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Abstract. Boolean-width is a recently introduced graph width parame-
ter. If a boolean decomposition of width w is given, several NP-complete
problems, such as Maximum Weight Independent Set, k-Coloring
and Minimum Weight Dominating Set are solvable in O∗(2O(w))
time [6]. In this paper we study graph classes for which we can com-
pute a decomposition of logarithmic boolean-width in polynomial time.
Since 2O(log n) = nO(1), this gives polynomial time algorithms for the
above problems on these graph classes. For interval graphs we show how
to construct decompositions where neighborhoods of vertex subsets are
nested. We generalize this idea to neighborhoods that can be represented
by a constant number of vertices. Moreover we show that these decom-
positions have boolean-width O(log n). Graph classes having such de-
compositions include circular arc graphs, circular k-trapezoid graphs,
convex graphs, Dilworth k graphs, k-polygon graphs and complements
of k-degenerate graphs. Combined with results in [1, 5], this implies that
a large class of vertex subset and vertex partitioning problems can be
solved in polynomial time on these graph classes.

1 Introduction

Two common ways of coping with NP-hard graph problems are to restrict in-
stances to a certain graph class where the problem is polynomial, or to give FPT
algorithms parameterized by a graph width parameter. In this paper we com-
bine these two approaches by exploiting the fact that an FPT algorithm with
running-time 2O(w) · poly(n) is polynomial whenever w is O(log n).

A theorem by Courcelle, Makovski and Rotics [10] states that every problem
expressible in MSO1 logic can be solved in linear time on graphs of bounded
clique-width. Examples of graph classes with bounded clique-width can be found
in Group I of Figure 1. However, many interesting classes of graphs have un-
bounded clique-width (see [4] and [16]). In order to obtain algorithms for larger
classes of graphs, we have to compromise by considering a smaller range of prob-
lems or having less efficient running time. An example of such algorithms, related
to the results in this paper, was shown by Kratochvíl, Manuel and Miller in [23],
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where a large class of the (σ, ρ) vertex subset problems was shown to be solvable
in polynomial time on interval graphs.

Boolean-width is a graph parameter recently introduced by Bui-Xuan, Telle
and Vatshelle [6]. They present algorithms for solving Maximum Weight In-

dependent Set and Minimum Weight Dominating Set in 2O(w) · poly(n)
time, given a decomposition of boolean-width w. In this paper we study classes
of graphs with boolean-width O(log n). We show that a large class of graphs in-
cluding interval graphs, permutation graphs, convex graphs, circular k-trapezoid
graphs, Dilworth k graphs and complements of planar graphs have boolean-width
O(log n) (see Group II of Figure 1). Combining our results with the results in
[6] leads to polynomial time algorithms for problems such as Minimum Weight

Dominating Set and Maximum Weight Independent Set, for all the graph
classes in Group I and II of Figure 1. To our knowledge, this is the first time
an FPT algorithm parameterized by a graph parameter is used to give a poly-
nomial time algorithm on a natural graph class where the parameter value is
not bounded by a constant. Note that our result unifies and generalizes sev-
eral previous polynomial time algorithms for Minimum Weight Dominating

Set. Interestingly, there is no graph class whose boolean-width is known not to
be O(log n) for which Minimum Weight Dominating Set can be solved in
polynomial time. We are also able to prove that for most of the graph classes
discussed in this paper the upper bounds we give on boolean-width are tight up
to a constant factor, using the fact that they have clique-width Ω(

√
n).

In the simple case of interval graphs we show how to construct decompositions
such that every cut (A, A) has nested neighborhoods, i.e. for every pair of vertices
of A, the neighborhood of one is a subset of the neighborhood of the other when
restricted to A. We generalize the idea of a cut with nested neighborhoods to
the notion of representative-size. We say a cut (A, A) has representative-size r
if every subset of A contains another subset of size at most r having the same
neighborhood in A. We also show that these decompositions have boolean-width
O(log n), since there is only a polynomial number of subsets of constant size.
Our proofs depend on having a certain representation of the input graph. For
most of the graph classes discussed in this paper the required representation can
be computed in polynomial time, meaning we can in polynomial time build a
decomposition given a graph belonging to the graph class.

