Graph Classes with Structured Neighborhoods and Algorithmic Applications^{*}

Rémy Belmonte and Martin Vatshelle

Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway {remy.belmonte,martin.vatshelle}@ii.uib.no

Abstract. Boolean-width is a recently introduced graph width parameter. If a boolean decomposition of width w is given, several NP-complete problems, such as MAXIMUM WEIGHT INDEPENDENT SET, k-COLORING and MINIMUM WEIGHT DOMINATING SET are solvable in $O^*(2^{O(w)})$ time [6]. In this paper we study graph classes for which we can compute a decomposition of logarithmic boolean-width in polynomial time. Since $2^{O(\log n)} = n^{O(1)}$, this gives polynomial time algorithms for the above problems on these graph classes. For interval graphs we show how to construct decompositions where neighborhoods of vertex subsets are nested. We generalize this idea to neighborhoods that can be represented by a constant number of vertices. Moreover we show that these decompositions have boolean-width $O(\log n)$. Graph classes having such decompositions include circular arc graphs, circular k-trapezoid graphs, convex graphs, Dilworth k graphs, k-polygon graphs and complements of k-degenerate graphs. Combined with results in [1, 5], this implies that a large class of vertex subset and vertex partitioning problems can be solved in polynomial time on these graph classes.

1 Introduction

Two common ways of coping with NP-hard graph problems are to restrict instances to a certain graph class where the problem is polynomial, or to give FPT algorithms parameterized by a graph width parameter. In this paper we combine these two approaches by exploiting the fact that an FPT algorithm with running-time $2^{O(w)} \cdot poly(n)$ is polynomial whenever w is $O(\log n)$.

A theorem by Courcelle, Makovski and Rotics [10] states that every problem expressible in MSO_1 logic can be solved in linear time on graphs of bounded clique-width. Examples of graph classes with bounded clique-width can be found in Group I of Figure 1. However, many interesting classes of graphs have unbounded clique-width (see [4] and [16]). In order to obtain algorithms for larger classes of graphs, we have to compromise by considering a smaller range of problems or having less efficient running time. An example of such algorithms, related to the results in this paper, was shown by Kratochvíl, Manuel and Miller in [23],

^{*} This project was partially supported by the Research Council of Norway.

P. Kolman and J. Kratochvíl (Eds.): WG 2011, LNCS 6986, pp. 47-58, 2011.

[©] Springer-Verlag Berlin Heidelberg 2011

where a large class of the (σ, ρ) vertex subset problems was shown to be solvable in polynomial time on interval graphs.

Boolean-width is a graph parameter recently introduced by Bui-Xuan, Telle and Vatshelle [6]. They present algorithms for solving MAXIMUM WEIGHT IN-DEPENDENT SET and MINIMUM WEIGHT DOMINATING SET in $2^{O(w)} \cdot poly(n)$ time, given a decomposition of boolean-width w. In this paper we study classes of graphs with boolean-width $O(\log n)$. We show that a large class of graphs including interval graphs, permutation graphs, convex graphs, circular k-trapezoid graphs, Dilworth k graphs and complements of planar graphs have boolean-width $O(\log n)$ (see Group II of Figure 1). Combining our results with the results in [6] leads to polynomial time algorithms for problems such as MINIMUM WEIGHT DOMINATING SET and MAXIMUM WEIGHT INDEPENDENT SET, for all the graph classes in Group I and II of Figure 1. To our knowledge, this is the first time an FPT algorithm parameterized by a graph parameter is used to give a polynomial time algorithm on a natural graph class where the parameter value is not bounded by a constant. Note that our result unifies and generalizes several previous polynomial time algorithms for MINIMUM WEIGHT DOMINATING SET. Interestingly, there is no graph class whose boolean-width is known *not* to be $O(\log n)$ for which MINIMUM WEIGHT DOMINATING SET can be solved in polynomial time. We are also able to prove that for most of the graph classes discussed in this paper the upper bounds we give on boolean-width are tight up to a constant factor, using the fact that they have clique-width $\Omega(\sqrt{n})$.

In the simple case of interval graphs we show how to construct decompositions such that every cut (A, \overline{A}) has nested neighborhoods, i.e. for every pair of vertices of A, the neighborhood of one is a subset of the neighborhood of the other when restricted to \overline{A} . We generalize the idea of a cut with nested neighborhoods to the notion of representative-size. We say a cut (A, \overline{A}) has representative-size rif every subset of A contains another subset of size at most r having the same neighborhood in \overline{A} . We also show that these decompositions have boolean-width $O(\log n)$, since there is only a polynomial number of subsets of constant size. Our proofs depend on having a certain representation of the input graph. For most of the graph classes discussed in this paper the required representation can be computed in polynomial time, meaning we can in polynomial time build a decomposition given a graph belonging to the graph class.

