as noticed in the previous proof,
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the agent uses at most 2min{k, n} carriers when traveling. On each carrier, the
agent uses not only at most p moves but also at most p time steps. Hence the
completion time of the algorithm is at most O(nB)+2min{k, n} ·p. This proves
the theorem. ��

As noticed before, we have the following corollary.

Corollary 1. Given the a priori knowledge of an upper bound B = O(p) on the
maximum period p, Algorithm EXPLORE−WITH−WAIT is asymptotically
optimal in the general case with respect to both the move and the time complexi-
ties. The optimal move complexity is in Θ(min{k · p, n · p, n2}) while the optimal
time complexity is in Θ(n · p).

5 Specific Cases

We showed in the previous section the optimal move and time complexities for
the PV-graph exploration problem in the general case. This section is devoted to
the specific cases of homogeneous or highly-connected PV-graphs. In both cases,
we prove that the move and time complexities remain the same as in the general
case. Note, however, that when considering PV-graphs being both homogeneous
and highly-connected, we know from [FMS09] that the optimal time complexity
is at most O(k · p), even when n is large.

5.1 The Homogeneous Case

If we consider the homogeneous PV-graphs (but possibly not highly-connected),
the time and move complexities remain the same as in the general case.

Theorem 7. Given the a priori knowledge of an upper bound B = O(p) on the
maximum period p, Algorithm EXPLORE−WITH−WAIT is asymptotically
optimal in the homogeneous case with respect to both the move and the time
complexities. The optimal move complexity is in Θ(min{k ·p, n ·p, n2}) while the
optimal time complexity is in Θ(n · p).

Proof. The result directly follows from Lemma 2 and Corollary 1. ��

5.2 The Highly-Connected Case

If we consider the highly-connected PV-graphs (but possibly not homogeneous),
the time and move complexities remain the same as in the general case.

Lemma 3. Consider any n, k, and p, with n ≥ 6, 2 ≤ k ≤ n−1
3 , p ≥ �n−1

k �+2.
There exists a family G′

n,p,k of labeled highly-connected PV-graphs with n sites,
k carriers and maximum period p such that, for any algorithm, there exists a
PV-graph in this family which cannot be explored by the algorithm using less
than �k−1

2 �(p�n−1
k � − 1) + �k−1

2 �((p− 1)�n−1
k � − 1) + �n−1

k � − 1 time steps.
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Proof. Fix any n, k, and p such that n ≥ 6, 2 ≤ k ≤ n−1
3 , p ≥ �n−1

k � + 2. Fix
any j1, j2, . . . , jk−1 and t2, t3, . . . , tk such that, for every 1 ≤ i ≤ k − 1, we have
(i−1)�n−1

k �+2 ≤ ji ≤ i�n−1
k �+1 and 1 ≤ ti+1 ≤ p, if i is odd, 1 ≤ ti+1 ≤ p−1,

if i is even. The PV-graph G((j1, t2), (j2, t3), . . . , (jk−1, tk)) is defined as follows.
Let S = {s1, s2, . . . , sn} be the set of its sites and let C = {c1, c2, . . . , ck} be

the set of its carriers. Let us partition S into k + 1 subsets S0, S1, . . . , Sk−1, Sk

such that S0 = {s1}, Si = {s(i−1)�n−1
k �+2, . . . , si�n−1

k �+1}, for 1 ≤ i ≤ k− 1, and

Sk contains all the remaining sites.
Let j0 = 1 and t1 = 0. Consider any i such that 1 ≤ i ≤ k. The route R(ci) is

any route going through (and only through) all the sites in Si∪{sji−1} satisfying
the following three conditions. First, ci is of period p−1 if i is odd, and of period
p if i is even. Second, ci visits sji−1 only once per period, at all times equal to ti
modulo its period. Third, the route R(ci) does not depend on the values jl and
tl+1, for l ≥ i.

The family G′
n,p,k is defined as the set of all PV-graphs G((j1, t2), (j2, t3), . . . ,

(jk−1, tk)) with, for every 1 ≤ i ≤ k − 1, (i − 1)�n−1
k � + 2 ≤ ji ≤ i�n−1

k � + 1
and 1 ≤ ti+1 ≤ p, if i is odd, 1 ≤ ti+1 ≤ p− 1, if i is even. All these PV-graphs
are labeled highly-connected PV-graphs with n sites, k carriers and maximum
period p. (Indeed, note that, for every 1 ≤ i ≤ k− 1, ci and ci+1 meets at sji at
most every p(p− 1) steps.)

Let A be any exploring agent (i.e. executing any exploration algorithm).
Given 1 ≤ i ≤ k and G a PV-graph of G′

n,p,k, let Ti(G) be the first time at
which the agent A, starting at s1 at time 0 in G, sees the carrier ci. Given q,
1 ≤ q ≤ k, and j1, j2, . . . , jq−1 and t2, t3, . . . , tq in the usual ranges, we define
G′

n,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq)) as the set of all the PV-graphs G((j1, t2),
(j2, t3), . . . , (jk−1, tk)) with, for every q ≤ i ≤ k − 1, (i − 1)�n−1

k � + 2 ≤ ji ≤
i�n−1

k �+ 1 and 1 ≤ ti+1 ≤ p, if i is odd, 1 ≤ ti+1 ≤ p− 1, if i is even.

Claim. For every q, 1 ≤ q ≤ k, and every i, 1 ≤ i ≤ q− 1, there exist ji and ti+1

satisfying (i−1)�n−1
k �+2 ≤ ji ≤ i�n−1

k �+1 and 1 ≤ ti+1 ≤ p (ti+1 ≤ p−1 when
i is even) such that for every graph G ∈ G′

n,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq)) we
have Tq(G) ≥ � q−1

2 �(p�n−1
k � − 1) + � q−1

2 �((p− 1)�n−1
k � − 1).

Proof of the Claim: We prove the claim by induction on q. The base case q = 1
is trivially true. Fix any q such that 1 ≤ q ≤ k − 1, and assume, by induction
hypothesis, that the claim holds for the value q.

Let G′
q be the family G′

n,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq)) whose existence is
guaranteed by the induction hypothesis. Note that all PV-graphs in G′

q have
exactly the same routes R(ci), for 1 ≤ i ≤ q. We can thus define H ′

q to be the
PV-graph consisting only of the carriers c1 to cq of any PV-graph in G′

q. Let us
consider now the agent A starting at s1 at time 0 in H ′

q. By induction hypothesis
and by construction of H ′

q, the agent A sees cq for the first time at time t with

t ≥ � q−1
2 �(p�n−1

k � − 1) + � q−1
2 �((p− 1)�n−1

k � − 1) time steps. Thus there exists
jq and tq+1 satisfying (q − 1)�n−1

k � + 2 ≤ jq ≤ q�n−1
k � + 1 and 1 ≤ tq+1 ≤ p,

if q is odd, 1 ≤ tq+1 ≤ p − 1, if q is even, such that A is never at sjq at a time
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equal to tq+1 modulo the period p′ of cq+1 before time t+ p′�n−1
k �− 1, and thus

before time � q
2�(p�

n−1
k � − 1) + � q

2�((p− 1)�n−1
k � − 1).

Consider now the agent A starting at s1 at time 0 in any PV-graph G in
G′

n,p,k((j1, t2), (j2, t3), . . . , (jq−1, tq), (jq, tq+1)). Before time � q
2�(p�

n−1
k � − 1) +

� q
2�((p− 1)�n−1

k �− 1), the agent will behave exactly the same as in H ′
q and will

not see the carrier cq+1. This concludes the proof of the claim. ♦
The theorem now follows by considering the claim for the last value q = k−1,

and by noting that the agent still has to visit all sites of Sk after reaching ck,
which requires additional �n−1

k � − 1 time steps. ��

Again, summarizing the previous lemma, using Corollary 1, and considering the
asymptotic behavior, we obtain the following theorem.

Theorem 8. Given the a priori knowledge of an upper bound B = O(p) on the
maximum period p, Algorithm EXPLORE−WITH−WAIT is asymptotically
optimal in the highly-connected case with respect to both the move and the time
complexities. The optimal move complexity is in Θ(min{k ·p, n ·p, n2}) while the
optimal time complexity is in Θ(n · p).
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Abstract. The standard Byzantine Agreement (BA) problem requires non-faulty
processes to agree on a common value. In many real-world applications, it is im-
portant that the processes agree on the correct value rather than any value. In
this paper, we present a problem called Accurate Byzantine Agreement (ABA)
in which all processes get a common feedback (or payo�) from the environment
indicating if the value they agreed upon was correct or not. The solution to this
problem, referred to as the ABA algorithm, requires the non-faulty processes to
incorporate the feedback so that their chance of choosing the correct value im-
proves over subsequent iterations of the algorithm. We present an algorithm that
solves the ABA problem based on two key ingredients: a standard solution to the
BA problem and a multiplicative method to maintain and update process weights
indicative of how often they are correct. We give guarantees on the accuracy of
the algorithm based on assumptions on the accuracy of the processes and the pro-
portion of faulty and non-faulty processes in the system. For each iteration, if the
weight of accurate processes is at least 3�4th the weight of the non-faulty pro-
cesses, the algorithm always decides on the correct value. When the non-faulty
processes are accurate with probability greater than 1�2, the algorithm decides on
the correct value with very high probability after some initial number of mistakes.
In fact, among n processes, if there exists even one process which is accurate for
all iterations, the algorithm is wrong only O(log n) times for any large number of
iterations of the algorithm.

Keywords: Byzantine Agreement, Weighted Majority, Multiplicative Update.

1 Introduction

In real-world applications, processes in a distributed system may be compromised,
leading to malicious or arbitrary behavior. The Byzantine Agreement (BA) problem
[20, 17, 10, 8, 12] requires all non-faulty processes to agree on a common binary value
given that some of the processes may show arbitrary faulty or Byzantine behavior. In
the standard version of the problem, the value that is agreed upon may be either of
the binary values so long as it is proposed by at least one non-faulty process. In some
scenarios, it is better for the system to agree on a specific value among the two binary
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values. For example, suppose in a distributed control system a coordinated action needs
to be taken (such as opening or closing a valve) depending upon the observations made
by possibly faulty distributed processes. Depending upon the outcome of the action, the
environment can provide a feedback if the action taken was correct or not. As another
example, suppose that the system is making decision on whether to sell a stock based
on recommendations made by multiple processes. The final closing price of the stock
provides a feedback for the decision made. Thus, the system or the environment can
usually provide feedback to the non-faulty processes about which of the values was
preferred or correct for that iteration of the agreement algorithm. Can the non-faulty
processes use this feedback in a way that the probability of choosing the correct value
increases in subsequent iterations of the algorithm?

We refer to this version of the BA problem as Accurate Byzantine Agreement (ABA)
and define it as follows. Assume a set of n processes among which at most f Byzantine
faults can occur. All non-faulty processes are required to make decisions for multiple
rounds or iterations. For each iteration, a process can propose a binary value 0 or 1.
All nonfaulty processes must agree on each decision and must take finite time to agree.
After each decision, the environment provides a common feedback to all processes
indicating if their decision was correct or wrong. The goal is to design an algorithm that
maximizes the (expected) number of correct decisions by non-faulty processes over
iterations of the algorithm.

In this paper, we give an algorithm, referred to as the ABA algorithm for the ABA
problem. Our method relies on maintaining a common weight vector at all processes
and updating this vector based on the feedback for each iteration. Initially, the weight
of each process is a non-negative value proportional to the trust of the system on that
process. If there is no prior information available, then the weights can simply be ini-
tialized to 1�n. We use a weighted majority rule to determine the agreed upon value for
the ABA problem. Once the value is committed, the feedback determines whether the
decided value was a mistake or not. An important aspect of the algorithm is how the
weights are updated based on the feedback. One possibility is to penalize all processes
that proposed a wrong value after each iteration. Another possibility is to penalize pro-
cesses only if the value decided in that iteration was wrong. Somewhat surprisingly,
the behavior of the ABA algorithm may crucially depend upon which rule is used. We
provide guarantees on the accuracy of the algorithm based on di�erent assumptions on
the accuracy of the processes and di�erent weight update rules.

Byzantine Agreement is a well-studied problem in the field of distributed computing
with research in both the theoretical [16, 1, 14, 11] and practical aspects [5, 7, 6].
For the synchronous model of communication (as assumed in this paper), it is known
that agreement can be achieved only when n � 3 f � 1 [20]. In our work in [13], we
present algorithms and bounds for weighted BA, where processes are assigned weights
according to the application. In that paper, we give Byzantine agreement protocols that
work even when n � 3 f �1, where f is the number of processes that have failed so long
as the ratio of the weight of the failed processes to the weight of nonfaulty processes
is at most 1�2. We also present techniques to increase the weights of the non-faulty
processes relative to that of the faulty processes based on detection of faulty behavior.
Weighted BA problem does not have any notion of accurate value for agreement or
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environmental feeback as required for the ABA problem. It can be used as a subroutine
in the ABA algorithm as shown in Section 5. Other approaches to BA include the use
of artificial neural networks [22, 18], randomized algorithms [21, 4] or authentication
based algorithms [9, 20]. None of these works explore the notion of accurate processes
or the correct value for agreement. Our work can be applied to extend the results of
these papers.

The concept of weighted majority and multiplicative weight update is used in many
disciplines such as learning theory, game theory and linear programming [15, 19]. In
the literature for this methodology, the experts are independent entities and there is no
notion of liars that can collude and confuse other experts into suggesting the wrong
value. In this paper, we assume the presence of malicious Byzantine experts and design
algorithms to tolerate them. In summary, we make the following contributions:

– The ABA Problem: We introduce the problem of Accurate Byzantine Agreement,
where the processes have to agree on a correct binary value as deemed by environ-
mental feedback. The goal is to use this feedback to improve the accuracy of the
algorithm in subsequent iterations.

– The ABA Algorithm: We present an algorithm to solve the ABA problem that uses
a standard solution to the BA problem and a multiplicative method to maintain and
update process weights. We make guarantees on the accuracy of the algorithm for
the following models:
� Deterministic Accuracy: We make assumptions on two ratios, the accuracy

ratio (�) and the initial fault ratio (r0). The accuracy ratio is the ratio of weight
of the accurate processes to the weight of the non-faulty processes. The fault
ratio r is the ratio of the weight of the faulty processes to that of the non-faulty
processes. When � � 3�4, the algorithm is always accurate if r0 � 1�2. We
relax this bound and show that when � � (1�2 � d), for any 0 � d � 1�2, the
algorithm is always accurate if r0 � 2d .

� Probabilistic Accuracy: We make assumptions on the probability with which
non-faulty processes propose the correct value, �, and on the fault ratio r. When
� � 1�2 � d for any 0 � d � 1�2, the probability of the algorithm being
inaccurate is exponentially small if r � 2d.

� At-Least-One Accuracy: If there exists at least one process such that it is inac-
curate at most b times, then the ABA algorithm is inaccurate only O(b � log n)
times. Hence, the algorithm tracks the most accurate process in the system.

– Experimental Evaluation: We present simulation results evaluating the performance
of three distinct solutions: the ABA algorithm (with update on inaccuracy), the
ABA algorithm with update on every iteration (always update) and the standard
Byzantine Agreement (never update). While always-update and never-update per-
form very well for one of the models each, they perform poorly for the other one.
The update on inaccuracy method performs well for both the models.

2 Model and Definitions

We consider a distributed system of n processes, P1 � � �Pn with a completely connected
topology. We assume that the underlying system is synchronous i.e., there is an upper
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bound on the message delay and on the duration of actions performed by processes. The
communication system is assumed to be reliable and hence, no messages are dropped.
The processes may undergo Byzantine failures, i.e., fail in an arbitrary fashion; in par-
ticular, they may lie and collude with other failed processes to foil any algorithm. How-
ever, they may not fake their identity.

We classify the processes in our system based on their behavior into non-faulty,
accurate and faulty processes. While the notion of faulty and non-faulty processes is
common to all BA problems, we introduce the concept of accurate processes that cap-
tures the idea of a correct proposal. A non-faulty process is considered accurate for an
iteration if it proposes the correct value for that iteration.

In the standard BA problem, all non-faulty processes must agree on a common value.
The only requirement on the decided value is that it must be proposed by a non-faulty
process. In our proposal, the value decided by the algorithm is important as there is
a reward function associated with the value decided, awarded by the environment or
the system. The correct value is assigned 1 unit of reward and an incorrect value is
assigned 0 units, i.e., no reward. Based on the reward, we replace the standard concept
of validity with the notion of accuracy. Validity specifies that the value decided by
the non-faulty processes must have been proposed by at least one of the non-faulty
processes. This condition eliminates the trivial solution where all non-faulty processes
agree on a fixed value all the time. In our system, the accuracy requirement eliminates
the trivial solution. We define our problem below.

Definition 1. (Accurate Byzantine Agreement with Feedback) Consider n processes
consisting of non-faulty and faulty processes. There are multiple binary decisions that
these n processes are required to make. For each possible decision (iteration of the ABA
problem), each of the non-faulty processes proposes either 0 or 1. An algorithm that
solves the Accurate Byzantine Agreement with Feedback (ABA) problem, must guaran-
tee the following properties:

– Agreement: For each iteration, all non-faulty processes decide on the same value.
– Termination: The algorithm terminates in a finite number of rounds.
– Accuracy: The non-faulty processes agree on a value that is deemed correct by

environmental feedback.

To incorporate the feedback provided by the environment we assign a non-negative
weight wi to each process Pi that provides an estimate, possibly erroneous, of the trust
placed on that process. We summarize our notation in table 1.

Table 1. Notation

n Number of processes f Number of Byzantine faults
wi Weight of process Pi a Total weight of accurate processes
p Total weight of non-faulty processes q Total weight of faulty processes
r Fault Ratio (� q�p) � Accuracy ratio (� a�p)
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3 The ABA Algorithm

In this section, we propose an algorithm (Fig. 1) for the ABA problem. The algorithm
is identical at all processes and executes in synchronous iterations. At each process, we
maintain two vectors W and V . Vector W stores the weight of each process while vector
V stores the value proposed by each of them. Initially, the weight of each process is
a non-negative value directly proportional to the initial trust on that process. In each
iteration of the algorithm each non-faulty process proposes a value and executes Step 1
to Step 5 of the algorithm.

var
W: array[1..n] of float initialized according to system trust (default value all 1�n);
V : array[1..n] of �0� 1� initialized to 0;
t: integer specifying the total number of iterations;

for iteration :� 1 to t do
V[i] � proposed value byPi;

// Step 1: Exchange values with all
for j : 1 to n do

send V[i] to Pj;
receive V[ j] from Pj; //if (no value received from Pj), V[ j] � 0;

// Step 2: Agree on V vector
for j : 1 to n do: run standard Byzantine Agreement on V[ j];

// Step 3: Compute support for values 0 and 1 and choose the majority value
float s0 �

�
j�W[ j] � V[ j] � 0�; float s1 �

�
j�W[ j] � V[ j] � 1�;

if (s0 � s1) then decided := 0; else decided :� 1;

// Step 4: Wait for reward and determine the correct value based on the feedback
if (reward � 1) then correctVal :� decided;
else correctVal :� 1 � decided; //the process decided on the wrong value

// Step 5: //multiplicative weight update on inaccuracy: ABA(UI)
if (reward � 0) then

for j : 1 to n do
if (V[ j] � correctVal) then W[ j] � (1 � �) � W[ j];

// Alternative Step 5’: //multiplicative weight update on all iterations ABA(UA)
for j : 1 to n do

if (V[ j] � correctVal) then W[ j] � (1 � �) � W[ j];

endfor;

Fig. 1. The ABA Algorithm at Pi
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In Step 1, all processes exchange their proposed values to populate V . If no value is
received from some process, the corresponding entry is set to 0. Since faulty processes
may send conflicting values to other processes, it is not guaranteed that the V vector is
identical at all non-faulty processes after Step 1.

In Step 2, the algorithm requires all non-faulty processes to agree on the value pro-
posed by every other process and thereby make the V vector identical at all non-faulty
processes after Step 2 of any iteration. For this step, we can use any standard BA algo-
rithm such as the King algorithm [2] that requires n � 3 f � 1, or the Queen algorithm
[3] that requires n � 4 f � 1. The validity property satisfied by these algorithms ensures
that the value of V[i] for any non-faulty process Pi is exactly the value proposed by Pi.

In Step 3, processes determine the sum of weights of all processes that support value
0 or 1. The value with larger support, i.e., the weighted majority is chosen as the value
in decided.

In Step 4, processes receive the common feedback from the environment to deter-
mine the correct value.

In Step 5, we carry out the update of weights. If the value decided was incorrect,
then the weights of the processes that proposed an incorrect value is reduced by some
constant proportion � (0 � � � 1) of its previous weight (multiplicative update). As
an alternative to step 5, in step 5’, we carry out the weight update on all iterations
irrespective of the reward value. If we update weights only on inaccuracy, we refer to the
algorithm as ABA(UI) (“update on inaccuracy”). If we update weights on all iterations,
we refer to the algorithm as ABA(UA) (“update always”). We now prove that both the
versions of the algorithm guarantee the agreement and termination property specified
in definition 1 independent of the assumptions on accuracy.

Theorem 1. (Agreement� Termination) Assuming n � 3 f �1, all iterations of the ABA
algorithm guarantee agreement and termination.

Proof. Agreement: We show that after Step 2 of every iteration, all non-faulty processes
have identical W and V vectors. The proof is by induction on the iteration number. At
the first iteration, the vector W is identical at all non-faulty processes by the initial-
ization. Now assume that the vector W is identical at the beginning of any iteration i.
Because all processes agree on vector V using Byzantine agreement, all non-faulty pro-
cesses will have identical V after Step 2. This implies that all non-faulty processes will
have identical values of s0� s1, and decided after step 3 because these variables depend
only on W and V . Since the reward function is assumed to be common, all non-faulty
processes will have identical value of correctVal and therefore will update W in an
identical manner. The value decided depends only on W and V vectors and hence all
non-faulty processes agree on the same value.

Termination: This is a synchronous algorithm which executes in finite number of
rounds and hence, termination is satisfied trivially.

The ABA algorithm guarantees another useful property: if a nonfaulty process proposes
an accurate value, then it can never be penalized. This property exploits the validity
condition satisfied by the BA algorithm used in Step 2. A non-faulty process Pi will
send the same value to all non-faulty processes. Therefore, all non-faulty processes will



Accurate Byzantine Agreement with Feedback 471

have identical V[i] when they invoke the BA algorithm. Therefore, by validity of the BA
algorithm, V[i] at all non-faulty processes will be identical to the one proposed by Pi.

4 Accuracy Guarantees of the ABA Algorithm

In the previous section, we have shown that ABA algorithm guarantees agreement and
termination. This section focuses on the accuracy guarantees the algorithm can provide
based on varying assumptions about the accuracy of the processes in the system. Since
standard Byzantine agreement is used in Step 2, in this section we assume that n �

3 f �1, according to the lower bound for the BA problem [20]. In Section 5, we consider
the case when n � 3 f � 1 does not hold.

4.1 Deterministic Accuracy

For deterministic accuracy, we make guarantees based on the accuracy ratio � (ratio of
the weight of accurate processes to the weight of non-faulty processes) and the fault
ratio of the system r (ratio of the weight of faulty processes to the weight of non-faulty
processes). We show that if � � 3�4 for each iteration and if the initial fault ratio
r0 � 1�2, then the algorithm guarantees accuracy. Then we relax this requirement and
show that it is suÆcient that � � (1�2 � d) for each iteration such that r0 � 2d, to
guarantee accuracy.

We first show that as long as � � 1�2 for each iteration, r never increases if we update
weights only on error. This enables us to make guarantees just based on the initial fault
ratio of the system. The proof crucially depends on the fact that we update the weights
of inaccurate processes only when the algorithm chooses the incorrect value.

Lemma 1. (Non-Increasing Fault Ratio) For any iteration, if the accuracy ratio � �

1�2, then the fault ratio r cannot increase after that iteration of the ABA(UI) algorithm.

Proof. In the ABA(UI) algorithm, the weights of the processes changes only when the
algorithm makes a mistake. Consider the weight of the non-faulty processes, p. Since
� � 1�2, when the algorithm makes a mistake, greater than p�2 of the weight will be
una�ected and less than p�2 of the weight will be reduced by a factor of 1 � �. Hence,
if p� is the weight of the non-faulty processes after a weight update,

p� � p�2 � (1 � �)p�2 � p(2 � �)�2 (1)

Now consider the weight of the faulty processes q. The algorithm chooses the wrong
value only when a majority weight, i.e. � (p� q)�2 of the weights are inaccurate. Since
greater than p�2 of the weights are accurate, at least q�2 of the weights are inaccurate.
Hence, if q� is the weight of the faulty processes after a weight update,

q� � q�2 � (1 � �)q�2 � q(2 � �)�2 (2)

Dividing equation 2 by equation 1, we get, q��p� � q�p.
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Note that the proof for lemma 1 does not hold for the always update rule. If the faulty
processes keep proposing the correct value, then the ABA(UA) algorithm will increase
the relative weight of the faulty processes and consequently the fault ratio. If the fault
ratio increases beyond 1 then Byzantine processes can force the ABA algorithm to
choose incorrect value on crucial decisions.

In the following theorem we show that if � � 3�4, then the ABA(UI) algorithm never
makes a mistake as long as the initial fault ratio is less than 1�2.

Lemma 2. If the accuracy ratio � � 3�4 for all iterations, and the initial fault ratio
r0 � 1�2, then the ABA(UI) algorithm always guarantees accuracy.

Proof. If the accuracy ratio a�p is greater than 3�4, then the weight of accurate pro-
posals a is at least 3p�4. This implies that the weight of inaccurate proposals is at most
p� q� 3p�4 � p�4� q. The algorithm selects the correct value if the accurate weight is
more than the inaccurate weight. We need to show that, p�4 � q � 3p�4. Dividing both
sides by p and rearranging, this is equivalent to showing that r � 1�2. Since r0 � 1�2,
from lemma 1, for all iterations, r � 1�2. Note that, for the ABA(UI) algorithm, we
update the weights only when the algorithm makes a mistake. So for any iteration, if
� � 3�4 and r � 1�2, it will remain so for every subsequent iteration and hence the
ABA(UI) algorithm never makes a mistake.

In the following theorem, we show that even if the accuracy ratio is just above 1�2,
the ABA algorithm never makes a mistake as long as the initial fault ratio is less than a
certain threshold.

Theorem 2. (Deterministic Accuracy) If the accuracy ratio � � 1�2 � d for all iter-
ations and if the initial fault ratio r0 � 2d, for any 0 � d � 1�4, then the ABA(UI)
algorithm always guarantees accuracy.

Proof. If the weight of accurate proposals is at least p(1�2 � d), then the weight of
inaccurate proposals is at most p(1�2 � d) � q. The algorithm selects the correct value
if the accurate weight is more than the inaccurate weight. Therefore, we need p(1�2 �

d) � q � p(1�2 � d). This condition is equivalent to r � 2d. Since r0 � 2d, from
lemma 1, for any iteration, r � 2d. Since the correct decision was made, the weights are
not updated and the algorithm continues to chose the correct value in the subsequent
iterations. makes a mistake.

Note that when d equals 1�4, this theorem reduces to lemma 2. Thus, theorem 2
generalizes lemma 2, when d � 1�4. Accuracy of the ABA(UI) is guaranteed if either
an overwhelming majority of non-faulty processes is accurate (d is large) or there is a
large percentage of non-faulty processes (r0 is small).

In the following theorem, we make guarantees based on the number of accurate pro-
cesses and the number of faulty processes in the system.

Theorem 3. If the number of accurate processes is greater than 1�2�d times the num-
ber of nonfaulty processes for all iterations and if the initial number of faulty processes
is less than 2d times the number of nonfaulty processes, for any 0 � d � 1�4, then the
ABA(UI) algorithm always guarantees accuracy.
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Proof. We initialize the weights of all processes to 1�n. This proof follows directly
from theorem 2. If the number of accurate processes is greater than 1�2 � d times the
number of nonfaulty processes then the accuracy ratio � � 1�2 � d, since the weights
are equally initialized. Similarly, the initial fault ratio r0 � 2d. Hence from theorem
2, the ABA(UI) algorithm guarantees always guarantees accuracy. As mentioned in the
proof of theorem 2, since the algorithm decides on the correct value, the weights are not
updated and hence the algorithm continues to chose the correct value in the subsequent
iterations.