Telle and Proskurowski [30] introduced a framework covering a large class of
vertex subset and vertex partitioning problems. This framework includes sev-
eral well studied problems, among which are Maximum Independent Set

and Minimum Dominating Set, but also Perfect Code, k-Coloring, H-
Cover, H-Homomorphism and H-Role Assignment. We use the algorithm
Bui-Xuan et al. gave in [1, 5] to show that all the problems covered by this
framework can be solved in polynomial time on all the graph classes in Group I
and II of Figure 1.

In Section 2, we start by introducing standard graph theoretic notions and
define boolean-width as well as some of the related terminology. We also define
formally the notion of representing a neighborhood by a smaller set of vertices,
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Fig. 1. Inclusion diagram of some well-known graph classes. A link between a higher
class A and a lower class B means that B is a subclass of A. (I) Graph classes where
boolean-width is bounded by a constant. (II) Graph classes having boolean-width
O(log n). (III) It is unknown whether boolean-width is O(log n). (IV) There does not al-
ways exist a boolean-decomposition of value O(log n), or it is NP-complete to compute
it. Many vertex subset and vertex partitioning problems can be solved in polynomial
time on graph classes in Group I and II.

Main Result. We show that Dilworth k graphs, convex graphs, trapezoid
graphs, circular permutation graphs, circular arc graphs and complements of k-
degenerate graphs and circular k-trapezoid graphs have decompositions where
neighborhoods can be represented by a constant number of vertices. This im-
plies that a large class of vertex subset andvertexpartitioningproblemsare solv-
able in polynomial time on these graph classes given their intersection model.

Many of these problems are well studied on many of these graph classes, see
[2, 8, 11, 12, 13, 14, 17, 18, 24, 27, 31]. Our result implies many of these results.
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whose size we call “representative-size” and relate this notion to boolean-width.
In section 3, we show classes of graphs having representative-size bounded by
a constant. In section 4, we show that constant representative-size allows to
apply the results in [1, 5] and get polynomial time algorithms for the large
class of vertex subset and vertex partitioning problems defined by Telle and
Proskurowski [30]. Finally, in section 5 we show that our upper bounds are tight
up to a constant factor and give evidence that a large class of graphs cannot
have logarithmic boolean-width.

2 Framework

All graphs considered in this paper are undirected, finite and simple. A graph G
is a pair (V, E) where V is the set of vertices of G and E is the set of edges. The
neighborhood of a vertex u, denoted by N(u), is the set of vertices u such that
the edge {u, v} is in E. The neighborhood of a set X is N(X) =

⋃
x∈X N(x).

Given a set A ⊆ V , we denote by A the complement of A in V , i.e. V \ A. We
call a bipartition (A, A) of V a cut of G. Given a cut (A, A) of G and u ∈ A, we
call the set N(u) ∩ A the neighborhood of u across (A, A).

When applying divide-and-conquer to solve a graph problem, we first need
to divide the input graph. A common way to store the information of how to
divide a graph is to use a decomposition tree. The choice of a decomposition
tree greatly influences the running time of any algorithm using the decomposition
tree. In order to choose the best decomposition tree, we evaluate a decomposition
tree by using a cut function. The following formalism is referred to as branch
decomposition of a cut function and is standard in graph and matroid theory
(see, e.g., [15, 26, 29]).

Definition 1. A decomposition tree of a graph G = (V, E) is a pair (T, δ)
where T is a tree having internal nodes of degree three and |V | leaves, and δ is a
bijection between the vertices of G and the leaves of T . Every edge of T defines
a cut (A, A) of the graph via δ, by the leaves of the two subtrees of T we get by
removing the edge. Let f : 2V → R be a symmetric function, i.e. f(A) = f(A)
for all A ⊆ V , also called a cut function. The f -width of (T, δ) is the maximum
value of f(A), taken over all cuts (A, A) of G given by an edge of T . The f -width
of G is the minimum f -width over all decomposition trees of G.