Telle and Proskurowski [30] introduced a framework covering a large class of vertex subset and vertex partitioning problems. This framework includes several well studied problems, among which are MAXIMUM INDEPENDENT SET and MINIMUM DOMINATING SET, but also PERFECT CODE, k-COLORING, H-COVER, H-HOMOMORPHISM and H-ROLE ASSIGNMENT. We use the algorithm Bui-Xuan et al. gave in [1, 5] to show that all the problems covered by this framework can be solved in polynomial time on all the graph classes in Group I and II of Figure 1.

In Section 2, we start by introducing standard graph theoretic notions and define boolean-width as well as some of the related terminology. We also define formally the notion of representing a neighborhood by a smaller set of vertices,

Fig. 1. Inclusion diagram of some well-known graph classes. A link between a higher class A and a lower class B means that B is a subclass of A. (I) Graph classes where boolean-width is bounded by a constant. (II) Graph classes having boolean-width $O(\log n)$. (III) It is unknown whether boolean-width is $O(\log n)$. (IV) There does not always exist a boolean-decomposition of value $O(\log n)$, or it is NP-complete to compute it. Many vertex subset and vertex partitioning problems can be solved in polynomial time on graph classes in Group I and II.

Main Result. We show that Dilworth k graphs, convex graphs, trapezoid graphs, circular permutation graphs, circular arc graphs and complements of k-degenerate graphs and circular k-trapezoid graphs have decompositions where neighborhoods can be represented by a constant number of vertices. This implies that a large class of vertex subset and vertex partitioning problems are solvable in polynomial time on these graph classes given their intersection model.

Many of these problems are well studied on many of these graph classes, see [2, 8, 11, 12, 13, 14, 17, 18, 24, 27, 31]. Our result implies many of these results.

whose size we call "representative-size" and relate this notion to boolean-width. In section 3, we show classes of graphs having representative-size bounded by a constant. In section 4, we show that constant representative-size allows to apply the results in [1, 5] and get polynomial time algorithms for the large class of vertex subset and vertex partitioning problems defined by Telle and Proskurowski [30]. Finally, in section 5 we show that our upper bounds are tight up to a constant factor and give evidence that a large class of graphs cannot have logarithmic boolean-width.

2 Framework

All graphs considered in this paper are undirected, finite and simple. A graph G is a pair (V, E) where V is the set of vertices of G and E is the set of edges. The neighborhood of a vertex u, denoted by N(u), is the set of vertices u such that the edge $\{u, v\}$ is in E. The neighborhood of a set X is $N(X) = \bigcup_{x \in X} N(x)$. Given a set $A \subseteq V$, we denote by \overline{A} the complement of A in V, i.e. $V \setminus A$. We call a bipartition (A, \overline{A}) of V a cut of G. Given a cut (A, \overline{A}) of G and $u \in A$, we call the set $N(u) \cap \overline{A}$ the neighborhood of u across (A, \overline{A}) .

When applying divide-and-conquer to solve a graph problem, we first need to divide the input graph. A common way to store the information of how to divide a graph is to use a decomposition tree. The choice of a decomposition tree greatly influences the running time of any algorithm using the decomposition tree. In order to choose the best decomposition tree, we evaluate a decomposition tree by using a cut function. The following formalism is referred to as *branch decomposition* of a cut function and is standard in graph and matroid theory (see, e.g., [15, 26, 29]).

Definition 1. A decomposition tree of a graph G = (V, E) is a pair (T, δ) where T is a tree having internal nodes of degree three and |V| leaves, and δ is a bijection between the vertices of G and the leaves of T. Every edge of T defines a cut (A, \overline{A}) of the graph via δ , by the leaves of the two subtrees of T we get by removing the edge. Let $f : 2^V \to \mathbb{R}$ be a symmetric function, i.e. $f(A) = f(\overline{A})$ for all $A \subseteq V$, also called a cut function. The f-width of (T, δ) is the maximum value of f(A), taken over all cuts (A, \overline{A}) of G given by an edge of T. The f-width of G is the minimum f-width over all decomposition trees of G.