The following theorem handles the case when a majority of the nonfaulty processes are
accurate but the fault ratio is not smaller than 2d.

Theorem 4. (Accuracy after some initial mistakes) If the accuracy ratio � � 1�2�d for
all iterations, for any 0 � d � 1�4, then the ABA(UI) algorithm guarantees accuracy
after some initial mistakes.

Proof. (Sketch) Similar to the proof of lemma 1, it is easy to show that there exists a
constant 	 such that the fault ratio decreases by a factor of at least 	 for any mistake.
Therefore, eventually the fault ratio becomes less than 2d. Subsequently, by theorem 2
the algorithm ABA(UI) does not make any mistake.

It is easy to show that ABA(UA) algorithm can be forced to make unbounded mistakes
by the Byzantine processes for any accuracy ratio less than 3�4. Byzantine processes
may initially propose correct values to increase the fault ratio. Once the fault ratio is
high, they can ensure that ABA makes mistakes. They can repeat this cycle forever.

4.2 Probabilistic Accuracy

For probabilistic accuracy, we make guarantees based on the probability of accuracy
of each non-faulty process �, and the fault ratio r, of the system. We show that if � �

1�2 � d (0 � d � 1�2), and r � 2d, the ABA algorithm guarantees accuracy with high
probability.

Theorem 5. (Probabilistic Accuracy) Let all weights in the system be in [0� 1]. If the
accuracy probability of non-faulty processes � � 1�2� d and the fault ratio r � 2d, for
any (0 � d � 1�2), for all iterations, then the ABA algorithm guarantees accuracy with
probability greater than 1� ( e�Æ

(1�Æ)(1�Æ) )�, where 
 � p(1�2�d) and Æ � (2d� r)�(2d�1).

Proof. Let Xi be the random variable indicating the non-faulty process Pi making an
accurate proposal. Let X �

�
i wiXi, where wi is the weight of process Pi. We have

E[Xi] � 1�2 � d. Therefore, E[X] � (1�2 � d)
�

i wi � p(1�2 � d).
Let 
 � E[X]. We now show that (1 � Æ)
 � (p � q)�2.

(1�Æ)
 � (2d�1�(2d�r))�(2d�1)�p�(2d�1)�2� (1�r)p�2 � (1�q�p)p�2 � (p�q)�2.
When r � 2d � 1, we get that 0 � Æ � 1. Hence, from Cherno�’s bound, we have,

Pr[ABA algorithm makes wrong decision]
� Pr[sum of all weights supporting the correct value � (p � q)�2)] � From the algo-
rithm�

� Pr[X � (p � q)�2)] � Considering only non-faulty processes �
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� Pr[X � (1 � Æ)
] � Shown above�
� ( e�Æ

(1�Æ)(1�Æ) )�, � From Cherno�’s bound and 0 � Æ � 1 �.

In Theorem 5, the error probability depends upon Æ � (2d� r)�(2d� 1). As r decreases,
Æ increases. We now show that for the ABA(UA) algorithm the ratio r is expected to
decrease exponentially with increasing iterations.

Theorem 6. (ABA(UA): Exponentially Decreasing Expected Fault Ratio) If the accu-
racy probability of non-faulty processes is at least 1�2�d, and the accuracy probability
of faulty processes is at most 1�2� d, then there exists k � 1, such that after j iterations
of the ABA(UA) algorithm, the expected ratio of the weight of the non-faulty processes
to the weight of the faulty processes is at least k j�r0.

Proof. We first show a bound on the expected weight of a non-faulty process after j
iterations. Let the initial weight of a nonfaulty process be w0. Let Mi be the random
variable denoting the multiplicative factor at iteration i for a non-faulty process. Let
W j be the random variable denoting weight of a non-faulty process after j iterations.
It is clear that for ABA(UA) algorithm, W j � w0�

i� j
i�1 Mi. The multiplicative factor

for any iteration depends on the environmental feedback and is independent of other
iterations. Hence, E[W j] � w0�

i� j
i�1 E[Mi] � w0�

i� j
i�1((1�2� d) � 1 � (1�2 � d) � (1 � �)) �

w0(1 � ��2 � d�) j.
Similarly, since the probability that a faulty process makes a correct proposal is at

most 1�2� d, the expected weight of a faulty process after j iterations of the ABA(UA)
algorithm is at most (1 � ��2 � d�) j times its original weight.

We now show that the expected fault ratio decreases exponentially with the number
of iterations. Let p0 and q0 be the intial weights of non-faulty and faulty processes such
that q0�p0 � r0. Let S j and T j be the random variables to denote weights of the non-
faulty processes and faulty processes after j iterations of the ABA(UA) algorithm. Since
the expected weight of each non-faulty process after j iterations is at least (1���2�d�) j

times its original weight; by linearity of expectation, E[S j] � p0 � (1 � ��2 � d�) j. Sim-
ilarly, E[T j] � q0 � (1 � ��2 � d�) j. We now bound E[S j�T j]. Using independence of
S j and T j, we get that E[S j�T j] � E[S j] � E[1�T j]. We now use the fact that for any
nonnegative random variable X, E[1�X] � 1�E[X] which can be shown using Jensen’s
inequality (E[ f (X)] � f (E[X]) for convex f ). Therefore,
E[S j] � E[1�T j] � E[S j] � 1�E[T j]

�
p0�(1���2�d�) j

q0�(1���2�d�) j � 1�r0 � (1 � 2d�
1���2�d� ) j

By defining k � (1 � 2d�
1���2�d� ), we get the desired result. Because 0 � � � 1 and

0 � d � 1�2, (1 � ��2 � d�) is guaranteed to be positive which ensures k � 1.

Remark: The above theorem can be generalized to the case when non-faulty processes
are accurate with probability at least 1�2 � d1 and faulty processes are accurate with
probability at most 1�2 � d2. In this case, k � (1 � �(d1�d2)

1���2�d2�
). When d1 � d2 we get the

original value of k. Also when d2 � �d1 (faulty processes are as accurate as non-faulty
processes), we get k equals 1.
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4.3 At-Least-One Accuracy

For this section, we assume that there is at least one process in the system that is inac-
curate only for a small number of iterations of the ABA algorithm. This assumption is
suÆcient to guarantee cumulative accuracy, i.e., a bound on the total number of mis-
takes made by the algorithm. Our results are based on the method of weighted majority
with multiplicative updates [15]. We first consider ABA(UI) algorithm. In the following
theorem, we show that ABA(UI) guarantees accuracy for a large number of iterations.

Theorem 7. (At-Least-One Accuracy, ABA(UI)) Assume n � 3 f � 1. If there exists at
least one process such that is inaccurate at most b out of j iterations of the ABA(UI)
algorithm, then the algorithm is inaccurate at most 2(1 � �)b � (2��) log n times.

Proof. The proof follows from standard arguments in multiplicative update method
[15]. We initialize the weights of all the processes to 1�n. Let �(i) be the sum of all
the weights of the processes at the end of iteration i. Suppose that for any iteration i, the
ABA(UI) algorithm is wrong. This means that the weighted majority of the values in the
proposed vector were wrong and hence a majority of the weights will decrease by (1��)
of their previous value. Therefore, �(i) � �(i�1)�2��(i�1)�2�(1��) � �(i�1)(1���2).
The total weight, at the beginning of the algorithm, �(0) is equal to one. Suppose that
the ABA(UI) algorithm makes m( j) mistakes in the first j iterations. After j iterations
of ABA(UI), we get �( j) � �(0)(1 � ��2)m( j) � (1 � ��2)m( j).

Now consider a nonfaulty process that is inaccurate at most b out of j iterations.
In spite of the presence of Byzantine processes, ABA(UI) algorithm guarantees that
this process is never penalized when it is accurate. After j iterations, the weight of this
process is at least (1 � �)b�(its initial weight) � (1 � �)b�n. This weight is less than the
total weight. Therefore, (1 � �)b�n � (1 � ��2)m( j)�

Taking log on both sides and shifting n to the right hand side, we get b log(1 � �) �
log n � m( j) log(1 � ��2)�

Dividing both sides by log(1 � ��2) which is a negative quantity and rearranging
gives us

m( j) � b log(1 � �)� log(1 � ��2) � log n� log(1 � ��2)�

In the following part of the proof, we use two inequalities: � log(1 � �) � � � �2

and � log(1 � ��2) � ��2 that require � � 0�684. Applying these inequalities we get,
m( j) � b � 2 � (� � �2)�� � 2 log n���

Therefore, m( j) � 2(1 � �)b � 2�� log n.

Interestingly, the result holds even when we use ABA(UA).

Theorem 8. (At-Least-One Accuracy, ABA(UA)) Assume n � 3 f � 1. If there exists at
least one process such that is inaccurate at most b out of j iterations of the ABA(UA)
algorithm, then the algorithm is inaccurate at most 2(1 � �)b � (2�) log n times.

Proof. Note that even when we update weights on all iterations, the following inequal-
ities hold. The total weight in the system, �( j) � �(0)(1 � ��2)m( j) � (1 � ��2)m( j). The
weight of the process that is wrong b out of j iterations is (1 � �)b�(its initial weight) �
(1 � �)b�n. Hence, the previous proof applies.
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Substituting b � 0 in the above theorem, i.e., when at least one process is accurate
for all j iterations of the algorithm, the ABA algorithm makes a mistake only O(log n)
times. Note that this is independent of the number of iterations and hence, if the ABA al-
gorithm is run for a large number of iterations ( j �� log n), then it guarantees accuracy
in most of them. Or in other words, the ABA algorithm is approximately as accurate as
the most accurate process in the system.

5 ABA Algorithm with Weighted Byzantine Agreement

In the ABA algorithm proposed in Fig. 1, we have used standard Byzantine Agreement
in Step 2. Since standard Byzantine Agreement assumes n � 3 f �1, the ABA algorithm
also made the same assumption. This assumption is crucial for correctness of the ABA
algorithm because agreement requires that processes have identical V vector after step
2. We now consider the case when n � 3 f � 1, but the initial fault ratio is less than
1�2. Thus, more than a third of the processes may be faulty but the total weight of the
faulty processes is still less than 1�2 of the weight of the nonfaulty processes. Under
this scenario, we propose an alternative to ABA algorithm by replacing Step 2 of the
ABA algorithm by

�� Step 2’(Alternative to Step 2) : Agree on V vector
for j : 1 to n do: run Weighted Byzantine Agree-

ment [13] on V[ j]

Thus, we use the weight vector even to agree on the value of V[ j] (as used by the
algorithms in [13]). We refer to this algorithm as ABAW algorithm. Since the fault ratio
decreases under various accuracy assumptions, the ABAW algorithm works correctly
even when the set of processes that act Byzantine increases with time so long as the fault
ratio stays less than 1�2. The following theorem can be shown for the ABAW algorithm
analogous to that for ABA algorithm.

Theorem 9. Assuming r0 � 1�2, all iterations of the ABAW algorithm guarantee agree-
ment and termination if the weight update method ensures r � 1�2.

For the deterministic accuracy property, we have the following theorem.

Theorem 10. If the accuracy ratio � � 1�2� d and if the initial fault ratio r0 � 2d, for
any 0 � d � 1�4, for all iterations, then the ABAW(UI) algorithm guarantees accuracy.

Note that Theorem 4 does not hold for ABAW(UI) because we require r0 � 1�2. Theo-
rem 5 holds for ABAW(UA) without the assumption of n � 3 f � 1 (assuming r � 1�2).
Theorem 7 does not hold for ABAW(UI) or ABAW(UA) because the fault ratio may
increase beyond 1�2 even if one process is accurate most of the times.

6 Experimental Evaluation of ABA Algorithm

The experimental evaluation compares three di�erent update methods: “always update”,
“update on inaccuracy” and “never update”. The last option reduces to standard Byzan-
tine agreement. The performance of the three accuracy models presented in this paper
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are considered with each of these update methods for two di�erent Byzantine fault
models. Always update and never update perform very well under one of the fault mod-
els each, while they both perform very poorly for the other. Update on inaccuracy, the
method followed in this paper, is always close to the best.

6.1 Experimental Setup and Parameters

For the experimental evaluation, we focus on faulty processes that will always try to
make the system agree upon an incorrect value. The faulty processes have complete
knowledge of the system including the correct value for each iteration. Our simulation
uses two models for faulty processes. Model 1 uses a process that will always propose
the incorrect value. Model 2 uses a process that looks at the percentage of its own weight
to the weight of all processes and proposes the correct value if its percentage is below a
threshold and the incorrect value otherwise. There are two types of non-faulty processes
used. The first is an accurate non-faulty process that always proposes the correct value
(d � 0�5, � � 1). The second type of non-faulty process chooses the correct value with
probability � � 0�5 � d, where d � [0� 0�5]. The Queen algorithm [3] is used for step 2
in the ABA algorithm and for all simulations, n � 41, f � 10 and � � 0�1.

6.2 Results

Simulation results for deterministic accuracy are shown in Fig. 2. For this experi-
ment, we had one accurate process, and the other non-faulty processes had a value of
d � 0�00001. We compare the % of accurate decisions made by the algorithm for 100
iterations, with increasing values of a0�(p � q) i.e. the starting weights of the accurate
processes divided by the total weight of processes in the system. The experiments were
performed for the two fault models 1 and 2. As can be seen, having an update method
performs much better than not having one with model 1 and always updating performs
poorly with model 2. Update on error gives a good compromise between the two.

Results for probabilistic accuracy are shown in Fig. 3. For this experiment, all non-
faulty processes had d � 0�02 and all processes start with uniform weights. We compare
the % of accurate decisions with increasing number of iterations. Notice that, on the
whole, update on inaccuracy performs the best for these graphs. Always updating seems
like the natural method to use but in Fig. 3(b) always update performs the worst.

Simulation results for at-least-one accuracy are shown in Fig. 4. For this experiment,
we had one non-faulty process which is always accurate i.e. d � 0�5, and the remaining
non-faulty processes had d � 0�00001. The processes start with uniform weights. We
compare the % of accurate decisions with increasing number of iterations. For model
1 in Fig. 4(a), updating weights increases the accuracy over iterations. With model 2
always update shows the worse performance with update on accurate being the best.
Notice how update on inaccuracy is always close to the best.

7 Conclusion and Future Work

We introduce the problem of Accurate Byzantine Agreement with Feedback where in
addition to agreeing on the same value, the processes in the system have to agree on
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the correct value. The notion of correctness is based on the environment or any kind of
external feedback common to all the processes in the system. We present an algorithm
that solves the problem for various assumptions on the initial accuracy and weight dis-
tribution of the processes. We show that if the weight of the accurate processes is greater
than 3�4 the weight of the non-faulty processes, then the algorithm always decides on
the correct value. We relax this further and show that if a majority of the non-faulty
processes are accurate, then for certain assumptions on the faulty and non-faulty pro-
cesses, the algorithm never makes a mistake. Further, we show that if the probability
of accuracy of the non-faulty process is greater than 1�2, then the algorithm’s accuracy
improves exponentially in the number of mistakes it makes. Finally, we consider the
simple assumption that at least one process always proposes the correct value for all
iterations and show that the algorithm rarely makes mistakes.

We performed simulations comparing the performance of three di�erent weight up-
date methods: update on inaccuracy, always update and never update (just standard
Byzantine agreement). The experiments compared the performance of these solutions
under all three accuracy assumptions and the results indicate that while never update
and always update perform very well for di�erent fault models, update on inaccuracy
performs uniformly well for both fault models.

This problem brings forth further questions. The results in this paper mainly present
upper bounds for the problem of accurate Byzantine agreement with feedback. We also
need to explore lower bounds for the problem. Also, our results depend on the multiplica-
tive update rule. We wish to explore other update rules, such as additive updates and com-
pare their performance, both theoretically and practically. Designing optimal policies to
guarantee maximum probability of correct decisions is also an interesting problem.
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Abstract. Communication protocols describe the steps that the communication
end-points must take in order to achieve a common goal. In practice, networks
often contain mid-points, which can relay, redirect, or filter messages exchanged
by the end-points. A mid-point can enforce a communication protocol: it for-
wards the messages that conform to the protocol, and drops them otherwise. Pro-
tocol specifications typically define only the end-points’ behavior. Implementing
a mid-point that enforces a protocol is nontrivial: the mid-point’s behavior de-
pends on the end-point’s behavior, and also on the behavior of the communication
environment in which the protocol executes.

We present a process algebraic framework that takes as input the formal spec-
ifications of the protocol and the environment and outputs a specification for a
mid-point that enforces the protocol. We prove that the mid-point specifications
synthesized by our framework are correct: only messages that could have re-
sulted from correctly executing end-points are forwarded. As an application, we
construct a formal model for the mid-point that enforces the TCP three-way hand-
shake protocol.

Keywords: mid-point, specification, synthesis, formal methods, protocol
enforcement.

1 Introduction

Context. Communication protocols describe the steps that the communication end-
points take in order to achieve a common goal, e.g. to exchange data reliably. In prac-
tice, the end-points often communicate over mid-points, which relay, redirect, or filter
the communication. Firewalls are prominent examples of mid-points. They can not only
observe the execution of a protocol between end-points, but also enforce that the pro-
tocol is correctly executed. Namely, the mid-point forwards the messages that conform
to the protocol, and drops them otherwise. The messages that do not conform to the
protocol may have been sent by a faulty end-point or by an adversary, may be the re-
sult of communication failures, etc. For example, a mid-point (or firewall) that enforces
the TCP protocol should drop ack messages from B to A right after A has sent B a
syn message. This is because, according to TCP’s three-way handshake, B must reply
to A’s syn either with a syn&ack or with a rst message.

The behavior of a mid-point that enforces a communication protocol depends on the
steps that the end-points must take, and also on the communication environment where
the protocol should be executed. This is intuitively because the mid-point would observe
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the actions of the end-points via a “lens”, namely the communication channels that con-
nect the end-points to the mid-point. In an asynchronous message-passing environment,
for instance, it is possible that an end-point sends message a and then message b, but
the mid-point observes the message b before the message a. The mid-point cannot sim-
ply dismiss the observed sequence of messages as a violation of the protocol because,
depending on the channels’ characteristics, the mid-point may observe different events,
and events in different orders, compared to the end-points; cf. [2].

Contributions. We present a process algebraic framework1 for automatically synthe-
sizing formal models for mid-points. The input to the framework is the specification of
the end-points of an asynchronous protocol and the characteristics of the channels that
connect the end-points to the mid-point. The framework outputs a formal specification
for a mid-point that enforces the protocol. Formal specifications for mid-points can in
general be used for (model-based) testing, (model-driven) development of mid-points,
and formal verification of mid-points. These are all practically important and nontrivial
tasks: A case study on three commonly used firewalls (Checkpoint, netfilter/iptables,
and ISA Server) shows that different firewall manufacturers implement the mid-point
for (enforcing) the TCP protocol differently, and sometimes incorrectly with respect to
the TCP specification given in [8] (see [3] for details). A formal specification for TCP
mid-points can be used either to avoid or to pinpoint the causes of such discrepancies.

The inputs and the output of our framework are processes specified in the μCRL

process algebraic language [12]. The resulting mid-point process can be expanded to a
(finite) state machine, if desired. Choosing μCRL for automatically constructing mid-
point specifications has two benefits:

1. (Theoretical) The problem of constructing mid-point specifications is reduced to
computing parallel compositions in our framework, hence relating the problem to
a well-studied body of research. This simplifies the correctness proof for the con-
struction, and also enables us to use bisimulation reductions for minimizing the
mid-point processes output by the framework.

2. (Practical) The μCRL process algebra comes with a mature tool support [5,4,6].
This allows us to put the proposed framework immediately into practice: the μCRL

toolset has been used for the case study reported in this paper.

We have carried out a case study on constructing a formal model for the mid-point that
enforces the TCP three-way handshake protocol [9].

Related work. The closest related work is [3], where the authors give an algorithm for
constructing mid-points, assuming that the specifications of the end-points are given
as finite-state machines. Our framework is more general and more modular than the
algorithm of [3]: (1) end-points are defined as finite-state machines in [3] while in our
frameworkμCRL processes with recursive data types allow for a larger class of end-point
specifications, and (2) the algorithm of [3] is tailored for a fixed type of channels while
any μCRL process can model the channels in our framework. Thus, our algorithm can
be directly applied to settings where different channels have different characteristics.

1 The framework can be downloaded at www.infsec.ethz.ch/research/software

www.infsec.ethz.ch/research/software
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Bhargavan et al. [2] consider a problem which is related to, but nonetheless different
from, the mid-point construction problem. In [2], the end-points are assumed to be con-
nected directly via communication channels, and the authors consider the problem of
automatically constructing specifications for monitors that observe the communication
between the end-points. There is a significant difference between monitors and mid-
points as the following simple example shows. Suppose that A and B communicate
over asynchronous channels. The mid-point, mediating the communication between A
and B, knows that if it has not forwarded a message m from A to B, then B could
not have received m. However, the monitor, passively observing the communication
between A and B, cannot know this: it could be that m has reached B, but m has not
reached the monitor due to the asynchronous nature of communication.

Related areas are firewall testing [13,7], the extensive literature on test case genera-
tion from Mealy machines (e.g. see [17]), and testing TCP end-point automata [16]. In
firewall testing a mid-point is tested. The previous works start with the firewall rules,
while our focus is on the interactive nature of stateful firewalls. Test case generation
from Mealy machines can be applied to the transition systems produced by our frame-
work for testing mid-points. Testing TCP end-point automata is complementary to our
work, as we consider constructing mid-point formal specifications that in turn can be
used for testing TCP mid-points.

The remainder of this paper is organized as follows. In Section 2 we give a short
introduction to the μCRL process algebra. In Section 3 we describe how we model com-
munication protocols and their environments. In Section 4 we discuss the challenges in
constructing mid-point specifications. In Section 5 we give formal definitions and in
Section 6 we present our process algebraic framework. In Section 7 we present our case
study on the TCP three-way handshake protocol and in Section 8 we draw conclusions.
We prove the correctness of our method in Appendix A.

2 The μCRL Process Algebra

For specifying end-points, mid-points, and communication channels, we use the process
algebra μCRL [12], which is an extension of the process algebra ACP [1] with abstract
data types. Our results however do not depend on this choice in any crucial way, as
μCRL is similar to other process calculi such as CSP. In what follows, we provide a
brief introduction to μCRL. Its complete syntax and semantics are given in [12].

A μCRL specification consists of data type declarations and process behavior def-
initions, where processes and actions can be parameterized by data. Data is typed in
μCRL and types can be recursive. Each non-empty data type has constructors and pos-
sibly non-constructors associated with it. The semantics of non-constructors is given by
equations. The presence of a type Bool of Booleans with constants T and F as construc-
tors, and the usual connectives ∧, ∨ and ¬ as non-constructors, is always assumed.

A process is specified as a guarded recursive equation that is constructed from a finite
set of action labels, process algebraic operators and recursion variables; mutual recur-
sion among processes is allowed. The set of action labels is denoted Act . All members
of Act , except for a designated action label τ for silent steps, may be parameterized
with data to construct actions. The process algebraic operators + and · denote non-
deterministic choice and sequential composition, respectively: The process p + q can
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behave either as process p or as process q, and the process p · q behaves as process p
and when p terminates (if p ever does), it continues as process q. The constant δ de-
notes a deadlock process, i.e. one that cannot perform any actions. Recursion variables,
which can be parameterized with data, are used in the natural way, e.g. X = a ·X , with
a ∈ Act , describes a process that performs action a and then recurs, thereby performing
an infinite number of a actions in sequence. A recursive equation is guarded if all its
recursion variables are preceded by an action.

The parallel (asynchronous) composition p‖q interleaves the actions of p and q.
Moreover, actions from p and q may synchronize, when this is explicitly allowed by
the predefined commutative and associative partial function | : Act × Act → Act .
Two actions can synchronize only if their data parameters are semantically equal. This
implies that synchronization can be used to represent data transfer between processes.
Encapsulation ∂H(p), which renames all occurrences of actions from the set H in p
to the deadlock action δ, can be used to force actions to communicate. For example,
with a, b, c ∈ Act and a|b = c, the process (a.δ)‖(b.δ) behaves as a.b.δ + b.a.δ + c.δ.
Therefore, ∂{a,b}((a.δ)‖(b.δ)) = c.δ. The operator ρ is used for renaming: ρa→b(p)
simultaneously renames all occurrences of action a to action b in process p.

The summation operator
∑

d:D p(d), where d is a free variable in process p(d),
provides the possibly infinite choice over a data type D. The conditional construct p �
b� q, with b : Bool, behaves as p if b = T and as q if b = F. In particular, the construct∑

d:D p(d) � f(d) � δ, with f : D → Bool, chooses values of d ∈ D such that f(d)
is true. The operator · has the strongest precedence, the conditional construct binds
stronger than +, and + binds stronger than

∑
.

A μCRL specification describes a labelled transition system (LTS) whose states rep-
resent process terms and edges are labelled with actions. The μCRL tool set [5,4],
together with LTSmin [6] and CADP [10] which act as μCRL’s back-ends, features
visualization, simulation, symbolic reduction, (distributed) state space generation and
reduction, model checking, and theorem proving capabilities for μCRL specifications.

3 Communication Protocols, Environments, and Mid-Points

Below, we fix a data type Msg for messages. Let the two end-points be indexed by j ∈
{1, 2}. Given an end-point j, we refer to its partner (the other) end-point by j̄ = 3− j.

Communication protocols. Communication protocols typically describe the steps that
the communication end-points take to achieve a common goal, e.g. to exchange data re-
liably. We therefore define a communication protocol Π as a pair (E1, E2), where Ej

specifies the protocol for end-point j. Note that we are concerned with two-party com-
munication protocols, as opposed to multi-party protocols. The specifications Ej are
subject to a number of restrictions defined below. We define two communication ac-
tions for each end-point:

snd : {1, 2} ×Msg
rcv : {1, 2} ×Msg

Intuitively, snd(j,m) denotes the event of message m being sent to Ej (via the commu-
nication environment, as defined below), and rcv(j,m) denotes the event of message m



Constructing Mid-Points for Two-Party Asynchronous Protocols 485

C1
o

C2
o

C2
i

C1
i

E2E1
M

Fig. 1. The general setting: E1 and E2 are the end-points and M is the mid-point

with destination Ej being received. We assume that all non-silent actions appearing
in Ej are either of the form snd(j̄,m) or rcv(j,m), for j ∈ {1, 2} and some m ∈ Msg .
All internal actions of Ej are therefore modeled by the silent action τ .

Communication environments. Communication protocols are executed in communica-
tion environments. A communication environment is a set of channels {C1, · · · , Cn},
with n > 0. A channel’s behavior can be formally specified as a μCRL process. There-
fore, a communication environment Env is defined as a tuple (C1, · · · , Cn), where Ci

is the specification of channel i for 1 ≤ i ≤ n (see § 4.1 for examples). The specifica-
tions Ci are subject to a number of restrictions defined below. We define two channel
actions for each channel:

in : {1, · · · , n} ×Msg
out : {1, · · · , n} ×Msg

Intuitively, in(i,m) with 1 ≤ i ≤ n and m ∈ Msg denotes the event of message m
being sent to channel i, and out(i,m) denotes the event of message m being received
from channel i. We assume that all non-silent actions appearing in Ci are either of the
form in(i,m) or out(i,m), for some m ∈ Msg . Any other action of channel i (e.g.
dropping or duplicating messages) is therefore modeled as a silent step.

Mid-points. We assume that the mid-point is placed in the communication environment
such that all the communication between the end-points passes through the mid-point.
See Figure 1.