The following equivalence relation on subsets of A was introduced in [6] and
serves as a basis for the definition of boolean-width:

Definition 2. Let G = (V, E) be a graph and A ⊆ V . Two vertex subsets
X, X ′ ⊆ A are neighborhood equivalent with respect to A, denoted by X ≡A X ′,
if N(X) ∩ A = N(X ′) ∩ A. We denote by nec(≡A) the number of equivalence
classes of ≡A.

Definition 3. [6] The cut-bool function of a graph G is defined as cut-bool(A) =
log2 nec(≡A). Using Definition 1 with f = cut-bool we define the boolean-width of
a decomposition, denoted boolw(T, δ), and the boolean-width of a graph, denoted
boolw(G).
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It is known from boolean matrix theory that cut-bool is symmetric [21]. For more
background on boolean-width, see the full version of [6].

Definition 4 (Representative-size). Let G = (V, E) be a graph and (A, A) a
cut of G. We say that the cut (A, A) has representative-size r if r is the smallest
integer such that for every subset S of A, there exists a set S′ ⊆ S with |S′| ≤ r
and S ≡A S′. We denote by rep-size(A) the representative-size of the cut (A, A).
Using Definition 1 with f = rep-size we define the representative-size of a de-
composition, denoted rep-size(T, δ), and the representative-size of a graph, de-
noted rep-size(G).

The next lemma relates representative-size and boolean-width:

Lemma 1. Let G = (V, E) be a graph, and (T, δ) a decomposition of G. If
the representative-size of (T, δ) is r, then the boolean-width of (T, δ) is at most
r log2(|V |).
Proof. For any cut (A, A) of the decomposition (T, δ), we know that rep-size(A)
is at most r. This means that given any set S ∈ A, there exists a set S′ such
that |S′| ≤ r and S ≡A S′. Clearly, there are at most

(|V |
r

) ≤ |V |r subsets
of A of cardinality at most r. Hence we have that boolean-width is at most
log2 |V |r = r log2 |V |. 	

Caterpillar decompositions are decompositions where the underlying tree is a
path with one leaf added as neighbor of each internal node of the path. Many
of our proofs will construct caterpillar decompositions. To describe a caterpillar
decomposition of a graph G, we only give an ordering v1, . . . , vn of the vertices
of G. To construct the caterpillar decomposition (T, δ) from an ordering, first
construct a caterpillar T from a path u1, . . . , un of length |V |. Then let δ be a
mapping of v1 to u1, vn to un and for all i ∈ {2, . . . , n − 1}, of vi to the leaf
attached to ui.

Many of the graph classes we study in this paper are special cases of intersec-
tion graphs. Let F be a family of nonempty sets. The intersection graph of F is
obtained by representing each set in F by a vertex and connecting two vertices
by an edge if and only if their corresponding sets intersect. The intersection
model F usually consists of geometrical objects such as intervals of the real line.

3 Upper Bounds on Boolean-Width of Graph Classes

In this section we prove upper bounds on the boolean-width of several classes of
graphs. Throughout the paper, when talking about a class of graphs, we denote
by n the number of vertices |V |. We say that a class of graphs C has boolean-
width f(n) if every graph belonging to C has boolean-width at most f(n). In
particular, we focus on classes of graphs having boolean-width O(log n). We
prove that the graph classes in Group II of Figure 1 have representative-size
bounded by a constant. Combining this with Lemma 1 implies that they also
have boolean-width O(log n).
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First, we give a sketch of the proof for interval graphs showing that they have
representative-size 1. We build the decomposition by ordering the vertices by the
left endpoint of their intervals, then across each cut (A, A) of the decomposition
the neighborhood of the vertices are nested in order of right endpoint of their
intervals. This means that, for every pair of vertices of A, the neighborhood of
one is a subset of the neighborhood of the other when restricted to A. Now we
extend this idea to circular-arc graphs, which are the intersection graphs of arcs
on a circle.

Lemma 2. Given a circular-arc graph G we can, in polynomial time, compute
a decomposition of G having representative-size at most 2 and boolean-width at
most 2 log n.