The following equivalence relation on subsets of A was introduced in [6] and serves as a basis for the definition of boolean-width:

Definition 2. Let G = (V, E) be a graph and $A \subseteq V$. Two vertex subsets $X, X' \subseteq A$ are neighborhood equivalent with respect to A, denoted by $X \equiv_A X'$, if $N(X) \cap \overline{A} = N(X') \cap \overline{A}$. We denote by $nec(\equiv_A)$ the number of equivalence classes of \equiv_A .

Definition 3. [6] The cut-bool function of a graph G is defined as cut-bool(A) = $\log_2 nec(\equiv_A)$. Using Definition 1 with f = cut-bool we define the boolean-width of a decomposition, denoted boolw (T, δ) , and the boolean-width of a graph, denoted boolw(G).

It is known from boolean matrix theory that *cut-bool* is symmetric [21]. For more background on boolean-width, see the full version of [6].

Definition 4 (Representative-size). Let G = (V, E) be a graph and (A, \overline{A}) a cut of G. We say that the cut (A, \overline{A}) has representative-size r if r is the smallest integer such that for every subset S of A, there exists a set $S' \subseteq S$ with $|S'| \leq r$ and $S \equiv_A S'$. We denote by rep-size(A) the representative-size of the cut (A, \overline{A}) . Using Definition 1 with f = rep-size we define the representative-size of a decomposition, denoted rep-size(T, δ), and the representative-size of a graph, denoted rep-size(G).

The next lemma relates representative-size and boolean-width:

Lemma 1. Let G = (V, E) be a graph, and (T, δ) a decomposition of G. If the representative-size of (T, δ) is r, then the boolean-width of (T, δ) is at most $r \log_2(|V|)$.

Proof. For any cut (A, \overline{A}) of the decomposition (T, δ) , we know that rep-size(A) is at most r. This means that given any set $S \in A$, there exists a set S' such that $|S'| \leq r$ and $S \equiv_A S'$. Clearly, there are at most $\binom{|V|}{r} \leq |V|^r$ subsets of A of cardinality at most r. Hence we have that boolean-width is at most $\log_2 |V|^r = r \log_2 |V|$.

Caterpillar decompositions are decompositions where the underlying tree is a path with one leaf added as neighbor of each internal node of the path. Many of our proofs will construct caterpillar decompositions. To describe a caterpillar decomposition of a graph G, we only give an ordering v_1, \ldots, v_n of the vertices of G. To construct the caterpillar decomposition (T, δ) from an ordering, first construct a caterpillar T from a path u_1, \ldots, u_n of length |V|. Then let δ be a mapping of v_1 to u_1, v_n to u_n and for all $i \in \{2, \ldots, n-1\}$, of v_i to the leaf attached to u_i .

Many of the graph classes we study in this paper are special cases of intersection graphs. Let \mathcal{F} be a family of nonempty sets. The *intersection graph* of \mathcal{F} is obtained by representing each set in \mathcal{F} by a vertex and connecting two vertices by an edge if and only if their corresponding sets intersect. The intersection model \mathcal{F} usually consists of geometrical objects such as intervals of the real line.

3 Upper Bounds on Boolean-Width of Graph Classes

In this section we prove upper bounds on the boolean-width of several classes of graphs. Throughout the paper, when talking about a class of graphs, we denote by n the number of vertices |V|. We say that a class of graphs C has boolean-width f(n) if every graph belonging to C has boolean-width at most f(n). In particular, we focus on classes of graphs having boolean-width $O(\log n)$. We prove that the graph classes in Group II of Figure 1 have representative-size bounded by a constant. Combining this with Lemma 1 implies that they also have boolean-width $O(\log n)$.

First, we give a sketch of the proof for interval graphs showing that they have representative-size 1. We build the decomposition by ordering the vertices by the left endpoint of their intervals, then across each cut (A, \overline{A}) of the decomposition the neighborhood of the vertices are nested in order of right endpoint of their intervals. This means that, for every pair of vertices of A, the neighborhood of one is a subset of the neighborhood of the other when restricted to \overline{A} . Now we extend this idea to circular-arc graphs, which are the intersection graphs of arcs on a circle.

Lemma 2. Given a circular-arc graph G we can, in polynomial time, compute a decomposition of G having representative-size at most 2 and boolean-width at most $2 \log n$.