The communication protocol Π = (E1, E2) is executed in environment Env by
placing the channels Cj

i , C
j
o between Ej and M , as shown in Figure 1. We model

the communication environment Env as a quadruple (C1
i , C

1
o , C

2
i , C

2
o ). The subscript i

denotes “input” and the subscript o denotes “output”. We remark that each of the chan-
nels Cj

i , C
j
o may in reality consist of several channels linked together. In our model,

say, C1
o is therefore the specification of a channel that simulates the behavior of all the

channels that are used along the communication path that connects E1 to M .
Note that the mid-point is assumed to be able to distinguish between messages arriv-

ing from different channels. In practice, the modeled environment is an IP network and
the mid-point is placed such that it interconnects the networks of E1 and E2. The mid-
point must be the only entity connecting the two networks to ensure that it can observe
all messages exchanged by the end-points. Each network is connected on a different
port, hence our assumption is reasonable.

Protocol specifications are usually informal. We however assume that a formal
specification for the end-points E1 and E2 is available. The characteristics of the com-
munication channels Cj

i , C
j
o , with j ∈ {1, 2}, are also assumed to be formally spec-

ified. In § 4.1, we give formal specifications for a number of common channel types,
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such as lossy channels and reliable asynchronous channels. Our goal is to automatically
construct a formal specification for the mid-point M that enforces the protocol, given
formal specifications for Ej , Cj

i , C
j
o , with j ∈ {1, 2}. The notion of enforcement is

formally defined in § 5.

4 Challenges

In this section, we describe the main aspects that should be considered when construct-
ing formal models for mid-points: channel fidelity and non-determinism.

4.1 Channels Fidelity

Ej

Cj
o

Cj
i

M

Fig. 2. Mid-point’s view of
end-point Ej

Channels fidelity refers to the fact that the sequence of
events executed at the end-point and the sequence of events
observed by the mid-point may differ depending on the
characteristics of their communication environment. De-
pending on their properties, channels Cj

i , C
j
o distort the

way the mid-point views the actions of Ej .
The mid-point views the actions of Ej via the “lenses”

Cj
i and Cj

o ; see Figure 2. We illustrate this with an exam-
ple. Assume that the specification of the end-point E1 is
E1 = rcv(1, x) · snd(2, y) · δ + rcv(1, x) · δ. That is, E1 receives message x and then
sends message y, or it receives message x and then stops. Furthermore, assume that the
channel C1

i is reliable, while the channel C1
o is lossy (i.e. it can lose messages). Assume

also that the mid-point M sends x to C1
i . As long as M does not receive message y

on C1
o , it does not know whether E1 executes rcv(1, x) · snd(2, y) · δ or rcv(1, x) · δ.

This is because message y can be lost by C1
o and therefore these two executions of E1

are indistinguishable to the mid-point.
We remark that given formal specifications of the end-point Ej and the channels Cj

i

and Cj
o , we can compute the behavior of the end-point as seen from the point of view

of the mid-point; see § 6. As examples, the behavior of reliable, resilient, and lossy
channels are formalized in μCRL below. We assume the data structures Queue and Set
are given with their usual operators, which we use to model how channels store the
messages passed to them. 2

Reliable channel. Messages are not lost, duplicated, or reordered in this model. The
channel stores messages in a queue. When a message is received, modeled by action
in(i,m), the reliable channel i inserts the message in the queue. When the queue
is not empty, the channel removes the first message from the queue and delivers
it via action out(i,m). Below, we omit the name of the channel i from the action
labels in and out.

Creliable(Q : Queue) =
∑

m:Msg in(m)·Creliable(enqueue(Q,m))
+∑

m:Msg out(m)·Creliable(dequeue(Q)) � m = head(Q) � δ

2 For a formal specification see www.infsec.ethz.ch/research/software

www.infsec.ethz.ch/research/software
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Models of reliable channels are useful, e.g., when the mid-point is co-located at one
of the end-points. For such a mid-point, the sequence of observed events matches
the sequence of events executed by the end-point.

Resilient channel. Messages are not lost, but they may be duplicated or reordered in
transmission. The channel stores received messages in a set. A message may be
delivered multiple times after it is inserted in the channel.

Cresilient (S : Set) =
∑

m:Msg in(m)·Cresilient (S ∪ {m})
+∑

m:Msg out(m)·Cresilient (S) � m ∈ S � δ

In practice, messages can be sent over different routes due to link failures, traffic
load balancing, etc. This leads to messages arriving out of order, or multiple times,
at the destination.

Lossy channel. Messages are lost and reordered, but are not duplicated. The channel
stores messages in a multiset. When a message is in the multiset, it may be delivered
or simply removed from the channel buffer.

Clossy (S : Set) =
∑

m:Msg in(m)·Clossy(S ∪ {m})
+∑

m:Msg out(m)·Clossy (S \ {m}) � m ∈ S � δ

+∑
m:Msg τ ·Clossy (S \ {m}) � m ∈ S � δ

In practice, channel have finite buffers; when their buffer is full the channels lose
messages. Messages are also dropped in case of link failures.

4.2 Non-determinism

Non-determinism in specifications is generally used to allow different alternative be-
haviors. The alternative behaviors can model, e.g., under-specification (that is, the im-
plementations can follow one or several of the provided alternatives) and abstraction
(for instance, probabilistic choices can be modeled as non-deterministic choices).

Since the specifications of the end-points are given in μCRL in our framework, non-
determinism in end-points can be naturally expressed using the choice operator +. For
instance, consider the end-point specification E1 = rcv(1, x) · (snd(2, y) + snd(2, z)) ·
δ. That is, E1 executes rcv(1, x) and then non-deterministically executes snd(2, y) or
snd(2, z). The mid-point needs to consider both the executions rcv(1, x) · snd(2, y) and
rcv(1, x) · snd(2, z) as valid, since they comply with the specification of E1.

5 Formal Definitions

We assume that the protocol specification Π = (E1, E2), and the communication en-
vironment specification Env = (C1

i , C
1
o , C

2
i , C

2
o ) are given in μCRL, and they conform

to the restrictions specified in § 3. Our goal here is to define when a mid-point M
enforces the protocol described by Π = (E1, E2), executing in the communication
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environment described by Env = (C1
i , C

1
o , C

2
i , C

2
o ). We first define how the proto-

col Π executes in the communication environment Env . We define the set of actions
Act = {a : {1, 2} ×Msg | a ∈ {snd, rcv, in, out, α, β, com}} and the synchronization
rules snd|in = com, out|rcv = com, α|β = f. We define two processes P and Q that
describe how E1 and E2 execute in the communication environment:

P = τ{com}∂{Act\{α,β,com}}(E1‖ρ{out→α}C1
o‖ρ{in→β}C1

i )
Q = τ{com}∂{Act\{α,β,com}}(E2‖ρ{out→α}C2

o‖ρ{in→β}C2
i )

Note that we rename the actions out and in in Cj
o and Cj

i to α and β, respectively, and
force communication between α and β actions in order to link each input channel Cj

i

to the output channel C j̄
o , for j ∈ {1, 2}; see Figure 3. Finally, we define our reference

model R:

R = ∂{α,β}(P‖Q)

Intuitively, R describes how the mid-point observes the execution of E1 and E2 in the
communication environment defined by Env .

We now define how arbitrary end-points, constrained by a mid-point M , execute
in the communication environment. We assume the extreme case when the end-points
arbitrarily execute snd and rcv actions over the set of messages Msg ; we model this as
⊥j =

∑
m:Msg(snd(j̄,m) + rcv(j,m)) · ⊥j . Let M be the mid-point process such that

M executes only f(j,m) actions, for j ∈ {1, 2} and m ∈ Msg . Action f(j,m) denotes
that the mid-point forwards message m to end-point j. We define processes P ′ and Q′

that describe how the arbitrary end-points execute in the communication environment:

P ′ = τ{com}∂{Act\{α,β,com}}(⊥1‖ρ{out→α}C1
o‖ρ{in→β}C1

i )
Q′ = τ{com}∂{Act\{α,β,com}}(⊥2‖ρ{out→α}C2

o‖ρ{in→β}C2
i )

We set the synchronization rules to α|f = c1, f|β = c2, c1|β = λ, α|c2 = λ, and define
our implementation model I:

I = ∂{α,β,f,c1,c2}(P
′‖M‖Q′)

Given the synchronization rules, a message delivered by an output channel (action α)
is received by an input channel (action β) only after synchronizing with the mid-point
(action f).

A symmetric binary relation B over processes is a bisimulation relation [15,14] iff

(P, P ′) ∈ B implies that for any action a and any message m, P
a(m)→ P1 =⇒ P ′ a(m)→

P ′
1 with (P1, P

′
1) ∈ B. Two processes P and P ′ are bisimilar, denoted P ≡ P ′, iff there

is bisimulation relation B such that (P, P ′) ∈ B. The Bisimilarity of two processes
intuitively indicates that the two processes are indistinguishable from an observer’s
point of view. This is the core of our definition of enforcement.

Definition 1 (Enforcement). Mid-point M enforces the communication protocol de-
scribed by Π = (E1, E2) in the communication environment described by Env =
(C1

i , C
1
o , C

2
i , C

2
o ) iff I ≡ ρf→λR.
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rcv(1, m) out(1, m)
C1

i

snd(1, m)

E1 E2

C2
o

in(1, m)

C1
o

snd(2, m) in(2, m) out(2, m) rcv(2, m)
C2

i

α(2, m) β(2, m)

α(1, m)β(1, m)

Fig. 3. μCRL action synchronization

Note that we rename action f to λ so that we can compare the implementation and the
reference models. The intuition behind this definition is that if the reference and the
implementation processes have executed the same protocol steps until some point in
time and the reference process can continue the protocol execution with some step s,
then the implementation process can also execute s. Conversely, if the implementation
process can continue by taking a step s′, then the reference process can also take s′.

6 The Framework

In this section we present our framework which computes a formal specification of the
mid-point. The framework takes as an input the protocol specification Π = (E1, E2),
and the communication environment specification Env = (C1

i , C
1
o , C

2
i , C

2
o ). Π and

Env are both given in μCRL and must conform to the restrictions specified in § 3.
In § 4.1 we provided several common channel specifications that can be used as an
input to our framework. We remark that our framework is modular and each of the
four channels can have a different specification. The mid-point specification computed
by our framework enforces the communication protocol in the environment defined by
Env . A message from Ej to E j̄ is allowed, i.e. forwarded to E j̄ , if it could have been
sent by Ej , and rejected otherwise. An incorrect message could result from a faulty
end-point or due to communication channel noise.

We distinguish three steps performed in our framework. The first step (construction)
takes as inputs the specifications of Π and Env given in μCRL and outputs a specifi-
cation of M in μCRL. Step two (minimization) minimizes the state space of M using
a branching bisimilarity algorithm. Optionally, the specification of M can be expanded
to a finite state machine using a standard ε-removal algorithm in the third step. All three
steps are automated using the μCRL toolset.

6.1 Mid-Point Construction

The mid-point construction computes a process that enforces the protocol executed by
the two end-points. We define one enforcement action for the mid-point:

f : {1, 2} ×Msg

Intuitively, the action f(j,m) denotes the event of message m being forwarded to end-
point Ej for some message m ∈ Msg and j ∈ {1, 2}. By forwarding a message m to
Ej we mean that the mid-point receives a message on C j̄

o and inserts it in channel Cj
i .

To determine what messages should be forwarded by the mid-point, we compute the
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parallel composition of the input μCRL processes Ej , Cj
i , and Cj

o for j ∈ {1, 2}. We
link channel C1

o to C2
i and channel C2

o to C1
i , as illustrated in Figure 3. The channels

are linked by renaming the action out in channels C1
o and C2

o to α, renaming the action
in in channels C1

i and C2
i to β, and forcing communication between α and β actions.

Given the synchronization between α and β actions, every message delivered by an
output channel is inserted into the corresponding input channel.

We synchronize actions that must happen together. Figure 3 illustrates the actions
performed by the end-points and the channel processes. We declare the following syn-
chronization rules:

snd | in = com
out | rcv = com
α | β = f

snd | in enforces that output channel Cj
o receives a message from Ej only when Ej

triggers a send message event (action snd); we synchronize these two actions to ac-
tion com which denotes communication between an end-point and a channel. out | rcv
enforces that end-point Ej receives a message from input channel Cj

i only when Cj
i

triggers a deliver message event (action out). We also force communication between α
and β actions to enforce that an input channel Cj

i gets a message from C j̄
o only when

C j̄
o triggers a deliver message event (action α).
The mid-point process is synthesized by computing the parallel composition of the

processes E1, E2, C1
i , C

1
o , C

2
i , C

2
o and then hiding all actions that are unobservable to

the mid-point. Intuitively, the parallel composition of the input processes gives us a
process that describes all possible protocol executions in the given environment. Hid-
ing all actions unobservable by the mid-point gives us the mid-point’s point of view of
the protocol executions. The mid-point receives messages from C1

o and C2
o , and sends

messages to C1
i and C2

i . Therefore, M observes the α and β events that are synchro-
nized to action f and hence we do not hide action f. As an example, action f(1,m)
indicates that upon receiving message m, the mid-point should forward it to end-point
E1. The mid-point cannot observe communication between an end-point and a channel
and hence we hide the action com. We compute the mid-point process as follows:

M = ∂{α,β}( τ{com}∂{Act\{α,β,com}}(E1‖ρ{out→α}C1
o (∅)‖ρ{in→β}C1

i (∅))‖
τ{com}∂{Act\{α,β,com}}(E2‖ρ{out→α}C2

o (∅)‖ρ{in→β}C2
i (∅)))

Theorem 1. M enforces the communication protocol Π in the communication envi-
ronment Env .

Proof. We show that I ≡ ρf→λR, where I is the implementation model and R is the
reference model, both defined in § 5. According to Theorem 2 (given in Appendix A)
I ≡ ρf→λM if P $ P ′ and Q $ Q′, where P and Q are the processes that describe how
E1 and E2 execute in Env , and P ′ and Q′ describe how arbitrary end-points execute in
Env ; these processes are all defined in § 5. By construction, the mid-point process M is
equivalent to the reference model R, therefore, I ≡ ρf→λR holds if P $ P ′ and Q $
Q′. Recall that P = τG∂H(E1‖ρKC1

o‖ρLC
1
i ) and P ′ = τG∂H(⊥1‖ρKC1

o‖ρLC
1
i ) for

G = {com}, H = {Act\{α, β, com}},K = {out → α}, and L = {in → β}. Using
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the fact that (P‖X) $ (P ′‖X) if P $ P ′ (proved in Lemma 1 in Appendix A) and
that E1 $ ⊥1, we have P $ P ′; analogously Q $ Q′. ��

M

f(2, x)

f(2, x)

f(1, y)

E1

snd(2, x)

snd(2, x)

rcv(1, y)

E2

rcv(2, x)

snd(1, y)

Fig. 4. A permissive mid-point

We remark that the computed mid-point is
permissive: it forwards messages that could have
resulted from correctly executing end-points. If
the mid-point M receives a message sent by an
intruder, and the mid-point cannot distinguish be-
tween the intruder’s message and the end-point’s
message, M will forward the message. Construct-
ing a permissive mid-point is the best we can do
as we do not want to block legitimate messages
and interfere with the protocol execution.

Note that when the mid-point forwards a
message to Ej , there is no guarantee that Ej can
receive the message. Using the end-point specifi-
cations we can compute a mid-point that blocks messages that cannot be received by
the receiving end-point. We illustrate this observation using a simple example. Con-
sider two end-points with specifications E1 = snd(2, x) · (rcv(1, y) · δ + E1) and
E2 = rcv(2, x) · snd(1, y) · δ. E1 repeatedly sends x to E2 until it receives y from
E2, then terminates. E2 receives x from E1, sends y, and terminates. An acceptable
execution is illustrated in Figure 4. The second x message from E1 is forwarded to E2,
although E2 has already terminated after sending message y to E1.

6.2 State Space Minimization

The mid-point process M has a state space associated to it. The computation of M in-
volves hiding all events that the mid-point cannot observe, which appear as τ events
in M . Due to the τ events, the mid-point’s state space can be large. We reduce the
state space by applying branching bisimulation reduction on the mid-point process. The
choice of branching bisimulation reduction is motivated by the fact that the notion of
enforcement in our framework is based on bisimulation, and branching bisimulation re-
duction preserves the branching structure of processes while removing the action τ [11].
Our framework computes a process M ′, which is branching bisimilar to M . The state
space of M ′ is potentially smaller than the state space of M , and M ′ is branching
bisimilar to M (hence Theorem 1 holds for M ′ as well).

6.3 The Mid-Point as a State Machine

The μCRL specification of the mid-point is in the form of a linear process equation
which can be automatically expanded to a state machine. The state space can be ex-
plored by a depth-first search. The generated state space contains τ transitions for all ac-
tions unobservable by the mid-point. To eliminate all τ transitions, we apply a standard
ε-removal algorithm. The output is a state machine that can also be used as a mid-point
specification. For example, Figure 5 (in Section 7) illustrates the mid-point state ma-
chine for enforcing the TCP three-way handshake protocol, output by our framework.
Clearly, this step cannot be completed if the state space of the mid-point is infinite.
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7 TCP Case Study

An evaluation on three popular firewalls (Checkpoint, netfilter/iptables, and ISA Server)
shows that different firewall manufacturers implement mid-points for the TCP protocol
differently and incorrectly [3], i.e. they forward messages that should not be sent by
the end-points if they implement the protocol correctly. We performed a case study on
the TCP protocol to demonstrate how our framework constructs a specification for a
mid-point that enforces the protocol. The mid-point specification synthesized by our
framework eliminates any ambiguities concerning which packets should be forwarded
by the mid-point.

A formal mid-point specification has several applications in practice. It can be used
for model-based testing in order to test an implementation for inconsistencies. The tester
can use the mid-point specification to generate test cases and run them against the im-
plementation. Additionally, when the mid-point specification is relatively simple, which
is the case of the TCP mid-point, a software engineer can use the formal specification to
perform code inspection, i.e. systematically examine the source code of the mid-point
using the formal specification as a reference. Another application of our framework is
model-driven development for mid-points, e.g., using the formal specification to auto-
matically generate the implementation of a stateful TCP firewall.

Firewalls typically distinguish between internal and external networks. The policy
for handling TCP connections initiated from the external network are usually handled
differently from TCP connections initiated from the internal network. To reflect this,
we take the TCP protocol specification [9] and construct two end-point specifications:
one that models the initiator role and another that models the responder role. Below we
give the specification of the two roles in μCRL, where we assume that E1 represents the
initiator role and E2 the responder role.

Initiator end-point. It is the end-point that initiates a TCP connection. Below we give
the μCRL specification for the initiator role:

E1 = snd(2, syn) · rcv(1, synack) · snd(2, ack)·
( rcv(1, fin) · snd(2, ack) · snd(2, fin) · rcv(1, ack)

+
snd(2, fin) · ( rcv(1, ack) · rcv(1, fin) · snd(2, ack)

+
rcv(1, fin) · snd(2, ack) · rcv(1, ack))) · δ

Responder end-point. The responder end-point waits for an initiator end-point to open a
TCP connection. The actions performed by the responder are symmetric to the initiator
actions. We assume that the responder role can initiate a tear-down after it has sent a
synack to E1, i.e. before receiving an ack from E1.

E2 = rcv(2, syn) · snd(1, synack) · (rcv(2, ack) ·E2
T + E2

T )
E2

T = rcv(2, fin) · snd(1, ack) · snd(1, fin) · rcv(2, ack) · δ
+
snd(1, fin) · ( rcv(2, ack) · rcv(2, fin) · snd(1, ack)

+
rcv(2, fin) · snd(1, ack) · rcv(2, ack)) · δ
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f(1, fin)

f(2, ack)
f(2, fin)

f(2, ack)

f(1, ack)
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Fig. 5. Mid-point automaton for TCP

In our case study we assume that the en-
vironment can lose and reorder packets, but
cannot duplicate messages. For the channel
specification we use the μCRL specification
of a lossy channel as defined in § 4.1. We
compute M using our framework and per-
form the optional step 3 to expand the state
space of M to a state machine, given in
Figure 5. The input alphabet to the mid-
point automaton is f(j,m), j ∈ {1, 2},m ∈
{ack, synack, syn, fin}. Action f(j,m) de-
notes that M receives a message m from end-
point E j̄ and forwards it to end-point Ej .

Although the end-points have a small num-
ber of non-deterministic choices in their spec-
ifications, the mid-point process can receive
different types of messages in most states, as
depicted in Figure 5. This is explained by the
effect of the environment, which can reorder
and drop messages. For instance, assume M
is in state Q2, i.e. it has forwarded the initial syn message to E2. E2 replies to the syn
with a synack message and afterwards it can send a fin. The network may reorder the
two messages. Therefore, M would forward the fin message if it is received before the
synack message.

The TCP specification computed by our framework is equivalent to the TCP au-
tomaton presented in [3]. The environment models in both case studies exercise the
same properties, hence, the mid-point specification is identical, as expected. In contrast
to [3] which fixes the behavior of the environment, we can easily modify the channel
specifications and compute a mid-point specification for a different environment. For
instance, suppose that the mid-point is co-located at one of the end-points, say E1. To
handle this scenario, we set the specifications of C1

i and C1
o to reliable channels and

re-run our framework on the new inputs.

8 Conclusions and Future Work

We give a process algebraic approach to automatically synthesizing a formal specifica-
tion for a mid-point that enforces a communication protocol. Formal mid-point speci-
fications can be used for model-based testing, for model-driven development, and for
formal verification of mid-points. In this paper we have systematically explored the
aspects that must be considered when constructing formal models for mid-points. Our
approach to handling these challenges can be applied to other related problems; for
instance, our framework can be extended to synthesize specifications for passive moni-
tors. Passive monitors are entities that observe messages exchanged over a channel and
can be used to check security properties or to guard against network intrusion.

An interesting direction for future work is synthesizing more restrictive mid-points.
As we mentioned in § 6, our current framework implementation computes mid-point
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specifications that are in some cases too permissive. For instance, forwarding a message
to an end-point does not guarantee that the receiving end-point can actually receive the
message. This may happen, e.g., when an end-point repeatedly re-transmits a message
until receiving an acknowledgment from the other end-point or when a channel can
duplicate messages. We can modify our framework to compute a mid-point process that
forwards a message only if it could have been sent by the source end-point and it can be
received by the destination end-point. We remark that such a mid-point achieves more
than enforcing the protocol and can be seen as an additional optimization, e.g. to reduce
network traffic.

Acknowledgments. The work has been supported by the EU FP7 projects SPACIOS (no.
257876).
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A Proof of Correctness

We start with a definition: A binary relation S over processes is a simulation relation

iff (P, P ′) ∈ S implies that P
a(m)→ P1 =⇒ P ′ a(m)→ P ′

1, with (P1, P
′
1) ∈ S, for all

actions a and messages m. Process P simulates process P ′, denoted P ′ $ P , iff there
is a simulation relation S such that (P, P ′) ∈ S.

Below, we fix

– The reference model: M = ∂{α,β}(P‖Q) and α|β = f .
– The implementation model: I = ∂{α,β,f,c1,c2}(P

′‖M‖Q′) and the synchronization
rules α|f = c1, f |β = c2, c1|β = λ, α|c2 = λ.

Theorem 2. I ≡ ρf→λM if P $ P ′ and Q $ Q′.

Proof. We define the relation B as (S, S′) ∈ B iff

S = ρf→λ∂{α,β}(P‖Q)

and S′ = ∂{α,β,f,c1,c2}(P
′‖M‖Q′) for all processes P, P ′, Q,Q′ with P $ P ′ and

Q $ Q′. Below, we show that B is indeed a bisimulation relation. In the following we
refer to the assumption P $ P ′ and Q $ Q′ as the simulation assumption. We split the
proof into two parts:

– Assume S
λ→ S1. We claim S′ λ→ S′

1 and (S1, S
′
1) ∈ B. Notice that in order

for S to perform λ, ∂{α,β}(P‖Q) must execute f , and in turn the processes P and
Q must execute α and β respectively (the symmetric case is trivial; hence omitted

here). Let P
α→ P1 and Q

β→ Q1. Due to the simulation assumption, P ′ α→ P ′
1 and

Q′ β→ Q′
1 and P1 $ P ′

1 with Q1 $ Q′
1. That is,

S′ = ∂{α,β,f,c1,c2}(α · P ′
1‖f · δα,β(P1‖Q1)‖β ·Q′

1)

Given the aforementioned synchronization rules, we have S′ λ→ S′
1 where

S′
1 = ∂{α,β,f,c1,c2}(P

′
1‖δα,β(P1‖Q1)‖Q′

1). It is immediate that (S1, S
′
1) ∈ B.

– Assume S′ λ→ S′
1, with S′

1 = ∂{α,β,f,c1,c2}(P
′
1‖δα,β(P1‖Q1)‖Q′

1) for some

P1, Q1, P
′
1 and Q′

1. We claim S
λ→ S1 and (S1, S

′
1) ∈ B. Notice that in order

for S′ to perform λ, the following two conditions must be satisfied:
• The process ∂{α,β}(P‖Q) must execute f . This implies that P

α→ P1 and

Q
β→ Q1 (the symmetric case is omitted here). Then it is immediate that S

λ→
∂{α,β}(P1‖Q1).
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• Moreover, P ′ α→ P ′
1 and Q′ β→ Q′

1 (the symmetric case is omitted). Due to
the simulation assumption, P1 $ P ′

1 and Q1 $ Q′
1. Now it is immediate that

(∂{α,β}(P1‖Q1), S′
1) ∈ B.

These two points prove our claim.

This completes the proof. ��
Lemma 1. (P‖X) $ (P ′‖X) for all X , if P $ P ′.

Proof. Let P $ P ′ for some processes P and P ′. We define the binary relation S
over processes as: ((Q‖Z), (Q′‖Z)) ∈ S for all Q $ Q′ and any Z . Obviously we
have ((P‖X), (P ′‖X)) ∈ S. Below, we show that S is indeed a simulation relation.

Suppose that (P‖X) a→ Y . It must be that either P or X executed a, or that P and
X executed some b and c, respectively, and b|c = a. We look at these three cases:

– (P‖X) a→ (P1‖X). This implies that P
a→ P1. Given that P $ P ′ it follows

that P ′ a→ P ′
1 and P1 $ P ′

1. It is immediate that (P ′‖X) a→ (P ′
1‖X). Clearly,

(P1‖X,P ′
1‖X) ∈ S.

– (P‖X) a→ (P‖X1). This implies that X
a→ X1. Then, (P ′‖X) a→ (P ′‖X1), and

hence (P‖X1, P
′‖X1) ∈ S.

– (P‖X) a→ (P1‖X1). This implies that P
b→ P1 and X

c→ X1, for some b, c ∈ Act
and b|c = a. Given that P $ P ′, it follows that P ′ b→ P ′

1 and P1 $ P ′
1. It is

immediate that (P ′‖X) a→ (P ′
1‖X1). Hence (P1‖X1, P

′
1‖X1) ∈ S.

This completes the proof. ��
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Abstract. In this paper, we propose an automated technique for opti-
mal instrumentation of multi-threaded programs for debugging and test-
ing of concurrent data structures. We define a notion of observability
that enables debuggers to trace back and locate errors through data-
flow instrumentation. Observability in a concurrent program enables a
debugger to extract the value of a set of desired variables through in-
strumenting another (possibly smaller) set of variables. We formulate an
optimization problem that aims at minimizing the size of the latter set.
In order to cope with the exponential complexity of the problem, we
present a SAT-based solution. Our approach is fully implemented and
experimental results on popular concurrent data structures (e.g., linked
lists and red-black trees) show significant performance improvement in
optimally-instrumented programs using our method as compared to ad-
hoc over-instrumented programs.
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1 Introduction

Debugging is a systematic process of finding and reducing the number of de-
fects in a computer program. Program debugging is a continual de facto step
in the software development process and often requires significant human and
computing resources. The debugging process ranges over a variety of techniques
such as traditional or breakpoint-style debuggers, event monitoring systems, and
static analysis for which different aspects and tools are employed. Incorporating
these techniques mostly requires adding extra instructions to the program under
scrutiny, called instrumentation.
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The main problems associated with instrumenting (and, hence, debugging)
programs are increased complexity, the probe effect, and non-repeatability. The
probe effect refers to the problem that any attempt to observe the behavior
of a system may change its behavior. Furthermore, such problems are ampli-
fied significantly in the context of concurrent programs. This is due to the fact
that instrumenting these programs complicates their inherent non-deterministic
nature, causing different executions for the same data and more unpredictable
context switches.