Proof. We compute the circular-arc intersection model of G in polynomial time
using the algorithm of McConnell [25]. Let p be an arbitrary point on the circle.
We define the distance of an arc from p as follows: if the arc contains p, then the
distance is 0, otherwise it is the minimum distance between p and any point of
the arc. For any vertex u, we denote by arcu the arc corresponding to u. Note
that since p is an arbitrary point then no pair of arcs have the same distance
from p unless they intersect.

Build a caterpillar decomposition by adding the vertices in order of increasing
distance of their associated arc from p, breaking ties arbitrarily. Note that this
decomposition can be computed in polynomial time. We now consider any cut
(A, A) of this decomposition. By construction, for every x ∈ A, y ∈ A, the
distance of arcx from p is less than or equal to the distance of arcy from p.

Now, we prove that for any set S ⊆ A, there exists a subset S′ ⊆ S such
that |S′| ≤ 2 and S ≡A S′. Let d be the smallest distance from p to the arc of
any vertex in A. Let p+ be the point on the circle which is at distance d going
in clockwise direction from p. Likewise, p− is the point at distance d going in
counter-clockwise direction from p. We build S′ starting from the empty set. If
there exists a vertex in S whose arc contains p+, then let u be one such vertex
with arcu extending furthest from p+ in clockwise direction and add u to S′.
Likewise, if there exists a vertex in S whose arc contains p−, then let v be one
such vertex with arcv extending furthest from p− in counter-clockwise direction
and add v to S′. Now we prove that N(S) ∩ A = N(S′) ∩ A.

Let z be some vertex of N(S) ∩ A, if no such z exists S′ = ∅ satisfies the
lemma. Assume for contradiction that z �∈ N(S′). Let w be a vertex of N(z)∩S
and pi any point contained in both arcw and arcz. Since any arc of a vertex in
A is at distance at most d from p and pi is at distance at least d from p, then
arcw contains both pi and a point of distance at most d from p. We can assume
without loss of generality that arcw contains all points from p+ to pi in clockwise
direction. Since arcu is the arc extending furthest in clockwise direction from
p+, arcu will also contain pi, contradicting the choice of pi.

Therefore S ≡A S′, which implies that the decomposition we built has
representative-size at most 2. By applying Lemma 1 it follows that circular-
arc graphs have boolean-width at most 2 logn. 	
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We show a similar result for several other classes of graphs but their definitions
and proofs are in the appendix due to space limitation. The proof for circular-arc
graphs contains all the important ideas. The definitions of the graph classes can
also be found in [3] or [28].

Theorem 1. Convex graphs, circular-arc graphs, circular permutation graphs
and trapezoid graphs have representative-size O(1) and boolean-width O(log n).

The graph classes in Group II of Figure 1 involving a parameter k are dealt
with in Theorem 2. As an example, the proof showing that k-trapezoid graphs
have representative-size at most k can be sketched as follows. A k-trapezoid is
the polygon obtained by choosing an interval on each of k parallel lines in the
plane and connecting the left and right endpoints of each neighboring interval.
k-trapezoid graphs are intersection graphs of k-trapezoids. First, we build the
caterpillar decomposition by ordering the k-trapezoids by their leftmost point.
Then, for any cut (A, A) of the decomposition and any set S ⊆ A, there is one
k-trapezoid extending further to the right on each of the k lines. We call the set
of vertices associated with these k-trapezoids S′. Moreover, for every vertex of
S, any of its neighbors in A is also adjacent to at least one of the vertices in S′.
Hence we have S′ ⊆ S, |S′| ≤ k and S′ ≡A S.

Theorem 2. Complements of k-degenerate graphs, Dilworth k graphs, k-polygon
graphs and circular k-trapezoid graphs have representative-size O(k) and thus
boolean-width O(k log n).

Note that Theorem 1 and 2 encompass all graph classes in Group I and II of
Figure 1. We find it interesting to note that some of these classes are seemingly
unrelated to each other, but they all have decompositions sharing a common
neighborhood structure, which allows for efficient dynamic programming ap-
proaches on a large class of problems. In particular, we combine these results
with the following:

Theorem 3 (Bui-Xuan, Telle, Vatshelle [6]). For any graph G = (V, E),
Minimum Weight Dominating Set can be solved in O(|V |2 + |V | · w · 23·w)
time when given a decomposition of G having boolean-width w.