Proof. We compute the circular-arc intersection model of G in polynomial time using the algorithm of McConnell [25]. Let p be an arbitrary point on the circle. We define the distance of an arc from p as follows: if the arc contains p, then the distance is 0, otherwise it is the minimum distance between p and any point of the arc. For any vertex u, we denote by arc_u the arc corresponding to u. Note that since p is an arbitrary point then no pair of arcs have the same distance from p unless they intersect.

Build a caterpillar decomposition by adding the vertices in order of increasing distance of their associated arc from p, breaking ties arbitrarily. Note that this decomposition can be computed in polynomial time. We now consider any cut (A, \overline{A}) of this decomposition. By construction, for every $x \in A, y \in \overline{A}$, the distance of arc_x from p is less than or equal to the distance of arc_y from p.

Now, we prove that for any set $S \subseteq A$, there exists a subset $S' \subseteq S$ such that $|S'| \leq 2$ and $S \equiv_A S'$. Let d be the smallest distance from p to the arc of any vertex in \overline{A} . Let p^+ be the point on the circle which is at distance d going in clockwise direction from p. Likewise, p^- is the point at distance d going in counter-clockwise direction from p. We build S' starting from the empty set. If there exists a vertex in S whose arc contains p^+ , then let u be one such vertex with arc_u extending furthest from p^+ in clockwise direction and add u to S'. Likewise, if there exists a vertex in S whose arc contains p^- , then let v be one such vertex with arc_v extending furthest from p^- in counter-clockwise direction and add u to S'. Now we prove that $N(S) \cap \overline{A} = N(S') \cap \overline{A}$.

Let z be some vertex of $N(S) \cap \overline{A}$, if no such z exists $S' = \emptyset$ satisfies the lemma. Assume for contradiction that $z \notin N(S')$. Let w be a vertex of $N(z) \cap S$ and p_i any point contained in both arc_w and arc_z . Since any arc of a vertex in A is at distance at most d from p and p_i is at distance at least d from p, then arc_w contains both p_i and a point of distance at most d from p. We can assume without loss of generality that arc_w contains all points from p^+ to p_i in clockwise direction. Since arc_u is the arc extending furthest in clockwise direction from p^+ , arc_u will also contain p_i , contradicting the choice of p_i .

Therefore $S \equiv_A S'$, which implies that the decomposition we built has representative-size at most 2. By applying Lemma 1 it follows that circular-arc graphs have boolean-width at most $2 \log n$.

We show a similar result for several other classes of graphs but their definitions and proofs are in the appendix due to space limitation. The proof for circular-arc graphs contains all the important ideas. The definitions of the graph classes can also be found in [3] or [28].

Theorem 1. Convex graphs, circular-arc graphs, circular permutation graphs and trapezoid graphs have representative-size O(1) and boolean-width $O(\log n)$.

The graph classes in Group II of Figure 1 involving a parameter k are dealt with in Theorem 2. As an example, the proof showing that k-trapezoid graphs have representative-size at most k can be sketched as follows. A k-trapezoid is the polygon obtained by choosing an interval on each of k parallel lines in the plane and connecting the left and right endpoints of each neighboring interval. k-trapezoid graphs are intersection graphs of k-trapezoids. First, we build the caterpillar decomposition by ordering the k-trapezoids by their leftmost point. Then, for any cut (A, \overline{A}) of the decomposition and any set $S \subseteq A$, there is one k-trapezoid extending further to the right on each of the k lines. We call the set of vertices associated with these k-trapezoids S'. Moreover, for every vertex of S, any of its neighbors in \overline{A} is also adjacent to at least one of the vertices in S'. Hence we have $S' \subseteq S$, $|S'| \leq k$ and $S' \equiv_A S$.

Theorem 2. Complements of k-degenerate graphs, Dilworth k graphs, k-polygon graphs and circular k-trapezoid graphs have representative-size O(k) and thus boolean-width $O(k \log n)$.

Note that Theorem 1 and 2 encompass all graph classes in Group I and II of Figure 1. We find it interesting to note that some of these classes are seemingly unrelated to each other, but they all have decompositions sharing a common neighborhood structure, which allows for efficient dynamic programming approaches on a large class of problems. In particular, we combine these results with the following:

Theorem 3 (Bui-Xuan, Telle, Vatshelle [6]). For any graph G = (V, E), MINIMUM WEIGHT DOMINATING SET can be solved in $O(|V|^2 + |V| \cdot w \cdot 2^{3 \cdot w})$ time when given a decomposition of G having boolean-width w.