Moreover, although there have been significant advances in the multi-core
technology, it is currently unclear to what extent software products can be multi-
threaded to take advantage of these new chips. Thus, in the presence of challenges
in developing, testing, and maintaining scalable multi-threaded programs, having
access to effective debugging tools for concurrent programs is highly beneficial.
This benefit is even more crucial in the context of concurrent embedded safety-
critical applications, where deviation of a mutated program from its specification
may result in catastrophic consequences.

In [10], we proposed a notion of observability as the ability to test various
features of a sequential program by observing the program’s outcome to check if
it conforms to the software’s specification. The traditional methods for achiev-
ing observability incorporate ad-hoc instrumentation techniques [13,14,12] that
cause the observed outcome of the software to be produced by a mutated pro-
gram which can violate its correctness. Our approach to contain such probe
effects in [10] is to introduce minimal instrumentation to sequential programs
under debugging.

With this motivation, in this paper, we extend the concept of observability
to the context of concurrent programs. Our contributions in this paper are as
follows:

– We formally define the notion of observability for concurrent programs. This
notion has a different nature as compared to sequential programs due to the
existence of shared variables and interleaving scenarios. Roughly speaking,
observability in a concurrent program enables a debugger to extract the value
of a set of desired variables through instrumenting another set of variables.
We call the latter the set of naturally observable variables.

– We formulate an optimization problem to tackle under and over-
instrumentation defects. In other words, given a multi-threaded program and
a set of desired variables, our goal is to identify the minimum set of natu-
rally observable variables (that will be instrumented for debugging) through
which one can extract the value of all desired variables.

– Since the complexity of our optimization problem is exponential, we encode
the problem as a propositional satisfiability problem to leverage powerful
SAT-solvers to solve our problem.

– Our method is fully implemented in a tool chain. We use LLVM [7] and the
method presented in [9] to extract program data-flow dependencies. This is
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achieved by implementing a new pass over LLVM that takes the source code
and a set of desired variables as input and generates the full set of data-flow
dependencies as output. Using the extracted dependencies, we automatically
generate a SAT model which is the input to the SMT-solver Yices [1]. The
solution to the SAT model is the set of variables that need to be instrumented
(the naturally observable variables).

– We conduct experiments on two popular concurrent data structures: linked
lists and red-black trees. We consider different implementations of these
data structures with respect to different liveness criteria and synchroniza-
tion primitives, such as lock-based, software transactional memory (STM),
lock-free, and obstruction-free implementations. Our experiments show that
our method effectively optimizes instrumentation instructions, resulting in
significant performance improvement (in some cases up to 50 times), as com-
pared to ad-hoc over-instrumented programs.

Organization. In Section 2, we present the preliminary concepts. Section 3 is
dedicated to define our notion of observability in concurrent programs and the
statement of our optimization problem to reduce instrumentation. We describe
our approach to solve the optimization problem in Section 4. Section 5 presents
the results of our experiments. Finally, we make concluding remarks and discuss
future work in Section 6.

2 Preliminaries

2.1 Concurrent Control-Flow Graphs

Intuitively, a concurrent control-flow graph (CCFG) [8] is a control-flow graph
which incorporates constructs to model concurrency. We use a cobegin/coend
construct to express concurrent execution of threads. The cobegin/coend con-
struct contains two or more blocks of code, which may in turn contain other
cobegin/coend constructs.

Definition 1. A Concurrent Control Flow Graph (CCFG) is a directed graph
G = 〈N,A, n0〉 such that:

– N is the set of nodes in G. Each node is a basic block. Without loss of
generality, we assume that each basic block contains only one instruction.

– n0 is the initial node with indegree 0, which represents the initial basic block
of G.

– A is a set of arcs (n,m), where n,m ∈ N . An arc (n,m) exists in A, iff
the execution of basic block n in a thread thr encoded in G immediately leads
to the execution of basic block m in thread thr. ��

For the sake of clarity, we distinguish different types of basic blocks in a CCFG.
These types include Entry, Exit , Cobegin , Coend , Compute, ThreadEntry , and
ThreadExit . Arcs that involve any type of basic block except for Compute are
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cobegin

thr1(5);

thr2();

coend

(L0) print f,d,x;

-------------------------

thr1(y){
(L1) g := x+z+y;

(L2) if g > 100 then

(L3) c := d/18;

(L4) else

(L5) c := f*g;

(L6) m := x%y;

(L7) e := g*9;

(L8) b := d-f;

(L9) a := (b+c)/(x*e);

(L10) x := b+1;

}

-------------------------

thr2(){
(L1) e := s*1000;

}

(a) Two threads run-
ning concurrently.

x := b+1

cobegin

e := s*100g:=x+z+y

coend

Exit

c := d/18 c := f*g

a := (b+c)/(x*e)

print f, d, x

Thread entry

Thread exit

Entry

m := x%y

e := g*9

b := d−f

(b) CCFG

a

c
e

d
f g s

z y x

b

L9thr1

L8thr1 L3thr1|L5thr1

L7thr1

L1thr2

L1thr1

(c) Observability graph.

Fig. 1. A C program and its concurrent control-flow graph

trivially added to a CCFG. Arcs which involve Compute basic blocks are speci-
fied in Definition 1. Figure 1(a) shows an example, where the program consists
of two threads thr1 and thr2 running concurrently. We consider variables with
the same name in different threads as shared variables. For instance, variable
e is a shared variable. The CCFG of the program in Figure 1(a) is shown in
Figure 1(b).

Notation: Let π = n1, n2, . . . , nk be a sequence of nodes of a CCFG G and thr
be a thread encoded in G. By thr(π), we denote the sequence of nodes where
the nodes of all threads except for thr are removed from π.

Definition 2. Let G = 〈N,A, n0〉 be a CCFG. An execution path π of G be-
tween two nodes m and m′ in N is a sequence n1, n2, . . . , nk, such that:

1. n1 = m and nk = m′,
2. for all threads thr of G, we have: (i) thr(π) = x1, x2, . . . , xj is a total order,

and (ii) for all i, where 1 ≤ i ≤ j − 1, (xi, xi+1) ∈ A, and
3. the causal relation between nodes in π is a partial order. ��

Intuitively, in Definition 2, Condition 2 requires that the order of basic blocks
of the same thread in π must follow the isolated sequential execution of that
thread. Moreover, Condition 3 expresses that the order of basic blocks of a set
of concurrent threads in π must be in an ordered interleaving fashion.
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Notation: To distinguish instructions of different threads, we denote an instruc-
tion of a thread thr by line numberthr. When the thread name is irrelevant or
clear from the context, we omit it.

For example, an execution path of the CCFG in Figure 1(b) is L1thr1, L2thr1,
L3thr1, L6thr1, L1thr2, L7thr1, L8thr1, L9thr1, L10thr1, L0.

2.2 Data-Flow Dependencies in Concurrent Programs

Definition 3. We say that the value of a variable v depends on the value of
variable v′ iff v = F (v′, V ), where F is an arbitrary function and V is the
remaining set of F ’s arguments called parameters [2]. ��

In a source code, any instruction that updates the value of a variable creates a
dependency. For instance, in function thr1, in Figure 1(a), instruction L9 creates
a dependency between variable a and variables b, x, e, and c. We represent a
dependency by a tuple 〈v, n, v′〉, where n is an instruction (i.e., a node in the
corresponding CCFG) and v is a variable whose value can be extracted from
variable v′ via instruction n. In this case, we say that instruction n defines the
value of variable v. In our example, we have 〈a, L9thr1, b〉 and 〈a, L9thr1, c〉.

Some data dependencies are resolved based upon runtime circumstances, e.g.,
in conditional statements. For instance, in thr1, the value of variable c at line L9
is defined by either L3 or L5. As a result, it is incorrect to have the dependency
〈c, L3thr1, d〉, as we cannot determine whether this dependency indeed holds at
run time. Thus, in order to compute data dependencies statically, we consider
a conservative set of instructions that can define the value of a variable at run
time. Hence, we require a representation that conveys that c depends on variable
d or on variables f and g.

In order to resolve this issue, we combine dependencies that define the same
variable into one dependency as follows. When a variable v is defined via in-
structions n1 and n2, where 〈v, n1, v1〉 and 〈v, n2, v2〉 are in two separate and
mutually exclusive conditional branches, we combine instructions n1 and n2 into
one instruction n′ = n1 | n2. Hence, we replace dependencies 〈v, n1, v1〉 and
〈v, n2, v2〉 with 〈v, n′, v1〉 and 〈v, n′, v2〉. This implies that v depends on v1 when
one of the two instructions n1 or n2 execute. The same concept applies for the
dependency between v and v2. In our example, for dependency 〈c, L3thr1, d〉, we
have 〈c, L3thr1 | L5thr1, d〉. In other words, c may depend on d if L3thr1 or L5thr1
execute. In this case, parameters of L3thr1 | L5thr1 is the set {d, g, f}.

During program execution, the value of a variable depends on variables
used/defined by a sequence of instructions leading to the instruction that defines
the variable. For instance, the value of variable a defined by L9thr1 indirectly de-
pends on: (1) variables d and f used by instruction L8thr1 which defines b, (2)
variables d, f, and g used by L3thr1 | L5thr1 which define c, (3) variable g used
by instruction L7thr1 which defines e, and (4) variables x, z, and y used by L1thr1
which defines g.
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cobegin

thr2();

coend

cobegin

thr1(5);

coend

Fig. 2. Two threads running sequentially

Definition 4. Let G be a CCGF and v be a variable. A dependency chain for
v is a sequence σ = 〈v1, n1, v2〉〈v2, n2, v3〉 . . . 〈vk−1, nk−1, vk〉 of dependencies
where:

– v1 = v, and
– the sequence nk, nk−1, . . . , n2, n1 is an execution path of G between basic

blocks n1 and nk [2]. ��

Clearly, determining data dependencies relies on the structure of the source
code. For example, in the source code of Figure 1(a) dependency chains σ1 =
〈a, L9thr1, e〉〈e, L1thr2, s〉 and σ2 = 〈a, L9thr1, e〉〈e, L7thr1, g〉 are both possible.
This is caused by the fact that threads thr1 and thr2 run concurrently. However,
if we change the structure as shown in Figure 2, then dependency σ1 is invalid
while σ2 is still valid.

Typically, one does not need to enumerate all dependency chains of a variable
in order to extract the value of that variable. In other words, we only need to
identify a subset of all dependency chains that is maximal.

Definition 5. Let Sv be a set of dependency chains for a variable v. We say that
Sv is a maximal dependency set for v iff for all dependency chains σ ∈ Sv,
there does not exist a dependency chain σ′, where σσ′ ∈ Sv. ��

For example, Sa = {〈a, L9thr1, b〉, 〈a, L9thr1, b〉〈b, L8thr1, d〉, 〈a, L9thr1, x〉,
〈a, L9thr1, e〉} is not a maximal dependency chain of a, as the dependency chain
〈a, L9thr1, b〉 is a prefix of the dependency chain 〈a, L9thr1, b〉〈b, L8thr1, d〉. To
convert Sa into a maximal dependency set, we must either remove 〈a, L9thr1, b〉
or 〈a, L9thr1, b〉〈b, L8thr1, d〉 from Sa.

Intuitively, a program slice [9] for a variable v is a maximal dependency chain
set that covers all dependency chains that start with v.

Definition 6. Let Sv be a maximal set of dependency chains for a variable v.
We say that Sv is the program slice for v iff there does not exist a dependency
chain σ for v, such that σσ′ is not in Sv for some σ′. ��

For example, the program slice for variable a includes all dependency chains for
a built from instructions L9thr1, L8thr1, L7thr1, L5thr1, L3thr1, L1thr1, and L1thr2.
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3 Observability in Concurrent Programs

Definition 7. A value of a variable v is naturally observable iff the value is
an output or input of the system. ��
For example, in Figure 1(a), variables d,f,x, and y are naturally observable.
Note that instrumented variables are considered as program outputs and, hence,
naturally observable variables as well.

We now use the notion of program slices in Definition 6 to define what it means
for a variable to be observable. Intuitively, a variable is observable if there exists
a sub-slice of the variable, where each dependency chain in the sub-slice ends
with a variable that is naturally observable.

Definition 8. A sub-slice S′ of a slice S is a set of dependency chains, where
each chain in S′ is a prefix of a chain in S. ��
To motivate the idea of observability, notice that given the value of naturally
observable variables d, f, x, and y in our running example, we cannot extract
the value of a using a’s program slice. To extract the values of a, we require the
values of b, c, e, and x. Variable a does not have a dependency with the value
of x printed on line L0, since a uses the value of x before it is redefined at line
L10 and printed on L0. On the other hand, a has dependencies with d and f via
variables b and c at lines L8, L5, and L3. Moreover, d and f can only lead to
extracting the value of b and c at lines L8 and L3. Hence, the value of c is still
unknown at L9 since we can not predict if c will be defined via line L3 or L5 at
runtime. As a result, we cannot guarantee determining the value of c at line L9
without having the value of g. In addition, based on thr1’s code, it is clear that
d, f, and y can not be used to extract values of e and x at line L9. Hence, the
values of x, e, and c are still required for extracting the value of a. Therefore,
no sub-slice of a provides enough information to extract a’s value.

We now formally define the constraints that need to be satisfied to extract
the value of a variable in concurrent programs.

Definition 9. A sub-slice S is complete iff

1. for each dependency 〈v, n, v′〉 in a dependency chain of S, there exists a
dependency 〈v, n, v′′〉 in at least one dependency chain of S, for each variable
v′′ in n’s parameter set.

2. for every dependency prefix 〈v, nthr , sv〉〈sv ,mthr , v
′〉 in S, if there exists an-

other thread thr ′ running concurrently with thr that contains an instruction
of the form:

(L) sv := F (v′′);
i.e., sv is a shared variable also defined by thr ′, then there must exist a
dependency chain σ′ ∈ S that contains 〈sv , Lthr′ , v′′〉. ��

For example, the sub-slice Sa = {〈a, L9thr1, b〉, 〈a, L9thr1, x〉, 〈a, L9thr1, e〉} is not
complete, since it violates both Conditions 1 and 2 of Definition 9. To satisfy
Condition 1, we add dependency 〈a, L9thr1, c〉 to Sa and to satisfy Condition
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2, we add dependency 〈a, L1thr2, e〉 to Sa, as e is defined by thr2 which runs
concurrently with thr1.

Definition 10. A variable v is observable iff there exists a complete sub-slice
Sv where:

– every dependency chain σ ∈ Sv ends in a naturally observable variable, and
– every shared variable sv in S is naturally observable.

We call Sv an observable sub-slice. ��
To clarify the need for Condition 2 in Definition 10, consider Figure 1(a). In
order to observe the value of variable a, we require the value of variable e. Vari-
able e is updated by both lines L7thr1 and L1thr2. Since thr1 and thr2 run
concurrently, we can not predict which of the two lines L7thr1 or L1thr2 is last
to update e. Hence, we need to explicitly extract the time at which both lines
execute, so one can determine which instruction defines the value of e used at
line L9thr1. As a result, we need to explicitly make e naturally observable at both
lines L7thr1 and L1thr2 to be capable of observing the time at which the instruc-
tions execute and consequently extract which instruction was the last to define e.

Problem Statement. As mentioned earlier, in addition to inputs and out-
puts, we consider instrumented variables as naturally observable variables, as
their value can be explicitly observed. When program development is divided
among multiple development groups, the program may suffer from under- or
over-instrumentation defects caused by developers due to lack of knowledge
about other developments.

Our goal is to optimize data-flow instrumentation in concurrent programs to
tackle over- and under-instrumentation defects. Informally, given a set of desired
variables required for debugging, our goal is to find the minimum set of variable
in the program that should be made naturally observable (i.e., instrumented), so
that the set of desired variables become observable. Formally, we aim at solving
the following optimization problem:

Given a concurrent program and a set V of desired variables to be made observ-
able, decide whether there exists a set of variables V ′, where |V ′| ≤ k for some
positive integer k, such that by making variables in V ′ naturally observable,
there exists an observable sub-slice Sv for all v ∈ V .

4 Approach

In this section, we propose our approach to solve the optimization problem, in-
troduced in Section 3. Our method consists of three steps: (1) extracting program
slices of variables required to be observed (i.e., desired variables), (2) building
a graph representation of slices, and (3) transforming the optimization problem
using the graph built in Step 2 into a satisfiability decision problem. These steps
are discussed in Subsections 4.1, 4.2, and 4.3, respectively.
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4.1 Extracting Program Slices

Given a concurrent program and a set V of desired variables, we first extract the
program slices of V from the Static Single Assignment (SSA) [4] representation
of the program by leveraging the slicing algorithm proposed in [9]. Our slicing
approach takes the following steps for all v ∈ V :

1. We find the threads, say thr , that execute instructions defining v. Then, we
extract the dependency chains of v by only using instructions of thr ; i.e.,
we do not expand the chains over different threads. We use a reachability
algorithm [11] to extract these chains.

2. For every chain σ found in Step 1, we extract the last variable v′ of σ. We
check if v′ is defined by an instruction of a thread, say thr ′, which does not
run concurrently with thr . If so, we find dependency chains of v′ in thr ′ using
the method in Step 1. Subsequently, we append the newly extracted chains
to σ and create a new set of chains which we add to the set of dependency
chains of v. We repeat this step until no new chains are created.

3. For every chain σ identified in Steps 1 and 2, we extract the instructions, say
L, in σ which use a shared variable sv . Next, we extract the threads, say thr ,
that execute instruction L. Then, we check if sv is defined by instructions
executed by a different thread, say thr ′, that runs concurrently with thr . If
so, we find the instructions, say L′ , that define sv in thr ′. We subsequently
check if data dependency is possible from the sv used in L to sv defined in L′ .
To this end, we perform a lightweight static analysis to take synchronization
issues into account. For instance, if L and L′ are both protected with the
same lock (e.g., a mutex or transaction), then data dependency between L
and L′ can be eliminated. If a dependency is possible, we apply Steps 1 and
2 to extract the corresponding dependency chains for sv in thr ′. Then, we
append sv ’s dependency chains to σ and create a new set of chains which we
add to the set of dependency chains of v. We repeat this step until no new
chains are created.

4. Finally, we test whether each dependency chain σ found for v is indeed
possible by checking if there exists an execution path in the CCFG of the
program that creates σ. If not, we discard σ from the set.

4.2 Building Observability Graph

Let v be a desired variable and Sv be the program slice for v ∈ V . In order
to find the minimum number of variables for instrumentation in a systematic
fashion, we build the observability graph [10] that encodes program slice Sv. Let
VSv be the set of all variables involved in Sv and ISv be the set of all instructions
involved in Sv. We construct the observability graph G = 〈VG , AG〉 as follows.

– (Vertices) VG = CG ∪ UG , where CG = {ci | i ∈ ISv} and UG = {uv | v ∈
VSv}. We call the set CG , context vertices and the set UG , variable vertices.

– (Arcs) AG = {(u, c) | u ∈ UG ∧ c ∈ CG ∧ variable u is defined by context
c} ∪ {(c, u) | u ∈ UG ∧ c ∈ CG ∧ variable u is used by context c}.
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For example, the observability graph (for simplicity constructed from the orig-
inal source code and not from its SSA mode) of variable a is presented in Figure
1(c). For instance, context vertex L9thr1 shows dependency of a to variables (di-
rectly) b, c, e and (indirectly) x. Also, Figure 1(c) shows that shared variable e
affects the value of a through instruction L1thr2 as well.

In the context of an observability graph, notice that a variable vertex v is
observable if there exists a context vertex c, such that (1) (v, c) is an arc in the
graph, and (2) all variable vertices, say v′, are observable, where (c, v′) is an arc
in the graph. Thus, our objective is to find the minimum number of variable
vertices of the graph whose instrumentation makes the root vertex of the graph
observable.

4.3 SAT-Based Optimization

In [10], we prove that the optimization problem for observability graphs of se-
quential programs is NP-complete. Thus, in the context of concurrent programs,
the problem involves two exponential blow-ups: one for computing program slices
[9] (and, hence, an observability graph), and (2) solving the optimization prob-
lem [10]. In order to cope with the second exponential blow-up, we transform
our optimization problem into the propositional satisfiability problem (SAT).

Let G = 〈VG , AG〉 be an observability graph and V ′ ⊆ VG represents the set of
desired variables. We include the following variables:

– X = {xv | v ∈ VG}: each variable vertex v is mapped to a Boolean variable
xv, where xv = true if v is observable and false otherwise.

– Z = {zv | v ∈ VG}: each variable vertex v is mapped to a Boolean variable
zv, where zv = true if v is instrumented and false otherwise.

– Q = {qc | c ∈ (CG ∪ CH)}: each context vertex c is mapped to a Boolean
variable qc, where qc = true if all variables used by c are observable and
false otherwise. In addition, CH = {cv | v ∈ VG} contains context vertices
for each variable v ∈ VG representing hypothetical instructions that would
instrument v; i.e., such instrumentations do not exist in the original code
and will only be added to the code if v is chosen to be instrumented. Each
context vertex c ∈ CH is mapped to a Boolean variable qc: the value of
qc = true if c is added to the code to instrument the corresponding variable
and false otherwise.

– Y = {yz | z ∈ Z}: for each variable z ∈ Z, we include an integer variable yz

for our optimization objective.

Constraints on variable vertices. Obviously, every desired variable must
be observable. Hence, we add the following constraint for each v ∈ V ′:

xv ⇐⇒ true.

Moreover, each variable xv ∈ X is true if and only if the value of the variable v
is observable via the context vertex that defines v or by instrumenting v:

xv ⇐⇒ (qcv ∨ qc′v ),
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where cv is the context vertex that defines v and c′v is the instruction that
instruments v. Finally, we require that yz ∈ Y , where z ∈ Z, has value 1 when
z = true and has value 0 otherwise:

(yz = 1) ⇐⇒ z and (yz = 0) ⇐⇒ ¬z.
Constraints on context vertices. The value of a variable qc ∈ Q, where
c ∈ CG , must be true if and only if all the variables used by c are observable:

qc ⇐⇒
∧

v∈Vc

xv,

where Vc = {u | (c, u) ∈ AG}. On the other hand, if cv ∈ CH , then qc must be
true if and only if when v is instrumented; i.e., when zv = true.

qcv ⇐⇒ zv

In this expression, when zv = true an instruction is added to the code to instru-
ment v.
Optimization objective. Following the optimization criterion presented in
Section 3, we require that the number of variables to be instrumented is not
greater than K: ∑

y∈Y

y ≤ K,

for some positive integer K specified by the user.

5 Experiments

Our goal in this section is twofold: (1) to demonstrate the effectiveness of our
method through measuring the number of instrumentations removed from an
over-instrumented program after applying our method, and (2) to evaluate the
impact of our approach by studying the performance (i.e., execution time) of op-
timally instrumented programs as compared to their over-instrumented versions.
We note that in the over-instrumented versions, any instruction that can change
the state of concurrent data structures is instrumented for debugging purposes.

Our approach is implemented in a tool chain consisting three phases:

1. First, we implement a new pass over LLVM [7] that takes a program’s source
code and the set of desired variables as input. The pass extracts program
slices using the method described in 4.1 and the static single assignment
(SSA) mode of the program code. We currently do not handle alias and
pointer data structures.

2. Given the extracted program slices, we transform the respective optimization
problem into a SAT formula in the input language of our SAT-solver using
the method described in Section 4.3.

3. We solve the generated SAT model using the Yices SMT-solver [1]. The
solution presents the set of variables that need to be instrumented in the
source code (set of naturally observable variables).
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5.1 Experimental Setup

Our two case studies are concurrent implementations of linked-lists and red-black
trees. We use regular arrays to eliminate possible pointer analysis. In both test
cases, insert, delete, and search operations can run concurrently, where a thread
inserts data elements (i.e., producer) and a thread deletes data elements (i.e., a
consumer). In addition, we consider the following synchronization methods for
each case study:

1. Lock-based. These algorithms employ blocking data structures (e.g.,
semaphores and mutexes) to enforce linearizable insertion and deletion. In
particular, we use our mutex-based implementation of concurrent linked lists
and the algorithm in [5] for concurrent red-black trees (with 656 lines of code
and 57 desired variables).

2. Non-blocking. This group of solutions ensures that threads competing
for a shared resource do not have their execution indefinitely postponed by
mutual exclusion. We use the following implementation for our experiments:

– We use the lock-free algorithm in [6] for concurrent linked lists (with
1180 lines of code and 85 desired variables) implemented by the CAS
(compare-and-swap) operation. Lock-free algorithms ensure that if the
program threads run sufficiently long at least one of the threads makes
progress.

– We use the obstruction-free algorithm in [3] for concurrent linked lists
(with 797 lines of code and 71 desired variables) implemented by virtual
locks and the CAS operation. Obstruction-free algorithms guarantee that
at any point, a single thread executed in isolation (i.e., with all obstruct-
ing threads suspended) for a bounded number of steps will complete its
operation.

– Algorithms based on software transactional memory (STM) hide syn-
chronization issues from the programmer; i.e., the programming language
provides the programmer with atomic constructs in which reading and
writing shared variables take place. In particular, we use our own STM-
based implementation of concurrent linked lists and the algorithm in
[5] for concurrent red-black trees (with 730 lines of code and 56 desired
variables).

The set of desired variables in our experiments include the data contained in the
linked-list/red-black tree at any point of execution and the temporary variables
used in search, addition, and deletion operations. Thus, instrumenting all these
variables is likely to result in over-instrumentation.

Parameters that affect the execution time of experiments are: (1) number of
producer and consumer threads, (2) number of insert and delete operations, (3)
type of data elements (e.g., long, short, int), (4) time consumed by each in-
strumentation instruction, (5) number of shared variables, and (6) structure of
the source code (i.e., synchronization method). In our experiments, we keep the
number of producer and consumer threads, type of data elements, and number
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Table 1. Detailed numbers for the instrumented version with I/O delay= 100μs and
number of insert operations = 200

Application Concurrency Count Mean Median SEM CI-95 Min Max

1 Linked-list Nested-locks 5 14.13 14.01 0.22 0.30 13.65 14.94
2 Linked-list Lock-free [6] 5 5526.37 5529.79 6.53 9.06 5502.49 5539.07
3 Linked-list Obstruction-free [3] 5 2686.26 2683.78 8.01 11.10 2663.26 2707.92
4 Linked-list STM 5 257.13 258.05 1.14 1.58 252.72 258.90
5 Red-black tree Nested-locks [5] 20 3.95 3.95 0.00 0.00 3.95 3.95
6 Red-Black tree STM [5] 10 4.46 4.46 0.00 0.00 4.46 4.46

of shared variables as constants. The rest are obviously variables in our exper-
iments. In particular, we incorporate different numbers of insert operations to
study the impact of our optimization on long running programs. Different du-
rations of the instrumentation instruction show the impact of our method for
different instrumentation technologies. For instance, printf() statements nor-
mally take 80μs, whereas EEPROM data logs take 1ms. All experiments in
this section are run on workstations ranging from a Core2Duo to a Core I3
quad-core machines with sufficient memory. Each test series is completed on the
same machine, hence, the execution-time measurements from one test series are
comparable.

We measure the execution time using the well-accepted utility time. Since
individual measurements can be inaccurate (due to context switches or I/O
operations between the program and time), we repeated each experiment several
times and carried out solid statistical analysis. We have collected sufficient data
to have representative and robust results. While we cannot provide the key
metrics for all individual data points, Table 1 shows the results for the data series
with the least number of values—it is the series where several configurations take
more than an hour to complete. In Table 1, SEM and CI-95 abbreviate Standard
Error of the Mean and 95% Confidence Interval, respectively. We also performed
the following consistency checks on the data: measurements must be positive
and growing with respect to the number of insert operations and the amount of
I/O delay.