Combining Theorem 3 with Theorem 1 and 2, we get:

Corollary 1. Minimum Weight Dominating Set can be solved in polynomial
time on all the graph classes in Group I and II of Figure 1.

The next section shows how to extend this result to a larger class of problems.

4 Vertex Partitioning Problems

In [30] Proskurowski and Telle introduced a generalized framework for handling
many types of vertex subset and vertex partitioning problems in a unified man-
ner. These problems can be described by a degree constraint matrix.
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Definition 5. A degree constraint matrix Dq is a q by q matrix with entries
being finite or co-finite subsets of natural numbers. A Dq-partition in a graph G
is a partition {V1, V2, ..., Vq} of V such that for 1 ≤ i, j ≤ q we have ∀v ∈ Vi :
|N(v) ∩ Vj | ∈ Dq[i, j].

A Dq vertex partitioning problem is the problem of finding a Dq partition sat-
isfying a given Dq matrix and optionally maximizing or minimizing the weight
of a given class of the Dq partition. This formalism was introduced by Telle
and Proskurowski and encompass several well studied problems, such Maxi-

mum Independent Set, Minimum Dominating Set, Perfect Code, k-
Coloring, H-Cover, H-Homomorphism and H-Role Assignment. The
class of (σ, ρ) vertex subset problems is a subset of Dq vertex partitioning prob-
lems. For example, Maximum Independent Dominating Set is encoded by
a 2 by 2 matrix with entries [1, 1] = {0}, [1, 2] = {0, 1, . . .}, [2, 1] = {1, 2, . . .}
and [2, 2] = {0, 1, . . .}, and maximizing the size of V1. H-Homomorphism for
a graph H on q vertices simply asks for the existence of a partition satisfying
the q by q matrix constructed from the adjacency matrix of H by replacing
entry 0 with {0} and 1 with {0, 1, . . . }. Telle and Proskurowski showed that
all Dq-problems are solvable in FPT time parameterized by tree-width [30].
Kobler and Rotics showed that Dq-problems are solvable on graphs of bounded
clique-width [22], and with a little effort their algorithms can be made into FPT
algorithms. Bui-Xuan et al. showed that Dq-problems are FPT when parame-
terized by boolean-width [1]. Kratochvíl et al. [23] showed that a subset of the
Dq-problems are solvable in polynomial time on interval graphs. We generalize
the results of [23] by showing that all Dq-problems are solvable in polynomial
time on many well known graph classes, including interval graphs.

We will apply the algorithm of Bui-Xuan et al. [1], where the bottleneck for
running time is the number of equivalence classes of d-neighborhoods. When
solving a Dq-problem, the integer value d(Dq) needed depends on the degree
constraint matrix in the following way. Let d({0, 1, . . .}) = 0. For every finite or
co-finite non-empty set μ ⊆ N, let d(μ) = 1 + min(max x : x ∈ μ, maxx : x /∈ μ).
For a matrix Dq, the value d(Dq) will be maxi,j d(Dq[i, j]). When there is no
ambiguity, we denote d(Dq) by d. Note that d depends only on the problem and
hence can be treated as a constant.

Definition 6 (d-neighbor equivalence). Let G = (V, E) be a graph, A ⊆ V
and d a positive integer. Two vertex subsets X ⊆ A and X ′ ⊆ A are d-neighbor
equivalent with respect to A, denoted X ≡d

A X ′ if:
∀v ∈ A, (|N(v) ∩ X | = |N(v) ∩ X ′|) or (|N(v) ∩ X | ≥ d and |N(v) ∩ X ′| ≥ d)

We denote by nec(≡d
A) the number of equivalence classes of ≡d

A.

Note that X and X ′ are 1-neighborhood equivalent with regard to A if and only
if N(X)∩A = N(X ′)∩A and thus nec(≡A) = nec(≡1

A). We show a connection
between representative-size and d-neighbor equivalence.