Combining Theorem 3 with Theorem 1 and 2, we get:

Corollary 1. MINIMUM WEIGHT DOMINATING SET can be solved in polynomial time on all the graph classes in Group I and II of Figure 1.

The next section shows how to extend this result to a larger class of problems.

4 Vertex Partitioning Problems

In [30] Proskurowski and Telle introduced a generalized framework for handling many types of vertex subset and vertex partitioning problems in a unified manner. These problems can be described by a degree constraint matrix.

Definition 5. A degree constraint matrix D_q is a q by q matrix with entries being finite or co-finite subsets of natural numbers. A D_q -partition in a graph Gis a partition $\{V_1, V_2, ..., V_q\}$ of V such that for $1 \leq i, j \leq q$ we have $\forall v \in V_i :$ $|N(v) \cap V_j| \in D_q[i, j].$

A D_q vertex partitioning problem is the problem of finding a D_q partition satisfying a given D_q matrix and optionally maximizing or minimizing the weight of a given class of the D_q partition. This formalism was introduced by Telle and Proskurowski and encompass several well studied problems, such MAXI-MUM INDEPENDENT SET, MINIMUM DOMINATING SET, PERFECT CODE, k-COLORING, H-COVER, H-HOMOMORPHISM and H-ROLE ASSIGNMENT. The class of (σ, ρ) vertex subset problems is a subset of D_q vertex partitioning problems. For example, MAXIMUM INDEPENDENT DOMINATING SET is encoded by a 2 by 2 matrix with entries $[1,1] = \{0\}, [1,2] = \{0,1,\ldots\}, [2,1] = \{1,2,\ldots\}$ and $[2,2] = \{0,1,\ldots\}$, and maximizing the size of V_1 . H-HOMOMORPHISM for a graph H on q vertices simply asks for the existence of a partition satisfying the q by q matrix constructed from the adjacency matrix of H by replacing entry 0 with $\{0\}$ and 1 with $\{0, 1, ...\}$. Telle and Proskurowski showed that all D_q -problems are solvable in FPT time parameterized by tree-width [30]. Kobler and Rotics showed that D_q -problems are solvable on graphs of bounded clique-width [22], and with a little effort their algorithms can be made into FPT algorithms. Bui-Xuan et al. showed that D_q -problems are FPT when parameterized by boolean-width [1]. Kratochvíl et al. [23] showed that a subset of the D_q -problems are solvable in polynomial time on interval graphs. We generalize the results of [23] by showing that all D_q -problems are solvable in polynomial time on many well known graph classes, including interval graphs.

We will apply the algorithm of Bui-Xuan et al. [1], where the bottleneck for running time is the number of equivalence classes of *d*-neighborhoods. When solving a D_q -problem, the integer value $d(D_q)$ needed depends on the degree constraint matrix in the following way. Let $d(\{0, 1, ...\}) = 0$. For every finite or co-finite non-empty set $\mu \subseteq \mathbb{N}$, let $d(\mu) = 1 + \min(\max x : x \in \mu, \max x : x \notin \mu)$. For a matrix D_q , the value $d(D_q)$ will be $\max_{i,j} d(D_q[i, j])$. When there is no ambiguity, we denote $d(D_q)$ by *d*. Note that *d* depends only on the problem and hence can be treated as a constant.

Definition 6 (d-neighbor equivalence). Let G = (V, E) be a graph, $A \subseteq V$ and d a positive integer. Two vertex subsets $X \subseteq A$ and $X' \subseteq A$ are d-neighbor equivalent with respect to A, denoted $X \equiv^d_A X'$ if:

 $\forall v \in \overline{A}, (|N(v) \cap X| = |N(v) \cap X'|) \text{ or } (|N(v) \cap X| \ge d \text{ and } |N(v) \cap X'| \ge d)$ We denote by $nec(\equiv_A^d)$ the number of equivalence classes of \equiv_A^d .

Note that X and X' are 1-neighborhood equivalent with regard to A if and only if $N(X) \cap \overline{A} = N(X') \cap \overline{A}$ and thus $nec(\equiv_A) = nec(\equiv_A^1)$. We show a connection between representative-size and d-neighbor equivalence.

Lemma 3. Let G = (V, E) be a graph and (A, \overline{A}) a cut of G. If rep-size(A) = r, then for every positive integer d and every set $X \subseteq A$, there exists $X_d \subseteq X$ such that $|X_d| \leq d \cdot r$ and $X_d \equiv_A^d X$.