Table 2. Reduction in Instrumentation

Application Concurrency Original Inst. Optimized Inst.

1 Linked-list Nested-locks 43 20
2 Linked-list Lock-free [6] 49 23
3 Linked-list Obstruction-free [3] 42 24
4 Linked-list STM 28 15
5 Red-black tree Nested-locks [5] 320 205
6 Red-black tree STM [5] 294 189
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Fig. 3. Performance evaluation of instrumentation optimization

5.2 Results and Analysis

Reduction in number of instrumentations. We apply our method to over-
instrumented implementations to optimize the instrumentations of the source
code. Table 2 shows that our method achieves a 45% reduction on average across
our case studies. Although the set of desired variables is common among differ-
ent implementations, we observe different reductions in instrumentation, as the
amount of reduction depends on the structure of the code. For instance, we do
not require instrumentation in the atomic sections of STM-based algorithms,
since the changes are local to the threads and do not affect shared variables;
i.e., we only need to instrument the values committed into the shared variables
by the threads (experiments 4 and 6). On the other hand, in the lock-free and
obstruction-free implementations, we require more instrumentation due to lack of
synchronization and more possible interleaving scenarios that must be observed.
In nested-locks implementations, since the changes carried out in between the
locks directly affect shared variables, we need to instrument the code in between
the locks. Hence, it requires more instrumentation as compared to STM-based
algorithms, but less as compared to non-blocking algorithms, as they have less
interleaving scenarios.

Enhancement in performance. We now compare the performance of over-
instrumented test cases against the performance of their optimally instrumented
versions in terms of execution time. In the first set of experiments (see Figure
3(a)), we compare the performance of the case studies, where the I/O delay (time
consumption) of instrumentation instructions varies from 1μs to 1ms, while the
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number of insert operations is constant (= 100). We have collected 1692 data
samples from these experiments for statistical soundness (discussed later). Ob-
viously, Figure 3(a) shows that the performance of optimally instrumented im-
plementations is significantly better than the over-instrumented versions. For
example, the performance of both red-black tree implementations improve with
a factor of two. The reason behind this small improvement is that our method
is forced to place 48% of the required instrumentation in loop structures to
make desired variables observable. Hence, the effect of the I/O delay of each
instrumentation on the performance is multiplied by the loop counts. On the
other hand, Figure 3(a) shows a 40 times performance improvement in lock-free
and obstruction-free implementations, as the majority of the instrumentations
introduced by our method reside outside loop structures. In general, the im-
provement factor differs from one case study to another, since instrumentation
locations tightly depend upon the structure of the source code. In addition,
the results show that the improvement factor in performance is insensitive to
different durations for instrumentation instructions.

In the second set of experiments, we compare the execution time of the case
studies, where the number of concurrent insertions in the linked-list/red-black
tree varies from 1 to 1000 (see Figure 3(b)). We collected 966 data samples from
these experiments for statistical soundness. Obviously, Figure 3(a) shows that the
performance of the optimally instrumented implementations is better than over-
instrumented versions. The results show that we achieve a small improvement
in the performance of red-black tree implementations due to the same reason
discussed in the previous experiment. In addition, the results show that the
improvement in performance in each case study is insensitive to the number
of insertions, although the improvement factor differs from one case study to
another (as the improvement factor depends upon the source code structure).

6 Conclusion and Future Work

In this paper, we introduced an automated technique to optimize instrumen-
tation of multi-threaded programs to achieve software observability. Intuitively,
observability in a concurrent program enables a debugger to extract the value of
a set of desired variables through instrumenting another (possibly smaller) set
of variables, called naturally observable. Thus, our optimization method iden-
tifies the minimum set of naturally observable variables whose instrumentation
makes the value of desired variables extractable. Since our optimization prob-
lem is NP-complete, we encoded the problem as a propositional satisfiability
problem (SAT) to leverage powerful SAT-solvers to tackle our problem. In our
tool chain, we used LLVM and a slicing algorithm to extract program data-flow
dependencies. Our experimental results on concurrent linked lists and red-black
trees using different concurrency techniques show significant gains (up to 50
times) in performance of optimally-instrumented programs using our method as
compared to ad-hoc over-instrumented programs.



512 S. Navabpour, B. Bonakdarpour, and S. Fischmeister

For future work, we are considering two main research directions: (1) tech-
niques for solving the optimization problem more efficiently, and (2) extending
the concept of observability to other domains. Another direction is to devise
probabilistic methods that make desired variables observable with certain prob-
abilities.
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In this paper, we present a protocol which we call Mass-Distribution
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showing that stochastic message loss produces low overhead. This is the
first convergence proof of an FU-based algorithm. We evaluate MDFU ex-
perimentally, comparing it with previous MD and FU protocols, and ver-
ifying the behavior predicted by the analysis. Finally, given that MDFU
incurs a fixed deviation proportional to the message-loss rate, we adjust
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1 Introduction

The distributed computation of algebraic aggregate functions is particularly chal-
lenging in settings where the processing nodes do not have access to global in-
formation such as the input size. A good example of such scenario is Sensor
Networks [1, 28] where unreliable sensor nodes are deployed at random and the
overall number of nodes that actually start up and sense input values may be
unknown. Under such conditions, well-known techniques for distributing infor-
mation throughout the network such as Broadcast [22] or Gossiping [12] cannot
be directly applied, and data collection is only practicable if aggregation is per-
formed. Even more challenging is that loss of messages between nodes or even
node crashes are likely in such harsh settings. It has been proved [3] that the
problem of aggregating values distributedly in networks where processing nodes
may join and leave arbitrarily is intractable. Hence, arbitrary adversarial mes-
sage loss also yields the problem intractable, but a weaker adversary, for instance
a stochastic one as in Dynamic Networks [8], is of interest. In this paper, under a
stochastic model of message loss, we study communication networks where each
node holds an input value and the average of those values 1 must be obtained
by all nodes, none of whom have access to global information of the network,
not even the total number of nodes n.

A classic distributed technique for aggregation, sometimes called Mass-
Distribution (MD) [11], works in rounds. In each round, each node shares a
fraction of its current average estimation with other nodes, starting from the in-
put values [4, 6, 7, 20, 27, 29, 32, 33]. Details differ from paper to paper but a
common problem is that, in the face of message loss, those protocols either do
not converge to a correct output or they require some instantaneous failure detec-
tor mechanism that updates the topology information at each node in each round.
Recently [18, 19], a heuristic termed Flow-Updating (FU) addressed the prob-
lem assuming stochastic message loss [19], and even assuming that input values
change and nodes may fail [18]. The idea underlying FU is to keep track of an ag-
gregate function of all communication for each pair of communicating nodes, since
the beginning of the protocol, so that a current value at a node can be re-computed
from scratch in each round. Empirical evaluation has shown that FU behaves very
well in practice [18, 19], but such protocols have eluded analysis until now.

In this paper, we introduce the concept of FU to MD. First, we present a
protocol that we call Mass-Distribution with Flow-Updating (MDFU).
The main difference with MD is that, instead of computing incrementally, the
average is computed from scratch in each round using the initial input value and
the accumulated value shared with other nodes so far (which we refer to as either
mass shared , or flow passed). The main difference with FU is that if messages
are not lost the algorithm is exactly MD, which facilitates the theoretical analysis
of the convergence time under failures parameterized by the failure probability
(or message-loss rate).

1 Other algebraic aggregate functions can be computed in the same bounds using an
average protocol [7, 20].
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Our results. We first leverage previous work on bounding the mixing time
of Markov chains [30] to show that, for any 0 < ξ < 1, the convergence time
of MDFU under reliable communication is 2 ln(n/ξ)/Φ(G)2, where Φ(G) is the
conductance of the underlying graph characterizing the execution of MDFU on
the network. Then, we show that, with probability at least 1−1/n, for a message-
loss rate f < 1/ ln(2Δe)3, the multiplicative overhead on the convergence time
produced by message loss is less than 1/(1 −√f ln(2Δe)3), and it is constant
for f ≤ 1/(e(2Δe)e), where Δ is the maximum number of neighbors of any
node. Also, we show that, with probability at least 1− 1/n, for any 0 < ξ < 1,
after convergence the expected average estimation at any node is in the interval
[(1 − ξ)(1 − f)v, (1 + ξ)v]. This is the first convergence proof for an FU-based
algorithm.

In MDFU, if some flow is not received, a node computes the current estima-
tion using the last flow received. Thus, in presence of message loss, nodes do
not converge to the average and only some parametric bound can be guaran-
teed as shown. Aiming to improve the accuracy of MDFU, we present a new
heuristic protocol that we call MDFU with Linear Prediction (MDFU-LP).
The difference with MDFU is that if some flow is not received a node computes
the current estimation using an estimation of the flow that should have been
received.

We evaluate MDFU and MDFU-LP experimentally and find that the perfor-
mance of MDFU is comparable to FU and other competing algorithms under
reliable communication. In the presence of message loss, the empirical evaluation
shows that MDFU behaves as predicted in the analysis converging to the average
with a bias proportional to the message-loss rate. This bias is not present in the
original FU, which converges to the correct value even under message loss. In
a third set of evaluations, we observe that MDFU-LP converges to the correct
value even under high message loss rates, with the same speed as under reliable
communication. We also test MDFU under changing input values to verify that
it tolerates dynamic changes in practice, in contrast to classic MD algorithms,
which need to restart the computation each time values are changed.
Roadmap. In Section 2 we formally define the model and the problem, and we
give an overview of related work. Section 3 includes the details of MDFU and its
analysis, whereas its empirical evaluation is covered in Section 4. In Section 5
we present the details of MDFU-LP and its experimental evaluation. Section 6
evaluates MDFU in a dynamic setting, where input values change over time.

2 Preliminaries

Model. We consider a static connected communication network formed by a
set V of n processing nodes. We assume that each node has an identifier (ID).
Any pair of nodes i, j ∈ V such that i may send messages to j without relying
on other nodes (one hop) are called neighbors. We assume that the IDs are
assigned so that each node is able to distinguish all its neighbors. The set of
ordered pairs of neighbors (or, edges) is called E. The network is symmetric,
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meaning that, for any i, j ∈ V , (i, j) ∈ E if and only if (j, i) ∈ E. The set of
neighbors of a given node i is denoted as Ni and |Ni| is called the degree of i.
For each pair of nodes i, j ∈ V , the maximum degree between i, j is denoted as
Dij = max{|Ni|, |Nj |}. The maximum degree throughout the network is denoted
as Δ = maxi∈V |Ni|. Each node i knows Ni and Dij for each j ∈ Ni, but does
not know the size of the whole network n. The time is slotted in rounds and
each round is divided in two phases. In each round, a node is able to send
(resp. receive) one message to (resp. from) all its neighbors (communication
phase) and to perform local computations (computation phase). However, for
each (i, j) ∈ E and for each communication phase, a message from i to j is lost
independently with probability f . This is a crucial difference with previous work
where, although edge-failures are considered, messages are not lost thanks to the
availability of some failure detection mechanism. More details are given in the
previous work section. Nodes are assumed to be reliable, i.e. they do not fail.

Problem. Each node i holds an input value vi, for 1 ≤ i ≤ n. The aim is for each
node to compute the average v =

∑n
i=1 vi/n without any global knowledge of the

network. We focus on the algorithmic cost of such computation, counting only
the number of rounds that the computation takes after simultaneous startup of
all nodes, leaving aside medium access issues to other layers. This assumption
could be removed as in [11].

Previous Work. Previous work on aggregate computations has been partic-
ularly prolific for the area of Radio Networks, including both theoretical and
experimental work [9, 13, 14, 15, 16, 17, 20, 21, 23, 24, 25, 26, 35]. Many of
those and other aggregation techniques exploit global information of the net-
work [11, 13, 23, 24], or are not resilient to message loss [4, 6, 20].

FU is a recent fault-tolerant approach[18, 19] inspired on the concept of flows
(from graph theory). Like common MD techniques, it is based on the execution
of an iterative averaging process at all nodes, and all estimates eventually con-
verge to the system-wide average. MD protocols exchange “mass”, which lead
them to converge to a wrong result in the case of message loss. In contrast,
FU does not exchange “mass”. Instead it performs idempotent flow exchanges
which provide resilience against message loss. In particular, FU keeps the initial
input value at each node unchanged (in a sense, always conserving the global
mass), exchanging and updating flows between neighbors for them to produce a
new estimate. The estimate is computed at each node from the input values and
the contribution of the flows. No theoretical bounds on the performance of the
algorithm were provided. Empirical evaluation shows that FU performs better
than classic MD algorithms, especially in low-degree networks, and it supports
high levels of message loss [19]. Moreover, it self-adapts to dynamic changes (i.e.
nodes leaving/arriving and input value change) without any restart mechanism
(like other approaches), and tolerates node crashes [18].

MD protocols for average computations in arbitrary networks based on gos-
siping (exchange values in pairs) were studied in [4, 20]. Results in [4] are
presented for all gossip-based algorithms by characterizing them by a matrix
that models how the algorithm evolves while sharing values in pairs iteratively.
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As in our results, the time bounds shown are given as a function of the spectral
decomposition of the graph underlying the computation. The work is focused
on optimizing distributedly the spectral gap, in order to minimize convergence
time. The dynamics of the model are motivated by changes in topology induced
by nodes leaving and joining the network. Those changes may be introduced in
the probability of establishing communication between any two nodes. However,
the delivery of messages has to be reliable to ensure mass conservation. An al-
gorithm called Push-Sum that takes advantage of the broadcast nature of Radio
Networks (i.e., it is not restricted to gossip) is included in [20], yielding similar
bounds. Chen, Pandurangan, and Hu [6] present an MD algorithm that first
builds a forest over the network, where each root collects the information, and
then a gossiping algorithm among the roots is used. The authors show a reduc-
tion on the energy consumption with respect to the uniform gossip algorithm. On
the other hand, the MD algorithm presented in [7] relies on a different randomly
chosen local leader in each round to distribute values. The bounds given are also
parameterized by the eigen-structure of the underlying graph. This result was
extended more recently [5] to networks with a time-varying connection graph,
but the protocol requires to update the matrix underlying such graph in each
round.

MD protocols have been used also for Distributed Average Consensus [27,
29, 31, 32, 33, 34] within Control Theory, but they do not apply to our model.
For example, in [33, 34] the model includes unreliable communication links, but
the algorithm requires instantaneous update of the topology information held
at each node at the beginning of each round. Others, either rely on similar
features [27, 29, 31] or do not consider changes in topology at all [32].

The common problem in all the MD protocols is that they are not resilient to
message loss, because it implies a loss of mass. Hence, if messages are lost, they
need to restart the computation from scratch. In MDFU, message loss has an
impact on convergence time, which we show to be small, but the computation
recovers from those losses, yielding the correct value. In fact, it is this character-
istic of MDFU and FU in general what makes the technique suitable for dynamic
settings in which the input values change with time.

3 MDFU

As in previous work [4, 7, 11, 20], MDFU is based on repeatedly sharing among
neighbors a fraction of the average estimated so far. Unlike in those papers, in
MDFU the estimation is computed from scratch in each round, as in FU [18,
19]. For that purpose, each node keeps track of the cumulative value passed to
each neighbor (or, cumulative flow) since the protocol started. Together with
the original input value, those flows allow each node to recompute the average
estimation in each round. Should some flow from node i to node j be lost, j
temporarily computes the estimation using the last flow received from i. Further
details can be found in Algorithm 1.

Recall that the aim is to compute the average v =
∑n

i=1 vi/n of all in-
put values. Let ei(r) be the average estimate of node i in round r, and
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Algorithm 1. MDFU. Pseudocode for node i. ei is the estimate of node i. Fin(j)
is the cumulative inflow from node j. Fout(j) is the cumulative outflow to node j.

// initialization

ei ← vi1

foreach j ∈ Ni do2

Fin(j) ← 03

Fout(j) ← ei/ (2Dij)4

foreach round do5

// communication phase

foreach j ∈ Ni do6

Send j message 〈i, Fout(j)〉7

foreach 〈j, F 〉 received do8

Fin(j) ← F9

// computation phase

ei ← vi +
∑

j∈Ni
(Fin(j) − Fout(j))10

foreach j ∈ Ni do11

Fout(j) ← Fout(j) + ei/ (2Dij)12

ε(r) = maxi{|ei(r) − v|/v} be the maximum relative error of the average es-
timates in round r. We want to bound the number of rounds after which the
maximum relative error is below some parametric value ξ.

In each round, a node shares a fraction of its current estimate with each neigh-
bor. Therefore, the execution of each round can be characterized by a transition
matrix , denoted as P = (pij), ∀i, j ∈ V , such that for any round r where mes-
sages are not lost

pij =

⎧⎨
⎩

1/(2Dij) if i �= j and (i, j) ∈ E,
1−∑k∈Ni

1/(2Dik) if i = j,
0 (i, j) /∈ E

and e(r + 1) = e(r)P, where e(·) is the row vector (e1(·)e2(·) . . . en(·)).

3.1 Convergence Time for f = 0

Consider first the case when the communication is reliable, that is f = 0. Then,
the above characterization is round independent and, given that P is stochastic,
it can be seen as the transition matrix of a time-homogeneous Markov chain
(Xr)∞r=1 with finite state space V . Furthermore, (Xr)∞r=1 is irreducible, and ape-
riodic, then it is ergodic and it has a unique stationary distribution. Given that
P is doubly stochastic such stationary distribution is πi = 1/n for all i ∈ V .
Thus, bounding the convergence time of (Xr)∞r=1 we have a bound for the con-
vergence time of MDFU without message loss. The following notation will be
useful. Let G be a weighted undirected graph with set of nodes V and where,
for each pair i, j ∈ V , the edge (i, j) has weight πipij . G is called the underlying
graph of the Markov chain (Xr)∞r=1. The following quantity characterizes the
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likelihood that the chain does not stay in a subset of the state space with small
stationary probability. Let the conductance of graph G be

Φ(G) = min
∅⊂S⊂V∑
i∈S πi≤1/2

∑
i,j∈S pijπi∑

i∈S πi
.

The following theorem shows the convergence time of MDFU with reliable com-
munication parameterized in the conductance of G.

Theorem 1. For any communication network of n nodes running MDFU, for
any 0 < ξ < 1, and for rc = 2 ln(n/ξ)/Φ(G)2, if f = 0, it holds that ε(r) ≤ ξ
for any round r ≥ rc, where Φ(G) is the conductance of the underlying graph
characterizing the execution of MDFU on the network.

Proof. We want to find a value of rc such that for all r ≥ rc it holds that
maxi{|ei(r) − v|/v} ≤ ξ. Then, we want maxi{|ei(r)/

∑
j∈V vj − 1/n|} ≤ ξ/n.

Given that ei(r) =
∑

j∈V vj(Pr)ji, it is enough to have maxj,i∈V {|(Pr)ji −
1/n|} ≤ ξ/n. On the other hand, given that pijπi = pjiπj for all i, j ∈ V , the
Markov chain is time-reversible. Then, as proved in [30], it is maxi,j∈V |(Pr)ij −
πj |/πj ≤ λr

1/minj∈V πj , where λ1 is the second largest eigenvalue of P (all
the eigenvalues of P are positive because pii ≥ 1/2 for all i ∈ V ). Given that
πi = 1/n for all i ∈ V , we have maxi,j∈V |(Pr)ij − 1/n| ≤ λr

1. Thus, from the
inequality above, it is enough to have λr

1 ≤ ξ/n. As proved also in [30], given
that (Xr)∞r=1 is ergodic and time-reversible, it is λ1 ≤ 1 − Φ(G)2/2. Then, it is
enough (1−Φ(G)2/2)r ≤ ξ/n. Given that Φ(G) ≤ 1, using that 1− x ≤ e−x for
x < 1, the claim follows.

3.2 Convergence Time for f > 0

Mixing time of a multiple random walk. Recall that we carry out an average
computation of n input values where each node i shares a 1/(2Dij) fraction of
its estimate in each round of the computation with each neighboring node j. We
have characterized each round of the computation with a transition matrix P so
that in each round r the vector of estimates e(r) is multiplied by P.

The Markov chain defined in Section 3.1 that models the average computation
is also a characterization of a random walk, that is, a stochastic process on the
set of nodes V where a particle moves around the network randomly. In our
case, for each round, instead of choosing the next node where the particle will
be located uniformly among neighbors, the matrix of transition probabilities is
P. A state of this process (which of course is also Markovian) is a distribution of
the location of the particle over the nodes. The measure of this random walk that
becomes relevant in our application is the mixing time, that is, the number of
rounds before such distribution will be close to uniform. The mixing time of this
random walk is the same as the convergence time of the Markov chain (Xr)∞r=1,
setting appropriately for each case the desired maximum deviation with respect
to the stationary distribution as follows.
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A useful representation of this process in our application is to assume a set S
of particles, all of the same value ν, so that at the beginning each node i holds a
subset Si of particles such that |Si|ν = vi. In order to analyze the computation
along many rounds, we assume that ν is small enough so that particles are not
divided. We define the mixing time of this multiple random walk as the number
of rounds before the distribution of all particles is within ξ/n of the uniform,
for 0 < ξ < 1. Without message loss, it can be seen that the mixing time of the
above defined multiple random walk is the same as the convergence time of the
Markov chain (Xr)∞r=1 defined in Section 3.1. We consider now the case where
messages may be lost.

The following lemma shows that, for f < 1/ ln(2Δe)3, the multiplicative
overhead on the mixing time produced by message loss is less than 1/(1 −√

f ln(2Δe)3), and it is constant for f ≤ 1/(e(2Δe)e). The proof, left to the
full version of this work in [2] for brevity, uses concentration bounds on the
delay that any particle may suffer due to message loss.

Lemma 1. Consider any communication network of n nodes running MDFU,
any 0 < f ≤ 1/ ln(2Δe)3, any 0 < ξ < 1, let rc = 2 ln(n/ξ)/Φ(G)2, and let

q =

{
1/e if f ≤ 1/(e(2Δe)e)
f
(√

4 ln(2Δe)3/f − 3− 1
)
/2 otherwise.

Consider a multiple random walk modeling MDFU as described. With probability
at least 1 − 1/n, after r = rc/(1 − q) rounds it holds that maxx∈S,i∈V |px(i) −
1/n| ≤ ξ/n, where px(i) is the probability that particle x is located at node i.

The expected number of particles at each node as a function of f .
Analyzing a multiple random walk of a set of particles, in Lemma 1 we obtained
a bound on the time that any particle takes to converge to a stationary uniform
distribution. However, for any probability of message loss f > 0 and for any
round, there is a positive probability that some particles are located in the edge
buffers defined in the proof of such lemma. Hence, the fact that each particle
is uniformly distributed over nodes does not imply that the expected average
held at the nodes has converged, because only particles located at nodes are
uniformly distributed. We bound the expected error in this section. The proof
of the following lemma, left to the full version of this work in [2] for brevity, is
based on computing the overall expected ratio of particles in nodes with respect
to delayed particles.

Lemma 2. Consider a multiple random walk modeling MDFU under the con-
ditions of Lemma 1. Then, with probability at least 1 − 1/n, for any round
r ≥ rc/(1 − q), the expected number of particles E(|S(r)

i |) in each node i is
(1− ξ)(1 − f)|S|/n ≤ E(|S(r)

i |) ≤ (1 + ξ)|S|/n.

Based on the previous lemmata, the following theorem shows the convergence
time of MDFU.
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Theorem 2. Consider any communication network of n nodes running MDFU.
For any 0 < f ≤ 1/ ln(2Δe)3, let q = 1/e if f ≤ 1/(e(2Δe)e), or q =
f
(√

4 ln(2Δe)3/f − 3− 1
)
/2 otherwise, and let rc = 2 ln(n/ξ)/Φ(G)2. Then,

with probability at least 1−1/n, for any 0 < ξ < 1 and any round r ≥ rc/(1−q),
the expected average estimation at any node i ∈ V is (1− ξ)(1− f)v ≤ E(e(r)

i ) ≤
(1 + ξ)v, where Φ(G) is the conductance of the underlying graph characterizing
the execution of MDFU on the network.

Proof. From Lemmas 1 and 2, we know that, under the conditions of this theo-
rem, for any round r ≥ rc/(1− q) and any node i ∈ V , with probability at least
1−1/n the expected number of particles (of the multiple random walk modeling
MDFU) is (1− ξ)(1− f)|S|/n ≤ E(|S(r)

i |) ≤ (1 + ξ)|S|/n. Then, multiplying by
the value of each particle the claim follows.

4 Empirical Evaluation of MDFU

We evalutated MDFU in a synchronous network simulator, using an
Erdős–Rényi[10] network with 1000 nodes and 5000 links (giving an average
degree of 10). The input values were chosen as when performing node count-
ing [17]; i.e., all values being 0 except a random node with value 1; this scenario
is more demanding, leading to slower convergence, than uniformly random input
values. The evaluation aimed at: 1) comparing its convergence speed under no
loss with competing algorithms; 2) evaluating its behavior under message loss;
3) checking its ability to perform continuous estimation over time-varying input
values.

4.1 Convergence Speed against Related Algorithms under No
Faults

To evaluate wether MDFU is a practical algorithm in terms of convergence speed,
we compared it against three other algorithms: the original Flow-Updating [18,
19](FU), Distributed Random Grouping [7] (DRG), and Push-Synopses [20].
Figure 1 shows the coefficient of variation of the root mean square error as
a function of the number of rounds (averaging 30 runs), with CV(RMSE) =√∑

i∈V (ei − v)2/n/v.
It can be seen that MDFU is competitive, providing approximate estimates

slightly faster than FU and DRG and giving reasonably accurate results roughly
in line with them. It loses to them for very high precision estimation and to
Push-Synopses for all precisions (but both DRG and Push-Synopses are not
fault-tolerant).

4.2 Fault Tolerance: Resilience to Message Loss

To evaluate the resilience of MDFU to message loss, we performed simulations
using different rates of message loss (0, 1%, 5%, 10%), where each individual
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Fig. 1. CV(RMSE) over rounds in a 1000 node 5000 link Erdos-Renyi network
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Fig. 2. Coefficient of variation of the RMSE and maximum relative error for MDFU
in a 1000 node 5000 link Erdos-Renyi network

message may fail to reach the destination with these given probabilities. We
measured the effect of message loss on both the CV(RMSE) and also on the
maximum relative error. As can be seen in Figure 2, as long as there is some
message loss, they do not tend to zero anymore, but converge to a value that is
a function of the message loss rate.

We also measured the behavior of the average of the estimates over the whole
network, and observed that there is a deviation from the correct value (v, the
average of the input values) towards lower values. Figure 3 shows the relative
deviation from the correct value over time, for different message loss rates. It
can be seen that this bias is roughly proportional to the message loss rate (for
these small message loss rates).

Relating these results with the theoretical analysis of MDFU, we can see that
this bias should not come as a surprise. From Theorem 2, the expected value of
the estimation converges to a band between (1−f)v and v. The relative deviation
of the lower boundary is thus proportinal to the message loss rate. Figure 3 also
shows this boundary for the different message loss rates.

This kind of bias was not present in the original FU, in which the average
of the estimates tends to the correct value. In MDFU the message loss rate
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Fig. 3. Bias on the average estimation over rounds in a 1000 node 5000 link Erdos-
Renyi network

limits the precision that can be achieved, but it does not impact convergence,
contrary to classic mass distribution algorithms where, given message loss, the
more rounds pass, the more mass is lost and the more the estimates deviate from
the correct value, failing to converge.

5 MDFU with Linear Prediction

The explanation for the behavior of MDFU under message loss lies in that only
the estimate converges, but flows keep steadily increasing over time. This can be
seen in the formula: Fout(j) ← Fout(j) + ei/ (2Dij) where the flow sent to some
neighbor increases at each round by a value depending on the estimate and their
mutual degrees. What happens is that during convergence, the extra flow that
each of two nodes send over a link tend to the same value, and the extra outgoing
flow cancels out the extra incoming flow. We can say that it is the velocity (rate
of increase) of flows over a link that converge (to some different value for each
link).