Lemma 3. Let G = (V, E) be a graph and (A, A) a cut of G. If rep-size(A) = r,
then for every positive integer d and every set X ⊆ A, there exists Xd ⊆ X such
that |Xd| ≤ d · r and Xd ≡d

A X.
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Proof. We prove the statement by induction on d. Let R ⊆ X be an inclusion
minimal set such that N(R) ∩ A = N(X) ∩ A. Since the representative-size of
(A, A) is r, we have that |R| ≤ r. For d ≤ 1 the lemma holds since R ≡1

A X .
Assume the induction hypothesis true up to i− 1, then we show it true for i. By
induction hypothesis there exists Xi−1 ⊆ (X \ R) such that Xi−1 ≡i−1

A (X \ R)
and |Xi−1| ≤ r · (i− 1). Thus it is enough to show Xi ≡i

A X , for Xi = Xi−1 ∪R.
We partition the nodes of A into (P, Q) such that ∀v ∈ P , we have |N(v) ∩

(X \ R)| = |N(v) ∩ Xi−1| and ∀v ∈ Q, we have |N(v) ∩ (X \ R)| ≥ i − 1 and
|N(v)∩Xi−1| ≥ i−1. Since R∩Xi−1 = ∅ and R ⊆ X , we know |N(v)∩(X\R)| =
|N(v) ∩X | − |N(v) ∩R| and |N(v) ∩ (Xi−1 ∪R)| = |N(v) ∩Xi−1|+ |N(v)∩R|.
Hence for every vertex v ∈ P , we have |N(v)∩X | = |N(v)∩Xi−1|+ |N(v)∩R| =
|N(v)∩(Xi−1∪R)|. Since i > 1, then for every vertex v ∈ Q we have N(v)∩R �= ∅.
Since X ≡A R, then for every vertex v ∈ Q we have |N(v) ∩ X | ≥ i and
|N(v) ∩ Xi| ≥ i.

Since (P, Q) is a partition we get Xi ≡i
A X and |Xi| ≤ r · i, thus by induction

the lemma holds for all i. 	

For a decomposition (T, δ) of a graph G, let necd(T, δ) be the maximum nec(≡d

A)
over all cuts (A, A) of (T, δ).

Lemma 4. Let G = (V, E) be a graph, (T, δ) a decomposition of G and d a
positive integer. If rep-size(T, δ) = r, then necd(T, δ) ≤ |V |d·r.
Proof. For any cut (A, A) of the decomposition (T, δ), we know that rep-size(A)
is at most r. From Lemma 3 we know that for any S ⊆ A there exists a set S′

such that |S′| ≤ d · r and S ≡d
A S′. Clearly, there are at most

(|V |
d·r

) ≤ |V |d·r
subsets of A of cardinality at most d · r. Hence necd(T, δ) ≤ |V |d·r. 	

By combining Lemma 4 with Theorem 1 and Theorem 2 we get:

Theorem 4. Let G = (V, E) be a graph in Group I or II of Figure 1, then we
can in polynomial time compute a decomposition (T, δ) such that necd(T, δ) is
polynomial in |V | assuming an intersection model of G is provided.

Theorem 5 (Bui-Xuan, Telle, Vatshelle [5]1). For any graph G = (V, E)
and (T, δ) a decomposition of G, all Dq vertex partitioning problems can be solved
in O(necd(T, δ)3·q · poly(|V |)) time.

Combining Theorem 4 with Theorem 5, we get:

Corollary 2. All Dq vertex partitioning problems can be solved in polynomial
time on all the graph classes in Group I and II of Figure 1 assuming an inter-
section model of the input graph is provided.

5 Lower Bounds

We say that a class of graphs C has boolean-width Ω(f(n)) if there exists an
infinite family of graphs in C all having boolean-width Ω(f(n)). In this section
1 [5] is an arXiv version of [1] containing a more fitting version of this theorem.
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we show that the upper bounds we gave on the boolean-width are tight in two
senses. Firstly, for all graph classes (except Dilworth k graphs) in Group II of
Figure 1, we are able to show that they have boolean-width Ω(log n). Secondly,
we show that for all graph classes in Group IV of Figure 1, it is highly unlikely
that they have boolean-width O(log n). Note the following result on the relation
between boolean-width and some other width parameters:

Theorem 6 (Bui-Xuan, Telle, Vatshelle [6]). For any graph G it holds that
log rw(G) − 1 ≤ log cw(G) − 1 ≤ boolw(G), where boolw(G), rw(G) and cw(G)
denote respectively the boolean-width, rank-width and clique-width of G.