Proof. We prove the statement by induction on d. Let $R \subseteq X$ be an inclusion minimal set such that $N(R) \cap \overline{A} = N(X) \cap \overline{A}$. Since the representative-size of (A, \overline{A}) is r, we have that $|R| \leq r$. For $d \leq 1$ the lemma holds since $R \equiv_A^1 X$. Assume the induction hypothesis true up to i-1, then we show it true for i. By induction hypothesis there exists $X_{i-1} \subseteq (X \setminus R)$ such that $X_{i-1} \equiv_A^{i-1} (X \setminus R)$ and $|X_{i-1}| \leq r \cdot (i-1)$. Thus it is enough to show $X_i \equiv_A^i X$, for $X_i = X_{i-1} \cup R$.

We partition the nodes of \overline{A} into (P, Q) such that $\forall v \in P$, we have $|N(v) \cap (X \setminus R)| = |N(v) \cap X_{i-1}|$ and $\forall v \in Q$, we have $|N(v) \cap (X \setminus R)| \ge i-1$ and $|N(v) \cap X_{i-1}| \ge i-1$. Since $R \cap X_{i-1} = \emptyset$ and $R \subseteq X$, we know $|N(v) \cap (X \setminus R)| = |N(v) \cap X| - |N(v) \cap R|$ and $|N(v) \cap (X_{i-1} \cup R)| = |N(v) \cap X_{i-1}| + |N(v) \cap R|$. Hence for every vertex $v \in P$, we have $|N(v) \cap X| = |N(v) \cap X_{i-1}| + |N(v) \cap R| = |N(v) \cap (X_{i-1} \cup R)|$. Since i > 1, then for every vertex $v \in Q$ we have $N(v) \cap R \neq \emptyset$. Since $X \equiv_A R$, then for every vertex $v \in Q$ we have $|N(v) \cap X| \ge i$ and $|N(v) \cap X_i| \ge i$.

Since (P, Q) is a partition we get $X_i \equiv_A^i X$ and $|X_i| \leq r \cdot i$, thus by induction the lemma holds for all i.

For a decomposition (T, δ) of a graph G, let $nec_d(T, \delta)$ be the maximum $nec(\equiv_A^d)$ over all cuts (A, \overline{A}) of (T, δ) .

Lemma 4. Let G = (V, E) be a graph, (T, δ) a decomposition of G and d a positive integer. If rep-size $(T, \delta) = r$, then $nec_d(T, \delta) \leq |V|^{d \cdot r}$.

Proof. For any cut (A, \overline{A}) of the decomposition (T, δ) , we know that rep-size(A) is at most r. From Lemma 3 we know that for any $S \subseteq A$ there exists a set S' such that $|S'| \leq d \cdot r$ and $S \equiv_A^d S'$. Clearly, there are at most $\binom{|V|}{d \cdot r} \leq |V|^{d \cdot r}$ subsets of A of cardinality at most $d \cdot r$. Hence $nec_d(T, \delta) \leq |V|^{d \cdot r}$. \Box

By combining Lemma 4 with Theorem 1 and Theorem 2 we get:

Theorem 4. Let G = (V, E) be a graph in Group I or II of Figure 1, then we can in polynomial time compute a decomposition (T, δ) such that $nec_d(T, \delta)$ is polynomial in |V| assuming an intersection model of G is provided.

Theorem 5 (Bui-Xuan, Telle, Vatshelle [5]¹). For any graph G = (V, E)and (T, δ) a decomposition of G, all D_q vertex partitioning problems can be solved in $O(nec_d(T, \delta)^{3 \cdot q} \cdot poly(|V|))$ time.

Combining Theorem 4 with Theorem 5, we get:

Corollary 2. All D_q vertex partitioning problems can be solved in polynomial time on all the graph classes in Group I and II of Figure 1 assuming an intersection model of the input graph is provided.

5 Lower Bounds

We say that a class of graphs C has boolean-width $\Omega(f(n))$ if there exists an infinite family of graphs in C all having boolean-width $\Omega(f(n))$. In this section

 $^{^{1}}$ [5] is an arXiv version of [1] containing a more fitting version of this theorem.

we show that the upper bounds we gave on the boolean-width are tight in two senses. Firstly, for all graph classes (except Dilworth k graphs) in Group II of Figure 1, we are able to show that they have boolean-width $\Omega(\log n)$. Secondly, we show that for all graph classes in Group IV of Figure 1, it is highly unlikely that they have boolean-width $O(\log n)$. Note the following result on the relation between boolean-width and some other width parameters:

Theorem 6 (Bui-Xuan, Telle, Vatshelle [6]). For any graph G it holds that $\log rw(G) - 1 \leq \log cw(G) - 1 \leq boolw(G)$, where boolw(G), rw(G) and cw(G) denote respectively the boolean-width, rank-width and clique-width of G.