This means that, even if the estimate had already converged to the correct
value, given a message loss, the extra flow that should have been received is
not added to the estimate, implying a discrete deviation from the correct value.
This discrete deviation does not converge to zero; thus, we have a bias towards
lower values and the relative estimation error is prevented from converging to
zero given some message loss rate.

Here we improve MDFU by exploring velocity convergence. We keep, for each
link, the velocity (rate of increase) of the flow received. If a message is lost,
we predict what would have been the flow received, given the stored flow, the
velocity and the rounds passed since the last message received over that link,
i.e., we perform a linear prediction of incoming flow. When a message is received
we update the flow and recalculate the velocity. This algorithm is presented in
Algorithm 2.

Under no message loss MDFU-LP is the same as MDFU and the theoreti-
cal results on convergence speed also apply to MDFU-LP. Under message loss
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Algorithm 2. MDFU-LP. Pseudocode for node i. ei is the estimate of node i.
Fin(j) is the cumulative inflow from node j. Fout(j) is the cumulative outflow to
node j. V (j) is the velocity of incoming flow from node j. R(j) is the number of
rounds since the last message received from node j.

// initialization

ei ← vi1

foreach j ∈ Ni do2

Fin(j) ← 03

Fout(j) ← ei/ (2Dij)4

V (j) ← 05

R(j) ← 16

foreach round do7

// communication phase

foreach j ∈ Ni do8

Send j message 〈i, Fout(j)〉9

// computation phase

foreach 〈j, F 〉 received do10

V (j) ← (F − Fin(j))/R(j)11

R(j) ← 012

Fin(j) ← F13

ei ← vi +
∑

j∈Ni
(Fin(j) + V (j) × R(j) − Fout(j))14

foreach j ∈ Ni do15

Fout(j) ← Fout(j) + ei/ (2Dij)16

R(j) ← R(j) + 117

the velocities converge over time and the prediction will be increasingly more
accurate. Therefore, message loss should not cause discrete deviations in the
estimate, allowing the estimation error to converge to zero.

We have evaluated MDFU-LP for the same network as before, but now with
a wide range of message loss rates. We have observed that the behavior under
message loss rates below 50% is almost indistinguishable from the behavior under
no message loss. Figure 4 shows the CVRMSE and maximum relative error for
0%, 60%, 70%, and 80% message loss rates. It can be seen that even for 60%
loss rate, after 60 rounds we have basically the same estimation errors as under
no message loss.

6 Continuous Estimation over Time-Varying Input
Values

Up to thus point we have considered that the input values vi are fixed through-
out the computation. In most practical situations this will not be the case and
input values will change along time. The common approach in MD algorithms
is to periodically reset the algorithm and start a new run that freezes the new
input values and aggregates the new average. Naturally, resets are inefficient
and mechanisms that can adapt the ongoing computation have the potential to
adjust the estimates in a much shorter number of rounds.
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Without any further modifications, MDFU (and MDFU-LP) share with FU
the capability of adapting to input value changes, since vi is considered in the
computation of the local estimate ei, and this regulates how much the outgoing
flows are to be incremented. If vi decreases, ei decreases in the same proportion
and node i will share less through its flows to the neighbours. The converse
occurring when vi increases. The overall effect is convergence to the new average,
even if multiple nodes are having changes in their input values.

In Figure 5 we show an example of how MDFU handles input value changes.
In this setting, starting at round 50 and during 50 rounds, we increase by 5% in
each round the input value in 500 nodes (a random half of the 1000 nodes). In
the following 50 rounds, the same 500 nodes will have its value decreased by 5%
per round. Initial input values are chosen uniformly at random (from 25 to 35)
and the run is made with message loss at 10%. In Figure 5 one can observe that
individual estimates2 closely follow the global average, with only a slight lag of
some rounds.
2 To avoid clutering the graph only shows individual estimate evolution for a random

sample of 100 of the 1000 nodes.
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Notice that the lag could never be zero, since we are updating the new global
average (black line) instantaneously and even the fastest theoretical algorithm
would need information that takes diameter rounds to acquire.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cyirci, E.: Wireless sensor net-
works: A survey. Computer Networks 38(4), 393–422 (2002)

2. Almeida, P., Baquero, C., Farach-Colton, M., Jesus, P., Mosteiro, M.A.: Fault-
tolerant aggregation: Flow-updating meets mass-distribution, arXiv:1109.4373v1
(September 2011)

3. Bawa, M., Garcia-Molina, H., Gionis, A., Motwani, R.: Estimating aggregates on a
peer-to-peer network. Technical report, Stanford University, Database group (2003)

4. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms.
IEEE/ACM Transactions on Networking 14(SI), 2508–2530 (2006)

5. Chen, J.-Y., Hu, J.: Analysis of distributed random grouping for aggregate compu-
tation on wireless sensor networks with randomly changing graphs. IEEE Trans.
Parallel Distr. Syst. 19(8), 1136–1149 (2008)

6. Chen, J.-Y., Pandurangan, G., Hu, J.: Brief announcement: locality-based aggre-
gate computation in wireless sensor networks. In: PODC 2009: Proceedings of
the 28th ACM Symposium on Principles of Distributed Computing, pp. 298–299.
ACM, New York (2009)

7. Chen, J.-Y., Pandurangan, G., Xu, D.: Robust computation of aggregates in wire-
less sensor networks: distributed randomized algorithms and analysis. IEEE Trans.
Parallel Distr. Syst. 17(9), 987–1000 (2006)

8. Clementi, A.E.F., Pasquale, F., Monti, A., Silvestri, R.: Communication in dynamic
radio networks. In: Proc. 26th Ann. ACM Symp. on Principles of Distributed
Computing, pp. 205–214 (2007)

9. Dimakis, A.G., Sarwate, A.D., Wainwright, M.J.: Geographic gossip: Efficient av-
eraging for sensor networks. IEEE Transactions on Signal Processing 56(3), 1205–
1216 (2008)

10. Erdos, P., Renyi, A.: On random graphs–i. Publicationes Matematicae 6, 290–297
(1959)

11. Fernández Anta, A., Mosteiro, M.A., Thraves, C.: An early-stopping protocol for
computing aggregate functions in sensor networks. In: Proc. of the IEEE 15th Pa-
cific Rim International Symposium on Dependable Computing, pp. 357–364 (2009)

12. Gasieniec, L.: Randomized gossiping in radio networks. In: Kao, M.-Y. (ed.) En-
cyclopedia of Algorithms. Springer, Heidelberg (2008)

13. Gupta, I., van Renesse, R., Birman, K.P.: Scalable fault-tolerant aggregation in
large process groups. In: DSN, pp. 433–442. IEEE Computer Society (2001)

14. Heidemann, J.S., Silva, F., Intanagonwiwat, C., Govindan, R., Estrin, D., Ganesan,
D.: Building efficient wireless sensor networks with low-level naming. In: SOSP, pp.
146–159 (2001)

15. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE/ACM Transactions on Network-
ing 11(1), 2–16 (2003)

16. Intanagonwiwat, C., Estrin, D., Govindan, R., Heidemann, J.S.: Impact of network
density on data aggregation in wireless sensor networks. In: ICDCS, pp. 457–458
(2002)



Fault-Tolerant Aggregation 527

17. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dy-
namic networks. ACM Transactions on Computer Systems 23(3), 219–252 (2005)

18. Jesus, P., Baquero, C., Almeida, P.S.: Fault-tolerant aggregation for dynamic net-
works. In: Proc. of the 29th IEEE Symposium on Reliable Distributed Systems,
pp. 37–43 (2010)

19. Jesus, P., Baquero, C., Almeida, P.S.: Fault-Tolerant Aggregation by Flow Updat-
ing. In: Senivongse, T., Oliveira, R. (eds.) DAIS 2009. LNCS, vol. 5523, pp. 73–86.
Springer, Heidelberg (2009)

20. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate informa-
tion. In: Proc. of the 44th IEEE Ann. Symp. on Foundations of Computer Science,
pp. 482–491 (2003)

21. Kollios, G., Byers, J.W., Considine, J., Hadjieleftheriou, M., Li, F.: Robust aggre-
gation in sensor networks. IEEE Data Engineering Bulletin 28(1), 26–32 (2005)

22. Kowalski, D.R., Pelc, A.: Time complexity of radio broadcasting: adaptiveness
vs. obliviousness and randomization vs. determinism. Theoretical Computer Sci-
ence 333, 355–371 (2005)

23. Krishnamachari, B., Estrin, D., Wicker, S.B.: The impact of data aggregation in
wireless sensor networks. In: ICDCS Workshops, pp. 575–578. IEEE Computer
Society (2002)

24. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation
service for ad-hoc sensor networks. In: Proc. of the 5th Symp. on Operating Systems
Design and Implementation, pp. 131–146 (2002)

25. Madden, S., Szewczyk, R., Franklin, M.J., Culler, D.: Supporting aggregate queries
over ad-hoc wireless sensor networks. In: Proceedings of the Fourth IEEE Workshop
on Mobile Computing Systems and Applications, p. 49 (2002)

26. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis diffusion for robust
aggregation in sensor networks. In: Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems, pp. 250–262 (2004)

27. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with
switching topology and time-delays. Transactions on Automatic Control 49(9),
1520–1533 (2004)

28. Rentala, P., Musumuri, R., Saxena, U., Gandham, S.: Survey on sensor networks,
http://citeseer.nj.nec.com/479874.html

29. Scherber, D.S., Papadopoulos, H.C.: Locally constructed algorithms for distributed
computations in ad-hoc networks. In: Proceedings of the 3rd International Sym-
posium on Information Processing in Sensor Networks, pp. 11–19 (2004)

30. Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly
mixing markov chains. Information and Computation 82(1), 93–133 (1989)

31. Spanos, D., Olfati-Saber, R., Murray, R.: Dynamic consensus on mobile networks.
In: 16th IFAC World Congress (2005)

32. Xiao, L., Boyd, S.: Fast linear iterations for distributed average. Systems and
Control Letters 53, 65–78 (2004)

33. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on
average consensus. In: Proceedings of the 4th International Symposium on Infor-
mation Processing in Sensor Networks, pp. 63–70 (2005)

34. Xiao, L., Boyd, S., Lall, S.: A Space-Time Diffusion Scheme for Peer-to-Peer Least-
Squares Estimation. In: Proceedings of the 5th International Conference on Infor-
mation Processing in Sensor Networks, pp. 168–176 (2006)

35. Zhao, J., Govindan, R., Estrin, D.: Computing aggregates for monitoring wireless
sensor networks. In: Proc. of the 1st IEEE Intl. Workshop on Sensor Network
Protocols and Applications, pp. 139–148 (2003)

http://citeseer.nj.nec.com/479874.html


Provably Good Scheduling of Sporadic Tasks

with Resource Sharing on a Two-Type
Heterogeneous Multiprocessor Platform

Gurulingesh Raravi1, Björn Andersson1,2, and Konstantinos Bletsas1

1 CISTER-ISEP Research Center, Polytechnic Institute of Porto, Portugal
2 Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA

{ghri,baa,ksbs}@isep.ipp.pt, baandersson@sei.cmu.edu

Abstract. Consider the problem of scheduling a set of implicit-deadline
sporadic tasks to meet all deadlines on a two-type heterogeneous multi-
processor platform where a task may request at most one of |R| shared
resources. There are m1 processors of type-1 and m2 processors of type-2.
Tasks may migrate only when requesting or releasing resources. We
present a new algorithm, FF-3C-vpr, which offers a guarantee that if
a task set is schedulable to meet deadlines by an optimal task assign-
ment scheme that only allows tasks to migrate when requesting or releas-
ing a resource, then FF-3C-vpr also meets deadlines if given processors

2+3·
⌈

|R|
min(m1,m2)

⌉
times as fast. As far as we know, it is the first result for

resource sharing on heterogeneous platforms with provable performance.

Keywords: heterogeneous multiprocessor systems, real-time schedul-
ing, resource sharing.

1 Introduction

In heterogeneous multiprocessor platforms (i) not all processors are of the same
type and (ii) task execution times depends on the processor type. Many manufac-
turers offer chips combining different types of processors [1,11,12,13,17]. Clearly,
such chips are key components in heterogeneous systems, and such systems are
increasingly used in practice. Yet, despite this trend, the state-of-art in real-
time scheduling theory for heterogeneous multiprocessors is under-developed.
The reasons include (i) processors typically sharing low-level hardware resources
(e.g. caches, interconnects), which makes task execution times interdependent
and (ii) dispatching limitations (e.g. some processors depend on another pro-
cessor for dispatching [10]). Such idiosyncratic challenges must be addressed on
a case-by-case basis, accounting for the particularities of the architecture. The
state-of-art does offer some general ideas on analyzing shared low-level hardware
resources [3,15,16,19] and scheduling co-processors [8,9]. Ultimately though, the
dependency of the task execution time on the processor-type is what inherently
complicates the design of scheduling algorithms for heterogeneous platforms.

A. Fernández Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 528–543, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The problem of scheduling independent implicit-deadline sporadic tasks (i.e.,
for each task, its deadline is equal to its minimum inter-arrival time) on hetero-
geneous multiprocessors has been studied in the past, both for generic [5,6,20]
and for two-type [4] platforms but without considering the case when tasks share
resources. One might partition tasks to processors and apply a resource-sharing
protocol conceived for identical multiprocessors (e.g. D-PCP [18]). However, pro-
tocols such as D-PCP are not as effective in minimizing priority inversion when
used in heterogeneous multiprocessors. For example, a task holding a shared
resource may be executing on a processor where it runs slowly – causing large
priority inversion to other tasks and poor schedulability. Therefore, a resource-
sharing protocol for heterogeneous platforms ought to be cognizant of the execu-
tion speed of each task on each processor. It should also provide a finite bound
on how much worse it performs, compared to an optimal scheme.

This paper introduces an algorithm, FF-3C-vpr, for scheduling tasks that
share resources on a two-type heterogeneous multiprocessor. It offers a guarantee
that if a task set can be scheduled to meet deadlines by an optimal scheme
that allows a task to migrate only when requesting or releasing a resource then
FF-3C-vpr also meets deadlines if given processors 2 + 3 ·

⌈
|R|

min(m1,m2)

⌉
times as

fast. Notably this is the first result with provably good performance for resource
sharing on heterogeneous multiprocessors – which are increasingly relevant.

In this paper, Section 2 briefs the system model and assumptions. Section 3
gives the main idea of FF-3C-vpr. Section 4 lists notations and results used later.
Section 5 discusses virtual processors – integral to our algorithm, presented in
Section 6 along with the proof of its performance. Section 7 concludes.

2 System Model and Assumptions

We consider the problem of scheduling implicit-deadline sporadic tasks that share
resources on a two-type heterogeneous multiprocessor platform with restricted
migration (defined later). The system is specified as follows:

– Processors (Π): The platform consists of m processors of which m1 ≥ 1
processors are of type-1 and m2 ≥ 1 processors are of type-2.

– Shared Resources (R): A set R of |R| resources that tasks share.
– Task set (τ): There are n implicit-deadline sporadic tasks – for each task

τi, its deadline is equal to its minimum inter-arrival time, denoted as Ti.
– Execution Time and Utilization: The worst-case execution time of τi on

a type-z processor (z ∈ {1, 2}) is denoted by Cz
i and its utilization by Uz

i .

We make the following assumptions:

– Sharing the resources: Each task may request at most one resource from
R (known at design time) and at most once by each job of that task.

– Virtual processors: Virtual processors are logical constructs, used as task
assignment targets by our algorithm. A virtual processor vpi acts equivalent
to a (physical) processor of the same type with (scaled) speed 1

f – and we
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assume that it can be “emulated” on a physical processor of the same type
(of speed 1), using no more than 1

f of its processing capacity1.
– Restricted migration: A job of a task may only migrate to another pro-

cessor during execution when it requests a resource; it must then migrate
back to the original processor upon releasing the resource. We call this model
restricted migration. Migrations between processors of any type are allowed.

3 Overview of Our Approach

The key to our approach is to distinguish between three phases in the execution
of a task and make different scheduling provisions for each of them (Figure 1):

– Phase-A of a task spans from its arrival until it requests a shared resource.
– In its Phase-B, the task is holding (or waiting for) the shared resource.
– In its Phase C, the task has released the resource.

The main structure of our approach is as follows:

1. Split the task execution into phases A, B and C – in essence creating three
subtasks out of it. The phase-B and phase-C subtasks of a task “arrive” (i.e.
first become ready to execute) at a (respective) fixed time offset to the arrival
of the respective phase-A subtask. This ensures that subtasks “inherit” the
inter-arrival time of the original task and exhibit no arrival jitter.

2. Use m physical processors to create a set VP of virtual processors, formed by
disjoint sets VPAC and VPB (i.e. VP=VPAC∪VPB and VPAC ∩ VPB = ∅).

3. Phases A and C of a task are assigned (both) to a virtual processor vpj∈VPAC.
Phase-B of the same task is assigned to a virtual processor vpk∈VPB.

4. The phase-A and phase-C subtasks of a task are scheduled using preemptive
EDF on their assigned virtual processor in VPAC; the phase-B subtask is
scheduled on its assigned virtual processor in VPB using non-preemptive
EDF – as a way of serializing accesses to shared resources2.

1 One intuitive way of achieving this is by dividing time to short slots of length S
and using 1

f
· S time units in each slot to serve the workload of vpi. By selecting S,

we can then make the speed of the emulated processor arbitrarily close to 1
f

(and
in practice, S need rarely be impractically short) [14]. In strict terms, a sufficient
condition for emulating m1 type-1 virtual processors from VPAC onto m1 type-1

physical processors is:
∑

vpi∈V PAC

vpi is type−1

Vi < m1, where Vi is the speed of virtual processor

vpi (and similarly for type-2 processors in VPAC and for VPB processors). For more
details (including how to tradeoff spare processing capacity for longer S), see [14].

2 Observe that implementing multiple virtual processors on the same physical pro-
cessor might in practice involve frequent “context-switching” between those. Yet,
whenever a physical processor “context-switches” between a phase-B virtual proces-
sor and some other virtual processor mapped to it, this does not violate the semantics
of non-preemptive scheduling on the phase-B virtual processor because we are only
interested (for the purposes of resource access serialization) in ensuring that phase-B
subtasks never preempt each other – and this property is not violated.
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Fig. 1. Three execution phases of a job along with the design time (task assignment)
and run time (task dispatching) decisions of FF-3C-vpr

Steps 1-3 are performed at design time; step 4 is carried out at run time.
Despite using virtual processors, our algorithm by-construction ensures that the
“restricted migration” assumption is not violated – discussed in Section 5 and 6.
Subtasks corresponding to task phases are assigned constrained deadlines, i.e.
not exceeding their inter-arrival time (inherited from the original task).

4 Few Notations and Useful Results

4.1 Notations

Let Π(m1, m2) denote a two-type heterogeneous multiprocessor platform having
m1 processors of type-1 and m2 processors of type-2. Let Π(m1, m2) · 〈s1, s2〉
denote a platform in which the speed of a type-1 and type-2 processor is respec-
tively, s1 and s2 times the speed of a type-1 and type-2 processor in Π(m1, m2)
platform (where s1 and s2 are positive real-numbers, i.e. s1 > 0 and s2 > 0).

Let the predicate sched(A, τ, Π(m1, m2) · 〈s1, s2〉) signify that a task set τ
meets all its deadlines if scheduled by an algorithm A on a platform Π(m1, m2) ·
〈s1, s2〉. The term meets all its deadlines in this and other predicates means
‘meets deadlines for every possible valid arrival of jobs of tasks in τ ’.

We use sched(nmo, τ, Π(m1, m2) · 〈s1, s2〉) to signify that there exists a non-
migrative-offline preemptive schedule which meets all deadlines for the specified
system. Here, non-migrative schedule refers to a schedule in which all the jobs
of a task execute on the same processor to which the task is assigned. In this
predicate (and others), the term offline means that the schedule (i) can contain
inserted idle times and (ii) can be generated using knowledge of future task
arrival times (irrespective of whether such knowledge is available in practice).

The predicate sched(rmo, τ, R, Π(m1, m2)·〈s1, s2〉) signifies that there exists a
restricted-migration-offline preemptive schedule which meets all deadlines for the
specified system when tasks share resources from R. As mentioned in Section 2,
each task requests at most one resource from R and each job of that task may
request that resource at most once during its execution. The term “restricted
migration” has the same meaning as discussed in Section 2.
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Similarly, sched(A, τ, R, Π(m1, m2) · 〈s1, s2〉) signifies that τ “sharing the re-
sources” (see Section 2) from R meets all its deadlines when scheduled by an
algorithm A on Π(m1, m2)·〈s1,s2〉 with “restricted migration” (see Section 2).

Finally, in the above predicates, the suffix -δ (where applicable, i.e. in (sub-)
task-partitioned schemes) to a scheduling algorithm (or algorithm class) implies
that the schedulability of τ (other than just being established via some exact
test) must additionally be ascertainable via a (potentially pessimistic) density-
based uniprocessor schedulability test. This means that for the sub-set τ

′
of

(sub-)tasks assigned on every type-z processor of speed V , it has to hold that∑
i∈τ ′ δz

i ≤ V , where δz
i = Cz

i

Dz
i

is the density, Cz
i is the execution time (w.r.t. a

processor of speed 1) and Dz
i is the deadline of a task τi on a type-z processor.

On a type-z processor: Let Cz
i,1 denote the execution time of a task τi before

requesting a resource, i.e. in its phase-A. Let Cz
i,2(k) denote the execution time

of τi while holding resource Rk (where k is the index of the resource used by τi),
i.e. in its phase-B. Let Cz

i,3 denote the execution time of a task τi after releasing
the resource, i.e. in its phase-C. Note that ∀τi∈τ : Cz

i,1+Cz
i,2(k)+Cz

i,3=Cz
i .

We derive three new constrained-deadline (denoted by Dz
i ) sporadic task sets

(i.e., for each task, its deadline is less than or equal to its minimum inter-arrival
time) namely, TDA(τ), TDB,Rk(τ) and TDC(τ) from implicit-deadline sporadic
task set τ by modifying the parameters of the tasks in τ . Intuitively, (i) a task
τi(A) ∈ TDA(τ) represents phase-A execution of τi ∈ τ , (ii) a task τi(B) ∈
TDB,Rk(τ) represents phase-B execution of τi ∈ τ , accessing the resource Rk

and (iii) a task τi(C) ∈ TDC(τ) represents phase-C execution of τi ∈ τ .
TDA(τ), TDB,Rk(τ) and TDC(τ) are defined as follows – for each task τi ∈ τ :

τi(A) = {Ti(A) = Ti, Dz
i(A) =

Cz
i,1

Cz
i

· Ti, Cz
i(A) = Cz

i,1}

τi(B) = {Ti(B) = Ti, Dz
i(B) =

Cz
i,2(k)

Cz
i

· Ti, Cz
i(B) = Cz

i,2(k)}

τi(C) = {Ti(C) = Ti, Dz
i(C) =

Cz
i,3

Cz
i

· Ti, Cz
i(C) = Cz

i,3}

Observe that TDA(τ), TDB,Rk(τ) and TDC(τ) are derived such that the den-
sities of τi(A), τi(B) and τi(C) are equal to the utilization of τi∈τ . For example,

∀τi(A)∈TDA(τ ):δz
i(A) =

Cz
i(A)

Dz
i(A)

=
Cz

i,1

Cz
i,1

Cz
i

· Ti

=
Cz

i

Ti
= Uz

i of τi∈τ (1)

4.2 Useful Results

Lemma 1 and Lemma 2 (re-)state the speed competitive ratios of FF-3C (which
is 2 – see Th. 1 in [4]) and of uniprocessor non-preemptive EDF (at most 3 –see
Lem. 1 in [2]). FF-3C is a non-migrative scheduling scheme for implicit-deadline
sporadic tasks (without resource sharing) on a two-type heterogeneous platform.

Lemma 1. sched(nmo, τ, Π(m1, m2)) ⇒ sched(FF-3C, τ, Π(m1, m2) · 〈2, 2〉)
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Lemma 2. sched(nmo-np, τ, Π(1, 0)) ⇒ sched(nm-np-EDF, τ, Π(1, 0) · 〈3, 3〉)

The heterogeneous multiprocessor in Lemma 2 (with only one processor of type-
1) is (trivially) a uniprocessor. (Lemma 2 also holds for Π(0, 1) platform.)

Lemma 3 states that if a task is non-preemptive EDF-schedulable on a unipro-
cessor, it is also non-preemptive non-migrative (i.e. partitioned) EDF-schedulable
on a platform with one more processor.

Lemma 3. sched(nm-np-EDF,τ,Π(1,0)·〈3,3〉)⇒sched(nm-np-EDF,τ,Π(1,1)·〈3,3〉)
The intuition behind Lemma 3 is that if the additional (type-2) processor is
ignored, τ is schedulable on the original (type-1) processor. (The lemma also
holds for platform Π(0, 1) · 〈3, 3〉 in left-hand side predicate.)

Lemma 4. (Combining Lemma 2 and Lemma 3)
sched(nmo-np, τ, Π(1, 0)) ⇒ sched(nm-np-EDF, τ, Π(1, 1) · 〈3, 3〉)

The following lemma states that if implicit-deadline task set τ is non-migrative
offline schedulable on Π(m1, m2) then constrained-deadline sporadic task set
TDA(τ) derived from τ (as described in Section 4.1) is also non-migrative schedu-
lable (e.g. under partitioned preemptive EDF) on Π(m1, m2) and additionally
this can be established via use of a (potentially pessimistic) density-based schedu-
lability test. It is easy to see that the claim holds since the density of a task τi(A)

in TDA(τ) is always equal to the utilization of the corresponding task τi in τ .

Lemma 5. sched(nmo, τ, Π(m1, m2)) ⇒ sched(nmo-δ, TDA(τ ),Π(m1, m2))

Proof. Let us assume that a non-migrative-offline feasible schedule exists for τ
on Π(m1, m2). So, there must exist a schedule in which the following holds:

∀p ∈ Π(m1, m2) :
∑

τi∈τ [p]

Uz
i ≤ 1 (2)

where τ [p] denotes the set of tasks assigned to processor p. Now, we show
that there also exists a non-migrative-offline feasible schedule for TDA(τ) on
Π(m1, m2). We know that for every task τi ∈ τ there exists a task τi(A) ∈
TDA(τ). We also know from Expression 1 that ∀τi(A) ∈ TDA(τ) : δz

i(A) = Uz
i

of τi ∈ τ . Hence, by assigning the tasks in TDA(τ) to Π(m1, m2) in exactly the
same way as the tasks in τ are assigned to Π(m1, m2) (i.e. if τi ∈ τ is assigned
to processor p then we assign τi(A) ∈ TDA(τ) to p), we obtain:

∀p ∈ Π(m1, m2) :
∑

τi(A)∈TDA(τ)[p]

δz
i(A) ≤ 1 (3)

The above inequality corresponds to density-based schedulability test, on every
processor p, for partitioned preemptive EDF (which is a non-migrative algo-
rithm). Thus, TDA(τ) is also non-migrative-offline schedulable on Π(m1, m2).

Lemma 6. (This largely follows from Lemma 1)
sched(nmo-δ, TDA(τ ),Π(m1, m2)) ⇒ sched(FF-3C-δ, TDA(τ ), Π(m1, m2) · 〈2, 2〉)
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Fig. 2. Assigning phase-C sub-tasks to the same virtual processor as the respective
phase-A sub-tasks (earlier assigned using a density-based test) preserves schedulability

Proof. Assume that predicate sched(nmo-δ, TDA(τ), Π(m1, m2)) holds. Then,
since the density of every (sub-)task in TDA(τ) is equal to the utilization of the
corresponding (original) task in τ , predicate sched(nmo, τ, Π(m1, m2)) holds as
well. In that case, we know from Lemma 1 that sched(FF-3C, τ, Π(m1, m2) ·
〈2, 2〉) holds. But then, since the density of every (sub-)task in TDA(τ) is equal
to the utilization of the corresponding (original) task in τ , it follows that:
sched(FF-3C-δ, TDA(τ), Π(m1, m2) · 〈2, 2〉).