Hence if a graph class has rank-width or clique-width Ω(nc) for some constant
c > 0, then this graph class also has boolean-width Ω(log n). We use this to
show that the bounds we give in this paper are tight up to a constant factor.

Lemma 5. All graph classes in Group II of Figure 1 (except Dilworth k graphs),
have boolean-width Θ(log n).

Proof. Brandstädt and Lozin showed in [4] an infinite family of bipartite permu-
tation graphs with clique-width Ω(

√
n). Likewise, Golumbic and Rotics showed

in [16] an infinite family of unit interval graphs with clique-width Ω(
√

n). More-
over, Jelínek showed in [19] that q× q grids have rank-width exactly q− 1. Note
that if a graph G has rank-width w, then its complement G has rank-width w±1.
Since all grids are 2-degenerate, then complements of 2-degenerate graphs have
rank-width Ω(

√
n). From Theorem 6, it follows that these three graph classes

have boolean-width Θ(log n). Hence the lemma follows since all graph classes in
Group II of Figure 1 contain one these graph classes. 	

Another interesting question to ask is whether there exist more graph classes
having logarithmic boolean-width. For some graph classes it is possible to provide
examples of an infinite family of graphs having non-logarithmic boolean-width,
for example the grid. However, for some classes of graphs, we do not know any
example of infinite family of graphs having non-logarithmic boolean-width. We
are nonetheless able to provide some lower bounds:

Lemma 6. For all the classes in Group IV of Figure 1, either they do not have
boolean-width O(log n), or a decomposition of boolean-width O(log n) cannot be
computed in polynomial time, unless P = NP .

Proof. Note first that for all the classes of graphs in Group IV of Figure 1, Mini-

mum Weight Dominating Set is NP-complete (see [9], [7] and [20]). Moreover,
Minimum Weight Dominating Set can be solved in time O(23·boolw ·poly(n)).
Assume now that there exists a class C in Group IV of Figure 1 having boolean-
width O(log n) and where such decompositions can be computed in polynomial
time. Then Minimum Weight Dominating Set can be computed in time
O(2O(log n) · poly(n)), which is a polynomial of n. Hence if a class of graphs on
which Minimum Weight Dominating Set is NP-complete has boolean-width
O(log n), then decompositions of boolean-width O(log n) cannot be computed
in polynomial time, unless P = NP . 	
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Note that this holds not only for Minimum Weight Dominating Set, but as
long as there exists a problem which can be solved in O(2O(boolw · poly(n)) time.
Finally, we get better lower bounds by working under a stronger hypothesis.
The Exponential Time Hypothesis (ETH) states that there does not exists an
algorithm for solving 3-SAT running in time 2o(n). We can reformulate Lemma
6 as follows:

Lemma 7. For all the classes in Group IV of Figure 1, either they do not have
boolean-width no(1), or a decomposition of boolean-width no(1) cannot be computed
in time 2o(n), unless ETH fails.

This means for instance that if split graphs have boolean-width poly-log(n), then
it is NP-hard to compute a decomposition of split graphs having boolean-width
within a factor log(n) of the optimum.

6 Conclusion

We have shown that all graph classes in Group II of Figure 1 have logarithmic
boolean-width and we can compute such decompositions of logarithmic boolean-
width, answering an open question from [6]. Applying the algorithm for vertex
partitioning problems (as well as their weighted versions) in [1, 5], we show
several graph classes for which a large class of vertex partitioning problems can
be solved in polynomial time. What is the boolean-width of the graph classes
in Group III of Figure 1? Is there any graph class not having boolean-width
O(log n) where Minimum Weight Dominating Set is polynomially solvable?
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