Hence if a graph class has rank-width or clique-width $\Omega(n^c)$ for some constant c > 0, then this graph class also has boolean-width $\Omega(\log n)$. We use this to show that the bounds we give in this paper are tight up to a constant factor.

Lemma 5. All graph classes in Group II of Figure 1 (except Dilworth k graphs), have boolean-width $\Theta(\log n)$.

Proof. Brandstädt and Lozin showed in [4] an infinite family of bipartite permutation graphs with clique-width $\Omega(\sqrt{n})$. Likewise, Golumbic and Rotics showed in [16] an infinite family of unit interval graphs with clique-width $\Omega(\sqrt{n})$. Moreover, Jelínek showed in [19] that $q \times q$ grids have rank-width exactly q - 1. Note that if a graph G has rank-width w, then its complement \overline{G} has rank-width $w \pm 1$. Since all grids are 2-degenerate, then complements of 2-degenerate graphs have rank-width $\Omega(\sqrt{n})$. From Theorem 6, it follows that these three graph classes have boolean-width $\Theta(\log n)$. Hence the lemma follows since all graph classes in Group II of Figure 1 contain one these graph classes.

Another interesting question to ask is whether there exist more graph classes having logarithmic boolean-width. For some graph classes it is possible to provide examples of an infinite family of graphs having non-logarithmic boolean-width, for example the grid. However, for some classes of graphs, we do not know any example of infinite family of graphs having non-logarithmic boolean-width. We are nonetheless able to provide some lower bounds:

Lemma 6. For all the classes in Group IV of Figure 1, either they do not have boolean-width $O(\log n)$, or a decomposition of boolean-width $O(\log n)$ cannot be computed in polynomial time, unless P = NP.

Proof. Note first that for all the classes of graphs in Group IV of Figure 1, MINI-MUM WEIGHT DOMINATING SET is NP-complete (see [9], [7] and [20]). Moreover, MINIMUM WEIGHT DOMINATING SET can be solved in time $O(2^{3 \cdot boolw} \cdot poly(n))$. Assume now that there exists a class C in Group IV of Figure 1 having booleanwidth $O(\log n)$ and where such decompositions can be computed in polynomial time. Then MINIMUM WEIGHT DOMINATING SET can be computed in time $O(2^{O(\log n)} \cdot poly(n))$, which is a polynomial of n. Hence if a class of graphs on which MINIMUM WEIGHT DOMINATING SET is NP-complete has boolean-width $O(\log n)$, then decompositions of boolean-width $O(\log n)$ cannot be computed in polynomial time, unless P = NP. □ Note that this holds not only for MINIMUM WEIGHT DOMINATING SET, but as long as there exists a problem which can be solved in $O(2^{O(boolw} \cdot poly(n)))$ time. Finally, we get better lower bounds by working under a stronger hypothesis. The *Exponential Time Hypothesis* (ETH) states that there does not exists an algorithm for solving 3-SAT running in time $2^{o(n)}$. We can reformulate Lemma 6 as follows:

Lemma 7. For all the classes in Group IV of Figure 1, either they do not have boolean-width $n^{o(1)}$, or a decomposition of boolean-width $n^{o(1)}$ cannot be computed in time $2^{o(n)}$, unless ETH fails.

This means for instance that if split graphs have boolean-width poly-log(n), then it is NP-hard to compute a decomposition of split graphs having boolean-width within a factor log(n) of the optimum.

6 Conclusion

We have shown that all graph classes in Group II of Figure 1 have logarithmic boolean-width and we can compute such decompositions of logarithmic boolean-width, answering an open question from [6]. Applying the algorithm for vertex partitioning problems (as well as their weighted versions) in [1, 5], we show several graph classes for which a large class of vertex partitioning problems can be solved in polynomial time. What is the boolean-width of the graph classes in Group III of Figure 1? Is there any graph class not having boolean-width $O(\log n)$ where MINIMUM WEIGHT DOMINATING SET is polynomially solvable?