Finally, a lemma that will be relied upon for assigning phase-C subtasks:

Lemma 7. If, for a set TDA(τ )[p] of phase-A subtasks,

δTDA(τ)[p]
def
=

∑
τi(A)∈TDA(τ)[p]

Cz
i(A)

Dz
i(A)

≤ V

then TDA(τ )[p] ∪ TDC(τ )[p] (where TDC(τ )[p] is the set of the respective phase-C
subtasks) is preemptive-EDF schedulable on a type-z (virtual) processor vpp of speed V .

Proof. That δTDA(τ)[p]≤V means that TDA(τ)[p] is schedulable under preemp-
tive EDF on vpp. We now show that the demand-bound function3, dbf(τ

′
, t), of

a task set τ
′
= TDA(τ)[p] ∪ TDC(τ)[p] is upper bounded at every instant t by

δTDA(τ)[p] · t and hence is also schedulable on vpp under preemptive EDF. Note
that, for every phase-A subtask τi(A)∈TDA(τ) (and respective phase-C subtask
τi(C)∈TDC(τ)):

dbf({τi(A), τi(C)}, t) ≤ δz
i(A) · t =

Cz
i(A) · t
Dz

i(A)

(4)

This is easy to verify because, the maximum “slope” to any point in the graph
(Figure 2) of dbf({τi(A), τi(C)}, t) from the origin is δz

i(A)=
Cz

i(A)

Dz
i(A)

(which is equal

3 The demand bound function of a task τi, dbf(τi, t), is the maximum possible com-
putation demand by jobs of τi, that have both release and deadline within any
interval of length t. The demand bound function of a task set τ is defined as:
dbf(τ, t) =

∑
τi∈τ

dbf(τi, t) [7].
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Fig. 3. m + 2 |R| virtual processors created from m physical processors on a two-type
heterogeneous multiprocessor platform (m = m1 + m2)

to Uz
i of τi ∈ τ , as per our choice of Dz

i(A)), at abscissa t = Dz
i(A). Summation of

Equation 4 over all τi(A) ∈ TDA(τ)[p] (and respective τi(C) ∈ TDC(τ)[p]) yields:

dbf(TDA(τ )[p] ∪ TDC(τ )[p], t) ≤ t ·
∑

τi(A)∈TDA(τ)[p]

δz
i(A) = δTDA(τ)[p] · t

5 Creating Virtual Processors on a Two-Type
Heterogeneous Multiprocessor Platform

We create m+2 |R| virtual processors from m physical processors on a two-type
heterogeneous multiprocessor platform as shown in Figure 3. The main idea is as
follows. We treat physical processors of each type as an identical multiprocessor
platform and create a certain number of virtual processors of the corresponding
type from this platform. To be precise, m1 physical processors of type-1 are
treated as an identical multiprocessor platform and m1 + |R| virtual processors
(of type-1) are created from them and ordered as shown in the left half of Figure 3
(i.e. left side of the vertical solid line). Analogously, m2 physical processors of
type-2 are treated as an identical multiprocessor platform and m2 + |R| virtual
processors (of type-2) are created from them and ordered as shown in the right
half of Figure 3 (i.e. right side of the vertical solid line). Now, if we look at
each row in Figure 3 (separated by horizontal lines), it represents a two-type
heterogeneous multiprocessor platform (for example, the second row represents
a two-type heterogeneous multiprocessor platform with m1 virtual processors of
type-1 and m2 virtual processors of type-2). Thus, m + 2 |R| virtual processors
are created from m physical processors on a two-type heterogeneous platform.
Precisely, we create the virtual processors with following specifications:

– m virtual processors (denoted as VPAC): m1 virtual processors of type-1
each of speed 2

2+3
⌈ |R|

m1

⌉ times the speed of a physical processor of type-1 and

m2 virtual processors of type-2 each of speed 2

2+3
⌈ |R|

m2

⌉ times the speed of a

physical processor of type-2. They are used to schedule phase-A and phase-C
of a task execution and are referred to as ‘virtual processors in VPAC’.

– 2 |R| virtual processors (denoted as VPB): |R| virtual processors of
type-1 each of speed 3

2+3
⌈ |R|

m1

⌉ times the speed of a physical processor of

type-1 and |R| virtual processors of type-2 each of speed 3

2+3
⌈ |R|

m2

⌉ times the
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Algorithm 1. FF-3C-vpr(τ, Π2(m1, m2), R): for scheduling tasks that
share resources on a two-type heterogeneous multiprocessor platform
// Lines 1-17 execute offline; line 18 executes at run-time.

1 Create TDA(τ ), TDB,Rk (τ ) and TDC(τ ) from τ as described in Section 4.1
2 {V PAC , V PB} := V P Create(Π2(m1, m2), R) // Create V PAC and V PB

virtual processors and store them in arrays of structures

3 for i = 1 to |R| do //Form |R| pairs from 2 |R| virtual processors in V PB

4 PairB[i] := 〈VPB[i], VPB[|R| + i]〉
5 end
6 Assign TDA(τ ) to virtual processors in VPAC using FF-3C
7 for i = 1 to n do
8 if τi requests a resource then
9 let k denote the resource that task τi requests

10 if (C1
i(B) ≤ C2

i(B)) then

11 assign τi(B) to VPB[k]
12 else
13 assign τi(B) to VPB[|R| + k]
14 end

15 end

16 end
17 Assign TDC(τ ) to virtual processors in VPAC using the assignment made by

FF-3C for phase-A of tasks on line 6, i.e. if τi(A) of TDA(τ ) was assigned to
VPAC[j] processor then assign τi(C) of TDC(τ ) to VPAC[j] processor

18 Dispatch tasks in (i) TDA(τ ) with preemptive EDF on VPAC, (ii) TDB(τ ) with
non-preemptive EDF on V PB and (iii) TDC(τ ) with preemptive EDF on V PAC

speed of a physical processor of type-2. They are used to schedule phase-B
of task execution and are referred to as ‘virtual processors in VPB’.

We ensure that no virtual processor is created using two or more physical pro-
cessors, i.e., the capacity of a virtual processor comes from a single physical
processor alone. The pseudo-code for creating virtual processors, referred to as
VP Create in the rest of the paper, can be found in Appendix (Section 8.1).
Since VP Create creates a virtual processor out of the processing capacity of
a single respective physical processor, within each of its phases, any job exe-
cutes on only one physical processor (i.e. does not migrate between different
physical processors). However, it can migrate to a different physical processor at
the boundaries separating (i) its phase-A and phase-B and (ii) its phase-B and
phase-C executions. FF-3C-vpr adheres to the “restricted migration” model by
assigning phase-A and phase-C of a task to the same physical processor.

6 FF-3C-vpr and Its Speed Competitive Ratio

6.1 The FF-3C-vpr Algorithm

The pseudo-code of FF-3C-vpr is listed in Algorithm 1. The algorithm works as
follows. On line 1, it creates three subsets of tasks, i.e. TDA(τ), TDB,Rk(τ) and
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TDC(τ) from the given task set τ . On line 2, it creates m + 2 |R| virtual pro-
cessors specified in Section 5 from m physical processors. On lines 3-5, it groups
2 |R| phase-B virtual processors into |R| pairs of processors, each pair contain-
ing one processor of each type, i.e. one processor of type-1 and one processor
of type-2. Each pair of processors, PairB[k] where k = {1, · · · , |R|}, is used for
scheduling phase-B of tasks that access the resource Rk. At any time instant,
only one processor from each heterogeneous pair is used for executing the tasks:
this is, in each case, the processor of the type on which the given task executes
fastest (termed the favorite processor type for that task); the other processor
is kept idle during the execution of the task. This technique ensures mutual ex-
clusion for accessing each resource. Moreover, it effectively creates, out of each
pair, the equivalent of a hypothetical single virtual processor whereupon every
task would execute as fast as on its (respective) favorite processor type. This
design choice aims at minimizing blocking times related to resource sharing. On
line 6, the algorithm assigns phase-A of a task (in TDA(τ)) to virtual proces-
sors in VPAC using FF-3C [4]. On lines 7-16, it assigns phase-B of a task (in
TDB,Rk(τ)) accessing resource Rk to that virtual processor in PairB[k] which
is of its favorite processor type in phase-B. On line 17, it assigns phase-C of a
task (in TDC(τ)) to a virtual processor in VPAC in the same manner as that
of assignment of a task in TDA(τ) to a virtual processor in VPAC by FF-3C
(on line 6). Instead of running FF-3C again on TDC(τ) task set, the algorithm
makes use of the output of FF-3C (that was run on line 6 to assign tasks in
TDA(τ) on VPAC) to assign TDC(τ). Line 17 ensures that phase-C of a task is
assigned to that virtual processor in VPAC to which phase-A of the same task
has been assigned. Assigning phase-C subtasks on the same virtual processor as
its corresponding phase-A subtask (i) does not endanger the schedulability of
a previously schedulable virtual processor; intuitively, this is because these two
subtasks have precedence constraints – Lemma 7 provides formal proof and (ii)
ensures that the “restricted migration” assumption is not violated. On line 18,
FF-3C-vpr schedules tasks executing in their phase-A onto VPAC using preemp-
tive EDF, tasks in their phase-B onto VPB using non-preemptive EDF and tasks
in their phase-C onto VPAC using preemptive EDF. Lines 1-17 can be performed
at design time and only line 18 has to be performed at run time.

6.2 Time Complexity of FF-3C-vpr

We now show that the time-complexity of FF-3C-vpr is a polynomial function of
the number of tasks (n), processors (m) and/or resources (|R|). From FF-3C-vpr
pseudo-code (Algorithm 1), we can observe that the time-complexity for:

– creating TDA(τ), TDB,Rk(τ) and TDC(τ) subsets (on line 1) is O(n).
– creating the virtual processor subsets, VPAC and VPB (on line 2) is O(m).
– forming the virtual processor pairs (on lines 3-5) is O(|R|).
– assigning TDA(τ) on VPAC using FF-3C (on line 6) is O(n·max(m, log n)) [4].
– assigning TDB,Rk(τ) on VPB (on lines 7-16) is O(n).
– assigning TDC(τ) on VPAC (on line 17) is O(n).
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Thus the time-complexity of FF-3C-vpr is at most
(

O(n)︸︷︷︸
create

subtasks

+ O(m)︸ ︷︷ ︸
create virtual

processors

+ O(|R|)︸ ︷︷ ︸
form virtual

processor pairs

+ O(n · max(m, log n)︸ ︷︷ ︸
assign TDA(τ)

+ O(n)︸︷︷︸
assign TD

B,Rk (τ)

+ O(n)︸︷︷︸
assign TDC(τ)

)
= O(max(n · max(m, log n)), |R|) = O(n · max(m, log n))

6.3 The Speed Competitive Ratio of FF-3C-vpr Algorithm

Theorem 1. The speed competitive ratio of FF-3C-vpr is 2 + 3 ·
⌈

|R|
min(m1,m2)

⌉
.

Proof. The proof considers separately the scheduling of each of the three phases
and then combines the results. Let us look at phase-A first. Combining Lemma 5
and Lemma 6 and applying the result to virtual processors in VPAC yields:

sched(nmo, τ, Π(m1, m2)) ⇒ sched (FF-3C-δ, TDA(τ ),Π(m1, m2) · 〈2, 2〉) (5)

Now consider phase-C. Since a task in its phase-A cannot be in its phase-C
simultaneously (and vice versa), the respective sub-tasks are not independent.
Treating them as such would be potentially pessimistic; conversely, accounting
for these precedence constraints during (sub-)task assignment could improve
performance. Indeed, our algorithm assigns each phase-C sub-task to the same
virtual processor as its respective phase-A sub-task (Algorithm 1, line 17.).

For convenience, let us introduce a notation say, FF-3C-δ+cp for this (sub-)
task assignment strategy (using FF-3C-δ to assign phase-A subtasks and “copy-
ing” the assignment for respective phase-C subtasks, as done by FF-3C-vpr on
line 6). Then, applying Lemma 7 to Equation 5 yields:

sched (nmo, τ, Π(m1, m2)) ⇒
sched(FF-3C-δ+cp, TDA(τ ) ∪ TDC(τ ),Π(m1, m2) · 〈2, 2〉) (6)

Now, let us consider phase-B. Recall that to ensure a task executes at the speed
associated with its favorite processor type, when accessing a shared resource Rk,
we create two virtual processors (one of each type) for the execution of tasks
holding the resource. These are termed processor pair PairB[k] (see lines 3-5 of
the FF-3C-vpr algorithm) and execute in mutual exclusion. We assign the task
accessing the resource Rk to PairB[k] — whichever processor is favorite to the
task in consideration, executes it; the other one sits idle. This minimizes overall
blocking time in the system.

If a task set τ in which tasks share a single resource say, Rk, is non-migrative-
offline non-preemptive schedulable on Π(m1, m2) then TDB,Rk(τ) is also non-
migrative-offline non-preemptive schedulable on Π(m1, m2). ∀Rk ∈ R:

sched(nmo-np, τ, Π(m1, m2)) ⇒ sched(nmo-np, TDB,Rk (τ ),Π(m1, m2)) (7)
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If TDB,Rk(τ) in which tasks share a single resource Rk is non-migrative-offline
non-preemptive schedulable on Π(m1, m2) then the same task set is also non-
migrative-offline non-preemptive schedulable on Π(1, 1), i.e.: ∀Rk ∈ R:

sched(nmo-np, TDB,Rk (τ ),Π(m1, m2)) ⇒ sched(nmo-np, TDB,Rk (τ ),Π(1, 1)) (8)

Hence, combining Equations 7 and 8 gives: ∀Rk ∈ R:

sched(nmo-np, τ, Π(m1, m2)) ⇒ sched(nmo-np, TDB,Rk (τ ),Π(1, 1)) (9)

Without loss of generality, Lemma 4 can be rewritten as:

sched(nmo-np, τ, Π(1, 1)) ⇒ sched(nm-np-EDF, τ, Π(1, 1) · 〈3, 3〉) (10)

Applying Equation 10 to a task set TDB,Rk(τ) gives: ∀Rk ∈ R:

sched(nmo-np, TDB,Rk (τ ),Π(1, 1)) ⇒ sched(nm-np-EDF, TDB,Rk(τ ), Π(1, 1) · 〈3, 3〉)
(11)

Combining Equation 9 and 11 and applying the result to VPB virtual processors:
∀Rk ∈ R,

sched(nmo-np, τ, Π(m1, m2)) ⇒ sched(nm-np-EDF, TDB,Rk (τ ),Π(1, 1) · 〈3, 3〉) (12)

Combining the above intermediate results: dividing type-1 and type-2 processor
speeds by, respectively, 2 + 3

⌈
|R|
m1

⌉
and 2 + 3

⌈
|R|
m2

⌉
in Equations 6 and 12 gives:

sched(nmo, τ, Π(m1, m2) ·
〈

1

2 + 3
⌈ |R|

m1

⌉ , 1

2 + 3
⌈ |R|

m2

⌉
〉

) ⇒

sched(FF-3C-δ+cp, TDA(τ ) ∪ TDC(τ ), Π(m1, m2) ·
〈

2

2 + 3
⌈ |R|

m1

⌉ , 2

2 + 3
⌈ |R|

m2

⌉
〉

)

(13)

∀Rk ∈ R : sched(nmo-np, τ, Π(m1, m2) ·
〈

1

2 + 3
⌈ |R|

m1

⌉ , 1

2 + 3
⌈ |R|

m2

⌉
〉

) ⇒

sched(nm-np-EDF, TDB,Rk (τ ),Π(1, 1) ·
〈

3

2 + 3
⌈ |R|

m1

⌉ , 3

2 + 3
⌈ |R|

m2

⌉
〉

) (14)

In the right-hand sides of Equations 13 and 14, the processor specifications match
those created by FF-3C-vpr. Note also that under FF-3C-vpr (which only allows
“restricted migration”), phase-A and phase-C sub-tasks are assigned to virtual
processors in V PAC and phase-B sub-tasks are assigned to virtual processors in
V PB (and V PAC∩V PB = ∅). Hence by combining Equations 13 and 14 we get:

sched(rmo, τ, R, Π(m1, m2) ·
〈

1

2 + 3
⌈
|R|
m1

⌉ , 1

2 + 3
⌈
|R|
m2

⌉
〉

) ⇒

sched (FF-3C-vpr, τ, R, Π(m1, m2)) (15)

We know that higher speed processors do not jeopardize the schedulability of a
task set. Hence, we can write:
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sched(rmo, τ, R,Π(m1, m2) · 〈min(s1, s2), min(s1, s2)〉) ⇒
sched (rmo, τ, R, Π(m1, m2) · 〈s1, s2〉)

Substituting s1 = 1

2+3
⌈ |R|

m1

⌉ and s2 = 1

2+3
⌈ |R|

m2

⌉ in the above equation and com-

bining with Equation 15 and rewriting gives:

sched(rmo, τ, R, Π(m1, m2) ·
〈

1

2 + 3 · max
(⌈ |R|

m1

⌉
,
⌈ |R|

m2

⌉) ,

1

2 + 3 · max
(⌈ |R|

m1

⌉
,
⌈ |R|

m2

⌉)
〉

) ⇒ sched(FF-3C-vpr, τ, R, Π(m1, m2)) (16)

Multiplying processor speeds in Equation 16 by 2+3·max
(⌈

|R|
m1

⌉
,
⌈
|R|
m2

⌉)
:

sched(rmo, τ, R, Π(m1, m2)) ⇒ sched(FF-3C-vpr, τ, R,Π(m1, m2)·〈
2 + 3 · max

(⌈
|R|
m1

⌉
,

⌈
|R|
m2

⌉)
, 2 + 3 · max

(⌈
|R|
m1

⌉
,

⌈
|R|
m2

⌉)〉
) (17)

By rewriting the RHS of the above equation, we get:

sched(rmo, τ, R, Π(m1, m2)) ⇒ sched(FF-3C-vpr, τ, R,Π(m1, m2)·〈
2 + 3 ·

⌈
|R|

min(m1, m2)

⌉
, 2 + 3 ·

⌈
|R|

min(m1, m2)

⌉〉
)

7 Conclusions

We proposed a new algorithm, FF-3C-vpr, for scheduling implicit-deadline spo-
radic tasks with restricted migration to meet all the deadlines on a two-type
heterogeneous multiprocessor platform where each task can access at most one
shared resource. We showed that FF-3C-vpr has a speed competitive ratio of
2 + 3 ·

⌈
|R|

min(m1,m2)

⌉
. If R=∅ this becomes 2 and FF-3C-vpr reduces to FF-3C.
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8 Appendix

8.1 Algorithm for Creating Virtual Processors

In our notation, PP denotes the set of physical processors, ppi denotes the ith

physical processor and vpi denotes the ith virtual processor. The VP Create
pseudo-code for creating the specified virtual processors (in Section 5) is listed
in Algorithm 2. It, in turn, uses the sub-routine VPABC Create (Algorithm 3).

The VP Create function on line 2 calls sub-routine VPABC Create to create
m1 + |R| virtual processors of type-1 from m1 physical processors of type-1. The
sub-routine first creates m1 virtual processors (see lines 1-5 in Algorithm 3) from
m1 physical processors and then creates |R| virtual processors (see lines 6-20 in
Algorithm 3) from the remaining capacity of type-1 processors. Observe that
no virtual processor is created using two physical processors, i.e. the capacity
of a virtual processor comes from a single physical processor alone. Similarly,
VP Create() on line 3 creates m2 + |R| virtual processors of type-2 from m2

physical processors of type-2.
Since VPABC Create creates a virtual processor out of the processing capac-

ity of a single respective physical processor, within each of its phases, any job
executes on only one physical processor (i.e. does not migrate between different
physical processors). However, it can migrate to a different physical processor at
the boundaries separating (i) its phase-A and phase-B and (ii) its phase-B and
phase-C. FF-3C-vpr adheres to the “restricted migration” model by assigning
phase-A and phase-C of a task to the same physical processor.

The following observations can be made regarding our specification and cre-
ation of virtual processors. After creating one VPAC virtual processor (for
phase-A and phase-C) from every physical processor (lines 1-5 in the sub-routine
shown in Algorithm 3), let us see (i) how much capacity remains in each of the
physical processors and (ii) how many phase-B virtual processors (i.e. virtual
processors in VPB) can be created from that capacity. For ease of explanation,
consider the case of type-1 processors. After creating one virtual processor, i.e.
one in VPAC (for phase-A and phase-C) of speed 2

2+3
⌈ |R|

m1

⌉ (times the speed of

a physical processor of type-1) from each physical processor, every physical pro-

cessor is left with a capacity: 1 − 2

2+3
⌈ |R|

m1

⌉ =
3
⌈ |R|

m1

⌉
2+3
⌈ |R|

m1

⌉ . As per our specification

Algorithm 2. VP Create(PP, |R|): for creating virtual processors from a
two-type heterogeneous platform

Input : PP, |R|
Output: VPAC, VPB

// PP denotes the set of physical processors

// |R| denotes the number of shared resources

1 VPAC[1, · · · , m] := {0, · · · , 0} VPB[1, · · · , 2 |R|] := {0, · · · , 0}
2 VPABC Create(PP,VPAC, VPB, 0, 0, 1)
3 VPABC Create(PP,VPAC, VPB, m1, |R| , 2)
4 returnVPAC, VPB
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Algorithm 3. VPABC Create(PP, VPAC, VPB, lb, si, z): for creating
phase-AC and phase-B virtual processors

Input : PP, VPAC, VPB, lb, si, z
Output: VPAC, VPB

// lb denotes the starting index for array VPAC

// si denotes the starting index for array V PB

// z denotes the processor type

1 VPAC[lb + 1, · · · , lb + mz] := {0, · · · , 0} // initialize the relevant

elements in VPAC to zero

2 for i = 1 to mz do
3 Create a virtual processor say, vpACz

i from ppi of speed 2

2+3
⌈ |R|

mz

⌉ times the

speed of ppi

4 VPAC[lb + i] := vpACz
i

5 end
6 cnt := 1, flag := 0
7 for i = 1 to mz do

8 for j = 1 to
⌈ |R|

mz

⌉
do

9 create a virtual processor say, vpBz
cnt from ppi of speed 3

2+3
⌈ |R|

mz

⌉ times

the speed of ppi

10 VPB[si + cnt] := vpBz
cnt

11 if (cnt = |R|) then
12 flag := 1
13 break

14 end
15 cnt := cnt + 1

16 end
17 if (flag = 1) then
18 break
19 end

20 end

(in Section 5), the phase-B virtual processor must have 3

2+3
⌈ |R|

m1

⌉ times the speed

of a physical processor of type-1. Hence, it is possible to create:
⎢⎢⎢⎢⎢⎢⎣

3
⌈ |R|

m1

⌉
2+3
⌈ |R|

m1

⌉
3

2+3
⌈ |R|

m1

⌉

⎥⎥⎥⎥⎥⎥⎦ =

⌊⌈
|R|
m1

⌉⌋
=

⌈
|R|
m1

⌉
≥ 1

phase-B virtual processors from the remaining capacity of every physical proces-
sor of type-1. This allows us to successfully create |R| phase-B virtual processors
from the remaining capacity of m1 processors of type-1. Analogous reasoning
holds for type-2 processors as well.



A Dynamic Elimination-Combining Stack
Algorithm

Gal Bar-Nissan, Danny Hendler, and Adi Suissa�

Department of Computer Science
Ben-Gurion University of the Negev

Be’er Sheva, Israel

Abstract. Two key synchronization paradigms for the construction of
scalable concurrent data-structures are software combining and elimina-
tion. Elimination-based concurrent data-structures allow operations with
reverse semantics (such as push and pop stack operations) to “collide”
and exchange values without having to access a central location. Software
combining, on the other hand, is effective when colliding operations have
identical semantics: when a pair of threads performing operations with
identical semantics collide, the task of performing the combined set of
operations is delegated to one of the threads and the other thread waits
for its operation(s) to be performed. Applying this mechanism iteratively
can reduce memory contention and increase throughput.

The most highly scalable prior concurrent stack algorithm is the
elimination-backoff stack [5]. The elimination-backoff stack provides high
parallelism for symmetric workloads in which the numbers of push and
pop operations are roughly equal, but its performance deteriorates when
workloads are asymmetric.

We present DECS, a novel Dynamic Elimination-Combining Stack al-
gorithm, that scales well for all workload types. While maintaining the
simplicity and low-overhead of the elimination-bakcoff stack, DECS man-
ages to benefit from collisions of both identical- and reverse-semantics op-
erations. Our empirical evaluation shows that DECS scales significantly
better than both blocking and non-blocking best prior stack algorithms.

1 Introduction

Concurrent stacks are widely used in parallel applications and operating
systems. As shown in [11], LIFO-based scheduling reduces excessive task
creation and prevents threads from attempting to dequeue and execute
a task which depends on the results of other tasks. A concurrent stack
supports the push and pop operations with linearizable LIFO semantics.
Linearizability [7], which is the most widely used correctness condition
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for concurrent objects, guarantees that each operation appears to have
an atomic effect at some point between its invocation and response and
that operations can be combined in a modular way.

Two key synchronization paradigms for the construction of scalable
concurrent data-structures in general, and concurrent stacks in particu-
lar, are software combining [13,3,4] and elimination [1,10]. Elimination-
based concurrent data-structures allow operations with reverse semantics
(such as push and pop stack operations) to “collide” and exchange values
without having to access a central location. Software combining, on the
other hand, is effective when colliding operations have identical semantics:
when a pair of threads performing operations with identical semantics col-
lide, the task of performing the combined set of operations is delegated
to one of the threads and the other thread waits for its operation(s) to
be performed. Applying this mechanism iteratively can reduce memory
contention and increase throughput.

The design of efficient stack algorithms poses several challenges. Threads
sharing the stack implementation must synchronize to ensure correct lin-
earizable executions. To provide scalability, a stack algorithm must be
highly parallel; this means that, under high load, threads must be able to
synchronize their operations without accessing a central location in or-
der to avoid sequential bottlenecks. Scalability at high loads should not,
however, come at the price of good performance in the more common low
contention cases. Hence, another challenge faced by stack algorithms is
to ensure low latency of stack operations when only a few threads access
the stack simultaneously.

The most highly scalable concurrent stack algorithm known to date is
the lock-free elimination-backoff stack of Hendler, Shavit and Yerushalmi
[5] (henceforth referred to as the HSY stack). It uses a single elimination
array as a backoff scheme on a simple lock-free central stack (such as
Treiber’s stack algorithm [12]1). If the threads fail on the central stack,
they attempt to eliminate on the array, and if they fail in eliminating,
they attempt to access the central stack once again and so on. As shown
by Michael and Scott [9], the central stack of [12] is highly efficient under
low contention. Since threads use the elimination array only when they
fail on the central stack, the elimination-backoff stack algorithm enjoys
similar low contention efficiency.

The HSY stack scales well under high contention if the workload is
symmetric (that is, the numbers of push and pop operations are roughly
equal), since multiple pairs of operations with reverse semantics succeed

1 Treiber’s algorithm is a variant of an algorithm previously introduced by IBM [8].
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in exchanging values without having to access the central stack. Unfor-
tunately, when workloads are asymmetric, most collisions on the elimi-
nation array are between operations with identical semantics. For such
workloads, the performance of the HSY stack deteriorates and falls back
to the sequential performance of a central stack.

Recent work by Hendler et al. introduced flat-combining [2], a syn-
chronization mechanism based on coarse-grained locking in which a single
thread holding a lock performs the combined work of other threads. They
presented flat-combining based implementations of several concurrent ob-
jects, including a flat-combining stack (FC stack). Due to the very low
synchronization overhead of flat-combining, the FC stack significantly
outperforms other stack implementations (including the elimination-
backoff stack) in low and medium concurrency levels. However, since the
FC stack is essentially sequential, its performance does not scale and even
deteriorates when concurrency levels are high.