References

- Adler, I., Bui-Xuan, B.-M., Rabinovich, Y., Renault, G., Telle, J.A., Vatshelle, M.: On the Boolean-Width of a Graph: Structure and Applications. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 159–170. Springer, Heidelberg (2010)
- [2] Brandstädt, A., Kratsch, D.: On the Restriction of Some np-Complete Graph Problems to Permutation Graphs. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 53–62. Springer, Heidelberg (1985)
- [3] Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey (1999)
- [4] Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite permutation graphs. Ars Comb. 67 (2003)
- [5] Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Fast algorithms for vertex subset and vertex partitioning problems on graphs of low boolean-width. arXiv
- [6] Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-Width of Graphs. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 61–74. Springer, Heidelberg (2009)
- [7] Chang, M.S.: Weighted Domination on Cocomparability Graphs. In: Staples, J., Katoh, N., Eades, P., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 122–131. Springer, Heidelberg (1995)
- [8] Chang, M.S.: Efficient algorithms for the domination problems on interval and circular-arc graphs. SIAM J. on Computing 27(6), 1671–1694 (1998)

- [9] Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Applied Math. 9, 27–40 (1984)
- [10] Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)
- [11] Damaschke, P., Müller, H., Kratsch, D.: Domination in convex and chordal bipartite graphs. Inf. Process. Lett. 36(5), 231–236 (1990)
- [12] Díaz, J., Nešetřil, J., Serna, M., Thilikos, D.M.: *H*-Colorings of Large Degree Graphs. In: Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT 2002. LNCS, vol. 2510, pp. 850–857. Springer, Heidelberg (2002)
- [13] Elmallah, E.S., Stewart, L.K.: Independence and domination in polygon graphs. Discrete Appllied Math 44(1-3), 65–77 (1993)
- [14] Farber, M., Keil, J.: Domination in permutation graphs. J. Algorithms 6, 309–321 (1985)
- [15] Geelen, J.F., Gerards, B., Whittle, G.: Branch-width and well-quasi-ordering in matroids and graphs. J. Comb. Theory, Ser. B 84(2), 270–290 (2002)
- [16] Golumbic, M.C., Rotics, U.: On the Clique-Width of Perfect Graph Classes Extended Abstract. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 135–147. Springer, Heidelberg (1999)
- [17] van't Hof, P., Paulusma, D., van Rooij, J.M.M.: Computing role assignments of chordal graphs. Theor. Comput. Sci. 411(40-42), 3601–3613 (2010)
- [18] Hsu, W.L., Tsai, K.H.: Linear time algorithms on circular-arc graphs. Inf. Process. Lett. 40(3), 123–129 (1991)
- [19] Jelínek, V.: The rank-width of the square grid. Discrete Applied Math 158(7), 841–850 (2010)
- [20] Keil, J.M.: The complexity of domination problems in circle graphs. Discrete Applied Math. 42(1), 51–63 (1993)
- [21] Kim, K.H.: Boolean matrix theory and its applications. Marcel Dekker (1982)
- [22] Kobler, D., Rotics, U.: Polynomial algorithms for partitioning problems on graphs with fixed clique-width (extended abstract). In: Proc. SODA, pp. 468–476 (2001)
- [23] Kratochvíl, J., Manuel, P.D., Miller, M.: Generalized domination in chordal graphs. Nord. J. Comput. 2(1), 41–50 (1995)
- [24] Liang, Y.: Dominations in trapezoid graphs. Inf. Process. Lett. 52(6), 309–315 (1994)
- [25] McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37, 93–147 (2003)
- [26] Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96(4), 514–528 (2006)
- [27] Rhee, C., Liang, Y., Dhall, S., Lakshmivarahan, S.: An o(n + m)-time algorithm for finding a minimum-weight dominating set in a permutation graph. SIAM J. on Computing 25(2), 404–419 (1996)
- [28] de Ridder, H.N., et al.: Information System on Graph Classes and their Inclusions (ISGCI), http://wwwteo.informatik.uni-rostock.de/isgci
- [29] Robertson, N., Seymour, P.D.: Graph minors. X. obstructions to treedecomposition. J. Comb. Theory, Ser. B 52(2), 153–190 (1991)
- [30] Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discrete Math. 10(4), 529–550 (1997)
- [31] Tsai, K.H., Hsu, W.L.: Fast algorithms for the dominating set problem on permutation graphs. Algorithmica 9(6), 601–614 (1993)