Our Contributions: This paper presents DECS, a novel Dynamic
Elimination-Combining Stack algorithm, that scales well for all workload
types. While maintaining the simplicity and low-overhead of the HSY
stack, DECS manages to benefit from collisions of both identical- and
reverse-semantics operations.

The idea underlying DECS is simple. Similarly to the HSY stack, DECS
uses a contention-reduction layer as a backoff scheme for a central stack.
However, whereas the HSY algorithm uses an elimination layer, DECS uses
an elimination-combining layer on which concurrent operations can dy-
namically either eliminate or combine, depending on whether their oper-
ations have reverse or identical semantics, respectively. As illustrated by
Fig. 1-(a), when two identical-semantics operations executing the HSY al-
gorithm collide, both have to retry their operations on the central stack.
With DECS (Figure 1-(b)), every collision, regardless of the types of the
colliding operations, reduces contention on the central stack and increases
parallelism by using either elimination or combining. Since combining is
applied iteratively, each colliding operation may attempt to apply the com-
bined operations (multiple push or multiple pop operations) of multiple
threads - its own and (possibly) the operations delegated to it by threads
with which it previously collided, threads that are awaiting their response.

We compared DECS with a few prior stack algorithm, including the
HSY and the FC stacks. DECS outperforms the HSY stack on all work-
load types and all concurrency levels; specifically, for asymmetric work-
loads, DECS provides up to 3 times the throughput of the HSY stack.
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Fig. 1. Collision-attempt scenarios: (a) Collision scenarios in the elimination-backoff
stack; (b) Collision scenarios in DECS

The FC stack outperforms DECS in low and medium levels of concur-
rency. The performance of the FC stack deteriorates quickly, however, as
the level of concurrency increases. DECS, on the other hand, continues
to scale on all workload types and outperforms the FC stack in high con-
currency levels by a wide margin, providing up to 4 times its throughput.

For some applications, a nonblocking [6] stack may be preferable to a
blocking one because nonblocking implementations are more robust in the
face of thread failures. Whereas the elimination-backoff stack is lock-free,
both the FC and the DECS stacks are blocking. We present NB-DECS,
a lock-free [6] variant of DECS that allows threads that delegated their
operations to a combining thread and have waited for too long to cancel
their “combining contracts” and retry their operations. The performance
of NB-DECS is slightly better than that of the HSY stack when workloads
are symmetric and for pop-dominated workloads, but it provides signifi-
cantly higher throughput for push-dominated asymmetric workloads.

The remainder of this paper is organized as follows. We describe the
DECS algorithm in Section 2 and report on its performance evaluation in
Section 3. A high-level description of the NB-DECS algorithm is provided
in Section 4. We conclude the paper in Section 5 with a short discussion
of our results. Correctness proofs and the pseudo-code of the NB-DECS
algorithm appear in the full paper.

2 The Dynamic Elimination-Combining Algorithm

In this section we describe the DECS algorithm. Figure 2-(a) presents
the data-structures and shared variables used by DECS. Similarly to the
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HSY stack, DECS uses two global arrays - location and collision - which
comprise its elimination-combining layer. Each entry of the location array
corresponds to a thread t ∈ {1..N} and is either NULL or stores a pointer
to a multiOp structure described shortly. Each non-empty entry of the
collision array stores the ID of a thread waiting for another thread to
collide with it. DECS also uses a CentralStack structure, which is a singly-
linked-list of Cell structures - each comprising an opaque data field and
a next pointer.

Push or pop operations that access the elimination-combining layer
may be combined. Thus, in general, operations that are applied to the
central stack or to the elimination-combining layer are multi-ops; that is,
they are either multi-pop or multi-push operations which represent the
combination of multiple pop or push operations, respectively. A multi-op
is performed by a delegate thread, attempting to perform its own operation
and (possibly) also those of one or more waiting threads. The length of a
multi-op is the number of operations it consists of (which is the number
of corresponding waiting threads plus 1). Each multi-op is represented by
a multiOp structure (see Fig. 2-(a)), consisting of a thread identifier id,
the operations type (PUSH or POP) and a Cell structure (containing the
thread data in case of a multi-push or empty in case of a multi-pop). The

(a) Data Structures and Shared Variables
define Cell: struct {data: Data, next : Cell };1

define multiOp: struct {id,op,length,cStatus: int, cell : Cell, next,last : multiOp2

};
global CentralStack : Cell;3

global collision: array of [1,. . . ,N] of int init EMPTY ;4

global location: array of [1,. . . ,N] of multiOp init null;5

(b) Data pop()
multiOp mOp = initMultiOp();6

while true do7

if cMultiPop(mOp) then8

return mOp.cell.data;9

else if collide(mOp) then10

return mOp.cell.data;11

end12

end13

(c) push(Data: data)
multiOp mOp =14

initMultiOp(data);
while true do15

if cMultiPush(mOp) then16

return;17

else if collide(mOp) then18

return;19

end20

end21

Fig. 2. (a): Data structures, (b) and (c): DECS Push and Pop functions
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next field points to the structure of the next operation of the multiOp (if
any). Thus, each multiOp is represented by a multiOp list of structures,
the first of which represents the operation of the delegate thread. The last
field points to the last structure in the multiOp list and the length field
stores the multi-op’s length. The cStatus field is used for synchronization
between a delegate thread and the threads awaiting it and is described
later in this section.

Figures 2-(b) and 2-(c) present the code performed by a thread when
it applies a push or a pop operation to the DECS stack. A pop (push)
operation starts by initializing a multiOp record in line 6 (line 14). It
then attempts to apply the pop (push) operation to the central stack in
line 8 (line 16). If this attempt fails, the thread then attempts to apply its
operation to the elimination-combining layer in line 10 (line 18). A thread
continues these attempts repeatedly until it succeeds. A pop operation
returns the data stored at the cell that it received either from the central
stack (line 9) or by way of elimination (line 11).

Central Stack Functions. Figures 3-(a) and 3-(b) respectively present
the pseudo-code of the cMultiPop and cMultiPush functions applied to
the central stack.

The cMultiPop function receives as its input a pointer to the first
multiOp record in a multi-op list of pop operations to be applied to the
central stack. It first reads the central stack pointer (line 22). If the stack
is empty, then all the pop operations in the list are linearized in line 22
and will return an empty indication. In lines 25–30, an EMPTY CELL
is assigned as the response of all these operations and the cStatus fields
of all the multiOp structures is set to FINISHED in order to signal all
waiting threads that their response is ready. The cMultiPop function
then returns true indicating to the delegate thread that its operation was
applied.

If the stack is not empty, the number m of items that should be popped
from the central stack is computed (lines 31–35); this is the minimum
between the length of the multi-pop operation and the central stack’s size.
The nTop pointer is set accordingly and a CAS is applied to the central
stack attempting to atomically pop m items (line 36). If the CAS fails,
false is returned (line 50) indicating that cMultiPop failed and that the
multi-pop should be next applied to the elimination-combining layer.

If the CAS succeeds, then all the multi-pop operations are linearized
when it occurs. The cMultiPop function proceeds by iterating over the
multi-op list (lines 39–48). It assigns the m cells that were popped from
the central stack to the first m pop operations (line 43) and assigns an
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(a) boolean cMultiPop(multiOp: mOp)

top = CentralStack ;22

if top = null then23

repeat24

mOp.cell = EMPTY CELL;25

mOp.cStatus = FINISHED;26

mOp=mOp.next ;27

until mOp = null ;28

return true;29

end30

nTop = top.next ;31

m = 1;32

while nTop �= null ∧ m <33

mOp.length do
nTop = nTop.next , m++;34

end35

if CAS(&CentralStack, top, nTop)36

then
mOp.cell = top;37

top = top.next ;38

while mOp.next �= null do39

if top = null then40

mOp.next.cell =41

EMPTY CELL;
else42

mOp.next.cell = top;43

top = top.next ;44

end45

mOp.next.cStatus =46

FINISHED;
mOp.next=mOp.next.next ;47

end48

return true;49

else return false;50

(b) boolean cMultiPush(multiOp: mOp)
top = CentralStack ;51

mOp.last.cell.next=top;52

if CAS(&CentralStack, top, mOp.cell) then53

while mOp.next �= null do54

mOp.next.cStatus = FINISHED;55

mOp.next = mOp.next.next ;56

end57

return true;58

else59

return false;60

end61

Fig. 3. (a) and (b): Central stack operations

EMPTY CELL to the rest of the pop operations, if any (line 41). It then
sets the cStatus of all these operations to FINISHED (line 46), signalling
all waiting threads that their response is ready. The cMultiPop function
then returns true, indicating that it was successful (line 49).

The cMultiPush function receives as its input a pointer to the first
multiOp record in a multi-op list of push operations to be applied to
the central stack. It sets the next pointer of the last cell to point to the
top of the central stack (line 52) and applies a CAS operation in an
attempt to atomically chain the list to the central stack (line 53). If the
CAS succeeds, then all the push operations in the list are linearized when
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it occurs. In this case, the cMultiPush function proceeds by iterating
over the multi-op list and setting the cStatus of the push operations to
FINISHED (lines 54–57). It then returns true in line 58, indicating its
success. If the CAS fails, cMultiPush returns false (line 60) indicating
that the multi-push should now be applied to the elimination-combining
layer.

Elimination-Combining Layer Functions. The collide function,
presented in Fig. 4, implements the elimination-combining backoff algo-
rithm performed after a multi-op fails on the central stack.2 It receives
as its input a pointer to the first multiOp record in a multi-op list. A
delegate thread executing the function first registers by writing to its
entry in the location array (line 62) a pointer to its multiOp structure,
thus advertising itself to other threads that may access the elimination-
combining layer . It then chooses randomly and uniformly an index into
the collision array (line 63) and repeatedly attempts to swap the value
in the corresponding entry with its own ID by using CAS (lines 64–66).

A thread that initiates a collision is called an active collider and a
thread that discovers it was collided with is called a passive collider.
If the value read from the collision array entry is not null (line 68),
then it is a value written there by another registered thread that may
await a collision. The delegate thread (now acting as an active collider)
proceeds by reading a pointer to the other thread’s multiOp structure
oInfo (line 69) and then verifies that the other thread may still be collided
with (line 70).3

If the tests of line 70 succeed, the delegate thread attempts to dereg-
ister by CAS-ing its location entry back to NULL (line 71). If the CAS
is successful, the thread calls the activeCollide function (line 72) in
an attempt to either combine or eliminate its operations with those of
the other thread. If the CAS fails, however, this indicates that some
other thread was quicker and already collided with the current thread; in
this case, the current thread becomes a passive thread and executes the
passiveCollide function (line 74).

If the tests of line 70 fail, the thread attempts to become a passive
collider and waits for a short period of time in line 78 to allow other
threads to collide with it. It then tries to deregister by CAS-ing its

2 This function is similar to the LesOP function of the HSY stack and is described for
the sake of presentation completeness.

3 Some of the tests of line 70 are required because location array entries are not
re-initialized when operations terminate (for optimization reasons) and thus may
contain outdated values.
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(c) boolean collide(multiOp: mOp)
location[id ] = mOp;62

index = randomIndex();63

him = collision[index ];64

while CAS(&collision[index], him, id)=false do65

him = collision[index ];66

end67

if him = EMPTY then68

oInfo = location[him];69

if oInfo = NULL ∧ oInfo.id = id ∧ oInfo.id=him then70

if CAS(&location[id], mOp, NULL)=true then71

return activeCollide(mOp, oInfo);72

else73

return passiveCollide(mOp);74

end75

end76

end77

wait();78

if CAS(&location[id], mOp, NULL)=false then79

return passiveCollide(mOp);80

end81

return false;82

Fig. 4. The collide function

entry in the location array to NULL. If the CAS fails - implying that an
active collider succeeded in initiating a collision with the delegate thread
- the delegate thread, now a passive collider, calls the passiveCollide
(line 80) function in an attempt to finalize the collision. If the CAS suc-
ceeds, the thread returns false indicating that the operation failed on the
elimination-combining layer and should be retried on the central stack.

The activeCollide function (Figure 5-(a)) is called by an active col-
lider in order to attempt to combine or eliminate its operations with
those of a passive collider. It receives as its input pointers to the multiOp
structures of both threads. The active collider first attempts to swap
the passive collider’s multiOp pointer with a pointer to its own multiOp
structure by performing a CAS on the location array in line 83. If the
CAS fails then the passive collider is no longer eligible for collision and
the function returns false (line 92), indicating that the executing thread
must retry its multi-op on the central stack. If the CAS succeeds, then
the collision took place. The active collider now compares the type of
its multi-op with that of the passive collider (line 84) and calls either
the combine or the multiEliminate function, depending on whether the
multi-ops have identical or reverse semantics, respectively (lines 84–89).
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(a) boolean activeCollide
(multiOp: aInf, pInf )

if CAS(&location[pInf.id], pInf,83

aInf) then
if aInf.op = pInf.op then84

combine(aInf,pInf );85

return false;86

else87

multiEliminate(aInf,pInf );88

return true;89

end90

else91

return false;92

end93

(b) boolean passiveCollide
(multiOp: pInf )

aInf = location[pInf.id ];94

location[pInf.id ] = null;95

if pInf.op = aInf.op then96

if pInf.op = POP then97

pInf.cell = aInf.cell ;98

end99

return true;100

else101

await(pInf.cStatus = INIT);102

if pInf.cStatus = FINISHED103

then
return true;104

else105

pInf.cStatus = INIT;106

return false;107

end108

end109

(c) combine(multiOp: aInf, pInf )
if aInf.op = PUSH then110

aInf.last.cell.next = pInf.cell ;111

end112

aInf.last.next = pInf ;113

aInf.last = pInf.last ;114

aInf.length = aInf.length +115

pInf.length;

(d) multiEliminate(multiOp:
aInf, pInf )

aCurr = aInf ;116

pCurr = pInf ;117

repeat118

if aInf.op = POP then119

aCurr.cell = pCurr.cell ;120

else121

pCurr.cell = aCurr.cell ;122

end123

aCurr.cStatus = FINISHED;124

pCurr.cStatus = FINISHED;125

aInf.length = aInf.length - 1;126

pInf.length = pInf.length - 1;127

aCurr = aCurr.next ;128

pCurr = pCurr.next ;129

until aCurr = null ∨ pCurr =130

null ;
if aCurr = null then131

aCurr.length = aInf.length;132

aCurr.last = aInf.last ;133

aCurr.cStatus = RETRY;134

else if pCurr = null then135

pCurr.length = pInf.length;136

pCurr.last = pInf.last ;137

pCurr.cStatus = RETRY;138

end139

Fig. 5. (a) The activeCollide, (b) passiveCollide, (c) combine and (d)
multiEliminate functions

Observe that activeCollide returns true in case of elimination and false
in case of combining. The reason is the following: in the first case it is
guaranteed that the executing thread’s operation was matched with a
reverse-semantics operation and so was completed, whereas in the lat-
ter case the operations of the passive collider are delegated to the active
collider which must now access the central stack again.
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The passiveCollide function (Figure 5-(b)) is called by a passive col-
lider after it identifies that it was collided with. The passive collider first
reads the multi-op pointer written to its entry in the location array by the
active collider and initializes its entry in preparation for future operations
(lines 94–95). If the multi-ops of the colliding threads-pair are of reverse
semantics (line 96) then the function returns true in line 100 because,
in this case, it is guaranteed that the colliding delegate threads exchange
values. Specifically, if the passive thread’s multi-op type is pop, the thread
copies the cell communicated to it by the active collider (line 98).

If both multi-ops are of identical semantics, then the passive collider’s
operations were delegated to the active thread and the executing thread
ceases to be a delegate thread. In this case, the thread waits until it is
signalled (by writing to the cStatus field of its multiOp structure) how
to proceed. There are two possibilities: (1) cStatus = FINISHED holds
in line 103. In this case, the thread’s operation response is ready and it
returns true in line 104. (2) cStatus = RETRY holds (line 105) indicating
that the executing thread became a delegate thread once again. This
occurs if a thread to which the current thread’s operation was delegated
eliminated with a multi-op that had a shorter list than its own and the
first operation in the “residue” is the current thread’s operation. In this
case, the thread changes the value of its cStatus back to INIT (line 106)
and returns false, indicating that the operation should be retried on the
central stack.

The combine function (Figure 5-(c)) is called by an active collider when
the operations of both colliders have identical semantics. It receives as its
input pointers to the multiOp structures of the two colliders. It delegates
the operations of the passive collider to the active one by concatenating
the multiOp list of the passive collider to that of the active collider, and
by updating the last and length fields of its multiOp record accordingly
(lines 113–115). In addition, if the type of both multi-ops is push, then
their cell-lists are also concatenated (line 111); this allows the delegate
thread to push all its operations to the central stack by using a single
CAS operation.

The multiEliminate function (Figure 5-(d)) is called by an active
collider when the operations of both colliders have reverse semantics. It
receives as input pointers to the multiOp records of the active and passive
colliders. In the loop of lines 118–130, as many pairs of reverse-semantics
operations as possible are matched until at least one of the operation lists
is exhausted. All matched operations are signalled by writing the value
FINISHED to the cStatus field of their multiOp structure, indicating that
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they can terminate (lines 124–125). Note that both lists contain at least
one operation, thus at least a single pair of operations are matched. If the
lengths of the multi-ops are unequal, then a “residue” sublist remains. In
this case, the length and last fields of the multiOp structure belonging to
the first waiting thread in the residue sub-list are set. Then that thread is
signalled by writing the value RETRY to the cStatus field of its multiOp
structure (in line 134 or line 138). This makes the signaled thread a
delegate thread once again and it will retry its multi-op on the central
stack.

3 DECS Performance Evaluation

We conducted our performance evaluation on a Sun SPARC T5240 ma-
chine, comprising two UltraSPARC T2 plus (Niagara II) chips, running
the Solaris 10 operating system. Each chip contains 8 cores and each core
multiplexes 8 hardware threads, for a total of 64 hardware threads per
chip. According to common practice, we ran our experiments on a single
chip to avoid communication via the L2 cache. The algorithms we eval-
uated are implemented in C++ and the code was compiled using GCC
with the -O3 flag for all algorithms.

We compare DECS with the Treiber stack4 and with the most effective
known stack implementations: the HSY elimination-backoff stack, and a
flat-combining based stack.5 ,6

In our experiments, threads repeatedly apply operations to the stack
for a fixed duration of one second and we measure the resulting throughput
- the total number of operations applied to the stack - varying the number
of threads from 1 to 128. Each data point is the average of three runs.
We measure throughput on both symmetric (push and pop operations are
equally likely) and asymmetric workloads. Stacks are pre-populated with

4 We evaluated two variants of the Treiber algorithm - with and without exponential
backoff. The variant using exponential backoff performed consistently better and is
the version we compare with.

5 We downloaded the most updated flat-combining code from
https://github.com/mit-carbon/Flat-Combining.

6 The Treiber, HSY and DECS algorithms need to cope with the ”ABA problem” [8],
since they use dynamic-memory structures that may need to be recycled and per-
form CAS operations on pointers to these structures. We implemented the simplest
and most common ABA-prevention technique that includes a tag with the target
memory locations so that both the memory location and the tag are manipulated to-
gether atomically, and the tag is incremented with each update of the target memory
location [8].
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enough cells so that pop operations do not operate on an empty stack
also in asymmetric workloads.

Figures 6-(a) through (c) compare the throughput of the algorithms we
evaluate in symmetric (50% push, 50% pop), moderately-asymmetric (25%
push, 75% pop) and fully-asymmetric (0% push, 100% pop) workloads, re-
spectively. It can be seen that the DECS stack outperforms both theTreiber
stack and the HSY stack for all workload types and all concurrency levels.

Symmetric Workloads

We first analyze performance on a symmetric workload, which is the op-
timal workload for the HSY stack. As shown in Fig. 6-(a), even here the
HSY stack is outperformed by DECS by a margin of up to 31% (when
the number of threads is 64). This is because, even in symmetric work-
loads, there is a non-negligible fraction of collisions between operations
of identical semantics from which DECS benefits but the HSY stack does
not. Both DECS and the HSY stack scale up until concurrency level 64 -
the number of hardware threads. When the number of software threads
exceeds the number of hardware threads, the HSY stack more-or-less
maintains its throughput whereas DECS slightly declines but remains
significantly superior to the HSY stack.

The FC stack incurs the highest overhead in the lack of contention
(concurrency level 1) because the single running thread still needs to
capture the FC lock. Due to its low synchronization overhead it then ex-
hibits a steep increase in its throughput and reaches its peak throughput
at 24 threads, where it outperforms DECS by approximately 33%. The
FC stack does not continue to scale beyond this point, however, and its
throughput rapidly deteriorates as the level of concurrency rises. For con-
currency levels higher than 40, its performance falls below that of DECS
and it is increasingly outperformed by DECS as the level of concurrency
is increased: for 64 threads, DECS provides roughly 33% higher through-
put, and for 128 threads DECS outperforms FC by a factor of 4. For
concurrency levels higher than 96, the throughput of the FC stack is even
lower than that of the Treiber algorithm. The reason for this performance
deterioration is clear: the FC algorithm is essentially sequential, since a
single thread performs the combined work of other threads. The Treiber
algorithm exhibits the worst performance since it is sequential and incurs
significant synchronization overhead. It scales moderately until concur-
rency level 16 and then more-or-less maintains its throughput.

Figure 6-(d) provides more insights into the behavior of the DECS and
HSY stacks in symmetric workloads. The HSY curve shows the percentage
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Fig. 6. Throughput and collision success rates. X-axis: threads #; Y-axis in (a)-(c),
(f): throughput.
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of operations completed by elimination. The DECS curve shows the per-
centage of operations not applied directly to the central stack. These are
the operations completed by either elimination or combining.7 The curves
titled “Elimination only” and “Combining only” show a finer partition of
the DECS operations according to whether they completed through elimi-
nation or combining. It can be seen that the overall percentage of operations
not completed on the central stack is higher for DECS than for the HSY
stack by up to 30% (for 64 threads), thus reducing the load on the central
stack and allowing DECS to perform better than the HSY stack.

Asymmetric Workloads

Figures 6-(b) and 6-(c) compare throughput on moderately- and fully-
asymmetric workloads, respectively. The relative performance of DECS,
the FC and the Treiber stacks is roughly the same as for the symmet-
ric workload; nevertheless, DECS performance decreases because, as can
be seen in Fig. 6-(e), the ratio of DECS operations that complete via
elimination is significantly reduced for the 25% push workload. This ratio
drops to 0 for the 0% push workload. This reduction in elimination is
mostly compensated by a corresponding increase in the ratio of DECS
operations that complete by combining.

The performance of the HSY stack, however, deteriorates for asym-
metric workloads because, unlike DECS, it cannot benefit from collisions
between operations with identical semantics. When the workload is mod-
erately asymmetric (Figure 6-(b)), the HSY stack scales up to 32 threads
but then its performance deteriorates and falls even below that of the
Treiber algorithm for 48 threads or more. In these levels of concurrency,
the low percentage of successful collisions makes the elimination layer
counter-effective. The throughput of the DECS algorithm exceeds that of
the HSY stack by a factor of up to 3. The picture is even worse for the
HSY algorithm for fully asymmetric workloads (Figure 6-(c)), where it
performs almost consistently worse than the Treiber algorithm. In these
workloads, DECS’ throughput exceeds that of the HSY algorithm signifi-
cantly in all concurrency levels 8 or higher; the performance gap increases
with concurrency up until 64 threads and DECS provides about 3 times
the throughput for all concurrency levels 64 or higher.

7 Whenever a muli-op is applied to the central stack, the operation of the delegate
thread is regarded as applied directly to the central stack and those of the waiting
threads are counted as completed by combining. Similarly, when two multi-ops of
reverse semantics collide, the operations of the delegate threads are counted as com-
pleted by elimination and those of the waiting threads as completed by combining.
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The asymmetric workloads we considered above serve for highlighting
the performance tradeoffs between the algorithms we evaluate, as a func-
tion of the ratio of push and pop operations in the workload. A more
realistic scenario is when the stack goes through phases, in each of which
it is initially filled with items, then it is accessed by a symmetric work-
load and finally it is being emptied. Figure 6-(f) compares throughput
for a phased execution that lasts 3 seconds. In the first second, work-
load consists of 75% push operations. In the following second, workload
is symmetric. Finally, in the third second, the workload consists of 75%
pop operations. It can be seen that the performance tradeoffs between
the evaluated algorithms are the same as for the non-phased workloads.
DECS is consistently better than the HSY stack by a margin of up to
94% (for 80 threads). It is outperformed by FC by a margin of up to 86%
(for 12 threads) but, due to its better scalability, provides 21% higher
performance for 64 threads and outperforms FC by a factor of approx-
imately 3.4 for 128 threads. The picture is similar for fully asymmetric
phased workloads.

4 The Nonblocking DECS Algorithm

For some applications, a nonblocking stack may be preferable to a block-
ing one because it is more robust in the face of thread failures. The HSY
stack is nonblocking - specifically lock-free [6] - and hence guarantees
global progress as long as some threads do not fail-stop. In contrast, both
the FC and the DECS stacks are blocking. In this section, we provide
a high-level description of NB-DECS, a lock-free variant of our DECS
algorithm that allows threads that delegated their operations to another
thread and have waited for too long to cancel their “combining contracts”
and retry their operations. A full description of the NB-DECS algorithm
appears in the full paper, where we also present a comparative evaluation
of this new algorithm.

Recall that waiting threads await a signal from their delegate thread
in the passiveCollide function (line 102 in Fig. 5-(b)). In the DECS
algorithm, a thread awaits until the delegate thread writes to the cStatus
field of its multiOp structure but may wait indefinitely. In NB-DECS,
when a thread concludes that it waited “long enough” it attempts to in-
validate its multiOp structure. To prevent race conditions, invalidation is
done by applying test-and-set to a new invalid field added to the multiOp
structure. A delegate thread, on the other hand, must take care not to
assign a cell of a valid push operation to an invalid multi-op structure of
a pop operation.
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This raises the following complications which NB-DECS must handle.
(1) A delegate thread may pop invalid cells from the central stack. There-
fore, in order not to assign an invalid cell to a pop operation, the delegate
thread must apply test-and-set to each popped cell to verify that it is still
valid (and if so to ensure it remains valid), which hurts performance; (2)
A delegate thread performing a pop multi-op must deal with situations in
which some of its waiting threads invalidated their multi-op structures. If
the delegate thread were to pop from the central stack more cells than can
be assigned to valid multi-op structures in its list, linearizability would
be violated. Consequently, unlike in DECS, the delegate thread must pop
items from the central stack one by one, which also hurts the perfor-
mance of NB-DECS as compared with DECS; (3) The multiEliminate
function, called by an active delegate thread when it collides with a thread
with reverse semantics, must also verify that valid cells are only assigned
to valid pop multi-ops. Once again, test-and-set is used to prevent race
conditions.

Due to the extra synchronization introduced in NB-DECS for allow-
ing threads to invalidate operations that are pending for too long, the
throughput of NB-DECS is, in general, significantly lower than that of
the (blocking) DECS stack. However, NB-DECS provides better perfor-
mance than the HSY stack for all workload types, providing up to 2 times
the throughput for push-dominated workloads.

5 Discussion

We present DECS, a novel Dynamic Elimination-Combining Stack algo-
rithm. Our empirical evaluation shows that DECS scales significantly bet-
ter than (both blocking and nonblocking) best known stack algorithms
for all workload types, providing throughput that is significantly supe-
rior to that of both the elimination-backoff stack and the flat-combining
stack for high concurrency levels. We also present NB-DECS - a lock-
free variant of DECS. NB-DECS provides lower throughput than (the
blocking) DECS due to the extra synchronization required for satisfy-
ing lock-freedom but may be preferable for some applications since it is
more robust to thread failures. NB-DECS outperforms the elimination-
backoff stack, the most scalable prior lock-free stack on almost all work-
load types. The key feature that makes DECS highly effective is the use of
a dynamic elimination-combining layer as a backoff scheme for a central
data-structure. We believe that this idea may be useful for obtaining high-
performance implementations of additional concurrent data-structures.
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